-Asymptotic Stability for Some Functional Differential Equations.
By Hans-Otto Walther, Mathematisches Institut der Universitit
Miinchen. Communicated by Professor W. N. Everitt

SYNOPSIS

For a non-linear functional differential equation from population- biology, a result on asymptotlc'

stability is obtained by investigating the zeros of the characterlstlc equation of the linearised functional
differential equation.

1. It is well known that the zero solution of the autonomous linear differential

delay equation
x'(t) = —ax(t—1), «>0, ' €))

is uniformly asymptotically stable if « <n:/2 [see for example, 6 and for definitions 2]. .

We are interested in the stability of the zero solution of the equation

0
X)) = —a f x(t+a)ds(a), ' )
with «>0, 7>0, s: [ ~7, 0] R increasing and with total variation ¥(s) not exceeding
unity. Obviously, equation (1) is a special case of equation (2).

Our interest in equation (2) comes from its relation to a population growth model
proposed by Dunkel [4]. He considered the equat1on

O=lo+ [ Yo-as@bo  ©

for the density 7 of a single species population, with 5 and r posmve V: Rg—-RE
increasing and S: [0, r]—»R{ decreasing with S(0)>0, S(r) =

Now let ¥(n) = n for n = 0. Then we obtain equation (3) from the general rate
equation n’ = (b—d)n if we assume that the birth rate 4 of the population is constant,
and that the density dependent death rate d at time ¢ is given by D(n,), where D is a
positive continuous Jinear functional on the Banach space C of continuous real-valued
functions on the interval [ —r, 0], with supremum-norm. n, is the function defined

by n,(a): = n(t+a) for ~r < a £ 0. The constant solution 7(¢) = 5/S(0) represents’

the equilibrium state of the population. Setting x(f): = n(t)S(O)/b 1, a: =5,
s(@): = S(—a)/S(O) on [~r, 0], we obtain

() = —a f | X+ ads@UL+x0], @

with s: [—r, 0]>Ri increasing and V(s) = 1. The stability properties of the solutlon i
of equation (3) and of the zero solution of equation (4) are the same.

In order to derive a stability result for the zero solution of equation (4), we need the
followmg perturbation theorem.



TueoREM 1. Let L: C,,—>R™ be linear and continuous. Let N Cy—R"™-be continuous
with the property (Ve>036>0: [| @ | £ d=| N(D)| < ¢ | @ |)). Let the zero solution
of the equation x'(t) = L(x,) be uniformly asymptotically stable. Then the zero solution
of the equation x'(t) = L(x,)+N(x,) is uniformly asymptotically stable. = -

Here, m is a positive integer, and C,, denotes the Banach-space-of-continuous
mappings from the interval [ —r, 0] into R™, with supremum-norm. Theorem 1 is an
obvious generalisation of [2, Theorem 18.3] in the case of autonomous functional
differential equations. It can be proved by modifying arguments given in [2, ch. 16
and 18]. For details, see [5, Lemma 3 and Theorem 2]. o

Define L(®): = —« J ®(a)ds(a), N(®D): = —a@(O)Jv @(a)as(a) for®in C=C,.

The zero solutlon of the equation x (t) =L(x,) = —« x(t+ a)ds(a) is /unlformly

asymptotically stable, if and only if every complex number A = p+iv with

Ato j ’ €xp [Aa]ds(a) - | ‘ %)

. has negative real part u [1]. We shall prove

THEOREM 2. Let >0 and r>0.LIf s: [ —r, 01— R is a non-constant increasing function
with V(s) £ 1 and zf ar<m/2, then every solution of equation (5) has negative real part.

Since the equation )'(¥) = —y(t—=/2) has-a non-trivial periodic solution (cos)
the bound on ar in Theorem 2 cannot. be increased. (Furthermore, equation (1) is
unstable, if «>n/2 [see 6].) ‘

COROLLARY 1.'If ar<m/2, then the zero solution of equatzon @) is umformly asymp-
totically stable.

-Proof. With L and N deﬁned as above, we.have | N(®)| < o | @ |2 By Theorem 2,
ar<7/2 guarantees the uniform asymptotic stability of the zero solution of the equation
x'(t) = L(x;) Hence Corollary 1 follows from Theorem 1. :

Another consequence of Theorem 2 is connected with work of Myskis and Yorke
[7] Yorke treated the equation

x'() = —f(t, x:) R (6
W1th f R§ x C—->R continuous and satisfying the conditions ‘
@) Ae = OVDe CVe = 0: . —a | min (@, 0)] <f(t @) < o || max (@, 0)fjs-

(11) for all sequences #,—> 0, (I> in C converging to a constant non-zero functlon
' in C, f(t,, ®,) does not converge to zero.

“Yorke’s main result [7, Theorem 1. 1] implies that the Zero solution of equation (6)
is uniformly asymptotically  stable if ar<3/2. For linear equations, a very similar
result had been proved earlier by Myskis [3]. Moreover, My3ki§ constructed a linear
non-autonomous equation satisfying conditions (i and ii) with e = 3/2 and with the
zero solution not asymptotically stable. Therefore the result of Yorke. is optimal in
the general case of linear equations. But it is not if we only admit autonomous linear
equations. We have _ .

COROLLARY 2. Let L: C=>R be linear and continuous, L # 0. If L satisfies condition
(i) with ar<m/2, then the zero solution of the equation x'(t) = —L(x,) is uniformly
asymptotically stable. N

. 0 '
Proof. The estimate on L is equivalent to L(®)= ocf ®(a)ds(a) on C, with
s:[—r, 0]-R increasing and 0< V(s) < 1. o

2. The proof of Theorem 2 is simple: Assume the hypotheses of Theorem 2 fulfilled
for o, 7 and s. Let

A+t f exp [Aa]ds(a) =0 )
for a complex number A = pu+iv, with p and v real. With g = 0, equation (5) implies

[vi=a] JO exp [ua] sin [valds(a)] £ ocV(s)[sﬁp | exp .[;m] sin [vé]l L aV(s)<n/2r
- —-r, 0] . .
and

0z2(—) lu= fo exp [ua] cos [valds(a) = V(s) exp [na™] cos tvq*]

with a* e[ —r, 0]. By V(s)>0 and | va* | <n/2, we obtain a contradiction.

Notation. R denotes the set of real numbers. Ry . is the set of non-negative real
numbers. : :
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