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Abstract
We draw attention to a problem that is often overlooked or ignored by com-
panies practicing hypothesis testing (A/B testing) in online environments. We
show that conducting experiments on limited inventory that is shared between
variants in the experiment can lead to high false-positive rates since the core
assumption of independence between the groups is violated. We provide a
detailed analysis of the problem in a simplified setting whose parameters are
informed by realistic scenarios. The setting we consider is a two-dimensional
(2D) random walk in a semiinfinite strip. It is rich enough to take a finite inven-
tory into account, but is at the same time simple enough to allow for a closed
form of the false-positive probability. We prove that high false-positive rates
can occur, and develop tools that are suitable to help design adequate tests in
follow-up work. Our results also show that high false-negative rates may occur.
The proofs rely on a functional limit theorem for the 2D random walk in a
semiinfinite strip.
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1 INTRODUCTION

The golden standard for testing product changes on e-commerce websites is large-scale hypothesis testing also known as
A/B-Testing.

When a given version of a website is modified, it is natural to ask whether or not the modified (new) version of the
website performs better than the old one. It is very common to use the following approach based on classic hypothesis
testing:

During a fixed time period, the so-called testing phase, whenever customers visit the website, they are displayed one
of the two versions of it, where the choice which one they get to see is random. For each version of the website the owner
thus collects a sample containing for each customer visiting that website relevant data such as whether or not they bought
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a good or how much money was spent by the customers, and so on. Then a statistical test (A/B test) is applied to evaluate
which version of the website performed better.

Typically, these tests rely on the assumption of independent samples. In the present article, we point out in a quan-
titative way that in the situation where there is a finite amount of a popular good the independence assumption is not
feasible and can often lead to wrong conclusions. The inventory is shared between variants and if a copy of an item is
sold it cannot be bought by users that enter the experiment later. This implies that users are not independent both inside
as well as between the variants. These dependencies could be avoided by randomly splitting on an item level instead of a
user level, but this would reduce the choice of the customer and is therefore not a realistic setup.

We think it is best to illustrate the dependence problem with a ranking example that we will use throughout the
article. We limit ourselves to only two distinct products (which each should be thought of as a variety of different products
grouped into one). Using realistic parameters we show that two different ranking algorithms which perform identical if
run independently show a significant difference almost 20% of the time when run in an industry standard A/B experiment.
We also show that if there is a difference in performance between the algorithms there are scenarios where the power of
a standard A/B test is close to 0.

Example 1 (Ranking experiment, take 1). We consider a ranking experiment with two types of goods, one rare good,
which is very attractive (good 2), and a second, less attractive good (good 1) available in practically unlimited quantities.
In applications, there may be more than two types of goods, but the less attractive ones are labeled as type-1 goods, while
the most attractive ones are labeled as type-2 goods. Suppose that in total there are 1000 goods of type 2 and 1 000 000
goods of type 1.

A website displays the available goods to each visitor. The goods are displayed in a certain order, which depends on
the ranking algorithm used. The owner of the website wants to compare two different algorithms. The default algorithm,
Algorithm 0, displays the goods such that the type-2 goods have a low ranking and appear late in the list. Thus, only a
fraction of the visitors gets to see them. The new algorithm, Algorithm 1, displays the goods such that the type-2 goods
have the highest ranking and appear first in the list. Every visitor seeing the goods ranked by Algorithm 1 will see both,
type-1 and type-2 goods (as long as they are available). The goal is to find out which of the two algorithms leads to a higher
overall conversion rate, that is, to a higher empirical probability to make a sale.

Suppose that during a test phase, n= 4 000 000 customers visit the website. Whenever a customer visits the website, a
fair coin is tossed. If the coin shows heads, the products are displayed ranked according to Algorithm 1, if the coin shows
tails, the products are displayed ranked according to Algorithm 0.

We now make the following model assumptions. We assume that, independent of all other customers, each customer
has a chance of 20% of preferring good 1 over good 2 and an 80% chance of preferring good 2 over good 1. When the goods
are ranked according to Algorithm 0, the customer first sees type-1 goods. There is a 5% chance that the customer scrolls
down and spots a type-2 good (if still available). A customer who sees both goods and has a preference for good 2 will
buy good 2 with 10% chance and will not buy at all with 90% chance. A customer who either sees both goods and has a
preference for good 1 or sees only good 1 will buy good 1 with a 5% chance and will not make a buy at all with 95% chance.
For simplicity, we assume that each customer buys at most one good.

The data collected is a sample (x1, y1, i1), … , (xn, yn, in) where n is the sample size, that is, the number of customers
visiting the website during a certain test period. Here, ik is either 0 or 1, depending on whether Algorithm 0 or 1 was used
to display the goods to the kth customer. Furthermore, xk = 1 or xk = 0 depending on whether good 1 was bought or not
and, analogously, yk = 1 or yk = 0 depending on whether good 2 was bought or not. Notice that by our assumption that
each customer buys at most one good, we have xk + yk ∈ {0, 1}. Those (xk, yk, ik) with ik = 0 are assigned to sample 0 and
the others to sample 1. We write n0 ∶=

∑n
k=1(1 − ik) and n1 ∶=

∑n
k=1 ik for the corresponding sample sizes. The numbers

of sales in each group are 𝓁0 =
∑n

k=1(xk + yk)(1 − ik) and 𝓁1 =
∑n

k=1(xk + yk)ik, the total number of sales is 𝓁 =𝓁0 +𝓁1.
The empirical probabilities for sales in samples 0 and 1 are

p0 ∶= 1
n0

n∑
k=1

(xk + yk)(1 − ik) =
𝓁0

n0
and p1 ∶= 1

n1

n∑
k=1

(xk + yk)ik = 𝓁1

n1
.

The website owner wants to find out whether Algorithm 1 performs better than Algorithm 0.
It is a common approach to test for the higher probability of a sale by assuming an independent sample and using

a G-test or the asymptotically equivalent two-sample chi-squared test. The hypothesis is that the conversion rates are
identical in both samples. For simplicity, in the article at hand, we shall always consider the chi-squared test. The test
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456 BOHLE et al.

statistics for the latter is

𝜒2 =
∑
i=0,1

(𝓁i − 𝓁 ni
n
)2

𝓁 ni
n

+
∑
i=0,1

(ni − 𝓁i − 𝓁 ni
n
)2

(n − 𝓁) ni
n

.

The hypothesis is rejected if 𝜒2 > q1−𝛼 where 𝛼 ∈ (0, 1) is the significance level and q1−𝛼 is the (1 − 𝛼)-quantile of the
chi-squared distribution with one degree of freedom, see [ 1, chapter 17].

Throughout the article, we shall return repeatedly to Example 1 and discuss it in the light of our
findings.

We shall discuss a variant of this example later on showing that ignoring the dependencies might also lead to too high
false-negative rates, see Example 5 below.

2 MODEL ASSUMPTIONS

We return to the general situation, in which a website offers two types of goods, good 1 and good 2. During a test phase,
in which a new website design is used in parallel, the website has n visitors. Suppose that the website has a practically
unlimited supply of items of good 1, while there are only cn ∈ {1, 2, 3, …} =∶ N items of good 2. Typically, n will be
very large and cn will also be large, but significantly smaller than n. Whenever a user visits the website, a coin with suc-
cess probability p is tossed. If the coin shows heads, the new website design is displayed, whereas if the coin shows tails,
the old design is displayed. We thus observe a sample ((x1, y1, i1), … , (xn, yn, in)) ∈ (N2

0 × {0, 1})n where N0 ∶= N ∪ {0}.
Here, xk and yk are the numbers of goods of type 1 and 2, respectively, that have been bought by the kth visitor of
the website during the test phase, while ik = 1 if the new design has been displayed to the kth visitor, and ik = 0, oth-
erwise. We consider ((x1, y1, i1), … , (xn, yn, in)) as the realization of a random vector ((X1, Y 1, I1), … , (Xn, Y n, In)). We
define Zk ∶= 1{Xk+Yk>0} to be the indicator of the event that the kth customer bought something. Furthermore, we set
rk:= (sk, tk):= (x1, y1)+ · · · + (xk, yk) and Rk:= (Sk, Tk):= (X1, Y 1)+ · · · + (Xk, Y k) for k= 0, … , n where the empty sum is
defined to be the zero vector.

2.1 The classical model assuming independence

Many website owners in e-commerce use the G-test or the chi-squared test in the given situation. This test
only uses the information whether or not a good was purchased, that is, the only information from the sam-
ple ((X1, Y 1, I1), … , (Xn, Y n, In)) used by the test is (Z1, I1), … , (Zn, In). This amounts to the following model
assumptions.

(𝜒1) There is a sequence (I1, I2, … ) of i.i.d. copies of a Bernoulli variable I with P(I = 1) = p = 1 − P(I = 0) ∈ (0, 1).
(𝜒2) There are a random variable 𝜁 and p0, p1 ∈ (0, 1) such that

P(Zk ∈ ⋅|Ik = i) = P(𝜁 ∈ ⋅|I = i) = Ber(pi)(⋅) = pi𝛿1(⋅) + (1 − pi)𝛿0(⋅)

for all k ∈ N and i= 0, 1,
(𝜒3) The family ((Ik,Zk))k∈N is independent.

Here, and throughout the article, for x ∈ Rd, we write 𝛿x for the Dirac measure with a point at x. Assumptions (𝜒1) to
(𝜒3) possess the following interpretations.

(𝜒1): The random variable Ik models the coin toss that is used to decide whether the new or the old website design is
displayed to the kth visitor of the website during the test phase.

(𝜒2): The random variable Zk is the indicator of the event that the kth visitor bought something.
(𝜒3): The independence assumption in the context of the low inventory problem is made for simplicity. We question

the feasibility of this assumption in the present article.
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BOHLE et al. 457

2.2 A model incorporating low inventory of a popular good

We propose a simple model in which we keep track of the inventory of a rare good. Throughout the article, we shall refer
to this model as the “model incorporating low inventory.” By cn ∈ N we denote the quantity at which the rare good is
available. The most important case we consider is where cn is asymptotically equivalent to a constant times

√
n. However,

as we need this assumption only occasionally, throughout the article, we only assume that (cn)n∈N is a nondecreasing
unbounded sequence of integers which is regularly varying with index 𝜌 ∈ (0, 1] at infinity1, that is,

lim
n→∞

c⌊nt⌋
cn

= t𝜌, t ≥ 0 (1)

and further cn =O(n) as n→∞, which is relevant only if 𝜌 = 1. Notice that the case cn ∼ const ⋅
√

n is covered. Indeed, in
this case, we have 𝜌 = 1

2
.

In the next step, we informally describe the evolution of the process (Rk)k∈N0
. Let Cn ∶= N0 × ([0, cn] ∩ N0), C◦

n ∶=
N0 × ([0, cn) ∩ N0) and 𝜕Cn ∶= Cn ∖ C◦

n = N × {cn}. At each step, a coin with success probability p is tossed. Depending on
whether the coin shows heads or tails, the walk attempts to make one step according to a probability distribution 𝜇1 or
𝜇0, respectively, on N2

0. The step is actually performed if the walk stays in the strip Cn. Otherwise, another independent
coin with success probability q is tossed. If the second coin shows heads, the walk moves in each coordinate direction
according to the attempted step as far as possible but stops at the boundary of Cn. If the second coin shows tails, the walk
stays put. Once the walk is on the boundary of Cn, it moves there according to a one-dimensional (1D) random walk in
horizontal direction.

The underlying model assumptions are the following.

(A1) There are two sequences (I1, I2, … ) and (J1, J2, … ) of i.i.d. copies of Bernoulli variables I and J, respectively, with
P(I = 1) = p = 1 − P(I = 0) ∈ (0, 1) and P(J = 1) = q = 1 − P(J = 0) ∈ [0, 1].

(A2) There are a sequence (𝜉1, 𝜂1), (𝜉2, 𝜂2), … of i.i.d. copies of a random variable (𝜉, 𝜂) and two probability measures 𝜇0,
𝜇1 on N2

0 satisfying 𝜇i({(a, b)}) > 0 for all (a, b)∈ {0, 1}2 and i= 0, 1 such that

P((𝜉k, 𝜂k) ∈ ⋅|Ik = i) = P((𝜉, 𝜂) ∈ ⋅|I = i) = 𝜇i(⋅)

for all k ∈ N and i= 0, 1. We set 𝜇p(⋅) ∶= p𝜇1(⋅) + (1 − p)𝜇0(⋅) = P((𝜉, 𝜂) ∈ ⋅).
(A3) There are a probability measure 𝜈 on N0 and i.i.d. copies 𝜃1, 𝜃2, … of a random variable 𝜃 with P(𝜃 ∈ ⋅) = 𝜈(⋅).
(A4) The sequences (Ik)k∈N, (Jk)k∈N, ((𝜉k, 𝜂k))k∈N and (𝜃k)k∈N are independent; all random variables have finite second

moments.
(A5) Let k ∈ N. If Rk−1 = (Sk−1,Tk−1) ∈ C◦

n, then

Rk =
⎧⎪⎨⎪⎩

Rk−1 + (𝜉k, 𝜂k) if Tk−1 + 𝜂k ≤ cn,

(Sk, (Tk−1 + 𝜂k) ∧ cn) if Tk−1 + 𝜂k > cn and Jk = 1,
Rk−1 if Tk−1 + 𝜂k > cn and Jk = 0.

On the other hand, if Rk− 1 ∈ 𝜕Cn, then Tk− 1 = cn. In this case,

Rk = Rk−1 + (𝜃k, 0).

Finally, define (Xk, Y k):=Rk −Rk− 1.

The interpretations of these assumptions are the following.
(A1): The random variable Ik models the coin toss that is used to decide whether the new or the old website design is

displayed to the kth visitor of the website during the test phase. The random variable Jk models the preference of the kth
visitor. If Jk = 1, then the user must buy. Users with Jk = 0 only buy when they get exactly what they want in the first place.

1See Reference 2 for a standard textbook reference
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458 BOHLE et al.

(A2): The random variable (𝜉k, 𝜂k) can be interpreted as the vector of goods that the kth visitor would buy when visiting
the (displayed version of the) website if there was enough supply of these goods.

(A3): The random variable 𝜃k can be interpreted as the amount of type-1 goods that the kth visitor would buy when
visiting the website and finding only goods of type 1 left.

(A4): This is an independence assumption which is made to keep the model as simple as possible.
(A5): The random variable (Xk, Y k) models what is actually bought by the kth user. This depends on the needs of the

user, 𝜉k, 𝜂k and 𝜃k, the remaining amount of the rare good 2 given by cn −Tk− 1, and the user’s preference Jk. If there are
enough goods available to meet the needs of the kth user, then the user will buy exactly the needed amounts, namely, 𝜉k of
good 1 and 𝜂k of good 2. If good 2 is not available at a sufficient quantity, then the user will either buy as much as possible
of each of the goods if Jk = 1 or nothing at all if Jk = 0. If there is nothing left of good 2, the user will buy 𝜃k of good 1.2

Notice that in both models, P depends on p, which is not explicit in the notation. While in large parts of the article, p
is fixed, in some places, however, it is important to make the dependence of P on p explicit. In these places, we write Pp.
Often, this will be P0 or P1, which correspond to the situations where only one version of the website is used.

Let us introduce some notation for various characteristics of the above variables which we shall use throughout the
article.

• We set m0 ∶= (m𝜉

0,m𝜂

0) ∶= E[(𝜉, 𝜂)|I = 0], m1 ∶= (m𝜉

1,m𝜂

1) ∶= E[(𝜉, 𝜂)|I = 1] and m ∶= (m𝜉 ,m𝜂) ∶= E[(𝜉, 𝜂)] = pm1 +
(1 − p)m0. Notice that m𝜉 and m𝜂 depend on p even though this is not explicit in the notation.

• The covariance matrices of the probability measures 𝜇i, i= 0, 1 are denoted by Ci, i= 0, 1, respectively. The covariance
matrix of the probability measure 𝜇p is then

C = pC1 + (1 − p)C0 =

(
𝜎2
𝜉

𝜌𝜉𝜂

𝜌𝜉𝜂 𝜎2
𝜂

)
.

• We denote by m𝜃 = E[𝜃] and 𝜎2
𝜃
= Var[𝜃], the mean and the variance of the probability measure 𝜈.

• Finally, we set pi ∶= 𝜇i({(0, 0)c}) = P(𝜉 + 𝜂 > 0|I = i) for i= 0, 1 and p𝜃 ∶= P(𝜃 > 0). The pi, i= 0, 1 and p𝜃 are the
theoretical conversion rates.

Example 2 (Ranking experiment, take 2). We return to Example 1 and briefly explain how this example fits into the
framework of the above model. The number of visitors during the test phase is n= 4 ⋅ 106. The quantity of the attractive
good 2 is cn = 1000 = 1

2
⋅
√

n. Website visitors view each version of the website with equal probability, so I1, I2, … have
success probability p = 1

2
.

Furthermore, as can be readily seen from Figure 1,

𝜇0 = 96
100

( 1
20

𝛿(1,0) +
19
20

𝛿(0,0)) +
4

100
( 1
10

𝛿(0,1) +
9

10
𝛿(0,0)) =

948
1000

𝛿(0,0) +
4

1000
𝛿(0,1) +

48
1000

𝛿(1,0).

Analogously, from Figure 2, we deduce

𝜇1 = 1
5
( 1
20

𝛿(1,0) +
19
20

𝛿(0,0)) +
4
5
( 1
10

𝛿(0,1) +
9

10
𝛿(0,0)) =

91
100

𝛿(0,0) +
8

100
𝛿(0,1) +

1
100

𝛿(1,0).

Moreover, the law of 𝜃 is given by 19
20
𝛿(0,0) + 1

20
𝛿(1,0). The variables Jk are irrelevant in the given situation as step sizes here

are at most one, hence there will never be the situation where a visitor attempts to buy more of the popular good than
what is left. We conclude that the theoretical conversion rates are given by

p0 = 𝜇0({(0, 0)}c) = 52
1000

, p1 = 𝜇1({(0, 0)}c) = 9
100

, and p𝜃 =
5

100
.

2Notice that according to our model, the two versions of the website have an identical effect on the user once the popular good is sold out. This is a
simplifying assumption which excludes situations where, for instance, the effect of a new banner on the website is investigated. These situations can
sometimes be analyzed via classical tests. In any case, we point out that our proofs could be easily modified to deal with the situation where the law of
𝜃k depends on the value of Ik, but then the results become even more cumbersome.
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BOHLE et al. 459

F I G U R E 1 Ranking
experiment: Algorithm 0

F I G U R E 2 Ranking experiment: Algorithm 1

We shall see that if cn = c
√

n, then the chi-squared test will reject the hypothesis with probability tending to 1 as c becomes
large. On the other hand, we shall demonstrate that Algorithm 2 does not perform better given the model assumptions
(A1) to (A5).

3 TESTING FOR THE HIGHER CONVERSION RATE

We address the question which algorithm, when used alone, leads to the higher conversion rate, where the con-
version rate is the total number of sales divided by the total number of visitors. More formally, for i= 0, 1, we
define

N(i)
n ∶=

n∑
k=1

1{Ik=i} and L(i)
n ∶=

n∑
k=1

1{Zk>0, Ik=i}, (2)

which model the number of visitors of website version i and the number of those visitors who make a purchase. We set
Ln ∶= L(0)

n + L(1)
n , which is the total number of purchases, and notice that N(0)

n + N(1)
n = n, see also Table 1. Then

C(i)
n ∶=

L(i)
n

N(i)
n

(3)

is the empirical conversion rate in group i. We stipulate that C(i)
n ∶= 0 on {N(i)

n = 0}.

 15264025, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2574 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [31/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



460 BOHLE et al.

Purchase No purchase
∑

Group 0 L(0)
n N(0)

n − L(0)
n N(0)

n

Group 1 L(1)
n N(1)

n − L(1)
n N(1)

n∑
Ln n−Ln n

T A B L E 1 Contingency table

If one chooses p∈ {0, 1}, then C(p)
n under Pp is the empirical conversion rate when only website i= p is used. In view of

this, version 1 of the website is better than version 0 if C(1)
n under P1 is “larger” than C(0)

n under P0. Here, the term “larger”
is not specified a priori, so we need to clarify what we mean by this.

3.1 The chi-squared test statistics in the classical model

In the classical model, that is, if assumptions (𝜒1), (𝜒2), and (𝜒3) are in force, Z1, Z2, … are i.i.d. with expectation E[Z1] =
P(Z1 = 1) = pp1 + (1 − p)p0. Hence, by the strong law of large numbers, for p∈ {0, 1},

c(p) ∶= lim
n→∞

C(p)
n = lim

n→∞

1
n

L(p)
n = P(𝜉 + 𝜂 > 0) = pp1 + (1 − p)p0 a. s.

Consequently, testing whether C(1)
n under P1 is “different” from C(0)

n under P0 can be formulated as follows:

H0 ∶ p1 = p0 vs H1 ∶ p1 ≠ p0.

More interest, in fact, would be in the corresponding one-sided test problem. Hence, in this case, it is a classical test
problem and widely used tests for this problem are the chi-squared test, the G-test, and Fisher’s exact test. To keep the
article short, we shall always restrict attention to the chi-squared test. For the reader’s convenience, we recall some facts
about this test. The test statistics for the chi-squared test is

𝜒2 ∶=
∑
i=0,1

(
L(i)

n − Ln
N(i)

n
n

)2

Ln
N(i)

n
n

+
∑
i=0,1

(
N(i)

n − L(i)
n − (n − Ln)

N(i)
n

n

)2

(n − Ln)
N(i)

n
n

. (4)

If (𝜒1) to (𝜒3) are in force, as n→∞, the distribution of 𝜒2 approaches a chi-squared distribution with 1 degree of
freedom [ 1, chapter 17]. Write q1−𝛼 for the 1 − 𝛼 quantile of the chi-squared distribution with 1 degree of freedom. Then,
with significance level of 𝛼, the hypothesis is rejected if 𝜒2 > q1−𝛼 .

3.2 The limiting law of the chi-squared test statistics in the model incorporating low
inventory

Now suppose that there is a rare but popular good, that is, suppose that the model assumptions (A1) to (A5) hold. One
goal of this article is to point out in a quantitative way that when (A1) to (A5) instead of (𝜒1) to (𝜒3) are in force, then the
chi-squared test may produce too many false positives. In other words, it may fail to hold the specified significance level.
This is because the distribution of 𝜒2 under the null hypothesis is different when (A1) to (A5) rather than (𝜒1) to (𝜒3)
are in force. The detailed statement is given in the following theorem.

Theorem 1. Suppose that (A1) to (A5) and (1) are in force. Assume additionally that

d∞ ∶= lim
n→∞

cn√
n
∈ [0,∞). (5)
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BOHLE et al. 461

F I G U R E 3 Simulation of sales in Example 1 on separate and shared inventory [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 The two-dimensional random walk in a semiinfinite strip. The kth step is drawn in red if Ik = 1 and it is drawn in blue,
otherwise. The walk moves in the strip until it hits the upper boundary and continues on the boundary as a one-dimensional random walk.
Here, we use the particular model from Example 1. Notice that the majority of steps have length zero and are not displayed [Colour figure can
be viewed at wileyonlinelibrary.com]

Then the chi-squared statistics defined by (4) satisfies

𝜒2 d
→

(
 −

d∞(p0 − p1)
√

p(1 − p)

m𝜂
√

p𝜃(1 − p𝜃)

)2

as n → ∞ (6)

where  is a standard normal random variable.
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462 BOHLE et al.

F I G U R E 5 False-positive probability as a function of d∞ with all other parameters
fixed as in (7)

Hence, if one applies the chi-squared test with significance level 𝛼 ∈ (0, 1) in the given situation, the test rejects the
hypothesis with (asymptotic) probability

P

⎛⎜⎜⎝
(
 −

d∞(p0 − p1)
√

p(1 − p)

m𝜂
√

p𝜃(1 − p𝜃)

)2

> q1−𝛼

⎞⎟⎟⎠ > P( 2 > q1−𝛼) = 𝛼.

In fact, the probability on the left-hand side tends to 1 as d∞ →∞. We specialize to the situation of Example 1.

Example 3 (Ranking experiment, take 3). Recall the situation of Example 1. Then, see also Example 2, we have

p = 1
2
, p𝜃 =

1
20

, p0 = 52
1000

, p1 = 9
100

, m𝜂 = 42
1000

, and d∞ = 1
2
.

Consequently,

d∞(p0 − p1)
√

p(1 − p)

m𝜂
√

p𝜃(1 − p𝜃)
=

1
2
⋅ −38

1000
⋅ 1

2

42
1000

⋅
√

19
400

= −
√

19 ⋅ 5
21

= −1.037833 … (7)

Hence, in the given situation, the chi-squared test rejects the hypothesis with (asymptotic) probability

P(( + 1.037833)2 > q95%) = 0.1795898 … > 0.05.

This becomes worse as d∞ becomes larger, see Figure 5 below.
At first glance, this may occur to be no problem as p1 > p0, so one is tempted to guess that algorithm 1 performs better

than algorithm 0 and what we see above is just the power of the test, which becomes better as d∞ becomes large. However,
we shall argue in Example 4 below that the two algorithms perform equally well when used separately.

Next, we show that in the general situation, assuming that (A1) to (A5) hold and that cn
n
→ 0, we show that on the

linear scale, the asymptotic empirical conversion rates of the two versions of the website, when used separately, are
identical.

Theorem 2. Suppose that (A1) to (A5) hold and that c∞ ∶= limn→∞
cn
n
= 0. Then, for p∈ {0, 1},

lim
n→∞

C(p)
n = p𝜃 Pp-a.s. (8)

Proof. The result is a consequence of Theorem 3 below. ▪

Hence, in the relevant regime ( cn
n
→ 0) the first-order of growth of C(p)

n depends only on what happens after the popular
good is sold out. According to our model assumptions, the two versions of the website have identical performance once
the popular good is sold out. This implies that on the linear scale, there is no difference between the two versions of the
website. Hence, we need to make a comparison on a finer scale.
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BOHLE et al. 463

3.3 A joint limit theorem for the group sizes and numbers of purchases in each group

As 𝜒2 is a function of (N(0)
n ,N(1)

n ,L(0)
n ,L(1)

n ), a limit theorem for 𝜒2 follows from one for the above vector via the continuous
mapping theorem [ 3, theorem 2.7]. We begin with a strong law of large numbers for the variables L(0)

n and L(1)
n (the

corresponding result for N(0)
n and N(1)

n is classical).

Theorem 3. Suppose that (A1) to (A5) are in force and that the limit

c∞ ∶= lim
n→∞

cn

n
∈ [0,∞)

exists3. If c∞ ∈ [0, 1
m𝜂
), then

1
n

L(0)
n → (1 − p)p𝜃 + c∞(1 − p) 1

m𝜂
(p0 − p𝜃) and 1

n
L(1)

n → pp𝜃 + c∞p 1
m𝜂

(p1 − p𝜃) a.s.

In particular, in the most relevant case c∞ = 0,

1
n

L(0)
n → (1 − p)p𝜃 and 1

n
L(1)

n → pp𝜃 a.s.

If c∞ >
1

m𝜂
, then

1
n

L(0)
n → (1 − p)p0 and 1

n
L(1)

n → pp1 a.s.

We continue with the asymptotic law of the vector (N(0)
n ,N(1)

n ,L(0)
n ,L(1)

n ), suitably shifted and scaled in the most relevant
scenario where cn is of the order

√
n.

Theorem 4. Suppose that (A1) to (A5) are in force and suppose in addition to (1) that the limit

d∞ = lim
n→∞

cn√
n
∈ [0,∞)

exists, we have, as n→∞,(
N(0)

n − (1 − p)n√
n

,
N(1)

n − pn√
n

,
L(0)

n − n(1 − p)p𝜃√
n

,
L(1)

n − npp𝜃√
n

)
d
→ d∞

(
0, 0, (1 − p) 1

m𝜂
(p0 − p𝜃), p 1

m𝜂
(p1 − p𝜃)

)
+ (G1,−G1,G2,G3) (9)

where (G1,G2,G3) is a centered Gaussian vector with covariance matrix

V1 =
⎛⎜⎜⎜⎝

p(1 − p) p(1 − p)p𝜃 −p(1 − p)p𝜃

p(1 − p)p𝜃 p𝜃(1 − p)(1 − p𝜃(1 − p)) −p(1 − p)p2
𝜃

−p(1 − p)p𝜃 −p(1 − p)p2
𝜃

pp𝜃(1 − pp𝜃)

⎞⎟⎟⎟⎠ . (10)

Notice that the theorem contains a limit theorem for the pure conversion rates C(0)
n and C(1)

n by choosing p= 0 and
projecting on the third coordinate or by choosing p= 1 and projecting on the fourth component, respectively. This gives,

3In the applications we have in mind, c∞ = 0 because the quantity of good 2 should be much smaller than the total number of observations. But from a
theoretical perspective positive values of c∞ are also interesting because of the occurrence of different asymptotic regimes. Let us also stress that c∞ > 0
necessitates 𝜌 = 1, where the definition of 𝜌 may be recalled from (1).
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464 BOHLE et al.

with  (𝜇, 𝜎2) denoting a normal random variable with mean 𝜇 and variance 𝜎2,

L(0)
n − np𝜃√

n

d
→  (d∞

p0 − p𝜃

m𝜂

0
, p𝜃(1 − p𝜃)) under P0 (11)

and

L(1)
n − np𝜃√

n

d
→  (d∞

p1 − p𝜃

m𝜂

1
, p𝜃(1 − p𝜃)) under P1 (12)

where m𝜂 = pm𝜂

1 + (1 − p)m𝜂

0 with p= 0 and p= 1, respectively, has been used. Hence, if the two expectations in
(11) and (12) coincide, then the performances of the two websites coincide asymptotically both on the linear
scale as well as on the level of fluctuations. The subsequent example demonstrates that this can be the case even
if p0 ≠ p1.

Example 4 (Ranking experiment, take 4). Recall the situation of Example 1 and the calculations of Example 3:

p𝜃 =
1

20
, p0 = 52

1000
, p1 = 9

100
, m𝜂

0 = 4
1000

, m𝜂

1 = 8
100

, and d∞ = 1
2
.

Consequently,

p0 − p𝜃

m𝜂

0
=

2
1000

4
1000

= 1
2
=

4
100

8
100

=
p1 − p𝜃

m𝜂

1
.

This means that the two limits in (11) and (12) coincide in the given example even though p1 > p0.

From Theorem 4, we may immediately deduce a limit theorem for 𝜒2, which is a preliminary version of Theorem 1.

Corollary 1. Suppose that (A1) to (A5) and (1) are in force and that the limit

d∞ = lim
n→∞

cn√
n
∈ [0,∞)

exists, we have the following limit theorem for the chi-squared statistics defined by (4)

𝜒2 d
→

(d2 + G2 − p𝜃G1 − (1 − p)(d2 + d3 + G2 + G3))2

(1 − p𝜃)p𝜃(1 − p)

+
(d3 + G3 + p𝜃G1 − p(d2 + d3 + G2 + G3))2

(1 − p𝜃)p𝜃p
as n → ∞

where (0, 0, d2, d3) denotes the expectation of the right-hand side in (9) and (G1, G2, G3) is the Gaussian vector from
Theorem 4.

We close this section with another example (see Figure 6) showing that ignoring the dependencies might also lead to
a high false-negative rate.

Example 5 (Ranking experiment with picky customers). We consider a variant of Example 1 in which there are picky
customers that will only buy the rare good. This time, we use the former Algorithm 1 from above as the default algorithm
displaying the rare goods first. The former Algorithm 0 strategically keeps the rare inventory for later arrival of picky
customers by ranking the rare good low. In an experiment with shared inventory, Algorithm 1 sells off the rare good
greedily, and the value of Algorithm 0’s strategy will not be properly assessed in the model ignoring dependencies. We
make this precise in the following.

Again suppose that during a test phase, n= 4 000 000 customers visit the website. Again, there are cn = 1000 rare goods
while good 1 is available at sufficient quantities. The algorithms work as in Example 1, but there is a difference in the
behavior of the customers. We assume that, independent of all other customers, each customer has a 1% chance of being
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BOHLE et al. 465

F I G U R E 6 Ranking experiment: Picky customer behavior when good 2 is
still available

picky. If not picky, the customer behaves like the customers of Example 1. A picky customer, however, will search as long
as required to check whether there is something of the rare good left. If the rare good is still available, the picky customer
buys one unit with 50% chance. Otherwise, the customer leaves the website. The overviews given in Figure 2 still apply
to regular customers, for picky customers and when good 2 is still available, there is a simplified decision tree:

A calculation of the relevant model parameters in this example based on the corresponding parameter values from
Example 3 gives p = 1

2
and d∞ = 1

2
as before and

p𝜃 =
99

100
⋅

1
20

, p0 = 99
100

⋅
52

1000
+ 1

100
⋅

1
2
, p1 = 99

100
⋅

9
100

+ 1
100

⋅
1
2
, m𝜂 = 99

100
⋅

42
1000

+ 1
100

⋅
1
2
.

We shall now show that Algorithm 0 performs actually better than Algorithm 1. We have

m𝜂

0 = 99
100

⋅
4

1000
+ 1

100
⋅

1
2

and m𝜂

1 = 99
100

⋅
8

100
+ 1

100
⋅

1
2
.

Consequently,

d∞ ⋅
p0 − p𝜃

m𝜂

0
= 349

896
>

223
842

= d∞ ⋅
p1 − p𝜃

m𝜂

1
.

In view of (11) and (12), Algorithm 0 does perform better than Algorithm 1. Now let us calculate the probability that
the chi-squared test rejects the hypothesis that Algorithm 0 and Algorithm 1 perform equally well. To this end, we first
calculate

d∞(p1 − p0)
√

p(1 − p)

m𝜂
√

p𝜃(1 − p𝜃)
= 0.930852 … .

According to Theorem 1, the chi-squared test (with significance level 5%) rejects the hypothesis with probability
0.1536348… . However, it is a standard practice to say that Algorithm 0 is significantly better than Algorithm 1 only
when 𝜒2 > q1−𝛼 and C(0)

n > C(1)
n (with 𝛼 ∈ (0, 1) being the significance level). So, asymptotically, the power of the test is

limn→∞P(C(0)
n > C(1)

n , 𝜒2 > q1−𝛼). We shall now calculate this probability in the given situation with d∞ = 1/2 but also as a
function of d∞ to point out that the probability becomes arbitrarily small as d∞ becomes large. We begin by reformulating
the condition C(0)

n > C(1)
n . Recall that C(i)

n = L(i)
n ∕N(i)

n for i= 0, 1. Hence,

C(0)
n > C(1)

n iff L(0)
n N(1)

n − L(1)
n N(0)

n > 0

iff (L(0)
n −

np𝜃

2
)(N(1)

n − n
2
) − (L(1)

n −
np𝜃

2
)(N(0)

n − n
2
) +

np𝜃

2
(N(1)

n − N(0)
n ) + n

2
(L(0)

n − L(1)
n ) > 0

iff 2√
n

L(0)
n − np𝜃∕2√

n
⋅

N(1)
n − n∕2√

n
− 2√

n

L(1)
n − np𝜃∕2√

n
⋅

N(0)
n − n∕2√

n

− p𝜃

N(0)
n − n∕2√

n
+ p𝜃

N(1)
n − n∕2√

n
+

L(0)
n − np𝜃∕2√

n
−

L(1)
n − np𝜃∕2√

n
> 0.
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466 BOHLE et al.

F I G U R E 7 Monte Carlo simulation of the power of the test as a
function of d∞ with all other parameters fixed as above

By Theorem 4 and Slutsky’s theorem, the two terms in the penultimate line tend to 0 in probability as n→∞. By
Theorem 4, the other summands converge in distribution so that in the limit, the above inequality becomes

− 2p𝜃G1 + d∞
p0 − p𝜃

2m𝜂
+ G2 − d∞

p1 − p𝜃

2m𝜂
− G3 > 0,

which can be simplified to

− 2p𝜃G1 + G2 − G3 > d∞
p1 − p0

2m𝜂
.

By Theorem 1, 𝜒2 converges also in distribution. According to Corollary 1, we can express the condition 𝜒2 > q1−𝛼 in the
limit as n→∞ in the form

(d2 + G2 − p𝜃G1 −
1
2
(d2 + d3 + G2 + G3))2 + (d3 + G3 + p𝜃G1 −

1
2
(d2 + d3 + G2 + G3))2

>
1
2
(1 − p𝜃)p𝜃q1−𝛼 (13)

where (0, 0, d2, d3) is the expectation vector in (9), that is, (0, 0, d2, d3) = d∞

(
0, 0, p0 − p𝜃

2m𝜂
,

p1 − p𝜃

2m𝜂

)
. Since the convergence

in Theorem 4 is jointly and since the law of (G1, G2, G3) on R3 is absolutely continuous with respect to Lebesgue measure,
the Portmanteau theorem implies that

lim
n→∞

P(𝜒2 > q1−𝛼,C(0)
n > C(1)

n ) = P

(
(3.12) holds and − 2p𝜃G1 + G2 − G3 > d∞

p1 − p0

2m𝜂

)
.

In the given situation (with d∞ = 1
2
), we have used a Monte Carlo simulation (with 2 ⋅ 106 iterations) to estimate the

power of the test resulting in an estimate of 0.001933… Furthermore, it is already immediate that the power tends to 0
as d∞ tends to ∞ since p1 > p0. To get a better quantitative picture, we have performed Monte Carlo simulations for 200
equidistant values of d∞ between 0 and 1, each with 2 ⋅ 106 iterations. The results of the Monte Carlo simulations are
displayed in Figure 7.

In particular, for every value d∞ > 0, the estimate of the power of the test is strictly smaller than 0.025 = 𝛼

2
.

3.4 Functional limit theorem for the model incorporating low inventory

We deduce Theorem 4 from a more general result, namely, a joint functional central limit theorem. To formulate it, we
need additional notation.

Henceforth, convergence in distribution of random elements in the Skorohod spaces D([0,∞),Rd) and D((0,∞),Rd)
of Rd-valued, right-continuous functions with existing left limits is with respect to the standard J1-topology and will be
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BOHLE et al. 467

denoted by ⇒. To distinguish between convergence in the above two spaces we adopt the following convention. The
convergence is in D([0,∞),Rd) if the processes are written with subscript (⋅)t ≥ 0, whilst if the subscript is (⋅)t > 0, the
convergence is in D((0,∞),Rd).

Let (B(t))t≥0 = ((B1(t), … ,B7(t)))t≥0 be a centered seven-dimensional (7D) Brownian motion with covariance
matrix

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0(1 − p)(1 − p0(1 − p)) −p0p1p(1 − p) −p0(1 − p)p (1 − p)(m𝜉

0 − m𝜉p0)
−p0p1p(1 − p) pp1(1 − pp1) pp1(1 − p) p(m𝜉

1 − p1m𝜉)
−p0(1 − p)p pp1(1 − p) p(1 − p) p(m𝜉

1 − m𝜉)
(1 − p)(m𝜉

0 − m𝜉p0) p(m𝜉

1 − p1m𝜉) p(m𝜉

1 − m𝜉) 𝜎2
𝜉

(1 − p)(m𝜂

0 − m𝜂p0) p(m𝜂

1 − p1m𝜂) p(m𝜂

1 − m𝜂) 𝜌𝜉𝜂

p0(1 − p)pp𝜃 −p1p(1 − p)p𝜃 −p(1 − p)p𝜃 (1 − p)p𝜃(m𝜉

0 − m𝜉)
−p0p(1 − p)p𝜃 pp1(1 − p)p𝜃 p(1 − p)p𝜃 pp𝜃(m𝜉

1 − m𝜉)

(1 − p)(m𝜂

0 − m𝜂p0) p0(1 − p)pp𝜃 −p0p(1 − p)p𝜃

p(m𝜂

1 − p1m𝜂) −p1p(1 − p)p𝜃 pp1(1 − p)p𝜃

p(m𝜂

1 − m𝜂) −p(1 − p)p𝜃 p(1 − p)p𝜃

𝜌𝜉𝜂 (1 − p)p𝜃(m𝜉

0 − m𝜉) pp𝜃(m𝜉

1 − m𝜉)
𝜎2
𝜂 (1 − p)p𝜃(m𝜂

0 − m𝜂) pp𝜃(m𝜂

1 − m𝜂)
(1 − p)p𝜃(m𝜂

0 − m𝜂) p𝜃(1 − p)(1 − p𝜃(1 − p)) −p(1 − p)p2
𝜃

pp𝜃(m𝜂

1 − m𝜂) −p(1 − p)p2
𝜃

pp𝜃(1 − pp𝜃)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

that is, B(t) = V1∕2B′(t), t ≥ 0 where B′(t) is a 7D Brownian motion with independent components each being a 1D
standard Brownian motion, and V1/2 is the square root of the positive semidefinite matrix V.

Theorem 5. Suppose that (A1) to (A5) and (1) are in force and that the limit

c∞ = lim
n→∞

cn

n
∈ [0,∞) (15)

exists. If c∞ ∈ [0, 1
m𝜂
), then, as n→∞,

⎛⎜⎜⎝
N(0)⌊nt⌋ − (1 − p)nt√

n
,

N(1)⌊nt⌋ − pnt√
n

,
L(0)⌊nt⌋ − (1 − p) 1

m𝜂
(p0 − p𝜃)c⌊nt⌋ − nt(1 − p)p𝜃√

n
,

L(1)⌊nt⌋ − p 1
m𝜂
(p1 − p𝜃)c⌊nt⌋ − ntpp𝜃√

n

⎞⎟⎟⎠t>0

⇒

(
−B3(t),B3(t), c

1
2
∞

(
B1

( t
m𝜂

)
+ (1 − p)(p𝜃 − p0)(m𝜂)

3
2 B5(t) − B6

( t
m𝜂

))
+ B6(t),

c
1
2
∞

(
B2

( t
m𝜂

)
+ p(p𝜃 − p1)(m𝜂)

3
2 B5(t) − B7

( t
m𝜂

))
+ B7(t)

)
t>0

. (16)

On the other hand, if c∞ >
1

m𝜂
, then, as n→∞,

⎛⎜⎜⎝
N(0)⌊nt⌋ − (1 − p)nt√

n
,

N(1)⌊nt⌋ − pnt√
n

,
L(0)⌊nt⌋ − (1 − p)p0nt√

n
,

L(1)⌊nt⌋ − pp1nt√
n

⎞⎟⎟⎠t>0

⇒ (−B3(t),B3(t),B1(t),B2(t))t>0. (17)
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468 BOHLE et al.

4 PROOFS

In the model, there are two natural breaks, namely, first the process evolves in the positive quadrant like an unrestricted
two-dimensional random walk until the second coordinate of the walk for the first time attempts to step to or beyond the
level cn. This time we call 𝜏1(n). Then there is a number of attempts to reach that border until this is eventually achieved
at a time we call 𝜏2(n). From that time on, the walk keeps the second coordinate fixed at cn and evolves horizontally as a
1D walk. Crucial both for the proof of the strong law of large numbers, Theorem 3, and the joint functional limit theorem,
Theorem 5, is a sufficient understanding of these times, 𝜏1(n) and 𝜏2(n).

4.1 Stopping time analysis and the strong law of large numbers

Formally, the two natural stopping times associated with the stochastic process (Rk)k∈N0
are defined as follows:

• 𝜏1(n) ∶= inf {k ∈ N ∶ Tk−1 + 𝜂k ≥ cn}, the first attempt to reach the half-plane N0 × [cn,∞), and
• 𝜏2(n) ∶= inf {k ∈ N ∶ Tk = cn}, the first entrance to the horizontal line N0 × {cn}.

We stipulate that 𝜏1(0) = 𝜏2(0) = 0. To simplify notation later on, we set 𝜏j(t) ∶= 𝜏j(⌊t⌋) for t ≥ 0 and j= 1, 2. The above
quantities are stopping times with respect to the natural filtration of (Rk)k∈N0

. By the strong law of large numbers, we have

𝜏1(n)
cn

→
1

E[𝜂]
= 1

m𝜂
as n → ∞ a. s. (18)

Note that 𝜏1(n) ≤ 𝜏2(n) and

{𝜏1(n) = 𝜏2(n)} = {T𝜏1(n)−1 + 𝜂𝜏1(n) = cn} ∪ {T𝜏1(n)−1 + 𝜂𝜏1(n) > cn, J𝜏1(n) = 1}.

We start by proving that 𝜏1(n) and 𝜏2(n) are uniformly close on the
√

cn-scale.

Lemma 1. For arbitrary T > 0 we have

sup
t∈[0, T]

|𝜏2(nt) − 𝜏1(nt)|√
cn

P

→ 0 as n → ∞.

Proof. By the regular variation of (cn)n∈N it is enough to prove the claim for T = 1. We have the following bound

𝜏2(n) − 𝜏1(n) = inf

{
k ≥ 0 ∶ T𝜏1(n) +

k∑
j=1

Y𝜏1(n)+j = cn

}

≤ inf

{
k ≥ 0 ∶ T𝜏1(n) +

k∑
j=1

𝜂𝜏1(n)+j1{J𝜏1(n)+j=1} ≥ cn

}
, (19)

and therefore

sup
t∈[0,1]

|𝜏2(nt) − 𝜏1(nt)|
≤ inf

{
k ≥ 0 ∶ inf

t∈[0,1]

k∑
j=1

𝜂𝜏1(⌊nt⌋)+j1{J𝜏1(⌊nt⌋)+j=1} ≥ sup
t∈[n−1,1]

(c⌊nt⌋ − T𝜏1(nt))

}
. (20)

Furthermore, cm − T𝜏1(m) ≤ 𝜂𝜏1(m) and thus

sup
t∈[n−1,1]

(c⌊nt⌋ − T𝜏1(nt)) ≤ max
t∈[n−1,1]

𝜂𝜏1(nt) ≤ max
m=1,… ,𝜏1(n)

𝜂m,
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BOHLE et al. 469

which in view of (20) yields

sup
t∈[0,1]

|𝜏2(nt) − 𝜏1(nt)| ≤ inf

{
k ≥ 0 ∶ min

m=0,… ,𝜏1(n)

k∑
j=1

𝜂m+j1{Jm+j=1} ≥ max
m=1,… ,𝜏1(n)

𝜂m

}
. (21)

From (18) we conclude that for any a >
1

m𝜂
there exists a random n0 ∈ N such that for all n≥n0, we have

sup
t∈[n−1,1]

(c⌊nt⌋ − T𝜏1(nt)) ≤ max
k=1,… ,⌊acn⌋𝜂k.

This further implies

sup
t∈[0,1]

|𝜏2(nt) − 𝜏1(nt)| ≤ inf

{
k ≥ 0 ∶ min

m=0,… ,⌊acn⌋
k∑

j=1
𝜂m+j1{Jm+j=1} ≥ max

m=0,… ,⌊acn⌋𝜂m

}
(22)

if n≥n0. Using the assumption E[𝜂2] < ∞ it is not difficult to check that

c
− 1

2
n max

k=1,… ,⌊acn⌋𝜂k
P

→ 0 as n → ∞. (23)

Define

S̃0 ∶= 0 and S̃n =
n∑

k=1
𝜂k1{Jk=1}, n ∈ N

and note that by (22) and (23) it is enough to prove that for arbitrary 𝜀> 0 there exist 𝛿 > 0 such

P( min
m=1,… ,⌊acn⌋(S̃m+⌊𝜀√cn⌋ − S̃m) ≥ 𝛿

√
cn) → 1 as n → ∞. (24)

Fix 𝜀> 0 and let us show that (24) holds for any 𝛿 ∈ (0, 𝜀ES̃1) = (0, 𝜀qm𝜂). To this end, fix arbitrary such 𝛿 and write

P( min
m=1,… ,⌊acn⌋(S̃m+⌊𝜀√cn⌋ − S̃m) < 𝛿

√
cn) ≤

⌊acn⌋∑
m=1

P(S̃m+⌊𝜀√cn⌋ − S̃m < 𝛿
√

cn)

= ⌊acn⌋P(S̃⌊𝜀√cn⌋ < 𝛿
√

cn).

For every 𝜆 > 0 we have by Markov’s inequality

P(S̃⌊𝜀√cn⌋ < 𝛿
√

cn) = P(e−𝜆S̃⌊𝜀√cn⌋ > e−𝜆𝛿
√

cn) ≤ e𝜆𝛿
√

cn (E[e−𝜆𝜂1{J=1} ])⌊𝜀√cn⌋.
It remains to note that e𝜆𝛿𝜀−1(E[e−𝜆𝜂1{J=1} ]) < 1 for 𝛿 ∈ (0, 𝜀qm𝜂) and sufficiently small 𝜆 > 0. The proof is complete. ▪

For the proof of Theorem 3 we also need a counterpart of the above lemma for convergence in the almost sure
sense.

Lemma 2. It holds that

lim
n→∞

𝜏2(n) − 𝜏1(n)
cn

= 0 a.s.

Proof. In view of (19) for every 𝜀> 0 it holds

{𝜏2(n) − 𝜏1(n) > ⌊𝜀cn⌋} ⊆

{⌊𝜀cn⌋∑
j=1

𝜂𝜏1(n)+j1{J𝜏1(n)+j=1} < cn − T𝜏1(n)

}
= {S̃𝜏1(n)+⌊𝜀cn⌋ − S̃𝜏1(n) < cn − T𝜏1(n)}. (25)
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470 BOHLE et al.

By the classical strong law of large numbers for (S̃k)k∈N0
and in view of (18)

lim
n→∞

S̃𝜏1(n)+⌊𝜀cn⌋ − S̃𝜏1(n)

cn
= 𝜀qm𝜂 > 0 and lim

n→∞

T𝜏1(n)

cn
= 1 a.s.

Therefore, with probability one, the event in (25) occurs only for finitely many n. ▪

Proof of Theorem 3. Note that for i= 0, 1 we can write

L(i)
n =

n∑
k=1

1{Xk+Yk>0,Ik=i} =
(𝜏1(n)−1)∧n∑

k=1
1{𝜉k+𝜂k>0,Ik=i}

+
𝜏2(n)∧n∑
k=𝜏1(n)

1{Xk+Yk>0,Ik=i} +
n∑

k=𝜏2(n)+1
1{𝜃k>0,Ik=i}. (26)

From this representation all the claims follow immediately from the classical strong law of large numbers and the fact

lim
n→∞

𝜏1(n)
cn

= lim
n→∞

𝜏2(n)
cn

= 1
m𝜂

a.s.,

which is a consequence of (18) and Lemma 2. ▪

4.2 Proof of Theorem 5

Define Xn ∈ D([0,∞),R5) and Yn ∈ D([0,∞),R2) via

Xn(t) =
⌊nt⌋∑
k=1

(1{𝜉k+𝜂k>0,Ik=0},1{𝜉k+𝜂k>0,Ik=1}, Ik, 𝜉k, 𝜂k)

and Yn(t) =
⌊nt⌋∑
k=1

(1{𝜃k>0,Ik=0},1{𝜃k>0,Ik=1})

for t ≥ 0. The following proposition is the key ingredient in the proof of Theorem 5.

Proposition 1. If the assumptions of Theorem 5 hold, then, as n→∞,(
Xn(t) − nt((1 − p)p0, pp1, p,m𝜉 ,m𝜂)√

n
,

Yn(t) − nt((1 − p)p𝜃, pp𝜃)√
n

)
t≥0

⇒ (B(t))t≥0,

where (B(t))t ≥ 0 is a centered Brownian motion with covariance matrix V as in (14).

Proof. The convergence follows from Donsker’s invariance principle since (Xn(t), Y n(t)) is the sum of independent
identically distributed random vectors in R7 with finite second moments. The increment vectors have expectation

E[(1{𝜉k+𝜂k>0,Ik=0},1{𝜉k+𝜂k>0,Ik=1}, Ik, 𝜉k, 𝜂k,1{𝜃k>0,Ik=0},1{𝜃k>0,Ik=1})]
= (p0(1 − p), p1p, p,m𝜉 ,m𝜂, p𝜃(1 − p), p𝜃p).

The explicit form of the covariance matrix now results from elementary, yet cumbersome calculations. For example, the
entry at the first row and fourth column of V can be calculated as follows:

Cov[1{𝜉k+𝜂k>0,Ik=0}, 𝜉k] = E[𝜉k1{𝜉k+𝜂k>0,Ik=0}] − m𝜉
P(𝜉k + 𝜂k > 0, Ik = 0)

= E[𝜉k1{𝜉k>0,Ik=0}] − m𝜉(1 − p)p0

= E[𝜉k1{Ik=0}] − m𝜉(1 − p)p0

= (1 − p)(m𝜉

0 − m𝜉p0).
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BOHLE et al. 471

▪
In what follows, we shall frequently use the following two facts (see the lemma on p151 in 3 and [ 4,

theorem 3.1]):

Fact 1: the addition mapping + ∶ D([0,∞),R) × D([0,∞),R) → D([0,∞)) defined by (f + g)(x)= f (x)+ g(x), is continu-
ous with respect to the J1-topology at all points (f , g) such that both f and g are continuous;

Fact 2: the composition mapping ◦ ∶ D([0,∞),R) × D([0,∞),R) → D([0,∞)) defined by (f ◦ g)(x)= f (g(x)) is continuous
with respect to the J1-topology at all points (f , g) such that both f and g are continuous and g is nondecreasing.

Proof of Theorem 5. From [ 5, corollary 7.3.1], (1) and Fact 2, we infer(
𝜏1(nt) − 1

m𝜂
c⌊nt⌋

(m𝜂)−3∕2
√

cn

)
t≥0

⇒ (−B5(t𝜌))t≥0, (27)

and, in view of Lemma 1, the same relation for 𝜏2(nt). By applying corollary 13.8.1 in 5 and again Lemma 1, we can further
extend the convergence in Proposition 1 to a joint convergence:(

Xn(t) − nt(p0(1 − p), pp1, p,m𝜉 ,m𝜂)√
n

,
Yn(t) − nt((1 − p)p𝜃, pp𝜃)√

n
,

𝜏1(nt) − 1
m𝜂

c⌊nt⌋
(m𝜂)−3∕2

√
cn

,
𝜏2(nt) − 1

m𝜂
c⌊nt⌋

(m𝜂)−3∕2
√

cn

)
t≥0

⇒ (B(t),−B5(t𝜌),−B5(t𝜌))t≥0. (28)

As in (26), for i= 0, 1, we can write

L(i)⌊nt⌋ =
⌊nt⌋∑
k=1

1{Xk+Yk>0,Ik=i} =
(𝜏1(nt)−1)∧⌊nt⌋∑

k=1
1{𝜉k+𝜂k>0,Ik=i}

+
𝜏2(nt)∧⌊nt⌋∑

k=𝜏1(nt)∧(⌊nt⌋+1)
1{Xk+Yk>0,Ik=i} +

⌊nt⌋∑
k=𝜏2(nt)∧⌊nt⌋+1

1{𝜃k>0,Ik=i}.

The second summand above is bounded by 𝜏2(nt) − 𝜏1(nt) + 1 and thus the supremum over t in a compact interval
divided by

√
cn = O(

√
n) converges to zero in probability by Lemma 1 as n→∞. The behavior of the second and the third

summand strongly depends on whether limn→∞
cn
n

is smaller, larger or equal to 1
m𝜂

.
Given 0< a< b and i= 1, 2 we put

Aa,b,i
n ∶= {𝜏i(nt) ≤ ⌊nt⌋ for all t ∈ [a, b]} and Ba,b,i

n ∶= {𝜏i(nt) ≥ ⌊nt⌋ + 1 for all t ∈ [a, b]}.

We first deal with the case c∞ ∈ (0, 1
m𝜂
). In this case, we necessarily have 𝜌 = 1. By Equation (27), Lemma 1 and the

uniform convergence theorem for regularly varying functions we obtain for i= 1, 2 and arbitrary 0< a< b

sup
t∈[a,b]

||||𝜏i(nt)
cn

− t
m𝜂

||||P→0 as n → ∞, (29)

and therefore

lim
n→∞

P(Aa,b,1
n ∩ Aa,b,2

n ) = 1. (30)

For i= 1, 2, put

L̂(i)⌊nt⌋ =
𝜏1(nt)−1∑

k=1
1{𝜉k+𝜂k>0,Ik=i} +

⌊nt⌋∑
k=𝜏2(nt)

1{𝜃k>0,Ik=i}. (31)
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472 BOHLE et al.

From what have proved above it is clear that it suffices to check (16) with L(i)⌊nt⌋ replaced by L̂(i)⌊nt⌋, i= 1, 2. For typographical
reasons we shall write convergences of various components in separate formulas keeping in mind that they actually
converge jointly in view of (28). First,(∑⌊cnt⌋−1

k=1 1{𝜉k+𝜂k>0,Ik=0} − cntp0(1 − p)√
cn

,

∑⌊cnt⌋−1
k=1 1{𝜉k+𝜂k>0,Ik=1} − cntpp1)√

cn

)
t≥0

⇒ (B1(t),B2(t))t≥0 as n → ∞,

and therefore using Fact 2 (continuity of the composition mapping), the continuous mapping theorem and (29)(∑𝜏1(nt)−1
k=1 1{𝜉k+𝜂k>0,Ik=0} − 𝜏1(nt)p0(1 − p)√

cn
,

∑𝜏1(nt)−1
k=1 1{𝜉k+𝜂k>0,Ik=1} − 𝜏1(nt)pp1)√

cn

)
t>0

⇒
(

B1

( t
m𝜂

)
,B2

( t
m𝜂

))
t>0

as n → ∞.

Second, using Fact 1 (continuity of addition) and convergence of the last components in (28) we deduce

⎛⎜⎜⎝
∑𝜏1(nt)−1

k=1 1{𝜉k+𝜂k>0,Ik=0} − p0(1 − p) 1
m𝜂

c⌊nt⌋√
cn

,

∑𝜏1(nt)−1
k=1 1{𝜉k+𝜂k>0,Ik=1} − pp1

1
m𝜂

c⌊nt⌋)√
cn

⎞⎟⎟⎠t>0

⇒
(

B1

( t
m𝜂

)
− p0(1 − p)(m𝜂)3∕2B5(t),B2

( t
m𝜂

)
− pp1(m𝜂)3∕2B5(t)

)
t>0

as n → ∞. (32)

In the same vein,

⎛⎜⎜⎝
∑𝜏2(nt)−1

k=1 1{𝜃k>0,Ik=0} − p𝜃(1 − p) 1
m𝜂

c⌊nt⌋√
cn

,

∑𝜏2(nt)−1
k=1 1{𝜃k>0,Ik=1} − pp𝜃

1
m𝜂

c⌊nt⌋)√
cn

⎞⎟⎟⎠t>0

⇒
(

B6

( t
m𝜂

)
− p𝜃(1 − p)(m𝜂)3∕2B5(t),B7

( t
m𝜂

)
− pp𝜃(m𝜂)3∕2B5(t)

)
t>0

as n → ∞ (33)

Replacing
√

cn in the denominators by
√

c∞n and summing everything up we get

⎛⎜⎜⎝
L(0)⌊nt⌋ − (1 − p) 1

m𝜂
(p0 − p𝜃)c⌊nt⌋ − nt(1 − p)p𝜃√

n
,

L(1)⌊nt⌋ − p 1
m𝜂
(p1 − p𝜃)c⌊nt⌋ − ntpp𝜃√

n

⎞⎟⎟⎠t>0

⇒
(√

c∞
(

B1

( t
m𝜂

)
− p0(1 − p)(m𝜂)3∕2B5(t) − B6

( t
m𝜂

)
+ p𝜃(1 − p)(m𝜂)3∕2B5(t)

)
+ B6(t),√

c∞
(

B2

( t
m𝜂

)
− pp1(m𝜂)3∕2B5(t) − B7

( t
m𝜂

)
+ pp𝜃(m𝜂)3∕2B5(t))

)
+ B7(t)

)
t>0

(34)

as n→∞. It remains to note that (34) holds jointly with

⎛⎜⎜⎝
N(0)⌊nt⌋ − (1 − p)nt√

n
,

N(1)⌊nt⌋ − pnt√
n

⎞⎟⎟⎠t≥0

⇒ (−B3(t),B3(t))t≥0,

and together this is (16).
Case c∞ = 0. In this case (30) still holds but there are significant simplifications. First of all note that in this case we

can have 𝜌 ≤ 1 and thus in (29) 1
m𝜂

t must be replaced by 1
m𝜂

t𝜌. Furthermore, in (32) and (33) upon replacing
√

cn in the
denominator by

√
n the limit becomes identical zero and, thus we have the same convergence (34) but with c∞ = 0 on the

right-hand side.
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Finally, we deal with the case c∞ >
1

m𝜂
. In this case (29) implies

lim
n→∞

P(Ba,b,1
n ∩ Ba,b,1

n ) = 1.

Similar to (31), for i= 1, 2, we now put

L̂(i)⌊nt⌋ ∶=
⌊nt⌋∑
k=1

1{𝜉k+𝜂k>0,Ik=i},

and note that now L(i)⌊nt⌋ can be replaced by L̂(i)⌊nt⌋ in (17). After this replacement (17) is just a part of (28). ▪

We now turn to the proof of Theorem 1. As a first step, we notice that Corollary 1 follows from Theorem 4 and the con-
tinuous mapping theorem. Theorem 4, in turn, follows immediately from Theorem 5. It thus remains to deduce Theorem 1
from Theorem 4.

Proof of Theorem 1. Our aim is to show how to calculate the distribution of the variable

𝜒2
∞ ∶=

(d2 + G2 − p𝜃G1 − (1 − p)(d2 + d3 + G2 + G3))2

(1 − p𝜃)p𝜃(1 − p)
+

(d3 + G3 + p𝜃G1 − p(d2 + d3 + G2 + G3))2

(1 − p𝜃)p𝜃p

=
(pd2 − (1 − p)d3 − p𝜃G1 + pG2 − (1 − p)G3)2

(1 − p𝜃)p𝜃(1 − p)
+

((1 − p)d3 − pd2 + p𝜃G1 − pG2 + (1 − p)G3)2

(1 − p𝜃)p𝜃p
,

where G:= (G1, G2, G3) is a centered Gaussian vector with covariance matrix V1. A simple calculation shows that

𝜒2
∞ =

(p𝜃G1 − pG2 + (1 − p)G3 − (pd2 − (1 − p)d3))2

(1 − p𝜃)p𝜃(1 − p)p
.

Note that p𝜃G1 − pG2 + (1 − p)G3 has a centered normal distribution with the variance

Var[p𝜃G1 − pG2 + (1 − p)G3] = p2
𝜃
Var[G1] + p2Var[G2] + (1 − p)2Var[G3] − 2pp𝜃Cov[G1,G2]

+ 2p𝜃(1 − p)Cov[G1,G3] − 2p(1 − p)Cov[G2,G3]
= p𝜃(1 − p𝜃)p(1 − p).

Thus, for  having the standard normal distribution, we see that

𝜒2
∞

law
=

(
 −

pd2 − (1 − p)d3√
pp𝜃(1 − p)(1 − p𝜃)

)2

=

(
 −

d∞(p0 − p1)
√

p(1 − p)

m𝜂
√

p𝜃(1 − p𝜃)

)2

.

The proof is complete. ▪

5 CONCLUSIONS

Starting from the observation that the standard for testing product changes on e-commerce websites is large-scale hypoth-
esis testing with statistical tests based on the assumption of independent samples such as the chi-squared test, we have
suggested a new model for the samples which incorporates shared inventories. This model introduces new dependencies.
Our main result is the calculation of the asymptotic law of the chi-squared test statistics under the new model assump-
tions in the critical regime where the number of items of a popular good is of the order of the square root of the sample
size. Website versions that greedily sell the popular good have an initial advantage in the number of sales of the order of
the square root of the sample size, which is the order of the overall random fluctuations, see also Figures 3 and 4. Thus,
the initial advantage has an impact on the probability of rejecting the hypothesis. We have demonstrated in examples
that this may lead to both, arbitrarily high false-positive as well as arbitrarily high false-negative rates. This questions the

 15264025, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2574 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [31/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



474 BOHLE et al.

assumption implicit in the industry standard that dependencies are small enough to be ignored. Moreover, it suggests
that the present standard of A/B testing favors algorithms that are designed to be good in competition against others, but
not necessarily good when used on separate inventory.

Our work may be extended in the future in several directions. On the one hand, our results may be used to construct
tests for the model that keep the significance level. On the other hand, the model may be extended to incorporate more
features of real samples such as a priori information about website visitors, and so on.
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