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1. Introduction 
 

In pulmonary hypertension associated with chronic pulmonary arterial disease, a key 

pathological characteristic is narrowing of the lumen of the pulmonary arteries. Prostacyclin 

and its analogs, such as iloprost, have been shown to extend the survival of patients with 

pulmonary arterial hypertension (PAH) inhaled iloprost is the treatment of choice for 

pulmonary hypertension. It is not only convenient, but also reduces the infection risk 

associated with intravenous infusion. Iloprost acts through elevation of cAMP levels which 

occur after binding to the prostacyclin receptor (IP receptor). However, recent evidence has 

suggested that the lungs of some patients with pulmonary hypertension exhibit decreased 

expression of the IP receptor. The mechanism of action of prostacyclin analogs in pulmonary 

hypertension have not been elucidated, therefore, it is not known whether the effects of 

prostacyclin are mediated by a single prostanoid receptor pathway, or operate by various 

prostanoid receptors or non-prostanoid receptor pathways. Therefore, the major hypothesis in 

my thesis is “prostanoid receptors other than the IP receptor are involved in the signal 

transduction induced by prostacyclin”.  

The literature section of this thesis will summarize the following: 1) The pathophysiology 

of pulmonary arterial hypertension 2) The cellular changes associated with pulmonary arterial 

hypertension 3) Prostacyclin therapy for pulmonary hypertension 4) Prostacyclin signal 

transduction, focusing on the prostanoid EP4 receptor. 5) Signaling mechanisms of 

prostacyclin: the prostanoids receptor and peroxisome proliferator-activated receptor (PPAR) 6) 

Animal models of PAH: monocrotaline-treated rats.  

In the methods section of this thesis, the methods are described which were applied to 

investigate the mechanism of action of iloprost and the prostanoid receptors. Lung samples 

from pulmonary hypertension patients were examined for expression of the IP and EP4 

receptors. Tissues from rats with monocrotaline-induced pulmonary hypertension were 

examined for the expression of prostanoid receptors by immunohistochemistry. Proximal and 

distal pulmonary arterial smooth muscle cells (PASMCs) were isolated and cultured in vitro 

study to prostanoid receptors and prostacyclin effects in PAH. To identify smooth muscle cells, 

specific smooth muscle markers were identified by immunocytochemistry. Protein and mRNA 
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were isolated from PASMC from control and monocrotaline-treated rats, and analyzed by 

immunoblotting and RT-PCR. A Cell proliferation assay was used to determine the appropriate 

dose of iloprost for the in vitro studies and intracellular cyclic AMP (cAMP) levels were 

analyzed after prostacyclin stimulation.  

In the results section, an attempt is made to describe the prostacylin signaling pathway from 

the cell surface to the nucleus in PASMC from rats with monocrotaline-induced pulmonary 

hypertension. (1) the prostacyclin analog iloprost mediates vasodilator functions through the 

EP4 receptor, in the case of the low prostacyclin receptor expression associated with 

pulmonary hypertension. The first part of the results suggests a previously-unrecognized 

mechanism of action for iloprost, and the prospect that the EP4 receptor might be a novel 

therapeutic target for the treatment of PAH. (2) Patients with idiopathic PAH (IPAH) lack 

PPARs, and a similar expression pattern was observed in MCT-induced PAH. Treprostinil 

might be a ligand for the nuclear receptor PPARs and mediates antiremodeling effects through 

PPAR-α and PPAR-γ associated with PAH. 

In the discussion section of my thesis, I discuss my work according to the two directions 

suggested by the results. The major focus of thesis is on the specific contribution of the EP4 

receptor in iloprost-mediated signal transduction associated with PAH. In addition, it is shown 

that treprostinil might be a ligand for the nuclear receptor PPARs. There is also discussion of 

the prostacylin signaling pathway from the cell surface to the nucleus in PASMC from rats 

with monocrotaline-induced pulmonary hypertension. 

Prostacyclin analogs are powerful vasodilators and antiproliferative agents in smooth muscle 

cells. The major contribution of this thesis is the identification of a previously unrecognized 

mechanism of action of prostacyclin analogs, and the prospect that the EP4 receptor might be 

a novel therapeutic target for the treatment of PAH. The major results of my thesis were 

published in the Am J Respir Crit Care Med. in July 2008. 
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2. The Review of the literature 
 
2. 1.  The Pathophysiology of pulmonary arterial hypertension 

Pulmonary hypertension is a disease of the vasculature where the to pulmonary artery pressure 

rises above normal values.. Clinically defined PH requires an increase in the mean pulmonary 

artery pressure of more than 25 mm Hg at rest, or 30 mm Hg during exercise. The arteries in 

the lung create increased resistance to blood flow and blood pressure that increases the right 

ventricle pressure and thus, the workload of heart. The major five symptoms of pulmonary 

hypertension are 1.) shortness of breath with minimal exertion, 2) fatigue, 3) chest pain, 4) 

dizzy spells and 5) fainting. [Simonneau et al., 2004].  

Pulmonary arterial hypertension has a multifaceted pathobiology. The important issue of 

pulmonary artery pressure rising above the normal levels can be attributed to  

vasoconstriction, remodeling of the pulmonary artery vessel wall, and thrombosis leading into 

increased pulmonary vascular resistance in PAH [Humbert et al., 2004]. The endothelial cells, 

smooth muscle cells and fibroblasts, as well as inflammatory cells and platelets, may play 

important roles in PAH. Meanwhile, several signaling pathways have been shown to be 

dysregulated in PAH including the following: (1) an imbalance between prostacyclin and 

thromboxane, as evident by reduced production of prostacyclin, mainly by down-regulation of 

prostacyclin synthase and increased excretion of thromboxane [Tuder et al., 1999;Christman et 

al., 1992]; (2) an increased expression of growth factors such as endothelin [Giaid et al., 1993] 

and platelet-derived growth factor (PDGF) [Humbert et al., 1998;Schermuly et al., 2005a] and 

(3) up-regulation of cyclic nucleotide phosphodiesterases (PDEs) such as PDE1 [Schermuly et 

al., 2007b], PDE3/4 [Dony et al., 2008b], and PDE5 [Schermuly et al., 2005b;Wharton et al., 

2005].  
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2.1.1 The clinical classification of pulmonary arterial hypertension 
Table 1. Pulmonary Hypertension Classification System from the 2003 World 

Symposium on Pulmonary Hypertension [Simonneau et al., 2004] 
 
1. Pulmonary arterial hypertension  
1.1. Idiopathic pulmonary arterial hypertension 
1.2. Familial pulmonary arterial hypertension 
1.3. Associated with pulmonary arterial hypertension 

1.3.1. Collagen vascular disease 
1.3.2. Congenital systemic to pulmonary shunts 
1.3.3. Portal hypertension 
1.3.4. Human immunodeficiency virus 
1.3.5. Drugs and toxins 
1.3.6. Other (thyroid disorders, glycogen storage disease, Gaucher’s disease, 

hemoglobinopathies, hereditary hemorrhagic telangiectasia, myeloproliferative 
disease,splenectomy) 

1.4. Associated with venous or capillary involvement 
1.4.1. Pulmonary veno-occlusive disease 
1.4.2. Pulmonary capillary hemangiomatosis 

1.5. Persistent pulmonary hypertension of the newborn 
2. Pulmonary hypertension with left heart disease 
2.1. Left-sided atrial or ventricular heart disease 
2.2. Left-sided valvular heart disease 
3. Pulmonary hypertension associated with lung disease and/or hypoxemia 
3.1. Chronic obstructive pulmonary disease 
3.2. Interstitial lung disease 
3.3. Sleep-disordered breathing 
3.4. Alveolar hypoventilation disorders 
3.5. Long-term exposure to high altitude 
3.6. Developmental abnormalities 
4. Pulmonary hypertension due to chronic thrombotic/embolic disease 
4.1. Thromboembolic obstruction of proximal pulmonary arteries 
4.2. Thromboembolic obstruction of distal pulmonary arteries 
4.3. Nonthrombotic pulmonary embolism 
5. Miscellaneous; sarcoidosis, histiocytosis X, lymphangiomatosis, compression of 
pulmonary vessels (adenopathy, tumor, fibrosing mediastinitis) 
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2.2 The cellular changes associated with pulmonary arterial hypertension  
 
Pulmonary arterial hypertension has a complex cellular and molecular pathobiology. 

Vasoconstriction, remodeling of the pulmonary vessel wall, and thrombosis, contribute to 

increased pulmonary vascular resistance in PAH [Humbert et al., 2004]. Endothelial cells, 

smooth muscle cells and fibroblasts, as well as inflammatory cells and platelets, may play a 

significant role in PAH.  

One of the major elements of PAH remodeling is smooth muscle cell proliferation in distal 

parts of pulmonary arteries. The cellular processes of this hyperproliferation are incompletely 

understood. In addition, a hallmark of severe pulmonary hypertension is the formation of a 

layer of myofibroblasts and extracellular matrix between the endothelium and the internal 

elastic lamina, termed the neointima. In some model systems, particularly in hypoxia models, 

the adventitial fibroblasts appear to be the first cells activated to proliferate and to synthesize 

matrix proteins in response to the pulmonary hypertensive stimulus [Stenmark et al., 2002]. 

Disorganized endothelial cell proliferation, leading to the formation of plexiform lesions is 

described in many cases of PAH [Cool et al., 1999;Voelkel and Cool, 2004]. In response to 

hypoxia, shear stress, inflammation, or drugs or toxins, endothelial cells may react in various 

ways, affecting the process of vascular remodeling. Injury can alter not only cell proliferation 

and apoptosis but also homeostatic functions of the endothelium (including coagulation 

pathways, and the production of growth factors and vasoactive agents). Endothelial cells also 

express markers of angiogenesis, such as vascular endothelial growth factor (VEGF) and its 

receptors in PAH [Cool et al., 1999]. In addition, cells comprising plexiform lesions of 

idiopathic PAH are monoclonal in origin. Therefore, although the lesions themselves are 

probably hemodynamically irrelevant, they may represent more than simply the result of 

severe elevation of intravascular pressures [Lee et al., 1998]. Moreover, several factors, 

including transforming growth factor-beta (TGF-β) receptor-2 and the apoptosis-related gene, 

Bax [Yeager et al., 2001] are downregulated in 90% of plexiform lesions while abundant 

expression was observed in endothelial cells outside these lesions. Human herpesvirus 8 

infection may also contribute to the growth of monoclonal endothelial cells in plexiform 

lesions from patients with idiopathic PAH [Yeager et al., 2001;Cool et al., 2003]. These 



The review of the literature                                                 6 

 

findings suggest that triggers, including vasculotropic viruses, can stimulate the growth of 

endothelial cells by dysregulating cell growth or growth factor signaling.  

The mechanisms that enable the adventitial fibroblasts to migrate into the media (and 

ultimately into the intima) are currently unclear, but there is good evidence to suggest that 

upregulation of matrix metalloproteinases (MMP2 and MMP9) occurs, and that these 

molecules are involved in migration. This neovascularization occurs primarily in the adventitia, 

and then it extends into the outer parts of the media. This adventitial vessel formation could 

provide a factor for circulating progenitor cells to access the vessel wall from the adventitial 

side. It is unknown whether circulating progenitor cells derived from the bone marrow 

contribute directly to the adventitial thickening (and perhaps medial thickening), or whether 

bone marrow-derived progenitor cells simply enhance the proliferative and migratory activity 

of the local adventitial fibroblasts. Significant attention in the future will have to be focused on 

the role of circulating precursor cells to vascular remodeling [Davie et al., 2004]. 

Thrombotic lesions and platelet dysfunction are potentially important processes in PAH 

[Herve et al., 2001]. Biological evidence shows that intravascular coagulation is a continuous 

process in PAH patients, characterized by elevated plasma levels of fibrinopeptide A- and 

D-dimers. In addition, procoagulant activity and fibrinolytic function of the pulmonary 

endothelium are altered in PAH. Evidence also exists to suggest that enhanced interactions 

between platelets and the pulmonary artery wall may contribute to the functional and structural 

alterations of pulmonary vessels. Vascular abnormalities in PAH may lead to release by 

platelets of various procoagulant, vasoactive, and mitogenic mediators. Indeed, in addition to 

its role in coagulation, the platelet stores and releases important contributors to pulmonary 

vasoconstriction and remodeling such as thromboxane A2, platelet-activating factor, serotonin 

(5-hydroxytryptamine [5-HT]), platelet-derived growth factor (PDGF), TGF-β, and VEGF. 

However, it remains unclear whether thrombosis and platelet dysfunction are causes or 

consequences of the disease [Herve et al., 2001].  
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Figure 1. Consequences of pulmonary arterial endothelial cell dysfunction on pulmonary 

artery smooth muscle reaction [Humbert et al., 2004]. 

Dysfunctional pulmonary artery endothelial cells (blue) have decreased production of 

prostacyclin and nitric oxide, with an increased production of endothelin-1 promoting 

vasoconstriction and proliferation of pulmonary artery smooth muscle cells (red). cAMP = 

cyclic adenosine monophosphate; cGMP = cyclic guanosine monophosphate; ET = endothelin; 

ETA = endothelin receptor A; ETB = endothelin receptor B; PDE5 = phosphodiesterase type 5. 
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2.3 Treatment strategies using prostacyclins in pulmonary hypertension 
 

Pulmonary arterial hypertension (PAH) has a multifaceted pathobiology. The important issue 

of pulmonary artery pressure rising above normal level is attributed to vasoconstriction, 

remodeling of the pulmonary vessel wall and thrombosis, leading to increased pulmonary 

vascular resistance in PAH [Humbert et al., 2004]. Different signal pathways have been shown 

to be dysregulated in PAH, including the following: (1) an imbalance between prostacyclin 

and thromboxane, as evident by a reduced production of prostacyclin, mainly by 

down-regulation of prostacyclin synthase and increased excretion of thromboxane [Tuder et al., 

1999;Christman et al., 1992]; (2) an increased expression of growth factors such as endothelin 

[Giaid et al., 1993] and PDGF [Humbert et al., 1998;Schermuly et al., 2005a] and (3) 

up-regulation of cyclic nucleotide PDEs such as PDE1 [Schermuly et al., 2007b], PDE3/4 

[Dony et al., 2008a], and PDE5 [Schermuly et al., 2005b;Wharton et al., 2005]. In this thesis, I 

focus on prostacyclin sensing in pulmonary arterial smooth muscle cells from rats with 

monocrotaline-induced pulmonary arterial hypertension [Lai et al., 2008]. 

Prostacyclin is an important endogenous pulmonary vasodilator, acting through activation of 

cAMP-dependent pathways. Prostacyclin also inhibits the proliferation of vascular smooth 

muscle cells and decreases platelet aggregation. Prostacyclin synthesis is decreased in 

endothelial cells from PAH patients. Analysis of urinary metabolites of prostacyclin showed a 

decrease in the amount of excreted 6-ketoprostaglandin F1α, a stable metabolite of 

prostacyclin, in patients with idiopathic PAH [Christman et al., 1992]. Moreover, endothelial 

cells of PAH patients are characterized by reduced expression of prostacyclin synthase [Tuder 

et al., 1999], and prostacyclin therapy has been shown to improve hemodynamics, clinical 

status, and survival of patients displaying severe PAH.  

Prostaglandins (prostaglandin I 2 (PGI2) and prostaglandin E-1 (PGE1)) are naturally 

occurring prostanoids that are endogenously produced as metabolites of arachidonic acid in 

the vascular endothelium [Kerins et al., 1991]. In vascular smooth-muscle cells, prostaglandin 

stimulates adenylate cyclase which converts adenosine triphosphate to cyclic adenosine 
monophosphate (cAMP). Thus, protein kinases mediate a cAMP-induced decrease in 
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intracellular calcium leading to relaxation and vasodilation [Badesch et al., 2004]. Both PGI2 

and PGE1 are potent pulmonary vasodilators and inhibitors of platelet aggregation. A 

deficiency in endogenous prostacyclin may be a contributing factor to the pathogenesis of 

some forms of PAH [Christman et al., 1992]. In addition, there is evidence that the lungs of 

PAH patients have decreased expression of the IP receptor [Hoshikawa et al., 2001]. Clinical 

studies have focused on the potential benefit of long-term supplementation of exogenous PGI2. 

Several prostacyclin analogs, administrated through different routes, are currently available for 

the treatment of PAH. Epoprostenol, a short-acting PGI2 analog, improved hemodynamic 

function, exercise capacity, and survival in patients, but the problems and adverse effects 

related to this treatment are due primarily to complicated delivery system and characteristics 

of the drug. Pain and infection associated with the long-term presence of an indwelling 

intravenous catheter are common. Furthermore, epoprostenol has a short half-life (3–6 min) 

[Barst et al., 1996]. Therefore, stable long-acting prostacyclin analogs can resolve some of 

these problems and improve the prospects of long-term pulmonary vasodilator therapy.  

Iloprost is the first PGI2 analog that is FDA approved for the treatment of PAH through direct 

pulmonary delivery by aerosol inhalation. Iloprost is a stable PGI2 analog, with a half-life of 

20-30 min and duration of effect up to 120 min using a specified breath-actuated nebulizer 

system [Olschewski et al., 1996]. In a randomized controlled trial, inhaled doses of 2.5-5.0 g 

administered six to nine times daily improved functional classification, exercise tolerance, and 

quality of life [Olschewski et al., 2002]. Inhaled iloprost has been shown to be effective for the 

treatment of PAH and may provide an alternative to the use of intravenous epoprostenol. 

When the clinical effects of inhaled iloprost and intravenous epoprostenol are compared, 

iloprost inhalation has clear advantages but also certain drawbacks. Most importantly, 

inhalation provides potent pulmonary vasodilatation with minimal systemic side effects, and 

no risk of catheter-related complications. However, inhaled iloprost last only 30 to 90 min, 

and thus six to nine inhalations are needed to achieve good clinical results. Treprostinil is 

another long-acting stable PGI2 analog, with a duration of action up to four hours, and is FDA 

approved for subcutaneous infusion. The safety and effectiveness of treprostinil were 

demonstrated in smaller clinical trials and one large randomized, controlled trial with 470 
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patients [Simonneau et al., 2002]. Improvement in exercise capacity, improved indices of 

dyspnea, a reduction in signs and symptoms of pulmonary hypertension, and improved 

hemodynamics were noted in the patients who received subcutaneous treprostinil [Simonneau 

et al., 2002]. In addition, the patients experienced improved functional classification and 

exercise tolerance, without reported adverse effects [Voswinckel et al., 2006]. An inhaled 

liposomal treprostinil formulation that may improve therapeutic response is also currently 

undergoing pre-clinical trials [Dhand, 2004].  

 

2.4  Prostacyclin signal transduction 

 

2.4.1 Molecular characteristics of prostanoid receptors 

Cyclooxygenases metabolize arachidonate to five primary prostanoids: PGE2, PGF2 , PGI2, 

TxA2, and PGD2 [Breyer et al., 2001;Needleman et al., 1986]. Prostanoids that consist of the 

prostaglandins (PG) and the thromboxanes (Tx) are cyclooxygenase products derived from 

C-20 unsaturated fatty acids (Figure 2). These autocrine lipid mediators interact with specific 

members of a family of distinct G-protein-coupled prostanoid receptors, which divide into five 

subtypes (EP1-4, FP, IP, TP, and DP) [Breyer et al., 2001;Negishi et al., 1995]. In addition, the 

eight subtypes of prostanoid receptors are each encoded by an individual gene. Phylogenetic 

analyses indicate that receptors sharing a common signaling pathway have higher sequence 

homology than receptors sharing a common prostanoid as their preferential ligand. The effects 

of prostanoid receptors on smooth muscle reflect this relationship. Thus EP2, EP4, DP, and IP 

induce smooth muscle relaxation and are more closely related to each other than to the other 

prostanoid receptors. Similarly, EP1, FP, and TP receptors cause smooth muscle contraction 

and form another group based on sequence homology. The EP3 receptors usually stimulate 

smooth muscle contraction and define a third group. On the basis of these phylogenetic 

analyses, it has been suggested that the COX pathway may have evolved from PGE2 and an 

ancestral EP receptor [Narumiya et al., 1999]. The evolution of the different EP receptor types 

from this ancestral prostanoid receptor would have linked PGE2 to different signal transduction 

pathways. The receptors for the other prostanoids might then have evolved by gene 
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duplication of these different EP receptor subtypes [Narumiya et al., 1999]. Alternative 

splicing of the exon encoding the seventh transmembrane domain occurs at a position 

approximately 9-12 amino acids into the carboxy terminus of the EP3, FP, and TP receptors of 

various species. The rat EP1 receptor is also subject to alternative splicing but instead diverges 

midway into the sixth transmembrane domain. The variant form (rEP1-variant) contains none of 

the amino acids that are highly conserved within the seventh transmembrane domain of the 

other prostanoid receptors. Generally, prostanoid receptor isoforms exhibit similar ligand 

binding but differ in their signal pathways, their sensitivity to agonist-induced desensitization, 

and their tendency toward constitutive activity, as will be discussed in the next section. While 

there is homology between the EP3
 receptor isoforms of different species, the human and 

mouse TP receptor isoforms demonstrate no homology. This may be indicative of other TP 

isoforms [Narumiya et al., 1999]. The receptors that are subject to alternative splicing (EP1, 

EP3, FP, and TP) are phylogenetically related, perhaps suggesting the evolutionary 

conservation of the sequence(s) involved in this process [Narumiya et al., 1999;Pierce and 

Regan, 1998].  
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Figure 2. Biosynthetic pathways of prostanoids [Narumiya et al., 1999] 

Formation of series 2 prostaglandins (PG), PGD2, PGE2, PGF2α, PGG2, PGH2,  

and PGI2, and a thromoboxane (Tx), TxA2, from arachidonic acid is shown.  

The first two steps of the pathway, (conversion of arachidonic acid to PGG2 and  

then to PGH2), are catalyzed by cyclooxygenase, and subsequent conversion of PGH2 

to each PG is catalyzed by respective synthase as shown.  

Ring structures of A, B, and C types of PG are shown separately. 
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2.4.2 Prostanoid signal transduction in smooth muscle cells 

Signal transduction pathways of prostanoid receptors have been studied by examining 

agonist-induced changes in the levels of second messengers (cAMP, free Ca2+, and inositol 

phosphates), and by identifying G protein coupling by various methods. These results are 

summarized in Table 2. Prostanoid receptors sharing a common signal pathway have higher 

sequence homology than do receptors sharing a common prostanoid as their preferential ligand. 

Thus three groups of related receptors have been defined: 1) DP, IP, EP2, and EP4; 2) EP1, FP, 

and TP; and 3) EP3[Wright et al., 2001].  

Prostanoid receptors in group 1) are linked to heterotrimeric G proteins that are composed of  

a Gα-subunit that stimulates adenylate cyclase to produce cAMP. An increase in intracellular 

cAMP concentration is observed after stimulation of the recombinant human DP [Boie et al., 

1995], IP [Boie et al., 1994;Nakagawa et al., 1994], EP2 [Regan et al., 1994] and EP4 [Wright 

et al., 2001] receptors, in addition to their species homologs. The results obtained with 

recombinant receptors corroborated those obtained previously in isolated tissues. For instance, 

prostaglandin D (PGD)-, prostaglandin E (PGE)-, and prostaglandin I (PGI)-responsive 

receptors cause the stimulation of cAMP production in platelets and in the vasculature [Hardy 

et al., 1998]. However, the recombinant human IP receptor can also mediate inositol phosphate 

production and increases in free Ca2+ levels by coupling with Gαq [Namba et al., 1994]. 

Likewise, EP2, EP4, and DP receptors in choroid tissue do not couple to adenylate cyclase, but 

rather to eNOS; this may be evoked by Gβγ action on  phosphatidylinositol 3-kinase, which in 

turn activates, sequentially, protein kinase B (PKB) and eNOS [Wright et al., 2001].  

Prostanoid receptors in group 2) couple to increases in intracellular free Ca2+ through the 

activation by Gαq of phospholipase C, with subsequent inositol phosphate liberation. This 

pathway has been demonstrated for FP using anti-Gαq antibodies, which corroborates earlier 

results demonstrating inositol phosphate turnover in isolated luteal cells on PGF2α 

administration. In the case of TP, Gαq activation is the primary effector pathway as shown 

during stimulation of native TP receptors in platelets [Wright et al., 2001;Namba et al., 

1994;Shenker et al., 1991]. However, the previously described TP receptor splice variants TP 

and TPβ also can signal through Giα and Gsα to inhibit and stimulate adenylate cyclase,  
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respectively [Hirata et al., 1996]. The EP1 preferentially couples to Gαq. An increase in inositol 

phosphate after its stimulation in brain and ocular vasculature is clearly observed [Wright et al., 

2001]. 

The EP3 subtypes constitute group 3) of the prostanoid receptor family, and employ as their 

primary effector pathway the inhibition of adenylate cyclase through the Giα -family [Negishi 

et al., 1988]. However, the molecular cloning of the bovine EP3 receptor splice variants 

demonstrates the array of second messengers to which these receptors are coupled. Four 

subtypes of bovine EP3 have been cloned (designated A, B, C, and D), and all show identical 

agonist binding properties [Namba et al., 1993]. However, EP3Α acts through Giα to inhibit 

adenylate cyclase, EP3Β
 and EP3Χ signal through Gsα to activate adenylate cyclase, and EP3D is 

coupled to Gια, Gσα, and Gαθ, resulting in the inhibition and activation of adenylate cyclase as 

well as the activation of phospholipase C. Alternatively, nuclear EP3α receptors seem to be G 

protein dependent but not coupled to adenylate cyclase or phospholipase C activation 

[Bhattacharya et al., 1999]. A novel type of G protein regulation has also been reported for the 

EP3B and EP3Χ receptors. In addition to their stimulatory effects on Gsα, they are thought to 

negatively regulate G protein activity by specifically inhibiting the GTPase activity of Gα, a 

member of the Giα-family[Negishi et al., 1993]. Along the same lines, EP3D-induced ductus 

arteriosus relaxation is pertussis toxin-, NO-, and endothelin- insensitive but if dependent on 

ATP-sensitive potassium channel activation [Bouayad et al., 2001]; while the mechanisms 

remain to be elucidated, direct receptor-channel interaction is a possibility. The EP3 receptor 

subtypes may also differ in their levels of constitutive activity, the agonist-independent activity 

of the receptor [Wright et al., 2001].  
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Table 2. Signal transduction of prostanoid receptors [Narumiya et al., 1999] 

Data obtained from receptors of various species are summarized, and representative signal 

transduction of each receptor is shown. PI, phosphatidylinositol; , increase; , decrease 

         

 
Figure 3 Major signal transduction pathways in vascular smooth muscle cells.  

Receptors for vasodilatory prostaglandins are coupled to different intracellular signaling 

cascades via different G-proteins. At least three transduction systems are involved: Gs- or 

Gi-coupled control of adenylate cyclase activity, Gq-coupled activation of phospholipase C 

(PLC) which inducesphospholipid breakdown and generates the signal molecules IP3 and 

diacylglycerol and results in Ca2+-mobilisation.
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2.4.3 The Prostanoid EP4 receptor  
 
The prostanoid receptors classification in the early literature somewhat confuses the molecular 

identities of the prostanoid EP2 receptor (EP2 receptor) and the prostanoid EP4 receptor (EP4 

receptor). After 1995, the EP4 receptor was defined more clear [Nishigaki et al., 1995;Breyer 

et al., 2001;Wilson et al., 2004]. The human EP4 receptor cDNA encodes a 488 amino acid 

polypeptide with a predicted molecular mass of 78 kDa. The EP4 receptor mRNA is widely 

distributed, with a major species of 3.8 kb detected by Northern analysis in different tissues, 

such as lung, adrenal, and kidney tissues [Sando et al., 1994;Breyer et al., 1996]. Important 

vasodilator effects of EP4 receptor activation have been described in venous and arterial beds 

through increased cAMP production [Coleman et al., 1994b;Coleman et al., 1994a].  

A particular role for the EP4 receptor in regulating the pulmonary ductus arteriosus has also 

been suggested by the recent studies in mice harboring a targeted disruption of the EP4 

receptor gene [Segi et al., 1998;Nguyen et al., 1997]. The EP4 receptor has a preference for 

analogs with a C-1 carboxylate that is >50-fold higher than that observed for the 

corresponding methyl ester [Abramovitz et al., 2000;Breyer et al., 1996;Breyer et al., 2001], 

and EP4 receptor may be pharmacologically distinguished from the EP1 and EP3 receptor by 

the EP4 receptor insensitivity to sulprostone [Abramovitz et al., 2000;Breyer et al., 1996], and 

from EP2 receptors by EP4 insensitivity to butaprost and relatively selective activation by 

PGE1-OH [Kiriyama et al., 1997;Boie et al., 1997]. Currently, pharmacological researchs on 

piglet saphenous veins reveal that they contain multiple relaxatory prostanoid receptors, and 

suggesting that IP receptor agonists are also prostanoid EP4 receptor agonists [Wilson and 

Giles, 2005]. Iloprost and cicaprost are effective agonists of the human prostanoid EP4 

receptor. The pharmacological agonist binding data reveal hight binding of iloprost (pKi=6.6) 

and cicaprost (pKi=7.4) to the EP4 receptor and lower affinity binding to the EP2 

receptor(pKi=5.9, <5.9, respectively). Therefore, PGI2 is an agonist of human EP4 receptors 

[Wilson et al., 2004].  

The structural difference between the two Gαs-coupled EP receptors is the length of the 

C-terminal tail: the EP4 receptor has a long (156 amino acid residue) C-terminal sequence 
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and contains 38 serine and threonine residues that might serve as multiple phosphorylation 

sites, whereas the EP2 receptor has a shorter tail sequence. The EP4 receptor was found to 

undergo rapid agonist-induced desensitization, whereas the EP2 receptors did not [Nishigaki et 

al., 1996].  Similarly, EP4 receptors were rapidly internalized, but EP2
 receptors did not 

[Desai et al., 2000]. The EP4 receptors would be a target for agonist-dependent 

phosphorylation and desensitization [Bastepe and Ashby, 1999;Bastepe and Ashby, 1997]. 

The EP4 receptors may play variable physiologic roles based on the persistence of the signal 

generated by the receptor upon ligand activation.  

The signaling properties of EP4 receptors are in the activation of two different pathways. The 

EP4 receptor may activate the cAMP/PKA pathway and also there is a concomitant activation 

of the PI3K and ERK signaling pathways [Fujino et al., 2005]. The pathways of activation of 

cAMP−PKA signaling can inhibit smooth muscle cell proliferation [Indolfi et al., 1997]. In 

this signaling cascade, the release of Gαs after receptor stimulation leads to adenylyl cyclase 

(AC) activation, which leads to an increase in the intracellular cAMP levels. The subsequent 

activation of PKA by cAMP can result in the phosphorylation of the CRE binding protein 

(CREB), which is a transcription factor that interacts with CREs and is central to the 

regulation cAMP-responsive gene expression [Mayr and Montminy, 2001;Johannessen et al., 

2004]. Cyclooxygenase-2 (COX-2) expression is regulated by cAMP. The catalytic product of 

COX-2 is PGH2, is the immediate precursor for the biosynthesis of the prostaglandins and 

thromboxanes. In PASMCs, the activation of endogenous EP2 and EP4 prostanoid receptors 

can occur through an autocrine signaling pathway [Bradbury et al., 2003]. Interestingly, recent 

evidence suggests that the lungs of some patients with pulmonary hypertension exhibit 

decreased expression of the IP receptor [Lai et al., 2008]. The mechanisms of action of 

prostacyclin analogs in pulmonary hypertension are not yet clear. Whether they activate only a 

single prostanoid receptor pathway, or operate through multiple prostanoid receptors or 

non-prostanoid receptor pathways is not known. Many data have shown that prostacyclin 

analogs are also agonists of human EP4 receptors. The signaling mechanisms of EP4 are thus 

very complex, and require further analysis.  
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2.4.4 Intracellular trafficking of prostanoids receptors 
 

The biological actions of PGE2 are thought to result from its interaction with plasma 

membrane G protein-coupled receptors termed EP, which include the EP1, EP2, EP3, and EP4 

subtypes [Coleman et al., 1994b]. The most well-known signal transduction pathways of 

prostacyclin agonists are mediate by prostanoids receptors on the cell surface. The receptors 

for vasodilatory prostaglandins are coupled to different intracelluarlar signaling cascades via 

different G-proteins to act on the cAMP-dependent pathways [Schrör and Weber, 1997;Breyer 

et al., 2001]. Recent data have implied that GPCRs transducer signals not only through 

secondary messengers, but also through agonist-induced receptor endocytosis [Breyer et al., 

2001;Zhang et al., 1999;Tsao et al., 2001].  

    
 

Figure 4. The membrane pathway mediating rapid and reversible internalization 

(sequestration) of G-protein-coupled receptors (GPCRs) might be related to the membrane 

pathway mediating GPCR trafficking to lysosomes in two principal ways [Tsao et al., 2001].  

(a) GPCRs could follow divergent pathways after endocytosis by a common membrane 

mechanism. This hypothesis suggests that distinct GPCRs are sorted between divergent 

downstream trafficking pathways after endocytosis.  

(b) The membrane pathway mediating rapid and reversible internalization of GPCRs might be 

completely separate from the pathway mediating receptor trafficking to lysosomes.  

This suggests that GPCRs are sorted before endocytosis, such as by physical segregation of 

receptors in distinct microdomains of the plasma membrane which later endocytose.  
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It is usually assumed that the signal transduction cascades are initiated at the plasma 

membrane, and not the nuclear membranes. However, some studies have revealed that, EP3, 

EP4 receptors are present in nuclear envelope [Bhattacharya et al., 1998;Bhattacharya et al., 

1999]. The nuclear membrane contains high levels of cyclooxygenase-1 and -2 and of PGE2 

[Spencer et al., 1998]. Cytosolic phospholipase A2 undergoes a calcium-dependent 

translocation to the nuclear envelope [Schievella et al., 1995], and COX-2 translocates to the 

nucleus in response to certain growth factors [Coffey et al., 1997]. It is thus possible that 

prostanoids may induce some of their effects via intracellular EP receptors, to have a direct 

nuclear action [Goetzl et al., 1995;Morita et al., 1995]. Several studies have revealed that the 

nuclear envelope plays a major role in signal transduction cascades [Malviya and Rogue, 

1998;Nicotera et al., 1989]. In fact, a nuclear lipid metabolism that is a part of unique nuclear 

signaling cascade termed NEST (nuclear envelope signal transduction) [Baldassare et al., 

1997]. Both heterotrimeric and low molecular weight G proteins [Baldassare et al., 

1997;Saffitz et al., 1994], phospholipase C [Malviya and Rogue, 1998], phospholipase D 

[Baldassare et al., 1997], and adenylate cyclase [Lepretre et al., 1994] can be localized at the 

nucleus. Evidence exists the demonstrate EP3, and EP4
 receptors in the nuclear envelope, and 

reveals that these receptors are functional, and their actions appear to involve pertussis toxin 

(PTX)-sensitive G proteins [Bhattacharya et al., 1999].  

In conclusion, the mechanisms of action of prostacyclin analogs in pulmonary hypertension 

are not yet clear whether they are activated only by a single prostanoid receptor pathway, or 

operate via various prostanoid receptor or non-prostanoid receptor pathways. The presence of 

prostanoid receptors in the nuclear membrane suggests differential signaling pathways of 

prostacyclin actions involving both cell surface and nuclear receptors. For these reasons, it is 

important to investigate the regulation of prostanoid receptor intracellular trafficking and the 

function of nuclear prostanoid receptor in prostacyclin agonist-induced signal transduction  
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2.5 Signaling mechanisms of prostacyclin: prostanoids receptors and 
peroxisome proliferator-activated receptors (PPARs) in pulmonary arterial 
hypertension 
 
Prostacyclin and its analogs activate G-protein-coupled cell–surface prostacyclin (IP) 

receptors, leading to the inhibition of smooth muscle cell proliferation [Breyer et al., 2001]. 

Additionally, the lungs of some patients with pulmonary hypertension have decreased 

expression of the IP receptor [Lai et al., 2008] and the absence of IP receptors worsens 

pulmonary hypertension [Hoshikawa et al., 2001]. The studies have suggested that some of 

these effects of prostacyclin analogs in pulmonary hypertension are mediated by nuclear 

receptor pathways. Data have shown that prostacyclin and its analogs can also activate the 

nuclear receptor family of peroxisome proliferator-activated receptors (PPARs) [Ali et al., 

2006;Falcetti et al., 2007].  

The PPARs are transcription factors belonging to the nuclear receptor superfamily, the three 

different PPAR subtypes have been identified, PPARα, PPARγ, and PPARδ. The PPAR ligands 

range from free fatty acids and their derivatives produced by the cyclooxygenase or 

lipoxygenase pathway to certain hypolipidemic drugs. The PPARs regulate gene expression by 

binding to the retinoid receptor RXR, and then, as a heterodimeric complex,  to specific DNA 

sequence elements termed PPAR-responsive elements (PPREs) in the promoter regions of 

target genes, to regulate their expression. Fatty acid derivatives and eicosanoids have been 

identified as natural ligands for PPARs [Bishop-Bailey, 2000;Bishop-Bailey et al., 

2002;Bishop-Bailey and Wray, 2003].  

Prostacyclin (PGI2) is generated from arachidonic acid by the action of the cyclooxygenase 

(COX) system coupled to PGI2 synthase (PGIS). The presence of the COX-2/PGIS at the 

nuclear and endoplasmic reticular membrane suggests differential signaling pathways of PGI2 

actions involving both cell-surface and nuclear receptors [Liou et al., 2000;Smith et al., 1983]. 

The PGI2 signaling through PPARδ plays an important role in embry implantation [Lim and 

Dey, 2002], tumourgenesis [Gupta et al., 2000], and apoptosis [Hatae et al., 2001]. 

Prostacyclin agonist treatment of pulmonary disease is gradually becoming being more  
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important [Falcetti et al., 2007;Hansmann et al., 2007;Hansmann et al., 2008] To date, studies 

show that PGI2 agonists can regulate PPARs [Falcetti et al., 2007;Hatae et al., 2001], 

indicating that a signaling mechanism for this abundant eicosanoid is operative in certain 

systems. The PGI2 agonists such as iloprost can effectively induce DNA binding and 

transcriptional activation by PPARα and PPARδ [Forman et al., 1997] but other PGI2 agonists, 

such as cicaprost, are incapable of inducing dimerization between PPARα or PPARδ and the 

retinoid X receptor [Reginato et al., 1998]. The PGI2 itself also failed to induce dimerization 

under these experimental conditions, possibly because the chemical instability of this PG 

prevents it from reaching the nuclear target. Alternatively, while cell-permeable cPGI makes 

its way into the nucleus more efficiently, a specific PG transporter may be required for 

intracellular delivery of PGI2. Leukotriene B4, a product of arachidonic acid generated by the 

lipoxygenase pathway, has also been reported as a PPARα ligand [Orie et al., 2006]. As for 

PPARγ, 15-deoxy- 12,14-PGJ2, a PGD2 metabolite, was first proposed as a ligand in an 

adipocyte differentiation model [Ameshima et al., 2003]. Because of the important role of 

PPARα and PPARγ in metabolic diseases [Howard and Morrell, 2005], many synthetic ligands 

of PPARs are being continuously developed. However, the question of endogenous ligand 

utilization by these receptors remains unanswered. In addition, pulmonary hypertension 

researches has shown reduced expression of the PPARγ gene and protein in the lungs of 

patients with severe pulmonary hypertension and loss of PPARγ expression in the complex 

vascular lesions present in these patients. Total PPARγ mRNA was decreased in patients with 

severe pulmonary hypertension when compared with normal lung tissue or tissue from patients 

with emphysema. Thus, a lack of endothelial cell PPARγ expression may be a marker of an 

abnormal endothelial cell phenotype, and lack of PPARγ expression inhibits apoptosis and 

facilitates endothelial cell growth and angiogenesis [Ameshima et al., 2003;Hansmann et al., 

2008]. The mechanisms of prostacyclin analogs in pulmonary hypertension are not yet clear. 

Whether they activate a single prostanoid receptor pathway, or operate via various prostanoid 

receptors or nuclear receptor pathways has not been defermined. These studies raise the 

possibility that regulation of PPARs by PGI2 represent differential signaling pathways of 

prostacyclin actions involving both cell-surface and nuclear receptors. 
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2.6 The monocrotaline-induced animal model of pulmonary vascular diseases 
 
Pulmonary arterial hypertension (PAH) has a multifaceted pathobiology. The important issue 

of pulmonary artery pressure rising above the normal levels is accredited to vasoconstriction, 

remodeling of the pulmonary vessel wall, and thrombosis, leading increased pulmonary 

vascular resistance in PAH [Humbert et al., 2004].  

Monocrotaline (MCT) is a toxic pyrrolizidine alkaloid of plant origin. Injecting small doses of 

MCT into rats causes delayed and progressive lung injury characterized by pulmonary 

vascular remodeling, pulmonary hypertension, and compensatory right heart hypertrophy. The 

lesions induced by MCT administration in rats are similar to those observed in chronic 

pulmonary vascular diseases of people [Todd et al., 1985;Rabinovitch et al., 1978;Rabinovitch 

et al., 1979]. In a study of hypoxia-inducible factor (HIF)-1α and pulmonary hypertension. 

Two models were applied 1) prolonged hypoxia and 2) MCT treatment. These studies 

demonstrated that both hypoxia and MCT induced temporal increases in the Ppa, the ratio 

RV/(LV + S) and HIF-1α levels. In addition, the PaO2 level significantly decreased in rats one 

to three weeks after MCT treatment [Lai and Law, 2004].  

Structural characteristics of muscular pulmonary arteries and arterioles in two classic models 

of pulmonary hypertension, the rat hypoxia and monocrotaline models, have been assessed.  

Studies demonstrated that MCT and chronic hypoxia both induced right ventricular 

hypertrophy. Monocrotaline increased the medial cross-sectional area of pulmonary arteries 

with an external diameter of between 30-100 µm and 101-200 µm, and reduced the lumenal 

area of pulmonary arteries with an external diameter of 101-200 µm. Chronic hypoxia slightly 

increased the medial cross-sectional area without a change in the lumenal area. Both MCT and 

hypoxia increased the percentage of partly muscularized and fully muscularized arterioles. The 

MCT, in contrast to chronic hypoxia, induced structural changes to muscular pulmonary 

arteries with an external diameter of 101-200 µm, which may contribute to increased 

pulmonary arterial pressure (PAP) and right ventricular hypertrophy [Lai and Law, 2004;van 

Suylen et al., 1998].  

In conclusion, the comparison between hypoxia- and MCT-induced remodeling demonstrates  
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that hypoxic vasoconstriction causes an immediate increase in PAP that is followed by 

vascular remodeling. In contrast, MCT primarily causes injury, induceing structural changes to 

the muscular pulmonary arteries which then results in an increase in PAP. In this thesis, the 

major interest is in the role of the prostanoid EP4 receptor in prostacyclin sensing in 

pulmonary arterial smooth muscle cells. For that reason, I applied the animal model of 

MCT-induced pulmonary hypertension in this study.  
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2.7  Aims of the work  
 
The excessive muscularization of pulmonary arteries is the hallmark of severe pulmonary 

hypertension. Prostacyclin agonists are powerful vasodilators and antiproliferative agents in 

smooth muscle cells. However, it is not yet clear if prostacyclin analogs exert activity only by 

a single prostanoid receptor pathway or if they can activate multiple prostanoid receptor or 

non-prostanoid receptor pathways (such as PPAR pathways). Therefore, this study was divided 

into to two parts described below, in order to investigate the signaling pathways of 

prostacyclin analogs. In addition, functional experiments were performed with PASMCs from 

rats with MCT-induced pulmonary hypertension.  

 
1) The major purpose of this study was to investigate whether prostanoid receptors other than 

the IP receptor are involved in the vasorelaxant effects of iloprost, and the role of the 

prostanoid EP4 receptor in prostacyclin sensing by PASMC in MCT-induced pulmonary 

hypertension in rat. This aspect of the thesis has been published in Am J Respir Crit Care Med. 

2008 Jul 15;178(2):188-96.  
 

2) There are multiple signaling possibilities for prostacyclin. Stimulation by the prostanoid 

pathway is cell specific, depending not only on the ability of prostacyclin to activate the cell 

surface prostacyclin receptor, but also on its ability to act intracellularly via the nuclear 

peroxisome proliferator-activated receptors (PPARs). The second direction study of this thesis 

was an investigation of prostacyclin analog activity via PPARs, a non-prostanoid receptor 

pathway, in PASMCs from MCT-induced pulmonary hypertension.  
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3. Methods 
 
3.1 Patient characteristics and measurements.  
 
Human lung tissue was obtained from three donors and three idiopathic pulmonary arterial 

hypertension (IPAH) patients undergoing lung transplantation. Lung tissue was snap-frozen 

directly after transplantation for mRNA and protein extraction [Schermuly et al., 2005a]. The 

study protocol for tissue donation was approved by the Ethics Commission of the Faculty of 

medicine of the Justus-Liebig- University, Giessen in accordance with national law and with 

the Good Clinical Practice/International Conference on Harmonisation guidelines. Written 

informed consent was obtained from each individual patient or the patient’s next of kin. 

 

3. 2 Animal models of monocrotaline-induced pulmonary hypertension  
 
Pulmonary hypertension is characterized by hemodynamic abnormalities such as high PAP, 

vascular remodeling, and right ventricular hypertrophy. 

The animal model of MCT-induced pulmonary hypertension has been applied to investigate 

the pathological mechanisms of pulmonary hypertension [Lai et al., 2008;Schermuly et al., 

2005a]. Monocrotaline, a pyrrolizidine alkaloid, is an extract from the crushed seeds of 

Crotalaria spectabilis (Figure 5), a warm-climate garden plant, and induces multi-organ 

toxicity, harming the kidney, heart, and liver. To induce pulmonary hypertension, adult male 

Sprague-Dawley (SD) rats (300–350 g) (Charles River, Sulzfeld, Germany) were randomized 

to two groups, receiving a single subcutaneous injection of either saline or 60 mg/kg MCT 

(Sigma, Germany) [Schermuly et al., 2007b]. The MCT was dissolved in 1 N HCl, neutralized 

to pH 7.4 with 0.5 N NaOH for subcutaneous injection. All protocols were approved by the 

Animal Care Committee of the University of Giessen.  
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Figure 5. Seeds and the plant of Crotalaria spectabilis. 

 

The animal model of monocrotaline-induced pulmonary hypertension  

has been applied to investigate the pathologenic mechanism of pulmonary 

hypertension. Monocrotaline was extracted from the seeds of Crotalaria spectabilis, 

a warm-climate garden plants which can induces multi-organ toxicity harming the 

kidney, heart, and liver. 
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3.3 Tissue preparative and immunohistochemistry  
 
The lung tissues were fixed by immersion of the lungs into a 3% paraformaldehyde solution 

overnight. The samples were then dehydrated (automatic vacuum tissue processor, Leica TP 

1050, Bensheim, Germany) and paraffin embeddied. After deparaffinisation and dehydration, 

trypsin 0.1% (GIBCO, Germany) was used to enhance penetration of the antibody into the 

sections for were immunohistochemistry. Next, the endogenous peroxidase of tissue sections 

was blocked with 3% hydrogen peroxide and sections washing three times in PBS. After that 

the section was immersed in blocking solution containing 1% bovine serum albumin (BSA) 

(Sigma, Germany) and 1% goat serum in PBS for 30 min. Sections were incubated with 

polyclonal antibodies against the prostanoid receptors, including anti-IP receptor (Acris, 

Germany) or anti-EP4 receptor antibody (Cayman, USA) for 1 h. The DAKO labelled 

streptavidian-biotin system (DAKO, Germany) was used to detect the signal, and colour 

development was undertaken by incubation with diaminobenzidine (DAB) 

substrate-chromogen for 2 min. As a negative control, 1% BSA diluted in PBS was used 

instead of the primary antibody [Chen et al., 2004]. The staining protocol was performed 

according to the DakoCytomation LSAB2 System-HRP manufacturer’s instructions as 

follows:  

1 Peroxidase block: hydrogen peroxide was applied to cover sections. Which were 

incubated for 5 min, and rinsed gently with distilled water and placed in fresh 1× PBS 

buffer. 

2. Blocking: A solution containing 1% bovine serum albumin (BSA) and 1% goat serum 

was applied in 1× PBS for 30 min. 

3 Primary antibody or negative control reagent: The primary or negative control reagent 

was applied to cover the specimen. After solution was applied a 1-h incubation, the 

section was rinsing gently with 1× PBS buffer.  

4 Biotinylated link: The yellow solution was applied to cover the specimen. After 30 min, 

slide was rinsing as in step 3. 

5 Streptavidin-HRP: The red streptavidin reagent was applied to cover the specimen, which 

was incubated for 30 min, and rinsed as before.  
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6 Substrate-chromogen solution: The DAB substrate-chromogen solutions were removed 

from 2-8 °C storage. The DAB solution: was prepared by adding one drop (or 20 µl) of 

the DAB chromogen solution per ml of substrate buffer. After 2 min incubation, the 

brown colour development was performed, and the section was rinsed gently with 

distilled water. 

7 Hematoxylin counterstain: slides were immersed in the bath of hematoxylin, and 

incubated for two or five min, depending on the strength of hematoxylin used. Slides 

were rinsed in a bath of distilled water for 2 min twice.  

8 Mounting: Specimens were mounted and coverslipped with an aqueous-based mounting 

medium.  

 
3.4 Isolation and culture of pulmonary arterial smooth muscle cells 
 
The PASMCs were isolated from SD rats twenty-eight days after MCT injection, as described 

previously [Schermuly et al., 2005a]. Animals were anesthetized with a mixture of ketamine 

and xylazine (100 mg/kg, i.p) (Pfizer, Germany). To obtain proximal and distal PASMCs, the 

main pulmonary artery was dissected free from lung and cardiac tissue, and a single 

full-length incision was made (Figure 6A). Hank’s balanced salt solution (HBSS) (GIBCO, 

Germany) was used to flush the vessel. The diameter of the distal part of the pulmonary 

arteries was smaller than 100 µm (Figure 6B). The intimal and adventitial layers were 

carefully removed. The central pulmonary artery was separated, and the distal artery tissue 

was then cut into small pieces and washed with HBSS (Figure 6C, D). After about 72 h, 

smooth muscle cells started to migrate out from the small pieces of pulmonary artery. Cells 

were resuspended in culture medium DMEM-F12 (GIBCO, Germany), supplemented with 

100 U/ml penicillin and 100 µg/ml streptomycin (PAN, Germany), 0.5 mM L-glutamine 

(GIBCO, Germany), and 20% fetal calf serum for subsequent culture in 6-well plate and 

incubated at 37 °C in 5% CO2-95% air. After 24 h, the medium was changed, and thereafter 

every 2-3 days. The PASMCs were studied at the primary passage stage. Characterization of 

PASMCs was done at the primary passage using immunocytochemical staining for α-smooth 

muscle actin (Sigma, Germany) and desmin (Neomarkers,USA). 
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Figure 6. Isolation of pulmonary artery smooth muscle cells from rat lung 
 
The main pulmonary artery was dissected free from lung and cardiac tissue, and a single 

full-length incision was made (A). Hank’s balanced salt solution (HBSS) (GIBCO, Germany) 

was used to flush the arteries. The diameter of the distal part of pulmonary arteries was smaller 

than 100 µm (B). The intimal and adventitial layers were carefully removed. The central 

pulmonary artery was separated, and the distal artery tissue was then cut into small pieces and 

washed with HBSS (C, D). 
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Figure 7. Diameter of isolated pulmonary arteries from rat lungs  
 

(A) Pathobiology of PH. Scheme illustrating the different vascular abnormalities 

associated with PH compared with normal pulmonary circulation. This scheme depicts the 

abnormalities throughout the pulmonary circulation, including (i) abnormal 

muscularization of distal precapillary arteries, (ii) medial hypertrophy (thickening) of large 

pulmonary muscular arteries, (iii) loss of precapillary arteries, (iv) neointimal formation 

that is particularly occlusive in vessels 100–500 µM, and (v) formation of plexiform 

lesions in these vessels [Rabinovitch, 2008]. 

(B) Representative illustration of isolated pulmonary artery after 28 days  

monocrotaline injection in rats (MCT28d). The diameter of the distal portion of pulmonary 

arteries was smaller than 200 µm. 
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Figure 8. Migrated cells from rat pulmonary arteries  
 

The main pulmonary artery was dissected free from lung and cardiac tissue.  

The central pulmonary artery was then separated, and the distal arterial tissue 

were then cut into small pieces and washed with HBSS.  

(A) The cells migrated from control rat pulmonary artery original magnification × 100. 

(B) The cells migrated from MCT28d rat pulmonary artery original magnification × 100.  

(C) The cells migrated from control rat pulmonary artery original magnification × 200.  

(D) The cells migrated from MCT28d rat pulmonary artery original magnification × 200. 
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3.5 Immunocytochemistry  
 
Characterization of PASMCs was done at the primary passage using immunocytochemical 

staining for α-smooth muscle actin (Sigma, Germany) and desmin (Neomarkers, USA). 

PASMCs cultured on 1×1 mm round coverslips were fixed with 4 % paraformaldehyde for 15 

min and washed with three changes of 1×PBS at room temperature. All the immunostaining 

procedures were carried out directly on the coverslips at room temperature. The coverslips 

were first immersed in blocking solution containing 1% bovine serum albumin (BSA) and 1% 

goat serum in PBS (Sigma, Germany) for 30 minutes. After washing three times in PBS, cells 

were incubated with mouse monoclonal antibodies against α-smooth muscle (Sigma, Germany) 

(Figure 9A) desmin (Figure 9B) (Neomarker, U.S.A.) diluted in blocking solution for 1 h 

α-smooth muscle actins proteins are highly expressed in smooth muscle cells.  

Desmin is an intermediate filament protein expressed in both smooth and striated muscles. 

Antibodies to desmin react with smooth muscle cells as well as striated (skeletal and cardiac) 

cells. The DAKO labeled streptavidian-biotin system was used to detect the signal and color 

development was performed by incubation with DAB substrate-chromogen (DAKO, Germany) 

for 5-10 min. After counterstaining the cell nuclei with hematoxylin, coverslips were mounted 

with the cell layer down, on glass slides. The staining protocol was performed according to the 

DakoCytomation LSAB2 System-HRP manufacturer’s instructions as follows:  

1 Peroxidase block: Hydrogen peroxide was applied to cover cells on the glass slide, which 

was incubated for 5 min. After that, slider was gently rinsed with distilled water and 

placed in fresh 1× PBS buffer. 

2. Blocking: Solution containing 1% BSA and 1% goat serum in 1× PBS was applied for 30 

min. 

3 Primary antibody or negative control reagent: Primary antibody or negative control 

reagent were applied to cover the glass slide. After 1 h incubation, they were gently 

rinsed with 1× PBS buffer.  
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4 Biotinylated link: The link antibody was applied to cover the cells at the glass slide. After 

30 min, slide was rinsed as in step 3. 

5 Streptavidin-HRP: The streptavidin reagent was applied to cover the cells on the glass 

slide, and was incubated for 30 min, and rinsed as before.  

6 Substrated-chromogen solution: The DAB substrate-chromogen solutions was removed 

from 2-8 °C storage. The DAB solution was prepared as follows: one drop (or 20 µl) of 

the DAB chromogen solution per ml of substrate buffer. After 2 min incubation, the 

brown colour development was performed, and slide was rinse gently with distilled water. 

7 Hematoxylin counterstain: Slide was immersed in hematoxylin. Incubated for 2 or 5 min, 

depending on the strength of hematoxylin used. Slides was rinsing in a bath of distilled 

water for 2 min twice.  

8 Mounting: Glass slide was mounted with an aqueous-based mounting medium. 

 

Figure 9. Immunocytochemistry with cell-type specific markers in pulmonary arterial 

smooth muscle cells  

Characterization of PASMCs was done at the primary passage using immunocytochemical 

staining for α-smooth muscle actin (Sigma, Germany) and desmin (Neomakers, USA). (A) 

The α-smooth muscle actin and negative control (NC). The α-smooth muscle actin proteins 

are highly expressed in smooth muscle cells. The α-smooth muscle actin is found in muscle 

tissues and a major constituent of the contractile apparatus (B) Desmin and negative control 

(NC). Desmin is an intermediate filament protein expressed in both smooth and striated 

muscles. The anti-desmin antibody is useful in identification of vascular smooth muscle cells.
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3.6 mRNA extraction 
 
Total RNA was isolated from PASMCs at the primary passage with Trizol reagent (Life 

Technologies, USA), following a determination of the RNA concentration by 

spectrophotometer, and quality by electrophoresis on agarose gels as well as 

spectrophotometry.  
 

The procedure of whole mRNA extraction was as follows: 

1. Homogenisation: Lung tissue samples in were homogenised Trizol reagent (about 50 

mg tissue in 1 ml). In cell samples, cells were lysed directly in the culture dish, using 

1 ml of the reagent for 5-10×106 PASMCs  

2. Phase separation: Samples were kept for 5 min at room temperature, and then 0.2 ml 

chloroform was added per 1 ml of Trizol which were then, shaken slightly for 15 s, 

and kept on ice for 15 min following centrifugation at 12,000 g for 20 min at 4 °C. 

After centrifugation, the mixture separated in to two phase: a lower red 

phenol-chloroform phase, and an upper aqueous phase. 

3. RNA precipitation: The suspension was gently transferred to a new tube and the 

RNA was precipitated by adding by 0.5 ml isopropanol per 1ml Trizol reagent used 

in the first step. The sample was kept at room temperature for 10 min following 

centrifugative at 12,000 g for 20 min at 4 °C, after which, the pellet of RNA had 

precipitated at the bottom of tube. 

4. RNA wash: The supernatant was removed, and the pellet was washed with 75% 

ethanol. Samples were then centrifuged at 7,500 g for 5 min at 4 °C.  

5. RNA solubilisation: The 75% ethanol was gently removed, and the RNA was dried at 

room temperature. After that, samples of RNA add RNase-free water (100 µl per 10 

cm dish) by diethylpyrocarbonate (DEPC) treatment. The quality and quantify of 

RNA measure the concentration by spectrophotometer. 
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3.7 Reverse transcription - polymerase chain reaction 
 
Reverse transcription-polymerase chain reaction is a very sensitive technique for the detection 

and quantity of target gene messenger RNA (mRNA). This method consists of two parts: 

1) the synthesis of cDNA (complementary DNA) from mRNA by reverse transcription and 2) 

the amplification of a specific cDNA by the polymerase chain reaction (PCR). The first-strand 

cDNA was synthesized with the ImProm-IITM reverse transcription system (Promega, USA), 

using oligo (dT) primers according to the manufacturer’s instructions. Subsequently, 0.5 µg of 

cDNA product was used as a template in polymerase chain reaction (PCR) amplifications 

together with the primers, following the manufacturer’s recommendations. Primers for PCR 

were designed with the Primer3 program (http://fokker.wi.mit.edu/primer3/input.htm). After 

an initial PCR activation step for 10 min at 95 °C, the following thermal profile was used: 1 

min 94 °C, 1 min 55 °C annealing, 2 min elongation at 72 °C (30 cycles). The final products 

were electrophoresed in a 1.5% agarose gel and detected by ethidium bromide staining. The 

expression levels of glyceraldehyde dehydrogenase (GAPDH) were monitored as a loading 

control and quantified by densitometry.  

 

The RT reaction was performed according to the manufacturer’s instructions as follows:  

1. The RT reaction mixture was prepared by combining the reagent of the ImProm-IITM 

reverse transcription system in the sterile tube on ice, as described below:  

RT Reaction Volume 

Nuclease-free water (to final volume of 15 µl) X µl 

ImProm-IITM 5× Reaction buffer 4.0 µl 

MgCl2 (final concentration 1.5-8.0 mM) 1.2-6.4 µl 

dNTP Mix (final concentration 0.5 mM each dNTP ) 1.0 µl 

Recombinant RNasin® ribonuclease inhibitor 2.0 µl 

ImProm-IITM reverse transcriptase  1.0 µl 

Final volume 15 µl 
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2. 15 µl RT reaction mix reagent 5 µl RNA and oligo (dT) primer mix for the final 

volume of 20 µl per tube  

3. Anneal: The tubes were placed in a temperature-controlled heating block 

equilibrated at 25 °C for 5 min. 

4. Extension: The tubes were incubated a inactivation in a temperature–controlled 

heating block at 42°C for one hr. 

5. Inactivate reverse transcriptase: The RT samples were placed in the heat block at 70 

°C for 15 min, and then stored in the fridge for PCR amplification.  
 

PCR amplification was performed according to the manufacturer’s instructions as follows: 

1. Prepare the PCR reaction mix by combining the following reagents in the tube. 

PCR Reaction Volume per 25 µl reaction  
Nuclease-free water 16.025 µl 
10× reaction buffer (without MgCl2) 2.475 µl 
MgCl2 25mM (final concentration 2 mM) 1.95 µl 
PCR nucleotide Mix, 10mM (0.2 mM final) 0.5 µl 
Primer ( Final concentration 1 mM) 3.3 µl 
Taq DNA polymerase (5.0 units) 0.25 µl 
PCR Mix  24.5 µl 
Volume of RT reaction 0.5 µl 

 

 2. Place the PCR reactions in the thermal cycler that has been preheated to 94 °C. 

  The PCR program was set as follows: 

3. After the cycle was complete, store the sampled at 4 °C.  

Denaturation 95 °C. for 2 min 

 30 cycles: 
Denaturation 95 °C. for 1 min 

Annealing 55 °C for 1min 
elongation 72 °C for 2 min 

  
Final extension 72 °C for 5 min 

Hold 4 °C 
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3.8 SDS-PAGE 
 

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) is a technique 

widely used to separate proteins according to their electrophoretic mobility. The 10% protein 

separating gel has two parts: The lower part is a separating gel, and the upper is a stacking gel.  

 

Separating gel  Volume per 6 ml  

deionized distilled water (dd water)  2.5 ml 

Acrylamide/Bis 2.95 ml 

Tris 1.5M buffer pH=8.8 1.875ml 

10% SDS  75 µl 

10% ammonium persulfate 75 µl 

TEMED 7.5 µl 

Stacking gel  Volume per 5 ml  

deionized distilled water (dd water)  2.9 ml 

Acrylamide/Bis 0.75 ml 

Tris 1.5M buffer pH=6.8 1.25ml 

10% SDS  50 µl 

10% ammonium persulfate 50 µl 

TEMED 5 µl 
 

After removing the medium, the PASMCs were washed with HBSS and lysed in 20 mM 

Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% V/V Nonidet P-40, 0.05% W/V sodium 

deoxycholate, 0.025% W/V SDS, and 0.1% V/V Triton X-100 supplemented with PMSF (0.1 

mg/ml), leupeptin (10 µg/ml), and aprotinin (25 µg/ml)( Sigma, Germany) [Clarke et al., 

2005]. Insoluble proteins were removed by centrifugation at 10,000 rpm for 3 min. For nuclear 

protein extraction, the PASMC was subjected to nuclear protein isolation with the CellLytic 

NuCLEAR extraction kit (Sigma-Aldrich, Germany) performed according to the 

manufacturer’s instructions. 
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The supernatants were assessed for protein content using Dye Reagent Concentrate (Bio-Rad, 

Germany). Extracts containing equal amounts of protein were denatured by boiling for 5 min 

in Laemmli’s buffer containing β−mercaptoethanol and separated in 10 or 12% 

SDS-polyacrylamide gels at 130 V for 60min together with a rainbow molecular marker 

(Amersham, Germany).  

 
3.9 Immunoblotting  
 
Proteins resolved by SDS-PAGE were transferred to nitrocellulose membranes (PALL life 

sciences, Germany). For this propose, the trans-blot electrophortic transfer cell was used. The 

gel and nitrocellulose membrane were rinsed with blotting buffer in 20% methanol (Sigma, 

Germany). The gel and membrane were covered with three layers of paper in blotting buffer, 

and electrical current was applied for 1 h. After that, membranes were washed with 1× PBS on 

the rotational shaker for 5 min, and were blocked with 5% non-fat milk powder for 30 min. 

Membranes were then immunoblotted with rabbit polyclonal antibody to the IP receptor 

(Cayman, USA) at 1:500 dilution, the EP4 receptor (Sigma, Germany) at 1:500 dilution, 

PCNA (Neomarker, USA) at 1:1000. Peroxidase-conjugated anti-mouse IgG or anti-rabbit IgG 

(Sigma, Germany) were used as secondary antibody. Blots were visualized using the enhanced 

chemiluminescence detection system (Amersham, Germany). Samples were normalized to 

GAPDH and quantified by densitometry. 
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3.10   Proliferation assay 
The PASMCs were isolated, and cultures were maintained at 37 °C in a humidified 

5%CO2/95%O2 atmosphere [Schermuly et al., 2005a]. To investigate the appropriate dose in 

vitro and the effects of iloprost or treprostinil on PASMC proliferation, rat PASMC from 

passage 1 were seeded in 12 well plates at a density of 4 × 104 cells/well in 10% FBS/DMEM. 

Cells were rendered quiescent by incubation in serum-free DMEM for 2 h, followed by serum 

deprivation (DMEM containing 0.1%FBS) for 48 h. Subsequently, cells were stimulated with 

10% FBS/DMEM to induce cell cycle reentry. After treatment with 0, 10, 100, 500, 1000 nM 

iloprost or treprostinil during the last 12 h and throughout the stimulation period, 1.5 µCi [3H] 

thymidine (Amersham, Germany) was added to each well. The [3H] thymidine content of cell 

lysates was determined by scintillation counting, and normalized for protein concentration. 

 
3.11  Determination of cAMP accumulation  
 
The principle of radioimmunoassay (RIA) for cyclic AMP is a competition experiment. The 

samples were incubated in monoclonal antibody-coated tubes in the presence of 125I-labeled 

cAMP. Following incubation, the contents of the tubes were aspirated, and bound radioactivity 

was measured in a gamma counter. A calibration curve was established and values for samples 

were interpolated from the standard curve. The effects of the EP4 receptor antagonist 

(AH23848) or EP2 receptor antagonist (AH6809) (Sigma, Germany) on cAMP accumulation 

mediated by iloprost was measured by a commercial RIA cyclic AMP (125I) kit (Immunotech, 

France) following the manufacturer's protocol. The PASMCs were grown to 90% confluence 

in 12-well plates, as described [Schermuly et al., 2007a;Lai et al., 2008]. After preincubation 

in 500 µM IBMX (Sigma, Germany) for 30 min at 37 °C, PASMCs were incubated with 

AH23848 or AH6809 (1, 10, 100 µM) for 15 min at 37 °C. Cells were then stimulated with 

iloprost (100 nM) for 15 min. After removing the medium, cAMP measurements were 

performed as described below. Reactions were stopped by aspiration and the addition of 

ice-cold 96% ethanol. Dried samples were added with 200 µl RIA-buffer (150 mM NaCl, 8 

mM Na2HPO4, 2 mM NaH2PO4, pH 7.4) and frozen at -80 °C. The cAMP in the supernatant 
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was determined by radioimmunoassay. Protein determination was performed according to the 

method of Bradford. The RIA for cAMP was performed according to the manufacturer’s 

instructions and the mean of cAMP concentration was calculated. Results were expressed as 

pmol/mg protein for each treatment dose point. 

The assay procedure followed to the manufacturer’s instructions, as follows:  

1. Preparation of reagents: Reagents were brought come to room temperature, the 50 ml of 

the concentrated solution was diluted with 450 ml of distilled water. The content of each 

vial of calibrator was reconstituted with 1 ml of diluent.  

2. Assay procedure 

2.1 Immunological step: A 100 µl of sample or calibrator was added to to antibody 

coated tubes, followed by 500 µl of tracer diluent solution. Tubes were maintained at 

2-8 °C for 18 h. 

 2.2 Wash step: The tracer diluent solution was removed from the tubes,  

except the “total cpm”. 

 2.3 The coated tubes were counted in a gamma-ray scintillation counter. 

The results were obtained from the standard curve by interpolation. The curve serves for the 

determination of cAMP concentration in the samples measured at the same time as the 

calibrator. The mean was calculated from triplicates, and statistical analysis was carried out 

with a Student’s t-test. 

 

3.12  Statistical analysis 
 
Data from multiple experiments are expressed as the mean and standard error (SE). All 

statistical analysis was carried out with Student’s t-test. Differences between groups were 

considered significant when p was less than 0.05. 
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4. Results 
 
4.1 Immunoblottig of the IP and EP4 receptor in human donor and idiopathic 

pulmonary arterial hypertensive lung tissue 

 

The expression of IP and EP4 receptor protein was detected in human donor and IPAH lung 

tissue. As shown in the western blots of Figure 10 A, the IP receptor band was detected at 52 

kDa. The ratio of the IP receptor to GAPDH exhibited a decreased expression of the IP 

receptor in IPAH lungs compared to human donors (P<0.001), while the EP4 receptor was 

detected at 78 kDa and displayed a similar level of expression between the human donor and 

IPAH lung samples (Figure 10 B). The results reveal that the expression of the IP receptor 

protein was decreased, but the expression of the EP4 receptor was stable in IPAH patient lung 

tissue compared to donor lung tissue. Because of the limitation related to the paraffin human 

lung samples and IP receptor antibody, the immunoblotting was applied. 

Immunohistrochemistry was utilized to detecting the IP and EP4 receptor in the lungs of rats 

with MCT-induced pulmonary hypertension. 

          
Figure 10. The IP and EP4 receptor protein level in human donor and IPAH lung tissue  

(A) Levels of the IP receptor protein were decreased in IPAH lung tissues, compared to donor 

lung tissue. (B) The EP4 receptor protein exhibited stable expression in lungs from patients, 

IPAH as compared to those from donors. The bars represent the mean ± SEM of three samples 

in each group, with human PASMC as a positive control. *** P<0.001, compared to donor. 
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4.2 Immunohistochemistry of the IP and EP4 receptor in control and pulmonary 
hypertensive rats lung sections  

 
In monocrotaline challenged rats, prominent medial wall hypertrophy is evident in the 

muscular pulmonary arteries. The thick medial layer displays smooth muscle proliferation. 

The pulmonary arteries from control rat lung sections demonstrated IP and EP4 receptor 

positive staining (A and D) in the medial smooth muscle wall (Figure 11). The MCT28d rat 

lung section exhibited only scant IP receptor positive staining (B), but stable EP4 receptor 

positive staining (E). No labeling was seen in negative controls in immunohistochemstry 

experiments (C and F). 

 

Figure 11. Immunohistochemical localization of IP and EP4 receptors  

in control and pulmonary hypertensive rats lung section  

Bar=20mm, original magnification×400.  
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4.3 Gene expression of prostanoid receptors changes at passage two in 

PASMCs  

 

Expression analysis by RT-PCR was used to survey the relative gene expression of prostanoid 

receptors and from primary passage to passage five of PASMCs from control rats (Figure 12). 

The PASMCs were isolated from the distal pulmonary artery regions and cultured in the 

presence of 10% FBS. To characterize PASMCs, we used the smooth muscle cell-specific gene 

markers α-SM-actin and desmin. Desmin was downregulated at passage three. The primers 

and product sizes of the prostanoid receptors and related genes are listed in the Material and 

Methods section. The IP, EP2, EP3, and FP receptor were down-regulated at passage two. 

Therefore, the PASMCs were used before passage two for all of the in vitro experiments. 

             
Figure 12. Smooth muscle-specific and prostanoid receptor  

gene profile of control rat PASMCs are the first five passages in culture..   

Representative RT-PCR analysis. After passage two,  

the mRNA expression levels of the IP, EP2, EP3 and FP receptors  

were reduced in rat PASMCs. 
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4.4 Gene expression profiling of the prostanoid receptors and the related genes 
in distal and proximal PASMCs from control and MCT28d rats 
The PASMCs were isolated from MCT28d and control rats. To obtain proximal and distal 

PASMC, a single full-length artery incision was made and the main pulmonary artery was 

dissected free from lung and cardiac tissue. Proximal PASMCs were obtained from trunk and 

lobar arteries (>2 mm external diameter), and distal PASMCs were isolated from peripheral 

arteries (<1 mm external diameter). In the distal and proximal PASMCs from control and 

MCT28d rats: The mRNA expression was analyzed separately in PASMCs from five 

individual rats per group: (four groups: control rat proximal and distal PASMCs and MCT28d 

rat proximal and distal PASMCs), and this revealed the variability in the pattern of gene 

expression and the pattern associated with the pulmonary artery hypertrophy. 

In the distal and proximal PASMCs from control and MCT28d rats, the data were shown as 

the mean ± SEM for the same group of five individual PASMCs. The black bars represent the 

proximal or distal PASMCs of the control groups. The gray bars represent the proximal or 

distal PASMCs of MCT28d groups (Figure 13). In primary or secondary pulmonary 

hypertension, because of the characteristic changes in vascular structure, the muscular arteries 

and arterioles exhibit smooth muscle cell proliferation leading to further medial hypertrophy in 

the distal musculature [Wharton et al., 2000]. Within the four PASMCs groups: under study, 

the MCT28d rat proximal or distal PASMCs and control rat proximal or distal PASMCs, 

COX-2 expression was unchanged. The IP receptor was down-regulated in both the proximal 

and distal PASMC groups of MCT28d compared to the control groups. The EP1 and TP 

receptor were down-regulated in the MCT28d distal group. The EP2 and EP4 receptors were 

not significantly changed in any groups. The EP3 and FP receptors were down-regulated in the 

proximal and distal groups of MCT28d, and also in the distal group of the control. To the best 

of our knowledge these findings are the first to demonstrate that the prostanoid receptor genes 

presenting in the pulmonary hypertension animal model exhibit different expression patterns 

in the distal and proximal PASMCs. 
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Figure 13-A. Densitometric quantification of COX-2 and IP receptor in distal and 

proximal PASMCs Densitometric quantification of COX-2 and IP receptor gene expression 

in four groups of PASMC. Data are shown as the mean ± SEM (n=5). The black bars represent 

the proximal or distal PASMCs of the control groups. The gray bars represent the proximal or 

distal PASMCs of the MCT28d groups, *** P<0.001, compared to control groups.. 

 

Figure 13-B. Densitometric quantification of EP1 and EP2 receptor in distal and 

proximal PASMCs Densitometric quantification of EP1 and EP2 receptor gene expression in 

four groups of PASMC. Data are shown as the mean ± SEM (n=5). The black bars represent 

the proximal or distal PASMCs of the control groups. The gray bars represent the proximal or 

distal PASMCs of the MCT28d groups. *** P<0.001, compared to control groups. 
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Figure 13-C. Densitometric quantification of EP3 and EP4 receptor expression in distal 

and proximal PASMCs Densitometric quantification of EP3 and EP4 receptor gene 

expression in four groups of PASMC. Data are shown as the mean ± SEM (n=5). The black 

bars represent the proximal or distal PASMCs of the control groups. The gray bars represent 

the proximal or distal PASMCs of the MCT28d groups. *** P<0.001, compared to control 

groups. 

 

Figure 13-D. Densitometric quantification of TP and FP receptor expression in distal and 

proximal PASMCs Densitometric quantification of TP and FP receptors in terms of the gene 

expression in four groups of PASMC. Data are shown as the mean ± SEM in the same group 

of five individual PASMCs. The black bars represent the proximal or distal PASMCs of the 

control groups. The gray bars represent the proximal or distal PASMCs of the MCT28d groups. 

*** P<0.001, compared to control groups.
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4.5 Immunoblotting of IP and EP4 receptor expression in distal PASMCs of 
control and pulmonary hypertensive rats 
 
At the mRNA level, low IP receptor gene expression and stable EP4 receptor gene expression 

was observed in MCT28d PASMC. To evaluate the protein expression of the IP and EP4 

receptors, protein was prepared from the distal PASMCs of control and MCT28d rats. As is 

evident in the western blots (Figure 14A), the IP receptor protein band was detected at 52 kDa. 

The ratio of IP receptor to GAPDH was shown to have decreased IP receptor expression in 

MCT28d compared to control PASMCs (P<0.05). However, the EP4 receptor was detected at 

78 kDa, indicating stable expression in the control and MCT28d rats (Figure 14B). There is 

evidently reduced IP receptor protein expression in the remodeled vessels in pulmonary 

hypertension patients [Hoshikawa et al., 2001]. Taken together, the results indicate that the 

expression IP receptor protein was decreased but EP4 receptor protein expression was stable in 

both the pulmonary hypertension animal model (MCT28d) and in IPAH lung samples. Thus, 

we used the MCT28d PASMCs with slight IP receptor protein expression to test the hypothesis 

that iloprost mediates vasodilatory functions via the EP4 receptor associated with PAH when 

the IP signaling fails.  
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Figure 14. Immunoblotting for IP and EP4 receptor in primary PASMCs  

from control and MCT28d rats.  

 

(A) Densitometric analysis from three different experiments in each group. The IP 

receptor was identified as a 52 kDa immunoreactive band that was decreased in 

MCT28d rat PASMCs compared to control PASMCs. Data represent the mean±SEM, 

n=3 in each group. *P<0.05 compared with controls.  

(B) The EP4 receptor was identified as a 78 kDa immunoreactive band and was 

stably expressed in both MCT28d and control PASMCs.  
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4.6 The effect of the EP4 receptor antagonist (AH23848) or the EP2 receptor 

antagonist (AH6809) on cAMP accumulation by pulmonary hypertensive rat 

PASMC 

 
The PASMCs from MCT28d rats exhibited scant IP receptor, but stable EP4 receptor and EP2 

expression. Prostanoids (mainly PGE2 and PGI2) activate the IP and EP4 receptors which are 

coupled via G stimulatory proteins to adenylyl cyclase to generate cAMP [Fullerton et al., 

1994;Gilman, 1990;Narumiya et al., 1999], leading to a mediation of vasodilatory functions. 

The EP2 and EP4 receptors are both coupled via Gs to induce elevations in intracellular cAMP 

leading to smooth muscle relaxation. In our experiment, MCT28d rat PASMCs exhibited scant 

IP receptor, but stable EP4 and EP2 receptor expression. We applied EP2 antagonist (AH6809) 

to demonstrate that the EP4 receptor specificity may play an important role in generating 

cAMP during iloprost treatment. Pre-incubation with AH23848 was used to block the EP4 

receptor while AH6809 was used to block the EP2 receptor. Pre-incubation with IBMX [Pang 

et al., 1998] excluded a role for phosphodiesterases in these experiments. The two negative 

controls with or without IBMX (500 µM) were not significantly different during the 30 min 

stimulation. The MCT 28d rat PASMCs were stimulated for 30 min at various AH23848 or 

AH6809 concentrations (0, 1, 10, 100 µM), with or without IBMX (500 µM) and, then 

incubated with or without iloprost (100 nM) for 15 min. Iloprost-induced intracellular cAMP 

accumulation was inhibited in a dose-dependent manner by AH23848 (the EP4 receptor 

antagonist) (Figure 16 A) but not by AH6809 (the EP2 receptor antagonist) (Figure 16 B) to 

show that iloprost-induced intracellar cAMP accumulation was inhibited in a dose-dependent 

manner by AH23848 but not inhibited significantly by AH6809. Our results indicated that 

iloprost may mediate vasodilatory functions via the EP4 receptor in place of the IP receptor 

signal transduction in MCT28d rat PASMC. 
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Figure 15. A scheme of the hypothesis that EP4 receptors may take over the function of 

the IP receptor in the MCT28d rat PASMCs.  

Iloprost-induced intracellar cAMP accumulation was inhibited in a dose-dependent manner by 

AH23848 (EP4 receptor antagonist). Ilo=Iloprost; EP4=prostanoid EP4 receptor; 

AC=adenylate cyclase, Gs= the stimulatory G-protein. 

 

 

Figure 16. EP4 antagonist AH23848 blocks the cAMP accumulation mediated by iloprost 

in MCT28d rat PASMCs. 

The intracellular cAMP accumulation induced by iloprost was inhibited by AH23848 but not 

AH6809. The MCT28d rat PASMCs, which exhibit low IP but stable EP4 receptor expression, 

were stimulated for 30 min at several concentrations (0, 1, 10, 100 µM) of AH23848 (A) or 

the EP2 antagonist AH6809 (B), with or without iloprost (100 nM) for 15 min. Data are the 

mean±SEM of three different experiments. *** p<0.001, as compared to iloprost treatment 

alone. 
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4.7 Prostacyclin inhibits pulmonary artery smooth muscle cells proliferation  

 

Iloprost inhalation has clear advantages for the treatment of PAH but also certain drawbacks. 

Inhaled Iloprost lasts only 30 to 90 min, and six to nine inhalations are needed to achieve good 

clinical results. Currently, treprostinil is one of the long-acting stable PGI2 analogs, with a 

duration of action up to three to four hours. The effect of Trep on proliferation of PASMC 

stimulated by 10% serum/DMEM was investigated in MCT 28d PASMC. Under control 

conditions, 10% serum increased the cell proliferation rate, which was set at 100%. Incubation 

with iloprost (Figure 17 A) or treprostinil (Figure 17 B) (10, 100, 500 and 1000 nM) inhibited 

MCT 28d PASMC proliferation stimulated by 10% serum in a dose-dependent manner. 

Treprostinil displayed marked antiproliferative activity starting at 100 nM (***P<0.01) as 

assessed by [3H]thymidine incorporation assay. In addition, treprostinil possessed a more 

potent antiproliferative efficiency than Ilo. 

 

Figure 17. Treprostinil significantly inhibited MCT 28d rat PASMC proliferation in a 

dose-dependent manner. Iloprost (Ilo) inhibited the thymidine incorporation into the 

PASMCs 99%, 84%, 75% and 63% at the final concentrations of 10, 100, 500 and 1000 nM 

(A). Treprostinil (Trep) inhibited the thymidine incorporation into the PASMCs 99%, 55%, 

33% and 25% at the final concentration 10, 100, 500 and 1000 nM (B), respectively, as 

determined by [3H]thymidine incorporation assay. (*p<0.05, **p<0.01, ***p<0.001, compared 

with the 10% serum group) 
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4.8 Treprostinil inhibited the nuclear translocation of ERK  
 

Treprostinil has been shown to inhibit smooth muscle cell growth. The extracellular-regulated 

kinases (ERK1/2) is also known as p42/44 mitogen-activated protein (MAP) kinase, and is 

implicated in the regulation of proliferation of PASMC, since phosphorylated ERK must 

translocate into the nucleus for proliferation to occur. To investigate whether the effect of Trep 

can inhibit proliferation of PASMC from MCT-treated rats via anti-nuclear tranlocation of 

ERK, we utilized immunocytochemistry to examine whether Trep can inhibit ERK nuclear 

translocation. After serum free treatment for 24 h, ERK signaling cascade of MCT 28d 

PASMCs was activated by serum stimulation at 10% serum concentration in the medium, and 

immunocytochemistry was performed with an antibody to phosphorylated ERK (Santa Cruz, 

USA). The cellular distribution of phosphorylated ERK in PASMCs from MCT-treated rats is 

illustrated in Figure 18. Cells were serum-free for 24 h (Figure 18 A). After 24 h serum-free 

conditions, ERK nuclear translocation was activated by 10 % serum (Figure 18 B). After 

serum-free condition for 24 h, cells were incubated with treprostinil (100 nM) for 30 min, and 

subsequently activated by 10% serum (Figure 18 C). The results shown in Figure 18C 

demonstrated that Treprostinil can inhibit nuclear tranlocation of the ERK 1/2, which is related 

to the regulation of cell proliferation. 
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Figure 18. Nuclear translocation of ERK in pulmonary hypertension rat PASMCs 

after treatment with treprostinil.  

The immunocytochemical analysis of ERK nuclear translocation is illustrated  

(A) Cells were kept serum-free for 24 h. (B) after 24 h serum-free condition, cells were 

activated by 10% serum. (C) After serum-free condition for 24 h, cells were incubated in 

treprostinil (Trep) (100 nM) for 30 min, following activation by 10% serum. Cells 

exhibited brown staining was considered positive for the expression of Phospho-ERK. 

Treprostinil can inhibit Phospho-ERK nuclear translocation in PASMCs (arrowheads).  
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4.9 The effect of the EP4 receptor antagonist on cAMP accumulation induced by 
iloprost or treprostinil in PASMCs from rats with monocrotaline-induced 
pulmonary hypertension 
 

Expression profiling of IP and EP receptor in MCT-treated rat PASMCs revealed scant 

expression of the IP receptor but stable expression of the EP4 receptor compared to controls. 

Iloprost-induced elevations in intracellular cAMP levels in PASMCs was dose-dependently 

reduced by the EP4 receptor antagonist (AH23848). As a result, iloprost can mediate 

vasodilatory functions via the EP4 receptor in the case of the low prostacyclin receptor 

expression associated with pulmonary hypertension. It is established that PGI2 agonists can 

mediate vasdilatory functions via the EP4 receptor to increase cAMP levels. To test the 

function of treprostinil, we aimed to assess whether treprostinil activation of the EP4 receptor 

activation involved the cAMP pathway.  

Pre-incubation with AH23848 was used to block the EP4 receptor. Pre-incubation with IBMX 

[Pang et al., 1998] excluded a role for the phosphodiesterases in these experiments. The two 

negative controls with or without IBMX (500 µM) were not significantly different during the 

30 min stimulation. The MCT 28d rat PASMCs were stimulated for 30 min at various 

AH23848 concentrations (0, 1, 10, 100 µM), while IBMX (500 µM) was applied, and cells 

were then incubated with or without iloprost (100 nM) for 15 min. Iloprost-induced 

intracellular cAMP accumulation was inhibited in a dose-dependent manner by AH23848 (an 

EP4 receptor antagonist) (Figure 19 A) but not treprostinil (Figure 19 B). of the iloprost- or 

treprostinil- treated groups were set at 100%, and it is evident that iloprost-induced intracellar 

cAMP accumulation was inhibited in a dose-dependent manner by AH23848. However, 

treprostinil induced intracellar cAMP accumulation in MCT-induced PASMCs, an effect 

(p<0.05) an effect that was not sensitive to AH23848, except at the highest dose employed 

(100µM). Our results indicate that the effects of treprostinil may not be mediated via the EP4 

receptor/cAMP signal transduction in MCT28d rat PASMCs.  
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Figure 19. The EP4 antagonist AH23848 blocks cAMP accumulation mediated by 

iloprost or by treprostinil in MCT28d rat PASMCs. 

The intracellular cAMP accumulation induced by iloprost (Ilo) (A) or by treprostinil (Trep) (B) 

was inhibited by AH23848. The MCT28d rat PASMCs, with scant IP but stable EP4 receptors 

expression, were stimulated for 30 min at various concentrations (0, 1, 10, 100 µM) of 

AH23848 and then with or without iloprost (Ilo) 100 nM or treprostinil (Trep) 100 nM for 15 

min. Data are the mean±SEM of three different experiments. *p<0.05, **p<0.01, ***p<0.001, 

as compared to iloprost or treprostinil treatment alone. 
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4.10  Scant expression of PPAR protein in idiopathic pulmonary arterial 

hypertensive human lung tissue 

 

A stable prostacyclin agonist can signal through by ligand binding to nuclear peroxisome 

proliferator-activated receptor (PPAR): 1)PPAR-α, 2)PPAR-β/δ, and 3)PPAR-γ. The PPARs 

are a family of nuclear transcription factors that bind to the specific peroxisome proliferator 

response elements (PPREs) to regulate target gene expression [Lim and Dey, 2002]. To 

determine if the PPARs might underlie the effects of treprostinil, the expression of PPARs in 

both human donor and IPAH lung tissue was analyzed. The expression of PPAR protein was 

detected in both human donor and IPAH lung tissue. As shown on the immunoblots, the 

PPAR-α protein band was detected at 52 kDa (Figure 20 A), PPAR-β/δ protein band was 

detected at 50 kDa (Figure 20 B), and PPAR-δ protein band was detected at 67 kDa (Figure 20 

C). The ratio of the PPAR protein to GAPDH revealed decreased expression of the PPARs in 

IPAH lungs compared to human donor lungs. The results reveal that the expression of the three 

PPAR proteins are decreased in IPAH patient lung tissue compared to donor lung tissue.  
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Figure 20. the PPAR protein expression levels in human donor and IPAH lung tissue.  

(A) The PPAR-α protein was detected in lung tissues as a 52 kDa band, and band intensity 

was decreased in IPAH lung tissue compared to donor lung tissue. (B) The PPAR- β/δ protein 

was detected in lung tissues as a 50 kDa band, and band intensity was decreased in IPAH lung 

tissues compared to donor lung tissue. (C) The PPAR-γ protein was detected in lung tissues as 

a 67 kDa band, and band intensity was decreased in IPAH lung tissues compared to donor lung 

tissue. The bars represent mean ± SEM of four samples in each group, with human PASMC 

incuded as a positive control. * P<0.05, compared to donor. 
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4.11 Scant expression of PPAR gene in the distal PASMCs of pulmonary 

hypertensive rats  
 
The results revealed that the three PPARs protein expression levels of these PPARs were 

decreased in IPAH patient lung tissue. To determine whether the MCT-induced pulmonary 

hypertension animal model possessed similar PPARs expression pattern, the PASMCs were 

isolated from MCT-treated rats with pulmonary hypertension (MCT 28d) and control rats. 

Proximal PASMCs were obtained from the trunk and lobar arteries (>2 mm external diameter), 

and distal PASMCs were isolated from peripheral arteries (<1 mm external diameter). In the 

distal and proximal PASMC from control and MCT28d rats, mRNA expression was separately 

analyzed in three individual rats per experimental group (four groups: control rat proximal and 

distal portions, MCT28d rat proximal and distal portions). Within the distal portion of the 

MCT28d rat and control rat, the PPAR expression was down-regulated in the distal PASMC 

from MCT28d, compared to control group (Figure 21). These findings are the first to identify 

that the PPARs genes presenting in the pulmonary hypertension animal model exhibit different 

expression levels in distal and proximal PASMCs. 

 
Figure 21. The PPAR-α, PPAR-β/δ, PPAR-γ gene expression profile of distal and 

proximal PASMC.  

A representative RT-PCR analysis is illustrated, documenting the mRNA expression of PPARs 

in the proximal and distal PASMCs that were isolated from either control or MCT28d rat 

pulmonary arteries. The expression differences were compared with GAPDH as a loading 

control (n=3). Smooth muscle cells were harvested for RNA isolation in the primary passage.
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4.12 Scant PPAR protein expression in distal PASMCs from pulmonary 

hypertensive rats 
 
At the mRNA level, low PPAR gene expression was detected in MCT28d PASMCs. To 

evaluate the protein expression of the PPARs, protein extracts were prepared from the distal 

PASMCs of control and MCT28d rats. As is evident in the immunoblots (Figure 22), the 

protein expression of three PPARs were decreased in MCT28d rats. Reduced PPAR-γ protein 

expression was been reported in the remodeled vessels of patients with pulmonary 

hypertension [Hansmann et al., 2007], but protein expression levels of PPAR-α and β/δ have 

not been addressed. The results indicate that the expression of PPAR protein was decreased in 

both the pulmonary hypertension animal model (MCT28d) and IPAH lung samples. Thus, we 

used the MCT28d PASMCs with low PPARs protein expression to test whether treprostinil, a 

stable prostacyclin agonist, might regulate PPAR protein expression.  

 
Figure 22. Immunoblotting for PPARs in primary PASMCs from control and pulmonary 

hypertensive rats.  

Immunoblotting analysis from three different experiments in each group. The PPAR-α 

receptor was identified as a 50 kDa immunoreactive band, the PPAR-β/δ protein was 

identified as a 52 kDa immunoreactive band, the PPAR-γ protein was identified as a 67 kDa 

immunoreactive band. The expression of all three PPARs was decreased at the protein levels 

in MCT28d rat PASMCs compared to control PASMCs.  
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4.13 PPAR-α and PPAR-γ protein expression is induced in PASMC of 

pulmonary hypertensive rats after treprostinil treatment 
 

The resultsso far have demonstrated low PPAR expression in both the pulmonary hypertension 

animal model (MCT28d) and IPAH lung samples. To test whether treprostinil, a stable 

prostacyclin agonist, might regulate PPAR protein expression, PASMCs were incubated with 

100 nM treprostinil for 0, 3, 6, 12, and 24 h. Time-course data are given as the mean 

fold-increase in protein expression on immunoblot (Figure 23 A), where the PPAR-α protein 

band was detected at 50 kDa. The ratio of PPAR-α to GAPDH increased in PASMC from 

pulmonary hypertensive rats, which was observed as early as 3 h after treprostinil (100 nM) 

treatment. The PPAR-β/δ protein band was detected at 52 kDa. The ratio of PPAR-β/δ to 

GAPDH was not significantly increased in PASMCs after treatment (Figure 23 B). The ratio 

percentage of PPAR-γ to GAPDH demonstrated increased the expression in the pulmonary 

hypertensive rat PASMCs, which was observed as early as 3 h after treatment (Figure 23 C). 

The results indicate that treprostinil, a stable prostacyclin agonist, induces the PPAR-α and 

PPAR-γ protein expression, but not PPAR-β/δ protein expression.  
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Figure 23. Time course of PPAR protein expression induced in PASMCs from pulmonary 

hypertensive rats after treprostinil treatment The PASMCs were incubated with 100 nM 

treprostinil (Trep) for 0, 3, 6, 12, and 24 h. Western blot analysis for PPAR-α protein (A), 

PPAR-β/δ protein (B), and PPAR-γ protein (C) expression increased in the pulmonary 

hypertensive rat PASMCs which was observed as early as 3 h after Treprostinil 100 nM 

treatment. The results indicate that treprostinil, a stable prostacyclin agonist, induces the 

PPAR-α and PPAR-γ protein expression, but not PPAR-β/δ protein expression. Con, control ; 

Data represent the mean±SEM, n=2 in each group. ***P<0.001 compared with controls. 
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4.14  Summary of results 
 

This first part of these results demonstrates that IP receptor expression was reduced in PAH 

patient lung samples and MCT-treated rat lungs, compared to controls. Reverse 

transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting from MCT-treated rat 

PASMC extracts revealed low expression of the IP receptor, but stable expression of the EP4 

receptor compared to controls. Iloprost-induced elevations in intracellular cAMP levels in 

PASMCs was dose-dependently reduced by AH23848, but not by AH6809. In summary, 

iloprost mediates vasodilatory functions via the EP4 receptor in the case of the low 

prostacyclin receptor expression associated with pulmonary hypertension. The first part of 

these results were published in Am J Respir Crit Care Med. 2008 Jul 15;178(2):188-96.  

Treprostinil is another novel long-acting stable PGI2 analog, the half-life of which is 

approximately 3-4 h, and is Food and Drug Administration (FDA) approved for subcutaneous 

infusion. In the second part of these results, treprostinil was shown to inhibit smooth muscle 

cell growth, in an ERK 1/2 (is also known as p42/44 mitogen-activated protein 

kinase)-dependent manner. For the regulation of cell proliferation, phosphorylated ERK must 

translocate into the nucleus. Treprostinil can inhibit pulmonary hypertensive rat PASMC 

proliferation by blocked nuclear translocation of ERK. In vascular smooth muscle cells, 

prostaglandin stimulates adenylate cyclase, which converts adenosine triphosphate to cAMP. 

Treprostinil exhibited a stronger antiproliferative effect than did iloprost, and prevented the 

nuclear translocation of phosphorylated ERK. However, the intracellular cAMP levels 

elevated by iloprost were dose-dependently reduced by AH23848 treatment, but not by 

treprostinil suggesting a role for the EP4 receptor in iloprost-induced cAMP generation. 

Immunoblotting demonstrated a downregulation of PPAR expression in IPAH patients and 

MCT28d PASMCs. Moreover, treprostinil was found to activate PPAR-α and PPAR-γ, but 

not PPAR β/δ. These results indicate that IPAH patients lack PPARs, and a similar expression 

pattern was observed in MCT-induced PAH. Trep might be a ligand for the nuclear receptor 

PPARs, and mediate antiremodeling effects via the PPAR−α and PPAR-γ associated with 

PAH. 
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5. Discussion 

 
In this thesis project, an effort has been made to elucidate the prostacyclin signaling 

pathway from the cell surface to the nucleus, by PASMC from MCT-induced pulmonary 

hypertension in rats. In preclinical and clinical studies, it has been shown that prostacyclin, 

iloprost or treprostinil reduce pulmonary arterial pressure, increase cardiac output and increase 

exercise capacity. Prostacyclin and its analogs work mainly by binding to the prostacyclin 

receptor, which belongs to the family of G-protein coupled receptors. Activation of the 

receptor leads to an elevation of intracellular cAMP by activation of adenylate cylase. In the 

first part of my thesis, the expression of the different prostanoid receptors was investigated in 

lungs and smooth muscle cells of pulmonary hypertensive rats and in lungs from patients 

undergoing lung transplantation due to IPAH. Interestingly, the expression of the IP was 

markedly reduced under the conditions of both experimental and clinical pulmonary 

hypertension, while other prostaglandin receptors, such as the prostanoid EP4 receptor, were 

unchanged in their expression. In the second part, functional experiments were performed 

which show that iloprost and treprostinil reduce serum-induced proliferation of rat PASMC. In 

addition, the iloprost-induced cAMP production by PASMCs, but not that of treprostinil, could 

be blocked by the EP4 receptor antagonist AH23848, suggesting that iloprost, at least in part, 

acts via the EP4 receptor. An investigation was carried out on treprostinil, which is known to 

activate nuclear PPARs in addition to the prostanoid receptors. Interestingly, the PPARs were 

downregulated in experimental and clinical pulmonary hypertension but treprostinil induced 

PPAR-α and PPAR-γ, suggesting a potential role for a prostanoid receptor-independent 

mechanism of treprostinil. The discussion is divided into two major sections. The first section 

covers the cell surface prostanoid receptor: the specific contribution of EP4 in mediating the 

effects of iloprost in the case of the low IP receptor expression associated with PAH is 

considered. The next section covers the role of prostacyclin versus nuclear receptor: 

peroxisome proliferator-activated receptors in prostacyclin sensing.  
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5.1 The specific contribution of EP4 in mediating the effects of iloprost in the 
case of low IP receptor expression associated with pulmonary arterial 
hypertension 
 
One of the key pathways that is altered in PAH is the prostacyclin signaling pathway. It is 

known that disturbances to prostacyclin synthesis [Tuder et al., 1999;Christman et al., 1992], 

as well as polymorphisms in genes encoding PGI2 synthase (PGIS) [Iwai et al., 1999] 

contribute to severe pulmonary hypertension. Substitution of prostacyclin, either by 

overexpression of PGIS [Geraci et al., 1999] in experimental pulmonary hypertension, or 

application of the stable prostacyclin analogs iloprost [Schermuly et al., 2004;Schermuly et al., 

2005c] or beraprost [Itoh et al., 2004], decreased pulmonary arterial pressure and vascular 

remodeling. Prostacyclin is a product of cyclooxygenases and mediates potent anti-platelet, 

vasodilator, and anti-inflammatory actions by activating the IP receptor [Vane and Botting, 

1995]. However, there is evidence that the lungs of PAH patients have decreased expression of 

the IP receptor [Hoshikawa et al., 2001]. In this study, the question of how iloprost may work 

under conditions of low IP receptor expression was 

addressed.  

Considering that the entire prostacyclin system is altered (for example, decreased levels of the 

prostacyclin metabolite 6-keto-PGF1α in urine [Christman et al., 1992], decreased expression 

of prostacyclin synthase [Tuder et al., 1999] and polymorphisms of the PGIS gene [Iwai et al., 

1999], the decreased expression of the receptor is important evident. Nevertheless, therapeutic 

application of prostanoids results in the improvement of survival and hemodynamics in PAH 

patients, as has been shown to be of benefit in several clinical trials [Olschewski et al., 

1996;Barst et al., 1996;Barst et al., 2003;Rubin et al., 1990]. These effects of prostanoids on 

clinical improvement may be related to non-receptor-mediated effects in the pulmonary 

vessels (for example, anti-thrombotic effects) or the vasodilation of the less heavily remodeled 

pulmonary arteries, which may have preserved prostacyclin receptor signaling [Cowan et al., 

2000;Tuder and Zaiman, 2002]. Alternatively, receptors other than the prostacyclin receptor 

could be involved in the mediation of these vasodilatory and vasculoprotective 

effects[Narumiya et al., 1999;Wilson et al., 2004]. Based on the prostanoid signaling pathway,  
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the prostanoid receptors can be subdivided into three categories. The relaxant receptors, 

including the EP2, EP4, and IP receptors, generally cause increases in intracellular cAMP 

levels and mediate vasodilation [Breyer et al., 2001;Narumiya et al., 1999]. The TP, EP1 and 

FP receptors are coupled to Ca2+ mobilization, while the EP3 receptor is an alternatively 

spliced gene, with at least eight isoforms identified to date. Depending on the subtype, this 

receptor can be negatively or positively coupled to Gs [Hata and Breyer, 2004;Narumiya et al., 

1999].  

This receptor and all other prostanoid receptors are members of the GPCR superfamily and 

coupled to adenylate cyclase and phospholipase C [Boie et al., 1994;Coleman et al., 

1994b;Namba et al., 1994]. To investigate the expression profile of prostanoid receptors and to 

perform functional experiments, the proximal (vessels >2 mm external diameter) and distal 

(vessels <1 mm external diameter) PASMC were isolated from MCT-treated rats. This animal 

model of pulmonary hypertension is characterized by remodeling of the precapillary vessels 

(medial thickening, and de novo muscularization of small pulmonary arterioles). Due to this 

mimicry of clinical PAH, the rat MCT model has repeatedly been employed for investigating 

the acute hemodynamic effects of vasodilators and the chronic anti-remodeling effects of 

pharmacologically active agents [Schermuly et al., 2005;Schermuly et al., 2007]. As expected, 

the expression of the differentiation marker desminis decreased during the passage of the cells, 

while expression of α smooth muscle actin remained constant. Along these lines, certain 

receptors (for example, IP, EP2, EP3, and FP) have been shown to be regulated, while others 

stay constant in their expression profile. Previous in vitro studies have already suggested the 

substantial antiproliferative potency of prostacyclin analogs in human PASMCs [Clapp et al., 

2002]. Interestingly, distal human PASMCs, isolated from pulmonary arteries (<1 mm external 

diameter), seem to be more susceptible to prostacyclin analog-induced inhibition of 

proliferation than are PASMCs from proximal pulmonary arteries (>8 mm external diameter) 

[Wharton et al., 2000]. Addressing this issue in distal and proximal PASMCs, IP, EP3, FP and 

TP was decreased in MCT-treated administered rats compared to control.  
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Excluding the contribution of EP1 and EP3 receptors in mediating the effects of 
iloprost  
Based on the prostanoid signal pathway, the prostanoid receptors can be subdivided into three 

categories. Prostanoid receptor gene expression was profiled, and the EP1 and the EP3 

receptors were demonstrated to be down-regulated in MCT28d rat PASMCs. The EP1 and EP3 

receptors couple via both Gi and Gq to either reduce intracellular cAMP levels or to elevate 

Ca2+ levels, and are involved primarily in vascular contraction via the Ca2+/phospholipase C 

pathway [Breyer et al., 2001;Narumiya et al., 1999]. Thus, the role of EP1 and EP3 receptor in 

the iloprost-induced increases in intracellular cAMP level in MCT28d rat PASMCs was 

excluded. 

 
Excluding the contribution of EP2 to demonstrate the contribution of the EP4 
receptor in mediating the effects of iloprost 
The EP2 and EP4 receptors both couple via Gs to induce elevations in intracellular cAMP 

levels leading to smooth muscle relaxation. The prostanoid receptor gene profiling revealed 

that the EP2 and EP4 receptors were stably expressed, suggesting the possibility that EP2/EP4 

receptors may be involved in the iloprost-induced increase in intracellular cAMP levels, when 

the IP receptor expression is reduced in MCT28d rat PASMCs. Furthermore, prostacyclin, 

cicaprost and iloprost are generally accepted as selective IP receptor agonists, and they have 

all been observed to be agonists in the EP4 receptor-expressing cell line (HEK-hEP4) with 

varying EP4 affinity [Wilson et al., 2004]. In addition, it has been shown that in the piglet 

saphenous vein which has high levels of the EP4 receptor, iloprost acts as a potent agonist of 

the porcine EP4 receptor [Wilson and Giles, 2005].  

To delineate the contribution of the EP2 and EP4 receptors to iloprost-induced intracellular 

cAMP accumulation when the IP receptor expression levels are low, the additional functional 

experiments in MCT28d rat PASMC used AH6809 (a selective EP2 receptor antagonist) and 

AH23848 (a selective EP4 receptor antagonist) in combination with iloprost. The EP4 

antagonist AH23848 potently inhibited the iloprost-induced cAMP level increase in PASMC. 

This compound is widely used to inhibit the EP4 receptor and to investigate its role 

[Davis et al., 2004;Lin et al., 2006]. As a result, the iloprost-induced intracellular cAMP  
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accumulation was inhibited in a dose-dependent manner by AH23848, but not by AH6809, 

clearly demonstrating the contribution of EP4 receptors and excluded the contribution of the 

EP2 receptor in mediating the effects of iloprost. Interestingly, the EP4 receptor is stably 

expressed in both human PAH and MCT-induced pulmonary 

hypertension in rats. On the other hand, we have now demonstrated that the IP receptor is 

downregulated in human PAH and this fact is in accordance with a previous report that 

describes the decreased expression of the prostacyclin receptor in PAH [Hoshikawa et al., 

2001]. Inhalation of aerosolized iloprost has been shown to cause selective pulmonary 

vasodilation in pulmonary hypertension [Hoeper et al., 2000;Olschewski et al., 

1996;Olschewski et al., 2002]. The major signaling mechanism of iloprost acts via 

prostacyclin receptors (the IP receptor). However, there is evidence that the lungs of PAH 

patients have decreased expression of the IP receptor [Hoshikawa et al., 2001]. The question 

of how iloprost may work under conditions of low IP receptor expression in IPAH?  

The EP4 receptor is stably expressed in both human PAH and MCT-induced pulmonary 

hypertension in rat lungs, suggesting that the EP4 receptor may be an interesting therapeutic 

target. The signaling mechanism is similar to the IP receptor and involves the well-known 

cAMP-PKA axis, which results in vasodilation and antiproliferation. Interestingly, iloprost has 

been documented as an EP4 receptor agonist [Wilson et al., 2004;Wilson and Giles, 2005]. 

Apart from the IP receptor, iloprost activates the EP4 receptor, which may overcome the 

effects of downregulation of the IP receptor under disease conditions. The functional 

experiments revealed that iloprost-induced intracellular cAMP accumulation was inhibited in a 

dose-dependent manner by AH23848. These results suggest that iloprost mediates vasodilatory 

functions via EP4 receptor in the case of low IP receptor expression associated with PAH. Our 

findings suggest a previously-unrecognized mechanism for iloprost and indicate that the EP4 

receptor and its pathways may be a potentially novel therapeutic target for the treatment of 

PAH.  
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On the relative importantance of the PGI2 receptor compared to other 
vasodilators 
The regulation of pulmonary vascular tone under physiological conditions is mainly controlled 

by prostacyclin and nitric oxide and to a minor extent by mediators like arterial and brain 

natriuretic peptides, vasoactive intestinal peptide (VIP), endothelin or thromboxane 

[Christman et al., 1992;Tuder et al., 1999].  

Disturbances to prostacyclin synthesis, as well as polymorphisms of PGIS [Iwai et al., 1999] 

have been related to pulmonary hypertension. Prostacyclin and its analogs (iloprost, beraprost, 

treprostinil) has been shown to improve hemodynamics, clinical status, and survival of 

patients displaying severe PAH [Olschewski et al., 1996;Olschewski et al., 2002]. The 

antiproliferative pathways mediated by the IP receptor which upregulate cAMP levels are 

directly correlated with a regression of smooth muscle cell proliferation. In addition, there is 

evidence that the nitric oxide (NO) system is dysfunctional as well, either by decreased 

expression of NOS [Giaid and Saleh, 1995] or low NO bioavailability due to increased 

oxidative stress [Coggins and Bloch, 2007]. Nitric Oxide synthesized in endothelial cells by 

endothelial NO synthase (eNOS or NOS3), is an endogenous modulator of pulmonary 

vasodilator tone and an inhibitor of smooth muscle cell proliferation. This pathway is currently 

targeted by phosphodiesterase 5 inhibition, which amplifies the NO signal by stabilization of 

the downstream second messenger cGMP [Ghofrani et al., 2006]. New pharmacological 

activators of soluble guanylate cyclase may thus further amplify the NO signaling 

cascade[Dumitrascu et al., 2006]. However, there are no data demonstrating improved survival 

with long-term inhaled NO treatment, and there is evidence that NO possesses lower 

vasodilator potency than do the prostanoids in pulmonary hypertension patients [Hoeper et al., 

2000;Pepke-Zaba et al., 1991].  

Alternatively, peptides including the natriuretic peptides or VIP counteract vasoconstriction, 

and substitution of these vasodilative and anti-proliferative peptides is currently under clinical 

development. The VIP acts as a potent systemic and pulmonary vasodilator. However, the 

clinical application of VIP is limited for two major reasons. First, VIP is susceptible to rapid 

chemical and biochemical degradation following systemic administration, resulting in low 

potency and a short duration of action in clinical applications[Onoue et al., 2007;Takubo et al.,  
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1991]. Second, systemic administration of VIP and its analogs cause cardiovascular side 

effects [Sergejeva et al., 2004]. 

Since PAH is a complex disease, targeting a single pathway can not be expected to be 

uniformly successful. Prostacyclin and its analogs (iloprost, beraprost, treprostinil) have 

offered beneficial effects in PAH and iloprost is now the first-line drug of PAH therapy, 

therefore, it defines the more important vasodilator-antiproliferative pathways compared to 

others. 
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5.2 Prostacyclin analog signal transduction may trigger PPAR-α and PPAR-γ to 

inhibit nuclear translocation of phosphorylated ERK in anti-proliferative effect 
on PASMC from rats with pulmonary hypertension  

 

There are multiple signaling options for prostacyclin. Stimulation by the prostanoid pathway is 

cell-specific, depending not only on the ability of prostacyclin to activate the cell-surface 

prostacyclin receptor, but also on its ability to act intracellularly via the nuclear PPARs. The 

aim of the second direction of this study is an investigation of prostacyclin analog activity via 

PPARs, a non-prostanoid receptor pathway, in PASMC of MCT-induced pulmonary 

hypertension. 

Inhaled iloprost has been shown to be effective for the treatment of PAH, and to provide 

potent pulmonary vasodilation with minimal systemic side effects and no risk of 

catheter-related complications. However, there are certain drawbacks, such as the fact that 

inhaled iloprost lasts only 30 to 90 min, and that six to nine inhalations are needed to achieve 

good clinical results. Treprostinil is another long-acting stable PGI2 analog, with a duration of 

action up to three to four hours, and is FDA approved for subcutaneous infusion. The safety 

and effectiveness of treprostinil were demonstrated in several small clinical trials and one 

large randomized, controlled trial with 470 patients [Simonneau et al., 2002]. Improvement in 

exercise capacity, improved indices of dyspnea, a reduction in signs and symptoms of 

pulmonary hypertension, and improved hemodynamics were noted in the patients who 

received subcutaneous treprostinil [Simonneau et al., 2002]. In addition, the patients 

experienced improved functional classification and exercise tolerance, without reported 

adverse effects [Voswinckel et al., 2006].  

Treprostinl is growing in importance in the treatment of pulmonary hypertension, but the 

signaling mechanism is still not clear. Therefore, in the second part of this thesis, I first 

established a PASMC proliferation assay with treprostinil. The results showed that treprostinil 

can more potently inhibit PASMC proliferation than iloprost. For the regulation of cell 

proliferation, phosphorylated ERK must translocate to the nucleus. The ERK nuclear 

translocation can be suppressed via cAMP-mediated arrest of cell proliferation [Li et al.,2004]. 

In this study, the result showed that treprostinil can inhibit pulmonary hypertensive rat  
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PASMC proliferation by blocking nuclear tranlocation of phopho-ERK. In a previous study, it 

was shown that the EP4 receptor may take over the function of the IP receptor in the 

remodeled vessels of pulmonary hypertensive subjects. The prostacyclin analog iloprost 

increases cAMP levels in smooth muscle cells by binding to the EP4 receptor [Lai et al., 2008]. 

To investigate whether treprostinil may act on the EP4 receptor to increase cAMP generation, I 

then used the EP4 antagonist AH23848 in a study of treprostinil-mediated cAMP 

accumulation. Interestingly, the intracellular cAMP levels elevated by iloprost were 

dose-dependently reduced by AH23848 treatment, but not with treprostinil, suggesting a role 

for the EP4 receptor in iloprost-induced cAMP generation. Recently, Clapp and coworkers 

utilized HEK-293 cells stably expressing the IP receptor to show treprostinil potently inhibited 

proliferation of PASMC via a cAMP-independent pathway, and that PPAR-γ was activated 

through the IP receptor via a cyclic AMP-independent mechanism and contributed to the 

antiproliferative effect of prostacyclin analog [Clapp et al., 2002]. However, in a previous 

study, the expression of the IP receptor was markedly reduced under conditions of both 

experimental and clinical pulmonary hypertension. The results of this study etamine whether 

prostacyclin analogs exert thus effects via non-prostanoid receptor pathways.  

Currently, there is a growing body of evidence indicating that prostacyclin analogs function 

via non-prostanoid receptor pathways. Prostacyclin and it agonists, such as iloprost and 

treprostinil, have potent vasodilatory and anti-proliferative effects in the cardiovascular system. 

A stable prostacyclin agonist also can also act as the binding ligand to nuclear PPARs [Falcetti 

et al., 2007;Hatae et al., 2001]. To investigate prostacyclin analog activity exerted via 

non-prostanoid receptor pathways associated with pulmonary hypertension, immunoblotting 

was performed to investigate the downregulation of PPAR expression in IPAH patients and 

PASMC from MCT-treated rats. Treprostinil had a stronger antiproliferative effect than did 

iloprost, and prevented the nuclear translocation of phosphorylated ERK. However, the 

intracellular cAMP levels elevated by iloprost were dose-dependently reduced with AH23848 

treatment but not treprostinil, suggesting a role for the EP4 receptor in iloprost-induced cAMP 

generation. Moreover, treprostinil activated PPAR-α and PPAR-γ, but not PPAR β/δ. 

Several reports have shown a reduced lung tissue PPARγ gene and protein expression in lungs 

from patients with severe PH, and a loss of PPARγ expression in the complex vascular lesions  
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characteristic of PAH [Hansmann et al., 2008]. In addition, the total PPARγ mRNA has been 

reported to be decreased in patients with severe pulmonary hypertension when compared with 

normal lung tissue or tissue from patients with emphysema, suggesting that a lack of PPARγ 

expression is a marker of an abnormal endothelial cell phenotype, and that a lack of PPARγ 

expression inhibits apoptosis and facilitates endothelial cell growth and angiogenesis 

[Ameshima et al., 2003;Hansmann et al., 2008]. Taken together, the work presented here is 

important because it showed for the first time that the downregulation of PPAR expression in 

IPAH patients and PASMC from MCT-treated rats. In addition, the results suggest that 

treprostinil activates PPAR-α and PPAR-γ  to reverse smooth muscle cell proliferation. 

The prostacyclin signaling interaction between the cell surface receptor and nuclea proteins is 

still not clear. There are multiple signaling options for prostacyclin. Following stimulation by 

prostanoids, the receptor of the cell are cell-specific, depending not only on the ability of 

prostacyclin to activate the cell surface prostacyclin receptor, but also on its ability to act 

intracellularly via the nuclear PPARs. The PPAR proteins may play an important role in the 

regulation of cell differentiation and growth, particularly in the lung [Becker et al., 2006]. 

Various groups have established that PPARs are expressed to varying degrees in endothelial 

cells (ECs), vascular smooth muscle cells (VSMCs), and fibroblasts [Ali et al., 2006;Falcetti et 

al., 2007;Hansmann et al., 2007;Hansmann et al., 2008]. Further work is required to define 

which genes in these cellular settings are regulated through PPARs, through what mechanisms, 

and whether such actions are at work in vivo, either in endogenous signaling or in response to 

pharmacologic agents.  
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5.3 Conclusion 
 

The major part of this investigation has shown that the EP4 receptor may take over the 

function of the IP receptor in the remodeled vessels of pulmonary hypertensive subjects. 

Furthermore, the prostacyclin analog iloprost increases cAMP levels in smooth muscle cells 

by binding to the EP4 receptor. The thesis reports research findings on prostacyclin receptor 

modulation of pulmonary vascular remodeling in clinical and experimental PAH with an 

important melding of clinical data from human samples and data from animal models of 

disease. This finding provides a previously unrecognized mechanism for iloprost and the 

prospect that the EP4 receptor may be a novel therapeutic approach for the treatment of PAH, 

and has been published in the Am.J.Respir.Crit Care Med [Lai et al., 2008]. In addition, these 

results also indicate that IPAH patients lack PPARs and a similar expression pattern was 

observed in MCT-induced PAH. Treprostinil might be a ligand for the nuclear receptor PPARs 

and mediate antiremodeling effects via the PPAR-α and PPAR-γ associated with PAH.  

Pulmonary arterial hypertension is a multifactorial disease based on various molecular and 

cellular disturbances. Prostacyclin and its analogs have been shown to extend the survival of 

patients with PAH. However, it is not yet clear if prostacyclin analogs exert effects only via a 

single prostanoid receptor pathway, or also operate via various prostanoid receptors or 

non-prostanoid receptor pathways.  

Future research on the pathobiology of PAH and the strategy for the treatment of PAH should 

focus on the definition of the relative importance and on the interactions between the different 

pathways. Additionally, the intermediate steps involved in prostacyclin transduction signals 

from membrane to the cytoplasm to the nuclear are going to be explored in order to better 

understand how regressed prostacyclin signaling prevent in hypertensive pulmonary vascular 

disease. 
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6. Summary 

Chronic pulmonary hypertension is characterized by vascular remodeling and perivascular 

inflammation. In clinical and experimental studies with inhaled or systemically-administered 

prostanoids, it has been shown that prostacyclin, iloprost or treprostinil reduce pulmonary 

arterial pressure, increase cardiac output and increase the exercise capacity. Prostacyclin and 

its analogs work mainly by binding to the prostacyclin receptor (IP), which belongs to the 

family of G-protein coupled receptors. Activation of the receptor leads to an elevation of 

intracellular cAMP by activation of adenylate cylase. In the first part of my thesis, the 

expression of the different prostanoid receptors was investigated in lungs and smooth muscle 

cells of pulmonary hypertensive rats and lungs from patients undergoing lung transplantation 

due to idiopathic pulmonary arterial hypertension. Interestingly, the expression of the 

prostacyclin receptor was markedly reduced under the conditions of both experimental and 

clinical pulmonary hypertension, while other prostaglandin receptors, such as the EP4 receptor, 

were unchanged in their expression. In the second part, functional experiments were 

performed which show that iloprost and treprostinil reduce serum-induced proliferation of rat 

pulmonary arterial smooth muscle cells (PASMC). In addition, the iloprost-induced 

cAMP-production of PASMCs, but not that of treprostinil, could be blocked by the EP4 

receptor antagonist AH23848, suggesting that iloprost, at least in part, acts via the EP4 

receptor. An investigation was carried out on treprostinil, which is known to activate nuclear 

peroxisome proliferator-activated receptors (PPARs) in addition to the prostanoid receptors. 

Interestingly, the PPARs were downregulated in experimental and clinical pulmonary 

hypertension but treprostinil induced PPAR-α and PPAR-γ  suggesting a potential role for a 

prostanoid receptor-independent mechanism of treprostinil. Taken together, the prostacyclin 

receptor is downregulated in experimental and clinical pulmonary hypertension and a novel 

role is indicated for the EP4 receptor in the signaling of iloprost, a clinically-approved 

prostacyclin analog. The major results of thesis were published in Am J Respir Crit Care Med. 

in July 2008. 
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7. Zusammenfassung 
Die chronische pulmonale Hypertonie ist eine eigenständige Erkrankung oder stellt die 

gemeinsame Endstrecke einer Vielzahl von degenerativen und inflammatorischen 

Lungenerkrankungen, dar. In klinischen und experimentellen Studien konnte gezeigt werden, 

dass gefäßerweiternde Substanzen, wie zum Beispiel Prostanoide, hochwirksame pulmonal 

drucksenkende Wirkstoffe sind. Dies führte nach erfolgreich durchgeführten präklinischen und 

klinischen Studien zur Zulassung von intravenös verabreichtem Prostazyklin und inhalativem 

Iloprost zur Therapie verschiedener Formen der chronischen PH. Prostazyklin sowie dessen 

Analoga wirken vornehmlich über den Gs-Protein gekoppelten Prostazyklinrezeptor, der nach 

Bindung des Liganden zu einer Erhöhung des Botenstoffes cAMP führt. Im ersten Teil der 

vorliegenden Arbeit wurde die Expression verschiedener Prostanoid rezeptoren in Lungen 

pulmonalhypertensiver Ratten und humanem Lungengewebe untersucht. Als wesentlicher 

Befund konnte gezeigt werden, dass der Prostazyklin Rezeptor in diesen Geweben herunter 

reguliert ist, während andere Rezeptoren, wie der Prostaglandin E4 Rezeptor (EP4 Rezeptor) 

stabil exprimiert werden. Im zweiten Teil der Arbeit wurden funktionelle Untersuchungen mit 

den klinisch verfügbaren Prostazyklin Analoga Iloprost und Treprostinil durchgeführt. Beide 

Substanzen senkten die Serum-induzierte Proliferation von glatten pulmonalarteriellen 

Muskelzellen. Darüber hinaus konnte im Gegensatz zu Treprostinil der Iloprost-induzierte 

cAMP Anstieg durch den EP4 Rezeptorantagonisten AH23848 unterdrückt werden, was auf 

eine Rolle des EP4 Rezeptors in der Signaltransduktion von Iloprost hinweist. Im dritten Teil 

der Arbeit wurde die Wirkungsweise von Treprostinil weiter untersucht, das bekannterweise 

ein Ligand der Peroxisome Proliferator-Activated Receptors (PPARs) ist, welche unter 

Bedingungen der pulmonalen Hypertonie niedriger exprimiert sind. Dennoch führt Treprostinil 

zu einer Translokation von PPAR-α and PPAR-γ in den Zellkern, was auf einen 

Prostanoid-Rezeptor unabhängigen Signalweg hinweist. Zusammengefasst konnte gezeigt 

werden, dass der Prostazyklin Rezeptor in der pulmonalen Hypertonie herunter reguliert ist 

und dass das klinisch zugelassene Iloprost möglicherweise neben dem IP Rezeptor auch über 

den EP4 Rezeptor wirkt, was die zukünftige Entwicklung neuer Prostanoide beeinflussen 

kann. 
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A.1.1.1 Enzymes for molecular biology 
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P-ERK          Santa Cruz (USA) 

PPAR-α          Abcam (Germany) 
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PPAR-γ          Santa Cruz (USA) 
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Anti-mouse IgG, peroxidase-conjugated    Sigma (Germany) 
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Penicillin/ streptomycin       PAN biotech (Germany) 

Pepstatin          Sigma (Germany) 

Trypsin/EDTA         PAN Biotech (Germany) 

 
A.1.2 Reagents 
100 bp DNA ladder marker      MBI Fermentas (Germany) 

Acetone          Sigma (Germany) 
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Dakocytomation Faramount mounting medium  Dako (Germany) 

Diethyl pyrocarbonate (DEPC) water    Roth (Germany) 

Deoxy nucleotide mix (dNTPs)     Promega (Germany) 

Dimethyl sulfoxide (DMSO)      Sigma (Germany) 

1, 4-Dithiothreitol (DTT)      Fluka (Germany) 

Dulbecco's modified Eagle's-Ham's F-12 medium  

(DMEM/F-12)         GIBCO (Germany) 

Dulbecco's phosphate. buffered saline (D-PBS)  PAN (Germany) 

Earle’s Balanced Salt Solution (EBSS)    Gibco (Germany) 

ethylene-bis (oxyethylenenitriloprost) tetraacetic acid 

(EGTA)          Sigma (Germany) 

Ethanol          Fluka (Germany)  

Ethidium bromide        Sigma (Germany)  

Ethylenedinitriloprost tetraacetic acid (EDTA)  Sigma (Germany) 

Fetal bovine serum (FBS)      Bio west (France) 

Formamide         Sigma (Germany) 
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Formaldehyde         Sigma (Germany) 

Glacial acetic acid        Sigma (Germany) 

Glycine          Sigma (Germany) 

Glycerol          Sigma (Germany)  

Goat serum         Sigma (Germany) 

Hanks' Balanced Salt Solution (HBSS) 1×   Gibco (Germany) 

Hematoxylin, Mayer’s       DAKO (Germany) 
3H-Thymidine         Amersham (Germany) 

Hydrogen peroxide (30% solution)     Merck (Germany) 

3-isobutyl-1-methylxanthine (IBMX)    Sigma (Germany) 

Isopropanol         Merck (Germany) 

L-glutamine         PAN (Germany) 

Methanol          Fluka (Germany) 

NP-40          Sigma (Germany) 

Paraformaldehyde        Sigma (Germany) 

Phenylmethylsulfonylfluoride (PMSF)    Fluka (Germany) 

Rainbow Molecular Weight Markers    Amersham (Germany) 

Scintillation liquid (Rotiszint Eco Plus)    Roth (Germany) 

Sodium acetate        Sigma (Germany) 

Sodium chloride        Sigma (Germany) 

Sodium dodecylsulfate (SDS solution, 10% W/V)  Promega (USA) 

Sodium hydroxide (NaOH)      Merck (Germany) 

Sodium pyrophosphate       Sigma (Germany) 

TEMED (tetramethylethylenediamine)    Sigma (Germany) 

Trichloroacetic acid (TCA)      Sigma (Germany) 

Tris-base          Sigma (Germany) 

Tris-HCl 1.5M PH8.8       Amresco (USA) 

Tris-HCl 0.5M PH6.8       Amresco (USA) 

Tris HCl          Sigma (Germany) 

Triton X-100         Merck (Germany) 
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Trizol®          Invitrogen (Germany)  

Trizma base         Sigma (Germany) 

Tween 20          Sigma (Germany) 

Ventavis® (Iloprost)        Schering (Germany) 

Xylol          Merck (Germany) 

 
A.1.3 Kits  
DAKO labeled streptavidin-biotin system   Dako (Germany) 

ECL Western Blotting System     Amersham (Germany) 

ImProm-II TM Reverse Transcription System Promega (USA). 

RIA cyclic AMP (125I) kit Immunotech (France) 

Smooth muscle cell growth medium 2 kit   PromoCell (Germany) 

Substrate-chromogen kit       Dako (Germany) 

 

A.1.4 Host species 
Homo sapiens (Human) 

Sprague-Dawley rat (SD rat) 

 

A.1.5 Eukaryotic cells 
Human vascular smooth muscle cell 

SD rat vascular smooth muscle cell 
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A.1.6 Oligonucleotides 
All the oligonucleotides for PCR (polymerase chain reaction) were purchased from Metabion 

(Martinsried) Germany. The following are the primer sequences used to evaluate the 

expression of the respective genes. 

 

Rat smooth muscle alpha-actin (SM α--actin) (NM_031004) 

sense  5'- CGA TAG AAC ACG GCA TCA TC -3' 

antisense  5'- CAT CAG GCA GTT CGT AGC TC -3' 

Annealing temperature: 57.5 °C 

Size of the PCR product: 525 bp 

 

Rat desmin (NM_022531) 

sense  5'- ACC TGC GAG ATT GAT GCT CT -3'  

antisense  5'- CGG GTC TCA ATG GTC TTG AT -3' 

Annealing temperature: 57.5 °C 

Size of the PCR product: 368 bp 

 

Rat prostaglandin-endoperoxide synthase 2 (Cox-2)  (NM_017232) 

sense  5'- ACT GTA CCG GAC TGG ATT CTA -3'  

antisense  5'- CCA TCC TGG AAA AGT CGA AG -3' 

Annealing temperature: 55.0 °C 

Size of the PCR product: 580 bp 

 

Rat prostacyclin receptor (IP receptor) 

(NM_001077644) 

sense  5'- TCA CGA TCA GAG GAT TCA CG -3'  

antisense  5'- ATT CCC ACA GAA CAG CCA TC -3' 

Annealing temperature: 57.5 °C 

Size of the PCR product: 358 bp 
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Rat prostaglandin E receptor 2 (EP2 receptor)  (NM_013100) 

sense  5'- ACT GCC ACC TTC CTG TTG TT -3'  

antisense  5'- GCC CAA GGC TAA TGA AAC AC -3' 

Annealing temperature: 55.0 °C 

Size of the PCR product: 373 bp 

 

Rattus prostaglandin E receptor 3 (EP3 receptor) (NM_012704) 

sense  5'- TAT GCC AGC CAC ATG AAG AC -3'  

antisense  5'- CAC ATG ATC CCC ATA AGC TG -3' 

Annealing temperature: 55°C 

Size of the PCR product: 374 bp 

 

Rattus prostaglandin E receptor 4 (EP4 receptor) (NM_032076) 

sense  5'- AGT GAC CAT CGC CAG ATA CA -3'  

antisense  5'- ATG TAA GAG AAG GCG GCG TA -3' 

Annealing temperature: 57.5°C 

Size of the PCR product: 339 bp 

 

Rattus thromboxane A2 receptor (TP receptor) (NM_017054) 

sense  5'-TGT GAG GTG GAG ATG ATG GT -3'  

antisense  5'-AGG TCG TTA GCA GTC ACC AA -3' 

Annealing temperature: 55.0 °C 

Size of the PCR product: 369 bp 

 

Rattus prostaglandin F receptor (FP receptor) (NM_013115)  

sense  5'-TCA CGG GAG TCA CAT TTT G -3  

antisense  5'- TGA GTT CCC AGA TGT GCA AG -3' 

Annealing temperature: 55.0 °C 

Size of the PCR product: 342 bp 
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Rattus peroxisome proliferator-activated receptor alpha (PPAR α) (NM_013196) 

sense  5'-TCACACAATGCAATCCGTTT-3'  

antisense  5'-ACTGGCAGCAGTGGAAGAAT-3' 

Annealing temperature: 57°C 

Size of the PCR product: 358 bp 

 

Rattus peroxisome proliferator-activated receptor beta/delta (PPAR β/δ) (NM_013121) 

sense  5'-TGTCAACAAAGACGGACTGC-3'  

antisense  5'-TCTTCAGCCACTGCATCATC-3' 

Annealing temperature: 55 °C 

Size of the PCR product: 374 bp 

 

Rattus peroxisome proliferator activated receptor gamma (PPAR γ) (NM_013124) 

sense  5'-TTCAGAAGTGCCTTGCTGTG-3'  

antisense  5'-ACTGGCACCCTTGAAAAA-3' 

Annealing temperature: 57 °C 

Size of the PCR product: 361 bp 

 

Rattuse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (NM_017008) 

sense  5'-TTCAT TGACC TCAAC TACAT-3'  

antisense  5'-GAGGG GCCAT CCACA GTCTT-3' 

Annealing temperature: 57.5 °C 

Size of the PCR product: 469 bp 
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A.1.7 Buffers, Media and other solutions 
 
Preparation of RNase-free glass bottles 

Measure water into RNase-free glass bottles. 

Add 0.01% (v/v) diethylpyrocarbonate (DEPC) 

Autoclave and allow to stand overnight 

 

10× TBS (pH=7.6) 

Tris-base (100 mM)       12.11 g 

NaCl (150 mM)        87.66 g 

Make up the volume to 1 l with ddH2O 

 

1× TBST (wash buffer) 

Tris           4.48 g 

NaCl          7.70 g 

EDTA          3.6 g 

Tween (0.05%)        1 ml 

ddH2O          1 liter 

 

SDS-page gel (10% Separating gel)  

Stacking gel 

Acrylamide/Bis        0.75 ml 

ddH2O          2.9 ml 

Stacking gel buffer (Tris 0.5 M, pH=6.8)   1.25 ml 

10% SDS (W/V)        0.05 ml 

10% ammonium persulfate      0.05 ml 

TEMED          5 µl 
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Separating gel  

A-B           2.5 ml 

ddH2O          2.95 ml 

Separating gel buffer (Tris 1.5 M, pH=8.8)   1.875 ml 

10% SDS          0.075 ml 

10% ammonium persulfate      0.075 ml 

TEMED          7.5 µl 

 

5× SDS-loading butter 

Tris HCl, PH=6.8        2.5 ml 

10% SDS          4.0 ml 

Glycerol          2.0 ml 

β-mercaptoethanol        1.0 ml (14.3 M) 

10% bromophenol blue       200 µl 

 

10× SDS-Page running butter 

Tris           6.0 g 

Glycine          28.8 g 

SDS 10%          20 ml 

Make up the volume to 2 l with ddH2O 

 

1× SDS-page blotting butter 

Tris           6.0 g 

Glycine          3.0 g 

Methanol          200 ml 

Make up the volume to 1 l with ddH2O 
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Blocking buffer  

TBS-T          100 ml 

Milk powder         5 g 

 

10% BAS blocking buffer 

BSA powder         20 g 

Make up the volume to 200 ml with 1×PBS 

 

50× TAE butter (Tris-Acetate-EDTA) 

Tris base          242 g 

Glacial acetic acid        57.1 ml 

EDTA          18.6 g 

Make up the volume to 1 l with ddH2O 

 

PASMCs culture media 

DMEM-F12          450 ml 

FCS           50 ml 

Glutamine         5 ml 

PEN STREP         5 ml 

Membrane protein lysis buffer 
Tris-HCl (pH=7.4)        20 mM 

NaCl          100 mM 

EDTA          1 mM 

Nonidet P-40         0.1% V/V 

sodium deoxycholate       0.05% W/V 

SDS           0.025% W/V 

Triton X-100         0.1% V/V 

PMSF          0.1 mg/ ml 

Leupeptin         10 µg/ml 

Aprotinin          25 µg/ml 



                                                                        A11 

 
A.1.8 Equipments 
10 cm cell culture dish      Falcon BD GmbH (Germany) 

6 well cell culture dish      Falcon BD GmbH (Germany) 

pure Nitrocellulose blotting membrane   PALL life sciences (Germany) 

10 ml pipettes        Falcon (Germany) 

5 ml pipettes        Falcon  (Germany) 

PCR 200 µl Eppendorf tube     Eppendorf (Germany) 

1.5 ml Eppendorf tube      Greiner (Germany) 

2.0 ml Eppendorf tube      Greiner (Germany) 

5 ml pipettes        Falcon (Germany) 

15 ml tube, type 2095      Falcon (Germany) 

50 ml tube, type 2070      Falcon (Germany) 

Carbogen gas (95% O2/5% CO2)    Air Liquide (Germany) 

Hyperfilm ECL       Amersham (Germany) 

Filter tips (10 µl/ 100 µl/ 1000 µl)    Nerbe plus (Germany) 

Liquid nitrogen       Air Liquide (Germany) 

X-Ray film        AGFA (Germany) 

Uvette         Eppendorf AG (Germany) 
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A.1.9 Instruments 
Anatomy microscope (SM 22-S12)    Hund (Germany) 

Aqua-stabil         Julabo (Germany) 

BioDocAnalyze        Biometra (Germany) 

Bio-Photometer        Eppendof  (Germany) 

Centrifuge (Biofuge fresco)      Heraeus (Germany) 

Cold light source FLQ 150 M      Hund (Germany) 

Curix HX 530 U X-ray developer     AGFA (Germany) 

Direct-Q Water Purification System (Q3)   Millipore (Germany) 

DNA/ RNA Electrophoreis unit     Biometra  (Germany) 

Hemocytometer        Labor Optik (Germany) 

Homogenizator (DIAX 900)      Heidolph (Germany) 

Hood (Hera safe 9)        Heraeus (Germany) 

Incubator (Hera cell 240)      Heraeus (Germany) 

Incubator Lab-Therm       Heraeus (Germany) 

Light Microscope        Hund (Germany) 

ND-1000 UV-Vis spectrophotometer    Peqlab (Germany) 

Net electrotransfer unit       BioRad (Germany) 

PCR-thermocycler        Biometra (Germany)  

pH-meter 766         Knick (Germany) 

SDS-PAGE Electrophoresis unit     BioRad (Germany) 

-Mini-protein 3 tetra cell 

-Mini-trans Blot electrophortic transfer cell 

-PowerPac 

Shaker WT17         Biometra (Germany) 

Spectrophotometer Nano ND-1000    Peqlab (Germany)  

Tank Arpege 40 (for liquid nitrogen)    Air Liquide (Germany)  

Tissue processor Leica TP 1050     Leica (Germany)  

Votex          VWR lab (Germany) 
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Vasodilatation in Pulmonary Hypertension

Ying-Ju Lai1, Soni Savai Pullamsetti1,2, Eva Dony1, Norbert Weissmann1, Ghazwan Butrous3, Gamal-Andre Banat4,
Hossein Ardeschir Ghofrani1, Werner Seeger1, Friedrich Grimminger1, and Ralph Theo Schermuly1,2

1University of Giessen Lung Centre, Giessen, Germany; 2Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany;
3University of Kent, Kent Institute of Medicine and Health Sciences, Kent, United Kingdom; and 4Department of Hematology and Oncology,

University of Giessen, Giessen, Germany

Rationale: Iloprost is effective for the treatment of pulmonary
hypertension. It acts through elevation of cAMP by binding to the
prostacyclin receptor (IP receptor). However, there is evidence that
patients with severe pulmonary hypertension have decreased ex-
pression of the IP receptor in the remodeled pulmonary arterial
smooth muscle.
Objectives: We hypothesized that prostanoid receptors other than
the IP receptor are involved in signal transduction by iloprost.
Methods: Immunoblotting was used to detect the IP and prostanoid
EP4 receptor in lung tissue from patients with idiopathic pulmonary
arterial hypertension, and immunohistochemistry was used to de-
tect these receptors in lung sections from rats treated with mo-
nocrotaline (MCT28d). Protein and mRNA were isolated from
pulmonary arterial smooth muscle cells (PASMCs) from control
and MCT28d rats treated with AH6809 (an EP2 receptor antagonist)
and AH23848 (an EP4 receptor antagonist) in combination with
iloprost. Intracellular cAMP was also assessed in these tissues.
Measurements andMainResults: IP receptor expressionwas reduced in
idiopathic pulmonary arterial hypertension patient lung samples
and MCT28d rat lungs compared with the controls. Reverse
transcriptase–polymerase chain reaction and immunoblotting of
MCT28d rat PASMC extracts revealed scant expression of the IP
receptor but stable expression of EP4 receptor, compared with
controls. Iloprost-induced elevation in intracellular cAMP in PASMCs
was dose-dependently reduced by AH23848, but not by AH6809.
Conclusions: Iloprost mediates vasodilatory functions via the EP4
receptor in the case of low IP receptor expression associated with
pulmonary arterial hypertension. This is a previously unrecognized
mechanism for iloprost, and illustrates that the EP4 receptor may be
a novel therapeutic approach for the treatment of pulmonary
arterial hypertension.

Keywords: prostanoid EP4 receptor; iloprost; pulmonary artery hyper-

tension

Pulmonary vascular remodeling is a hallmark of pulmonary
arterial hypertension (PAH) and is characterized by hypertro-
phy and hyperplasia of various cell types within the vessel,
including medial smooth muscle cells, fibroblasts, and endothe-
lial cells. Several signaling pathways have been shown to be
dysregulated in this disease including the following: (1) an
imbalance between prostacyclin and thromboxane as evidenced
by a reduced production of prostacyclin, mainly by down-
regulation of prostacyclin synthase and increased excretion of
thromboxane (1, 2); (2) an increased expression of growth

factors such as endothelin (3), serotonin (4, 5), and platelet-
derived growth factor (PDGF) (6, 7); and (3) an up-regulation
of cyclic nucleotide phosphodiesterases (PDEs) such as PDE5
(8, 9) and PDE1 (10). Some of these pathways have been
addressed therapeutically by the application of prostanoids (or
analogs), endothelin antagonists, or PDE5 inhibitors. In partic-
ular, prostacyclin and its analogs (iloprost, beraprost, and
treprostinil) have been shown to exert beneficial effects in
PAH. Inhalation of aerosolized iloprost has been shown to
cause selective pulmonary vasodilatation in pulmonary hyper-
tension (11–13). Long-term use of nebulized iloprost is reported
to improve exercise capacity, event-free survival, and hemody-
namics in severe pulmonary hypertension. This finding was
supported by a randomized, controlled, phase III study in
patients with NYHA (New York Heart Association) class III
and IV disease (14), which resulted in the regulatory approval
of inhaled iloprost for PAH.

The major signaling mechanism of iloprost in smooth muscle
cells involves binding to a G-protein–coupled receptor (GPCR),
the IP receptor, which directly stimulates the adenylyl cyclase
(AC) via Gsa, which converts ATP to cyclic adenosine mono-
phosphate (cAMP). The prostanoid receptor family consists of
eight distinct rhodopsin-like receptor proteins termed the IP,
EP1, EP2, EP3, EP4, DP, FP, and TP receptors. In addition, the
prostanoid receptors may be grouped according to the G-
protein to which they preferentially couple. Receptors normally
associated with smooth muscle relaxation (the IP, EP2, EP4,
and DP receptors) couple via Gs to elevate intracellular cAMP.
The receptors EP1, EP3, FP, and TP couple via both Gi and
Gq to either reduce intracellular cAMP or elevate Ca21 (15).
However, there is evidence that the lungs of patients with PAH
have decreased expression of the IP receptor (16). It was
therefore hypothesized that prostanoid receptors other than

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Iloprost can be effective for the treatment of pulmonary
hypertension (PH), but many patients are only partially
responsive to therapy. Iloprost acts through elevations of
cAMP after binding to the prostacyclin receptor, but the
lungs of patients with PH have decreased expression of the
IP receptor.

What This Study Adds to the Field

Iloprost mediates vasodilatory functions via the EP4 receptor
in the case of low IP receptor expression associated with
pulmonary arterial hypertension. This finding indicates the
EP4 receptor may be a potentially novel therapeutic target
for the treatment of PH.
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the IP receptor may be involved in the signal transduction
initiated by iloprost.

The aim of the present study was to investigate the expres-
sion of the IP receptor in lung sections from patients with
idiopathic PAH (IPAH) and from an experimental pulmonary
hypertension study conducted by the injection of monocrotaline
(MCT) in rats. In addition, functional experiments were per-
formed in pulmonary arterial smooth muscle cells (PASMCs) to
investigate whether prostanoid receptors other than the IP
receptor are involved in the vasorelaxant effects of iloprost.

METHODS

Patient Characteristics and Measurements

Human lung tissue was obtained from three donors and three patients
with IPAH undergoing lung transplantation. Lung tissue was snap-
frozen directly after explantation for mRNA and protein extraction
(7). The study protocol for tissue donation was approved by the Ethik-
Kommission am Fachbereich Humanmedizin der Justus-Liebig-
Universitaet Giessen of the University Hospital Giessen (Giessen,
Germany) in accordance with national law and with the Good Clinical
Practice/International Conference on Harmonisation guidelines.
Written, informed consent was obtained from each individual patient
or the patient’s next of kin.

MCT-induced Pulmonary Hypertension

The experimental design for adult male Sprague-Dawley rats (300–350 g
in body weight; Charles River, Sulzfeld, Germany) was randomized for
treatment 28 days after a subcutaneous injection of saline or 60 mg/kg
MCT (Sigma, Deisenhofen, Germany) to induce pulmonary hyperten-
sion (10). All protocols were approved by the Animal Care Committee
of the University of Giessen.

Immunohistochemistry

Fixation was performed by immersion of the lungs in 3% para-
formaldehyde solution. After dehydration (automatic vacuum tissue
processor, Leica TP 1050; Leica, Bensheim, Germany) and paraffin
embedding, the 3-mm sections were immersed in blocking solution
containing 1% bovine serum albumin (BSA) (Sigma, Deisenhofen,
Germany) and 1% goat serum in phosphate-buffered saline (PBS) for
30 minutes after washing three times in PBS. Sections were in-
cubated, respectively, with polyclonal antibodies against the prosta-
noid receptors, including anti-IP receptor (Acris, Hiddenhausen,
Germany), or anti-EP4 receptor antibody (Cayman, Ann Arbor,
MI) for 1 hour. The Dako labeled streptavidian-biotin system (Dako,
Hamburg, Germany) was used to detect the signal, and color de-
velopment was performed by incubation with diaminobenzidine
substrate-chromogen for 2 minutes. Blocking solution was used
instead of the primary antibody for negative controls.

Isolation and Culture of PASMCs

The PASMCs were isolated from Sprague-Dawley rats 28 days after
MCT injection, as described previously (7). To obtain proximal and
distal PASMCs, the main pulmonary artery was dissected free from
lung and cardiac tissue, and a single full-length incision was made.
Hank’s balanced salt solution (HBSS) (Gibco, Karlsruhe, Germany)
was used. The diameter of the distal part of pulmonary arteries was
smaller than 100 mm. The intima and adventitia layers were carefully
removed. The central pulmonary artery was separated, and the distal
artery tissue was then cut into small pieces and washed with HBSS.
Cells were resuspended in culture medium Dulbecco’s modified
Eagle medium–F12 (Gibco), supplemented with 100 U/ml penicillin and
100 g/ml streptomycin (PAN-Biotech, Aidenbach, Germany), 0.5 mM L-
glutamine (Gibco), and 20% fetal calf serum for subsequent culture in
6-well plates and incubated at 378C in 5% CO2–95% air. After 24
hours, the medium was changed and thereafter every 2–3 days. The
PASMCs were studied at the primary passage stage. Characterization
of PASMCs was done at the primary passage using immunocyto-

chemical staining for a-smooth muscle actin (Sigma) and desmin
(NeoMakers, Fremont, CA).

Analysis of Prostanoid Receptor Expression by Reverse

Transcriptase–Polymerase Chain Reaction

Total RNA was isolated from PASMCs at the primary passage with
Trizol reagent (Life Technologies, Rockville, MD), after a determina-
tion of the concentration by spectrophotometry and quality by
electrophoresis on agarose gel as well as spectrophotometry. The
first-strand cDNA was synthesized with the ImProm-II reverse tran-
scription system (Promega, Madison, WI), using oligo(dT) primers
according to the manufacturer’s instructions. Subsequently, 1 mg of
cDNA product was used as a template in polymerase chain reaction
(PCR) amplifications together with the primers following the manu-
facturer’s manual. Primers for PCR were designed with the Primer3
program (https://sourceforge.net/projects/primer3). Gene-specific pri-
mers were used according to Table 1. After an initial PCR activation
step for 10 minutes at 958C, the following thermal profile was used: 1
minute at 948C, 1 minute at 558C annealing, 1 minute elongation at 728C
(30 cycles), The amplicons were resolved in a 1.5% agarose gel and
detected by ethidium bromide staining. The expression levels of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were monitored
as a loading control and quantified by densitometry.

Western Blot Assay

After removing the medium, the PASMCs were washed with HBSS
and lysed in 20 mM Tris-Cl (pH 7.4), 100 mM NaCl, 1 mM ethylene-
diaminetetraacetic acid, 0.1% vol/vol Nonidet P-40, 0.05% wt/vol
sodium deoxycholate, 0.025% wt/vol sodium dodecyl sulfate, and 0.1%
vol/vol Triton X-100 supplemented with phenylmethanesulfonyl fluo-
ride (PMSF) (0.1 mg/ml), leupeptin (10 mg/ml), and aprotinin (25 mg/ml)
(Sigma) (17). Insoluble proteins were removed by centrifuging at
10,000 rpm for 3 minutes. The supernatants were assayed for protein
content using Dye Reagent Concentrate (Bio-Rad, Munich, Germany).
Extracts containing equal amounts of protein were denatured by
boiling for 5 minutes in Laemmli’s buffer containing b-mercaptoetha-
nol and separated on 12% sodium dodecyl sulfate–polyacrylamide gels
at 130 V, and the resolved proteins were transferred to nitrocellulose
membranes. The membranes were then immunoblotted with rabbit
polyclonal antibody to the IP receptor (Cayman) at 1:500 dilution, or
the EP4 receptor (Sigma). The secondary antibodies were specific to
peroxidase-conjugated anti-mouse IgG or anti-rabbit IgG (Sigma).

TABLE 1. PRIMER SEQUENCES USED IN REVERSE
TRANSCRIPTASE–POLYMERASE CHAIN REACTION

Primer Name Sequence

Amplicon

Size (bp)

a-SM-actin Sense 59-CGATAGAACACGGCATCATC-39
525

Antisense 59-CATCAGGCAGTTCGTAGCTC-39

Desmin Sense 59-ACCTGCGAGATTGATGCTCT-39
368

Antisense 59-CGGGTCTCAATGGTCTTGAT-39

COX-2 Sense 59-ACTGTACCGGACTGGATTCTA-39
580

Antisense 59-CCATCCTGGAAAAGTCGAAG-39

IP Sense 59-TCACGATCAGAGGATTCACG-39
358

Antisense 59-ATTCCCACAGAACAGCCATC-39

EP1 Sense 59-ACTGCCACCTTCCTGTTGTT-39
373

Antisense 59-GCCCAAGGCTAATGAAACAC-39

EP2 Sense 59-CTTGTTCCACGTGGTAA-39
306

Antisense 59-AAGAGCAAGGCGACCCCATA-39

EP3 Sense 59-TATGCCAGCCACATGAAGAC-39
374

Antisense 59-CACATGATCCCCATAAGCTG-39

EP4 Sense 59-AGTGACCATCGCCAGATACA-39
339

Antisense 59-ATGTAAGAGAAGGCGGCGTA-39

TP Sense 59-TGTGAGGTGGAGATGATGGT -39
369

Antisense 59-AGGTCGTTAGCAGTCACCAA-39

FP Sense 59-TCACGGGAGTCACATTTTG-39
342

Antisense 59-TGAGTTCCCAGATGTGCAAG-39

GAPDH Sense 59-TTCATTGACCTCAACTACAT-39
469

Antisense 59-GAGGGGCCATCCACAGTCTT-39

Definition of abbreviations: a-SM-actin 5 a-smooth muscle actin; COX-2 5

cyclooxygenase 2; GAPDH 5 glyceraldehyde-3-phosphate dehydrogenase.
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Blots were visualized using the enhanced chemiluminescence detection
system (Amersham, Dreieich, Germany). Samples were normalized to
GAPDH and quantified by densitometry.

Determination of cAMP Accumulation

The EP4 receptor antagonist (AH23848; Sigma) effect on cAMP
accumulation mediated by iloprost was measured by a commercial
radioimmunoassay (RIA) cyclic AMP (125I) kit (Immunotech, Marseille,
France) following the manufacturer’s protocol. The PASMCs were
grown to 90% confluence in 48-well plates, as described (18). After
preincubation in 500 mM 3-isobutyl-1-methylxhantine (IBMX) (Sigma)
for 30 minutes at 378C, PASMCs were incubated with AH23848 or the
EP2 antagonist AH6809 (1, 10, 100 mM) (Sigma) for 15 minutes at 378C.
Next, cells were stimulated by iloprost (100 nM) for 15 minutes. After
removing the medium, cAMP measurements were performed as de-
scribed below. Reactions were stopped by aspiration and the addition
of ice-cold 96% ethanol. Dried samples were added with 200 ml RIA
buffer (150 mM NaCl, 8 mM Na2HPO4, 2 mM NaH2PO4, pH 7.4) and
frozen at 2808C. The cAMP in the supernatant was determined by
RIA. Protein determination was performed according to the method of
Bradford. RIA for cAMP was performed according to the manufac-
turer’s instructions and the mean of cAMP concentration was calcu-
lated. Results were expressed as pmol/mg protein for each treatment
dose point.

Statistical Analysis

Data from multiple experiments expressed as the mean and standard
error (SE) were calculated. All statistical analysis was performed with
Student’s t test. Difference among groups was considered significant
when P was less than 0.05.

RESULTS

Expression of IP and EP4 Receptor Protein in Human Donor

and IPAH Lungs

As shown in the Western blots of Figure 1A, the IP receptor
band was detected at 52 kD. The ratio of the IP receptor to

GAPDH exhibited a decreased expression of the IP receptor
in IPAH lungs compared with human donors (***P , 0.01),
whereas the EP4 receptor was detected at 78 kD and displayed
a similar level of expression between the human donors and
IPAH lung samples (Figure 1B). The results reveal the
expression of IP receptor protein to be decreased but the
expression of EP4 receptor was stable in the IPAH patient’s
lung tissue as compared with donor lung tissue.

Immunohistochemical Localization of IP and EP4 Receptor in

Control Rat and MCT28d Rat Lungs

In MCT-challenged rats, prominent medial wall hypertrophy is
evident in the muscular pulmonary arteries. The thick medial
layer displays smooth muscle proliferation. The pulmonary
artery from the control rat lung section demonstrated IP and
EP4 receptor–positive staining (Figures 2A and 2D) in the
medial smooth muscle wall. The MCT28d rat lung section
exhibited only scant IP receptor–positive staining (Figure 2B),
but stable EP4 receptor–positive staining (Figure 2E). No
labeling was seen in negative controls in immunohistochemical
experiments (Figures 2C and 2F).

Prostanoid Receptors and the Relative Gene Expression

Changes at Passage 2 in PASMCs

Semiquantitative reverse transcriptase–PCR was used to survey
prostanoid receptors and the relative gene expression from the
primary passage to passage 5 of control rat PASMCs (Figure 3).
The PASMCs were isolated from the distal pulmonary artery
regions and cultured in the presence of 10% fetal bovine serum.
To characterize PASMCs, we used the smooth muscle cell–
specific gene markers a-smooth muscle actin and desmin. Desmin
was down-regulated at passage 3. The primers and product sizes
of the prostanoid receptors and relative genes are listed in Table 1.
IP, EP2, EP3, and FP receptors were down-regulated at passage

Figure 1. IP and EP4 receptor protein level in human donor and idiopathic pulmonary arterial hypertension (IPAH) lung. (A) The IP receptor protein

was detected in lung tissues as a 52-kD band, and was decreased in IPAH lung tissues as compared with donor lung tissue. (B) The EP4 receptor

protein was detected as a 78-kD band and exhibited stable expression in IPAH as compared with donor lung tissue. The bars represent mean 6 SEM

of three samples in each group, with human pulmonary arterial smooth muscle cells (SMC) as a positive control. ***P , 0.01 as compared with
donor. GAPDH 5 glyceraldehyde-3-phosphate dehydrogenase.
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2. Therefore, PASMCs were used before passage 2 for all of the
in vitro experiments.

Gene Profiling of the Prostanoid Receptors and the Relative

Gene Expression in Distal and Proximal PASMCs from Control

and MCT28d Rats

The PASMCs were isolated from MCT28d and control rats. To
obtain proximal and distal PASMCs, a single full-length artery
incision was made and the main pulmonary artery was dissected
free from lung and cardiac tissue. Proximal PASMCs were
obtained from trunk and lobar arteries (.2 mm external
diameter), and distal PASMCs were isolated from peripheral
arteries (,1 mm external diameter). Prostanoid receptors and

the relative gene expression profiles were compared in four
groups of PASMCs (Figure 4A): control rat proximal and distal
PASMCs and MCT28d rat proximal and distal PASMCs. The
mRNA expression was separately analyzed in three individual
rats in each group of PASMCs, and this revealed variability in
the pattern of gene expression and the pattern associated with
the pulmonary artery hypertrophy. Densitometry quantification
of prostanoid receptors in the gene expression of these four
groups was performed (Figure 4B). The data are shown as the
mean 6 SEM for the same group of three individual PASMCs.
In primary or secondary pulmonary hypertension, because of
the characteristic changes in vascular structure, the muscular
arteries and arterioles exhibit smooth muscle proliferation
leading to further medial hypertrophy in the distal musculature
(19). Within these four PASMC groups (the MCT28d rat
proximal or distal PASMCs and control rat proximal or distal
PASMCs), COX-2 was unchanged. The IP was down-regulated
in both the proximal and distal PASMCs groups of MCT28d
compared with control groups. The EP1 and TP receptors were
down-regulated in the MCT28d distal group. The EP2 and EP4
receptors were not significantly changed. The EP3 and FP
receptors were down-regulated in the proximal and distal
groups of MCT28d, and in the distal group of the control. To
the best of our knowledge, these findings are the first to identify
that the prostanoid receptor genes presenting in the pulmonary
hypertension animal model exhibit different behaviors in the
distal and proximal PASMCs.

Immunoblotting of IP and EP4 Receptor Expression in Distal

PASMCs of Control and MCT28d Rats

To evaluate the protein expression of the IP and EP4 receptors,
protein was prepared from the distal PASMCs of control and
MCT28d rats. As is evident in the Western blots (Figure 5A), the
IP receptor protein band was detected at 52 kD. The ratio of IP
receptor to GAPDH was shown to have decreased IP receptor
expression in MCT28d compared with control PASMCs (P ,

0.05). However, the EP4 receptor was detected at 78 kD, in-
dicating stable expression in the control and MCT28d rats (Figure
5B). There is evidently reduced IP receptor protein expression in
the remodeled vessels in patients with pulmonary hypertension
(16). Taken together, the results indicate the expression IP
receptor protein was decreased but EP4 receptor protein expres-
sion was stable in both the pulmonary hypertension animal model
(MCT28d) and IPAH lung samples.

Figure 2. Immunohistochemical locali-

zation of IP and EP4 receptor in control

and MCT28d rat lungs An analysis by

immunohistochemistry of the IP and EP4
receptor was performed on lung sections

of control and MCT28d rats. The IP

receptor was expressed in the pulmonary

arteries of control lungs (A). The IP re-
ceptor expression was decreased in the

pulmonary arteries of MCT28d rats (B).

EP4 receptor was detected in pulmonary
arteries and it was stably expressed in

both the control (D) and MCT28d rat

lung sections (E). The cells stained in

brown were considered positive for the
expression of the IP and EP4 receptors

and stained with blocking solution in-

stead of the primary antibody as negative

controls (C) and (F). Bar 5 20 mm,
original magnification: 3400.

Figure 3. Prostanoid receptor gene profile of control rat pulmonary

arterial smooth muscle cells (PASMCs) in different passages. Representa-

tive reverse transcriptase–polymerase chain reaction analysis. After pas-

sage 2, the mRNA expression levels of the IP, EP2, EP3, and FP receptors
were reduced in rat PASMCs. a-SM-actin 5 a-smooth muscle actin.
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Figure 4. The prostanoid receptor gene profile

of distal and proximal pulmonary arterial

smooth muscle cells (PASMCs). (A) Represen-

tative reverse transcriptase–polymerase chain re-
action analysis. The mRNA expression of

prostanoid receptors in the proximal and distal

portion of PASMCs that were isolated from

either control or MCT28d pulmonary arterial
hypertension rat pulmonary arteries. The ex-

pression differences were compared with

GAPDH as a loading control, n 5 3. The PASMCs
were harvested for RNA in the primary passage.

Densitometry quantification of prostanoid

receptors in terms of the gene expression of

these four groups (B). Data are shown as the
mean 6 SEM in the same group of three in-

dividual PASMCs. The black bars represent the

proximal or distal PASMCs of the control

groups. The gray bars represent the proximal
or distal PASMCs of the MCT28d groups.
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Effect of EP4 Receptor Antagonist (AH23848) and EP2

Receptor Antagonist (A6809) on cAMP Accumulation in

MCT28d Rat PASMCs

The PASMCs from MCT28d rats exhibited scant IP receptor,

but stable EP4 and EP2 receptor expression. Prostanoids

(mainly PGE2 and PGI2) activate the IP and EP4 receptors,

which are coupled via G-stimulatory proteins to adenylyl

cyclase to generate cAMP (20–22), leading to mediation of

vasodilatory functions. The EP2 and EP4 receptors are both

coupled via Gas to induce elevations in intracellular cAMP,

leading to smooth muscle relaxation (15). To delineate the

contribution of the EP2 and EP4 receptor in view of scant

IP expression to iloprost-induced intracellular cAMP accu-

mulation, we performed additional functional experiments in

MCT28d rat PASMCs using AH6809 (a selective EP2 receptor
antagonist) and AH23848 (a selective EP4 receptor antagonist)
in combination with iloprost. Preincubation with AH23848 was
used to block the EP4 receptor, whereas AH6809 was used to
block the EP2 receptor. Preincubation with IBMX (23) excluded
a role for PDEs in these experiments. The MCT28d rat PASMCs
were stimulated for 30 minutes at various AH23848 or AH6809
concentrations (0, 1, 10, 100 mM), whereas IBMX (500 mM) was
applied, then incubated with or without iloprost (100 nM) for
15 minutes. Iloprost-induced intracellular cAMP accumulation
was inhibited in a dose-dependent manner by AH23848 (the
EP4 receptor antagonist) (Figure 6A), but not by AH6809 (the
EP2 receptor antagonist) (Figure 6B). These results indicated
that iloprost may mediate vasodilatory functions via the EP4
receptor in substitution on the IP receptor in MCT28d rat
PASMCs.

DISCUSSION

One of the key pathways that is altered in PAH is the
prostacyclin signaling pathway. It is known that disturbances

to prostacyclin synthesis (1, 2), as well as polymorphisms in the
genes encoding PGI2 synthase (PGIS) (24) contribute to severe
pulmonary hypertension. Substitution of prostacyclin, either by
overexpression of PGIS (25) in experimental pulmonary hyper-
tension or application of the stable prostacyclin analogs iloprost
(26, 27) or beraprost (28), decreased pulmonary arterial pres-
sure and vascular remodeling. Prostacyclin is a product of
cyclooxygenases (COX) and mediates potent antiplatelet, va-
sodilator, and antiinflammatory actions by activating the IP
receptor (29). However, there is evidence that the lungs of
patients with PAH have decreased expression of the IP receptor
(16). In this study, the question of how iloprost may work under
conditions of low IP receptor expression was addressed.

These prostanoid receptors are members of the GPCR
superfamily and are coupled to AC and phospholipase C (30–
32). To delineate the contribution of prostanoid receptors in
iloprost signal transduction, prostanoid receptor gene expres-
sion was profiled, and EP1 and the EP3 receptors were
demonstrated to be down-regulated in MCT28d rat PASMCs.
The EP1 and EP3 receptors couple via both Gi and Gq to either
reduce intracellular cAMP or elevate Ca21, and are involved
primarily in vascular contraction via the Ca21/phospholipase C
pathway (15). Thus, the role of EP1 and EP3 receptor in the
iloprost-induced increase of intracellular cAMP in MCT28d rat
PASMCs was excluded. The EP2 and EP4 receptors both
couple via Gas to induce elevations in intracellular cAMP,
leading to smooth muscle relaxation (15). Interestingly, prosta-
noid receptor gene profiling revealed that the EP2 and EP4
receptors were stably expressed, suggesting the possibility that
EP2/EP4 receptors may be involved in the iloprost-induced
increase in intracellular cAMP levels, when IP receptor expres-
sion is reduced in MCT28d rat PASMCs. The functional
pharmacology of EP2 and EP4 receptors, studied using various
prostanoid receptor agonists, suggested that iloprost is an
agonist of the human EP4 receptor (33, 34).

Figure 5. Immunoblotting for IP and EP4 receptors in primary pulmonary arterial smooth muscle cells (PASMCs) from control and MCT28d rats. (A)

Densitometric analysis from three different experiments in each group. The IP receptor was identified as a 52-kD immunoreactive band that was

decreased in MCT28d rat PASMCs compared with control PASMCs. Data are mean 6 SEM, n 5 3 in each group. *P , 0.05 as compared with control. (B)

The EP4 receptor was identified as a 78-kD immunoreactive band and was stably expressed in MCT28d PASMCs compared with control PASMCs.
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In addition, to delineate the contribution of the EP2 and EP4
receptor to iloprost-induced intracellular cAMP accumulation
when IP expression is low, additional functional experiments
were performed in MCT28d rat PASMCs using AH6809 (a
selective EP2 receptor antagonist) and AH23848 (a selective
EP4 receptor antagonist) in combination with iloprost. As
a result, the iloprost-induced intracellular cAMP accumulation
was inhibited in a dose-dependent manner by AH23848 but not
by AH6809, clearly demonstrating the contribution of EP4
receptors in mediating the effects of iloprost.

The EP4 receptor is stably expressed in both human PAH and
MCT-induced pulmonary hypertension in rat lungs, suggesting
that it may be an interesting therapeutic target. The signaling
mechanism is similar to the IP receptor and involves the well-
known cAMP–protein kinase A axis, which results in vasodilatation
and antiproliferation. Interestingly, iloprost has been documented
as an EP4 receptor agonist (35, 36). Apart from the IP, iloprost
activates the EP4 receptor, which may overcome the effects of

down-regulation of the IP receptor under disease conditions. The
IP receptor is down-regulated in human PAH, as is evident from
data presented in the current study, which are in accordance with
a previous report that describes the decreased expression of the
prostacyclin receptor in PAH (16). In addition to perturbations to
receptor expression, other components of the prostacyclin system
are also affected in PAH, including decreased levels of the
prostacyclin metabolite 6-keto-PGF1a in urine (2), decreased
expression of prostacyclin synthase (1), and polymorphisms of
PGIS (24). Therapeutic application of prostanoids does result in
the improvement of survival and hemodynamics in patients with
PAH, as has been shown in several clinical trials (12, 37–39).
These effects of prostanoids on clinical improvement of patients
with severe pulmonary hypertension may be related to non–
receptor-mediated effects in the pulmonary vessels (e.g., antith-
rombotic effects) or the vasodilatation of the less heavily remod-
eled pulmonary arteries, which may have preserved prostacyclin
receptor signaling (40).

Figure 6. The EP4 antagonist AH23848 blocks the cAMP
accumulation mediated by iloprost in MCT28d rat pul-

monary arterial smooth muscle cells (PASMCs). The in-

tracellular cAMP accumulation induced by iloprost was

inhibited by AH23848 but not AH6809. The MCT28d rat
PASMCs, which exhibit scant IP receptor but stable EP4

receptor expression, were stimulated for 30 minutes at

various concentrations (0, 1, 10, 100 mM) of AH23848 (A)

or the EP2 antagonist AH6809 (B), with or without iloprost
(100 nM) for 15 minutes. Data are the mean 6 SEM of

three different experiments. ***P , 0.01 as compared with

iloprost treatment alone.
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Receptors other than the prostacyclin receptor could be
involved in the mediation of these vasodilatory and vasculo-
protective effects (20, 35). The regulation of pulmonary vascular
tone under physiologic conditions is mainly controlled by
prostacyclin and nitric oxide, and mediators such as natriuretic
peptides (ANP, BNP), vasoactive intestinal polypeptide (VIP),
endothelin, or thromboxane. Important information regarding
the role of any of the vasodilating pathways can be earned from
the pathophysiologic situation of pulmonary hypertension. In
this line, disturbances of prostacyclin synthesis, as well as
polymorphisms of PGIS (24), have been related to pulmonary
hypertension. In addition, there is evidence that the nitric oxide
system is dysfunctional as well, either by decreased expression
of NO synthase (41) or low NO bioavailability due to increased
oxidative stress (42). This pathway is currently targeted by
PDE5 inhibition, which amplifies the remaining NO signal by
stabilization of the downstream second messenger cyclic gua-
nosine monophosphate (cGMP) (43). New pharmacologic acti-
vators of the soluble guanylate cyclase may thus further amplify
the NO signaling cascade (44). Alternatively, peptides including
the natriuretic peptides (ANP, BNP) or VIP counteract vaso-
constriction, and substitution of these vasodilative and antipro-
liferative peptides is under clinical development. Petkov and
colleagues have recently shown that both receptors of VIP,
namely VPAC-1 and VPAC-2, are up-regulated in patients with
IPAH (45). Both receptors were localized in PASMCs and
believed to be compensatory up-regulated in response to
a pathologic decrease of circulating VIP. In addition, VIP
knockout mice develop more severe pulmonary hypertension
(46) and exogenous VIP either delivered as aerosol or in-
travenous infusion reduces pulmonary hypertension (45, 46).
However, because PAH is a complex disease, targeting a single
pathway cannot be expected to be uniformly successful.

Prostacyclin and its analogs (iloprost, beraprost, treprostinil)
have offered beneficial effects in PAH. Iloprost is the first-line
drug of PAH therapy; therefore, it is the more important
vasodilator–antiproliferative pathway alternative PGI2 recep-
tor, compared with others. However, it is not yet clear if
prostacyclin analogs operate only via a single prostanoid re-
ceptor or via multiple prostanoid receptor or nonprostanoid
pathways. To investigate the expression profile of prostanoid
receptors and to perform functional experiments, proximal
(vessels .2 mm external diameter) and distal (vessels ,1 mm
external diameter) pulmonary smooth muscle cells were iso-
lated from MCT-treated rats. This animal model of pulmonary
hypertension is characterized by remodeling of the precapillary
vessels (medial thickening, de novo muscularization of small
pulmonary arterioles). Due to this mimicry of clinical pulmo-
nary arterial hypertension, the rat MCT model has repeatedly
been used for investigating the acute hemodynamic effects of
vasodilators and the chronic antiremodeling effects of pharma-
cologically active agents (7, 10, 47). As expected, the expression
of the differentiation marker desmin decreased during the
passage of the cells, whereas a-smooth muscle actin remained
constant. Along these lines, certain receptors (including IP, EP2,
EP3, FP) have been shown to be regulated, whereas others stay
constant in their expression profile. Previous in vitro studies have
already suggested the substantial antiproliferative potency of
prostacyclin analogs in human PASMCs (48). Interestingly, distal
human PASMCs, isolated from pulmonary arteries (,1 mm
external diameter), seem to be more susceptible to prostacyclin
analog–induced inhibition of proliferation than PASMCs from
proximal pulmonary arteries (.8 mm of external diameter)
(19). In distal and proximal PASMCs, the expression of IP, EP3,
FP, and TP was decreased in MCT-treated rats as compared

with control rats. In contrast, the EP2 and EP4 receptors were
stably expressed.

In conclusion, the EP4 receptor may take over the function
of the IP receptor in the remodeled vessels of pulmonary
hypertensive subjects. Furthermore, the prostacyclin analog
iloprost increases cAMP in smooth muscle cells by binding to
the EP4 receptor. This finding provides an unrecognized
mechanism for iloprost and the prospect that the EP4 receptor
may be a novel therapeutic approach for the treatment of PAH.
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