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Abstract

Light excitation of humic matter generates reactive oxygen species (ROS) in surface waters of aquatic ecosystems. Abundant
ROS generated in humic matter rich lakes include singlet oxygen ('0,) and hydrogen peroxide (H,0-). Because these ROS
differ in half-life time and toxicity, we compared their effects on microbial activity (**C-Leucine incorporation) and bacterial
community composition (BCC) in surface waters of humic Lake Grosse Fuchskuhle (North-eastern Germany). For this
purpose, experiments with water samples collected from the lake were conducted in July 2006, September 2008 and
August 2009. Artificially increased '0, and H,0, concentrations inhibited microbial activity in water samples to a similar
extent, but the effect of the respective ROS on BCC varied strongly. BCC analysis by 16S rRNA gene clone libraries and RT-
PCR DGGE revealed ROS specific changes in relative abundance and activity of major bacterial groups and composition of
dominating phylotypes. These changes were consistent in the three experiments performed in different years. The relative
abundance of Polynucleobacter necessarius, Limnohabitans-related phylotypes (Betaproteobacteria), and Novosphingobium
acidiphilum (Alphaproteobacteria) increased or was not affected by photo-sensitized 'O, exposure, but decreased after H,0,
exposure. The opposite pattern was found for Actinobacteria of the freshwater Acl-B cluster which were highly sensitive to
'0, but not to H,0, exposure. Furthermore, group-specific RT-PCR DGGE anal1ysis revealed that particle-attached P.
necessarius and Limnohabitans-related phylotypes exhibit higher resistance to 'O, exposure compared to free-living
populations. These results imply that 'O, acts as a factor in niche separation of closely affiliated Polynucleobacter and
Limnohabitans-related phylotypes. Consequently, oxidative stress caused by photochemical ROS generation should be
regarded as an environmental variable determining abundance, activity, and phylotype composition of environmentally
relevant bacterial groups, in particular in illuminated and humic matter rich waters.
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(HyOy) and other ROS. Recent experiments strongly suggest that
distinct structures in humic matter are linked to the formation of
102 or HyOy [9] and that the reaction of ]OQ with DOM
generates small amounts of HyOy [9,10].

Effects of photochemically altered DOM on microorganisms
were mainly investigated via inoculation of pre-irradiated DOM
with natural microbial assemblages [11,12] including studies,
which examined the effect of substrate availability on bacterial
community composition (BCC) [13,14,15]. In a recent study, we

Introduction

Dissolved organic matter (DOM) is the major carbon and
energy source for heterotrophic bacteria in aquatic ecosystems [1].
Humic lakes are characterized by a high content of allochthonous
DOM with recalcitrant high-molecular-weight poly-aromatic
compounds. Photochemical transformations of these compounds
generate low-molecular-weight substances and thereby stimulate
microbial activity and growth [2,3]. On the other hand,

photochemical processes lead to inhibitory effects including (1)
photo-oxidation and (ii) transformation of labile compounds [4,5]
as well as (iii) generation of reactive intermediates such as reactive
oxygen species (ROS) [6,7,8]. ROS generation in aquatic
ecosystems occurs by light excitation of DOM, in particular
humic matter, and subsequent formation of triplet excited states in
poly-aromatic compounds [8]. Light-excited DOM transfers
energy or electrons to molecular oxygen. Thereby, the transfer
of energy gencrates singlet oxygen ('O,) and the incomplete
reduction of oxygen leads to the formation of hydrogen peroxide
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showed that 'O, has the potential to inhibit typical freshwater
bacterial species and consequently affect BCC [16]. Singlet oxygen
is highly reactive, exhibits a half-life time in water of ~3.5 ps [17],
and causes cell damage by oxidation of lipids, nucleic acids, and
proteins [18,19]. In contrast, HyOy has a half-life time of up to 8
hours in freshwater [20]. Moreover, HyO, diffuses through
biological membranes and mainly reacts with iron-sulphur clusters
leading to subsequent intracellular hydroxyl radical formation and
damage of biomolecules [21]. Hence, potentials for cell damage
caused by '0, and H,0, differ substantially.
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In a previous study, short and long term effects of 'Oy on BCC
were investigated [16]. The present study compares effects of
increased 'O, and H,Os concentrations on BCC and includes
experiments on the activity of heterotrophic bacteria in the surface
water of the humic matter rich south-west (SW) basin of Lake
Grosse Fuchskuhle (North-eastern Germany). The experiments
were designed to elucidate differences in sensitivity of dominating
bacterial phylotypes towards naturally occurring ROS of different
toxicity. We tested the following hypotheses: 1) '0, and H,0,
exposure elicit specific changes in microbial activity and BCC and
1) ROS-induced changes differ between particle-attached and
free-living bacterial communities. Investigation of the latter
hypothesis is of particular importance since a higher generation
of 'Oy has been observed in particles compared to the ambient
water in humic matter rich ecosystems [22,23].

Results

10, and H,0, C°ncentrations in Surface Water Samples

Three sets of in situ experiments were performed in July 2006,
September 2008 and August 2009. For each experiment day, 'O,
steady state ['Oglgs concentrations and HoQ, formation were
determined, because variations in sunlight intensity and in
concentration of dissolved organic carbon (DOC) were observed
(Table 1). By applying the furfuryl alcohol (FFA) method [24] we
observed similar m siu []OQ]SS concentrations on all three
experiment days that were in the range of 11.2 to
14.1x107"* M in the surface water layer of the lake (Table 1).
The kinetics of 'O, formation differed between experiment days
(Fig. 1A-C), but the dose of 'Oy exposure was very similar and
ranged from 56.2 to 63.5x107"* M Wh m™? (C-Ls; Fig. 1D-F).
Hydrogen peroxide concentrations were low in all water samples.
During diurnal cycle studies ~50 nM were detected on 11" July
2006 (data not shown), but in 2008 and 2009, HyOy concentra-
tions were in the range of 70 to 120 nM (Fig. 1H and I).

Environmental conditions with respect to ROS concentrations
may have varied throughout the years. In order to ensure that the
reactivity of natural organic matter (NOM) was similar on each
experiment day, 0.22 pm filtered water samples were further
analysed (Materials S1). Normalization of ROS formation to mg
DOC L' revealed that the specific 'O, formation was similar
between the experiment days. In contrast, the specific HyOq
formation was higher in 2009 compared to 2006 and 2008 (Table
S1). Large variations of i situ ' Oy formation were not observed. In
contrast, for HyOy an up to 4-5 fold variation in formation rate
was detected (Table S1), but concentrations measured in lake
water samples remained similar (Fig. 1H and I).

Contrasting Effects of '0, and H>0, on BCC

Modification of 'O, and H,0, Concentrations

All in situ experiments performed in the summers of 2006, 2008
and 2009 were designed to test whether effects of increased 'O,
and H,Oy concentrations consistently differ in surface waters
(hypothesis i). Respective field experiments (Fig. 2) were performed
by obtaining water samples from the lake. Increased environmen-
tal ROS levels, particularly of HyOo, were obtained by adding the
photosensitizer Rose Bengal (RB), a poly-aromatic compound that
specifically generates 'Oy in the presence of light and oxygen or by
H,0, addition.

Concentrations of 'O, increased by 1.3 to 8-fold in light
incubations after RB addition (Fig. 1D-F). Addition of 5 pM
Hy0O5 1in 2009 or 10 pM in 2006 and 2008 represented an increase
in HyO, concentrations by ~45 to 200-fold, respectively. In
experiments with HyO, addition, the concentrations decreased
during the time of incubation and ranged between 0.25 and
4.2 pM at the end of the experiments. Concentrations of HyOg
were lower in light incubations compared to dark controls
(Fig. 1G-I) and HyO, end concentrations were ~3 to 33-fold
higher compared to the non-amended controls. This notion is in
line with the high capacity for HyOy degradation found for humic
matter rich water samples of the SW compartment (Materials S1).

Microbial Activity is Hampered by ROS Exposure

Activity of heterotrophic microorganisms, assessed by '*C-
Leucine incorporation, was highest in the light controls (C-L)
reaching 2800, 223, and 2100 pmol leucine L™" h™" in 2006,
2008, and 2009, respectively (Fig. 3). In 2006, microbial activity
was significantly higher in the light than in the dark control. A
similar trend occurred in 2008 and 2009, but it was not statistically
significant. In all experiments, increased ROS levels caused
inhibition of microbial activity. Precisely, generation of 'O,
(RB0.05-L) and addition of HyOy (HP10-L/D) decreased micro-
bial activity to 30% of that in the respective C—L in 2006. Similar
treatments caused a decrease to 43% in 2008. In 2009, the
addition of 5 pM H5Oy in light and dark treatments (HP5-L/D)
resulted in a decrease of microbial activity to 51 and 44% of that in
the respective C—L. Singlet oxygen generation in RB0.2-L in 2006
and RB0.05-L in 2009 decreased microbial activity to below 5% of
the respective C-L. In 2009, particle-attached and free-living
bacteria were assessed separately to investigate differences in their
potential to incorporate leucine. In controls, particle-attached
bacteria incorporated 2.3 to 2.6-fold more leucine than free-living
bacteria. Exposure to ROS decreased the activity of both fractions
to the same extent (Fig. S1), indicating an overall similar sensitivity
of the microbial community to ROS exposure.

Significant changes in cell numbers were not correlated with
ROS exposure, except for the 'O, exposure in 2008 (Fig. S2). As

Table 1. Selected environmental parameters on experiment days in 2006, 2008 and 2009.

Parameter Sample

2006 (12" July)

2008 (5'" September) 2009 (14" August)

DOC(mgCL™ 233*138
Average light intensity (W m 2) 570
In situ ['05]ss (107" M) 141208
In situ H,0, (nM) n.d.

340+0.1 284%1.1
445 557
11.8+0.01 1.2
120+2.5 120+1.42

n.d.: not determined.
doi:10.1371/journal.pone.0092518.t001
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DOC concentration, average light intensity and subsequent ['O,]ss and H,0, concentrations slightly differed between experiment days of the three studied years.
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Figure 1. Formation of 10, and H,0, during experiments in 2006, 2008 and 2009. Kinetics of ['0,lss in the surface water layer (A-C) were
calculated from the rate of furfuryl alcohol decay and the light intensity according to Haag and Hoigne (1986). The formation of '0, largely depends
on the light intensity (Table $1) and hence ['0.]ss kinetics depend on the weather conditions. A. 12" July 2006: a clear sky during the afternoon led
to a steady decrease in ['0,]ss concentrations from noon to late afternoon. B. 5™ September 2008: a cloudy sky during the afternoon caused
fluctuation in ['0,]ss concentrations. C. 14™ August 2009: a slightly overcasted sky during the whole day led to reduced fluctuations in ['O5]ss
concentrations compared to 2008. Values for solar radiation and rainfall within 30 days prior to the experiments were similar (Fig. S9) and hence all
three experiments were conducted under comparable environmental situations. The addition of Rose Bengal (RB) increased the formation of 0, (D-
F). D. 2.8 -fold for RB0.05-L and 8-fold for RB0.2-L in 2006, E. 1.3-fold in 2008, and F. 1.9-fold in 2009. Hydrogen peroxide concentrations were analysed
in all samples at the end of the experiments (G-H). G. and H. 10 pM H,0, were added in 2006 and 2008, respectively. I. 5 uM H,0, were added in
2009. Numbers at RB and HP on the x-axis labels correspond to M concentrations of RB or H,0,. Please note the different scale in panel H compared
to panels G and I. n.d.: not determined. An overview of the abbreviations used for the experimental setups is given in the box at the bottom of the
Figure. C-L/D: Light and dark control incubations, RB-L: Light incubation with increased ['O,]ss, RB-D: Dark control for RB, HP-L/D: Light and dark
incubations with H,0,. Dotted lines in A-C and error bars in D-F represent the standard deviation of the FFA method where three distinct water
samples were used to determine sample specific ['O,]ss concentrations. Error bars in G-H indicate the standard deviation of three analysed samples.
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Different letters at the top of the bars depict statistically significant differences (with p=0.001) between values as determined by one-way ANOVA
followed by pair-wise multiple comparison analysis with the Tukey’s test performed in Sigma Stat v. 2.0 (Systat Software). The same letters indicate

that depicted values are not significantly different to each other.
doi:10.1371/journal.pone.0092518.g001

observed in earlier experiments [16] increased numbers of
micrococcoid cells were responsible for elevated total cell numbers
(Table S2).

Different concentrations of RB and HyO, were used on the
three experiment days (Fig. 3). Overall, we aimed for a similar
inhibition of microbial activity by '0, and Hy0s in order to
enable a direct comparison of changes in BCC within each
experiment. Therefore, several RB concentrations were tested in
2006 and 2008 (data not shown) and for further analysis only those
treatments were chosen which showed a similar inhibition of **C-
Leucine incorporation.

Relative Abundance of Bacterial Groups After 'O, and
H,O, Exposure

Clone libraries of free-living bacterial fractions in light controls
(C-Ls) in 2006 and 2008 (Fig. 4) were dominated by Betaproteo-
bacteria (54 and 31%), followed by Actinobacteria (15 and 23%)
and Alphaproteobacteria (9 and 2%). In the respective particle-
attached fractions, Betaproteobacteria (26 and 10%) and Bacter-
oidetes (11 and 13%, Table 2) dominated, followed by
Alphaproteobacteria (9 and 4%), and Actinobacteria (4 and 2%).
In both vyears, less abundant groups including Firmicutes,
Chlorobii, Verucomicrobia, and Acidobacteria represented only
4 to 6% of free-living as well as 6 to 13% of particle-attached
bacterial fractions (Table 2). In 2006 and 2008, chloroplast
sequences accounted for 2 and 15% of free-living or 24 and 31%
of the particle-attached fractions, respectively.

Exposure to '0, and H,0, induced spectfic shifts in BCC.
Increased 'O, exposure led to the disappearance of Actinobacteria
and Bacteroidetes in both free-living and particle-attached

fractions, whereas the effects on Beta-, Alpha-, and Gammapro-
teobacteria as well as Firmicutes depended on 'O, dose and
bacterial fraction (Fig. 4, Table 2). In 2006, a 2.8-fold increased
'O, exposure decreased Betaproteobacteria by 37 and 24% in the
free-living and particle-attached fraction, respectively. In contrast,
Alphaproteobacteria increased by 46% in the free-living and by
6% in the particle-attached fraction, whereas Firmicutes increased
by 15% only in the particle-attached fraction (Table 2). After an 8-
fold increased 'Oy exposure, Gammaprotcobacteria dominated
and accounted for 69 and 38% of the free-living and particle-
attached fraction, respectively. In contrast, Alphaproteobacteria
disappeared in the particle-attached fraction, but did not change
in the free-living one. Firmicutes strongly increased by 25%
exclusively in the particle-attached fraction (Table 2). The much
lower 1.3-fold elevated 'O, exposure in 2008 increased Betapro-
teobacteria by 27 and 7% in the free-living and particle-attached
fraction, respectively. In both fractions, Alphaproteobacteria
increased by 16 and 22%, and Gammaproteobacteria by 4 and
19%.

After HyOq exposure, BCC changed in a very different manner.
The abundance of free-living Betaproteobacteria decreased by 41
and 4% in 2006 and 2008, but in both years they remained highly
abundant (Fig. 4). Particle-attached Betaproteobacteria decreased
after HyOy exposure by 20% in 2006, and were not detected in
2008. The change in relative abundance of free-living Actino-
bacteria varied between an 18% increase (2006) and a 7%
decrease (2008), but negative effects were less pronounced than
after exposure to 'O,. Actinobacteria remained highly abundant
and the relative abundance of further bacterial groups only slightly
changed after HyOy exposure (Table 2).

¥'s

AR -
/ l \\SAolar radiation

Sampling and sample processing

Incubation in the surface water layer

*  Water sampling in 1 L Pyrex glass bottles
» Distribution of 500 mL water samples in o - o
Whirl-pak bags e
» Addition of Rose Bengal and H,0,
. . Whirl-pak bag
* Incubation in the surface water layer
e Sampli irl-
pling of Whirl-pak bags for

» Cell numbers

» Uptake of “C-leucine c-D RB-D H,0,-D
» Cooling of Whirl-pak bags on ice
» Fractionated filtration

» Particle-attached fraction

Black plastic sheet (dark controls)

» Free-living fraction

Figure 2. Design of field experiments. Field experiments performed in 2006, 2008 and 2009 followed the same experimental outline as displayed
in the flow chart. Whirl-pak bags were incubated in the surface water layer on large metal racks after addition of Rose Bengal and H,0,. Dark controls
were covered with a black plastic sheet to avoid exposure to solar radiation. Abbreviations are given in Fig. 1.

doi:10.1371/journal.pone.0092518.g002
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Figure 3. Activity of heterotrophic microorganisms after '0, and H,0, exposure. Microbial activity was measured as leucine incorporation
during 1 h dark incubation at the end of each experiment. Error bars indicate standard deviations of triplicate incubations. Different letters at the top
of the bars depict statistically significant differences (with p=0.001) between values as determined by one-way ANOVA followed by pair-wise
multiple comparison analysis with the Tukey's test performed in Sigma Stat v. 2.0 (Systat Software). The same letters indicate that depicted values are
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doi:10.1371/journal.pone.0092518.g003
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Figure 4. Relative abundance of major bacterial groups. 165 rRNA gene clone libraries generated with universal bacterial primers obtained
from free-living (0.22-8 pm in 2006 and 0.22-5 um in 2008) and particle-attached (>8 or >5 um, respectively) bacterial fractions after 'O, and H,0,
exposure. Clone libraries were generated for control (C-L), '0, (RB-L) and H,0, (HP-L) light treatments of in situ experiments 2006 and 2008. The
relative abundance represents fractions (%) of all investigated clones of each clone library. For abbreviations see Fig. 1. Colours indicate the
phylogenetic affiliation: Actinobacteria (purple), Gammaproteobacteria (brown), Alphaproteobacteria (red), and Betaproteobacteria (blue).
doi:10.1371/journal.pone.0092518.g004
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Figure 5. Phylogenetic affiliation of 16S rRNA gene sequences representing OTUs and DGGE bands to the Betaproteobacteria.
Maximum likelihood trees showing the phylogenetic affiliation of OTU and DGGE band sequences to the Betaproteobacteria. Sequences obtained
from DGGE bands are depicted in bold letters. Numbers at roots represent bootstrap values (=70%) of 100 re-samplings. Scale bars: 0.1 nucleotide
substitutions per site. Sequences representing OTUs are assigned as follows: SW: South West basin, 06, 08: year of in situ experiment in 2006 or 2008,
fl: free-living bacteria, pa: particle-attached bacteria. Sequences signed with EUB, Beta, or Actino are from Bacteria, Betaproteobacteria, or
Actinobacteria-specific RT-PCR DGGE bands, respectively.

doi:10.1371/journal.pone.0092518.g005
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presenting OTUs and DGGE bands to the A/phaproteobacteria.

Maximum likelihood trees showing the phylogenetic affiliation of OTU and DGGE band sequences to the Alphaproteobacteria. Details and

abbreviations are indicated in the legend to Figure 5.
doi:10.1371/journal.pone.0092518.g006

Changes in the Overall Bacterial Diversity by Clone
Library Analysis

The coverage of the individual clone libraries ranged between
69 and 92%, with a mean coverage value of 82.4% (Table 1).
Rarefaction analysis showed that rarefaction curves generated for
each clone library did not reach complete saturation by a number
of approx. 50 clones for each investigated clone library (Fig. S3).
The lack of saturation was mainly due to single and rare OTUs,
which ranged between 8 to 31%. The focus of our study, however,

PLOS ONE | www.plosone.org

was on investigating ROS-induced changes in relative abundance
of the most prominent freshwater bacterial groups or species.
Therefore, such single and rare OTUs were not investigated by
sequence analysis and our clone library analyses did not aim to
cover the overall diversity within each treatment. The number of
investigated OTUs was sufficient to depict distinct differences in
phylotype abundance after increased 'Oy and HyOy exposure.
Especially for free-living bacteria, rarefaction curves were closer to
saturation after exposure with 0.05 M RB in the light ('O,
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Figure 7. Phylogenetic affiliation of 16S rRNA gene sequences representing OTUs and DGGE bands to the Gammaproteobacteria.
Maximum likelihood trees showing the phylogenetic affiliation of OTU and DGGE band sequences to the Gammaproteobacteria. Details and

abbreviations are indicated in the legend to Figure 5.
doi:10.1371/journal.pone.0092518.g007

treatments) in 2006 and 2008, respectively (Fig. S3). This finding
indicates that bacterial diversity after 'Oy treatments are lower

than in C-L and HyOy light treatments for experiments in 2006
and 2008.

Effects of 'O, and H,0, Exposure on Predominant
Bacterial Phylotypes

Sequencing of clones representing the most abundant opera-
tional taxonomic units (OTUs) revealed those bacterial phylotypes
causing major changes in BCC upon ROS exposure (Fig. 5-9,
Table 2). In 2008, Polynucleobacter necessarius (PnecC sub-cluster)
represented the most abundant Betaproteobacteria phylotype (OTU-
1). Increased abundance of Betaproteobacteria after 'O, exposure was
mainly due to P. necessarius and a Limnohabitans-related phylotype
(OTU-3). Both phylotypes decreased after exposure to HoOy. A
second Polynucleobacter phylotype (OTU-2) representing the PnecA
sub-cluster only occurred in the free-living fractions after HyOq
addition.

Increased abundance of Alphaproteobacteria after 'Oy exposure
was mainly due to OTU-8 representing Novosphingobium acidiphilum
(Table 2). In addition, increase of an uncultured phylotype (OTU-
9) resulted in a highly increased Alphaproteobacteria abundance after
'0, exposure in 2006. After HyOy exposure, in the attached
fraction, a Caulobacteraceae-related phylotype (OTU-11) increased
in relative abundance in 2008 and two other Alphaproteobacteria
phylotypes (OTU-13/14) in 2006 (Table 2).

PLOS ONE | www.plosone.org
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Five different phylotypes were responsible for the increased
abundance of Gammaproteobacteria after high 'O, exposure in 2006
(OTU-15 to 19, Table 2). In contrast, only one freshwater-cluster
Acl-B  phylotype (OTU-20) was responsible for the high
abundance of Actinobacteria in controls and after HyOy exposure.

Changes in the Composition of Metabolically Active
Bacteria

Analysis of metabolically active bacteria by unweighted pair-
group method using arithmetic average (UPGMA) cluster analysis
of Bacterna RT-PCR Denaturing Gradient Gel Electrophoresis
(DGGE) patterns confirmed BCC changes after 'Oy and HyO,
exposure as observed by clone library analysis (Fig. 10 and S4). All
in situ experiments performed in 2006, 2008 and 2009 were
repeated within a few days (Fig. S5 A-C).

In UPGMA combining all experiments stable clusters were
formed by patterns affiliated with experiments performed in the
respective year (data not shown). Therefore, cluster analysis was
performed separately for all three years, in which DGGE patterns of
particle-attached and free-living bacteria formed separate clusters
(Fig. 10) Within these clusters, control experiments (C-L/D, RB-Ds)
and HyO, treatments (HP-L/D) clustered with each other. In
contrast, 'Oy exposure caused more pronounced changes in DGGE
banding patterns. Particle-attached and free-living fractions in 2006
and 2009 were found in the same cluster after 2.8 and 1.9-fold
(RB0.05-L, 2006 and 2009) and after 8-fold (RB0.2-L, 2006) 'O,
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Figure 8. Phylogenetic affiliation of 16S rRNA gene sequences representing OTUs and DGGE bands to the Actinobacteria. Maximum
likelihood trees showing the phylogenetic affiliation of OTU and DGGE band sequences to the Actinobacteria. Details and abbreviations are indicated

in the legend to Figure 5.
doi:10.1371/journal.pone.0092518.9g008

increase. After moderate 'O, exposure (RB0.05-Ls), changes in
DGGE bands representing the uncultured Alphaproteobacterium
OTU-9 and the Firmicutes OTU-21 in both particle-attached and
free-living fractions greatly affected cluster formation. At higher 'O,
exposure (RB0.2-L), however, DGGE banding patterns of the free-
living fraction were similar to the respective controls (Fig. 10)
represented by P. necessarius OTU-1, N. acidiphilum OTU-8, and
Methylococcaceae OTU-15. In 2008, slightly increased 'Oy exposure
(RB0.02-L) had a minor effect on BCC and the respective DGGE
clusters were similar to the controls. In all three experiments,
disappearance of the DGGE band representing Acl-B Actinobacteria
OTU-20 comprised the most obvious change in community
composition of free-living bacteria after 'Oy exposure (Table 2).

BCC changes after HyO, exposure were generally caused by 1)
decreased intensity of DGGE bands representing P. necessarius
OTU-1 and N. acdiphilum OTU-8 and ii) the absence of DGGE
bands representing Limnohabitans-related OTU-3/6. These chang-
es occurred in different extent in free-living fractions of all three
experiments and also partially in the respective particle-attached
fractions.

Phylotype-specific Changes within Major Bacterial
Groups

Betaproteobacteria, Actinobacteria, and Sphingomonadaceae-specific R'T-
PCR DGGE analysis increased the phylogenetic resolution of our
study and revealed separate clusters for free-living and particle-
attached bacteria by UPGMA analysis (Fig. S6). After 'O,
exposure (RB-Ls), DGGE banding patterns obtained for all three
bacterial groups were separated from controls, whereas after HyO4
exposure, the DGGE bands always clustered together with
controls.

Major DGGE bands of both Betaproteobacteria fractions repre-
sented P. necessarius OTU-1 and Limnohabitans-related OTU-3/6
(Fig. 11). In 2008 and 2009, the DGGE band representing PnecA

PLOS ONE | www.plosone.org
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OTU-2 was observed with higher intensities in the free-living
fractions. Singlet oxygen exposure resulted in different effects on
phylotype composition of free-living vs. particle-attached Betapro-
teobacteria. The 2.8-fold increased 'Oy exposure decreased diversity
of free-living Betaproteobacteria to solely 2 DGGE bands in 2006
represented by P. necessarius OTU-1 and Limnohabitans-related
OTU-3. The 8-fold increased 'O, exposure diminished all free-
living Betaproteobacteria, whereas DGGE bands of particle-attached
Betaproteobacteria representing P. necessarius OTU-1 and Limnohabi-
tans-related OTU-6 were not affected by 'Oy exposure. In the
same treatment, an additional DGGE band representing a
phylotype closely related to OTU-6 occurred (DGGE band 5,
Fig. 11). In 2008, the much lower 'O, exposure led to the
disappearance of a DGGE band in the free-living fraction
representing PnecA OTU-2. The same DGGE band became
more intense after HyOg exposure in both, particle-attached and
free-living fractions of 2008 and 2009. In general, the effects of
'Oy exposure on Belaproteobacteria in 2006 were confirmed in 2009
whereby the 1.9-fold increased 'Oy exposure in 2009 had similar
effects compared to the 8-fold increased 'Oy exposure in 2006.

The Acl-B OTU-20 represented the most abundant Actinobac-
teria DGGE band of free-living and particle-attached fractions.
However, the relative abundance of Actinobacteria was low on
particles as revealed by clone-library (Fig. 4) and Bacteria RT-PCR
DGGE analysis (Fig. 10). After 'O, exposure, Actinobacteria DGGE
bands were lacking, except in 2008 when a DGGE band
representing a Mycobacteria-related phylotype occurred (band 8,
Fig. 8 and 11). Other DGGE bands present after 'O, exposure
belonged to the Verrucomicrobia (Fig. 9 and 11).

Sphingomonadaceae-specific RT-PCR DGGLE analysis indicated
that N. acidiphilum (O'TU-8) was the pre-dominant Sphingomonada-
ceae in the SW basin. Only high 'O, exposure affected the intensity
of its respective DGGE band (Fig. 11).
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e AU
-St06— , .
Adriondack lake clone ADK-HDe02-54, EF520517 Cg'lamblacte”a/
EUB-SW09-5, JF917138 chioroplasts
Nam Co Lake clone NO6Jun—-31, EU442895
SW06-paHPL-11 (OTU-32), JF917235
Polytoma oviforme, AF374188
78; SW06-paCL-71 (OTU-30), JF917231

SW06-paHPL-15 (OTU-31), JF917233
SW08-paHPL-25 (OTU-31), JF917234
Adriondack lake clone ADK-SGh02-76, EF520521
Parker River clone PRD18E12, AY948043
Cryptomonas curvata CCAC 0006, AM709636

100
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Figure 9. Phylogenetic affiliation of 16S rRNA gene sequences representing OTUs and DGGE bands to the less abundant bacterial
groups and chloroplast sequences. Maximum likelihood trees showing the phylogenetic affiliation of OTU and DGGE band sequences to less
abundant bacterial groups and chloroplast sequences. Details and abbreviations are indicated in the legend to Figure 5.

doi:10.1371/journal.pone.0092518.g009

Discussion

Comparison of '0, and H,0, Toxicity

Moderately increased 'O, and highly increased HyO, concen-
trations caused similar inhibition of '*C-leucine incorporation
suggesting different toxic potentials of 'O, and HyO,. This finding
also indicates that small changes of 'O, generation (frequent
during diurnal changes in sunlight intensity) may hamper
microbial activity in surface waters of humic lakes. In contrast,
only large changes in HyO, concentrations may affect the activity
of dominant bacterial species. However, the H,Oq concentrations
applied in our experiments were not exaggerated and the natural
potential of HyOy formation in 0.22 pm filtered lake water of the
SW basin was high (Fig. S7). In HyO4 depleted water samples,
H50O, concentrations in the pM range can be reached rapidly after
irradiation with sunlight or UV-A/B which has been frequently
observed for boreal lakes [25,26]. Microorganisms strongly
contribute to the decay of HyO,y [27]. This is indicated by 2.4-
fold higher HyOy decay rates in our unfiltered water samples
compared to those filtered through 0.22 um (Materials S1).
Obviously, the bacterial community or at least some phylotypes
can detoxify HoOy and therefore balances HoOy levels in their
environment. This notion is in line with earlier findings that
bacteria are involved in HyO, degradation in marine surface
waters [27] and that HyO, degradation by some bacterial
populations is important for growth of other bacteria in aquatic
environments [28]. Hence, bacteria thriving in surface waters of
humic lakes are well adapted to HyOy exposure and may prevent
accumulation of toxic HyO, concentrations.

Contrasting Effects of '0, and H,0, on Actinobacteria
and Betaproteobacteria

Acl-B Actinobacteria and betll lineage Betaproteobacteria mainly of
the PnecC sub-cluster are the most abundant bacterial groups in
the SW basin [29,30,31]. Actinobacteria of the Acl-B cluster are low
in abundance on particles [32]. Their high sensitivity to 'Oy and
the finding that humic matter rich particles generate high amounts
of 'O, [23] could explain the obvious absence of Acl-B
Actinobacteria from particles. Contrary, Acl-B Actinobacteria of the
SW basin were more resistant to HyOy exposure. Thus, it is likely
that Acl-B Actinobacteria produce peroxidases to degrade recalci-
trant organic matter and contribute to the high overall extracel-
lular peroxidase activity in Lake Grosse Fuchskuhle [33]. This life-
style requires increased resistance to peroxides and thus may
explain the high relative abundance of Acl-B Actinobacteria at
increased HyOo concentrations. A recently analysed single cell
genome of the Acl-B lineage supports this notion, because several
genes encoding glutathione depended peroxiredoxins were iden-
tified that potentially account for the proposed resistance against
peroxides [34].

In Lake Grosse Fuchskuhle and in other freshwater ecosystems
the abundances of Actinobacteria and Betaproteobacteria are negatively
correlated [14,30], and Actinobacteria numbers are usually lower in
summer months. The addition of photo-chemically modified
DOM to water samples increased Actinobacteria abundance [14]. By
irradiating DOM high amounts of HyOy accumulate [11], and the
subsequent incubation in the dark excludes formation of 'O,.
Therefore, only effects of HyOy on bacterial dynamics can be
monitored by such assays. Actinobacteria had a high resistance
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against HyOy in our study. In contrast, several Betaproteobacteria
phylotypes detected in our study were HoOy sensitive, but resistant
to 'Oy exposure. Consequently, the negative correlation between
Actinobacteria and Betaproteobacteria in the SW basin is at least partly
the result of their contrasting resistance and sensitivity to 'Oy and
HQOQ.

High solar radiation causes high 'O, exposure during the
summer months and may result in reduced Acl-B Actinobacteria
abundance. In contrast, P. necessarius was favoured by increasing
'O, concentrations and generally shows highest abundance and
activities in summer [35] and it also grows well on photodegra-
dation products of humic matter, such as acetate [36,37,38]. Acl-B
Actinobacteria are more abundant in autumn and early spring
[30,32] when input of unbleached NOM from the adjacent fen
into the SW basin is high. This unbleached NOM generates much
more H,O, than 'O, (Materials S1) and may be a key regulator of
the observed opposing dynamics of Acl-B Actinobacteria vs.
Betaproteobacteria.

Alpha- and Gammaproteobacteria Resist High 'O, Doses

Alpha- and  Gammaproteobacteria are two major lineages of
freshwater bacteria, which have gained relatively little attention
in the past [39]. Our data and previously published clone libraries
[29,30,31] indicate the persistence of N. acidiphilum in the humic
matter rich SW basin. Its relative abundance strongly increased
during 'O, exposure suggesting a high 'Oy resistance which can
be explained by a high cellular carotenoid content [40]. In
addition, Sphingomonadaceae are known to degrade aromatic
compounds and N. acidiphilum was favoured by the addition of
phenol that represents an important fraction of leached DOM
[41]. Thus, cellular quenching of 'O, by carotenoids and the use
of aromatic compounds are features of N. acidiphilum, which may
well explain its persistence in humic matter rich systems.

The increase in relative abundance of several Alpha- and
Gammaproteobacteria after 'Oy exposure may be related to specific
defence-systems protecting, for example, anoxygenic phototrophic
Alphaproteobacteria against 'Oy damages [42,43]. This is supported
by the recent finding that anoxygenic phototrophic bacteria of the
SW-basin mainly consist of Alphaproteobacteria [44]. The key
regulators controlling such cellular responses include specific
RNA polymerase sigma factors and have been found in the
genomes of several Alpha- and Gammaproteobacteria lineages [45]
including non-phototrophic  Caulobacter crescentus  [46]. Thus,
induction of 'Og-specific defence-systems may explain the
increased relative abundance of the Caulobacteraceae-related phylo-
type (OTU-11) in the present study.

Particle-attached Phylotypes are More Resistant to 'O,
Exposure

Particles represent hotspots of bacterial activity in aquatic
environments [47]. Humic matter rich particles have been shown
to generate higher 'O, concentrations compared to the surround-
ing water by the application of hydrophobic 'O traps [23].
Recent studies could not verify a high 'O, generation in humic
particles [48] or suggest that 'O, is quenched by certain reactive
groups [49]. Our study revealed the existence of particle-
associated phylotypes that were obviously more resistant to 'Oy
exposure than their free-living counterparts. Particle-attached
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Figure 10. Cluster analysis of Bacteria RT-PCR DGGE patterns. Cluster analysis and RT-PCR DGGE patterns of metabolically active free-living
(0.22-8 um in 2006 and 0.22-5 um in 2008 and 2009) and particle-attached (>8 or >5 um, respectively) Bacteria of in situ experiments 2006, 2008 and
2009. Universal Bacteria 165 rRNA gene targeting primers were used for analysis. Cluster analyses were performed in GelCompare Il version 4.5 (Applied
Maths) using unweighted pair-group method using arithmetic average (UPGMA) clustering based on the Pearson correlation which considers the
intensity of DGGE bands. Distance matrices are shown in Fig. S4. DGGE bands marked with circles were sequenced. OTU numbers depicted next to the
DGGE patterns point at DNA bands identical in DNA sequence (see Table 2). Colours of OTU numbers indicate the phylogenetic affiliation: Actinobacteria
(purple), Gammaproteobacteria (brown), Alphaproteobacteria (red), and Betaproteobacteria (blue), cyanobacteria/chloroplasts (green), and other Bacteria
(grey). Phylogenetic affiliations to sequenced DGGE bands are given in Fig. 5-9 and Table S6. Abbreviations are given in Fig. 1.
doi:10.1371/journal.pone.0092518.g010

bacteria represented by P. necessarius OTU-1 and the Limnohabitans-
related OTU-6 were indeed more resistant to 'Oy exposure than
their free-living counterparts. Particle-associated bacteria exhibit
different lifestyles and thus often represent different ecotypes [50],
which requires also adaptation to different levels of oxidative
stress. Alternatively, phylotypes in particle-attached and free-living
fractions may represent the same ecotypes, whereby inducible
response mechanisms against increased oxidative stress should

allow for colonization of particles in the upper, well-illuminated
water layers. Furthermore, it cannot be fully excluded that P.
necessartus 16S TRNA gene sequences in the particle-attached
fraction (>5 pm) originate from ciliate endosymbionts, namely
Stentor amesthystinus (Dziallas and Grossart, unpubl. data). In
contrast, highly 'Oy sensitive AcI-B Actinobacteria were absent from
humic particles representing nutrient, but 'O, rich microhabitats
(see above).
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Figure 11. Group specific RT-PCR DGGE analysis. RT-PCR DGGE analysis of metabolically active free-living (0.22-8 pum in 2006 and 0.22-5 pm in
2008 and 2009) and particle-attached (>8 or >5 um, respectively) Betaproteobacteria, Actinobacteria, and Sphingomonadaceae after '0, and H,0,
exposure. Group-specific 165 rRNA gene targeting primer-systems were used for analysis. All treatments of in situ experiments 2006, 2008 and 2009
were investigated. DGGE bands marked with circles were sequenced. DGGE band numbers in brackets were not affiliated to the investigated groups.
Numbers with arrows show the assignment to respective OTUs (see Table 2). Abbreviations are given in Fig. 1.
doi:10.1371/journal.pone.0092518.g011
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Defence Mechanisms Against Environmental ROS

Exposure

Details on the presence of molecular response mechanisms
against environmental ROS exposure in typical freshwater
bacteria are elusive. Recently, molecular defence systems against
'O, exposure were found in bacteria [42,43] and defence
strategies against HoOy generated in aerobic metabolism are
known in detail for several bacterial model systems [21].

Carotenoids are inevitable in photosynthetic bacteria and in the
chloroplasts of plants to prevent photosystem based generation of
'O, [42,43]. Non-photosynthetic bacteria also exhibit carotenoids,
which likely serve as quenchers of 'O, generated by cellular
photosensitizers such as flavins [42] or by various extracellular
sources. Cellular scavengers, which include amino acids such as L-
histidine and trypotphan, reduced thiols (glutathione, thioredoxin),
mycosoprine lysine and polyamines also minimize cellular
damages by 'O,. Such scavengers need to be regenerated after
their reaction with 'Oy, and therefore enzymes involved in
adjusting the cellular redox homeostasis need to be activated
(reviewed in [43]).

In photosynthetic Alphaproteobacteria, response mechanisms to
'O, exposure are controlled by the alternative sigmafactor RpokE,
which is bound to the anti-sigmafactor ChrR under non-stress
conditions. The release of RpoE from ChrR after 'Oy exposure
triggers the induction of genes encoding stress response mecha-
nisms and further regulatory factors, including RpoHj; and several
small regulatory RNAs [42]. Homologs of these sigmafactors are
conserved in photosynthetic Alphaproteobacterna and have been
found in several Beta- and Gammaproteobacteria lineages [45].
Genomes of species representing abundant freshwater bacterial
clades did not harbour homologous genes. Hence, defence systems
and their control in abundant freshwater bacteria may substan-
tially differ from established bacterial model systems.

Very likely, individual bacterial lineages use different strategies
to overcome natural 'Oy exposure, which could explain very well
the species specific sensitivity to 'Oy exposure in our study.

Hydrogen peroxide is detoxified by cellular enzymes such as
catalases and peroxidases (glutathione peroxidases and peroxir-
edoxin) [21]. Increased HyOy concentrations lead to rapid cell
death by the oxidation and disassembly of iron-sulphur clusters,
which are common in electron transport chain components.
Hydrogen peroxide together with free iron(Il) leads to the
formation of highly toxic hydroxyl radials by the Fenton reaction,
which rapidly react with most cellular components and facilitate
cell mortality. Therefore, cellular levels of HyOq are tightly
balanced and the cellular response is well regulated by, for
example, OxyR or PerR which coordinate genes for HyOq
degradation, glutathione turnover, production of redox buffers as
glutaredoxin and thioredoxin as well as genes involved in
controlling iron metabolism. All bacteria with an aerobic
metabolism, therefore, require defence systems against HyOq
exposure. This may explain, why HyO, had a much smaller effect
on BCC compared to 'O, in the environment.

Niche Separation of Closely Related Species Caused by
Exposure to Different ROS

Our experiments in 2008 indicate niche separation of closely
related Polynucleobacter phylotypes by moderately increased 'O,
exposure. The Polynucleobacter phylotype of the PnecC sub-cluster
(OTU-1) was highly resistant against exposure to 'Oy, but
negatively affected by HyOs. In contrast, the Polynucleobacter
phylotype of the PnecA sub-cluster (OTU-2) was only detected
after HyOy exposure in clone libraries of free-living bacteria.
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Additionally, a corresponding DGGE band was observed imn all
free-living fractions by Betaproteobacteria-specific RT-PCR DGGE
analysis, except after intense 'O, exposure. Hence, ccological
niches of those related phylotypes might be separated by variations
in their sensitivity to '0y and HyO,. In line with our finding,
occurrence of the Polynucleobacter sub-cluster PnecA and PnecC
depends on lake colour [51], most likely because HyOq formation
largely depends on concentration and quality of NOM [25].
Moreover, the presence of various Polynucleobacter sub-clusters may
also reflect the availability of different substrates since Polynucleo-
bacter species assimilate low-molecular-weight substances [38] that
can be also generated by photochemical NOM degradation.

We further observed ROS dependent niche separation for
Limnohabitans-related phylotypes. Betaproteobacteria-specific RT-PCR
DGGE patterns revealed the occurrence of a Limnohabitans-related
phylotype closely related to OTU-6" on particles after increasing
'O, exposure in 2006 and 2009. This phylotype was also enriched
after long-term exposure with moderately increased LO,, whereas
the OTU-6 phylotype only occurred in the respective controls [16]
indicating a lower 'O, resistance. Fortunately, we were able to
isolate a respective strain from the SW basin and found an efficient
adaptation to inhibitory 'Oy exposure by pre-incubation with non-
inhibitory 'Oy concentrations (data not shown). This notion
suggests that highly effective response mechanisms to increased
'O, may be present in this specific Limnohabitans strain. Niche
separation of coexisting closely related Limnohabitans strains has
been shown recently [52], but in this case it was caused by
differences in predation and virus infections. Niche separation of
closely related phylotypes of Limnohabitans by 'Oy exposure
underlines our hypothesis that different ROS affect BCC in a
highly phylotype-specific manner, particularly in humic matter
rich lakes.

Conclusions

From our data we conclude that differences in sensitivity to 'O,
and HyOy may explain the negative correlation in abundance of
Actinobacteria and Betaproteobacteria in the surface waters of Lake
Grosse Fuchskuhle and elsewhere. The exclusion of specific
bacterial lineages from humic matter rich particles and the
presence of species-like taxa due to ROS specific separation of
ecological niches should be regarded as an ecological factor
shaping natural microbial communities. Hence, temporal and
spatial differences in ROS generation, particularly in humic
matter rich aquatic ecosystems, have the potential to affect major
microbial processes and their rates. For example, niche separation
by ROS has strong implications for bacterial adaptation and
evolution in natural ecosystems. We propose that changes in 'O,
exposure have a larger impact on BCC than HyOy, because 'O, is
1) more toxic compared to HyOy and ii) defence mechanisms
against HyOy are present in all aerobic organisms, whereas
putative defences against singlet oxygen exposure may only occur
in bacteria specifically adapted to cellular or environmental 'O,
formation. Further, insights into the molecular mechanisms of
cellular defences against environmental ROS in general and
singlet oxygen in particular are necessary to understand in detail
the role of 'O, and H,O, for controlling activity and composition
of aquatic microbial communities.

Materials and Methods
Study Site

All field studies were conducted in the humic acid rich south-
west basin of the artificially divided dystrophic Lake Grosse
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Fuchskuhle [52]. Physico-chemical parameters of the lake were
described previously [16,29,30] and are compiled for all exper-
imental periods in Table S3.

The IGB is authorized by the Landkreis Oberhavel to obtain
samples from Lake Grosse Fuchskuhle and to conduct mesocosm
experiments as performed in our study. Our studies did not
endanger protected wildlife in or around the lake.

Sampling and Experimental Conditions

Subsurface water samples were collected in autoclaved Pyrex-
glass bottles on the same day prior to the start of i situ exposure
experiments. All set ups were prepared in a dark shelter at the lake
shore and water samples were subsequently incubated 10 cm
below the water surface in the humic SW basin of Lake Grosse
Fuchskuhle.

Generation of 'O, was artificially increased by adding 0.02 to
0.2 uM of the photosensitizer Rose Bengal under sunlight
exposure (RB-L). Concentrations of HyOy were experimentally
increased by adding 5-10 pM HyO4 to enhance peroxide stress in
light and dark incubations (HP-L and HP-D). Controls included
light and dark incubations of natural lake water (C-L and C-D)
without addition of any chemicals and a RB dark control (RB-D).

For the first experiment on 12" July 2006 [16], 1 L water samples
were incubated in polypropylene bags (Carl Roth, Karlsruhe,
Germany) between 13:30 and 18:00. The light treatments were
repeated in 2006 on 14™ July (C-L), 15™ July (RB0.2-L), 18™ July
(RB0.05-1) and 20" July (HP-L). In each experiment we compared
the exposure to the untreated control obtained at the start of the
experiment. The second experiment was performed on 5™
September 2008 by incubating 400 mL water samples in polyeth-
ylene Whirl-Pak Bags (Nasco, Fort Atkinson, WI, USA) between
12:15 and 16:15. Prior to incubations, water samples were diluted
with an equal volume of 0.22 um pre-filtered surface water. A
replicate of this experiment was performed on 4™ September. In the
third experiment on 14™ August 2009, we incubated 500 mL water
samples in Whirl-Pak Bags between 9:00 and 13:00. All Whirl-Pak
bags were covered with UV-A/B absorbing polyester sheets 90 NR
(Modulor, Berlin) to exclude effects of UV-A/B radiation. The
experiment was repeated in triplicates on 17 August. Transmission
spectra are given in Fig. S8 for plastic bags and sheets, respectively.

Solar radiation and rainfall affects the NOM reactivity in the
lake. In order to monitor pre-experiment weather conditions,
weather data for 30 day prior to the each experiments were
obtained from the weather station in Menz (53°10" N, 13°05" E).
Menz is closely located to Lake Grosse Fuchskuhle. The data were
purchased from the Deutscher Wetterdienst (www.dwd.de) and
depicted in the Figure S9.

Measurement of '0, and H,0,

ROS concentrations were determined in 0.22 pm filtered water
samples. Singlet oxygen steady state concentrations (['Os]ss) were
measured using furfuryl alcohol [24] as described previously [16].
Concentrations of HyO, were measured by using the Amplex Red
method [53] with slight modifications (Materials S1). Analysis were
performed in triplicates. Differences between treatments were
analysed by one-way ANOVA followed by pair-wise multiple
comparison analysis with the Tukey test (Sigma Stat version 2.0,
Systat Software, Richmond, California, USA).

Bacterial Numbers and Microbial Activity

Bacteria cell numbers were determined by Sybr Green I
staining and epifluorescence microscopy [16]. Microbial activity
was measured by ['*C]-leucine incorporation [54]. Sample-
triplicates (5 mL) and formalin-fixed controls were incubated
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immediately after experiments with ['*C]-leucine (1.15x10'° Bq
mmol~'; Amersham) for 1 h at in situ temperature in the dark.
Incubations were stopped by formalin addition.

Simultaneous DNA and RNA Extraction from Water

Samples

All i situ experiments performed in 2006, 2008 and 2009 were
repeated within a few days. Water samples were immediately put
on ice prior to filtration. Particle-attached bacteria were collected
on 8 pum cellulose-nitrate membranes (Satorius, Géttingen,
Germany) in 2006 or on 5 pum sterile Minisart syringe filters
(Sartorius) in 2008 and 2009. Free-living bacteria from the 5 um
filtrates were collected on 0.22 pm Sterivex' M-GP filter units
(Millipore, Schwalbach, Germany) and filters were immediately
stored at —80°C. Triplicates from the second experiment
performed in 2009 were pooled prior to the extraction of nucleic
acids. DNA and RNA were extracted simultancously as described
by [55]. Reaction volumes were decreased for the use of 2-ml
tubes. Precipitated nucleic acids were resuspended in 100 pl
RNase/DNase-free water (Carl Roth). RNA extracts were treated
with 1 URQI1 DNase (Promega, Madison, WI, USA) and purified
with phenol/chloroform (2006) or were incubated with 1 U
DNase I (Fermentas, St. Leon-Rot, Germany), which was
subsequently heat-inactivated (2008 and 2009).

16S rRNA Gene Clone Libraries and RT-PCR DGGE

Bacterial 16S rRNA gene clone libraries were generated with
primers 8F and 1492R [56] and operational taxonomic units
(OTUs) were defined by Amplified Ribosomal DNA Restriction
Analysis (ARDRA) [57]. Community changes of metabolically
active Bacteria, Actinobacteria, Betaproteobacteria, and Sphingomonadaceae
were investigated by 16S rRNA targeting RT-PCR DGGE.
Details are given in Materials S1 and Tables S4 and S5.

Phylogenetic Analysis of 16S rRNA Gene Sequences

Sequences were aligned with the SINA Web aligner (http://
www.arb-silva.de/aligner/) and analysed in ARB [58] using the
SILVA SSURef NR 104 database [59]. Maximum likelihood trees
were constructed with using RAxML v7.04 [60] with GTR-
GAMMA and rapid bootstrap analysis. Trees were generated with
nearly full-length sequences (>1300 nt) spanning E. coli positions
56 to 1444 [61]. Tree topologies were confirmed by the generation
of trees using Proteobacteria, Actinobacteria, and Bacteria 50% base
frequency filters. Partial sequences were added with ARB
parsimony without changing the overall tree topology. Sequences
are deposited in GenBank with accession numbers JF917134—
JF917235, JF925281, and JF925282.

Supporting Information
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(PDF)

Figure S2 Cell numbers in controls and in '0, and H,0,
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Figure 83 Rarefaction analysis of nearly full-length 16S
rRNA gene clone libraries.

(PDF)

Figure S4 Distance matrices of Pearson correlation
based UPGMA cluster analysis.
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Figure S6 Cluster analysis of Betaproteobacteria, Acti-
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Figure S8 Transmission scans of poly-propylene (PP)
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Figure S9 Weather data for 30 day prior to the
experiments carried out in 2006, 2008, and 2009.
(PDF)

Table S1 NOM concentrations and reactivity of surface

water samples from the SW basin of Lake Grosse
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ments in 2006 and 2008.
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