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Abstract

The �nally achievable performance of the PANDA EMC, which was aiming for an ex-
tremely compact and radiation hard calorimeter, covering for the �rst time an energy
regime from 15 GeV down to a few MeV, strongly relies on the quality parameters of
the PbWO4 crystals. Therefore a very complex test procedure was elaborated, which
basically consists of three stages of quality control at the locations BTCP, CERN
and Gieÿen. The obtained data of 9, 336 crystals was analysed with respect to the
speci�cation limits. Furthermore, correlations and discrepancies between the di�er-
ent facilities, mainly caused due to the di�erent treatment of crystal geometries, are
discussed in detail. Finally, an outlook of the still mission fraction of crystals for the
PANDA EMC is given. The SICCAS company at China is a promising manufacturer
of PbWO4 experienced by the production of a signi�cant fraction of crystals for the
CMS experiment. Here, the quality of 50 test samples were tested and compared, in
particular with respect to the di�erent growing technology. The obtained results are
promising, but all parameters scatter over too wide distribution and a more homoge-
neous quality is expected from a pre-production run.
A su�cient time resolution for the EMC is necessary to provide an accurate time stamp
for the detected physics events synchronously with the time distribution system SODA
of PANDA and for the rejection of background events. The time-walk corrected reso-
lution under di�erent conditions and digitisation procedures was determined at three
separate beamtimes and compared to results from the CMS experiment. The achieve-
ments presented in this work represent an upper limit for the �nal time resolution,
since the foreseen APFEL ASIC with two dynamically adjustable and independent
gain branches will further improve the timing performance.
As additional aspect of this thesis, a possible energy sum correction algorithm is in-
troduced. Due to the presence of passive material between the crystals, the energy
reconstruction is signi�cantly reduced, if the point of impact is located close to the
edge of a crystal. The so called ln(E2/E1)-method considers the shape of the lateral
shower distribution and was successfully exploited for showers initiated by positrons
and photons, as well. Especially for hits in between two crystals a signi�cant improve-
ment has been achieved.
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Zusammenfassung

Das Designziel des EMC des zukünftigen PANDA Detektors ist, einen möglichst kom-
pakten und strahlungsresistenten Detektor zu entwickeln, der es erstmalig ermöglicht,
einen Energiebereich von 15 GeV bis einigen MeV abzudecken. Dessen endgültige
E�zienz und Präzision hängt stark von den Qualitätsparametern der verwendeten
PbWO4 Szintillationskristalle ab. Dies wird durch eine dreistu�ge Prozedur bei BTCP,
CERN und Gieÿen realisiert. Die gesammelten Daten von 9.336 Kristallen wurden mit
Hinblick auf die gestellten Anforderungen analysiert. Desweiteren werden in dieser
Arbeit Korrelationen und Diskrepanzen der einzelnen Teststationen, die hauptsäch-
lich auf die unterschiedliche Handhabung der Kristallgeometrien zurückzuführen sind,
diskutiert. Letztendlich wird ein Überblick über den noch nicht produzierten An-
teil der benötigten Kristalle gegeben. Das Unternehmen SICCAS in China ist ein
vielversprechender Hersteller von PbWO4 und produzierte bereits einen signi�kanten
Anteil der Kristalle für das CMS Experiment. 50 Testkristalle von SICCAS wurden
getestet und ausgewertet gemäÿ ihrer Brauchbarkeit und unter Anbetracht des un-
terschiedlichen Wachstumsprozesses im Vergleich zu BTCP. Die erhaltenen Resultate
sprechen für eine Verwendung im PANDA Detektor, aber nichtsdestotrotz gilt es die
Homogenität des Herstellungsprozesses weiter zu optimieren.
Eine ausreichende Zeitau�ösung für das EMC ist notwendig, um eine genaue Zeitmes-
sung zu liefern und um die physikalischen Ereignisse mit Hilfe des Zeitverteilungssys-
tems SODA zuzuordnen. Die time-walk korrigierte Au�ösung unter verschiedenen
Bedingungen und Digitalisierungsverfahren wurde bei drei seperaten Strahlzeiten bes-
timmt und mit den Resultaten des CMS Experiments verglichen. Die in dieser Arbeit
aufgeführten Resultate, bezüglich der Zeitau�ösung, sind als eine obere Grenze anzuse-
hen. Mit der Einführung des APFEL ASIC mit zwei regelbaren Verstärkungskanälen,
ist eine weitere Verbesserung der Zeitbestimmung zu erwarten.
Ein zusätzlicher Aspekt dieser Arbeit ist die Anwendung eines Algorithmus zur Korrek-
tur der gemessenen Gesamtenergie. Durch das Vorhandensein des passiven Materials
zwischen den Kristallen, wird die Energierekonstruktion signi�kant verschlechtert, falls
der Auftre�punkt des einfallenden Teilchens nahe der Kristallkante liegt. Die sogenan-
nte ln(E2/E1)-Methode berücksichtigt die transversale Ausbreitung des elektromag-
netischen Schauers und wurde erfolgreich für Positronen und Photonen angewendet.
Speziell im Falle eines Strahls, der zwischen zwei Kristalle gerichtet ist, lässt sich eine
erhebliche Verbesserung der Energieau�ösung erzielen.
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Chapter 1

Introduction and Motivation

The planned FAIR1 facility in Darmstadt is a new and unique international accelera-
tor facility for the research with ions and antiprotons. The concept of FAIR has been
developed in cooperation with an international community of 45 countries and about
2,500 scientists and engineers. The accelerator and storage ring structure is capable of
simultaneously providing high-intensity and -energy beams for various experiments.

Figure 1.1: Existing GSI (blue) with planned FAIR facility (red) [1].

1Facility for Antiproton and Ion Research
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Chapter 1 Introduction and Motivation

The existing accelerator facility of GSI2 (compare Fig. 1.1) consists of a multi-purpose
linear accelerator UNILAC3, a heavy-ion synchrotron SIS4 and a storage ring ESR5.
All these constituents were built from 1975 to 1990 and are able to accelerate and
store nuclei of all elements in the periodic system up to 90% of the speed of light.
For the FAIR accelerator framework, the SIS18 will act as an injector. The central
component of the new accelerator system are two superconducting synchrotron rings
with maximum magnetic rigidities of 100 Tm and 300 Tm called SIS100 and SIS300,
respectively. Both rings have an identical circumference of almost 1, 100 m. For the
production of antiprotons, the SIS100 provides pulsed proton beams in the order of
1013 protons per bunch with an energy up to 30 GeV which will impinge on a metal
target. Antiprotons are subsequently accumulated and cooled down to 3.8 GeV/c and
injected either in the HESR6 or the NESR7.
The experiments of the FAIR facility will help to understand a large amount of un-
solved physical issues, which basically can be subdivided in three aspects:

� structure and properties of matter

� evolution of the universe

� technology and applied research

Tab. 1.1 summarises the four main experiments focussing on various topics.

Experiment Topic

APPA Atomic, Plasma Physics and Applications

CBM Compressed, Baryonic Matter

NUSTAR NUclear STructure, Astrophysics and Reactions

PANDA AntiProton Annihilation at DArmstadt

Table 1.1: FAIR experiments [2]

This thesis invariably focus on the PANDA experiment, in particular the technical
performance of one designated subdetector: the EMC8.

2Gesellschaft für Schwerionenforschung GmbH
3Universal Linear Accelerator
4Schwer Ionen Synchrotron
5Experimental Storage Ring
6High Energy Storage Ring
7New Experimental Storage Ring
8Electromagnetic Calorimeter
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1.1 The PANDA Experiment

1.1 The PANDA Experiment

PANDA9 is a state-of-the-art experiment to study various aspects of the strong inter-
action in the momentum range up to 15GeV/c and is located as an internal detector
at the HESR (shown in Fig. 1.2). The HESR is designed as a racetrack shaped ring
and exploits di�erent cooling methods to ensure unprecedented beam quality and pre-
cision. Two di�erent operation modes are available (Tab. 1.2).

High resolution mode
luminosity 2 · 1031 cm−1s−1

momentum spread ∆p/p 10−5

p̄ momentum range 1.5 - 9GeV/c

High luminosity mode
luminosity 2 · 1032 cm−1s−1

momentum spread ∆p/p 10−4

p̄ momentum range 1.5 - 15GeV/c

Table 1.2: Parameters for the two operation modes of the HESR.

This section is intended to describe a selected fraction of the physics program, the
PANDA detector and the EMC, focussing on its main components and readout chain.

Figure 1.2: Schematic view of the HESR [3]. The electron cooler is placed in the
centre of one of the straight sections. For the stochastic cooling, pick-up and
kicker devices are also located in the straight sections opposite to each other. The
maximum beam rigidity of 50Tm will be achieved by dipole magnets, indicated
in red. Lateral beam focussing elements are quadrupole and sextuple magnets
coloured in blue and green, respectively.

9Anti-Proton Annihilation at Darmstadt
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Chapter 1 Introduction and Motivation

1.1.1 Physics Program

PANDA aims to study fundamental questions of the strong force using the interaction
of high energetic antiprotons with nucleons and nuclei. In this momentum range of
1.5 to 15GeV/c strange and charmed quarks, as well as hybrids and glueballs will be
accessible. An overview of the potentially produced particles for PANDA is shown in
Fig. 1.3.

Figure 1.3: The accessible mass range in correlation with the required momentum
of the antiproton beam for hybrids, glueballs, light and heavy mesons [1].

The established theory of the strong interaction is QCD10, which is well understood
at high energies, where the coupling constant becomes small and perturbation cal-
culations can be applied. But the experimental knowledge in the non-perturbative
regime is rather limited. Therefore, studies of bound states are of particular impor-
tance for the understanding of QCD. Fig. 1.4 gives an overview of expected states for
various particle con�gurations with respect to simulations and previous experiments.
In that context, the spectroscopy of the so called charmonium (cc̄), which describes
a bound state of a charm quark and its antiparticle, is one of the major topics of
PANDA. The �rst excited state (called J/Ψ) was independently discovered in 1974
by two di�erent groups. For the �rst approximation, the relatively high mass of a c
quark (mc ≈ 1.5 GeV/c2) allows a non-relativistic description. The charmonium is
also known as the "molecule of strong interaction" and its characteristics, especially

10Quantum Chromo Dynamics
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1.1 The PANDA Experiment

Figure 1.4: Various charmonium energy levels including states of glueballs (red
bars) and hybrids (green data) for di�erent quantum number con�gurations in
the mass range of 1.5 − 5.0 GeV/c2 [4]. The CP-PACS and Columbia data are
states obtained by lattice QCD calculations. The light blue and purple coloured
lines correspond to the D∗D̄∗- and DD̄-threshold, respectively.

the structure of the �rst set of energy states, very similar to the positronium (bound
state of a positron and an electron) in the electroweak interaction. This fact implies
a Coulomb-like 1/r-term in addition to the linearly rising con�nement potential. For
the formation of charmonium states, PANDA has the advantage that all charmonium
states can be populated directly via p̄p-annihilation, because of the substructure of the
proton and the antiproton. This is not true for e+e−-annihilation, since only states
with JPC = 1−− can be formed directly due to quantum number restrictions of the
virtual photon. Another interesting feature of pp̄p-annihilation is the exploitation of
a scanning technique, which was used for the �rst time by the E385 experiment at
Fermilab. The energy of the antiprotons is successively increased, while for each step
the production rate of a certain reaction is measured. The great advantage of this
method is that the width of a certain resonance only depends on the beam spread.
Concerning charmonium spectroscopy PANDA has the task to search for the up to
now undiscovered η′c(2

1S0)-state, con�rm the hc(11P1)-state, measure transition rates
more accurately and identify states above the open charm threshold (DD̄-threshold),
which is indicated in Fig. 1.4 as purple coloured line. In addition, an accurate mea-

11



Chapter 1 Introduction and Motivation

surement of the hC and the χC1 energy levels will give important information on the
spin contribution, since both states have the same quantum numbers, except the spin.
The search for glueballs and hybrids are further important topics for PANDA. Glue-
balls are colour neutral objects which only consist of gluons. Former experiments (e.g.
Crystal Barrel experiment at LEAR11) brought up various glueball candidates. For in-
stance, the mass of the found f0(1500)-resonance is close to the theoretical prediction
of the ground state mass, but on the other hand there are also discrepancies due to
the non-�avour blind decay mode. The expected glueball spectrum for the mass range
of 1.5 − 5.0 GeV/c2 shows up relatively narrow and almost non-overlapping states,
which is advantageous for their spectroscopy with PANDA. In the case of hybrids, one
has to distinguish between light quark and charmed hybrids. Basically, hybrids are
composed objects of two quarks and an excited gluon (qq̄gexcited). The following shows
a possible decay chain of the X(1−+)-hybrid.

p̄p→ X + η︸︷︷︸
γγ

→ χc1︸︷︷︸
J/Ψ+γ

+ π0︸︷︷︸
γγ

+ π0︸︷︷︸
γγ

+γγ → J/Ψ︸︷︷︸
e+e−

+7γ → e+e− + 7γ

Another interesting aspect of the PANDA physics program is the in-medium modi-
�cation of hadrons in p̄A reactions. An expected lowering of the D-meson mass in
the nuclear medium would have the consequence, that the Ψ′ is kinematically able to
decay in DD̄ and other branching ratios would change as well. Also a suppression of
the J/Ψ in antiproton heavy ion collisions is considered to be a signal for the forma-
tion of a quark-gluon plasma. Therefore, the e+e−/π+π− discrimination capability of
the PANDA detector has to be on a su�cient level to discriminate against the most
dominant p̄p → π+π− background channel. Hyperon - antihyperon pairs can also be
formed in p̄A collisions, which allows a direct comparison of baryon and antibaryon
potentials. The production and detection of double hypernuclei becomes possible, but
requires a further modi�cation of the PANDA detector in a later stage. The backward
calorimeter and the innermost tracking detector (MVD12) have to be replaced by Ger-
manium semiconductor detectors (Fig. 1.5b), to provide keV energy resolution for the
spectroscopy of γ-decays of excited nuclei down in the MeV range. The production
and detection strategy for double hypernuclei is illustrated in Fig. 1.5a.
All the mentioned physics topics of the PANDA experiment strongly rely on the

performance of the electromagnetic calorimeter (EMC). Especially the accurate re-
construction of multiple neutral mesons by the obtained energy signal and momentum
of the decay photons, like it was exemplary shown for the X(1−+)-hybrid, underlines
the important role of the EMC over a large dynamic range.

11Low Energy Antiproton Ring
12Micro Vertex Detector
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1.1 The PANDA Experiment

Kaons
Trigger

atomic

transition

(a) The Ξ− which is produced via p̄p→ Ξ−Ξ̄+, rescatters in the primary 12C target nucleus
and is stopped in a secondary target. After an atomic transition two Λ's are produced by
the following reaction: Ξ−p → ΛΛ. γ-spectroscopy gives information about the structure
of the double hypernucleus. The produced Ξ̄+ and kaons serve as an external trigger.

(b) Germanium detectors for the implementation in backward direction.

Figure 1.5: Hypernuclei spectroscopy.
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Chapter 1 Introduction and Motivation

1.2 The PANDA Detector

PANDA is a �xed target experiment with Lorentz-boosted decay products downstream
the p̄-beam. The �nal interplay of the shell-like arranged subdetectors is the key to
guarantee the realisation of the mentioned physics program. The detector, which is
operating in a triggerless mode, has the ability to detect and distinguish a large variety
of charged and neutral particles (γ-rays, leptons, muons, kaons, etc.). In principle, the
PANDA detector is build out of two almost azimuthally symmetric units (shown in
Fig. 1.6) with nearly 4π solid angle coverage. A target spectrometer (TS) surrounds
the interaction point and is designed for the detection of particles which are emitted
from the target point with a larger polar angle than 10◦ and 5◦ for the horizontal
and vertical direction, respectively. The operational area of the TS is superimposed
by a 2 T magnetic �eld produced by a superconducting solenoid. Extremely forward
boosted particles will be detected by the forward spectrometer (FS) after passing a
dipole magnet with a �eld integral of 2 Tm. The FS is able to cope with the highest
count rates to be expected in the order of & 0.5 MHz for the innermost region. In the
TS region, the count rate will remain below 100 kHz. Furthermore, the detector has
to sustain a large radiation dose, which becomes more crucial for the forward region.
In the following, the submodules of the PANDA detector will be discussed focussing
on their purpose and physical functionality.

Figure 1.6: TS and FS of the PANDA detector.
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1.2 The PANDA Detector

1.2.1 Target Spectrometer

A variety of target materials will be available for PANDA depending on the exper-
iment. The major part of the physics program requires a high density hydrogen
target, which is realised by frozen pellets with an areal density in the order of a few
1015 atoms/cm2. At the interaction point, the falling speed of ∼ 60 m

s
of sized pellets

with ∼ 25µm diameter results in about 100 interactions during a single pellet passing
the p̄-beam. After the production and collimation on top of the PANDA detector, the
hydrogen pellets are pumped through a magnetically shielded injection pipe cooled
down to 14 K, which is occupies a minimal space. The target beam dump is installed
at the end of this straight section below the PANDA detector. In addition a cluster-jet
target and heavier solid targets for hypernuclear studies will become available.

Figure 1.7: The TS is outlined in a shell-like structure detector [5]. The antiprotons
enter from the left and interact with the target. Each subdetector has a di�erent
task according to the �nal reconstruction of the events, which will be discussed in
the following. The asymmetric position of the interaction point accomplishes the
�xed target kinematics.

15



Chapter 1 Introduction and Motivation

The MVD is the innermost tracking detector surrounding the target region in a cylin-
drical shape. Its extension along the beam axis is roughly ±23 cm with respect to the
nominal interaction point with a radius of 15 cm. It is composed of silicon pixel and
strip sensors (shown in Fig.1.8) with a thickness of 100µm and 280µm, respectively
[6].

Figure 1.8: Schematic layout of the MVD. The barrel shaped innermost modules
(red, 1-2) and the �rst set of discs in forward direction (dark-red, 1-4) are equipped
with silicon hybrid pixel sensors (100×100µm2) with a channel granularity of 11M
channels per 0.13 m2. The outer two modules (green) solely consist of double sided
silicon strip sensors with 200k channels per 0.5 m2. Discs 5 and 6 are composed
of both, pixels and strips.

An important requirement to the MVD besides the spatial resolution (≤ 100µm), is
the minimum material budget. The total amount of material in units of radiation
length should be kept below X/X0 = 4% to minimize pair production due to photon
conversion. A charged particle propagating through the active material of the MVD
loses energy due to ionisation and produces electron-hole pairs along its trajectory.
This e�ect can be described by the Bethe-Bloch equation (Eq. 1.3). For thin ab-
sorbers, the mean energy loss is �uctuating and follows a Landau-distribution. The
produced charge is collected applying an external voltage. MIPs13 (βγ ≈ 3) have
an average energy loss in 300µm silicon of 90 keV which corresponds to ∼ 25, 000
electron-hole pairs [7]. The position and energy loss information is subsequently used
for the track reconstruction and particle identi�cation. A necessary feature of the
MVD is the reconstruction of secondary decay vertices. The detection e�ciency of

13Minimum Ionising Particles
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1.2 The PANDA Detector

weak-interacting decay modes e.g. of charmed hadrons with a decay length in the or-
der of 100µm, can additionally be improved by adding two so called "Lambda-discs"
made of Si-pixels further downstream at 40 cm and 60 cm from the target point. This
scenario is currently under discussion.
Another tracking detector, which encloses the MVD, is the STT14 with an overall
length of 1.5 m and a radial extension of 15.0 cm ≤ r ≤ 41.8 cm with respect to the
beam line [5]. The main task of the STT is the precise spatial reconstruction of the
bent trajectories of charged particles in a magnetic �eld. The principle of the more
than 4600 cylindrical straw tubes of the STT is very similar to a conventional wire
chamber. A charged particle passing one of the gas-�lled tubes produces electron ion
pairs along its path. The produced charge is subsequently collected and ampli�ed by
the applied voltage of a few kV between the coaxial wire (anode) and the conduc-
tive inner layer (cathode) of the straw tube. Due to secondary gas ionisations one
can achieve an ampli�cation of about 104 − 105 of the primary signal. Furthermore,
the STT is able to determine the particle speci�c energy loss dE/dx. The position
information along the tube can be obtained by the runtime of the signal. The STT
has a low material budget of X/X0 ≈ 0.05% and a high rate capability, because of
improved drift properties of the gas. A further tracking detector for covering the polar
angle from 3◦ to 20◦ are the GEM15-discs. In the present version of the disc layouts,
three GEM-discs are placed at 117 cm, 153 cm and 189 cm from the target (Fig 1.7,
coloured in red). Fig. 1.9 shows a microscopic photograph of a perforated GEM foil
and the structure of the electric �eld for one hole. The applied voltage between the
pair of Cu layers is in the order of ∼ 400 V. Under these conditions the primar-
ily produced electrons undergo an avalanche multiplication due to the strong electric
�eld within the holes. With three GEM stacks one can achieve an overall gain of ∼ 104.

The e�ect of emitted Cherenkov light, while a charged particle propagates through a
medium with a certain index of refraction n, is used by two di�erent detector modules
in the TS. The Barrel DIRC16 covers the polar angle between 22◦ and 140◦ and the
Disc DIRC the forward direction (Fig. 1.10). If a charged particle has a velocity
larger than c/n, Cherenkov radiation is emitted at an emission angle with respect to
the particle direction of

ΘC = arccos

(
1

nβ

)
(1.1)

While the Cherenkov photons propagating through the active material of the DIRC
the initial emission angle ΘC is conserved due to total re�ections at the media tran-
sitions. Therefore, the velocity of the particle is determinable according to Eq. 1.1.

14Straw Tube Tracker
15Gaseous Electron Multipliers
16Detection of Internally Re�ected Cherenkov light
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Chapter 1 Introduction and Motivation

(a) Microscopic photograph of a perforated GEM foil
which consists of a 50µm Kapton enclosed by two
5µm Copper layers.

(b) Electric �eld of one hole of the
GEM detector with an inner di-
ameter of 50µm.

Figure 1.9: GEM detector with a typical level of perforation of 104 holes per cm2

[8].

Figure 1.10: Positions of the two DIRC detector in the PANDA detector. [9]
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1.2 The PANDA Detector

Thus, the mass of a particle can be calculated from the momentum obtained by the
tracking system and the velocity information given by the detection of the ΘC angle.
This is essential for PID17 and the discrimination of pions and kaons on a 3σ-level.
The components of both DIRC concepts consist of highly polished fused silica pieces
with an index of refraction of n ≈ 1.47. In case of the barrel DIRC, the active material
is shaped in long rectangular bars arranged parallel to each other. The vertical disc
plate in forward direction is subdivided into quarters for the simpli�cation of manu-
facturing. The detection of the visible and near UV range Cherenkov light has to be
done by fast and compact multi-pixel photo detectors with a good time resolution in
the order of ∼ 100 ps and a rate tolerance up to 1 MHz/cm2.
Section 1.3 is intended to give a detailed overview of the next outer detector system:
the EMC. Particles which are able to traverse the EMC and the solenoid in the en-
ergy range of PANDA are mainly high-energy muons and pions. For several physics
branches a good muon identi�cation is required. Each subsystem of the MUD18 sys-
tem consist of a sandwich of MDT19 detectors and iron slabs. The slices of the MDT
are oriented perpendicular to each other to obtain a two dimensional position infor-
mation, which is on the level of 1 × 1 cm2 for a single MDT, but su�cient to match
with the inner tracking detectors (STT and MVD). For the TS and FS, MUD devices
are located at di�erent areas (Fig. 1.11). The muon �lter system (Fig. 1.11 and Fig.
1.12) has in addition the purpose of separating the magnetic �elds generated by the
solenoid and the dipole magnet, respectively.

Figure 1.11: Position of the muon detectors [8].

17Particle Identi�cation
18Muon Detection
19Mini-Drift Tube
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Chapter 1 Introduction and Motivation

1.2.2 Forward Spectrometer

PANDA is a �xed target experiment, therefore a large fraction of the decay fragments
is boosted in forward direction due to the kinematics in the laboratory system. The
physics program of PANDA requires an excellent momentum resolution for particles
with a smaller polar angle than 10◦ and 5◦ for the horizontal and vertical direction,
respectively. A 220 t dipole magnet provides a �eld rigidity of 2 Tm to achieve a mo-
mentum resolution for charged particles below 1%. Another important issue is the
ramp capability, since this device has to operate fully synchronous with the HESR.
Fig. 1.12 shows a schematic overview of the FS.

Figure 1.12: Layout of the FS [10].

The task of tracking in the very �rst stage of the FS is done by MDCs20. Three
pairs of planar tracking stations are distributed within the FS: in front, inside and
behind the dipole magnet (drawn in red in Fig. 1.12). This arrangement allows to
track also particles with very low momenta, which will curl up and hit the magnet
yoke. One single tracking station has a material budget of ∼ 0.3%X0 and with an

20Multi-wire Drift Chamberss
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1.2 The PANDA Detector

expected position resolution in the sub-mm level, a momentum resolution of better
than 1% is achievable. Another important requirement is the rate capability of up to
104 cm−2s−1 close to the beam pipe. The concept of the MDC is very similar to the
one in the central tracker of the TS. Electric charge produced by ionizing particles in
the gas volume of the straws is collected by 20µm gold plated tungsten wires for the
determination of x- and y-position.
For PID in the FS it is foreseen to have a RICH21 detector based on high quality
aerogel with a refractive index of about n = 1.02. The detector concept is well suited
for π/K separation and shows a good transmission stability and radiation hardness.
The second to last detector with respect to the beam direction is the so called Shashlyk
calorimeter. The name already gives a hint to the design of this device, namely the
alternating arrangement of passive lead and active plastic scintillator sheets with a
thickness of 1.5 mm and 0.275 mm, respectively. One unit of a Shashlyk module has
a cross section of 11 × 11 cm2 and can be divided in four submodules (Fig. 1.13).
Due to the high interaction probability in the lead, a lot of energy of the secondary
decay products is deposited in the scintillating material. The de-excitation in terms of
scintillation light is subsequently picked up by WLS22 �bres, which are embedded into
holes in the absorber/plastic sandwich. A pair of holes is read via a single �bre, which
is bent by 180 ◦ at the front of the module. The �bre ends are attached to PMTs23 for
fast light conversion and signal generation.

The estimated performance requirements for the Shashlyk detector are:

Energy resolution 4.0%/
√
E[GeV]

Time resolution 100 ps/
√
E[GeV]

Table 1.3: Most important requirements of the Shashlyk detector [11].

Another part of the muon detection system is the rectangular shaped FRS24. It has
the same structure like all other submodules of the MUD system and is mainly respon-
sible for the separation of muons and charged pions due to their di�erent penetration
depth.

21Ring Imaging Cherenkov Counter
22Wavelength Shifting
23Photomultiplier Tubes
24Forward Range System
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(a) Technical drawing of a Shashlyk module.

(b) Photograph of a prototype without photo sensors.

Figure 1.13: Shashlyk module [11].
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1.3 Electromagnetic Calorimeter

As it was pointed out in Sec. 1.1.1, the EMC is the most important subdevice of the
PANDA detector for the detection of electromagnetic probes in various benchmark
channels of the physics program. The EMC can be subdivided in three parts for the
coverage of di�erent polar angles (Fig. 1.14). For clarity, the nomenclature introduced
in Tab. 1.4 is used for the remainder of this thesis.

EMC part Nomenclature Polar angle range

Forward End Cap EMC FEC ≥ 5◦

Barrel EMC Barrel ≥ 22◦

Backward End Cap EMC BEC ≥ 140◦

Table 1.4: Nomenclature and angular coverage of the EMC components.

This section explains the physics of such a kind of calorimeter, summarise the require-
ments and highlights di�erent components of the EMC readout chain.

Figure 1.14: Layout of the PANDA EMC including Barrel and FEC [12].
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Chapter 1 Introduction and Motivation

1.3.1 Physics of the EMC

The active material of the PANDA EMC consists of an inorganic scintillator: Lead
tungstate (PbWO4). Basically, a scintillator converts deposited energy into visible
scintillation light, which is subsequently readout by appropriate photo sensors. Ideally,
the �nal energy information scales with the incident energy, but there can also be
inhomogeneities depending on the kind of detected particle, energy region and used
scintillator material. In the following the di�erent interaction modes of electromagnetic
radiation and charged particles with matter will be discussed.

1.3.1.1 Interaction of charged Particles with Matter

Several e�ects contribute to the overall energy loss of a charged particle propagating
through a certain medium (listed in Eq. 1.2; [1, 13]). The relative fraction depends
on type of particle, type of medium and energy of the impinging particle. Moreover,
one has to distinguish between two groups of particles: heavy particles starting from
muons, pions up to nuclei, and electrons and positrons.(

dE

d(%x)

)
=

(
dE

d(%x)

)
︸ ︷︷ ︸
inelastic
scattering

+

(
dE

d(%x)

)
︸ ︷︷ ︸
elastic
scattering

+

(
dE

d(%x)

)
︸ ︷︷ ︸
Cherenkov
radiation

+

(
dE

d(%x)

)
︸ ︷︷ ︸
nuclear
reactions

+

(
dE

d(%x)

)
︸ ︷︷ ︸
brems-
strahlung

(1.2)

The heavier the particle, the more important is the energy loss due to inelastic
scattering. In a collision of the impinging particle with a lattice atom, a certain
fraction of the kinetic energy is transferred, causing an ionization or excitation of the
system, called hard or soft collision, respectively. If a hard collision produces free
electrons, which are able to ionise further atoms, these electrons are called δ-electrons.
The energy loss per pathlength can be calculated by the Bethe-Bloch equation.

− dE

dx
∼ %

Z

A

z2

β2

[
ln

(
2meγ

2c2Wmax

I
β2γ2

)
− 2β2 − δ − 2

C

Z

]
(1.3)

with

me: electron mass %: density of absorbing material
I: mean excitation potential z: charge of incident particle in units of e
Z: atomic number of absorber β = v/c of the incident particle
A: atomic weight of absorbing material γ = 1/

√
1− β2

δ: density correction C: shell correction
Wmax: maximum energy transfer in a single collision
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1.3 Electromagnetic Calorimeter

The parameter I is correlated with the atomic number Z and is in the order of hundreds
of eV . δ and C are, in principle, extensions to the original Bethe-Bloch equation and
become more important for very low and relativistic energies. Further improvements
of Eq. 1.3, like e.g. taking into account the substructure of the incoming particle
or higher order e�ects, are negligible up to 1%. At lower energies the energy loss by
ionisation is dominated by the β−2-term. As a direct result, a charged particle looses
more energy at the end of its path. This can be visualised by the so called Bragg-Peak.
For momenta of βγ = p

Mc
≈ 3, which corresponds to a velocity of ∼ 0.96c, Eq. 1.3

reaches a minimum (compare Fig. 1.15).
In this region particles are called MIPs and lose the same amount of energy per path
length, namely∼ 2 MeV

g/cm2 , if they have a charge of±e. At very high energies the ionising
probability rises again due to the �attening of the electric �eld of the incoming particle.
The characteristic energy loss dE/dx as a function of energy is usually exploited for
PID. One assumption in the derivation of Eq. 1.3 is that the incoming particle remains
unde�ected while ionising and penetrating through matter. This does not hold for
electrons and positrons and certain modi�cations of Eq. 1.3 have to be considered for
the applicability to this kind of particle.
The contribution of elastic scattering o� the nuclei gets signi�cant at very low
velocities of β < 10−3 and plays a major role for the detection of neutrons.
The Cherenkov e�ect itself was already discussed in Sec. 1.2.1 and causes an energy
loss via emission of light. For PWO, a small fraction of the �nal detected energy
information originates from Cherenkov radiation. Eq. 1.5 leads with a typical
spectral sensitivity of a PMT from 350 nm to 550 nm, an incoming particle with z = 1
and β ≈ 1, and an averaged index of refraction of PWO to 385 photons per cm. This
corresponds to ∼ 21% of the overall light output at +18 C for a MIP in 1 cm PWO.

d2N

dλdx
=

2πz2

137λ2

(
1− 1

β2n2(λ)

)
(1.4)

dN

dx
= 2πz2α sin2(ΘC)

∫ 550 nm

350 nm

dλ

λ2
= 475z2 sin2(ΘC)photons/cm (1.5)

A nuclear reaction occurs if a particle is able to overcome the Coulomb barrier and
subsequently strikes a target nucleus. In general, the cross section for a nuclear inter-
action is small compared to electromagnetic processes. Therefore the free mean path
of the nuclear reaction ΛNR is larger than the radiation length X0, introduced in Eq.
1.8.
Energy loss via bremsstrahlung plays a major role in the development of an elec-
tromagnetic shower. In a typical energy range up to 100 GeV for high-energy exper-
iments, this e�ect basically only becomes relevant for electrons and positrons, since
the cross section of bremsstrahlung scales with m−2. Bremsstrahlung occurs mainly
in the Coulomb �eld of the nucleus and therefore, strongly depends on the screening
caused by atomic electrons. Eq. 1.6 describes the energy loss of a particle with initial
energy E0 and mass m, number of atoms per cm3 N and the atomic number of the
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Figure 1.15: Visualisation of the Bethe Bloch equation for di�erent particles and
various materials. The di�erences between the curves originate from the ratios of
Z/A for the plotted material.
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material Z.

dE

dx
=

4NE0Z
2r2
e

137

{
ln
(

2E0
mec2

)
− 1

3 − f(Z), for mec
2 � E0 � 137mec

2Z−1/3

ln
(
183Z−1/3

)
+ 1

18 − f(Z), for E0 � 137mec
2Z−1/3

(1.6)

f(Z) represents a Coulomb correction for the emitting electron in the �eld of the
nucleus. The distinction of both cases in Eq. 1.6 is due to screening of the atomic
electrons. The initial particle with a higher energy E0 (lower case) "sees" a more
e�ective �eld con�guration of the whole atom, whereas for smaller energies (upper
case) the sensitivity to the electric �eld of the nucleus is more pronounced. In addition,
bremsstrahlung also occurs in the �eld of the atomic electrons, but here one has to
replace Z2 with Z(Z + 1) in Eq. 1.6.

1.3.1.2 Interaction of Photons with Matter

A photon has several possibilities for the interaction with matter: Photoe�ect, Rayleigh-
Scattering, Compton-Scattering, and pair production in the electric �eld of the nucleus
or of the electrons. Fig. 1.16 shows the energy dependence for the mentioned e�ects for
lead tungstate. In the energy range of PANDA only Photoe�ect, Compton-Scattering
and pair production in the �eld of the nucleus are important. These e�ects also show
a signi�cant dependence on the atomic number Z (compare Tab. 1.5).

Photon Interaction Dependence

Photo E�ect ∼ Z4−5E−3.5

Compton E�ect ∼ ZE−1

Pair Production ∼ Z2 lnE

Table 1.5: Dependence on the photon Energy E and the atomic number Z for
di�erent interactions of photons with matter. At higher energies screening of the
nucleus �eld results in a suppression of the pair production cross-section which
goes with ∼ Z2 lnZ [15].

1.3.1.3 Electromagnetic Shower

The listed e�ects lead to a development of an electromagnetic shower (Fig. 1.17).
Such a shower can be subdivided into generations in which each generation produces
a factor of around 2 more particles, whereupon the initial energy is fragmented and
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Figure 1.16: Mass attenuation coe�cient and cross-section in terms of cm2/g and
barns/atom, respectively, for the di�erent interaction options with PbWO4 (data
obtained by [14]). Coherent scattering and pair production in the electron shell
play only a minor role in the energy regime of PANDA. At lower energies the
photo e�ect is dominant, but decreases with energy according to the dependencies
in Tab. 1.5. At higher energies the pair production in the electric �eld of nucleus
is the main contribution to the total interaction cross section.
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follows statistical �uctuations. An average energy of the produced particles in each
generation can thereby be calculated by:

< E > =
E0

2n
with E0: Initial energy; n: Shower generation (1.7)

An important parameter for the scale length of such kind of shower is the radiation
length X0. This parameter has two meanings and can be calculated with Eq. 1.8

� X0 is the mean distance over which a high energetic electron losses up to 1/e of
its energy via bremsstrahlung

�
7
9
X0 is the free path for pair production by a high-energy photon

A useful approximation of the radiation length X0 for a given material can be calcu-
lated by Eq. 1.8 [13].

X0 =
716.4 g

cm2 · A

Z(Z + 1) ln
(

287/
√
Z
) (1.8)

with
A: atomic weight of absorber Z: atomic number of absorber

The continuation of the electromagnetic shower process stops if the cross section of
the electron/positron for ionisation processes overcomes the one for bremsstrahlung
characterised by the critical energy EC . In �rst order this threshold energy can be
parametrised in solids and liquids as follows [16]:

EC =
610 MeV

Ze� + 1.24
(1.9)

For PbWO4 with Ze� = 75.6 the critical energy is of approximately 7.94 MeV.

The geometrical expansion of an electromagnetic shower can be characterised by two
parameters: y = E

EC
and t = x

X0
. Tab. 1.6 summarises the longitudinal expansion for

an electron and a photon.

Incident electron Incident photon

Peak of shower, tmax/X0 1.0 · (ln y − 1) 1.0 · (ln y − 0.5)
Centre of gravity, tmed/X0 tmax + 1.4 tmax + 1.7

Table 1.6: Parameters for a longitudinal development of an electromagnetic shower.

The transverse dimensions caused primarily by multiple scattering of the electrons
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(a) Schematic development of an electromagnetic shower. A photon deposits energy via the
e�ects mentioned in Sec. 1.3.1.2. The photon disappears in case of photoe�ect and pair
production, whereas in the latter an electron and positron pair is produced. If the energy
of the produced leptons is above the critical energy EC , there is a high probability for
emission of bremsstrahlung and the drawn cycle starts from the beginning with smaller
initial energy.
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(b) The �gure shows a simpli�ed electromagnetic shower for the �rst three shower
generations. A shower stops if the mean energy of a generation is below the
threshold of EC .

Figure 1.17: Involved e�ects and schematic process of an electromagnetic shower.
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are given by the Molière radius RM , which is de�ned as the radius of a cylinder
containing 90% of the energy deposition. RM scales proportional to X0 is essential for
the geometrical design of calorimeter modules. Fig. 1.18 a) and b) show the typical
expansion of an electromagnetic shower in a Caesium iodide crystal (CsI) caused by
photons.

(a) Transversal shower pro�le. (b) Longitudinal shower pro�le.

Figure 1.18: Expansion of an electromagnetic shower in CsI caused by photons
with various energies [17].
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1.3.2 Requirements

The layout of the EMC is driven by the requirements of the physics program and the
available budget. In the case of PANDA, the EMC is divided in three parts which are
labelled in the following according to Tab. 1.4. The main task of an EMC is the e�-
cient detection of electromagnetic probes, like photons, electrons and positrons. The
coverage of the solid angle and the chosen energy threshold should be appropriate to
reject background, mostly originating from π0 and η rich states. The acceptance for
e± and γ can be approximated by (Ω/4π)n, in which Ω is the covered solid angle and
n is the number of electromagnetic particles in the �nal state.
The relevant observables for the EMC are energy, point of impact (position) and time.
An accurate measurement of the latter one is mandatory and serves as a time stamp
for the triggerless PANDA readout and to discriminate background not related to
the detected event. Sec. 4 will describe the achievable time resolution of the whole
detection chain, ranging from the generation of scintillation light up to the �nal digi-
tisation, which has to cope with the �nal annihilation rate of 107 Hz. Another crucial
requirement of the EMC regarding the �nancial point of view is the compactness. The
price for the scintillators and the surrounding magnet scales with the cube of their
dimensions. Finally, Tab. 1.7 summarises the most important requirements based on
a luminosity of 2 · 1032 cm−1s−1 [18].

General property Required performance value

energy resolution ≤ 1%⊕ ≤2%√
E/GeV

energy threshold (cluster) 10 MeV
energy threshold (single crystal) 3 MeV
energy equivalent of noise 1 MeV
angular coverage 99% of 4π

subdetector speci�cations
BEC Barrel FEC
≥ 140 ≥ 22 ≥ 5

energy range with respect to energy threshold 0.7GeV 7.3GeV 14.6GeV
spatial resolution 0.5 0.3 0.1
maximum rate capability 100 kHz 500 kHz
shaping time 400 ns 100 ns
dose per year 10 Gy 125 Gy

Table 1.7: Requirements of the EMC.
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1.3.3 Scintillator Material

Lead tungstate, PbWO4 (PWO) was chosen as scintillator material for the PANDA
EMC after becoming the dominant material in high-energy application. PWO has a
negative birefringent nature and due to its high Z-materials the radiation length X0 is
in the order of 0.89 cm, which is short compared to other potential candidates such as
BGO with 1.12 cm. This is mandatory for a compact design of the calorimeter. Fig.
1.19 shows the tetragonal symmetric crystal structure of PWO. The optimisation and
large scale production was initiated by the stringent requirement, on fast response,
compactness and radiation hardness to design the electromagnetic calorimeter of the
CMS detector at the LHC25.

(a) Crystal Structure of PWO
along the long crystal axis.

(b) Cross section of PWO crystal structure
perpendicular to the long crystal axis.

Figure 1.19: The pictures show the microscopic crystal structure of PWO for two
orientations. The hue of the atoms gives an impression of the spatial depth. The
three optical axes are perpendicular to each other, whereas two axes are identical
due to the birefringent nature. The dimensions for the unit cell are given and
result in a volume of approximately 360, 92 Å3 [19].

25Large Hadron Collider
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The short decay time of 6.5 ns due to thermal quenching, which makes this material
capable for high count rates, since more than 80 % of the scintillation light can be
collected within 20 ns at room temperature. In addition, Lead tungstate shows only
a negligible slow component with ∼ µs on a few percent level. Concerning the tem-
perature dependence of the scintillation kinetics, only a small change becomes visible
within the �rst 50 ns (compare Fig. 1.20) when the crystal is slightly cooled down.
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Figure 1.20: Scintillation kinetics of PWO as a function of integration time for
di�erent temperatures [20].

On the other hand, the main disadvantage of PWO is the relatively low LY compared
to other standard scintillator materials, which did not play a role for LHC appli-
cant. In order to test and prepare the application in a much lower photon energy
regime, a R&D26 program hat been started to improve the scintillation e�ciency by
doping, reducing defect concentration or change operation temperature. Section 2.1
is intended to describe the most important changes to this new generation of quality,
called PWO-II, necessary for the PANDA EMC. In addition, the calorimeter will be
operating at −25 C to achieve a further enhancement of the LY (factor ∼ 4 compared
to 25 C). Table 1.8 summarises the general properties of PWO in comparison to BGO
and LYSO. Sec. 2 shows in detail the procedure of quality control and the up to now
achieved quality of the crystals for the EMC.

26Research and Developement
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1.3 Electromagnetic Calorimeter

Parameter Unit LYSO BGO PWO PWO-II

ρ g/cm3 7.4 7.13 8.28
X0 cm 1.14 1.12 0.89
RM cm 2.30 2.30 2.00
τdecay ns 40 300 6.5
λmax nm 420 480 420
n at λmax 1.82 2.15 2.24/2.17

relative LY to NaI % 75 9
0.3† 0.6†

0.8∗ 2.5∗

dLY/dT %/C 0 −1.6 −2.7† −3.0†

dE/dx (MIP) MeV/cm 9.6 9.0 10.2

Table 1.8: Properties of PWO in comparison to BGO and LYSO [18]. Especially
the small decay constant of PWO and the light yield enhancement between the
two quality versions are conspicuous [18]. (†: at room temperature; ∗: at −25 C)

1.3.4 Photo Detectors

For the PANDA EMC it is not possible to read out the crystals with conventional
PMTs due to the strong magnetic �eld of ∼ 2 T. Therefore the used sensors should
be insensitive to a magnetic �eld. Due to the relatively low LY27 of PWO (compare
Tab. 1.8) the photo sensor should also have an internal gain for the ampli�cation of
the primary signal. Furthermore, the sensors have to be radiation hard down to the
operation temperature of −25 C. In the following the envisaged types of photo sensors
are discussed in more detail: LAAPD28, VPT29 and VPTT30.

1.3.4.1 LAAPD

APDs31 with a large e�ective area are intended to readout the barrel part of the EMC
mainly due to the insensitivity to the magnetic �eld. In a common e�ort of the CMS
collaboration and Hamamatsu Photonics, a special kind of APD was optimised for
the detection of scintillation light of PWO. In addition, these sensors have some other
advantages:

� thickness of 200µm

27Light Yield
28Large Area Avalanche Photo Diode
29Vaccum Photo Triode
30Vaccum Photo Tetrode
31Avalanche Photo Diodes
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Chapter 1 Introduction and Motivation

� thin conversion layer

� high QE32 in the wavelength range of PWO (∼ 80%)

� insensitive to magnetic �eld

� low cost for mass production

Fig. 1.21 shows the general structure of an APD which is operating in reversed volt-
age.

Figure 1.21: The APD structure consists of various layers of doped silicon. p and
n corresponds to the kind and the number of + to the level of doping. The chosen
doping pro�le leads to a strong electric �eld close to the junction. This results into
an avalanche of the primarily produced charge carriers and �nally to an internal
ampli�cation. After drifting, the �nal charge collection takes place in the n++

electrode. The additional layer of silicon nitride (Si3N4) on the entrance face
reduces loss of the light due to re�ections.

The gain of an APD strongly depends on applied voltage and temperature. There-
fore, to ensure the performance of the photo sensors, temperature and applied bias
voltage have to be kept stable within an accuracy of ∆T = ±0.1 C and ∆U = ±0.1 V.
Therefore the characteristics of an individual APD has to be known. For determining
the gain M , dark current Id and photo current Iill are recorded while illuminating

32Quantum E�eciency
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1.3 Electromagnetic Calorimeter

the sensitive area of a �xed wavelength (Tmax/PbWO4 = 420 nm). The obtained signal
ampli�cation is derived from the relation to the M = 1 equivalent, according to Eq.
1.10. Fig. 1.22 shows the dependencies of gain, dark current and applied voltage of a
randomly chosen APD for di�erent temperatures.

M =
Iill(U)− Id(U)

Iill(M = 1)− Id(M = 1)
(1.10)
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Figure 1.22: Correlation of gain and applied voltage of an APD for two di�erent
temperatures. The shape corresponds to the characteristic curve of a diode.

The obtained gain M is a result of the avalanche process within the APD. Such a
statistical process also brings up uncertainties caused by �uctuations which enter in
the �nal performance. This can be expressed by the Excess Noise Factor F and is
basically connected to the broadening of produced photoelectrons Npe and contributes
to the energy resolution by:

σE
E

=
1√
E
·

√
F

Npe
(1.11)

With respect to the PANDA EMC, a further R&D step was necessary. The relatively
low envisaged energy threshold of 10 MeV requires to collect as much scintillation light
as possible. This can be achieved by increasing the area of the APD, which leads to
another generation called LAAPD. The e�ective area was enhanced from 0.25 cm2 to
1 cm2. The rectangular shape allows to equip two APDs on one crystal and therefore
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Chapter 1 Introduction and Motivation

to improve the energy resolution by another factor of
√

2. Two sensors per crystal
bring another advantage, namely the rejection of fake events caused by neutrons, for
the �rst time realized by the CMS experiment. There is a non-zero probability that
a neutron crossing the volume of an APD creates a physically unusual high energy
signal due to spallation. Those events can be identi�ed by comparing the signal of
both sensors for one event. Another e�ects, which leads to a worsening of the energy
resolution, occurs if a charged particle reaches the silicon layers of the APD and
produces electron hole pairs (∼ 100 e/h pairs per µm) in addition to the signal caused
by the PWO scintillation light (NCE33). This e�ect is more crucial for PANDA, since
the relative signal contribution is higher due the lower energy regime, compared to
CMS. Therefore it is advantageous to have a thin conversion layer.

1.3.4.2 VPT/VPTT

The functionality of a VPT or a VPTT is very similar to the principle of a conventional
PMT except the number of dynodes. A schematic layout of both kind of sensors is
displayed in Fig. 1.23. The photo cathode serves as a converter from photons to
electrons which will then be accelerated to the mesh anode and afterwards to the
dynode where the ampli�cation takes place. The produced secondary electrons will
subsequently be accelerated backwards and collected by the anode. In case of a VPTT,
an additional mesh dynode is placed between cathode and anode. On the one hand
this results in an additional gain, but on the other hand the tube gets more sensitive to
the magnetic �eld. Both types of sensors have a typical quantum e�ciency of bialkali
photo cathodes in the order of ∼ 20 %.

(a) High voltage setting for the VPT:
Cathode at −1000 V, anode on ground
and dynode at −200 V.

(b) High voltage setting for the VPTT:
Cathode on ground, �rst dynode on
500 V, anode at 1200 V, second dynode
at 1000 V.

Figure 1.23: Schematic layout and high voltage settings for VPT and VPTT [21].

33Nuclear Counter E�ect
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1.3 Electromagnetic Calorimeter

This kind of photo detector will read out the crystals of the FEC, since they are
more capable for higher rates (up to 500 kHz in the FEC) and show a better radiation
hardness. In the outermost region of the FEC, the angle between sensor axis and
magnetic �eld is∼ 18 , which reduces the gain due to the Lorentz force on the electrons.
Current studies [22] show a degradation of a VPTT gain up to 45 % for a magnetic
�eld of 1.2 T.

1.3.5 Electronics

Several requirements are dictated to the readout electronics to achieve the designated
performance of the PANDA EMC. A dynamic range of 12, 000 is necessary to cover
the energy range from the low energy threshold of 1 MeV and the maximum expected
energy deposition in a single crystal of 12 GeV. Furthermore, the limited available
space should be occupied as e�ciently as possible. Therefore, the geometry of the
preampli�ers should �t into the EMC cooling compartment to be as close as possible
to the crystal sensors (compare Fig. 1.24). This will have a positive impact on
the analogue circuits and decrease the probability of pick-up noise. A low power
consumption of the electronics is mandatory as well, to guarantee the homogeneity of
cooling along the 20 cm long crystals. Two di�erent concepts were developed and will

Figure 1.24: Schematic readout chain of the PANDA EMC [23]. The ampli�ed
signals are forwarded to digitiser modules which consist of SADC-chips and digital
logics for the evaluation of the necessary informations (explained in Sec. 3.1.4).
The digitiser modules are at a distance of 20 − 30 cm and 90 − 100 cm for the
barrel and FEC, respectively, away from the cold EMC volume. Via an optical
link (drawn in red) the data stream reaches the stage of the data concentrator,
where diverse algorithms are applied to the data. A general time distribution of
the PANDA detectors provides a clock. Finally, the obtained values are collected
by the computing node.
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Chapter 1 Introduction and Motivation

be presented in the following subsections. On the one hand an ASIC34 for the signal
processing in the barrel part and on the other hand a Low Noise/Low Power Charge
Preampli�er (LNP-P) in the FEC.

1.3.5.1 ASIC

Each crystal of the barrel EMC is equipped with two LAAPD which are read out
simultaneously by one ASIC, called APFEL35. This chip will split up the input of a
single LAAPD and provide two channels with di�erent gains. In the current version
(1.4.) the ratio between these two gain branches is programmable between 16 and
32. Further prototype tests will show which factor gives the best compromise. Due to
the increased capacity of the LAAPDs and therefore higher contribution to the dark
current, the preampli�er should have, among the already mentioned requirements, a
low noise level. The maximum input charge is in the order of 8 pC and results with an
ENC36 of 0.74 fC (4625 e−) to a dynamic range of more then 10, 000. Concerning rate
capability, this ASIC is able to handle event rates up to 500 kHz (barrel max. rate
100 kHz), which is a design trade-o� between noise issues and pile-up. The power con-
sumption per APFEL is approximately 55 mW. All the provided data of the APFEL
1.4. was determined at room temperature [24]. Fig. 1.25 shows a block diagram and
a photograph of the APFEL.

1.3.5.2 Low Noise and Low Power Charge Preampli�er

A LNP-P37 has been developed for the adaptation of the VPTs for the FEC based
on J-FET38 technology. In a former stage of the development this preampli�er is
implemented in a barrel EMC prototype detector (compare Sec. 3.1). The input
charge of the preampli�er is linearly converted to a positive output voltage. The
overall power consumption of the preampli�er depends on the event rate and registered
photon energy and ranges for PANDA from 45 mW to 90 mW. Concerning noise issues,
the anode capacitance of a VPT is one order of magnitude less compared to a LAAPD
which results in a signi�cantly lower dark current (∼ 1 nA). The maximum positive
output voltage of 2 V is caused by the charge sensitivity of 0.5 V/pC and the maximum
single pulse input charge of 4 pC at 50 Ω. Fig. 1.26 shows a photograph of the top
and bottom side of single-channel LNP-P prototype.

34Application Speci�c Integrated Circuit
35ASIC for PANDA Front-end Electronics
36Equivalent Noise Charge
37Low Noise and Low Power Charge Preampli�er
38Junction Field E�ect Transistor
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1.3 Electromagnetic Calorimeter

(a) Schematic layout of the APFEL
ASIC.

(b) Photograph of the APFEL ASIC.

Figure 1.25: The pictures give an impression of the layout of the APFEL ASIC for
the readout of two LAAPD and the two di�erent gains [24].

Figure 1.26: Photograph from both sides of a LNP-P [18].
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Chapter 2

Quality Control of PbWO4 Crystals

for PANDA

For securing the de�ned quality requirements of the crystals for PANDA, an appro-
priate test procedure has to be de�ned. The relevant properties of each individual
crystal are measured and tested by three independent facilities: BTCP, CERN and
the university of Gieÿen. Therefore, di�erent ways of measuring, which can give rise to
inconsistencies, should be taken into account. Up to now, all crystals were produced by
BTCP, where also the �rst stage of quality control takes place. At BTCP, the crystals
were grown using the so called Czochralski method (Fig. 2.1a). A small seed crystal is
pulled out of melted raw material with a purity level close to 6N1. The puri�cation was
achieved by several steps before such as the appropriate mixture of raw material to
reach the �nal stochiometric ratio considering losses due to evaporation. In addition
a pre-crystallisation was used to separate impurities with a di�erent segregation coef-
�cient. This procedure results in 25 cm long ingots with elliptical cross-section shown
in Fig. 2.1b, which will be subsequently cut into the PANDA geometries adjusting
the �nal surfaces parallel to the main crystal axis. This chapter has the intention to
explain the relevant parameters and the procedure of the performed quality control.
Finally, the obtained results will be summarised and discussed, also with regard to
the status of the remaining crystals.

2.1 Improvement of Lead Tungstate Crystals

Lead tungstate was mainly chosen by the PANDA collaboration due to its high rate
capability and radiation hardness. But the relatively low light yield (compare Tab.
1.8) required further steps, especially for the e�cient detection of low energetic probes
down to 10 MeV. At �rst, the overall light yield of PWO was enhanced by a collab-
orative R&D development by the PANDA collaboration and BTCP [25] funded by

1purity level of ≥ 99.9999%
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

(a) Czochralski method. (b) Uncutted PbWO4 ingots.

Figure 2.1: Manufacturing of PWO crystals.

the EU2 project "Hadron Physics". In a �rst iteration of research, di�erent doping
compositions consisting of molybdenum (Mo) and another series of pure terbium (Tb)
were tested. The performed measurements for low energetic photons from a 137Cs
source showed a signi�cant improvement of the light output (Fig. 2.2a). A certain
doping combination of Mo (500 ppm) and lanthanum (La) (100 ppm) even resulted in
a light yield a few times higher as compared to CMS3 type crystals. But there are a
couple of drawbacks, since a higher level of Mo-doping causes an increase of the decay
time which limits the application at higher rates (compare Fig. 2.2b). In addition,
the crystal structure is less radiation hard and the maximum of the scintillation light
is shifted towards the green region (∼ 500 nm) [26]. The situation is rather similar
for Tb doped crystal. Here the light yield increases by lowering the Tb-concentration,
but unfortunately the radiation hardness is degrading as well.
An additional enhancement of the light yield of 30 % − 50 % can be achieved by a

reduction of the La- and Y-concentration down to a level of ∼ 40 ppm, which leads
to a degradation of deep traps in the crystal structure. This is possible due to an
improved control of the stoichiometric composition of the melt. La and Y have di�er-
ent distribution coe�cients, which lead to di�erent concentration gradients within the
crystal while pulling out of the melt. To avoid this imbalance, the doping elements can
be introduced in di�erent stages during the crystal growing process. The mentioned
innovations result in a signi�cant lower number of vacancies in the crystal structure.
Altogether, this new type of PWO, called PWO-II, shows an increased light yield in
the order of 80 % compared to CMS-type quality. Concerning timing issues, this next
generation of PWO shows a clear dominance of the fast decay component of 97 % and
a decay time in the single-digit ns-region, measured at room temperature.
On top of the already increased light yield, the whole calorimeter is cooled down to a
temperature of −25 ◦C, which results in an additional enhancement of the light yield
by a factor ∼ 4 compared to room temperature due to the thermal quenching e�ect.

2European Union
3Compact Muon Solenoid
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2.1 Improvement of Lead Tungstate Crystals

(a) Energy response of 662 keV photons
for PWO for various kinds of doping.
The measurements were performed with
a conventional PMT with an integration
time 2.5µs.

(b) Photopeak position as a function of inte-
gration gate. The Mo, La co-doped crys-
tal shows signi�cant slower decay compo-
nents.

Figure 2.2: Performance measurements of PWO with various kinds of doping with
a 137Cs source [25]. The co-doped sample with niobium (Nb) and yttrium (Y)
corresponds to a sample of CMS quality.

In this region, the temperature gradient is almost constant and is shown in Fig. 2.3.
A non-negligible drawback of the cooling is the reduced spontaneous recovery of radi-
ation damage.
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Figure 2.3: General temperature dependence of the light yield for lead tungstate.
In the shown range, the temperature gradient varies from −3 % to −2.5 % per ◦C
(values obtained by [20]).
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2.2 Crystal Requirements

To guarantee the �nal performance and the long term stability of the EMC, the PWO
crystals have to have su�cient quality. Based on the physical goals and also for
the mechanical integration, the crystals should reach minimum requirements. This
can be characterised by di�erent properties, which will be described in the following
subsections in more detail. The limit for each parameter was chosen with respect
to previous experiences and detailed studies. Another aspect are the Gaussian-like
distributed parameters due to the manufacturing of large quantities. Therefore a
certain fraction of crystals can belong to a tail with insu�cient quality, but on the
other hand those statistical variations can also bring up crystals with excellent quality.
All �xed requirements concerning quality control are summarised in Tab. 2.1.

Property Unit Limit

longitudinal transmission at 360 nm % ≥ 35
longitudinal transmission at 420 nm % ≥ 60
longitudinal transmission at 620 nm % ≥ 70
non-uniformity of transversal transmission at T= 50% nm ≤ 3

LY at T= 18 ◦C phe/MeV ≥ 16.0
LY(100 ns)/LY(1µs) ≥ 0.9

induced absorption coe�cient ∆k at room temperature,
m−1 ≤ 1.1

integral dose 30 Gy
mean value of ∆k distribution for each lot of delivery m−1 ≤ 0.75

Table 2.1: Relevant speci�cations of the crystals for the PANDA EMC.

2.2.1 Longitudinal Transmission

A reasonable transmission of a crystal is important for the propagation of the pro-
duced luminescence light of the scintillation process. The almost Gaussian distributed
scintillation light of PWO is peaking at around 420 nm with a FWHM4 of ∼ 40 nm.
Fig. 2.4 shows the luminescence light and the natural transmission of an unharmed
and an irradiated PWO crystal.

In order to judge whether a crystal has su�cient longitudinal transmission, one has to
compare the measured values with the speci�cation limits at three selected and very

4Full Width at Half Maximum
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Figure 2.4: Luminescence and transmission characteristics of PWO as a function of
wavelength. The shift in transmission is caused by γ-irradiation with an integral
dose of 30 Gy. Both transmission spectra are smoothed curves originating from
averaged values from 10 randomly chosen crystals, which were measured with the
spectrometer introduced in Sec. 2.3.2.1 with a step size of 1 nm. The distribution
of the luminescence light has a Gaussian shape with slightly bigger tail on the
right hand side (data obtained by [18, 20]).
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sensitive wavelengths: 360, 420 and 620 nm. With the discovery of PWO as scintil-
lator, it was desired to shift the fundamental absorption edge to lower wavelengths
via doping, as well as reduction of defects. The required transmission at 360 nm was
chosen to avoid a cutting into the emission spectrum and to provide an optimum cov-
erage. In addition, the transmission at 360 nm shows a useful correlation with the light
yield, which could be exploited later on for a �rst order relative energy calibration of
the crystals among each other. A requirement at the peaking wavelength of 420 nm is
self-evident. 620 nm is chosen as longest relevant wavelength in order to avoid absorp-
tion bands caused by any kind of complexes in the crystal matrix. In each stage of
the quality control the longitudinal transmission is measured via a light beam which
enters the crystal in one end face perpendicularly, proceeds along the long crystal axis
and leaves the sample at the other end face. This way of measurement already causes
losses due to re�ections at media transitions. The re�ected and transmitted fraction
r and t of a certain light intensity for one surface transition with di�erent indices of
re�ection n1 and n2 can be calculated by:

r =

(
n1 − n2

n1 + n2

)2

(2.1)

t = 1− r (2.2)

Fig. 2.5 illustrates the individual contributions to the overall transmitted light inten-
sity.

Figure 2.5: The picture shows the propagation for multiple re�ected photons in an
optical system. The relative intensities are marked for the individual light beams
according to Eq. 2.1 and 2.2.

By summing up all fractions, one can determine the theoretical limit for the longitu-
dinal transmission which is achievable for this method.

Tmax = 100% · t2 · (1 + r2 + r4 + . . .) (2.3)

= 100% · 1− r
1 + r

These considerations, with the mentioned importance at the relevant wavelengths,
lead to the requirements for the longitudinal transmission.
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2.2 Crystal Requirements

2.2.2 Transversal Transmission

The homogeneity of a crystal is a crucial aspect for the �nal performance of the EMC
and is mainly determined by the quality of the crystal growing process. Therefore, a
nearly constant transversal transmission along the crystal is mandatory. For PANDA,
the spectrum in the relevant wavelength range is measured perpendicular to the 20 cm
long crystal axis at equidistant positions. For each position, the wavelength, where
the 50 % threshold is passed, is recorded. From the largest and smallest obtained
wavelength, one can characterise the homogeneity of the crystal by the so called ∆λ-
parameter:

∆λ = λmax/50 % − λmin/50 %. (2.4)

This parameter should not exceed 3 nm.

2.2.3 Geometry

In general, a crystal has the geometry of a truncated pyramid with a length of 20 cm.
In order to achieve a hermetically closed barrel part of the EMC, 11 di�erently tapered
crystal shapes are used. In addition, each of these shapes is produced in two versions
symmetric to one of the side faces. All the crystals in the barrel region are symmet-
rically aligned to a plane, which contains the target point and is perpendicular to the
beam. This mirror symmetry allows the reduction of necessary shapes from originally
18 to 11. Moreover, two additional shapes are foreseen for the mounting in FEC and
BEC. A schematic drawing of the crystal model for the explanation of the geometry
parameters and the values for each shape is given in Fig. 2.6 and Tab. 2.2.

For the mounting of the calorimeter, the crystals are not pointing directly to the �nal
vertex point in order to prevent energy deposition in dead material. The crystals in-
cluding wrapping have to �t into carbon alveoles. Therefore each geometry parameter
should not exceed the desired limits of Tab. 2.2. On the other hand, the deviation
should be less than 0.1 mm. The roughness is a parameter which is not explicitly
measured for the quality control. This parameter should be below or equal 0.02µm
and 0.5µm for the polished crystal surfaces and the edges, respectively. Furthermore,
in a case of doubt, no crystal with cracks deeper than 0.5 mm is allowed.
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

Figure 2.6: Schematic drawing of a PANDA crystal including the de�nition of the
geometry parameters. All crystals have a right angle corner in order to simplify
manufacturing.

Type
Volume AF BF CF AR BR CR
cm3 mm

1 126.86 21.21 21.28 21.27 29.04 28.75 29.12
2 126.56 21.18 21.28 21.39 28.78 28.75 29.07
3 125.79 21.17 21.28 21.51 28.36 28.75 28.81
4 120.85 21.17 21.28 21.60 27.90 27.22 28.45
5 119.69 21.17 21.28 21.69 27.35 27.22 28.01
6 118.35 21.19 21.28 21.78 26.72 27.22 27.47
7 112.90 21.22 21.28 21.86 26.23 25.47 26.99
8 111.75 21.23 21.28 21.91 25.70 25.47 26.51
9 110.52 21.23 21.28 21.95 25.14 25.47 26.00
10 107.01 21.25 21.28 22.00 24.70 24.42 25.56
11 106.25 21.25 21.28 22.02 24.35 24.42 25.23
EC 126.88 24.38 24.38 24.38 26.00 26.00 26.00
EC-R 118.58 24.35 24.35 24.35 24.35 24.35 24.35

Table 2.2: De�nition of the geometrical parameters of the lead tungstate crystals.
The EC and EC-R geometry corresponds to crystals for the FEC and the BEC,
respectively.
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2.2.4 Light Yield

The LY is an important quality parameter, since it describes the ability of a crystal to
convert deposited energy into scintillation light and has a signi�cant contribution to
the stochastic term of the energy resolution. For the quality control of PANDA, the
LY is determined by conventional bialkali PMTs and therefore, the LY is characterised
in terms of photoelectrons per MeV (phe/MeV) and can be calculated by:

LY[phe/MeV] =
ppSource − ppPedestal
ppSEP − ppPedestal

· 1

Eγ
. (2.5)

pp : peak position

SEP : Single Electron Peak

Eγ : Energy of photon in MeV

The position of the pedestal ppPedestal corresponds to the zero level of the signal. A SEP
occurs if only one electron is emitted from the photocathode due to thermal excitation
and getting ampli�ed by the dynod structure of the PMT. For quality control it would
not be economical to cool each crystal down to the �nal operating temperature of
−25 ◦C. Fortunately, there is a well established linear correlation between the LY at
di�erent temperatures [27]. Therefore, the measurements of the LY-parameter are
performed at +18 ◦C. The minimum LY-requirement is 16 phe/MeV, which is only
crucial for the less tapered crystals of both end caps. This will be explained and
further discussed in Sec. 2.4.3.

2.2.5 Scintillation Kinetics

The kinetics of the scintillation mechanism describes the necessary time for the collec-
tion of a certain amount of scintillation light and can be expressed as decay times of
the scintillation components. For mass quality inspection, the ratio of the collected LY
within 100 ns and 1µs gives a feedback about the kinetics of a scintillator. This ratio
should be above or equal 90 % and is measured at +18 ◦C. This property is by far not
expected to become problematic, since for the majority of crystals this requirement is
even ful�lled at −25 ◦C. For a small set of randomly chosen crystals, this parameter
was remeasured +18 ◦C and −25 ◦C to con�rm the uncrucial situation with respect to
rejection (Fig. 2.7). Therefore this parameter is not further discussed in the analysis
of the quality control.
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Sample #
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Figure 2.7: Scintillation kinetics of a small group of crystals at +18 ◦C and −25 ◦C
with integration times of 100 ns and 1µs.
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2.2.6 Radiation Hardness

To guarantee a proper operation over a long runtime period in a radiative environment,
the crystals have to cope with ionizing and non-ionizing radiation. This can cause
absorption bands originating from colour centres, which is directly connected to the
loss of transmission in the relevant spectral region. The scintillation mechanism itself is
not a�ected. To prove the transmission stability after a certain amount of irradiation,
the change of the absorption coe�cient, based on the Lambert law, was chosen as a
criteria:

∆k = kafter irradiation − kbefore irradiation

=
1

d
ln

(
Tbefore irradiation
Tafter irradiation

)
(2.6)

with d = 20 cm.

The �xed accumulated dose for the determination of the radiation hardness is 30 Gy
caused by γ-irradiation of a set of 60Co, which corresponds to a runtime of PANDA
of half a year for the innermost region of the FEC. The selected requirement of the
radiation hardness, expressed by the ∆k-value at 420 nm is 1.1 m−1. This modi�ed
speci�cation limit with respect to the contract, includes all possible error contributions,
e.g. from multiple re�ected photons, errors of the transmission measurements or the
presence of a fast recovery component at room temperature. In contrast to the CMS
calorimeter, the requirement of the radiation hardness is more strict, in spite of the
lower expected dose. This originates from the signi�cantly suppressed spontaneous
recovery at −25 ◦C. Fig. 2.8 shows typical spectra of ∆k for three categories of
quality in radiation hardness.

Wavelength in nm

350 400 450 500 550 600 650 700 750 800

­1
k
 i
n
 m

∆

0

0.2

0.4

0.6

0.8

1

  bad
  average

  good

Figure 2.8: Typical ∆k-spectra for PWO for a good, average and bad crystal
according to the quality in radiation hardness.
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

2.3 Procedure of Quality Control

The securing of the necessary quality of the crystals is a common task of three test
stations. The �rst quality check of the crystals is performed by the manufacturer
BTCP, in order to avoid the delivery of crystals with insu�cient quality. Afterwards,
each lot is shipped to CERN to pass the next iteration of quality control. Finally, the
last and deciding quality check is done at Gieÿen, where also the storage until the �nal
mounting of PANDA takes place. Fig. 2.9 shows the path of the crystals from their
production to di�erent test stages. This subsection describes the test procedures and
setups for the individual stages.

Figure 2.9: The de�ned procedure for securing the minimum quality of the crystals.

Not all parameters are measured by each facility, therefore Tab. 2.3 gives an overview
between test facility and corresponding quality parameter.

Property BTCP CERN Gieÿen

geometries X X ×
longitudinal transmission X X X
transversal transmission X X ×
light yield X X (X)
scintillation kinetics X X ×
radiation hardness X × X

Table 2.3: Overview of the quality control of the crystals and where they are tested.
Only for a few random crystals of each lot and geometry the LY was measured in
Gieÿen to determine the calibration coe�cients (Sec. 2.3.2.2).
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2.3 Procedure of Quality Control

2.3.1 Quality Control at BTCP and CERN

The test procedure of BTCP and CERN are very similar, both using a special device
for handling a larger number (up to 30) of crystals simultaneously. This device is the
so called ACCOS5 machine (Fig. 2.10) and was in both cases already used for testing
crystals of the CMS calorimeter, ECAL6.

Figure 2.10: The moveable server of the ACCOS machine has a diameter of 1.1 m
and is able to carry several crystals, including reference crystals, at the same time.

The ACCOS machine is a composed system of devices for the single quality measure-
ments [28]. A 3D-laser system7 measures the geometry with a precision of 5µm. For
the determination of the crystal edges, each crystal face is reconstructed by measuring
a certain number of points (15 for lateral faces; 9 for one end face). The transmission
along and perpendicular to the long crystal axis is in each case measured by a compact
spectrometer using a 20 W halogen lamp. But here only a set of discrete wavelengths,
chosen from 330− 700 nm for the best recognition of the absorption edge and possible
absorption bands, is measured and realized by narrow band pass �lters. The detection
of the transmitted light is done by a large area UV-extended pin photodiode. The
obtained data are subsequently �tted with a four parametric function to minimise the
time for one transmission measurement:

T (λ) = e−e
−(λ−P0)P1 ·P2·(1−P3e−λ/92 nm). (2.7)

5Automatic Crystal quality Control System
6Electromagnetic Calorimeter
7Johansson Topaz 7
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

In case of the transversal transmission, the measurement is performed as explained in
Fig. 2.11, for equidistant points.

Figure 2.11: Schematic process of the transversal transmission measurement per-
formed by the ACCOS machine. The sample and reference beam pass the �lter
wheel circulating with 50 Hz in sequence. Finally, both beams are guided by col-
lecting mirrors to the photo diode, which is operating fully synchronous with the
�lter wheel.

The setup for the simultaneous measurement of the light yield, light yield kinetics and
the dependence on the point of impact along the crystal axis is shown in Fig. 2.12.
The exploited method is called delayed coincidence and is performed at 18 ◦C. A 22Na
(< 105 Bq) source is being moved along the crystal and emits positrons which directly
annihilate with surrounding electrons. The two emerging photons are emitted back-to-
back and are separately registered by a BaF2 and the tested PWO crystal, respectively.
The former one has a �xed connection to its PMT and provides a start signal, whereas
the PWO crystal has a certain distance from the readout sensor to attenuate the
scintillation light to single photon level. In addition, the PWO crystal delivers the
stop signal for this method. A time stamp is only stored in the time spectrum of
the TDC8 if there is a matching of start and stop signal. The entries of this time
spectrum, which represents for the matching e�ciency, directly scales with the light
yield of the scintillator. The coincidence measurement allows a clear identi�cation of
the scintillation light caused by the 511 keV photons via timing. Radioactive source
and BaF2 crystal are moved along the crystal in equidistant steps. This method is
practical for a scintillator with low light yield, measured by a fully automatic device
and has no necessity of wrapping or an optical coupling, which would lead to a further
error contribution due to the lack of reproducibility. The �nal calibration of these

8Time-to-Digital-Converter
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2.3 Procedure of Quality Control

values is done at Gieÿen and will be explained in Sec. 2.3.2.2. To get data of the
kinetics of a crystal, the mentioned routine is evaluated for time gates of 0.1µs and
1µs out of the TDC-information. With this, the ratio of the light yield for both
integration times can be derived. For each cycle of measurements, reference crystals
serve as comparison and subsequent correction due to variations caused by e.g. thermal
e�ects.

Figure 2.12: Principle of the light yield measurement of the ACCOS machine.
A start signal is provided by the BaF2 crystal. The �rst arriving signal above
threshold of the PWO crystal initialises the stop signal.

The radiation hardness is measured by BTCP by checking the transmission before and
after an exposure to a cobalt source with an overall dose of 30 Gy. This irradiation
facility was installed for the mass production for the CMS detector with technical
assistance of RINP9, which is described in more detail in [8, 27]. The time between
irradiation and the second transmission measurement is not documented and was
not �xed in the contract with BTCP. This duration is a source of inconsistencies
between the measurements of the radiation hardness at Gieÿen and BTCP due to the
spontaneous recovery of PWO at room temperature (compare Fig. 2.15).

2.3.2 Quality Control at Gieÿen

The longitudinal transmission and the radiation hardness are remeasured at Gieÿen.
Concerning the light yield, only a small set of crystals is remeasured to determine the
calibration coe�cients. Both experimental setups, including arising error contribu-
tions, will be discussed in detail in the following.

9Research Institute for Nuclear Problems of Belarussian State University
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

2.3.2.1 Transmission and Radiation Hardness Measurements

The measurement of the longitudinal transmission is done by a conventional double
beam spectrometer10 (Fig. 2.13a). According to the measured range from 325−900 nm
with a sampling rate of 0.5 nm, only a halogen bulb is used. But for the quality con-
trol of the PANDA crystals, the light path of the sample beam has to be modi�ed. A
special optics setup (Fig. 2.13b) consisting of mirrors and lenses has to be adapted to
the spectrometer, so that the light can be guided almost perfectly parallel across the
full length of the crystal. A drawback of this modi�cation is the signi�cant intensity
loss of the sample beam, but this can be compensated by a baseline correction (mea-
surement without sample). With a scan rate of 300 nm/min, one measurement over
the relevant wavelength range takes almost 3 min.
There are several uncertainties of the measurement, which have to be estimated. The

(a) Photo spectrometer. (b) Additional optics by [29].

Figure 2.13: VARIAN spectrometer.

probably most obvious error contribution is due to the non-perfectly reproduceable
crystal position in the spectrometer. Moreover, the transmission can shift caused by
thermal e�ects. For the quality control, the transmission is remeasured from time to
time without sample to check the stability. It was decided to recalibrate the spec-
trometer after a deviation of 0.1% from 100%. By measuring the same crystal several
times in a row, one can get an upper limit for both error contributions at the relevant
wavelengths: ∆T (620 nm) = ∆T (420 nm) = 0.4% and ∆T (360 nm) = 0.8%. The
measurements for the radiation hardness are performed with the same spectrometer,
which is placed at the irradiation facility at the Gieÿen Strahlenzentrum. Between the
measurements, a crystal is put into the moveable compartment (shown in Fig. 2.14)

10Cary 4000, supplied by VARIAN
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2.3 Procedure of Quality Control

for irradiation with photons from a 60Co source.

Figure 2.14: A compartment, which is installed in a circular moveable for irradiat-
ing di�erent kind of samples. After a rotation of 180 the samples are exposed to
a 60Co source.

The duration of irradiation is in the order of 8 min and is frequently adapted according
to the life time and loss of activity. Concerning the homogeneous illumination, 5 �at
dosimeters were put into the corners and the centre of this compartment [27]. After
an exposure to the cobalt source of 140 min, the dosimeters were analysed by KHG11.
With an averaged integral dose of 500 Gy, the homogeneity was con�rmed to be on a
level of 3.6Gy/min. Several error contributions for ∆k have to be taken into account.
One error already originates from the error of the transmission measurements and can
be evaluated at 420 nm by:

∆(∆k) =

√(
∂(∆k)

∂TB
∆TB

)2

+

(
∂(∆k)

∂TA
∆TA

)2

=
1

0.2 m

√(
∆TB

TB

)2

+

(
∆TA

TA

)2

. (2.8)

With ordinary values of the transmission before irradiation (TB) and after irradiation
(TA), and transmission errors of 0.4% at 420 nm one gets a relative error of ∼ 4%.
Another error contribution could be caused by di�erent points in time for the remea-
surement after irradiation. Fig. 2.15 shows the recovery of the harmed crystal as
a function of time. Due to this strong dependence on time, especially in the �rst
minutes, the duration between irradiation and second transmission measurement was
�xed to 30 min for all crystals.

Furthermore, in each measurement there arises an error, because of multiple re�ected
photons. The determination of ∆k is based on the pure exponential behaviour of
the transmission, described by Eq. 2.6. In principle, the presence of these multiple
re�ected photons worsens the ∆k, since photons which pass the damaged crystal a
couple of times, have an even higher probability to get absorbed. For estimating the

11Kerntechnische Hilfedienst GmbH
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Figure 2.15: Spontaneous recovery for PWO at room temperature. A very fast
recovery component gets visible with a constant of 6.3 min.

�nal contribution to the ∆(∆k), LITRANI12 simulations were performed. As an in-
put parameter, the absorption length of crystals with di�erent quality was deduced
by experimentally determined transmission according to Eq. 2.9 (from [30]).

labs =

−1

d
· ln

−t2 +
√
t4 + 4T 2

Expr
2

2TExpr2

−1

(2.9)

This procedure is explained in detail in [27] and results in a maximum relative error of
3.7%. To take into account all the mentioned errors of the measurement, the original
speci�cation limit of 1 m−1 was increased by 10% to 1.1 m−1.

12Light Transmission in Anisotropic media / http://gentitfx.fr/litrani/
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2.3.2.2 Light Yield Measurements

For each crystal type 10 randomly chosen crystals per lot are remeasured at Gieÿen
to obtain the calibration factor C for the CERN data according to Eq. 2.10.

LY[phe/MeV] = C · LYCERN[a.u.] (2.10)

The used setup is shown in Fig. 2.16. Each test crystal is wrapped in eight layers
of te�on and an aluminum-foil to optimize the light collection for photons, which are
not totally re�ected and escape the crystal. After wrapping, the crystal is attached
with optical grease to a conventional PMT13 with fused silica window and bialkali
photocathode with a typical quantum e�ciency of 20% at 420 nm. The excitation of
the crystal is done by 662 keV photons from a 137Cs from the top.

Figure 2.16: Setup for LY calibration at Gieÿen in a climate chamber for a stable
temperature of 18 ◦C. The whole setup comprises two identical readout chains,
where two crystals can be measured simultaneously.

This energy is well suited for the light yield determination of PWO, since it does

13Hamamatsu R2059-01
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

not overlap with the intrinsic activity of α-emitters which create signal amplitude
corresponding to 1.2 − 1.4 MeV photon energy due to quenching of the scintillation
light. The PMT signal above an appropriate threshold is integrated in time gates
of 100 ns and 1, 000 ns, respectively, and digitised by a QDC14. The positions of the
photopeak, SEP15 and pedestal are determined by Gaussian functions, whereas the
light yield is evaluated with Eq. 2.5.

14Charge-to-Digital-Converter, CAMAC, Le Croy 2249W
15Single Electron Peak
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2.4 Results Quality Control

2.4 Results Quality Control

Up to now, 9, 336 crystals were produced by BTCP16, subdivided in 10 lots, comprising
all crystals for FEC and BEC and 6 geometries for the barrel EMC. In an earlier stage,
an 800 crystal preproduction lot, consisting of all 11 PANDA shapes for the barrel
part, proved the ability for mass production with constant quality. In the following
subsections, the obtained results with respect to the speci�cations will sequentially be
presented and discussed. Moreover, Sec. 2.4.6 is intended to expose several discrep-
ancies between the di�erent test facilities and a summary of the quality control will
be provided. At the end of this section, SICCAS17, a potential manufacturer for the
remaining crystals, will be introduced by testing a small amount of test samples.

2.4.1 Transmission

The transmission is an uncrucial parameter with respect to rejection. There is no
dependence on the crystal geometry, since the used spectrometers have a negligible
beam deviation and pass through the two parallel end faces of the crystals. There-
fore, no dependencies caused by di�erent crystal types in Fig. 2.18 becomes visible.
Furthermore, no signi�cant shift in absolute transmission with production date can
be found by plotting the mean of the obtained values at Gieÿen versus the lot number
(Fig. 2.17). Altogether, only 15 crystals show an insu�cient transmission.
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Figure 2.17: Transmission as a function of delivered lot for the three relevant
wavelengths: 620 nm (blue), 420 nm (green) and 360 nm (red).

16Bogoroditsk Techno Chemical Plant
17Shanghai Institute of Ceramics, Chinese Academy of Sciences
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

Figure 2.18: Distribution of transmission values for the three test stations. The
speci�cation requirements are marked as dashed lines with corresponding colour.
Only a handful of crystals show an insu�cient transmission, mostly at 360 nm.
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2.4 Results Quality Control

2.4.2 Geometry

All crystals including wrapping have to �t into carbon alveoles. Fig. 2.19 shows the
distributions for the di�erent edges of all crystal types according to Tab. 2.6. The
edge B3 corresponds to the in Tab. 2.6 labelled B-edge, while the speci�cation of B4
in the rear and front face is given by:

B4 =
√

(B3)2 + (C− A)2. (2.11)

The x-axis of each histogram represents the di�erence of desired and measured value
for the individual types (compare Tab. 2.2). The geometrical requirements dictate
a maximum deviation range from 0 to 100µm. The majority of all crystals show a
perfect geometry with a quite narrow spread within the limits. A second structure gets
visible for the edges A and C for both faces, which is, without exception, visible for
crystals of the last delivery. Measured dimensions smaller than the speci�ed value are
not crucial. Also slightly larger values on the µm-level can be tolerated. Altogether,
there was no necessity to reject any crystal based on the measured geometry data.
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Figure 2.19: Distribution of geometry yield measured at CERN. F and R stand for
the front (small face) and rear side (big face) of the crystal.
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2.4.3 Light Yield

Fig. 2.21 shows the measured light yield data measured at CERN18 and calibrated
at Gieÿen. The shown data is distinguished by the level of tapering and starts in the
top row with the least tapered shape: the crystals for the BEC. The spectra show
a clear correlation of the obtained values with the crystal geometry. The larger the
level of tapering, the higher the light yield output. This fact can be explained by the
so called NUF19-e�ect in light collection. For the performed method of calibration,
explained in Sec. 2.3.2, the energy deposition occurs in the front part of the crystal,
far away from the photo sensor. This non-uniformity is caused by an interplay of
light focussing and absorption, illustrated in Fig. 2.20. Possible corrections of this
NUF-e�ect and impact on the energy resolution of the EMC are discussed in [31] in
detail. The speci�cation concerning light yield is only crucial for crystals for both end
caps, which are almost completely cuboid-shaped. The light yield is the second most
crucial rejection parameter and 78 crystals show an insu�cient light output below
16 phe

MeV
.

Crystal
PMT

Light 

yield

Distance to 

photo-detector

Focusing

Absorption

Figure 2.20: Schematic explanation of the NUF-e�ect. The further away from the
photo sensor the scintillation light is produced, the higher the �nal light output.
This originates from focussing, which guides the light towards the sensor. The
�nal shape of the NUF-e�ect is a result of focussing and self absorption of the
crystal. CMS-type crystals with worse quality, have a more U-shaped curve, due
to the higher contribution of absorption.

18European laboratory for particle physics
19Non-Uniformity in light collection

66



2.4 Results Quality Control

14 16 18 20 22 24 26 28 30
0
50
100
150

14 16 18 20 22 24 26 28 30
0

500

1000

14 16 18 20 22 24 26 28 30
0

10

20

14 16 18 20 22 24 26 28 30
0

20

40

14 16 18 20 22 24 26 28 30
0

50

100

14 16 18 20 22 24 26 28 30
0

50

100

14 16 18 20 22 24 26 28 30
0
50
100
150

14 16 18 20 22 24 26 28 30
0

100

200

EC-R

EC

11

10

9

3

2

1

Light Yield in phe−

MeV

Sa
m
pl
es

p
er

0.
5

p
h

e−

M
eV

Figure 2.21: Distribution of light yield values sorted by the degree of tapering for
the di�erent denoted crystal geometries. Only for crystals of both end caps the
speci�cation limit of 16 phe/MeV becomes crucial.

2.4.4 Transversal Transmission

The transversal transmission of a crystal gives an important information about the
homogeneity of a crystal along its axis and is presented in Fig. 2.22 in terms of the
∆λ-value (compare Eq. 2.4). The discrepancy between the distributions of CERN
and BTCP will be analysed in Sec. 2.4.6. The majority of the shown data are far
below the requirement of 3 nm, which is strongly related to the improved process of
manufacturing. 19 crystals do not ful�l the speci�cation.

67



Chapter 2 Quality Control of PbWO4 Crystals for PANDA

Figure 2.22: Distributions of the ∆λ-parameter for BTCP and CERN. The crystals
show a satisfying longitudinal homogeneity.
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2.4.5 Radiation Hardness

Fig. 2.23 shows the values for radiation hardness from BTCP and Gieÿen. No notice-
able substructure becomes visible due to di�erent geometries. For the �nal judgement
of the quality, the measurements of Gieÿen are deciding. A signi�cant tail on the
right comprises 553 crystals, which have a ∆k above 1.1 m−1. With this value, the
radiation hardness is the most crucial parameter with respect to rejection. But on the
other side, also very radiation resistive crystals show up. The overall quality in terms
of ∆k has been improved by ∼ 30% with respect to CMS-type PWO crystals, which
set the an rejection limit to 1.5 m−1.

Figure 2.23: Distribution of radiation hardness for BTCP and Gieÿen. In average,
the data from Gieÿen is slightly shifted compared to the BTCP data (Sec. 2.4.6)

.
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2.4.6 Correlations between the Test Facilities

A couple of histograms show a inconsistency between the individual test facilities.
E.g. both ∆λ-distributions in Fig. 2.22 have a good matching for values up to 1 nm,
except a small shift to higher values in case of the BTCP data. This structure origi-
nates mainly from EC and EC-R crystals. For the CERN data, a second enhancement
(around 1.5 nm) becomes visible, which is broader and can be subdivided into types
(compare Fig. 2.24). Such type-speci�c contributions can not be spotted in case of
BTCP. A possible explanation would be the di�erent treatment of the measured data,
e.g. by a path correction.
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Figure 2.24: The �gure shows ∆λ-values separated by types from CERN. The data
points are represented by smooth curves. One can see a clear correlation with the
type, and therefore with the level of crystal tapering.

Also, the determination of the light yield at CERN is strongly in�uenced by the ge-
ometry, which was already shown in Fig. 2.21. In contrast to that, the BTCP-data
does not show any type dependence (Fig. 2.25). As it was mentioned, the �nal light
output is strongly connected to the point of origin of the energy deposition, due to the
NUF-e�ect. Therefore, it is possible that BTCP illuminated relatively close to the rear
face, where the photon sensor is mounted. In case of CERN, the energy deposition
occurs further away from the sensor, as explained in Sec. 2.3.2.
Another conspicuous correlation can be found between BTCP and Gieÿen concern-
ing the radiation hardness. The Gieÿen-data seems to be systematically about 0.1 −
0.2 m−1 higher. With a correlation coe�cient20 of 0.7 the data is nicely correlated.

20correlation coe�cient for two sets of data X and Y : CC = <(X−<X>)·(Y−<Y>)>
σX ·σY

∈ [−1; +1]
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Figure 2.25: Light Yield correlation between BTCP and CERN. Only the CERN
data shows a strong type dependence.

Such a constant shift is caused by the not fully identical test procedure. Possible
variation could occur by the dose rate or the time between irradiation and the second
transmission measurement. This duration was not �xed in the contract with BTCP.
The latter one has a big impact on the measured ∆k due to the existence of a fast
recovery component at room temperature (Fig. 2.15). This parameter was initially
not �xed in the contract for the crystal delivery.
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Figure 2.26: ∆k correlation at 420 nm between BTCP and Gieÿen.

A further point is the longitudinal transmission for all facilities of the relevant wave-
lengths (Fig. 2.27). The data from Gieÿen and CERN are in relatively good agreement,
whereas the correlation to BTCP is much smaller. Moreover, the particular distribu-
tions from Gieÿen are broader (compare Fig. 2.18). This is probably connected to the
non-perfect reproducibility of the crystal position in the photospectrometer.
It can be concluded, that the main contribution to the discrepancies, is mainly caused
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Figure 2.27: The left column shows the correlation between BTCP and Gieÿen
data for the three relevant wavelengths. In the right column, the measured values
from CERN and Gieÿen are compared. The latter ones are more correlated than
the data sets in the left column. The general correlation gets worse at 620 nm,
since here the values are distributed much narrower.
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by variations in the test procedure of the single facilities. Furthermore, certain treat-
ments for the di�erent versions of the crystal shape are obvious, especially for the
Light Yield and ∆λ parameters.

2.5 Status and Outlook of Crystal Delivery

Sec. 2.4.1 to 2.4.5 discussed the individual parameters of 9, 336 crystals with respect
to rejection. This is again summarised in Fig. 2.29, distinguished by two groups of
crystal:

1. Crystals for one of the end caps

� Crystals for the FEC with small tapering

� Crystals for the BEC with no tapering

2. Crystals for the barrel with signi�cantly stronger tapering

This distinction in Fig. 2.29 underlines again the shape dependence of some certain
parameters, which was already explained in Sec. 2.4.6. A small number of crystals
has more than one insu�cient parameter. This was not considered in the rejection
numbers mentioned up to now. Under the assumption that the whole PANDA EMC
�nally needs ∼ 18, 000 crystals including spares, Fig. 2.28 gives the current status
of the crystal delivery with the �nal rejection number. The large fraction of the
missing crystals is still an open question. For this purpose, a set of test samples of an
alternative crystal producer was ordered and tested. The results are presented in the
next subsection.

rejected crystals

accepted crystals

missing crystals

Pie with radial labels

Figure 2.28: Status of crystal delivery.
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(a) A summary of all crystals of both end caps of the EMC, which comprise 5, 100 crys-
tals. These crystals have speci�c problems for the LY, since the focussing e�ect is less
pronounced (compare Sec. 2.4.3).
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(b) A summary of all crystals of the barrel part of the EMC, which comprise 4, 236 crystals.
As it was shown in Sec. 2.4.6, there is a type dependence for the measurements of the ∆λ
and this parameter gets worse for more tapered crystals.

Figure 2.29: Summary of the reason of rejection for altogether 9, 336 crystals, dis-
tinguished by less tapered (EC and EC-R) and strong tapered crystals for the
barrel. The marked information in percent does not consider any overlapping
between the reasons of rejection. One can see, that the transmission and the ra-
diation hardness are rejected to the same fraction and no geometrical dependence
becomes visible.
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2.5.1 SICCAS - A potential Crystal Manufacturer

The PANDA EMC still requires ∼ 8, 500 crystals for the �nal completion, which cor-
responds to 47.2% of the total amount for this detector. The previous producer BTCP
�led bankruptcy and is not able to produce additional crystals at all. Various possi-
bilities were discussed, e.g. to equip the remaining solid angle with a di�erent kind of
material. But this would lead to dramatic drawbacks, like signi�cant inhomogeneities
and an inappropriate cooling concept. Fortunately, there is a second major supplier
of PWO crystals, which is located in China: SICCAS [32]. This company has a long
research history since 1928 (renamed to SICCAS in 1984) and has many experiences
in developing and manufacturing di�erent kinds of ceramics and other inorganic ma-
terials. For the mass production of the remaining PANDA crystals, a set of 50 test
crystals was ordered and tested according to the most crucial parameters. All those
crystal are of type 11R, which is the third least tapered geometry in the PANDA
EMC. The manufacturing process of SICCAS di�ers from the one exploited by BTCP,
since all crystals are grown via the so called Bridgeman method (Fig. 2.30).

Figure 2.30: Bridgeman method for the crystal production by SICCAS. A crucible
containing the crystal melt is lowered into the oven for the crystallisation. The
oven itself is horizontally subdivided into two temperature regions. The upper
half is above and the lower one below the speci�c melting temperature. While the
crucible is slowly rotating, the melt starts to crystallise in the transition area [33].

Moreover, an essential di�erence between both processes (shown in Fig. 2.1a and
Fig. 2.30) is the growing direction. The Czochralski method by BTCP grows crystals
along the long axis of the elementary cell. In contrast to that, the SICCAS crystals
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Chapter 2 Quality Control of PbWO4 Crystals for PANDA

are grown along the small crystal axis, which has a di�erent index of refraction. The
di�erent indices of refraction and the connected maximum transmission according to
Eq. 2.3 for ordinary and extraordinary direction are displayed in Fig. 2.31.
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Figure 2.31: Indices of refraction for PWO for ordinary and extraordinary direction.
The large di�erence between the indices already causes a signi�cant change in
the maximum transmission without absorption. The values for the indices were
obtained by [30].

In the following, the results for the 50 test samples are presented and discussed for
the longitudinal transmission, LY, homogeneity of the transversal transmission and
the radiation hardness.
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2.5 Status and Outlook of Crystal Delivery

2.5.1.1 Results of the tested Parameters

The longitudinal transmission for the crystals from SICCAS was independently mea-
sured by CERN and Gieÿen (Fig. 2.32).

Figure 2.32: Longitudinal transmission for the 50 test samples from SICCAS mea-
sured at CERN and Gieÿen. The speci�cation limits are drawn in corresponding
colour.

The data from both facilities is nicely correlated, whereas the measurements from
Gieÿen show the typical wider spread. One can directly see that the transmission
values are signi�cantly lower compared to crystals from BTCP (compare Fig. 2.18).
This does not need to be an indication for reduced quality. As it was explained before,
SICCAS grows crystals along the extraordinary direction, which has a higher index of
refraction. This circumstance directly leads to a reduction of the longitudinal trans-
mission.
The homogeneity of the transversal transmission in terms of ∆λ was only measured
at CERN. The values are distributed much broader, compared to the presented data
in Fig. 2.22, but here one has to take into account the tapered shape of the type 11
crystals and the type-dependence on the ∆λ-values measured by CERN. Neverthe-
less, 16% of the crystals are above the speci�cation limit of 3 nm, which is a signi�cant
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fraction compared to the crystals based on BTCP quality.
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Figure 2.33: ∆λ distribution of SICCAS crystals measured at CERN.

The fact of the quality being distributed broader holds for the LY values as well, which
were measured in Gieÿen. From the statistical point of view, the histogram in Fig.
2.34 has a RMS21 of 3.6 phe/MeV, whereas the value of the same crystal geometry in
case of BTCP is signi�cantly lower at 0.9 phe/MeV (compare Fig. 2.21). The mean
value seems to be comparable, but here one has to wait for better statistics.
Also the radiation hardness was tested in Gieÿen according to the procedure intro-
duced in Sec. 2.3.2.1 and the result is shown in Fig. 2.35. In spite of the low statistics,
the obtained radiation hardness looks similar to the distribution observed for BTCP,
and also here a small tail reaching above the speci�cation limit is visible. One crys-
tal has a change in the absorption coe�cient of almost 5 m−1, which is not shown in
Fig. 2.35, but this crystal even shows macroscopic defects visible to the naked eye.
Altogether, one can conclude that SICCAS is able to deliver crystals, which �t to
the quality requirements of PANDA. A conspicuous and negative aspect is the wide
spread of the obtained values for building up a homogeneous calorimeter. Neverthe-
less, a larger number of crystals in form of a preproduction lot would be helpful to
obtain more reliable information about the crystals provided by SICCAS.

21Root Mean Square
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Figure 2.34: LY distribution of SICCAS crystals measured in Gieÿen.
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Figure 2.35: ∆k distribution of SICCAS crystals measured in Gieÿen.
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Chapter 3

Beamtimes with PROTO60

To verify the envisaged performance, mechanical stability and the thermal robust-
ness of the EMC (listed in Tab. 1.7), a �rst real-size prototype was build up, called
PROTO60, which comes very close to the �nal conception. Several response mea-
surements were carried out at MAMI1 and CERN with photons, leptons and muons
focussing on di�erent aspects. This chapter serves as an introduction to the achieved
results, presented in Sec. 4 and 5. At �rst, the setup of PROTO60 is presented,
including geometrical arrangement and used materials for the single parts, as well as
the used readout chain and the signal extraction. Furthermore, the individual test
stations at MAMI and CERN will be shown with a detailed outlook on the aims for
these particular runs.

3.1 PROTO60

The �rst real-size prototype of the future PANDA EMC is the PROTO60 and consists
of 60 PWO crystals, arranged in 10 columns and 6 rows. All implemented crystals have
type 6 geometry (compare Tab. 2.2), which corresponds to a polar angle of roughly
45 ◦ (135 ◦) in the barrel region. The barrel part represented by the PROTO60 is
marked in red in Fig. 3.1, with the small di�erence, that the PROTO60 has 6 rows
with the same geometry. This is not true for the �nal EMC, since maximum 4 rows
with the same shape are grouped together. In the following subsections di�erent as-
pects of the construction of this prototype are discussed in more detail, ranging from
the mechanical structure up to the realised data acquisition (based on [34]).

1Mainzer Mikrotron
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Chapter 3 Beamtimes with PROTO60

Figure 3.1: The barrel part covers the polar angle region from 22 ◦ to 140 ◦ and
consists of 16 slices. Each slice is composed of 710 crystals, arranged in a 10× 71
matrix. The long axis of one slice is divided in 6 subgroups, indicated with dashed
rounded rectangles, containing crystal types with appropriate tapering. In order
to minimise energy deposition in dead material, all crystals are pointing o� the
vertex point by about 4 ◦, which is also true for the azimuthal direction. The part
of the slice framed in red in the upper part of the picture is represented by the
PROTO60.
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3.1 PROTO60

3.1.1 Mechanical Structure

At �rst, a single crystal has to be wrapped properly with a foil in order to optimise the
light collection in it and to avoid optical cross talk. In case of PANDA, VM2000 (also
known as ESR2-�lm) was chosen, which is quite mirror-like with a re�ection coe�cient
at 440 nm of 0.944 and a thickness of 65µm [35]. Moreover, VM2000 is non-metallic
and basically a multilayer polymer. Altogether, the crystals including geometrical
uncertainties and wrapping have to �t into carbon alveoles. Fig. 3.2 illustrates the
expected occupied space between two crystals.

Figure 3.2: Each crystal has a geometrical tolerance of +0/ − 100µm. The gap
of 150µm considers mechanical tolerances (50µm) and deformation of the alve-
oles (100µm). Altogether the distance between the borders of two neighbouring
crystals is in the order of 680µm [34].

After wrapping, the back side of a crystal is out�tted with an LAAPD. The coupling
between crystal and sensor is realised by optical grease with an index of refraction
close to 1.5 at 420 nm. This has the purpose to avoid an air gap, which would cause
an additional reduction of the collected scintillation light. In contrast to the �nal
envisaged rectangular shape of the LAAPD, the crystals of PROTO60 are equipped
with quadratic LAAPDs with an e�ective area of 1 cm2. Furthermore, the LAAPDs
are �xed in central position by black capsules made of plastic. For the connection
to the preampli�ers, shielded twisted pair wires are fed through an opening of the
capsules. Two pairs of left and right crystals are grouped to a subunit of four crystals
(Fig. 3.3a), which is subsequently placed into the carbon alveoles including aluminium
inserts Fig. 3.3b.
The aluminium inserts are mandatory for the mechanical stability of the prototype.
They are glued to the alveoles and have to carry the weight of the 6 × 10 matrix of
crystals with ∼ 1 kg each. Moreover, the aluminium structure integrates the cooling
system, the electronics and the possibility of a monitoring system to control the prop-
erties of the PWO crystals by constant light pulses fed in via optical �bres. All the

2Enhanced Specular Re�ector
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(a)

(b)

Figure 3.3: (a) A packed subgroup of four crystals including wrapping, photo sensor
plus capsule and connection to the outside. (b) Carbon alveole assembly with
aluminium inserts for mounting and holding the packs of crystals in Fig. 3.3a.
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3.1 PROTO60

mentioned elements are mounted on a support frame, which simpli�es the transporta-
tion to various test experiments. In addition, the whole prototype including support
structure can be placed on a so called x − y-table for a two-dimensional alignment
relative to the impinging beam.

3.1.2 Cooling and Electronics

As it was mentioned in Sec. 1.3, the whole calorimeter will be cooled down to a tem-
perature of −25 ◦C. Therefore, also the prototype has to be cooled to come as close as
possible to the �nal condition in order to gain experiences with cooling stability and
the actual performance. The cooling itself is realised by a chiller3 for achieving the
required thermal power of 80 W. The chiller recirculates the cooling �uid, which �ows
in copper serpentine through the prototype. The whole prototype, except the front
part, is thermally insulated with a 4 cm thick styrene foam layer and in addition sur-
rounded with a gas-tight plastic skin to avoid ice formation (compare Fig. 3.4). The
front part of the prototype is enclosed vacuum tight by a prototype insulation panel,
composed of a sandwich-like structure of two skins of aluminium and one carbon-�bre
layer. The applied vacuum of ∼ 2 · 10−2 mbar within this structure has a conduction
coe�cient of lower than 2 ·10−2 mW

mK
and allows a reduction of the insulation from 4 cm

to 2 cm. A set of 13 thermocouple elements controls and records the temperature at
di�erent selected positions within the prototype. It is veri�ed that the temperature
variation of the crystals stays within ±0.05 ◦C.
Each crystal of the PROTO60 is equipped with one quadratic LAAPD of type S8664-
1010SPL. The technical data for this type of photo sensor is given in Tab. 3.1.

Parameter

e�ective area 100 mm2

spectral response range 320− 1000 nm
QE at 420 nm 70 %
capacitance 270 pF
maximum gain ∼ 500
operating voltage ∼ 350 V

Table 3.1: LAAPD properties in PROTO60 [36].

The signals from the LAAPDs are forwarded to the LNP-P type preampli�ers (com-
pare Sec. 1.3.5.2), where four items are grouped together on one PCB4 and screwed

3supplied by Julabo
4Printed Circuit Board
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Chapter 3 Beamtimes with PROTO60

on the inserts. Supply voltage for photo sensors and preampli�ers, as well as signal
lines, are provided by additional back-PCBs, which traverse the transition of cold and
warm volume via narrow slights.

Figure 3.4: Back view of PROTO60 with all mounted crystals and some par-
tially mounted components marked and labelled with corresponding colours. Two
columns of the PROTO60 comprising 12 crystals are covered by one back-PCB.

3.1.3 Readout and Data Acquisition

The intention of this subsection is to illustrate the path of the obtained primary signal
of the photo sensor to the digitisation. In all beamtimes, performed at MAMI and
CERN, the readout chain was slightly modi�ed due to trigger aspects and the digiti-
sation procedure and will be discussed in more detail. At �rst, the scintillation light
of the PWO is converted by the LAAPD to a charge pulse and subsequently ampli-
�ed by one of the LNP-P preampli�er. For the beamtime at MAMI, the subsequent
processing of the signals is displayed in Fig. 3.5 and the used components are listed
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in Tab. 3.2.

Figure 3.5: Readout chain PROTO60 at Mainz in 2010.

Each crystal of the PROTO60 is equipped with one quadratic LAAPD of type S8664-
1010SPL. The technical data for this type of photo sensor is given in Tab. 3.1. The
individual signals of crystal and LAAPD are ampli�ed, shaped and discriminated by
an spectroscopy ampli�er (MSCF16). The shaped and ampli�ed trace output is pro-
cessed by PS-ADCs5, where the amplitude is determined and digitised for the energy
information. The time stamp is obtained by an internal CFD6 of the spectroscopy
ampli�er and is digitised by TDCs. Furthermore, a binary trigger signal is provided,
which is in principle created by an OR of all crystals and contributes to the �nal
coincidence condition (beamtime Mainz 2010). An overview of the trigger conditions
for all beamtimes, obtained by the detectors, is provided in Tab. 3.3. The second
branch for the coincidence originates from the tagger, which delivers a logical OR of
the responding tagger channels. Moreover, a time stamp is digitised and recorded by
means of a TDC. Functionality and setup of the tagger is described in Sec. 3.2.1.
After the AND of the coincidence requirement, an additional OR module allows the
plug in of a pulser for test purposes or further detectors for calibration purposes, e.g.
via cosmic radiation. If the combined logical signal is true, a �xed time gate for the

5Peak Sensing - Analogue to Digital Converters
6Constant-Fraction Discriminator
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Component Quantity Type

ECL/NIM 4 LeCroy 4616
FAN IN / FAN OUT 2 LeCroy 429A
Dual Gate Generator 1 LeCroy 222
Octal Discriminator 1 LeCroy 623B
Quad Coincidence Unit 1 LeCroy 622
Spectroscopy Ampli�er 4 Mesytec MSCF-16
Discriminator 1 LeCroy 4413
Delay 6 GSI 1610
PS-ADC 4 CAEN V785
TDC 3 CAEN V775

Table 3.2: Components of the PROTO60 readout.

readout of the PS-ADCs and TDCs is initiated. A special IOL7-module blocks the
readout for a certain time window and waits for the next trigger afterwards.
For the CERN beamtime in 2011, the existing readout chain was signi�cantly modi�ed.
The trigger was provided by an external detector, which is shown in Sec. 3.2.2. TDCs
and PS-ADCs were exchanged with a 16-bit SADCs (SIS3302) supplied by Struck. In
contrast to the PS-ADCs, a SADCs records the response for a prede�ned time win-
dow. The converting of the stored SADC signals (or the so called traces) for obtaining
time and energy information is explained in 3.1.4. In the mode used for this SADC,
the input range is in the order of 5 V, for signals arriving from the preampli�er. The
sampling rate was chosen to 50 MHz, which corresponds to a time fragmentation of
20 ns and is proven to be su�cient for achieving the required time resolution.

3.1.4 Signal Treatment of SADC data

In the �nal stage of the readout chain for the PANDA EMC, the digitised signals
from the ADCs8 will be processed by FPGAs9, for the extraction of time and energy
information. This has to be realised by a fast and robust algorithm, the so called
feature-extraction algorithm. Fig. 3.6 explains schematically the path from the raw
data, obtained by the LNP-P preampli�er, to the relevant observables energy and
time.

For test purposes, the data from the SADC was stored and analysed o�ine with an
implementation of the mentioned algorithm via software. The following shows the

7Input Output Logic
8Analogue to Digital Converters
9Field Programmable Gate Arrayss
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Figure 3.6: Schematic explanation of feature extraction. After the MWD-step the
obtained trace is modi�ed for extracting the energy and time separately.

single steps and how the relevant information is extracted. The chosen values for the
input parameters of M , τ , L, D and R for this algorithm are based on [37] and will
be explained in the relevant sections of the algorithm.
The signal of a crystal for one event is displayed exemplary in Fig. 3.7 and consists
of 250 time bins with a single width of 20 ns. Due to the relatively long decay time of
the LNP-P preampli�er signal in the order of ∼ 25µs, it has to be shaped to reduce
the pile-up probability of signals occurring in a short time sequence. This is done by
the �rst step of the feature extraction algorithm, which is called MWD10 and can be
determined by Eq. 3.1, in which x(n) is the bin content of channel n and xMWD(n)
the output of the MWD-step for channel n. M de�nes the �nal length of the output
pulse and should be larger than the rising part of the raw signal. This was chosen to
20 corresponding to 400 ns. τ is the decay constant of the LNP-P preampli�er signal
and has a value of 1, 250 channels (25µs).

xMWD(n) = x(n)− x(n−M) +
ln(2)

τ

n−1∑
i=n−M

x(i) (3.1)

Fig. 3.8 shows a comparison of the same data like in 3.7, before and after applying
the MWD-step.
The obtained trace, shown in Fig. 3.8b, is the initial point for the next iterations

of the feature extraction. The next step, called MA11, is responsible for reducing the
noise level with the smoothing length L. For each channel with the index n, the new
content is calculated by summing up the channels ranging from n− L to n:

xMA(n) =
n∑

i=n−L

xMWD(i). (3.2)

10Moving Window Deconvolution
11Moving Average
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Figure 3.7: Raw data of an SADC for a randomly chosen crystal with a high
energy deposition of 10 GeV via positrons. The shown data corresponds to the
direct output of the LNP-P preampli�er. The supply voltage of the LAAPD was
adjusted in such a way that the highest signals to be expected signals �t into the
dynamic range of the SADC of 40, 000. Each channel on the horizontal axis has
a size of 20 ns, which results in an overall time window of 5µs.
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Figure 3.8: Visualisation of the MWD-step for a zoomed region of the SADC. (a)
Unshaped output signal of the LNP-P preampli�er. (b) Shaped output signal of
the LNP-P preampli�er according to Eq. 3.1.
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Only for low energetic signals, with a small signal to noise ratio, the MA-step becomes
mandatory. For a high-energetic signal the actual shape stays almost identical (com-
pare 3.8b and �g:masignal), except the amplitude.
The maximum amplitude of Fig. 3.9, which linearly scales with the detected energy,

Figure 3.9: Shaped and smoothed signal of the LNP-P preampli�er. The baseline,
which is represented by the dotted red line in the bottom part of the �gure, is
determined by averaging the channels in the range from 40 to 100. The solid line
stands for the determined maximum amplitude of the signal and is subsequently
used as energy information.

is �nally determined with a simple software algorithm. For Fig. 3.9, the obtained
amplitude with respect to the baseline is in the order of ∼ 38, 000 a.u.. For getting a
statement of the corresponding energy in terms of eV, the amplitude has to be cali-
brated (compare Sec. 4.1).
For getting a time information of the single event, the data of Fig. 3.8b has to be
treated in a di�erent way, independently from the MA-step. Therefore, the basic func-
tionality of a conventional CFD-module is simulated by the CFT12-step (Eq. 3.3). The
signal out of the MWD-step is delayed by D = 5 channels = 100 ns, scaled by a certain
factor R and subtracted from the original signal. It turned out, that R = 0.45 is an
optimal value [34].

xCFT(n) = xMWD(n−D)−R · xMWD(n) (3.3)

12Constant-Fraction Timing
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After the CFT-step, a small number of points are extrapolated with a linear function to
determine the zero-crossing. This method allows a timing information in sub-channel
region. The �nal data for the determination of time, including the mentioned linear
�t, is shown in Fig. 3.10.
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Figure 3.10: Determination of the time information out of the obtained data after
CFT-step. At �rst the baseline level, which is represented by the dashed blue
line, is determined by averaging the channels from 40 to 100. The solid red line
is an extrapolation of one bin below and one above the baseline. The horizontal
coordinate of the intercept point is �nally used as time information.
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3.2 Experimental Setups

Altogether, three beamtimes were performed, for testing di�erent aspects of the PROTO60
at the lowest and highest envisaged energies of PANDA. The main intention was to
test the performances of the prototype under the di�erent aspects listed in Tab. 1.7.
The obtained results still slow options for future improvements. A replacement, like
e.g. of the present preampli�er modules with the designed ASIC, which will cover
two di�erent dynamic ranges simultaneously, promises better results. Moreover, an
additional LAAPD per crystal will collect twice as much scintillation light, compared
to a single photo sensor. This will result in an improvement of up to

√
2 of the energy

resolution. Another essential modi�cation will be the replacement of the digitisation
modules with SADCs, which was done for the beamtime at the CERN-SPS13 (compare
Sec. 3.2.2). Here a signi�cant change of the obtained time resolution is expected and
will be discussed in Sec. 4.
Tab. 3.3 summarises the benchmark parameters for all beamtime tests. Moreover, a
detailed description of the used setups at MAMI and CERN-SPS, comprising detector
arrangement and additional necessary modules, is given in the following of this sub-
section..

Beamtime
Beam Energy Trigger Digitisation
type range condition module

MAMI
γ 150− 1, 500 MeV

Tagger AND PS-ADC
2009 Central crystal (CAEN V785)

MAMI
γ 50− 690 MeV

Tagger AND PS-ADC
2010 OR of all crystals (CAEN V785)

CERN-SPS
e+ 15 GeV Plastic detector

SADC
2011 (SIS3302)

Table 3.3: PROTO60 beamtimes with beamtype and energy range. A PS-ADC
is responsible for obtaining the energy information for both MAMI beamtimes,
whereas out of the digitised SADC-data energy and time can be determined.

13Super Proton Synchrotron
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Chapter 3 Beamtimes with PROTO60

3.2.1 MAMI

In 2009 and 2010, the �rst two beamtime tests were carried out at the A2 experimental
hall in the Institut für Kernphysik of the Johannes Gutenberg University in Mainz,
Germany. An energy tagged bremsstrahlung photon beam is produced by the MAMI
electron accelerator, in combination with the Glasgow Tagged Photon Spectrometer
(Tagger). Both constituents will be discussed in the following and can be found on
the �oor plan of the facility (Fig. 3.11). Basically, the MAMI facility consists of an

Figure 3.11: Floor plan of the MAMI accelerator facility at Mainz comprising the
experimental halls A1, A2, A3 and X1. The position of the PROTO60 for both
beamtimes and the Tagger system are marked.

injector LINAC14 and three RTMs15, providing electron beams of 100µA up to an
energy of 1.5 GeV since 1991. At �rst, the LINAC supplies electrons with an energy
of 3.97 MeV which are accelerated stepwise by the single RTMs, according to Tab.

14Linear Accelerator
15Race Track Microtrons
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3.4. In 2006, an upgrade of the existing facility was realised by a fourth stage of the
accelerator structure, the HDSM16. Thus, energies up to 1.5 GeV became available.
MAMI supplies continuous electron beams of the experimental halls (A1, A2, A4, X1),
situated at the research facility in Fig. 3.11.

3.2.1.1 RTMs and HDSM

The MAMI acceleration facility comprises three RTMs with a similar functionality.
Fig. 3.12 shows the basic setup of a RTM. An electron beam with a certain energy
is injected and recirculates several times through the RTM. In each cycle, the beam
passes RF17-cavities, in which the energy is increased stepwise by ∆E. Here the
di�erence in time between each recirculation loop has to be an exact integer multiple
of the period of the RF supply. In Fig. 3.12 the grey coloured areas correspond to a
constant magnetic �eld (∆B/B ≤ 10−4) for bending the beam back to the RTM. Due

Figure 3.12: General layout of a RTM. The electron beam enters the RTM with
an energy EInj and leaves it after N cycles with EExt. In each cycle, the energy
gain is ∆E, while passing the cavities.

to the unchanged magnetic �eld B the bending radius R of the beam with velocity

16Harmonic Double-Sided Microtron
17Radio Frequency
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Chapter 3 Beamtimes with PROTO60

β = v/c ≈ 1 increases linearly with the energy E, according:.

R =
β · E
e · c ·B

. (3.4)

The provided beam shows a very small spread in energy, due to an automatic phase
correction. If an electron in a certain cycle has a larger energy than desired, the path
in the bending sections will be larger and the electron arrives later in the acceleration
section. Therefore the particle is under-accelerated in the next cycle or, in case of an
earlier arrival, over-accelerated. This technique achieves an energy spread after the
third RTM of FWHM ≈ 30 keV.
After a �xed amount of N cycles within an RTM, the beam is extracted by a 'kicker'
magnet with an energy of

EExt = EInj +N ·∆E. (3.5)

Tab. 3.4 summarises the main parameters of the injector LINAC, the RTMs and the
HDSM.

Parameter Unit
Injector RTM RTM RTM

HDSM
LINAC 1 2 3

EInj MeV - 3.97 14.86 180 855
EExt MeV 3.97 14.86 180 855 1.500

magnetic �eld T - 0.103 0.555 1.284 1.53− 0.95
number of turns - - 18 51 90 43

energy gain per turn MeV - 0.60 3.24 7.50 16.58− 13.66
LINAC length m 4.93 0.80 3.55 8.87 8.6 and 10.1
total power
consumption

kW 92 92 220 650 1400

Table 3.4: General parameters of the injector LINAC, RTM and HDSM.

The HDSM is the last section of the acceleration structure at MAMI, which was
�nalised in 2006. The schematic setup, including acceleration-, focussing- and bending
sections, is shown in Fig. 3.13. This upgrade allows an increase of the electron energy
up to 1.5 GeV. Two straight LINAC sections accelerate the beam stepwise to the �nal
energy, whereas four 250 t dipole magnets bend the beam by ∼ 90 ◦. After 43 turns
within the HDSM, the beam is extracted to the experimental areas.
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3.2 Experimental Setups

Figure 3.13: Schematic layout of the HDSM. Four dipole magnets bend the beam
about 90 ◦, whereas two LINACs are responsible for the stepwise acceleration.

3.2.1.2 The Glasgow Photon Tagging Spectrometer

The tagging system of the MAMI acceleration facility (Fig. 3.14) converts the electron
beam into a continuous and collimated photon beam [38]. The electrons with energies
of up to 1.5 GeV impinge on an exchangeable radiator made out of copper or diamond
for the production of bremsstrahlung photons, according to the process explained in
Sec. 1.3.1.1. The electrons are subsequently bent by a magnetic �eld of a dipole
magnet with a �ux of B = 1.8 T and detected in the focal plane, which basically
consists of 353 overlapping plastic detectors. The higher the bending radius of the
electrons, the lower is the energy of the created photon. With the knowledge of the
initial energy E0 and the bending radius r of the electrons in the dipole magnet, the
energy of the resulting photon beam is determined due to energy conservation:

Eγ = E0 − Ee− (3.6)

with Ee− =
√

(qBcr)2 + (m0c2)2 ∼ r,

where q and m0 is the charge and the mass at rest of an electron, respectively, and c
the speed of light. The energy range of the tagging system depends on the maximum
operating energy of the accelerator. If the HDSM is included, energy marked photons
up to 1.5 GeV are available with an accuracy of 4 MeV. In the low energy region
up to 820 MeV, the error bars of the tagger are reduce to 2 MeV depending on the
momentum range of the individual plastic scintillator covering the focal plane. The
readout of the focal plane detectors is done by conventional Hamamatsu PMTs, within
the stray �eld (∼ 0.01 T) of the dipole magnet. The obtained signal is discriminated
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and serves as trigger input (compare Tab. 3.3) and is digitised by TDCs.
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Figure 3.14: Photon tagging spectrometer at Mainz [39].

Furthermore, the covered solid angle of the photon beam was determined by a lead
collimator with a diameter of 1.5 mm located 2.5 m apart from the radiator (compare
Fig. 3.15a). Under geometrical considerations, this leads to an opening angle of
0.0172 ◦ for the photon beam and therefore to an upper limit of the diameter for the
impinging beam on the PROTO60 of 9.3 mm.

3.2.1.3 Beamtimes in 2009 and 2010

The schematic setup of the PROTO60, relative to the beam, is shown in Fig. 3.15a,
whereas the prototype was placed on the so called x − y-table for a movement per-
pendicular to the beam line. Moreover, a photograph of the setup with all necessary
devices is shown in 3.15b. The marked plastic detector in front of the PROTO60 was
used for identifying leptons, caused by pair production in the air or solid material in
between. The plastic detectors above and below the prototype were used for calibra-
tion purposes, which is further discussed in Sec. 4.1.
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In both beamtimes at the MAMI accelerator facility, 16 photon energy channels of
the tagging system were selected via software, summarised in Tab. 3.5). For the

Beamtimes at MAMI

TDC Channel
Photon Energy in MeV

2009 2010

1 1441.06 685.58
2 1356.89 650.81
3 1257.31 601.77
4 1156.56 579.10
5 1057.70 509.88
6 956.16 443.77
7 857.98 387.38
8 756.58 339.67
9 657.34 269.95
10 556.97 200.35
11 456.26 152.72
12 355.88 107.98
13 256.41 93.97
14 158.31 84.67
15 - 61.54
16 187.99 52.34

Table 3.5: Selected tagger channels at both MAMI beamtimes. In 2009, one channel
was broken and two channels were exchanged from the hardware point of view.

beamtime in 2009, the output of the individual detector modules was adjusted with
an appropriate high voltage setting to a dynamic range of 200 MeV, except the central
crystal, where the beam was impinging. Here, the direct output of the preampli�er
was reduced by a passive attenuator of 15 dB, to cover the envisaged dynamic range.
The assumption of the dynamic range is based on the expected energy deposition in
the central crystal of ∼ 70 % of the initial energy. In 2010, with a maximum photon
energy of 685 MeV, an attenuator with 6 dB was chosen. All LAAPDs were operated
with estimated gain of 150. All details, concerning adjustments of the dynamic range
and noise levels of the three beamtimes, are listed in Tab. 4.1 in Sec. 4.
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Chapter 3 Beamtimes with PROTO60

(a) Schematic setup of the PROTO60 at the MAMI beamtimes.

(b) Photograph of the PROTO60 setup at Mainz. A: PROTO60, B: HV-
supply, C: Plastic, D: Plastic detector for identifying converted photons, E:
x− y-table, F: Vacuum pump, G: Nitrogen supply.

Figure 3.15: PROTO60 setup at MAMI beamtimes.
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3.2.2 CERN-SPS

The latest test beamtime of the PROTO60 was performed at the SPS of the CERN
accelerator complex (compare Fig. 3.16). This accelerator is able to handle many
di�erent kinds of particles, like e.g. positrons, electrons, protons and antiprotons with
energies up to 450 GeV partly as secondary beams. It has a circumference of 7 km and
serves as an input stage for the LHC. Furthermore, the stored beam at the SPS can
be provided to a separated experimental area (called North Area), which is designated
for di�erent experimental purposes of external users. In case of the PROTO60, the
test beamtime was carried out with a 15GeV/c positron and a 150GeV/c muon beam.
For the production of the beam, di�erent scenarios can be chosen, depending on the
type of necessary particles. For the bunched positron beam, the output of the SPS was
used and additionally collimated to an estimated momentum spread of ∆p/p ≈ 0.7 %.
In case of the muon beam for calibration purposes, a high energetic proton beam
strikes a beryllium target and produces a hotchpotch of particles. The originated
charged pions decay to almost 100 % via π+ → µ+νµ or π− → µ−ν̄µ, respectively. The
remaining pions are absorbed by an additional beryllium absorber, whereas the µ+

are subsequently momentum selected and accumulated.

Figure 3.16: Schematic layout of the CERN accelerator complex [40]. The
PROTO60 was located at the experimental area of the SPS, which is labelled
here as North Area. The picture is not to scale.
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3.2.2.1 Setup for Beamtime 2011

The setup of the beamtime at the SPS is illustrated in Fig. 3.17. A special feature
of this setup is the ability to track charged particles, due to a prototype of the MVD
detector, which is placed directly in front of the PROTO60. The purpose and basic
functionality of the MVD is explained in Sec. 1.2.1. Two of these silicon based detec-
tors provides two dimensional information for each registered particle. Both tracking
detectors have a granularity of 384 stripes in x- and y-direction, with a width of 50µm,
which results in a sensitive area of ∼ 2 × 2 cm2. Thus the direct impact on the crys-
tal matrix could be extrapolated for determining the pure position resolution of the
PROTO60.

(a) Schematic setup of the PROTO60 at the CERN beamtime.

(b) Photograph of the PROTO60 beamtime at the CERN. A: PROTO60,
B: x− y-table, C: Cooling chiller, D: Fibre cross (not used in the analy-
sis), E: First tracking detector, F: Second tracking detector, G: Plastic
cross (trigger), H: Mechanical support and readout for modules D-G, I:
Goliath magnet.

Figure 3.17: PROTO60 setup at the CERN beamtime.
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3.2.3 Beamtime Procedures

This subsection gives an overview of the performed program, with respect to the
alignment of beam and prototype, for the three beamtimes. In the 2009 beamtime at
MAMI, altogether four runs were performed with di�erent points of impact. The main
intention of this beamtime was to study the detector resolution, in which one detector
is hit centrally, as well as the loss of energy information, when the beam is pointed
in between two crystals and a signi�cant energy fraction is deposited in non-sensitive
material. Fig. 3.18 shows the four points of impact on a schematic crystal map of the
PROTO60.

Figure 3.18: Schematic crystal map of the PROTO60 at MAMI. The �gure corre-
sponds to the point of view from the direction of the photon beam. The red cross
corresponds to the point of impact of the �rst and fourth run in this beamtime,
whereas the black one belongs to the run in which the beam hits in between two
crystals. One run had the intention to �ll the area in between the other ones
and is marked with a blue cross. The internal PROTO60 coordinate system is
indicated with a y- and x-axis and has its origin in the centre of this graphic.

In the MAMI beamtime of 2010, only the outcome of a particular run will be presented
in this thesis. Here the photon beam hits centrally one crystal, which is labelled with
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Chapter 3 Beamtimes with PROTO60

number 35 in Fig. 3.18.
For the CERN 2011, only 48 crystals were read out due to the limitation of SADC
channels, so that both outer columns were ignored. Therefore, Fig. 3.19 shows the
labelling of the used modules. Two test runs were performed shooting again into the
centre of the 'old central crystal' and in between two crystals.

Figure 3.19: Schematic crystal map of the PROTO60 at CERN. Due to the di�erent
amount of read out crystals the matrix was relabelled. In the �rst run the positron
beam was aimed to the centre of crystal 28 and in the second one between crystals
28 and 29.
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Time Resolution

An accurate determination of the time information of a signal is mandatory to allo-
cate a time stamp to the registered energy signal. For the barrel part of the EMC the
readout chain has to cope with interaction rates up to 100 kHz. This chapter presents
the achieved time resolutions, obtained by the PROTO60, with respect to the de-
sired limits speci�ed in [18]. Furthermore, the di�erence between the two digitisation
procedures, explained in Sec. 3.1, and inhomogeneities caused by electronics will be
discussed. The analysis in the following chapters was carried out with the software
package ROOT1 and is based on the programming language C++.

4.1 Energy Calibration

There are di�erent possibilities to calibrate a detector, so that an obtained pulse height
signal in terms of voltage is converted into energy. Therefore, an appropriate method
has to be established in order to get a linear scaling for the envisaged energy range. An
energy calibration is composed of di�erent iterative steps, like relative and absolute
calibration.

Ecal = Cabs ·
∑
i

Si(t) · ci · Ei/uncal (4.1)

In a relative calibration, the signal from each crystal, which corresponds to the same
energy deposition, is normalized to a reference, e.g. the signal of the central crystal
via a factor ci. Finally, the energy sum of the detector has to be calibrated to the
real deposited energy with Cabs in order to convert the signal in terms of MeV. A
time dependent factor Si(t) is introduced to take signal loss due to radiation dam-
age into account. For beamtimes with a duration of a few days and an irradiation
on a reasonably low dose level Si(t) can be assumed as constant. In this thesis, the

1http://root.cern.ch
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calibration scenarios for the mentioned beamtimes are listed in the following without
further discussion. Di�erences and inconsistencies of the listed methods and possible
alternatives are discussed in detail in [41].

MAMI 2009 In the �rst beamtime with photon energies up to 1.5 GeV, the pro-
totype was calibrated via cosmic radiation (see Fig. 4.1a). Here the muons, which
are produced in the atmosphere, are assumed to be MIPs and deposit on average
10.2 MeV per cm in PbWO4. Due to the trigger condition, one can assume that the
muons cross the full width of the crystals in one column and the energy deposition is
almost constant. For a relative calibration, the signal of each crystal caused by cosmic
radiation is divided by the response of the central crystal. An absolute calibration is
achieved by setting the new peak position to the corresponding energy according to
Eq. 4.2. Here an average path through a single crystal of 2.4 cm was assumed. A ma-
jor uncertainty for this method is the impact of the non-uniformity in light collection
(explained in Sec. 2.4.3).

EChannel =
24.5 MeV

ppµ − ppPedestal
(4.2)

pp : peak position

MAMI 2010 In 2010 an alternative calibration method was tested in addition.
The prototype was turned about 90 ◦, so that the muons can propagate through the
complete length of each crystal. This can be ensured by requiring only one responding
crystal. On the one hand this method delivers a larger lever arm with a reference
point of ∼ 204 MeV, but on the other hand this method gives an integral of the
light collection e�ciency. It turned out that both methods di�er about ∼ 7 % due
to di�erent reasons [42]. In the frame of this thesis, the energy was calibrated like in
2009, where the PROTO60 is in horizontal position and the cosmic muons traverse
perpendicular to the longitudinal crystal axis.

CERN 2011 A muon beam with a momentum of 150GeV/c was exploited to cali-
brate the detectors relatively to each other. For the absolute calibration several options
were tested. Finally it turned out that the best reconstruction of the energy could
be achieved based on a GEANT42 simulation. There, a 15GeV/c positron beam was
simulated, which impinges on the implemented PROTO60 matrix. The obtained en-
ergy response was subsequently assigned to the energy sum of the experimental data
(compare Fig. 4.1b).

2Toolkit for the simulation of the passage of particles through matter / http://geant4.cern.ch/
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(a) Calibrated energy sum of the 15 selected photon energies in 2009 according
to Tab. 3.5. The spectrum shows the typical energy dependence.
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(b) Calibrated energy sum of 15GeV/c positrons during the CERN beamtime.

Figure 4.1: Calibrated energy sum of the read out modules. In both spectra the
energy threshold of a single crystal was set to 1 MeV.
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4.1.1 Noise Determination and Dynamic Range Adjustments

Since the �nal time resolution does depend strongly on noise and the available dynamic
range of the particular readout chain, Tab. 4.1 serves as an summary of the relevant
values for all beamtimes. As mentioned before, on a case to case basis, the crystals
with the highest expected energy deposition were set to a lower gain by lowering
the APD operating voltage or plugging adequate passive attenuators in series. This
directly results in an enhancement of the dynamic range. This approach is advisable
and comes close to the �nal readout strategy, since the envisaged ASIC will have two
independent gain channels per APD, in order to have an optimum covering of signals
in two overlapping energy ranges. The listed noise values in Tab. 4.1 were derived
from the width of the pedestal and the corresponding calibration factor ci (compare
Eq. 4.3). The dynamic range of the used 12-bit PS-ADC was estimated according to
Eq. 4.4. The calculated energy loss Eµ in MeV for a muon with an average path length
of 2.4 cm is determined to be 24.5 MeV and serves as a reference for the 4, 096 available
channels of the PS-ADC. The values given in the "Other"-column are average values,
determined for a couple of modules.

σNoise = σPedestal · ci (4.3)

Emax =
ADC-Rangein channels − Pedestalin channels

µ-peakin channels − Pedestalin channels
· Eµ in MeV (4.4)

Beamtime
Noise in MeV Dynamic range in MeV

Center Other Center Other

MAMI 2009 0.5101 0.2251 1576 200

MAMI 2010 0.3031 0.2761 936 400

CERN-SPS
2011

2.5682 0.9701 12500 4500

Table 4.1: Noise and dynamic range adjustments of the PROTO60. 1 APD gain
≈ 150. 2 APD gain ≈ 50. For the CERN beamtime, the given values for the
dynamic range represent a rough extrapolation.

108



4.2 Triggerless Readout of PANDA

4.2 Triggerless Readout of PANDA

The developed readout concept for the EMC was already shown in Fig. 1.24 and
contains digitiser modules, DCON3 and a DAQ4. The PANDA experiment will be op-
erated without a general hardware trigger and will collect constantly about 100 GBytes
of data per second from more than a thousand front-end modules [43]. At �rst, the
individual detectors of PANDA get self-triggered by the attached FEE5. For this pur-
pose, these subdetectors have to have a general time distribution system (SODA6),
which shares the time information via optical connections. The developed time dis-
tribution system SODA aims to provide a common reference time with a RMS better
than 20 ps [43].
The motivation of a triggerless readout is the �exibility to select di�erent criteria for
the event selection, adjusted to a speci�c physics case by an individual software trig-
ger. A major drawback is the signi�cantly higher data rate. For interaction rates up
to 30 MHz the stored data for a single event can reach 20 kB. Fig. 4.2 shows schemat-
ically treatment of the obtained data by any subdetector of PANDA.

Detector
Self triggered

FEE

Readout

buffer

Time

stamp

Switch
Compute

node

Stored

data

Time

Stamp

Sofware

trigger

Figure 4.2: General signal treatment of PANDA. The obtained signals of the in-
dividual detectors get triggered by FEE, obtain a time stamp and are forwarded
to the readout bu�er. A switching network serves as an interface between the
bu�ered data to the computing node. Depending on the physics case, a modi�-
able software trigger can be applied to select the relevant data set.

3Data Concentrator
4Data-Acquisition
5Front-End Electronics
6Synchronisation of Data Acquisition
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4.3 Time Resolution Requirement and Limit

Concerning timing, the EMC of PANDA has to cope with pp̄-annihilation rates of
O(107) per second. Therefore, a minimum time resolution in the order of 1 ns is
desirable to reject background hits or random noise [18]. A good basis to build up a
detector with a fast response is to choose a fast scintillator material. The relaxation
of excitations in a scintillator includes complex mechanisms, which occur in di�erent
time sections after excitation. Fig. 4.3 gives an impression of the time development
of scintillation light from excitation to emission and is subdivided in 5 steps, which
will be discussed in the following. For simpli�cation, a core band comprises the lower
energy levels and the upper edge of the valence band is set to energy 0 and has a width
∆Ev.

1. In a �rst step after the primary excitation, a large amount of fast electrons
and deep holes are generated. Within the �rst 10−16 s to 10−14 s, the energy
of the fast electrons is more equally distributed via inelastic electron-electron
scattering. This process holds on until each electron has an energy smaller than
2 · Eg. In case of the deep holes, a sequence of Auger processes occurs and all
holes travel energetically upwards to the valence band.

2. Afterwards, the energy is further distributed to the crystal grid by phonons (up
to 10−12 s). Here the kinetic energy of the electrons is decreased to a minimum
level, which leads to an occupation of the lower edge of the conduction band and
upper edge of valence band by electrons and holes, respectively.

3. Until 10−10 s, electrons and holes can be trapped by impurities and defects in
the solid structure. As a consequence, excitons7 can be generated.

4. Around 1 ns the excitations themselves, like e.g. radiative and non-radiative
excitations, can interact with each other and the energy is redistributed within
the band gap structure.

5. In the order of 10−8 s the de-excitation of occupied centres takes place and the
actual scintillation light is emitted.

In case of PANDA, the chosen material for the EMC, PbWO4, has a relatively fast
decay constant of 6.5 ns (compare Tab. 1.8) and provides an excellent base for timing
purposes. A scenario of for instance sub pico-second timing would not work via the
detection of scintillation light. This only can be realised with the direct registration
of electron-hole pairs.
The dominant contributions for determining an accurate time information originate
from the photo sensors and the propagation time inside the crystal. Basically, the

7Bound state of an electron and electron hole
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Figure 4.3: Time development of scintillation light [44].

overall time resolution σt depends on the width of signal noise σN, signal slope dV/dt
and the jitter σjit and can be parametrised in �rst order approximation by:

σ2
t/total =

(
σN

dV/dt

)2

+ σ2
jit. (4.5)

The equation expresses that an accurate determination of a certain time marker, like
it is done with the CFT-step explained in Sec. 3.1.4, gets worse with higher noise
level. Noise is always present and can shift the time stamp of a signal randomly to the
positive or negative direction in time. This e�ect will get signi�cantly smaller, if the
SNR8 is high, like in the case of PMT readout. Moreover, the slope and accordingly
the rise time of a signal matters. The steeper the slope, the more negligible is the
impact of the noise level to the resulting time resolution. This is again illustrated in
Fig. 4.4. Here, the slope of the signal ∆V/∆t at t0 can be derived by

σN
σt

=

(
∆V

∆t

)
t0

(4.6)

⇒ σt =
σN

dV/dt
, (4.7)

8Signal-to-Noise Ratio
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Figure 4.4: Dependencies of the time resolution on the noise level and rise time of
the rising part of a recorded signal.

which directly leads to the mentioned dependencies described in Eq. 4.7. This part
of the contribution gets worse for LAAPD readout, since here the noise level is higher
and the SNR is signi�cantly smaller, due to the relatively low gain. In the following
sections of this thesis, the obtained time resolution measured with LAAPDs will be
presented. Worse results compared to PMT readout are to be expected because of
the mentioned reasons. Furthermore, the stability of the arrival time of the signal,
called jitter, contributes to the time resolution via σjit and is connected to the intrinsic
resolution of the digitiser module. Due to the independence of both mentioned error
contributions, they are added quadratically in Eq. 4.5.
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4.3.1 Time-Walk E�ect

The time-walk e�ect occurs due to the dependence of the rise time on the height of the
signal, which is illustrated in Fig. 4.5a. For a �xed trigger threshold, the time-walk is
more pronounced. This can be corrected by several methods. One relatively intuitive
method is called High-Low-Coincidence (compare Fig. 4.5b). Here two thresholds are
set: one very close to the noise and the second one on an appropriate higher level. If
the coincidence between both levels becomes true, the time marker of the low thresh-
old will be used as time information. This allows to discriminate real signals from
noise and therefore keep the time-walk on a reasonably low level.
The more convenient and conventional way to correct the time-walk e�ect is the
Constant-Fraction-Discrimination, which was basically used in all beamtimes anal-
ysed in this thesis. In contrast to the method mentioned before, the trigger threshold
is not on a �xed level, but dynamically generated, according to the height of the in-
coming pulse. A time stamp is recorded, when the pulse passes a certain fraction R of
its maximum amplitude (compare Fig. 4.5c). In practice, the pulse gets rescaled by a
factor R < 1 and subsequently subtracted from the original pulse. For the �nal time
information, the zero-crossing has to be determined. The value of R has to be adapted
to speci�c applications and is realised di�erently for the performed beamtimes. For
the MAMI beamtimes, the signals were discriminated by conventional CFDs, origi-
nally used in the TAPS9 experiment at Mainz. With a delay of 3 ns and R = 0.3 as
CFD input parameters, which corresponds to the standard values of the TAPS exper-
iment, no further adaption was done for the prototype test. The very short delay of
3 ns is tuned to the fast PMT readout of the TAPS experiment.
In case of the CERN beamtime, the discrimination is simulated o�ine by the CFT-
step explained in Sec. 3.1.4. For this signal treatment, a delay of 100 ns and R = 0.45
were chosen.
In general, this method does not guarantee a completely walk-free performance, but
suppresses it signi�cantly down to an acceptable level. Another iteration to minimize
this time-walk e�ect can be done o�ine via software and will be introduced in Sec.
4.4 and 4.5, since none of the collected data shows a completely walk-free behaviour.

9Two Arm Photon Spectrometer
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(a) (b)

(c) (d)

Figure 4.5: (a) Schematic illustration of the time-walk e�ect. Signals with di�erent
amplitudes show di�erent rise times. In spite of the same starting time, the
registered time di�ers by ∆t after passing a certain threshold. (b) A possible
improvement to ∆tc < ∆t can be achieved with the High-Low-Coincidence, in
which THH and THL correspond to the high and low threshold, respectively. (c) In
an ideal case, the time-walk e�ect disappears, if the time information is extracted
with a dynamic threshold (Constant-Fraction-Discrimination) and both signals
are assigned to the same time t0. (d) Pulse shapes for both signals after applying
the CFD algorithm.
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4.3.2 Pile-Up Recovery

Pile-up occurs if two or more signals arrive almost simultaneously in a very short
time window. This e�ect deteriorates the direct determination of the energy and time
information with the extraction algorithm described in Sec. 3.1.4. With a nominal
hit rate of 500 kHz at the smallest polar angles, one can expect a pile-up probability
of ∼ 13 % [45]. A pile-up event will be identi�ed in the digitiser module if the ratio
of integral and amplitude exceeds a certain threshold. The following describes two
methods, which allow the successful recovery of two signals with a time di�erence not
shorter than 50 ns, which is in detail described in [46].
Fig. 4.6 shows two signals with di�erent amplitudes and a time di�erence of ∼ 200 ns.
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Figure 4.6: Principle of pile-up recovery of energy information [46]. The two digi-
tised signals are generated by LED pulsers with amplitudes of A1 ≈ 250 mV and
A2 ≈ 140 mV, respectively.

The integral I of a signal corresponds to the input charge and scales linearly with
the amplitude A, according to I = k · A. With the knowledge of the constant k, this
proportionality can be exploited for the recovery of overlapping signals. If two signals
are close to each other, the total integral Itot and the amplitude of the �rst pulse A1

in Eq. 4.8 is detected. Thus the relevant energy information of the second pulse A2
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can be calculated via Eq. 4.9.

Itot = k · (A1 + A2) (4.8)

A2 =
Itot
k
− A1 (4.9)

Beside the energies of a pile-up event, the time can be recovered as well. Here, the
shaping MWD-shaping-algorithm, presented in Sec. 3.1.4, has to be applied three
times with appropriate settings in order to obtain separated pulses (compare Fig. 4.7)
[45]. Afterwards the CFT-step can be evaluated on both signals separately and the
time information is determinable.
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Figure 4.7: Principle of pile-up recovery of time information [46]. The �gure shows
the single MWD-steps with the two generated signals of Fig. 4.6.
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4.3.3 Scintillation Tiles

Due to the extended physics program of PANDA, there is a demand for an additional
detector with respect to timing purposes: SciTil10 [47]. Such a tile itself has roughly a
size of the order of 2× 2× 0.5 cm3 and is made out of an organic scintillator material
with fast rise time and high light output. Studies about the optimum material with an
acceptable radiation hardness are presently ongoing. One tile should be in front of each
crystal of the barrel EMC. The readout is envisaged with SiPMs11, which is basically
an array of small Avalanche photo diode pixels with excellent timing properties since
they are operated in Geiger-Mode delivering extremely short rise-times. An additional
SciTil detector would have the following bene�ts due to the desired time resolution of
100 ps:

� a start detector for TOF measurements of muons and pions (PID)

� improved relative timing for a better correlation between reaction fragments of
one event in the barrel and the forward part of the PANDA detector

� ability to identify photons converted via pair production within the DIRC

The �nal design is not accomplished yet, but in the present status it is foreseen to
read out one tile with two SiPMs (compare Fig. 4.8a). This has the advantages of a
higher number of collected photons, less light path �uctuations and higher detection
e�ciency. One quad module (Fig. 4.8b) consists of four SciTils and the signals are
forwarded to an ASIC to be developed (Fig. 4.8c).

(a) (b) (c)

Figure 4.8: (a) Basic layout of a SciTil module read out from two positions. (b)
Quad module. (c) The signals of one quad module are further processed by an
ASIC.

10Scintillating Tile
11Silicon Photomultipliers
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4.4 Time Resolution at MAMI 2009 and 2010

The data obtained in the beamtimes at MAMI in 2009 and 2010 are basically treated in
the same way. But there are some di�erences due to the di�erent trigger conditions,
which were already listed in Tab. 3.3. In 2009, a coincidence between tagger and
central crystal was required, whereas in 2010 a logical OR of all crystals replaced
the trigger branch from the prototype. Therefore, the individual time spectra of the
corresponding modules have to be interpreted di�erently. In order to obtain the best
possible time resolution, the main focus was set to the runs, where the beam impinged
in between two adjacent crystals, corresponding to the black cross in Fig. 3.18. Under
these conditions similar signal amplitudes are recorded in the coincident detector due
to symmetric energy sharing. Some further results will be presented for comparison
and discussion. In most of the cases, only events were accepted where the deposited
energy of both crystals were similar within a certain range. In each case, the time
reference is plotted and analysed with regard to calibration, time-walk e�ect and time
resolution. All achieved results will be compared and discussed in Sec. 6.2. The
energy calibration of the shown data will not be discussed further and was done like
explained in Sec. 4.1.

4.4.1 Beamtime MAMI 2009

A logical AND of tagger and central crystal signals triggered the readout chain and all
modules were read out simultaneously. The timing of the ECL12 signals was adjusted
in a way that the rising edge of the tagger arrives earlier than the one of the central
crystal. Therefore, the central crystal is the time-determining component. The whole
readout had a common start and was stopped individually by the crystals themselves.
Due to that reason, the time spectrum of the central crystal only consists of a spike
(Fig. 4.9a), the position is equal to the generated e�ective time gate of approximately
405 ns. The time information of the central crystal is contained in the digitised data
of the corresponding tagger channels and is shown in Fig. 4.9b. Here an additional
smearing of the tagger resolution can be neglected due to the fact that the plastic
scintillators of the tagger are read out by PMTs.
To guarantee a similar energy deposition in both detectors, labelled as number 35 and
36 in Fig. 3.18, Eq. 4.10 was set as requirement in the software:

E35 > E36 · 0.8 and E36 > E35 · 0.8. (4.10)

To get an information about the resolution of the central crystal, the data, shown in
Fig. 4.9c, has to be calibrated relatively by shifting the separate data sets of each

12Emitter Coupled Logic
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Figure 4.9: Raw time spectra of the central crystal (a) and tagger channel 12 (b),
corresponding to an energy of 355.88 MeV, which contains the time resolution of
the central crystal. A slight time-walk behaviour is already visible in a tailing to
the left hand side. (c) Time spectra of all tagger channels shifted due to delay
variations.
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tagger channel relatively to each other. The absolute timing signals of the tagger are
not compensated for variations of transmission times in the PMTs or cables, respec-
tively. Starting with the tagger channel corresponding to the highest energy, the data
of a small energy range was selected, projected to the time axis and �tted with a
Gaussian function. The same procedure, with the same energy range, was applied for
the next lower tagger channel and the obtained di�erence of the Gaussian function
gives relative shift in time. This procedure was repeated pairwise down to the tagger
channel of the lowest energy. This method is exemplary illustrated in Fig. 4.10 for
tagger channels 9 and 10, respectively.
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(a) Time spectrum tagger channel 9.
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(b) Time spectrum tagger channel 10.
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Figure 4.10: Example of the relative time calibration for tagger channels 9 and 10.
The selected data within the overlap region of both tagger channels, 370−390 MeV,
are projected and �tted with a Gaussian function, in which the di�erence of the
peak position corresponds to the relative shift in time.

The absolute shifts of the tagger channels are not visible in the time spectrum of the
di�erence between the central crystal and its neighbour. Here, the regarded time ref-
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4.4 Time Resolution at MAMI 2009 and 2010

erence t36 − t35 is independent of the jitter caused by the tagger. The time spectrum
of crystal 36 contains the intrinsic resolution of both crystals, 35 and 36. Fig. 4.11
shows the time di�erence t36− t35 in terms of channels versus the deposited energy in
crystal 35. t35 is almost constant due to the mentioned reasons (compare Fig. 4.9a).
For absolute calibration, the channels of the TDC have to be converted to ns. This
was done in a separate measurement by recording the arrival time of a signal gener-
ated with a test pulser with and without a �xed delay of 16 ns (Fig. 4.12). This time
di�erence has to be divided by the corresponding number of channels, which results
in a calibration factor of 0.17 ns per TDC channel.
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Figure 4.11: Uncalibrated time spectrum of t36 − t35 in TDC channels.

The calibrated time of the tagger and the di�erence t36 − t35 is plotted in 4.13.

4.4.1.1 Time-Walk Correction

Both spectra in Fig. 4.13 show a clear time-walk e�ect, which becomes dominant for
lower energies. For correction purposes, an appropriate energy dependent function has
to be selected, which describes the time-walk behaviour. Based on the experiences of
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Figure 4.12: Absolute time calibration of the TDC channels.

the TAPS group Gieÿen [48], Eq. 4.11 was chosen, in which A, B, C and D represent
free parameters.

t(E) = A · eB·
√
E+C·E +D (4.11)

For the application of t(E), the content of the corresponding spectrum has to be con-
verted into discrete points. This is done by subdividing the histogram in slices with
equal width along the energy axis. Each slice is subsequently projected on to the
time axis and �tted with a Gaussian function. As a result, the mean values, including
standard deviation, are plotted. This procedure was applied to both spectra of 4.10a
and 4.10b, and is exemplary shown for the latter one in Fig. 4.14. In order to get
proper results, in both cases the spectra were rebinned in groups of �ve neighbouring
bins and only slices with an minimum content of 25 counts were �tted. The �t results
can be looked up in Tab. 4.2. The chosen �t function shows a satisfying description
of the data points within the �t range. Data points with extremely large error bars
su�er from low statistics and should be suppressed by the mentioned requirements to
a reasonable level. Above 550 MeV no data points are available due to the low number
of counts and the �t is extrapolated to 800 MeV.
In a next step, the time values have to be corrected with the obtained time-walk cor-
rection function. Therefore, each data point has to be subtracted from the correction
function t(E), in which E represents again the deposited energy in crystal 35. This is
displayed for both scenarios in Fig. 4.15 for all energies.
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(a) Calibrated time spectrum of t36 − t35.
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Figure 4.13: Calibrated time spectra Mainz 2009. Both spectra were plotted as
a function of the deposited energy of crystal 35 and cover a time range of 70 ns.
Already here one can see that the time di�erence is a�ected by two time resolu-
tions, namely of crystals 35 and 36. In addition a clear time-walk is visible, the
correction of which will be described in Sec. 4.4.1.1

.
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Figure 4.14: Application of time-walk function t(E) for the spectrum in Fig. 4.10b.
Each �tted slice in the energy direction has a width of 5 MeV and a minimum
content of 25 events was required. Only a handful of slices deliver improper
results with respect to the time-walk correction.

Spectrum Correction function t(E) χ2/NDF

t36 − t35
t(E) = −42.08 ns · e−2.41·10−1·

√
E/MeV−3.02·10−3·E/MeV − 8.44 ns 22.42

(Fig. 4.10a)

Tagger time
t(E) = −9.31 ns · e−6.47·10−3·

√
E/MeV−2.16·10−3·E/MeV + 405.05 ns 25.04

(Fig. 4.10b)

Table 4.2: Fit results time-walk correction.
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Figure 4.15: Time spectra after time walk correction for the time di�erence (a)
and the absolute tagger time (b).
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4.4.1.2 Time Resolution

The time-walk corrected data serves as basis for determing the �nal time resolution for
the di�erent tagger channels. Therefore, the individual time spectra for the di�erent
energies are plotted separately and �tted with a Gaussian function, at which the width
determining the �nal time resolution in terms of ns. This is shown exemplary for the
tagger time in Fig. 4.16.
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Figure 4.16: Time distributions for the tagger time distinguished by the tagger en-
ergy. The �tted Gaussian functions are represented by red coloured lines. Tagger
channel was disabled (compare Tab. 3.5.)

The obtained time resolution for both scenarios, time di�erence and tagger time, is
plotted in Fig. 4.17. Furthermore, the data were �tted with Eq. 4.12 from [49].

σt =

√(
N · σn
E

)2

+

(
S√
E

)2

+ C2 (4.12)
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4.4 Time Resolution at MAMI 2009 and 2010

The free parametersN , S and C represent the contribution caused by noise, stochastic,
and systematic e�ects, respectively. E is the measured deposited energy and σn the
noise level, which was determined to ∼ 0.25 MeV.
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Figure 4.17: Time resolution for the time di�erence and tagger time as a function
of the deposited energy in the central crystal including �ts with corresponding
colour. The values for the energy axis were extracted by �tting the relevant
energy distributions with Eq. 5.1.

In case of the time di�erence, it was assumed that both crystals contribute equally
to the �nal time resolution. Therefore, to get the resolution for a single module, the
overall resolution was divided by

√
2 (compare Eq. 4.13), which is already included in
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Fig. 4.17.

σ2
time di�erence = σ2

36 + σ2
35

σ2
time di�erence = 2 · σ2 , for σ36 = σ35 = σ

⇒ σ =
σtime di�erence√

2
(4.13)

The time resolution, deduced by the timing di�erence of two crystals, is signi�cantly
worse at energies below 200 MeV and becomes slightly better at higher energies. Ex-
tracted by the �t, the N -parameter, which symbolises the noise contribution, is almost
three times larger than the one obtained by a single unit. Furthermore, the parameter
representing the stochastic term of the time di�erence has a value 1.42 · 10−4 ns

√
MeV

and is negligible. This is reasonable, since the applied requirement in Eq. 4.10 de-
mands an almost equal sharing of the deposited energy. In case of the tagger time,
which represents for the mentioned reasons the time of crystal 35, a clear statistics-
dependence could be extracted. The constant term of the parametrisation dictates
the achievable time resolution at higher energies with the described readout.

4.4.2 Beamtime MAMI 2010

In order to cover the low energy region of PANDA down to 50 MeV, the time resolution
was as well evaluated for the beamtime at MAMI in 2010. The same data was already
analysed in [42], but here the �nal time resolution was determined without correcting
the time-walk and only setting a sharp cut on the energy for the single tagger channels.
Only data for photon beams impinging centrally on one crystal are available. Data
acquisition was running in a common start mode, in which a logical AND between the
tagger channels and all crystals of the PROTO60 served as a trigger for the readout.
For both responding modules, the registered time of the rising edge is digitised by
TDCs and subsequently stored. The timing was, like in 2009, set in a way that the
NIM13 signals from the tagger arrive earlier than the ones from the crystals. Therefore,
the responding crystal is again the time determining component. As a time reference,
the di�erence between central crystal and tagger channel was chosen:

t = tcentral crystal − tresponding tagger channel. (4.14)

A typical time spectrum of the tagger is shown in Fig. 4.18, in which the dotted
lines in red correspond to the sharp cut on the relevant events. The application of
this cut has to be tuned for each tagger channel. For the determination of the time
resolution, the time reference t has to be corrected, due to delay variations of the
tagger channels. This was done like explained in Fig. 4.10 and the result is shown in

13Nuclear Instrumentation Methods
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Figure 4.18: Time spectrum of a tagger channel including the cut on the phys-
ical relevant events, marked with red dotted lines. The plateau in the channel
range from ∼ 1920 to ∼ 2220 corresponds to events, where the signal of the crys-
tal arrives earlier than the one from the tagger. In such an event, which has a
probability on the ppm-level, the latter one is the time determining component.
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Fig. 4.19. Furthermore, the relatively shifted time spectra have to be walk-corrected
according to Eq. 4.11. The di�erence between the data in Fig. 4.19 and the obtained
correction function for the time-walk is plotted in arbitrary units in Fig. 4.20.
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Figure 4.19: Relatively calibrated time spectrum. A clear time-walk is visible. For
better visualisation of the data the z-axis is plotted in logarithmic scale. The
x-axis shows the deposited energy in the whole PROTO60.

Like in Fig. 4.16 for the beamtime in 2009, the time spectra are plotted separately for
each tagger channel and �tted with a Gaussian function in order to determine the �nal
time resolution. The deduced results are shown as function of the deposited energy in
Fig. 4.21 and �tted with Eq. 4.12.
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Figure 4.20: Time spectrum as function of the deposited energy in the regarded
crystal including time-walk correction function marked in black.
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4.5 Time Resolution at CERN 2011

In case of the beamtime 2011 at CERN, the time information was extracted like ex-
plained in Sec. 3.1.4. Due to the sampling rate of 50 MHz, a trace of the SADC is
subdivided into channels with a width of 20 ns. The subsequent application of the
CFT-step of the feature extraction allows to obtain time information in the subchan-
nel region. To get a �rst impression of the data, Fig. 4.22 shows the extracted time
information for the central crystal versus the deposited energy of crystal 28 for both
runs. The upper histogram of Fig. 4.22 represents the time-energy-correlation for
the central crystal of the �rst run performed at CERN. Therefore, a large fraction of
the incoming energy of about ∼ 12 GeV is registered by the crystal. In the case of
the second run, the main development of the electromagnetic shower occurs either in
crystal 28 or in the neighbouring crystal 29. The remaining fraction of the shower
deposits energy in the surrounding crystals. This behaviour is also visible in Fig. 5.1.
It is recognisable, that the values are distributed within a band with a vertical width
of 20 ns, which is connected to the way of extracting the time information. With the
CFT-algorithm of the feature extraction, the baseline crossing is always determined
within the centres of two neighbouring SADC-samples (compare Fig. 3.3), which have
a time di�erence of 20 ns due the sampling rate of 50 MHz. In addition, a small en-
ergy dependence is visible, which can be interpreted as time walk. Especially at small
energies the bending of the band structure gets steeper. This e�ect can be empha-
sised by plotting the time di�erence of the neighbouring crystals 28 and 29 versus
the deposited energy of crystal 28 (Fig. 4.23). In case of a small energy deposition,
the shape of the distribution in Fig. 4.23 is dominated by the time-walk of crystal
28. On the other side, if the majority of the initial energy is deposited within crystal
28, only a small fraction of energy is registered by crystal 29 and its time-walk e�ect
has a signi�cant contribution to the time di�erence. Moreover, some additional struc-
tures become visible at low values on the energy axis next to the actual data. Those
are caused by events where both considered crystals only see a small part of the over-
all energy and the main deposition occurs somewhere else within the prototype matrix.

4.5.1 Position Dependence

The MVD-prototype, which was placed in front of the PROTO60, gave the ability to
very accurately select events with a certain point of impact on the PROTO60-matrix.
A circle with a radius of 5 mm was chosen as accepted area for the point of impact. The
vertical position of the circle was �xed to the centre of the crystal in the corresponding
row, whereas the x-coordinate was shifted in steps of 1 mm. The distributions of the
time di�erence of the selected events are shown in Fig. 4.24 for 10 di�erent x-positions
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Figure 4.22: Extracted time spectra of the central crystal as a function of the
deposited energy in crystal 28 for run 1 (a) and run 2 (b).
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Figure 4.23: Emphasised time-walk for the second run of the CERN beamtime.

of the selected area, which is represented in each histogram by a small sketch with a
dashed circle marked in red. Two peaks are visible in the spectra, if the selected area
covers two crystals. The right peak in the corresponding histograms originates from
events with major energy deposition in crystal 28, whereas the left peak represents
the complementary case with a major energy deposition in crystal 29. By shifting
the selected area stepwise over the transition region of both crystals, a decrease of
the latter one can be observed until its complete disappearance. Furthermore, the
time-walk e�ect becomes visible in the remaining histograms. The more the selected
area is centred on the front face, the smaller the overall energy deposition in the
neighbouring crystal 29 and therefore, the impact of t29 is higher. In addition, the
higher the registered energy of crystal 28, the smaller its determined time. Both e�ects
contribute to an enlargement of the time di�erence t29− t28, at which the former e�ect
has a more signi�cant impact. In the energy range from ∼ 2− 12 GeV (compare Fig.
4.22), only a small dependence on the energy (∼ −0.9 ns

GeV
) can be observed.
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Figure 4.24: Position dependence of the timing.
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4.5.2 Time Resolution

In order to overcome the time-walk e�ect and the dominance of a particular detector
in �rst approximation, a similar requirement like in Eq. 4.10 for the corresponding
crystals were set. But here the condition between the neighbouring modules is more
strict (Eq. 4.15) and the remaining data is shown in Fig. 4.25. Furthermore, the time
resolution is only evaluated for a certain range of the deposited energy in crystal 28
from 5, 000 MeV to 6, 000 MeV. Here one can be sure that the main portion of the
incoming energy of ∼ 15 GeV is almost equally shared between the crystals.

E28 > E29 · 0.9 and E29 > E28 · 0.9 (4.15)

For a �nal time resolution, the distribution of the events left over after the mentioned
cut is displayed in Fig. 4.26. Due to the fact, that the e�ect of time-walk can be
neglected, a symmetric distribution arises. The width is determined with a Gaussian
function and results in σ(∆t) = (623.86 ± 20.97) ps. It is assumed, that crystals 28
and 29 contribute equally to the obtained resolution, since both were operating with
the same gain. Therefore, to extract the resolution of a single module, σ(∆t) has to be
divided by

√
2 (compare Eq. 4.13). Finally the time resolution at a mean deposited

energy of 5.5 GeV for a single crystal can be deduced to

σ28/time = σ29/time =
σ(∆t)√

2
= (441.14± 14.83) ps. (4.16)
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Figure 4.25: Time di�erence with energy cut.

137



Chapter 4 Time Resolution

TimeD iff_ Cut

Entries  2161

Mean   ­5.964

RMS     1.318

 in ns
29

 ­ t
28

t

­15 ­10 ­5 0 5

E
v
e

n
ts

 p
e

r 
0

.2
 n

s

0

50

100

150

200

250

TimeD iff_ Cut

Entries  2161

Mean   ­5.964

RMS     1.318

TimeDiff_Cut

σ(∆t) = (623.86± 20.97) ps

Figure 4.26: Achieved time distribution with the mentioned requirements on the
deposited energy of the corresponding crystals.

138



Chapter 5

Higher Order Energy Correction

Usually the cross section of the individual detector modules of an electromagnetic
calorimeter is driven by the Molière radius RM of the used scintillator material. In
case of PANDA and PWO with RM = 0.89 cm, crystals with an entrance face of a little
bit more than 2×2 cm2 were produced for all crystal geometries. The major energy of
an impinging particle is deposited within the crystal by an initialised electromagnetic
shower, if the point of impact occurs in the centre of the front face. Nonetheless
a small fraction of the shower leaks laterally out of the crystal and enters either
the neighbouring crystal or the energy information is lost in the passive material in
between. This e�ect becomes more crucial the closer the initial particle impinges to the
crystal border. The following analysis studies this e�ect for the PANDA peak energy
at 15 GeV (CERN 2011) for positrons and the discrete energies from 160 to 1, 440 MeV
at MAMI (2009) for photons. A possible correction methods for a more homogeneous
energy response will be presented with respect to energy dependence and resulting
energy resolution. Unfortunately only data sets are available where the prototype was
shifted horizontally. An extended experimental programme at the acceleration facility
ELSA1 at Bonn is envisaged to move the prototype along the vertical y-axis. Here
the e�ect of staggered crystal rows can be studied, which is completely ignored in
the analyses of this thesis, since the front faces of all crystals in one row are almost
parallel to each other. Moreover, one has to state that all corrections performed in
this thesis were done along the x-axis, whereas in the �nal PANDA experiment the
applied correction will be a function of the spherical coordinates ϑ and φ.

5.1 Position Dependence of the reconstructed

Energy

As it was mentioned, a small fraction of the initial energy gets lost due to energy
deposition in the so called 'dead material' in between the crystals, which basically
1Elektronen-Stretcher-Anlage

139



Chapter 5 Higher Order Energy Correction

consists of holding structure and wrapping material (compare Fig. 3.2). To get an
impression of the lost energy, Fig. 5.1 shows the reconstructed energy while shooting
in between two crystals, namely 28 and 29 (black cross in Fig. 3.19). The shown data
were recorded in the beamtime in 2011 at CERN with a 15 GeV positron beam. xSi
corresponds to the x-coordinate of the extrapolated point of impact on the PROTO60
based on the tracking information of both silicon detectors. For the extrapolation, the
entry face of the PROTO60 is approximated as plane.
Fig. 5.1a and 5.1b show typical distributions of the deposited energy of two single
crystals. If the major energy deposition occurs in the neighbour, a signi�cant fraction
of the initial energy is leaking to the crystal itself, which becomes visible in a long tail
in both cases. By adding up all crystals of the PROTO60 matrix the energy response
is almost constant except of a remaining substructure at the gap of both crystals.
Here a non-negligible portion of the initial energy gets lost and directly worsens the
energy resolution. The same is true for the data collected in the MAMI beamtime of
2009 with an energy range of 160 to 1, 440 MeV.
Another proof of a non-homogeneous detector performance could be extracted with
the aid of the tracking detectors. The two silicon-based tracking modules in the CERN
beamtime give the ability for an accurate selection of positrons with a certain point
of impact on the prototype. Therefore, various data sets were selected, where each of
them belong to di�erent circular areas with a �xed diameter of 2 mm. The centre of
all circles are on the same vertical position and are shifted in steps of 1 mm. For each
data set the distribution of the deposited energy of the prototype was �tted with a
Novosibirsk function:

f(E) = A · e−
ln[1−Λτ(E−E0)]2

2τ2 +τ2

, (5.1)

with Λ =
sinh(τ

√
ln 4)

στ
√

ln 4
,

in which A, E0, σ and τ are free parameters. This function takes into account the
asymmetric shape of the obtained line shape due to leakage by the tailing parameter
τ . The maximum amplitude is represented by A, whereas the energy resolution is
given by the ratio of width σ and mean value E0. The particular obtained resolutions
for each circle are shown against the x-coordinate of the circle centre in Fig. 5.2. As
expected, the worst energy resolution is obtained for the data at the transition of the
crystals and is peaking around 3.3%. In the case of an impinging particle in one of
the crystal centres, the resolution saturates at around 1.5%. One has to state that the
given absolute values for the energy resolution strongly depend on the chosen diameter
of the selected area.
The aim of the introduced correction algorithms in Sec. 5.2 is to correct the energy
values close to the gap to a more uniform level and thereby getting a more homogeneous
energy response of the detector.
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Figure 5.1: Energy spectrum in dependence of xSi for (a) crystal 29, (b) crystal 28,
and (c) the PROTO60. The position 0 on the xSi-axis corresponds to the gap of
the neighbouring crystal.
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Figure 5.2: Position sensitivity of the energy resolution, in which both runs were
included. At the point of transition between the crystals (∼ −11 mm) a clear
worsening of the energy resolution becomes visible.
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5.2 Correction Algorithm

Two di�erent methods for the correction of the deposited energy were tested according
to their applicability and impact to the energy resolution. The basic idea of both
methods is quite similar. The point of impact along the x- or y-direction is expressed
in a special parameter. Afterwards, the dependence of the deposited energy on this
parameter is approximated with a function, which is afterwards applied for an energy
correction.

5.2.1 ln
(
E2

E1

)
-Method

The algorithm for correcting the deposited energy, which is called ln(E2/E1)-method,
was already successfully exploited by the CMS experiment [50] and its application is
shown schematically in Fig. 5.3. This method is applicable in both directions in space,
by rotating the displayed scheme about 90 ◦. In this thesis, the method will only be
evaluated in x-direction due to the mentioned reasons.

Figure 5.3: ln(E2/E1)-method for a 3× 3-matrix with view of the beam.
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In the following, the ln(E2/E1)-method is explained step by step with respect to Fig.
5.3 and the software implementation. For the important steps, the relevant pictures
are shown with the obtained data from the CERN beamtime. In order to simplify the
application of the ln(E2/E1)-method, only events with a maximum energy deposition
in crystal 28 were analysed.
The registered energy of the direct neighbours, which are labelled W1 and W2 corre-
sponding to the right and the left neighbour, respectively, are compared. This already
gives a rough information about the point of impact and is marked in Fig. 5.3 with a
red star. According to the distinction of cases forW1 andW2, the 3×3 detector matrix
is subdivided in two subarrays with summarised energies E1 and E2. Afterwards the
natural logarithm of the ratio E2/E1 gives the �nal information about the point of
impact along the regarded direction at the crystal with maximum energy deposition.
The choice of the natural logarithm is connected with the lateral shower spread of
the electromagnetic shower. Due to the fact, that the value of ln(E2/E1) is not very
intuitive, the axis in the bottom part of Fig. 5.3 shows the corresponding position
at the crystal front face. ln(E2/E1) ranging from −3 to 3, whereas | ln(E2/E1)| ≈ 3
belongs to events with a centrally striking incident particle. In case of ln(E2/E1) ≈ 0,
the energy is almost perfectly shared between the two subarrays and belongs to an
impinging particle close to one of the crystal borders. The correlation of the ln(E2/E1)-
parameter with the impact position along the x-axis is shown for both performed runs
in Fig. 5.4. Here, it was distinguished between the reconstructed point of impact by
the EMC with a logarithmical point of gravity algorithm (compare Eq. 5.2) and the
extrapolated track by the silicon based tracking detectors.

xreconstructed by EMC =

∑
i

wi · xi∑
i

wi
(5.2)

with wi =

0, W0 + ln
(
Ei
ET
≤ 0
)

W0 + ln
(
Ei
ET

)
, else;

xi : implemented coordinate of crystal i

W0 : weighting parameter

ET =
∑
i

Ei

Furthermore, the similarity of the associated histograms in Fig. 5.4 underlines e�ective
operation of reconstruction algorithm of the point of impact (Eq. 5.2), since it delivers
an almost perfect linear correlation with values obtained by the tracking units.
In a next step, the obtained distribution of the ln(E2/E1)-parameter of the second run
(shown in Fig. 5.5a) is subdivided into 50 equal slices ranges from −3 to 3 with a width
of 0.12. Here, no explicit cut on the tracking system was set, since the whole algorithm
is based only on the information obtained by the EMC. For the events of the i-th slice,
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Figure 5.4: Correlation between ln(E2/E1) and the x-coordinate of the point of
impact. For a better comparison, only events with an unambiguous reconstructed
track of the impinging particle by the tracking devices are shown. Figures (a)
and (b) belong to the performed run, where the beam was aimed to the centre of
crystal 28 and (c) and (d) to the one in between crystals 28 and 29. Furthermore,
the columns correspond to the x coordinates obtained by the pure EMC energy
information (according to Eq. 5.2) and the reconstructed track by the tracking
detectors. The position 0 corresponds in all cases to the transition of crystal 28
and 29.
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which ful�l 0.12 · i − 3 ≤ ln(E2/E1) < 0.12 · (i + 1) − 3 with i ∈ {0, 1, 2, . . . , 49}, the
deposited energy of the whole 3× 3-matrix is plotted and �tted with the Novosibirsk
function (Fig. 5.5b). The individual histograms were rebinned and appropriate start
parameters for the �t were set to get a reasonable description of the data. To show the
application of this correction method, only events for ln(E2/E1) < −0.1 were analysed
further and corrected, respectively.
In a next step, the mean-parameter of the applied �ts in Fig. 5.5b is normalised
and plotted in dependence on ln(E2/E1). The trend can be well described with a
polynomial of �fth order (Fig. 5.6), which in the following will be called f(x), with
x = ln(E2/E1).
Finally, the corrected energy information of the 3 × 3-matrix can be obtained by
dividing the original energy information by f(x):

E3×3/new =
E3×3/old

f(x)
. (5.3)

To see the �nal achievement of the position correction of the regarded events, Fig.
5.7 shows the corrected 3 × 3-energy as a function of the tracked x-coordinate and
as line shape, which represents the projection on the energy-axis, in comparison to
the uncorrected data. Especially close to the crystal border at xSi ≈ 0 mm, a clear
enhancement is visible (Fig. 5.7a), whereas the data at the crystal centre remains
almost untouched. This has a direct impact on the tail of the line shape (Fig. 5.7b),
which is in case of the corrected one signi�cantly smaller. Already now, it can be seen
by eye that the mean value of the distribution becomes larger and the broadness has
been reduced.
In order to obtain a quantitative comparison of the result, the lineshapes are �tted
with the Novosibirsk function (Eq. 5.1). The energy resolution is, as usual, extracted
by dividing the width σ by the mean value E0. For completeness, the explained
procedure was also performed for the �rst run in the CERN beamtime, where the
particle beam was aimed to the centre of crystal 28. For a better comparison, the
results are summarised in Tab. 5.1. As expected, the width of the reconstructed
line shape is in general broader in the case of run 2. Additionally, the mean value
shows a di�erence of roughly 40 MeV. This can easily be explained with the evaluated
3 × 3-matrix, which was in all cases the same, namely the crystal 28 and its �rst
surrounding ring. It is obvious that more energy can be deposited, if the initial point
of the electromagnetic shower is in a central position of the regarded matrix. This also
holds for the �uctuations. The probability for a lateral shower leakage is signi�cantly
higher for the run where the beam strikes in between the crystal, and directly results
in an increase of the width. Nevertheless, after application of the correction algorithm,
the detector shows a signi�cantly more homogeneous behaviour (right column of Tab.
5.1). Furthermore, it can be seen that the correction algorithm only has a minor
impact on the �nal energy resolution. In the case of the second run an absolute
improvement of 0.3 % could be achieved.
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Figure 5.5: (a) Distribution of 109, 400 events as function of the ln(E2/E1)-
parameter. For the majority of events, the incident particle impinges on the
left half of the crystal. (b) Subsections of the ln(E2/E1)-parameters �tted with
the Novosibirsk function (Eq. 5.1) marked with red lines.
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Figure 5.6: Dependence of the ln(E2/E1)-parameter of the deposited energy within
the 3 × 3-matrix. The �tted function f(x) is marked in red and shows a good
description of the data points.

Run Parameter Uncorrected Corrected

1

Width σ/MeV 227.20 221.87

Mean value E0/MeV 13, 979.50 13, 994.60

Energy resolution
1.625 1.585σ

E0
/%

2

Width σ/MeV 257.12 230.31

Mean value E0/MeV 13, 562.00 13, 644.10

Energy resolution
1.896 1.688σ

E0
/%

Table 5.1: Achieved results for the 3× 3-matrix of the ln(E2/E1)-method for both
runs at CERN. For the listed results, the correction method was only applied
along the horizontal x-direction.
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Figure 5.7: Results position correction for run 2 for events with a maximum energy
deposition in crystal 28.
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A similar improvement could be achieved along the vertical axis, which is not shown
in this thesis. This is connected to the fact that the majority of events impinges close
to the crystal centre. As it was mentioned, the next beamtimes with the PROTO60
and other prototypes are envisaged to cover a vertical shift as well, and to study in
addition the e�ect of the staggered crystal alignment.

5.2.1.1 Energy Dependence

The ln(E2/E1)-method, described in Sec. 5.2.1, was, for the �rst time, successfully
applied for a PANDA prototype. The next question concerns the energy dependence
of this correction algorithm. For the beamtime at MAMI in 2009, a large amount of
data is available for di�erent energies from 150− 1, 500 MeV. The data is analysed in
the same way as before, but here one has to distinguish between the di�erent energies.
The aim of this part of the analysis is to �gure out a possible energy dependence of
this kind of correction and to see the �nal impact on the obtained energy resolution.
Altogether, four runs were performed in the beamtime 2009 at MAMI. It is expected
to get the largest improvements in run 3, where the beam impinged in between two
crystals. For completeness and comparison issues, the other runs were analysed as
well. Fig. 5.8 shows the energy deposition in the whole PROTO60 for a low and high
energetic tagger channel, while the beam was directed between two crystals, labelled
here as 35 and 36 (compare Fig. 3.18). Here it is again nicely visible that the deposited
energy within the PROTO60 gets signi�cantly smaller for a point of impact close to
the crystal borders.
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Figure 5.8: Energy spectrum in dependence of xreconstructed for (a) low energy and
(b) high energy. The position 0 on the xreconstructed-axis corresponds to the gap
between both crystals. No further cut was required on the pictures.
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For correcting the data, the ln(E2/E1)-method was applied separately for the di�erent
energies. The get the best possible starting point of the analysis concerning statistics,
the data of all four runs were summed up. At each incident energy, the ln(E2/E1)
parameter was subdivided in to 50 bins with equal width and is shown exemplary
for the tagger channel 12 with an incident photon energy of 355.88 MeV in Fig. 5.9.
In order to get appropriate �ts of the individual subsections, only bins with at least
1, 000 events were considered and analysed. The tagger channel selections the highest
energy was completely excluded due to the insu�cient amount of events.
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Figure 5.9: Energy distribution in MeV for di�erent ln(E2/E1)-parameter (MAMI
2009) for a single tagger channel. The red curves correspond to the applied �t
with a Novosibirsk function for histograms with more than 1, 000 events.

In Fig. 5.10a the obtained mean values of the performed �ts are plotted as a function
of the ln(E2/E1)-parameter including the corresponding polynomials. The higher the
energy, the smaller the amount of available data. For a better comparison, the obtained
correction polynomials are plotted separately and normalised to the ln(E2/E1)-value
of −3 and 3, respectively.
On the right hand side of Fig. 5.10a less data points are available, especially for the
highest energies. Therefore the �t range, or correction range, respectively, is rather
limited. The shapes of all correction curves are similar and getting smaller close to
the crystal border at ln(E2/E1) ≈ 0. In a relative view in Fig. 5.10b, only very small
deviations in the order of 1% are visible. Here, no correlation with the energy could
be registered. By comparing to the obtained correction function at 15 GeV (Fig. 5.6),
there is no signi�cant di�erence. As an additional remark, the shift at ln(E2/E1) ≈ 0
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Figure 5.10: (a) Correction functions of all energies (MAMI 2009). (b) Correction
functions for all energies normalised to the energy deposition at ln(E2/E1) = −3.
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5.2 Correction Algorithm

for the both curves from the left and right hand side, respectively, might be caused by
a non-perfect alignment of the crystal with respect to the beam axis.

5.2.1.2 Impact on Energy Resolution

In order to see the �nal achievement concerning the most important observable, the
resolution of the uncorrected and corrected energy was determined. Therefore the
data was channel-wise corrected using the correction functions as displayed in Fig.
5.10. For the third run (shooting in between crystal 35 and 36), where the major
impact of the correction is expected, the lineshapes of the 3 × 3-matrix are plotted
for all energies in Fig. 5.11. The tagger channel with an energy of 1441.06 MeV was
excluded due to insu�cient statistics.
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Figure 5.11: Uncorrected (black) and corrected (red) lineshapes of the 3×3-matrix
with a threshold of 1 MeV. For the highest energy no correction was possible due
to the insu�cient statistics.

Afterwards, the lineshapes were �tted with the Novosibirsk function, in which the
energy resolution is given by the ratio of width and most probable value. For �tting
purposes, appropriate start values for E0 and σ were set, namely mean value and RMS
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of the particular histogram, respectively. This promises a stable and automatic �tting
procedure. For the run where the major impact is expected, the lineshapes for the
uncorrected and corrected values are shown in Fig. 5.11. The �nal results for two runs
(centrally hitting crystal 35, and in between 35 and 36) of the 2009 beamtime at MAMI
are presented as a function of the impinging energy. In addition, the obtained trend
of the data points is �tted with the typical three parametric function for describing
the energy resolution of an EMC:

σ

E
=

√(
a√
E

)2

+

(
b

E

)2

+ c (5.4)

(5.5)

The free parameter a stands for photon statistics and has a 1/
√
E-dependence. b

is usually smaller compared to the other parameters and describes the contribu-
tion caused by electronics. This term decreases faster with the energy with a 1/E-
dependence. The constant term c includes several systematical e�ects, like e.g. cal-
ibration issues or the inhomogeneous collection of the scintillation light within the
crystal. The individual terms are summed up quadratically, since one can, in �rst
order, assume their independence. The result of a �t using Eq. 5.4 gives a rough
impression of the discussed e�ects. For all performed �ts of the trend of the energy
resolution, the data points were weighted equally. The vertical error bars were deter-
mined with the usual error propagation method (compare Eq. 5.6), but are not visible
in the chosen y-range in Fig. 5.12 and 5.13. For the x-direction a constant uncertainty
of 2 MeV was assumed.

∆
( σ
E

)
=

√(
1

E

)2

· (∆σ)2 +
( σ
E2

)2

· (∆E)2 (5.6)

The energy resolutions of the �rst run are shown in Fig. 5.12.
As expected, an overall correction of the deposited energies only has a small impact on
the �nal energy resolution. Furthermore, the displayed �t parameters according to Eq.
5.4 do not di�er much for both scenarios. Nevertheless, a slight improvement is visible
along the full energy range. The di�erence (σ/EPeak)uncorrected − (σ/EPeak)corrected is
ranging from 0.11 % to 0.04 % from the smallest to the highest energy, respectively.
However, in the case of shooting in between crystals, the energy correction leads to
a signi�cant improvement. In Fig. 5.13 the obtained results are again plotted versus
the incident photon energy.

A signi�cant di�erence between the shown curves becomes visible and is �uctuating
around an absolute value of 0.25 %. This improvement is comparable to the result
obtained at the CERN beamtime with 0.3 % at an initial positron energy of 15 GeV.
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Figure 5.12: Uncorrected (black) and corrected (red) energy resolution for run 1
(MAMI 2009) including the �ts according to Eq. 5.4.
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Figure 5.13: Uncorrected (black) and corrected (red) energy resolution for run 3
(MAMI 2009) including the �ts according to Eq. 5.4.
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Chapter 6

Discussion & Outlook

This chapter is subdivided into three parts to summarise and discuss the presented
results in Secs. 2, 4 and 5. The achieved quality of 9, 336 produced PWO1 crystals
from BTCP was already shown in detail in Sec. 2.4. In the �rst section of the discus-
sion, those results are compared to the obtained quality parameters of the preceding
CMS experiment. In addition, an outlook will be provided with respect to the crystals
produced by SICCAS and the completion of the PANDA EMC.
In Sec. 6.2 the next main topic concerning time resolution is covered. A comparison to
the achieved timing performance of CMS will be given as well. Furthermore, achiev-
able limits with PWO and components, limiting modules for a more accurate time
determination, are discussed. An interesting alternative option regarding timing via
the detection of Cherenkov light is considered to further improve the time resolution
to a higher level.
Sec. 5 shows the successful exploitation of the so called ln(E2/E1)-method in various
beamtimes for di�erent impinging particles. But there are also other possibilities to
correct for the energy loss in the passive material between the crystals, which di�er in
their applicability.

6.1 Quality Control

Basically, the crystals produced by BTCP show excellent properties, especially in
case of the longitudinal transmission (compare Fig. 2.18). Almost all crystals show
an optical transmittance at the three relevant wavelengths far above the speci�ed
requirements. Only a handful of crystals show an insu�cient transmission, mostly
at 360 nm. The transmission at 360 nm is important and very selective, since it is
signi�cantly correlated with the overall LY of a crystal, which was already proven by
previous studies [51]. This relation can at a later stage be exploited as a �rst order
energy calibration of the EMC and is shown exemplary for all crystals of type 1 in

1Lead tungstate (PbWO4)
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Fig. 6.1.
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Figure 6.1: Correlation between light yield and transmission at 360 nm for all
crystals of type 1 with a correlation coe�cient of 0.591.

The parameter LY(0.1µs)/LY(1µs), which guarantees a su�ciently fast scintillation
kinetics of each crystal, was not selective, since this parameter was considered never
a reason for rejection (compare Fig. 2.7). In a similar manner, the geometry of the
crystals is not being problematic, in spite of the fact that there are some tails of the
displayed distributions (Fig. 2.19) which exceed the rejection limit of 0/ − 100 mm.
Deviations in the order of tens of µm from the desired size can easily be compensated
by an appropriate wrapping. Especially the distribution of the length of the crystal
shows a signi�cantly large tail towards a shorter length. Here one has furthermore the
option to compensate this imbalance with a reduction of the thickness of the optical
glue. Overall, there is no urgent necessity to suspend crystals, which slightly fail the
requirements with respect to geometry, but shows, on the other hand, satisfying results.
For the geometry parameters labelled with AF, CF, AR and CR, some additional
substructures are visible at values larger than 0.1 mm, which originate exclusively from
crystals of the last lot. These structures are not visible in the test values provided by
BTCP. There are di�erent possible explanations, like for instance a systematic change
of the 3D-laser device of the ACCOS machine at CERN, probably caused by the long
time interval between testing lot 9 and 10. As another explanation, these crystals
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might have been cut in a di�erent way, since the mentioned geometrical imperfections
only refer to one surface of a crystal. Nevertheless, as mentioned before, there are
di�erent possibilities to compensate those geometrical defects.
The next critical requirement concerning quality control is the homogeneity of the
transversal transmission, which is quanti�ed by the ∆λ-parameter (de�ned in Eq.
2.4). Here, the relevant distributions can be found in Fig. 2.22, in which the majority
of crystals shows a ∆λ-parameter well below the limit of 3 nm. From that point of
view, one can con�rm an excellent longitudinal homogeneity due to the Czochralski
method exploited by BTCP. The di�erent shapes of the distributions from BTCP
and CERN originate from a di�erent measurement concept of crystal geometries as
clari�ed in Sec. 2.4.6.
The probably most important performance parameter is the light yield which was
determined as explained in Secs. 2.3.1 and 2.3.2 via irradiation with low energy
photons from a radioactive source. During the analysis of the �rst delivered lots,
which contained primarily crystal types with a large di�erence in tapering, namely
type 1 and EC, a strong correlation with the crystal geometry could be observed and
is also visible in Fig. 2.21. This dependency is due to an interplay between absorption
and focussing of the generated scintillation light and is known as NUF-e�ect. It has a
signi�cant impact on the �nal performance of the EMC, especially in case of energy
and position resolution. Those aspects, including possible uniformity methods, are in
detail evaluated and discussed in [31]. With the knowledge of the NUF-e�ect, it is
astonishing that in Fig. 2.21, the less tapered crystal geometries, like e.g. type 2 and
3 have a higher light yield than type 1, which represents the most tapered version
of the used PANDA geometries. But this could be addressed to a by far later date
of delivery. The later the date of delivery, the higher the light output of the crystal,
since the supplier gathers more experience in the composition of the crystal melt,
the puri�cation, and the growing process. The result of an enhanced light yield for
crystals, which were delivered at a later stage, is also visible in the case of crystals
of type 10. In the corresponding distribution in Fig. 2.21, two structures are present
related to crystals part of lot 8 and 10, respectively. In case of the LY, it can be
summarised that only the least tapered crystals for both end caps can come close to
the rejection limit of 16 phe/MeV. This is documented in Fig. 2.29.
To guarantee the long term stability of the EMC, a su�cient radiation hardness is
mandatory. In order to judge if a crystal has a su�cient transmittance and is able
to cope with the induced radiation dose, the change of the absorption coe�cient ∆k
for a given integral dose of 30 Gy was determined. This is the most crucial parameter
with respect to the rejection limit of 1.1 m−1 leading to an overall rejection rate of
approximately 6 %, independent of the crystal geometry. However, the most radiation
hard crystals were found among the EC-geometry. This o�ers the possibility to select
those for the inner part of the FEC which will be exposed to the highest expected
radiation dose.
A summary of the absolute rejection numbers distinguished by the di�erent relevant

159



Chapter 6 Discussion & Outlook

parameters is given in Tab. 6.1.

Property
Rejection Rejection

Percentage
limit number

longitudinal transmission1

T(360 nm) ≥ 35 % 15 1.61 h
T(420 nm) ≥ 60 % 3 0.32 h
T(620 nm) ≥ 70 % 2 0.21 h

transversal transmission2 ∆λ ≤ 3 nm 19 2.04 h
light yield2 LY ≥ 16 phe/MeV 95 1.02 %
radiation hardness1 ∆k ≤ 1.1 m−1 553 5.92 %

Total rejection number 651 6.97 %

Table 6.1: Rejection summary of the �rst 10 lots. 1: measured at Gieÿen; 2:
measured at CERN. The total rejection number considers possible overlaps among
the parameters.

6.1.1 Further Aspects

Test facilities deliver partially uncorrelated results. These di�erences mainly originate
from di�erent treatments of the crystals within the test procedure, which were not
completely �xed in the contract with the supplier BTCP. Sources of uncertainty are
for instance the time after irradiation for the determination of the ∆k-parameter.
Here variations can occur due to the presence of a fast recovery component (compare
Fig. 2.15). Furthermore, the strong impact of the explained NUF-e�ect on the chosen
way of measuring the LY was not taken into account, which is of course connected to
the fact that in case of low energy photons the major scintillation light is generated
close to the front face of the crystal. The NUF-e�ect leads to a deviation between the
extreme crystal geometries of ∼ 40 % in collected light. For quality control, either the
set limit on the LY should be adapted to the crystal shape. The experimental setup
is in general independent of the measured crystal shape. In the future, the trend
probably goes to crystals with a more uniform response including the compromise
with the covered solid angle, since the NUF-e�ect deteriorates the homogeneity of the
detector and worsens the energy resolution especially at higher energies. Di�erences in
the distributions could also be observed for the ∆λ-parameter for BTCP and CERN,
but also here a type-speci�c variation could be observed (Fig. 2.24).
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6.1.2 Comparison to CMS-type PWO crystals

In this subsection, the achieved quality of the PWO crystals analysed in this thesis
and the crystals used in the CMS experiment are compared. There are some general
di�erences between the crystals for PANDA and CMS. The calorimeter ECAL of the
latter one consists of roughly 5 times more crystals than PANDA, resulting in a �ner
granularity in angle due to the larger distance to the interaction point. Moreover, the
crystals for CMS have a length of 23 cm, which is compensating to the higher energy
range and requiring a larger detector volume to contain the shower. An additional
requirement is set to a homogeneous response along the long crystal axis, since the
centre of gravity of the electromagnetic shower reaches deeper into crystal compared
to PANDA energies. The expected photons in the range of 100− 200 GeV deliver suf-
�cient photon statistics. Therefore, the overall energy resolution is dominated by the
constant term, which is strongly in�uenced by a non-linear response. The CMS are
homogenised by roughing one of the crystal side faces. As it was already mentioned
in Sec. 2.1, the properties of PWO have been improved within an R&D programme.
Structural perfection of the crystal matrix has been achieved by an improved control
of the stoichiometric composition of the melt and a further development of the doping
concentration. Tab. 6.2 summarises the chosen limits and the �nal quality expressed
in the mean values of the most important parameters. Also SICCAS supplied a rela-
tive small fraction of the crystals for CMS, but here only crystals for the barrel from
BTCP were considered.

Parameter / Unit
CMS PANDA

Limit Mean value Limit Mean value

long. trans. at 360 nm ≥ 25 % 38.6 % ≥ 35 % 48.8 %
long. trans. at 420 nm ≥ 55 % 69.5 % ≥ 60 % 71.0 %
long. trans. at 620 nm ≥ 65 % 74.7 % ≥ 70 % 77.3 %
disp. of transv. trans. ≤ 3 nm 0.69 nm ≤ 3 nm 0.59 nm

LY ≥ 8 phe
MeV

10.2 phe
MeV

≥ 16 phe
MeV

20.4 phe
MeV

radiation hardness ≤ 1.5 m−1 1.04 m−1 ≤ 1.1 m−1 0.81 m−1

Table 6.2: Comparison of quality control of CMS [18, 52] and PANDA.

All parameters of crystals in the PWO-II version for PANDA show signi�cantly im-
proved properties, which is a consequence of the much more stringent requirements.
The transparency has been improved especially at 360 nm. This is closely connected
to the shifting of the absorption edge to lower wavelengths. At all other wavelengths
the improvement is on a minor level but still noticeable. For the dispersion of the
transversal transmission a slight improvement could be observed as well and is caused
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by the changed sequence of the growing process of the crystals. A signi�cant enhance-
ment can be observed in case of the LY, since the obtained mean value has been nearly
doubled. But here the overall distribution of the LY is ranging from ∼17 phe/MeV to
∼25 phe/MeV for crystals of the end caps and the most tapered versions (Fig. 2.21),
respectively. In case of CMS and its dynamic range of the EMC from 0.15−1, 000 GeV,
the more crucial parameter is the uniformity of the response along the crystal axis,
which was achieved by roughing up one surface of the crystals. A strong correlation
between the roughness parameter Ra, which is basically an average of the pro�le devi-
ation (Eq. 6.1), and the homogeneity of the longitudinal dependency of the response
could be established [53]:

Ra =
1

l

∫ l

0

f(x)dx, (6.1)

with f(x) : surface pro�le.

It turned out that Ra ≈ 0.25µm is an optimum value for the application in the CMS
ECAL. The scenario of one roughed surface was also considered for PANDA, but other
aspects play a major role, which are in detail discussed in [31]. As a last point, the
crystal performance concerning radiation hardness is compared. The set requirement
in case of CMS is again less strict, but here one has to distinguish between the di�erent
procedures and applied doses and dose rates as well as the operation at di�erent
temperatures. In the quality control for CMS the crystals are illuminated until they
reach full saturation, and thermal recovery and radiation damage equilibrate. The
corresponding dose and dose rate are ≥ 500 Gy and ≥ 100Gy/h, respectively. This
makes a direct comparison of the given values in Tab. 6.2 more complex. Fig. 6.2
shows the typical dependence of the induced absorption coe�cient as a function of the
integral dose of a randomly chosen crystal of the mass production [54].
The ratio between change of the absorption coe�cient at the saturation level and at

30 Gy can be estimated to:

∆kSaturation
∆k30 Gy

≈ 1.1 m−1

0.9 m−1
≈ 1.22. (6.2)

Therefore, the mean value of the PANDA crystals has to be scaled, which results in

∆kPANDA/30 Gy · 1.22 = 0.81 m−1 · 1.22 ≈ 0.988 m−1 . ∆kCMS/Saturation. (6.3)

All in all, it can be stated that nearly all parameters have been successfully improved
with respect to the achieved quality for the CMS experiment. Especially the LY
values are on average enhanced by a factor two. This fact, in combination with the
gain connected to the low operating temperature of −25 ◦C, will serve as an excellent
base for building up an EMC for the envisaged energy range of PANDA.
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Figure 6.2: Correlation induced change of the absorption coe�cient and the integral
dose. The dashed blue line corresponds to an estimated saturation level of 1.1 m−1,
whereas the blue arrow marks the value at 30 Gy [20].

6.1.3 Outlook with SICCAS crystals

Fig. 2.28 shows the current production status of the PANDA EMC. Due to the fact
that BTCP is out of business to deliver additional crystals missing, an alternative
supplier has to be found. The most probable and promising candidate is SICCAS,
another large crystal producer who is able to handle PWO. Already in the course of the
CMS experiment, this company produced a relatively small fraction of 1, 825 crystals.
For PANDA, 50 crystals of type 11 geometry were produced by SICCAS and tested
by the facilities at CERN and Gieÿen, according to the most relevant parameters. As
it was pointed out in Sec. 2.5.1, the birefringent crystals are produced by the so called
Bridgeman method and have therefore a di�erent growing axis, namely the ordinary
axis. Here the index of refraction and the absorption coe�cient are appreciably higher
compared to the extraordinary direction, which implies a reduction of the achievable
longitudinal transmission (compare Fig. 2.31). This is directly visible in a shift of the
obtained transmission distributions in Fig. 2.32, which is extremely pronounced at
360 nm. Tab. 6.3 provides a direct comparison of the transmission parameters at the
three relevant wavelengths for CMS and PANDA.
The tendency shown in Tab. 6.3 con�rms the expectation of a lower longitudinal
transmission due to the mentioned reasons. Another interesting conclusion can be
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wavelength CMS PANDA

TBTCP − TSICCAS

360 nm 11.3 % 18.2 %
420 nm 3.7 % 6.0 %
620 nm 1.4 % 0.1 %

Table 6.3: Comparison of mean values T in longitudinal transmission of crystals
from BTCP and SICCAS. The data was taken from [52] and from the quality
control at Gieÿen for CMS and PANDA, respectively.

drawn by comparing the homogeneity in transversal transmission for both suppliers.
In case of crystals for CMS produced by SICCAS, the mean value of the ∆λ-parameter
is about 1.71 nm larger compared to the one from BTCP (by [52]). A similar trend
is observed in the case of PANDA, but here a quantitative statement is not possible
due to the explained sensitivity on geometry (compare Fig. 2.24). Nevertheless, the
crystals produced by the Czochralski method (Fig. 2.1a) are de�nitely much more
homogeneous along the long crystal axis, compared to the Bridgeman method (Fig.
2.30).
The situation is contrary for the determined LY. Here the crystals from SICCAS show
an excellent performance except the overall homogeneity of the production. The 50 test
samples from SICCAS are broadly distributed from ∼ 12 phe/MeV to ∼ 27 phe/MeV
with a mean value of 19.1 phe/MeV, which is high in spite of the type 11-geometry and
the less pronounced NUF-e�ect. A clear negative aspect is the large RMS of 3.6 phe

MeV

which might be connected to the instability of the growing process. Concerning the
radiation hardness of the SICCAS crystals (Fig. 2.35), no noteworthy deviation to the
BTCP crystals could be observed. In the context of the quality parameter of PWO-II
with respect to the comparison of both suppliers, similar results were obtained by [51].
After the analysis of the 50 test samples and the gained experiences by CMS, SICCAS
crystals are suitable for application in the PANDA EMC. A larger number of crystals
as preproduction lot is ordered and should serve as a further reference point for the
achievable quality and its spread as well as the production e�ciency of the producer.

6.2 Time Resolution

The time resolution of the PROTO60 was determined in Sec. 4 for di�erent readout
chains and energy ranges. In the �rst two beamtimes in 2009 and 2010 at the ac-
celeration facility MAMI at Mainz, the time information was extracted with TDCs,
whereas in the CERN beamtime the time stamps were determined o�ine with the
explained feature extraction algorithm (compare Sec. 3.1.4). In all data sets, a clear
energy dependent time-walk e�ect was visible. For a subsequent o�ine correction, the
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particular shape of the time distribution as a function of the deposited energy was
described and corrected with Eq. 4.11. The absolute calibration was, in case of TDC
based readout, achieved by digitised time spectra of a test pulser with and without
delay. Using SADC readout, the time calibration is directly given by the sampling
frequency of 50 MHz.
In both MAMI test beamtimes, a time resolution below 1 ns for the processed scenar-
ios above 250 MeV could be achieved. The obtained data for the time resolution was
described by a three parametric function (Eq. 4.12). This allows an extrapolation of
the time resolution to an energy of 1 GeV, which results in 430 ps for a single module,
extracted from two adjacent crystals with similar energy deposition. Conspicuous are
the resulting �t parameters in Fig. 4.17. For the regarded time di�erence, the stochas-
tic term (represented by the

√
E
−1
-term) disappears, because of the narrow window

on the deposited energy. The same behaviour was already con�rmed in [49] for similar
circumstances. Furthermore, in case of the noise term, the situation is inverted, since
here the noise of the crystals contributes.
In the beamtime of 2010, an up to now unexplained structure arises at the medium
energies (visible in Fig. 4.21). Currently it is assumed that this anomaly originates
from an internal software problem of the tagger readout, which �nally results in a
mixing of tagger channels. This can in addition be seen in Fig. 4.20 in an unusual
broadening in the relevant energy range and could already be observed in [42] and
[55]. For the CERN beamtime in 2011, a �nal time resolution of 441 ps could be de-
termined, again by using the time di�erence of neighbouring crystals with a shower
shared equally corresponding to a mean energy of 5.5 GeV each. The dynamic range
for this beamtime was set to cover the expected energy range (compare Tab. 4.1).
Therefore, no signi�cant improvement compared to the MAMI beamtimes could be
expected due to a similar SNR.
The obtained time resolutions are mainly limited by the LAAPDs due to the reasons
mentioned in Sec. 4.3. Measurements with a 3 × 3 PWO crystal matrix read out by
PMTs achieved a single unit time resolution of 130 ps for an incident electron energy
of 855MeV [56].

6.2.1 Obtained Time Resolution of the CMS EMC

The operation mode of the EMC of the CMS experiment is in many aspects similar
to the one of the PANDA EMC. Therefore, a direct comparison focussing on timing
purposes is advisable. Nevertheless, there are di�erences concerning the extraction of
the time information and will be explained in the following. The pulses are digitised
with a sampling frequency of 40 MHz, which implies a channel width of 25 ns of the
SADC [49]. Fig. 6.3a shows a typical normalised pulse shape containing 10 pedestal
subtracted SADC samples. A possible way for a representation of the pulse shape
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independent of the maximum amplitude Amax is given in Fig. 6.3b. Here the time
information is plotted as a function of the ratio parameter between two consecutive
samples and is de�ned as R(T ) = A(T )/A(T + 25 ns) or Ri = Ai/Ai+1, which can
easily be parametrised by a polynomial. For each sample i, a �rst order estimation of
the time stamp Tmax/i can be extracted via Tmax/i = Ti − T (Ri). Here Ti corresponds
to the time of sample i and T (Ri) to the reconstructed time according to Fig. 6.3b.
The particular uncertainty σi is derived from

σi =
∂T (Ri)

∂Ri

∆Ri, (6.4)

in which the error of ∆Ri is determined from noise �uctuation in each sample, esti-
mation of the subtracted pedestal and the truncation of the digitisation. Finally the
time stamp Tmax and its error σT of the pulse can be deduced by

Tmax =

∑
i

Tmax/i
σ2
i∑

i
1
σ2
i

, (6.5)

1

σ2
T

=
∑
i

1

σ2
i

. (6.6)

Furthermore, for the �nal EMC detector the crystals have to be synchronised among

(a) (b)

Figure 6.3: (a) Typical pulse comprising 10 discrete data points. (b) Alternative
illustration of the pulse shape as a function of the ratio parameter R(T ) [49].

each other, due to the di�erent arrival time of particles from the interaction point.
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Here, the corresponding solid angle of the particular crystals plays a major role, since
the time of �ight can vary by a few ns. In case of CMS, this is done by a beam-splash
composed of muons [57].
It could be shown that, with a carefully calibrated and synchronised detector, a time
resolution below 100 ps ([49]) is possible for large energies corresponding to 20 GeV
and 100 GeV in barrel and endcaps, respectively. Here, the time di�erence between
two adjacent crystals with similar energy deposition caused by electrons serves as a
time stamp. The constant term of Eq. 4.12 is almost negligible, but as a drawback, the
noise term limits the time resolution at smaller energies. At 1 GeV deposited energy,
a time resolution of 1.5 ns is expected in the barrel part (σnoise ∼ 140 MeV).
For unsynchronised data, a time resolution determined with cosmic ray muons at
higher energies is limited by the constant term of ∼ 380 ps, which is consistent with
the applied synchronisation correction and with the results obtained in this thesis.

6.2.2 Outlook on Time Resolution for PANDA

The time resolution deduced in this thesis is not the �nal one and should be seen as an
upper limit regarding timing purposes. As it was explained in the previous sections,
the time resolution dramatically depends on the applied gain of the photo sensors.
As a next step, with the implementation of the newest version of the ASIC with two
separate gain branches, covering the lower and upper part of the energy range, another
improvement of the time resolution can be expected. This will be the case in the next
generations of EMC prototypes.
Another point is the necessity of a signi�cantly improved time resolution of the EMC
at least for charged particles due to the planned SciTil modules in front of the crystals.
Latest test results of a SciTil prototype show an achieved time resolution of 210 ps
[47]. An additional prototype including both, EMC and SciTil modules, is planned to
study and learn more about the interplay of both components. The impact of the Sc-
iTil plates in addition to the fused silica bars of the DIRC detector of pair production
on the EMC performance is currently under investigation.
As it was mentioned before, with the detection of scintillation light, the time deter-
mination is limited to the order of tens of ps. In course of the development in PET2

technologies in medical science it could be shown that the timing can signi�cantly
be improved with the detection of Cherenkov light [58]. In contrast to the generated
scintillation light, the Chrerenkov light is produced prompt, but on the other hand
there is a comparably low detection yield (for PWO compare 1.3.1.1). Therefore, the
QE of the photo sensors has to have a su�cient coverage of the blue to the UV3-light
and an adequate discrimination ability. Nevertheless, as well in high energy physics

2Positron Electron Tomography
3Ultraviolet
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the up to now achieved limits can be overcome via the detection of the Cherenkov
component.

6.3 Higher Order Energy Correction

In order to account for the energy loss in the passive material between the crystals or
enhanced shower leakage, the obtained energy of for instance a 3× 3 cluster has to be
corrected. Therefore the given equation for calibration 4.1 has to be extended by an
additional position dependent correction factor:

E∗cal = Fγ/e± · Cabs ·
∑
i

Si(t) · ci · Ei/uncal. (6.7)

The additional factor Fγ/e± is introduced, which is in principle a function of the spher-
ical coordinates ϑ and ϕ. Moreover, in case of electromagnetic probes one has to
distinguish between photons and electrons or positrons, respectively, because of the
slightly di�erent way of interaction and the resulting shower pro�le (compare Tab.
1.6). In this thesis, the factor Fγ/e± was determined with the so called ln(E2/E1)-
method (explained in Sec. 5.2.1), in which the value of ln(E2/E1) gives a �rst order
information about the point of impact for a single event. With the knowledge of Fγ/e±
the detected energy is subsequently corrected according to Eq. 5.3. For the analysed
beamtimes, this kind of correction function was only determined for a particular tran-
sition from one crystal to another in horizontal direction in space, corresponding to
the ϕ-direction. As it was mentioned, a further analysis is planned to apply this cor-
rection also to the vertical direction, especially to gain information about the impact
of the staggering of the crystals rows.
Tab. 5.1 gives a quantitative summary of the results achieved in the CERN beam-
time in both performed runs. Especially in the second run, with an impinging beam
in between the crystals, an absolute improvement from 1.896 % to 1.688 % could be
achieved. Furthermore Fig. 5.7a underlines the necessity of the application of the
ln(E2/E1)-method to get an uniform detector response. As expected, the more cen-
tralised the photons were impinging on the front face of the crystal, the smaller the
applied correction and consequently the improvement. In a further analysis for photon
energies from 150 − 1, 500 MeV at the MAMI facility at Mainz, an independence of
the energy could be evaluated. Also, the achieved lowering of the energy resolution is
almost constant over the full energy range and amounts to 0.25 % for the run shoot-
ing in between the crystals. This value is slightly worse but still comparable to the
achievements of the CERN beamtime.
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6.3.1 Alternatives to the ln
(
E2

E1

)
-Method

Sec. 5 documents the successful application of the ln(E2/E1)-method for di�erent
circumstances. But there are a handful of alternatives, which were partially used in
other experiments. One possible option would be the determination of a correction
function Fγ/e± via simulations. But for this strategy one has to fully understand
the input and the outcome of such a simulation. Based on the past experiences a
perfect agreement between simulation and experiment was up to now not achieved
and deviates signi�cantly. Therefore, a correction with a full reliability on a non-
perfectly understood simulation is not advisable.
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