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1. Introduction 

1.1   Matrix metalloproteinases (MMPs) in mammals 

Matrix metalloproteinases (MMPs) are a group of highly conserved proteolytic enzymes 

containing zinc ion in the active site, which was first described in 1962 (Gross & Lapiere, 

1962). They are classified as the matrixin subfamily of zinc metalloprotease family M10 

according to MEROPS database. There are 23 MMPs found in human (Nagase et al., 2006). 

MMPs are secreted or attached to the cell surface, thereby largely restricting their activity on 

the modulation of membrane proteins or extracellular proteins in the secretory pathway. 

They are key players in the remodelling of the extracellular matrix, associated with a number 

of physiological and pathological processes (Birkedal-Hansen et al., 1993; Stamenkovic, 

2003; Vu & Werb, 2000; Parks et al., 2004). Non-matrix substrates were also found for 

MMPs and indicated more sophisticated roles for MMPs in regulation of cellular behaviour 

and cell-cell communication (McCawley & Matrisian, 2001). 

 

1.1.1 Structure of MMPs in mammals 

A typical MMP consists of a signal peptide, a propeptide, a catalytic domain, a linker 

peptide and a hemopexin (Hpx) domain (Nagase et al., 2006). Exceptions are MMP-7, 

MMP-26 and MMP-23 which lack the linker peptide and Hpx domain. The “cysteine 

switch” motif PRCGXPD in the propeptide and the zinc binding motif HEXXHXXGXXH in 

the catalytic domain are shared structural signatures for all MMPs (Nagase & Woessner, 

1999). The conserved cysteine in the propetide coordinate with the catalytic zinc ion and this 

Cys-Zn2+ coordination maintains the latency of proMMPs (Van Wart & Birkedal-Hansen, 

1990). The three histidines in the zinc binding motif are responsible for coordinating the 

catalytic zinc ions ( Visse & Nagase, 2003). The catalytic domain also contains a conserved 

methionine, forming a ‘‘Met-turn’’ eight residues after the zinc binding motif, which forms a 

hydrophobic basis for the zinc ion and the three liganding histidine residues (Bode et al., 

1993). The C-terminal Hpx domain has a function in modulating substrate specificity and 

binding to tissue inhibitors of metalloproteinases (TIMPs) (Parks et al., 2004). 

Based on the differences of domain compositions, MMPs have been subdivided into 

different groups as shown in Fig.1 – 1. For instance, those MMPs that are secreted and 

bound to the plasma membrane are distinct by the intrinsic motifs, such as a transmembrane 

domain, a glycosylphosphatidylinositol (GPI) anchor or an N-terminal signal peptide. The 

transmembrane domains and GPI anchors are connected to the hemopexin domain with a 
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short linker. However, there are few agreements about how these subdivisions should be 

assigned in the field (Parks et al., 2004).  

 

 

 

Fig.1 - 1. Domain structure of the mammalian MMP family. C5, type-V-collagen-like 
domain; Col, collagenase-like protein; Cs, cytosolic; Cys, cysteine array; Fn, fibronectin 
repeat; Fr, furin-cleavage site; Pro, pro-domain; SH, thiol group; SP, signal peptide; Zn, zinc 
(Parks et al., 2004). 
 

1.1.2 Regulation of MMPs activities in mammals 

Like other secreted proteinases, the MMP activities are regulated at four points: gene 

expression, compartmentalization, pro-enzyme activation and enzyme inactivation (Parks et 

al., 2004). In general, MMPs are not expressed in normally healthy tissues but detected in 

activated cells such as cells in remodelling process, diseased tissues or cultured cells. The 

transcriptional regulation of MMPs is tightly controlled by internal/external signals in a 

temporal and spatial manner. Once MMPs are synthesized, they are secreted as inactive 

proteolysis enzymes (Nagase & Woessner, 1999; Woessner, 1991). The activation of 

ProMMPs requires the disruption of the Cys-Zn2+ interaction and removal of the propeptide, 

which is achieved by proteinases or by non-proteolytic agents (Visse & Nagase, 2003). 

Several MMPs contain one RXKR or RRKR sequence linking the pro- and catalytic domains. 

Such a short sequence is known as a furin cleavage site and acts as a target site for pro-

protein convertases or furins (Fig.1 - 1). Compartmentalization discriminately places the 

MMPs in distinct pericellular spaces and results in local enrichment of the enzyme targeting 

their specific substrates (Nagase et al., 2006). The localization of MMPs under physiological 

conditions often dictates their biological functions. 
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There are four endogenous TIMPs (TIMP-1, TIMP-2, TIMP-3 and TIMP-4) in the tissues 

which were shown to inhibit the MMP activity by binding to the catalytic sites (Brew & 

Nagase, 2010; Visse & Nagase, 2003). Homologues of the TIMPs are distributed widely 

among both invertebrate and vertebrate animals. TIMPs are secreted proteins of 

approximately 20-29 kDa and have distinct N-terminal domain and C-terminal domain 

(Parks et al., 2004; Sternlicht & Werb, 2001, Visse & Nagase, 2003). The N-terminal 

domain was fully active to inhibit MMPs. N-TIMPs have been widely used in characterizing 

the biochemical and biophysical properties of TIMPs and for investigating structure-function 

relationships. TIMPs differ in their affinity for specific inhibitor-protease pairs and their 

interaction does not necessarily lead to inhibition (Brew & Nagase, 2010). Among the four 

TIMPs, TIMP-3 has the broadest inhibition spectrum and TIMP-1 has the most restricted 

inhibitory range (Brew & Nagase, 2010). Due to the high expression level of MMPs in 

diseased cells (i.e., tumor), the concept of MMP inhibitors as targets for anticancer therapy 

has received extensive attention in the clinic field. 

 

1.1.3 Biological function of MMPs in mammals 

The main function of MMPs was thought to be the breakdown of extracellular matrix (ECM) 

molecules in the tissue. However, the ECM acts as an extracellular scaffold as well as a 

reservoir of biologically active molecules. Degradation or removal of components in ECM 

or at the cell surface may alter cell-matrix and cell-cell interactions. In addition, some non-

ECM molecules are also possible substrates for MMPs. Thus, MMPs function much more 

beyond ECM modification (Nagase et al., 2006). On one hand, many MMPs degrade the 

physical barriers. On the other hand, some MMPs also act on multiple singling pathways 

during many physiological processes and in disease. 

MMPs play central roles in various physiological processes including morphogenesis, 

wound healing, tissue repair and remodelling (Nagase et al., 2006; Nagase & Woessner, 

1999; Page-McCaw et al., 2007), in the regulation of inflammation and immunity (Parks et 

al., 2004), and in progression of diseases such as cancer (Egeblad & Werb, 2002). 

In most cases, MMP deficient mice exhibited no or minor altered phenotypes under 

unchallenged condition. One exception is MMP14-deficient mice, which have severe bone 

deformations (Holmbeck et al., 1999; Zhou et al., 2000). Similarly, loss of MMP9 was 

found to be associated with growth plate defect (Page-McCaw et al., 2007). However, 

MMP-deficient mice revealed various phenotypes under challenged conditions, such as 

injury, cancer, inflammation or infection (Parks et al., 2004). Numerous findings indicate 

that MMPs have specific and essential roles in tissue repair, angiogenesis, host defense, 
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tumor progression and inflammation. They may have evolved to respond to environmental 

pressures. 

Several MMPs were expressed at injury sites and were important for the wound closure 

(Parks, 1999). For instance, the catalytic activities of MMP1, MMP7 and MMP9 are 

implicated in wound repairing (Dunsmore et al., 1998; McGuire et al., 2003; Pilcher et al., 

1997). Some MMPs are strongly induced during bacterial infections (Burke, 2004; Quiding-

Järbrink et al., 2001,). MMP3 was suggested to be important in defense against bacteria 

because MMP3-deficient mice showed impaired immunity to intestinal bacterial infection 

(Li et al., 2004). Likewise, MMP7 has been shown to activate antimicrobial peptides α-

defensins (cryptdins), in Paneth cells of mouse small intestine (Wilson et al., 1999). MMP7 

knockout mice are more susceptible to infection with Salmonella typhimurium. Recently, the 

protective roles of MMP2 and MMP9 were demonstrated in the early host immune response 

against Streptococcus pneumoniae infection (Hong et al., 2011). 

Apart from the secretion of antimicrobial peptides, some MMPs may also kill bacteria, 

directly modulate chemokine activity and establish chemokine gradients (Parks et al., 2004). 

A direct antimicrobial function has been elucidated for the hemopexin domain of MMP-12 

(Houghton et al., 2009). MMP-12 deficient mice exhibited impaired bacterial clearance and 

increased mortality when infected with gram-negative and gram-positive bacteria. The 

antimicrobial properties of MMP-12 were mainly attributed to a unique four amino acid 

sequence within the hemopexin-like domain and did not require catalytic activity of the 

enzyme. Together with other reports, these findings highlighted the significance of 

nonproteolytic functions for MMPs (Kessenbrock et al., 2010). 

MMPs have been implicated in cancer formation for more than 40 years, and it is well 

known that MMP-mediated breakup of ECM resulted in cancer cell invasion and metastasis 

(Liotta et al., 1980, Bourboulia & Stetler-Stevenson, 2010). In addition to invasion, MMPs 

contribute to multiple steps of tumor progression, including tumor promotion, angiogenesis 

and metastasis. They are up-regulated in virtually all human and animal tumors and the stage 

of tumor progression is positively correlated with the expression of MMP family members 

(MMP-1, 2, 3, 7, 9, 11 and 14) (Sun, 2010). Based on the notion that MMPs are important 

contributors for tumor progression, a number of efforts have been put in the use of MMP 

inhibitors for suppression of cancer in the last decades (Gialeli et al., 2011). However, this 

strategy is largely unsuccessful in the clinical trial for treating patients (Kessenbrock et al., 

2010). Recently, more experimental evidence indicated that several MMPs also exhibit 

tumor-suppressing effects. These MMPs should be regarded as the anti-targets in cancer 

(Decock et al., 2011; Overall & Kleifeld, 2006a; Overall & Kleifeld, 2006b). Specific 
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inhibitors for certain MMPs should be considered in the future therapeutic strategies (Gialeli 

et al., 2011). The fact that MMPs affect physiology and pathology in different and even 

opposite ways indicated the complexity of MMP functions (Rivera et al., 2010). 

 

1.2   MMPs in plants  

MMPs in mammals have been extensively studied during the last fifty years. Such studies in 

the mammal system set a solid basis for plant researchers. Despite a widespread presence of 

MMPs in the plant kingdom, information about their functions is only accumulating very 

recently in this emerging field. Characterization of MMPs have been described in several 

plant species including soybean (Cho et al., 2009; Graham et al., 1991; Liu et al., 2001; 

Ragster & Chrispeels, 1979; McGeehan et al., 1992) Arabidopsis (Golldack et al., 2002; 

Lenger et al., 2011; Maidment et al., 1999), cucumber (Delorme et al., 2000), tobacco (Kang 

et al., 2010; Schiermeyer et al., 2009), Medicago truncatula (Combier et al., 2007) and 

Loblolly pine (Ratnaparkhe et al., 2009). Suggested functions of plant MMPs covered many 

aspects of physiological processes such as leaf expansion (Graham et al., 1991), flowering 

(Golldack et al., 2002), seed development and germination (Ratnaparkhe et al., 2009), 

senescence (Golldack et al., 2002), PCD (Delorme et al., 2000) and abiotic stresses (Cho et 

al., 2009). Moreover, some plant MMPs have been shown to participate in the interaction 

with pathogenic and beneficial microbes (Combier et al., 2007; Kang et al., 2010; Liu et al., 

2001; Schiermeyer et al., 2009) 

 

1.2.1 Structure of plant MMPs 

In the Arabidopsis thaliana genome, the presence of five MMPs has been described 

(Maidment et al., 1999). Distinct from mammalian MMPs, all five AtMMPs are intronless 

genes and this feature was also indicated in MMPs from other plants such as soybean, 

cucumber and Medicago truncatula (Combier et al., 2007; Delorme et al., 2000; Liu et al., 

2001; Pak et al., 1997). Like the animal cognates, all the plants MMPs possess signal peptide, 

propeptide domain and catalytic domain (Fig.1 - 2). However, the predominant C-terminal 

hemopexin-like domain of mammal MMPs is lacking in plant MMPs. In the propeptide 

domain, plant MMPs contain a conserved cysteine switch PRCGXXD motif. The catalytic 

domain is characteristic with the zinc-binding motif (HEIGHXLGLXH) followed by the 

conserved methionine residue of the Met turn. Variant sequences for the zinc-binding motif 

were found with an E to Q substitution for some MMPs in legume plants (Cho et al., 2009; 

Combier et al., 2007). The residue E is essential for mammalian MMP activity, such a 
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mutation in the active site may lead to low or no protease activity of the MMPs (Rowsell et 

al., 2002). To date, no crystal structure for plant MMPs is available. 

 

 

Fig.1 - 2. General structure of plant MMPs. Relevant domains identified are color-coded. 
Positions of putative furin cleavage sites, GPI-anchor modification sites and C-terminal 
transmembrane domains, when predicted, are indicated. The graph is taken from Flinn (2008) 
without modification. 
 
1.2.2 Activation of the plant MMPs activities  

For most of the mammalian MMPs, they gain activities by disruption of the Cys-Zn2+ 

interaction between the conserved cysteine residue and the active site Zinc (Parks et al., 

2004; Sternlicht et al., 2001). In general, plants MMPs were secreted as enzymes in an 

inactive form. They also require a further activation step to achieve the proteolytic activity 

by cleaving off the cysteine switch (Flinn, 2008). In soybean, mature GmMMP2 without the 

propeptide showed higher activity than pro-GmMMP2 (Liu et al., 2001). The Arabidopsis 

At1-MMP can be activated through the use of MMP activator 4-aminophenyl mercuric 

acetate (APMA) to cleave the propeptide domain (Maidment et al., 1999). In contrast, the 

processing of recombinant Pta1-MMP occurs spontaneously without the presence of APMA 

(Ratnaparkhe et al., 2009). Cucumber Cs1-MMP appeared to process itself through 

autocatalytic activation (Delorme et al., 2000).The NtMMP1 in tobacco was found to 

undergo autocatalytic processing within a sequence motif similar to MMP-3 and MMP-10 

(Birkedal-Hansen et al., 1993; Mandal et al., 2010) 

 

1.2.3 Substrates and inhibitors of plant MMPs 

Artificial substrate like azocoll and myelin basic protein (MBP) have often been used as 

substrate in activity assay for plant MMPs (Liu et al., 2001; Maidment et al., 1999; Ragster 

& Chrispeels, 1979; Ratnaparkhe et al., 2009; Schiermeyer et al., 2009). The native SMEP1 

in soybean leaves displayed an Azocollase. A activity which can be inhibited by EDTA 

(Graham et al., 1991; Ragster & Chrispeels, 1979). The protease activity of recombinant 

At1-MMP protein was confirmed by the degradation of MBP but not gelatine or casein 

(Maidment et al., 1999). In addition, the activity of At1-MMP protein was inhibited by 

human tissue inhibitors of metalloproteinases (TIMPs). Recombinant Pta1-MMP showed the 
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same proteolytic activity against MBP which was inhibited by EDTA and the active site-

binding hydroxamate inhibitor GM6001 (Ratnaparkhe et al., 2009). Furthermore, GmMMP2 

was also found to be able to degrade MBP and azocoll and EDTA could inhibit the activity 

of GmMMP2.  

In spite of the progresses made in the analysis of plant MMPs, the physiological substrates 

are almost unknown. For mammalian MMPs, the components in extracellular matrix and a 

variety of cell surface proteins are identified as MMP substrates (Cauwe et al., 2007). 

Whether or not plant MMPs might act on similar types of proteins existing in the 

extracellular space and the plasma membrane remains to be investigated. In addition, the 

presence of endogenous MMP inhibitors in plants is still an open question awaiting answers. 

Efforts in finding natural products for inhibition of mammalian MMPs in medicine plants 

might provide insights into potential candidates for endogenous inhibitors of plant MMPs 

(Longatti et al., 2011; Seo et al., 2005) 

 

1.2.4 Subcellular localization of plant MMPs  

Plant MMPs were predicted to be secreted or attached to the cell surface through a GPI-

anchor (Flinn, 2008). The localization may differ depending on the presence of 

glycosylphosphatidylinositol (GPI) anchor linkage and C-terminal transmembrane domain. 

Studies on SMEP1 suggested that the enzyme was extracellular and a portion of the mature 

form was tightly bound to the cell wall (Pak et al., 1997). Two reports using GFP reporter 

fusion constructs have demonstrated the membrane localization of NtMMP1 and Slti114 

(Cho et al., 2009; Schiermeyer et al., 2009). In the case of Arabidopsis MMPs, all but At4-

MMP contain a N-terminal signal peptide and a C-terminal transmembrane domain 

(Maidment et al., 1999). In addition, At2-, At4- and At5-MMP contain a putative GPI 

modification site. Their subcellular localizations remain to be addressed experimentally.  

 

1.2.5 Function of plant MMPs  

1.2.5.1 Tissue remodeling   

Over three decades ago, the first plant metalloproteinase activity was detected in soybean 

leaves (Ragster & Chrispeels, 1979). This protein was shown to posess an Azocollase-A 

activity in soybean leaf extracts and was sensitive to EDTA. Later on, this proteinase was 

purified and designated SMEP1 (Soybean metalloendoproteinase 1) (Graham et al., 1991, 

McGeehan et al., 1992). SMEP1 started to accumulate ten to fourteen days after leaf 

emergence. Older leaves contain larger amounts of SMEP1 compared with younger leaves. 

The protein accumulation occurred in parallel with the mRNA transcript. Thus, the 
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expression of SMEP1 in soybean leaves is tightly controlled in a temporal manner and has 

been speculated to have a role in remodelling of the extracellular matrix during leaf 

expansion (Pak et al., 1997). 

 

1.2.5.2 Senescence and programmed cell death (PCD) 

In cucumber (Cucumis sativus L. cv Marketmore), northern-blot analysis showed that Cs1-

MMP was expressed at the boundary of senescence and cell death in the cotyledon 

development (Delorme et al., 2000). Although the physiological substrates remain unclear, 

the expression of Cs1-MMP in late senescence and early programmed cell death (PCD) 

suggested its involvement in triggering or regulating PCD in cucumber cotyledon. At2-MMP 

from Arabidopsis thaliana is another example linking plant MMPs with senescence. An 

earlier onset of senescence and cell death were observed in at2-mmp-1 mutants (Golldack et 

al., 2002). This finding supported a positive role of At2-MMP in the delay of senescence and 

programmed cell death. In soybean (Glycin max), the matrix metalloproteinase Slti114 was 

recently cloned and its expression in cotyledon exhibited an age-dependent manner (Cho et 

al., 2009). Its expression was increasing after germination and most abundant on the ninth 

day. Afterwards, the transcript level drastically declined and became undetectable in the 

yellowish cotyledons. Thus, Slti114 may act as a signal inducer in cotyledon senescence 

(Cho et al., 2009). 

 

1.2.5.3 Seed development and germination 

Publicly available data from Genevestigator indicated that At1-MMP and At4-MMP had the 

maximal or near maximal expression in mature siliques/seeds. In addition, At4-MMP was 

also highly expressed during seed germination (Flinn, 2008). These expression data 

implicated a potential role of plant MMPs in seed germination and development. Following 

this concept, Ratnaparkhe and colleagues (2009) initiated studies on Loblolly pine (Pinus 

taeda) and analysed the MMP expression during embryogenesis and seed germination. They 

found that expression of Pta1-MMP increased in embryo and megagametophyte from 

proembryo to early cotyledonary stage and decreased during late embryogenesis and 

maturation drying (Ratnaparkhe et al., 2009). In addition, Pta1-MMP may participate in the 

completion of seed germination based on MMP inhibitor studies. 

 
1.2.5.4 Flowering 

There is a single report correlating a plant MMP with flowering. The at2-mmp-1 mutant 

showed late flowering comparing with wild-type plants (Golldack et al., 2002). Interestingly, 
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the expression of At2-MMP was most abundant in both leaf and root tissue in mature 

flowering Arabidopsis. This implicated that extracellular proteolytic processes mediated by 

At2-MMP are involved in growth and development during the developmental phase of 

flowering. 

 

1.2.5.5 Abiotic stresses 

Several expression studies indicated the possible involvement of plant MMPs in the response 

to abiotic stresses. In four-week-old Arabidopsis plants, At2-MMP expression was induced 

by NaCl in root and stimulated by cadmium treatment in leaves (Golldack et al., 2002). 

Likewise, GmMMP2 in soybean was induced by wounding and dehydration (Liu et al., 

2001). In addition, GmMMP2-related Slti114 in soybean was induced by low temperature 

and wounding (Cho et al., 2009). These expression data suggested potential roles of plant 

MMPs in the adaptation to abiotic stresses, however, direct evidences are required to 

validate their functions and elucidate the molecular mechanisms. 

 

1.2.5.6 Plant-microbe interaction 

Proteases play an important role in plant defense through perception of pathogens, regulation 

of signaling cascades or direct attacking of invading pathogens (van der Hoorn & Jones, 

2004). Apart from their involvement in development, senescence, PCD and abiotic stresses, 

plant MMPs have been demonstrated as regulators in host-microbe interactions as well.  

The SMEP1 in soybean was assumed to contribute to leaf defenses against pathogen attack 

(Pak et al., 1997). Soybean GmMMP2 was responsive to the infection of the oomycete 

pathogen Phytophthora sojae in both compatible and incompatible interactions as well as the 

bacterial pathogen Pseudomonas syringae pv. glycinea (Liu et al., 2001). It may act via the 

activation of antimicrobial peptide to combat invading pathogens. In cassava, a gene similar 

to GmMMP2 was identified as a differentially expressed gene during hypersensitive 

response caused by Psudomonas syringae pv. Tomato (Pst) (Kemp et al., 2005). Up-

regulated by incompatible Pst infection, this cassava MMP was speculated to participate in 

PCD or target invading pathogens in cells undergoing HR. Arabidopsis At3-MMP was 

rapidly induced by the flg22 peptide in seedlings (Zipfel et al., 2004). In tobacco, the 

membrane-bound NtMMP1 was induced by bacterial pathogens and may possess a role in 

pathogen defenses at the cell periphery (Schiermeyer et al., 2009). Very recently, Kang et al., 

(2010) suggested a positive role of Nicotiana benthamiana NMMP1 in the defense against 

bacterial infection. This is the first report that pinpoints a role of plant MMPs in pathogen 

defenses using RNAi and overexpression methods. MtMMPL1 from the legume Medicago 
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truncatula was found as a novel specific marker and regulator of Rhizobium infection 

(Combier et al., 2007). During the symbiotic association between Medicago and 

Sinorhizobium, the constitutive MtMMPL1 overexpression lines showed reduced nodule 

number compared with wild type. In contrast, the RNAi lines exhibited similar nodule 

numbers but with enlarged infection threads and more bacteria. Mounting evidence support 

the notion that plant MMPs are essential players in plant-microbe interaction. The exact role 

of specific MMP in pathogen response and the underlying mechanisms, however, are yet to 

be further elucidated. 

 

1.3   Plant innate immunity  

The arms race between the plants and pathogens never stopped. Unlike animals, plants are 

growing in a fixed niche and have to face all kinds of abiotic and biotic stresses. For biotic 

stresses, plants need weapons to combat invading bacteria, fungi, oomycetes, nematodes and 

a variety of herbivores. The surviving strategy of plants in such a challenging environment 

relies largely on the plant innate immunity, which evolved to perceive and fight against 

harmful pathogens. The plant innate immunity comprises of two interconnected branches 

termed as PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) (Jones & 

Dangl, 2006).  

 

1.3.1 PAMP-triggered immunity (PTI) 

PAMP-triggered immunity (PTI) constitutes the first layer of plant innate immunity relying 

on the recognition of pathogen-associated or microbe-associated molecular patterns 

(PAMPs/MAMPs) by membrane-localized pattern recognition receptors (PRRs) (Boller & 

Felix, 2009; Jones & Dangl, 2006). PTI, formerly called basal or horizontal resistance, is 

thought to be an ancient form of innate immunity and shows an obvious similarity to innate 

immunity in animals (Boller & Felix, 2009; Chisholm et al., 2006; Jones & Dangl, 2006; 

Smith et al., 2003). For example, the flagellin of bacteria was perceived through the leucine-

rich-repeat (LRR) domain of the membrane receptor FLS2 (flagellin-sensitive 2) (Chinchilla 

et al., 2006; Gómez-Gómez & Boller, 2000). Similarly, Toll-like receptor TLR5 in mammals 

could also perceive bacterial flagellin using its LRR domain though the detected site of 

flagellin is structurally distinct from that of FLS2 (Hayashi et al., 2001; Smith et al., 2003). 

Another good example of plant PTI is the activation of immune responses upon the 

recognition of bacterial EF-Tu (elongation factor Tu) by the receptor kinase EFR (elongation 

factor Tu receptor) (Kunze et al., 2004; Zipfel et al., 2006). Other well characterized 

PAMP/PRR pairs include chitin/CERK1 in Arabidopsis (Miya et al., 2007), chitin/CEBiP in 
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rice (Kaku et al., 2006), xylanase/LeEIX1/2 (ethylene-inducing-Xylanase) in tomato (Ron & 

Avni, 2004) and Ax21/XA21 in rice (Lee et al., 2009). The activation of PTI is normally 

accompanied with a wide range of intracellular responses including rapid ion influx, 

generation of reactive oxygen species (ROS), activation of MAP kinase cascades, induction 

of marker genes and cell wall reinforcement (Zipfel, 2008).  

 

1.3.2 Effector-triggered immunity (ETI) 

Efficient PTI can trigger resistance to subsequent infection with pathogen, however, 

successful pathogens evolved strategies to interfere with PTI and achieve virulence. In many 

cases, suppression of PTI is achieved by secreted virulence effectors (Abramovitch et al., 

2006; Block et al., 2008; Block & Alfano, 2011; Chisholm et al., 2006; Jones & Dangl, 

2006). During the long-term co-evolution between plants and pathogens, some plants 

evolved resistance proteins (R proteins) to directly or indirectly recognise such effectors and 

usually undergo a local cell death known as the hypersensitive responses (HR) at the 

infection site to restrict pathogen proliferation. This event is termed effector-triggered 

immunity (ETI) and serves as the second layer in plant immune responses (Boller & He, 

2009). ETI is regarded as a faster and stronger version of PTI (Tao et al., 2003; Truman et 

al., 2006). However, ETI is dependent on the recognition between specific effector and the 

plant resistance gene and restricted to a narrow range of plant-pathogen interactions. A four 

phased zigzag model was proposed and well accepted as a current concept of the plant 

immune system (Fig. 1 - 3) 

 

 

Fig.1 - 3. Zigzag model of the plant immune system (Jones & Dangl, 2006). The proposed 
model illustrates the quantitative output of the plant immune system and the evolutionary 
relationship between PTI and ETI. In phase I, plant PRRs recognize PAMPs and activates 
PTI that prevent pathogen colonization. In phase 2, successful pathogens suppress PTI using 
secreted effectors and results in effector-triggered susceptibility (ETS). In phase 3, Specific 
recognition of an effector by the cognate plant R proteins results in ETI, which leads to 
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strong disease resistance. ETI is regarded as a stronger and amplified version of PTI and 
often accompanied with an induction of an HR at the infection site. In phase 4, natural 
selection drives pathogens to evade ETI by loss of the read effectors, or by gain of new 
effectors (in blue) that suppress ETI. Subsequently, natural selection results in new R 
proteins to recognize the newly acquired effectors and triggers ETI again. 
 
Most plant R genes encode NB-LRR (nucleotide binding-leucine rich repeat) proteins and 

around 125 NB-LRR proteins are present in the Arabidopsis genome. The signalling events 

required for the R gene-mediated ETI is largely unclear. R proteins are likely folded in a 

signal competent state with the help of cytosolic heat shock protein 90 and other receptor co-

chaperones (Holt et al., 2005; Schulze-Lefert, 2004). NB-LRR activation requires intra-and 

intermolecular conformational changes and inappropriate NB activation seems to be tightly 

controlled by the autoinhibition of LRR domains (Takken et al., 2006). On the other hand, 

the C-terminus of LRR domains provides pathogen recognition specificity and is required 

for full host defense (Takken & Tameling, 2009). 

 

1.3.3 Reactive oxygen species (ROS) in plant-pathogen interaction 

As one of the earliest events during plant-pathogen interaction, reactive oxygen species 

(ROS) burst is of crucial importance in regards to the outcome of the interactions. ROS 

production may contribute to plant disease resistance either directly via its antimicrobial 

activity or indirectly through induction of defense related genes, cell wall strengthening and 

orchestration of cell death (Boller & Felix, 2009; Bolwell, 1999; Lamb & Dixon, 1997; 

Levine et al., 1994; Torres et al., 2006; Zurbriggen et al., 2009). ROS production is largely 

dependent on the activity of membrane-localized NADPH oxidases (respiratory burst 

oxidase homologs, Rboh) (Kobayashi et al., 2006; Torres et al., 2006), with AtRbohD being 

the most important for PAMP-triggered oxidative burst (Nühse et al., 2007; Zhang et al., 

2007). Rboh genes have been identified as relatives to mammalian gp91phox (Torres & 

Dangl, 2005; Yoshioka et al., 2003). Genetic studies using double mutants of Arabidopsis 

rbohD and rbohF confirmed their essential function in pathogen-induced oxidative burst 

(Torres et al., 2002). 

Due to the different infection strategies of biotrophic and necrotrophic pathogens, they seem 

to have distinct responses to ROS generated in the host plants (Heller & Tudzynski, 2011). 

Successful infection of biotrophic and hemibiotrophic fungi depend on the prevention of a 

strong oxidative burst and the hypersensitive response of their host, by suppression of PTI 

responses or by scavenging the host-derived ROS during the early infection phase (Molina & 

Kahmann, 2007; Shetty et al., 2007). Thus, the oxidative burst generated in the host plant is 

an effective process to combat biotrophic pathogens. However, necrotrophic pathogens may 
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exploit host or endogenous ROS burst to facilitate infection and colonization (Asai & 

Yoshioka, 2009; Govrin & Levine, 2000; Segmüler et al., 2008; Temme & Tudzynski, 2009). 

 

1.4   Objectives  

Understanding the molecular basis of plant immune responses is of central significance to 

sustainable agriculture and food security. The model plant Arabidopsis thaliana has been 

used extensively to uncover the fundamental mechanisms of plant resistance towards diverse 

pathogens (Nishimura & Dangl, 2010). As evolutionary conserved proteinases, the crucial 

roles of mammal MMPs in pathological processes implicated similar functions for plant 

MMPs. Apart from a few studies, details about the functions and mode of actions for plant 

MMPs are largely unclear. This is partly due to the potential difficulties of the identification 

of their physiological substrate and endogenous inhibitors. The aim of the present work is to 

analyse the possible involvement of the Arabidopsis MMP family in plant defenses against 

different pathogens. To this end, Arabidopsis T-DNA insertion mutants for the At-MMP 

genes were identified and characterized for their role in pathogen responses. In addition, the 

expression profiles of At-MMPs under pathogenic conditions were verified to select the best 

candidate genes and provide the first evidences for their involvement in defense responses. 

Constitutive overexpression of At-MMPs were be used as a tool to further confirm the 

findings from the mutant analysis. Altered responses to pathogen in the overexpression 

plants were examined together with the comparison of gene expression and monitoring of 

PAMP/DAMP-mediated production of reactive oxygen species (ROS) production. Another 

focus of this project was to characterize the At2-MMP proteins in respect of the subcellular 

localization and its protease activity. Transient transformation of a reporter fusion construct 

was employed to address the question of localization and studies on recombinant proteins 

demonstrated its features as a typical MMP. The final goal of this study would be a 

substantial understanding of the functions of MMP in model pathosystem and transfer of the 

knowledge from model plants to crop plants. 
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2. Materials and methods 

2.1 Plants growth condition  

Arabidopsis plants were grown in growth chamber under 8h light/16h darkness regime and 

22℃ at day/18℃ in night and 60% humidity. Arabidopsis seeds were sown in soil (soil: 

sand = 3:1 (v/v)) and kept at 4℃ for 2 days in the dark before being placed in growth 

chamber. Covers were removed after the seeds sprouted and the first true leaves were 

emerging. The transplanting was performed two weeks later. 5-6 weeks old plants were used 

for pathogen inoculation. 

For gene expression during the interaction with Piriformospora indica, the surface sterilized 

Col-0 seeds were grown in petri dish containing ATS medium. T0 surface sterilize the seeds, 

Col-0 seeds were washed with ddH2O for 2 min to remove the inflorescence and clean the 

seeds surface then rinsed in 70% ethanol for 1 min. Afterwards, seeds were surface sterilized 

with 3% NaOCl for 10 min under shaking. The seeds were then rinsed 5 times with ddH2O, 

4 min for each time and sown on ATS medium. ATS medium consists of 0.45% gelrite, 1% 

sucrose, 5 mM KNO3, 2.5 mM KPO4, 3 mM MgSO4, 3 mM Ca(NO3)2, 50 μM Fe-EDTA, 70 

μM H3BO3, 14 μM MnCl2, 0.5 μM CuSO4, 1 μM ZnSO4, 0.2 μM Na2MoO4, 10 μM NaCl 

and 0.01 μM CoCl2. To enhance germination, seeds in Petri plates were first placed in the 

dark at 4℃ for 2 days. 

 

2.2 Pathogen inoculation and quantification 

2.2.1 Fungal and bacterial strains 

In this study, Botrytis cinerea B05.10, Golovinomyces orontii, Pseudomonas syringae pv. 

tomato DC3000, and Piriformospora indica were used for gene expression and pathogen 

inoculation.  

 

2.2.2 Botrytis cinerea inoculation 

Botrytis cinerea strain B05.10 was grown on HA agar (1% malt extract, 0.4 % yeast extract, 

0.4 % glucose, 1.5% agar, pH 5.5) as described previously (Doehlemann et al., 2006). 

Rosette leaves from 6-week-old soil-grown Arabidopsis plants were detached and placed in 

Petri dishes containing 0.5% agar, with the petiole embedded in the medium. To infect plants, 

conidia were collected from 14-day-old culture, and the spore density was adjusted in 12 g 

L-1 potato dextrose broth (PDB, Duchefa Biochemie, Haarlem, The Netherlands) to 2x105 

conidiospores mL-1 for gene expression and 5x104 conidiospores mL-1 for pathogen resistance 
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assay. Inoculation was performed by placing 3ul spore suspension on the both side of leaf or 

5 µl of spore suspension in the leaf centre. Half-strength PDB was used as mock inoculation. 

Inoculated plants were maintained at high humidity with a transparent cover in a growth 

chamber. Depending on the symptom development, two to six days after infection, the leaf 

samples were first photographed with a ruler as a scale followed with lesion size 

measurement using ImageJ. For gene expression study, the inoculated plants were placed in 

a transparent box tightly covered to keep high humidity. The boxes were incubated in a 

growth chamber under short day condition. Leaf samples were harvested at 0h, 8h, 16h, 24h, 

48h and 72h after inoculation and immediately frozen in liquid nitrogen then stored at -80℃ 

prior to use. 

 

2.2.3 Powdery mildew (Golovinomyces .orontii, G. orontii) inoculation  

For G. orontii inoculation, leaves from heavily infected plants were detached to collect the 

conidia spores with Tween H2O (1:20,000). The spore suspension with a density of 50,000 

conidia mL-1 was immediately (within 15 min) sprayed on 5-week-old healthy plants. Mock 

treatment was done by spraying Tween H2O (1:20,000). After inoculation, plants were 

moved to a growth chamber under an 8 h/16 h light/dark regime at 22℃. For gene 

expression, leaves were harvested at 0h, 6h, 12h, 18h, 24h, 72h and 120h and frozen in 

liquid nitrogen then stored at -80℃ prior to use. For quantification of the fungal growth, 

visible disease symptoms were photographed at least 6 days after inoculation (check every 

day). When clear symptom appeared, the infected plants were harvested, weighed for fresh 

weight and rinsed with Tween H2O to collect the conidia spores. The number of conidia per 

mg fresh weight was determined to quantify the fungal growth. 

 

2.2.4 Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) inoculation 

Pst DC3000 was grown at 28℃ on King’s B medium (1% protease peptone, 0.15% 

anhydrous k2HPO4, 1.5% glycerol, 1% Agar,  pH 7.0) containing 50mg/L Rif  for selection. 

After incubation at 28°C for two days, the bacterial were scrapped off with sterile 10mM 

MgCl2 using a glass spatula and the concentration was adjusted to OD600 = 0.3 for gene 

expression. The bacterial suspension was pressure-infiltrated into leaves with a needleless 

syringe on half leaves. The non-injected other half leaves were harvested for gene expression 

minimizing the wounding effect.  

For bacterial resistance assessment, Pst DC3000 suspension was diluted to OD = 0.01with 

10mM MgCl2. The inoculation was done by pressure infiltration. Leaf disks (0.5 cm2) were 
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harvested at 0 and 48 h after inoculation and ground in 10 mM MgCl2. After grinding of the 

tissue, the samples were thoroughly vortex-mixed and diluted 1:10 serially (10-1 to 10-5). 

Samples were finally plated on King’s B medium supplemented with 50mg/L rifampicin. 

Plates were placed at 28℃ for 2 days and the colony-forming units were counted. 

 

2.2.5 Piriformospora indica (P. indica) inoculation 

Piriformospora indica culture was maintained at 22℃ on complex medium (CM) containing 

0.5% 20 × Salt solutions, 2% Glucose, 0.2% Pepton, 0.1% Yeast extract, 0.1% Casamino 

acid, 1ml Microelement, 1.5% Agar-agar. Chlamydospores were collected from three-week-

old P. indica plates with sterilized Tween20-H2O (1:5000). The spore concentration was 

adjusted to 5×105 chlamydospores mL-1. For each square Petri plate, 1 mL spore suspension 

was loaded on three-week-old Arabidopsis roots followed with 30 seconds gentle shaking to 

ensure uniform distribution of the spores. The mock treatment was done with Tween20-H2O 

(1:5000). The mock and P. indica inoculated roots were harvested at the time points 0 day, 

1day, 3day and 7 day and flash frozen in liquid nitrogen. All root samples were stored at -

80℃ prior to RNA extraction.  

 

2.3 Extraction of DNA/RNA and PCR 

2.3.1 Extraction of DNA and PCR 

Genomic DNA extraction was performed to identify T-DNA insertion mutants and 

transgenic plants. For identification of single mutants, the REDExtract-N-Amp plant PCR kit 

(Sigma-Aldrich, St. Louis, MO, USA) was used for DNA extraction and PCR amplification 

according to the manufacturer’s instructions. Briefly, 0.5-0.7 cm leaf disks were cut from 

each plant with scissors and transferred with forceps into a 1.5ml microcentrifuge tube 

containing 60 μL of Extraction Solution. The leaf disk was mashed several times with 

pipette to be covered with Extraction solution. Scissors and forceps were rinsed with 70% 

ethanol and dried between samples. Tubes were vortexed briefly to cover the leaf disk with 

Extraction Solution, and then heated at 95℃ in a heating block for 10 min. After the 

incubation, 60 μL of Dilution Solution was added with brief vortex. Two microliters of 

diluted extract after short centrifuge was used for PCR and the remaining extract was stored 

at 4°C (with leaf disk inside the tube). Each PCR reaction contained 5 μL REDExtract-N-

Amp PCR reaction mix, 0.5 μM forward and reverse primer, 2 μL DNA extract in a final 

volume of 10 μL. PCR conditions were: 94℃for 5 min, then 45 cycles of 94℃ for 30 s, at 

optimum annealing temperature for 30 s, and 72℃ for 40-90 s (calculated for 1 kb per min). 
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The reaction was completed with a final extension at 72℃ for 5 min. PCR products were 

loaded directly onto a 1.5% agarose gel for electrophoresis. 

For double mutant identification, a quick and dirty protocol was used for DNA extraction. 

The DNA was extracted in a simplified way with compromised purity but suitable for PCR 

amplification. Two pieces of small leaves in the size of 1 cm2 were harvested from each plant 

in 2 mL collection tube. Samples were frozen in liquid nitrogen and leaf disks were crushed 

using a pre-cooled plastic stick. 500 μL DNA extraction buffer (200mM Tris-HCl pH 7.5, 

250mM NaCl, 25mM EDTA and 0.5% SDS) was added to the collection tubes with brief 

vortex. After incubation at room temperature for 10 min, 500 μL chloroform was added and 

vortex vigorously. Samples were then centrifuged at 13, 000 rpm for 10 min. The 

supernatant (500 μL) was transferred to a new eppendorf tube and mixed with 500 μL 

isopropanol by inverting. The mixture was incubated at room temperature for 2 min then 

centrifuged at 13,000 rpm for 10 min. The pellet was kept and washed with 500 μL 70% 

ethanol by vigorous vortex. Samples were then centrifuged again at 13,000 rpm for 5 min. 

The pellet was air dried under laminar flow for 10 min and dissolved with 100 μL MiliQ 

H2O. The dissolved DNA was used for PCR reaction (25 uL) which contains 0.2 mM dNTPs, 

1x PCR Buffer, 1.5 mM MgCl2, 0.4 μM forward and reverse primer, 2 μL DNA and 0.75 U 

DNA polymerase. PCR reactions are initiated with 94℃ for 5 min and then amplified for 35 

cycles including 94℃ for 30s, at optimum annealing temperature for 30 s, and 72℃ for 40-

90 s (calculated for 1 kb per min) with a final extension at 72℃ for 5 min.  

 

2.3.2 Extraction of RNA  

For RNA extraction, five to six weeks old Arabidopsis leaves were harvested and 

immediately frozen in liquid nitrogen. Leaf samples were crushed to fine powder in liquid 

nitrogen with mortars and pestles. The 2 ml microcentrifuge tubes were filled with leaf 

powder to one third of the volume. One mL RNA extraction solution (38% Phenol, 0.8 M 

Guanidine Thiocyanate, 0.4M Ammonium Thiocyanate, 0.1M Natrium Acetate pH 5, 5% 

Glycerol) was added to each sample. After vigorous vortext till the powder was well 

suspended, 200 μL chloroform was added and vortexed again. Samples were placed on ice 

during the proceeding of the rest samples. All samples were vortexed for 15 seconds and 

centrifuged at 4℃ and 13,500rpm for 15 min. The supernatant was transferred in a new 

microcentrifuge tube (2 mL) with 850 μL chloroform and vortexed briefly. Samples were 

centrifuged at 4°C and 13,500rpm for 15 min. The supernatant was transferred to a new tube 

with 1mL 5 M LiCl and mixed by brief vortex followed with overnight incubation at -20℃ 
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to increase the RNA yield. Centrifuge was performed at 4℃ and 13,500rpm for 20 min. The 

supernatant was discarded and the pellet was washed with 70% ethanol before centrifuge at 

4℃ and 13,500rpm for 10min. The washing step was repeated and then the pellet was air 

dried under clean bench. H2ODEPC was added to dissolve the pellet. RNA concentration was 

determined by NanoDrop ND-1000 Spectrophotometer (peqLab Biotechnologie GmbH, 

Erlangen, Germany). The RNA integrity was verified on denaturing 1.5% agarose-gel 

containing 5% formaldehyde in MOPS buffer (20 mM MOPS, 5 mM sodium acetate, 1 mM 

EDTA, pH 7.0). The gel was visualized with a UV transilluminator.  

 
2.4 RT-PCR 

2.4.1 cDNA synthesis 

RT-PCR was preformed with Fermentas reagents. RNA extraction was performed as 

described above. Three microgram RNA from each sample was treated with DNase I and 

RNase Inhibitior. Each sample was added with a mixture containing 1μL DNase I (1U/μL, 

Fermantas, Germany), 1μL 10×Dnase I buffer and 0.25 μL Rnase I inhibitor (40 U/μL). 

DEPC-treated MilliQ H2O was added to each sample to reach 10 μL final volume. After 30 

min incubation at 37℃, 2 μL EDTA 25mM was added to each sample and incubated for 10 

min at 70℃. The RNA concentration was measured again after DNase I treatment. One 

microgram RNA was used for cDNA synthesis with 1 μL oligo(dT)18 primer (100 μM) and 1 

μL Random hexmaer  primer( 100 μM). The reactions were first filled up with DEPC H2O to 

12.5 μL. After 5 min incubation at 70℃, samples were placed on ice for 2 min. A second 

mixture containing 4 μL 5×M-MulvRT buffer and 0.5 μL RNase Inhibitor (40 U/μL) was 

added to each sample. After 5 min incubation at 37℃, 1 μL Revert Aid TM –M-Mulv 

Reverse Transcriptase was add in each reaction. The reactions were incubated in a 

TProfessional thermocycler (Biometra GmbH, Germany ) following the program of 25℃ for 

10 min, 42℃ for 60 min and 70℃ for 10min. Eventually, 80 μL MilliQ H2O was added to 

each sample. Two aliquots were made from the cDNA samples and stored at -20℃ prior to 

use. 

 

2.4.2 Reverse transcription polymerase chain reaction (RT-PCR) 

For RT-PCR, cDNA synthesized above was used as template to amplify the target genes. In 

all cases, the Arabidopsis housekeeping gene ubiquitin 5 (UBQ5, AGI: AT3G62250) was 

used as an internal control for equal loading. The expression of Arabidopsis matrix 

metalloproteinase gene (At-MMPs), PR1, PDF1.2 and ERF1 were examined.  
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2.5 Identification of T-DNA insertion mutants 

2.5.1 Identification of single mutants 

The T-DNA insertion at2-mmp mutant HM-280 (GABI_416E03, NASC code N348998) was 

generated from GABI-Kat population (Rosso et al., 2003). The at2-mmp mutant HM-257 

(Salk_082450, NASC code N582450) was identified from the Salk Arabidopsis T-DNA 

insertion population (Alonso et al., 2003). Both mutant lines are in the background of 

columbia (Col-0) ecotype. T-DNA insertions were confirmed by PCR using a combination 

of a border primer of T-DNA and a gene-specific primer. Another PCR was performed to 

identify plants homozygous for the insertions using the above gene-specific primers and 

respective reverse primer. RT-PCR was performed to examine the At2-MMP transcript level 

in the mutants using the primers. Same procedure was followed for identification of at3-

mmp, at4-mmp and at5-mmp mutants. 

 

2.5.2 Production and identification of double mutants 

2.5.2.1 Crossing of Arabidopsis T-DNA mutants 

Double mutants were generated from crossing of two single mutants. at2-mmp and at3-mmp 

single mutants were grown in soil under short day condition. After 6weeks, the plants were 

transferred to long day condition to promote flowering. For crossing (about 10 weeks old), 

mature siliques as well as open flowers and buds from mother plants were removed with fine 

forceps. The meristems with too small buds were also removed and 3-5 flower buds with 

suitable size were remained on the mother plants. Anthers from these flower buds were 

carefully removed with forceps. After emasculation of the mother plants, pollen from open 

and mature flower on father plants were tapped on the stigma of mother plants. The crosses 

were documented including mother plant, father plant, date and number of pollinated flowers. 

Between different crosses, forceps were cleaned with 96% ethanol then with H2O and dried 

with tissue paper. Three to four weeks later, siliques with the hybrid seeds were mature and 

harvested by cutting them into a paper bags. 

 

2.5.2.2  Identification of double mutants 

For each crossing combination, at least 40 plants were grown to ensure the presence of 

homozygous double mutants. DNA extraction was performed as described above. Double 

mutants were identified by PCR with specific primer from parent lines. In brief, four serial 

PCR were applied for identification of homozygous double mutants. For the first PCR, LP 

and RP primer form male parent were used. The sample which gives no product in PCR 1 

were selected for further test in PCR 2, using LP and RP primer from female parent. 



Materials and Methods 

 20

Likewise, the sample which gives no product in PCR 2 was remained for PCR 3, in which 

the plants were confirmed with the LB and RP primer from male parent. As a final proof, the 

double mutant should give a product with LB and RP primer from female parent in PCR 4. 

 

Fig.2 - 1. Identification of homozygous T-DNA insertion double knockout mutants. Four 
PCR reactions were performed with LP, RP and LB primers. PCR1 was preformed with LP 
and RP primer of male parent. PCR1 negative plants were tested by PCR2 with LP and RP 
primer of female parent. Both PCR1 and PCR2 negative plants were tested by PCR3 with 
LB and RP primer of male parent. PCR3 positive plants were then verified by PCR4 with LB 
and RP primer of female parent. LP: Left primer. RP: Right primer. LB: Left border primer 
 
2.6 Overexpression of At2-MMP and At3-MMP  

2.6.1 Cloning and construction of transformation vectors 

To generate the 35S:MMP2 and 35S:MMP3 constructs, the genomic DNA of the 

Arabidopsis was used to amplify the full length sequence by PCR. The restriction sites 

BamHI and HindIII were introduced in the gene specific full-length primers. Amplification 

was achieved using the PhusionTM high-fidelity DNA polymerase (New England Biolabs, 

UK). Primer pairs At1g70170_MMP2_F (#449)/ At1g70170_MMP2_R (450) and 

At1g24140_MMP3_F (#447)/At1g24140_MMP3_R (448) were used for amplification of 

At2-MMP and At3-MMP, respectively. The full length fragment was first cloned into pGEM-

T easy vector (Promega, Madison, USA) and sequenced by LGC Genomics (Berlin, 

Germany). The fragment were then released through BamHI/HindIII digestion, ligated into 

the cloning plasmid p35S-BM and subcloned into the SfiI restriction sites of the 

Agrobacterium transformation vector pLH6000 in the sense orientation behind the CaMV 
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35S promoter. The empty vector cassette from p35S-BM including the 35S promoter and 

NOS terminator was also subcloned into the pLH6000 vector at SfiI sites.  

The pLH6000-p35S-MMP2, pLH6000-p35S-MMP3 and pLH6000-p35S were transformed 

into the Agrobacterium strain AGL1 by electroporation using an E. coli PulserTM 

transformation appratus (Bio-Rad Laboratories, Hercules, CA, USA) following the 

manufacturer’s instruction. Briefly, the 0.2 cm E.coli Pulser electroporation cuvette was 

chilled on ice. One μL aliquots of plasmid DNA (about 100 ng) was mixed with 50 μL of 

elctro-competent AGL1 cells by pipetting up and down. After 1 min incubation on ice, the E. 

coli Pulser™ apparatus (Bio-Rad) was set to a voltage of 2.5 KV for transformation. Within 

10 seconds of the pulse, 1mL SOC medium (2% Bacto tryptone, 0.5% Bacto yeast extract, 

10mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose, pH 7.0) was 

added to the cuvette and cultured at 28℃ for 1 h. The cells was then plated on YEB medium 

containing 25 μg/mL Rif, 25 μg/mL Cb and 50μg/mL Spc. Two days later, positive colonies 

were confirmed by PCR and selected for liquid culture. Minprep extraction of the plasmid 

was performed using NucleoSpin® Plasmid DNA purification kit (MACHEREY-NAGEL 

GmbH, Düren, Germany). Plasmids were confirmed again using SfiI digestion. 

 

2.6.2 Stable transformation of Arabidopsis plants  

Agrobacterium-mediated transformation of A. thaliana was carried out by means of the 

floral dip method (Clough & Bent, 1998). Col-0 plants were grown in soil under short-day 

conditions for 5 weeks and moved to long-day conditions afterwards. First flower stem were 

cut to encourage proliferation of more secondary flower stems. Plants were used for 

transformation one week after the first clipping.  

YEB liquid medium (1%Bacto-Peptone, 1%Yeast extract, 0.5% NaCl) was used for 

Agrobacterium culture. An initial liquid culture of Agrobacterium harbouring pLH6000-

p35S-BM, pLH6000-p35S-MMP2 and pLH6000-p35S-MMP3 plasmids were started from a 

single colony in 100 ml medium (YEB +25 μg/mL Rif +25 μg/mL Cb +50μg/mL Spc) and 

grown at 28℃ for 2 days. One day before the infiltration, 10 ml of the pre-culture was used 

to inoculate 200 mL YEB medium containing appropriate antibiotics. After 6 h incubation at 

28℃, Agrobacterium cells (OD = 2.0) were harvested by centrifugation at 5,000 rpm for 

10min under room temperature and resuspended in 200 mL infiltration medium (1/2 MS 

salts including vitamins, 5% sucrose, pH 5.7) supplemented with 44 nM 6-

benzylaminopurine (BAP, 10 ul L-1 of a 1 mg mL-1 stock in dimethyl sulfoxide [DMSO]) 

and 0.005% Silwet L-77. 
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A glass bell jar connected via a condensation trap to a Leybold Trivac oil pump (type S 

8B/AF 4-8) was used for vaccum infiltration. A glass tray filled with 200 mL of the 

Agrobacterium suspension was placed in the jar. Pots with plants were inverted, to allow the 

submersion of inflorescence shoots in the suspension under a pressure of about 16 mbar for 5 

min. After the 5 min treatment the vacuum was immediately released and the infiltration step 

was repeated. The 200 mL bacterial suspension was re-used for three pots. After the 

infiltration treatment, the plants were covered with a transparent cover and in darkness for 2 

days before transfer to a long-day growth chamber. Mature seeds were collected in paper 

bags after about 5 weeks. 

Seeds from T0 plants were sowing in ½ MS containing 30mg/L hygromycin and incubated in 

a 4℃ refrigerator for 2 days before being transferred to a short day condition growth 

chamber. Transformants were selected by their hygromycin resistance. After two weeks, 

green seedlings with fully expanded cotyledons, the first pair of true leaves and elongated 

roots were considered as transformants. The plants which had yellow leaves and short roots 

were autoclaved. The putative transformants with green leaves and long roots was 

transformed to soil culture. Two weeks later, these plants were tested by PCR using the 

REDExtract-N-Amp plant PCR kit.  

 

2.6.3 Extraction of intercellular washing fluid (IWF) 

The intercellur washing fluid was extracted from 6 weeks old Arabidopsis plants using an 

infiltration-centrifugation method. About 30 fully-expanded rosette leaves were detached 

from 10 plants, mounted in a metal tea filter and immersed in a beaker containing pre-cooled 

(4℃) phosphate buffer (0.2 M K2HPO4, 0.2M KH2PO4, pH 7.4). The beaker was placed in a 

vacuum chamber and subjected to several consective rounds of vacuum treatment for 2 min 

followed by abrupt release of vacuum. The infiltrated leaves were blotted dry with filter 

paper and gently placed in a 15 ml falcon tube on a grid separated from the tube bottom. The 

IWF was collected from the bottom of the tube after centrifugation at 300 g for 2 min at 4℃. 

IWF extracted from transgenic and control platns were fractionated on 12 % SDS-PAGE and 

their proteolytic activities were evaluated against MBP. 

 

2.7 Recombinant protein  

2.7.1 Construction of pET32a-MatMMP2 

For  construction of the expression constructs, the catalytic domain (mature MMP2) or full 

length CDs without signal peptide (ProMMP2) were cloned in frame into pET32a(+) 
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(Novagen, Madison, WI) containing a His-tag at the N terminus of the expressed protein and 

transformed into Escherichia coli strain BL21(DE3) pLysS. The primer pairs 

ProMMP2_Fwd (#555) and ProMMP2_Rev (#556) for ProMMP2, MatMMP2_BamHI 

(#633) and MatMMP2_HindIII (#634) for MatMMP2 were used in the amplification 

respectively. At3-MMP full length CDs without signal peptide was cloned in frame into 

pET32a (+) containing the His-tag at N-terminal and expressed in BL21 (DE3). As the 

control, empty vector pET32a (+) was expressed in BL21 (DE3) and BL21 (DE3) pLysS. 

 

2.7.2 Induction and purification of recombinant protein 

Single colony from fresh plate was used to inoculate 5 mL Luria-Bertani (LB) medium 

containing 100 mg/L ampicillin and allowed to grow overnight at 37℃ on a shaker. The 

overnight culture was added to fresh LB + AMP at the ratio 1:100. The bacteria were grown 

at 37℃ with shaking until the OD600 reach 0.6-0.8. Isopropyl-β-D-thiogalactopyranoside 

(IPTG) was added to a final concentration of 1 mM and further incubated for 4 hours. Then, 

bacteria were harvested by centrifugation at 9,500 rpm for 20 min at 4℃. The bacterial pellet 

was dissolved in 20 mL lysis buffer (10 mM Tris-Hcl pH 8.0, 1u/ml DNaseI, 1 mg/ml 

lysozyme, 0.1mM PMSF) and cell was disrupted by sonication (Bendelin UW 2070). The 

sonication was performed by 8 cycles each with 15seconds sonication and 15 seconds on ice. 

Then the samples were centrifuged at 9,500 rpm for 15 min at 4℃. The pellet was 

resuspended in lysis buffer again and repeated with the sonication two times. Subsequently, 

10ml buffer B (100 mM sodium dihydrogen phosphate, 10 mM Tris-HCl, 8 M urea, the pH 

was adjusted to 8.0 using NaOH) was added to pellet and incubated at room temperature for 

1 h with gentle shaking. Thereafter, the cell debris was precipitated from the lysate solution 

by centrifugation at 9,500 rpm for 30 min (Sorvall SS34 Centrifuge). The supernatant was 

collected, mixed with 2ml 50% Ni-NTA slurry (Qiagen, Hilden, Germany) and incubated at 

room temperature for 1h. The lysate-resin mixture was carefully loaded into an empty 

column with the bottom cap still attached. The cap was open until the lysate-resin mixture 

fall down and the flow through fraction was collected. The column was washed with 10 mL 

washing buffer C (100 mM sodium dihydrogen phosphate, 10 mM Tris-HCl, 8 M urea, pH 

adjusted to 6.3 using HCl) then eluted three times with buffer D (100 mM sodium 

dihydrogen phosphate, 10 mM Tris-HCl, 8 M urea, pH adjusted to 5.9 using HCl)  and 

labeled as E1.1, E1.2 and E1.3. After the first elution, the column was eluted three times 

with elution buffer (100 mM sodium dihydrogen phosphate, 10 mM Tris-HCl, 8 M urea, pH 

adjusted to 4.5 using HCl) and labeled as E2.1, E2.2 and E2.3. 10 μL protein from each 
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fraction was loaded on 12% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). After 

electrophoresis, gel was fixed by fixation solution (40% Ethanol, 10% Acetic acid) for 30 

min and stained with staining solution (20% Methanol, 60% H2O, and 20% colloidal 

Coomassie blue Roti ®-Blue, Roth, Karlsruhe, Germany) over night followed with 

destaining for 1h in destaining solution (40% methanol, 10% glacial acid, 50% water). The 

gel was scanned.  

The collected proteins were desalted and concentrated using an ultra-filtrate column 

(VIVASPIN 15 ml concentrator) with a cut-off molecular weight of 30 kDa (Vivascience, 

Lincoln, UK) and refolded in refolding buffer ( 20mM  Tris-H2SO4, pH 7.5, 5mM CaSO4, 

100mM NaSO4, 1uM ZnSO4, 10% glycerol, 0.05% Brij35, 0.02% NaN3) using a dilution 

method with a final concentration of 10-50 μg mL-1. The refolded protein was incubated at 

4°C overnight. After refolding, the protein was concentrated using VIVASPIN concentrator. 

Protein quantity was estimated by A280 using NanoDrop ND-1000 spectrophotometer. 

Purity and integrity of pET32a-MatMMP recombinant protein was determined by separating 

protein aliquots using SDS-PAGE. The concentrated protein was aliquoted, frozen in liquid 

nitrogen and stored at -80℃.  

 

2.7.3 Proteolytic activity assay 

Enzymatic analysis was performed as previously described (Maidment et al., 1999, 

Ratnaparkhe et al., 2009). Degradation of myelin basic protein (MBP) was assessed using 

bovine MBP (Sigma) at a final concentration of 0.25 mg/mL in 100 mM Tris–HCl pH 7.5, 5 

mM CaCl2, 0.05% Brij 35, 0.02% NaN3. A total of 3 μg of recombinant protein was 

incubated with MBP in a 15 μL reaction volume for the indicated time (30 min, 4 hours and 

30 hours) at 37℃, and products were analyzed by 20% SDS-PAGE to visualize MBP 

degradation. The gels were stained with coomassie blue overnight and then destained for 1 

hour. Inhibition of MMP activity was determined by the addition of EDTA at a 

concentration ranging from 100 nM to 5 mM. 

Thermolysin (Sigma, 88303) at the concentrations of 5 μg/mL was used with 0.25 μg/mL 

MBP in a 15 μL reaction volume for 5min, 15min, 30min, 1h, 2h at 37℃. The products were 

analyzed by SDS-PAGE to visualize MBP degradation using 20% separating gel. After 

electrophoresis, gel was fixed by fixation solution for 30 min. Then the gel was stained with 

staining solution over night. Destaining was performed with destaining solution for 1h. 

 



Materials and Methods 

 25

2.7.4 B. cinerea germination assay 

The antifungal activities of the recombinant protein were evaluated against B. cinerea using 

spore germination assay. Fungal conidia (2 x 104 conidia mL-1) were incubated with 60 

μg/mL recombinant protein from At2-MMP and empty vector in microtiter plate at room 

temperature. After incubation for 10 h, the spore germination was monitored microscopically 

and photographed. 

 

2.7.5 Western blot  

Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and then 

transferred onto a PVDF membrane (Roti®-PVDF, pore size 0.4um, ROTH, Germany) with 

semi-dry electrophoretic transfer cell (Bio-Rad) at 15 V for 1 h. The PVDF membrane was 

balanced with 1× Towbin buffer (25 mM Tris, 192 mM glycine and 20 % [v/v] methanol) 

for 15 min. After protein transfer, the membrane was washed three times with PBST buffer 

(0.1 % [v/v] Tween 20,137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 , pH 

7.4) and 10 min for each time. Non-specific binding sites were blocked using 5 % (w/v) 

milkpowder (ROTH, Germany) in PBST buffer at room temperature for 2 h. After three 

times washing with PBST buffer, the N-terminal and the C-terminal antibody from tobacco 

(N-11.5.1.5 or C-6.3.2) were uses as primary antibody respectively with overnight 

incubation at 4℃ on a shaker (Mandal et al., 2010). The membrane was washed three times 

for 5 min in PBST buffer and incubated with anti-mouse lgG peroxidase conjugate (sigama-

9044) at the dilution 1:5000 in PBST buffer for 2 h at room temperature. After three times 

washing, the blot was developed using Chmiluminescent substrate (SuperSignal® WestPico).  

 

2.8 Subcellular localization of At2-MMP 

The full length cDNA of At2-MMP was amplified using the primer pair 

At1g70170_MMP2_F (5’-ATGGATCCAATCCGAAAACCACCATGAG-3’, #449) and 

At2-MMP XhoI (5’-CCGCTCGAGCGAAATCAAACATAGGTATAGGACA-3’, #635) 

(restriction sites underlined) and cloned downstream of CaMV 35S promoter in p35S-Nos-

BM (DNA Cloning Service, Hamburg) to result in 35S::MMP2. The GFP CDS without stop 

codon was amplified from 35S::GFP using GFP-SalI (5’ 

CGCGTCGACCATGGTGAGCAAGGGCGAGGA-3’, #631, SalI site underlined) and 

GFP-XhoI (5’-CCGCTCGAGGTCTTGTACAGCTCGTCCATGC-3’, #632, Xho I site 

underlined) and cloned in frame to At2-MMP at its Sal I site, which is between the peptidase 

domain and the putative GPI anchor. For transient transformation, detached leaves from 5-
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week-old, short-day grown Col-0 plants were cobombarded with the construct 35S::MMP2-

GFP and the control plasmid 35S::mCherry. 24 hours after bombardment, the subcellular 

localization of MMP2-GFP was analyzed by confocal laser scanning microscopy. 

Plasmolysis was performed with 50% glycerol for 5 min. 

 

2.9 Oxidative burst assay 

Pre-clearing of chitin was performed as described with modifications (Petutschnig et al., 

2010). In brief, crab shell-derived chitin (Sigma) was ground with mortar and pestle to a 

very fine powder and the 10 mg/ml stock slurry was prepared with water. The extract was 

vortexted vigorously for 15 min. Then after 30s heat with microwave, the extract was treated 

with 5 min socication. The supernatant was removed by centrifugation at 4,000 rpm and 4℃ 

for 10 min. ROS detection using leaf disks from soil grow plants was performed as described 

previously (Keppler et al., 1989, Goméz-Goméz et al., 1999). The leaf disks 5mm in 

diameter were cut from 7-week-old healthy plants with sharp puncher and were floated 

overnight in 200 μL H2O in 96-well plates to minimize wounding effect. For ROS 

measurement, the water was replaced with 200 μL mastermix aqueous containing 30 μg/mL 

luminol (Sigma, 15mg/ml stock in DMSO) and 20 μg/mL horseradish peroxidase (10mg/ml 

in water, Sigma, P6782) under low-light condition. Elicitors used to stimulate ROS 

generation include three PAMPs (100 nM flg22, 100 nM elf18, and 1 mg/mL chitin) and one 

DAMP (100 nM Pep1). 20 μL of the elicitors (10x concentrated) was injected by TECAN 

Infinite®F200 microplate reader (TECAN, Switzerland) to trigger ROS production. 

Luminescence was measured for 70 cycles, 60 seconds per cycle.  

 

2.10 Phylogenetic reconstruction 

The MMP protein sequences from fourteen monocot and dicot plant species were retrieved 

from NCBI based on blastp and tblastn search using the sequences from At1-MMP and At5-

MMP as queries. The GenBank accession numbers of proteins or cDNA used for the 

translation are listed as follows: At1-MMP (NP_193397), At2-MMP (NP_177174), At3-

MMP (NP_173824), At4-MMP (NP_182030), At5-MMP (NP_176205), BoMMP1 

(ACB59207), ChrMMP1 (BAA01400), ChrMMP2 (BAB68383), ChrMMP3 

(XP_001694591), Cs1-MMP (CAB76364), SMEP-1 (AAB26959, Gm), GmMMP2 

(AAL27029), ACU24527 (ACU24527, Gm), Slti114(ABW96008, Gm), HvMMP1 

(BAJ94792), HvMMP2 (BAJ93963), HvMMP3 (BAJ94176), HvMMP4 (BAJ90264), 

MtMMPL1 (CAA77093), ACJ84310 (ACJ84310, Mt, translation), NMMP1(ADD21635, 

Nb), NtMMP1 (ABF58910), OsMMP1 (NP_001048075), OsMMP2 (NP_001057259), 
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OsMMP3 (NP_001065361), PtMMP1 (XP_002318762), PtMMP2 (XP_002322292), 

PtMMP3 (XP_002326645), PtMMP6 (XP_002338425), PtMMP7(XP_002325947), 

PtMMP8 (XP_002311050), Pta1-MMP (ACJ24812), LeMMP1 (AK322919, translation), 

SlMMP2 (AK328733, translation), VvMMP1 (XP_002267298), VvMMP2 (CBI32079), 

VvMMP3 (XP_002274477), VvMMP4 (XP_002267238), VvMMP5 (CAN59960), 

VvMMP6 (XP_002275556), VvMMP7 (XP_002280833), VvMMP11 (XP_002275671), 

ZmMMP1 (NP_001151749), ZmMMP2 (NP_001142095). Five human MMPs are selected 

including HsMMP1 (NP_002412), HsMMP7 (NP_002414), HsMMP8 (AAZ38714), 

HsMMP13 (AAH67523) and HsMMP20 (AAT70722). 

The peptide sequences of the domains spanning the cysteine switch and Met-turn motif of 

the MMP protein were aligned by Muscle package within MEGA5 program ( Tamura et al., 

2011). The multiple alignments were adjusted with gaps manually inserted for optimal 

alignment based on the conserved features of the cysteine switch and the zinc-binding 

domains. The Neighbor-Joining method implemented in MEGA5 for amino acid sequences 

were used for phylogenetic tree reconstruction. The bootstrap consensus tree inferred from 

10,000 replicates is taken to represent the evolutionary history of the taxa analyzed. The 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap 

test (10,000 replicates) is shown above the branches. 
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3. Results 

3.1 Phylogenetic anaylsis of the MMP family in plants 

MMP sequences for human, single-celled green algae Chlamydomonas reinhardtii and 14 

selected monocotyledonous and dicotyledonous plant species were retrieved from NCBI 

database (section 2.10). All previously characterized plant MMPs were included in the 

phylogenetic reconstruction. Based on the alignment of conserved region spanning the 

cysteine switch and Met-turn motif of the MMP protein sequences (Fig. S1), a non-rooted 

phylogenetic tree was constructed using Neighbor-Joining method (Tamura et al., 2011). 

Basically, the selected MMPs in higher plants can be classified into four subgroups, with 

some features linked to certain plant species or specified functions (Fig.3 - 1). For group I 

and II, each can be clearly separated into two subclades representing MMP branches from 

dicots and monocots. At2-MMP, At3-MMP together with At5-MMP is assigned in the group 

I, containing LeMMP1, NtMMP1 and NMMP1 which are known to be pathogen responsive 

(Frick and Schaller, 2002; Kang et al., 2010; Schiermeyer et al., 2009). At1-MMP and At4-

MMP belong to group II in which some members have been proposed to be involved in 

development (Flinn, 2008; Ratnaparkhe et al., 2009). No monocot MMP were identified in 

group III and thus it appears to be a dicot-specific group. Two members from group III, 

SMEP-1 and Cs1-MMP have a suggested function in cell death and leaf expansion, 

respectively (Delorme et al., 2000; Graham et al., 1991). Group IV members are till now 

exclusively found in the legume plants Glycine max and Medicago truncatula and thus seem 

to be legume-specific MMPs.  
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Fig.3 - 1. Molecular phylogenetic anaylsis of the MMP family in plants. The evolutionary 
history was inferred by Neighbor-Joining method based on the p-distance model using a 
conserved region spanning the cysteine switch and Met-turn motif of 49 MMP protein 
sequences from human and 15 plant species.  At (Arabidopsis thaliana), Bo (Brassica 
oleracea), Chr (Chlamydomonas reinhardtii), Cs (Cucumis sativus), Gm (Glycine max), Hs 
(Homo sapiens), Hv (Hordeum vulgare), Mt (Medicago truncatula), N (Nicotiana 
benthamiana), Nt (Nicotiana tabacum), Os (Oryza sativa), Pt (Populus trichocarpa), Pta 
(Pinus taeda), Sl (Solanum lycopersycum), Vv (Vitis vinifera) and Zm (Zea mays). 
Genebank accession numbers for proteins or the corresponding cDNA are listed in section 
2.10. Bar represents the number of amino acid differences per site (Tamura et al., 2011). 

3.2 At-MMPs gene expression during the interaction with various pathogens 



Results 

 30

3.2.1 At-MMPs expression during the infection of Botrytis cinerea 

In Arabidopsis, there are five homologues in the matrix metalloproteinses family and are 

named At1-MMP to At5-MMP (Maidment et al., 1999). From the Genevestigator database 

(www.genevestigator.com), some members of AtMMPs showed differential expression 

pattern after pathogen infection. To investigate the expression pattern of the five MMP genes, 

gene-specific primers were designed (Table. S1). The 5-week-old plants were inoculated 

with necrotrophic fungus B. cinerea and the infected leaves were harvest at different time 

points (0h, 8h, 16h, 24h, 48h and 72h) (section 2.2.2).  

 

Fig.3 - 2. Expression profile of At-MMPs in Col-0 leaves after Botrytis cinerea infection 
Five-week-old Arabidopsis Col-0 plants were inoculated with B. cinerea by placing 5 ul 
spore suspension (2x105 spores/mL in 1/2 potato dextrose broth (PDB)) in the centre of the 
rosette leaves. Mock treatment was performed with 1/2 PDB. Total RNA was extracted from 
leaves at the indicated time points after B. cinerea infection and used for RT-PCR. 28 cycles 
were used for UBQ5, which served as the internal control for normalization, and 35 cycles 
for At-MMPs.The experiments were repeated three times with similar results. h: hours 
 
After B. cinerea infection, At1-MMP was slightly up-regulated from 8 h to 48 h. At 24 h 

infection, At1-MMP showed the highest expression level among all the time points (Fig.3 - 

2). For At2-MMP, the basal expression level was quite low and almost non-detectable in the 

mock treatment. However, At2-MMP showed a strong induction in response to B. cinerea 

infection (Fig.3 - 2). The up-regulation of At2-MMP was visible 8 h after infection and was 

increasing from 16 h to 72h. At 72 h post inoculation, At2-MMP had the highest expression 

level. For At3-MMP, its induction pattern is very similar but earlier than At2-MMP. At 8 h 

after B. cinerea infection, At3-MMP already showed clear induction. Notably, At3-MMP 

expression in mock treatment is associated with photoperiod rhythm. Its expression level 

appeared high in light (0 h, 24 h, 48 h and 72 h) and low in dark (8h and 16 h). There was 
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little difference for At4-MMP expression between mock treatment and B. cinerea treatment. 

For At5-MMP, it had similar expression pattern as At3-MMP in mock treatment. B. cinerea 

appeared to upregulate At5-MMP expression at 16 hpi but had little influence in later time 

points through the infection.  

 

3.2.2 At-MMPs expression during the infection of Golovinomyces orontii 

To examine the gene expression of At-MMPs after biotrophic pathogen infection, plants 

were inoculated with powdery mildew fungus Golovinomyces orontii. A spore suspension of 

50,000 conidia mL-1 was prepared and sprayed immediately on 6-week-old healthy Col-0 

plants (section 2.2.3). At1-MMP had similar expression between the mock treatment and G. 

orontii inoculation. For At2-MMP, it was clearly up-regulated at very late time point 120 hpi. 

At3-MMP had same expression level in the mock treatment and G. orontii inoculated 

treatment except that there was a slight up-regulation at 12h. At4-MMP was down-regulated 

after G. orontii inoculation starting from 24h to 120h. For At5-MMP, no clear differences in 

expression could be observed.  

 

 

Fig.3 - 3. Expression profile of At-MMPs in Col-0 leaves after Golovinomyces orontii 
infection. Five-week-old plants were inoculated with G. orontii by spraying spore 
suspension (50,000 conidia ml-1 in 1: 20,000 Tween20/water). Mock treatment was 
performed with Tween20 water. Leaves were harvested at the indicated time points after G. 
orontii infection and used for total RNA extraction. RT-PCR was performed using UBQ5 as 
an internal control. The experiments were repeated three times with similar results. h: hours 
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3.2.3 At-MMP expression during the infectin of Pseudomonas syringae 

The Pseudomonas syringae inoculation was performed by infiltration with Pseudomonas 

syringae pv tomato DC3000 (PstDC3000) suspension (OD600 = 0.1 in 10 mM MgCl2) on 6-

week-old Arabidopsis Col-0 plants (section 2.2.2). The injection was done following a half-

leaf method shown in Fig.3 - 4. The results revealed that At1-MMP, At4-MMP and At5-MMP 

showed no clear systemic changes during P. syringae infection. At2-MMP was slightly up-

regulated starting from 8 h and was obviously up-regulated at 24h. At3-MMP was up-

regulated from very early time point 4 h after injection.  

 
 

Fig.3 - 4. Half-leaf method in the infection of Pseudomonas syringae pv tomato DC3000. 
Schematic representation of the procedure is shown. Half leaf was infiltrated with P. 
syringae suspension using a needleless syringe and the other half leaf was harvested for At-
MMPs gene expression assay.  

 
 

Fig.3 - 5. Expression profile of At-MMPs in Col-0 leaves after infection with bacterial 
pathogen Pseudomonas syringae pv tomato (Pst) DC3000. At2-MMP and At3-MMP are 
induced by Pst infection. Six-week-old Arabidopsis Col-0 plants were infiltration with Pst 
DC3000 suspension with OD600= 0.1. The mock treatment was performed by infiltration 
with 10 mM MgCl2. Leaves were harvested at the indicated time points after Pst DC3000 
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infection and used for total RNA extraction. RT-PCR was performed using UBQ5 as an 
internal control. The experiments were repeated three times with similar results. h: hours 
 
3.2.4 At-MMPs gene expression in roots in the interaction with Piriformospora indica  

Seeds of wild type Col-0 plants were sterilized and sowed on ATS medium in vertical Petri 

dishes. 3-week-old plants were used for P. indica inoculation with a spore concentration of 

5×105 spores/mL (section 2.2.5). Based on the RT-PCR result, I observed that At1-MMP 

appeared to be slightly down-regulated starting from 1 day after inoculation. At2-MMP had 

much higher expression levels in roots but not altered due to P. indica treatment. For At3-

MMP, it was up-regulated at 1day after inoculation and down-regulated from 3 days, then it 

was strongly down-regulated 7 days after inoculation. At4-MMP and At5-MMP appeared to 

have no altered expression after P. indica inoculation.  

 
 

Fig.3 - 6. Expression profile of At-MMPs in Col-0 roots after colonization with the 
mutualistic fungus Piriformospora indica. The roots of 3 weeks old plants grown on ATS 
medium were inoculated with P. indica spores (5×105 spores/mL). The mock treatment was 
done with Tween20-water. The roots were harvested at the indicated time points after P. 
indica infection and used for total RNA extraction. RT-PCR was performed using UBQ5 as 
an internal control. The experiments were repeated two times with similar results. d: days. 
 
3.2.5 Expression of At2-MMP and At3-MMP in signaling mutants 

As described above, At2-MMP and At3-MMP were obviously induced upon B. cinerea 

infection. To determine which signal is required for the regulation of At2-MMP and At3-

MMP expression, Arabidopsis mutant plants with compromised signaling pathways, namely 

salicylic acid (SA; NahG, ics1, npr1-1, pad3-1), jasmonic acid (JA;  jar1,  jin1) and ethylene 

(ein2-1) pathway mutants were tested for the At2-MMP and At3-MMP expression after B. 

cinerea infection. Representative disease symptoms of the B. cinerea-infected mutants are 

shown in Fig.3 - 7. The lesion sizes of all mutants were bigger than Col-0 plants thus more 
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susceptible to B. cinerea.  Regarding At2-MMP expression, all the mutants showed similar 

expression pattern as Col-0 plants (Fig.3 - 8). Therefore, Botrytis induced expression of At2-

MMP is likely independent of SA, JA and ethylene signaling pathway, induced by multiple 

pathways or upstream of the tested genes. 

In all the mutants, At3-MMP had similar expression level and pattern with Col-0 plants 

(Fig.3 - 8). Hence, B. cinerea induced expression of At3-MMP is also independent of SA, JA 

and ethylene signaling pathway, or upstream of the tested genes.  

 

 

 

Fig.3 - 7. Disease symptoms of the SA, JA or ET signaling mutants after Botrytis cinerea 

infection. The 5-week-old plants were inoculated with B. cinerea by placing 5 μL spore 

suspension (2x105 spores/mL in 1/2 potato dextrose broth (PDB)) in the centre of the rosette 

leaves. The photographs were taken 3 days after inoculation. 
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Fig.3 - 8. B. cinerea induced At2-MMP and At3-MMP expression is independent of SA, JA 
or ET signaling. Leaves from Col-0 and different signaling defective mutants were harvested 
at the indicated time points after B. cinerea infection and used for total RNA extraction. RT-
PCR was performed using UBQ5 as an internal control. h: hours 
 

To gain further information about the signaling pathway of At2-MMP and At3-MMP,  

more mutants were included in the expression analysis. Abcidic acid (ABA; abi2, aba2), 

gibberellic acid (GA; della pentuple), cytokinin (ahp1,2,3,4,5-1), JA (coi1-16), auxin (tir1-1), 

brassinosteroids (bri1-116) mutants, and a phytoalexin deficient plant (pad4) with 

corresponding wild type plants Ler and Col-0 were inoculated with B. cinerea. The infected 

leaves of 5 weeks old plants were harvested at 12 h and 48 h. After RNA extraction and 

cDNA synthesis, At2-MMP and At3-MMP expression was examined. Regarding the lesion 

size, abi2 and della pentuple were significantly more susceptible than the wild-type Ler 

plants. Likewise, the mutant lines bri1-116, aba2, coi1-16, tir1-1, pad4 and ahp1, 2, 3, 4, 5-1 

were also more susceptible than their background Col-0 (Fig.3 - 9). The mutant lines coi1-16 

and ABA mutants (aba2 and abi2) were hypersusceptible to B. cinerea as evidenced by the 

complete rot and overgrowth with fungal mycelium (Fig.3 - 9). 
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Fig.3 - 9.  Disease symptoms of the signaling mutants after B. cinerea infection. The 
detached rosette leaves from 5-week-old plants were inoculated by placing 5 μl of B.cinerea 
spore suspension (2x105 spores/mL in 1/2 potato dextrose broth (PDB)) in the centre of the 
leaves. The photograph was taken 3 days after inoculation. abi2 and della pentuple were in 
Ler background. The rest mutants bri1-116, aba2, coi1-16, tir1-1, pad4 and ahp1, 2, 3, 4, 5-
1 was in Col-0 background. 
 
In aba2 mutants, which are defective in ABA synthesis, At2-MMP was expressed at similar 

level in mock treated and B. cinerea infected plants. The B. cinerea-induction of At2-MMP 

is not as clear as in the other mutants (Fig.3 - 10). This abolished induction of At2-MMP by 

B. cinerea in aba2 mutant might imply the requirement for ABA but has to be confirmed in 

independent experiments. Similarly, the expression of At2-MMP in B. cinerea-infected 

pad4-1 mutants was reduced, indicating a role of PAD4 in the regulation of At2-MMP 

expression. In other mutants lines such as della pentuple, ahp1, 2, 3, 4, 5-1, tir1-1, bri1-116 

and coil1-16, they had very similar expression pattern as Col-0. These results suggested that 

B. cinerea-induced At2-MMP expression might require direct or indirect regulation from 

ABA and PAD4. For At3-MMP, the induction by B. cinerea in the mutants appeared to have 

similar pattern as in the wild-type plants (Fig.3 - 10, right).  
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Fig.3 - 10. B. cinerea induced At2-MMP and At3-MMP expression in other signaling 
mutants. Leaves from Col-0 and different signaling defective mutants were harvested at the 
indicated time points after B. cinerea infection and used for total RNA extraction. RT-PCR 
was performed using UBQ5 as an internal control. abi2 and della pentuple are in Ler 
background. The other mutants bri1-116, aba2, coi1-16, tir1-1, pad4 and ahp1, 2, 3, 4, 5-1 
are in Col-0 background.  
 
3.2.6 At2/3-MMP expression in mpk3, mpk6 and eds1 mutants  

In Arabidopsis, the mitogen-acitivated protein kinases (MAPKs) MPK3 and MPK6 are well-

known regulators of a wide array of defense responses (Asai et al., 2002; Ren et al., 2008). 

To elucidate the possible regulation of At2/3-MMP by MAP kinases, mpk3 and mpk6 mutant 

were included with B. cinerea. At2-MMP showed almost the same expression level and 

pattern in the mpk3 and mpk6 mutants as in wild type Col-0. In both mutants, At2-MMP was 

slightly up-regulated at 12 h and was significant induced at 48 h. At3-MMP was up-regulated 

at 48h after B. cinerea in mpk3, mpk6 and Col-0 plants. There is some difference between 

the mpk3, mpk6 mutant and Col-0. In mpk3 mutant, At3-MMP had higher expression level at 

0 h and lower expression at 48 h in the mock compared with Col-0. After 12 h B. cinerea 

infection, At3-MMP expression in mpk3 mutant was higher than that in Col-0 plants, which 

might imply a negative regulation of At3-MMP by MPK3 in the early phase of infection 

(Fig.3 - 11). In mpk6 mutant, At3-MMP had lower expression at 12 h and 48 h in the mock 

than in Col-0 plants. Despite these slight differences, the induction of At2-MMP and At3-

MMP by B. cinerea appeared not impaired in mpk3 or mpk6 mutants. 
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Fig.3 - 11. Expression profile of At2-MMP and At3-MMP in mpk3 and mpk6 leaves after B. 
cinerea infection. Five-week-old Arabidopsis Col-0 plants were inoculated with B. cinerea 
by placing 5 μL of spore suspension (2x105 spores/mL in 1/2 potato dextrose broth (PDB)) 
in the centre of the rosette leaves. Mock treatment was performed with 1/2 PDB. Leaves 
were harvested at the indicated time points after B. cinerea infection and used for total RNA 
extraction. RT-PCR was performed using UBQ5 as an internal control. A, Disease 
symptoms of the mpk3 and mpk6 mutants after B. cinerea infection. The pictures were taken 
at 3 days after inoculation. B, B. cinerea induced At2-MMP and At3-MMP expression is 
independent of MPK3 and MPK6.  
 
As described previously (Torres et al., 2003), MMP2-induction by Pst DC3000 infection 

was compromised in eds1-2 mutant. To elucidate the possible correlation between EDS1 and 

At-MMP expression, I used eds1-2 mutant for B. cinerea inoculation. In eds1-2 mutant, 

At2/3-MMP showed same expression pattern and same expression level as Col-0 plants. This 

result suggested that, unlike in the case of P. syringae, EDS1 does not influence the At2-

MMP expression during B. cinerea infection. 

 

 
Fig.3 - 12. B. cinerea induced At2-MMP and At3-MMP expression is independent of EDS1. 
Five-week-old Arabidopsis Col-0 plants were inoculated with B. cinerea by placing 5 μL of 
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spore suspension (2x105 spores/mL in 1/2 potato dextrose broth (PDB)) in the centre of the 
rosette leaves. Mock treatment was performed with 1/2 PDB. Leaves were harvested at the 
indicated time points after B. cinerea infection and used for total RNA extraction. RT-PCR 
was performed using UBQ5 as an internal control. 
 

3.3  Identification of AtMMP T-DNA insertion mutants 
3.3.1 Identification of single mutants 

The availability of large-scale T-DNA insertion mutants for Arabidopsis thaliana has greatly 

facilitated functional genomics studies. To verify the potential functions of At-MMPs, I 

ordered T-DNA insertion lines for At2-MMP to At5-MMP from NASC (European 

Arabidopsis stock centre). No lines were available for At1-MMP at the time the project was 

initiated. These mutant lines were segregating and thus required identification of 

homozygous individuals. The homozygous mutants were identified by PCR (Fig.S2 - S6).  

Table.3 - 1. Identification of homozygous T-DNA insertion mutants  
 

At-MMP NASC ID 
 

Number of plants 
tested 

Number of 
homozygous 
plants 

At2-MMP N582450 8 2 
At2-MMP N348998 10 4 
At3-MMP N115923 17 4 
At3-MMP N103532 6 1 
At4-MMP N327098 10 5 
At4-MMP N532466 10 4 
At5-MMP N619909 10 5 
At5-MMP N593137 9 5 
At5-MMP N656052 HM 10 10 
At5-MMP N660426 HM 10 10 
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Table.3 - 2.  List of mutants lines used in this study 
 

MMP gene 
Accession 
number 

NASC 
ID 

Name Source Homozygous plant 

At1-MMP AT4G16
640 

Z97341 not 
available 

NO NO no 

At2-MMP AT1G70
170 

AC002062 N582450 SALK_082450 (AV) 
(BF) 

SALK HM-257,HM-259 

At2-MMP AT1G70
170 

AC002062 N348998 GK-416E03.01 GABI HM-279,HM-280,HM-281,HM-282 

At3-MMP AT1G24
140 

AC002396 N103532 SM_3.15171 JIC HM-411 

At3-MMP AT1G24
140 

AC002396 N115923 SM_3.28404 JIC HM-402,HM-403,HM-406,HM-418 

At4-MMP AT2G45
040 

AF062640 N327098 GK-075C07.01 GABI HM-268,HM-269,HM-270,HM-276,HM-277

At4-MMP AT2G45
040 

AF062640 N532466 SALK_032466 (E) (AE) SALK HM-357,HM-362,HM-364,HM-365 

At5-MMP AT1G59
970 

AC005966 N619909 SALK_119909(AV)(CH) SALK HM230,HM-233,HM-234,HM-237,HM-260 

At5-MMP AT1G59
970 

AC005966 N593137 SALK_093137(AV)(BR) SALK HM-264,HM-265,HM-267,HM-246,HM-247

At5-MMP AT1G59
970 

AC005966 N656052 
HM 

SALK_147513C SALK HM-366,HM-367,HM-368,HM-369,HM-370  
HM-371,HM-372,HM-373,HM-374,HM-375

At5-MMP AT1G59
970 

AC005966 N660426 
HM 

SALK_052676C SALK HM-376,HM-377,HM-378,HM-379,HM-380  
HM-381,HM-382,HM-383,HM-384,HM-385
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3.3.2 Production of double mutants 

Double mutants were generated by crossing the homozygous single-mutant lines. In this 

study, double mutants were produced from crossings at2-mmp x at4-mmp or at2-mmp x at3-

mmp. F1 hybrids were self-crossed and at least 40 F2 plants from each combination were 

used for selection of homozygous double mutants. The workflow for identification of 

homozygous double mutants is shown in material and method (Fig. 2 - 1). Homozygous 

plants don’t produce amplification with LP/RP primers but with LB/RP primers (Fig.S2 - 

S6). In principle, four PCR reactions were therefore required to identify the individuals 

homozygous for both T-DNA insertions in the crossing combination. 

at4-mmp mutant HM-268 (N327098) and at2-mmp HM-280 (N348998), at2-mmp HM-257 

(N582450) were both used as father parent and mother parent for the double mutant. After 

two generations of PCR selection, the homozygous double mutants were identified as listed 

in Table.3 - 3. 

Table.3 - 3. List of identified at2-mmp at4-mmp double knockout mutants 
 

Combinations 
Number of 
tested F1 

plants 

True Hybrid in F1 
(Line used for F2 

generation is 
underlined) 

Number 
of tested 
F2 plants

Homozygous 
double mutant 

♂ HM-268 
(at-4mmp, N327098) 

♀ HM-280 
(at2-mmp, N348998) 

10 
6 

F1-451, F1-452, F1-453,
 F1-454, F1-459, F1-460

46 
F2-7 

F2-20 F2-26 

♂ HM-280 
(at-2mmp, N348998) 

♀ HM-268 
(at4-mmp, N327098) 

10 
5 

F1-461, F1-462, F1-465, 
F1-466, F1-470 

40 F2-57, F2-68 

♂ HM-268 
(at4-mmp, N327098) 

♀ HM-257 
(at2-mmp, N582450) 

10 

8 
F1-471, F1-472, F1-473, 
F1-476, F1-477, F1-478, 

F1-479, F1-480 

42 
F2-99, F2-103, 
F2-105, F2-115, 

F2-126 

♂ HM-257 
(at2-mmp, N582450) 

♀ HM-268 
(at4-mmp, N327098) 

10 

10 
F1-481, F1-482, F1-483, 
F1-484, F1-485, F1-486, 
F1-487, F1-488, F1-489, 

F1-490 

40 F2-155, F2-161 

 

at2-mmp HM-280 (N348998) and two at3-mmp mutant HM-411 (N103532) and HM-402 

(N115923) were used as father parent and mother parent for the double mutant to have 

different combination. After two generations of PCR selection, the homozygous double 

mutants were identified as listed in Table.3 - 4. 
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 Table.3 - 4. List of identified at2-mmp at3-mmp double knockout mutants 
 

Combinations 

Number 
of tested 

F1 
plants 

True Hybrid in F1 
(Line used for F2 

generation is underlined)

Number of 
tested F2 

plants 

Homozygous 
double mutant

♂ HM-280 
(at2-mmp, N348998) 

♀ HM-411 
(at3-mmp, N103532) 

8 

8 
F1-51, F1-52, F1-53, F1-

54, 
F1-55, F1-56, F1-57, F1-58

40 
F2-140, F2-142
F2-148, F2-153 
F2-164, F2-168

♂ HM-411 
(at3-mmp, N103532) 

♀ HM-280 
(at2-mmp, N348998) 

13 

13 
F1-38, F1-39, F1-40, F1-

41, 
F1-42, F1-43, F1-44, F1-
45, F1-46, F1-47, F1-48, 

F1-49, F1-50 

42 
F2-103, F2-112
F2-113, F2-127

 

♂ HM-280 
(at2-mmp, N348998) 

♀ HM-402 
(at3-mmp,N115923) 

10 

10 
F1-28, F1-29, F1-30, F1-
31, F1-32, F1-33, F1-34, 

F1-35, F1-36, F1-37 

60 
F2-II-11 

 

♂  HM-402 
(at3-mmp, N115923) 

♀ HM-280 
(at2-mmp, N348998) 

6 
6 

F1-22, F1-23, F1-24, 
F1-25, F1-26, F1-27 

50 F2-II-7 

 

3.4 Pathogen responses of At-MMP mutants 
3.4.1 Responses of At-MMP mutants to Golovinomyces orontii 

As mentioned above, some At-MMPs showed altered expression after pathogen infection. 

To investigate the functions of At-MMPs in pathogen resistance, I inoculated all the MMP 

mutants with biotrophic fungus Golovinomyces orontii (section 2.2.3). The 5-week-old 

healthy plants were sprayed with 50,000 conidia mL-1 spore suspension. After 11 days of 

infection, conidia were rinsed from leaves and the number of conidia/mg fresh weight was 

determined microscopically (Fig.3 – 13, A). All the mutants tested showed no significant 

difference in comparison with Col-0 plants. The disease symptoms 11 days after powdery 

mildew infection are shown in Fig.3 - 13, B.  
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Fig.3 - 13. Disease signs of at-mmp mutants and Col-0 plants after powdery mildew 
inoculation. Six-week-old plants were sprayed with 50,000 conidia/ mL spore suspension of 
the powdery mildew fungus G. orontii. Eleven days after inoculation, the leaves were 
detached and the amount of conidia per mg of leaf fresh weight was determined for at least 
five individually treated plants. The error bars indicate the standard error. A, Conidia per mg 
leaf fresh weight for at-mmp mutants and Col-0 plants. B, Disease symptoms of the at-mmp 
mutants and Col-0 plants. Images were taken 11 days after inoculation.  
 
3.4.2 Responses of At-MMP mutants to Pseudomonas syringae 

Based on the At-MMPs gene expression profile during compatible interaction with 

biotrophic bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000 (Fig.3 - 5), 

At2-MMP and At3-MMP were induced due to infection. To investigate the involvement of 

At-MMPs during Pst infection, the mutant lines and Col-0 plants were infiltrated with 

virulent strain Pst DC3000 (OD600=0.01 in 10mM MgCl2). Leaf disks of 0.5cm diameter 

were harvested at two time points (0 h and 48 h after inoculation). Serial dilutions from 10-1 
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to 10-5 were prepared from the corresponding leaf extracts and spread on agar plates. After 2 

days incubation at 28°C, the colony number was counted and calculated as cfu/cm2 to 

determine the growth of the bacteria (section 2.2.4). Both at2-mmp mutants (HM-257 and 

HM-280) and at5-mmp mutants (HM-237 and HM-246) had similar level of bacterial growth 

with Col-0 plants. The at4-mmp mutant line (HM-277) showed a significant difference with 

Col-0 in the preliminary trial (Fig. 3-14). 

                   

                   

                       
 
Fig.3 - 14. Responses of at-mmp mutants to Pst DC3000. A, The at-mmp mutants and Col-0 
plants were inoculated through injection with a suspension of Pst DC3000 (OD600=0.01 in 
10mM MgCl2). Leaf disks of 0.5 cm diameter were harvested at 0 h and 48 h after 
inoculation. Columns and error bars represent mean and standard error from 10 plants. at4-
mmp mutant HM-277 showed significant difference from the control plants (p≤ 0.05) 
according to Student’s t-test. B, Pictures of representative inoculated plants were taken 
3days after infection. The injected leaves were marked as shown.  
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3.4.3 Responses of At-MMP mutants to Botrytis cinerea 

In wild type Col-0 plants, expression of At2-MMP and At3-MMP is induced by B. cinerea 

infection (Fig.3 - 2).  To study the At-MMPs function during the B. cinerea infection, the at-

mmp mutants were examined for the altered responses after B. cinerea inoculation (section 

2.2.2). The detached leaf was cut from 6 weeks old plants and put into the plastic box with 

0.5% H2O-Agar. The lid was closed to keep the higher humidity. The pictures were taken at 

6 days after inoculation. The lesion size was measured with ImageJ.  Two independent at2-

mmp mutants (HM-257 and HM-280) were more susceptible than wild type plants (Fig.3 - 

15) and HM-280 show significantly susceptible. Two independent at3-mmp mutants (HM-

402 and HM-411) were also more susceptible than Col-0 plant (Fig.3 - 15) and HM-411 

showed the significantly susceptible to the Col-0 plants. at4-mmp mutant (HM-277) showed 

non-significantly smaller lesion size than Col-0 (Fig.3 - 15). Surprisingly, the two 

independent at5-mmp mutants HM-237 and HM-246 exhibited opposite phenotype (Fig.3 - 

15). For line HM-237, the lesion size is slightly bigger than that in Col-0. However, the line 

HM-246 displayed significantly increased resistance to B. cinerea in comparison with Col-0 

(Fig.3 - 15). 

 

Fig.3 - 15. at2-mmp and at3-mmp mutants  showed enhanced susceptibility to the 
necrotrophic pathogen B. cinerea. Leaves were cut from 6-week-old plants and placed in 
plastic boxes containing 0.5% H2O-Agar. The detached leaves were inoculated by placing 3 
μL spore suspension (5×104 conidiospores/mL) on both sides of the middle vein. The lesion 



Results 

 46

size was measured by Image J. A, Diameter of lesions on leaves of Col-0 and at-mmp 
mutants 6 days after inoculation with B. cinerea. Data represent average ± SE of at least 20 
lesions. Bars represent the standard error. Asterisks indicate significant difference to control 
on the basis of Students’s t-test (*, P≤0.05; **, P≤ 0.01). B, Disease symptoms on Col-0 and 
at-mmp mutant leaves. The photograph was taken 6 days after inoculation.  
 
 

 

 
 

Fig.3 - 16. at3-mmp mutant (HM-402 and HM-411) showed increased susceptibility to the 
necrotrophic pathogen B. cinerea. The rosette healthy leaf was cut from the 6 weeks old 
plants and placed in plastic boxes containing 0.5% H2O-Agar. The detached leaves were 
inoculated by placing 5 μL spore suspension (5×104 conidiospores/mL) on the middle vein. 
The lesion size was measured by Image J. A, Size of lesion formed in leaves of Col-0 and 
at3-mmp mutant (HM-402 and HM-411) 2days after inoculation with B. cinerea. Data 
represent average ± SE of at least 10 lesions. Bars indicate the standard error. at3-mmp (HM-
402) increased the lesion size but not significantly. at3-mmp (HM-411) were significant 
different with Col-0 plants. Bars indicate the standard error. The asterisk indicats data set 
significantly different according to Students’s t-test (P≤ 0.05). B, Symptoms of Col-0 and 
at3-mmp mutants (HM-402 and HM-411) leaves infected with B. cinerea. The photograph 
was taken 2 days after inoculation. 
 
Double mutant at2-mmp at3-mmp produced using two different At3-MMP mutant lines were 

also tested regarding their resistance towards B. cinerea (Fig.3 - 17). The leaves were cut 

from 6 weeks old plants and were put into the plastic box with 0.5% H2O-Agar. The 

detached leaves were inoculated by placing 5 μl spore suspension (5×104 conidiospores/mL) 

on the middle vein. The lesion size was measured by ImageJ (section 2.2.2). The double 

mutant lines showed bigger lesion size compared with the parental single mutant or the wild 
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type Col-0 plants. Both line DM F3-II-7 and F3-II-11 were highly significant susceptible 

compare to Col-0 and were more susceptible to parental line at2-mmp HM-280 and at3-mmp 

HM-411. Most double mutants of at2-mmp HM-280 and at3-mmp HM-411 showed 

significant susceptible to Col-0 Plants and were susceptible to parental line (Fig.S9). This 

indicates an additive effect of the mutations in At2-MMP and At3-MMP.  

 
 
Fig.3 - 17. Double mutants of at2-mmp and at3-mmp F3-II-11 and F3-II-7 showed enhanced 
susceptibility to the necrotrophic pathogen B. cinerea. The rosette leaves were detached from 
6-week-old plants and placed in plastic boxes containing 0.5% H2O-Agar. The detached 
leaves were inoculated by placing 5 μL spore suspension (5×104 conidiospores/mL) on the 
middle vein. The lesion size was measured by ImageJ. A, Size of lesions formed in leaves of 
homozygous double mutants F3-II-11 and F3-II-7, parental lines at2-mmp (HM-280) and at3-
mmp (HM-402) and wild type Col-0 two days after inoculation with B. cinerea. Data 
represent average ± SE of at least 20 lesions. Bars show the standard error. Asterisks indicate 
significant difference to control on the basis of Students’s t-test (*, P≤0.05; **, P≤ 0.01). B, 
Disease symptoms on detached leaves of the double mutants F3-II-11, F3-II-7, single mutants 
at2-mmp (HM-280) and at3-mmp (HM-402) and Col-0 plants two days after infection. DM: 
double mutant.  
 

3.5 Generation and characterization of At2-MMP and At3-MMP overexpression 
plants 
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3.5.1 Generation of At2-MMP and At3-MMP overexpression lines 

Gene expression profiles and analysis of mutatns pointed At2-MMP and At3-MMP as 

promising candidate in plant innate immunity. In order to further verify the At2-MMP and 

At3-MMP gene function during plant defense, At2-MMP and At3-MMP overexpression 

plants were generated. The coding sequence of At2-MMP and At3-MMP was amplified by 

PCR using specific primers with flanking restriction sites for BamHI and HindIII. The full 

length fragment was cloned into pGEM-T-easy vector, verified by sequencing and then cut 

out through BamHI/HindIII digestion, ligated into the cloning plasmid p35S-BM and 

subcloned into the SfiI sites of the Agrobacterium transformation vector pLH6000 in sense 

orientation under control of CaMV 35S promoter (Fig.3 - 18, A). As a control, the empty 

vector (EV) construct containing only the CaMV 35S promoter and nos terminator was used 

for transformation. The transgenic seeds were harvested from T0 plants and were sown on ½ 

MS medium containing 30mg/L hygromycin. The transgenic seedlings were efficiently and 

reliably selected based on the presence of elongated roots and expanding true leaves (Fig.3 - 

18, B).  

 

 
Fig.3 - 18. A, Schematic diagram of the constructs 35S::MMP2, 35S::MMP3 and control 
construct (empty vector). B, Seeds from Agrobacterium-infiltrated F0 plants were selected in 
½ MS medium containing 30mg/L hygromycin. The putative transformants were able to 
grow on the selection medium. 
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Fig.3 - 19. PCR identification of T1 transgenic plants 35S::MMP2, 35S::MMP3 and EV 
(empty vector) control plants. The REDExtract-N-Amp PCR kit was used for DNA 
extraction and PCR amplification following the manufacturer’s instructions. A, 
Identification of 35S::MMP2 plants and EV transgenic plants. The At2-MMP forward primer 
(#207) and NOS terminator primer (#516, supplemental, Table S1) were used for 
35S::MMP2. Primers for 35S promoter (#517) and NOS terminator (#516) were used for EV 
transgenic plants. B, Identification of 35S::MMP3 plants. The At3-MMP forward primer 
(#211) and NOS terminator primer (#516) were used for PCR.  
 
The putative transformants from 35S::MMP2, 35S::MMP3 and EV were confirmed by PCR 

using a vector-specific primer and a gene-specific primer (Fig.3 - 19). In addition, the 

elevated expression level of At2-MMP in 35S::MMP2 and At3-MMP in 35S::MMP3 was 

analyzed by quantitative real-time PCR (Fig.3 - 20). The 35S::MMP2 lines L6 and L7, 

which had the highest and lowest transcript levels, were selected for further studies. The 

35S::MMP3 lines L11 and L18 were selected for the further studies, with L18 had the 

highest expression level and L11 had a lower expression level (Fig. 3 -20, B) (Only a few 

seeds were harvested form L22 line of 35S::MMP3)   
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Fig.3 - 20. Expression level of At2-MMP and At3-MMP in the corresponding overexpression 
plants. Total RNA was extracted from leaves of six independent lines for both 
overexpression lines. UBQ5 was used as the reference gene in the quantitative RT-PCR. A,  
At2-MMP expression in 35S::MMP2 transgenic plants. At2-MMP specific primer pair was 
used for amplification. B,  At3-MMP expression in 35S::MMP3 transgenic plants. At3-MMP 
specific primer pair was used for amplification. 
 
 
3.5.2 Early flowering in 35S::MMP2 lines 

The Col-0, EV controls and 35S::MMP2 transgenic plants (L6 and L7) were grown under 

short day conditions for eight weeks. The 35S::MMP2 plants revealed no difference in 

growth or morphology as compared with wild-type Col-0 plants in the vegetative stage. 

However, occasional flowering occurred much earlier compared to wild-type and EV control 

(Fig.3 - 21). This is consistent with a previous study, in which mutation of At2-MMP led to 

early senescence and late flowering (Golldack et al., 2002). No altered senescence was 

observed in At2-MMP overexpression plants. No difference was observed in the At3-MMP 

overexpression plants.  
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Fig.3 - 21. Early flowering phenotype of 35S::MMP2 transgenic plants. The plants were 
grown under short-day condition (8/16 h of light/dark regime). Image was taken 9 weeks 
after germination. 
 
3.5.3 Salt responses in At2-MMP and At3-MMP overexpression lines 

From the Genevestigator microarray data (Zimmermann et al., 2004), At2-MMP and At3-

MMP were induced by NaCl treatment. To investigate the functions of At2-MMP and At3-

MMP regarding salt stress response, the surface sterilized seeds were grown on ½ MS 

medium under short day conditions for 10days. Thereafter, seedlings from Col-0, EV, 

35S::MMP2 (L6 and L7), and 35S::MMP3 (L11and L18) were transferred to ½ MS medium 

containing various NaCl concentrations (0, 50, 100 and 200mM). After two weeks, root 

lengths and sizes of L6 and L7 plants were similar to Col-0 and EV plants in ½ MS medium 

without salt. Under treatment with 50 mM NaCl, the growth of Col-0 plants was 

dramatically reduced showing smaller leaves and shorter roots. The in parallel transformed 

control EV plants and 35S::MMP2 were still growing similar to pants in 0 mM NaCl. Under 

100 mM salt stress, the Col-0 plants were almost dying whereas the growth of EV plants and 

35S::MMP2 plants (L6 and L7) was only slightly reduced. No clear difference was observed 

between EV and 35S::MMP2 plants under 50 mM and 100 mM NaCl. In the presence of 200 

mM NaCl, all plants finally died but overexpression line L6 and L7 first produced longer 

roots than control (Fig.3 - 22.).  
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Fig.3 - 22. Responses of 35S::MMP2 plants (L6 and L7) to NaCl stress. The surface 
sterilized seeds were grown on ½ MS medium for 10 days and then seedlings were 
transferred to Petri dishes with ½ MS medium supplemented with 0, 50, 100 and 200 mM 
NaCl. Photographs were taken two weeks after transfer. A, Response of L6 to NaCl stress. B, 
Response of L7 to NaCl stress. 
 
The 35S::MMP3 plants (L11 and L18) were also tested for their salt tolerance. Through all 

the NaCl concentration tested (0, 50, 100 and 200 mM), 35S::MMP3 and EV plants were 
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growing better than Col-0 plants concerning shoot size and root length (Fig.3 - 23). However, 

no difference was observed between 35S::MMP3 and EV plants at all NaCl concentrations. 

Hence, I conclude that 35S::MMP3 overexpression did not influence the NaCl tolerance. 

                            
 

                       
 
Fig.3 - 23. Responses of 35S::MMP3 plants (L11and L18) under NaCl stresses. The surface 
sterilized seeds were grown on ½ MS medium for 10 days and the seedlings were then 
transferred to petri dishes with ½ MS medium supplemented with 0, 50, 100 and 200mM 
NaCl. Photographs were taken two weeks after transfer. A, Response of L11 to NaCl stress. 
B, Responses of L18 to NaCl stress. 
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3.5.4 Pathogen responses in At2-MMP and At3-MMP overexpression plants  

Both At2-MMP and At3-MMP overexpression plants were tested for the responses to B. 

cinerea infection. Detached leaves from 6-week-old 35S::MMP2 (line L6 and L7) and 

35S::MMP3 plants (line L11and L18) were inoculated with B. cinerea spores. Control Col-0 

and EV plants had similar lesion sizes with the latter slightly bigger diameters. Both L6 and 

L7 35S::MMP2 lines showed significantly (p≤ 0.05) reduced lesion size in response B. 

cinerea compared to Col-0 and EV plants (Fig.3 - 24). Therefore, overexpression of At2-

MMP enhanced the resistance to B. cinerea. 

 
Fig.3 - 24. 35s::MMP2 plants (L6 and L7) showed increased resistance to the necrotrophic 
pathogen B. cinerea. The rosette leaves were detached from 6-week-old plants and placed in 
closed transparent plastic boxes containing 0.5% H2O-Agar. The detached leaves were 
inoculated by placing 5ul spore suspension (5×104 conidiospores/mL) on the middle vein. 
The lesion size was measured by Image J. A, Size of lesions formed in leaves of Col-0, EV 
and 35S::MMP2 L6 and L7 plants after inoculation with B. cinerea. Data represent average 
± SE of at least of 20 lesions. Bars indicate the standard error. The asterisks indicates 
significant differences (*, P≤0.05; **, P≤ 0.01) according to Student’s t-test. B, Disease 
symptoms on Col-0, EV, L6 and L7 of 35s::MMP2 leaves.  The photographs were taken 4 
days after inoculation. 
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Fig.3 - 25. 35S::MMP3 plants (L11 and L18) showed increased resistance to the 
necrotrophic pathogen B. cinerea. The rosette healthy leaves were cut from 6-week-old 
plants and placed in plastic boxes containing 0.5% H2O-Agar. The detached leaves were 
inoculated by placing 5 μL spore suspension (5×104 conidiospores/mL) on the middle vein. 
The lesion size was measured by Image J. A, Size of lesions formed in leaves of Col-0, EV 
and 35S::MMP3 L11 and L18 plants after inoculation with B. cinerea. B, The leaves of 
inoculated Col-0, EV, L11 and L18 of 35S::MMP3 plants 4 days after infection.  
 
Similar to 35S::MMP2 plants, 35S::MMP3 plants (L11 and L18) also displayed reduced 

lesion size in comparison with EV. The disease symptoms were shown in Fig.3 - 25. This 

result indicates a similar role of At3-MMP as At2-MMP in B. cinerea resistance. 

 

3.5.5 PAMP/DAMP-mediated ROS production 

To gain insight into the mode of actions of matrix metalloproteaes in plant immune 

responses, I investigated in At-MMP mutants and overexpression plants the PAMP/DAMP-

mediated production of reactive oxygen species (ROS) which are essential components of 

stress and defense signaling. I measured the oxidative burst (section 2.9) in Arabidopsis leaf 

disks after treatment with four elicitors including three PAMPs (100 nM flg22 peptide, 100 

nM elf18 peptide and 1 mg/mL chitin ) (Gómez-Gómez et al., 1999; Kunze et al., 2004; 

Miya et al., 2007) and one DAMP (100 nM Pep1 peptide (Krol et al., 2010). The oxidative 

burst was recorded by H2O2–dependent luminescence of luminol. Four independent At2-

MMP overexpression lines, independent at2-mmp and at3-mmp single mutants, and double 
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mutants were included for comparison with the wild-type Col-0 and empty-vector (EV) 

transformed plants.  

In both the Col-0 and EV plants, the PAMP flg22 was able to induce a strong transient 

oxidative burst within a few minutes (Fig.3 - 26, A). Intriguingly, a dramatic lower H2O2 

level was observed in all the four independent At2-MMP overexpression lines compared 

with the Col-0 and EV plants in all the elicitor treatments. This impaired ROS production in 

the overexpression plants was most severe in the lines L7 and L11. They showed completely 

abolished oxidative burst upon flg22 treatment similar as that of flg22-insensitive mutant 

fls2-17 (Fig.3 - 26, A). at2-mmp mutants (HM-257 and HM-280) showed wild-type level of 

ROS production after flg22 treatment (Fig.3 - 26, B). A significantly enhanced ROS 

production was observed in at3-mmp mutants (HM-402 and HM-411) and similarly 

increased ROS concentrations were found in at2-mmp at3-mmp double mutants (Fig.3 - 26, 

C and D). 

Chitin is considered to be the predominant component of fungal cell wall and a potent 

PAMP (Miya et al., 2007). To gain insight into the responses to fungus-derived PAMP in 

At-MMP mutants and overexpression lines, I measured the chitin-mediated ROS production. 

Similarly, the 35S::MMP2 plants showed almost abolished ROS production after chitin 

treatment compared with Col-0 and EV (Fig.3 – 27, A). at2-mmp mutants (HM-280 and 

HM-257) showed ROS production very similar to Col-0 (Fig.3 – 27, B). In at3-mmp mutants 

(HM-402 and HM-411), the chitin-induced ROS was higher than that of Col-0 (Fig.3 – 27, 

C). Three out of the four double mutants lines showed higher ROS than Col-0 but lower than 

at3-mmp mutants in response to chitin treatment (Fig.3 – 27, D). 
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Fig.3 - 26. ROS production in response to 100 nM flg22. Leaf disks were cut from the soil-
grown seven-week-old plants grown under short day condition. Oxidative burst was induced 
by 100 nM flg22 and measured in relative light units (RLU). Results are mean ± SE (n = 8). 
A, Oxidative burst in leaf discs of wild-type Col-0, empty-vector transformants (EV), four 
independent At2-MMP overexpression lines (L4, L6, L7 and L11), and the receptor mutant 
fls2-17. B, Oxidative burst in leaf discs of at2-mmp mutants (HM-257 and HM-280), Col-0 
and fls2-17. C, Oxidative burst in leaf discs of at3-mmp mutants (HM-402 and HM-411), 
Col-0 and fls2-17. D, Oxidative burst in leaf discs of at2-mmp at3-mmp double mutants, Col-
0 and fls2-17. DM: double mutant. 
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Fig.3 - 27. ROS production in response to 1mg/mL chitin. Leaf disks were cut from the soil-
grown seven-week-old plants grown under short day condition. Oxidative burst was induced 
by 1 mg/mL chitin and measured in relative light units (RLU). Results are mean ± SE (n = 8). 
A, Oxidative burst in leaf discs of wild-type Col-0, empty-vector transformants (EV) and 
four independent At2-MMP overexpression lines (L4, L6, L7 and L11). B, Oxidative burst 
in leaf discs of at2-mmp mutants (HM-257 and HM-280) and Col-0. C, Oxidative burst in 
leaf discs of at3-mmp mutants (HM-402 and HM-411) and Col-0. D, Oxidative burst in leaf 
discs of at2-mmp at3-mmp double mutants and Col-0. DM: double mutant. 
 
The peptide elf18 is a conserved fragment from bacterial PAMP EF-Tu and able to induce 

plant immune responses upon the recognition by the membrane-bound receptor EFR (EF-Tu 

Receptor) (Kunze et al., 2004). To gain insight into the responses to elf18 in At-MMP 

mutants and overexpression lines, I measured the elf18-mediated ROS production. The elf18 

insensitive mutant efr-1 was used as negative control. Similar to flg22 and chitin treatment, 

the 35S::MMP2 plants showed much lower ROS production after elf18 treatment compared 

with Col-0 and EV (Fig.3 - 28, A). at2-mmp mutants (HM-280 and HM-257) showed same 

ROS production as Col-0 (Fig.3 - 28, B). In at3-mmp mutants (HM-402 and HM-411), the 

level of elf18-induced ROS is close to that in Col-0 but the peak appeared earlier (Fig.3 - 28, 

C). Double mutant at2-mmp/at3-mmp showed higher ROS in response to elf18 than Col-0 

(Fig.3 - 28, D) and the single mutants (Fig.3 - 28, B and C). 
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Fig.3 - 28. ROS production in response to 100 nM elf18. Leaf disks were cut from the soil-
grown seven-week-old plants grown under short day condition. Oxidative burst was induced 
by 100 nM elf18 and measured in relative light units (RLU). Results are mean ± SE (n = 8). 
A, Oxidative burst in leaf discs of wild-type Col-0, empty-vector transformants (EV), four 
independent At2-MMP overexpression lines (L4, L6, L7 and L11) and the elf18 receptor 
mutant efr-1 plants. B, Oxidative burst in leaf discs of at2-mmp mutants (HM-257 and HM-
280), Col-0 and efr-1. C, Oxidative burst in leaf discs of at3-mmp mutants (HM-402 and 
HM-411), Col-0 and efr-1. D, Oxidative burst in leaf discs of at2-mmp at3-mmp double 
mutants, Col-0 and efr-1. DM: double mutant. 
 
 
The Arabidopsis-derived DAMP Pep1 is known to induce plant defense signaling. To study 

the potential involvement of At-MMP in the Pep1-mediated signaling, I measured the Pep1-

induced ROS production in At-MMP mutant and At2-MMP overexpression lines. For 

35S::MMP2 plants, the Pep1-mediated oxidative burst is much lower than in control plants 

(Fig.3 - 29, A). No difference in Pep1-triggered ROS production was observed between at2-

mmp mutant and Col-0. Interestingly, the Pep1-induced ROS in at3-mmp and at2-mmp/at3-

mmp double mutants were substantially lower than in Col-0 (Fig.3 - 29, C and D). These data 

imply a requirement of At3-MMP in Pep1-mediated ROS production. 
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Fig.3 - 29. ROS production in response to 100 nM Pep1. Leaf disks were cut from the soil-
grown seven-week-old plants grown under short day condition. Oxidative burst was induced 
by 100 nM Pep1 and measured in relative light units (RLU). Results are mean ± SE (n = 8). 
A, Oxidative burst in leaf discs of wild-type Col-0, empty-vector transformants (EV) and 
four independent At2-MMP overexpression lines (L4, L6, L7 and L11). B, Oxidative burst 
in leaf discs of at2-mmp mutants (HM-257 and HM-280) and Col-0. C, Oxidative burst in 
leaf discs of at3-mmp mutants (HM-402 and HM-411) and Col-0. D, Oxidative burst in leaf 
discs of at2-mmp at3-mmp double mutants and Col-0. DM: double mutant. 
 
In addition, I used the commercially available thermolysin to further investigate the 

involvement of metalloprotease activities in ROS production. Thermolysin is a neutral 

metalloproteinase enzyme produced by the gram-positive bacteria Bacillus 

thermoproteolyticus (Endo, 1962). Thermolysin was first examined for its proteolytic 

activity using MBP (myelin basic protein) as substrate (section 2.7.3). The thermolysin 

concentration of 5μg/mL was selected in the activity test according to a previous study 

(Altincicek et al., 2007). Degradation of MBP by thermolysin within five minutes confirmed 

its strong activity (Fig.3 - 31). 
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Fig.3 - 30. Determination of activity of bacterial metalloproteinase thermolysin by MBP 
degradation assay. MBP was incubated at 37 oC for in the presence of thermolysin (5 μg/mL) 
for the indicated time points. MBP incubation alone for 2 h was used as control. The 
products were loaded on SDS-PAGE gel. 
 
To check plant responses to thermolysin, leaf disks were cut from Col-0 plants and measured 

for ROS production (section 2.9) in the presence of thermolysin (12.5μg/mL). Flg22 (100 

nM) was used as the positive control in ROS assay (Gómez-Gómez et al., 1999). As 

expected, flg22 triggered a strong oxidative burst but thermolysin did not induce any ROS 

generation in the Col-0 leaf disks (Fig.3 - 31, A). Interestingly, a mixture of flg22 and 

thermolysin was not able to induce oxidative burst anymore in Col-0 plants (Fig.3 - 31, B). 

The abolished flg22-mediated oxidative burst by thermolysin provides a possible link 

between metalloproteinase and ROS generation.  
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Fig.3 - 31. flg22-triggered oxidative burst was abolished by thermolysin. The leaf disks of 
Col-0 were cut from seven weeks old plants which were grown in soil under short day 
conditions. Oxidative burst was measured in relative light units (RLU) after treatment with 
100 nM flg22, 12.5 μg/mL thermolysin or a combination of both. Results are mean ± SE (n = 
24). A, Oxidative burst in Col-0 leaf disks after flg22 or thermolysin treatment. B, Oxidative 
burst triggered in Col-0 leaf disks triggered by flg22 with or without thermolysin. 
 
3.5.6 Expression analysis of marker genes during Botrytis cinerea infection 

To gain insight into the molecular basis of the At-MMP-related signaling cascade, the 

expression of three Arabidopsis marker genes PDF1.2 (plant defensin), PR1 (pathogenesis-

related) and ERF1 (ethylene-responsive factor) during B. cinerea infection was compared 

between Col-0, at2-mmp and 35S::MMP2. PDF1.2, PR1 and ERF1 are crucial component in 

the JA, SA and Ethylene signaling (Berrocal-Lobo et al., 2002; Delaney et al., 1994; 

Manners et al., 1998). Ubiquitin 5 was used as control for normalization. The expression 

profiles of PDF1.2, PR1 and ERF1 are shown in Fig.3 - 32. 

 

 

 

Fig.3 - 32. Expression profile of PDF1.2, PR1 and ERF1. Leaves from Col-0, empty control 
(EV) transformant, at2-mmp and 35S::MMP2 (L6 and L7) 6-week-old plants were harvested 
at the indicated time points after B. cinerea infection and used for total RNA extraction. RT-
PCR was performed using UBQ5 as an internal control. h: hours. 
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On the basis of RT-PCR results, the expression of PDF1.2, PR1 and ERF1 were induced 

after B. cinerea inoculation compared with the mock treatment in at2-mmp mutant, 

35S::MMP2 plants and the control plants (Fig.3 - 32). However, no differences were 

observed for the expression of the three marker genes between these lines. The At2-MMP 

conferred resistance is unlikely through acting on PDF1.2, PR1 or ERF1. 

 
3.5.7 Intercellular washing fluid from 35S::MMP2 and 35S::MMP3 plants 

To verify the proteolytic activity of At2-MMP and At3-MMP in the overexpression lines, 

intercellular washing fluid (IWF) was extracted form Col-0, EV, 35S::MMP2 plants (L6) 

and 35S::MMP3 plants (L18). Myelin basic protein (MBP) was used as substrate to 

determine the proteolytic activity of different IWFs. The IWF from different plants was 

incubated with MBP for 10 h. The final product was separated by 20% SDS-PAGE (Fig.3 - 

33, A). After incubation, only the IWF from L6 plants of 35S::MMP2 could degrade the 

substrate MBP. The IWF from 35S::MMP3 (L18) plant was not able to degrade MBP (Fig. 

3-33, A). The degradation of MBP by IWF from L6 was inhibited by EDTA. With the 

increase of EDTA concentration, the level of MBP degradation is decreased (Fig.3 - 33, B).  
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Fig.3 - 33. Proteolytic activity of the IWF from 35S::MMP2 and 35S::MMP3 plants. A, IWF 
activity was determined by degradation of MBP. IWF from 35S::MMP2 (L6) plant displayed 
activity against the substrate MBP. B, Activity of the IWF from 35S::MMP2 (L6) was 
inhibited by EDTA. As the rising of EDTA concentration, the degradation of MBP decreases.  

3.6 Characterization of At2-MMP and At3-MMP recombinant proteins  

To verify the enzymatic activity of At2- and At3-MMP, the coding sequences of At2- and 

At3-MMP excluding N-terminal signal peptide were amplified by PCR. These fragments 

were cloned in frame to the C-terminal Thioredoxin-His-S (THS) tag in pET32a (+) vector. 

As the cloned sequences contain both the propeptide domain and catalytic domain, the 

encoded proteins were termed Pro-MMP2 and Pro-MMP3. The expression constructs used 

in the production of recombinant protein are shown in Fig.3 - 34, A, where pET32a vector 

was included to express the 20 kDa THS tag as a control. 
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Fig.3 - 34.  Expression of Pro-MMP2 and Pro-MMP3 in E. coli. A, The schematic diagram 
of the expression constructs pET32a (+) empty vector, pET32a (+)-Pro-MMP2 and pET32a 
(+)-Pro-MMP3. Coding sequences of At2-MMP and At3-MMP were cloned in frame to the 
C-terminal of Thioredoxin-His-S (THS) tag in pET32a (+) vector. The calculated protein 
size is shown on the right side. B, IPTG induction of THS tag, THS-tagged Pro-MMP2 and 
THS-tagged Pro-MMP3 in E. coli. Bacterial cells were harvested at indicated time points (0, 
2, 4 and 6 h) after IPTG addition.  
 
Initially, all the three constructs were transformed in the E.coli strain BL21 (DE3). Protein 

induction was performed by adding 1 mM IPTG. The induction was observed strong for 

THS tag and Pro-MMP3 in BL21 (DE3) strain (Fig.3 - 34, B), but very weak for Pro-MMP2 

(data not shown). Thus, pET32a-Pro-MMP2 was transformed in the strain BL21 (DE3) 

pLysS and the expression level of Pro-MMP2 was quite strong after IPTG induction (Fig.3 - 

34, B). Based on the induction dynamics of Pro-MMP2 and Pro-MMP3 (Fig.3 - 34, B), 4 h 

IPTG induction was used in the subsequent large-scale culture. To purifiy the Pro-MMP2 

recombinant protein, E.coli cells transformed with pET32a-Pro-MMP2 or pET32a were 

harvested, lysed by lysozyme and sonicated for three times. After centrifugation, both the 

supernatant and pellet were loaded on SDS-PAGE gel to verify the solubility of Pro-MMP2. 

THS tag was found in the supernatant, but most of the Pro-MMP2 protein was present in 

pellet (data not shown). The recombinant Pro-MMP2 protein was therefore purified under 
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denaturing condition (section 2.7.2). In the presence of 8 M urea, the dissolved Pro-MMP2 

was loaded on Ni-NTA column which has high binding affinity to the His-tagged protein. As 

a result, the THS-tagged Pro-MMP2 appeared to bind poorly to the Ni-NTA column and a 

small portion of the protein was purified (Fig.3 - 35).  

 
 

Fig.3 - 35. Purification of the Pro-MMP2 recombinant protein.  Purification of Pro-MMP2 
protein was performed under denaturing condition. FL: flow through. W: wash. E: elution.  
 
In the final elution, there is one band close to 55 kDa, which is in agreement with the 

predicted size of 57.5 kDa. Other two bands are around 30 and 35 kDa, which may indicate a 

cleavage within the propeptide (Fig.3 - 35). The protein was subsequently refolded with 

dilution method as described previously (Maidment et al., 1999). After the refolding, the 

three dominant bands are still present. 

The activity of Pro-MMP2 recombinant protein was determined by the myelin basic protein 

(MBP) degradation assay (section 2.7.3). With the presence of Pro-MMP2 protein, MBP was 

degraded after 30 h incubation at 37 oC (Fig.3 - 36, A). The activity of Pro-MMP2 was 

inhibited by EDTA, a chelator of metal ions required for MMP activity (Fig.3 - 36, B).  

 
   
Fig.3 - 36. Activity determination of Pro-MMP2 recombinant protein by MBP degradation 
assay. A, Degradation of myelin basic protein (MBP, 18kDa) by Pro-MMP2 recombinant 
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protein. MBP was incubated with ProMMP2 at 37 ℃ for 30 hours. B, Inhibition of the Pro-
MMP2 activity activity by EDTA. Incubation was performed at 37 ℃ for 30 hours. 
 
Because the Pro-MMP2 mainly exists in the inclusion body, the purification must work 

under the denaturing condition and need refolding after purification. These possible reasons 

caused the low activity of recombinant protein. In addition, most of the recombinant protein 

was not binding to the Ni-NTA column and lost in the flow throw. To improve the 

purification and activity, a shorter fragment containing only the catalytic domain of At2-

MMP was cloned in pET32a (+) vector. The fusions construct starts from the amino acid D 

in the cysteine switch motif PRCGNPD and ends before the C-terminal transmembrane 

domain. The expected protein was designated Mat-MMP2 (mature MMP2) and the THS-

tagged Mat-MMP2 has a predicted size of 45 kDa (Fig.3 - 37, A). 

Both the THS tag and Mat-MMP2 were expressed in E.coli strain BL21 (DE3) pLysS. High 

induction of the protein production was confirmed by SDS-PAGE (Fig.3 - 37, B). Though 

majority of Mat-MMP2 protein still existed as inclusion body after three times sonication 

(data not shown), a small portion of Mat-MMP2 was found in the supernatant after the third 

and fourth sonication (Fig.3 – 38). 

 

 
Fig.3 - 37. Expression of Mat-MMP2 in E. coli. A, The schematic diagram of the expression 
constructs pET32a (+) empty vector and pET32a (+)-Mat-MMP2. Catalytic domain of At2-
MMP was cloned in frame to the C-terminal of Thioredoxin-His-S (THS) tag in pET32a (+) 
vector. The calculated protein size is shown on the right side. B, IPTG induction of THS tag 
and THS-tagged Mat-MMP2 in E. coli. Bacterial cells were harvested at indicated time 
points (0, 2 and 4 h) after addition of 1 mM IPTG and loaded on 12% SDS-PAGE. 
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The weak bands present in the supernatant from the third and fourth sonication (S3 and S4) 

have the same size as the predicted THS-tagged Mat-MMP2 (Fig.3 – 38, A). They were 

collected, centrifuged and tested for their enzymatic activity against MBP (section 2.7.3). 

The activity of the native Mat-MMP2 recombinant protein was tested regarding the 

degradation of MBP. MBP was incubated with Mat-MMP2 at 37 ℃ for 0min and 30min. It 

was observed that MBP was efficiently degraded within 30 min (Fig.3 -38, B). In contrast, 

MBP was not degraded in the empty vector control reaction. 

 

 
 

Fig.3 - 38. Native form of Mat-MMP2 and its enzymatic activity. A, Presence of native Mat-
MMP2 protein in the supernatant after multiple sonications. 0h: pellet harvested before the 
addition of IPTG; 4 h: pellet harvested 4h after IPTG induction; S1: the supernatant after 
first sonication. S2: the supernatant after twice sonication. S3: the supernatant after three 
times sonication. S4, the supernatant after four times sonication. Samples were separated by 
12% SDS-PAGE. B, Degradation of MBP by native Mat-MMP2. Both Mat-MMP2 or 
proteins harvested from empty vector (EV) transformed cells were harvested from the 
supernatant after three times sonication. MBP was indubated with or without the presence of 
Mat-MMP2 at 37 oC for 0 min and 30 min. Samples were separated by 20% SDS-PAGE. 
 

Overexpression of At2-MMP increased the resistance to B. cinerea in transgenic 

Arabidopsis thaliana plants (Fig.3 - 24). To address the question whether At2-MMP has a 

direct anti-fungal activity, B. cinerea spores were incubated together with recombinant –

Mat-MMP2. Ten hour after incubation, the germination of B. cinerea was examined by 

microscopy. I found that the spores of B. cinerea germinated and grew similar to the “empty 

vector” recombinant tag peptide, Tris-HCl buffer and H2O control. Therefore, Mat-MMP2 

had no direct inhibitory effect on the B. cinerea germination (Fig.3 - 39). The observed 



Results 

 69

enhanced resistance in At2-MMP overexpression lines therefore is more likely due to an 

indirect way. 

 

 
Fig.3 - 39. At2-MMP protein exhibits no direct inhibition on the spore germination of B. 
cinerea. The B. cinerea spores were incubated with proteins produced from E. coli cells 
transformed with EV (pET32a (+)-empty vector) or pET32a (+)-Mat-MMP2 for 10 hours at 
room temperature in darkness. The pictures were taken 10 h after incubation.  
 
3.7 Structure and subcellular localization of At2-MMP 

3.7.1 3D modeling of At2-MMP and At3-MMP  

To gain insight into the structure of At2-MMP and At3-MMP, 3D modeling was performed 

with PyMOL using the amino acid sequences of both peptides (performed by Cathleen, 

Zocher, Nutritional Biochemistry, JLU). Using the X-ray structure of human MMP1 (PDB-

ID: 1SU3) (Jozic et al., 2005) and human MMP3 (PDB-ID: 1SLM) (Chen et al., 1999) as 

template for At2-MMP and At3-MMP respectively, the 3D structures can be well-modelled 

in the conserved domain such as cysteine switch motif and the catalytic domains (Fig.3 - 40, 

Fig.3 - 41). Overlapping of the catalytic domains indicated highly similar structure, with 

three invariable histidines and active Zinc site matching each other. For At2-MMP, the C-

terminus modeling failed completely (Fig.3 - 40, A). This is due to the distinct C-terminal 

structures between At2-MMP and human MMP1. The C-terminal hemopexin domain in 

human MMP1 is not present in At2-MMP. In stead, At2-MMP has a specific C-terminal 

transmembrane domain. 
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Fig.3 - 40. The 3D modeling of At2-MMP protein. The 3D structure was predicted by 
Cathleen Zocher using PyMOL. A, 3D modeling of At2-MMP. The propeptide domain, 
catalytic domain and C-terminus were indicated. B, Overlap of the catalytic domain from 
At2-MMP and human MMP1. The three conserved histidine residues in the catalytic domain 
are shown as aromatic rings. The active site Zn atom was indicated. 
 

 
Fig.3 - 41. 3D modeling of At3-MMP protein. The 3D structure was predicted by Cathleen 
Zocher using PyMOL. A, 3D modeling of At3-MMP. N-terminal and C-terminal of the 
protein are indicated. Three histidine residues in the catalytic domain are shown as aromatic 
rings. B, Overlap of At3-MMP and human MMP3. The three conserved histidine residues in 
the catalytic domain are shown as aromatic ring. The zinc (purple) and calcium (green) 
atoms in the active site are shown.  
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3.7.2 Immunodetection of At2-MMP 

In tobacco, the characterized NtMMP1 was showing 65.6%, similarity to At2-MMP at the 

amino acid level (Schiermeyer et al., 2009). Both the N-terminal and C-terminal-specific 

antibody is available for NtMMP1. To test the feasibility of immunodetection of At2-MMP 

using NtMMP1 antibody, western blotting was performed using N-terminal antibody and C-

terminal antibody as described (Mandal et al., 2010) (section 2.7.5). Preliminary trial 

showed no specific detection of At2-MMP protein using NtMMP1 antibody (Fig.3 - 42). The 

immunodetection of At2-MMP using NtMMP1 antibody seems to be questionable and need 

further optimization.    

    

 
 Fig.3 - 42. Immunodetection of At2-MMP protein using NtMMP1 antibody. Total protein 
extacted from Arabidopsis plants (Col-0, 35S::MMP2 L6/L7) or At2-MMP protein 
expressed in E. coli were loaded on 12% SDS-PAGE. 0h, pellet harvested before adding 
IPTG; 4h, pellet harvested 4h after IPTG induction; pure Pro-MMP2: recombinant protein 
Pro-MMP2 after Ni-NTA purification; Pure Mat-MMP2: recombinant protein Mat-MMP2 
after Ni-NTA purification.  A, Western blot with N-terminus antibody (N-11.5.1.5). B, 
Western blot of At2-MMP with C-terminus antibody (C-6.3.2). 
 
3.7.3 Subcellular localization of At2-MMP 

At2-MMP has a predicted signal peptide (aa 1-20) in the N-terminus and a putative GPI-

anchor modification site and a transmembrane domain at the C-terminus (Fig.3 - 43, A). It 

was predicted to be located in the extracellular space by SubLoc 

(http://www.bioinfo.tsinghua.edu.cn/SubLoc/) and TargetP program 

(http://www.cbs.dtu.dk/services/TargetP/). However, WoLF PSORT (http://wolfpsort.org/) 

predicted that At2-MMP is bound to the plasma membrane. These conflicting predictions on 

the subcellular localization of At2-MMP needed to be verified experimentally. 
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Fig.3 - 43. Structure and subcellular localization of At2-MMP. A, Schematic presentation of 
domain structure for At2-MMP-GFP fusion construct. The numbers on the top indicate the 
positions of the amino acid residues flanking various domains. SP: signal peptide; Pro: 
propeptide domain; CYS: cystein switch; F: predicted furin-cleavage site; CAT: catalytic 
domain; ZBD: zinc-binding domain; G: putative GPI-anchor modification site; TM: 
transmembrane domain. Sal I site (GTCGAC, aa 337-338) shown on the bottom is 
downstream of the zinc-binding domain and upstream of the GPI-anchor modification site. 
GFP CDS was cloned in frame at the Sal I site of At2-MMP to yield MMP2-GFP. B, Cell 
surface-localization of At2-MMP. The plasmid 35S::MMP2-GFP was co-bombarded into 
Arabidopsis leaves with the 35S::mCherry construct (section 2.8). Left panel: Without 
plasmolysis treatment, GFP fluorescence was observed at the cell wall-plasma membrane 
interface. Middle and right panel: after plasmolysis induction with 50% glycerol for 5 min, 
the GFP fluorescence was mainly detected in the apoplast (middle) or on the plasma 
membrane (right). 
 
To prove the subcellular localization of At2-MMP, we constructed a GFP protein fusion of 

At2-MMP (section 2.8). The fusion construct was driven by the CaMV 35S promoter and 

contained the GFP in frame at the Sal I site of At2-MMP (Fig.3 - 43, A), which is between 

the zinc-binding domain and the putative GPI-anchor modification site. The construct 

35S::MMP2-GFP was delivered into Arabidopsis leaves through particle bombardment. As 

shown in Fig.3 - 43 (B, middle left), green fluorescence indicative for the transiently 

expressed MMP2-GFP fusion protein was exclusively detected on the cell surface 
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surrounding the interface of cell wall and plasma membrane. By contrast, red mCherry 

signal from a co-bombarded 35S::mCherry plasmid was found through the cell periphery, 

cytoplasm and nucleus (Fig.3 - 43, B, left top). To verify whether the MMP2-GFP was 

bound to the membrane or secreted to the extracellular space, we performed plasmolysis 

with 50% glycerol. After induction of plasmolysis, the GFP signal was mainly observed in 

the space between plasma membrane and cell wall (Fig.3 - 43, B, middle column) or on the 

plasma membrane (Fig.3 - 43 B, right column). However, the mCherry signal remained 

within the cytoplasm (Fig.3 - 43, B). Therefore, we concluded that At2-MMP was present 

both in the apoplast and plasma membrane.  
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4. Discussion 

4.1  Phylogenetic analysis of plant MMP family 

As in vertebrates and invertebrates, MMPs have a widespread presence in plant kingdom 

from single-celled green algae Chlamydomonas reinhardtii to flowering plants with 5 

members in Arabidopsis thaliana. I performed a phylogenetic reconstruction of 44 plant 

MMPs including all the till now characterized MMPs from 14 plants. This resulted in the 

classification of plant MMPs into four groups (Fig. 3 – 1) which were tightly linked to the 

taxonomy status and evolutionary relationships of the plants. Arabidopsis At2-MMP, At3-

MMP and At5-MMP belong to group I also containing tomato and tobacco MMPs such as 

LeMMP1, NtMMP1 and NMMP1 which were known to be responsive to fungus elicitor 

treatment or bacterial pathogen infection (Frick and Schaller, 2002; Kang et al., 2010; 

Schiermeyer et al., 2009). Other members were implicated by their pathogen induction 

pattern as regulators in pathogen responses according to genevestigator expression profile. 

Monocots also possess group I MMP members, which might exhibit similar functions in 

stress and pathogen responses but waits to be functionally validated. The present study 

confirmed that expression of At2-MMP and At3-MMP was induced by pathogen infection. In 

group II, At1-MMP and At4-MMP had highest gene expression level during the seed 

development (Flinn, 2008). It was also reported that Pta1-MMP from Loblolly pine (Pinus 

taeda) was expressed during seed development, germination completion and early seedling 

establishment (Ratnaparkhe et al., 2009). Thus, group II MMPs in plants may be associated 

with developmental processes. In group III, there are only MMP members from dicots 

identified in this group indicating that this group may have evolved in some dicot plants and 

may have specific functions. The functions of group III members are yet largely unknown. 

One of the group III members, the cucumber MMP Cs1-MMP was suggested to be involved 

in programmed cell death during the establishment and aging of cotyledons (Delorme et al., 

2000). Another member, SMEP-1 GM from soybean, might function in leaf expansion 

(Graham et al., 1991). Hence, I speculate that MMP in group III might be involved in 

diverse processes including cell death and leaf expansion. Group IV members were 

exclusively found in the legume plants Glycine max and Medicago truncatula thus might be 

legume-specific MMPs. Their presence is of great interest as they may be essential 

regulators in the association with rhizobia in legume plants. One example is MtMMPL1 

from Medicago truncatula, belonging to the group IV, was previously identified as a marker 

for root and nodule infection by Sinorhizobium meliloti (Combier et al., 2007). 

Overexpression and RNA interference approach supported a negative role of MtMMPL1 in 
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the regulation of Rhizobium infection. The MMPs in the unicellular green algae 

Chlamydomonas reinhardtii was the most basal and assumed ancient MMP among these 

MMPs and was in a distinct group (Fig. 3 – 1).  

An invariant DLESV sequence was previously suggested to be a plant-specific motif with 

unknown functions on the N-terminal side of the zinc-binding region HEXGHXXGXXH in 

MMP proteins (Maidment et al., 1999). According to the multiple alignments of MMPs from 

human, insects and plants, I could confirm that the DLESV motif or its variants were 

exclusively found in plants. In human MMP and insect MMPs, the corresponding region 

appeared to have a distinct consensus sequence of NLFLV. Interestingly, the DLESV motif 

was not present in the single-celled green algae Chlamydomonas reinhardtii. In the 

evolutionary process, this motif might have evolved as adaptation of land plants and 

represent one diversification point from ancient MMPs to modern MMPs. In addition, the 

plant MMPs are small families compared with mammalian MMPs. The expansion of MMPs 

in mammals might implicate the requirement of diverse functions in a more sophisticated 

extracellular matrix in mammals. 

Interestingly, the fact that none of the plant MMP members contain introns whereas the 

animal MMPs do may implicate that they have evolved due to retro-position. Most human 

MMPs contain a C-terminal hemopexin domain which is absent in plant MMPs. An 

exception is human MMP7 (matrilysin) which also lacks the hemopexin domain (Maidment 

et al., 1999) and shows together with MMP20 (enamelysin), highest similarity to At2- and 

At3-MMP. 

 

4.2  Subcellular localization of plant MMPs 

4.2.1 Stability of At2-MMP in other plant species 

Transient transformation of onion epidermal cells with reporter gene fusion constructs is a 

well-established system in plant cell biology (Scott et al., 1999). Due to its high 

transformation efficiency and convenience, GFP imaging in living onion epidermal cells has 

been widely used in the determination of subcellular localizations by plant researchers. For 

instance, the nuclear localization of WRKY proteins from Arabidopsis and grape vine (Vitis 

vinefera) were experimentally verified in onion epidermal cells through particle 

bombardment (Kim et al., 2006; Liu et al., 2011; Xu et al., 2006). In the present study, I 

performed co-bombardment of a 35S::MMP2-GFP fusion construct with the 35S::mcherry 

control plasmid in onion epidermal cells. As a result, large number of cells expressing 

mcherry was observed indicating high efficiency of transformation after the bombardment. 

However, the GFP signal was hardly detectable (data not shown). The same results were 
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obtained when I used barley epidermal cells for transformation, another system routinely 

used in our laboratory. But as the 35S::MMP2-GFP fusion construct was expressed properly 

in Arabidopsis leaves, I concluded that the exogenously-introduced At2-MMP was unstable 

in onion and barley tissues, which may be caused by wrong folding or degraded as “non-

self” protein by proteases in these plants. Another possible reason for the instability of GFP 

signal is improper pH range in the apoplast, because GFP fluorescence is pH-dependent and 

unstable at low pH (Sansebastiano et al., 1998). The lack of GFP fluorescence in onion cell 

walls was observed previously and attributed to the low pH in the cell wall (Scott et al., 

1999). Treatment of the cells by soaking in neutral buffer (pH 7.0) may help to observe GFP 

signals in the apoplast of onion cells. 

 

4.2.2  Co-presence of At2-MMP in the apoplast and plasma membrane 

Most of MMPs in mammals are secreted to the extracellular space or attached to the cell 

surface (Parks et al., 2004). Plant MMPs are also expected to be extracellular or bound to 

plasma membrane (Flinn, 2008). Two plant MMPs, Slti114 from soybean and NtMMP1 

from tobacco, have been experimentally demonstrated as membrane-localized 

metalloproteinases (Cho et al., 2009; Schiermeyer et al., 2009). For NtMMP1, the C-

terminal hydrophobic domain was suggested to mediate the membrane integration Due to the 

presense of a cleavable signal sequence at the N terminus and a predicted transmembrane 

domain at the C terminus, At2-MMP was also suggested to be located in the plasma 

membrane via GPI-anchor linkage (Maidment et al., 1999). Indeed, I observed a membrane-

localized GFP signal after transient transformation using 35S::MMP2-GFP fusion construct 

(Fig.3 – 43). In addition, presence of the GFP was also detected in the apoplast after 

induction of plasmolysis by 50% glycerol (Fig.3 – 43, B, right column). As glycerol is a 

mild agent that thought to be harmless to plasma membrane, the release of MMP2 into the 

extracellular space is therefore more likely active. Many cell surface proteins are integrated 

into plasma membranes via covalent GPI anchors that are post-translationally linked to the 

C-terminus of the protein. Simpson et al. (2009) suggested that leaching of the GFP signal 

from membrane to apoplast is due to stress-induced phospholipase C activity, which is 

known to release GPI-anchored proteins (Low, 1987; Svetek et al., 1999). 

 

4.3  Expression analysis of At-MMPs 

4.3.1 Pathogen-induction of At-MMP expression 

In mammals and insects, some MMPs are strongly induced during bacterial infections 

( Burke, 2004; Lo´pez-Boado et al., 2001; Quiding-Järbrink et al., 2001), wounding (Hieta et 
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al., 2003; Lohi et al., 2001) or treatment with MAMPs such as bacterial lipopolysaccharide 

(LPS) (Altincicek and Vilcinskas, 2008). As evolutionary conserved enzymes, MMPs in 

plants may also contribute in plant immunity. To determine whether At-MMPs are involved 

in immune responses, I started with the expression profiling of At1-MMP to At5-MMP 

during interaction with various plant pathogenic or mutualistic microbes including B. 

cinerea, G. orontii, Pst DC3000 and P. indica. From my observation, At2-MMP and At3-

MMP exhibit very similar expression pattern in the interaction with B. cinerea and Pst 

DC3000. Both of them were up-regulated by the necrotrophic fungal pathogen B. cinerea 

(Fig.3 – 2) and the hemibiotrophic bacterial pathogen P. syringae (Fig. 3 – 5). After 

inoculation with biotrophic G. orontii, At2-MMP expression was up-regulated at very late 

time point (120 hai) (Fig. 3 – 3). At3-MMP was also induced by flg22 (Fig. S 8). Only a few 

other analyses demonstrated also pathogen-induced expression of plant genes encoding 

MMP proteins (Kang et al., 2010; Liu et al., 2001; Schiermeyer et al., 2009; Torres et al., 

2003; Zipfel et al., 2004). Expression of NMMP1 in Nicotiana benthamiana was induced by 

a compatible pathogen Pseudomonas syringae pv. tabaci (Psta) and an incompatible 

pathogen P. syringae pv. tomato T1 (PsT1) as well as by defense signaling molecules SA 

and ET (Kang et al., 2010). In the incompatible PsT1 infection, NMMP1 expression was 

significantly increased 3 h to 12 h after treatment but decreased after 24 h. Such an induction 

pattern seems to be associated with hypersensitive response (HR) (Kang et al., 2010). 

Similarly, the expression of GmMMP2 from soybean was shown to be highly up-regulated 

during compatible and incompatible interaction with oomycete pathogen Phytophthora sojae 

(Liu et al., 2001). Moreover, increase of the GmMMP2 transcript was in coincidence with an 

increased matrix metalloproteinase activity during the infection of Pseudomonas syringae pv. 

glycinea. 

These biotrophic and necrotrophic pathogens have evolved distinct strategies to establish 

association with the host plants. Due to the capability in killing the host cells through 

secretion of toxins and tissue degrading enzymes, the grey mould fungus B. cinerea is 

considered as a necrotrophic pathogen. In contrast, the powdery mildew fungus G. orontii is 

a biotrophic pathogen that relies on living host cells for growth and proliferation. The 

hemibiotrphic bacteria Pst DC3000 starts with a biotrophic phase in the infection and 

subsequently the host cells die at a later stage. It appeared that induction of At2-MMP and 

At3-MMP was associated with the process of tissue damage caused by pathogens. The 

expression of At2-MMP and At3-MMP was increasing from early infection to late stage, 

during which the leaf necrosis and lesions became visible (Fig.3 – 2; Fig. 3 – 5). At3-MMP 

was induced by flg22 treatment from 15 min but At2-MMP was not clearly induced during 
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the early time points (Fig. S 8). At3-MMP plays a role in the early signaling event during the 

plant-microbe interactions. At2-MMP and At3-MMP expression may be components in the 

host alarming signaling responses upon pathogen-mediated cell destruction. The secreted 

and activated At2-MMP and At3-MMP might act on the yet unidentified substrate to 

generate danger signals. Recent findings from the lepidopteran model Galleria mellonella 

support such a danger model of immune activation (Altincicek and Vilcinskas, 2008). The 

first MMP identified in G. mellenella (Gm1-MMP), was found to degrade collagen-IV, 

which in turn activated the innate immunity. 

After inoculation with root-colonizing mutualistic fungus P. indica, At2-MMP almost 

showed no change in the transcript level and At3-MMP was significantly down-regulated at 

late stage (Fig.3 – 6). It was recently reported that P. indica has evolved an extraordinary 

capacity in broad-spectrum suppression of host innate immunity during the colonization of 

Arabidopsis roots (Jacobs et al., 2011). Induced expression of At3-MMP may be a typical 

part of the effective innate immune system that P. indica is confronted with during the 

establishment of mutualistic association. Thus, the observed downregulation of At3-MMP 

may be a result of active suppression of innate immunity. 

In the P. indica colonization study, At2-MMP had very high expression in both mock and P. 

indica treated roots. In contrast, it showed very low basal expression in leaves. This is in 

agreement with the previous description that At2-MMP had higher expression in root than in 

leaves (Maidment et al., 1999). In my study, At1-MMP had higher expression in leaves than 

in roots. However, Maidment et al., (1999) found that At1-MMP expression in roots was 

higher than in leaves. These contrasting results might reflect age-associated altered 

expression of At1-MMP. In this study, leaf samples were harvested from soil-grown five-

week-old plants and the roots were harvested from three-week-old plants growing in ATS 

medium. The investigation by Maidment and colleagues was performed on 14-day-old 

Arabidopsis seedlings (Maidment et al., 1999) 

 

4.3.2  Analysis of signaling pathways for At-MMP expression 

Many defense-related genes are activated via a SA-dependent or JA-dependent pathway 

(Glazebrook, 1999; Glazebrook, 2001). The connection between the gene expression and 

defense signaling molecules has been demonstrated for some plant MMPs. For example 

NMMP1, the first MMP identified from Nicotiana benthamiana, was highly induced by ET 

but not by methyl jasmonate after 3 h of treatment (Kang et al., 2010). The transcripts of 

soybean GmMMP2 were up-regulated by pathogens and yeast extracts but not stimulated by 
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SA or JA treatment (Liu et al., 2001). The GmMMP2 expression seemed to follow a novel 

signaling pathway where SA and JA are not the key components.  

To determine which pathway is involved in the regulation of At2-MMP and At3-MMP 

expression, Arabidopsis mutant plants with compromised signaling pathways including SA 

(NahG, ics1, npr1-1, pad3), JA (jar1-1, jin1) and ethylene (ein2-1) mutants were tested for 

the At2-MMP and At3-MMP expression after B. cinerea infection (Fig.3 - 8). Based on the 

similar induction pattern of At2-MMP and At3-MMP between wild-type plants and the SA, 

JA or ET signaling mutants, I demonstrated that the B. cinerea-induction of At2-MMP and 

At3-MMP was likely to be independent of SA, JA or ET signaling. The other possibility is 

that At2-MMP and At3-MMP induction act upstream of all the studied central signaling 

nodes. In addition, it’s notable that methyl jasmonate treatment could stimulate At2-MMP 

expression in rosette leaves of 4-week-old plants but not 10-week-old plants (Golldack et al., 

2002). Therefore, the regulating role of JA in At2-MMP expression is ambiguous. The 

possibility is not ruled out that the B. cinerea-induced At2-MMP expression is partially 

modulated by JA signaling.  

In the further analysis, ABA (abi2 and aba2), GA (della pentuple), cytokinin (ahp1,2,3,4,5-

1), JA(coi1-16), auxin (tir1-1), brassinosteroids (bri1-116), phytoalexin deficient (pad4) and 

wild type plants Ler and Col-0 plants were inoculated with B. cinerea. As shown in Fig. 3 – 

10, most mutants showed very similar expression patterns as the wild type plants Ler and 

Col-0. Interestingly, aba2 (ABA deficient 2) mutant showed a similar expression pattern 

after mock treatment and B. cinerea inoculation (Fig. 3 – 10). B. cinerea-induction of At2-

MMP was not observed in aba2 mutant. At2-MMP was likely to be regulated by ABA 

signaling. However, further investigations are required to confirm this hypothesis. Moreover, 

At2-MMP was previously suggested as a component of R gene-mediated disease resistance 

in Arabidopsis thaliana (Torres et al., 2003). Expression of At2-MMP was much stronger in 

RPM1-dependent incompatible interactions, but its expression in eds1-2 mutants after Pst 

DC3000 infection was compromised in comparison to the wild-type plants. I expected the 

expression of At-MMP differs between the eds1-2 and wild type plants after B. cinerea 

inoculation. As a result, At2-MMP and At3-MMP had similar expression in the eds1 mutant 

as in wild-type plants (Fig. 3 – 12). It indicated that B. cinerea-induced expression of At2-

MMP and At3-MMP was independent of eds1. In Arabidopsis, two mitogen-activated protein 

kinases MPK3 and MPK6 are rapidly activated after pathogen infection (Ren et al., 2008). In 

the present study, mpk3 and mpk6 mutants were inoculated with B. cinerea for expression 

analysis (Fig. 3 – 11). The expression profiling of At2-MMP and At3-MMP during the B. 

cinerea infection in the mpk3 and mpk6 mutants and Col-0 plant was examined. For At2-
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MMP, expression in both mpk3 and mpk6 mutants was similar to Col-0. For At3-MMP, the 

expression in mpk3 mutant at early time points (0h and 12 h) was higher than that of Col-0. 

This might indicate a role of MPK3 in the negative regulation of At3-MMP.  

 

4.4  Functions of plant MMPs  

4.4.1 Plant MMPs in development 

Golldack et al., (2002) showed that mutation of At2-MMP resulted in late flowering and 

early senescence. Upon the onset of shoots, growth of roots, leaves, and shoots was inhibited 

in the at2-mmp-1 mutant compared with the wild type. Consistent with the previous finding, 

I observed a delayed flowering in at2-mmp mutants under short day conditions. Moreover, 

constitutive overexpression of At2-MMP resulted in early flowering (Fig. 3 – 21). Therefore, 

At2-MMP plays dual roles in pathogen defense and in shoot induction. Apart from the 

pathogen response, the At3-MMP might be involved in development as well on the basis of 

its microarray expression profile (data not shown). Its transcript level was increasing from 

seed germination to bolting and reached the peak value during formation of young flowers. 

Similar findings from insect models support such a notion that some MMPs function as 

coordinators linking development and immunity (Altincicek and Vilcinskas, 2008; Knorr et 

al., 2009). Studies on the lepidopteran model Galleria mellonella revealed that Gm1-MMP 

playes a role in both metamorphosis and innate immunity (Altincicek and Vilcinskas, 2008). 

In addition, results from the model insect Tribolium castaneum indicated that RNAi-based 

knowck-down of MMP-1 caused dual effects including defective embryogenesis, abnormal 

intestines and higher susceptibility to entomopathogenic fungus Beauveria bassiana (Knorr 

et al., 2009). Dual role in pathogen resistance and development was recently demonstrated 

for ZMP-2, one MMP in the nemotode model species Caenorhabditis elegans (Altincicek et 

al., 2010). Thereby, my finding provides additional evidence revealing the evolutionarily 

conserved roles of MMPs between plants and animals. 

 

4.4.2 Plant MMPs in abiotic stress responses 

Expression data suggested potential roles of plant MMPs in the adaptation to abiotic stresses. 

NaCl treatment (50 mM) was shown to stimulate At2-MMP expression in roots but not in 

leaves (Golldack et al., 2002). At2-MMP expression was also stimulated by cadmium 

treatment in leaves (Golldack et al., 2002). From Genevestigator data, At3-MMP expression 

was up-regulated by NaCl stress. To verify their role in salt stress responses, I used the 

homozygous 35S::MMP2 and 35S::MMP3 overexpression plants to test the salt tolerance 

with NaCl at different concentrations. 35S::MMP3 plants did not show any difference in the 
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salt sensitivity compared to the control plants (Fig. 3 – 23). This indicates that some salt-

induced genes may not play important roles in salt tolerance (Xiong and Zhu, 2002). For 

35S::MMP2 (L6 and L7) plants, the roots length was longer than that of Col-0 and EV plants 

in the presence of 200mM NaCl (Fig. 3 – 22). The results support a positive role of At2-

MMP in the adaptation to NaCl stress. It is notable that also the empty vector transformants 

were showing enhanced salt tolerance in comparison with the wild-type Col-0 plants under 

all the studied NaCl concentrations. Reports from soybean support the involvement of 

MMPs in abiotic stress responses such as wounding, dehydration and low temperature (Cho 

et al., 2009; Liu et al., 2001). 

 

4.4.3  Plant MMPs in immune responses 

Growing evidence from expression studies implicates the involvement of plant matrix 

metalloproteinases in pathogen defenses (Liu et al., 2001; Schiermeyer et al., 2009). 

Recently, NMMP1-mediated bacterial resistance was revealed using transient 

overexpression and silencing assay in tobacco (Kang et al., 2010). Strong evidence that in 

Arabidopsis the pathogen-inducible At2-MMP functions as a crucial regulator of defense 

against B. cinerea comes from analysis of both transgenic overexpression lines and 

independent T-DNA insertion mutants. Constitutive overexpression of At2-MMP enhanced 

the disease resistance (Fig. 3 – 24), whereas the at2-mmp mutants displayed increased 

susceptibility to B. cinerea (Fig. 3 – 15). At3-MMP acts in a very similar way as At2-MMP 

in the resistance towards B. cinerea. The additive function of At2-MMP and At3-MMP was 

evidenced by the more severe disease symptoms in at2-mmp/at3-mmp double mutants than 

the parental single mutants (Fig. 3 – 17). 

I addressed the question whether At2-MMP act directly on the pathogens or not. Therefore I 

performed germination assays using recombinant At2-MMP protein which did not support 

any direct antimicrobial activity of At2-MMP on B. cinerea spores (Fig. 3 – 39). Hence, the 

action of At2-MMP in defense against pathogens is likely through an indirect way. In 

addition to the B. cinerea-induction of At2-MMP independent of the classical defense 

signaling SA, JA or ET, the 35S::MMP2 plants did not constitutively show enhanced 

expression of the defense marker genes PR1, PDF1.2 or ERF (Fig. 3 – 32). Thus I proposed 

that At2-MMP mediates immunity via a yet uncharacterized novel pathway. 

In mammalian system, the matrilysin MMP7 mediated antibacterial activity through the 

activation of -defensin (Wilson et al., 1999). A similar mechanism was proposed for 

GmMMP2 in soybean, which might mediate the activities of plant-derived enzymes in the 

degradation of fungal cell wall and aid in the release of antimicrobial substances (Liu et al., 



Discussion 

 82

2001). At2-MMP may be subject to a similar mode of action in the defense against microbes. 

Nevertheless, the direct targets and the endogenous substrates of At2-MMP in the 

extracellular matix are unknown. Identification of its natural substrates is an urgent task and 

might help to understand the mechanisms underlying the functioning and signaling of At2-

MMP during plant immune responses. 

 

4.4 4 At-MMPs and MAMP/DAMP-mediated oxidative burst 

Based on the oxidative burst assay, I observed significant impaired production of reactive 

oxygen species (ROS) after MAMP and DAMP treatment in At2-MMP overexpression lines. 

The reduced oxidative burst is unlikely due to T-DNA insertion-mediated destruction of 

MAMP/DAMP receptors because several independent elicitors were used. ROS production 

is largely dependent on the activity of membrane-localized NADPH oxidases (respiratory 

burst oxidase homologs, Rboh) (Torres et al., 2006), with AtRbohD being the most 

important for MAMP-triggered oxidative burst (Nuhse et al., 2007; Zhang et al., 2007). At2-

MMP, which localizes in both plasma membrane and apoplast, might target the membrane-

bound NADPH oxidases thereby reducing ROS generation. It needs to be further verified 

whether the MAMP/DAMP-mediated activation of NADPH oxidase is blocked due to over-

presence of At2-MMP proteinase, which may help to elucidate the mechanisms underlying 

the impaired ROS in At2-MMP overexpression plants.  

As one of the earliest events during plant-pathogen interaction, reactive oxygen species 

(ROS) burst is of crucial importance in regards to the outcome of the interaction. ROS 

production may contribute to plant disease resistance either directly via its antimicrobial 

activity or indirectly through induction of defense related genes, cell wall strengthening and 

orchestration of cell death (Bolwell, 1999; Lamb and Dixon 1997; Levine et al., 1994; 

Torres et al., 2006; Zurbriggen et al., 2009). Due to the different infection strategies of 

biotrophic and necrotrophic pathogens, they seem to have distinct responses to ROS 

generated in the host plants (Heller and Tudzynski, 2011). Successful infection of biotrophic 

and hemibiotrophic fungi depend on the prevention of a strong oxidative burst and the 

hypersensitive response of their host, by suppression of PTI responses or by scavenging the 

host-derived ROS during the early infection phase (Molina and Kahmann, 2007; Shetty et al., 

2007). Thus, from the host plants’ side, the oxidative burst is an effective process to combat 

biotrophic pathogens. However, necrotrophic pathogens may exploit host or endogenous 

ROS burst to facilitate infection and colonization (Govrin and Levine, 2000; Segmüller et al., 

2008). It was suggested that B. cinerea does not face oxidative stress in planta, at least not 

via H2O2 (Temme and Tudzynski, 2009). Similar finding was also presented for another 
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necrotrophic fungus, Leptosphaeria maculans, which infects Brassica napus (Li et al., 2008). 

Under our experimental conditions, the At2-MMP overexpression lines demonstrated a 

compromised H2O2 production and enhanced resistance to B. cinerea. This is in agreement 

with a previous finding that H2O2 levels during HR correlated positively with B. cinerea 

growth (Govrin and Levine, 2000). Moreover, our observation is supported by recent 

findings that ROS functioned negatively in resistance or positively in expansion of disease 

lesions during B.cinerea-N.benthamiana interaction (Asai and Yoshioka, 2009; Asai et al., 

2010). However, studies from Galletti et al., (2008) revealed that the elicitor-triggered host 

H2O2 accumulation appeared to be independent of effective resistance against B. cinerea. 

Thus, the mechanism underlying the At2-MMP mediated resistance to B. cinerea and how 

ROS signaling participates negatively in defense responses against B. cinerea awaits further 

investigation. 

The Pep1-induced ROS production was compromised in at3-mmp mutants (Fig. 3 – 29, C). 

This indicates that At3-MMP is required for the Pep1-mediated ROS production. In contrast, 

an enhanced ROS production after flg22 and chitin was observed in at3-mmp mutants in 

comparison with Col-0. Thus, At3-MMP appeared to negatively regulate flg22 or chitin-

dependent ROS generation. In elf18 treatment, the ROS level is similar in at3-mmp mutants 

and Col-0 plants (Fig. 3 – 28, C). However, the peak of oxidative burst appeared to be earlier 

in at3-mmp. Taken together, these results provide evidences that At3-MMP is a crucial 

regulator in MAMP/DAMP-mediated ROS production. The negative role of At3-MMP in 

flg22/chitin-induced ROS and the positive role in Pep1-induced ROS signaling might imply 

antagonism between Pep1 and the other two MAMP signaling. The interplay between 

different MAMP and DAMP signaling therefore forms the basis of a sophisticated network 

including positive and negative feedback mechanisms. Such antagonism between different 

MAMP/DAMP sensing was recently described (Nicaise et al., 2009).  

In my studies, thermolysin, a metalloproteinase derived from the gram-positive bacteria 

Bacillus thermoproteolyticus had high proteolytic activity which was proven by the 

degradation of MBP within 5 min (Fig. 3 – 30). In a previous study, artificially injected 

thermolysin mediated resistance to invading pathogens due to activation of innate immune 

responses in lepidopteran insect Galleria mellonella (Altincicek et al., 2007). I observed that 

thermolysin could not induce oxidative burst in Arabidopsis. Moreover, the mixture of flg22 

and thermolysin was not able to induce ROS production (Fig. 3 – 31, B). Thermolysin 

appeared to abolish flg22-mediated ROS production in Arabidopsis. Flg22-triggered ROS 

production in plants is requires the recognition of active form of flg22 by the receptor-like 

kinase FLS in the plasma membrane (Chinchilla et al., 2006). Therefore, thermolysin might 
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act either directly on the flg22 peptide, or indirectly acting on the flg22 receptor in the 

plasma membrane. 

In the present study, the ROS production was also monitored after treatment with the 

recombinant Mat-MMP2 protein. Interestingly, recombinant Mat-MMP2 was able to induce 

oxidative burst in Col-0 plants while the At2-MMP OE plants are compromised in PAMP-

triggered ROS. This oxidative burst seems to require the proteolytic activity because heat-

inactivated Mat-MMP2 almost lost the capability to induce ROS production. Moreover, the 

Mat-MMP2-mediated ROS was determined in the fls2 and bak1 mutants. In fls2 mutants, the 

ROS production by Mat-MMP2 is similar as in Col-0 plants. However, Mat-MMP2 did not 

induce any oxidative burst in bak1 mutants (Fig. S 11, B). These results are preliminary data 

and require further verification, but they provide an exciting hypothesis that At2-MMP 

protein might behave in the processing of endogenous substrate that activate subsequent 

defense responses via functional BAK1. 

 

4.5 Activity of At-MMP proteins 

The 3D modelling of At2-MMP and At3-MMP was predicted by PyMOL software using the 

crystal structure of human MMP1 and human MMP3 as template respectively. The C-

terminal of At2-MMP seems to be distinct from human MMP1 and thus difficult to be 

modelled. Despite that, the N-terminal part of At2-MMP was well-matched in the modeling 

due to the presence of conserved structures including the cystein switch and catalytic domain. 

The catalytic domains are in good agreement with each other according to the overlapping of 

the images. 

MMPs are synthesized as prepro-enzymes and secreted as inactive Pro-MMPs in most cases 

(Nagase and Woessner, 1999). The activation of MMPs requires the disruption of the Cys-

Zn (cysteine switch) interaction and the removal of the propeptide domain containing the 

cysteine switch achieved by proteinases or non-proteolytic agents. A few MMPs (human 

MMP-11 and MMP-14) can be activated intracellularly by furin (Pei & Weiss, 1995, Pei & 

Weiss, 1996). After purification of Pro-MMP2 recombinant protein, always three bands 

showed up on the SDS-PAGE (Fig. 3 – 35). The biggest band was about 57 kDa and other 

two small bands were about 35 kDa and 30 kDa. A furin cleavage site was predicted 

between the propeptide domain and catalytic domain of Pro-MMP2. The calculated fragment 

sizes after putative furin of furin-like cleavage were 35 kDa and 30 kDa respectively. The 

three bands might therefore indicate that At2-MMP underwent an autolytic activation 

through removing of the propeptide domain. The exact cleavage site still awaits 

experimental verification. 
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The thioredoxin-His-S-tagged Pro-MMP2 was first expressed in E. coli strain BL21(DE3) 

but with very low expression level compared to Pro-MMP3 and an empty vector (data not 

shown). Therefore, E. coli strain BL21(DE3) pLysS was used to express the Pro-MMP2 and 

showed very high expression level. In general, the BL21(DE3) competent cells is an all 

purpose strain featured with high-level protein expression and easy induction. The 

BL21(DE3)pLysS competent cells provide tighter control of protein expression for the 

purpose of toxic proteins and are resistant to chloramphenicol. In this regard, Pro-MMP2 

might be toxic to BL21(DE3) cells and tightly controlled on the transcription level by the 

BL21(DE3) cells.  

In the present study, proteolytic acitivity of At2-MMP was confirmed by degradation of 

MBP and this proteolytic process was inhibited in the presence of EDTA. Moreover, the 

activity of intercellular washing fluid (IWF) from 35S::MMP2 (L6) plants against MBP was 

also inhibited by EDTA (Fig. 3 – 33, B). Matrix metalloproteases in general contain essential 

zinc and calcium ions in the catalytic domain (Vu and Werb, 2000). As a chelator of metal 

ions, EDTA competed with the catalytic domain for Zn2+ and Ca2+ and subsequently 

disarmed their proteolytic activity. On the other hand, metal ions could stimulate the activity 

of MMPs. For instance, the Loblolly pine (Pinus taeda) Pta1-MMP recombinant protein 

showed a Zn2+–dependent protease activity against MBP (Ratnaparkhe et al., 2009). In 

soybean, the proteolytic activity of SMEP1 was shown susceptible to metal chelating agents 

and the inactivated enzyme can be restored by the addition of ZnC12 (Graham et al., 1991). 

The activity of tomato MMPs SlMMP1 and SlMMP2 recombinant proteins could be 

stimulated by Ca2+ ions (Pasule, 2010). In this study, ZnCl2 also increased the activity of Pro-

MMP2 but not significantly (data not shown). In the future work, significance of calcium 

ions in the activity stimulation of At2-MMP should also be verified. 

In the study, all the proteolytic activities of recombinant proteins were determined by MBP 

degradation experiments. Compared to the Pro-MMP2, the native Mat-MMP2 showed 

higher activity and was able to degrade MBP within 30 min. Mat-MMP2 protein contains 

only the catalytic domain which avoids any negative interaction with the cysteine switch in 

the zinc-binding site. Likewise, the mature protein of soybean (Glycine max) GmMMP2 was 

shown to be more efficient than pro- GmMMP2 with regard to the degradation of MBP (Liu 

et al., 2001). Though with substantially increased activity, Mat-MMP2 appeared to be 

unstable under my conditions. After short storage of Mat-MMP2 at 4 ℃, the prominent band 

disappeared and showed a laddering pattern on SDS-PAGE. Therefore, the propeptide might 

contribute to maintain the stability of At2-MMP protein. 
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Two antibodies for N-and C-terminal partpf tobacco NtMMP1 were produced (Mandal et al., 

2010). For an immunoblot detection of At2-MMP, these two antibodies were tested in 

western blot withtotal protein from leaf extract, Pro-MMP2 and Mat-MMP2 recombinant 

proteins. However, no specific detection of At2-MMP protein was achieved in a preliminary 

test. An optimized western blot protocol might help to improve the detection of At2-MMP 

using the NtMMP1 antibody. Or in further investigation, At2-MMP specific antibody should 

be produced to achieve the in planta characterization of At2-MMP dynamics and 

biochemical properties. For instance, the stimulated expression and accumulation of At2-

MMP in response to different biotic stimuli and membrane/apoplast-enrichment of At2-

MMP protein could be verified using such an antibody.  

 

4.6  Future perspectives 

The role of plant MMPs in plant-microbe interaction is largely unknown. The present work 

has set up a starting point to better understand the functions and mechanisms of plant MMPs 

in innate immunity. Evidences of At2-MMP and At3-MMP in immunity are based on 

pathogen-induced expression, altered resistance in mutants and overexpression lines and 

altered ROS production in response to various elicitors. However, a number of questions 

remain unsolved.  

First of all, the role of At2-MMP and At3-MMP in P. syringae infection is an interesting 

question and requires further evidences. At3-MMP showed a high induction within 30 min 

after flg22 treatment (Zipfel et al., 2004). Our data showed that At3-MMP was induced by 

flg22 both in root and leaf at 15min (Fig. S 8). The flg22-mediated ROS was compromised 

in At2-MMP overexpression plants and enhanced in at3-mmp plants. Thus, I expect an 

altered MAMP-triggered immunity (MTI) in these plants. Virulent and avirulent strains from 

P. syringae should be tested for their growth and proliferation in such plants. 

Secondly, mechanism underlying the impaired MAMP/DAMP-mediated ROS production in 

35S::MMP2 is yet unknown. At2-MMP as a proteinase can act either upstream or 

downstream in the process of ROS production. To test whether At2-MMP acts on the 

upstream pattern recognition receptors (PRRs), growth retardation assay and immunoblot 

detection of PRRs in 35S::MMP2 plants should be considered. On the other hand, to 

correlate At2-MMP with the H2O2-generating NADPH oxidases, experiments should be 

designed to test the potential regulatory role of At2-MMP on the activators/inhibitors of 

NADPH oxidases or its direct regulation of NADPH oxidase. 

An urgent and challenging task for plant MMP research is the identification of endogenous 

substrates under normal growth conditions and pathogenic conditions. As such, the exact 
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roles and mechanisms of plant MMP will be more clearly understood on a biochemical level. 

Furthermore, studies on matrix metalloproteinase inhibitors (MPI) have received extensive 

attention in medical field due to its potential use for cancer suppression (Coussens et al., 

2002; Gialeli et al., 2001; Vanlaere and Libert, 2009; Vihinen et al., 2005). Some of the 

natural products from plants were found to inhibit mammalian MMP activities (Bodet et al., 

2007; Longatti et al., 2011; Seo et al., 2005). Tissue inhibitor of metalloproteinases (TIMP) 

was found in insects which share no sequence similarities with vertebrate MPIs (Vilcinskas 

and Wedde, 2002). MPIs have not yet been identified in plants and the presence of MPI in 

plants is still questionable. Homology-based approach in the searching for TIMP in plants 

failed to identify any candidate, however, non-TIMP-like inhibitors might be present in 

plants. The identification of endogenous MMP inhibitors may help to fully understand the 

nature of plant MMP activity. 
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5. Summary 

Matrix metalloproteinases (MMPs) are evolutionary conserved metal-dependent 

endopeptidases widely present in animals and plants. Mammalian MMPs are well known as 

central regulators in a number of physiological and pathological processes such as tissue 

remodeling and cancer progression. Little is known about the detailed function and 

molecular mechanisms of MMPs in plants. Main focus of the present study was to analyze 

the potential involvement of Arabidopsis MMPs family in plant immune responses. 

 
Phylogenetic analysis using 44 MMPs from fourteen higher plants resulted in a clear 

classification of four subgroups, which are associated with certain plant species or functions. 

Group I MMPs appear to be pathogen-responsive whereas group II members seem to be 

involved in development. Group III was found to be a dicot-specific group and group IV is 

solely present in legume plants. 

 

The expression profiles of five At-MMPs were examined in Col-0 plants during the 

interaction with distinct microbes, including the biotrophic fungus Golovinomyces orontii, 

necrotrophic fungus Botrytis cinerea, hemibiotrophic bacterium Pseudomonas syringae pv. 

tomato (Pst) DC3000 and the symbiotic mycorrhizal-like fungus Piriformospora indica. At2-

MMP and At3-MMP were clearly up-regulated after infection with Pst DC3000 as well as B. 

cinerea. This indicates a potential involvement of MMPs in pathogen resistance. 

 

Arabidopsis T-DNA insertion mutant lines were tested for altered resistance. Mutation of 

At4-MMP and At5-MMP did not exhibit clear changes in pathogen resistance. At2-MMP 

mutants were identified to be more susceptible to B. cinerea infection. In contrast, At2-MMP 

overexpression lines 35S::MMP2 showed enhanced resistance to B. cinerea. Moreover, 

35S::MMP2 exhibited early flowering compared with control plants. At3-MMP showed 

similar altered responses as At2-MMP based on mutants and overexpression analysis. 

Double mutants at2-mmp/at3-mmp were produced and showed significantly enhanced 

susceptibility to B. cinerea. These results confirmed the essential role of At2- and At3-MMP 

in the resistance towards B. cinerea. 

 

Bombardment-mediated transient transformation was used to clarify the subcellular 

localization of At2-MMP. Plasmolysis experiments demonstrated that a MMP2-GFP fusion 

protein was co-present in the plasma membrane and apoplastic space. In addition, 
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recombinant proteins for Pro-MMP2 and mature MMP2 (Mat-MMP2) were produced and 

tested for proteolytic activity. The Pro-MMP2 contains the auto-inhibitory propeptide 

domain and catalytic domain but lacking the N-terminal signal peptide, whereas the Mat-

MMPs contains only the catalytic domain. As a result, Mat-MMP2 exhibited substantially 

higher activity than Pro-MMP2 against the substrate myelin basic protein (MBP). Activities 

of MMP2 can be inhibited by the metal chelator EDTA. Like most mammalian MMPs tested, 

the recombinant At2-MMP protein showed no direct antimicrobial activity towards B. 

cinerea conidia spore germination and hyphae growth. 

 

Expression pattern of At2-MMP and At3-MMP in Col-0 was compared in mutants which are 

compromised in SA (NahG, ics1, npr1-1, PAD3), JA (jar1, jin1) or ET (ein2-1) signalling 

after B. cinerea infection. The similar induction of At2-MMP and At3-MMP in all the 

mutants suggested that B. cinerea-induced expression of At2/3-MMP was likely independent 

of SA, JA and ET signalling. At2- and At3-MMP expression was also found to be 

independent of MPK3 and MPK6. Further analysis in the mutants with impaired signalling 

of ABA (abi2, aba2), GA (della pentuple), cytokinine (ahp1,2,3,4,5-1), JA ( coi1-16), auxin 

(tir1-1), brassinosteroids (bri1-116) and phytoalexin (pad4) indicated that ABA and PAD4 

may be required for full B. cinerea-induced At2-MMP expression.  

 

Reactive oxygen species (ROS) are early host responses to pathogen infection. To decipher 

the mode of actions for At2- and At3-MMP mediated immune responses, the ROS 

production in 35S::MMP2, at2-mmp and at3-mmp mutants was monitored after treatment of 

pathogen-associated molecular pattern molecules (PAMPs, flg22, elf18 and chitin) and a 

danger- associated molecular pattern peptide (DAMPs, Pep1). Intriguingly, the 

PAMP/DAMP-triggered ROS production was largely impaired in 35S:MMP2 plants. Wild-

type level of ROS generation was observed in at2-mmp mutants. In contrast, flg22 and 

chitin-induced ROS generation was enhanced in at3-mmp mutants. Preliminary data also 

indicated that recombinant At2-MMP protein was capable of inducing ROS production in 

Col-0 plants.  

 

Taken together, At2-MMP and At3-MMP are playing essential roles in Arabidopsis immune 

responses likely through the modulation of ROS production. Future studies are suggested to 

focus on their physiological substrates, mode of actions and roles in resistance to other 

pathogens such as bacterial pathogens. 
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6. Zusammenfassung 

Matrix-Metalloproteinasen (MMPs) sind evolutionär konservierte metall-abhängige 

Endopeptidasen, die in tierischen und pflanzlichen Organismen weit verbreitet sind.  

Säugetier MMPs sind zentrale Regulatoren in einer Reihe von physiologischen und 

pathologischen Prozessen, wie Auf- und Abbau von Gewebe und Tumorwachstum. Über die 

genauen Funktionen und molekularen Mechanismen pflanzlicher MMPs ist dagegen wenig 

bekannt. Ziel der folgenden Arbeit war daher die Analyse der potentiellen Rolle der 

Arabidopsis MMP Proteinfamilie bei der pflanzlichen Abwehr. 

 

Phylogenetische Analysen mit 44 MMPs aus 14 Pflanzenarten ergaben eine klare Einteilung 

der Proteine in vier Untergruppen, die jeweils mit spezifischen Beschaffenheiten oder 

Funktionen korreliert werden können. Gruppe I MMPs sind responsiv gegenüber Pathogenen, 

wogegen Mitglieder der Gruppe II in Entwicklungsprozessen involviert zu sein scheinen. 

MMPs der Gruppe III kommen ausschließlich in dikotylen Pflanzen vor und Gruppe IV ist 

auf Fabaceen beschränkt. 

 

Von den fünf Arabidopsis At-MMPs wurden die Expressionsprofile während der Interaktion 

von Col-0 Pflanzen mit ausgewählten Mikroorganismen untersucht. Hierzu wurden der 

biotrophe Pilz Golovinomyces orontii, der nekrotrophe Pilz Botrytis cinerea, das 

hemibiotrophe Bakterium Pseudomonas syringae pv. tomato (Pst) DC3000 und der 

symbiotische, Mykorrhiza-ähnliche Pilz Piriformospora indica verwendet. Bei At2-MMP 

und At3-MMP wurde nach Infektion mit Pst DC3000 und B. cinerea eine deutlich 

gesteigerte Expression beobachtet. Dies weist auf eine mögliche Rolle der MMPs in der 

Pathogenabwehr hin. 

 

Mehrere Arabidopsis T-DNA Insertionslinien wurden daraufhin auf eine veränderte 

Resistenz gegnüber B. cinerea getestet. Eine Mutation von At4-MMP und At5-MMP zeigte 

keine signifikanten Änderungen in der Pathogenabwehr. At2-MMP Mutanten waren dagegen 

suszeptibler gegenüber dem Pilz. Im Gegensatz dazu wiesen At2-MMP 

Überexpressionslinien (35S::MMP2) eine erhöhte Resistenz gegen B. cinerea auf. Zusätzlich 

wurde bei diesen Pflanzen eine frühere Blütenbildung als bei Kontrollpflanzen beobachtet. 

In Mutations- und Überexpressionlinien von At3-MMP wurden ähnliche Phänotypen wie für 

At2-MMP festgestellt. Deshalb wurden at2-mmp/at3-mmp Doppelmutanten generiert. Diese 
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wiesen eine stark erhöhte Suszeptibilität gegenüber B. cinerea auf. Die Ergebnisse bestätigen 

eine essentielle Rolle von At2- und At3-MMP in der Resistenz gegen B. cinerea. 

 

Transiente Expression mittels Particle-Bombardment wurde verwendet um die subzelluläre 

Lokalisation von At2-MMP zu studieren. Plasmolyse Experimente ergaben eine duale 

Lokalisation des Proteins an der Plasmamembran und dem apoplasmatischen Raum. 

Zusätzlich wurde rekombinantes Proenzym Pro-MMP2 und prozessiertes MMP2 (Mat-

MMP2) hergestellt und auf proteolytische Aktivität getestet. Pro-MMP2 enthält die auto-

inhibitorische propeptid Domäne und die katalytische Domäne, aber kein N-terminales 

Signalpeptid. Dagegen weist Mat-MMP2 nur die katalytische Domäne auf. Mat-MMP2 

zeigte eine substantiell höhere Aktivität gegenüber dem Substrat Myelin-Basisches Protein 

(MBP), als Pro-MMP2. Die Aktivität von MMP2 ist durch den Metallchelator EDTA 

inhibierbar. Wie die meisten getesteten Säugetier MMPs wies rekombinantes At-MMP2 

keine direkte antimikrobielle Wirkung gegenüber Sporenkeimung und Hyphenwachstum 

von B. cinerea auf. 

 

Die Expressionsmuster von At2-MMP und At3-MMP in Col-0 Pflanzen nach Infektion mit 

B. cinerea wurden mit denen in Mutantenlinien verglichen, die eine gestörte SA (NahG, ics1, 

npr1-1, pad3), JA (jar1, jin1) oder ET (ein2-1) Signalweiterleitung aufweisen. Die mit dem 

Wildtyp vergleichbare Induktion von At-MMP2 und At3-MMP in allen Mutanten weist 

darauf hin, dass die B. cinerea induzierte Expression dieser Proteine wahrscheinlich 

unabhängig von SA, JA und ET Signalwegen erfolgt. Zusätzlich wurde die 

Expressionsinduktion als unabhängig von den MAP Kinasen MPK3 und MPK6 gefunden. 

Eine weitere Analyse von Mutanten mit gestörten Signalwegen für ABA (abi2, aba2), GA 

(della pentuple), Cytokinin (ahp1,2,3,4,5-1), JA (coi1-16), Auxin (tir1-1), Brassinosteroiden 

(bri1-116) und Phytoalexinen (pad4) weist darauf hin, dass ABA und PAD4 für eine 

vollständige B. cinerea induzierte Expression von At2-MMP notwendig zu sein scheinen. 

 

Die Produktion von reaktiven Sauerstoffspezies (ROS) gehört zu den frühen 

Abwehrreaktionen von Pflanzen. Ziel war es, die Rolle von At2-MMP und At3-MMP bei 

der pflanzlichen Abwehr genauer zu untersuchen. Hierzu wurde die ROS Produktion in 

35S:MMP2, at2-mmp und at3-mmp Pflanzen nach Behandlung mit microbe-associated 

molecular patterns (MAMPs, flg22, elf18 und chitin) und danger-associated molecular 

patterns (DAMPs, Pep1) untersucht. Interessanterweise zeigten 35S:MMP2 Pflanzen eine 

deutlich verringerte ROS Produktion als Antwort auf die MAMP/DAMP Behandlung. Kein 
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Unterschied zum Wildtyp konnte in at2-mmp Mutanten beobachtet werden. Im Gegensatz 

dazu zeigten at3-mmp Pflanzen eine erhöhte Produktion von ROS als Reaktion auf flg22 und 

Chitin. Vorläufige Daten deuten zusätzlich darauf hin, dass rekombinantes At2-MMP 

Protein selbst zur Produktion von ROS in Col-0 Pflanzen führt. 

 

Zusammengefasst spielen die Matrix-Metalloproteasen At2-MMP und At3-MMP wichtige 

Rollen bei Immunreaktionen in Arabidopsis, wahrscheinlich durch die Modulation der ROS 

Produktion. Zukünftige Studien sollten auf die Substrate der At-MMPs, ihre genaue 

Funktionsweise und ihre Beteiligung an Reaktionen gegenüber anderen Pathogenklassen, 

wie zum Beispiel Bakterien, abzielen. 
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8. Supplementary 

 
                            10        20        30        40        50        60 
                             |         |         |         |         |         | 
ACU24527_Gm         -NIKGLSVVKDYLSEYGYIE--------SSRPFNNSFDQE-TMSAIKTYQKFSNLPVTGV 
Slti114_Gm          -NITGLYIVKDYLSDYGYIE--------SSGPFNDSFDQE-IISAIKTYQNFSNLQVTGG 
GmMMP2              --APPVSLIKDYLSNYGYIE--------SSGPLSNSMDQETIISAIKTYQQYYCLQPTGK 
ACJ84310_Mt         -KYKGLDQIKQYLQNFGYLE--------QSGPFNNTLDQE-TVLALKTYQRYFNIYAGQD 
MtMMPL1             --IQGLSKIKQHLYHFKYLQGL------YLVGFDDYLDNK-TISAIKAYQQFFNLQVTGH 
NtMMP1              -KVDGLAKIKKYFYNFGYIP--------SLSNFTDDFDDA-LESALKTYQQNFNLNTTGV 
NMMP1_Nb            -KVDGLAKIKKYFYNFGYIS--------SLSNFTDDFDDA-LESALKTYQQNFNLNTTGV 
LeMMP1_Sl           -TVDGLAKIKKYFHYFGYINN-------SSTNFTDDFDDT-LESALKTYQLNFNLNTTGV 
SlMMP2              -KVDGIAKIKKYFQHFGYINN-L-----TSFNFTDEFDDT-LESALKTYQRNFNLKATGV 
PtMMP1              -KYDGLAKLKSYFQYFGYIPNS-------LSNFTDDFDDS-LESALRTYQQNFNLNITGQ 
PtMMP2              -KYDGLAKLKHYFQYFGYIPNS-------LSNFTDDFDDY-LESALRTYQQNFNLNVTGE 
VvMMP1              -KADGLAKLKEYFHYFGYIHN---------SNYTDDFDDA-FEQALKTYQLNFNLNTTGQ 
VvMMP2              -KADGLAKLKEYFHYFGYIHN---------SNYTDDFDDA-FEQALKTYQLNFNLNTTGQ 
BoMMP1              -KVDGLYKIKQYFQHFGYIPQT------LPGNFSDDFDDI-LKNAVEMYQRNFKLNITGE 
At3-MMP             -KYDGLYMLKQYFQHFGYITETN-----LSGNFTDDFDDI-LKNAVEMYQRNFQLNVTGV 
At2-MMP             -NVDGLYRIKKYFQRFGYIPET------FSGNFTDDFDDI-LKAAVELYQTNFNLNVTGE 
At5-MMP             -NINGLSKLKQYFRRFGYITTT--------GNCTDDFDDV-LQSAINTYQKNFNLKVTGK 
HvMMP1              -ERDGLARLKDYLSHFGYLSEAP-----TSSPFSDAFDAE-LEAAVATYQRNFGLNATGV 
ZmMMP1              -ERQGLAGLKDYLSHFGYLPPPP-----PSSPFSDAFDQN-LEAAIATYQRNFGLNATGA 
OsMMP1              -EREGLGRLKDYLSHFGYLPPPP-----SSSPYSDAFDDS-LEAAIAAYQRNFGLNATGE 
OsMMP2              -ERQGLGKLKDYLWHFGYLSYPSSSS--LSPSFNDLFDAD-MELAIKMYQGNFGLDVTGD 
HvMMP2              -ERQGLARLKDYLSRFGYLPAPP-----AK--FNDMFDAD-METAIRTYQHNFGLEATGQ 
ZmMMP2              -QQQGLAKVKDYLSRFGYLPPES-----SG-SFNDVFDAD-LEEAIKVYQRNFGLGITGV 
Pta1-MMP            -RMQGLPDLKRYFRRFGYLSAQN------N--VTEDFDEA-VESAVRTYQKNFGLNVTGV 
PtMMP3              -QVSGMSELKEYFNRFGYLPIPDE------NNFTDIFDKQ-FESAVIAYQTNLGLPVTGK 
VvMMP4              -QVSGMSELKKYFQRFGYLPVPN-------TNFTDVFDSR-FETAVIMYQTKLGLPVSGK 
VvMMP3              -RISGMAELKKYFNRFGYLGFQD-------GNVTDVFDTR-LESAVAAYQAKLGLPVTGR 
At4-MMP             PDVS-IPEIKRHLQQYGYLPQNK---------E--SDDVS-FEQALVRYQKNLGLPITGK 
At1-MMP             -HVSGVSELKRYLHRFGYVNDGS-------EIFSDVFDGP-LESAISLYQENLGLPITGR 
OsMMP3              -HVTGLAELKRYLARFGYMAKP-------GRDTTDAFDEH-LEVAVRRYQTRFSLPVTGR 
HvMMP3              -RVTGLGDLKRYLATFGYMPKPAGAGAEHGGGPMDAFDEH-LEAAVKRYQSRLSLPVTGR 
HvMMP4              -NGSVTDGLRRYLARFGYASSA-------------PDDAD-GRVVVSLYQSTLGLPVTGR 
SMEP-1              -NYKGLSNVKNYFHHLGYIPNAP--------HFDDNFDDT-LVSAIKTYQKNYNLNVTGK 
PtMMP6              -TVEGLVELKQYLKRFGYYPS-------DVNLMTSDFDDL-LESALKTYQNYFHLNVTGI 
PtMMP7              -TVEGLIELKQYLKKFGYYPS-------DITLTSSDFDDH-LELALKTYQEYFHLNVTGN 
PtMMP8              -SVKGLHELKRYLEKFGYLKYGHQGKKGHNHANDDEFDDL-LESAIKAYQQNHHLNVTGS 
VvMMP6              -KVEGIHKLKKYLGQFGYLSYSHS-KYHTHAN-DDDFDDL-VESAIKTYQTNYHLNATGS 
VvMMP7              -EVNGIQKLKKYLEQFGYLSYSRS-KNQTHAD-DDDFDDL-LESAIKTYQANYHLEATGD 
VvMMP5              -KVKDIHKLKKYLQQFGYLSYSHS-EHQTHAD-NDDFDDL-LEFAIKTYQTNYYLKASGN 
VvMMP11             -KVEGIHKVKKYLQHFGYLGSTHS-QTETQVDSEDHFDDA-LESAIKAFQTYYHLKPTGI 
Cs1-MMP             -TKQGIHQIKKYLQRFGYITTNIQ-KHSNPIF-DDTFDHI-LESALKTYQTNHNLAPSGI 
HsMMP20             TWRNNYRLAQAYLDKYYTNKEGH-----QIGEMVARGSNS-MIRKIKELQAFFGLQVTGK 
HsMMP13             -SEEDLQFAERYLRSYYHPTN-------LAGILKENAASS-MTERLREMQSFFGLEVTGK 
HsMMP1              -QEQDVDLVQKYLEKYYNLKN-D-----GRQVEKRRNSGP-VVEKLKQMQEFFGLKVTGK 
HsMMP8              -KEKNTKIVQDYLEKFYQLPS-N-----QYQSTRKNGTNV-IVEKLKEMQRFFGLNVTGK 
HsMMP7              -----------YLKRFYLYDS------------ETKNANS-LEAKLKEMQKFFGLPITGM 
GLE_ChrMMP1         -TKSAFRWIRPPP---ARPPPFR--------RPPPAQTP----YVHKVEYTELQILCPQT 
XP_001694591_Chr3   -LKSAFRFVRPPPN--HRPPPFR--------KPPPAASPS-PAFTHEVEYNELQILCPQE 
BAB68383_ChrMMP2    YMEGAQAEVRHPPPLRRRPPPTRG------RQQSPPGSGG-AVLDTVTTPPQLQLVCPQI 
                                                                          :      
Prim.cons.          3KVDGLAKLKKYLQRFGYLPNP2S3KH2SSGNFTDDFDDSTLESAIKTYQ2NFGLNVTGK 
 
                            70        80        90       100       110       120 
                             |         |         |         |         |         | 
ACU24527_Gm         PNKQLIQQMLSLRCGVPDVN--------------------------FDY----------- 
Slti114_Gm          LNKELIQQMLSIRCGVPDVN--------------------------FDY----------- 
GmMMP2              LNNETLQQMSFLRCGVPDIN--------------------------IDY----------- 
ACJ84310_Mt         SLRKILQHIALPRCGVPDMN--------------------------FTY----------- 
MtMMPL1             LDTETLQQIMLPRCGVPDIN--------------------------PDI----------- 
NtMMP1              LDAPTIQHLIRPRCGNADVV----NGTSTMNSGKPPAG---SQN---------------- 
NMMP1_Nb            LDAPTIEHLIRPRCGNADVV----NGTSTMNSGKPSAG---SQN---------------- 
LeMMP1_Sl           LDANTIQHLIKPRCGNADVV----NGTSTMNSGKPPAG---SPT---------------- 
SlMMP2              LDAPTIQHLIKPRCGNADLV----NGTSTMNAGKP------------------------- 
PtMMP1              LDDQTVNHIVRPRCGNPDIV----NGSSSMNSGKTHNT---SSS----H----------- 
PtMMP2              LDDQTVNHVVRPRCGNPDII----NGSTSMNSGKTNNT---SSSH---H----------- 
VvMMP1              LDEATLNQIVSPRCGNADIE----NGSSSMNSGKSTPS---TSG----H----------- 
VvMMP2              LDEATLNQIVSPRCGNADIE----NGSSSMNSGKSTP----------------------- 
BoMMP1              LDELTLQHVVIPRCGVPDVV----NGTSTMLNGGRRRTYEVSFSGRSQR----------- 
At3-MMP             LDELTLKHVVIPRCGNPDVV----NGTSTMHSG--RKTFEVSFAGRGQR----------- 
At2-MMP             LDALTIQHIVIPRCGNPDVV----NGTSLMHGG-RRKTFEVNFS--RTH----------- 
At5-MMP             LDSSTLRQIVKPRCGNPDLI----DGVSEMNGG--------------KI----------- 
HvMMP1              LDPPTVSQMVAPRCGVADVI----NGTSTMDR---NAS---AAG---------------- 



Supplementary 

 103

ZmMMP1              LDPSTVSQMVAPRCGVADVI----NGTSTMAR---SSS---ADA---------------- 
OsMMP1              LDTDTVDQMVAPRCGVADVI----NGTSTMDR---NSS---AAA---------------- 
OsMMP2              LDAATVSQMMAPRCGVADVV----NGTSTMGGG---------GG---------------- 
HvMMP2              LDAATVAKMMSPRCGVADII----NGTSSMG-----------KT---------------- 
ZmMMP2              MDASTVAQMMAPRCGVADII----NGTSTMGGGSASAS---AAH---------------- 
Pta1-MMP            LDEATISQLMVPRCGREDII----NGSSAMR----------------------------- 
PtMMP3              LDSDTISMMVSPRCGVSDTK-------T-H-G---------------TT----------- 
VvMMP4              LDSKTITAIVSPRCGVSDT--------T-P-L---------------ED----------- 
VvMMP3              LDSETLSQMMSPRCGMRDA------------M---------------QP----------- 
At4-MMP             PDSDTLSQILLPRCGFPDDV-------EPK-T---------------AP----------- 
At1-MMP             LDTSTVTLMSLPRCGVSDTH-------MTINN---------------DF----------- 
OsMMP3              LDNATLDQIMSPRCGVGDDDVERPVSVALSPG---------------AQ----------- 
HvMMP3              LDVVTLDQMMSPRCGVQDD-----HGASVTP----------------EH----------- 
HvMMP4              LDAPTLDLLATPRCGVPDL-----QHSSQAN----------------AT----------- 
SMEP-1              FDINTLKQIMTPRCGVPDIIIN----TNKTTS---------------------------- 
PtMMP6              LDDSTIKQMMIPRCGMHDIT----------PNN---------TKSNYTK----------- 
PtMMP7              LDSSTIQQMMIPRCGMPDIIN----TPSAKPNS---------TKSKHKK----------- 
PtMMP8              LDNSTVHEMMQPRCGVPDVVN---------GTK---------HYHTHKS----------- 
VvMMP6              LDSETVSQMVKPRCGAADIIN----GTNWMRSGKK------GHHHGHGS----------- 
VvMMP7              LDSETVSEMVKPRCGVADIIN----GTNWMLSGKKRQY--HGHGHGHGS----------- 
VvMMP5              LDSETVSVMVKPRCGVADIIN----GTSRMRSGSR------SYPHGYGS----------- 
VvMMP11             LDAPTATQMSRTRCGVPDNPP----VTNNINS------------HGHSH----------- 
Cs1-MMP             LDSNTIAQIAMPRCGVQDVIK----NKKTKKRNQN-----FTN-NGHTH----------- 
HsMMP20             LDQTTMNVIKKPRCGVPDV----------------------------------------- 
HsMMP13             LDDNTLDVMKKPRCGVPDV----------------------------------------- 
HsMMP1              PDAETLKVMKQPRCGVPDV----------------------------------------- 
HsMMP8              PNEETLDMMEKPRCGVPDS----------------------------------------- 
HsMMP7              LNSRVIEIMQKPRCGVPDV----------------------------------------- 
GLE_ChrMMP1         IDSVTGYPMDDPRCNVPRATVAAGEEALTIRNEFELLNGDVLNVTLEEVDTPENPSRRRL 
XP_001694591_Chr3   VDSSTNYTRDDPQCAVPRGSVAVGDEAEAVRAEFRLLSGDLVNVTLEEVDESEPGSRRRM 
BAB68383_ChrMMP2    IDIVTGYPMDDPSCYVPRVVLAQGEAAEQMRNENGVSSGDIMNVTLDVS-----ANG--- 
                                 *                                               
Prim.cons.          LDSETLQQMV2PRCGVPDVINA4GNGTSTMNSGK2RASG2VSN2HGH2HD22E23SRRR2 
 
                           130       140       150       160       170       180 
                             |         |         |         |         |         | 
ACU24527_Gm         --------------------------NFTDDNTSYPKAGHRW-----FPN-------RNL 
Slti114_Gm          --------------------------NSTDDNISYPKAGHRW-----FPN-------RNL 
GmMMP2              --------------------------NFTDDNMSYPKAGHRW-----FPH-------TNL 
ACJ84310_Mt         --------------------------DSTND-ISYPK-GNQW-----FPKGT-----KNL 
MtMMPL1             --------------------------NPDFG-FARAQ-GNKW-----FPKGT-----KEL 
NtMMP1              --------------------------MHTVAHFSFFPGRPRW-----PDSKTD------L 
NMMP1_Nb            --------------------------IHTVAHFSFFPGRPRW-----PESNRD------L 
LeMMP1_Sl           --------------------------MHTVAHYSFFPGSPRW-----PANKRD------L 
SlMMP2              ---------------------------HTVAHYSFFPGRPKW-----PEGKTD------L 
PtMMP1              --------------------------VHTVSHYSFFTGMPRW-----R--KQA------L 
PtMMP2              --------------------------LHTVSHYSFFTGQPRW-----R--KQA------L 
VvMMP1              --------------------------FHTVGHYSFFDGKPVW-----PESKRN------L 
VvMMP2              ------------------------------------------------------------ 
BoMMP1              --------------------------FHAVKRYSFFPGEPRW-----PERRRN------L 
At3-MMP             --------------------------FHAVKHYSFFPGEPRW-----PRNRRD------L 
At2-MMP             --------------------------LHAVKRYTLFPGEPRW-----PRNRRD------L 
At5-MMP             --------------------------LRTTEKYSFFPGKPRW-----PKRKRD------L 
HvMMP1              --------------------------H-GRHLYTYFPGGPMW-----PPFRRE------L 
ZmMMP1              --------------------------H-GRHLYAYFPGGPTW-----PPFRRD------L 
OsMMP1              --------------------------LRGRHLYSYFPGGPMW-----PPFRRN------L 
OsMMP2              --------------------------VRGRGLYSYFPGSPRW-----PRSRTT------L 
HvMMP2              --------------------------VHGRNLYSYFPGSPSW-----PRSKKS------L 
ZmMMP2              --------------------------ARGRNLFTYFPGSPSW-----PRSRKS------L 
Pta1-MMP            ----------------------------GRGLFPFFPGSPRW-----GPDKRV------L 
PtMMP3              --------------------------FQATKHFSYFYGKPRW-----GRQAPV-----IL 
VvMMP4              --------------------------VHETRHFAYFYGKPRW-----ARVPPM-----TL 
VvMMP3              --------------------------MHAAMHYVYFPGKPRW-----ARPIPM-----TL 
At4-MMP             --------------------------FHTGKKYVYFPGRPRW-----TRDVPL-----KL 
At1-MMP             --------------------------LHTTAHYTYFNGKPKW-----NRDT--------L 
OsMMP3              --------------------------GGVVSRFTFFKGEPRW-----TR-SDP---PIVL 
HvMMP3              --------------------------GGAVSRFTFFKGKPRW-----TRRSDPDPDPVSL 
HvMMP4              --------------------------ATATARFAFFDGQPRW-----AR--APG--HFLL 
SMEP-1              --------------------------FGMISDYTFFKDMPRW-----QAGTTQ------L 
PtMMP6              --------------------------FHMVMHYTFFNGMPKW-----RPSKY------HL 
PtMMP7              --------------------------VHVVAHYAF--GAQKW-----PPSKY------AL 
PtMMP8              --------------------------IHTLAHYNFIPENPRW-----TKR--------QL 
VvMMP6              --------------------------LRTVAHYSFFSGSPRW-----PPSKT------YL 
VvMMP7              --------------------------LRTVAHYSFFPGSPRW-----PPSKT------YL 
VvMMP5              --------------------------FHTVAHYSFLAGSPRW-----PPSKT------HL 
VvMMP11             --------------------------LNIGTHYAFFPNKPRW-----PAGKR------HL 
Cs1-MMP             --------------------------FHKVSHFTFFEGNLKW-----PSSKL------HL 
HsMMP20             ------------------------------ANYRLFPGEPKW-----KKNT--------L 
HsMMP13             ------------------------------GEYNVFPRTLKW-----SKMN--------L 
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HsMMP1              ------------------------------AQFVLTEGNPRW-----EQTH--------L 
HsMMP8              ------------------------------GGFMLTPGNPKW-----ERTN--------L 
HsMMP7              ------------------------------AEYSLFPNSPKW-----TSKV--------V 
GLE_ChrMMP1         LSIIREEQRTGRVLLAT-SAELPTPTFRLKSLKSILKGSQKE----IYAGKPIDLRTIVY 
XP_001694591_Chr3   LSQLREELATGRRLLNTDTAPLPGRSFRLKSLRPVRQTEQKE----IYTGTPIDLRTVVF 
BAB68383_ChrMMP2    -------------------------SFAVTSLKTVMLGSQKGGCKCIYSGTPADDRVVMY 
                                                                                 
Prim.cons.          LS22REE22TGR2LL2TD2A2LP22SFHTVAHYSFFPGSPRWGCKCIP2SKRDDLR2V2L 
 
                           190       200       210       220       230       240 
                             |         |         |         |         |         | 
ACU24527_Gm         TYGFLP--E-----N--QIPDNMTKVFRD--------SFARWAQASG-------TLSLTE 
Slti114_Gm          TYGFLP--E-----N--QIPDNMTKVFRD--------SFARWAQASG-------TLSLTE 
GmMMP2              TYGFLP--E-----N--QIPANMTKVFRD--------SFARWAQASG-------VLNLTE 
ACJ84310_Mt         TYGFAP--K-----N--EIPLNVTNVFRK--------ALTRWSQTTR-------VLNFTE 
MtMMPL1             TYGFLP--E-----S--KISIDKVNVFRN--------AFTRWSQTTR-------VLKFSE 
NtMMP1              TYAFL----P---QN-GLT-DNIKSVFSR--------AFDRWSEVT--------PLSFTE 
NMMP1_Nb            TYAFL----P---QN-GLT-DNIKSVFSR--------AFDRWSEVT--------PLTFTE 
LeMMP1_Sl           TYAFA----P---QN-GLT-DDIKIVFTR--------AFDRWSEVT--------PLTFTE 
SlMMP2              TYAFL----P---AN-NLT-DDIKSVFSR--------AFDRWSEVT--------PLSFTE 
PtMMP1              TYAFL----P---GN-QLT-DEVKTVFSR--------AFDRWSTVI--------PLTFTQ 
PtMMP2              TYVFS----P---EN-QLS-DEVKAVFSR--------AFDRWSTVI--------PLNFSQ 
VvMMP1              TYGFL----P---DN-QLS-DTVKAVFTS--------AFERWAAVT--------PLTFTE 
VvMMP2              -------------------------------------AFERWAAVT--------PLTFTE 
BoMMP1              TYAFE----P---QN-NLA-EEVKSVFSR--------AFVRWAEVI--------PLTFRR 
At3-MMP             TYAFD----P---RN-ALT-EEVKSVFSR--------AFTRWEEVT--------PLTFTR 
At2-MMP             TYAFD----P---KN-PLT-EEVKSVFSR--------AFGRWSDVT--------ALNFTL 
At5-MMP             TYAFA----P---QN-NLT-DEVKRVFSR--------AFTRWAEVT--------PLNFTR 
HvMMP1              RYAIT--ATA---AT-SIDRATLGAVFAR--------AFARWSDAT--------TLRFAE 
ZmMMP1              KYAIT--ATS---AA-SIDRSTLSDVFAR--------AFSRWAAAT--------NLRFAE 
OsMMP1              RYAIT--ATS---AT-SIDRATLSAVFAR--------AFSRWAAAT--------RLQFTE 
OsMMP2              RYAIT--ATS---QT-SIDRATLSKVFAS--------AFARWSAAT--------TLNFTE 
HvMMP2              RYAIT--AAT---ET-TIDRATLSRVFAS--------AFARWSAAT--------TLNFTE 
ZmMMP2              TYAVT--QTS---LT-SIDRATLSQVLAR--------AFARWSAAT--------TLTFTE 
Pta1-MMP            SYAFSPDHEV---LS-EISLAELSTVVGR--------AFKRWADVI--------PITFTE 
PtMMP3              TYAFSQNNMI---D--YISLKDIKTVFKR--------AFSRWAQVI--------PVSFME 
VvMMP4              TYSFSRENMI---E--SLNSSEMKSVFER--------AFSRWASVI--------PVNFTE 
VvMMP3              TYAFSPENLV---G--YLSLEDIRGAFKL--------AFARWASVI--------PVSFSE 
At4-MMP             TYAFSQENLT---P--YLAPTDIRRVFRR--------AFGKWASVI--------PVSFIE 
At1-MMP             TYAISKTHKL---D--YLTSEDVKTVFRR--------AFSQWSSVI--------PVSFEE 
OsMMP3              SYAVSPTATV---G--YLPPAAVRAVFQR--------AFARWARTI--------PVGFVE 
HvMMP3              TYAVSPTATV---G--YLPADDVRAVFRR--------AFERWARVI--------PVAFVE 
HvMMP4              TYAVLSTPPY---QPLPLPRKAVRGAFRA--------AFARWARVI--------PARFRE 
SMEP-1              TYAFS----P---EP-RLD-DTFKSAIAR--------AFSKWTPVV--------NIAFQE 
PtMMP6              TYTFGSD-GV---QV--VDMDTLRSVCSD--------AFKKWSDVS--------PLTFQE 
PtMMP7              TYRFGS--GV---QV--VGSDTLRSVCSK--------AFQTWAKVS--------KFTFRE 
PtMMP8              TYKFRS--SV---QV--PAAQNIRSICAK--------AFQRWAQVT--------EFTFQE 
VvMMP6              TYAFLP-----------GTPSWAMSPVSR--------AFGQWDSAT--------HFTFGS 
VvMMP7              TYAFLP-----------GTPNWAMSPVSR--------AYGRWDSAT--------HFTFGW 
VvMMP5              TYAFLS-----------GTPSTTMSAVTR--------AFGQWASAT--------NFSFAE 
VvMMP11             LYSLDS-----------ASHPEAANAVAN--------AFGAWAGVT--------NFTFER 
Cs1-MMP             SYGFLP-----------NYPIDAIKPVSR--------AFSKWSLNT--------HFKFSH 
HsMMP20             TYRISK-------YTPSMSSVEVDKAVEM--------ALQAWSSAV--------PLSFVR 
HsMMP13             TYRIVN-------YTPDMTHSEVEKAFKK--------AFKVWSDVT--------PLNFTR 
HsMMP1              TYRIEN-------YTPDLPRADVDHAIEK--------AFQLWSNVT--------PLTFTK 
HsMMP8              TYRIRN-------YTPQLSEAEVERAIKD--------AFELWSVAS--------PLIFTR 
HsMMP7              TYRIVS-------YTRDLPHITVDRLVSK--------ALNMWGKEI--------PLHFRK 
GLE_ChrMMP1         IMDFSSCKLSGWSAPATLTPEKVTSDMLR-GASAPTNNLANYYGACSYEKTLFNPDNFLV 
XP_001694591_Chr3   IMDFSDCRMP--QAPA-VTKERVTRDMLK-TSASPANNLAGYYSTCSYGKTIFNPDNFIV 
BAB68383_ChrMMP2    LLDFSSCQGYGMAAPAALTPEVAWRLLSQDGSSAPGSSFKAYQETCSYGRRLLNPDNVVV 
                                                             :               .   
Prim.cons.          TYAF2PTATPG23QNPSLTPD2VKSVFSRDGSSAP3NAFARWASVT2YGKTLFNPLTFTE 
 
                           250       260       270       280       290       300 
                             |         |         |         |         |         | 
ACU24527_Gm         TT---------------------------------------YDNADIQVGFYNFTD---- 
Slti114_Gm          TT---------------------------------------YDIADIQVGFYNFTA---- 
GmMMP2              TT---------------------------------------YDNADIQVGFYNFTY---- 
ACJ84310_Mt         TTS--------------------------------------YDDADIKIVFNNMN----- 
MtMMPL1             ATS--------------------------------------YDDADIKIGFYNISY---- 
NtMMP1              TAS--------------------------------------FQSADIKIGFFAGDH---- 
NMMP1_Nb            IAS--------------------------------------FQSADIKIGFFAGDH---- 
LeMMP1_Sl           IAS--------------------------------------YQSADIKIGFFSGDH---- 
SlMMP2              IPS--------------------------------------FQSADIKIGFLTGDH---- 
PtMMP1              ADS--------------------------------------INAADIGIGFYSGDH---- 
PtMMP2              TDS--------------------------------------IYTADIRIAFFSGDH---- 
VvMMP1              SDS--------------------------------------YYSADLRIAFYTGDH---- 
VvMMP2              SDS--------------------------------------YYSADLRIAFYTGDH---- 
BoMMP1              VES--------------------------------------FSTSDISIGFYTGEH---- 
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At3-MMP             VER--------------------------------------FSTSDISIGFYSGEH---- 
At2-MMP             SES--------------------------------------FSTSDITIGFYTGDH---- 
At5-MMP             SES--------------------------------------ILRADIVIGFFSGEH---- 
HvMMP1              AAS--------------------------------------ESDADITIGFYAGSH---- 
ZmMMP1              TAS--------------------------------------ESDADITIGFYSGSH---- 
OsMMP1              VSS--------------------------------------ASNADITIGFYSGDH---- 
OsMMP2              AAS--------------------------------------AADADITIGFYGGDH---- 
HvMMP2              TAS--------------------------------------ASDADITIGFHSGDH---- 
ZmMMP2              TAS--------------------------------------ERDADITIGFYAGDH---- 
Pta1-MMP            SSD--------------------------------------YSSADIKVGFYSGDH---- 
PtMMP3              IED--------------------------------------YPSADIRIGFYYRDH---- 
VvMMP4              TED--------------------------------------FGSADIKIGFYSGDH---- 
VvMMP3              TDT--------------------------------------YSFADIKIGFYRGDH---- 
At4-MMP             TED--------------------------------------YVIADIKIGFFNGDH---- 
At1-MMP             VDD--------------------------------------FTTADLKIGFYAGDH---- 
OsMMP3              TDD--------------------------------------YEAADIKVGFYAGNH---- 
HvMMP3              TDD--------------------------------------YDKADIKVGFYEGSH---- 
HvMMP4              TRD--------------------------------------YNTADVRVGFLAGDH---- 
SMEP-1              TTS--------------------------------------YETANIKILFASKNH---- 
PtMMP6              ASD--------------------------------------GASANIVIAFYRGDH---- 
PtMMP7              ATG--------------------------------------GASADIVIEFFSGDH---- 
PtMMP8              VSV--------------------------------------SSPADIVIGFHRRDH---- 
VvMMP6              IQD--------------------------------------HTSADMTISFHRLDH---- 
VvMMP7              IQD--------------------------------------YTSADMTISFHRLDH---- 
VvMMP5              TQD--------------------------------------YTNADMKIGFQRGDH---- 
VvMMP11             TSD--------------------------------------PKIANLYISFKVRDH---- 
Cs1-MMP             VAD--------------------------------------YRKADIKISFERGEH---- 
HsMMP20             INS---------------------------------------GEADIMISFENGDH---- 
HsMMP13             LHD---------------------------------------GIADIMISFGIKEH---- 
HsMMP1              VSE---------------------------------------GQADIMISFVRGDH---- 
HsMMP8              ISQ---------------------------------------GEADINIAFYQRDH---- 
HsMMP7              VVW---------------------------------------GTADIMIGFARGAH---- 
GLE_ChrMMP1         LGPVPVPCIGGVTPPPRPPR---PPRPPPRAGSTISS---LSRRNDTYDDWWDLSKYCTA 
XP_001694591_Chr3   VGPVPMKCAGNIPAIPRPPRPAPPPRPPPRTISTKPAPPPLSRRNATYEDWWDLSRFCSA 
BAB68383_ChrMMP2    VG--PCRCP-ALAPSPTSGR----ARTLVGISPAAAN---ALRMNSTHIGWWDLSRSCTP 
                                                                      :          
Prim.cons.          TASVP33C3G333P3PRPPRPAPPPRPPPR33ST333PPPLYSSADIKIGFYSGDH3CTA 
 
                           310       320       330       340       350       360 
                             |         |         |         |         |         | 
ACU24527_Gm         LSIKMEV-YGGSLIF-LQPDSSKKGVVLLDG-NMGW------------------------ 
Slti114_Gm          LGIEVEV-YGGSLIF-LQPDSSKKGVVLMDG-NIGW------------------------ 
GmMMP2              LGIDIEV-YGGSLIF-LQPDSTKKGVILLDGTNKLW------------------------ 
ACJ84310_Mt         ------------------------------------------------------------ 
MtMMPL1             NSKEVID-VVVSDFF-IN----------LRS----F------------------------ 
NtMMP1              NDGEPFDGPMGTLAHAFSPP---GGHFHLDG-DENW------------------------ 
NMMP1_Nb            NDGEPFDGPMGTLAHAFSPP---GGHFHLDG-DENW------------------------ 
LeMMP1_Sl           NDGEPFDGPMGTLAHAFSPP---AGHFHLDG-EENW------------------------ 
SlMMP2              NDGEPFDGPMGTLAHAFSPP---AGHFHLDG-EENW------------------------ 
PtMMP1              GDGEPFDGVLGTLAHSFSPP---SGQFHLDG-DENW------------------------ 
PtMMP2              GDGEPFDGVLGTLAHAFSPQ---NGRLHLDD-DEHW------------------------ 
VvMMP1              GDGEAFDGVLGTLAHAFSPT---NGRFHLDG-EENW------------------------ 
VvMMP2              GDGEAFD---G----------------------ENW------------------------ 
BoMMP1              GDREPFDGFMGTLAHAFSPP---TGHFHLDG-AENW------------------------ 
At3-MMP             GDGEPFDGPMRTLAHAFSPP---TGHFHLDG-EENW------------------------ 
At2-MMP             GDGEPFDGVLGTLAHAFSPP---SGKFHLDA-DENW------------------------ 
At5-MMP             GDGEPFDGAMGTLAHASSPP---TGMLHLDG-DEDW------------------------ 
HvMMP1              GDGEAFDGPLGTLAHAFSPT---DGRFHLDA-AEAW------------------------ 
ZmMMP1              GDGEPFDGPLGTLAHAFSPT---DGRFHLDA-AEAW------------------------ 
OsMMP1              GDGEAFDGPLGTLAHAFSPT---DGRFHLDA-AEAW------------------------ 
OsMMP2              GDGEAFDGPLGTLAHAFSPT---NGRLHLDA-SEAW------------------------ 
HvMMP2              GDGEAFDGPLGTLAHAFSPT---DGRFHLDA-SEAW------------------------ 
ZmMMP2              GDGEAFDGPLGTLAHAFSPT---DGRFHLDA-AEAW------------------------ 
Pta1-MMP            GDGHPFDGPLGTLAHSFSPP---DGRFHLDA-AESW------------------------ 
PtMMP3              GDGQPFDGVLGVLAHAFSPE---NGRFHLDA-SETW------------------------ 
VvMMP4              GDGEPFDGVLGVLAHAFSPQ---NGRFHFDR-AETW------------------------ 
VvMMP3              GDGEPFDGVLGVLAHAFSPE---SGKFHLDA-AETW------------------------ 
At4-MMP             GDGEPFDGVLGVLAHTFSPE---NGRLHLDK-AETW------------------------ 
At1-MMP             GDGLPFDGVLGTLAHAFAPE---NGRLHLDA-AETW------------------------ 
OsMMP3              GDGVPFDGPLGILGHAFSPK---NGRLHLDA-SEHW------------------------ 
HvMMP3              GDGVPFDGPLGVLGHAFSPK---NGRLHLDA-AERW------------------------ 
HvMMP4              GDGEPFDGPLGVLGHAFSPP---SGQLHLDA-AERW------------------------ 
SMEP-1              GDPYPFDGPGGILGHAFAPT---DGRCHFDA-DEYW------------------------ 
PtMMP6              GDGYPFDGPGKILAHAFSPE---NGRFHYDA-DEKW------------------------ 
PtMMP7              GDQSPFDGPGNQLAHAFYPQ---DGRLHYDA-DENW------------------------ 
PtMMP8              NDGSAFDGPGGTLAHATPPVR--NAMFHFDA-DENW------------------------ 
VvMMP6              GDGYPFDGPGGTIAHAFAPT---NGRFHYDG-DETW------------------------ 
VvMMP7              GDGSPFDGPGGTIAHAFAPT---NGRFHYDG-DETW------------------------ 
VvMMP5              GDGHPFDGPGGTIAHSFPPT---DGRLHFDG-DESW------------------------ 
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VvMMP11             GDGRPFDGRGGILAHAFAPT---DGRFHFDG-DETW------------------------ 
Cs1-MMP             GDNAPFDGVGGVLAHAYAPT---DGRLHFDG-DDAW------------------------ 
HsMMP20             GDSYPFDGPRGTLAHAFAPGEGLGGDTHFDN-AEKW------------------------ 
HsMMP13             GDFYPFDGPSGLLAHAFPPGPNYGGDAHFDD-DETW------------------------ 
HsMMP1              RDNSPFDGPGGNLAHAFQPGPGIGGDAHFDE-DERW------------------------ 
HsMMP8              GDNSPFDGPNGILAHAFQPGQGIGGDAHFDA-EETW------------------------ 
HsMMP7              GDSYPFDGPGNTLAHAFAPGTGLGGDAHFDE-DERW------------------------ 
GLE_ChrMMP1         SEQQAWERAAEAYAQAIVAQDPNSATGKKLQGILQWRERRRNIYILPPGVKCS--WSGYA 
XP_001694591_Chr3   SEQQAWERAAEAFAQAEVAKNPNDPEMQKLARLLQWRTRRRNLFILPSNVRCS--WAGYA 
BAB68383_ChrMMP2    AEMSAVERAAEAFAQQIVAKDPNSADGRKLQAILQWRERRRNIYVLPPGSSCAHSWPAIA 
                                                                                 
Prim.cons.          GDGEPFDGPLGTLAHAFSPTSG2NGRFHLDA4DENWRERRRNIYILPPGV3CSHSW3GYA 
 
                           370       380       390       400       410       420 
                             |         |         |         |         |         | 
ACU24527_Gm         -LLPSENASLS---K-----DDGVLDLETAAMHQIGHLLGLDHSHKE--DSVMYPYILSS 
Slti114_Gm          -LLPSENATLS---K-----DDRVLDLETVAMHQIGHLLGLEHSPKE--DSVMYPYILSS 
GmMMP2              -ALPSENGRLS---W-----EEGVLDLESAAMHEIGHLLGLDHSNKE--DSVMYPCILPS 
ACJ84310_Mt         -TEK--------------------LDLETAAMHQIGHLLGLEHSSDS--KSIMYPTILPS 
MtMMPL1             -TIRLEAS--------------KVWDLETVAMHQIGHLLGLDHSSDV--ESIMYPTIVPL 
NtMMP1              -VIDGVPIVEGNFFS-----ILSAVDLESVAVHEIGHLLGLGHSSVE--DSIMFPSLAA- 
NMMP1_Nb            -VIDGAPIVEGNFFS-----ILSAVDLESVAVHEIGHLLGLGHSSVE--DSIMFPSLAA- 
LeMMP1_Sl           -VIDGAPIVDGNFFS-----ILSAVDLESVAVHEIGHLLGLGHSSVE--DAIMYPTLGA- 
SlMMP2              -VVDGVPVNEGNFFS-----ILSAVDLESVAVHEIGHLLGLGHSSVE--DSIMYPSLES- 
PtMMP1              -VVTGDVRTS----S-----LTTAVDLESVAVHEIGHLLGLGHSSVE--ESIMYPTISS- 
PtMMP2              -VVTDDVRTS----T-----LTSAVDLESVAVHEIGHLLGLGHSSVE--ESIMYPSISS- 
VvMMP1              -VATGDVTTS----S-----ISSAIDLESVAVHEIGHLLGLGHSSVE--EAIMYPTITS- 
VvMMP2              -VATGDVTTS----S-----ISSAIDLESVAVHEIGHLLGLGHSSVE--EAIMYPTITS- 
BoMMP1              -IVS-GEGGDG-FLT-----ERAAVDLESVAVHEIGHLLGLGHSSVQ--DSIMFPTIST- 
At3-MMP             -IVS-GEGGDG-FIS-----VSEAVDLESVAVHEIGHLLGLGHSSVE--GSIMYPTIRT- 
At2-MMP             -VVS-GD-LDS-FLS-----VTAAVDLESVAVHEIGHLLGLGHSSVE--ESIMYPTITT- 
At5-MMP             -LISNGEISRR-ILP-----VTTVVDLESVAVHEIGHLLGLGHSSVE--DAIMFPAISG- 
HvMMP1              -VA--DGQGGD---A-----PG-AVDLESVAVHEIGHLLGLGHSSVQ--GAIMYPTIRT- 
ZmMMP1              -VAGSDVSRSS---A-----TG-AVDLESVAVHEIGHLLGLGHSSVP--DAIMYPTIRT- 
OsMMP1              -VASGDVSTSS---S-----FGTAVDLESVAVHEIGHLLGLGHSSVP--DSIMYPTIRT- 
OsMMP2              -VAGGDVTRAS---S-----NA-AVDLESVAVHEIGHILGLGHSSAA--DSIMFPTLTS- 
HvMMP2              -VAGGDVSRAS---L-----DA-AVDLESVAVHEIGHLLGLGHSSVE--GAIMYPTITS- 
ZmMMP2              -DASGDVARAA---S-----DV-AVDLESVAVHEIGHLLGLGHSAEP--AAIMFPTITS- 
Pta1-MMP            -TV--DLSSDS---A-----AT-AIDLESIATHEIGHLLGLGHTTEK--AAVMYPSIAP- 
PtMMP3              -ALDFETVKSR----------V-AVDLESVATHEIGHILGLAHSSVK--EAVMYPSLSP- 
VvMMP4              -TVDFESEKSR----------V-AVDLESVATHEIGHILGLAHSSVK--EAVMYPSLSP- 
VvMMP3              -AVDLESEKST----------V-AIDLESVATHEIGHLLGLAHSPVK--ESVMYPSLKP- 
At4-MMP             -AVDFDEEKSS----------V-AVDLESVAVHEIGHVLGLGHSSVK--DAAMYPTLKP- 
At1-MMP             -IVDDDLKGSSE---------V-AVDLESVATHEIGHLLGLGHSSQE--SAVMYPSLRP- 
OsMMP3              -AVDFDVDATAS-----------AIDLESVATHEIGHVLGLGHSASP--RAVMYPSIKP- 
HvMMP3              -ALDFAGETKAS---------A-AIDLESVATHEIGHVLGLGHSTSP--QAVMYPSIKP- 
HvMMP4              -AVG-DLDAAGA---------G-AVDLESVATHEIGHVLGLAHSSAP--DAVMYPSLKP- 
SMEP-1              -VASGDVTKSP---------VTSAFDLESVAVHEIGHLLGLGHSSDL--RAIMYPSIPP- 
PtMMP6              -ST--NPAMD-------------QIDLESVAVHEIGHLLGLAHSSDS--NAVMYPSIAA- 
PtMMP7              -ST--DPAMD-------------QIDLETVTVHEIGHLLGLYHSKDHP-EAIMYPTTQR- 
PtMMP8              -SE--NPGPN-------------QMDLESVAVHEIGHLLGLDHNDDPNADAIMSSGIPS- 
VvMMP6              -SI--GAVPN-------------AMDLETVALHEIGHLLGLGHSSVQ--NAIMFPSISS- 
VvMMP7              -SI--GAVPN-------------AMDLETVALHEIGHLLGLGHSSVQ--NAIMFPSIST- 
VvMMP5              -VV--GAVAG-------------AFDVETVALHEIGHLLGLGHSSVE--GAIMFPTIAY- 
VvMMP11             -VI--GAVAN-------------SMDLQTVARHEIGHLLGLAHTPVQ--EAIMYAIISP- 
Cs1-MMP             -SV--GAISG-------------YFDVETVALHEIGHILGLQHSTIE--EAIMFPSIPE- 
HsMMP20             -TM-----------------GTNGFNLFTVAAHEFGHALGLAHSTDP--SALMYPTYKYK 
HsMMP13             -TS-----------------SSKGYNLFLVAAHEFGHSLGLDHSKDP--GALMFPIYTYT 
HsMMP1              -TN-----------------NFREYNLHRVAAHELGHSLGLSHSTDI--GALMYPSYTF- 
HsMMP8              -TN-----------------TSANYNLFLVAAHEFGHSLGLAHSSDP--GALMYPNYAFR 
HsMMP7              -TDG----------------SSLGINFLYAATHELGHSLGMGHSSDP--NAVMYPTYGNG 
GLE_ChrMMP1         DVTCTSATCSAYVRG------YSDTNAMQVIMHEAMHNYGLEHAGRGTLEYGDATDVMGD 
XP_001694591_Chr3   DVTCTSATCSAYVRG------YGSATTPHVVIHEVMHNYGLEHAGRGFVEYGDQTDVMGD 
BAB68383_ChrMMP2    ESLCTSATCGVFVDSSTLLPNAAAPRPPHILMHEMLHVLGLTHAGRGLKEAGDPTDIMGT 
                                                    *:  *  *: *           .      
Prim.cons.          DVVDGDVTTSSNFFSSTLLPITSAVDLESVAVHEIGHLLGLGHSSVE542AIMYPTISPS 
 
                           430       440       450 
                             |         |         | 
ACU24527_Gm         QSQQRKVQLSNSDKANIHLQFAKHDSDLTSPN 
Slti114_Gm          Q--QRKVKLSNSDKANIHLEFAKHDS------ 
GmMMP2              H--QRKVQLSKSDKTNVQHQF----------- 
ACJ84310_Mt         Q--QKKVQITDSDNLAIQKLY----------- 
MtMMPL1             H--QKKVQITVSDNQAIQQLY----------- 
NtMMP1              G--TRRVELANDDIQGVQVLYGSNPN------ 
NMMP1_Nb            G--TRRVELANDDIQGVQVLYGSNPN------ 
LeMMP1_Sl           G--TRRVELRNDDILGVQELYGSNPN------ 
SlMMP2              G--IRRVELVEDDIKGVQELYGSNPN------ 
PtMMP1              R--TKKVELADDDIQGIQVLYGSNPN------ 
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PtMMP2              R--TRKVELATDDIEGIQTLYGSNPN------ 
VvMMP1              R--TKKVELASDDIQGIQELYGSNPN------ 
VvMMP2              R--TKKVELASDDIQGIQELYGSNPN------ 
BoMMP1              G--RRKVDLHSDDVEGVQYLYGSNPN------ 
At3-MMP             G--RRKVDLTTDDVEGVQYLYGANPN------ 
At2-MMP             G--KRKVDLTNDDVEGIQYLYGANPN------ 
At5-MMP             G--DRKVELAKDDIEGIQHLYGGNP------- 
HvMMP1              G--TRKVDLESDDVQGIQSLYGTNPN------ 
ZmMMP1              G--TRKVELEADDVQGIQSLYGSNPN------ 
OsMMP1              G--TRKVDLESDDVLGIQSLYGTNPN------ 
OsMMP2              R--TKKVNLATDDVAGIQGLYGNNPN------ 
HvMMP2              R--TQKVELANDDVVGIQSLYGGNPN------ 
ZmMMP2              R--TSKVDLAQDDVAGIQNLYGGNPN------ 
Pta1-MMP            R--TRKVDLVLDDVDGVQYVYGANPN------ 
PtMMP3              R--SKKVDLKIDDVNGVQALYGSNPN------ 
VvMMP4              R--RKKVDLKRDDVEGVQALYGPNPN------ 
VvMMP3              R--AKKADLKLDDIEAVQALYGSNPN------ 
At4-MMP             R--SKKVNLNMDDVVGVQSLYGTNPN------ 
At1-MMP             R--TKKVDLTVDDVAGVLKLYGPNPK------ 
OsMMP3              R--EKKVRLTVDDVEGVQALYGSNPQ------ 
HvMMP3              L--EKKADLTVDDVEGVQLLYGSNPD------ 
HvMMP4              R--TRKAELTLDDVRGVQALYGSNPR------ 
SMEP-1              R--TRKVNLAQDDIDGIRKLYGINP------- 
PtMMP6              G--TKKRNLAQDDIDGIHALYGN--------- 
PtMMP7              G--SKKRDLAQDDIDGIHALYSN--------- 
PtMMP8              G--IAKRDLRADDVQGVRALYGFAN------- 
VvMMP6              G--VTKG-LHEDDIQGISALYNR--------- 
VvMMP7              G--VTKG-LHEDDIQGIRALYNR--------- 
VvMMP5              G--VTKG-LNEDDIQGIQALY----------- 
VvMMP11             G--VTKG-LNQDDIDGIRALYTG--------- 
Cs1-MMP             G--VTKG-LHGDDIAGIKALYRV--------- 
HsMMP20             N--PYGFHLPKDDVKGIQALYGPRKVFLGKPT 
HsMMP13             G--KSHFMLPDDDVQGIQSLYGPGDE---DPN 
HsMMP1              ---SGDVQLAQDDIDGIQAIYGRSQN----PV 
HsMMP8              E--TSNYSLPQDDIDGIQAIYGLSSN----PI 
HsMMP7              D--PQNFKLSQDDIKGIQKLYGKRSN------ 
GLE_ChrMMP1         FNKAGKGLLCPNAPNMYRIGWAKPINEPG--- 
XP_001694591_Chr3   YSKASSGLLCPNAPNMYRIGWAKPLNEPG--- 
BAB68383_ChrMMP2    FGGAGRGLLCPNAPNMYRIGWAKPINEPG--- 
                            :  .        :                                        
Prim.cons.          GSKTRKVDLAQDDIQGIQALYGSNPNEPG3PN    
 

Fig.S 1.  Multiple alignment of 49 selected MMPs from human, algae and 14 flowering 
plants spanning the cysteine switch and Met turn. Alignment was performed with ClustalW. 
Accession numbers are listed in section 2.10. 
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Table. S 1. List of primers used in this study. Primer names, sequences and internal ID 
number are included in the table. Introduced restriction sites are shown in bold italics.  
 

Primers  Sequence 5'--3' 
IPAZ 
ID 

At1-MMP Fwd CGATTCGGTTACGTCAATGAT #215 

At1-MMP Rev CACGGTTCCATTTCGGTTTA #216 

At2-MMP Fwd CAACGGTACTTCGTTGATGC #207 

At2-MMP Rev  GAAGTTTAACGCGGTGACG #208 

At3-MMP Fwd GCGGTAGGAAAACCTTCGAG #211 

At3-MMP Rev  TGATGTCAGAGGTCGAGA ACC #212 

At4-MMP Fwd CGGTGATCCCAGTATCCTTC #213 

At4-MMP Rev  GCCACAGATTCCAAA TCGAC #214 

At5-MMP Fwd GCC GAA  ACG GAA ACG AGA #209 

At5-MMP Rev  CATGCGCTA ATGTTCCCA TA #210 

N582450LP   AGAGTGAAGTTTAACGCGGTG  #217  

N582450RP TGAATTCAATAACTCCAAATTTATAAAG #218 

GABI_416E03LP  TTTCCATTGGAATCATTCACC  #226 

GABI_416E03RP TTACGTTTCCCTGTCGTGATC #227 

N103532_LP TGAGTTGAGAGATCAAACCCG   #390 

N103532_RP CGACGATATTCTCAAGAACGC #391 

N115923_LP GAACCTTCTACCGAGGAATGG  #392 

N115923_RP TTTAACCGGTCCTTTACCACC   #393 

GABI_075C07LP GTCGAATCCAAATTTGGTGTG   #224  

GABI_075C07RP CATCGGCTAGATTTGTCGAAG #225  

S032466.54LP CTGCCTAATGGGCTATGTCAG #292 

S032466.54RP  TTGGAGGTGACGTTTGATTTC  #293 

S032466.55LP  AGCCTTTTGGAAAACGATAGC  #294 

S032466.55RP  ATCTCCCGTAGCTTCTTCTCG  #295 

N619909 LP  CGCCGCAGAATAATTTAACAG    #219   

N619909 RP CCTAAGAAACTACCATTAATGATGCTC                   #221  
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N593137 LP CGCCGCAGAATAATTTAACAG  #219   

N593137 RP  TGTTGTATGTGATGACTTCGTAAGTC #220 

N656052LP  AAA TCG TCA GTG  CAA TTA CCG  #288 

N656052RP  TCG AAC TAA GCC  GAG  TGA AAC  #289 

N660426LP  ATGTTCACCGGAGAAAAATCC   #290 

N660426RP  TCAGAAAATGGTTTCTCTCGG  #291 

Spm32 TACGAATAAGAGCGTCCATTTTAGAGTGA #443 

LBb1   GCGTGGACCGCTTGCTGCAACT LBb1 

GABI_LB   CCCATTTGGACGTGAATGTAGACAC #222  

GABI_RB CCAAAGATGGACCCCCACCCAC #223 

At1g24140_MMP3_F  AGG GAT CCT TGG ATG GTG AGG ATT TGT G #447 

At1g24140_MMP3_R GCA AGC TTG CAT GAA TGA AGA ACC AAT CT #448 

At1g70170_MMP2_F ATG GAT CCA ATC CGA AAA CCA CCA TGA G #449 

At1g70170_MMP2_R 
CGA AGC TTC GAA ATC AAA CAT AGG TAT AGG 
ACA #450 

MMP2FL_Fwd AAT CCG AAA ACC ACC ATG AG #511 

MMP2FL_Rev CGA AAT CAA ACA TAG GTA TAG GAC A #512 

MMP3FL_Fwd TCT TCG CTC CTT CTC CAG TC #509 

MMP3FL_Rev TGC ATG AAT GAA GAA CCA ATC T #510 

Kan1 AGT TCC TCT TCG GGC TTT TC  #300 

Kan2 ACC GCT TAA AAG ATA CG  #301 

Pro MMP2_fwd ATG GAT CCT GGT TCT TCC CTA ACT CCA C #555 

Pro MMP2_rev CGA AGC TTC TAC GGT AAG AAC CAC AAG A #556 

MMP3PRO_fwd AGG GAT CCG GTT TCT ATA CAA ACT CCT C #557 

MMP3PRO_rev GCA AGC TTC  TAC ACT AAA TAC AAA AAT AAT C #558 

MPK6_LP TCA TCT TCA TCT CCC AAA TGC  #559 

MPK6_RP TTA TCC GAA GAA CAT TGC CAG #560 

MPK3_LP ATT TTT GTC AAC AAT GGC CTG  #561 
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MPK3_RP TCT GCC TTT TCA CGG AAT ATG #562 

GFP-SalI CGC GTC GAC CAT GGT GAG CAA GGG CGA GGA #631 

GFP-Xho3 CCG CTC GAG GTC TTG TAC AGC TCG TCC ATG C #632 

At2-MMP-Xho3 
CCG CTC GAG CGA AAT CAA ACA TAG GTA TAG 
GAC A #635 

MatMMP2_BamHI CGG GAT CCG ACG TGG TCA ACG GTA CTT CG #633 

MatMMP2_HindIII CCC AAG CTT GAC CGT  CGA TTC TCC AGG CGG C  #634 

HM280 Fwd AAC GAT CAC GAC AGG GAA AC  #646 

HM280 Rev CGA CGG TTG ACA ACA AGA GA  #647 
 
 

 
 
Fig.S 2. Identification of homozygous T-DNA insertion line N582450 (at2-mmp, HM-257). 
Genomic DNA was extracted and amplified using REDExatract-N-Amp PCR kit. Size of the 
PCR products is shown at the right side. A, PCR amplification using the gene specific primer 
LP (#217) and RP(#218). B, PCR confirmation of T-DNA insertion using a combination of 
the border primer LBb1 and gene specific primer RP (#218). LP, left primer; RP, right 
primer; LB, Left border. 
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Fig.S 3. Identification of homozygous T-DNA insertion line N348998 (at2-mmp, HM-280). 
Genomic DNA was extracted and amplified using REDExatract-N-Amp PCR kit. Size of the 
PCR products was shown at the right side. A, PCR amplification using the gene specific 
primer LP (#226) and RP (#227). B, PCR confirmation of T-DNA insertion using a 
combination of the border primer LB (#222) and gene specific primer RP (#227). LP, left 
primer; RP, right primer; LB, Left border. 
 

 
 

Fig.S 4.  Identification of homozygous T-DNA insertion mutant line N115923 (at3-mmp, 
HM-402). Genomic DNA was extracted and amplified using REDExatract-N-Amp PCR kit. 
Size of the PCR products was shown at the right side. A, PCR amplification using the gene 
specific primer LP (#392) and RP (#393). B, PCR confirmation of T-DNA insertion using a 
combination of the border primer Spm32 (#443) and gene specific primer RP (#393). LP, 
left primer; RP, right primer; LB, Left border. 
 

 
 

Fig.S 5. Identification of homozygous T-DNA insertion mutant line N103532 (at3-mmp, 
HM-411). Genomic DNA was extracted and amplified using REDExatract-N-Amp PCR kit. 
Size of the PCR products was shown at the right side. A, PCR amplification using the gene 
specific primer LP (#390) and RP (#391). B, PCR confirmation of T-DNA insertion using a 
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combination of the border primer Spm32 (#443) and gene specific primer RP (#391). LP, 
left primer; RP, right primer; LB, Left border. 
 

 
 

Fig.S 6. Identification of homozygous T-DNA insertion mutant line N327098 (at4-mmp, 
HM-268). Genomic DNA was extracted and amplified using REDExatract-N-Amp PCR kit. 
Size of the PCR products was shown at the right side. A, PCR amplification using the gene 
specific primer LP (#224) and RP (#225). B, PCR confirmation of T-DNA insertion using a 
combination of the border primer LB (#222) and gene specific primer RP (#225). LP, left 
primer; RP, right primer; LB, Left border. 
 

 

Fig.S 7. Absence of At2-MMP transcript in T-DNA insertion mutants. Primer pair #511 and 
#208 (Table S1) were used for the RT-PCR using the samples infected with B. cinerea for 48 
h from wild-type Col-0 plant and at2-mmp mutants lines (HM-257 and HM-280). UBQ5 was 
used as an internal control. 
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Fig.S 8. Expression profile of At-MMPs in Arabidopsis leaves and roots after the MAMP 
flg22 treatment. Three-week-old Col-0 seedlings grown on the ATS medium were sprayed 
with 1 μM flg22. The mock treatment was sprayed with ddH2O. Leaf and root samples were 
harvested separately at the indicated time points after flg22 treatment and used for extraction 
of total RNA. RT-PCR was performed using UBQ5 as an internal control. min: minutes. 
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Fig.S 9. at2-mmpat3-mmp double mutants F3-140, F3-153, F3-168, F3-142, F3-148, F3-164, 
F3-103, F3-112, F3-113 showed increased susceptibility to the necrotrophic pathogen B. 
cinerea. The rosette leaves were detached from 6-week-old plants and placed into plastic box 
containing 0.5% H2O-Agar. The detached leaves were inoculated by placing 5 μL spore 
suspension (5×104 conidiospores/mL) on the middle vein. The photograph was taken at 2 
days after inoculation. The lesion size was measured by Image J. A, Lesion diameters 
formed in leaves of double mutants F3-XX, parents line at2-mmp (HM-280), at3-mmp (HM-
411) and wild type Col-0 two days after inoculation with B. cinerea. Data represent average 
± SE of at least of 20 lesions. Asterisks indicate significance difference between the mutants 
and wild-type plants according to Students’s t-test ((P≤ 0.01) 
B, Disease symptoms on detached leaves of double mutants, the parental single mutant at2-
mmp (HM-280), at3-mmp (HM-411) and Col-0 plants two days after infection.  

                         
Fig.S 10  Recombinant Mat-MMP2 protein induced ROS production in Arabidopsis. Leaf 
disks were cut from seven-week-old soil-grown Arabidopsis plants under short day 
conditions. ROS production was measured in relative light units (RLU) in leaves disk after 
adding Tris-HCl, 500 nM flg22, 0.1 μM Mat-MMP2, 0.1 μM heat-inactivated Mat-MMP2 or 
0.1 μM empty vector-derived recombinant protein (Thioredoxin-His-S tag). The Heat 
inactivation of Mat-MMP2 was done by boiling at 100 °C for 10 minutes. Results are mean 
± SE (n = 12). 
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Fig.S 11  Mat-MMP2-induced ROS was abolished in fls2-17 and bak1-3 mutants. Leaf disks 
were cut from seven-week-old soil-grown Arabidopsis plants under short day conditions. 
Oxidative burst was measured in relative light units (RLU). Results are mean ± SE (n = 
12).A, flg22 failed to triggered ROS production in the flg22 receptor mutant fls2-17. B, Mat-
MMP2 protein (0.1 μM) triggers ROS production in Col-0 and efr-1 mutants but not in fls2-
17 and bak1-3 mutants. 
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