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o R ABSTRACT
We exclude Floquet multipliers p < -1 for slowly oscillating perio-
dic solutions of autonomous single-delay equations with strictly de- .
creasing nonlinearities.

Consider a periodic solution p:R > R of equation
x(t) = gix(t-1) 1)
where g is continuous and satisfies the condition for negative feedback,

Egl®) <0

at least for all £ % 0 in p(R) .

Suppose that p is slowly oscillating in the sense that zeros are
spaced at distances larger than the delay: t =1, and that all zeros are
simple. ‘

It follows that p has zeros, and that they form a sequence of points
z , meZ , which satisfy : E

n

z +1<z .
n n+1

We may assume z, = -1 . Then the minimal period m of p is

'n:=1+22j for some j ¢ N .
”/r’
Existence of slowly oscillating periodic solutions is well known. Suffi-
_cient conditions are e.g. that the negative feedback condition holds for all
£+ 0 ,that g is bounded from above or from below, that g'(0) exists



and that the zero solution is linearly unstab1e4’s’7.

Observe that in these results, as well as in other, more special ones,
j=1.

The present note -is devoted to strictly monotone nonlinearities g . We
assume in addition that g is continuously differentiable with

g'(E) < O for all £ ¢ p(R) (M)
This has strong implications on the Floquet multipliers of p , and thereby
on the structure of the semiflow of Eq. (1) in a neighborhood of the orbit

formed by the segments p, pt(t) =p(t+1t) for -1<t <0, in the
phase space

C = C(-,01R) . .

Recall that .a Floquet multiplier3 ¢ ¢ € is a nonzero point in the spectrum
of the continuous linear "period map”

U:@ > Y.
where y:[-1,0) > C 1is the solution of the linear variational equation
y'(t) = g'(plt-1) y(t-1) (2)
with injtial value
Yo = @ ¢ CC = C([-1,03,C) .

The period map U is compact so that each Floquet multiplier p is an
eigenvalue with a generalized-eigenspace G (u) of finite dimension m(y).
The Floquet multipliers are real or occur in complex conjugate pa.lrs

The number 1 ¢ € is a Floquet multiplier with eigenvector

(p)g = p'I-1,01,

as is easily seen after djfferenfiating Eq. (1) for x =\p .
Incidentally, note that the zeros of p' are given by

In particular,

2. m(1)

T =gy

The solution p' ‘of Eq. (2) is slowly oscillating .
Results from * imply

2z m(p) < 2, ‘ (3)

Il = 1

see the remark following the proof of the Proposition below. This leaves
us with four possibilities, in view of m(l) =1 :

1. m() =1, Iy <1 for every multiplier p *1.
( The case of exponential stability of p . For examples, see tand 2.)

2 , no multipliers p #1 with Ipl 21.

3. m(1) =1, and, there exists a multiplier g ¢ (1,00) , m{g) =1
all multipliers X\ different from 1,y satisfy Al <1.

4. m(l) =1, and there exists a multiplier y ¢ (-00,-11, m(p) =1

all multipliers X different from 1,y satisfy [\l <1.

Case 2 corresponds to a local center manifold which determines the beha-
vior of the semiflow close to the orbit of vp in C . Examples are sug-
gested by results in 62 Case 3 is hyperbolic, with a two-dimensional local
unstable manifold. Examples are contained in,z. For more, see 8,9

The purpose of the present note is to rule out case 4.
Theorem. Every multiplier ¢ with = Iul = 1 satisfies y e [1,%) .

Once again, observe that this is not restricted to the case = = z, + 1
usually considered. ' ) )

The Theorem excludes local center or unstable manifolds which are to-
pologically Moebius strips, and period doubling bifurcation along branches
of periodic solutions for parameterized equations (‘g = af , f fixed, « > O
a parameter ). Also, the occurrence of minimal periods = =1 + Zy with
j >1 seems unlikely. "

The key to (3) and to the Thecrem is that slowly oscillating solutions
are not only important in the dynamics of Eq. (1), but also for Eq. (2).
This is a consequence of condition (M) which makes the coefficient

g{p(t-1)) negative. ( A first indication that slowly oscillating solutions



are important in existence. All continuous functions x:[-1,0) = R which
satisfy Eq.(2) for t > O and have at most one zero in [-1,0]1 are "slowly
oscillating for t>1".) ‘ .

It is convenient to recall a few facts from .. Let a Floquet multiplier
¢ be given. Write G = G (1), m := m(y) . There exist a mxm-ma-
trix B, with spectrum {u}, and a m-periodic map w:R > €™ such
that each function

x%:R > €, x°(t) = w)®™ etBc ,

where

c'e C™,
is a solution to Eq. (2) so that

xS ¢ G

o Ve
These solutions form a subspace & = G (1) of dimension m in the

complex vectorspace of all continuous functions y:R = C . Reellification

yields subspaces €] = j(y) of the real vectorspace X of continuous
functions x:R > R :

G n X if peR 5 dim G = mi)
Guw = [ : .
- (Gw e @ (@) n X if Imp>0; dim G = 2m()

Proposition. Every x + 0 in @

=1, Imp=0 gy is slowly oscillating.

Proof. Recall that P ¢ Gt) is slowly oscillating, and apply Lemmas 5, 6,7
of ' . QED.

In order to derive (3), use in addition Corollary 1 of ! .

The proof of the Theorem relies on two, lemmas which hold for shghtly
more general equations than Eg. (2).

Let a continuous, bounded, negative function b: [R > R be given. Let
L ¢ X denote a linear space of solutions of the equation

x'(£).= bt)x(t=1) ..

Suppose every x # 0 in L is slowl‘yv oscillating.

Lemma 1. If there exists x # O in L. such that its zeroset has neither a
lower nor an upper bound, then the same holds true forall y*# 0O in L.

Proof. The hypothesis implies that the zeros of x form a sequence of
points tn,neZ,with tn+1<tn*1.Let yeL,y#* O, be given.

Suppose the zeros of 'y are bounded below by some real\ a . Then
sign y'(t) = —sign y(t) for t < a .

Note y ¢ Rx . Choose t_ _ 6 <a such that
sign x = sign y on (tn,tn+1) = 1.

There exist ¢ > 0 and t el with

lexi <yl on I and cx(t) = y(t) .

It follows that cx'(t) = y'(t) , and t is a double zero of cx. -y e L.
Hence cx - y = 0, a contradiction. :
If one assumes an upper bound a for the zeros of y then

§

signy'(t) = -signy(t) for t>a+1,
and one can argue as before. QED.
Lemma 2. Suppose there exists x ¢ L, x # 0, so that its zeroset has

neither a lower nor an upper bound. .
1. If yeL,y#* 0, then the zeros of y form a sequence of points

. < ]
tn,y,pez,wn:h tn’y+1 tn+1,y
2.For y,v in L,y*0%v,and for neZ with
(4)
trx,y<t_n,v<tn+1,y’
t

< .
n+ 1,y tn +1,v

Proof. The first assertion is a consequence of Lemma 1. To prove part 2,

assufne (4), and tn+1,v < tn+1,y .

Y/ y'(t } . Then éy—v

In‘case t =t , set c := v'(t ntly

n+1,v n+1,y

is in L and has a double zero at t

n+1,y

. Hence cy - v = 0, which
n+1y

contradicts v( tn’v) =0yt ).

n,v



n+1,v n+1y v mn+iv

In case t <t , there exist c ¢ R and ¢t e (1:Jrl t ) =1
such that ‘ '

!

levl < Iyl in I and cv(t) = y(t) andvsigncv = signy in I.

It follows that cv'(t) = y'(t) , and cv - y ¢ L has a double zero at t .
Hence cv -y = 0, a contradiction as before. QED.

Lemmas 1 and 2 express a synchronization property of nontrivial solu-
tions in L.

l;x;oof of the Theorem. Suppose there exists a multiplier g ¢ (0,11 .

Then m(u) =1. Choose y # 0 in G .y is slowly oscillating, due to
the Proposition.

An application of Lemma 2 for b(t) = g'(p(t-1), L := &) @ G 1)
and x := p' ¢ £j(1) shows that the zeros of y form a sequence of points
tn, neZ\\,with tn+1<t

n+1 "

We have Y = Uyo = UYg o hence
y(n) = py(0) and y'(x) = py'(0) .

We may assume that ty, is the largest non-positive zero of y . Recall
that the zeros q, of p' satisfy 9, = 0 and Q=T .

In case to <0, y(0)#0 and to < 4o < t; - Repeated application of
part 2 of Lemma 2 yields

~

0
A
o
A

q, for all integers n 2 1 .

In particular,

TS, € (th’t2j+1) (5)

Hence

0 # sign y(0) = sign y'(ty) = sign y'(tzj) ( due to simplicity of zeros)
sign y(qzj) . ( by (5))
sign y(m) , '

a contradiction to y(m) /y(0) = 4w <0 . -

In case t = 0,

y'(0) # 0 . We obtain a common zero of pp and y at

t = since y(m) =py(0) =0= p’(Q) = p'(n) . It follows that'

y(t) # O for all integers n = 2j - 1 and all 't « (qn’qn*i)

- otherwise, repeated application of Lemma 2 would gxclude thg common

zero of p' and y at ™ =g, .

Therefore
yH0) a (-o,m1c {q_:ns 2} = ()0 o (0,71 .
Analogoqsly,
(e 1O o (—00,>7t] c s'_i(Qv) n (<o, .
Hence
y10) n [0,x1 = {”qn in=0,..,2},
and

0% sign y'(n) = sign y'(qzj) = sign y'(qo)
= sign y'(0) , '

a contradiction to y'(x)/y(0) = ¢ < 0 . QED.

( by simplicity )
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In preparation

Addendum. It is in fact true that, under the hypotheses on the nonlinearity
g made in this paper, every slowly oscillating periodic solution p with
a zero z, = -1 has minimal period z,+1 {personal communication by

J. Mallet-Paret). A proof based on techniques from [8] will be given in [9].



