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1. INRODUCTION 

1.1. Discovery of MIF 

Macrophage migration inhibitory factor (MIF) is one of the oldest known 

immunological mediators. The name macrophage migration inhibitory factor was coined 

in 1966 after the observation that a soluble material released by sensitized T-lymphocytes 

was able to inhibit the random migration of peritoneal exudate macrophages which was 

characterized (Bloom and Bennett 1966; David 1966). After almost two decades in 1989, 

the human protein was successfully cloned (David 1966; Weiser et al. 1989) and within a 

few years, both bio-active MIF protein and a neutralizing monoclonal antibody were 

produced, and a proinflammatory profile for MIF action was emerged (Bernhagen et al. 

1994). 

A separate line of investigation that aimed at identifying novel mediators which 

could regulate glucocorticoid action at the systemic level, led to the discovery of an 

apparently novel 12.5 kD protein released by cells of the anterior pituitary gland which 

was finally identified as MIF (Bernhagen et al. 1993). Intraperitoneal injection of 

lipopolysaccharide in mice resulted in a dramatic fall in the pituitary content of MIF and 

a concomitant increase in plasma level of this factor followed by a gradual elevation of 

MIF mRNA expression in pituitary tissue. MIF was thus rediscovered as a pituitary-

derived mediator of systemic stress response (Bucala 1996). 

1.2. MIF gene and protein structure 

Only one MIF gene is found in the human genome located on chromosome 22. 

The human MIF gene contains three short exons and two introns. Its 5’ regulatory region 

contains several consensus DNA-binding sequences for transcription factors, notably 

activator protein 1 (AP1) and nuclear factor-κB (NF-κB). However, little is known about 

the relevance of these putative DNA-binding sites in the regulation of expression of the 

human MIF gene. Searching of the human genome for homologues of MIF indicated that 

D-dopachrome tautomerase (DDT) is the only gene with marked homology to MIF 
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(Esumi et al. 1998). As both genes are located relatively close on chromosome 22, it was 

speculated that the MIF and DDT genes are duplications of a common ancestral gene that 

have evolved to have different biological functions (Calandra and Roger 2003). All 

mammalian MIFs (human, mouse, rat and cattle) have ~ 90% homology, and homologues 

of mammalian MIF have been found in chicken, fishes, parasites and plants. 

Conservation of the MIF gene across species indicates that MIF must have important 

biological functions. The cDNA for MIF encodes a 114-amino acid protein with an 

apparent molecular weight of 12.5 kD (Fig. 1.1.). 

MPMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSEPCALCS

LHSIGKIGGAQNRSYSKLLCGLLAERLRIS PDRRVYINYYDMNAANVGWNN STFA

β1 β2 β3 β4

β5 β6 β7

α1

α2  

Fig. 1. Secondary structure of the human MIF monomer. The amino acid sequences 

forming the β sheets and the α helices are underlined. 

The unique ribbon structure of rat and human MIF was defined using X-ray 

crystallography (Sugimoto et al. 1996; Sun et al. 1996a; Suzuki et al. 1996) (Fig. 1.2.). In 

addition, solution conformation data have been obtained by two-dimensional NMR 

(Muhlhahn et al. 1996). While the tertiary structure of the MIF monomer may resemble 

that of the IL-8 dimer and major histocompatibility complex (MHC) structures, the 

folding of MIF is unique. 
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Fig. 2. Three-dimensional structure of MIF monomer (Kleemann et al. 2000b). 

Structural data show that this cytokine exists both as a trimer in the crystal form 

(Sun et al. 1996b) and as a dimer in solution (Muhlhahn et al. 1996). Recently, cross-

linking experiments have provided evidence that under physiological conditions MIF 

exists as a mixture of monomers, dimers and trimers, the monomers being the major 

species (Mischke et al. 1998). MIF monomer consists of a core of four-stranded β-sheet 

flanked by two anti-parallel α-helices and a further three very short β-strands. The short 

β-strands extend the core four-stranded β-sheet of a neighboring monomer on either side, 

to create a seven stranded β-sheet, thus linking the monomers together into the trimer 

(Tan et al. 2001). Several hydrogen bonding sites between the monomers, and a 

hydrophobic core act to stabilize the MIF trimer. The C-terminal domain is believed to be 

important for stable trimer formation (Bendrat et al. 1997). A channel is formed in the 

centre of the trimer. This channel has a dimension varying from 4 Å to 15 Å in diameter 

and is predominantly lined with hydrophilic atoms which could possibly interact with 

negatively charged moieties (Baugh and Bucala 2002). 
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Fig. 3. Top view of the MIF trimer with the central channel (Tan et al. 2001). 

While its primary sequence is unrelated to that of other proteins, the three 

dimensional crystal form of human MIF is structurally homologous to the small bacterial 

enzyme 4-oxalocrotonat-tautomerase (4-OT), 5-carboxymethyl-2-hydroxymuconat-

isomerase (CHMI) and chorismat-mutase (Chook et al. 1994; Subramanya et al. 1996). 

The structural similarity between MIF and 4-OT or CHMI also extends to the enzymatic 

active site. Each protein has an N-terminal proline with an unusually low pKa that acts to 

facilitate proton transfer in the substrate (Stamps et al. 1998). 

1.3. Enzymatic activity of MIF 

The three dimensional structure and its resemblance to prokaryotic enzymes led to 

the observation that MIF possesses enzymatic activity. Thus, MIF has been reported to 

have two different catalytic activities: tautomerase (Rosengren et al. 1996); (Bendrat et 

al. 1997; Rosengren et al. 1997; Swope et al. 1998) and thiol-protein 

oxidoreductase(Kleemann et al. 1998a; Kleemann et al. 1999; Kleemann et al. 1998b). 

Therefore, MIF not only shares a three-dimensional architecture with several microbial 

enzymes, but also is itself an enzyme. To what extent these enzymatic functions have 
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physiological relevance is not known, because a natural substrate for MIF enzymatic 

activity was not yet found. 

1.3.1. Tautomerase activity 

MIF tautomerase activity was discovered during the investigation of melanin 

biosynthesis (Zhang et al. 1995), which involves the conversion of 2-carboxy-2,3-

dihydroindole-5,6-quinone (dopachrome) into 5,6-dihydroxyindole-2-carboxylc acid 

(DHICA). Subsequent studies revealed that MIF catalyze tautomerisation of the non-

physiologic substrates, D-dopachrome and L-dopachrome methyl ester (Rosengren et al. 

1996). The first proline (Pro-1) appears to be a critical residue for enzymatic activity as 

replacement of Pro-1 with serine or glycine eliminates the tautomerase activity (Bendrat 

et al. 1997; Swope et al. 1998). Current data support the idea of a correlation between 

tautomerase activity and pro-inflammatory functions of MIF  and a lot of efforts were 

employed in developing molecules that can inhibit the tautomerase activity (Dios et al. 

2002; Lubetsky et al. 2002; Swope et al. 1998). In an attempt to identify natural ligands 

for MIF, the keto-enol isomerizations of p-hydroxyphenylpyruvate (HPP) and 

phenylpyruvate were discovered to be catalyzed by MIF (Rosengren et al. 1997). The 

separate localization of these substrates from MIF as well as the kinetic parameters for 

the tautomerization reaction suggests that these molecules are unlikely to be 

physiological substrates for MIF (Swope et al. 1998). Tautomerase activity is an 

evolutionarily ancient phenomenon, which early life forms presumably utilized for 

synthesis, but there is no evidence that modern species use this synthetic pathway. 

1.3.2. Thiol-protein oxidoreductase activity 

The catalytic thiol-protein oxidoreductase (TPOR) activity of MIF is mediated by 

a Cys57-Ala-Leu-Cys60 (CALC) motif that can undergo reversible intramolecular 

disulfide formation. These residues in the catalytic active site are among the most highly 

conserved residues  and that is a characteristic feature of thiol-protein oxidoreductases, 

such as thioredoxin (Takahashi and Creighton 1996) and protein disulfide isomerase 

(Puig et al. 1994). Oxidoreductase activity is dependent on the formation and reduction of 
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disulfide bridges between the two conserved cysteine residues. Based on this observation, 

MIF was assessed for oxidoreductase activity and was found to promote the reduction of 

the disulfides in insulin and 2-hydroxyethyldisulfide (Kleemann et al. 1998a). Mutation 

of either of this cysteines abrogates the TPOR activity of MIF, while mutation of another 

cysteine, Cys81 is without effect (Kleemann et al. 1998a). Over the years, the 

biochemical and biological evidence for a role of TPOR activity for various MIF 

functions were investigated using the C60SMIF mutant, which has no TOPOR activity. 

Ectopically overexpressed wtMIF inhibits pro-oxidative stress induced apoptosis, while 

the redox-dead C60SMIF does not exhibit this capability (Nguyen et al. 2003b). This 

effect seems to be different in the case of exogenously added recombinant proteins when 

both wtMIF and C60SMIF protect cells from apoptosis at a similar degree. In another 

biological study, C60SMIF showed no activity in the HED transhydrogenase assay and in 

the glucocorticoid overriding assay this mutant had significantly reduced activity when 

compared to wtMIF (Kleemann et al. 1999). MIF’s role in cellular redox regulation 

seems to be connected with the cell signaling. Evidence for this was suggested by the 

finding of an intracellular interaction between MIF and COP9 signalosome JAB1/CSN5 

(Kleemann et al. 2000a). Binding of MIF to JAB1 is dependent on the sequence region 

50-67 of MIF, but it is no requirement for the presence of an intact CXXC motif. The 

redox-dead mutant C60SMIF can bind to JAB1 (Kleemann et al. 2000a) but the JAB1-

antagonistic effects of MIF appear to be CXXC-dependent (Kleemann et al. 2000a). 

MIF’s oxidoreductase activity is likely to play a role in MIF-mediated immune cell 

functions. In contrast to wt MIF, the redox-dead mutant C60SMIF is unable to activate 

macrophages to kill leishmania parasites (Kleemann et al. 1998a). All this data reveals 

the TPOR activity of MIF is not limited to an in vitro function of an evolutionary 

conserved local sequence site, but also as an intracellular property of this factor that is 

involved in the regulation of a variety of cellular processes (Thiele and Bernhagen 2005). 
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1.4. Biological activities of MIF 

1.4.1. MIF regulation of innate immunity via TLR4 expression 

During the development of MIF knock-out mice, it has become apparent that 

these animals are relatively resistant to lipopolysaccharides (LPS) (Bozza et al. 1999). 

Similarly, LPS-induced nuclear factor-κB (NF- κB) activity and steady-state TNF-α 

mRNA levels are markedly reduced by antisense MIF treatment of macrophages. By 

contrast, antisense MIF macrophages generated by transduction of an antisense MIF 

adenovirus or by stable transfection with an antisense MIF plasmid or obtained from 

MIF-knockout, were hyporesponsive to stimulation with LPS and gram-negative bacteria 

(Roger et al. 2003) and exhibited normal responses to other inflammatory stimuli, 

including gram-positive bacteria (Froidevaux et al. 2001). It was then shown that the 

hyporesponsivness of MIF-deficient macrophages to LPS and gram-negative bacteria is 

due to down regulation of TLR4, the signal transduction molecule of the LPS receptor 

complex (Roger et al. 2001; Roger et al. 2003), and is associated with decreased activity 

of the transcription factor PU.1 that is required for optimal expression of the TLR4 gene 

(Roger et al. 2001). Toll-like receptor (TLR) plays an essential role in the innate immune 

response by detecting conserved molecular products of microorganisms (Medzhitov 

2001; Medzhitov et al. 1997). TLR4, for example, is the receptor for LPS, the major 

component of the cell wall of the gram-negative bacteria (Takeda et al. 2003). MIF 

upregulates the expression of TLR4 by acting on the ETS family of transcription factors 

(including PU.1), which are crucial for transcription of TLR4. Therefore, MIF facilitates 

the detection of endotoxin-containing bacteria, enabling cells that are at the forefront of 

the host antimicrobial defense system, such as macrophages, to respond rapidly to 

invasive bacteria. Rapid production of pro-inflammatory cytokines is absolutely essential 

for mounting the host defensive response. Increased susceptibility of MIF-deficient mice 

to infection was associated with reduced plasma levels of the pro-inflammatory cytokines 

tumor-necrosis factor α (TNFα), interleukin 12 (IL-12) and interferon-γ (IFN-γ) , but not 

of nitric oxide (NO), and with higher bacterial counts compared to wildtype mice. 



  Introduction 

 8

This indicates that MIF promotes a protective T helper (TH1)-cell immune 

response against bacteria. 

1.4.2. MIF effects on p53 activity 

p53 is a tumour suppressor gene that encodes a nuclear protein involved in the 

control of cell growth, regulating the entry of the cell into S-phase of the cell-cycle and 

apoptosis. p53 is activated only when cells are stressed or their DNA is damaged. p53 

blocks the multiplication of stressed cells, inhibiting progress through the cell cycle. In 

many cases it causes apoptosis of those cells in an attempt to contain the damage and 

protect the organism. The p53 protein therefore provides a critical brake on tumour 

development, explaining why it is so often mutated and thereby inactivated in cancers 

(Vogelstein et al. 2000). 

Tumour cell lines were found to express high quantities of MIF. One important 

turning point in MIF biology was the finding that MIF negatively regulates the activity of 

the p53 tumor suppressor and hence, apoptosis (Hudson et al. 1999), providing a link 

between MIF, inflammation, cell growth and tumorigenesis. It was reported that the 

proinflammatory function i.e. the production of TNFα, IL-1β and PGE2, and the viability 

of MIF-deficient macrophages were reduced compared to wild-type cells after challenge 

with LPS (Mitchell et al. 2002). Despite the equal level of NO production by MIF-

deficient and wild-type macrophages, NO was thought to be a crucial mediator of 

increased apoptosis of MIF-deficient macrophages stimulated with LPS (Mitchell et al. 

2002). MIF was found to inhibit NO-induced intracellular accumulation of p53 and 

phosphorylation of p53 and therefore, p53-mediated apoptosis (Mitchell et al. 2002). 

Inhibition of p53 by MIF requires serial activation of ERK1/2, PLA2, cyclooxygenase 2 

(COX2) and PGE2 (Mitchell et al. 2002). In agreement with these results, MIF was 

reported to interact with the E2F-p53 pathway to sustain normal and malignant cell 

growth (Petrenko et al. 2003). All these studies have established MIF as an important 

inhibitor of p53-mediated apoptotic processes in macrophages and other cell types and 

have supported the notion that MIF could be a key mediator linking inflammation and 

cancer. Although it was found that MIF inhibition of p53 results in an inhibition of p53 

transcriptional activity, the underlying mechanism by which MIF inhibits p53 tumor 



  Introduction 

 9

suppressor activity and apoptosis has not yet been resolved. It was suggested that the 

redox effects could play a role as MIF reduces oxidative stress-induced apoptosis in 

several cell types, including immune cells (Nguyen et al. 2003b). 

1.4.3. Role of MIF in inflammation 

Increases in hypothalamic-pituitary-adrenal axis activation resulting in the 

production of adrenal glucocorticoids in response to inflammatory stress is well 

documented, as are the suppressive effects of this response on inflammation (Stephanou 

et al. 1992; Yang et al. 1997). Stimulation of the hypothalamus and pituitary by 

circulating proinflammatory cytokines such as IL-6, therefore provoke production of 

glucocorticoids which in turn inhibit the production of IL-6. This comprises a classical 

feedback control loop (Morand et al. 1996). 

MIF is directly proinflammatory by activating or promoting cytokine expression 

(TNF-α (Calandra et al. 1994; Calandra et al. 2000), IL-1β, IL-2 (Bacher et al. 1996), IL-

6 (Calandra et al. 1994; Satoskar et al. 2001), IL-8 (Benigni et al. 2000), IFN-γ (Abe et al. 

2001; Bacher et al. 1996), NO release (Bernhagen et al. 1994; Bozza et al. 1999; Onodera 

et al. 2002), matrixmetalloprotease 2 (MMP-2) (Onodera et al. 2002) expression and 

induction of COX-2 pathway. A surprising observation, which at first seemed to be 

incompatible with the pro-inflammatory features of this cytokine, was that MIF secretion 

was induced rather than inhibited by glucocorticoid hormones (Calandra et al. 1995) and 

MIF was found to override the immunosuppressive effect of glucocorticoids (Bacher et 

al. 1996; Calandra et al. 1995; Mitchell et al. 1999). The counter-regulatory effect of MIF 

was confirmed in mouse models of endotoxaemia (Calandra et al. 1995) and antigen-

induced arthritis (Leech et al. 2000). Similar to glucocorticoids, the circulating 

concentration of MIF is increased during inflammation, infection and stress (Beishuizen 

et al. 2001; Calandra et al. 1995; Calandra et al. 2000). Studies concerning the molecular 

mechanism of MIF and glucocorticods actions showed that MIF antagonizes the effect of 

glucocorticoids via effects on activity of NF-κB. NF-κB is an important regulator of 

inflammatory cytokine gene expression (Barnes and Karin 1997), and several lines of 

evidence suggest that glucocorticoids may inhibit the production of proinflammatory 

mediators such as TNF-α via modulation of NF-κB activity. Glucocorticoids have been 



  Introduction 

 10

proposed to inhibit binding of the p65 subunit of NF-κB to the transcriptional machinery 

of target genes (De Bosscher et al. 2000) and to induce IκB synthesis (Auphan et al. 

1995; Scheinman et al. 1995). Elevation of cytoplasmic IκB inhibits the ability of NF-κB 

to translocate to the nucleus whereas inhibition of NF-κB p65 binding to DNA directly 

inhibits expression of target genes. Thus, by blocking glucocorticoid-induced IκB 

synthesis, MIF promotes the translocation of NF-κB into the nucleus where it activates 

proinflammatory cytokine and adhesion molecule expression (Daun and Cannon 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Glucocorticoids and MIF. Glucocorticoids and MIF are in a tightly regulated 

balance. MIF is secreted upon glucocorticoid induction and then counter regulates glucocorticoid 

effects. This balance might be dysregulated in autoimmune diseases leading to an overexpression 

of MIF and of the proinflammatory cytokines (Denkinger et al. 2004). 
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1.5. MIF-modulated signalling pathways 

1.5.1. MIF induces sustained ERK-1/2 activation 

Studies of intracellular signaling events and proliferation of MIF-stimulated 

quiescent fibroblasts showed that MIF induces rapid (within 30 min) and sustained (up to 

24 hours) phosphorylation and activation of the p44/p42 extracellular signal-regulated 

kinase-1/2 family of the mitogen-activated protein kinase (MAPK) pathway as well as 

cell proliferation (Mitchell et al. 1999). ERK1/2 are proline/serine/threonine kinases, 

components of the Ras-Raf-MEK-ERK MAP cascade. While ERK-1/2 has been 

characterized for its role in growth control, it also activates several downstream effector 

proteins that are involved in the inflammatory response such as transcription factors (c-

myc, NF-κβ, Fos and Ets), cytoskeletal proteins mediating membrane activation and 

phagocytosis. Activation of ERK-1/2 by MIF is protein kinase A dependent and is 

associated with increased cytoplasmic phospholipase A2 (PLA2) enzyme activity. PLA2 

is and important intracellular link in the activation of the proinflammatory cascade, and 

its product, arachidonic acid, is the precursor of prostaglandins and leukotrienes 

(Hayakawa et al. 1993). PLA2 is also a key target of the anti-inflammatory effects of 

glucocorticoids, and ERK-1/2-mediated induction of PLA2 is one mechanism whereby 

MIF could override the immunosuppressive effects of steroids (Mitchell et al. 1999). 

1.5.2. MIF inhibits Jab-1 activity 

An alternative mechanism by which MIF may carry out its cellular actions was 

proposed by Kleeman et al. Yeast two-hybrid system showed that MIF interacts with a 

protein known as Jun-activation domain binding protein-1 (JAB1) or as COP9 

signalosome subunit 5 (CSN5) (Kleemann et al. 2000a). The authors show that MIF is 

taken up into the cells where binds to JAB1 and then negatively affects the function of 

intracellular JAB1. JAB1 activates Jun N-terminal kinase (JNK) to phosphorylate JUN 

and functions as a co-activator of activator protein-1 (AP1), a transcription factor that is 

implicated in cell growth, transformation and cell death. JAB1 also binds and promotes 
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the degradation of p27Kip1, a protein that halts the cell-division cycle. The binding of MIF 

to JAB1 results in a reduced degradation of p27Kip1, and MIF overexpression inhibits the 

growth-promoting properties of JAB1 in fibroblasts (Kleemann et al. 2000a). Because 

JAB1 was shown to be an important regulator of several proinflammatory genes, the 

finding that MIF interacts with Jab-1 seemed to be contradictory to the proinflammatory 

action of MIF. The cell growth-promoting effects of MIF (Hudson et al. 1999; Mitchell et 

al. 1999) would conflict with the proposed role of MIF in the enhancement of p27Kip1-

regulated cell-cycle stasis. However, one characteristic feature of MIF action is its bell-

shaped dose-response curve with respect to several biological phenomena. This implies 

that low versus high levels of MIF may have distinct regulatory effects on cellular 

processes. 

1.6. Direct effects of MIF by means of protein-protein interaction 

Although MIF was one of the first cytokines to be discovered, the understanding 

of its molecular mechanism of action is only fragmentary. Recent work has identified 

CD74, a MHC class II–associated invariant chain, as a cell surface binding 

protein/receptor for MIF (Leng et al. 2003). CD74 expression is required for MIF 

mediated ERK-1/2 phosphorylation, PGE2 production and cell proliferation (Leng et al. 

2003). Because CD74 does not contain an intracellular domain for signal transduction, it 

has been suggested that CD74 could serve as an adaptor molecule which could present 

MIF to other transmembrane proteins in a process possibly involving CD44 (Meyer-

Siegler et al. 2004). 

However, a number of intracellular proteins have been shown to interact with 

MIF, supporting the earlier contention that MIF also possesses intracellular functions 

based on its uptake into numerous immune and non-immune cell-types by non-receptor 

mediated endocytosis (Kleemann et al. 2002), its enzymatic activity and constitutive 

expression profile. In a recent review (Thiele and Bernhagen 2005) it was pointed out that 

several of the MIF-interacting proteins identified to date are redox proteins or proteins 

which are directly connected to redox regulation. In this context, MIF was shown to 

interact with PAG, a thiol-specific antioxidant and low-efficiency peroxidase (Jung et al. 

2001), with hepatopoietin (HPO), a flavin-linked sulfhydryl oxidase (Li et al. 2004) and 
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with insulin, which can be enzymatically reduced by MIF (Kleemann et al. 1998a). 

Insulin colocalizes with MIF in secretory granules of the pancreatic islets and MIF 

regulates glucose-induced insulin release (Waeber et al. 1997). Like HPO and 

thioredoxin, MIF also interacts with JAB1 (Kleemann et al. 2000a), subunit 5 of the 

COP9 signalosome (CSN/CSN5) that was originally identified as a coactivator of 

activator protein 1 (AP-1) transcription. The CSN modulates the ubiquitin-proteasome 

protein degradation pathway and enhances for example degradation of the tumor 

suppressor p53 (Bech-Otschir et al. 2001). More recently, a direct interaction of MIF with 

myosin light chain kinase isoform (MLCK) was identified (Wadgaonkar et al. 2005) 

which may have important implications for the regulation of both non-muscle 

cytoskeletal dynamics as well as pathobiologic vascular events that involve MLCK. 

1.7. Pathophysiological effects of MIF and tissue distribution 

Because of its broad regulatory properties, MIF is a critical mediator of a number 
of immune and inflammatory diseases. In septic shock MIF up-regulates TNF-α, NO, IL-
1, IL-6, IL-8 expression levels and LPS signaling and inhibits the migration of monocytes 
(Bernhagen et al. 1998; Bernhagen et al. 1993; Bloom and Bennett 1966; David 1966; 
Muhlhahn et al. 1996; Tomura et al. 1999; Weiser et al. 1989). The best evidence for a 
role of MIF in chronic inflammation has been gathered for rheumatoid arthritis (RA). It 
was demonstrated that anti-MIF monoclonal antibodies markedly suppressed the 
inflammatory response in a mouse model of human RA (Mikulowska et al. 1997). 
Connective tissue degradation by matrix metalloproteases (MMPs) is a typical 
pathological feature of RA. MIF has been suggested to contribute toward this process via 
up-regulation of MMP-1 and MMP-3 mRNA levels in synovial fibroblasts (Onodera et 
al. 2000). Glucocorticoids repress transcription of the MMP-1 gene by interaction of the 
glucocorticoid receptor with the AP-1 complex (Vincenti et al. 1996). A connection 
between MIF and glucocorticoid/AP-1 interaction is implied by a recent study 
(Chauchereau et al. 2000) showing that JAB1/CSN5 can bind to the glucocorticoid 
receptor. These studies support the concept that MIF is a potent counter-regulator of 
glucocorticoid control of inflammation in general and synovial inflammation in 
particular. Evidence has also been obtained for an involvement of MIF in lung 
inflammation. Significant MIF quantities were found in the alveolar airspaces of patients 
with acute respiratory distress syndrome (Donnelly et al. 1997). MIF augmented 
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proinflammatory cytokine secretion (TNF-α and IL-8) and anti-MIF mAbs significantly 
attenuated TNF-α and IL-8 secretion (Abe et al. 2001). Accumulating data imply that 
MIF could be centrally involved in processes regulating cell proliferation and tumor 
angiogenesis. In murine colon carcinoma cells, cytosolic MIF levels are increased in 
response to growth factors and this was correlated with enhanced proliferation of these 
cells (Takahashi et al. 1998), a notion that was confirmed by the finding that 
overexpression of antisense MIF constructs led to an inhibition of cell proliferation. The 
mechanistic pathway of how MIF may regulate tumor progression and cell proliferation 
is unknown. However, a number of recent observations offer potential molecular 
explanations for the activities of MIF. A direct proliferation-enhancing effect of 
recombinant MIF in quiescent fibroblasts seems to be mediated through ERK1/2 
(Mitchell et al. 1999), while a growth-inhibiting effect seems to be JAB1/CSN5/p27Kip1-
dependent (Kleemann et al. 2000a). Other recent studies suggest that the modulation of 
cell proliferation by MIF could involve a complex regulatory system in which the 
proteins p53, AP1/CSN5 and possibly other signalosome proteins may be involved. 

The potential use of MIF-based therapeutic strategies has recently been 
underscored by successful application of anti-MIF monoclonal antibodies in pre-clinical 
models of sepsis, rheumatoid arthritis and tumorigenesis (Bernhagen et al. 1993; 
Calandra et al. 2000; Mikulowska et al. 1997; Sakai et al. 2003). 
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Table 1. Potential correlations between MIF’s mechanism of action, its biological 

activities and diseases states (from Lue et al. 2002). 
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1.8. Tissue and cellular distribution of MIF 

Cell type    Stimuli   References   
Anterior pituitary 
Corticotropic cells    RF, LPS    Bernhagen et al., 1993; 
         Nishino et al., 1995  
Immune system 
Monocytes/macrophages   LPS, TNFα, IFNγ,  Calandra et.al 1994 

Glucocorticoids      
 TSST-1, exotoxin A  Calandra et al., 1998 

T cells (TH2> TH I), mast cells   αCD3, PMA/ionomycin, PHA  Bacher et al., 1996; 
Eosinophils    PMA, C5a, IL-5   Rossi et al., 1998 
HL-60, myelomonocytic   LPS    Nishihira et al., 1996  
Adrenal gland 
Cortex-zona glomerulosa,   LPS    Bacher et al., 1997 
zona fasciculata            
Lung 
Bronchial epithelium    LPS    Bacher et al., 1997 
Alveolar macrophages       Donnelly et al., 1997  
Kidney 
Tubule epithelial cells, proximal tubules LPS    Imamura, 1996 
Glomerular epithelial cells, endothelium, LPS    Lan et al., 1996 
Kupffer cells 
Tubular epithelial cells   LPS    Lan et al., 1998 
Mesangial cells    LPS, PDGF-AB, IFNγ  Tesch et al., 1998  
Liver 
Hepatocytes surrounding central veins, LPS    Bacher et al,. 1997 
Kupffer cells            
Skin 
Keratinocytes, sebaceous glands,  LPS, croton oil   Shimizu et al 1996/99 
outer root sheath of hair follicle,  UV B    Shimizu et al., 1999 
epidermal layer, endothelial cells  Acute inflammation  Shimizu et al., 1997  
Testis 
Leydig cells        Meinhardt et al.1996/1998 
Pancreas 
Islet β cells    Glucose    Waeber et al., 1997  
Eye 
Corneal epithelial cells       Wistow et al., 1993 
Endothelial cells, lens       Matsuda et al., 1996 
Iris, ciliary epithelium       Matsuda et al., 1996  
Brain 
Cortex, hypothalamus   LPS    Bacher et al., 1998 
Glial cells, ependyma, astrocytes      Suzuki et al., 1999 
Telencephalon            
Bone 
Neonatal calvaries and osteoblasts,  LPS    Onodera et al., 1996  
Fat tissue 
3T3L1 adipocytes   TNF-α    Hirokawa et al., 1997, 1998 
Prostate 
Epithelial cells        Frenette et al., 1998 
         Meyer-Siegler, 1998  
Vasculature 
Endothelial cells    LPS    Nishihira et al., 1998 
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1.9. Aim of the study 

Even after 40 years of research, the molecular mechanism of MIF action remains 

fragmentary understood. Several reports have been published describing the role of MIF 

in inflammatory diseases, including arthritis, glomerulonephritis, peritonitis, and the 

delayed-type hypersensitivity reaction (reviewed in Lue et al. 2002). Clinical evidence 

demonstrates increased MIF expression during inflammatory disease, further supporting 

the potential role of MIF in inflammatory processes. Development of neutralizing MIF 

antibodies has proven to be therapeutically effective in numerous animal models of 

systemic inflammation. This data suggests that blocking MIF activity is a promising 

approach for preventing inflammation. 

Although MIF was shown to interact with several proteins, the biological impact 

of the discovered interaction has not been fully elucidated so far. Thus, this study aimed 

to identify new MIF binding proteins and to reveal the effect on MIF activity. For 

identification of novel MIF-interacting proteins, co-immunoprecipitation and chemical 

cross-linking should be employed, with subsequent validation of the protein-protein 

interaction using in vitro pull-down assay with recombinant proteins. The physiological 

relevance of the verified interactions will be explored by several established MIF 

functional assays, such as chemotaxis, tautomerase assay, glucocorticoids activity assay. 
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2. ABBREVIATIONS 

aa    Amino acid(s) 
Amp    Ampicillin 
AP-1    Activator protein 1 
APS    Ammonium persulphate 
bp    Base pair 
BSA    Bovine serum albumin 
°C    Degree Celsius 
CXXS    Cys-Xaa-Xaa-Cys motif 
cDNA    Complementary DNA 
DAPI    4’, 6’-diamino-2-phenylindole, dihydrochloride 
DCME    L-dopachrome methylester 
DEX    Dexamethasone 
DMEM   Dulbecco’s Minimal Essential Medium 
DMSO    Dimethyl sulfoxide 
DNA    Deoxyribonucleic acid 
DNase    Deoxyribonuclease 
dNTPs    2’-deoxynucleoside-5’-triphosphates 
DTT    Dithiothreitol 
E. coli    Escherichia coli 
et al.    and others 
EDTA    Ethylene diamine tetraacetic acid 
ELISA    Enzyme-Linked-Immunosorbent-Assay 
ERK1/2   Extracellular signal-regulated kinases 
FCS    Fetal calf serum 
g    gram or gravity, depending on the context 
GST    Glutathione S-Transferase 
HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
His    Histidine 
HRP    Horse radish peroxidase 
IPTG    Isopropyl β-D-thiogalactopyranoside 
JAB1    Jun-activation domain-binding protein 1 
JNK    c-Jun N-terminal kinase 
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kb    Kilo base pair 
kD    Kilo Dalton 
LB    Luria Bertani medium 
LPS    Lipopolysaccharide 
M    Molar 
MALDI MS   Matrix-assisted laser desorption ionization MS 
MAPK    Mitogen-activated protein kinase 
MCP-1    Monocyte chemotactic factor 1 
mg    Milligram 
MES    Morpholinoethane sulfonic acid 
MIF    Macrophage migration inhibitory factor 
min    Minute 
ml    Milliliter 
MW    Molecular weight 
NaCl    Sodium chloride 
NHS    Normal horse serum 
NP-40    Nonidet P-40 
OD    Optical density 
PAGE    Polyacrylamide gel electrophoresis 
PBMC    Periferal blood monocyte 
PBS    Phosphate buffered saline 
PCR    Polymerase chain reaction 
PMSF    Phenylmethylsulfonyl fluoride 
RNA    Ribonucleic acid 
RNase    Ribonuclease 
rpm    Revolutions per minute 
RP S19   Ribosomal protein S19 
RT    Room temperature 
SDS    Sodiumdodecylsulphate 
sec    Second 
TAE    Tris-acetate-EDTA 
TBE    Tris-borate-EDTA 
TNF-α    Tumor necrosis factor alpha 
Tris    Tris(hydroxymethyl)-amino-methane 
U    Unit 
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UV    Ultraviolet 
V    Volt 
v/v    Volume per volume 
w/v    Weight per volume 
wt    wild type 
µ    Micro 
µg    Microgram 
µl    Microliter 
µM    Micromolar 
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3. MATERIALS 

3.1. Chemicals 

Acetic acid        Merck, Darmstadt 

Acrylamide 30%      Roth, Karlsruhe 

Agarose       Invitrogen, Karlsruhe 

Bacto-Tryptone      BD Bioscience, Sparks, USA 

Bacto-yeast extract      BD Bioscience, Sparks, USA 

Bromophenol blue sodium salt    Sigma-Aldrich, Steinheim 

Calcium chloride      Merck, Darmstadt 

Chloroform       Merck, Darmstadt 

Brilliant Blue G-Colloidal Concentrate   Sigma-Aldrich, Steinheim 

Dexamethasone      Sigma Aldrich, Steinheim 

2'-Deoxynucleoside 5'-triphosphate    Gibco-BRL, Neu-Isenburg 

Dimethyl sulfoxide      Merck, Darmstadt 

di-potassium hydrogen phosphate    Merck, Darmstadt 

di-sodium hydrogen phosphate    Merck, Darmstadt 

1,4-Dithiothreitol      Roche, Mannheim 

L-dopachrome methyl ester     Sigma-Aldrich, Steinheim 

Ethanol       Sigma-Aldrich, Steinheim 

Ethidiumbromide      Roth, Karlsruhe 

Ethylene diaminetetraacetic acid disodium salt  Merck, Darmstadt 

Formamide       Merck, Darmstadt 

Glutathione       Amersham, Freiburg 

Glycerol       Merck, Darmstadt 

Glycine       Sigma-Aldrich, Steinheim 

Guanidine hydrochloride     Sigma-Aldrich, Steinheim 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid Roth, Karlsruhe 

Igepal CA-630 (NP-40)     Sigma-Aldrich, Steinheim 

Isopropylthio-β-D-galactoside    Serva, Heidelberg 
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Leupeptin       Sigma-Aldrich, Steinheim 

Lipopolysaccharide      Sigma-Aldrich, Steinheim 

Magnesium chloride      Merck, Darmstadt 

Magnesium sulphate      Sigma-Aldrich, Steinheim 

β-Mercaptoethanol      AppliChem, Darmstadt 

Methanol       Sigma-Aldrich, Steinheim 

Morpholinoethane sulfonic acid    Serva, Heidelberg 

Non-fat dry milk      Bio-Rad, München 

Paraformaldehyde      Merck, Darmstadt 

Phenylmethylsulfonyl fluoride    Sigma-Aldrich, Steinheim 

Ponceau S       Roth, Karlsruhe 

Potassium chloride      Merck, Darmstadt 

Rotiphorese Gel 30      Roth, Karlsruhe 

Sodium acetate      Roth, Karlsruhe 

Sodium azide       Merck, Darmstadt 

Sodium chloride      Sigma-Aldrich, Steinheim 

Sodium citrate       Merck, Darmstadt 

Sodium dodecyl sulfate     Merck, Darmstadt 

Sodium periodate      Sigma-Aldrich, Steinheim 

N,N,N',N’-Tetramethylethylenediamin   Roth, Karlsruhe 

Tris(hydroxymethyl)aminomethane    Roth, Karlsruhe 

Triton X-100       Sigma-Aldrich, Steinheim 

Tween-20       Roth, Karlsruhe 

Urea        Merck, Darmstadt 

3.2. Enzymes 

Taq Polymerase      Promega, Mannheim 

T4 DNA Polymerase      Promega, Mannheim 

EcoRI        Promega, Mannheim 

XhoI        Promega, Mannheim 
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NdeI        Promega, Mannheim 

T4 DNA Ligase      Promega, Mannheim 

DNase        Promega, Mannheim 

RNase        Promega, Mannheim 

3.3. Antibodies 

Antibody    Manufacturer    Dilution 

Primary antibodies 

Rabbit α-rat MIF   (Kim 2003)     1:20,000 
Mouse α-MIF    Picower Institute, Manhasset, NY  1:200 
Rabbit α-mouse RP S19  own production of this thesis   1:500 
α-GST-HRP    Amersham, Freiberg    1:5,000 
Rabbit α-mouse Jab-1   Santa Cruz, USA    1:500 
α-Biotin-HRP    Amersham, Freiburg    1:1,500 

Secondary antibodies 

Goat α-rabbit-HRP   ICN, Ohio, USA    1:10,000 
Donkey α-rabbit IgG-Cy3  Chemicon, Hampshire, UK   1:1,000 
Donkey α-mouse IgG-FITC  Dianova, Hamburg    1:1,000 

3.4. Cells 

NIH 3T3 mouse fibroblasts were obtained from the research group of Dr. Oliver 

Eickelberg, Department of Internal Medicine, University of Giessen. 

Human mononuclear cells were isolated from buffy coats kindly provided by the 

Department of Clinical Immunology and Transfusion Medicine, JLU Giessen (Head: 

Prof. Gregor Bein). 

PC12, a cell line derived from a pheochromocytoma of the rat adrenal medulla, 

was obtained from the working group of Prof. Wolfgang Kummer, Department of 

Anatomy and Cell Biology, University of Giessen. 

Rat Sertoli and peritubular cells were isolated and kindly provided by Dr. Ruth 

Müller, Department of Anatomy and Cell Biology, University of Giessen. 
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3.5. Animals 

Adult male Wistar rats were purchased from Charles River Laboratories (Sulzfeld). 

Homozygous MIF knockout mice were kindly provided by Dr. Günter Fingerle-Rowson 

(University Hospital of Cologne, Department of Internal Medicine I). 

Normal mice were obtained from University of Marburg, Department of Anatomy and 

Cell Biology. 

3.6. Kits 

ECL protein biotinylation module    Amersham, Freiburg 

Gel Extraction Kit      Qiagen, Hilden 

Maxiprep Plasmid Purification Kit    Genomed GmbH, Löhne 

Miniprep Kit       Genomed GmbH, Löhne 

PCR Purification Kit      Qiagen, Hilden 

ProFound Sulfo-SBED Biotin Label Transfer Kit  Pierce, Rockford, USA 

Silver staining Kit      Invitrogen, Karlsruhe 

TNF-α ELISA Kit      BD Bioscience, Sparks, USA 

QIAX II DNA extraction Kit     Qiagen, Hilden 

3.7. Cell Culture Media and Antibiotics 

Ampicillin sodium salt     Ratiopharm, Ulm 

Bovine serum albumin (endotoxin free)   Invitrogen, Karlsruhe 

Dulbecco’s Minimal Essential Medium   PAA Laboratories, Cölbe 

Fetal calf serum      Invitrogen, Karlsruhe 

L-Glutamine       PAA Laboratories, Cölbe 

MEM Non Essential Amino Acids    PAA Laboratories, Cölbe 

Penicillin/Streptomycin     PAA Laboratories, Cölbe 

RPMI 1640 medium      PAA Laboratories, Cölbe 

Trypsin       PAA Laboratories, Cölbe 

Ultrasaline A       PAA Laboratories, Cölbe 
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3.8. Equipment 

Biofuge Fresco      Heraeus, Hanau 

Cell culture incubator      Binder, Tullingen 

Clean bench       BDK, Sonnenbühl-Genkingen 

Easypet 4420 Pipette      Eppendorf, Hamburg 

Electronic balance SPB50     Ohaus, Giessen 

Gel Jet Imager 2000      Intas, Göttingen 

Heater Block DB-2A      Techne, Cambridge, UK 

Horizontal Mini Electrophoresis System   PEQLAB, Erlangen 

Microwave oven      Samsung, Schwalbach 

Mini centrifuge Galaxy     VWR International 

Mini-Rocker Shaker MR-1     PEQLAB, Erlangen 

Fluorescent microscope     Carl Zeiss, Jena 

PCR system       Biozyme, Oldendor 

Potter S homogenizer      B. Braun, Melsungen 

Power supply units      Keutz, Reiskirchen 

Pre-Cast Gel System      Invitrogen, Karlsruhe 

SDS gel electrophoresis chambers    Invitrogen, Karlsruhe 

Semi-dry-electroblotter     PEQLAB, Erlangen 

Vertical electrophoresis system    PEQLAB, Erlangen 

Ultrasonic homogenizer     Bandelin, Berlin 

Ultrospec 2100 pro      Biochrom, Cambridge,UK 

Confocal laser scanning microscope TCS SP2  Leica, Wetzlar 

3.9. Miscellaneous 

Avidin beads       Pierce, Rockford, USA 

Bio-Rad Protein Assay     BioRad, München 

Complete Freund's adjuvant     Sigma-Aldrich, Steinheim 

DNA High and Low Mass Ladder    Invitrogen, Karlsruhe 

DNA Ladder (100bp and 1kb)    Promega, Mannheim 
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DAPI        Vector, Burlingame,USA 

Enhanced chemiluminescence (ECL) reagents  Amersham, Freiburg, 

Ficoll-Paque Plus      Amersham, Freiburg 

Glutathione Sepharose 4B     Amersham, Freiburg 

Hoechst 33342      Sigma-Aldrich, Steinheim 

Hybond ECL nitrocellulose membrane   Amersham, Freiburg 

Incomplete Freund's adjuvant    Sigma-Aldrich, Steinhaim 

NuPAGE 4-12% Novex Bis-Tris gel    Invitrogen, Karlsruhe 

Pefabloc SC inhibitor      Serva, Heidelberg 

Protein size markers      Invitrogen, Karlsruhe 

NAPTM-5 Sephadex G-25 column    Amersham, Freiburg 

Sterile plastic ware for cell culture    Sarstedt, Nümbrecht 

Streptavidine beads      Novagen, Darmstadt 

SYBR Green I Nucleic Acid Gel Stain   Roche Diagnostics, Mannheim 

Transwell filter system     Corning, Schiphol, NL 

X-ray Hyperfilm      Amersham, Freiburg 
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3.10. Cloning Plasmids 

1. pCMV-Sport6 (Deutsches Ressourcenzentrum für Genomforschung,) 

 

2. pGEX-4T-2 vector (Amersham, Freiburg) 

pGEX
~4900 bp

pBR322
ori

Bal I

BspM I 
Ptac glutath ione S-transferase

Amp r

lac I q

Nar I

EcoR V 

BssH II 

BstE II 
Mlu I

Apa I 

Tth111 I 
Aat II 

Pst I

p4.5
AlwN I  

pSj10  Bam7Stop7∆

BamH I EcoR I Sma I Sal I Xho I Not I

Leu  Val  Pro  Arg  Gly  Ser  Pro  Gly  Ile  Pro  Gly  Ser  Thr  Arg  Ala  Ala  Ala  Ser
CTG GTT CCG CGT GGA TCC CCA GGA ATT CCC GGG TCG ACT CGA GCG GCC GCA TCG TGA

Stop codon

Thrombin
↓
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3. pET21a(+) (Merck, Bad Soden) 

lacI ( 714- 1793)

ori (3227)

Ap
(3

98
8-

48
45

)

f1 origin (4977-5432)

Sty I(57)
Bpu1102 I(80)

Ava I(158)
Xho I(158)
Not I(166)
Eag I(166)
Hind III(173)
Sal I(179)
Sac I(190)
EcoR I(192)
BamH I(198)

Nhe I(231)
Nde I(238)

Xba I(276)
Bgl II(342)
SgrA I(383)

Sph I(539)
EcoN I(599)

PflM I(646)
ApaB I(748)

Mlu I(1064)
Bcl I(1078)

BstE II(1245)
Bmg I(1273)
Apa I(1275)

BssHII(1475)
EcoR V(1514)
Hpa I(1570)

PshA I(1909)

PpuM I(2171)
Psp5 II(2171)

Bpu10 I(2271)

BspG I(2691)

Tth111 I(2910)

Bst1107 I(2936)

Sap I(3049)
BspLU11 I(3165)

AlwN I(3581)

Bsa I(4119)

Pst I(4303)

Pvu I(4428)

Sca I(4538)

Dra III(5201)

pET21a(+)
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4. METHODS 

4.1. Cell culture and tissue preparation 

4.1.1. NIH 3T3 cell culture 

The cell line was established from disaggregated Swiss albino mouse embryos in 

1962. Morphologically, fibroblasts grow adherently as monolayer with contact inhibition. 

NIH 3T3 mouse fibroblasts were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM), containing 2 mM glutamine supplemented with 10% heat-inactivated fetal calf 

serum, 100 U/ml penicillin/streptomycin, 2.7% ultrasaline A and grown in an incubator 

under 5% CO2 atmosphere at 37°C. Cells were allowed to grow until 80-90% confluency, 

washed twice with PBS and then split at a ratio of up to 1:8 every 2 to 4 days by means of 

detachment using 1 ml Trypsin/EDTA (0.5 g/L Trypsin, 0.2 g/L EDTA) per 75 cm2 

culture flask. Incubation time was 2-3 minutes at 37°C. Trypsin was then inhibited by 

addition of 7 ml 10% FCS containing DMEM medium, and cells were collected by 

centrifugation (30 x g for 10 minutes at RT). The resulting cell pellet was resuspended in 

medium and seeded in new culture flasks. 

4.1.2. Isolation of human blood monocytes 

Human mononuclear cells were isolated from buffy coats (kindly provided by the 

Department of Clinical Immunology and Transfusion Medicine, JLU Giessen) by density 

gradient centrifugation using Ficoll-Paque Plus solution. Buffy coats were diluted 1:1 

with Ca2+/Mg2+ free PBS, overlaid on the Ficoll solution (15 ml Ficoll solution per 30 ml 

diluted blood) and centrifuged at 250 x g for 30 min at RT. Isolated leukocytes were 

washed twice with PBS by mixing one volume of leukocytes with two volumes of PBS 

and centrifuged at 250 x g for 10 minutes. Washed leukocytes were resuspended in 30 ml 

RPMI 1640 medium containing 10% FCS, 1% penicillin/streptomycin, 1% L-Glutamine, 

1% MEM non essential amino acids and cultured overnight on four 78.5 cm2 culture 

dishes at 37°C. Non-adhered cells were discarded and monocytes/macrophages attached 

to the dish were gently washed twice with 10 ml warm (37°C) PBS, detached with a 
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rubber policeman and collected in RPMI 1640 medium containing 0.5% endotoxin-free 

BSA and counted using a hemocytometer. The purity of isolated cells was greater than 

90%. 

4.1.3. Preparation of testis homogenate 

Adult male Wistar rats weigthing 200-250 g and wild-type (MIF+/+) and MIF 

knockout (MIF-/-) mice were used for preparation of total testes homogenate. While 

animals were under deep halothane anesthesia their testes were removed. After removal 

of the capsules the testes were homogenized in ice-cold buffer (10 mM Tris-HCl pH 7.4, 

250 mM sucrose, 1 mM EDTA and 1 mM leupeptin) using a Potter homogenizator. Cell 

debris was pellet by centrifugation at 1,000 x g for 10 min, and the resulting supernatant 

was used as total testis homogenate. Protein concentration was 20 mg/ml as determined 

by Bradford assay (Bradford 1976). 

4.1.4. Isolation of sperm cells from epididymis 

For isolation of sperm cells, adult male Wistar rats were anesthetized and killed 

by CO2 asphyxiation. Testes and epididymes were removed and the caput region was 

separated from the rest of the epididymis. The caput segments were cut in small pieces 

and the epididymal fluid was obtained by rinsing the respective segment in ice-cold 

buffer (10 mM Tris-HCl pH 7.4, 250 mM sucrose, 1 mM EDTA, 1 mM Pefabloc SC 

inhibitor). All successive steps were carried out at 4°C. Caput epididymal sperm cells 

were separated by centrifugation at 600 x g for 10 min and counted.  

4.2. Gel electrophoresis 

4.2.1. Agarose gel electrophoresis 

Agarose gels (2% to 0.8%) were routinely used to separate DNA fragments 

ranging in size from 100 bp to 5 kb. The appropriate amount of agarose was dissolved in 

1x TAE buffer (40 mM Tris-acetate, 1 mM EDTA) by heating in a microwave oven. 

After cooling the gel solution was poured into a gel mold, a comb was inserted in order to 
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generate wells for the samples. After 30-40 min the comb was removed, and the gel 

mounted into an electrophoresis chamber filled with 1x TAE buffer. DNA samples and 

size marker were mixed with an appropriate volume of DNA sample buffer (3% glycerol, 

0.025% bromophenol blue, 0.025% xylene cyanol FF) and pipetted into the wells. The 

gels were run at 100V (2-10V/cm gel) until the bromophenol blue and xylene cyanol dyes 

had migrated considerable distance through the gel. After electrophoresis, the gel was 

immersed in 1x SYBR green staining solution (1:10,000 in 1x TAE buffer) and incubated 

for 30 min at RT with gentle shaking. Occasionally, SYBR green staining solution was 

added directly to the sample (prestaining). The gel was then examined on a 305 nm UV 

transilluminator and photographed using a gel documentation system. 

2.2.2. SDS polyacrylamide gel electrophoresis 

Discontinuous sodium-dodecyl-sulphate (SDS) polyacrylamide gel electro-

phoresis (Laemmli 1970) was performed in order to analyze protein expression in cell 

lysates or tissue samples. An 18% resolving gel solution (375 mM Tris-HCl pH 8.8, 0.1% 

SDS, 18% acrylamide, 0.05% APS, 0.05% TEMED) was poured into the assembled gel 

mold between two glass plates separated by 1 mm thick spacers leaving about 1 cm space 

for the stacking gel solution (125 mM Tris-HCl pH 6.8, 0.1% SDS, 4% acrylamide, 

0.05% APS, 0.1% TEMED). Samples were prepared in l x Laemmli SDS gel-loading 

buffer (62.5 mM Tris pH 6.8, 2% SDS, 5% glycerol, 0.3% bromophenol blue, 0.9% (v/v) 

β-mercaptoethanol) and boiled for 3 min to denature the proteins. After polymerization of 

the stacking gel, the comb was removed and the gel mounted in the electrophoresis 

chamber. Both electrode reservoirs were filled with 1x SDS electrophoresis buffer (25 

mM Tris, 1.44% glycine, 0.1% SDS), the wells were cleaned and samples loaded. 

Electrophoresis was performed at 150 V constant. For the immunoprecipitation samples 

NuPAGE 4-12% precast gradient gels were used, which were run in 1x MES buffer (50 

mM MES, 50 mM Tris, 3.46 mM SDS, 1.025 mM EDTA) at constant 200 V for 35 min. 

After electrophoresis gels were incubated in fixing solution (7% glacial acetic acid in 

40% (v/v) methanol) for 1 h. Staining solution was prepared by mixing 4 parts of 1 x 

Brilliant Blue G-Colloidal with 1 part methanol, and the gel was incubated for 1h with 

gentle shaking. The gel was then rinsed for 60 sec with destaining solution I (10% acetic 
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acid in 25% (v/v) methanol) to reduce the background staining, followed by destaining 

solution II (25% methanol) until a sufficient destaining level was reached. For 

documentation purposes the gel was scanned and dried between cellophane on air. 

4.2.3. Western blotting 

Proteins were separated on a 15% or 18% SDS-PAGE gel and electro-transferred 

to a nitrocellulose membrane at 100 mA per gel/membrane for 90 min using a semi-dry 

blot system. After blotting, the membrane was incubated in blocking buffer (5% (w/v) 

non-fat dry milk in PBS containing 0.1% Tween-20) for 1 hour at RT. Subsequently, the 

membrane was incubated overnight at RT or 4°C with the first antibody diluted in 

blocking buffer or as stated in the text. After washing (3 x 10 min) with PBS-Tween, the 

membrane was incubated for 1 hour at RT with a secondary antibody diluted in blocking 

buffer. Three washing steps (10 min each) with PBS-Tween were performed before the 

membrane was incubated with ECL Detection Reagent (1:1 mixture (v/v) of Reagent 1 

and Reagent 2) for 60 sec. The membrane was wrapped in plastic foil, exposed to X-ray 

film for 1-15 min, which was subsequently developed. 

4.3. Far-Western blotting 

Total rat testis homogenate (rat TH), mouse TH from normal and homozygous 

MIF knockout mice, cell lysates from PC12 cell line (rat adrenal medulla), mouse NIH 

3T3 fibroblasts, isolated rat Sertoli and peritubular cells and rat epididymal caput sperm 

cells were separated by 15% SDS-PAGE and transferred to a nitrocellulose membrane 

using the semi-dry technique (see 4.2.3.). Membranes were incubated with 1 µM rat 

recombinant MIF in lectin buffer (50 mM Tris-Cl pH 7.5, 150 mM NaCl, 1 mM MgCl2, 1 

mM CaCl2) or buffer alone at RT overnight. Subsequently, membranes were washed with 

Tris-buffer (50 m M Tris-HCl pH 7.5, 250 mM NaCl, 3 mM EDTA, 0.05% Tween) and 

detection of bound MIF was performed using a polyclonal rabbit anti-rat MIF antibody  

at 1:20,000 dilution in blocking buffer, followed by a goat anti-rabbit peroxidase 

conjugated secondary antibody at 1:10,000 dilution in blocking buffer and visualized by 

enhanced chemiluminescence (ECL). 
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4.4. Cross-linking 

A chemical cross-linking method was employed to study protein-protein 

interactions. For this assay ProFound Sulfo-SBED Biotin Label Transfer Kit was used 

according to the manufacturer’s instructions. The trifunctional cross-linker Sulfo-SBED 

contains an amino group, a photo-reactive site, a thiol-cleavable disulfide (S-S) linkage 

and a biotin handle. The biotin tag is transferred from a labeled purified bait protein to a 

captured prey protein which can be then detected by Western blotting. 

Recombinant rat MIF was used as bait protein and derivatized with Sulfo-SBED 

via its amino groups. 200 µg recombinant rat MIF were incubated with 5-fold molar 

excess of Sulfo-SBED in 500 µl of buffer 1 (0.1 M PBS, pH 7.2) for 30 min at RT in the 

dark. After centrifugation at 13,000 x g for 1 min, the sample was applied to a Nap-5 

column and elution was performed with 1 ml of buffer 2 (0.1 M PBS, 10 mM Tris pH 

7.2, 0.15 M NaCl). Fractions of 100 µl were collected. Labeled Sulfo-MIF (S-MIF) was 

stored at -20°C until use. 2x105 NIH 3T3 cells per well were seeded in 6 well plate and 

grown until 80% confluency. The following steps were performed at 4°C. Cells were 

washed twice with PBS and 66 µl buffer 2 was added per well and cells were collected 

with a rubber policeman. Cells were lysed by three freeze-thaw cycles in liquid nitrogen, 

sonicated and centrifuged for 10 min at 10,000 x g to remove cell debris. The cell lysate 

was applied to 100 µl of a 50% slurry of streptavidin beads for one hour, to deplete it of 

endogenously biotinylated proteins. 4.79 µg S-MIF bait protein (3.25 µM) was incubated 

for 15 min in the dark with 22 µl of the precleared cell lysate in a final volume of 123 µl 

and then exposed to UV light (365 nm) for 15 min, which activates the phenyl-azide 

moiety of Sulfo-SBED and transfers the biotin tag to the bound prey protein (Scheme 1). 

The biotinylated proteins were purified via streptavidin beads and released from the S-

MIF via cleavage of the disulfide linker by mixing and boiling the sample with Laemmli 

sample buffer containing β-mercaptoethanol as reducing agent. The biotinylated prey 

proteins were separated by SDS-PAGE, transferred to a nitrocellulose membrane and 

detected with anti-biotin antibody. For the competition experiment, a 10-fold molar 

excess of recombinant rat MIF over S-MIF concentration was used. 
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Scheme 1. Strategy for cross-linking with Sulfo-SBED Biotin Label Transfer 
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4.5. Immunoprecipitation 

Mouse NIH 3T3 fibroblasts were grown in a 75 cm2 culture flask to 80% 

confluency, washed twice with ice-cold PBS and incubated on ice with 1 ml of lysis 

buffer (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 1% IGPAL-630, 1 µM leupeptin, 1 mM 

PMSF) for 10-15 min with occasional rocking. Cells were scraped out and transferred to 

an Eppendorf tube, disrupted by passage through a 21 Gauge needle, subjected to 

sonication (two 10 sec bursts at 200-300 W with a 10 sec cooling period in between) 

followed by centrifugation at 10,000 x g for 10 min at 4°C. The supernatant was 

precleared for 1 h by incubation with 30 µl Protein G-Sepharose 4B Fast Flow beads at 

4°C on a rotating wheel before incubation with either rabbit anti-rat MIF antibody or 

rabbit preimmune serum immobilized on 30 µl Protein G-Sepharose beads at 4°C 

followed for 2h. After extensive washing with lysis buffer (5 x 10 min), immune 

complexes were collected by centrifugation, resuspended in 20 µl Laemmli sample buffer 

and boiled for 10 min at 95°C. Immunoprecipitates were separated on a NuPAGE 4-12% 

Novex Bis-Tris gel and stained with colloidal Coomassie staining solution. 

4.6. Cloning, expression and purification of recombinant tagged RP S19 

4.6.1. Preparation of competent E. coli and transformation 

For the preparation of competent E. coli an inoculating loop was used to streak E. 

coli DH5α directly from a frozen glycerol stock onto an LB agar plate containing no 

antibiotics. The plate was incubated for 16 hours at 37°C. A single colony was picked 

and grown in 5 ml SOB medium overnight by shaking (235 rpm/min) at 37°C. 50 ml 

prewarmed SOB medium (2% (w/v) bactotryptone or peptone, 0.5 % (w/v) yeast extract, 

10 mM NaCl, 2.5 mM KCl) was inoculated with 0.5 ml from the overnight culture. The 

cells were grown for 2.5-3.0 hours at 37°C under monitoring culture growth by 

measuring OD600 in a spectrophotometer every 20 min. When the culture had reached an 

OD of 0.45-0.50, the cells was incubated on ice for 20 min. Cells were harvested by 

centrifugation at 1075 x g for 15 min at 4°C and the supernatant was decanted. The cells 

were gently resuspended in 100 ml TFB buffer (10 mM MES, 45 mM MnCl2, 10 mM 
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CaCl2, 100 mM KCl, pH 6.2) and incubated on ice for 10-15 min. After centrifugation at 

1075 x g for 15 min at 4°C, the buffer was decanted. The cells were resuspended gently 

in 3.9 ml TFB buffer, 140 µl DMSO followed by 5 min incubation on ice. Then 140 µl of 

1M DTT was added and incubation continued for 10 min before another 140 µl DMSO 

were added for 5 min. For transformation, 200 µl of competent cells were transferred to 

an Eppendorf tube and kept on ice. 3 to 7 µl of ligation reaction mixture containing 25 ng 

of plasmid was added to the competent cells and incubated on ice for 40 min. The tubes 

were transferred to a heat block preheated to 42°C for exactly 45 sec and then cooled on 

ice again. After 2 min of cooling 800 µl of warm (37°C) SOC medium (SOB medium 

containing 5 mM glucose) was added to each tube. Incubation for 60 min in a shaking 

incubator allowed the bacteria to recover and to establish antibiotic resistance. 200 or 50 

µl of transformed competent cells were plated onto 90 mm LB agar plates containing the 

appropriate antibiotic (usually 50 µg/ml ampicillin). The plates were stored at RT until 

the liquid had been absorbed. The plates were inverted and incubated at 37°C overnight. 

Colonies were analyzed by PCR and mini cultures were prepared in parallel. One colony 

was picked and resuspended in 50 µl distilled water. 25 µl was used for inoculation of a 5 

ml mini culture (SOB medium containing ampicillin) and the other 25 µl were boiled for 

5-10 min at 95°C. Finally ten µl was used as a template for the PCR reaction.  

4.6.2. Cloning of the expression constructs 

Full Length RP S19 cDNA (Mus musculus) clone, IRAKp961E1430Q was 

obtained from the RZPD (Deutsches Ressourcenzentrum für Genomforschung, 

www.rzpd.de). Plasmid isolation was performed and the integrity of the insert was 

validated by DNA sequencing. 

The RP S19 cDNA was amplified from this clone by PCR with Pfu polymerase using 

forward primer 5’-CGAGGAATTCCCATGCCCGGAGTTACTG-3’ and reverse primer 

5’-CGCCTCGAGTAATGCTTCTTGTTGGC-3’ for the glutathione-S-transferase (GST) 

tag vector (introduced restriction sites are underlined: EcoRI for forward primer and XhoI 

for reverse primer). The cycle conditions for a standard PCR with Pfu polymerase were: 3 

min initial denaturation at 96°C, 31 cycles of denaturation for 45 sec at 96°C, annealing 

for 40 sec at 61°C, elongation for 40 sec at 73°C and a final extension for 10 min at 72°C. 
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PCR product and pGEX-4T-2 vector were digested with EcoRI and XhoI and the 

restricted fragments were recovered from an agarose gel using a QIAEX II DNA 

extraction kit according to the instruction of the manufacturer. The concentrations of PCR 

fragment and vector were estimated by agarose gel electrophoresis with low and high 

DNA mass ladder and 50 ng of insert was used in a standard ligation reaction with 100 ng 

of linearized pGEX-4T-2 vector. Competent cells were transformed with the ligation 

reaction and colony PCR was performed to screen for positive clones. One clone was 

validated by DNA sequencing (Seqlab, Göttingen). 

For cloning of the expression clone of His-tagged RP S19, the RP S19 cDNA was 

amplified again from the IRAKp961E1430Q plasmid by PCR with Pfu polymerase using 

forward primer 5´-CGCCATATGCCCGGAGTTACTGTAAAA-3´ and reverse primer 

5´-GCGAAGCTTATGCTTCTTGTTGGCAGC-3´. Due to an internal NdeI site within 

the RP S19 cDNA, pET21a(+) vector for expression of His-tagged RP S19 was restricted 

with NdeI, blunted, restricted with HindIII and ligated to the HindIII restricted PCR 

fragment. Integrity of both inserts plus flanking regions were validated by DNA 

sequencing.  

4.6.3. Expression and purification of GST-RP S19 

RP S19 was expressed as a fusion protein with a GST tag at the amino terminus 

followed by a thrombin cleavage site. GST occurs naturally as a 26 kD protein, but 

parental pGEX vectors produce a 29 kD GST fusion protein, thus the apparent molecular 

weight of the fusion GST-RP S19 protein is 45 kD. 

For expression of GST-RP S19 tagged protein, E. coli BL21 DE3 competent cells 

were transformed with the pGEX-RP S19 construct. Positive transformants were 

inoculated in to 5 ml 2YT medium (1.6% tryptone, 1% yeast extract and 1% NaCl, pH 

7.0) containing ampicillin and cultured overnight in a shaker at 37°C. For comparison, 

bacteria transformed with the parental pGEX plasmid were also prepared. 

To optimize expression conditions 50 ml of 2YT medium containing 50 µg/ml 

ampicillin was inoculated with 500 µl of overnight culture. Cultures were kept at 37°C in 

a shaking incubator until OD600 = 0.5. The culture was split in two equal parts and 1 ml 

aliquot from each culture was saved and prepared for SDS-PAGE (as described later). 
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One culture was induced by adding IPTG to a final concentration of 0.5 mM and 

incubation was continued at 37° with shaking. At different time points of induction (1, 2 

and 3 hours), 1 ml from each culture were transferred to a microfuge tube, the OD600 was 

measured and each pellet was prepared for SDS-PAGE. The samples were mixed with 

Laemmli sample buffer, boiled at 95°C for 3 min, stored on ice and then loaded onto 15% 

SDS-polyacrylamide gel. The gel was stained with Coomassie. 

For large scale expression 5 ml of an overnight culture was inoculated into 500 ml 

2YT medium (supplemented with 100 µg/ml ampicillin) in a 2 l Erlenmeyer flask and 

incubated at 37°C until an OD600 of 0.5 was reached. Expression was induced by adding 

IPTG to a final concentration of 0.5 mM and incubation was continued at 37°C for 3 h. 

Cells were harvested by centrifugation at 3,000 x g at 4°C for 30 min. The supernatant 

was discarded and the cell pellet was resuspended in ice-cold PBS (50 µl PBS for each ml 

of culture). The cells were lysed by sonication (10 short burst of 10 sec followed by 

intervals of 30 sec for cooling) and a small aliquot was saved after this step. Cell lysates 

were treated with Triton X-100 to a final concentration of 1% and gently mixed for 30 

min to solubilize the fusion protein. Centrifugation at 1200 x g for 10 min at 4°C 

removed the cell debris and the supernatant was transferred to a new tube. An aliquot of 

supernatant and pellet was saved for analysis by SDS-PAGE to identify the fraction that 

contains the fusion protein. The supernatant containing GST-RP S19 was subjected to 

Glutathione Sepharose 4B chromatography. After washing twice with PBS, GST-tagged 

RP S19 was eluted with 50 mM Tris-HCl pH 8.0 containing 10 mM glutathione. The 

purity of the eluted protein was 90% as estimated by SDS-PAGE. 

4.6.4. Purification of RP S19-His 

RP S19-His was expressed in E. coli BL21(DE3) by induction with IPTG (0.5 

mM) at 37°C for 3h. Bacteria expressing RP S19-His were resuspended in lysis buffer 

(50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0), treated with 1mg/ml 

lysozyme for 30 min on ice, and sonicated (six 10 sec bursts at 200-300W with a 10 sec 

cooling period between bursts). Lysed cells were centrifuged at 10,000 x g for 30 min at 

4°C and the supernatant was incubated with 50% Ni-NTA slurry (1 ml bed volume for 10 

ml lysate) at 4°C for 60 min. The matrix was then washed twice with 50 mM NaH2PO4 
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pH 8.0, 300 mM NaCl, 20 mM imidazole, and bound protein was eluted with 50 mM 

Na2HPO4, 300 mM NaCl, 250 mM imidazole, pH 8.0 and dialyzed against PBS (pH 7.8) 

containing 0.5 mM PMSF and 1 mM DTT. The purity of the eluted protein was 95% as 

estimated by SDS-PAGE. 

4.7. Production of polyclonal RP S19 antibody 

Prior to immunization about 10 ml of preimmune serum was collected from the 

selected animals. Four New Zealand White rabbits (approx. 3 kg) were subcutaneously 

injected with His-tagged RP S19 protein (0.5 mg/animal) diluted in PBS and mixed with 

the same volume of complete Freund's adjuvant. Animals were injected under the skin of 

the back at four different locations. After four weeks, the first boost was performed with 

RP S19 (0.25 mg protein/animal) in incomplete Freund's adjuvant. A second boost was 

performed with the same amount of protein six weeks after starting the immunization 

protocol. Ten days after the second boost a blood sample was drawn and the clotted blood 

was stored at 4°C overnight. Serum was separated from the clot by centrifugation at 

10,000 x g for 30 min at 4°C and tested in a Western blot with recombinant RP S19 and a 

protein extract from NIH 3T3 cells. Two rabbits with immunoglobulins against His-

tagged RP S19 were sacrificed, whole blood collected and serum was prepared. Sodium 

azide was added to the serum sample to a final concentration of 0.02 % (w/v), and 

aliquots were stored at -20°C until use. 

Serum samples were affinity-purified using His-tagged RP S19 immobilized on 

Ni-NTA according to a published protocol (Jun Gu 1994) with slight modifications. A 1 

cm high Ni-NTA column (approx. 2 ml bed volume) was washed with equilibration 

buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl). One ml of crude antiserum was 

incubated with the matrix for 1 h at 4°C before the column was washed with 5 column 

volumes of equilibration buffer, followed by 5 column volumes of wash buffer (50 mM 

Tris-HCl pH 7.4, 2 M NaCl). To elute the antibody, the column was first incubated with 1 

column volume of 4 M MgCl2 for 15 minutes, followed by 1 ml of 4 M MgCl2 solution. 

The column was allowed to flow and the eluate was collected. The purified anti-RP S19 

immunoglobulins were dialyzed against distilled water for 1h and against PBS overnight 

both at 4°C. After being assesed in a Western blot with recombinant RP S19 protein and 
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endogenous RP S19 from NIH 3T3 cell lysate, the purified rabbit anti-RP S19 antibody 

was stored in aliquots at -20°C. 

4.8. Biotinylation of wild type rat MIF protein 

Recombinant rat MIF was expressed and purified as described previously (Kim 

2003). Biotinylation of rat MIF was performed using the ECL protein biotinylation 

module according to the recommendations of the manufacturer. Nonreacted succinimide 

ester was separated from biotinylated MIF using Sephadex G-25 columns. The column 

was equilibrated with 5 ml PBS pH 7.5 containing 1% BSA followed by 20 ml PBS. Two 

ml solution containing rat MIF (200µg), 8 µl biotinylation reagent and bicarbonate buffer 

was incubated for 15 minutes and then applied to the column, followed by elution with 5 

ml PBS. Ten fractions of 500 µl were collected and the protein concentration was 

estimated by Bradford assay (Bradford 1976). Biotinylated MIF protein was stored at 4°C 

prior use.  

4.9. In vitro pull-down assays 

4.9.1. GST-RP S19 pull-down 

Biotin-MIF (2.5 µg) was immobilized with 30 µl (50% slurry) of avidin beads by 

incubation in 500 µl PBS at RT on a rotating wheel for 30 min. In order to completely 

remove free Biotin-MIF, beads were washed 3x with 1 ml PBS and 3x with 1 ml lysis 

buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% IGPAL-630). Coated beads were 

incubated in 500 µl of lysis buffer with increasing amounts of GST-RP S19 (50, 100 and 

200 ng) on a rotating wheel at 4°C for 1 h. As a control, uncoated avidin beads were 

incubated with the same amounts of GST-RP S19 alone. Beads were then washed five 

times with lysis buffer and finally boiled in Laemmli sample buffer for 5 min. Protein 

complexes were separated by SDS-PAGE, transferred onto nitrocellulose membrane and 

detected with anti-GST antibody conjugated with peroxidase. 
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4.9.2. MIF pull-down 

Likewise, RP S19-His (2 µg) was immobilized on Ni-NTA agarose beads, washed 

with PBS to remove the unbound protein and incubated for 1 h with different amounts of 

recombinant rat MIF or human MIF or P2A, C60S and ∆4 human MIF mutants. As 

control, wt and mutants of MIF were incubated with Ni-NTA agarose beads. After 

extensive washing with lysis buffer as described previously or RIPA buffer (50 mM Tris 

pH 8.0, 150 mM NaCl, 1% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 1 

mM PMSF) in case of human wt MIF and MIF mutants, proteins bound to the beads were 

boiled in Laemmli sample buffer, resolved on SDS-PAGE and stained with colloidal 

Coomassie or blotted and probed for RP S19, stripped and reprobed for MIF in the case 

of the mutants. 

4.10. Double immunofluorescence 

Immunofluorescence staining was performed on NIH 3T3 mouse fibroblasts to 

investigate the cellular localization of endogenous MIF and RP S19. Cells were cultured 

on cover slips until 80% confluency. After washing once with 1x PBS, cells were fixed 

with ice-cold methanol for 10 min at RT. Blocking was performed with 5% BSA and 

10% NHS for 1 h at RT. Double immunostaining with rabbit anti-mouse RP S19 (1:400), 

followed by donkey anti-rabbit IgG conjugated with Cy3 (1:1,000) and mouse anti-MIF 

(1:200) followed by donkey anti-mouse IgG conjugated with FITC (1:1,000) was 

performed. Both primary antibodies were incubated over night at 4°C and both secondary 

antibodies were incubated for 1 h at RT. Three wash steps were performed using 1x PBS 

and DAPI was used for nuclear staining. Images were acquired with a confocal laser 

scanning microscope. 

4.11. Dopachrome tautomerase assay  

The substrate L-dopachrome methyl ester (DCME) was freshly prepared before 

each measurement (exactly 5 min before measurement) by mixing equal volumes of 8 

mM sodium periodate and 4 mM L-dopa methyl ester and incubating for 5 min at RT . 
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Enzymatic activity was determined for an assay volume of 800 µl per reaction obtained 

by mixing 400 µl of PBS containing recombinant rat MIF at a concentration of 1 µM 

with 400 µl of freshly prepared DCME substrate. In reactions that contained MIF and RP 

S19 both proteins were preincubated in 400 µl PBS for 1 h before measurement. As 

control SCGB 2A1-His, a protein of similar size fused to the same tag was used. 

Tautomerase activity was measured by monitoring the decrease in absorbance at 474 nm 

with a spectrophotometer over a time period of 1 min after the reaction start. SWIFT II 

software was used for recording the reaction kinetics. 

4.12. Monocyte chemotaxis assay  

The chemotaxis assay was performed with human blood monocytes/macrophages 

(see chapter 4.1.2.) and the Transwell filter system (5.0 µm pore size polycarbonate 

membrane). For each assay 5x104 cells in 200 µl medium (containing 0.5% BSA) were 

plated onto one Transwell insert in a 24 well culture plate. In the outer wells was added 

500 µl per well medium containing either (1) 0.5% BSA as negative control, (2) 25 ng/ml 

MCP-1 as positive control, (3) 50 ng/ml human or rat recombinant MIF, (4) 5 fold molar 

excess of RP S19 over MIF, (5) a combination of MIF and RP S19. After 3 h of 

incubation, the Transwell inserts were removed and cells that had migrated through the 

membrane and settled on the bottom of the culture well were fixed by adding 

paraformaldehyde (final concentration 1.8% w/v). Nuclei were stained with Hoechst 

33342. For each membrane (i.e. well), eleven high-power microscopic fields were 

independently counted by two persons in a blinded fashion. Counting was normalized for 

individual counting bias. As counting control 2,500 and 5,000 cells were plated directly 

in the outer well (without membrane). The average number of cells quantified on 11 

fields of the 2,500 and 5,000 cell counting control wells was set as 5% and 10% migrated 

cells, respectively. 

4.13. Glucocorticoid overriding assay 

Human mononuclear cells were isolated from whole blood by Ficoll density 

gradient centrifugation and purified by adherence (as described in chapter 4.1.2.). For the 
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assay, 1x106 cells/ml/well in 12-well plates were preincubated for 1 h with (1) 

dexamethasone (10-9 M), (2) dexamethasone (10-9 M) plus recombinant human MIF 

alone or (3) dexamethasone (10-9 M) plus recombinant human MIF plus RP S19 before 

the addition of 0.1 µg/ml LPS. Cell culture supernatants were collected after 16 h of 

stimulation, centrifuged and secreted TNF-α was quantified by ELISA according to the 

instructions of the manufacturer. A 96 well plate was coated with purified anti-human 

TNF-α antibody diluted 1:250 in 1x assay diluent over night at 4°C and then blocked for 

1 h at RT. 100 µl per well of standard was added by employing a 2-fold dilution series of 

recombinant human TNF-α (500 pg/ml was the highest standard concentration and 3.9 

pg/ml the lowest) and the same volume of samples was added to the antibody coated plate 

and incubated for 2 h at RT. After washing with 1x PBS containing 0.05% Tween-20, 

100µl of detection antibody (biotin-conjugated anti-human TNF-α) diluted 1:250 in 1x 

assay diluent was added to the wells and incubated for 1 h at RT. The wells were then 

washed with PBS-Tween and 100 µl of Avidin-HRP conjugate diluted in 1x assay diluent 

was added to the wells for 30 minutes at RT. The wells were washed again and 

100µl/well of substrate solution was added and incubated for 15 minutes at RT followed 

by addition of 50µl/well of stop solution (2N H2SO4). The color reaction was recorded at 

450 nm and 570 nm using an ELISA plate reader. The values obtained by reading the 

plate at 570 nm were subtracted from those obtained at 450 nm and data was analyzed. 
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5. RESULTS  

5.1. Identification of MIF interacting proteins 

In order to identify proteins that specifically interact with MIF three strategies 

were employed. Initially, a far-Western experiment was performed to gain information 

about the spectrum of MIF interacting proteins in different cell lines and tissues. 

Subsequently, co-immunoprecipitation experiments and MALDI-TOF mass spectrometry 

was chosen to identify MIF interacting proteins. Finally, an adapted cross-linking 

method, based on biotin transfer to binding protein, was used to enrich MIF interacting 

proteins of low abundance. 

5.1.1. MIF cross-reactivity 

Initially, a far-Western experiment was performed to detect MIF interacting 

proteins in different tissue and cell types and guide in the choice of the best source for the 

future experiments. For this purpose, protein extracts were separated by SDS-PAGE and 

transferred to a nitrocellulose membrane. The membrane was then incubated overnight 

with 1 µM of recombinant rat MIF. As a negative control, a second membrane was 

incubated with buffer alone. As illustrated in Fig. 1A, detection of bound MIF with an 

anti-MIF antibody resulted in a spectrum of potential MIF interacting proteins between 

20 and 90 kD beside the endogenous MIF which was observed at a MW of 12.5 kD. The 

pattern of cross-reactivity was similar for almost all types of cells investigated, whereas 

the cross-reactivity of the control membrane was restricted to the endogenous MIF only 

(Fig. 5B). 

Therefore, for convenience and comparison with studies of other groups 

(Kleemann et al. 2002; Nguyen et al. 2003b) the following co-immunoprecipitation 

experiments were performed with NIH-3T3 fibroblast cells. 
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Fig. 5: Cross-reactivity of MIF. Far-Western: protein extracts from rat total 

testis homogenate (rat TH), mouse total testis homogenate from MIF+/+- and MIF-/- 

mice, cell lysates from PC12 cells (rat pheochromocytoma cell line), mouse NIH 3T3 

fibroblasts (NIH 3T3), Sertoli cells, peritubular cells and rat epididymal caput sperm cells 

were separated by SDS-PAGE and blots were incubated with 1µM recombinant MIF (A) 

or with buffer only as a control (B) prior to detection of MIF protein. The molecular 

weight marker is indicated: [kD]. 
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5.1.2. Co-immunoprecipitation of MIF interacting proteins from NIH 3T3 cells 

In order to validate if the anti-MIF antibody can be used for co-

immunoprecipitation (Co-IP), an trailer experiment was performed. c-Jun activation 

domain binding protein-1 (Jab-1), being a known interacting protein for MIF was 

choosen as a positive control to validate the efficiency of the method. Extracts from 

mouse NIH 3T3 fibroblast cells were subjected to Co-IP with a polyclonal rabbit anti-rat 

MIF antibody or with a rabbit IgG polyclonal isotype control antibody which were 

previously immobilized on protein G-Sepharose beads. The immune complexes were 

probed for Jab-1, stripped and reprobed for MIF by Western blot analysis. As shown in 

Fig. 6, anti-MIF antibody efficiently precipitated MIF and Jab-1 from NIH 3T3 cell 

lysate, demonstrating that the selected antibody is suitable for co-immunoprecipitation 

experiments. 

 

inputIP: MIF Ctr

WB: MIF

WB: Jab-1

 

 

Fig. 6: Co-immunoprecipitation of MIF and Jab-1. Western blot: Co-IP 
samples obtained with anti-MIF antibody (IP:MIF) and isotype control antibody (IP:Ctr) 
were analysed by Western blotting with anti-Jab-1 (WM: Jab-1) and anti-MIF (WB: MIF) 
antibodies. For analysis, 10% of the total NIH 3T3 cell lysate used for 
immunoprecipitation was loaded. 
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Fig. 7: Co-immunoprecipitation of MIF and RP S19. (A) Extracts from mouse 

NIH 3T3 fibroblasts were incubated with a polyclonal rabbit anti-rat MIF antibody (Co-

IP MIF ab) or with a rabbit IgG polyclonal isotype control antibody (Co-IP Ctrl ab) 

which were previously immobilized on protein G-Sepharose beads. The immune 

complexes and the antibody coated beads alone were separated by SDS-PAGE gradient 

gel (4-12%) and stained with Coomassie blue. The protein band at approximately 16 kD 

(marked by arrow) was excised from the gel and analysed by tryptic digestion and 

MALDI-TOF mass spectrometry. (B) Western blot analysis of the Co-Ip samples (IP anti 

MIF and IP ctrl). The blot was probed with anti RP S19 antibody (upper panel), stripped 

after detection and re-probed with the anti-MIF antibody (lower panel). 
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The co-immunoprecipitation experiment was repeated with the same cell lysate 

(NIH 3T3), the immune complexes were again separated by SDS PAGE and the gel was 

stained with colloidal Coomassie blue solution (Fig. 7A). Beside the immunoglobulin 

light and heavy chains, several specific bands appeared in the anti-MIF IP sample 

compared to the control IP. One of this specific bands at around 16 kD was excised from 

the gel and analyzed by tryptic-in-gel digestion followed by MALDI-TOF mass 

spectrometry and subsequently identified as ribosomal protein S19 (RP S19). To confirm 

the result, the IP samples were separated by SDS-PAGE, transferred to nitrocellulose 

membrane and probed with anti RP S19 antibody, stripped and re-probed with anti MIF 

antibody (Fig. 7B). Both proteins were only detected in the co-immunoprecipitation 

sample with the anti-MIF antibody, thus confirming the result obtained by MALDI-TOF 

mass spectrometry, whilst the control IP was negative. 

5.1.3. Enrichment of MIF interacting proteins by cross-linking 

Cross-linking experiments were performed to enrich MIF interacting proteins of 

low abundance as observed in Co-IP. After depletion of endogenously biotinylated 

proteins by streptavidin agarose beads, the MIF-Sulfo-SBED protein (S-MIF) was added 

to NIH 3T3 cell lysates and samples were treated with UV light resulting in biotin-

labeling of interacting proteins. Several potential MIF interacting proteins with molecular 

masses between 40 and 60 kD were visualized via biotin detection (Fig. 8A). As a 

positive control for the specificity of the cross-linking method Jab-1, was detected in total 

and precleared cell lysate at comparable levels (Fig. 8B, lanes 1 and 2) suggesting that 

endogenous Jab-1 is not biotinylated and does not bind unspecifically to the straptavidin 

matrix. Jab-1 was biotinylated after the cross-linking experiment and subsequent biotin 

purification (Fig. 8B, lane 3). In a competition experiment, addition of 10-fold molar 

excess of recombinant MIF over the S-MIF concentration resulted in a clear decrease of 

biotin labeled proteins, indicating the specificity of the protein-protein interaction (Fig. 

8A, lane 4). As a result of the competition experiment, biotin-labeled Jab-1 was 

substantially decreased, validating the specificity of Jab-1-S-MIF (Fig. 8B, lane 4).  
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Fig. 8: Detection of MIF interacting proteins by cross-linking. (A) Detection 

of biotinylated proteins: Lane (1): total cell lysate; lane (2): biotin precleared cell lysate; 

lane (3): purified biotinylated proteins after cross-linking with 3.2 µM S-MIF; lane (4): 

purified biotinylated proteins obtained after competition with 32 µM recombinant MIF 

(10 fold molar excess over the S-MIF concentration) and cross-linking. (B) Jab-1 

detection. The same membrane was stripped and reprobed for Jab-1. 
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5.2. Cloning, expression, and purification of GST-RP S19 

The coding sequence of RP S19 amplified from IRAKp961E1430Q vector was 

cloned into the bacterial expression vector pGEX-4T-2. The obtained construct (RP S19-

pGEX) was used to transform E. coli BL21(DE3) bacterial cells for the expression of 

GST-tagged RP S19. In order to screen for positive clones, colony PCR was performed 

using transformed bacteria as template with primers for amplifying RP S19 (Fig. 9B). 

1 5 6432
A

B
1 5 6432 7 8 9 10M

 

Fig. 9: Preparation of an expression construct and screening for positive 

transformants. (A) RP S19 digested PCR product (lanes 2 and 3) and linearised pGEX-

4T-2 vector (lanes 5 and 6) used in a ligation reaction to generate RP S19-pGEX 
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construct. Lanes (1) and (4) were loaded with 100bp and 1kb markers, respectively. (B) 

RP S19 PCR products obtained after screening for positive transformants using the 

transformed bacterial cells as a template and primers for RP S19 amplification. (M) = 100 

bp marker. 

One clone (Fig. 9B, lane 1) from the successfully transformed bacteria was 

selected for protein expression. In order to determine the optimal condition for protein 

expression, bacterial RP S19 protein expression was induced with 0.5 mM IPTG at 37°C 

for different time points. As shown in Fig. 10, the fusion protein became the major 

bacterial protein after 1h of induction and the maximum expression of RP S19-GST was 

observed after 2h. 

OD
0.5 + - + + +- - OD

0.5M

1h 2h 3h 3h

RP S19-pGEX pGEX

42-

60-

30-

22-

17-

148-

 

Fig. 10: Expression of GST-tagged RP S19 in E. coli. A 500 ml culture of E. 

coli BL21 (DE3), carrying the RP S19 expression plasmid (RP S19-pGEX), was induced 

(+) with 0.5 mM IPTG at 37°C. Bacteria transformed with empty vector, pGEX, served 

as control. At three time points (1, 2 and 3 h), cells were harvested, lysed in SDS 

Laemmli buffer and separated by SDS-PAGE. After electrophoresis, the gel was stained 

with colloidal Coomassie blue. (M) = molecular weight marker [kD]. 
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Using the established expression conditions, a preparative culture was produced 

and GST-RP S19 protein was affinity purified using a Glutathione agarose column. 

Eluted fractions were collected and the purity of each fraction was validated by SDS-

PAGE and subsequent Coomassie staining of the gel (Fig. 11). 

1 2 3 4 5 6 7 8 9 10 11 12 13M
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Fig. 11: Purification of GST-tagged RP S19. An aliquot (2 µl) from each eluted 

fraction (lane 1 to 13) was separated by 15% SDS-PAGE and stained with Coomassie. 

5.3. RP S19-His purification and antibody production 

His-tagged RP S19 protein was expressed in E. coli and affinity purified on a Ni-

NTA column. The recombinant protein was then used in a standard immunization 

protocol to reise polyclonal antibody against RP S19. Rabbit serum was subsequently 

affinity purified using a Ni-NTA column packed with His-tagged RP S19. The specificity 

of the full serum and purified polyclonal RP S19 antibody was tested by Western blot 

analysis with recombinant and endogenous expressed RP S19 protein in NIH 3T3 cells. 

As shown in Fig. 12, the range of unspecific reactivity (A) was considerably reduced 

after affinity purification of the serum (B). Due to addition of the His tag, the 

recombinant protein exhibited a higher molecular weight than the native protein. 
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Fig. 12: Purification of polyclonal RP S19 antibody. Lanes (1) to (5):1, 4, 16, 

64 and 256 ng of recombinant RP S19-His, respectively; lane (6): 60 µg NIH 3T3 cell 

lysate were separated on a 15% SDS gel and electro-transferred onto a nitrocellulose 

membrane. (A). The blot was incubated with full serum from immunized rabbits. (B). 

The blot was incubated with the affinity purified antibody against RP S19 protein. 
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5.4. Interaction of MIF with RP S19 in vitro 

To analyze whether the observed interaction between MIF and RP S19 occurs by 

direct protein-protein binding or is mediated by linking co-factors, pull-down 

experiments with recombinant MIF and RP S19 were performed.  

5.4.1. Pull-down of GST-RP S19 with biotinylated MIF 

For this pull-down experiment, biotin-MIF was immobilized on avidin beads (Fig. 

19) and then incubated with increasing amounts ( 0.05, 0.1 or 0.2 µg) of RP S19-GST 

(lanes 4-6). As a control avidin beads were directly incubated with the same amounts of 

RP S19-GST (lanes 1-3). In this case, no unspecific binding of RP S19-GST to avidin 

beads was observed. In contrast, biotin-MIF loaded beads recovered RP S19-GST in a 

dose dependent manner (lanes 4 to 6) suggesting a direct interaction of both molecules in 

vitro. 

To determine if the observed interaction was indeed specific, a competition 

experiment was performed using recombinant rat MIF and β-lactoglobulin, respectively. 

Addition of 35-fold molar excess of recombinant MIF over RP S19 concentration 

resulted in a clear competition of the biotin-MIF-RP S19-GST interaction (Fig. 13, lane 

7), which was not observed when β-lactoglobulin, was used as a competitor (Fig. 13, lane 

8). 



  Results 

 55

WB : GST

1 2 3 4 5 6 7 8

0.05 0.1 0.2 0.05 0.1 0.2 0.1 0.1

2.5 2.5 2.5 2.5 2.5

1

1

µg RP S19-GST

µg biot-MIF

µg rec MIF

µ βg -lactoglobulin

- - -

- - - - - - -

- - - - - - -

 

Fig. 13: Interaction of biotin-MIF with RP S19-GST. Biotin-MIF immobilized 

on avidin beads was incubated with increasing amounts of RP S19-GST (lanes 4-6). As 

control, unloaded avidin beads were directly incubated with the same amounts of RP 

S19-GST (lanes 1-3). A competition experiment was performed with 1 µg of unlabeled 

MIF (lane 7). As a control for the competition experiment, β-lactoglobulin was used as 

competitor (lane 8). Detection of recovered RP S19-GST was performed using Western 

blot analysis with an anti-GST antibody. 

5.4.2. Pull-down of recombinant MIF with His-tagged RP S19 

In a second pull-down experiment His-tagged mouse RP S19 was immobilized on 

Ni-NTA agarose beads and incubated with either increasing amounts (0.5, 1 or 2 µg) of 

recombinant rat MIF or 2 µg of recombinant human MIF (Fig. 14). Protein complexes 

bound to the beads were separated by SDS-PAGE and then stained with Coomassie blue. 

Unloaded Ni-NTA beads were incubated with recombinant rat MIF in which case, no 

unspecific binding of MIF was observed (lanes 5-7). In contrast, RP S19-His loaded 

beads recovered recombinant rat MIF in a dose dependent manner (lanes 1-3) suggesting 

a direct interaction of both molecules in vitro. Interestingly, recombinant human and rat 

MIF exhibited a similar affinity to mouse RP S19-His (lane 4). Taken together the results 

of both pull-down studies support the hypothesis of a direct interaction between MIF and 

RP S19 in vitro. 
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Fig. 14: Binding of His-tagged RP S19 to rat and human MIF. His-tagged RP 
S19 was immobilized on Ni-NTA-agarose beads and incubated with different amounts of 
recombinant rat MIF (lane 1-3) or with human MIF (lane 4), respectively. As a control 
recombinant rat MIF was directly incubated with Ni-NTA-beads (lane 5-7). The 
immobilized proteins were resolved by SDS-PAGE and stained with Coomassie. 

5.4.3. Interaction of RP S19 with MIF mutants 

Our previous studies showed a strong specific affinity of mouse recombinant RP 

S19 to recombinant human MIF (see 4.4.2.). To determine domains essential for 

interaction of MIF and RP S19, pull-down experiments with recombinant mouse RP S19-

His and three different human MIF mutants (P2AMIF, ∆4MIF and C60SMIF) were 

performed. The position of the amino acid substitution or deletion is described in Fig. 15 

(upper panel). The sequences of the wt human MIF and mutants of MIF were confirmed 

by MALDI-ToF MS (Fig. 15 lower panel). 

His-tagged RP S19 was loaded on Ni-NTA agarose beads and incubated with 

either 1 µg of recombinant human MIF, or P2A, ∆4MIF and C60S MIF mutants. The 

binding of RP S19 to the wt MIF or to the selected MIF mutants was analyzed by 

immunoblotting using anti-RP S19 and anti-MIF antibodies, respectively. 
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Fig. 15: Characteristics of human MIF and mutant species. The upper panel 

shows MIF amino acid sequence. Substituted or deleted amino acids are indicated. P2A 

mutant has the first proline exchanged to alanine, ∆4 mutant is a deletion mutant lacking 

the first 4 amino acids and the C60S mutant has the cysteine at the position 60 mutated to 

serine. The lower panel shows the MALDI-ToF mass spectra of the tryptic peptides of wt 

MIF and MIF mutants. 
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As shown in Fig. 16, human wt MIF and ∆4MIF mutant exhibited similar levels 

of interaction with RP S19, whereas the human P2A and C60S mutants did not display 

any affinity to mouse RP S19-His protein. 
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Fig. 16: Interaction of MIF mutants with RP S19. His-tagged RPS19 was 

immobilized on Ni-NTA-agarose beads and then incubated with 1 µg of human MIF wild 

type (wt), P2A, C60S and ∆4 MIF mutants. The immobilized protein complexes were 

resolved by SDS-PAGE, and the blot was probed for RP S19 (upper panel), stripped and 

reprobed for MIF (lower panel). For analysis 100 ng of MIF protein and 200 ng of RP 

S19-His were loaded. 

5.5. Cellular localization of endogenous MIF and RP S19  

The cellular localization of endogenous RP S19 and MIF in mouse NIH 3T3 cells 

was investigated by immunofluorescence microscopy. For immunostaining an antibody 

raised in rabbit against mouse RP S19 and an antibody raised in mouse against MIF were 

used. Both proteins were localized in the cytoplasm of the cells with weak/diffuse nuclear 

staining for RP S19 (Fig. 17) demonstrating that endogenous MIF and RP S19 occupy the 

same cellular compartment. 
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Fig. 17: Cellular localization of MIF and RP S19 in NIH 3T3 fibroblasts. 

Double immunostaining with rabbit anti-mouse RP S19 followed by donkey anti-rabbit 

IgG conjugated with Cy3 (A) and mouse anti-MIF followed by donkey anti-mouse IgG 

conjugated with FITC (B) was performed. Panel (C) shows the merged image of the two 

upper panels. Blue colour indicates co-localization. Images were taken with a confocal 

laser scanning microscope (Leica TCS SP2). 
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5.6. Effect of RP S19 on MIF tautomerase enzymatic activity 

Tautomerase activity of MIF was shown to play an important role in several 

biological functions of the cytokine (Lubetsky et al. 2002). Thus, we wanted to 

investigate the effect of RP S19-MIF interaction on MIF tautomerase activity. 

To determine if RP S19 modulates MIF tautomerase activity, tautomeric 

conversion of L-dopachrome methyl ester to 5,6-dihydroxyindole-2-carboxylic acid by 

MIF was measured in the absence or presence of His-tagged RP S19. One representative 

experiment is shown in Fig. 18. In a control experiment secretoglobin (SCGB) 2A1, a 

recombinant His-tagged protein of 13 kD replaced His-tagged RP S19. 
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Fig. 18: Tautomerase activity of MIF in the presence of RP S19: MIF 

catalyzes tautomerisation of L-dopachrome-methyl-ester (DCME) to 5,6-

dihydroxyindole-2-carboxylic acid. Reaction kinetics was spectrophotometrically 

recorded at 475 nm. 
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Recombinant His-tagged RP S19 at 5 fold molar excess over MIF concentration 

decreased the tautomerase activity of MIF by 40%, whereas His-tagged secretoglobin 

2A1, a His-tagged protein with no enzymatic activities, had no influence on the reaction 

(Fig. 19). In conclusion, RP S19 displayed a moderate inhibitory effect on MIF 

tautomerase activity. 
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Fig. 19: MIF tautomerase activity is affected by of RP S19: Decrease in 

absorbance from 0 to 4 sec was converted and defined as tautomerase activity. The 

activity of MIF alone was set to 100%. The assay was performed with 1 µM of 

recombinant MIF alone or preincubated with 1-, 3- or 5-fold molar excess (1:1, 1:3, 1:5) 

of His-tagged RPS19 (black bars) or His-tagged SCGB 2A1 (grey bars) for one hour. 
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5.7. Modulation of MIF-induced monocyte migration by RP S19 

Since MIF-RP S19 interaction exhibited an effect on MIF tautomerase activity, 

although not being statistically significant, we wanted to investigate if RP S19 is capable 

to modulate other functions of MIF. 

MIF was characterized to inhibit the chemotaxis and the random migration of 

macrophages against monocyte chemoattractant protein-1 (MCP-1). Therefore, we raised 

the question if the inhibitory action of MIF is not in fact an chemoattractant effect which 

MIF exerts on macrophages.  

To characterize the chemotactic ability of MIF migration assays were performed 

using isolated human blood monocytes. In our experimental setup the basal/random level 

of migrated cells was 2.4% on average, whereas 25 ng/ml of MCP-1 used as positive 

control increased the migration level to 6%. After addition of 50 ng/ml human MIF the 

number of migrating cells increased to 6.4% (Fig. 20). Thus, MIF and MCP-1 exhibited 

similar effects on monocyte migration suggesting that MIF displays a previously 

unknown chemotactic activity. 

Next, we wanted to investigate the effect of RP S19 on the chemotactic activity of 

MIF. Addition of RP S19 (5 fold molar excess of RP S19 over MIF concentration) alone 

to the lower chamber had no significant effect on macrophage migration. In contrast, 

addition of five fold molar excess of RP S19 over MIF concentration inhibited human 

MIF chemotactic activity from 6.4% to 3.4%. Therefore, we conclude that binding of RP 

S19 to MIF negatively modulates its ability to attract human monocytes in vitro. 
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Fig. 20: Effects of RP S19 on MIF-induced monocyte migration. The 

chemotactic capacity of human MIF (hMIF), His-tagged RP S19, hMIF combined with 

RP S19 on isolated human blood monocytes was examined. MCP-1 was used as positive 

control and RPMI medium containing 0.5% BSA as negative control. Data are means ± 

SEM of four independent experiments. Assays were performed in duplicates and two 

investigators in a blinded fashion counted migrated monocytes individually. Statistically 

significant differences (nonparametric impaired Mann-Whitney Test (p< 0.05) are 

marked by asterix. 

5.8. Effect of RP S19 on MIF glucocorticoid overriding activity 

The glucocorticoid dexamethasone, is known to inhibit LPS-stimulated secretion 

of the proinflamatory cytokine tumor necrosis factor α (TNFα) by monocytes 

/macrophages, thus exerting a strong anti-inflammatory effect. MIF is capable to abolish 

dexamethasone inhibition of TNF production, therefore overriding the anti-inflammatory 

action of glucocorticoids. In this context, we raised the question if RP S19 interferes with 

the well-established MIF action on glucocorticoid mediated TNF production. 

Human peripheral blood monocyte cells were isolate (see section 2.1.2.) and 
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sequentially incubated with either (1) dexamethasone (10-9 M) or (2) dexamethasone (10-9 

M) plus increasing amounts of MIF alone or (3) dexamethasone (10-9 M) and MIF 

together with 5 fold molar excess of RP S19 prior to the addition of LPS (0.1µg/ml). 

After six hours of conditioning, the secreted TNF-α in the cell culture medium was 

quantified by ELISA with a detection range of 3.9 to 500 pg/ml (Fig. 21) 
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Fig. 21: Calibration courve of human TNF-α ELISA  

As shown in Fig. 22, dexamethasone completely abolished the TNF-α secretion 

by monocyte/macrophages stimulated with LPS. Pretreatment of the cells with increasing 

amounts of recombinant MIF before addition of dexamethasone resulted in a decrease of 

the inhibition effect on TNF-α secretion. In contrast, preincubation of MIF with 5 fold 

molar excess of RP S19 was efficient in antagonizing MIF-dependent inhibition of 

dexamethasone activity, whereas RP S19 alone did not exhibit any effect on TNF- α 

production. In summary, RP S19 was identified as a protein with the capacity to 

neutralize the pro-inflammatory effects of MIF. 
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Fig. 22: Effect of RP S19 on MIF’s glucocorticoid overriding activity. 

Peripheral mononuclear blood cells (PMBCs) were purified from blood of normal human 

volunteers by adherence to plastic. The cells were incubated sequentially with (1) 

dexamethasone (10-9 M) or (2) dexamethasone (10-9 M) plus increasing amounts of MIF 

alone or (3) dexamethasone (10-9 M) and MIF together with 5 fold molar excess of RP 

S19 prior to the addition of LPS (0.1µg/ml). Conditioned medium was collected after 16 

h and assayed for TNFα by specific ELISA. Values are means ±S.D. (n = 3). Statistically 

significant differences are indicated by asterisks ( p≤0.05, Student’s t test, independent 

variable). 
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6. DISCUSSION 

Macrophage migration inhibitory factor (MIF) was identified four decades ago as 

one of the first soluble immune mediators discovered (Bloom and Bennett 1966; David 

1966). As a lymphocyte-derived activity it was initially implicated in delayed-type 

hypersensitivity reactions and found to inhibit the random migration of lymphocytes 

(David 1966). More recently, it has been shown also to actively recruit leukocytes (Lan et 

al. 1997) and hepatocellular carcinoma cells (Ren et al. 2003). MIF was shown to be a 

prominent product of macrophages (Calandra et al. 1994) and to be expressed in a large 

number of endocrine and parenchymal cells, like anterior pituitary cells (Bernhagen et al. 

1993). MIF is a critical mediator of a number of immune and inflammatory diseases 

including septic shock (Bozza et al. 1999; Calandra et al. 2000), rheumatoid arthritis 

(Mikulowska et al. 1997), inflammatory lung diseases (Donnelly et al. 1997) and cancer 

(Chesney et al. 1999). Thus, it can be considered as an important pleiotropic master 

regulator that is neither a typical cytokine nor a typical chemokine. Therefore, it was 

proposed to consider MIF as a member of the heterogeneous family of chemokine-like 

function (Degryse and de Virgilio 2003). 

In an attempt to discover proteins that interact with MIF, Jung and co-workers 

identified specific protein complexes between MIF and proliferation-associated gene 

(PAG), a thiol-specific cellular antioxidant protein (Jung et al. 2001). The interaction 

between PAG and MIF occurs via disulfide bond between Cys173 of PAG and a yet not 

identified Cys residue of MIF resulting in the inhibition of PAG’s antioxidant activity. 

The identification of disulfide-dependent PAG-MIF interaction shows that MIF can 

interact with cellular proteins carrying susceptible disulfide bonds or thiols. MIF was also 

shown to colocalize with insulin in secretory granules in the β-cells of the pancreatic 

islets (Waeber et al. 1997) which can be enzymatically reduced by MIF in vitro 

(Kleemann et al. 1998a). In addition to PAG and insulin, another protein, hepatopoeitin 

(HPO) is directly involved in MIF’s redox-modulating function by direct interaction (Li 

et al. 2004). A connection between MIF’s role in cellular redox regulation and cell 

signaling processes was identified when MIF was found to interact with COP9 

signalosome (CSN) component c-Jun activation domain binding protein-1 (JAB1)/CSN5 
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(Kleemann et al. 2000a). JAB1 is a transcriptional co-activator of the activator protein-1 

(AP-1) (Claret et al. 1996) and component of the CSN. MIF inhibits JAB1-mediated AP-

1 activation and counterregulates JAB1-dependent p27 degradation and G1 cell-cycle 

arrest (Kleemann et al. 2000a). The JAB1-antogonistic effect of MIF appears to be 

dependent of the presence of the CXXC motif of MIF (Kleemann et al. 2000a). As 

recently demonstrated, JAB1 directly interacts with HPO (Lu et al. 2002) and 

interestingly, HPO also binds MIF (Li et al. 2004). Although MIF acts also as an 

extracellular mediator, no typical receptor has been identified. CD74, a cell-surface form 

of the major histocompatibility complex (MHC) class II-associated invariant chain was 

found to interact with MIF at the cell surface (Leng et al. 2003). Although CD74 does not 

constitute a typical receptor with a signal-transducing domain, it was demonstrated that 

MIF-mediated enhancement of cell proliferation and MAPK activation is in part 

dependent of the presence of CD74 (Leng et al. 2003). In addition, MIF was found to 

interact with BNIPL, an apoptosis associated protein and it was suggested that BNIPL 

could be involved in governing cell proliferation (Shen et al. 2003). The same study 

shows that overexpression of BNIPL suppresses Hep3B cell growth, suggesting that 

BNIPL could inhibit MIF-mediated tumor cell proliferation. 

Although several proteins are described as MIF interacting partners (Tabe 2), the 

exact mechanism of action of MIF remains incompletely elucidated. To confine a 

continued proinflammatory response, which, if generalized, can lead to shock, the careful 

control of local MIF levels and/or bioactivity may provide an important step in managing 

the outcome of an immune response. Therefore, the research focus was set on the 

identification of MIF interacting proteins that are able to compromise MIF activity. 
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Table 2: Known proteins that interact with MIF 
 
 

Transcriptional co -activator of the AP 1

Name

Degrades the cell cycle inhibitor KIP1 and 
the tumour suppressor p53

Binds to glucocorticoid and progesterone 
receptors

Binds and promotes degradation of cell-cycle 
inhibitor p27Kip1

General function

MIF reduces JNK activity 
stimulated by JAB1

MIF inhibits JAB1-mediated 
AP-1 activation

Effect of the interaction

MIF inhibits phoshorylation 
of c-Jun activated by JAB1

PAG
PAG reduces the D -dopachrome 
tautomerase activity of MIF 

PAG-MIF interaction is 
dependent on the redox status 

MIF suppresses the antioxidant 
activity of PAG 

It is a thiol-specific cellular antioxidant protein

Posesses conserved cysteine groups and use 
thiols as reductants

BNIPL Can cause apoptosis mediated by an 
apoptosis-inducing BCH domain

BNIPL could inhibit MIF-mediated 
tumor cell proliferation. 

HPO

CD74 CD74 expression is required for MIF-
mediated ERK-1/2 phosphorylation, 
PGE2 production, and cell 
proliferation. 

Role in the transport of MHC class II 
proteins from the endoplasmic reticulum 
to the Golgi complex

Accessory role in immune cell stimulation 
which require an interaction with CD44

It is a liver-specific regeneration augmenter Both HPO and MIF could bind to 
JAB1 and modulate the AP -1 pathway. 

JAB1/CSN 5
Transcriptional co -activator of the AP 1

Name

Degrades the cell cycle inhibitor KIP1 and 
the tumour suppressor p53
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Binds and promotes degradation of cell-cycle 
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General function

MIF reduces JNK activity 
stimulated by JAB1

MIF inhibits JAB1-mediated 
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of c-Jun activated by JAB1

PAG
PAG reduces the D -dopachrome 
tautomerase activity of MIF 

PAG-MIF interaction is 
dependent on the redox status 

MIF suppresses the antioxidant 
activity of PAG 

It is a thiol-specific cellular antioxidant protein

Posesses conserved cysteine groups and use 
thiols as reductants

BNIPL Can cause apoptosis mediated by an 
apoptosis-inducing BCH domain

BNIPL could inhibit MIF-mediated 
tumor cell proliferation. 

HPO

CD74 CD74 expression is required for MIF-
mediated ERK-1/2 phosphorylation, 
PGE2 production, and cell 
proliferation. 

Role in the transport of MHC class II 
proteins from the endoplasmic reticulum 
to the Golgi complex

Accessory role in immune cell stimulation 
which require an interaction with CD44

It is a liver-specific regeneration augmenter Both HPO and MIF could bind to 
JAB1 and modulate the AP -1 pathway. 

JAB1/CSN 5



  Discussion 

 69

6.1. Identification of proteins that interact with MIF 

In order to identify proteins that specifically interact with MIF, a systematic 

approach was employed. 

To select a promising source for the identification of MIF interacting proteins, a 

far-western experiment was performed with proteins from different tissues and cell types. 

Although the technique is not suitable for direct identification of possible interacting 

proteins, it enables an overview of MIF immune-reactivity in the tissues and cell types 

selected for the study. The far-western approach resulted in a broad but similar spectrum 

of MIF reactivity in all cell types and tissues analyzed. These results suggest that MIF 

possesses a ubiquitous spectrum of potential interacting proteins that is not restricted to 

specific cell types and tissues. Since the NIH 3T3 fibroblast cell line was employed in 

studies on MIF functions, receptor and on cellular up-take (Kleemann et al. 2002; 

Nguyen et al. 2003a), it was selected for further experiments. 

In previous studies, co-immunoprecipitation (Co-IP) was shown to provide an 

efficient approach for the detection of protein-protein interactions (Qoronfleh et al. 2003). 

Therefore, this method was employed to identify MIF interacting proteins in NIH 3T3 

cell extracts. Initially, a “proof of concept” experiment was performed. Using the 

generated rabbit polyclonal antibody against MIF, Co-IP was performed to investigate if 

this antibody is able to co-precipitate MIF together with JAB1, a protein that was shown 

to interact with MIF (Kleemann et al. 2000a). By this, anti-MIF antibody was proven to 

efficiently precipitate MIF, and Jab-1 was found to co-precipitate in NIH 3T3 cell 

extracts, demonstrating that the selected antibody is suitable for co-immunoprecipitation 

experiments. Co-IP samples were then separated by SDS gel electrophoresis and 

immunoprecipitated proteins were visualized by Coomassie staining. Beside 

immunoglobuline light and heavy chains, several specific bands appeared in the anti-MIF 

IP sample. One of these specific bands, with an apparent molecular weight of 16 kD, was 

excised from the gel and analyzed by tryptic in-gel digestion followed by MALDI-TOF 

mass spectrometry and identified as ribosomal protein S19 (RP S19). To confirm this 

result, IP samples were then analysed by Western blotting using anti RP S19 and anti-

MIF antibodies. Both proteins were only detected in the co-immunoprecipitation sample 

with anti-MIF antibody, thus confirming the specificity of the immunoprecipitation. In 
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conclusion, RP S19 was identified as a novel MIF-interacting protein. 

Although co-immunoprecipitation provides a robust technique for the 

identification of protein-protein interactions, its application is not suitable for the 

detection of low abundant interacting proteins. Furthermore, the presence of high amount 

of immunoglobuline in the IP sample limits the protein quantity for final detection. 

Therefore, a chemical cross-linking method based on the transfer of biotin was employed 

to enrich MIF interacting proteins of low abundance. The method allows covalent 

labeling with a biotin tag of proteins which come in a very close proximity to the “bait” 

protein. To confirm that this method is eligible for this study, a control experiment using 

NIH 3T3 cell extracts was performed. Western blotting identified Jab-1 as one of the 

purified proteins. This result confirms the applicability of the cross-linking method for 

the detection of MIF interacting proteins in vitro. Several proteins with an apparent 

molecular weight between 15 and 55 kDa were specifically visualized by biotin detection 

in the sample incubated with Sulfo-MIF confirming the specificity of the label transfer 

process. In summary, the application of the cross-linking technique resulted in the 

enrichment and detection of additional potential MIF interacting proteins, which were not 

observed using the co-immunoprecipitation approach. Thus, the cross-linking technique 

provides a promising strategy for the identification of low abundant MIF interacting 

proteins. 

6.2. MIF directly interacts with RP S19 in vitro  

In order to confirm the interaction between RP S19 and MIF in vitro, RP S19 was 

expressed as a His or GST tagged fusion protein. Pull-down experiments with rat or 

human MIF and GST-RP S19 and His-tagged RP S19 proved that the interaction between 

MIF and RP S19 occurs directly without the need for a co-factor. 

This is the first report on the identification of a ribosomal protein interacting with 

the cytokine MIF. Ribosomes are complex macromolecular machines that are responsible 

for protein synthesis in every living cell. However, various individual ribosomal proteins 

and also translational initiation and elongation factors have been found to play roles in 

regulating cell growth (Marechal et al. 1997), transformation (Wilson et al. 1994) and cell 
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death (Horino et al. 1998), leading to the hypothesis that components of the translational 

apparatus can act as multifunctional proteins. Previous studies have shown that several 

ribosomal proteins, including RP S19, possess extraribosomal functions (Wool 1996), 

supporting the hypothesis that the transition of the ribosome from a RNA to a RNP 

(ribonucleoprotein) complex occurred by recruiting preexisting proteins. Some of these 

extraribosomal functions include malignant transformation (Kastan 1993), regulation of 

development (Cramton and Laski 1994; Fisher et al. 1990; Hart et al. 1993), and DNA 

repair (Grabowski et al. 1991). In this context, RP S19 was found to be required for 

chromatin condensation (Etter et al. 1994). RP S19 was also shown to interact with 

fibroblast groth factor 2 (FGF2) (Soulet et al. 2001), contributing to the idea of extra 

cellular function. In the same study, RP S19 was found predominantly in the cytosolic 

compartment of NIH 3T3 cells and it lacks a nuclear localization sequence (Soulet et al. 

2001). RP S19 is implicated in different human diseases. In rheumatoid arthritis synovial 

tissue, the monocyte chemotactic factor was shown to correspond to free oligomers of RP 

S19 intermolecularly cross-linked by a transglutaminase-catalyzed reaction (Nishiura et 

al. 1996). In Diamond-Blackfan anaemia, a congenital erythroblastopenia, the gene 

encoding RP S19 is mutated and the mutations were associated with clinical features that 

suggested a function for RP S19 in erythropoiesis and embryogenesis (Amaldi and 

Pierandrei-Amaldi 1990; Matsson et al. 1999). All of the patients with RP S19 gene 

mutations were heterozygotes, suggesting that homozygous abnormality of the RP S19 

gene is embryonic lethal, and that erythropoiesis needs a higher level of functional RP 

S19 molecules than other cellular systems (Matsson et al. 2004). 

MIF was characterized to exhibit its functions via specific amino acid sequences. 

Pro2 was identified to be essential for tautomerase activity of MIF (Bendrat et al. 1997; 

Kleemann et al. 2000b; Swope et al. 1998). The sequence motif Cys57-Ala-Leu-Cys60 

(CALC) is a characteristic feature for thiol-protein oxidoreductase activity (Takahashi 

and Creighton 1996) and mutation of either of these cysteines changes the redox potential 

of MIF (Kleemann et al. 1998a; Kleemann et al. 1998b). Thus, it was investigated if the 

functional domains of MIF are relevant for the binding to RP S19. Pull-down 

experiments were performed with RP S19 and wt MIF and different MIF mutants: (1) 

P2A: Pro2 is substituted by Ala; (2) C60S: Cys60 is substituted by Ser; (3) ∆4: the first 
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four N-terminal amino acids are removed. The sequences of these mutants were validated 

by MALDI-TOF MS. The P2A MIF and the ∆4 MIF mutants do not exhibit tautomerase 

activity, whereas the C60S MIF mutant does not possess oxidoreductase activity. The 

pull-down assays showed that the ∆4 MIF mutant showed similar binding affinity to RP 

S19 as the wild type MIF does, while the P2A- and C60S MIF mutants did not bind to the 

RP S19. In previous studies, far-UV CD spectroscopy analysis revealed that the spectra 

of P2A MIF, ∆4 MIF (Kleemann et al. 2000b) and C60S MIF mutants (Kleemann et al. 

1999) were similar to the spectrum of wt MIF so that gross conformational integrity is 

not significantly affected by the introduced mutations. Thus, the presumtion that 

conformational modifications could prevent MIF mutants to interact with RP S19 can be 

disregarded. Since the C60S MIF mutant did not interact with RP S19, it can be 

concluded that Cys60 is essential for a direct interaction. In contrast, it was surprising that 

the ∆4 MIF mutant exhibited binding capacity to RP S19 similar to that of wt MIF, 

whereas the P2A MIF mutant did not bind to RP S19. A similar phenomenon was 

observed in studies on the enzymatic and immunologic functions of MIF. It was shown 

that the ∆4 MIF and P2A MIF mutants behave unequal in terms of glucocorticoid-

antagonism and oxidoreductase activity (Kleemann et al. 2000b). Thus, the identification 

of RP S19 binding sites for MIF might provide an explanation for the drastic difference in 

binding capacity of the P2A mutant compared with wt MIF and ∆4MIF mutant. 

6.3. MIF and RP S19 co-localize in the cytoplasm 

In several cell types endogenous MIF was shown to be targeted to the cytosol 

(Kleemann et al. 2000a), while exogenous added recombinant MIFis taken up by cells 

and found in the cytoplasm and the lysosomal compartment (Kleemann et al. 2002). For 

RP S19, cellular localization studies have shown endogenous RP S19 to be present in the 

cytoplasm of NIH 3T3 fibroblasts (Soulet et al. 2001), while ectopically expressed RP 

S19 shows predominantly nucleolar localization in transfected Cos-7 fibroblast cells (Da 

Costa et al. 2003). The majority of the ribosome biogenesis takes place in a special 

compartment, the nucleolus but the final maturation of the small subunit occurs in the 

cytoplasm, a mechanism to prevent assembly of functional ribosomes within the nucleus. 
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This explains why ectopically expressed RP S19 was found predominantly in the 

nucleolus, while the endogenous RP S19 was found in the cytoplasmic extract. In the 

present study, double immunostaining performed on NIH 3T3 cells revealed that 

endogenous MIF and RP S19 co-localize in the cytoplasm of these cells. Since the MIF-

RP S19 interaction was found in cytoplasmic extracts of NIH 3T3 cells, the 

immunohistochemical analysis confirms that the MIF-RP S19 interaction likely takes 

place in the cytoplasm of fibroblast cells. 

6.4. RP S19 negatively modulates MIF tautomerase activity 

The previous results demonstrate that RP S19 directly binds to MIF and that both 

proteins co-localize in the cytoplasm of NIH 3T3 cells. In order to assess the functional 

implications of this protein-protein interaction, RP S19 was tested in several MIF’s 

functional assays.  

The three-dimensional structure of MIF reveals that MIF shares a similar structure 

and active site to several bacterial enzymes 4-oxalocrotonate tautomerase and 5-

carboxymethyl-2-hydroxymuconate isomerase (Sun et al. 1996a). MIF possesses the 

unusual ability to catalyze the tautomerization of the non-physiological substrates D-

dopachrome and L-dopachrome methyl ester into their corresponding indole derivatives 

(Rosengren et al. 1996; Zhang et al. 1995). However, physiological substrates for the 

tautomerase activity have not been identified yet. Recently, small-molecule inhibitors that 

interact with the active tautomerase/isomerase pocket of MIF have been shown to inhibit 

its cytokine function (Lubetsky et al. 1999; Orita et al. 2002; Stamps et al. 1998). One 

compound, (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester 

(known as ISO-1), inhibits the tautomerase activity of MIF and its cytokine actions on 

Phospholipase A2 (PLA2) activity, and also reverses glucocorticoid-inhibited TNF release 

(Lubetsky et al. 2002). More recently, this compound was reported to be active in vivo 

models improving survival in lipopolysaccharide models of endotoxic shock- and caecal 

ligation and puncture-induced models of septic shock (Al-Abed et al. 2005). ISO-1 has 

also been reported to be active in a model of diabetes mellitus-like pancreatic islet 

inflammation induced by streptozotocin (Cvetkovic et al. 2005). 
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In order to study if RP S19 affects the tautomerase activity of MIF, in vitro 

experiments with recombinant RP S19 and MIF were performed. The data show a dose-

dependent inhibition of MIF’s tautomerase activity by RP S19. A five fold molar excess 

of RP S19 over the MIF concentration repressed MIF tautomerase activity by 40%, while 

secretoglobin 2A1, a protein of similar molecular weight as RP S19 used as a control, had 

no influence on the tautomerase activity of MIF. If the inhibitory effect of RP S19 on 

MIF’s tautomerase activity is relevant for the modulation of MIF-dependent pro-

inflammatory events, remains to be investigated. In conclusion, the data show that RP 

S19 specifically represses MIF tautomerase activity, suggesting that RP S19-MIF 

interaction might play a role in the regulation of physiological MIF functions. 

6.5. RP S19 prevents the pro-inflammatory action of MIF 

Glucocorticoids are among the most effective anti-inflammatory substances 

known, acting through various mechanisms to inhibit inflammation (Tjandra et al. 1996). 

In contrast to other pro-inflammatory cytokines that are generally suppressed by 

glucocorticoids, MIF expression and secretion by macrophages, T cells and certain 

endocrine cells in response to varying concentrations of glucocorticoids is bimodal: it is 

increased in response to physiological concentrations of glucocorticoids (Calandra et al. 

1995; Leech et al. 1999; Waeber et al. 1997), whereas higher concentrations of 

glucocorticoids do not induce MIF secretion. This feature closely mirrors bimodal 

physiological regulation of immune function by glucocorticoids.  

The present study proved that RP S19 negatively modulate the tautomerase 

activity of MIF. Other studies identified a mechanism of inhibiting MIF pro-

inflammatory activities by targeting its tautomerase activity (Kleemann et al. 2000b). 

ISO-1, the above mentioned small molecule inhibitor of MIF tautomerase activity, 

inhibits tumor necrosis factor α (TNF α) release from macrophages isolated from LPS 

treated wild type mice but has no effect on cytokine release from MIF-deficient 

macrophages. LPS, a gram negative bacterial cell wall component, is an inflammatory 

mediator that induces the release of TNFα from macrophage cell lines or primary 

monocytes (Bendrat et al. 1997; Roger et al. 2005). Glucocorticoids such as 
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dexamethasone exert anti-inflammatory effects by inhibiting TNFα release, whereas 

exogenously applied MIF counteracts this anti-inflammatory activity (Bucala 1996; 

Calandra and Bucala 1995). These studies demonstrate that the administration of 

recombinant MIF together with dexamethasone in mice completely blocks the protective 

effects of glucocorticoids on LPS lethality (Calandra et al. 1995).  

In order to assess the impact of RP S19 on pro-inflammatory functions of MIF, a 

study was conduced in order to answer the question if RP S19 is capable to modulate the 

counter-regulatory activity of MIF on glucocorticoid-mediated immunosuppression. The 

results unequivocally show that RP S19 counteracts MIF’s overriding effect on 

glucocorticoid inhibition of cytokine production leading to lower TNFα production in 

dexamethasone-treated and LPS-activated monocytes. A connection between MIF’s 

glucocorticoid overriding action and its tautomerase activity was identified. It was shown 

that the N-terminal proline is essential for MIF’s tautomerase activity and that its 

substitution with alanine abolishes this enzymatic activity (Lubetsky et al. 1999; Stamps 

et al. 1998). Interestingly, this MIF mutant is less efficient in counterregulating 

glucocorticoid-mediated immunosuppression (Kleemann et al. 2000b). In addition, other 

studies support the idea that MIF enzymatic activity is directly linked to its pro-

inflammatory function (Al-Abed et al. 2005; Onodera et al. 2000; Swope et al. 1998; 

Zang et al. 2002) and low molecular weight inhibitors of MIF’s enzymatic activity were 

developed in order to block the pro-inflammatory function (Lubetsky et al. 2002; Senter 

et al. 2002). It was shown that ISO-1 leads to abrogation of MIF glucocorticoid-

overriding capacity. Current data suggest that neutralization of the pro-inflammatory 

activity of MIF would be highly beneficial in the treatment of several inflammatory 

disorders (Calandra and Roger 2003; Riedemann et al. 2003). This assertion is supported 

by the substantial therapeutic effects of MIF-specific antibodies in several models of 

inflammatory and autoimmune diseases. Administration of neutralizing anti-MIF 

antibodies has proven therapeutically effective in numerous animal models of systemic 

inflammation, including gram-negative, gram-positive, and polymicrobial sepsis, 

arthritis, and autoimmune diabetes (Bernhagen et al. 1993; Bozza et al. 1999; Calandra et 

al. 2000; Lan et al. 2000; Murakami et al. 2002). 

Intracellular MIF plays a critical role in mediating cellular response to pathways 
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activated by LPS (Roger et al. 2001) and is required for basal expression of Toll like 

receptor 4 (TLR4), the endotoxine receptor. Accordingly, inhibition of MIF by RP S19 

would suppress the endotoxin response in macrophages. Thus, RP S19 recapitulates the 

phenotype of MIF deficient macrophages which are hyporesponsive to endotoxin (Bozza 

et al. 1999; Roger et al. 2001), and is associated with decreased TNFα production in 

response to LPS. Thus, RP S19 is the first identified endogenous compound capable to 

modulate MIF’s tautomerase activity and its proinflammatory function. 

6.6. RP S19 blocks MIF-induced monocyte migration 

It is known that chemokines are secreted by damaged or inflamed tissue and act as 

chemoattractants for specific types of white blood cells, causing these cells to become 

polarized and migrate toward the source of the attractant. As a result, large numbers of 

white blood cells enter the affected tissue. Once the monocytes leave the blood stream, 

they become activated and transformed to macrophages, which phagocytose and digest 

invading microorganisms and foreign bodies as well as damaged senescent cells. 

MIF was initially identified as a soluble factor produced by activated T 

lymphocytes that could inhibit the random migration of macrophages (Bloom and 

Bennett 1966; David 1966). In the mentioned experiment, the supernatant of sensitized 

peritoneal T cells prevented the migration of macrophages out of a capillary tube. 

However, looking from a different angle this activity could likewise be that of a 

chemokine that attracts the macrophages to the capillary rather than simply blocking 

migration out of it. Several studies support the idea of inhibitory effects of MIF on both 

random migration and chemotaxis of human monocytes (Bloom and Bennett 1966; David 

1966; Weiser et al. 1989). MIF was recognized to be associated with immune cell 

activation (Metz and Bucala 1997; Swope and Lolis 1999), and influences the migration 

and proliferation of various cell types, predominantly monocytes and macrophages 

(Lacey et al. 2003). Recent evidence suggests an important role for MIF in the 

progression of atherosclerosis (Burger-Kentischer et al. 2006; Morand et al. 2006) and 

restenosis (Chen et al. 2004). MIF also acts as a chemoattractant for vascular smooth 

muscle cells (Schrans-Stassen et al. 2005) and freshly separated rat keratinocytes (Abe et 
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al. 2000). It was shown that MIF is also abundantly produced by monocytes/macrophages 

(Onodera et al. 1997), and acts in an autocrine/paracrine fashion to up-regulate and 

sustain cell response to concurrent, activating stimuli (Bozza et al. 1999; Mitchell et al. 

2002). 

In this context, it was intended to specify the mode of MIF action on 

monocyte/macrophage migration and to explore if RP S19 is capable to modulate MIF’s 

chemotactic activity. Previous studies have shown that the monocyte chemotactic protein 

1 (MCP-1) possesses a strong chemoattractant effect on monocytes and macrophages 

(Kakizaki et al. 1995; Segerer et al. 2000). MIF was shown to abrogate MCP-1-induced 

monocyte-derived macrophage migration when the cells were pre-incubated with MIF 

prior to the investigation of their migration to MCP-1 (Hermanowski-Vosatka et al. 

1999). However, the mode of MIF’s action on macrophage migration arrest has not yet 

been analyzed in detail. In this context, it was investigated whether the inhibitory effect 

of MIF on macrophage migration is in fact a chemoattractant activity. Using peripheral 

blood monocyte cells (PBMC), and a modified experimental setup, PBMC chemotaxis 

was investigated by using MCP-1 or MIF as chemoattractants. MIF displayed a strong 

chemoattractant effect on PBMCs which was comparable to that of MCP-1. Thus, the 

effect of MIF on the migration of PBMCs is in fact not an inhibitory one but a distinct 

chemoattractant. In conclusion, the results suggest that MIF rather acts as a chemokine 

that recruits macrophage to the sites of inflammation than as a migration inhibitor. 

RP S19 was reported to homologously cross-link by a transglutaminase-catalysed 

reaction (Nishiura et al. 1996) and being released as a dimer into the extracellular milieu 

during apoptosis (Nishiura et al. 1996). The homodimer functions as a monocyte-

selective chemoattractant in vitro and recruits circulating monocytes to the apoptotic 

lesion in vivo by means of binding to the C5a receptor, while the monomer has no 

chemoattractant capacity (Nishiura et al. 2005). The recruited monocytes clear the 

apoptotic cells by phagocytosis and rapidly translocate to the regional lymph nodes via 

lymphatics to present potential non-self antigens derived from apoptotic cells to T cells. 

By promoting the clearance of apoptotic cells, the RP S19 dimer could play a role in 

preventing tissue damage, inflammation and autoimmune reactions. Interestingly, the RP 

S19 dimer but not C5a behaves as an antagonist of the C5a receptor on 
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polymorphonuclear leukocytes (Shrestha et al. 2003). 

In the present study, it was examined whether the RP S19 monomer is capable of 

modulating MIF’s chemoattractant activity. The migration assays revealed that RP S19 

significantly inhibits MIF’s chemoattractant activity on PBMCs, whereas RP S19 alone 

did not influence the migration of PBMCs. Thus, the high chemotactic responsiveness of 

macrophages to MIF can be attenuated by the addition of RP S19. 

If the discovered inhibiting effect of RP S19 on MIF chemoattractant activity is 

functionally relevant for MIF-dependent proinflammatory events remains to be 

demonstrated by in vivo studies. In summary, MIF might contribute to the immune 

response by recruiting macrophages to the sites of inflammation, whereas RP S19 

monomer could modulate macrophage migration by attenuating MIF’s chemoattractant 

activity. 
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7. SUMMARY 

Macrophage migration inhibitory factor (MIF) is a naturally occurring immune 

modulator which is synthesized by various cell types and originally has been named by 

its ability to inhibit the random migration of human monocytes. More recently, MIF was 

shown to override the immunosuppressive effects of glucocorticoids and to stimulate pro-

inflammatory cytokine expression such as TNF-α in leukocytes. Accumulating research 

over the past ten years revealed an important role for MIF in normal and pathological 

immune function. However, the molecular mechanism of MIF action and its modulation 

in normal and diseased state remain poorly understood. To gain more insight into MIF’s 

biological role, the research focus of this thesis was put on the identification of MIF 

interacting proteins with the ability to modulate relevant MIF functions. 

The present study demonstrates that the ribosomal protein S19 (RP S19) interacts 

with the cytokine MIF and that both proteins are co-localized in the cytoplasm of NIH 

3T3 cells. The interaction was found by co-immunoprecipitation in extracts of NIH3T3 

cells. Direct interaction of MIF and RP S19 was verified in vitro by pull-down assays 

following cloning and expression of recombinant proteins. To identify crucial domains 

for MIF-RP S19 interaction, further pull-down assays were performed with wild type (wt) 

MIF and ∆4MIF, P2AMIF and C60SMIF mutants. Human wtMIF and ∆4MIF mutant 

exhibited similar levels of interaction with RP S19, whereas the human P2A- and 

C60SMIF mutants did not display any affinity to RP S19. 

In order to evaluate the functional role of this interaction, the effect of RP S19 on 

relevant MIF functions was further investigated. RP S19 was found to inhibit MIF’s 

tautomerase enzymatic activity in a dose-dependent manner and to counteract the 

overriding effect of MIF on glucocorticoid inhibition of TNF-α production under LPS 

stimulation. Several studies support the idea that the tautomerase activity of MIF is 

directly linked to its pro-inflammatory functions and that the attenuation of the 

tautomerase activity by synthetic inhibitors results in the abrogation of MIF’s 

glucocorticoid-overriding activity. Thus this study has identified RP S19 as the first 

endogenous molecule capable of modulating both MIF’s tautomerase activity and its pro-
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inflammatory function by influencing glucocorticoid sensitivity.  

In investigations of other authors, MIF was shown to abrogate monocyte 

chemotactic protein (MCP) 1-induced macrophage migration, emphasizing the original 

view that MIF exerts an inhibitory effect on monocyte/macrophage migration. In this 

context, our study intended to specify the mode of MIF’s action on 

monocyte/macrophage migration and to explore if RP S19 is capable to modulate the 

migration inhibiting activity of MIF. Surprisingly, MIF displayed a previously unknown 

strong chemoattractant effect on peripheral blood monocytes, suggesting that MIF acts 

rather as a chemokine to recruit macrophages to sites of inflammation than as a migration 

inhibitor of those cells which already have been attracted by other factors. The 

chemoattractant activity of MIF is significantly inhibited by RP S19, whereas RP S19 

alone as a control did not influence monocyte migration. Thus, the high chemotactic 

responsiveness of macrophages to MIF can be attenuated by the addition of RP S19. 

For a number of ribosomal proteins, including RP S19, also extraribosomal 

functions have been reported beside the participation in protein synthesis. RP S19 

released by necrotic or apoptotic cells in inflammatory lesions could serve to control the 

outcome and magnitude of an inflammatory response. Future studies will aim to 

investigate if RP S19 could be used in animal models or in pre-clinical applications as a 

potential new tool to inhibit the pro-inflammatory functions of MIF. 
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8. ZUSAMMENFASSUNG 

Der Makrophagen-Migrations-Inhibitionsfaktor (MIF) ist ein endogener 

Modulator des Immunsystems und wird von einer Vielzahl von Zelltypen synthetisiert. 

MIF verdankt seinen Namen der Fähigkeit, die ungerichtete Migration von humanen 

Monozyten in vitro zu hemmen. Neuere Untersuchungen zeigen, dass MIF die 

immunsuppressiven Wirkungen von Glukokortikoiden aufheben und die Synthese von 

proinflammatorischen Zytokinen, wie z.B. TNF-α, in Leukozyten stimulieren kann. 

Obwohl in den vergangenen zehn Jahren viele Studien gezeigt haben, dass MIF eine 

entscheidende Rolle bei einer ganzen Reihe von normalen und pathophysiologischen 

Immunprozessen spielt, wurden die zugrunde liegenden molekularen Mechanismen nur 

unzureichend aufgeklärt. Um die biologische Rolle von MIF besser verstehen zu können, 

sollten in dieser Arbeit neue Proteine identifiziert werden, die mit MIF interagieren und 

dessen Funktionen modulieren können. 

Es wurde nachgewiesen, dass MIF mit dem ribosomalen Protein S19 (RP S19) 

interagiert, und das beide Proteine im Zytoplasma von NIH 3T3 Zellen lokalisiert sind. 

Die Interaktion von MIF und RP S19 in vivo konnte durch Koimmunpräzipitation 

identifiziert und über in vitro pull-down Experimente validiert werden. Die in vitro 

Versuche mit rekombinantem MIF und RP S19 machten zudem deutlich, das MIF und 

RP S19 direkt miteinander interagieren, d.h. ohne die Beteiligung möglicher Kofaktoren. 

Durch in vitro pull-down Experimente mit rekombinantem Wildtyp MIF (wtMIF) und 

den MIF-Mutanten ∆4MIF, P2AMIF und C60SMIF wurden Aminosäuren im MIF 

Polypeptid identifiziert, die für die Interaktion mit RP S19 notwendig sind. Hierbei 

zeigten wtMIF und ∆4MIF eine vergleichbare Bindungsaffinität zu RP S19, wohingegen 

die MIF-Mutanten P2AMIF und C60SMIF nicht mehr mit RP S19 interagieren konnten. 

In nachfolgenden Studien wurde die funktionelle Bedeutung der MIF/RP S19 

Interaktion eingehender charakterisiert. So konnte zunächst gezeigt werden, daß RP S19 

die Tautomeraseaktivität von MIF dosisabhäng hemmt. Weiterhin wurde nachgewiesen, 

daß Glukokortikoide die Ausschüttung von TNFα nach LPS-Induktion humaner 

Blutmonozyten inhibiert und MIF diese Wirkung aufheben kann (glucocorticoid 
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overriding effect), allerdings nicht in Anwesenheit von RP S19. Verschiedene Studien 

weisen auf einen ursächlichen Zusammenhang zwischen der Tautomeraseaktivität und 

pro-inflammatorischen Wirkungen von MIF hin, da synthetische Inhibitoren der 

Tautomeraseaktivität den glucocorticoid overriding effect neutralisieren können. Somit 

konnte über die funktionelle Charakterisierung der MIF/RP S19 Interaktion erstmalig ein 

endogener Modulator der Tautomeraseaktivität von MIF und folglich der 

proinflammatorischen Eigenschaften von MIF identifiziert werden. 

In Untersuchungen anderer Autoren wurde ein inhibitorischer Effekt von MIF auf 

die monocyte chemotactic protein (MCP) 1-vermittelte Migration von Makrophagen 

beobachtet, was frühere Befunde zur Migrationsinhibiton von Makrophagen durch MIF 

bestätigte. Daher wurde die MIF-abhängige Migration von Monozyten/Makrophagen 

eingehender charakterisiert und der Einfluss von RP S19 darauf untersucht. 

Überraschenderweise zeigte sich, dass MIF ein starkes Chemoattraktant für periphere 

Blutmonozyten darstellt. Folglich weist MIF keine antimigratorischen Eigenschaften auf, 

sondern fungiert eher als ein Zytokin, das Monozyten zum Ort der Entzündung aktiv 

rekrutiert. Dagegen wurde bei gleichzeitiger Applikation von MIF und RP S19 eine 

signifikante Hemmung der chemoattraktiven Eigenschaften von MIF nachgewiesen, 

wohingegen RP S19 allein keinen Einfluss auf die Migration von Monozyten ausübt. 

Für verschiedene ribosomale Proteine, einschließlich RP S19, konnten - neben 

ihrer Bedeutung in der Ribosomenbiogenese und der Proteinbiosynthese - auch 

extraribosomale Funktionen nachgewiesen werden. Als Folge von Entzündungsprozessen 

könnte die Freisetzung von RP S19 aus nekrotischen und apoptotischen Zellen den 

Verlauf und das Ausmaß von Entzündungsreaktionen beeinflussen. Zukünftige 

Untersuchungen werden zum Ziel haben, den therapeutische Nutzen von RP S19 als 

Inhibitor proinflamatorischer MIF-Funktionen zunächst im Tiermodell und 

gegebenenfalls in vorklinischen Studien zu testen. 



  References 

 83

9. REFERENCES 

Abe R, Peng T, Sailors J, Bucala R, Metz CN (2001) Regulation of the CTL response by 
macrophage migration inhibitory factor. J Immunol 166:747-53 

Abe R, Shimizu T, Ohkawara A, Nishihira J (2000) Enhancement of macrophage 
migration inhibitory factor (MIF) expression in injured epidermis and cultured 
fibroblasts. Biochim Biophys Acta 1500:1-9 

Al-Abed Y, Dabideen D, Aljabari B, Valster A, Messmer D, Ochani M, Tanovic M, 
Ochani K, Bacher M, Nicoletti F, Metz CN, Pavlov VA, Miller EJ, Tracey KJ 
(2005) ISO-1 binding to the tautomerase active site of MIF inhibits its pro-
inflammatory activity and increases survival in severse sepsis. J Biol Chem 

Amaldi F, Pierandrei-Amaldi P (1990) Translational regulation of the expression of 
ribosomal protein genes in Xenopus laevis. Enzyme 44:93-105 

Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression 
by glucocorticoids: inhibition of NF-kappa B activity through induction of I 
kappa B synthesis. Science 270:286-90 

Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, 
Bucala R (1996) An essential regulatory role for macrophage migration inhibitory 
factor in T-cell activation. Proc Natl Acad Sci U S A 93:7849-54 

Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in 
chronic inflammatory diseases. N Engl J Med 336:1066-71 

Baugh JA, Bucala R (2002) Macrophage migration inhibitory factor. Crit Care Med 
30:S27-35 

Bech-Otschir D, Kraft R, Huang X, Henklein P, Kapelari B, Pollmann C, Dubiel W 
(2001) COP9 signalosome-specific phosphorylation targets p53 to degradation by 
the ubiquitin system. Embo J 20:1630-9 

Beishuizen A, Thijs LG, Haanen C, Vermes I (2001) Macrophage migration inhibitory 
factor and hypothalamo-pituitary-adrenal function during critical illness. J Clin 
Endocrinol Metab 86:2811-6 

Bendrat K, Al-Abed Y, Callaway DJ, Peng T, Calandra T, Metz CN, Bucala R (1997) 
Biochemical and mutational investigations of the enzymatic activity of 
macrophage migration inhibitory factor. Biochemistry 36:15356-62 

Benigni F, Atsumi T, Calandra T, Metz C, Echtenacher B, Peng T, Bucala R (2000) The 
proinflammatory mediator macrophage migration inhibitory factor induces 
glucose catabolism in muscle. J Clin Invest 106:1291-300 



  References 

 84

Bernhagen J, Calandra T, Bucala R (1998) Regulation of the immune response by 
macrophage migration inhibitory factor: biological and structural features. J Mol 
Med 76:151-61 

Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue KR, 
Cerami A, Bucala R (1993) MIF is a pituitary-derived cytokine that potentiates 
lethal endotoxaemia. Nature 365:756-9 

Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R (1994) 
Purification, bioactivity, and secondary structure analysis of mouse and human 
macrophage migration inhibitory factor (MIF). Biochemistry 33:14144-55 

Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-
type hypersensitivity. Science 153:80-2 

Bozza M, Satoskar AR, Lin G, Lu B, Humbles AA, Gerard C, David JR (1999) Targeted 
disruption of migration inhibitory factor gene reveals its critical role in sepsis. J 
Exp Med 189:341-6 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 
72:248-54 

Bucala R (1996) MIF rediscovered: cytokine, pituitary hormone, and glucocorticoid- 
induced regulator of the immune response. FASEB J. 10:1607-1613 

Burger-Kentischer A, Gobel H, Kleemann R, Zernecke A, Bucala R, Leng L, Finkelmeier 
D, Geiger G, Schaefer HE, Schober A, Weber C, Brunner H, Rutten H, Ihling C, 
Bernhagen J (2006) Reduction of the aortic inflammatory response in spontaneous 
atherosclerosis by blockade of macrophage migration inhibitory factor (MIF). 
Atherosclerosis 184:28-38 

Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, 
Bucala R (1995) MIF as a glucocorticoid-induced modulator of cytokine 
production. Nature 377:68-71 

Calandra T, Bernhagen J, Mitchell RA, Bucala R (1994) The macrophage is an important 
and previously unrecognized source of macrophage migration inhibitory factor. J 
Exp Med 179:1895-902 

Calandra T, Bucala R (1995) Macrophage migration inhibitory factor: a counter-regulator 
of glucocorticoid action and critical mediator of septic shock. J Inflamm 47:39-51 

Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L, Heumann D, Mannel 
D, Bucala R, Glauser MP (2000) Protection from septic shock by neutralization of 
macrophage migration inhibitory factor. Nat Med 6:164-70 

Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate 



  References 

 85

immunity. Nat Rev Immunol 3:791-800 

Chauchereau A, Georgiakaki M, Perrin-Wolff M, Milgrom E, Loosfelt H (2000) JAB1 
interacts with both the progesterone receptor and SRC-1. J Biol Chem 275:8540-8 

Chen Z, Sakuma M, Zago AC, Zhang X, Shi C, Leng L, Mizue Y, Bucala R, Simon DI 
(2004) Evidence for a Role of Macrophage Migration Inhibitory Factor in 
Vascular Disease. Arterioscler Thromb Vasc Biol 24:709-714 

Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R (1999) An essential role 
for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth 
of a murine lymphoma. Mol Med 5:181-91 

Chook YM, Gray JV, Ke H, Lipscomb WN (1994) The monofunctional chorismate 
mutase from Bacillus subtilis. Structure determination of chorismate mutase and 
its complexes with a transition state analog and prephenate, and implications for 
the mechanism of the enzymatic reaction. J Mol Biol 240:476-500 

Claret FX, Hibi M, Dhut S, Toda T, Karin M (1996) A new group of conserved 
coactivators that increase the specificity of AP-1 transcription factors. Nature 
383:453-7 

Cramton SE, Laski FA (1994) string of pearls encodes Drosophila ribosomal protein S2, 
has Minute-like characteristics, and is required during oogenesis. Genetics 
137:1039-48 

Cvetkovic I, Al-Abed Y, Miljkovic D, Maksimovic-Ivanic D, Roth J, Bacher M, Lan HY, 
Nicoletti F, Stosic-Grujicic S (2005) Critical role of macrophage migration 
inhibitory factor activity in experimental autoimmune diabetes. Endocrinology 
146:2942-51 

Da Costa L, Tchernia G, Gascard P, Lo A, Meerpohl J, Niemeyer C, Chasis JA, Fixler J, 
Mohandas N (2003) Nucleolar localization of RPS19 protein in normal cells and 
mislocalization due to mutations in the nucleolar localization signals in 2 
Diamond-Blackfan anemia patients: potential insights into pathophysiology. 
Blood 101:5039-45 

Daun JM, Cannon JG (2000) Macrophage migration inhibitory factor antagonizes 
hydrocortisone-induced increases in cytosolic IkappaBalpha. Am J Physiol Regul 
Integr Comp Physiol 279:R1043-9 

David JR (1966) Delayed hypersensitivity in vitro: its mediation by cell-free substances 
formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A 56:72-7 

De Bosscher K, Vanden Berghe W, Vermeulen L, Plaisance S, Boone E, Haegeman G 
(2000) Glucocorticoids repress NF-kappaB-driven genes by disturbing the 
interaction of p65 with the basal transcription machinery, irrespective of 
coactivator levels in the cell. Proc Natl Acad Sci U S A 97:3919-24 



  References 

 86

Degryse B, de Virgilio M (2003) The nuclear protein HMGB1, a new kind of 
chemokine? FEBS Lett 553:11-7 

Denkinger CM, Metz C, Fingerle-Rowson G, Denkinger MD, Forsthuber T (2004) 
Macrophage migration inhibitory factor and its role in autoimmune diseases. Arch 
Immunol Ther Exp (Warsz) 52:389-400 

Dios A, Mitchell RA, Aljabari B, Lubetsky J, O'Connor K, Liao H, Senter PD, Manogue 
KR, Lolis E, Metz C, Bucala R, Callaway DJ, Al-Abed Y (2002) Inhibition of 
MIF bioactivity by rational design of pharmacological inhibitors of MIF 
tautomerase activity. J Med Chem 45:2410-6 

Donnelly SC, Haslett C, Reid PT, Grant IS, Wallace WA, Metz CN, Bruce LJ, Bucala R 
(1997) Regulatory role for macrophage migration inhibitory factor in acute 
respiratory distress syndrome. Nat Med 3:320-3 

Esumi N, Budarf M, Ciccarelli L, Sellinger B, Kozak CA, Wistow G (1998) Conserved 
gene structure and genomic linkage for D-dopachrome tautomerase (DDT) and 
MIF. Mamm Genome 9:753-7 

Etter A, Bernard V, Kenzelmann M, Tobler H, Muller F (1994) Ribosomal heterogeneity 
from chromatin diminution in Ascaris lumbricoides. Science 265:954-6 

Fisher EM, Beer-Romero P, Brown LG, Ridley A, McNeil JA, Lawrence JB, Willard HF, 
Bieber FR, Page DC (1990) Homologous ribosomal protein genes on the human 
X and Y chromosomes: escape from X inactivation and possible implications for 
Turner syndrome. Cell 63:1205-18 

Froidevaux C, Roger T, Martin C, Glauser MP, Calandra T (2001) Macrophage migration 
inhibitory factor and innate immune responses to bacterial infections. Crit Care 
Med 29:S13-5 

Grabowski DT, Deutsch WA, Derda D, Kelley MR (1991) Drosophila AP3, a 
presumptive DNA repair protein, is homologous to human ribosomal associated 
protein P0. Nucleic Acids Res 19:4297 

Hart K, Klein T, Wilcox M (1993) A Minute encoding a ribosomal protein enhances 
wing morphogenesis mutants. Mech Dev 43:101-10 

Hayakawa M, Ishida N, Takeuchi K, Shibamoto S, Hori T, Oku N, Ito F, Tsujimoto M 
(1993) Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the 
cytotoxic action of tumor necrosis factor. J Biol Chem 268:11290-5 

Hermanowski-Vosatka A, Mundt SS, Ayala JM, Goyal S, Hanlon WA, Czerwinski RM, 
Wright SD, Whitman CP (1999) Enzymatically inactive macrophage migration 
inhibitory factor inhibits monocyte chemotaxis and random migration. 
Biochemistry 38:12841-9 



  References 

 87

Horino K, Nishiura H, Ohsako T, Shibuya Y, Hiraoka T, Kitamura N, Yamamoto T 
(1998) A monocyte chemotactic factor, S19 ribosomal protein dimer, in 
phagocytic clearance of apoptotic cells. Lab Invest 78:603-17 

Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH (1999) A 
proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 
190:1375-82 

Jun Gu CGSaMJI (1994) Affinity purification of antibodies using a 6xHis-tagged antigen 
immobilized on Ni-NTA. BioTechniques 17:257-262 

Jung H, Kim T, Chae HZ, Kim K-T, Ha H (2001) Regulation of Macrophage Migration 
Inhibitory Factor and Thiol-specific Antioxidant Protein PAG by Direct 
Interaction. J. Biol. Chem. 276:15504-15510 

Kakizaki Y, Waga S, Sugimoto K, Tanaka H, Nukii K, Takeya M, Yoshimura T, 
Yokoyama M (1995) Production of monocyte chemoattractant protein-1 by 
bovine glomerular endothelial cells. Kidney Int 48:1866-74 

Kastan MB (1993) P53: a determinant of the cell cycle response to DNA damage. Adv 
Exp Med Biol 339:291-3; discussion 295-6 

Kim M (2003) Expressionsklonierung und Aufreinigung des Makrophagen-Migrations-
Inhibitions-Faktor Fachbereich Humanmedizin. Inst. für Anatomie und 
Zellbiologie, Philipps-Universität Marburg, marburg 

Kleemann R, Grell M, Mischke R, Zimmermann G, Bernhagen J (2002) Receptor 
binding and cellular uptake studies of macrophage migration inhibitory factor 
(MIF): use of biologically active labeled MIF derivatives. J Interferon Cytokine 
Res 22:351-63 

Kleemann R, Hausser A, Geiger G, Mischke R, Burger-Kentischer A, Flieger O, 
Johannes FJ, Roger T, Calandra T, Kapurniotu A, Grell M, Finkelmeier D, 
Brunner H, Bernhagen J (2000a) Intracellular action of the cytokine MIF to 
modulate AP-1 activity and the cell cycle through Jab1. Nature 408:211-6 

Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, Juttner S, 
Brunner H, Bernhagen J (1998a) Disulfide analysis reveals a role for macrophage 
migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol 
280:85-102 

Kleemann R, Kapurniotu A, Mischke R, Held J, Bernhagen J (1999) Characterization of 
catalytic centre mutants of macrophage migration inhibitory factor (MIF) and 
comparison to Cys81Ser MIF. Eur J Biochem 261:753-66 



  References 

 88

Kleemann R, Mischke R, Kapurniotu A, Brunner H, Bernhagen J (1998b) Specific 
reduction of insulin disulfides by macrophage migration inhibitory factor (MIF) 
with glutathione and dihydrolipoamide: potential role in cellular redox processes. 
FEBS Lett 430:191-6 

Kleemann R, Rorsman H, Rosengren E, Mischke R, Mai NT, Bernhagen J (2000b) 
Dissection of the enzymatic and immunologic functions of macrophage migration 
inhibitory factor. Full immunologic activity of N-terminally truncated mutants. 
Eur J Biochem 267:7183-93 

Lacey D, Sampey A, Mitchell R, Bucala R, Santos L, Leech M, Morand E (2003) Control 
of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory 
factor. Arthritis Rheum 48:103-9 

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature 227:680-5 

Lan HY, Bacher M, Yang N, Mu W, Nikolic-Paterson DJ, Metz C, Meinhardt A, Bucala 
R, Atkins RC (1997) The pathogenic role of macrophage migration inhibitory 
factor in immunologically induced kidney disease in the rat. J Exp Med 185:1455-
65 

Lan HY, Yang N, Nikolic-Paterson DJ, Yu XQ, Mu W, Isbel NM, Metz CN, Bucala R, 
Atkins RC (2000) Expression of macrophage migration inhibitory factor in human 
glomerulonephritis. Kidney Int 57:499-509 

Leech M, Metz C, Bucala R, Morand EF (2000) Regulation of macrophage migration 
inhibitory factor by endogenous glucocorticoids in rat adjuvant-induced arthritis. 
Arthritis Rheum 43:827-33 

Leech M, Metz C, Hall P, Hutchinson P, Gianis K, Smith M, Weedon H, Holdsworth SR, 
Bucala R, Morand EF (1999) Macrophage migration inhibitory factor in 
rheumatoid arthritis: evidence of proinflammatory function and regulation by 
glucocorticoids. Arthritis Rheum 42:1601-8 

Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell 
RA, Bucala R (2003) MIF signal transduction initiated by binding to CD74. J Exp 
Med 197:1467-76 

Li Y, Lu C, Xing G, Zhu Y, He F (2004) Macrophage migration inhibitory factor directly 
interacts with hepatopoietin and regulates the proliferation of hepatoma cell. Exp 
Cell Res 300:379-87 

Lu C, Li Y, Zhao Y, Xing G, Tang F, Wang Q, Sun Y, Wei H, Yang X, Wu C, Chen J, 
Guan KL, Zhang C, Chen H, He F (2002) Intracrine hepatopoietin potentiates AP-
1 activity through JAB1 independent of MAPK pathway. Faseb J 16:90-2 



  References 

 89

Lubetsky JB, Dios A, Han J, Aljabari B, Ruzsicska B, Mitchell R, Lolis E, Al-Abed Y 
(2002) The tautomerase active site of macrophage migration inhibitory factor is a 
potential target for discovery of novel anti-inflammatory agents. J Biol Chem 
277:24976-82 

Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E (1999) Pro-1 of macrophage 
migration inhibitory factor functions as a catalytic base in the phenylpyruvate 
tautomerase activity. Biochemistry 38:7346-54 

Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J (2002) Macrophage migration 
inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect 
4:449-60 

Marechal V, Elenbaas B, Taneyhill L, Piette J, Mechali M, Nicolas JC, Levine AJ, 
Moreau J (1997) Conservation of structural domains and biochemical activities of 
the MDM2 protein from Xenopus laevis. Oncogene 14:1427-33 

Matsson H, Davey EJ, Draptchinskaia N, Hamaguchi I, Ooka A, Leveen P, Forsberg E, 
Karlsson S, Dahl N (2004) Targeted disruption of the ribosomal protein S19 gene 
is lethal prior to implantation. Mol Cell Biol 24:4032-7 

Matsson H, Klar J, Draptchinskaia N, Gustavsson P, Carlsson B, Bowers D, de Bont E, 
Dahl N (1999) Truncating ribosomal protein S19 mutations and variable clinical 
expression in Diamond-Blackfan anemia. Hum Genet 105:496-500 

Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135-45 

Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. (1997) A human homologue of the 
Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-
7 

Metz CN, Bucala R (1997) Role of macrophage migration inhibitory factor in the 
regulation of the immune response. Adv Immunol 66:197-223 

Meyer-Siegler KL, Leifheit EC, Vera PL (2004) Inhibition of macrophage migration 
inhibitory factor decreases proliferation and cytokine expression in bladder cancer 
cells. BMC Cancer 4:34 

Mikulowska A, Metz CN, Bucala R, Holmdahl R (1997) Macrophage migration 
inhibitory factor is involved in the pathogenesis of collagen type II-induced 
arthritis in mice. J Immunol 158:5514-7 

Mischke R, Kleemann R, Brunner H, Bernhagen J (1998) Cross-linking and mutational 
analysis of the oligomerization state of the cytokine macrophage migration 
inhibitory factor (MIF). FEBS Lett 427:85-90 



  References 

 90

Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J, Bucala R (2002) 
Macrophage migration inhibitory factor (MIF) sustains macrophage 
proinflammatory function by inhibiting p53: regulatory role in the innate immune 
response. Proc Natl Acad Sci U S A 99:345-50 

Mitchell RA, Metz CN, Peng T, Bucala R (1999) Sustained mitogen-activated protein 
kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage 
migration inhibitory factor (MIF). Regulatory role in cell proliferation and 
glucocorticoid action. J Biol Chem 274:18100-6 

Morand EF, Cooley H, Leech M, Littlejohn GO (1996) Advances in the understanding of 
neuroendocrine function in rheumatic disease. Aust N Z J Med 26:543-51 

Morand EF, Leech M, Bernhagen J (2006) MIF: a new cytokine link between rheumatoid 
arthritis and atherosclerosis. Nat Rev Drug Discov 5:399-411 

Muhlhahn P, Bernhagen J, Czisch M, Georgescu J, Renner C, Ross A, Bucala R, Holak 
TA (1996) NMR characterization of structure, backbone dynamics, and 
glutathione binding of the human macrophage migration inhibitory factor (MIF). 
Protein Sci 5:2095-103 

Murakami H, Akbar SM, Matsui H, Horiike N, Onji M (2002) Macrophage migration 
inhibitory factor activates antigen-presenting dendritic cells and induces 
inflammatory cytokines in ulcerative colitis. Clin Exp Immunol 128:504-10 

Nguyen MT, Beck J, Lue H, Funfzig H, Kleemann R, Koolwijk P, Kapurniotu A, 
Bernhagen J (2003a) A 16-residue peptide fragment of macrophage migration 
inhibitory factor, MIF-(50-65), exhibits redox activity and has MIF-like biological 
functions. J Biol Chem 278:33654-71 

Nguyen MT, Lue H, Kleemann R, Thiele M, Tolle G, Finkelmeier D, Wagner E, Braun 
A, Bernhagen J (2003b) The cytokine macrophage migration inhibitory factor 
reduces pro-oxidative stress-induced apoptosis. J Immunol 170:3337-47 

Nishiura H, Shibuya Y, Matsubara S, Tanase S, Kambara T, Yamamoto T (1996) 
Monocyte chemotactic factor in rheumatoid arthritis synovial tissue. Probably a 
cross-linked derivative of S19 ribosomal protein. J Biol Chem 271:878-82 

Nishiura H, Tanase S, Shibuya Y, Futa N, Sakamoto T, Higginbottom A, Monk P, 
Zwirner J, Yamamoto T (2005) S19 ribosomal protein dimer augments metal-
induced apoptosis in a mouse fibroblastic cell line by ligation of the C5a receptor. 
J Cell Biochem 94:540-53 

Onodera S, Kaneda K, Mizue Y, Koyama Y, Fujinaga M, Nishihira J (2000) Macrophage 
migration inhibitory factor up-regulates expression of matrix metalloproteinases 
in synovial fibroblasts of rheumatoid arthritis. J Biol Chem 275:444-50 



  References 

 91

Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, Minami A (2002) 
Macrophage Migration Inhibitory Factor Up-regulates Matrix Metalloproteinase-9 
and -13 in Rat Osteoblasts. Relevance to intracellular signaling pathways. J. Biol. 
Chem. 277:7865-7874 

Onodera S, Suzuki K, Matsuno T, Kaneda K, Takagi M, Nishihira J (1997) Macrophage 
migration inhibitory factor induces phagocytosis of foreign particles by 
macrophages in autocrine and paracrine fashion. Immunology 92:131-7 

Orita M, Yamamoto S, Katayama N, Fujita S (2002) Macrophage migration inhibitory 
factor and the discovery of tautomerase inhibitors. Curr Pharm Des 8:1297-317 

Petrenko O, Fingerle-Rowson G, Peng T, Mitchell RA, Metz CN (2003) Macrophage 
migration inhibitory factor deficiency is associated with altered cell growth and 
reduced susceptibility to Ras-mediated transformation. J Biol Chem 278:11078-
85 

Puig A, Lyles MM, Noiva R, Gilbert HF (1994) The role of the thiol/disulfide centers and 
peptide binding site in the chaperone and anti-chaperone activities of protein 
disulfide isomerase. J Biol Chem 269:19128-35 

Qoronfleh MW, Ren L, Emery D, Perr M, Kaboord B (2003) Use of Immunomatrix 
Methods to Improve Protein-Protein Interaction Detection. J Biomed Biotechnol 
2003:291-298 

Ren Y, Tsui HT, Poon RT, Ng IO, Li Z, Chen Y, Jiang G, Lau C, Yu WC, Bacher M, Fan 
ST (2003) Macrophage migration inhibitory factor: roles in regulating tumor cell 
migration and expression of angiogenic factors in hepatocellular carcinoma. Int J 
Cancer 107:22-9 

Riedemann NC, Guo RF, Ward PA (2003) Novel strategies for the treatment of sepsis. 
Nat Med 9:517-24 

Roger T, Chanson AL, Knaup-Reymond M, Calandra T (2005) Macrophage migration 
inhibitory factor promotes innate immune responses by suppressing 
glucocorticoid-induced expression of mitogen-activated protein kinase 
phosphatase-1. Eur J Immunol 35:3405-13 

Roger T, David J, Glauser MP, Calandra T (2001) MIF regulates innate immune 
responses through modulation of Toll-like receptor 4. Nature 414:920-4 

Roger T, Froidevaux C, Martin C, Calandra T (2003) Macrophage migration inhibitory 
factor (MIF) regulates host responses to endotoxin through modulation of Toll-
like receptor 4 (TLR4). J Endotoxin Res 9:119-23 

Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, Bjork P, Jacobsson L, Rorsman 
H (1997) The macrophage migration inhibitory factor MIF is a phenylpyruvate 
tautomerase. FEBS Lett 417:85-8 



  References 

 92

Rosengren E, Bucala R, Aman P, Jacobsson L, Odh G, Metz CN, Rorsman H (1996) The 
immunoregulatory mediator macrophage migration inhibitory factor (MIF) 
catalyzes a tautomerization reaction. Mol Med 2:143-9 

Sakai Y, Masamune A, Satoh A, Nishihira J, Yamagiwa T, Shimosegawa T (2003) 
Macrophage migration inhibitory factor is a critical mediator of severe acute 
pancreatitis. Gastroenterology 124:725-36 

Satoskar AR, Bozza M, Rodriguez Sosa M, Lin G, David JR (2001) Migration-inhibitory 
factor gene-deficient mice are susceptible to cutaneous Leishmania major 
infection. Infect Immun 69:906-11 

Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS, Jr. (1995) Role of 
transcriptional activation of I kappa B alpha in mediation of immunosuppression 
by glucocorticoids. Science 270:283-6 

Schrans-Stassen BH, Lue H, Sonnemans DG, Bernhagen J, Post MJ (2005) Stimulation 
of vascular smooth muscle cell migration by macrophage migration inhibitory 
factor. Antioxid Redox Signal 7:1211-6 

Segerer S, Nelson PJ, Schlondorff D (2000) Chemokines, chemokine receptors, and renal 
disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc 
Nephrol 11:152-76 

Senter PD, Al-Abed Y, Metz CN, Benigni F, Mitchell RA, Chesney J, Han J, Gartner 
CG, Nelson SD, Todaro GJ, Bucala R (2002) Inhibition of macrophage migration 
inhibitory factor (MIF) tautomerase and biological activities by acetaminophen 
metabolites. Proc Natl Acad Sci U S A 99:144-9 

Shen L, Hu J, Lu H, Wu M, Qin W, Wan D, Li Y-Y, Gu J (2003) The apoptosis-
associated protein BNIPL interacts with two cell proliferation-related proteins, 
MIF and GFER. FEBS Letters 540:86-90 

Shrestha A, Shiokawa M, Nishimura T, Nishiura H, Tanaka Y, Nishino N, Shibuya Y, 
Yamamoto T (2003) Switch moiety in agonist/antagonist dual effect of S19 
ribosomal protein dimer on leukocyte chemotactic C5a receptor. Am J Pathol 
162:1381-8 

Soulet F, Al Saati T, Roga S, Amalric F, Bouche G (2001) Fibroblast growth factor-2 
interacts with free ribosomal protein S19. Biochem Biophys Res Commun 
289:591-6 

Stamps SL, Fitzgerald MC, Whitman CP (1998) Characterization of the role of the 
amino-terminal proline in the enzymatic activity catalyzed by macrophage 
migration inhibitory factor. Biochemistry 37:10195-202 



  References 

 93

Stephanou A, Sarlis NJ, Knight RA, Lightman SL, Chowdrey HS (1992) Glucocorticoid-
mediated responses of plasma ACTH and anterior pituitary pro-opiomelanocortin, 
growth hormone and prolactin mRNAs during adjuvant-induced arthritis in the 
rat. J Mol Endocrinol 9:273-81 

Subramanya HS, Roper DI, Dauter Z, Dodson EJ, Davies GJ, Wilson KS, Wigley DB 
(1996) Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism 
investigated by the crystal structures of two isomerases. Biochemistry 35:792-802 

Sugimoto H, Suzuki M, Nakagawa A, Tanaka I, Nishihira J (1996) Crystal structure of 
macrophage migration inhibitory factor from human lymphocyte at 2.1 A 
resolution. FEBS Lett 389:145-8 

Sun HW, Bernhagen J, Bucala R, Lolis E (1996a) Crystal structure at 2.6-A resolution of 
human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A 
93:5191-6 

Sun HW, Swope M, Cinquina C, Bedarkar S, Bernhagen J, Bucala R, Lolis E (1996b) 
The subunit structure of human macrophage migration inhibitory factor: evidence 
for a trimer. Protein Eng 9:631-5 

Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Nishihira J, Sakai M (1996) Crystal 
structure of the macrophage migration inhibitory factor from rat liver. Nat Struct 
Biol 3:259-66 

Swope M, Sun HW, Blake PR, Lolis E (1998) Direct link between cytokine activity and a 
catalytic site for macrophage migration inhibitory factor. Embo J 17:3534-41 

Swope MD, Lolis E (1999) Macrophage migration inhibitory factor: cytokine, hormone, 
or enzyme? Rev Physiol Biochem Pharmacol 139:1-32 

Takahashi N, Creighton TE (1996) On the reactivity and ionization of the active site 
cysteine residues of Escherichia coli thioredoxin. Biochemistry 35:8342-53 

Takahashi N, Nishihira J, Sato Y, Kondo M, Ogawa H, Ohshima T, Une Y, Todo S 
(1998) Involvement of macrophage migration inhibitory factor (MIF) in the 
mechanism of tumor cell growth. Mol Med 4:707-14 

Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335-76 

Tan TH, Edgerton SA, Kumari R, McAlister MS, Roe SM, Nagl S, Pearl LH, Selkirk 
ME, Bianco AE, Totty NF, Engwerda C, Gray CA, Meyer DJ (2001) Macrophage 
migration inhibitory factor of the parasitic nematode Trichinella spiralis. Biochem 
J 357:373-83 

Thiele M, Bernhagen J (2005) Link between macrophage migration inhibitory factor and 
cellular redox regulation. Antioxid Redox Signal 7:1234-48 



  References 

 94

Tjandra K, Kubes P, Rioux K, Swain MG (1996) Endogenous glucocorticoids inhibit 
neutrophil recruitment to inflammatory sites in cholestatic rats. Am J Physiol 
270:G821-5 

Tomura T, Watarai H, Honma N, Sato M, Iwamatsu A, Kato Y, Kuroki R, Nakano T, 
Mikayama T, Ishizaka K (1999) Immunosuppressive activities of recombinant 
glycosylation-inhibiting factor mutants. J Immunol 162:195-202 

Vincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE (1996) Regulating 
expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms 
that control enzyme activity, transcription, and mRNA stability. Crit Rev 
Eukaryot Gene Expr 6:391-411 

Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307-10 

Wadgaonkar R, Dudek SM, Zaiman AL, Linz-McGillem L, Verin AD, 
Nurmukhambetova S, Romer LH, Garcia JG (2005) Intracellular interaction of 
myosin light chain kinase with macrophage migration inhibition factor (MIF) in 
endothelium. J Cell Biochem 95:849-58 

Waeber G, Calandra T, Roduit R, Haefliger JA, Bonny C, Thompson N, Thorens B, 
Temler E, Meinhardt A, Bacher M, Metz CN, Nicod P, Bucala R (1997) Insulin 
secretion is regulated by the glucose-dependent production of islet beta cell 
macrophage migration inhibitory factor. Proc Natl Acad Sci U S A 94:4782-7 

Weiser WY, Temple PA, Witek-Giannotti J, Remold HG, Clark SC, David JR (1989) 
Molecular Cloning of a cDNA Encoding a Human Macrophage Migration 
Inhibitory Factor. PNAS 86:7522-7526 

Wilson DM, 3rd, Deutsch WA, Kelley MR (1994) Drosophila ribosomal protein S3 
contains an activity that cleaves DNA at apurinic/apyrimidinic sites. J Biol Chem 
269:25359-64 

Wool IG (1996) Extraribosomal functions of ribosomal proteins. Trends Biochem Sci 
21:164-5 

Yang YH, Hutchinson P, Leech M, Morand EF (1997) Exacerbation of adjuvant arthritis 
by adrenalectomy is associated with reduced leukocyte lipocortin 1. J Rheumatol 
24:1758-64 

Zang X, Taylor P, Wang JM, Meyer DJ, Scott AL, Walkinshaw MD, Maizels RM (2002) 
Homologues of human macrophage migration inhibitory factor from a parasitic 
nematode. Gene cloning, protein activity, and crystal structure. J Biol Chem 
277:44261-7 

Zhang M, Aman P, Grubb A, Panagopoulos I, Hindemith A, Rosengren E, Rorsman H 
(1995) Cloning and sequencing of a cDNA encoding rat D-dopachrome 
tautomerase. FEBS Lett 373:203-6 



   

 95

10. ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Andreas 

Meinhardt, first for giving me the opportunity to do this Ph.D work within a great team, 

and second for supervising this work, helpful discussions and evaluating my thesis. 

My special thanks go to Dr. Jörg Klug, not only for his critical supervision, but 

also for his scientific guidance and stimulating discussion. 

I extend my appreciation to Dr. Regina Eickhoff for leading my first steps in the 

project and practical support in the lab. 

I would like to thank Prof. Dr. Jürgen Bernhagen for giving me the opportunity to 

join his lab and to practice chemotaxis assay. 

My deep gratitude goes to Suada Fröhlich for being such a good collegue. Her 

experience, patience and support were always there for helping with my project. 

I would like to thank all my colleagues from the lab for their help and friendship: 

Dr. Monika Fijak for her useful advices, Eva Schneider for assistance with the cell 

culture, Tamara Henke for the His-tag RP S19 cloning. I thank also Sevil Cayli and 

Sudhanshu Bhushan for their comradeship. 

The last but not the least, I want to thank my family for all their support and 

mostly for beliving in me. 



   

 96

11. CURRICULUM VITAE 

Personal details: 

Surname:  Filip 
First name:  Ana-Maria 
Date of birth:  19.09.1975 
Place of birth:  Bacau, Romania 
Citizenship:  Romanian 

Education and scientifical experience:  

Since November 2002 PhD student in the research group of Prof. Dr. 
Andreas Meinhardt, Department of Anatomy and 
Cell Biology, Justus-Liebig-University, Giessen, 
Germany 

2001-2002 Department for public relations, BRD Groupe 
Societe Generale, Bucharest, Romania 

1999-2001 Master in Molecular Genetics with Dissertation in 
February 2001, „Al. I Cuza“ University of Iasi, 
Faculty of Biology, Romania 

1995-1999 Bachelor in Biology at the „Al. I Cuza“ University 
of Iasi, Faculty of Biology, Romania, Licensing 
Examination: June1999 

1990-1994 „Calistrat Hogas“ High School, Piatra Neamt, 
Romania 

1982-1990 Primary School, Piatra Neamt, Romania 



   

 97

Conference Abstracts: 

Ana-Maria DOBRE, Jörg KLUG, Regina EICKHOFF, Andreas MEINHARDT, 
Detection of Novel Binding Partners for Macrophage Migration Inhibitory Factor 
Involved in Testicular Crosstalk. 3rd European Congress of Andrology, Münster, 
Germany, September 11-14, 2004. 

Ana-Maria DOBRE, Jörg KLUG, Andreas MEINHARDT, RP S19 interacts with 
macrophage migration inhibitory factor and attenuates its pro-inflammatory function. 
NGFN RNAi 2005 GBM Annual Fall Satellite, Berlin, Germany, September 18-21, 2005 

Ana-Maria DOBRE, Jörg KLUG, Suada FRÖHLICH, Regina EICKHOFF, Monica 
LINDER, Andreas MEINHARDT, Ribosomal protein S19 interacts with macrophage 
migration inhibitory factor and attenuates its proinflammatory function. Molecular 
Andrology, Giessen, Germany, October 7-9, 2005. 

Ana-Maria FILIP, Jörg KLUG, Monica LINDER, Regina EICKHOFF, Andreas 
MEINHARDT, Identification of Ribosomal Protein S19 (RP S19) as binding partner of 
Macrophage Migration Inhibitory Factor (MIF): RP S19 attenuates key pro-inflammatory 
actitivties of MIF, International symposium functional genomics of infectious diseases 
and inflammation, Giessen, Germany, June, 30, July 2, 2006 

Publications 

Gabriela KRASTEVA, Uwe PFEIL, Ana-Maria FILIP, Katrin S. LIPS, Wolfgang 
KUMMER, Peter KÖNIG, Confinement of caveolin-3 together with eNOS and CHT1 to 
an apical compartment in ciliated airway epithelial cells in the rat, manuscript in revision, 
International Journal of Biochemistry and Cell Biology. 

Ana-Maria FILIP, Jörg KLUG, Sevil CAYLI, Suada FRÖHLICH, Tamara HENKE, 
Patrick BULAU, Regina EICKHOFF, Monika LINDER, Henning URLAUB, Jürgen 
BERNHAGEN, Andreas MEINHARDT, Ribosomal Protein S19 Interacts with 
Macrophage Migration Inhibitory Factor and attenuates its Pro-Inflammatory Function, 
manuscript in preparation to be submitted to The Journal of Biological Chemistry in 
October 2006. 



   

 98

 

12. EHRENWÖRTLICHE ERKLÄRUNG 

Ich erkläre: die vorgelegte Dissertation selbstständig, ohne unerlaubte fremde 

Hilfe und nur mit den Hilfen angefertigt zu haben, die in der Dissertation angegeben sind. 

Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht 

veröffentlichen Schriften entnommen sind, und alle Angaben, die auf mündlichen 

Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten 

und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter 

wissenschaftlicher Praxis, wie sie in der „Satzung der Justus-Liebig-Universität Giessen 

zur Sicherung guter wissenschaftlicher Praxis“ niedergelegt sind, eingehalten. 

Ana-Maria Filip 

Giessen, September 2006 

 


