Aus dem Institut für Tierernährung und Ernährungsphysiologie der Justus-Liebig-Universität Gießen Kommissarischer Direktor: Prof. Dr. J. Pallauf

Repletionseffizienz verschiedener Selenverbindungen hinsichtlich funktioneller Selenoproteine in ausgewählten Organen beim Modelltier Ratte (*Rattus norvegicus*)

Inaugural-Dissertation

zur Erlangung des Doktorgrades (Dr. oec. troph.) am Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement der Justus-Liebig-Universität Gießen

vorgelegt von

Claudia Parys

Gießen 2009

Dissertation am Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement der Justus-Liebig-Universität Gießen

- Dekanin: Prof. Dr. Ingrid-Ute Leonhäuser -

Vorsitzender: Prof. Dr. G. Leithold

1	Cutachtor	Drof	Dr I	Dollouf
1.	Gulachler.	FIUI .	DI. J.	rallaul

- 2. Gutachter: Prof. Dr. E. Weigand
- Prüfer: Prof. Dr. U. Wenzel
- Prüfer: PD Dr. R. Pätzold

Tag der mündlichen Prüfung: 29.05.2009

I Inhaltsverzeichnis

I	Inhaltsve	rzeichnis	I
II	Abbildun	gsverzeichnis	II
III	Tabellen	verzeichnis	III
IV	Anhangs	tabellenverzeichnis	VI
V	Abkürzur	ngsverzeichnis	VIII
1	Finloitu	Ing	1
•	Liment	ing	
2	Literatu	ırübersicht	2
	2.1	Selen	2
	2.1.1	Absorption und Metabolismus	3
	2.1.1.1	Selenat	3
	2.1.1.2	Selenit	4
	2.1.1.3	Selenomethionin und Selenocystein	6
	2.1.2	Verteilung	7
	2.1.3	Exkretion	8
	2.1.4	Ebselen	9
	2.1.5	Selenmangel und Toxizität	13
	2.1.6	Seleneinbau in die Selenoproteine	15
	2.2	Funktionelle Selenoproteine	
	2.2.1	Glutathionperoxidasen	18
	2.2.1.1	Zytosolische Glutathionperoxidase (cGPx, GPx1)	
	2.2.1.2	Gastrointestinale Glutathionperoxidase (GIGPx, GPx2)	20
	2.2.1.3	Plasmatische Glutathionperoxidase (pGPx, GPx3, eGPx)	21
	2.2.1.4	Phospholipidhydroperoxid-Glutathionperoxidase (PHGPx,	
		GPx4)	22
	2.2.2	Deiodinasen	24
	2.2.2.1	5'-Deiodinase I (D1)	24
	2.2.2.2	5'-Deiodinase II (D2)	26
	2.2.2.3	5-Deiodinase (D3)	27
	2.2.3	Thioredoxin/Thioredoxinreduktasen	28
	2.2.4	Selenophosphatsynthetase 2	31
	2.2.5	Selenoprotein P	31
	2.3	Regulation der Selenoproteinexpression	34
	2.4	Glutathionmetabolismus	37
	2.4.1	Glutathion	37
	2.4.2	Glutathionreduktase	39
	2.4.3	Glutathion S-Transferasen	39
	2.5	Katalase	41
3	Experir	nenteller Teil	42
	3.1	Zielsetzung und Versuchsplan	42
	3.2	Versuchsfutter	43
	3.3	Versuchstierhaltung und Probengewinnung	44
	3.4	Probenaufbereitung	45
	3.4.1	Plasma und Hämolysat	45
	3.4.2	Aufarbeitung und Gewebeproben	45

3.4.3	Darm und Darminhalt	45
3.5	Material und Methoden	46
3.5.1	Weender Analyse des Versuchsfutters	46
3.5.1.1	Trockensubstanz und Rohasche	46
3.5.1.2	Rohprotein	46
3.5.1.3	Rohfett	46
3.5.1.4	Rohfaser	47
3.5.2	Bruttoenergie	47
3.5.3	Selenkonzentration im Versuchsfutter und in den Geweben	47
3.5.4	Mineralstoffe im Versuchsfutter	48
3.5.5	Eisenkonzentration in Leber, Niere und Vollblut	49
3.5.6	Vitamin E-Konzentration im Sojaöl und im Versuchsfutter	49
3.5.7	Hämoglobingehalt und Hämatokritwert	50
3.5.8	Selenoenzyme	51
3.5.8.1	Zelluläre und plasmatische Glutathionperoxidase	51
3.5.8.2	5'-Deiodinase (D1)	52
3.5.9	Glutathion (GSH/GSSG)	53
3.5.10	Glutathion S-Transferasen (GST)	54
3.5.11	Peroxidative Aktivität der Katalase	55
3.5.12	Triiodthyronin- (T_3) und Thyroxinkonzentration (T_4) im Plasma	56
3.5.13	Proteinbestimmung in Plasma, Hämolysat und den	
	Gewebehomogenaten	57
3.5.14	Thiobarbitursäurereaktive Substanzen	57
3.5.15	Differentielle Genexpressionsanalyse	58
3.5.15.1	Isolierung der RNA aus der Leber	58
3.5.15.2	Einstellen der Konzentration und Bestimmung der Reinheit der	
	RNA	59
3.5.15.3	Denaturierende Agarose-Gelelektrophorese	59
3.5.15.4		60
3.5.15.5	Amplifizierung der cDNA mittels PCR.	61
3.5.15.6	Darstellung der PCR-Produkte mittels Agarose-	<u></u>
2 5 4 5 7	Gelelektrophorese	62
3.5.15.7	Messung der optischen Dichte und Normierung der Rondaten	62
3.0		03
Fraebni	022	61
	Bruttoenergie, und Dohnöhrstoffgehalte des Versuchsfutters	 64
4.1	Selen und Vitamin E. Konzentrationen im Versuchsfutter	04 64
4.2	Ausgewählte Mineralstoffkonzentrationen im Versuchsfutter	 65
4.5	Rusgewählte Mineralstonkonzentrationen im Versuchstutter	60
4.4	Gewichtsentwicklung	00 67
4.6	Futterverwertung	69
4.0	Hämoolobin-Konzentration und Hämatokritwert	03 71
4.7	Selenkonzentrationen in Vollblut Plasma Leber Niere Testis	/ 1
4.0	Muskel Gehirn und Darminhalt	73
49	Selenoenzyme	70
491	Plasmatische und zelluläre GPx während der Denletionsnhase	02 82
492	Plasmatische Glutathionneroxidase (nGPx) in der	02
7.0.2	Renletionsphase	83
493	Zelluläre Glutathionperoxidase (cGPx) in der Renletionsphase	00 84
1.0.0		00
4.9.4		

	4.10	Glutathion S-Transferasen (GST)	91
	4.11	Reduziertes und oxidiertes Glutathion	92
	4.12	Triiodthyronin- und Thyroxinkonzentrationen (T ₃ , T ₄) im Plasma	96
	4.13	Thiobarbitursäurereaktive Substanzen (TBA-RS)	99
	4.14	Katalase	100
	4.15	Eisenkonzentration in Leber, Niere und Vollblut	101
	4.16	Genexpression (cGPx, PHGPx)	102
5	Diskus	sion	103
	5.1	Einfluss verschiedener Se-Verbindungen auf zootechnische	
		Parameter	103
	5.2	Selenkonzentrationen im Blut und in ausgewählten Organen	104
	5.2.1	Selenkonzentrationen im Plasma und im Vollblut	104
	5.2.2	Selenkonzentrationen in Leber, Niere, Testis, Muskel und	
		Gehirn	106
	5.2.3	Selenkonzentrationen im Dünndarmgewebe und in den Digesta	109
	5.3	Selenoenzyme	110
	5.3.1	Glutathionperoxidasen	110
	5.3.2	D1-Aktivität und T ₃ /T ₄ -Konzentrationen	114
	5.4	Genexpression	118
	5.5	Glutathion S-Transferasen (GST)	120
	5.6	Glutathion	121
	5.7	Ebselen	123
	5.8	Hämoglobinkonzentration und Hämatokritwert	127
	5.9	TBA-RS	128
	5.10	Katalase	129
	5.11	Eisen	129
	5.12	Schlussfolgerungen	130
6	Zusam	menfassung	134
7	Summa	ary	137
8	Literat	urverzeichnis	140
9	Anhan	g	168

II Abbildungsverzeichnis

In vitro Reaktionen des Ebselens in Mitochondrien der Rattenleber	10
Öffnung des Isoselenazolrings durch die GST (Nıкawa et al. 1994a)	12
Aktivierung und Inaktivierung der wichtigsten lodthyronine durch die Deiodinasen (nach BIANCO et al. 2002)	24
Glutathion (y-L-Glutamyl-L-Cysteinylglycin)	37
Versuchsdesign	42
T_3 -Bildung aus T_4 durch die hepatische 5'-Deiodinase und originäres T_3 im Homogenat (1:5 (w/w)) eines Kontrolltieres (200 ug Se/kg FM)	53
Reaktion von Formaldehyd mit Purpald [®]	55
Linearer Verlauf der Formaldehydbildung durch die Katalase im Leberhomogenat der Ratte über 12 min	56
Reaktionsprinzip der TBA-RS-Bestimmung (nach PRYOR et al. 1976)	57
Gewichtsentwicklung der Ratten während der Repletionsphase ?	103
pGPx-Aktivität der Ratten während der 10-wöchigen Depletionsphase (n=6)	110
cGPx-Aktivität im Hämolysat der Ratten während der 10- wöchigen Depletionsphase (n=6)	111
	In vitro Reaktionen des Ebselens in Mitochondrien der Rattenleber Öffnung des Isoselenazolrings durch die GST (NiKAWA et al. 1994a) Aktivierung und Inaktivierung der wichtigsten lodthyronine durch die Deiodinasen (nach BIANCO et al. 2002) Glutathion (γ-L-Glutamyl-L-Cysteinylglycin) Versuchsdesign T ₃ -Bildung aus T ₄ durch die hepatische 5'-Deiodinase und originäres T ₃ im Homogenat (1:5 (w/w)) eines Kontrolltieres (200 µg Se/kg FM) Reaktion von Formaldehyd mit Purpald [®] Linearer Verlauf der Formaldehydbildung durch die Katalase im Leberhomogenat der Ratte über 12 min Reaktionsprinzip der TBA-RS-Bestimmung (nach PRYOR et al. 1976) Gewichtsentwicklung der Ratten während der Repletionsphase pGPx-Aktivität der Ratten während der 10-wöchigen Depletionsphase (n=6)

III Tabellenverzeichnis

Tabelle 1:	Zusammensetzung des selenarmen Basismischfuttermittels	44
Tabelle 2:	Zeit- und Temperaturprogramm des Mikrowellenaufschlusses	47
Tabelle 3:	Parameter des Hydrid-AAS-Systems zur Bestimmung der Selenkonzentration	48
Tabelle 4:	Parameter des AAS-Systems zur Bestimmung der Eisenkonzentration	
Tabelle 5:	Parameter an der HPLC zur Bestimmung von Vitamin E	50
Tabelle 6:	Assay zur Bestimmung der peroxidativen Katalaseaktivität	56
Tabelle 7:	Primer für die Amplifizierung der cDNA (CHRISTENSEN et al. 2000)	61
Tabelle 8:	Energiegehalt, Trockenmasse- und Rohnährstoffgehalt des Futters	64
Tabelle 9:	Selen- und α -Tocopherolkonzentration im Futter [Se in μ g/kg FM; α -Tocopherol in mg/kg FM]	65
Tabelle 10:	Analysierte Mineralstoffkonzentrationen im Versuchsfutter	65
Tabelle 11:	Durchschnittliche tägliche Futteraufnahme [g] während der 10- wöchigen Depletionsphase (Kontrollgruppen: n=6, Repletionsgruppen: n=12)	66
Tabelle 12:	Durchschnittliche tägliche Futteraufnahme [g] während der 28- tägigen Repletionsphase (Kontrollgruppen: n=2x3, Repletionsgruppen: n=4x3)	67
Tabelle 13:	Gewichtsentwicklung [g] der Ratten während der 10-wöchigen Depletionsphase (Kontrollgruppen: n=18, Repletionsgruppen: n=36)	68
Tabelle 14:	Gewichtsentwicklung [g] während der 28-tägigen Repletionsphase (n=6)	68
Tabelle 15:	Lebendmassezunahme während 10 Wochen (nur Depletionsphase) und während 14 Wochen (gesamte Versuchsdauer)	69
Tabelle 16:	Futterverwertung während der 10-wöchigen Depletionsphase (Kontrollgruppen: n=18, Repletionsgruppen: n=36)	70
Tabelle 17:	Futterverwertung während der 28-tägigen Repletionsphase (Kontrollgruppen: n=2x3, Repletionsgruppen: n=4x3)	70
Tabelle 18:	Hämoglobin-Konzentrationen [mmol/L] der Ratten während der 28-tägigen Repletionsphase (n=6)	71
Tabelle 19:	Hämatokritwerte [%] der Ratten während der 28-tägigen Repletionsphase (n=6)	72
Tabelle 20:	Selenkonzentrationen [µg/kg] im Vollblut der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	73
Tabelle 21:	Selenkonzentrationen [µg/kg] im Plasma der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	74

Tabelle 22:	Selenkonzentrationen [µg/kg] in der Leber (Lobus sinister lat.) der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	75
Tabelle 23:	Selenkonzentrationen [µg/kg] in der Niere der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	76
Tabelle 24:	Selenkonzentrationen [µg/kg] im Testis der Ratten während der 28- tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	77
Tabelle 25:	Selenkonzentrationen [µg/kg] im Muskel der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	78
Tabelle 26:	Selenkonzentrationen [µg/kg] im Gehirn der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	79
Tabelle 27:	Selenkonzentrationen [µg/kg] im Dünndarm und im Darminhalt der Ratten nach 28-tägiger Repletion mit unterschiedlichen Se- Verbindungen (n=3)	80
Tabelle 28:	pGPx-Aktivitäten [mU/mg Protein] im Blutplasma während der zehnwöchigen Depletionsphase (n=18)	82
Tabelle 29:	cGPx-Aktivitäten im Hämolysat [mU/mg Protein] während der zehnwöchigen Depletionsphase (n=18)	82
Tabelle 30:	pGPx-Aktivitäten [mU/mg Protein] im Blutplasma der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	83
Tabelle 31:	cGPx-Aktivitäten im Hämolysat [mU/mg Protein] der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	84
Tabelle 32:	cGPx-Aktivitäten in der Leber [mU/mg Protein] der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	85
Tabelle 33:	cGPx-Aktivitäten in der Niere [mU/mg Protein] der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	
Tabelle 34:	cGPx-Aktivitäten im Testis [mU/mg Protein] der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	87
Tabelle 35:	cGPx-Aktivitäten in der Lunge [mU/mg Protein] der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	88
Tabelle 36:	cGPx-Aktivitäten in der Milz [mU/mg Protein] der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se- Verbindungen (n=6)	89
Tabelle 37:	D1-Aktivitäten [fmol T ₃ /(min•mg Protein)] im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	90

Tabelle 38:	GST-Aktivitäten im Leberhomogenat der Ratten während der 28- tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	91
Tabelle 39:	Gesamtglutathion-Konzentrationen (tGSH) im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	92
Tabelle 40:	Konzentrationen an reduziertem Glutathion (GSH) im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	93
Tabelle 41:	Konzentrationen an oxidiertem Glutathion (GSSG) im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	94
Tabelle 42:	Verhältnis von oxidiertem und reduziertem Glutathion (GSH:GSSG) im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	95
Tabelle 43:	T ₃ -Konzentrationen [nmol/L] im Plasma der Ratten während der 28- tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	96
Tabelle 44:	T ₄ -Konzentrationen [nmol/L] im Plasma der Ratten während der 28- tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	97
Tabelle 45:	Verhältnis der Schilddrüsenhormonkonzentrationen zueinander im Plasma der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)	98
Tabelle 46:	TBA-RS-Konzentrationen im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase (n=6)	99
Tabelle 47:	Peroxidative Aktivität [U/mg] der Katalase im Leberhomogenat der Ratten aus der +Se- und der -Se-Gruppe während der 28-tägigen Repletionsphase	100
Tabelle 48:	Eisenkonzentrationen [µg/g] in Leber, Niere und Vollblut der Ratten aus der +Se- und der -Se-Gruppe während der 28-tägigen Repletionsphase	101
Tabelle 49:	Genexpression der cGPx und der PHGPx in der Leber der Ratten (RT-PCR)	102

IV Anhangstabellenverzeichnis

Anhangstabelle 1:	Wöchentliche Lebendmassezunahme der Kontrollgruppen (+Se, -Se) während der Depletionsphase	. 169
Anhangstabelle 2:	Wöchentliche Lebendmassezunahme der Selenatgruppe (SeO ₄ ²⁻) während der Depletionsphase	. 170
Anhangstabelle 3:	Wöchentliche Lebendmassezunahme der Selenitgruppe (SeO ₃ ²⁻) während der Depletionsphase	. 171
Anhangstabelle 4:	Wöchentliche Lebendmassezunahme der Selenomethionin- gruppe (SeMet) während der Depletionsphase	. 172
Anhangstabelle 5:	Wöchentliche Lebendmassezunahme der Ebselengruppe während der Depletionsphase	. 173
Anhangstabelle 6:	Tiergewichte [g] während der 28-tägigen Repletionsphase	. 174
Anhangstabelle 7:	Hämoglobinkonzentrationen [g/dL] der Ratten während der 28-tägigen Repletionsphase	. 175
Anhangstabelle 8:	Hämatokritwerte [%] der Ratten während der 28-tägigen Repletionsphase	. 176
Anhangstabelle 9:	Selenkonzentrationen im Vollblut [µg/kg] der Ratten während der 28-tägigen Repletionsphase	. 177
Anhangstabelle 10:	Selenkonzentrationen im Plasma [µg/kg] der Ratten während der 28-tägigen Repletionsphase	. 178
Anhangstabelle 11:	Selenkonzentrationen in der Leber [µg/kg] der Ratten während der 28-tägigen Repletionsphase	. 179
Anhangstabelle 12:	Selenkonzentrationen in der Niere [µg/kg] der Ratten während der 28-tägigen Repletionsphase	. 180
Anhangstabelle 13:	Selenkonzentrationen im Testis [µg/kg] der Ratten während der 28-tägigen Repletionsphase	. 181
Anhangstabelle 14:	Selenkonzentrationen im Muskel [µg/kg] der Ratten während der 28-tägigen Repletionsphase	. 182
Anhangstabelle 15:	Selenkonzentrationen im Gehirn [µg/kg] der Ratten während der 28-tägigen Repletionsphase	. 183
Anhangstabelle 16:	Plasmatische GPx der Ratten während der Depletionsphase	. 184
Anhangstabelle 17:	cGPx-Aktivitäten im Hämolysat der Ratten während der Depletionsphase	. 184
Anhangstabelle 18:	pGPx-Aktivitäten im Plasma der Ratten während der 28- tägigen Repletionsphase	. 185
Anhangstabelle 19:	cGPx-Aktivitäten im Hämolysat der Ratten während der 28- tägigen Repletionsphase	. 186
Anhangstabelle 20:	cGPx-Aktivitäten in der Leber der Ratten während der 28- tägigen Repletionsphase	. 187
Anhangstabelle 21:	cGPx-Aktivitäten in der Niere der Ratten während der 28- tägigen Repletionsphase	. 188
Anhangstabelle 22:	cGPx-Aktivitäten im Testis der Ratten während der 28- tägigen Repletionsphase	. 189

Anhangstabelle 23:	cGPx-Aktivitäten in der Lunge der Ratten während der 28- tägigen Repletionsphase	190
Anhangstabelle 24:	cGPx-Aktivitäten in der Milz der Ratten während der 28- tägigen Repletionsphase	191
Anhangstabelle 25:	Deiodinaseaktivitäten in der Leber der Ratten während der 28-tägigen Repletionsphase	192
Anhangstabelle 26:	GST-Aktivitäten in der Leber der Ratten während der 28- tägigen Repletionsphase	193
Anhangstabelle 27:	Gesamtglutathionkonzentrationen (tGSH) in der Leber der Ratten während der 28-tägigen Repletionsphase	194
Anhangstabelle 28:	Konzentrationen an reduziertem Glutathion (GSH) in der Leber der Ratten während der 28-tägigen Repletionsphase	195
Anhangstabelle 29:	Konzentrationen an oxidiertem Glutathion (GSSG) in der Leber der Ratten während der 28-tägigen Repletionsphase	196
Anhangstabelle 30:	Verhältnis von oxidiertem und reduziertem Glutathion (GSH:GSSG) der Ratten während der 28-tägigen Repletionsphase	197
Anhangstabelle 31:	T ₃ -Konzentrationen im Plasma [nmol/L] der Ratten während der 28-tägigen Repletionsphase	198
Anhangstabelle 32:	T ₄ -Konzentrationen im Plasma [nmol/L] der Ratten während der 28-tägigen Repletionsphase	199
Anhangstabelle 33:	Verhältnis von T ₄ und T ₃ im Plasma der Ratten während der 28-tägigen Repletionsphase	200
Anhangstabelle 34:	Thiobarbitursäurereaktive Substanzen [nmol/g FM] in der Leber der Ratten während der 28-tägigen Repletionsphase	201
Anhangstabelle 35:	Peroxidative Katalaseaktivität in der Leber der Ratten nach 10, 12 und 14 Wochen adäquater Selenversorgung (+Se) bzw. Selenmangel (-Se)	202
Anhangstabelle 36:	Eisenkonzentration in Leber, Niere und Vollblut der Ratten nach 10, 12 und 14 Wochen adäquater Selenversorgung (+Se) bzw. Selenmangel (-Se)	203

V Abkürzungsverzeichnis

3,3'-T ₂	3,3'-Diiodthyronin
3'UTR	3'-untranslatierte Region
AAS	Atomabsorptionsspektrometrie
AIN	American Institute of Nutrition
BSA	Bovine serum albumin
BHT	Butylhydroxytoluen
cDNA	einsträngige Desoxyribonucleinsäure
CDNB	1-Chloro-2,4-dinitrobenzol
cGPx	zelluläre Glutathionperoxidase
CysSeCys	Selenodicystein
CysSeH	Cysteinselenopersulfid
D1, D2	5'-Deiodinase I, II
D3	5-Deiodinase
DEPC	Diethylpyrocarbonat
DTNB	5,5'-Dithiobis-(2-nitrobenzoensäure)
DTT	Dithiotreitol
EDTA	Ethylendiamintetraessigsäure
EFsec	Sec-tRNA ^{[ser]sec} -spezifischer Elongationsfaktor
ER	Endoplasmatisches Retikulum
FM	Frischmasse
GAPDH	Glycerinaldehydphosphat-Dehydrogenase
GR	Glutathionreduktase
Grx	Glutaredoxin
GSSeH	Glutathionselenopersulfid
GSSeSG	Selenodiglutathion
GSH	reduziertes Glutathion
GSSG	Glutathiondisulfid (oxidiertes Glutathion)
GST	Glutathion S-Transferase
Hb	Hämoglobin
Hk	Hämatokrit
HPETE	Hydroperoxyeicosatetraensäure
i.p.	intraperitoneal
i.v.	intravenös
KM	Körpermasse
LPO	Lipidperoxidation

Μ	Mittelwert
MDA	Malonaldehyd
NIST	National Institute of Standards and Technology
non-SeGPx	selenunabhängige Glutathionperoxidase
NRC	National Research Council
pGPx	plasmatische Glutathionperoxidase
PHGPx	Phospholipidhydroperoxid-Glutathionperoxidase
PLOOH	Phospholipidhydroperoxide
PLP	Pyridoxalphosphat
PTU	6-n-Propyl-2-Thiouracil
PUFA	mehrfach ungesättigte Fettsäuren
ROS	Reaktive Sauerstoffspezies
RNA	Ribonucleinsäure (mRNA = messenger RNA, tRNA = transfer RNA, rRNA = ribosomale RNA)
rT ₃	3,3',5'- Triiodthyronin, reverses T_3
RT-PCR	Reverse Transkriptase-Polymerase-Kettenreaktion
SBP2	SECIS-Bindungsprotein 2
SD	Standardabweichung der Einzelwerte
SDS	Natriumdodecylsulfat
Sec/SeCys	Selenocystein
SECIS	Selenocysteine Insertion Sequence
SH-Gruppen	Sulfhydrylgruppen
SelP	Selenoprotein P
SeMet	Selenomethionin
SerP	O-Phosphoserin
SPS	Selenophosphatsynthetase
T ₃	3,3',5-Triiodthyronin
T ₄	Thyroxin, 3,3',5,5'-Tetraiod-L-thyronin
TBA-RS	Thiobarbitursäurereaktive Substanzen
TGR	Thioredoxin-Glutaredoxinreduktase
TNB	2-Nitro-5-thiobenzoensäure
Trx	Thioredoxin
TrxR	Thioredoxinreduktase
VDLUFA	Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten

1 Einleitung

Bis zur Entdeckung des Selens als essentielles Element im Jahr 1957 durch SCHWARZ und FOLTZ galt Selen als toxisch und kanzerogen. Selen ist integraler Bestandteil zahlreicher Selenoproteine im Organismus. In Glutathionperoxidasen beispielsweise spielt Selen bei der Entgiftung von Peroxiden im antioxidativen Stoffwechsel eine wichtige Rolle. Die Gruppe der Deiodinasen ist an der Regulation des Schilddrüsenhormonmetabolismus beteiligt.

Weltweit gibt es Böden mit toxischem als auch mit defizitärem Selengehalt. Dies kann bei Mensch und Tier zu Selenintoxikationen sowie zu Selenmangelzuständen führen. Da der Selengehalt der Pflanzen von dem des Bodens abhängt, enthalten die auf selenarmen Böden gewachsenen Lebens- und Futtermittel Selen oft nicht bedarfsdeckend, weshalb das Element supplementiert werden muss. Über die optimale Selenverbindung zur Beseitigung eines Selenmangels in der Human- und Tierernährung wird kontrovers diskutiert. Natriumselenat und Natriumselenit sind futtermittelrechtlich unbefristet als Zusatzstoffe zugelassen. Das National Research Council und das American Institute of Nutrition (REEVES et al. 1997) empfehlen Selenat anstelle von Selenit bei der Zusammenstellung von Mischfuttermitteln für Ratten und Mäuse. Für Pflanzen ist Selen nach bisheriger Kenntnis nicht essentiell, sie bauen jedoch Selen anstelle von Schwefel bei der Synthese von Methionin ein. Deshalb stellt Selenomethionin die hauptsächliche Selenverbindung in Pflanzen dar. Nicht zuletzt aufgrund seiner fast vollständigen Absorption wurde das Potenzial des Selenomethionins als natürliche Selenquelle hervorgehoben. Im Jahr 2006 wurde es erstmals in Form von Selenhefe futtermittelrechtlich zugelassen.

Bislang wurden in Studien zum Selenmetabolismus meist nur Natriumselenit und Selenomethionin Bestimmung verglichen. Die der Bioverfügbarkeit einer Selenverbindung erfordert neben der Erfassung der Selenretention im Gewebe ("biostorage") die Messung funktioneller Parameter (Biopotenz) (HAKKARAINEN 1993). Über die Repletionseffizienz von Natriumselenat, -selenit und Selenomethionin existieren bislang keine umfassenden Erkenntnisse. Ziel der vorliegenden Studie war es deshalb, die Repletionseffizienz dieser drei Selenverbindungen nach zunächst erzeugtem Selenmangel auf Ebene der Enzymaktivität und der Genexpression am Modelltier Ratte zu untersuchen. Die synthetische Verbindung Ebselen wurde aufgrund ihrer antioxidativen Eigenschaften ebenfalls untersucht.

2 Literaturübersicht

2.1 Selen

Der schwedische Forscher Jons Jacob Berzelius entdeckte Selen im Jahr 1817 und benannte es aufgrund seiner dem Tellur (lat. Erde) ähnlichen Eigenschaften nach der griechischen Göttin des Mondes Selene. Seine biologische Bedeutung erlangte Selen zuerst durch seine Toxizität: Marco Polo beschrieb bereits 1295 Vergiftungssymptome bei Pferden, die heute auf die toxische Wirkung von Selen zurückgeführt werden können. Die Entdeckung des Selens als essentieller Nährstoff durch SCHWARZ und FOLTZ (1957) war der Wendepunkt der bis heute anhaltenden Forschung über das Spurenelement. Nachdem Selen als integraler Bestandteil der Glutathionperoxidase identifiziert worden war (FLOHÉ et al. 1973, ROTRUCK et al. 1973), war der essentielle Charakter des Selens unbestritten.

Das Element Selen mit der Ordnungszahl 34, einem Molekulargewicht von 78,96 g/mol und einer Dichte von 4,79 g/cm³ besitzt als Element der Gruppe VIa im Periodensystem sowohl metallische als auch nicht metallische Eigenschaften. Der Siedepunkt liegt bei 685 °C, der Schmelzpunkt bei 217 °C und die Elektronegativität bei 1,2.

Selen kommt natürlicherweise in verschiedenen Verbindungen und Oxidationsstufen vor. Elementares, kristallines Selen kann zu den Oxidationsstufen +IV und +VI oxidiert werden. Als Selendioxid (SeO₂), selenige Säure (H₂SeO₃) oder Selenit (SeO₃²⁻) liegt Selen in der Oxidationsstufe [+IV] vor, während es als Selensäure (H₂SeO₄) oder Selenat (SeO₄²⁻) die Oxidationsstufe [+VI] annimmt. In seiner niedrigsten Oxidationsstufe [-II] liegt Selen als Selenid (Se²⁻) in Form des farblosen, giftigen Gases Hydrogenselenid (H₂Se) oder als Metallselenid (z.B. CuSe) vor.

Auch viele organische Selenverbindungen können aus elementarem Selen durch Additionsreaktionen entstehen. Selenole (RSeH) werden durch Luftsauerstoff leicht zu Diseleniden (RSeSeR) oxidiert, aus denen mit Alkylhalogeniden Selenoether (RSeR) und Trialkylselenoniumionen (R_3Se^+) entstehen können. Von ernährungswissenschaftlichem Interesse sind hierbei die methylierten Selenverbindungen [-II] wie Dimethylselenid ((CH₃)₂Se) und das Trimethylselenonium-Ion ((CH₃)₃Se⁺), die Selenoaminosäuren [-II] wie Selenomethionin und -cystein, die Diselenide Selenocystin und -homocystin sowie die homo- und heterozyklischen Selen-

verbindungen, zu denen das synthetische Ebselen [-II] zählt.

Außerdem gibt es 6 natürlich vorkommende, nicht radioaktive Selenisotope mit den Atommassen 74, 76, 77, 78, 80 und 82, wobei die Isotope 78 und 80 am häufigsten vorkommen. Unter den künstlichen, radioaktiven Selenisotopen hat vor allem ⁷⁵Se als Gammastrahler mit einer günstigen Halbwertszeit von 120,4 Tagen weite Anwendung in Forschung und Diagnostik gefunden.

Die Chemie des Selens ist der des Schwefels sehr ähnlich. Hinsichtlich der Metabolisierung weisen beiden Elemente iedoch Unterschiede die auf: Selenverbindungen [+IV] werden in biologischen Systemen eher reduziert, wohingegen Schwefelverbindungen [+IV] eher oxidiert werden. Auch hinsichtlich der Säurestärke differieren H₂Se und H₂S sowie die Selen- und Schwefelhydride: der pK-Wert der SeH-Gruppe (Selenocystein) liegt mit 5,24 deutlich unter dem der SH-Gruppe (Cystein: pK 8,25). Deshalb liegt die Selenohydrylgruppe bei physiologischem pH-Wert in dissoziierter Form und damit als Nukleophil vor, während die Sulfhydrylgruppe unter physiologischen Bedingungen überwiegend in protonierter Form vorliegt und somit weniger nukleophil ist (STADTMAN 1996).

2.1.1 Absorption und Metabolismus

Die Absorption von Selenat, Selenit und Selenomethionin unterliegt im Gegensatz zu vielen anderen Spurenelementen keiner Homöostase (VENDELAND et al. 1992a, 1994). Die absorbierte Selenmenge und der Selentransport hängen maßgeblich von der chemischen Form des zugeführten Selens ab. Selenat wird effizienter als Selenit absorbiert und Selenomethionin noch schneller als anorganische Verbindungen (VENDELAND et al. 1992a). Die meisten Selenverbindungen werden intermediär in H₂Se überführt. H₂Se ist die Ausgangssubstanz für die Synthese des in Selenoenzymen katalytisch aktiven Selenocysteins (Abschnitt 2.1.6).

2.1.1.1 Selenat

Selenat wird über denselben Mechanismus wie Sulfat mittels Na⁺-Cotransport gegen ein Konzentrationsgefälle durch die Bürstensaummembran transportiert. Bei Ratten beschränkt sich dieser aktive Transport weitgehend auf das Ileum, während er bei Schweinen im Jejunum effektiver als im Ileum ist. Des Weiteren wird Selenat ebenso wie Sulfat im gesamten Dünndarm im Austausch gegen intrazelluläre Hydroxylanionen durch die Bürstensaummembran transportiert (ARDÜSER et al. 1985, WOLFFRAM et al. 1985, 1986, 1988, VENDELAND et al. 1992a). Der aktive Selenattransport ist konzentrationsabhängig und verläuft bis zu 0,05 mM linear, ab 0,2 mM sinkt die Effizienz, und Konzentrationen von 1 mM wirken auf die intestinale Mukosa toxisch (WOLFFRAM 1995). ARDÜSER et al. (1986) wiesen eine kompetitive Hemmung der intestinalen Absorption zwischen Sulfat und Selenat sowie weiteren anorganischen Anionen wie Thiosulfat, Chromat und Molybdat nach. Die gegenseitige Hemmung wurde auch für den Transport der Anionen durch die lumenseitige Membran der Epithelien des proximalen Nierentubulus und für den diaplazentaren Transfer beschrieben (Schneider et al. 1984, Boyd und Shennan 1986, Shennan und Boyd 1986). Daneben hemmen anscheinend auch bestimmte zweiwertige organische Anionen wie Oxalat und strukturell ähnliche Dicarboxylatanionen wie Oxalacetat und Fumarat ebenfalls kompetitiv den Selenattransport durch die intestinale Bürstensaummembran (WOLFFRAM et al. 1987, 1988).

Selenat erreicht die Blutbahn zum Großteil unverändert (89 %) bzw. zu 9 % in proteingebundener Form (WHANGER et al. 1996). Als Selenat liegt Selen in seiner höchsten Oxidationsstufe [+VI] vor und weist im Vergleich zu Selenit eine geringere Reaktivität gegenüber Thiolen auf. Im Säugetierorganismus wird Selenat glutathionabhängig durch das Glutaredoxinsystem (Grx) über gemischte Disulfide und durch das Thioredoxinsystem (Trx), vermutlich über ein Zwischenprodukt aus Selenat und GSH, reduziert. Die Anwesenheit des Trx- oder Grx-Systems mit hochreaktiven nukleophilen Thiolaten führt zur weiteren Reduktion, so dass Selenat für den Organismus verfügbar wird (BJÖRNSTEDT et al. 1997). Möglicherweise wird Selenat außerdem über die Zwischenprodukte Adenosin-5'-selenophosphat und thioselenige Säure (GSSeO₃⁻) GSH-abhängig zu Selenit reduziert, wie es bei Pflanzen und Hefen bekannt ist (GANTHER 1984).

2.1.1.2 Selenit

Die Aufnahme von Selenit in die Dünndarmmukosa erfolgt Na⁺-unabhängig und vermutlich als Diffusion. Demzufolge sind Absorptionsrate und Absorptionsgeschwindigkeit des Selenits insgesamt geringer als die des Selenats, wobei Selenit aber im Gegensatz zu Selenat in allen Abschnitten des Dünndarms absorbiert wird (ARDÜSER et al. 1985, WOLFFRAM et al. 1985, 1986, MYKKANEN und WASSERMAN 1989, VENDELAND et al. 1992a). In Untersuchungen von VENDELAND et al. (1992a) nahm die

Absorptionseffizienz vom Duodenum zum lleum zu, während WHANGER et al. (1976) die höchsten Absorptionsraten im Duodenum beobachteten. Selenit wird rasch an die Bürstensaummembran, wahrscheinlich an membranständige Thiolgruppen, gebunden. Sowohl vor der Absorption als auch in den Enterozyten reagiert Selenit mit Thiolen wie Glutathion und Cystein zu Selenotrisulfiden (GANTHER 1968, ANUNDI et al. 1984, ARDÜSER et al. 1986, MYKKANEN und WASSERMAN 1989, 1990, VENDELAND et al. 1992a, b). Über die y-Glutamyltransferase können die Selenotrisulfide zu Dipeptiden und Aminosäuren abgebaut und Na⁺-abhängig mittels Aminosäurecarrier absorbiert werden. Möglicherweise reduziert das Thiol Cystein Selenit auch spontan zum rasch absorbierbaren Selenid (ANUNDI et al. 1984, SENN et al. 1992). Selenodicystein (CysSeCys) ähnelt in seiner Struktur dem Disulfid Cystin und das Cystein-Selenopersulfid (CysSeH) dem Cystein, so dass nach Bildung dieser aminosäureähnlichen Produkte im Darmlumen ebenfalls eine Na⁺-abhängige Absorption mittels Aminosäurecarrier erfolgen kann (WÜRMLI et al. 1987, 1989). Mit der intrazellulären Bindung des Selenits an Glutathion in Form von Selenodiglutathion (GSSeSG) entsteht das erste stabile Produkt (GANTHER 1968). Die anschließende Reduktion zum instabilen Selenopersulfid (GSSeH) und weiter zu Selenid (-II) ist sowohl enzymatisch durch die Glutathionreduktase als auch nichtenzymatisch durch hohe Thiolkonzentrationen möglich (GANTHER 1971, HSIEH und GANTHER 1975). Selenid stellt die für die Synthese der Selenoproteine benötigte Verbindung dar.

Selenit unterliegt also während der Absorption einem umfangreichen Metabolismus, so dass nur 14 % des absorbierten Selens aus Selenit die Blutbahn als solches erreichten; 38 % lagen in proteingebundener Form und 22 % als Selenotrisulfide vor (WHANGER et al. 1996). Der übrige Anteil konnte nicht näher charakterisiert werden. Im Gegensatz dazu war Selenit in der Untersuchung von PARK et al. (2004) die vorherrschende Selenverbindung im Blut (49-90 %). Unter den übrigen Metaboliten überwog aber ebenfalls proteingebundenes Selen (~15-19 %) mengenmäßig die Selenotrisulfide (~2-19 %). Nach intravenöser Injektion wird Selenit sofort mittels Anionenaustauscher oder als Selenotrisulfid in die Erythrozyten aufgenommen, über die Reaktion mit GSSeSG an Hämoglobin gebunden und durch GSH zu Selenid reduziert. Das aus den Erythrozyten freigesetzte und aus den Enterozyten ins Blut abgegebene Selenid wird im Plasma der Ratten zuerst an Albumin und anschließend an α - und γ -Globuline gebunden zur Leber transportiert (IMBACH und STERNBERG 1967, SUZUKI et al. 1998, HARATAKE et al. 2005).

2.1.1.3 Selenomethionin und Selenocystein

Selen ist für Pflanzen nicht essentiell, sie synthetisieren Selenomethionin (SeMet) in Abhängigkeit von der Se-Verfügbarkeit analog zum Methionin. Damit liegt Selen in den Pflanzen überwiegend als SeMet und in selenakkumulierenden Pflanzen als Se-Methylselenocystein vor (FINLEY 2005). Höhere tierische Organismen sind nicht in der Lage SeMet zu synthetisieren. In tierischen Produkten ist Selen hauptsächlich in Form von Selenocystein (SeCys) als Bestandteil funktioneller Selenoproteine enthalten (THOMSON 1998). In den auf selenithaltigen Nährböden gewachsenen Hefen, sog. "Selenhefen", liegt der Großteil des Selens (~ 64 %) in Form von SeMet vor (McSHEEHY et al. 2005). Auch MAHAN (2000) zitiert KELLY und POWER (1995), wonach Selenhefen reich an Selenoaminosäuren, hauptsächlich Selenomethionin (~40 %), Selenocystin (~15 %) und Selenocystein (~15 %), sind.

Die Absorption des SeMet erfolgt im gesamten Dünndarm und im Vergleich zu den anorganischen Verbindungen Selenat und Selenit mit hoher Geschwindigkeit (VENDELAND et al. 1992a). Selenomethionin und Methionin werden aktiv durch denselben, für neutrale Aminosäuren spezifischen, Na⁺-abhängigen Mechanismus die intestinale Bürstensaummembran transportiert. Somit durch ist der Selenomethionintransport durch Methionin und umgekehrt hemmbar. Da der Transport einiger Hexosen wie Glucose und Galactose ebenfalls Na⁺-abhängig ist, können diese den SeMet-Transport hemmen. Der aktive Na⁺-abhängige Transport der Hexosen erfolgt in vitro vorwiegend im Duodenum und Jejunum, während Selenomethionin in vitro überwiegend im Jejunum und lleum absorbiert wird (McCONNELL und CHO 1965, 1967, WOLFFRAM et al. 1989a, 1989b). Infolge der vom proximalen Jejunum zum distalen steigenden Transportrate von Selenomethionin lleum nimmt die Selenakkumulation im intestinalen Gewebe in gleichem Maße zu (MCCONNELL und CHO 1967). Selenocystin und Selenocystein konkurrieren ebenfalls mit ihren Schwefelanaloga um gemeinsame Transportmechanismen. Da der Cystin- bzw. Cysteintransport sowohl durch Selenocystin bzw. -cystein als auch durch Arginin und Lysin kompetitiv gehemmt wird, verläuft dieser Transport vermutlich über den Carrier für basische Aminosäuren (WOLFFRAM et al. 1989a, WOLFFRAM 2000).

Wie Selenat gelangt auch SeMet nahezu intakt in die Blutbahn, nur 7 % sind bereits an Proteine gebunden (WHANGER et al. 1996). Im Plasma wird SeMet hauptsächlich an Albumin gebunden und in geringem Maße auf α - und γ -Globuline übertragen

(STERNBERG und IMBACH 1967). Selenomethionin wird vermutlich anstelle von Methionin in das Hämoglobin der Erythrozyten eingebaut (BEILSTEIN und WHANGER 1986a, WASCHULEWSKI und SUNDE 1988).

In Analogie zu Methionin wird SeMet adenosyliert und zu Adenosylselenohomocystein demethyliert. Letzteres dient der Cystathionin- β -synthase als Substrat zur Synthese von Selenocystathionin, welches durch anschließende Lyse durch die Cystathionin- γ -Lyase in Selenocystein umgewandelt wird (ESAKI et al. 1981, KAJANDER et al. 1991). In verschiedenen Geweben der Maus wurde darüber hinaus ein Enzym nachgewiesen, das eine α , γ -Eliminierung katalysiert und L-SeMet direkt in Methylselenid umwandelt (OKUNO et al. 2001, 2005). Der Metabolismus der Selenoaminosäuren und damit die metabolische Aktivierung des SeMet ist aufgrund der beteiligten Enzyme pyridoxalphosphatabhängig (SODA et al. 1999). Selenocystein kann nicht direkt in Proteine eingebaut werden, sondern wird durch die Selenocystein- β -Lyase spezifisch in Alanin und Selenid gespalten (ESAKI et al. 1982). Somit steht die Verbindung Selenid für die Selenoproteinbiosynthese zur Verfügung.

2.1.2 Verteilung

Die Leber spielt bei der Selenhomöostase eine zentrale Rolle. Absorbiertes Selen gelangt innerhalb von 15 min zur Leber, wird dort in das Selenoprotein P (Abschnitt 2.2.5) eingebaut und als solches ins Plasma sezerniert (BURK und GREGORY 1982, MOTSENBOCKER und TAPPEL 1982, KATO et al. 1992). Während eines Selenmangels wird injiziertes ⁷⁵Se bei Ratten vorrangig in Testes und Gehirn und anschließend in Milz und Niere wiedergefunden (BURK et al. 1972). Auch bei adäquater Se-Versorgung variiert die Se-Konzentration in den verschiedenen Geweben erheblich: Nieren, Leber und Testes weisen die höchsten Se-Konzentrationen auf, Muskel und Gehirn dagegen die niedrigsten. Aufgrund ihrer prozentualen Anteile an der Gesamtkörpermasse enthalten Muskulatur und Leber bei der weiblichen Ratte über 70 % des gesamten Selenvorkommens; Blut, Nieren und Skelett enthalten weitere 24 % (BEHNE und WOLTERS 1983). Für den Menschen liegen ähnliche Daten vor: Etwa 50 % des Gesamtkörperselens finden sich in der Muskulatur. Niere, Testes und Leber weisen die höchsten Se-Konzentrationen auf (OSTER et al. 1988).

In den Erythrozyten und in der Leber ist bei adäquater Selenversorgung der Hauptteil des Selens in Form des Enzyms Glutathionperoxidase (cGPx) gebunden. In den

Testes ist dagegen weniger als 1 % des Selens mit der cGPx assoziiert (BEHNE und WOLTERS 1983). Bei adäquater Se-Versorgung der Ratte (0,2 mg/kg Futter) wird SeMet im Gegensatz zu Selenit vorwiegend unspezifisch in den Muskel eingebaut, so dass die Selenkonzentration im Muskel bei SeMet-Aufnahme 2,7fach höher als bei Selenitaufnahme war. Diese Differenz stieg bei supranutritiver Dosis (4 mg/kg) sogar auf das 26fache (WHANGER und BUTLER 1988).

Der Anteil des SeMet im Methioninpool unterliegt keiner Homöostase und hängt von der alimentären SeMet-Aufnahme und der Protein-Turnover-Rate ab, die wiederum u. a. durch die Methioninaufnahme und andere selenunabhängige Faktoren bestimmt wird (WASCHULEWSKI und SUNDE 1988). Aufgenommenes Selenocystein kann nicht analog zum SeMet anstelle von Cystein unspezifisch in Proteine eingebaut werden, sondern wird zu H₂Se und Alanin abgebaut (ESAKI et al. 1982, BURK et al. 2001).

Bei adulten Ratten werden zwei Selenpools postuliert: In den austauschbaren metabolischen Pool fließen alle bei der Konversion der anorganischen Se-Verbindungen Selenat und Selenit entstehenden metabolischen Zwischenprodukte ein. Dieser Pool umfasst auch die endogenen Selenoproteine und Exkretionsmetaboliten und stellt Selen für die Selenoproteinbiosynthese bereit. Ein zweiter Pool umfasst die unspezifisch SeMet (und SeCys) enthaltenden Proteine (JANGHORBANI et al. 1990, DANIELS 1996). Da SeMet unspezifisch anstelle von Methionin in Proteine eingebaut (BEHNE et al. 1991) und im Zuge des Protein-Turnovers reversibel freigesetzt wird, fungiert SeMet auf diese Weise als eine Art Selenspeicher.

2.1.3 Exkretion

Die Exkretion des Selens erfolgt über die Nieren und die Lunge. Ausgeschiedene Selenmenge und Ausscheidungsform variieren in Abhängigkeit vom Selenstatus und der Selenzufuhr (GANTHER 1966a, ITOH und SUZUKI 1997). In den Faeces erscheint lediglich das im GIT nicht absorbierte Se sowie geringe Mengen aus Gallen-, Pankreas- und intestinaler Sekretion (McDOWELL 2003). Bei adäquater bis subtoxischer Versorgung stellt ein Selenozucker die Hauptausscheidungsform im Urin dar. Selenid bindet in der Leber an *N*-AcetyI-D-Galactosamin, wobei die Selenolgruppe durch GSH geschützt wird. Durch eine Transmethylierung mit *S*-Adenosylmethionin entsteht der gut wasserlösliche Ausscheidungsmetabolit 1β-Methylseleno-*N*-AcetyI-D-

Galactosamin (KOBAYASHI et al. 2002). Neben diesem methylierten Produkt stellt das Trimethylselenonium-Ion insbesondere bei subtoxischer Selenversorgung ein weiteres Ausscheidungsprodukt im Urin der Ratte dar (PALMER et al. 1969, 1970). Über die Lunge erfolgt die Ausscheidung subtoxischer Selendosen in Form von Dimethylselenid, wobei S-Adenosylmethionin als Methylgruppendonator fungiert (McCONNELL und PORTMAN 1952, GANTHER 1966b, HASSOUN et al. 1995).

2.1.4 Ebselen

Die Existenz organischer Se-Verbindungen synthetischer Herkunft ist seit 1924 (LESSER und WEISS) bekannt. Das zu diesen Verbindungen gehörende Ebselen (2-Phenyl-1,2-benzoisoselenazol-3(2H)-one, PZ 51, MG 274,2 g/mol) (Abbildung 1) fungiert als synthetisches Antioxidanz (PARNHAM und SIES 2000, TAKASAGO et al. 1997), indem es die Reaktionen der Glutathionperoxidasen (GPx) imitiert. Hierbei entgiftet es neben Membranhydroperoxiden auch Phospholipidhydroperoxide und Cholesterinhydroperoxide (MÜLLER et al. 1984, WENDEL et al. 1984, MAIORINO et al. 1988, MAIORINO et al. 1992). Darüber hinaus fungiert Ebselen als effizientes Substrat der Thioredoxinreduktase (TrxR) und oxidiert Thioredoxin (Trx) direkt (ZHAO et al. 2002, ZHAO und HOLMGREN 2002). Über das Trx/TrxR-System entgiftet Ebselen Peroxynitrit (ARTEEL et al. 1999), regeneriert als Dehydroascorbinsäure-Reduktase-Mimetikum Vitamin C (ZHAO und HOLMGREN 2004), reduziert das beim Angriff freier Radikale auf Vitamin E entstehende Tocochinon (FANG et al. 2005) und vermindert in vitro die Bildung intrazellulärer reaktiver Sauerstoffspezies (SAKURAI et al. 2006). In vitro verringert Ebselen effektiv die Lipidperoxidation, inhibiert die Lipoxygenase, hemmt die Cyclooxygenase durch Verringerung des Peroxidtonus (HEMLER et al. 1979, SAFAYHI et al. 1985) und verhindert die Zerstörung des zerebralen Gewebes infolge einer Ischämie, wobei der Wirkmechanismus bei Letzterem nicht geklärt ist (TAKASAGO et al. 1997). Ebselen kann die alkoholinduzierte Beeinträchtigung des Hippokampus (JOHNSEN-SORIANO et al. 2007) und möglicherweise auch den altersbedingten Gehörverlust (KIL et al. 2007) bei Ratten durch Imitieren der GPx-Reaktion und Aktivieren der GPx verhindern sowie bei Kaninchen durch Induzieren des Hitzeschockproteins 72 kardioprotektiv wirken (BALJINNYAM et al. 2006). Der energetisch günstige Fünfring verleiht dem Molekül eine hohe thermodynamische Stabilität und ist somit für die lange biologische Halbwertszeit mitverantwortlich (SCHEWE 1995).

Abbildung 1: In vitro Reaktionen des Ebselens in Mitochondrien der Rattenleber: Ebselen wird durch Trx(SH)₂, über die TrxR oder durch 2 GSH zum Selenol reduziert, wobei bei letzterem als Zwischenprodukt ein Selenylsulfid entsteht. Das Selenol reagiert direkt mit Peroxiden unter Bildung von seleniger Säure, die sofort intramolekular zu Ebselen kondensiert. Zusätzlich kann das Selenol mit Selenylsulfid oder Ebselen unter Bildung eines Diselenids reagieren, welches nichtenzymatisch durch Trx(SH)₂ oder enzymatisch durch die TrxR wieder zum Selenol reduziert wird. Des Weiteren reagiert Ebselen direkt mit Peroxiden unter Bildung von Selendioxid, das durch GSH oder die TrxR wieder zu Ebselen reduziert wird. R = H oder Alkylrest (nach FILIPOVSKA et al. 2005) Ebselen reagiert mit nahezu allen Thiolen. Für die antioxidative Aktivität des Ebselens sind der Phenylsubstituent am N-Atom und die Struktur des reagierenden Thiols entscheidend, während die Art des Peroxids nur einen geringen Einfluss auf die katalytische Effizienz hat (BHABAK und MUGESH 2007). Obwohl die in der Literatur kontrovers diskutierten Metaboliten Ebselen, Ebselen-Diselenid und Ebselen-Selenol alle in der Lage sind, Hydroperoxide zu reduzieren, ist im Stoffwechsel offenbar nur die Selenolform (bzw. das Selenolatanion) quantitativ von Bedeutung (COTGREAVE et al. 1992, MORGENSTERN et al. 1992, MAIORINO et al. 1988, ZHAO et al. 2002, PEARSON und BOYD 2007). Ebselendiselenid fungiert vermutlich als "Nebenprodukt", das durch das Trx/TrxR-System aktiviert werden kann, indem die Diselenidbindung reduktiv gespalten wird und Selenol entsteht (ZHAO und HOLMGREN 2004).

Die bisherigen Studienergebnisse über die pharmakologische Wirkung des Ebselens sind aufgrund unterschiedlicher Darreichungsformen (oral, i.p., i.v.), Tierarten und den eingesetzten Lösungsmitteln bzw. Vehikeln wenig vergleichbar. Die pharmakologisch optimale Ebselendosis liegt anscheinend im Bereich von 10-30 mg/kg KG • d. Nach Induktion einer zerebralen Ischämie wurde bei Ratten nach einer Ebselengabe von 10 mg/kg ein größerer neuroprotektiver Effekt als bei 30 mg/kg beobachtet (TAKASAGO et al. 1997). BALJINNYAM et al. (2006) verglichen den kardioprotektiven Effekt von 30 und 100 mg/kg KG bei Kaninchen mit und ohne zusätzlichen oxidativen Stress durch H₂O₂-Infusion. Mit der geringeren Ebselendosis wurde ein größerer Schutz des Myokards erreicht. Vermutlich hemmen hohe Ebselenkonzentrationen die Aktivität des Trx/TrxR-Systems (ZHAO et al. 2002).

Ebselen weist gegenüber anderen organischen Se-Verbindungen eine sehr geringe Toxizität auf, weil das Selen aus dieser Verbindung nicht bioverfügbar ist (PARNHAM und KINDT 1984, WENDEL et al. 1984). Aufgrund seiner geringen Größe und seiner lipophilen Eigenschaft wird Ebselen nach oraler Gabe schnell und effizient absorbiert (YAMAGUCHI et al. 1988, TAKASAGO et al. 1997, OGAWA et al. 1999). In Plasma, Urin und Galle von Ratten war Ebselen nicht nachweisbar (FISCHER et al. 1988, MÜLLER et al. 1988). Die Se-N-Bindung des Ebselen-Selenazolrings wird entweder bereits vor der Absorption im Magen-Darm-Trakt oder während des Transports durch die basolaterale Membran von der Glutathion *S*-Transferase (GST) reduktiv gespalten (Abbildung 2). Daraufhin entsteht eine Se-S-Bindung zwischen Ebselen und der GST (KAMIGATA et al. 1986, FISCHER und DEREU 1987, SIES 1993, NIKAWA et al. 1994a).

Abbildung 2: Öffnung des Isoselenazolrings durch die GST (NIKAWA et al. 1994a)

Intravenös verabreichtes Ebselen liegt im Plasma zu 90% kovalent an Serumalbumin gebunden oder als peptidartige Ebselen-Protein-Bindung vor (WAGNER et al. 1994). Glutathion bewirkt einen Austausch des an Albumin gebundenen Ebselens unter Bildung von Ebselenselenodisulfid. Diese Verbindung oder an andere intrazelluläre Thiolgruppen gebundenes Ebselen gelangt aufgrund seiner Lipophilie in die Zellen (ULLRICH et al. 1996). Neben der Bindung an GSH erfassten dieselben Autoren einen von GSH unabhängigen und nur langsam austauschbaren Ebselenpool. In den Hepatozyten wird Ebselen durch Thiolaustauschreaktionen auf die cytosolische GST und zu einem geringeren Anteil auf die SH-Gruppen mikrosomaler Proteine übertragen (NIKAWA et al. 1994a, b). Ein mutmaßliches Zwischenprodukt des Ebselenmetabolismus bei der Ratte ist ein instabiles Selenodisulfid mit Glutathion (S(2-phenylcarbamoyl-phenylselenyl)-glutathion) (Abbildung 1). Nach der reduktiven Ringöffnung erfolgt in den Hepatozyten entweder eine Methylierung zu eine Glucuronidierung 2-Methylselenobenzanilid oder zu 2-Glucuronylselenobenzanilid. Letzteres wird direkt in die Galle abgegeben. Das methylierte Produkt verlässt die Leber entweder über die sinusoidale Membran und verbleibt in der Zirkulation oder wird am Phenylring hydroxyliert und über die Nieren ausgeschieden. Dieser Metabolit kann aber auch erst noch glucuronidiert und anschließend über die Galle oder die Nieren ausgeschieden werden (FISCHER et al. 1988, MÜLLER et al. 1988). Se-Glucuronidierung und Se-Methylierung sind dabei offenbar konkurrierende Reaktionen (25 % vs. 75 % Bildung) (MÜLLER et al. 1988). Das methylierte Produkt wurde ausschließlich im Plasma von Ratten gefunden und muss vor der Ausscheidung erst glucuronidiert werden. Bei Mensch und Schwein war das Selenoglucuronid der einzige Ebselenmetabolit in Plasma und Urin (FISCHER et al. 1988).

Bislang wurde Ebselen an Menschen, Schweine und Labortiere auf oralem Weg (FISCHER et al. 1988, TAKASAGO et al. 1997, YAMAGUCHI et al. 1998, OGAWA et al. 1999, BALJINNYAM et al. 2006), intraperitoneal (WU und HUANG 2006) oder intravenös (WAGNER et al. 1994, IMAI et al. 2001) verabreicht. Dies geschah nur in supranutritiven Selendosen (5-100 mg/kg KG). Zur zeitabhängigen Gewebeverteilung von oral verabreichtem Ebselen gibt es bisher keine Studien.

2.1.5 Selenmangel und Toxizität

Selen gilt als das Spurenelement mit dem geringsten Abstand zwischen der als ernährungsphysiologisch bedarfsdeckend einzustufenden und der zu akut bzw. chronisch toxischen Symptomen führenden Aufnahme. Während Selenkonzentrationen von 0,1-0,5 mg/kg Futtertrockensubstanz bei allen Nutztieren als sicher und im Bereich der Zufuhrempfehlung eingestuft werden können, treten schon bei Konzentrationen von 2-5 mg/kg Anzeichen akuter bzw. chronischer Se-Intoxikationen auf (WOLFFRAM 2000).

Ein Selenmangel führte bei Ratten vor allem ab der zweiten Generation zu stark verminderter Spermienmotilität (WU et al. 1973, 1979), Kataraktbildung, geringerem Wachstum und spärlichem Haarkleid (McCoY und WESWIG 1969, HURT et al. 1971, WHANGER und WESWIG 1975). Beim Schwein ist die Maulbeerherzkrankheit, beim Schaf die Weißmuskelkrankheit und beim Geflügel die exsudative Diathese als Selenmangelerkrankung, meist in Kombination mit einem Vitamin E-Mangel, bekannt (SCHRAUZER 1998, S. 69 ff).

Beim Menschen sind die beiden Selenmangelerkrankungen Keshan-Krankheit und Kashin-Beck-Syndrom bekannt.

Bei der Keshan-Krankheit handelt es sich um eine in China auftretende endemische Kardiomyopathie, die sich in einer Dilatation des Herzmuskels äußert. Die häufigsten pathologischen Veränderungen sind Myokardnekrosen und die Ausbreitung fibrösen Gewebes im Myokard. Neben dem Selenmangel als Hauptursache werden als weitere Faktoren eine schlechte Proteinversorgung und eine Infektion mit dem Coxsackie-B-Virus diskutiert.

Das Kashin-Beck-Syndrom ist eine degenerative Osteoarthritis, deren Symptome vor allem Müdigkeit sowie steife und schmerzende Gelenke sind. Die Knorpel und Gelenke sind degenerativ und nekrotisch verändert. Der ursächliche Zusammenhang ist wesentlich unklarer als bei der Keshan-Krankheit. Hier kommen neben dem Selenmangel eine schlechte Proteinversorgung sowie Fulvinsäure und Mykotoxine als wichtige Umweltfaktoren bei der Pathogenese infrage (GE und YANG 1993, WOLFFRAM 2005).

Auf biochemischer Ebene wurde bei Ratten im Se-Mangel eine vermehrte Glutathionfreisetzung der Leber, höhere Glutathionkonzentrationen im Plasma und eine gestiegene hepatische Glutathion S-Transferase-Aktivität beobachtet, während die Aktivitäten der GPx in Leber und Plasma rapide abfielen (HILL et al. 1987). Auf diesen biochemischen Parametern basiert die vorgeschlagene Klassifizierung des Selenmangels bei der Ratte: Ein Abfall der hepatischen GPx auf bis zu 5 % der Kontrollwerte wird als leichter Se-Mangel bezeichnet. Ein moderater Mangel ist durch einen weiteren Abfall der hepatischen GPx bei unveränderter GST-Aktivität und Plasma-GSH-Konzentration gekennzeichnet. Bei einem schweren Mangel würden einer oder beide der letztgenannten Parameter ansteigen (HILL et al. 1987).

Akute Selenintoxikationen sind außer in Gebieten mit extrem hohem Selengehalt in Boden und Trinkwasser selten. Die Aufnahme hoher Selendosen führt zu subakuten Selenosen mit Blutselenkonzentrationen von 4 mg/kg und äußert sich durch neurologische Symptome und Atemnot. Eine chronische Selenose ist durch die Aufnahme supranutritiver Selenmengen über Wochen oder Monate mit Blutselenkonzentrationen von 2-3 mg/kg gekennzeichnet und führt bei Tieren zu Hautläsionen, Haarausfall, Hufnekrosen und Auszehrung. Die als "alkali disease" bezeichnete Selenose äußert sich unter anderem durch eine hohe Ferkelsterblichkeit, eine geringe Schlupfrate, schlechtes Gefieder und fehlende Schnäbel. Beim Menschen werden nach Aufnahme von 5 mg Selen/d die Anzeichen einer Selenose wie Brüchigkeit und Ausfall der Haare, weiße Flecken und Streifen der Fingernägel sowie periphere Neuropathien beobachtet (YANG et al. 1983, WHANGER et al. 1996). Als maximale sichere Selenaufnahme werden 400 µg Selen pro Tag angenommen. Der low adverse effect level (LOAEL) wird auf ca. 1600 µg/d geschätzt (WHANGER et al. 1996). Bei den als "blind staggers" bezeichneten neurologischen Ausfallerscheinungen handelt es sind nicht um eine Selenose. Die Symptome sind durch alleinige orale Selendosen nicht reproduzierbar (O'TOOLE und RAISBECK 1995).

2.1.6 Seleneinbau in die Selenoproteine

Selen wird in alle Selenoproteine in Form der 21. Aminosäure Selenocystein (Sec) eingebaut. Die zugrunde liegenden Mechanismen dieses Einbaus sind bei Eukaryonten bislang nur teilweise bekannt.

Für die Biosynthese des Selenocysteins wird eine spezielle tRNA^{[ser]sec} benötigt (LEE et al. 1989). Die tRNA^{[ser]sec} wird als Vorstufe für die Bildung von Selenocystein durch die ServI-tRNA-Synthetase mit Serin beladen (SUNDE und EVENSON 1987). Serin wird spezifisch durch die Phosphoseryl-tRNA^{sec}-kinase (PSTK) Mg²⁺-abhängig unter ATP-Verbrauch zum Zwischenprodukt O-Phosphoserin (SerP) phosphoryliert (CARLSON et al. 2004). SerP bietet eine bessere Abgangsgruppe als Serin (Phosphat statt Wasser), und die SerP-tRNA^{[ser]sec} ist stabiler als die Ser-tRNA^{[ser]sec} (CARLSON et al. 2004). Bei dem durch KERNEBECK et al. (2001) PLP-abhängige als Serin-Hydroxymethyltransferase identifizierten SLA/LP (GELPI et al. 1992) handelt es sich um die eukaryontische Selenocysteinsynthase, die die Umwandlung von SerP-tRNA^{[ser]sec} in Sec-tRNA^{[ser]sec} katalysiert (YUAN et al. 2006). Der von Eukaryonten genutzte Selendonor wurde bislang nicht charakterisiert, vermutlich handelt es sich um die aktivierte Selenform Selenophosphat (KIM und STADTMAN et al. 1995, Low et al. 1995, GUIMARAES et al. 1996, YUAN et al. 2006), die aus Selenid und ATP (MIZUTANI 1991, 1992) synthetisiert wird. Bei Säugetieren wurden 2 Selenophosphatsynthetasen (SPS) mit einer ATP/GTP-Bindungsstelle gefunden (KIM und STADTMAN et al. 1995, Low et al. 1995, GUIMARAES et al. 1996). Die wahrscheinlich aktivere SPS2 ist selbst ein damit möglicherweise Selenoenzym und an der Regulation der Selenoproteinbiosynthese beteiligt (GUIMARAES et al. 1996, STADTMAN 1996). Das von DING und GRABOWSKI (1999) identifizierte SECp43 methyliert die Sec-tRNA^{[ser]sec} und bildet mit dieser und der Selenocysteinsynthase im Zytoplasma einen Komplex, der anschließend in den Zellkern wandert (Xu et al. 2005, SMALL-HOWARD et al. 2006).

Der Einbau des gebildeten Selenocysteins in die Polypeptidkette wird durch das normalerweise als Stopcodon fungierende UGA-Triplet codiert (CHAMBERS et al. 1986). Zur Umcodierung des UGA als Sec-Codon wird eine als Haarnadelstruktur vorliegende mRNA-Sekundärstruktur benötigt, das SECIS-Element (selenocysteine insertion sequence) (BERRY et al. 1991c). Außer diesen *cis*-acting Faktoren sind für den Einbau der Aminosäure in die Polypeptidkette noch verschiedene *trans*-acting Faktoren notwendig: der Sec-tRNA^{[ser]sec}-spezifische Elongationsfaktor EFsec (FAGEGALTIER et al. 2000, TUJEBAJEVA et al. 2000), das SECIS-bindende Protein SBP2 (LESOON et al.

1997, COPELAND et al. 2000) und das ribosomale Protein rpL30 (CHAVATTE et al. 2005). SECIS-Elemente sind RNA-Strukturen in der 3'untranslatierten Region (3'UTR) aller bekannten eukaryontischen Selenoprotein-mRNA und fungieren als Signalfaktoren zur Recodierung des UGA als Sec. Zwischen dem UGA-Codon und dem SECIS-Element herrscht ein räumlicher Abstand von 51-111 Nucleotiden (Low und BERRY 1996). Die Kernstruktur des SECIS-Elements besteht aus 4 funktionellen non-Watson-Crick-Basenpaaren (v.a. G.A/A.G-Tandem) (WALCZAK et al. 1998), an die die Proteine SBP2 und rpL30 binden (COPELAND et al. 2000, CHAVATTE et al. 2005).

EFsec rekrutiert die Sec-tRNA^{[ser]sec} und agiert im Zellkern gemeinsam mit SBP2, um Sec in entstehende Polypeptide einzubauen (FAGEGALTIER et al. 2000, TUJEBAJEVA et al. 2000). SBP2 hat dabei anscheinend drei essentielle Funktionen inne: es bindet am Kernstück des SECIS-Elements und am Ribosom und bewirkt den Sec-Einbau ins Selenoprotein. Das SBP2 bindet an das non-Watson-Crick-Basenquartett des SECIS-Elements (WALCZAK et al. 1998). Diese SECIS-Bindungsdomäne des SBP2 besitzt ein L7Ae-Bindungsmotiv. Obwohl das SBP2 mit dem Ribosom assoziiert bleibt, kann es nicht gleichzeitig mit dem Ribosom und dem SECIS-Element interagieren. CABAN und COPELAND (2006) vermuten, dass die SECIS- und die Ribosomen-Bindungsdomänen überlappen, aber nicht identisch sind. rpL30 besitzt ebenfalls eine L7Ae-Bindungsdomäne und fungiert wahrscheinlich als Anker zwischen dem SECIS-Element und dem Ribosom und verdrängt möglicherweise das SBP2, um selbst an das SECIS-Element zu binden (CHAVATTE et al. 2005). SBP2 und rpL30 haben vermutlich unterschiedliche Funktionen in der Recodierung des UGA, wobei das SECIS-Element anscheinend als molekularer Umschalter zwischen den Proteinbindungen fungiert (CHAVATTE et al. 2005).

Die Translation findet nach der Komplexbildung auf zytoplasmatischer Seite nach oder während des Ausschleusens der mRNA aus dem Zellkern statt, so dass die mRNA an dieser Stelle bereits vor einem Zerfall durch Fehlinterpretation des Sec-Codons als Stopcodon geschützt ist (MORIARTY et al. 1998, SMALL-HOWARD et al. 2006).

In ihrem Modell gehen SMALL-HOWARD et al. (2006) davon aus, dass SBP2 im Zellkern bereits vor der Translation an das SECIS-Element gebunden ist und dieser Komplex den eEFsec/Sec-tRNA^{[ser]sec}-Komplex zum SECIS-Element befördert. Im Gegensatz dazu bleibt nach KINZY et al. (2005) und CABAN und COPELAND (2006) das SBP2 am Ribosom gebunden und interagiert nur während der eigentlichen Translation mit dem SECIS-Element. SBP2 ist anscheinend stabil und quantitativ an die Ribosomen

gebunden, was die Autoren vermuten lässt, dass kein zytoplasmatischer SBP2-Pool existiert, der mit dem SECIS-Element außerhalb der Translation interagiert. Die Rolle des rpL30 bleibt für beide Modelle spekulativ. Da das rpL30 mit dem SBP2 um die SECIS-Bindungsdomäne konkurrieren kann, könnte das rpL30 das SBP2 vom SECIS-Element lösen und dem SBP2 somit ermöglichen, erneut mit dem Ribosom zu assoziieren und dessen Bereitschaft für weitere Recodierungen zu gewährleisten (CABAN und COPELAND 2006). Auch der eukaryontische Translationsterminationsfaktor eRF1 besitzt eine L7Ae-Bindungsdomäne und konkurriert möglicherweise mit dem SBP2 um dieselbe Bindungsstelle (CABAN und COPELAND 2006).

Die Kopplung des beladenen SECIS-Komplexes durch rpL30 an das Ribsom führt möglicherweise zu einem Signal an den EFsec, GTP zu hydrolysieren und SectRNA^{[ser]sec} freizugeben und damit den Selenocystein-Einbau in die Polypeptidkette zu ermöglichen (CHAVATTE et al. 2005). Die am Sec-Einbau in die Proteine beteiligten Faktoren werden wahrscheinlich in freier oder komplexierter Form recycelt (SMALL-HOWARD et al. 2006).

2.2 Funktionelle Selenoproteine

Das menschliche Selenoproteingenom umfasst 25 Gene, während das von Ratten und Mäusen 24 Gene enthält (KRYUKOV et al. 2003). Die GPx6 stellt beim Menschen ein Sec-haltiges, bei Ratten und Mäusen aber ein Cys-haltiges Protein (GPx5) dar (KRYUKOV et al. 2003). Durch Nutzung unterschiedlicher Transkriptionsstartstellen und durch entwicklungs- und gewebespezifische Spleißvorgänge können daraus ca. 30-50 selenocysteinhaltige Proteine gebildet werden (Köhrle et al. 2004). Bislang sind 4 gut charakterisierte Selenoenzymfamilien sowie weitere Selenoproteine mit z.T. unbekannter Funktion beschrieben worden.

2.2.1 Glutathionperoxidasen

Die Selenoproteinfamilie der Glutathionperoxidasen umfasst die zytosolische GPx (cGPx, GPx1), die gastrointestinale GPx (GIGPx, GPx2), die plasmatische GPx (pGPx, GPx3), die Phospholipidhydroperoxid-GPx (PHGPx, GPx4) und die GPx6 des Menschen. Die Expression der GPx6 wurde bislang nur im olfaktorischen Epithel nachgewiesen und stellt bei Nagetieren und Affen ein Cysteinhomolog (GPx5) dar (BRIGELIUS-FLOHÉ 2006). GPx1 und GPx2 sind homotetramere Enzyme mit 21 kDa-Untereinheiten, während die GPx4 ein 19 kDa-Monomer darstellt. Die GPx3 ist ein glykosyliertes tetrameres Protein (BRIGELIUS-FLOHÉ 1999). Die GPx6 ist der GPx3 homolog (KRYUKOV et al. 2003). Während die cGPx eine echte Glutathionperoxidase ist, sind die anderen GPx streng genommen Thiolperoxidasen. Die GSH-Bindungsstelle der cGPx besitzt vier Argininreste, wohingegen der pGPx drei Argininreste und der PHGPx alle Argininreste dieser GSH-Bindungsstelle fehlen, was der Grund für deren geringere GSH-Spezifität sein könnte (TAKEBE et al. 2002). Aufgrund der mRNA-Stabilität während eines Selenmangels, der Geschwindigkeit der GPx-Resynthese nach einer Se-Repletion und dem Ausmaß einer Depletion des Proteins durch einen Se-Mangel ergibt sich die Hierarchie der verschiedenen Glutathionperoxidasen: GIGPx \geq PHGPx > cGPx = pGPx (BRIGELIUS-FLOHÉ 1999).

2.2.1.1 Zytosolische Glutathionperoxidase (cGPx, GPx1)

In Ratten- und Rindererythrozyten entdeckte MILLS (1957) ein Enzym, das in Verbindung mit Glutathion den oxidativen Hämoglobinabbau verhindert und H_2O_2 mit 2 GSH als Elektronendonatoren unter Bildung von GSSG abbaut. Dieses Enzym wies ein pH-Optimum von 8 auf (MILLS 1958). Die cGPx ist ein 84 kDa schweres

Homotetramer (FLOHÉ et al. 1971), dessen Untereinheiten jeweils ein Selenatom in Form von Selenocystein enthalten (FLOHÉ et al. 1973, ROTRUCK et al. 1973, FORSTROM et al. 1978). Die vollständige Sequenzanalyse einer GPx-Untereinheit aus Rindererythrozyten ergab eine Übereinstimmung zu 80 % mit der aus Rattenlebern isolierten N-terminalen Aminosäureseguenz (CONDELL und TAPPEL 1982, EPP et al. 1983, GÜNZLER et al. 1984). Die katalytische Triade aus Selenocystein, Tryptophan und Glutamin im aktiven Zentrum ist bei allen Glutathionperoxidasen identisch. Das Selenol des Selenocysteins wird durch Wasserstoffbrückenbindungen mit der Iminogruppe des Trp und der Amidogruppe des Glutamins stabilisiert und aktiviert. Das dissoziierte Selenol wird durch ein Hydroperoxid zu einem Derivat der selenigen Säure oxidiert. Der Schwefel eines Thiols (GSH) bindet kovalent an das Selen des Enzyms, was anscheinend der geschwindigkeitsbestimmende Schritt ist. Ein zweites Thiol spaltet die Se-S-Bindung und regeneriert damit das Enzym. Das gebildete Disulfid GSSG kann durch die Glutathionreduktase NADPH-abhängig reduziert werden (EPP et al. 1983, GÜNZLER et al. 1984, MAIORINO et al. 1995). Bei oxidativem Stress könnte das Trx-System intrazellulär als Elektronendonator fungieren, wenn das GSH/GSSG-Verhältnis abnimmt oder GSH durch Konjugationsreaktionen der GST verbraucht wird (BJÖRNSTEDT et al. 1994). Die cGPx zeigte gegenüber Trx und GSH in Erythrozyten die gleiche Reaktivität (TAKEBE et al. 2002).

Die cGPx besitzt eine breite Substratspezifität gegenüber Hydroperoxiden des Typs ROOH (z. B. H_2O_2) und weist nur eine sehr geringe Aktivität gegenüber ROOR-Substraten auf (TAPPEL 1978). Mit membranassoziierten Lipidhydroperoxiden reagiert sie nur nach Spaltung durch die Phospholipase (GROSSMANN und WENDEL 1983). Unter normalen physiologischen Bedingungen konnten bei cGPx-Knockoutmäusen keine Beeinträchtigungen hinsichtlich Wachstum, Fertilität und Hyperoxiesensitivität beobachtet werden (Ho et al. 1997, DE HAAN et al. 1998). Vor Paraquat-induziertem Stress bietet jedoch nur die cGPx einen Schutz, deren Transkription durch Paraquat hochreguliert wird (DE HAAN et al. 1998). Als Teil des antioxidativen Schutzsystems inhibiert die cGPx insbesondere die durch H_2O_2 induzierte Apoptose (KAYANOKI et al. 1996, DEMELASH et al. 2004).

Bei der Ratte sind in der Leber und in den Erythrozyten etwa 87 % der gesamten cGPx-Aktivität zu finden. In Niere, Milz und Nebenniere wurden ebenfalls hohe Aktivitäten und im Gehirn dagegen die niedrigste cGPx-Aktivität gemessen (TAPPEL et

al. 1982, BEHNE und WOLTERS 1983). Bei adäquater Selenversorgung ist der Großteil des Selens in Leber und Erythrozyten mit der cGPx assoziiert (BEHNE und WOLTERS 1983). In den Erythrozyten und in Milz, Herz und Lunge wird die gesamte GPx-Aktivität von der cGPx bereitgestellt (LAWRENCE und BURK 1978). Die H₂O₂-Entgiftung erfolgt in den Erythrozyten ausschließlich über die cGPx und nur bei sehr hohen H₂O₂-Konzentrationen zusätzlich durch die Katalase (COHEN und HOCHSTEIN 1963).

Im Selenmangel wird die cGPx sehr schnell depletiert. In der Leber fiel die Aktivität auf 2 % und die mRNA Konzentration auf 20 % der adäquat versorgten Ratten (HADLEY und SUNDE 2001). Aus diesem Grund wird die cGPx als eine Art biologischer Se-Puffer angesehen (SUNDE 1994).

LAWRENCE und BURK beschrieben 1976 bei Ratten eine weitere hepatische GPx-Aktivität, die nicht selenabhängig ist und andere physikalische und enzymatische Eigenschaften als das Selenoenzym besitzt. Diese non-SeGPx ist in begrenztem Maße in der Lage, die Aktivität der SeGPx zu kompensieren (LAWRENCE und BURK 1978, LEE et al. 1981a, b). Die non-SeGPx ist ein zytosolisches Enzym und konnte in den Erythrozyten, in der Haut und im Skelettmuskel nicht nachgewiesen werden. In der Leber von Ratten hat die non-SeGPx einen Anteil von 35 % an der gesamten GPx-Aktivität, beim Menschen 84 % und bei Meerschweinchen sogar fast 100 %, obwohl die spezifische Aktivität bei diesen Spezies etwa gleich hoch ist (LAWRENCE und BURK 1978). Bei Ratten führte ein Selenmangel zu einem Anstieg der non-SeGPx-Aktivität in der Leber um 25 % (LI et al. 1990).

2.2.1.2 Gastrointestinale Glutathionperoxidase (GIGPx, GPx2)

Die gastrointestinale GPx ist ein zytosolisches Tetramer, dessen Untereinheiten ein Molekulargewicht von 22 kDa aufweisen. Die GIGPx besitzt eine ähnliche Substratspezifität wie die cGPx, ist aber reaktiver gegenüber organischen Hydroperoxiden. Im GIT von Mensch, Ratte und Maus und in menschlicher Leber konnte die GIGPx nachgewiesen werden, nicht aber in Uterus und Plazenta. Innerhalb des Darms von Ratten traten im lleum und Caecum 2-3fach höhere mRNA-Mengen als im übrigen GIT auf (CHU et al. 1993). Die gastrointestinale GPx steht in der Hierarchie der Selenoproteine ganz oben. Im Gegensatz zur cGPx wird die GIGPx-mRNA-Menge während eines Selenmangels aufrechterhalten bzw. steigt sogar geringfügig an. Die Synthese des GIGPx-Proteins erfolgt nach einer Repletion im

Vergleich zu anderen GPx trotz geringer Effizienz des SECIS-Elements sehr schnell (WINGLER et al. 1999). Die Stabilisierung der GIGPx-mRNA durch die eigene 3'UTR im Selenmangel ist einzigartig (WINGLER et al. 1999, 2001). Der GIGPx wird eine Funktion bei der Eliminierung von Nahrungs-Hydroperoxiden zugeschrieben (Сно et al. 1993). Während Selenmangels zusätzlich eines wurde bei erhöhter Futter-Lipidhydroperoxidkonzentration im GIT von Ratten eine gestiegene GPx-Aktivität beobachtet (REDDY und TAPPEL 1974). Im gesamten Dünndarm wird die GIGPx hauptsächlich in den Krypten exprimiert (ESWORTHY et al. 1998). Im lleum wurde die vorwiegende Expression in den Panethzellen nachgewiesen. Dort trägt sie anscheinend zur intestinalen Immunität bei, indem die Zellen vor der Zerstörung durch selbst produzierte ROS geschützt werden (FLORIAN et al. 2001). Darüber hinaus spielt sie vermutlich eine Rolle bei der Zelldifferenzierung und schützt den GIT vor maligner Veränderung (WINGLER et al. 1999, FLORIAN et al. 2001, CHU et al. 2004).

2.2.1.3 Plasmatische Glutathionperoxidase (pGPx, GPx3, eGPx)

Die pGPx ist ein extrazelluläres glykosyliertes Homotetramer, dessen 23 kDa-Untereinheiten jeweils ein Selenatom aufweisen (MADDIPATI und MARNETT 1987, TAKAHASHI et al. 1987). Der Hauptteil der pGPx wird im proximalen Tubulus und im glomerulären Epithel der Niere synthetisiert und in den Extrazellulärraum sezerniert (YOSHIMURA et al. 1991, AVISSAR et al. 1994). Bei Mensch, Maus und Ratte wurde die Expression außerdem in Herz, Lunge, Brust, Plazenta, Schilddrüse und anderen Geweben nachgewiesen. Beim Menschen wird die pGPx zusätzlich in der Leber exprimiert (YOSHIMURA et al. 1991, CHU et al. 1992, HOWIE et al. 1995). Im Vergleich zur cGPx der Erythrozyten weist die pGPx höhere Substrataffinitäten gegenüber H₂O₂ und organischen Hydroperoxiden auf (MADDIPATI und MARNETT 1987). Der Km der pGPx liegt für GSH im millimolaren Bereich (4,3-5,3 mM), während GSH im Plasma von Ratten nur in mikromolaren Konzentrationen (9,5 µM) vorliegt (LASH et al. 1985, MADDIPATI und MARNETT 1987, TAKAHASHI et al. 1987). Thioredoxin und Glutaredoxin stellen für die pGPx effektivere Elektronendonatoren als GSH dar, so dass die pGPx als wichtigste Peroxidase im Plasma trotz geringer GSH-Konzentrationen sehr effektiv ist (BJÖRNSTEDT et al. 1994). Durch ihre Fähigkeit Phosphatidylcholinhydroperoxide zu reduzieren, schützt die pGPx vermutlich Plasmaproteine und Gefäßwände vor oxidativem Stress (YAMAMOTO et al. 1993). Möglicherweise spielt die pGPx beim Metabolismus der Hydroperoxide in den verschiedenen Geweben eine lokale Rolle. In der Schilddrüse reguliert sie vermutlich die zur Synthese der Schilddrüsenhormone notwendige H₂O₂-Konzentration (HOWIE et al. 1995). Weil sie schnell und drastisch auf eine Selendepletion und -repletion reagiert (CHOW und TAPPEL 1974), gilt die pGPx als wichtiger Parameter zur Einschätzung des Selenstatus (COHEN et al. 1985).

2.2.1.4 Phospholipidhydroperoxid-Glutathionperoxidase (PHGPx, GPx4)

Das aus Rattenlebern isolierte Enzym liegt im Gegensatz zu den anderen Glutathionperoxidasen als Monomer mit einem Molekulargewicht von 22 kDa vor. Das pH-Optimum für die Enzymaktivität liegt im leicht alkalischen Bereich (pH 8,0) (DUAN et al. 1988). Durch die monomere Struktur ist das aktive Zentrum freier zugänglich, so dass die PHGPx mit komplexeren Hydroperoxiden reagieren kann (URSINI et al. 1995). Die PHGPx reduziert Cholesterol- und Cholesterolesterhydroperoxide, Phosphatidylcholinhydroperoxid, Cumolhydroperoxid, Linolsäurehydroperoxid, H₂O₂ und mit geringerer Aktivität auch tert-Butylhydroperoxid. Die Reduktion der lipophilen Substrate erfordert die Anwesenheit eines Detergens (URSINI et al. 1985, DUAN et al. 1988, THOMAS et al. 1990, ROVERI et al. 1994). Die PHGPx kommt in den Testes in drei Isoformen vor: als zytosolisches (cPHGPx), als mitochondriales (mPHGPx) und als nukleäres (snPHGPx) Protein. Diese Isoenzyme werden von dem gleichen Gen kodiert, ihre Transkripte sind jedoch unterschiedlich lang. Die Transkription der snGPx wird an einem alternativen Promoter initiiert (MAIORINO et al. 2003, MORENO et al. 2003). Die nukleäre PHGPx ist das einzige Selenoprotein im Zellkern der Spermien und unterscheidet sich von den beiden Isoformen durch ihren argininreichen N-Terminus. Als Protaminthioltransferase bewirkt sie die Protaminguervernetzung und damit die Chromatinkondensation (PFEIFER et al. 2001, ROVERI et al. 2001). Mindestens 60 % der PHGPx sind in den Kernen der Testeszellen mit Chromatin assoziiert (GODEAS et al. 1996). Das Spermienmittelstück enthält sehr viele Mitochondrien, die die Energie zur Geißelbewegung bereitstellen. Die in gereiften Spermien enzymatisch 50 % inaktive PHGPx stellt des mitochondrialen Kapselmaterials dar (URSINI et al. 1999). Die cPHGPx und mPHGPx teilen denselben Promoter und das gleiche Exon, ihre Translation beginnt aber an unterschiedlichen Startpunkten. Die mitochondriale Form wird vor allem in den Spermatozyten und in den Frühstadien der Spermatogenese, die snGPx dagegen nur in den späteren Stadien der Spermatogenese exprimiert (PFEIFER et al. 2001, MORENO et al. 2003). Bei der zytosolischen und der mitochondrialen Form handelt es sich um dasselbe Enzym,
wobei die Aktivität in den Mitochondrien der Testes 3-5fach höher als im Zytosol ist (ROVERI et al. 1992, 1994). Die mitochondriale PHGPx gelangt als 23 kDa-Protein aufgrund einer mitochondrienspezifischen Lokalisationssequenz in die Mitochondrien und wird erst dort zur reifen 20 kDa-mPHGPx verkürzt (ARAI et al. 1996). Da dieser Import der PHGPx vom Membranpotential abhängig ist und die Mitochondrien ROS eine Schutzfunktion der Oberfläche produzieren. wird und der inneren Mitochondrienmembran vor Lipidperoxidation angenommen (ARAI et al. 1996). Auch die snGPx wird in anderen Geweben (Niere, Muskel, Gehirn, Leber, Herz) exprimiert (BORCHERT et al. 2003, MAIORINO et al. 2003). Bei geringer Thiolkonzentration polymerisiert die PHGPx. Die Ausbildung von Se-S-Brücken zwischen den Molekülen führt zur Quervernetzung und damit zur Umwandlung des Enzyms in ein Strukturprotein (MAURI et al. 2003). LEI et al. (1995) fanden bei der Klonierung der cDNA eine zu 40 % übereinstimmende Nucleotid- und Aminosäurefreguenz der cGPx und der PHGPx. Die PHGPx wird vor allem in endokrinen Geweben und Reproduktionsorganen exprimiert und kann im Unterschied zur zytosolischen GPx auch Hydroperoxidgruppen in peroxidierten Phosphatiden intakter Membranen reduzieren. Dabei stellt Thioredoxin ein sehr viel effektiveres Substrat für die PHGPx dar als Glutathion (TAKEBE et al. 2002). Die mitochondriale Form hemmt die durch ROS induzierte Apoptose durch Reduktion des in den Mitochodrien anfallenden H₂O₂ (NOMURA et al. 1999).

Die PHGPx reguliert die Aktivität 5-Lipoxygenase somit die der und Leukotriensynthese, indem sie den endogenen Hydroperoxidtonus in den Leukozyten durch die Reduktion des Lipoxygenaseproduktes HPETE steuert (WEITZEL und WENDEL 1993). Synergistisch mit Vitamin E bewirkt das Enzym den Kettenabbruch der oxidativen Lipidzerstörung, indem Vitamin E die Peroxidradikale zu den korrespondierenden Hydroperoxiden reduziert und Letztere durch die PHGPx reduziert werden (URSINI et al. 1995). Die höchsten PHGPx-Aktivitäten wurden bei Ratten in Leber und Niere und bei Mäusen in Lunge und Niere gefunden. Im Herz beider Spezies wurde wie bei der cGPx nur eine geringe Aktivität beobachtet (ZHANG et al. 1989, WEITZEL et al. 1990). Im Selenmangel wird die PHGPx langsamer als die cGPx depletiert, behält im Gegensatz zur cGPx in den meisten Organen eine Restaktivität und wird bei einer Resupplementierung sehr schnell wieder repletiert (WEITZEL et al. 1990). Während die Aktivität im Selenmangel in der Leber von Ratten auf 43-53 % sank, fiel die mRNA-Menge nur geringfügig ab (HADLEY und SUNDE 2001).

2.2.2 Deiodinasen

Der Schilddrüsenstatus ist der Hauptregulator der Deiodinaseaktivität (ESCOBAR-MORREALE et al. 1997). Das Prohormon L-Thyroxin wird ausschließlich in den Follikelzellen der Schilddrüse synthetisiert und durch gewebespezifische Deiodinasen aktiviert oder inaktiviert (Abbildung 3). Beim Menschen sezerniert die Schilddrüse nur 20 % und bei der Ratte 40 % des im Plasma zirkulierenden T₃ (BIANCO et al. 2002). Der exakte Mechanismus der reduktiven Deiodierung von lodthyroninen und die Spaltung der aromatischen Carbon-Iod-Bindung der lodthyronine sind nicht vollständig aufgeklärt.

Abbildung 3: Aktivierung und Inaktivierung der wichtigsten lodthyronine durch die Deiodinasen (nach BIANCO et al. 2002)

2.2.2.1 5'-Deiodinase I (D1)

Die 5'-Deiodinase I ist ein Homodimer aus Untereinheiten mit einer Größe von 27 kDa (LEONARD et al. 2001) und einer Halbwertszeit von 8 bis über 12 h (GEREBEN et al. 2000, BAQUI et al. 2003). Über einen Pingpong-Mechanismus katalysiert die D1 hauptsächlich die reduktive 5'-Deiodierung des Prohormons T_4 zum aktiven Hormon T_3 und des reversen T_3 zu 3,3'- T_2 (VISSER et al. 1975, CHOPRA 1977, LEONARD und

ROSENBERG 1980, VISSER et al. 1982). Darüber hinaus katalysiert die D1 die 5-Deiodierung des T₄ zu rT₃ und des T₃ zu 3,3'-T₂ (Abbildung 3). *In vitro* wird die D1 durch Thiole wie DTT stimuliert (VISSER et al. 1976) und durch Goldthioglucose, PTU (6-n-Propyl-2-Thiouracil) und Iodacetat gehemmt (CHOPRA 1977, VISSER et al. 1982, BERRY et al. 1991b). Das bevorzugte Substrat der D1 ist rT₃. Die Umwandlung von T₄ zu T₃ wird durch rT₃ stark kompetitiv inhibiert (CHOPRA 1977). Der K_m-Wert für das Substrat rT₃ ist nur geringfügig niedriger als der für T₄ (0,46 vs. 0,51 µM), aber die 5'-Deiodierung von rT₃ war im Vergleich zur 5'-Deiodierung von T₄ 27fach schneller (LEONARD und ROSENBERG 1980). Verglichen mit anderen Spezies weist die D1 der Ratte den niedrigsten K_m-Wert und damit die höchste Substrataffinität gegenüber rT₃ auf, während beim Meerschweinchen die höchste V_{max} und damit auch die höchste Aktivität vorliegen (SANTINI et al. 1992). Ungefähr die Hälfte der extrathyroidalen T₃-Produktion aus T₄ wird bei der Ratte von der D1 katalysiert (NGUYEN et al. 1998).

ARTHUR et al. (1990a) und BEHNE et al. (1990) gelang der Nachweis, dass die D1 ein Selenoprotein ist. BERRY et al. (1991a) fanden kurz darauf das für den Selenocysteineinbau verantwortliche UGA-Codon in der mRNA. Die D1 wird vorwiegend in der Leber, Niere, Schilddrüse und euthyroiden Hypophyse sowie in geringeren Konzentrationen in den meisten anderen Organen und Geweben exprimiert (CHOPRA 1977, KÖHRLE 2004). In der Niere sind über 85 % der D1-Aktivität in den Gefäßen der äußeren Nierenrindenschicht lokalisiert. In den renalen Tubuluszellen befindet sich die D1 als integrales Membranprotein in der basolateralen Plasmamembran (LEONARD et al. 1991), während die hepatische D1 mit dem endoplasmatischen Retikulum assoziiert ist (FEKKES et al. 1979). Die subzelluläre Lokalisation der D1 in der Schilddrüse und in der Hypophyse ist bisher nicht eindeutig geklärt. Anscheinend ist die D1 in den Thyreozyten wie in den Hepatozyten mit dem ER assoziiert (SANTINI et al. 1995). Der N-Terminus des Enzyms ist in der Membran verankert, während sich der C-Terminus mit dem katalytischen Zentrum im Zytosol befindet (TOYODA et al. 1995). In Zellkulturen wies die D1 eine für Plasmamembranproteine typische ringförmige Verteilung am Zellrand auf. Möglicherweise migriert das Enzym nach seiner Synthese im ER zur Plasmamembran (BAQUI et al. 2000). Für den Transport der Schilddrüsenhormone durch die Zellmembran werden 2 Sättigungsprozesse beschrieben: Ein Prozess mit hoher Affinität und niedriger Kapazität für die T₄-, T₃- und rT₃-Aufnahme weist K_m-Werte im nanomolaren Bereich auf und ist energie- und temperaturabhängig, während ein weiterer Prozess mit niedriger Affinität, aber hoher Kapazität energie-, temperatur- und Na⁺-unabhängig ist (HENNEMANN et al. 2001). In Rattenlebern hatte der Schilddrüsenstatus keinen Einfluss auf die mRNA-Expression der T₄-Transporter (PEETERS et al. 2002).

Insbesondere bei Ratten existieren in verschiedenen Geweben klare Dosis-Wirkungs-Beziehungen zwischen dem Selenstatus und der D1-Expression. Während die mRNA-Expression in der Leber im Selenmangel auf ca. 50 % abfiel, stieg die mRNA-Expression der D1 in der Schilddrüse signifikant um 39-95 % an (BERMANO et al. 1995, 1996a). Die thyroidale D1-Aktivität stieg in der Studie von BERMANO et al. (1996a) im Selenmangel ebenfalls an (um 65%), war jedoch in anderen Untersuchungen unverändert (VADHANAVIKIT und GANTHER 1993) oder nur tendenziell erhöht (BERMANO et al. 1995). Die hepatische und renale D1-Aktivität fielen dagegen im Se-Mangel stark ab. Die D1-Aktivitäten in Leber und Niere sind deutlich höher als die in der Schilddrüse (VADHANAVIKIT und GANTHER 1993).

Durch T_3 wird die Aktivität der D1 ausschließlich auf Transkriptionsebene reguliert (BERRY et al. 1990, MAIA et al. 1995). Außer in der durch TSH regulierten Schilddrüse fällt die D1-Aktivität bei einem Hypothyroidismus ab und steigt bei Hyperthyroidismus an (ESCOBAR-MORREALE et al. 1997).

2.2.2.2 5'-Deiodinase II (D2)

Die 5'-Deiodinase II ist ein dimeres 199 kDa-Holoenzym mit 2 oder mehr substratbindenden Untereinheiten von 29 kDa (SAFRAN und LEONARD 1991, CURCIO-MORELLI et al. 2003a) und einer Halbwertszeit von weniger als 45 Minuten (MAIA et al. 2005). Die D2 deiodiert T₄ und rT₃ über einen sequenziellen Mechanismus und ist nicht durch PTU und Iodacetat hemmbar (VISSER et al. 1982, 1983). Im Gegensatz zur D1 zieht die D2 das T₄ als Substrat dem rT₃ vor und hat einen K_m-Wert im nanomolaren Bereich (1-2 nM) (CROTEAU et al. 1996). Nachdem zuerst angenommen wurde, dass die D2 kein Sec enthält (BERRY et al. 1991b, SAFRAN et al. 1991), wurde sie von CROTEAU et al. (1996) und CURCIO et al. (2001) als Selenoprotein identifiziert. Die cDNA codiert zwei Sec, wobei aber nur das N-terminale Sec für die Deiodinaseaktivität essentiell ist (SALVATORE et al. 1999). Beim Menschen wird die D2 in Gehirn, Hypophyse, Plazenta, Herz, Muskel und braunem Fettgewebe exprimiert (CROTEAU et al. 1996). Intrazellulär ist die D2 als integrales Membranprotein im ER und damit in Zellkernnähe lokalisiert. Der N-Terminus befindet sich im ER-Lumen, während der C-Terminus im Zytosol liegt (BAQUI et al. 2000). Die kernnahe Lokalisation der D2 im ER ist möglicherweise der Grund dafür, dass von der D2 generiertes T_3 die T_3 -abhängige Genexpression 2-3fach mehr beeinflusst als das von der D1 generierte T_3 (MAIA et al. 2005).

Bei vorliegendem Hypo- und Hyperthyroidismus reagiert die D2 umgekehrt zur D1. Sie wird sowohl auf Transkriptionsebene als auch posttranskriptional und -translational invers zum Schilddrüsenstatus reguliert (CROTEAU et al. 1996, BURMEISTER et al. 1997). T₃ vermindert die D2-Aktivität durch eine um 40-50 % verringerte Transkription (BURMEISTER et al. 1997, KIM et al. 1998), wobei diese Regulation wahrscheinlich kernrezeptorvermittelt geschieht (HALPARIN et al. 1994). T₄ hat im euthyroiden Organismus anscheinend den größten Einfluss auf die D2-Aktivität (SILVA und LEONARD 1985, BURMEISTER et al. 1997). T₄ und rT₃ regulieren die D2-Aktivität posttranslational, indem Ubiquitin reversibel bindet (GEREBEN et al. 2000, STEINSAPIER et al. 2000). Die Ubiquitinierung kann einerseits zum proteasomalen Abbau des D2-Proteins führen. Auf einer anderen Ebene reguliert eine Ubiquitinierung die D2-Aktivität durch vorübergehende Konformationsänderung innerhalb des D2-D2-Dimers (VIVEK SAGAR et al. 2007). Durch Interaktion mit den Deubiquitinasen (VDU1, VDU2) kann das Dimer reaktiviert werden kann (CURCIO-MORELLI et al. 2003b).

Während der Anteil der D2 an der extrathyroidalen T₃-Produktion aus T₄ im hypo- und euthyroiden Zustand den der D1 deutlich überstieg, war das Verhältnis im hyperthyroiden Zustand beim Menschen umgekehrt (MAIA et al. 2005). Bei Ratten hingegen verursacht die D2 etwa die Hälfte der extrathyroidalen T₃-Produktion (NGUYEN et al. 1998). Durch die lokale T₃-Bereitstellung ist die D2 maßgeblich an der Entwicklung des fötalen Gehirns beteiligt. In der Frühschwangerschaft steigt die D2-Aktivität um das Vierfache an (KESTER et al. 2004). Anscheinend spielt die D2 bei der Differenzierung oder Funktion der Knochenzellen eine Rolle. GOUVEIA et al. (2005) erreichten *in vitro* durch Calcitriol einen 2-21/2 fachen Anstieg der D2-Aktivität in einer Maus-Osteoblastenzelllinie. Darüber hinaus ist die D2 aufgrund ihrer gewebespezifischen Expression und ihrer besonderen Regulation anscheinend in der Lage, die Transkription des GLUT 4-Gens zu regulieren und damit die Insulinwirkung im Skelettmuskel und im Fettgewebe zu modulieren (CHIDAKEL et al. 2005).

2.2.2.3 5-Deiodinase (D3)

Bei der 5-Deiodinase handelt es sich ebenfalls um ein Selenoenzym (SALVATORE et al. 1995) mit einer im Vergleich zur D1 und D2 längeren Halbwertszeit (BAQUI et al. 2003).

Sie inaktiviert sowohl zirkulierendes T₃ unter Bildung von 3,3'-T₂ als auch zirkulierendes T₄ unter Bildung von rT₃ durch 5-Deiodierung am inneren Tyrosylring. Die Substrataffinität ist für T₃ größer als für T₄ und liegt im nanomolaren Bereich. Die 5'-Deiodierung des rT₃ erfolgt dagegen wesentlich ineffizienter mit einem K_m-Wert im mikromolaren Bereich (SALVATORE et al. 1995). Die D3 arbeitet wie die D2 nach einem sequenziellen Mechanismus (VISSER et al. 1982, 1983) und ist nicht durch PTU hemmbar (SALVATORE et al. 1995). Nach der Synthese im ER wandert die D3 zur Plasmamembran. Anscheinend unterliegt die D3 einem Recycling, indem es an der Plasmamembran endozytiert wird, dann in den Endosomen reduziert wird und zurück in die Plasmamembran migriert. Das aktive Zentrum des integralen Membranproteins ist extrazellulär lokalisiert, was einen schnellen Zugriff auf die zirkulierenden Schilddrüsenhormone ermöglicht (BAQUI et al. 2003). Hohe D3-Aktivitäten werden vor allem in Gehirn, Haut, Plazenta, Uterus und fetalen Geweben beschrieben. In Uterus, Plazenta, Nabelschnur und im fötalen Epithel reguliert die D3 den Transfer mütterlicher Schilddrüsenhormone in den fötalen Kreislauf (HUANG et al. 2003, 2005). Im fötalen Gehirn limitiert eine hohe D3-Aktivität die T3-Konzentration in den verschiedenen Gehirnregionen während entscheidender Entwicklungsstadien (KESTER et al. 2004). In verschiedenen Geweben wird die D3 durch den Schilddrüsenstatus den unterschiedlich reguliert: Im Gehirn hyperthyroider Ratten stieg die D3-Expression auf das 4-50fache an (Tu et al. 1999); in der Plazenta ist eine höhere Substrataffinität der D3 festgestellt worden (MORI et al. 1995).

2.2.3 Thioredoxin/Thioredoxinreduktasen

Das Thioredoxinsystem, bestehend aus Thioredoxin (Trx), Thioredoxinreduktase (TrxR) und NADPH, ist das stärkste Proteindisulfidreduktasesystem in den Zellen und kommt in allen lebenden Organismen vor (HOLMGREN 1985). Das Säugetier-Trx ist ein 12 kDa kleines, ubiquitäres Protein mit vier redoxaktiven Cys im aktiven Zentrum. Im Gegensatz zum bakteriellen Trx bildet das Säugetier-Trx mehr intramolekulare Disulfidbrücken aus, die für die antioxidative Funktion entscheidend sind. Trx kommt in reduzierter Form als Dithiol (Trx-(SH)₂) und in oxidierter Form als Disulfid (Trx-S₂) vor 1982, HOLMGREN (LUTHMAN und Holmgren 1985). Neben dem ubiguitär vorkommenden Trx1 wurde bei Ratten ein weiteres Trx (Trx2) mit ausschließlich mitochondrialer Lokalisation isoliert. Trx2 wird hauptsächlich in Gehirn, Testes, Skelettmuskel, Niere, Nebenniere und Herz exprimiert und ist durch seinen geringeren Cys-Gehalt wesentlich oxidationsresistenter als Trx1 (SPYROU et al. 1997). Die vielfältigen Funktionen des Trx umfassen bei Säugetieren die Aktivierung und Inaktivierung verschiedener Transkriptionsfaktoren, die Regulation der Apoptose, die Immunmodulation durch extrazelluläres Trx, die Funktion als intrazelluläres Antioxidanz, den Schutz vor Hyperoxie bei der Geburt, und während eines Schlaganfalls und der Reperfusion fördert Trx das Überleben der Neuronen (ARNÉR und HOLMGREN 2000).

Die TrxR katalysiert die NADPH-abhängige Reduktion des Disulfids (Trx-S₂) zum Dithiol (Trx-(SH)₂). Das reduzierte Trx dient der Ribonukleotidreduktase als Elektronendonator für die Reduktion der Ribonukleotide zu Desoxyribonukleotiden (HOLMGREN 1985).

Im Gegensatz zu den bakteriellen TrxR sind die Säugetier-TrxR Selenoenzyme (GLADYSHEV et al. 1996, TAMURA und STADTMAN 1996, ZHONG et al. 1998). Die Säugetier-TrxR sind homodimere Flavoenzyme aus 55-58 kDa großen Untereinheiten, die aus einem C-terminalen Redoxzentrum mit einem Sec, einer NADPH-Bindungsdomäne, einem FAD als prosthetische Gruppe und einem N-terminalen Disulfid bestehen. Durch die spiegelverkehrte Anordnung der Untereinheiten interagieren die C-terminalen Redoxzentren mit den N-terminalen Disulfiden der jeweils anderen Untereinheit miteinander (LUTHMAN und HOLMGREN 1982, GROMER et al. 1998, GLADYSHEV et al. 1996, TAMURA und STADTMAN 1996). Die C-terminale Sequenz Gly-Cys-Sec-Gly ist für die katalytische Aktivität der TrxR essentiell und bei Mensch, Ratte und Kalb identisch (ZHONG et al. 1998). Bis auf das zusätzliche Cterminale Cys-Sec-Redoxzentrum sind die TrxR der Glutathionreduktase homolog (GROMER et al. 1998, ZHONG et al. 1998) und arbeiten wie diese nach einem Pingpong-Mechanismus (GROMER et al. 1998). Die Enzyme weisen ein breites Substratspektrum auf: Neben Trx reagieren die TrxR unter anderem mit DTNB, H_2O_2 , Lipidhydroperoxiden, Liponsäure, Dehydroascorbat, Alloxan, Menadion, L-Cystin, Selenodiglutathion, Selenit, Selenocystin und Ebselen (LUTHMAN und HOLMGREN 1982, BJÖRNSTEDT et al. 1992, KUMAR et al. 1992, BJÖRNSTEDT et al. 1994, BJÖRNSTEDT et al. 1995, TAMURA und STADTMAN 1996, BJÖRNSTEDT et al. 1997, MAY et al. 1997, ZHAO et al. 2002). Bei Mensch und Mäusen wurden neben der TrxR1 zwei weitere TrxR (TrxR2 und Thioredoxin-Glutathionreduktase (TGR)) identifiziert, die ebenfalls Selenoproteine sind und die gleichen funktionellen Eigenschaften wie die TrxR1 aufweisen. Die TGR fungiert darüber hinaus noch als Glutathionreduktase und als Glutaredoxin (SUN et al.

2001b). TrxR1 und TGR werden ubiquitär, dabei insbesondere in der Leber, exprimiert. Im Gegensatz zu den zytosolischen Enzymen TrxR1 und TGR ist die TrxR2 ein mitochondriales Enzym und wird hauptsächlich in Testes, Herz, Prostata und Leber exprimiert (MIRANDA-VIZUETE et al. 1999, SUN et al. 1999).

Die TrxR1 ist für die Entwicklung des Gehirns unerlässlich, und ihr Fehlen führte bei Mäusen zur Wachstums- und Entwicklungsretardierung. Die TrxR2 nimmt eine zentrale Rolle bei der Hämatopoese und der Funktion des Herzmuskels ein. Sowohl der alleinige Knockout der TrxR1 als auch der der TrxR2 führten bei Mäusen zum frühen embryonalen Tod (NONN et al. 2003, CONRAD et al. 2004, JAKUPOGLU et al. 2005, SOERENSEN et al. 2008). Für die TGR wird aufgrund der weitestgehend selenunabhängigen hohen Expressionrate in den Testes eine wichtige Rolle bei der Spermienreifung angenommen (SUN et al. 2005).

Die TrxR sind an der Aufrechterhaltung des Redoxpotentials beteiligt. Intrazelluläre ROS oxidieren die Selenolgruppe der TrxR1 und verringern damit die Enzymaktivität. Die daraus resultierende Oxidation des Trx beeinflusst Trx-abhängige Zellkomponenten wie Transkriptionsfaktoren, Proteintyrosinphosphatasen und antioxidative Enzyme. Das System wird durch die daraufhin ansteigende Expression der TrxR recycelt und möglicherweise auch durch die NADPH-abhängige Reduktion der TrxR, nachdem die ROS durch antioxidative Enzyme entfernt wurden (SUN et al. 1999). TrxR und Trx stellen für die humane pGPx effizientere Elektronendonatoren als Glutathion dar (BJÖRNSTEDT et al. 1994).

Die höchste TrxR-Aktivität findet sich in der Niere. Im Selenmangel fiel die TrxR-Aktivität in Niere, Leber und Lunge von Ratten signifikant ab, während Milz, Prostata und insbesondere das Gehirn nahezu unbeeinflusst blieben (HILL et al. 1997, MAY et al. 1997, BERGGREN et al. 1999). Die hepatische TrxR1-Aktivität verringerte sich bei selendefizienten Ratten auf 15 % des Se-adäquaten Niveaus, während die TrxR1mRNA-Konzentration nur auf 70 % des Kontrollniveaus sank (HADLEY und SUNDE 2001). Auch supranutritive Selenzulagen führten zwar zu einem vorrübergehenden 1,5-2fachen Anstieg der TrxR-Aktivität in Niere, Leber und Lunge von Ratten, hatten aber keinen Einfluss auf die TrxR-Proteinkonzentration (BERGGREN et al. 1999). In der Hierarchie der Selenoproteine rangiert die TrxR zwischen PHGPx bzw. SelP und cGPx (HILL et al. 1997, HADLEY und SUNDE 2001). In der Aorta von Ratten wurde im Selenmangel im Gegensatz zur cGPx eine erhöhte TrxR-Expression und -Aktivität beobachtet. Daraus schlossen Wu et al. (2003), dass die Expression der TrxR in der Arterienwand durch ROS und nicht wie bei der cGPx durch Selen reguliert wird.

2.2.4 Selenophosphatsynthetase 2

Im Gegensatz zu der von Low et al. (1995) beschriebenen Selenophosphatsynthetase (SPS1) handelt es sich bei der SPS2 um ein Selenoenzym (GUIMARAES et al. 1996). Die Selenophosphatsynthetasen katalysieren die ATP-abhängige Umsetzung von Hydrogenselenid zu Selenophosphat, wobei die SPS2 anscheinend aktiver ist (STADTMAN 1996). KIM und STADTMAN (1995) konnten in Gehirn, Leber, Niere und Lunge von Ratten die höchsten Enzymmengen an Selenophosphatsynthetasen nachweisen, während in Testes, Uterus, Milz und Herz geringere Konzentrationen gefunden wurden. Wahrscheinlich fungiert Selenophosphat als Selendonor während der Biosynthese der Selenoproteine (KIM und STADTMAN 1995, Low et al. 1995, GUIMARAES et al. 1996).

2.2.5 Selenoprotein P

Das extrazelluläre, glykosylierte Selenoprotein P (SelP) wurde zuerst im Plasma gefunden und nach seiner Lokalisation benannt (HERRMANN 1977, MOTSENBOCKER und TAPPEL 1982). Die mRNA wird hauptsächlich in der Leber, in absteigender Menge aber auch in Darm, Niere, Herz, Lunge, Testes, Gehirn und Milz exprimiert (HOFFMANN et al. 2007). Das Plasmaselen liegt bei der Ratte zu 60-65 % und beim Menschen zu 53 % als Selenoprotein P vor. SelP stellt 8 % des Selenpools des Körpers dar (READ et al. 1990, SAITO und TAKAHASHI 2002). Bei Ratten liegt die SelP-Konzentration im Plasma wesentlich höher als beim Menschen (26,3 mg/L vs. 5,8 mg/L) und fällt im Se-Mangel auf unter 10 % der Kontrollwerte ab (YANG et al. 1989, READ et al. 1990, XIA et al. 2005). In der Hierarchie der Selenoproteine ist SelP bei Ratten höher als cGPx und pGPx angesiedelt (YANG et al. 1989, BURK et al. 1991). Nach 4 Wochen zeigte ein Se-Mangel bei Ratten noch keinen Einfluss auf die mRNA-Konzentration in der Leber (HADLEY und SUNDE 2001). Nach 14,5-wöchigem Selenmangel fiel die mRNA-Menge in der Leber von Ratten auf 19 % und die SelP-Konzentration im Plasma auf 4,3 % im Vergleich zur Kontrollgruppe, während die cGPx-Aktivität in der Leber im gleichen Zeitraum auf 0,8 % abfiel (HILL et al. 1992).

Die cDNA des Menschen und der Ratte stimmen zu etwa 70 % überein und codieren jeweils 10 Selenocystein-Reste (HILL et al. 1993). Im Gegensatz zu allen anderen Selenoprotein-mRNA besitzt Selenoprotein P zwei SECIS-Elemente in der 3'UTR

(BERRY et al. 1993). Der Einbau des ersten Sec wird vorrangig durch das SECIS-2 bewirkt. Es fungiert als Kontrollstelle und entscheidet über die weitere Translation oder vorzeitige Termination, gleichzeitig dient es als geschwindigkeitsbestimmende Engstelle. Wesentlich effizienter erfolgt die anschließende Translation aller weiteren 9 Sec durch das SECIS-1 (STOYTCHEVA et al. 2006). Die N-terminale Region des SelP ist hochgradig konserviert und weist eine den Thioredoxinproteinen ähnliche Sequenz auf. Der Trx-Domäne folgt eine Cys-reiche Domäne, und in der wenig konservierten C-terminalen Region befinden sich His-reiche und Sec-reiche Domänen. Die Anzahl an Sec variiert je nach Tierart zwischen 1-28 (LOBANOV et al. 2008).

Bei Ratten wurden vier Isoformen des SelP-Proteins gefunden, die sich nur am C-Terminus und damit im Selengehalt unterscheiden. Bislang ist nicht geklärt, über welchen Mechanismus diese Isoformen aus der gemeinsamen mRNA gebildet werden. Möglicherweise terminieren die UGA-Codons die Translation, indem sie als Stopcodons interpretiert werden. Die längste Isoform enthält entsprechend der 10 UGA-Codons in der mRNA 10 Sec, die kürzeren Formen enthalten 1, 2 oder 6 Sec (MA et al. 2002).

Die Hauptfunktionen des SelP bestehen in Transport und Verteilung des Selens in die Organe sowie in der lokalen Speicherung des Selens (MOTSENBOCKER und TAPPEL 1982, SAITO und TAKAHASHI 2002, HILL et al. 2003, SCHOMBURG et al. 2003, SCHWEIZER et al. 2005, BURK et al. 2007).

Absorbiertes Selen wird innerhalb von 10-15 min in die Leber aufgenommen, dort in SelP eingebaut und ins Plasma sezerniert (BURK und GREGORY 1982, MOTSENBOCKER und TAPPEL 1982, KATO et al. 1992). Der weitere SelP-Metabolismus variiert zwischen den verschiedenen Tierarten: Während die Halbwertszeit im Plasma von Ratten bei 3-4 h lag (BURK et al. 1991), betrug diese im Plasma von Mäusen 8 h (NAKAYAMA et al. 2007). Ausschließlich das von der Leber sezernierte SelP verursacht den maßgeblichen Anteil der SelP-Konzentration im Plasma und bewirkt den Se-Transport via SelP zu anderen Organen (SCHWEIZER et al. 2005). Für Niere, Testes und Gehirn ist das Plasma-SelP aus der Leber die wichtigste Selen-Transportform, für die Testes ist es sogar essentiell (OLSEN et al. 2005, RENKO et al. 2008). SelP wird vor renaler Ausscheidung geschützt. Nicht in SelP eingebautes Selen vergrößert den metabolisch aktiven Selenpool der Leber, so dass Selen vermehrt renal ausgeschieden wird (BURK et al. 2006).

Lokal exprimiertes SelP erhält die Selenkonzentration in den entsprechenden

Geweben im Selenmangel aufrecht (RENKO et al. 2008). Durch einen Knockout des SelP-Gens bei adäquat Se-versorgten Mäusen fiel die Se-Konzentration innerhalb von 8 Wochen in den Testes auf 19 %, im Gehirn auf 43 % und in den Nieren auf 76 % des Kontrollniveaus. Im Gegensatz zu den Testes konnte die Se-Konzentration in Gehirn und Nieren durch supranutritive Se-Dosen über 8 Wochen auf dem Kontrollniveau gehalten werden (HILL et al. 2003). In den Testes wird Selen fast ausschließlich als SelP über den Apolipoprotein E-Rezeptor-2 (ApoER 2) in die Zellen aufgenommen (OLSEN et al. 2007). Auch im Gehirn vermuten BURK et al. (1991) einen spezifischen rezeptorvermittelten Mechanismus für SelP. Bei fehlendem SelP-Gen verringerte sich die Se-Konzentration im Gehirn, während diese durch einen Se-Mangel unbeeinflusst blieb (NAKAYAMA et al. 2007). BURK et al. (2007) ermittelten den ApoER 2-Rezeptor als notwendig, um die Se-Konzentration im Gehirn während eines Se-Mangels aufrecht zu erhalten. Die Mechanismen der Se-Aufnahme ins Gehirn und der Konservierung sind sehr komplex und nicht vollständig geklärt. Für die Se-Versorgung von Gehirn und Testes spielt der Sec-reiche, C-terminale Teil des SelP die Hauptrolle. Die kürzeste SelP-Isoform, die nur aus dem N-terminalen Teil besteht, ist dagegen für den Se-Transport zu den Nieren zuständig (HILL et al. 2007).

In den Nieren wurde SelP vorrangig in den glomerulären Kapillaren gefunden. Im Gegensatz zum Plasma war die renale SelP-Konzentration auch während eines Selenmangels unverändert hoch, weshalb die Nierenfunktion im Se-Mangel meist nicht beeinträchtigt ist. In der Leber ist SelP vorrangig in der zentrilobulären Region lokalisiert, die einer hohen oxidativen Belastung unterliegt. Auch im Gehirn ist SelP mit den Endothelzellen der Kapillaren und Arterien assoziiert, so dass für SelP eine Schutzfunktion der Endothelzellmembran vor freien Radikalen angenommen wird (BURK et al. 1997). Mäuse, die nur in der Leber kein SelP exprimieren konnten, wiesen im Gegensatz zu SelP-Knockout-Mäusen normale zerebrale Se-Konzentrationen und cGPx-Aktivitäten auf. Im Gehirn dient SelP anscheinend als lokales extrazelluläres Se-Speicher- und Recyclingprotein (SCHWEIZER et al. 2005).

Neben der Transport- und Speicherfunktion reduzierte SelP *in vitro* wie die PHGPx Phospholipidhydroperoxide, nicht aber H₂O₂ oder t-Butylhydroperoxid. Thioredoxin erwies sich für SelP im Vergleich zu GSH als 500fach effektiveres Substrat. Aufgrund seiner Enzymkinetik stellt SelP eine extrazelluläre Trx-Peroxidase dar und verhindert damit vermutlich oxidative Schädigungen der Plasmamembran (TAKEBE et al. 2002). Die Peroxidasereaktion wird wahrscheinlich durch die N-terminale Domäne des SelP vermittelt, wobei der endogene Elektronendonator dafür nicht bekannt ist. Möglicherweise fungiert die N-terminale Domäne auch als Redoxpartner für die C-terminale Sec-reiche Region des SelP. Denkbar wäre, dass die Sec-Reste während des Transports in der Zirkulation mit Hilfe der N-terminalen Domäne als Selenylsulfide und Diselenide vorliegen und das Selen somit vor Oxidation geschützt ist (LOBANOV et al. 2008).

2.3 Regulation der Selenoproteinexpression

Die Biosynthese der Selenoproteine hängt in erster Linie von der Verfügbarkeit des Selens ab. Die Transkription der Selenoproteine erfolgt selenunabhängig. Dennoch ist die mRNA-Konzentration im Selenmangel deutlich reduziert (TOYODA et al. 1990, CHRISTENSEN und BURGENER 1992, CHRISTENSEN et al. 1995). Die Mechanismen dieser posttranskriptionalen Regulation sind noch wenig bekannt.

Die verschiedenen Selenoproteine unterliegen sowohl einer selenabhängigen als auch einer gewebespezifischen Expressionskontrolle. In der Leber von Ratten waren nach 28-tägigem Selenmangel bei der cGPx sowohl die Enzymaktivität als auch die mRNA-Konzentration deutlich verringert (um 98 % und 80 %), bei der TrxR war ein starker Aktivitätsverlust (85 %) bei moderat verringerter mRNA-Konzentration (30-35%) zu beobachten, die D1-Aktivität fiel um 90% und die dazugehörige mRNA um 50 % ab. Bei der PHGPx zeigte sich nur ein moderater Aktivitätsverlust (50 %) mit geringem Abfall der mRNA-Konzentration (10-18 %). Die mRNA des Selenoprotein P blieb durch einen Se-Mangel unbeeinflusst. In der Leber spiegelt die mRNA-Konzentration die Veränderung in den Enzymaktivitäten wider. Aus diesen Beobachtungen ließ sich in der Leber von Ratten hinsichtlich der Aufrechterhaltung der mRNA-Konzentration während eines Selenmangels folgende Hierarchie der Selenoproteine formulieren: SelP > PHGPx > TrxR > DI > cGPx (Lei et al. 1995, BERMANO et al. 1995, 1996, HADLEY und SUNDE 2001). Im Gegensatz zur Leber war in den Testes kein signifikanter Einfluss des Selens auf die cGPx- oder PHGPx-mRNA zu beobachten. Auch in der Schilddrüse wurden die Enzymaktivitäten im Selenmangel besser als in der Leber aufrecht erhalten, und die mRNA-Konzentration war zum Teil sogar erhöht (LEI et al. 1995, BERMANO et al. 1995, 1996a). Die SPS2 wird vorrangig in den Geweben exprimiert, in denen hohe Mengen an Selenoproteinen synthetisiert werden, also in Leber, Niere und Testes (GUIMARAES et al. 1996).

Es werden mehrere Mechanismen der Expressionskontrolle diskutiert. Am sensitivsten reagiert bei veränderter Selenzufuhr der zytosolische mRNA-Turnover (CHRISTENSEN und BURGENER 1992, CHRISTENSEN et al. 1995). Verschiedene mRNA-Sequenzen und/oder RNA-Bindungsproteine regulieren die mRNA-Stabilität und die Translation der Selenoprotein-mRNA. Die SECIS-Elemente der diversen Selenoprotein-mRNA sind unterschiedlich effizient (BERRY et al. 1993). Die 3'UTR der PHGPx und der GIGPx sind ohne Verlust der Stabilität austauschbar, aber sie sind nicht in der Lage, die cGPx-mRNA zu stabilisieren. Die 3'UTR der cGPx lässt die GIGPx- und die PHGPx-mRNA instabil werden (MÜLLER et al. 2003). Die Stabilität der mRNA variiert in Abhängigkeit von der Se-Versorgung sowohl zwischen den verschiedenen mRNA (cGPx, D1, SeIP) als auch zwischen den untersuchten Geweben (Leber, Niere) der Ratte. Ein Se-Mangel lässt die mRNA zwar instabil werden, eine überadäquate Se-Versorgung erbrachte jedoch gegenüber einer adäquaten Versorgung keine größere Stabilisierung der Selenoprotein-mRNA (CHRISTENSEN et al. 1995).

Der Sec-Einbau hängt neben der mRNA-Stabilität auch vom Nucleotidumfeld des UGA-Codons ab. Durch eine Purinbase unmittelbar hinter dem UGA-Sec-Codon wird die Translation meist abgebrochen (Interpretation als Stopcodon), während durch Pyrimidin an derselben Stelle eher der Sec-Einbau bewirkt und die Translation fortgesetzt wird (McCAUGHAN et al. 1995, Low und BERRY 1996). Bei der Ratte fungieren andere Codons als UGA als eindeutige Stopcodons: die Translation der D1-Sequenz wird durch UAG terminiert und die der cGPx- und SelP-Sequenz durch UAA.

Neben der mRNA-Stabilität und der Nucleotidsequenz spielt bei der Translation der Selenoproteine auch die Methylierung der tRNA^{[ser]sec} eine regulatorische Rolle. DIAMOND et al. (1993) konnten zeigen, dass die Methylierung der tRNA^{[ser]sec} in Gegenwart von Selen ansteigt. Methylierte tRNA^{[ser]sec} erhöht die UGA-Translation und die Effizienz der SECIS-Elemente (JAMESON und DIAMOND 2004). Die beiden tRNA^{[ser]sec}-Formen unterscheiden sich durch eine Methylgruppe an der Ribose. Die nicht methylierte Form ist anscheinend mit der Synthese von Proteinen des regulären Stoffwechsels wie TrxR1 und TGR assoziiert, während die methylierte Form (Um34) den Sec-Einbau in Selenoproteine wie cGPx und pGPx bewirkt (CARLSON et al. 2005). Da SECp43 an dieser Methylierung der tRNA^{[ser]sec} und der intrazellulären Lokalisation der Selenocysteinsynthase beteiligt ist, stellt SECp43 anscheinend einen weiteren Faktor bei der Regulation der Selenoproteine wie SelR, SelT und SelW, deren Funktion noch nicht endgültig

aufgeklärt ist, sind von der Methylierung der tRNA^{[ser]sec} abhängig, wohingegen PHGPx, Sep15 und SelP auch ohne Methylierung zumindest teilweise translatiert wurden (CARLSON et al. 2005).

Das SECIS-bindende Protein SBP2 stabilisiert die mRNA und spielt damit anscheinend eine Schlüsselrolle beim Umgehen des nonsense-vermittelten Zerfalls der mRNA höherer Eukaryonten (DE JESUS et al. 2006). SBP2 und andere Faktoren der Selenoproteinbiosynthese haben eine höhere Affinität zur 3'UTR der PHGPx als zur 3'UTR der cGPx (LESOON et al. 1997), was der Grund für die bevorzugte Expression der PHGPx gegenüber der cGPx im Selenmangel sein könnte (WEITZEL et al. 1990). In den Testes wurde im Vergleich zu Leber, Niere und Milz die höchste spezifische Aktivität des SBP2 gefunden (COPELAND und DRISCOLL 1999). Dies geht mit einer hohen PHGPx-mRNA- und -Enzymkonzentration in den Testes im Vergleich zu anderen Organen einher (WEITZEL et al. 1990).

Die Genexpression der cGPx unterliegt einer speziellen Regulation. Sowohl die mRNA- als auch die Protein-Konzentration bzw. Aktivität der cGPx werden durch den Selenstatus massiv reguliert. Ein Selenmangel führt zur Interpretation des UGA-Sec-Codons als Stopcodon (MORIARTY et al. 1998, WEISS und SUNDE 1998), was den Abbau der cGPx-mRNA durch Ribonucleasen induziert. Dabei handelt es sich um den gleichen Prozess (nonsense-vermittelter Zerfall), mit dem mutante mRNA durch vorzeitige Stopcodons zerstört wird. Umgekehrt kann die cGPx-mRNA-Synthese durch eine Selensupplementation gesteigert werden, indem der nonsense-vermittelte Zerfall zum Teil aufgehoben wird.

Das SECIS-Element und die 3'UTR sind nicht in die spezifische Selenregulation der cGPx involviert. Für die Selenregulation der cGPx-Genexpression muss das Sec-Codon (UGA) innerhalb der ersten codierenden Region (Exon 1) lokalisiert sein. Auch das Intron und die Lokalisation des UGA-Codons in Relation zum Intron sind für die Selenregulation der mRNA-Stabilität und der maximalen cGPx-Expression entscheidend (WEISS und SUNDE 1998).

Das cGPx-Protein fungiert als eine Art Se-Speicher. Dieser kommt bei marginaler Se-Versorgung den in der Hierarchie höher angesiedelten Selenoproteinen durch den beschriebenen Regulationsmechanismus zugute. Bei adäquater Se-Versorgung wird Selen in die cGPx eingebaut und dadurch die Konzentration an freiem und möglicherweise toxischem Selenid in der Zelle niedrig gehalten (SUNDE 1994).

2.4 Glutathionmetabolismus

2.4.1 Glutathion

Glutathion (γ-Glu-Cys-Gly) ist mit Konzentrationen von 0,5-10 millimolar das häufigste intrazelluläre Thiol. Das Tripeptid stellt in seiner reduzierten Form (GSH) den wichtigsten Schutzfaktor der Zellen vor oxidativem Stress dar und erfüllt im Stoffwechsel vielfältige biologische Funktionen. Dabei kann GSH reversibel zu Glutathiondisulfid (GSSG) oxidiert werden, wobei die reduzierte Form des Glutathions intra- und extrazellulär deutlich überwiegt (MEISTER und TATE 1976). Das oxidierte Glutathion wird durch das Flavoenzym Glutathionreduktase (GR) regeneriert (2.4.2).

Abbildung 4: Glutathion (γ-L-Glutamyl-L-Cysteinylglycin)

Glutathion wird hauptsächlich in der Leber gebildet und als GSH freigesetzt (BARTOLI und SIES 1978). Die Synthese erfolgt in zwei Schritten: Zuerst wird unter ATP-Verbrauch aus L-Glutamat und L-Cystein durch die γ-Glutamylcysteinsynthetase γ-Glutamylcystein gebildet. Die Glutathionsynthetase bildet daraus mit Glycin ATP/Mg²⁺-abhängig Glutathion (SNOKE und BLOCH 1952, SNOKE et al. 1953, MEISTER und TATE 1976). Die Aktivität der γ-Glutamylcysteinsynthetase unterliegt als erster Syntheseschritt einer Feedbackkontrolle durch Glutathion (SNOKE et al. 1953, RICHMAN und MEISTER 1975). Bei der Ratte hat der GSH-Abfluss aus der Leber einen Anteil von 90 % am gesamten Glutathion in der Zirkulation (LAUTERBURG et al. 1984).

Der Abbau des Glutathions erfolgt durch die membrangebundene γ-Glutamyltranspeptidase, die den γ-Glutamylrest auf eine Aminosäure oder ein Peptid überträgt. Von der entstandenen γ-Glutamylaminosäure bzw. dem γ-Glutamylpeptid wird durch die zytosolische γ-Glutamylcyclotransferase 5-Oxo-L-prolin abgespalten. Letzteres wird durch die 5-Oxoprolinase unter ATP-Verbrauch in L-Glutamat umgewandelt. Das bei der γ-Glutamylabspaltung verbleibende Cysteinylglycin wird durch eine Dipeptidase in Cystein und Glycin gespalten (MEISTER und TATE 1976). Der Abbau des extrazellulären Glutathions erfolgt bei Ratte und Maus hauptsächlich in der Niere (HAHN et al. 1978, HINCHMAN UND BALLATORI 1990), bei anderen Labornagern hingegen in der Leber. Im Vergleich zu anderen Spezies weist die Ratte die höchste nierenspezifische und eine der geringsten leberspezifischen y-Glutamyltranspeptidase-Aktivitäten auf (IGARASHI et al. 1983, HINCHMAN und BALLATORI 1990). Daraus resultieren große tierartspezifische Unterschiede hinsichtlich der hepatischen GSH-Konzentrationen. Ratte und Maus weisen etwa doppelt so hohe GSH-Konzentrationen in der Leber auf wie das Meerschweinchen, und die hepatische GSH-Konzentration beim Hamster liegt zwischen Ratte und Maus (IGARASHI et al. 1983). Von der Niere werden die Aminosäuren anschließend zur Leber und anderen Organen transportiert und stehen dem Stoffwechsel zur Verfügung (HAHN et al. 1978). Bei der Ratte wird Glutathion zu einem geringeren Anteil auch in der Leber abgebaut. Dabei wird GSH in die Gallenkanälchen sezerniert und während der Passage durch die Gallenkanälchen hydrolysiert (ABBOTT und MEISTER 1986, BALLATORI et al. 1986). Die entstandenen Hydrolyseprodukte Cysteinylglycin und freie Aminosäuren werden innerhalb der Leber reabsorbiert und unterliegen somit einem Recycling (ABBOTT und MEISTER 1986, BALLATORI et al. 1986).

Während eines Selenmangels wurden im Plasma von Ratten auf das Doppelte angestiegene GSH-Konzentrationen beobachtet, wohingegen in der Leber keine Veränderungen festzustellen waren (BURK et al. 1978, HILL und BURK 1982, HILL et al. 1987). Die hepatische GSH-Konzentration wird von der Syntheserate und von der Abgabe ins Blut bestimmt. Im Selenmangel stieg die Aktivität der γ-Glutamylcysteinsynthetase in der Leber auf das Doppelte an, nicht aber der Glutathiongehalt in der Leber. Stattdessen wurde Glutathion aus der Leber ins Blut freigesetzt und führte zu einer Verdoppelung der Plasmaglutathionkonzentration (HILL und BURK 1982). Dieser durch den Selenmangel hervorgerufene Anstieg des Plasma-GSH-Spiegels führte zum 2,6fachen GSH-Abbau in der Niere. Da die im Vergleich zu anderen Organen hohe γ-Glutamyltranspeptidase-Aktivität der Niere im Se-Mangel unverändert blieb, ist von einem gesteigerten renalen GSH-Abbau aufgrund der verstärkten GSH-Anflutung auszugehen (HILL und BURK 1985).

2.4.2 Glutathionreduktase

Die Glutathionreduktase (GR) ist ein ubiquitäres Enzym, das die NADPH-abhängige Reduktion von GSSG zu GSH katalysiert:

 $GSSG + NADPH + H^{+} \qquad GR \qquad 2 GSH + NADP^{+}$

Das homodimere Flavoenzym, dessen Untereinheiten über eine Disulfidgruppe verbunden sind, weist bei einem Molekulargewicht von 125 kDa ein pH-Optimum von 7,0 mit NADPH+H⁺ als Substrat auf (CARLBERG und MANNERVIK 1975). Im Vergleich zu Mäusen, Hamstern, Meerschweinchen und Kaninchen finden sich im Plasma der Ratte sehr geringe GR-Aktivitäten, während die GR-Aktivität in den Erythrozyten mit der von Mäusen und Meerschweinchen vergleichbar ist (MANSO und WRÓBLEWSKI 1958). Bei Ratten führte ein Selenmangel zu keiner signifikanten Veränderung der GR-Aktivität in der Leber (BURK et al. 1978).

2.4.3 Glutathion S-Transferasen

Die Glutathion S-Transferasen (GST) sind eine Gruppe von Isoenzymen, die den nukleophilen Angriff des Glutathions auf elektrophile Substrate katalysieren und damit einen wichtigen Teil des Zellschutzes vor reaktiven Molekülen darstellen. Durch die katalysieren die GST eine Vielzahl von Reaktionen wie die Bildung von Thioethern, von Cyanaten aus organischen Thiocyanaten, Reduktion von Nitratestern, Isomerisierungen, Thiolysen und Disulfid-Austausch-Reaktionen. Sie besitzen außerdem eine selenunabhängige Peroxidaseaktivität (non-SeGPx) (HABIG und 1981). JAKOBY Durch Reduktion der Phospholipidhydroperoxide (PLOOH) unterbrechen die GST die autokatalytische Lipidperoxidation und stellen somit einen Schutz der Membranen vor oxidativem Stress dar (YANG et al. 2002).

Die zytosolischen GST liegen als Homodimere mit einem Molekulargewicht von 25 kDa pro Untereinheit vor. Jede der Untereinheiten besitzt eine Glutathion-Bindungsstelle sowie eine benachbarte hydrophobe Bindungsstelle für das elektrophile Substrat (VAN BLADEREN 2000). Die zytosolischen Isoenzyme wurden nach den Kriterien aminoterminale AS-Sequenz, enzymatische Eigenschaften und immunochemische Reaktionen in die Klassen α , μ und π eingeteilt (MANNERVIK et al. 1985, ARMSTRONG 1997). Die GST der Klasse α besitzen eine hohe non-SeGPx-Aktivität (MANNERVIK et al. 1985). Bei der Ratte weisen die GST insgesamt nur eine geringe non-SeGPx-Aktivität auf, was im Vergleich zu anderen Säugetieren eher die Ausnahme ist (OSHINO et al. 1990). Die GPx-Aktivität der GST α weist bei der Ratte nur 50 % der SeGPx-Aktivität gegenüber PLOOH und organischen Hydroperoxiden auf und kann H₂O₂ nicht als Substrat verwenden. In der Leber ist der Anteil an α -GST größer als in den extrahepatischen Geweben, in denen GST der μ - und π -Klasse dominieren. Der hohe GST-Anteil (3-5 %) am Leberprotein, insbesondere der α -Klasse, kompensiert die mäßige katalytische Effizienz der α -GST gegen PLOOH (YANG et al. 2002).

Eine GST-Aktivität wurde in nahezu allen Rattengeweben nachgewiesen, wobei vor allem Leber und Testes hohe Aktivitäten aufweisen (KETTERER et al. 1988). Hinsichtlich der Verteilung der Isoenzyme bestehen zwischen den verschiedenen Geweben große Unterschiede. In der Niere werden GST der Klasse α reichlich exprimiert, die der Klasse μ dagegen kaum (KETTERER et al. 1988). Den größten Beitrag zur GPx-Aktivität gegen PLOOH liefern die α -GST der Leber, gefolgt von Niere und Testes (YANG et al. 2002).

Neben den zytosolischen GST wurden zwei mikrosomale Isoenzyme entdeckt (ARMSTRONG 1997). Die mikrosomale GST I liegt als Homotrimer vor und ist zum Großteil membrangebunden (WEINANDER et al. 1996). In der Leber der Ratte inhibiert sie die Lipidperoxidation (MOSIALOU et al. 1993). Die mikrosomale GST II weist eine signifikante Sequenzhomologie zum 5-Lipoxygenase-aktivierenden Protein und zur Leukotrien C₄-Synthase auf, wobei die Affinität des Substrates LTA₄ zur GST II deutlich geringer als zur LTC₄-Synthase ist (JAKOBSSON et al. 1996).

Während eines Selenmangels steigt die GST-Aktivität vor allem in der Leber, aber auch in Niere und Duodenalmukosa an und sinkt nach einer Se-Repletion wieder auf das Niveau adäquat versorgter Tiere ab (MASUKAWA et al. 1984, HILL et al. 1987). Unter oxidativem Stress wird teilweise eine Kompensation der mangelbedingt niedrigen SeGPx durch die non-SeGPx angenommen (LEE et al. 1981b, MASUKAWA et al. 1984, REFFETT et al. 1986). Bei der Ratte werden die in der Leber gebildeten Glutathion *S*-Konjugate zuerst in die Galle und bei höheren Konzentrationen an den systemischem Blutkreislauf abgegeben (WAHLLÄNDER und SIES 1979). Die γ -Glutamyltranspeptidase spaltet zuerst den Glutamylrest ab, eine Dipeptidase anschließend das Glycin, und das verbleibende Cystein wird N-acetyliert, um als Mercapurat ausgeschieden zu werden (van BLADEREN 2000).

2.5 Katalase

Die Katalasen gehören wie die Peroxidasen und die Superoxiddismutasen (SOD) zu den antioxidativen Enzymen, die reaktive Sauerstoffverbindungen detoxifizieren können. Die Katalase ist die Hauptkomponente in den Peroxisomen nahezu aller Rattengewebe (BAUDHUIN et al. 1965) und bei dieser Tierart ausschließlich peroxisomal lokalisiert (YAMAMOTO et al. 1988). Das Enzym besteht aus 4 identischen Untereinheiten, deren aktives Zentrum eine Fe(III)-Protoporphyringruppe darstellt. Das 240 kDa große Protein besitzt zwei verschiedene Aktivitäten mit unterschiedlichen kinetischen Charakteristika.

(1) $CAT-Fe(III) + H_2O_2 \rightarrow CAT-Fe(V)-O(Produkt I) + H_2O$

(2)
$$CAT-Fe(V)-O + H_2O_2 \rightarrow CAT-Fe(III) + H_2O + O_2$$
 (katalytische Akt.)

Die für die biologische Funktion entscheidende Reaktion ist die Bildung des aktiven Zwischenproduktes (Produkt I). Der katalytische Weg der Katalase verläuft über die Reaktionen (1) und (2), der peroxidative Weg über die Reaktionen (1) und (3). Bei geringer H₂O₂-Konzentration (< 10⁻⁴ M) sowie bei hohen Ethanolkonzentrationen überwiegt der peroxidative Weg (DEISSEROTH und DOUNCE 1970, CHANCE et al. 1979). In den Erythrozyten verursacht die Autoxidation des Hämoglobins den Hauptteil der H₂O₂-Produktion, indem neben Methämoglobin das Superoxidanion entsteht, welches durch die SOD zu H₂O₂ weiter reagiert. Die H₂O₂-Konzentration in den Erythrozyten liegt im Gleichgewichtszustand mit ungefähr 2 x 10⁻¹⁰ M sehr niedrig. Die Entgiftung des H₂O₂ erfolgt in den Erythrozyten daher durch die CGPx, deren kritische H₂O₂-Konzentration unter der Katalase liegt (COHEN und HOCHSTEIN 1963, GIULIVI et al. 1994).

Nach einem dreimonatigen Selenmangel stieg der Katalasegehalt in der Leber von Ratten auf das 2,44fache versorgter Tiere an, weshalb eine Kompensation des GPx-Abfalls vermutet wurde (BURK et al. 1978). Auf die Katalaseaktivität hatte ein Selenmangel aber keinen Einfluss. Erst eine supranutritive Eisenzufuhr und insbesondere ein zusätzlicher Vitamin E-Mangel führten in der Leber von Ratten zu einer erhöhten Katalaseaktivität (LEE et al. 1981b).

3 Experimenteller Teil

3.1 Zielsetzung und Versuchsplan

Ziel vorliegender Studie war die Untersuchung der Repletionseffizienz der Selenverbindungen Natriumselenat, Natriumselenit, Selenomethionin und Ebselen bezüglich Genexpression und Aktivitäten selenabhängiger Enzyme am Modelltier Ratte. Hierfür wurden insgesamt 180 männliche entwöhnte Ratten (Wistar Unilever, Harlan Winkelmann GmbH, Borchen, Deutschland) auf 6 Versuchsgruppen aufgeteilt (Abbildung 5). Vier Gruppen à 36 Tiere erhielten für das Erreichen einer Selenmangelsituation (Depletion) zunächst 10 Wochen lang ein selenarmes Basisfutter (Tabelle 1). In der anschließenden vierwöchigen Repletionsphase bekamen diese Tiere das Basisfutter mit einer Selenzulage in Höhe von 200 µg/kg als Selenat, Selenit, Selenomethionin (SeMet) oder Ebselen. Über die gesamte Versuchsdauer wurden eine mit selenarmem Basisfutter gefütterte Negativkontrollgruppe und eine mit Selenat supplementierte Positivkontrollgruppe à 18 Tiere mitgeführt.

Abbildung 5: Versuchsdesign: Angegeben ist die zum jeweiligen Zeitpunkt geschlachtete Anzahl Tiere.

Versuchsbegleitend wurde den Tieren der Positiv- und Negativkontrolle wöchentlich Blut aus der Schwanzvene entnommen, um die plasmatische Glutathionperoxidase und die zelluläre GPx im Hämolysat zu bestimmen. Zusätzlich wurden die zootechnischen Parameter Futteraufnahme, Lebendmasseentwicklung und Futterverwertung erfasst.

Zu Beginn (0d) und nach 2, 5, 8, 14, 21 und 28 Tagen der Repletionsphase wurden aus jeder Gruppe 6 Tiere getötet, um die Effizienz der Repletion zu charakterisieren.

3.2 Versuchsfutter

Auf der Grundlage von Torulahefe als einem besonders selenarmen Proteinträger wurde ein selenarmes Basisfutter konzipiert (Tabelle 1), das den Anforderungen des NRC (1995) sowie des "American Institute of Nutrition" (AIN-93 G) (REEVES et al. 1993) für wachsende Ratten und Mäuse entspricht. Die natürlichen Gehalte der Hefe an Calcium (6,5 g/kg), Kalium (13 g/kg), Phosphor (14 g/kg) und Magnesium (1,2 g/kg) wurden bei den Vitamin- und Mineralstoffvormischungen berücksichtigt. Aufgrund des geringen Gehaltes an Thioaminosäuren in der Hefe wurde DL-Methionin ergänzt. Das NRC (1995) empfiehlt einen RRR-α-Tocopherol-Gehalt von 18 mg/kg Futter. Im Selenmangel ist ein RRR-α-Tocopherol/PUFA-Verhältnis von 0,30 bei Ratten ausreichend, um einem Vitamin E-Mangel vorzubeugen (HAKKARAINEN et al. 1986). Um kompensatorische Einflüsse des Vitamin E auf den Selenmangelzustand zu vermeiden, wurde eine Mischung aus Sojaöl und Kokosfett eingesetzt und auf den Zusatz von Vitamin E verzichtet. Selen wurde im Austausch gegen Maisstärke als Natriumselenat, Natriumselenit, DL-Selenomethionin oder Ebselen in Höhe von 200 µg/kg FM zugelegt.

Zur Herstellung des selenarmen Basisfutters wurden alle Komponenten bis auf das Fett in einem Edelstahlmischer vorgemischt und anschließend das Sojaöl und das zur Verflüssigung leicht erwärmte Kokosfett hinzugefügt. Diese Mischung stellte zugleich das selenarme Basisfutter und die Grundlage für die vier selensupplementierten Futter dar. Für Letztere wurden zunächst Selenvormischungen (3 mg/kg FM) aus Selenat, Selenit, DL-Selenomethionin und Ebselen auf Maisstärkebasis hergestellt. Die beiden Natriumsalze Selenat und Selenit wurden in dest. Wasser gelöst und mittels Zerstäuber auf die Maisstärke aufgesprüht, wodurch eine größere Homogenität erreicht wurde. Selenomethionin und Ebselen wurden trocken eingemischt.

Komponente	g/kg FM	
Torula-Hefe ^a	300	
Cellulose ^b	50	
Saccharose	100	
Sojaöl ^c	30	
Kokosfett	20	
Mineralstoffe ^d	35	
Vitamine ^e	10	
DL-Methionin	3	
Cholinchlorid 50 %	2	
Maisstärke	450	
Summe	1000	

Tabelle 1: Zusammensetzung des selenarmen Basismischfuttermittels

^aAttisholz Torula utilis Hefe, Cellulose Attisholz, Luterbach, Schweiz

^bArbocel[®] BWW 40 (200µm, reine Cellulose) und FTC 200 (300µm, 20 % Lignin) im Verhältnis 1:1, Rettenmaier & Söhne, Rosenberg, Deutschland

^cAnalysierter nativer Vitamin E-Gehalt (mg/kg FM): α-Tocopherol 123, γ-Tocopherol 553, δ-Tocopherol 190 (1 mg RRR- α -Tocopherol = 4 mg RRR- γ -Tocopherol = 100 mg RRR- δ -Tocopherol), PUFAs in %: Linolsäure 54,2; Linolensäure 7,70

^dMineralstoffe (mg/kg FM): CaCO₃ 7490; Kaliumcitrat 1940; MgSO₄ x 7 H₂O 2310; NaCl 2590; Eisencitrat 153; MnSO₄ x H₂O 31; ZnSO₄ x 7 H₂O 132; CuSO₄ x 5 H₂O 24; Kl 0,26; (NH₄)₂MoO₄ x 2 H₂O 0,28; KCr(SO₄)₂ x 12 H₂O 9,60; NaF 2,20; Na₂SiO₃ x 9 H₂O 51; LiCl 0,61; H₃BO₃ 2,90; NiSO₄ x 6 H₂O 2,20; NH₄VO₃ 0,23

^eVitamine (mg/kg FM): Nicotinsäure 30; Ca-D-Pantothenat 15; Pyridoxinhydrochlorid 6; Thiaminmononitrat 5; Riboflavin 6; Folsäure 2; Menadion 0,90; D-(+)-Biotin 0,20; Cobalamin 0,025; Retinol 1,20 (4000 IU); Cholecalciferol 0,025 (1000 IU)

3.3 Versuchstierhaltung und Probengewinnung

Zu Versuchsbeginn wiesen die Ratten ein durchschnittliches Anfangsgewicht von $40,8 \text{ g} \pm 2,78 \text{ g}$ auf. In Makrolonkäfigen wurden jeweils drei Tiere zusammen unter standardisierten Bedingungen (22 °C, 55 % Luftfeuchte, 12 h Hell-Dunkel-Rhythmus) gehalten. Futter und dest. Wasser standen den Tieren *ad libitum* zur Verfügung. Die Ratten wurden wöchentlich morgens nach 12-stündiger Nüchterung gewogen, um Gewichtsschwankungen durch die Digesta zu vermeiden. Die wöchentliche Futteraufnahme wurde pro Käfig erfasst.

Zur Probengewinnung wurden die Ratten nach CO₂-Betäubung (Trockeneis im Exsikkator) dekapitiert. Das Blut wurde heparinisiert und der Hämoglobin- und Hämatokritbestimmung unterzogen. Die Organe und Gewebe wurden entnommen, sofort auf Trockeneis schockgefroren und bei -80 °C bis zur weiteren Analyse gelagert.

Als Muskelgewebe wurde grobsichtig das Muskelpaket der rechten Hinterlaufrückseite entnommen.

3.4 Probenaufbereitung

3.4.1 Plasma und Hämolysat

Das bei der Schlachtung in heparinisierten PP-Zentrifugenröhrchen aufgefangene Blut wurde bei 2.540 x g und 4 °C für 10 min zentrifugiert (Heraeus Varifuge RF) und das Plasma durch Abnehmen des Überstandes gewonnen. Die verbleibenden Blutbestandteile wurden zur Hämolysatgewinnung mit demselben Volumen aqua dest versetzt, mit einem Wirbelmischer gemischt und über Nacht bei -80 °C tiefgefroren. Nach langsamem Auftauen auf Eis wurde erneut bei 2.540 x g und 4 °C für 15 min zentrifugiert, anschließend das Hämolysat als Überstand abgenommen und bei -80 °C bis zur weiteren Analyse gelagert.

3.4.2 Aufarbeitung der Gewebeproben

Zur Herstellung der Gewebehomogenate für die Enzymanalytik wurde bei paarig angelegten Organen jeweils der rechte Teil und bei der Leber der *Lobus sinister lateralis* verwendet. Wenn nicht anders beschrieben, wurden 0,5 g der bei -80 °C tiefgefrorenen Organe mit 10 mM TRIS-Puffer (Tris-(hydroxymethyl)-aminomethan mit 1 M NaOH, pH 7,4) mit einem Dispergiergerät (Miccra RT) auf höchster Stufe homogenisiert. Die Homogenate (1:10 (w/w)) wurden bei 11.950 x g und 4 °C für 10 min zentrifugiert (Sorvall[®] RC5C) und der Überstand bis zur weiteren Analyse bei -80 °C tiefgefroren.

3.4.3 Darm und Darminhalt

Aus den bei -20°C gelagerten Rattenrestkörpern wurde nachträglich der Darm von jeweils 3 zufällig ausgewählten Tieren der Selenat-, SeMet-, Ebselen- und der Negativkontrollgruppe entnommen. In Darmgewebe und Digesta wurde die Selenkonzentration bestimmt (Abschnitt 3.5.3).

3.5 Material und Methoden

3.5.1 Weender Analyse des Versuchsfutters

Die Analyse der Rohnährstoffe in den Versuchsdiäten erfolgte nach dem Methodenhandbuch des Verbandes Deutscher Landwirtschaftlicher Untersuchungsund Forschungsanstalten (VDLUFA) (NAUMANN und BASSLER 1997).

3.5.1.1 Trockensubstanz und Rohasche

Der Trockensubstanzgehalt der Versuchsfutter wurde durch Trocknung von 5 g Probe für 4 Stunden bei 103 °C bestimmt (VDLUFA 3.1). Zur Ermittlung des Rohaschegehaltes wurden 5 g Probe über Nacht bei 550 °C verascht (VDLUFA 8.1).

3.5.1.2 Rohprotein

Der Rohproteingehalt wurde nach der Dumas-Verbrennungsmethode mit Hilfe eines Stickstoffanalysators (Vario MAX CN, Elementar Analysensysteme, Hanau) ermittelt. Nach der Verbrennung von 250 mg Probe unter Sauerstoffüberschuss bei 830 °C wurden die Verbrennungsgase mittels Helium als Trägergas zum Reduktionsofen transportiert, wo die gebildeten Stickoxide bei 900 °C mit Wolfram als Katalysator zu molekularem Stickstoff reduziert wurden. Nach weiterer Gasreinigung im Trägergas wurde der Stickstoff in einem Wärmeleitfähigkeitsdetektor detektiert und mit dem Faktor 6,25 auf Rohprotein umgerechnet (VDLUFA 4.1.2). Bei der Methode nach Dumas wird im Gegensatz zum Kjehldahlverfahren auch anorganischer Stickstoff erfasst, so dass der Rohproteingehalt gegebenenfalls etwas höher liegt.

3.5.1.3 Rohfett

Für die Rohfettbestimmung nach BASSLER und PUTZKA (1984) wurden 3 g Probe mit siedender 4 N HCl für 1 h aufgeschlossen, abgekühlt und nach Zusetzen von Kieselgur (Celite 545, Roth) filtriert. Der getrocknete Rückstand wurde mit n-Hexan 2,5 h in einem Extraktionsapparat (Extraction System B-811, Büchi, Schweiz) nach dem Prinzip einer Soxhlet-Henkel-Apparatur extrahiert. Nach dem Abdampfen des Lösungsmittels wurde der Rückstand für 1,5 h bei 100 °C getrocknet, ausgekühlt und zurückgewogen (VDLUFA 5.1.1 b).

3.5.1.4 Rohfaser

Für die Rohfaserbestimmung wurden 3 g Probe nacheinander mit siedender 5 %iger H_2SO_4 und 5 %iger KOH behandelt. Der jeweilige Rückstand wurde mit Aluminiumoxidwatte filtriert und mit heißem Wasser nachgewaschen. Die Aluminiumoxidwatte wurde zweimal mit Aceton gewaschen, bei 140 °C getrocknet, gewogen, 2 h bei 700 °C verascht und wieder gewogen. Der Masseverlust beim Veraschen entspricht dem Rohfasergehalt der Probe (VDLUFA 6.1.3).

3.5.2 Bruttoenergie

Die Bruttoenergie des Versuchsfutters wurde in einem nach dem adiabatischen Prinzip arbeitenden Bombenkalorimeter (IKA[®]-Kalorimeter C400 adiabatisch) bestimmt.

3.5.3 Selenkonzentration im Versuchsfutter und in den Geweben

Die Bestimmung der Selenkonzentration in den Versuchsfuttern, im Vollblut, Plasma und in ausgewählten Geweben erfolgte mittels Atomabsorptionsspektrometer (Flammen-AAS, Thermo S2 AA System). Für die Versuchsfutter wurden 0,6 g und für Plasma, Vollblut und die Gewebeproben je nach erwarteter Konzentration 0,6-1,8 g Einwaage gewählt. Die Niere wurde aufgrund ihrer heterogenen Anatomie vor der Einwaage mit dest. Wasser (1:2) homogenisiert (Dispergiergerät Miccra RT), wodurch eine geringere Varianz der Ergebnisse erreicht wurde. Um das in den Proben enthaltene Selen vollständig zu Se^{+VI} zu oxidieren, wurden die Proben in säureresistenten Teflongefäßen mit 3 mL 65 %iger HNO₃ und 1 mL 30 %igem H₂O₂ versetzt und bei kontinuierlicher Rotation für 30 min in einem Mikrowellengerät (MLS 1200 mega) nach folgendem Programm aufgeschlossen:

Leistung [%]	25	0	25	35	50	25	Ventilation
Leistung [W]	250	0	250	350	500	300	0
Zeit [min]	3	1	8	5	5	5	10

Tabelle 2: Zeit- und Temperaturprogramm des Mikrowellenaufschlus	ses
--	-----

Nach dem Abkühlen wurden die Aufschlüsse in 20 mL aqua dest aufgenommen und durch aschefreie Blaubandfilter (Schleicher & Schuell 589/3) filtriert. Zur Reduktion des Se^{+VI} auf die Oxidationsstufe +IV wurden 5 mL des Aufschlusses mit 4 mL 37 %iger HCI im Wasserbad bei 80 °C für 20 min inkubiert. Mit 0,5 mL 1,4 M Amidoschwefelsäure wurden nitrose Gase gebunden, die ansonsten bei der Messung

zu Interferenzen führen können. Nach dem Abkühlen wurde mit 37 %iger HCI (w/v) auf 10 mL aufgefüllt. Mit einem dem AAS vorgeschalteten kontinuierlichem Fließinjektionssystem (Philips PU 9360 vapour system) wurden ca. 7 mL der sauren Selenlösung (Se^{+IV}) angesaugt, automatisch mit ca. 3 mL 0,2 %igem NaBH₄ in 0,05 %iger NaOH versetzt und somit zu Selenhydrid (Se^{-II}) reduziert. In einem Argonstrom wurde das Selenhydrid in die Quarzküvette des AAS geleitet, in der das Selen durch eine Luft-Acetylenflamme bei mindestens 700 °C atomisiert. Die Messung der Absorption des atomisierten Selens erfolgte mit folgenden Parametern:

AAS		Hydridsystem	
Wellenlänge:	196,0 nm (² H)	Argonfluss:	300 mL/min
Spaltbreite:	0,5 nm	Stabilisierungszeit:	40 sec
Analysenzeit:	10 sec	Verzögerungszeit:	50 sec
Lampenstärke:	10 mA (100 %)		
Flussrate:	1 L/min		
Flamme:	50 mm		

Tabelle 3:Parameter des Hydrid-AAS-Systems zur Bestimmung der
Selenkonzentration

Die Selenkonzentration der Proben wurde aus einer täglich frisch angesetzten Se^{+IV}-Eichkurve (Selendioxid, 1000 mg/L, Merck) mittels linearer Regression berechnet. Als Qualitätskontrolle wurde NIST-Leber 1577 b (National Institute of Standards and Technology, Gaithersburg, USA) mit einem zertifizierten Gehalt von 0,73 mg Se/kg verwendet, deren Wiederfindung bei ± 10 % lag. Darüber hinaus wurden mehrmals täglich institutseigene, an NIST-Standards abgeglichene Referenzproben sowie einzelne Eichpunkte mitgemessen. Die Bestimmungsgrenze lag in den Futterproben bei 0,015 mg/kg und variierte in den Blut- und Gewebeproben zwischen 0,015 und 0,040 mg/kg.

3.5.4 Mineralstoffe im Versuchsfutter

Zur Bestimmung der Mineralstoffkonzentrationen wurden die Proben über Nacht bei 450 °C trocken verascht, mit 10 mL 3 N HCI über dem Wasserbad erhitzt, anschließend durch aschefreie Blaubandfilter (Schleicher & Schuell 589/3) filtriert und mit aqua dest auf 100 mL aufgefüllt. Aus diesen Aschelösungen (0,3 N HCI) wurden mittels ICP-AES-System (Inductively Coupled Plasma - Atomic Emission

Spectrometry; Unicam 701 Emission Spectrometer) die Konzentrationen an Calcium, Phosphor, Magnesium, Eisen, Kupfer, Zink und Mangan gemessen.

3.5.5 Eisenkonzentration in Leber, Niere und Vollblut

Zur Bestimmung der Eisenkonzentration in den Proben wurden die Aufschlüsse aus der Selenbestimmung verwendet. Zur Eisenbestimmung wurden die Aufschlüsse direkt vom AAS angesaugt und in die Luft-Acetylenflamme geleitet, in der das vorhandene Eisen bei einer Temperatur von mindestens 700 °C atomisiert wurde. Die Messung der Absorption des atomisierten Eisens erfolgte mit folgenden Parametern:

Tabelle 4: Parameter des AAS-Systems zur Bestimmung der Eisenkonzentration

Wellenlänge:	248,3 nm (² H)	Lampenstärke:	15 mA (75 %)
Spaltbreite:	0,2 nm	Flussrate:	0,9 l/min
Analysenzeit:	3 sec	Flamme:	100 mm

Aus einer Eisennitrat-Stammlösung (Fe^{+III}, 1000 mg/L, Merck) wurden Fe^{+III}-Standards angesetzt, um die Eisenkonzentration durch lineare Regression aus der Eichkurve zu berechnen. Als Qualitätskontrolle wurde NIST-Leber 1577 b mit einem zertifizierten Gehalt von 184 mg/kg und einer Wiederfindung von 96 % gemessen. Die Bestimmungsgrenze lag bei 0,05 mg/kg.

3.5.6 Vitamin E-Konzentration im Sojaöl und im Versuchsfutter

Zur Konzeption des Versuchsfutters wurde zunächst der native Vitamin E-Gehalt im Sojaöl bestimmt und für die Herstellung des Versuchsfutters für ausreichend befunden. Die α -, γ - und δ -Tocopherolkonzentrationen wurden nach der Methode von VATASSERY und SMITH (1987) mittels Hochdruck-Flüssigchromatograhie (HPLC) gemessen.

Für die Analyse des Sojaöls wurden 100 μL Öl mit 10 mL Hexan gut gemischt und anschließend 200 μL der Hexanphase abgenommen. Diese wurde unter Stickstoff bei 40 °C in einem Heizblock (Techne SC 3 Sample-Concentrator Dry-Block) eingedampft. Der Rückstand wurde in 1 mL Methanol mit 0,05 % Butylhydroxytoluen (BHT) aufgenommen, in ein Autosampler-Gefäß (GTG 8004-WM-n) gefüllt und mittels C18-Reverserd-Phase-HPLC mit Fluoreszenz-Detektion (Tabelle 5) analysiert. Als Fließmittel wurde ein Gemisch aus 980 mL Methanol und 20 mL nanopure (0,2 μm)-

filtriertem aqua dest eingesetzt.

Von den Futtern wurden jeweils 0,5 g in Methanol (90 % mit 2 % ∟-Ascorbinsäure) aufgenommen mit 10 mL Hexan extrahiert. Nach dem Zentrifugieren bei 13.000 x *g* für 10 Minuten wurden 200 µL der Hexanphase abgenommen und in gleicher Weise wie das Sojaölextrakt eingedampft, in Methanol (0,05 % BHT) aufgenommen und zur HPLC-Analyse eingesetzt.

Die Retentionszeiten betrugen für δ -Tocopherol 5,4 min, für γ -Tocopherol 6,3 min und für α -Tocopherol 7,3 min. Die Gehalte an α -, γ - und δ -Tocopherol wurden mittels einer HPLC-Software (Merck-Hitachi, HSM 7000) über eine externe Eichkurve ermittelt.

Die HPLC-Anlage war wie folgt eingestellt:

HPLC- Komponente	Bedingungen an der HPLC
Säulenofen	Merck/Hitachi T-6300 Column Thermostat; Temperatur: 40 °C
Säule	Merck LiChroCART [®] 250-4 Purospher [®] RP-18 endcapped (5 μ m)
Vorsäule	Merck LiChroCART [®] , 4-4 LiChrospher [®] 100 RP-18 endcapped (5 μ m)
Pumpe	Merck/Hitachi L-6200A Intelligent Pump; Fließgeschwindigkeit 1,7 mL/min, 180 bar
Fluoreszenz- Detektor	Merck/Hitachi L-7480 UV-VIS-Detector; Extinktion: 290 nm, Emission: 325 nm, Empfindlichkeit: 1
Autosampler	Merck/Hitachi AS 4000 Intelligent Autosampler; Einspritzvolumen: 100 μL

Tabelle 5: Parameter an der HPLC zur Bestimmung von Vitamin E

3.5.7 Hämoglobingehalt und Hämatokritwert

Die Hämoglobinkonzentration (Hb) wurde unter Verwendung eines Testsatzes (Merckotest Hämoglobin, Merck) nach der Cyanhämoglobinmethode (VAN KAMPEN und ZIJLSTRA 1961) bei 546 nm photometrisch bestimmt. Es wurden jeweils drei Wiederholungsmessungen vorgenommen.

Zur Bestimmung des Hämatokritwertes (Hk) wurden drei heparinisierte Hämatokritkapillaren je Tier mit Vollblut gefüllt und für 15 min bei 16.060 x g zentrifugiert (Mikro 20, Hettich-Hämatokrit). Anhand einer Schablone wurde der Hk-Wert abgelesen.

3.5.8 Selenoenzyme

Zur Berechnung der spezifischen Enzymaktivitäten wurden die gemessenen Aktivitäten (U/L) auf den Proteingehalt (g/L) bezogen.

3.5.8.1 Zelluläre und plasmatische Glutathionperoxidase

Die Aktivität der selenabhängigen Glutathionperoxidase (cGPx) wurde nach der von PAGLIA und VALENTINE (1967) entwickelten und durch LAWRENCE und BURK (1976) modifizierten Methode bestimmt. Die cGPx katalysiert die Reduktion von H₂O₂ durch reduziertes Glutathion (GSH). Die Glutathionreduktase (GR) katalysiert NADPH-abhängig die Reduktion des entstandenen oxidierten Glutathions (GSSG) zu zwei Molekülen GSH:

 $H_{2}O_{2} + 2 \text{ GSH} \xrightarrow{\text{GPx}} 2 H_{2}O + \text{GSSG}$ $GSSG + \text{NADPH} + \text{H}^{+} \xrightarrow{\text{GR}} 2 \text{ GSH} + \text{NADP}^{+}$

Bis auf den Kaliumphosphatpuffer wurden alle Lösungen täglich frisch angesetzt. Die als Substrat verwendete 5,57 mM H₂O₂-Lösung wurde auf Eis gelagert. 50 µL Gewebehomogenat oder Plasma wurden mit 45 mM Kaliumphosphatpuffer (pH 7,0; 1,35 mM EDTA), 0,9 mM GSH, 0,9 U Glutathionreduktase und 0,09 mM NADPH + H⁺ in Halbmikroküvetten versetzt. Um die ausschließliche H₂O₂-Umsetzung durch die cGPx zu gewährleisten, wurde die Katalase durch Zugabe von 1 mM Natriumazid gehemmt. Die Reaktion wurde durch Hinzufügen von 0,278 mM H₂O₂ gestartet (Gesamtvolumen 1 mL) und die zur Enzymaktivität proportionale Extinktionsabnahme (Δ E) des NADPH + H⁺ bei 340 nm spektralphotometrisch (Beckman Spektrophotometer DU[®]-64) bei Raumtemperatur 1 min lang alle 15 Sekunden erfasst. Für den Blindwert wurde das Gewebehomogenat bzw. das Plasma durch 0,9%ige NaCl-Lösung ersetzt. Die Berechnung der Enzymaktivität erfolgte nach der folgenden Gleichung, wobei 1 Unit 1 µmol NADPH-Verbrauch pro Minute entspricht:

$$U/L = \frac{\Delta E * V}{\varepsilon * d * v}$$

V= Gesamtvolumen; $\varepsilon_{NADPH, 340 nm}$ = 6,22 L*mmol⁻¹*cm⁻¹; d= Schichtdicke (1 cm); v= Probenvolumen

Oxyhämoglobin (Fe²⁺) kann durch H_2O_2 zu Methämoglobin (Fe³⁺) oxidiert werden, welches NADPH + H⁺ oxidieren kann. Deshalb wurde das Hämolysat für die Messung der cGPx in den Erythrozyten im Verhältnis 1:10 mit Drabkin's Reagenz (0,3 mM K₃Fe(CN)₆; 0,4 mM KCN; 6 mM NaHCO₃) verdünnt. Dabei entsteht aus Hämoglobin das stabile Cyanhämoglobin. Der NADPH+H⁺-Verbrauch war somit ausschließlich auf die Aktivität der cGPx zurückzuführen.

3.5.8.2 5'-Deiodinase (D1)

Die 5'-Deiodinase katalysiert die Umwandlung von T₄ zu T₃. Die Messung des durch die DI aus T₄ produzierten T₃ basiert auf der Methode von BECKETT et al. (1989, 1992) und VISSER et al. (1975). Die dort verwendeten T₄-Konzentrationen wurden jedoch erheblich reduziert, um die damit verbundene Verunreinigung durch T₃ zu vermindern. Die Leberproben wurden mit der vierfachen Menge (w/w) 125 mM Kalium-Phosphat-Puffer (pH 7,4; 1 mM EDTA; 20 mM DTT) dispergiert und anschließend für 10 min bei 12.000 x g zentrifugiert. 4 x 150 µL des Homogenatüberstandes wurden nach 10minütiger Inkubation bei 37 °C im Wasserbad mit einer 11,6 µM L-Thyroxin-Lösung (in 1,5 mM KOH) zu einer Endkonzentration von 1,3 µM versetzt. Zur Korrektur der nichtenzymatischen T₃-Bildung wurden zwei Ansätze je Probe noch vor der T₄-Zugabe mit 400 µL eiskalten Ethanols (96 %) gefällt, auf einem Wirbelmischer gemischt und auf Eis gelagert (t₀). In den beiden verbliebenden Ansätzen wurde die T₄-Umsetzung nach weiterer Inkubation (10 min, 37 °C) durch 400 µL Ethanol gestoppt (t₁₀). Nach dem Abzentrifugieren des ausgefällten Proteins (10 min, 12.000 x g) erfolgte die T₃-Analyse im ethanolischen Überstand von t_0 und t_{10} in Doppelbestimmung mittels Festphasen-Radioimmunassay (Coat-A-Count Gesamt T₃, Diagnostic Products Corporation, Los Angeles, USA). Radioaktiv (¹²⁵I) markiertes T₃ konkurriert mit dem in den Proben enthaltenen T₃ um spezifische Antikörper. Im Gamma-Counter (PerkinElmer® Wallac Wizard 3", Norwalk, USA) wurde die Menge des radioaktiven ¹²⁵I über 1 min gemessen und die T₃-Konzentration der Proben über eine Eichkurve mit T₃-Standards (0,31 – 9,22 nmol/L) abgeleitet. Die Aktivität der 5'-Deiodinase wird in fmol T₃ ausgedrückt, das pro Minute und pro mg Protein aus dem zugesetzten T₄ gebildet wurde.

Zur Evaluierung der Methode wurde die T_3 -Bildung aus T_4 im Leberhomogenat eines Kontrolltieres in dreiminütigen Abständen dokumentiert, um einen linearen Verlauf über 12 min zu gewährleisten (Abbildung 6). Für die Korrektur des in den Proben

enthaltenen originären T₃ wurde über die gesamte Inkubationszeit ein Ansatz ohne T₄-Zugabe mitgeführt. Die T₃-Konzentration blieb über 12 min konstant. Zur Erfassung des T₃-Eintrags durch die T₄-Lösung (Blindwert) wurden in einem weiteren Ansatz 150 μ L Puffer statt Probe mit der T₄-Lösung versetzt und die T₃-Konzentration zu Beginn und nach 10 min gemessen. Auf die Mitführung dieses Blindwertes wurde nachfolgend verzichtet, da sich wiederholt keine Änderung der T₃-Konzentration zeigte.

Abbildung 6: T₃-Bildung aus T₄ durch die hepatische 5'-Deiodinase und originäres T₃ im Homogenat (1:5 (w/w)) eines Kontrolltieres (200 μg Se/kg FM), n=3. Die Fehlerbalken zu den jeweiligen Messpunkten sind kleiner als die Datenpunkte.

3.5.9 Glutathion (GSH/GSSG)

Die Bestimmung des Gehaltes an oxidiertem (GSSG) und reduziertem Glutathion (GSH) in der Leber erfolgte nach der von TIETZE (1969) entwickelten und durch GRIFFITH (1980) modifizierten Methode.

Bei der Bestimung des Gesamtglutathions (tGSH) wird das in der Probe enthaltene GSSG zunächst NADPH-abhängig durch die Glutathionreduktase zu GSH reduziert:

 $GSSG + NADPH + H^{+} \xrightarrow{GR} 2 GSH + NADP^{+}$

Durch Zugabe von DTNB überträgt GSH seinen Sulfhydryl-Wasserstoff auf DTNB und reagiert selbst mit einem weiteren GSH zu GSSG.

 Das gebildete GSSG wird durch die GR wieder zu 2 GSH reduziert, so dass GSH erneut mit DTNB reagiert.

Um die GSSG-Konzentration zu bestimmen, muss der beschriebenen Reaktion das originäre GSH entzogen werden, indem 2-Vinylpyridin an die Sulfhydrylgruppe des GSH bindet und GSH damit von der Reaktion ausschließt.

Die GSH-Konzentration wird rechnerisch aus der Gesamtglutathion- und der GSSG-Konzentration ermittelt.

Die mit 150 mM Phosphatpuffer (Na₂HPO₄-KH₂PO₄; 1 % BSA; pH 7,5) verdünnten Leberhomogenate wurden durch Zusatz von 5 % (w/v) Salicylsäure gefällt und 10 min (12.000 x *g*, 4 °C) zentrifugiert (Heraeus[®] Labofuge[®] 400 R). Der Überstand wurde mit 5 % (w/v) Triethanolamin neutralisiert sowie für die GSSG-Bestimmung zusätzlich mit 11,6 μ M 2-Vinylpyridin für 30 min inkubiert.

Es wurden täglich frisch 0,28 mM NADPH + H⁺, 6 mM DTNB und 10 U/mL GR jeweils in 125 mM Na₂HPO₄-KH₂PO₄-Puffer (6,3 mM EDTA) angesetzt. Die Reaktion des Glutathions in den Proben fand unter folgenden Reaktionsbedingungen statt: 196 μ M NADPH + H⁺, 600 μ M DTNB und 250 mU GR, und wurde spektralphotometrisch (Beckman Spektrophotometer DU[®]-64) über 3 min bei 412 nm verfolgt.

Die Glutathionkonzentrationen wurden mittels linearer Regression aus einer GSSG-Standardkurve abgeleitet.

3.5.10 Glutathion-S-Transferasen (GST)

Glutathion-*S*-Transferasen katalysieren eine Vielzahl von Reaktionen, in denen Glutathion als Nukleophil reagiert. Das Prinzip der Bestimmung nach HABIG et al. (1974) beruht auf einer direkten Änderung der Absorption des Substrates (1-Chloro-2,4-dinitrobenzol, CDNB) nach Konjugation mit Glutathion zu 1-(S-Glutathionyl)-2,4-dinitrobenzol. Dafür wurden die Leberhomogenate (1:10 in TRIS, w/w) mit 100 mM Kalium-Phosphat-Puffer (1 mM EDTA, pH 6,5) im Verhältnis 1:80 nachverdünnt. Bei 25 °C (Küvettentemperierer Cuvett-Therm) wurden 790 µL des Kalium-Phosphat-Puffers, 100 µL reduziertes Glutathion (10 mM) sowie 10 µL ethanolisches CDNB (100 mM) in der Küvette vorgelegt und die Reaktion durch Zugabe von 100 µL der verdünnten Probe gestartet. In 1 mL Gesamtvolumen reagierte die Probe mit 1 µM GSH und 1 µM CDNB. Die Zunahme der Absorption wurde bei 340 nm 1 min lang am Photometer (Varian Cary 50) gemessen. Jede Probe wurde in zwei Parallelen

bestimmt und über eine Eichkurve aus Ratten-GST-Standard ausgewertet. Eine Unit GST entspricht der Konjugation von 1 µmol CDNB mit GSH pro Minute bei pH 6,5 und 25 °C ($\epsilon_{GS-DNB, 340 \text{ nm}} = 9,6 \text{ L*mmol}^{-1} \text{cm}^{-1}$).

3.5.11 Peroxidative Aktivität der Katalase

Der verwendete Assay basiert auf der von JOHANSSON und BORG (1988) entwickelten und von WHEELER et al. (1990) automatisierten Methode. Die Katalase katalysiert zwei Reaktionen mit einem gemeinsamen Zwischenprodukt (CAT-H₂O₂), das durch Bindung von H₂O₂ an das Enzym entsteht.

Reagiert dieser Komplex mit einem weiteren H₂O₂-Molekül, entstehen Wasser und Sauerstoff (Katalaseaktivität). Bei Reaktion des Komplexes mit einem Protonendonator (AH₂) wie Methanol oder Ethanol wird Formaldehyd bzw. Acetaldehyd gebildet:

 $CAT-H_2O_2 + CH_3OH \longrightarrow CAT + 2 H_2O + H_2CO$ (peroxidative Aktivität)

Der aus Methanol gebildete Formaldehyd reagiert mit dem Chromogen Purpald[®] (4-Amino-3-hydrazino-5-mercapto-1,2,4-triazol) zu einem heterozyklischen Zweiring, der durch Oxidation mit Kaliumperiodat einen stabilen, violetten Farbstoff bildet *(Abbildung 7)*. Die Formaldehydkonzentration wurde bei 550 nm spektralphotometrisch bestimmt.

Abbildung 7: Reaktion von Formaldehyd mit Purpald[®]

Die 1:10 (w/w) Leberhomogenate wurden mit Kaliumphosphatpuffer (25 mM, pH 7,0) im Verhältnis 1:300 nachverdünnt. Die über 12 min stabile enzymatische Reaktion *(Abbildung 8)* wurde nach 10 min durch KOH beendet. Die Menge des gebildeten Formaldehydes wurde mittels linearer Regression anhand einer Formaldehyd-Standardkurve ermittelt.

Reagenz	Menge	Konzentration in der Küvette
Assay-Mix:	150 µL	
Kaliumphosphatpuffer (134 mM, pH 7,0)		80,4 µM
Methanol (45 %)		27,0 %
H ₂ O ₂ (0,238 %)		0,143 %
Leberhomogenat 10 min Inkubation bei 20 °C	100 µL	
Purpald [®] (25,3 mM in 2 M KOH) kurz mischen und 20 min bei 20 °C inkubieren	150 µL	9,49 µM
Kaliumperiodat (65,2 mM in 470 mM KOH) kurz mischen und nach 5 min Absorption des violetten Formaldehydadduktes bei 550 nm messen	50 µL	7,24 µM

Tabelle 6: Assay zur Bestimmung der peroxidativen Katalaseaktivität

Abbildung 8: Linearer Verlauf der Formaldehydbildung durch die Katalase im Leberhomogenat der Ratte über 12 min (n=3)

3.5.12 Triiodthyronin- (T₃) und Thyroxinkonzentration (T₄) im Plasma

Die Konzentrationen der Schilddrüsenhormone T_3 und T_4 im Plasma wurden mittels Festphasen-Radioimmunassay (Coat-A-Count Gesamt T_3 (¹²⁵I) und Coat-A-Count Gesamt T_4 (¹²⁵I), Diagnostic Products Corporation, Los Angeles, USA) bestimmt. Radioaktiv (¹²⁵I) markiertes T_3 bzw. T_4 konkurriert mit dem in den Proben enthaltenen T_3 bzw. T_4 um spezifische Antikörper. Die Menge des radioaktiven ¹²⁵I wurde im Gamma-Counter (PerkinElmer[®] Wallac Wizard 3", Norwalk, USA) über 1 min gemessen und die T₃- bzw. T₄-Konzentrationen der Proben über eine Eichkurve mit T₃- (0,31 – 9,22 nmol/L) bzw. T₄-Standards (6,4 - 309 nmol/L) abgeleitet.

3.5.13 Proteinbestimmung in Plasma, Hämolysat und den Gewebehomogenaten

Der Proteingehalt wurde nach BRADFORD (1976) bestimmt. Das in den Proben enthaltene Protein bildet mit dem Farbstoff Coomassie Blue G-250 innerhalb von 2 min einen für 1 h stabilen Protein-Farbstoff-Komplex. Der gebildete Komplex weist ein höheres Absorptionsmaximum (595 nm, blau) als der reine Farbstoff (495 nm, rot) auf. Die Absorption wurde bei 595 nm nach 15 min Inkubationszeit erfasst. Die Proteinkonzentrationen wurden aus einer Eichkurve aus Rinderalbumin (BSA)-Standards abgeleitet.

3.5.14 Thiobarbitursäurereaktive Substanzen

Um in der Leber eine mögliche Lipidschädigung durch den Selenmangel zu erfassen, wurden die thiobarbitursäurereaktiven Substanzen (TBA-RS) im Leberhomogenat fluorimetrisch nach GUTTERIDGE und TICKNER (1978) und GÜNTHER et al. (1994) bestimmt. Die bei der Autoxidation mehrfach ungesättigter Fettsäuren entstandenen primären Peroxide reagieren zu Endoperoxiden (PRYOR et al. 1976), die zu Malonaldehyd (MDA) abgebaut werden und mit 2-Thiobarbitursäure (TBA) unter Bildung eines fluoreszierenden Farbkomplexes reagieren (Abbildung 9). Dieser Farbkomplex kann mit Butanol extrahiert und im Fluorimeter gemessen werden.

Abbildung 9: Reaktionsprinzip der TBA-RS-Bestimmung (nach PRYOR et al. 1976)

Das Protein der Leberhomogenate wurde mit 5 % iger (w/v) Trichloressigsäure im Verhältnis 1:2 ausgefällt und für 5 min bei 4 °C und 13.000 x g abzentrifugiert. In ausgekochten Reagenzgläsern (0,22 M o-Phosphorsäure und 0,17 % ige (w/v) TBA-

Lösung, 1 Stunde) wurden 500 μ L des Überstandes mit demselbem Volumen 1 %iger TBA-Lösung und 50 μ L 0,5 %iger (w/v) ethanolischer BHT-SDS-Lösung versetzt. Nach gründlichem Durchmischen der Reagenzien auf einem Wirbelmischer wurden die Gläser verschlossen, für 15 min bei 100 °C im Wasserbad gekocht und anschließend auf Eis abgekühlt. Der Farbkomplex wurde durch Schütteln (30 sec) mit 3 mL n-Butanol extrahiert und die Phasen durch Zentrifugieren für 15 min bei 3.112 x *g* getrennt. In speziellen Fluorimeterküvetten wurde die Konzentration des Farbkomplexes in der Butanolphase im Fluorimeter (Perkin Elmer LS5, Extinktion 532 nm, Emission 553 nm, Spalt 5 nm) bei 25 °C gemessen.

Für die Eichkurve im Bereich $0 - 2,64 \mu$ M wurden MDA-Standards (1,1,3,3-Tetraethoxypropan = Malonaldehyd) hergestellt und in gleicher Weise wie der Homogenatüberstand behandelt. Als Blindwert wurde aqua dest. eingesetzt. Die Eichkurve und die TBA-RS-Werte in der Leber wurden in nmol/g Frischmasse angegeben.

3.5.15 Differenzielle Genexpressionsanalyse

Den für die Genexpressionsanalyse hergestellten Lösungen wurde Diethylpyrocarbonat (DEPC, unspezifischer RNAse-Inhibitor) in einer Konzentration von 0,1 % zugesetzt. Alle Lösungen und verwendeten Pipettenspitzen wurden für 1 h bei 120 °C und 1,4 bar autoklaviert. Die Eppendorf-Cups waren laut Hersteller RNAse-frei.

3.5.15.1 Isolierung der RNA aus der Leber

Die RNA aus der Leber wurde in Anlehnung an das von CHOMCZYNSKI und SACCHI (1987) beschriebene Guanidinthiocyanat-Phenol-Chloroform-Verfahren extrahiert. Dazu wurden die Lebern von jeweils drei Tieren einer Gruppe zu einer Gesamtmenge von 100 mg Leber gepoolt. Nach Zugabe von 600 μ L eines RNAse-hemmenden Homogenisierungspuffers (4 M Guanidinthiocyanat; 25 mM Tri-Natrium-2-citrat; 0,5 % N-Lauroyl-Sarcosin; 0,1 M 2-Mercaptoethanol) wurde der Probenpool vollständig dispergiert (Miccra RT). Anschließend wurde das Homogenat unter dem Abzug nacheinander mit 60 μ L 2 M Natriumacetatlösung (pH 4), 600 μ L gesättigter Phenollösung und 225 μ L eines 49:1-Gemisches aus Chloroform und Isoamylalkohol versetzt. Nach gründlichem Mischen für 1 min auf einem Wirbelmischer wurden die Proben 20 min auf Eis inkubiert, kurz aufgewirbelt und bei 5.896 x *g* und 2 °C für 40 min zentrifugiert (Heraeus[®] Labofuge[®] 400 R). Durch diesen Waschgang wurden
Protein- (mittlere Phase) und DNA-Kontaminationen (untere Phenolphase) eliminiert. Zur Fällung der in der oberen wässrigen Guanidinthiocyanat-Phase enthaltenen gelösten RNA wurden 600 μ L dieser Phase mit 600 μ L eiskaltem Isopropanol gemischt und bei -80 °C für 15 min und für weitere 2 h bei -20 °C gelagert. Nach langsamem Auftauen auf Eis wurde bei 13.792 x g und 2 °C für 30 min zentrifugiert und der Isopropanolüberstand abgegossen. Nach 10minütiger Lufttrocknung wurde das am Cup-Boden haftende RNA-Pellet zweimal mit je 1 mL 70 %igem Ethanol gewaschen, in einem Rotationsverdampfer (Savant AES 1010) für 30 min getrocknet, anschließend in 15 μ L DEPC-behandeltem Wasser gelöst und bei -80 °C tiefgefroren.

3.5.15.2 Einstellen der Konzentration und Bestimmung der Reinheit der RNA

Die Konzentration der isolierten RNA wurde durch Absorptionsmessung bei 260 nm in UV-Quarzküvetten (Hellma UV-6040) photometrisch bestimmt (Büchi 902 UV-VIS Plus) und durch Verdünnen mit DEPC-Wasser einheitlich auf eine Konzentration von ca. 2 μ g/ μ L eingestellt. Dazu wurden 2,5 μ L der RNA-Lösung in eine Vorlage von 1000 μ L DEPC-Wasser gegeben und die Absorption bei 260 nm gegen den Leerwert (1000 μ L DEPC-Wasser) gemessen. Die RNA-Konzentration wird mit Hilfe des RNA-spezifischen Extinktionskoeffizienten (1 OD₂₆₀ = 40 μ g/mL) wie folgt berechnet:

$$\mu g RNA / \mu L L \ddot{o}sung = \frac{\Delta E_{260} * 1002, 5 * 40}{1000 * 2, 5}$$

Die Reinheit der RNA wurde aus dem Verhältnis der Absorptionen von 2,5 μ L RNA-Lösung in 1000 μ L DEPC-Wasser gegen den Leerwert bei 260 und 280 nm berechnet. Der Quotient der Absorptionen bei 260 und 280 nm sollte zwischen 1,6 und 1,8 liegen, um Protein- und Phenolverunreinigungen ausschließen zu können.

3.5.15.3 Denaturierende Agarose-Gelelektrophorese

Mittels denaturierender Gelelektrophorese sollte die RNA in ihre einzelnen Fraktionen aufgetrennt werden. Für die Auftrennung nach Molekülgröße war vorher eine Denaturierung erforderlich, um intra- und intermolekularen Wechselwirkungen zwischen den RNA-Molekülen vorzubeugen. Dazu wurden die RNA-Isolate langsam auf Eis aufgetaut, 5 µL RNA (\approx 10 µg) mit 10 µL Formamid, 3,5 µL Formaldehyd und 2 µL TAE-Puffer (Tris-Acetat-EDTA; 0,8 M TRIS, 0,4 M Natriumacetat-trihydrat, 20 mM

EDTA, pH 7,4 mit konz. Essigsäure) versetzt und für 10 min bei 70 °C denaturiert (MyCycler[™], Biorad). Um eine Reassoziation der RNA-Stränge zu verhindern, wurden die Proben sofort auf Eis gekühlt. Anschließend wurden 4 µL Ladepuffer (50 % Glycerin, 1 mM EDTA, 0,25 % Bromphenolblau (w/w)) zum Absinken der Probe im Gelslot des Gels und zur Markierung der Lauffront sowie 1,5 µL Ethidiumbromidlösung (1 mg/mL) hinzugefügt. Ethidiumbromid lagert sich zwischen den Basen an und führt zum Fluoreszieren der RNA unter UV-Licht.

Für die Elektrophorese wurden 1,5 %ige Agarosegele mit TAE-Puffer (16 mM TRIS, 8 mM Natriumacetat-trihydrat, 0,4 mM EDTA, pH 7,4) hergestellt, indem der Agarose-TAE-Ansatz auf einer Magnetrühr-Heizplatte zum Sieden erhitzt und für ca. 30 sec aufgekocht wurde, um nach dem Abkühlen auf ca. 60 °C in ein Gießbett mit zwei eingehängten Slot-Kämmen gegossen zu werden. Nach 30-minütigem Abkühlen bei Raumtemperatur wurden die Kämme vorsichtig aus dem Gel gezogen. Das Gel wurde in eine mit TAE-Puffer (16 mM TRIS, 8 mM Natriumacetat-trihydrat, 0,4 mM EDTA, pH 7,4) befüllte Flachbett-Elektrophoresekammer (Biorad Subcell GT) eingesetzt, so dass es ca. 3 mm mit Puffer bedeckt war. Nach etwa 10 min Laufzeit zur Einstellung eines Gleichgewichts wurden die Proben in die Slots pipettiert und die Elektrophorese bei einer Spannung von 80-120 V je nach Größe des Gels für 30 min durchgeführt (Biorad Power Pac 200).

Die 18S- und die 28S-rRNA-Banden wurden vom Kamerasystem (SynGene, Gene Flash) als weiß leuchtende Balken dargestellt, wobei die Intensität der Bandenhelligkeit der RNA-Menge proportional war.

3.5.15.4 Reverse Transkription

Die isolierte RNA wurde mittels eines Kits (Biorad iSkript[™] cDNA Synthesis Kit) in cDNA umgeschrieben. Dazu wurde die isolierte Gewebe-RNA am Tag der reversen Transkription auf eine Konzentration von 1 µg/µL eingestellt und 1 µL der RNA (~1 µg) mit 1 µL iSkript[™] reverser Transkriptase (RNAse H⁺), 4 µL iSkript[™] Reaktionsmix aus Oligo-dT und Hexamer-Primern sowie 14 µL nuclease-freiem Wasser 5 min bei 25 °C, 30 min bei 42 °C und anschließend 5 min bei 85 °C inkubiert. Die so synthetisierte cDNA wurde anschließend auf 4 °C abgekühlt und mit 30 µL DEPC-Wasser verdünnt.

3.5.15.5 Amplifizierung der cDNA mittels PCR

Die von SAIKI et al. (1985) und MULLIS und FALOONA (1987) entwickelte Polymerase-Ketten-Reaktion (PCR) diente zur Vervielfachung der zu untersuchenden DNA-Sequenzen. Die drei aufeinanderfolgenden Reaktionen Denaturierung, Annealing (Anlagerung der Primer) und Extension (Verlängerung der Primer) werden bei der PCR zyklisch wiederholt. Als Primer dienen zwei kurze, einzelsträngige DNA-Moleküle (Oligonucleotide), die komplementär zu den Enden der zu vervielfältigenden Sequenz sind. Nach der Denaturierung der doppelsträngigen DNA lagern sich diese Primer an die einsträngige DNA an und werden durch eine thermostabile DNA-Polymerase in Gegenwart von Desoxynucleotiden (dNTPs) verlängert. Im nächsten Zyklus dienen die neusynthetisierten DNA-Stränge als Vorlage zur Synthese weiterer DNA-Stränge der Zielsequenz. Die Glycerinaldehydphosphat-Dehydrogenase (GAPDH) diente dabei als Vergleichsgröße.

Zur Amplifizierung der cDNA wurde ein Mastermix aus 15 µL Vorwärts- und 15 µL Rückwärtsprimer (jeweils 10 µM), 22,8 µL dNTPs (2 mM), 30 µL Reaktionspuffer MgCl₂ (20 mM), 217 µL DEPC-Wasser und 12 U Taq-Polymerase hergestellt. Von diesem Mastermix wurden 48 µL mit 2 µL cDNA (cGPx, PHGPx) bzw. 24 µL Mastermix mit 1 µL cDNA (GAPDH) versetzt und im PCR-Cycler (MyCycler[™], Biorad) 3 min bei 95 °C denaturiert. Anschließend wurde die cDNA in mehreren Zyklen vervielfältigt (*Tabelle* 7), wobei jeder Zyklus aus folgenden Phasen bestand:

Denaturierung:	45 sec, 95 °C
Annealing:	40 sec, 55 °C (cGPx) bzw. 57 °C (PHGPx)
Elongation:	55 sec, 72 °C

Nach dem letzten Zyklus schloss sich eine finale 2,5-minütige Elongationsphase bei 72 °C an, bevor die Proben auf 4 °C gekühlt wurden.

Gen	Primer	Sequenz	Fragment- größe (bp)	Zyklenzahl	
cGPx	vorwärts	TCA TTG AGA ATG TCG CGT CT	388	25 27 20	
	rückwärts	CCC ACC AGG AAC TTC TCA AA	500	20, 21, 20	
	vorwärts	ATG CAC GAA TTC TCA GCC AAG	461	26 28 30	
FIIGEX	rückwärts	GGC AGG TCC TTC TCT AT	401	20, 20, 30	
GAPDH	vorwärts	ACG GGA AGC TCA CTG GCA TG	202	26	
	rückwärts	CCA CCA CCC TGT TGC TGT AG	303	20	

 Tabelle 7:
 Primer für die Amplifizierung der cDNA (CHRISTENSEN et al. 2000)

3.5.15.6 Darstellung der PCR-Produkte mittels Agarose-Gelelektophorese

Zur Darstellung der PCR-Produkte wurden 1,5 %ige Agarosegele in TAE-Puffer (16 mM TRIS, 8 mM Natriumacetat-trihydrat, 0,4 mM EDTA, pH 7,4) mit 0,024 % Ethidiumbromid hergestellt. 6 µL des cGPx-PCR-Produktes bzw. 4 µL des GAPDH-Produktes wurden mit 2 µL Ladepuffer (50 % Glycerin, TAE-Puffer, 0,25 % Bromphenolblau (w/w)) in die Taschen des Gels gebracht und 30 min bei 80 V der Elektrophorese unterzogen. Die Fragmentgröße wurde durch einen im Agarosegel mitlaufenden Längenstandard (MBI Fermentas) kontrolliert. Die mit Ethidiumbromid markierten und im UV-Licht fluoreszierenden Banden konnten im Phosphorimager mit Hilfe eines computergestützten Kamerasystems (SynGene, Gene Flash) aufgenommen werden.

3.5.15.7 Messung der optischen Dichte und Normierung der Rohdaten

Die aufgenommenen Gele wurden zur Auswertung in ein Programm zur Erfassung optischer Dichten (SynGene, GeneTools) eingelesen. Die Banden wurden nach einer automatischen Hintergrundkorrektur markiert und die optische Dichte der Banden bestimmt. Die erfassten Intensitäten der PCR-Produktbanden wurden gegen die Zyklenzahl aufgetragen, bei der die PCR linear verlief.

In jedem Gel wurde das Housekeeping-Gen GAPDH als Standard mitgeführt, das in allen Geweben exprimiert und durch die Versuchsbedingungen nicht beeinflusst wird. Um die Unterschiede in den PCR-Produkten und den Gelen zu korrigieren, wurde aus den Signalintensitäten der zu untersuchenden Gene und dem Standard-Gen ein Quotient gebildet und die Ergebnisse somit auf den GAPDH-Standard normiert.

3.6 Statistische Auswertung

Die angegebenen Gruppenmittelwerte (M) und Standardabweichungen (SD) aus den Messwerten der einzelnen Tiere einer Gruppe wurden mit dem Tabellenkalkulationsprogramm Excel 2000 für MS Windows berechnet und graphisch dargestellt. Die Berechnung der Funktionen und des Bestimmtheitsmaßes (R²) erfolgten ebenfalls mit Excel 2000.

Die statistische Auswertung wurde mit dem Programm SPSS 14.0 für MS Windows durchgeführt. Mit der Prozedur UNIANOVA wurden die Mittelwerte der vier Repletionsgruppen miteinander verglichen. Die Prüfung auf Vorliegen der Varianzhomogenität erfolgte durch den *Levene*-Test ($p \ge 0.05$). Unter der Voraussetzung normalverteilter Residuen nach den Test von Kolmogorov-Smirnov $(p \ge 0.05)$ und SHAPIRO-WILK $(p \ge 0.01)$ wurden signifikante Unterschiede im Falle TUKEY-HSD-Test homogener Varianzen mit dem ermittelt. Bei fehlender Varianzhomogenität wurde bei gleicher Gruppengröße der Games-Howell-Test und bei unterschiedlicher Gruppengröße der Dunnett-T3-Test verwendet. Bei fehlender Normalverteilung der Residuen wurden als Ausreißer (DIXON 1953) ermittelte Tiere von den statistischen Analysen ausgeschlossen, der nichtparametrische KRUSKAL-WALLIS-Test angewendet oder bei gegebener Normalverteilung der Messwerte der Students t-Test angewendet.

Die Repletionsgruppen wurden bei gegebener Normalverteilung der Messwerte mit Hilfe des Students *t*-Tests für unabhängige Stichproben mit den beiden Kontrollgruppen verglichen. Im Falle fehlender Normalverteilung wurden nichtparametrische Test angewendet (*KRUSKAL-WALLIS*- oder Median-Test). Die Ergebnisse dieser paarweisen Mittelwertvergleiche wurden anschließend nach HOLM (1979) korrigiert.

Der Vergleich der beiden Kontrollgruppen (+Se, -Se) erfolgte bei gegebener Normalverteilung der Messwerte mit Hilfe des Students *t*-Tests für unabhängige Stichproben. Der nichtparametrische *MANN-WHITNEY*-Test wurde im Falle fehlender Normalverteilung angewendet.

4 Ergebnisse

4.1 Bruttoenergie- und Rohnährstoffgehalte des Versuchsfutters

Die in der Futtermittelanalyse ermittelte Bruttoenergie und der Gehalt an Rohnährstoffen sind in Tabelle 8 dargestellt. Die Anforderungen des NRC (1995) und der AIN-93 (REEVES et al. 1993) wurden bis auf Selen im Basisfutter bei allen Futtern erfüllt. Die verschiedenen Futter stimmten hinsichtlich der Rohnährstoffgehalte weitestgehend überein. Die Gehalte der selensupplementierten Futter waren bei allen Analysen sehr ähnlich, während die XP- und die Rohaschegehalte des Basisfutters von denen der anderen Futter etwas abwichen.

		Versuchsfutter							
Nährstoff		SeO42-	SeO ₃ ²⁻	SeMet	Ebselen	-Se			
GE [MJ/kg FM]	M	18,2	18,3	18,3	18,1	18,1			
	sd	0,016	_{0,031}	_{0,093}	0,086	0,042			
T [%]	M	91,6	92,2	91,8	91,1	92,4			
	sd	_{0,014}	0,080	_{0,042}	0,057	0,033			
XP [% der FM]	M	16,5	16,1	16,4	16,5	14,8			
	sd	_{0,064}	_{0,170}	_{0,085}	_{0,049}	_{0,078}			
XL [% der FM]	M	6,75	6,90	6,94	6,87	6,30			
	sd	_{0,030}	_{0,017}	_{0,079}	_{0,141}	_{0,116}			
XF [% der FM]	M	4,82	4,88	4,91	5,12	5,51			
	sd	_{0,053}	0,266	_{0,187}	_{0,156}	_{0,233}			
XA [% der FM]	M	2,54	2,54	2,53	2,50	3,13			
	sd	_{0,025}	0,010	_{0,004}	_{0,017}	_{0,013}			

Tabelle 8:	Energiegehalt,	Trockenmasse- und	Rohnährstoffgehalt des	s Futters
------------	----------------	-------------------	------------------------	-----------

4.2 Selen- und Vitamin E- Konzentrationen im Versuchsfutter

Im Basisfutter lag die Selenkonzentration unterhalb der Nachweisgrenze von 0,015 mg/kg. Für die selensupplementierten Futter wurde dem Basisfutter Selen entweder in Form von Na₂SeO₄ x 10 H₂O, Na₂SeO₃ x 5 H₂O, DL-Selenomethionin oder Ebselen zugesetzt. Der angestrebte Selengehalt von 200 μ g/kg wurde gut wiedergefunden (~105 %). Um kompensatorische Einflüsse des Vitamin E auf den Selenmangelzustand zu vermeiden, wurde kein Vitamin E zugesetzt. Damit liegen die α -Tocopherolkonzentrationen in den Futtern erwartungsgemäß unter der Empfehlung des NRC (1995) von 18 mg/kg. Im eingesetzten Sojaöl wurde vorab eine RRR-

 α -Tocopherolkonzentration von 27 mg/100 g gemessen. Im Futter lag die analysierte α -Tocopherolkonzentration etwas unterhalb der kalkulierten Konzentration von 8,24 mg/kg (Tabelle 9). Die aus Tabellenangaben (Souci et al. 2008) berechneten Linol- und Linolensäuregehalte von 16,4 g/kg und 2,31 g/kg Futter entsprachen den Empfehlungen des NRC (1995) von mind. 12 g Linolsäure/kg und 2 g Linolensäure/kg Futter. Das PUFA/RRR- α -Tocopherol-Verhältnis im Futter lag somit bei 0,382 ± 0,028.

	Versuchsfutter						
Nährstoff	SeO42-	SeO ₃ ²⁻	SeMet	Ebselen	-Se		
Selen [µg/kg] M	209 12,0	210 _{2,74}	210 5,17	209 2,88	< 15* 		
α-Tocopherol [mg/kg] M	7,04 0,116	7,15 _{0,451}	7,26 _{0,302}	7,66 0,230	6,24 0,248		

Tabelle 9:Selen- und α-Tocopherolkonzentration im Futter [Se in μg/kg FM; α-
Tocopherol in mg/kg FM]

* unterhalb der Nachweisgrenze von 15 µg/kg

4.3 Ausgewählte Mineralstoffkonzentrationen im Versuchsfutter

In Tabelle 10 sind die analysierten Gehalte ausgewählter Mengen- und Spurenelemente dargestellt. Bei allen Futtern wurden die Anforderungen des NRC (1995) und der AIN-93 (REEVES et al. 1993) erfüllt. Die Eisen-, Zink- und Mangangehalte lagen über den angestrebten Konzentrationen.

Tabelle 10: Analysierte Mineralstoffkonzentrationen im Versuchsfutter

Nährstoff			١	/ersuchsfutte	er	
(Soll)		SeO42-	SeO ₃ ²⁻	SeMet	Ebselen	-Se
Ca [g/kg FM]	M	3,93	4,02	4,00	4,04	5,75
(4,95)	sd	0,023	0,041	0,020	0,035	0,090
P [g/kg FM]	M	4,27	4,41	4,35	4,41	4,20
(4,20)	sd	0,056	0,035	_{0,043}	0,033	_{0,111}
Mg [mg/kg FM]	M	562	570	564	565	697
(588)	sd	12,0	_{7,52}	2,03	_{9,22}	11,5
Fe [mg/kg FM]	M	53,5	52,5	53,1	54,1	68,0
(35,0)	sd	0,992	_{0,480}	_{1,33}	_{0,599}	_{1,47}
Cu [mg/kg FM]	M	6,60	5,84	6,86	7,50	9,42
(6,00)	SD	_{0,444}	_{0,166}	_{0,123}	0,067	_{0,615}
Zn [mg/kg FM]	M	51,2 2,18	55,3	54,5	55,0	65,4
(30,0)	SD		_{0,482}	1,64	_{4,00}	_{0,488}
Mn [mg/kg FM]	M	14,5	14,7	14,5	15,2	20,7
(10,0)	SD	_{0,699}	0,295	_{0,216}	_{0,165}	_{0,215}

4.4 Futteraufnahme

Da die Tiere zu dritt gehalten wurden, konnte die Futteraufnahme nicht individuell ermittelt werden. Aus der wöchentlichen Futteraufnahme der Tiere eines Käfigs wurde die durchschnittliche tägliche Futteraufnahme pro Tier berechnet (Tabelle 11 und Tabelle 12). Bis zur 5. Versuchswoche stieg die Futteraufnahme kontinuierlich an und betrug ab der 6. Woche im Mittel 17,2 g pro Tier und Tag, was einer mittleren täglichen Selenaufnahme von 3,44 µg entsprach. Während der Depletionsphase ließen sich außer in der 3. Woche keine signifikanten Unterschiede zwischen den Gruppen feststellen. Für die Repletionsphase konnte aufgrund der geringen Anzahl der Beobachtungen keine statistische Auswertung vorgenommen werden.

			Durchschnittliche tägliche Futteraufnahme [g]/Tier										
					De	pletion	iswoch	е					
Gruppe		1	2	3	4	5	6	7	8	9	10		
Kontrollgruppe	n:												
+Se	M	8,20	11,6	15,0 ^b	16,6	17,6	17,4	17,4	17,2	17,1	16,9		
	sd	_{0,692}	1,11	_{0,774}	_{0,741}	_{0,677}	1,48	1,66	1,06	1,18	1,52		
-Se	M	8,06	12,1	15,5 ^{ab}	16,9	17,6	17,9	17,4	17,0	17,3	17,1		
	sd	_{0,641}	0,952	1,46	1,08	_{1,29}	_{1,54}	_{1,25}	_{0,910}	1,18	_{1,24}		
Repletion:													
SeO42-	M	8,24	12,5	16,1 ^{ab}	17,1	18,2	18,2	18,0	17,3	17,4	17,7		
	sd	_{0,641}	_{0,987}	1,02	0,885	1,21	_{0,981}	_{0,866}	_{0,715}	_{0,681}	_{1,03}		
SeO32-	M	8,54	12,5	16,6 ^a	17,4	18,9	18,4	18,1	17,3	17,0	17,5		
	sd	_{0,427}	_{0,655}	1,16	1,50	_{2,05}	1,01	_{0,829}	_{0,941}	_{1,23}	_{0,756}		
SeMet	M	8,36	12,7	16,4 ^a	17,4	18,3	17,8	17,7	17,4	17,1	17,3		
	sd	_{0,603}	_{0,835}	_{1,41}	1,14	1,31	_{0,925}	1,26	_{0,814}	0,846	_{1,13}		
Ebselen	M	8,12	12,0	16,0 ^{ab}	16,6	17,9	17,5	17,6	17,1	17,0	17,2		
	sd	_{0,747}	_{0,965}	_{0,684}	_{1,21}	1,00	_{1,23}	_{0,882}	_{0,667}	_{0,761}	_{0,803}		

Tabelle 11:Durchschnittliche tägliche Futteraufnahme [g] während der 10-wöchigenDepletionsphase (Kontrollgruppen: n=6, Repletionsgruppen: n=12)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte. Tukey-HSD (*p* < 0,05); Woche 3 SeMet n=11

		Durchschnittliche tägliche Futteraufnahme [g]/Tier							
			Repletior	nswoche					
Gruppe		1	2	3	4				
Kontrollgrupp	en:								
+Se	M	16,6	17,4	17,9	18,5				
	sd	_{1,13}	_{2,13}	0,295	0,412				
-Se	M	16,5	16,7	15,4	16,6				
	SD	_{1,36}	_{1,56}	2,05	1,99				
Repletion:									
SeO42-	M	16,9	16,8	17,8	17,9				
	sd	_{1,64}	_{2,75}	1,31	0,972				
SeO ₃ ²⁻	M	16,4	16,4	16,7	17,4				
	sd	_{1,66}	2,94	0,066	0,705				
SeMet	M	15,8	16,0	16,5	16,6				
	SD	_{1,44}	_{1,81}	_{0,787}	1,81				
Ebselen	M	15,7	15,9	16,6	16,5				
	SD	0,863	_{1,29}	0,593	0,132				

Tabelle 12:Durchschnittliche tägliche Futteraufnahme [g] während der 28-tägigen
Repletionsphase (Kontrollgruppen: n=2x3, Repletionsgruppen: n=4x3)

4.5 Gewichtsentwicklung

In Tabelle 13 ist die Gewichtsentwicklung innerhalb der zehnwöchigen Depletionsphase dargestellt. In dieser Versuchsphase wurde den vier späteren Repletionsgruppen ebenso wie der Negativkontrolle das Basisfutter (-Se) verabreicht, während die Positivkontrolle mit SeO_4^{2-} supplementiertes Futter erhielt. Nach 10 Wochen betrug das Durchschnittsgewicht aller Tiere $310 \pm 27,7$ g. Zwischen den 6 Gruppen waren in der Depletionsphase hinsichtlich der Gewichtsentwicklung keine signifikanten Unterschiede zu beobachten.

Auch während der Repletionsphase (Tabelle 14) traten weder zwischen den Repletionsgruppen noch im Vergleich zur +Se- und –Se-Kontrollgruppe signifikante Unterschiede hinsichtlich der Gewichtsentwicklung auf.

		Tiergewicht [g]										
						Deple	etionsv	voche				
Gruppe		0	1	2	3	4	5	6	7	8	9	10
Kontrollgruppe	en:											
+Se	M	40,8	63,6	93,3	132	168	205	234	261	278	292	305
	SD	_{2,82}	_{3,83}	_{8,02}	14,0	17,5	21,8	25,5	^{29,5}	31,6	32,2	35,1
-Se	M	40,7	63,9	98,2	138	174	209	239	266	283	295	308
	sd	3,62	_{6,16}	_{9,46}	13,4	16,4	18,3	_{20,8}	22,6	23,6	25,0	25,4
Repletion:												
SeO42-	M	40,7	63,0	97,8	138	174	213	242	270	287	299	313
	sd	3,01	_{5,95}	_{9,43}	13,1	15,4	18,2	20,2	22,6	23,9	25,5	28,0
SeO32-	M	40,8	64,7	99,1	141	178	214	245	271	290	299	313
	SD	2,65	_{4,89}	_{7,83}	11,5	15,4	18,5	22,7	^{24,2}	_{24,5}	25,8	29,3
SeMet	M	40,8	63,9	100	141	178	214	243	271	287	299	312
	SD	2,55	_{4,21}	6,68	11,5	13,5	16,5	17,5	19,5	19,4	21,3	_{24,7}
Ebselen	M	40,8	63,0	95,6	138	172	211	238	266	284	296	309
	SD	2,58	_{4,98}	_{7,22}	10,0	12,8	14,2	16,0	16,7	17,8	18,1	20,8

Tabelle 13:Gewichtsentwicklung [g] der Ratten während der 10-wöchigenDepletionsphase (Kontrollgruppen: n=18, Repletionsgruppen: n=36)

Tukey-HSD: keine statistisch signifikanten Gruppenunterschiede (p < 0,05)

Tabelle 14:	Gewichtsentwicklung [g] während der 28-tägigen Repletionsphase
	(n=6)

		Tiergewicht [g]								
		Repletionszeitpunkt								
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgrupp	en:									
+Se	M sd	287 16,4	-	-	-	314 _{37,4}	-	377 30,9		
-Se	M sd	308 21,5	-	-	-	328 18,6	-	336 42,9		
Repletion:										
SeO4 ²⁻	M sd	-	302 22,3	328 18,1	303 31,2	336 42,2	372 37,4	356 36,6		
SeO ₃ ²⁻	M sd	-	296 23,3	329 35,6	317 43,0	362 21,1	352 33,1	351 _{27,4}		
SeMet	M sd	-	313 16,5	320 41,5	318 _{32,6}	318 11,9	327 31,0	370 11,4		
Ebselen	M sd	-	310 19,2	324 21,0	317 28,1	331 23,7	336 19,3	346 21,4		

Tukey-HSD: keine statistisch signifikanten Gruppenunterschiede (p < 0,05)

In Tabelle 15 ist die Lebendmassezunahme während der ersten 10 Wochen und während der gesamten Versuchsdauer dargestellt. Die durchschnittliche tägliche Gewichtszunahme der Ratten betrug während der ersten 10 Wochen $3,85 \pm 0,048$ g und auf die gesamte Versuchsdauer bezogen $3,22 \pm 0,155$ g, wobei keine signifikanten Unterschiede zwischen den Gruppen festzustellen waren. Die Gewichtsentwicklung deckt sich mit den Angaben des NRC (1995), POILEY (1972) sowie denen des Zuchtunternehmens.

		Lebendmassezunahme pro Tier						
		10 We	ochen	14 Wochen				
Gruppe		[g]	[g/d]	[g]	[g/d]			
Kontrollgruppe	en:							
+Se	M sd	264 35,4	3,77 0,506	336 29,1	3,43 0,297			
-Se	M sd	268 24,7	3,82 0,352	295 40,4	3,01 0,412			
Repletion:								
SeO4 ²⁻	M sd	272 27,6	3,89 _{0,394}	315 36,0	3,22 0,367			
SeO ₃ ²⁻	M sd	273 29,1	3,89 0,415	310 28,3	3,16 _{0,289}			
SeMet	M sd	271 24,4	3,87 0,349	329 10,6	3,36 0,108			
Ebselen	M SD	271 19,9	3,87 0,284	306 20,1	3,12 0,206			

Tabelle 15:Lebendmassezunahme während 10 Wochen (nur Depletionsphase) und
während 14 Wochen (gesamte Versuchsdauer)

Tukey-HSD: keine statistisch signifikanten Gruppenunterschiede

4.6 Futterverwertung

Entsprechend der nicht individuell protokollierten Futteraufnahme wurde die Futterverwertung aus der Futteraufnahme der 3 Tiere eines Käfigs ermittelt (Tabelle 16 und Tabelle 17). Die Futterverwertung sank von anfangs rund 400 mg/g (Zunahme/Futteraufnahme) kontinuierlich ab und blieb ab der 9. Versuchswoche bei durchschnittlich 98,6 ± 14,2 mg/g. Während der Repletionsphase änderte sich die Futterverwertung nicht mehr nennenswert. Nur in der 9. Depletions- und der 3. Repletionswoche konnten signifikante Unterschiede zwischen den Gruppen festgestellt werden, die jedoch einen ungerichteten Eindruck vermitteln.

			Futterverwertung [mg Zunahme/g Futteraufnahme]								
			Depletionswoche								
Gruppe		1	2	3	4	5	6	7	8	9	10
Kontrollgruppe	en:										
+Se	M	400	364	370	309	300	230	227	135	115 ^a	109
	sd	61,7	_{73,7}	71,6	42,0	_{54,4}	46,1	64,7	52,0	_{37,7}	50,0
-Se	M	408	406	368	299	286	241	221	145	97,9 ^{ab}	112
	sd	47,2	^{39,8}	29,8	41,1	43,2	43,3	^{28,4}	39,4	40,6	29,1
Repletion:											
SeO42-	M	385	399	360	296	309	224	219	147	94,3 ^{ab}	113
	sd	55,7	_{43,4}	_{37,4}	^{33,8}	_{60,3}	29,6	30,1	32,9	38,8	_{42,6}
SeO32-	M	399	395	356	307	275	237	212	161	74,6 ^b	116
	sd	43,6	56,9	_{52,4}	49,6	55,6	44,0	_{63,7}	_{43,8}	45,0	_{41,3}
SeMet	M	400	404	361	303	278	234	222	136	100 ^{ab}	100
	sd	53,3	50,1	_{65,7}	31,8	65,2	33,8	46,8	_{42,1}	44,9	_{42,2}
Ebselen	M	386	387	377	298	310	227	229	151	102 ^{ab}	128
	sd	_{60,4}	_{63,0}	43,9	49,8	_{42,8}	66,1	34,7	_{34,5}	42,2	_{43,6}

Tabelle 16:Futterverwertung während der 10-wöchigen Depletionsphase (Kontroll-
gruppen: n=18, Repletionsgruppen: n=36)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte. p < 0,05. Woche 1, 2, 4, 8, 10: Tukey-HSD; Woche 3, 6 (SeO₃²⁻ n=35): Games-Howell; Woche 5, 7: Median-Test

Tabelle 17:	Futterverwertung während der 28-tägigen Repletionsphase (Kontroll-
	gruppen: n=2x3, Repletionsgruppen: n=4x3)

		Futterve	Futterverwertung [mg Zunahme/g Futteraufnahme]								
			Repletionswoche								
Gruppe		1	2	3	4						
Kontrollgruppe	en:										
+Se	M	88,7	118	50,6 ^b	77,7						
	sd	_{27,4}	31,8	_{6,40}	23,7						
-Se	M	69,5	90,5	61,8 ^{ab}	113						
	sd	_{26,4}	_{37,7}	49,3	40,6						
Repletion:											
SeO42-	M	75,0	121	85,6 ^a	110						
	sd	_{43,9}	36,4	28,2	27,0						
SeO32-	M	90,3	125	88,0 ^a	110						
	sd	41,0	27,6	_{31,5}	18,7						
SeMet	M	65,0	105	130 ^a	106						
	sd	_{37,3}	33,0	47,5	_{20,4}						
Ebselen	M	70,1	110	86,5 ^a	97,2						
	sd	_{33,5}	26,6	25,7	48,1						

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte. p < 0,05. Woche 1, 2, 4: Tukey-HSD; Woche 3: Games-Howell

4.7 Hämoglobin-Konzentration und Hämatokritwert

In Tabelle 18 und Tabelle 19 sind die Hämoglobinkonzentrationen im Vollblut und die Hämatokritwerte der Ratten dargestellt. Die Hämoglobinkonzentrationen der Negativkontrolle (-Se) unterschieden sich nach der zehnwöchigen Depletionsphase nicht signifikant von denen der Positivkontrolle (+Se). Während der Repletionsphase traten nur nach 14 Tagen signifikante Unterschiede auf. Dabei unterschied sich die Ebselengruppe bezüglich der Hämoglobinkonzentration signifikant von den anderen drei Repletionsgruppen.

Beim Hämatokritwert unterschieden sich die beiden Kontrollgruppen (+Se, -Se) zwar nach der zehnwöchigen Depletionsphase signifikant, während der Repletionsphase jedoch nicht mehr. Nach 14 Tagen Repletion war hinsichtlich des Hämatokritwertes nur der Unterschied zwischen der Ebselen- und der SeO₄²⁻ -Gruppe signifikant.

		Hämoglobin [mmol/L]								
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgrup	pen:									
+Se	M sd	8,99 _{0,402}	-	-	-	9,19 _{0,208}	-	8,81 0,566		
-Se	M sd	8,94 _{0,784}	-	-	-	8,92 _{0,479}	-	8,31 _{0,738}		
Repletion:										
SeO42-	M SD	-	9,68 _{0,644}	9,30 _{0,368}	9,21 _{0,488}	9,38^a 0,251	9,15 _{0,469}	8,89 _{0,484}		
SeO32-	M sd	-	9,62 _{0,260}	9,47 _{0,260}	9,22 _{0,233}	9,17 ^a _{0,321}	8,93 _{0,323}	8,77 _{0,297}		
SeMet	M SD	-	9,34 _{0,554}	9,34 _{0,511}	9,29 _{0,681}	9,48 ^a _{0,522}	9,37 _{0,538}	9,13 _{0,247}		
Ebselen	M SD	-	9,33 _{0,306}	9,62 _{0,379}	9,13 _{0,588}	8,48 ^b 0,428	8,85 0,227	8,74 _{0,335}		

Tabelle 18:Hämoglobin-Konzentrationen [mmol/L] der Ratten während der
28-tägigen Repletionsphase (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. Tukey-HSD (p < 0.05)

			Hämatokrit [%]							
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgruppe	en:									
+Se	M sd	49,8* 1,74	-	-	-	45,9 _{2,33}	-	47,2 1,80		
-Se	M sd	47,6 1,51	-	-	-	45,4 2,09	-	44,4 3,32		
Repletion:										
SeO4 ²⁻	M sd	-	49,2 _{2,46}	45,6 1,68	46,8 2,00	48,2 ^a 1,22	48,9 2,31	47,8 2,86		
SeO ₃ ²⁻	M sd	-	49,7 _{0,905}	46,3 1,10	47,3 _{1,32}	46,7 ^{ab} 1,55	47,2 1,79	46,6 2,13		
SeMet	M sd	-	47,9 2,57	45,6 2,93	47,4 1,91	47,9 ^{ab} 2,52	46,0 2,11	48,3 1,23		
Ebselen	M sd	-	48,3 1,62	46,7 1,21	47,9 _{1,29}	45,3 ^b 1,74	47,0 1,73	46,4 1,59		

Tabelle 19: Hämatokritwerte [%] der Ratten während der 28-tägigen Repletionsphase (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb Repletionsgruppen. Tukey-HSD (p < 0.05); 21 d: Kruskal-Wallis-Test (p < 0.05) * signifikante Unterschiede zwischen den Kontrollgruppen (p < 0.05) einer Spalte zwischen den

4.8 Selenkonzentrationen in Vollblut, Plasma, Leber, Niere, Testis, Muskel, Gehirn und Darminhalt

			Selenkonzentrationen im Vollblut [µg/kg]							
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgruppe	en:									
+Se	M sd	515* ^{29,7}	-	-	-	516* 33,7	-	535* 33,3		
-Se	M sd	17,6 _{3,15}	-	-	-	16,4 2,30	-	19,3 _{1,39}		
Repletion:										
SeO42-	M sd	-	77,0 ^{a#} ♯ ^{5,07}	164 ^a 12,1	230 ^a 16,4	314 ^{a#} ♯ 19,1	349 ^a 11,0	407 ^{a#} ‡ 28,5		
SeO ₃ ²⁻	M sd	-	71,8 ^{a#} ‡ 3,55	143 ^{ab} 15,6	204 ^b 15,9	310 ^{a#} ‡ 32,5	348^a 14,6	422 ^{a#} ‡ 14,1		
SeMet	M sd	-	58,0 ^{b#} ‡ 4,59	133 ^b 15,6	192 ^b 14,8	312 ^{a#} ‡ 11,7	361 ^a 14,2	425 ^{a#} ‡ 18,0		
Ebselen	M sd	-	23,6 ^{c#} [±] 3,31	17,6^c _{1,49}	19,9 ^c _{1,82}	22,0 ^{b#} [‡] 2,42	21,3 ^b _{3,78}	18,9 ^{b#} 1,49		

Tabelle 20:Selenkonzentrationen [µg/kg] im Vollblut der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0,001); 5d: Tukey HSD (p < 0,001); 8d: Tukey HSD (p < 0,05); 14d: Games-Howell (p < 0,001); 21d: Tukey HSD (p < 0,001); 28d: Students *t*-Test (p < 0,001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

In Tabelle 20 sind die Selenkonzentrationen im Vollblut wiedergegeben. Innerhalb der zehnwöchigen Depletionsphase wurde im Vollblut der -Se-Gruppe eine vollständige Depletion erreicht. In der Mangelgruppe betrug die Selenkonzentration zu Beginn der Repletionsphase 3,4 %, nach 14 Tagen Repletion 3,2 % und nach 28 Tagen 3,6 % der Kontrollgruppe. Die Ebselengruppe unterschied sich über die gesamte Repletionszeit signifikant von den übrigen drei Repletionsgruppen. Von der Mangelgruppe ließ sich die Ebselengruppe zwar nach 2 und nach 14 Tagen, nicht aber nach 28 Tagen statistisch trennen. Im Verlauf der Repletionsphase stieg die Se-Konzentration in den anderen Repletionsgruppen stetig an. Zu Beginn der Repletion erzielten SeO₄²⁻ und SeO₃²⁻ signifikant höhere Se-Konzentrationen als SeMet. Nach 2 Tagen stieg die Se-Konzentration in der SeO₄²⁻-Gruppe auf das 4,4fache, in der SeO₃²⁻-Gruppe auf das

4,1fache und in der SeMet-Gruppe nur auf das 3,3fache im Vergleich zur -Se-Gruppe. Nach 5 d waren nur SeO₄²⁻ und SeMet statistisch voneinander zu trennen. Die SeO₄²⁻ Zulage führte nach 8 d zu signifikant höheren Se-Konzentrationen als SeO₃²⁻ und SeMet. Nach 14- bis 28-tägiger Repletion waren keine statistischen Unterschiede mehr zwischen SeO₄²⁻, SeO₃²⁻ und SeMet auszumachen. Nach 28 Tagen Repletion erreichten diese drei Verbindungen durchschnittlich 78,2 % der Se-Konzentration in der Positivkontrolle und unterschieden sich von dieser noch signifikant (*p* < 0,05).

			Selenkonzentrationen im Plasma [µg/kg]							
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgruppen:										
+Se	M sd	525* 21,8	-	-	-	536* 27,6	-	549* 7,25		
-Se	M sd	23,6 _{5,24}	-	-	-	19,3 _{1,87}	-	23,8 1,65		
Repletion:										
SeO4 ²⁻	M sd	-	133 ^{a#} ‡ 3,79	289 ^a 23,7	417 ^a 35,3	499^a ‡ 25,9	563 ^a 42,5	543 ^a ₌ 37,1		
SeO ₃ ²⁻	M sd	-	137 ^{ab#} ‡ 28,2	259 ^{ab} 26,0	369 ^b 22,0	494 ^a ‡ 37,6	536 ^a 45,3	546 ^a ‡ 35,0		
SeMet	M sd	-	107 ^{b#} ‡ 15,5	233 ^b 36,3	334 ^b 13,8	524 ^a ₌ 19,5	545 ^a 33,6	545 ^a ‡ 30,2		
Ebselen	M sd	-	28,1 ^{c#} _{5,29}	24,5 ^c _{4,83}	29,0 ^c _{6,22}	24,6 ^{b#} _{6,06}	23,6 ^b 4,95	25,5 ^{b#} 4,93		

Tabelle 21:Selenkonzentrationen [µg/kg] im Plasma der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Kruskal-Wallis (p < 0.05); 5d: Tukey HSD (p < 0.01); 8d: Games-Howell (p < 0.01); 14d: Tukey HSD (p < 0.001); 21d: Games-Howell (p < 0.001); 28d: Games-Howe

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Im Plasma (Tabelle 21) zeigt sich ein ähnliches Bild wie im Vollblut. Auch hier ähneln die Werte für die Ebselengruppe denen der Negativkontrolle. Die Ebselengruppe ließ sich wie im Vollblut zu allen Zeitpunkten signifikant von den anderen drei Repletionsgruppen, aber zu keinem Zeitpunkt statistisch von der Negativkontrolle trennen. Nach der zehnwöchigen Depletionsphase waren in der -Se-Gruppe zu Beginn der Repletion 4,5 %, nach 14 Tagen 3,6 % und nach 28 Tagen 4,3 % der Selenkonzentration der Positivkontrolle zu finden. Nach 2 und 5 Tagen ließ sich der Unterschied zwischen der SeO₄²⁻- und der SeMet-Gruppe statistisch absichern. Nach 8 Tagen Repletion war die Se-Konzentration in der SeO₄²⁻-Gruppe signifikant höher als in der SeO₃²⁻ und SeMet-Gruppe, aber nach 14 bis 28-tägiger Repletion waren diese Unterschiede nicht mehr festzustellen. Am Tag 14 wurden durch die Zulage von SeO₄²⁻, SeO₃²⁻ und SeMet 94,3 ± 3,0 % der Se-Konzentration der +Se-Gruppe erreicht, so dass sich diese Repletionsgruppen nicht mehr signifikant von der +Se-Gruppe unterschieden.

Tabelle 22: Selenkonzentrationen [μg/kg] in der Leber (Lobus sinister lat.) der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

			Selenkonzentrationen in der Leber [µg/kg]							
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgruppe	en:									
+Se	M sd	878* ^{58,9}	-	-	-	849* 127	-	961* _{53,5}		
-Se	M sd	20,1 4,96	-	-	-	14,7 _{2,20}	-	17,2 1,41		
Repletion:										
SeO42-	M sd	-	88,5 ^{a#} ‡ 9,48	220 ^a 47,0	403 ^a _{63,6}	634 ^{a#} ‡ 88,6	778 ^a _{54,9}	875 ^a ‡ 106		
SeO32-	M sd	-	74,5 ^{ab#} ♯ 5,49	189 ^a _{53,2}	399^a 75,1	683 ^{a#} ‡ 114	794 ^a _{74,1}	839 ^a ‡ _{92,6}		
SeMet	M sd	-	72,8^{b#} ‡ 7,03	177^a 13,1	310 ^a 45,7	677 ^{a#} ‡ 68,0	839 ^a 77,0	892 ^a ‡ 54,2		
Ebselen	M sd	-	16,7 ^{c#} 3,44	13,8 ^b 1,48	17,8 ^b 2,50	15,2 ^{b#} 1,89	20,3 ^b 3,68	18,5 ^{b#} _{0,829}		

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Games-Howell (p < 0,05); 5d: Kruskal-Wallis (p < 0,05); 8d: Games-Howell (p < 0,001); 14d: Kruskal-Wallis (p < 0,01); 21d: Games-Howell (p < 0,001); 28d: Ga

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

In der Leber (Tabelle 22) fiel die Selenkonzentration in der Negativkontrollgruppe während der Depletionsphase auf ca. $1,93 \pm 0,3$ % der Positivkontrolle ab. Die Se-Konzentrationen in der Ebselengruppe bewegten sich zu jedem Zeitpunkt im Bereich der Negativkontrollgruppe und unterschieden sich signifikant von denen der anderen Repletionsgruppen. Zwischen den drei Se-Verbindungen SeO₄²⁻, SeO₃²⁻ und SeMet waren bereits nach 5 Tagen Repletion keine statistisch abzusichernden Unterschiede mehr festzustellen. Lediglich nach 2 Tagen konnten die SeO₄²⁻- und SeMet-Gruppe voneinander getrennt werden. Nach 14 Tagen erreichten die drei Gruppen im Durchschnitt 78,3 ± 3,1 % des Kontrollniveaus. Erst nach 28 Tagen unterschieden sie sich mit 90,4 ± 2,8 % des Kontrollniveaus nicht mehr signifikant von der Positivkontrolle.

			Selenkonzentrationen in der Niere [µg/kg]							
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgruppen:										
+Se	M sd	1026* 115	-	-	-	1110* 180	-	1233* 205		
-Se	M sd	121 34,8	-	-	-	96,2 ^{38,9}	-	110 46,2		
Repletion:										
SeO4 ²⁻	M sd	-	258 ^{a#} ‡ ^{89,0}	397 ^a 133	593 ^a 151	890 ^a ‡ 107	1019 ^a 104	1208 ^a ‡ 176		
SeO3 ²⁻	M sd	-	249 ^{ab#} 115	423 ^a 105	652 ^{ab} 245	793 ^a ‡ 200	998 ^a 161	1144 ^a ‡ 159		
SeMet	M sd	-	219 ^{ab#} 94,0	379 ^a 88,8	595 ^a 144	832 ^a ‡ 238	1078 ^a 158	1109 ^a ‡ 250		
Ebselen	M sd	-	111 ^{b#} 47,7	135 ^b 38,6	113 ^b 37,2	88,3 ^{b#} 48,4	161 ^b _{78,0}	124 ^{b#} 47,2		

Tabelle 23:Selenkonzentrationen [µg/kg] in der Niere der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Tukey-HSD (p < 0.05); 8d: Games-Howell (p < 0.05); 14d: Games-Howell (p < 0.05); 21d: Tukey-HSD (p < 0.001); 28d: Tukey-HSD (p < 0.001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

In den Nieren wurden im Vergleich zu den übrigen untersuchten Geweben die höchsten Se-Konzentrationen gefunden (Tabelle 23). Während der zehnwöchigen Depletionsphase sank die Se-Konzentration in den Nieren der -Se-Gruppe auf 11,8 % der Positivkontrollgruppe und verringerte sich in der -Se-Gruppe in den folgenden 28 Tagen im Vergleich zu +Se noch weiter auf 8,9 %. Nach 14-tägiger Resupplementierung mit $\text{SeO}_4^{2^-}$, $\text{SeO}_3^{2^-}$ und SeMet unterschieden sich diese Gruppen mit durchschnittlich 75,5 ± 4,4 % des Kontrollniveaus nicht mehr signifikant von der +Se-Gruppe. Nach 28 Tagen wurden im Mittel 93,5 ± 4,1 % der Se-Konzentration der +Se-Gruppe erreicht. Auch die Selenkonzentration dieser Kontrollgruppe stieg während der 28-tägigen Repletionsphase um 20 % an. Die Ebselengruppe war auch in den Nieren statistisch nicht von der Negativkontrolle zu trennen und unterschied sich zu allen untersuchten Zeitpunkten signifikant von der SeO₄²⁻, SeO₃²⁻ und SeMet-Gruppe.

			Selenkonzentrationen im Testis [µg/kg]							
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgruppen:										
+Se	M sd	849* 30,4	-	-	-	855* 35,2	-	869* ^{39,4}		
-Se	M sd	536 ^{84,2}	-	-	-	464 39,5	-	432 111		
Repletion:										
SeO4 ²⁻	M sd	-	657 ^{a#} ‡ 36,2	657 ^a 45,6	751 ^a _{23,5}	762 ^a ₌ ^{75,5}	829 ^a 19,0	831 ^a ₌ ₅1,5		
SeO32-	M sd	-	680 ^{a#} ‡ 46,7	657 ^a _{43,6}	732 ^a 19,2	781 ^a ‡ 30,0	829 ^a 13,6	819 ^a ‡ 23,3		
SeMet	M sd	-	564 ^{b#} 84,8	604 ^a _{59,4}	745^a 19,1	806 ^a ‡ 28,4	857 ^a ^{37,7}	834 ^a ‡ 29,6		
Ebselen	M sd	-	523 ^{b#} 27,8	469 ^b 107	521 ^b 53,7	532 ^b 42,8	529 ^b 44,6	493 ^{b#} 58,7		

Tabelle 24:Selenkonzentrationen [µg/kg] im Testis der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: SeMet n=5, Tukey-HSD (p < 0.05); 5d: Tukey-HSD (p < 0.05); 8d: Tukey-HSD (p < 0.001); 14d: Tukey-HSD (p < 0.001); 21d: Tukey-HSD (p < 0.001); 28d: SeMet n=5, Tukey-HSD (p < 0.001);

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

Im Testis fand die Se-Depletion im Vergleich zu den anderen Geweben in sehr viel geringerem Maße statt (Tabelle 24). Nach zehnwöchiger Depletion sank die Se-Konzentration in der -Se-Gruppe nur auf 63 % des Kontrollniveaus, nach weiteren 28 Tagen fiel die Se-Konzentration in der -Se-Gruppe aber weiter auf 50 % des Wertes der Positivkontrolle ab. In der Ebselengruppe konnte auch im Testis keine Repletion und kein signifikanter Unterschied zur Negativkontrolle beobachtet werden, während in den drei übrigen Repletionsgruppen nach 2 Tagen bereits durchschnittlich 74,7 \pm 7,2 % des Kontrollgruppenniveaus erreicht wurden und nach 14 Tagen mit 91,6 \pm 2,6 % kein signifikanter Unterschied mehr zur +Se-Gruppe bestand.

Tabelle 25:Selenkonzentrationen [µg/kg] im Muskel der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

			Selenkonzentrationen im Muskel [µg/kg]							
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgrupp	en:									
+Se	M sd	101* 12,9	-	-	-	104* _{9,22}	-	107* _{4,99}		
-Se	M SD	7,66 1,67	-	-	-	6,35 _{3,42}	-	7,28 1,27		
Repletion:										
SeO42-	M sd	-	12,4 ^{ab#} ‡ 1,59	19,5 ^b 1,41	28,6 ^b _{2,97}	46,7^{b#} 3,10	54,5 ^b 4,84	65,6 ^{b#} ‡ _{6,51}		
SeO ₃ ²⁻	M sd	-	11,6 ^{b#} ⁺ 1,76	18,5 ^b _{3,68}	27,3 ^b _{3,37}	42,8 ^{b#} [‡] 2,39	54,2^b 4,61	62,1 ^{b#} ‡ 7,07		
SeMet	M sd	-	14,6 ^{a#} ‡ 1,26	27,7 ^a _{2,19}	36,0 ^a _{3,79}	63,1 ^{a#} ‡ ^{5,80}	89,9 ^a 4,41	101 ^a ‡ 5,58		
Ebselen	M sd	-	7,10 ^{c#}	6,36 ^c 1,18	6,73 ^c _{0,867}	5,63 ^{c#} 0,990	6,58^c _{0,965}	8,45 ^{c#} 5,62		

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: SeMet n=5, Tukey-HSD (p < 0,05); 5d: Tukey HSD (p < 0,001); 8d: Tukey HSD (p < 0,01); 14d: Tukey HSD (p < 0,001); 21d: Games-Howell (p < 0,001); 28d: Median (p < 0,05)

signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

Im Muskel (Tabelle 25) zeigte sich ein völlig anderes Bild als in den übrigen Geweben. Die Se-Konzentrationen lagen im Muskel der Positivkontrolle 5fach niedriger als im Blut und 8,5-10fach niedriger als in Leber, Nieren und Testis. Die Negativkontrolle lag mit durchschnittlich 7,10 µg/kg unter der Bestimmungsgrenze von 12,5 µg/kg und nur knapp über der Nachweisgrenze von 6,25 µg/kg. Die Se-Konzentration lag hier nach 10-14 Wochen Depletion im Mittel bei 6,84 ± 0,76 % der +Se-Gruppe. Bei der Ebselengruppe war keine Repletion zu beobachten. Sie unterschied sich zu allen untersuchten Zeitpunkten signifikant von den anderen Repletionsgruppen und ließ sich von der -Se-Gruppe statistisch nicht trennen. Bereits nach 5-tägiger Repletion wies die SeMet-Gruppe signifikant höhere Se-Konzentrationen als die SeO₄²⁻ und die SeO₃²⁻. Gruppe auf. Die SeMet-Gruppe erreichte nach 14 Tagen bereits 61 % des Kontrollniveaus und war nach 28 Tagen statistisch nicht mehr von der +Se-Gruppe zu unterschieden. Die SeO₄²⁻ und die SeO₃²⁻-Gruppe lagen auch nach 28 Tagen nur bei 61 bzw. 58 % des Kontrollniveaus und waren von diesem signifikant verschieden.

			Selenkonzentrationen im Gehirn [µg/kg]								
			Repletionszeitpunkt								
Gruppe		0d	2d	5d	8d	14d	21d	28d			
Kontrollgrupp	en:										
+Se	M sd	106* _{12,4}	-	-	-	101* _{7,11}	-	111* 8,80			
-Se	M sd	74,3 _{7,84}	-	-	-	83,4 _{5,67}	-	78,7 _{9,76}			
Repletion:											
SeO4 ²⁻	M sd	-	78,2 [#] _{6,50}	78,9^b _{5,63}	88,3 ^{bc} _{6,35}	95,6 ^b ‡ 7,07	101 ^b 1,70	105 ^{ab} ‡ 22,9			
SeO ₃ ²⁻	M sd	-	81,3 [#] _{8,70}	76,7^b _{6,26}	94,6 ^b _{8,43}	98,7 ^b ‡ _{7,20}	102 ^b 3,20	105 ^b ‡ 11,2			
SeMet	M sd	-	88,3 [#] ‡ 7,21	89,7 ^a _{4,13}	110 ^a _{5,50}	115 ^{a#} ‡ 5,44	134 ^a 4,25	131 ^{a#} ‡ 10,6			
Ebselen	M SD	-	83,4 [#] 9.55	77,0 ^c 4.63	81,1 ^c 5.42	83,3 ^{c#}	84,1 ^c 3.72	79,2 ^{c#}			

Tabelle 26:Selenkonzentrationen [µg/kg] im Gehirn der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Tukey HSD (p < 0.01); 8d: Tukey HSD (p < 0.01); 14d: Tukey-HSD (p < 0.05); 21d: Tukey HSD (p < 0.01); 28d: Kruskal-Wallis (p < 0.05)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Im Gehirn wies die Positivkontrolle ebenso wie im Muskel wesentlich niedrigere Se-Konzentrationen als im Blut und den übrigen untersuchten Organen auf (Tabelle 26). Im Gegensatz zum Muskel wurde die Se-Konzentration während der zehnwöchigen Depletion in der -Se-Gruppe verglichen mit der +Se-Gruppe weitgehend aufrecht erhalten (70,2 %) und verringerte sich auch nach weiteren 28 Tagen nicht (70,8 %). SeMet war die effektivste Se-Verbindung in der Se-Repletion des Gehirns. Nach 2-tägiger Repletion waren zwar zwischen den Repletionsgruppen noch keine statistischen Unterschiede festzustellen, aber die SeMet-Gruppe ließ sich zu diesem Zeitpunkt als einzige Se-Verbindung statistisch von der Negativkontrolle trennen. Ab dem 5. Repletionstag lagen die Se-Konzentrationen in der SeMet-Gruppe signifikant über denen der SeO₄²⁻- und SeO₃²⁻-Gruppe, die sich zu keinem Zeitpunkt signifikant voneinander unterschieden. Nach 14-tägiger Repletion hatten SeO₄²⁻ und SeO₃²⁻ bereits das Niveau der Positivkontrolle erreicht und unterschieden sich von dieser nicht mehr signifikant. Die SeMet-Gruppe hingegen überstieg das Kontrollniveau bereits zu diesem Zeitpunkt mit 114 % signifikant. Außer am 2. und 8. Tag der Repletion unterschied sich die Ebselengruppe wie in den übrigen Geweben signifikant von den anderen drei Repletionsgruppen und ließ sich zu keinem Zeitpunkt statistisch von der Negativkontrolle trennen.

		Dünndarm-	D	arminhalt [µg/kg]
		[µg/kg]	Duodenum	lleum	Colon
-Se	M SD	34,2 _{9,05}	30,7 _{4,67}	13,3 _{2,47}	25,9 11,1
SeO42-	M SD	265 _{32,4}	155 24,2	79,3 10,5	116 5,66
SeMet	M sd	120 18,3	60,6 _{3,25}	32,2 _{6,72}	36,3 0,283
Ebselen	M SD	41,4 _{6,99}	63,6 ^{19,8}	153 _{33,2}	170 49,8

Tabelle 27: Selenkonzentrationen [μg/kg] im Dünndarm und im Darminhalt der Ratten nach 28-tägiger Repletion mit unterschiedlichen Se-Verbindungen (n=3)

In Tabelle 27 sind die Selenkonzentrationen im Dünndarmgewebe und im Darminhalt verschiedener Darmabschnitte dargestellt. Nachdem sich die Ebselengruppe bei allen untersuchten Parametern wie die Negativkontrolle verhielt, wurde der Darmtrakt einiger Tiere aus den bei -20 °C gelagerten Rattenrestkörpern nachträglich entnommen und die Se-Konzentration im Gewebe und in den Digesta bestimmt. Da diese Mittelwerte und Standardabweichungen jeweils nur aus drei Tieren gebildet wurden, wurde keine statistische Auswertung der Ergebnisse vorgenommen. Die Se-Konzentrationen lagen in der -Se-Gruppe sowohl im Dünndarmgewebe als auch im Darminhalt aller untersuchten Darmabschnitte unterhalb oder an der Nachweisgrenze von 35 μ g/kg. Die SeO₄²⁻- und die SeMet-Gruppe hoben sich deutlich von der -Se- und der Ebselengruppe ab, wobei die Se-Konzentration im Darmgewebe der SeO₄²⁻- Gruppe über das Doppelte der SeMet-Gruppe betrug.

Im Duodenum lag die Se-Konzentration im Darminhalt der SeO₄²⁻-Gruppe 2,5fach so hoch wie in der SeMet-Gruppe. Im Ileum verringerte sich die Se-Konzentration bei der SeO₄²⁻-Gruppe um etwa die Hälfte, in der SeMet-Gruppe lag sie aber bereits unterhalb der Nachweisgrenze. Der duodenale Darminhalt der Ebselengruppe wies ähnliche Se-Konzentrationen wie der der SeMet-Gruppe auf, während im Ileum und Colon hingegen bei der Ebselengruppe mit Abstand die höchsten Se-Konzentrationen gefunden wurden.

4.9 Selenoenzyme

4.9.1 Plasmatische und zelluläre GPx während der Depletionsphase

Um die Se-Depletion zu verfolgen, wurden während der Depletionsphase wöchentlich im Plasma die Aktivität der pGPx (Tabelle 28) und im Hämolysat die der cGPx (Tabelle 29) erfasst. Bereits nach der ersten Woche ließen sich die +Se- und die -Se-Gruppe hinsichtlich beider Parameter statistisch trennen. Bei der pGPx war der Unterschied zu diesem Zeitpunkt bereits höchst signifikant, während die Depletion der cGPx etwas langsamer verlief. Der Unterschied war jedoch nach 2 Wochen ebenfalls höchst signifikant.

			pGPx-Aktivität [mU/mg Protein]										
			Woche										
Gruppe		0	1	2	3	4	5	6	7	8	9		
Kontrollgruppen:													
+Se	M SD	42,5 7,61	43,9 ^a 5,79	42,0 ^a 8,02	44,0 ^a _{6,62}	45,0 ^a 4,55	44,0 ^a _{6,92}	43,5 ^a _{6,34}	45,5 ^a _{6,42}	44,8 ^a 8,25	42,2 ^a 3,76		
-Se	M SD	42,8 5,77	9,71 ^b 3,03	6,72 ^b _{0,882}	6,81 ^b _{3,14}	3,08^b 0,311	2,89^b 0,435	1,90^b 0,257	2,77^b 0,732	2,42^b 0,375	1,59 ^b _{0,482}		

Tabelle 28:pGPx-Aktivitäten [mU/mg Protein] im Blutplasma während der
zehnwöchigen Depletionsphase (n=18)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte. Students t-Test (p < 0,001)

			cGPx-Aktivität im Hämolysat [mU/mg Protein]								
			Woche								
Gruppe		0	1	2	3	4	5	6	7	8	9
Kontrollgruppen:											
+Se	M sd	436 _{28,4}	429 ^a _{60,4}	442 ^a 53,8	445^a 61,8	440 ^a _{22,6}	423^a 54,5	424^a 90,5	436 ^a _{73,3}	421 ^a _{42,6}	421 ^a _{36,0}
-Se	M sd	434 43,4	353 ^b 27,0	259 ^b _{53,7}	167 ^b 33,4	123 ^b 16,4	67,4 ^b 15,2	40,7 ^b 15,3	51,9 ^b _{6,70}	42,1 ^b 11,6	45,5 ^b 13,2

Tabelle 29: cGPx-Aktivitäten im Hämolysat [mU/mg Protein] während der zehnwöchigen Depletionsphase (n=18)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte. Students *t*-Test; Woche 1: p < 0.05, Woche 2-9: p < 0.001

4.9.2 Plasmatische Glutathionperoxidase (pGPx) in der Repletionsphase

In Tabelle 30 ist die Aktivität der plasmatischen Glutathionperoxidase während der Repletionsphase dargestellt. Die SeO₄²⁻-Gruppe unterschied sich bereits am 14. Repletionstag nicht mehr signifikant von der Positivkontrolle, wohingegen die SeO₃²⁻- und SeMet-Gruppe erst nach 28 Tagen statistisch nicht mehr von der +Se-Gruppe zu trennen waren. Die pGPx-Aktivität der Ebselengruppe war so niedrig, dass sie sich während der gesamten Repletionszeit nicht signifikant von der Negativkontrolle unterschied. Nach 2-tägiger Repletion unterschieden sich die SeO₄²⁻- und die SeO₃²⁻-Gruppe signifikant von der Ebselengruppe, und nach 5-tägiger Repletion grenzte sich auch die SeMet-Gruppe von der Ebselengruppe ab.

Tabelle 30:pGPx-Aktivitäten [mU/mg Protein] im Blutplasma der Ratten während
der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen
(n=6)

			pGPx-Aktivität [mU/mg Protein]									
				Replet	ionszei	tpunkt						
Gruppe		0d	2d	5d	8d	14d	21d	28d				
Kontrollgrupp	en:											
+Se	M SD	43,7* _{3,12}	-	-	-	42,2* 3,85	-	40,4* _{2,41}				
-Se	M SD	2,12 _{0,276}	-	-	-	1,84 _{0,474}	-	1,85 _{0,458}				
Repletion:												
SeO42-	M SD	-	6,75 ^{a#} ‡ 1,57	15,4 ^a _{1,50}	31,1 ^a 1,42	37,5 ^a ‡ 2,34	40,0 ^a _{1,67}	37,4 ^a ‡ _{3,95}				
SeO ₃ ²⁻	M SD	-	5,89 ^{a#} ‡ 1,48	15,8 ^a _{1,86}	29,7^{ab} 1,57	36,0 ^{a#} ‡ 3,39	36,7 ^a _{3,44}	35,7 ^a ‡ 1,80				
SeMet	M SD	-	4,62 ^{ab#} ‡ 1,40	13,2 ^a _{2,17}	25,9^b _{3,11}	33,8 ^{a#} ‡ 0,978	38,6 ^a 1,72	38,6 ^a ‡ 1,98				
Ebselen	M SD	-	2,53^{b#} 1,07	1,38^b _{0,242}	1,57 ^c _{0,255}	2,15 ^{b#} _{0,410}	1,98^b _{0,687}	1,86 ^{b#} _{0,372}				

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0,01); 5d: SeO₄²⁻ n=5, Dunnet-T3 (p < 0,001); 8d: Games-Howell (p < 0,05); 14d: SeMet n=4, Dunnett-T3 (p < 0,001); 21d: SeMet n=5, Dunnett-T3 (p < 0,001); 28d: SeO₄²⁻ n=5, Dunnett-T3 (p < 0,001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

4.9.3 Zelluläre Glutathionperoxidase (cGPx) in der Repletionsphase

Im Hämolysat wies die cGPx der Negativkontrolle durchschnittlich nur 5,3 % der Aktivität der Positivkontrolle auf (Tabelle 31). Nach 2 Tagen war nur die SeO₃²⁻-Gruppe von der -Se-Gruppe signifikant verschieden. Ab dem 5. Tag lag die Aktivität der SeO₄²⁻-Gruppe immer etwas über der der anderen Repletionsgruppen, wobei dieser Unterschied nur gegenüber der SeMet- und Ebselengruppe signifikant war. Ab dem 14. Tag unterschied sich die Aktivität der Ebselengruppe von allen anderen Repletionsgruppen signifikant. Auch nach 28 Tagen bestanden noch signifikante Unterschiede aller Repletionsgruppen zur +Se-Gruppe. Die SeO₄²⁻-Gruppe erreichte zu diesem Zeitpunkt 53,4 %, die SeO₃²⁻-Gruppe 34,5 % und die SeMet-Gruppe 44,1 % des Kontrollniveaus.

			cGPx-Al	ktivität im	Hämolysa	nt [mU/mg	Protein]	
				Replet	ionszei	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	407* 20,9	-	-	-	399* 119	-	387* 38,7
-Se	M sd	27,2 2,76	-	-	-	16,7 _{1,49}	-	19,3 3,08
Repletion:								
SeO4 ²⁻	M sd	-	21,2 ^{b#} _{5,07}	53,5 ^a 11,5	72,1 ^a ^{29,4}	102 ^{a#} ‡ 21,5	156 ^a _{37,9}	207 ^{a#} ‡ _{73,8}
SeO ₃ ²⁻	M sd	-	35,3 ^{a#} _{7,93}	42,1 ^{ab} 12,0	38,0 ^{ab} 8,21	87,8 ^{a#} ‡ 11,2	130 ^a 16,3	134 ^{a#} ‡ 25,8
SeMet	M sd	-	22,5 ^{b#} ‡ 2,19	28,6 ^{bc} _{6,49}	47,3 ^{ab} 15,8	92,8 ^{a#} ‡ 20,5	165 ^a _{38,7}	171 ^{a#} ♯ 31,0
Ebselen	M sd	-	26,5 ^{ab#} 5,62	21,6 ^c _{7,89}	26,2 ^b 11,5	23,2 ^{b#} 8,08	21,0 ^b 5,55	18,5 ^{b#} 3,47

Tabelle 31:	cGPx-Aktivitäten im Hämolysat [mU/mg Protein] der Ratten während
	der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen
	(n=6)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.01); 5d: Kruskal-Wallis (p < 0.05), 8d: Games-Howell (p < 0.01); 14d: SeO₄²⁻ n=4, Dunnett T3 (p < 0.05), 21d: Games-Howell (p < 0.01), 28d: Students *t*-Test (p < 0.05)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

			cGPx-A	ktivität in	der Leber	[mU/mg F	Protein]	
				Replet	ionszei	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	286* 31,9	-	-	-	327* 12,3	-	567* 37,3
-Se	M sd	10,1 _{1,21}	-	-	-	10,8 _{2,32}	-	9,35 2,16
Repletion:								
SeO4 ²⁻	M sd	-	18,5 ^{b#} ♯ 2,72	70,7 ^a _{20,0}	166 ^a 41,3	348 ^a ‡ 59,2	560 ^a _{98,4}	736 ^{a#} ‡ 29,0
SeO ₃ ²⁻	M sd	-	23,5 ^{a#} ‡ 2,23	64,4 ^a 15,3	161 ^a 24,5	380 ^a ‡ 61,9	529 ^a 77,3	686 ^{ab#} ‡ 87,0
SeMet	M sd	-	16,2 ^{b#} ‡ 1,64	36,3^b 3,59	153 ^a 21,5	390 ^{a#} ‡ 33,6	517 ^a 40,4	595 ^b ‡ ^{79,8}
Ebselen	M sd	-	11,0 ^{c#} 0,962	10,6 ^c _{0,627}	11,4 ^b _{1,41}	10,9 ^{b#} _{0,880}	11,1 ^b 1,25	10,2^{c#} 1,22

Tabelle 32:cGPx-Aktivitäten in der Leber [mU/mg Protein] der Ratten während der
28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen
(n=6)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: SeO_3^2 n=5, Tukey-HSD (p < 0.01); 5d: Games-Howell (p < 0.05), 8d: Games-Howell (p < 0.001); 14d: Kruskal-Wallis (p < 0.05), 21d: Games-Howell (p < 0.001), 28d: Students *t*-Test (p < 0.05)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

In der Leber (Tabelle 32) stieg die cGPx-Aktivität in der Positivkontrollgruppe innerhalb der 28-tägigen Repletionsphase auf das 2fache an. Zu Beginn der Repletionsphase (0d) lag die hepatische cGPx-Aktivität der -Se-Gruppe noch bei 3,5 % der Aktivität der +Se-Gruppe und sank bis zum Versuchsende auf 1,6 % ab. Die Ebselengruppe lag zu allen untersuchten Zeitpunkten signifikant niedriger als die übrigen Repletionsgruppen und ließ sich statistisch nicht von der Negativkontrolle trennen. Nach 8 Tagen erreichten die Aktivitäten der SeO₄²⁻-, SeO₃²⁻- und SeMet-Gruppe ungefähr die Hälfte des Kontrollniveaus von Tag 14. Nach 14 Tagen unterschieden sich die SeO₄²⁻- und die SeO₃²⁻-Gruppe nicht mehr signifikant von der +Se-Gruppe, während die Aktivität der Kontrollgruppe lag. Nach 28 Tagen wiesen dagegen die SeO₄²⁻- und die SeO₄²⁻- und die SeO₃²⁻- Gruppe signifikant höhere Aktivitäten als die +Se-Gruppe auf, wohingegen die SeMet-Gruppe statistisch nicht von der +Se-Gruppe zu trennen war. Zwischen den

Repletionsgruppen traten mit Ausnahme des Ebselens nur in den ersten Tagen und dann erst wieder nach 28 Tagen signifikante Unterschiede auf. Nach 2 Tagen hob sich die SeO₃²⁻-Gruppe von allen anderen Gruppen ab, und nach 5 Tagen lagen beide anorganischen Se-Verbindungen signifikant über der SeMet- und der Ebselengruppe. Am Ende der Repletionszeit wies die SeO₄²⁻-Gruppe eine signifikant höhere hepatische cGPx-Aktivität als die SeMet- und die Ebselengruppe auf.

			cGPx-A	ktivität in	der Niere	e [mU/mg F	Protein]	
				Replet	ionszei	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	459* _{93,4}	-	-	-	456* _{76,5}	-	460* 77,8
-Se	M sd	12,1 1,55	-	-	-	12,4 1,75	-	12,7 _{1,24}
Repletion:								
SeO42-	M sd	-	24,4^{a#} ‡ 3,01	69,8 ^a _{6,19}	143 ^a 12,0	240 ^{a#} ‡ 36,7	331^a 18,0	414 ^{a#} ‡ 61,6
SeO ₃ ²⁻	M sd	-	21,4 ^{ab#} ‡ 2,25	62,1 ^a _{16,5}	138 ^{ab} 15,1	201 ^{ab#} ‡ 30,2	317^a 18,6	361 ^{a#} ‡ 32,7
SeMet	M sd	-	19,0 ^{b#} ‡ 3,72	63,1 ^a _{9,92}	107 ^b 21,5	182 ^{b#} ‡ 28,9	305 ^a ^{59,8}	361 ^{a#} ‡ 61,0
Ebselen	M sd	-	12,1 ^{c#} _{2,89}	13,4 ^b _{0,797}	13,9 ^c _{0,842}	14,2 ^{c#} 1,92	13,9^b _{1,83}	13,4 ^{b#} _{1,49}

Tabelle 33:cGPx-Aktivitäten in der Niere [mU/mg Protein] der Ratten während der
28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen
(n=6)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Games-Howell (p < 0.01), 8d: Games-Howell (p < 0.05); 14d: Students *t*-Test (p < 0.05), 21d: Students *t*-Test (p < 0.05), 28d: Games-Howell (p < 0.001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

In der Niere (Tabelle 33) sank die cGPx-Aktivität der -Se-Gruppe auf durchschnittlich 2,7 \pm 0,1 % der Aktivität in der +Se-Gruppe. Nach 2, 8 und 14 Tagen Repletion waren die Aktivitäten der SeO₄²⁻-Gruppe signifikant höher als die der SeMet-Gruppe. Zu den anderen Zeitpunkten waren zwischen diesen beiden Gruppen und zur SeO₃²⁻-Gruppe jedoch keine signifikanten Unterschiede festzustellen. Im Gegensatz zu den meisten anderen untersuchten Geweben erreichte in der Niere nach 28 Tagen keine

86

Repletionsgruppe das Niveau der Positivkontrolle (SeO₄²⁻ 90,1 %; SeO₃²⁻ und SeMet 78,4 %). Die Ebselengruppe unterschied sich über die gesamte Versuchsperiode nicht von der Negativkontrolle, aber signifikant von den anderen drei Repletionsgruppen.

			cGPx	-Aktivität i	m Testis [mU/mg Pr	otein]	
				Replet	ionszei	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	7,28* _{0,909}	-	-	-	7,81* _{0,547}	-	7,88* _{0,730}
-Se	M sd	3,99 _{0,521}	-	-	-	3,88 0,596	-	3,98 _{0,512}
Repletion:								
SeO42-	M sd	-	4,56 [#] _{0,684}	4,46 _{0,436}	4,89^a _{0,172}	6,43 ^{a#} ‡ 1,21	6,86 ^a _{0,499}	7,22^a ‡ 0,526
SeO32-	M sd	-	4,31[#] _{0,721}	4,65 _{0,394}	4,65 ^a _{0,491}	6,53 ^{a#} ‡ 0,293	7,30 ^a _{0,317}	7,39^a ‡ 0,631
SeMet	M sd	-	4,41[#] _{0,783}	4,53 _{0,607}	4,82^a 0,382	6,35 ^{a#} ‡ 0,521	7,11 ^a _{0,569}	7,16 ^a ‡ 0,540
Ebselen	M sd	-	4,10[#] 0,750	3,89 _{0,715}	3,73^b _{0,467}	3,76 ^{b#} _{0,423}	4,39^b _{0,219}	3,94^{b#} 0,562

 Tabelle 34:
 cGPx-Aktivitäten im Testis [mU/mg Protein] der Ratten während der 28tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Tukey-HSD (p < 0.05), 8d: Games-Howell (p < 0.05); 14d: Games-Howell (p < 0.05); 14d: Games-Howell (p < 0.05); 2d: Kruskal-Wallis (p < 0.05)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Im Testis wurden die niedrigsten cGPx-Aktivitäten gemessen (Tabelle 34). In der -Se-Gruppe war die Aktivität nach 10 Wochen Depletion etwa halb so hoch wie in der +Se-Gruppe. In den ersten 5 Tagen waren keine signifikanten Unterschiede zwischen den Repletionsgruppen zu beobachten. Ab dem 8. Tag war die Aktivität in der Ebselengruppe signifikant niedriger als in den anderen Repletionsgruppen und ließ sich zu keinem Zeitpunkt statistisch von der -Se-Gruppe trennen. Die übrigen drei Repletionsgruppen lagen nach 14 Tagen mit durchschnittlich 82,4 \pm 1,2 % zwar noch signifikant unterhalb des Kontrollniveaus, erreichten dieses aber mit durchschnittlich 92,0 \pm 1,5 % nach 28 Tagen Repletion.

			cGPx-Aktivität in der Lunge [mU/mg Protein]						
				Replet	ionszei	tpunkt			
Gruppe		0d	2d	5d	8d	14d	21d	28d	
Kontrollgruppe	en:								
+Se	M sd	14,3* _{2,91}	-	-	-	13,5* _{2,44}	-	13,8* _{0,928}	
-Se	M sd	2,31 _{0,576}	-	-	-	1,84 _{0,180}	-	1,79 _{0,276}	
Repletion:									
SeO42-	M sd	-	2,30 ^{ab#} _{0,336}	4,25 ^a _{0,381}	5,52 ^a _{1,53}	8,03 ^{a#} ‡ 2,15	8,59^a _{0,390}	10,7 ^{a#} ♯ 0,471	
SeO ₃ ²⁻	M sd	-	2,49^{a#} 0,242	3,64 ^{ab} _{0,756}	4,74 ^a _{0,895}	7,61 ^{a#} ♯ 1,68	8,46 ^{ab} _{0,574}	10,4 ^{a#} ‡ 1,22	
SeMet	M sd	-	2,29 ^{ab#} 0,471	2,75^b _{0,654}	4,10^a _{0,835}	7,04 ^{a#} ‡ 1,92	7,71^b _{0,561}	9,87 ^{a#} ‡ 0,946	
Ebselen	M sd	-	1,94^{b#} 0,150	1,84^c _{0,303}	1,96 ^b _{0,287}	1,92 ^{b#} _{0,236}	1,65^c _{0,261}	1,67 ^{b#} _{0,200}	

Tabelle 35:cGPx-Aktivitäten in der Lunge [mU/mg Protein] der Ratten während der
28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen
(n=6)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Tukey-HSD (p < 0.05), 8d: Games-Howell (p < 0.01); 14d: Games-Howell (p < 0.01); 21d: SeO₄² n=5, Tukey-HSD (p < 0.05), 28d: Games-Howell (p < 0.001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Auch in der Lunge wurde eine vergleichsweise geringe cGPx-Aktivität gemessen (Tabelle 35), wobei die Aktivität in der Lunge der -Se-Gruppe nach 10 Wochen Depletion noch unter der im Testis lag. Damit ist in der Lunge bei einem Wert der Positivkontrolle von 14,3 ein erheblich stärkerer Depletionseffekt auf lediglich 2,31 mU/mg Protein zu verzeichnen. Die SeO₄²⁻-Gruppe wies zwar durchgehend die höchsten cGPx-Aktivitäten auf, jedoch war dieser Unterschied nach 5 und 21 Tagen lediglich gegenüber der SeMet-Gruppe signifikant. Nach 28 Tagen erreichten die Aktivitäten der SeO₄²⁻-, der SeO₃²⁻-und der SeMet-Gruppe im Mittel 75,1 ± 3,1 % und unterschieden sich von der +Se-Gruppe signifikant. Die Ebselengruppe ließ sich zu keinem Zeitpunkt von der -Se-Gruppe trennen und unterschied sich ab dem 5. Tag von allen anderen Repletionsgruppen signifikant.

			cGPx-/	Aktivität ir	n der Milz	[mU/mg P	rotein]	
				Replet	ionszei	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	335* 43,0	-	-	-	307* 33,5	-	330* 18,3
-Se	M sd	44,2 10,0	-	-	-	36,9 _{3,66}	-	32,0 _{6,50}
Repletion:								
SeO42-	M sd	-	83,6 ^{ab#} ‡ 22,2	116 ^a _{7,20}	156 ^a 11,0	203 ^{a#} ‡ 10,7	272 ^a _{53,6}	306 ^a ‡ 49,8
SeO ₃ ²⁻	M sd	-	58,1 ^{b#} ‡ _{7,21}	92,1 ^b 14,0	129 ^b 10,6	209 ^{a#} ‡ 33,1	270 ^a 48,1	323 ^a ‡ 30,3
SeMet	M sd	-	79,6 ^{a#} ‡ _{6,72}	106 ^{ab} _{7,94}	145 ^{ab} 18,1	184 ^{a#} ‡ 14,8	260 ^a ^{39,5}	290 ^a ‡ 44,1
Ebselen	M sd	-	43,2 ^{c#} 4,67	35,1 ^c _{7,77}	40,9 ^c 4,49	43,0^{b#} 11,3	26,5^b _{6,63}	40,6 ^{b#} 4,16

Tabelle 36:cGPx-Aktivitäten in der Milz [mU/mg Protein] der Ratten während der
28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen
(n=6)

1 U = 1 µmol NADPH-Oxidation pro Minute pro mL bei 340 nm

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Games-Howell (p < 0.05); 5d: Tukey-HSD (p < 0.01), 8d: Tukey-HSD (p < 0.01); 14d: Games-Howell (p < 0.001), 21d: Games-Howell (p < 0.001), 28d: SeMet n=5, Games-Howell (p < 0.001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

In der Milz (Tabelle 36) lag die cGPx-Aktivität der -Se-Gruppe zu Beginn der Repletion bei 13,2 % der Aktivität in der +Se-Gruppe und sank während der Repletionsphase weiter auf 9,7 % ab. Bereits nach 2-tägiger Repletion ließen sich die $SeO_4^{2^-}$, $SeO_3^{2^-}$ und SeMet-Gruppe statistisch von der Negativkontrolle trennen. Während in diesen Gruppen nach 14 Tagen erst durchschnittlich 64,7 ± 4,4 % des Kontrollniveaus erreicht wurden, bestand nach 28 Tagen kein signifikanter Unterschied mehr zur Positivkontrolle. Die Ebselengruppe unterschied sich zu allen Zeitpunkten signifikant von den übrigen Repletionsgruppen und war statistisch nicht von der -Se-Gruppe zu trennen.

4.9.4 5'-Deiodinase (D1)

In Tabelle 37 ist die Aktivität der hepatischen 5'-Deiodinase während der 28-tägigen Repletionsphase dargestellt. In der -Se-Gruppe fiel die Deiodinaseaktivität auf durchschnittlich 13,8 ± 0,7 % der Aktivität in der Positivkontrollgruppe. Im Vergleich zur GPx verlief die Repletion der D1 verhältnismäßig schnell. Zwischen den Aktivitäten der SeO₄²⁻-, SeO₃²⁻- und SeMet-Gruppe waren keine signifikanten Unterschiede festzustellen, jedoch ließen sich die SeO₄²⁻- und SeO₃²⁻-Gruppe im Gegensatz zur SeMet-Gruppe nach 2 Tagen Repletion statistisch schon von der -Se-Gruppe trennen. Nach 5 Tagen hatten diese drei Repletionsgruppen durchschnittlich 64,8 ± 9,6 %, nach 8 Tagen 84,1 ± 6,3 % und bereits nach 14 Tagen mit 101 ± 1,7 % das Niveau der Positivkontrolle erreicht. Die D1-Aktivität in der Ebselengruppe war zu allen untersuchten Zeitpunkten signifikant niedriger als in den übrigen Repletionsgruppen und statistisch nicht von der -Se-Gruppe zu trennen.

		Deio	dinase-Akt	tivität in de	er Leber [fmol T ₃ /(m	in•mg Pro	otein)]
				Replet	ionszei	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	38,6* _{8,35}	-	-	-	39,0* 10,9	-	38,3* _{4,46}
-Se	M sd	5,51 _{2,39}	-	-	-	5,08 2,17	-	5,42 2,35
Repletion:								
SeO4 ²⁻	M sd	-	9,18 ^{a#} ♯ 1,80	23,9 ^a _{1,74}	29,8 ^a _{4,73}	40,0 ^a ‡ 3,27	41,4 ^a _{3,38}	39,1 ^a ‡ 4,42
SeO ₃ ²⁻	M sd	-	11,2 ^{a#} ‡ 2,46	29,2 ^a _{3,70}	31,3 ^a _{2,15}	38,7 ^a ₅ 10,5	38,3 ^a _{3,42}	38,2 ^a ‡ 4,86
SeMet	M sd	-	9,28 ^{a#} 3,15	22,0 ^a _{6,42}	33,4 ^a _{6,73}	39,7 ^a ‡ 4,74	38,5 ^a _{7,57}	41,1^a ‡ _{6,18}
Ebselen	M sd	-	3,99^{b#} _{1,84}	5,95 ^b 2,88	6,86 ^b 1,42	5,79 ^{b#} 3,82	6,01 ^b 3,53	4,12^{b#} 1,63

Tabelle 37:	D1-Aktivitäten [fmol T ₃ /(min•mg Protein)] im Leberhomogenat der
	Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen
	Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Ebselen n=5, Tukey-HSD (p < 0.05); 5d: Games-Howell (p < 0.01), 8d: Ebselen n=5, Kruskal-Wallis (p < 0.05); 14d: Games-Howell (p < 0.01), 21d: SeO₃² n=5, Tukey-HSD (p < 0.001), 28d: SeO₄²⁻ n=5, Tukey-HSD (p < 0.001) * signifikante Unterschiede zwischen den Kontrollgruppen (p < 0.001)

4.10 Glutathion S-Transferasen (GST)

Bei den in Tabelle 38 dargestellten GST-Aktivitäten wies die Positivkontrolle signifikant niedrigere Aktivitäten als die Negativkontrolle auf. Im Verlauf der Repletion sanken die GST-Aktivitäten in der $SeO_4^{2^-}$, $SeO_3^{2^-}$ und SeMet-Gruppe ab und unterschieden sich nach 14 Tagen nicht mehr signifikant von der +Se-Gruppe. Ab dem 5. Tag unterschied sich die Ebselengruppe signifikant von der $SeO_3^{2^-}$ und der SeMet-Gruppe und nach 8 Tagen auch von der $SeO_4^{2^-}$ -Gruppe. Letztere wies nach 5 Tagen eine vergleichsweise hohe Standardabweichung auf. Die Ebselengruppe ließ sich im Gegensatz zu den anderen Repletionsgruppen zu keinem Zeitpunkt statistisch von der -Se-Gruppe trennen.

		GST-Aktivität in der Leber [mU/mg Protein]						
		Repletionszeitpunkt						
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	305* 31,1	-	-	-	332* 31,7	-	327* 35,8
-Se	M SD	410 46,2	-	-	-	433 43,0	-	409 36,4
Repletion:								
SeO42-	M sd	-	408 ^{ab#} 32,6	366 ^{ab} _{95,6}	308 ^a 46,5	303 ^a ‡ 26,3	301 ^a _{32,7}	297 ^a ‡ 32,1
SeO32-	M sd	-	402 ^{ab#} 48,3	341 ^a 27,2	300 ^a 26,5	305 ^a ‡ 43,8	303 ^a 22,0	297 ^a ‡ 19,2
SeMet	M sd	-	377 ^{a#} 42,8	332 ^a 36,9	312^a 35,0	317 ^a ₅ 69,1	306 ^a _{53,8}	297 ^a ‡ 29,2
Ebselen	M sd	-	449^{b#} 48,6	425 ^b 52,8	444^b 39,2	437 ^{b#} 35,6	407 ^b 46,6	401 ^b 62,9

Tabelle 38:GST-Aktivitäten im Leberhomogenat der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Games-Howell (p < 0.05), 8d: Tukey-HSD (p < 0.001); 14d: Games-Howell (p < 0.05), 21d: Tukey-HSD (p < 0.001); 14d: Games-Howell (p < 0.05)

* signifikante Unterschiede zwischen den Kontrollgruppen (0d , 14d p < 0,001; 28d p < 0,01)

4.11 Reduziertes und oxidiertes Glutathion

Nachfolgend sind die Konzentrationen an Gesamtglutathion (tGSH), reduziertem (GSH) und oxidiertem Glutathion (GSSG) sowie das Verhältnis der letzteren zueinander dargestellt.

Die tGSH-Konzentrationen (Tabelle 39) sanken in der Negativkontrollgruppe auf die Hälfte der Konzentrationen in der Positivkontrollgruppe. Zwischen den drei Repletionsgruppen SeO_4^{2-} , SeO_3^{2-} und SeMet waren keine signifikanten Unterschiede zu beobachten, wohingegen die Ebselengruppe während der Repletionsphase auf dem Niveau der Negativkontrolle blieb und sich ab dem 8. Tag signifikant von den anderen Repletionsgruppen unterschied. Nach 14 Tagen ließen sich die SeO_4^{2-} -, SeO_3^{2-} und SeMet-Gruppe statistisch nicht mehr von der Positivkontrolle trennen.

		tGSH in der Leber [µmol/g Frischmasse]						
		Repletionszeitpunkt						
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	5,13* _{0,884}	-	-	-	5,29* _{0,671}	-	5,47* 0,450
-Se	M sd	2,76 _{0,576}	-	-	-	2,73 0,617	-	2,77 0,311
Repletion:								
SeO42-	M sd	-	2,88 [#] _{0,314}	3,69^{ab} _{0,593}	4,33 ^a _{0,597}	4,41^a ‡ 0,730	4,89 ^a _{0,683}	5,38 ^a ‡ 0,654
SeO32-	M sd	-	2,86 [#] _{0,543}	3,50 ^a _{0,268}	4,21^a _{0,472}	4,39^a ‡ 0,688	4,89^a _{0,689}	5,39 ^a ‡ 0,237
SeMet	M sd	-	2,85 [#] _{0,519}	3,56 ^{ab} 0,972	4,37 ^a _{0,507}	4,60 ^a [‡] 0,340	4,90^a _{0,450}	5,34 ^a ‡ 0,682
Ebselen	M sd	-	2,78 [#] _{0,347}	2,75 ^b 0,451	2,73 ^b _{0,324}	2,69 ^{b#} 0,560	2,70 ^b _{0,298}	2,76^{b#} 0,231

Tabelle 39:	Gesamtglutathion-Konzentration (tGSH) im Leberhomogenat der Ratten
	während der 28-tägigen Repletionsphase mit unterschiedlichen Se-
	Verbindungen (n=6)

tGSH ausgedrückt als GSH

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Games-Howell (p < 0.05), 8d: Kruskal-Wallis (p < 0.05); 14d: Tukey-HSD (p < 0.001), 21d: Tukey-HSD (p < 0.001), 28d: Games-Howell (p < 0.001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

		GSH in der Leber [µmol/g Frischmasse]						
		Repletionszeitpunkt						
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppe	en:							
+Se	M sd	4,52* _{0,836}	-	-	-	4,65* _{0,577}	-	4,81* 0,406
-Se	M sd	2,67 0,569	-	-	-	2,64 0,590	-	2,67 0,308
Repletion:								
SeO4 ²⁻	M sd	-	2,74 [#] _{0,292}	3,48 _{0,614}	3,99 ^a _{0,627}	3,98 ^a ‡ 0,784	4,37 ^a _{0,647}	4,72^a ± 0,557
SeO ₃ ²⁻	M sd	-	2,72[#] 0,550	3,31 0,270	3,89^a _{0,492}	3,97^a ‡ 0,673	4,37 ^a _{0,675}	4,74 ^a ‡ 0,258
SeMet	M sd	-	2,72 [#] 0,515	3,40 _{0,942}	4,04 ^a _{0,500}	4,17 ^a ₌ _{0,339}	4,36 ^a _{0,536}	4,67^a ± 0,713
Ebselen	M sd	-	2,68 [#] _{0,344}	2,66 _{0,443}	2,64 ^b _{0,315}	2,59 ^{b#} 0,554	2,61 ^b _{0,296}	2,66^{b#} 0,232

Tabelle 40: Konzentration an reduziertem Glutathion (GSH) im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Games-Howell (p < 0.05), 8d: Tukey-HSD (p < 0.01); 14d: Tukey-HSD (p < 0.01), 21d: Tukey-HSD (p < 0.001), 28d: Games-Howell (p < 0.01)

signifikante Unterschiede zwischen den Kontrollgruppen (0d p < 0,01; 14d , 28d p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Die in Tabelle 40 dargestellten Konzentrationen an reduziertem Glutathion (GSH) zeigten ein ähnliches Bild wie die Konzentrationen an Gesamtglutathion. Die GSHder -Se-Gruppe betrugen Mittel 57,2 ±1,75 % der Konzentrationen in im Konzentrationen in der +Se-Gruppe. Die SeO42-, SeO32- und SeMet-Gruppe ließen sich statistisch nicht voneinander trennen und unterschieden sich nach 14 Tagen nicht mehr signifikant von der Positivkontrolle. Die Ebselengruppe ließ sich im gesamten Untersuchungszeitraum statistisch nicht von der Negativkontrolle, aber ab dem 8. Tag von den anderen Repletionsgruppen trennen.

		GSSG in der Leber [µmol/g Frischmasse]						
		Repletionszeitpunkt						
Gruppe		0d	2d	5d	8d	14d	21d	28d
Kontrollgruppen:								
+Se	M SD	0,611* _{0,103}	-	-	-	0,637* _{0,114}	-	0,660* 0,110
-Se	M SD	0,091 0,008	-	-	-	0,092 0,030	-	0,092 0,013
Repletion:								
SeO4 ²⁻	M SD	-	0,136 ^{a#} ‡ 0,031	0,206 ^a _{0,058}	0,338 ^a _{0,061}	0,429 ^{a#} ‡ 0,083	0,521 ^a _{0,119}	0,664 ^a ‡ 0,148
SeO ₃ ²⁻	M SD	-	0,136 ^{a#} ‡ _{0,024}	0,193 ^a _{0,037}	0,317 ^a _{0,041}	0,420 ^{a#} ‡ 0,073	0,526 ^a _{0,050}	0,650 ^a ‡ _{0,052}
SeMet	M SD	-	0,132 ^{a#} ‡ _{0,017}	0,164 ^{ab} _{0,063}	0,324 ^a _{0,050}	0,428 ^{a#} ‡ 0,028	0,539 ^a _{0,100}	0,671 ^a ‡ _{0,114}
Ebselen	M SD	-	0,094 ^{b#} _{0,007}	0,090 ^b _{0,009}	0,092 ^b _{0,013}	0,095 ^{b#} _{0,006}	0,093 ^b _{0,006}	0,095 ^{b#} _{0,008}

Tabelle 41:Konzentration an oxidiertem Glutathion (GSSG) im Leberhomogenat
der Ratten während der 28-tägigen Repletionsphase mit
unterschiedlichen Se-Verbindungen (n=6)

GSSG ausgedrückt als 2 GSH

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Games-Howell (p < 0.05), 8d: Kruskal-Wallis (p < 0.05); 14d: Games-Howell (p < 0.001), 21d: Games-Howell (p < 0.001), 21d: Games-Howell (p < 0.001)

* signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Im Vergleich zu tGSH und GSH waren bei den GSSG-Konzentrationen (Tabelle 41) wesentlich größere Unterschiede zwischen Positiv- und Negativkontrolle zu beobachten. Die GSSG-Konzentrationen in der -Se-Gruppe betrugen im Mittel nur 14,4 ± 0,5 % der Konzentrationen in der +Se-Gruppe. Im Gegensatz zu tGSH und GSH ließen sich die SeO₄²⁻-, die SeO₃²⁻- und die SeMet-Gruppe nach 2 Tagen von der Negativkontrolle (0 d) und von der Ebselengruppe statistisch trennen. Lediglich nach 5 Tagen war der Unterschied zwischen der SeMet- und der Ebselengruppe aufgrund der hohen Standardabweichung nicht signifikant. Zwischen der SeO₄²⁻-, der SeO₃²⁻- und der SeMet-Gruppe nach 2 GSH- und GSH-Konzentration ließen sich diese Gruppen nach 14 Tagen statistisch noch von der Postitivkontrolle trennen und erreichten das Kontrollniveau erst nach 28 Repletionstagen.
		Verhältnis GSH:GSSG in der Leber							
		Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d	
Kontrollgruppe	en:								
+Se	M sd	7,46* 1,32	-	-	-	7,38* _{0,747}	-	7,44* 1,17	
-Se	M sd	29,1 _{4,22}	-	-	-	29,8 _{6,39}	-	29,6 5,18	
Repletion:									
SeO42-	M sd	-	20,8 ^{a#} ‡ 3,05	18,5 ^a _{7,49}	12,5 ^a _{4,28}	9,90 ^a ‡ 4,05	8,64 ^a _{1,65}	7,34^a ‡ 1,49	
SeO ₃ ²⁻	M sd	-	20,9 ^{a#} ‡ _{6,28}	17,7 ^a _{4,00}	12,5 ^a 2,52	9,65 ^a ‡ 2,04	8,33^a _{1,24}	7,35 ^a ‡ 0,870	
SeMet	M sd	-	20,7 ^{a#} ‡ 4,18	17,4^{ab} 11,4	12,7 ^a _{2,41}	9,77 ^{a#} ‡ 1,00	8,48 ^a 2,58	7,21 ^a ‡ 2,06	
Ebselen	M sd	-	28,7 ^{b#} 3,13	29,5 ^b _{2,75}	29,0 ^b _{2,60}	27,2 ^{b#} 3,88	28,0 ^b _{3,03}	28,2 ^{b#} ‡ 3,53	

Tabelle 42: Verhältnis von oxidiertem und reduziertem Glutathion (GSH:GSSG) im Leberhomogenat der Ratten während der 28-tägigen Repletionsphase *mit unterschiedlichen* Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Tukey-HSD (p < 0.05), 8d: Tukey-HSD (p < 0.001); 14d: Tukey-HSD (p < 0.001), 21d: Games-Howell (p < 0,001), 28d: Games-Howell (p < 0,001) * signifikante Unterschiede

signifikante Unterschiede zwischen den Kontrollgruppen (p < 0,001)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Das in Tabelle 42 dargestellte Verhältnis von reduziertem und oxidiertem Glutathion war vor allem durch die GSSG-Konzentration geprägt. In der -Se-Gruppe war das GSH:GSSG-Verhältnis etwa um das 4fache größer als in der +Se-Gruppe. Wie bei GSSG unterschieden sich die Se $O_4^{2^-}$, die Se $O_3^{2^-}$ und die SeMet-Gruppe bereits nach 2 Tagen signifikant von der Negativkontrolle (0 d) und der Ebselengruppe. Der Unterschied zwischen der SeMet- und der Ebselengruppe war lediglich am Tag 5 (hohe Standardabweichung) nicht signifikant. Die SeO₄²⁻-, SeO₃²⁻- und SeMet-Gruppe unterschieden sich auch beim GSH:GSSG-Verhältnis an keinem Tag signifikant voneinander. Im Gegensatz zur GSSG-Konzentration unterschieden sich die SeO₄²⁻und SeO₃²⁻-Gruppe schon nach 14 Tagen nicht mehr signifikant von der Positivkontrolle.

4.12 Triiodthyronin- und Thyroxinkonzentrationen (T₃, T₄) im Plasma

In Tabelle 43 sind die T₃-Konzentrationen im Plasma der Ratten dargestellt. Zu Beginn der Repletionsphase betrug die T₃-Konzentration in der -Se-Gruppe 70,0 %, nach 14 Tagen 57,0 % und nach 28 Tagen 62,9 % der Konzentration in der +Se-Gruppe. Bereits nach 14 Tagen unterschieden sich die T₃-Konzentrationen der SeO₄²⁻-, SeO₃²⁻-SeMet-Gruppe nicht mehr signifikant von der T₃-Konzentration der und Positivkontrolle. Zwischen den Repletionsgruppen traten erst nach 8 Tagen signifikante Unterschiede auf, wobei sich nur die Se O_4^{2-} und Se O_3^{2-} -Gruppe statistisch von der Ebselengruppe trennen ließen. Am 8. Tag war die T₃-Konzentration in der Ebselengruppe signifikant niedriger als in der SeO₄²⁻- und SeO₃²⁻-Gruppe und unterschied sich ab dem 14. Tag von allen drei anderen Repletionsgruppen. Zu keinem Zeitpunkt unterschied sich die Ebselengruppe signifikant von der Negativkontrolle.

		T ₃ im Plasma [nmol/L]							
		Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d	
Kontrollgruppe	en:								
+Se	M sd	1,23* _{0,072}	-	-	-	1,21* 0,128	-	1,22* _{0,146}	
-Se	M sd	0,859 _{0,138}	-	-	-	0,691 _{0,113}	-	0,765 _{0,184}	
Repletion:									
SeO42-	M sd	-	0,914[#] _{0,154}	1,09 _{0,093}	1,08^a _{0,060}	1,15 ^a ₌ _{0,114}	1,22^a _{0,065}	1,21 ^a ‡ 0,148	
SeO32-	M sd	-	0,900[#] _{0,070}	1,09 _{0,210}	1,16^a _{0,108}	1,21^a‡ 0,186	1,23^a _{0,116}	1,25^a ‡ 0,141	
SeMet	M sd	-	0,931[#] _{0,225}	1,02 _{0,179}	1,08 ^{ab} _{0,264}	1,11 ^a ‡ 0,092	1,15^a _{0,107}	1,16 ^a ₌ _{0,084}	
Ebselen	M sd	-	0,873[#] _{0,072}	0,885 _{0,208}	0,884 ^b _{0,089}	0,856 ^{b#} _{0,155}	0,878 ^b _{0,132}	0,870 ^{b#} _{0,135}	

Tabelle 43:T₃-Konzentrationen [nmol/L] im Plasma der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Games-Howell (p < 0.05), 5d: Tukey-HSD (p < 0.05); 8d: Games-Howell (p < 0.01), 14d: Tukey-HSD (p < 0.05), 21d: Tukey-HSD (p < 0.01), 28d: Tukey-HSD (p < 0.01)

signifikante Unterschiede zwischen den Kontrollgruppen (0d p < 0,01; 14d p < 0,001; 28d p < 0,01)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

Die T₄-Konzentrationen im Plasma sind in Tabelle 44 dargestellt. In der -Se-Gruppe lagen die T₄-Konzentrationen zwar zu allen untersuchten Zeitpunkten höher als in der +Se-Gruppe, jedoch war dieser Unterschied nicht signifikant. Entsprechend traten keine signifikanten Unterschiede zwischen den Repletions- und den Kontrollgruppen auf. Es war aber zu beobachten, dass sich die T₄-Konzentrationen in der SeO₄²⁻-, SeO₃²⁻- und SeMet-Gruppe mit zunehmender Repletionszeit leicht verringerten, wohingegen diese Tendenz in der Ebselengruppe wie auch in der -Se-Gruppe nicht zu sehen war. Nur zu einem der untersuchten Zeitpunkte (21d) ließen sich die SeO₄²⁻- und die SeMet-Gruppe statistisch von der Ebselengruppe trennen.

		T₄ im Plasma [nmol/L]								
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgrupp	en:									
+Se	M sd	58,9 ^{8,03}	-	-	-	54,6 10,9	-	57,3 ^{8,48}		
-Se	M sd	61,6 15,5	-	-	-	62,7 _{7,47}	-	66,6 6,68		
Repletion:										
SeO42-	M sd	-	63,7 _{6,99}	62,4 _{4,33}	57,2 5,79	58,2 ^{8,35}	56,3^b _{5,90}	55,8 _{8,70}		
SeO32-	M sd	-	62,9 _{5,88}	60,3 _{8,33}	57,6 5,91	58,1 _{7,64}	59,3 ^{ab} 7,07	57,7 _{4,98}		
SeMet	M SD	-	61,3 _{5,39}	61,2 _{5,17}	60,3 _{9,71}	55,8 _{6,36}	57,4 ^b 4,84	55,4 _{6,14}		
Ebselen	M SD	-	64,6 _{6,57}	66,7 5,10	67,2 5,15	66,3 _{9,02}	67,2 ^a _{5,88}	66,4 _{8,25}		

Tabelle 44:T₄-Konzentrationen [nmol/L] im Plasma der Ratten während der 28-
tägigen Repletionsphase mit unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. Tukey-HSD (p < 0.05)

Das in Tabelle 45 dargestellte T₄:T₃-Verhältnis spiegelt vor allem die Unterschiede hinsichtlich der T₃-Konzentrationen wider. Dieses Verhältnis betrug zu Beginn der Repletionsphase in der -Se-Gruppe das 1,5fache dessen in der +Se-Gruppe. Dieser Unterschied war zu diesem Zeitpunkt bereits signifikant. In der -Se-Gruppe erweiterte sich das T₄:T₃-Verhältnis während der folgenden 14 Tage auf das 2fache der +Se-Gruppe. Wie bei den T₃-Konzentrationen traten auch beim T₄:T₃-Verhältnis erst nach 8 Tagen signifikante Unterschiede zwischen den Repletionsgruppen auf, wobei dieses Verhältnis in der Ebselengruppe gegenüber den anderen drei Repletionsgruppen signifikant erweitert war. Letztere waren bereits nach 14 Tagen statistisch nicht mehr von der Positivkontrolle zu trennen, während sich Ebselen zu keinem Zeitpunkt signifikant von der Negativkontrolle unterschied.

		T ₄ :T ₃ -Verhältnis im Plasma								
			Repletionszeitpunkt							
Gruppe		0d	2d	5d	8d	14d	21d	28d		
Kontrollgruppe	en:									
+Se	M sd	47,8* 4,59	-	-	-	44,8* 5,27	-	47,3* _{6,51}		
-Se	M SD	71,8 14,0	-	-	-	92,5 16,5	-	92,1 _{26,7}		
Repletion:										
SeO42-	M sd	-	72,2 [#] 18,2	57,7 _{7,55}	53,0 ^b 4,81	51,3 ^b ‡ _{9,64}	46,4^b 5,08	46,1 ^b ‡ 4,66		
SeO ₃ ²⁻	M sd	-	70,1 [#] _{6,94}	56,1 _{5,39}	50,0 ^b 4,08	48,5 ^b ‡ 7,37	48,6 ^b _{5,84}	46,9 ^b ‡ _{9,54}		
SeMet	M sd	-	68,4 [#] 13,0	61,4 12,1	57,2 ^b 8,47	50,2 ^b ‡ 5,50	50,2 ^b 4,44	48,3 ^b ‡ 8,29		
Ebselen	M sd	-	74,2 [#] _{7,12}	78,2 15,7	76,7 ^a 10,3	78,3 ^{a#} _{8,72}	77,6 ^a 10,9	78,4^{a#} 17,4		

Tabelle 45:Verhältnis der Schilddrüsenhormonkonzentrationen zueinander im
Plasma der Ratten während der 28-tägigen Repletionsphase mit
unterschiedlichen Se-Verbindungen (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Tukey-HSD (p < 0.05); 5d: Games-Howell (p < 0.05), 8d: Games-Howell (p < 0.05); 14d: Tukey-HSD (p < 0.001), 21d: Tukey-HSD (p < 0.001), 28d: Tukey-HSD (p < 0.001), 28d: Tukey-HSD (p < 0.001)

* signifikante Unterschiede zwischen den Kontrollgruppen (0d p < 0,01; 14d p < 0,001; 28d p < 0,01)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d ‡ signifikante Unterschiede der Repletionsgruppen zur Negativkontrolle (-Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

4.13 Thiobarbitursäurereaktive Substanzen (TBA-RS)

In Tabelle 46 sind die Konzentrationen an thiobarbitursäurereaktiven Substanzen dargestellt. Zu Beginn der Repletionsphase wies die Positivkontrolle eine vergleichsweise hohe Konzentration an TBA-RS auf, so dass sich die $SeO_3^{2^-}$, die SeMet- und die Ebselengruppe nach 2-tägiger Repletion signifikant von der Positivkontrolle am Tag null unterschieden. Während bis zum 14. Repletionstag keine weiteren signifikanten Unterschiede auftraten, hob sich die Ebselengruppe nach 21 Tagen signifikant von den anderen drei Repletionsgruppen ab, und nach 28 Tagen ließ sich die $SeO_4^{2^-}$ -Gruppe von der SeMet- und der Ebselengruppe statistisch trennen.

		TBA-RS in der Leber [nmol/g Frischmasse]									
			Repletionszeitpunkt								
Gruppe		0d	2d	5d	8d	14d	21d	28d			
Kontrollgruppen:											
+Se	M sd	35,2 5,28	-	-	-	25,5 _{6,88}	-	29,0 _{3,76}			
-Se	M sd	30,6 _{7,33}	-	-	-	26,9 5,04	-	29,1 4,18			
Repletion:											
SeO4 ²⁻	M sd	-	31,0 8,35	30,0 _{4,79}	31,3 _{6,52}	30,3 _{6,11}	31,7 ^a _{4,79}	36,1 ^a 4,06			
SeO32-	M sd	-	23,3 [#] _{4,74}	27,8 _{6,61}	28,5 _{7,81}	25,5 _{2,64}	26,6 ^a _{3,96}	29,7 ^{ab} 2,78			
SeMet	M sd	-	27,3 [#] _{1,81}	26,0 _{3,83}	22,4 1,88	24,2 2,18	25,5 ^a 2,36	24,0 ^b 2,98			
Ebselen	M sd	-	26,5 [#] _{6,21}	22,2 3,68	22,2 2,98	25,1 1,69	22,3 ^b 4,93	25,6 ^b _{7,92}			

Tabelle 46:TBA-RS-Konzentrationen im Leberhomogenat der Ratten während der
28-tägigen Repletionsphase (n=6)

Unterschiedliche Hochbuchstaben kennzeichnen signifikante Unterschiede innerhalb einer Spalte zwischen den Repletionsgruppen. 2d: Games-Howell (p < 0.05); 5d: Tukey-HSD (p < 0.05), 8d: Games-Howell (p < 0.05); 14d: Kruskal-Wallis (p < 0.001), 21d: Tukey-HSD (p < 0.05), 28d: Tukey-HSD (p < 0.05)

signifikante Unterschiede der Repletionsgruppen zur Positivkontrolle (+Se) innerhalb einer Spalte bzw. bei 2d im Vergleich zu 0d

4.14 Katalase

In Tabelle 47 ist die peroxidative Katalaseaktivität im Leberhomogenat der Ratten dargestellt. Über den gesamten Versuchszeitraum von 14 Wochen ließen sich zwischen der Positiv- und der Negativkontrollgruppe keine statistischen Unterschiede feststellen. Die Repletionsgruppen wurden daraufhin nicht analysiert.

Zeitounkt		peroxidative Katalaseaktivität [U/mg Protein]					
Ζειιρατικί		+Se	-Se				
0 d	M	0,828	0,820				
	sd	_{0,097}	0,126				
14 d	M	0,852	0,851				
	sd	_{0,094}	_{0,139}				
28 d	M	0,850	0,835				
	SD	0,072	_{0,087}				

Tabelle 47:Peroxidative Aktivität [U/mg] der Katalase im Leberhomogenat der
Ratten aus der +Se- und der -Se-Gruppe während der 28-tägigen
Repletionsphase

1 U = 1 μ mol gebildetes Formaldehyd • Minute⁻¹ • mL⁻¹ bei 550 nm

Tukey-HSD: keine statistisch signifikanten Gruppenunterschiede

4.15 Eisenkonzentration in Leber, Niere und Vollblut

Zwischen der Negativkontrollgruppe (-Se) und der Positivkontrollgruppe (+Se) konnten weder im Blut noch in Leber und Niere signifikante Unterschiede hinsichtlich der Eisenkonzentration beobachtet werden (Tabelle 48). Im Mittel lag der Eisengehalt in der Leber bei $262 \pm 50,6 \ \mu\text{g/g}$ (+Se) vs. $298 \pm 57,6 \ \mu\text{g/g}$ (-Se), in der Niere bei $75,7 \pm 6,51 \ \mu\text{g/g}$ (+Se) vs. $71,8 \pm 14,0 \ \mu\text{g/g}$ (-Se) und im Vollblut bei $525 \pm 83,1 \ \mu\text{g/g}$ (+Se) vs. $507 \pm 86,4 \ \mu\text{g/g}$ (-Se).

Zeitnunkt		Leber [µg/g]		Niere	e [µg/g]	Vollblut [µg/g]	
		+Se	-Se	+Se	-Se	+Se	-Se
0 d	M	273	290	75,5	76,6	581	502
	sd	_{73,5}	10,4	_{6,41}	11,1	99,1	87,4
14 d	M	275	342	74,6	68,4	474	455
	sd	_{49,4}	22,6	8,51	11,7	67,7	20,4
28 d	M	253	262	76,9	69,8	520	565
	sd	37,6	111	_{5,24}	18,5	46,5	99,5

Tabelle 48:Eisenkonzentrationen [µg/g] in Leber, Niere und Vollblut der Ratten aus
der +Se- und der -Se-Gruppe während der 28-tägigen Repletionsphase

Tukey-HSD: keine statistisch signifikanten Gruppenunterschiede

4.16 Genexpression (cGPx, PHGPx)

Die mRNA-Expression der Glutathionperoxidasen ist in Tabelle 49 dargestellt. Da die Lebern von jeweils drei der sechs Tiere pro Gruppe für die Genexpressionsanalysen gepoolt wurden, wurde keine statistische Auswertung vorgenommen.

Im Fall der cGPx war eine starke Herunterregulierung nach der Depletionsphase zu beobachten. Nach 8-tägiger Repletion zeigte sich in der SeO₄²⁻-, SeO₃²⁻- und SeMet-Gruppe bereits eine deutliche Hochregulierung, die nach 28 Tagen weiter zugenommen hatte. Die stärkste Regulierung war in der SeMet-Gruppe zu sehen, während sich in der Ebselengruppe keine Regulierung beobachten ließ.

Bei der PHGPx zeigte sich ein vollkommen anderes Bild als bei der cGPx. Während der Depletionsphase fand keine Regulierung der PHGPx in der -Se-Gruppe statt. In der anschließenden Repletionsphase war jedoch in der SeMet-Gruppe eine Repletion der mRNA-Expression zu beobachten. In den anderen Repletionsgruppen zeigte sich hingegen nur eine Tendenz zur Hochregulierung (Faktor < 2).

	Genexpression in der Leber								
	Regulierung gegenüber +Se nach zehnwöchiger Depletion um den angegebenen Faktor (↓↑)								
	cGPx PHGPx								
-Se		13,5	Ļ			1,1 ↑			
	Regulierung gegenüber -Se im Verlauf der Repletion um den angegebenen Faktor (↓↑)								
Repletion:		cGPx				PHGPx	'HGPx		
	8d		28d		8d		28d		
SeO42-	5,8	1	7,3	1	1,9	1	1,9	1	
SeO ₃ ²⁻	4,6	1	6,4	1	1,8	1	1,7	1	
SeMet	8,1	1	9,5	1	2,6	1	3,1	1	
Ebselen	1,2	1	1,0	\rightarrow	1,8	1	1,8	1	

Tabelle 49: Genex	pression der (cGPx und de	er PHGPx in	der Leber ((RT-PCR)
-------------------	----------------	-------------	-------------	-------------	----------

Pfeil nach oben = hochreguliert, Pfeil nach unten = herunterreguliert, Pfeil nach rechts = keine Regulierung

5 Diskussion

5.1 Einfluss verschiedener Se-Verbindungen auf zootechnische Parameter

Futteraufnahme und Gewichtsentwicklung der Ratten lagen im Bereich der Werte von LEE et al. (1981b) und decken sich mit den Angaben des NRC (1995) und denen des Zuchtunternehmens (Harlan Winkelmann, Borchen). Die 10-wöchige Se-Depletion hatte keinen signifikanten Einfluss auf die Futteraufnahme und das Wachstum der Ratten. Jedoch wies die Mangelgruppe am Ende der Repletionsphase tendenziell die geringsten Gewichte auf.

Abbildung 10: Gewichtsentwicklung der Ratten während der Repletionsphase (Kontrollgruppen: 10. Woche n=18, 11.+ 12. Woche n=12, 13.+ 14. Woche n=6; Repletionsgruppen: 10. Woche n=36, 11. Woche n=24, 12. Woche n=18, 13. Woche n=12, 14. Woche n=6)

Auch in anderen Se-Mangelstudien wurden während 8-12 Wochen keine signifikanten Gewichtsunterschiede bei Ratten beobachtet (BECKETT et al. 1993, CHANOINE et al. 1993, VADHANAVIKIT und GANTHER 1993, CHAREONPONG-KAWAMOTO et al. 1995, EDER

et al. 1995, MATSUDA et al. 1998). Bei länger andauerndem Se-Mangel über 12-20 Wochen waren die Negativkontrollgruppen in einigen Rattenstudien signifikant leichter (MEINHOLD et al. 1993, VADHANAVIKIT und GANTHER 1993, CHAREONPONG-KAWAMOTO et al. 1995, MATSUDA et al. 1998, CHRISTENSEN et al. 2000), während andere Autoren nach 15-16-wöchigem Se-Mangel keinen signifikanten Gewichtsunterschied feststellen konnten (AwAD et al. 1994, MOAK und CHRISTENSEN 2001). Besonders deutlich war die geringere Lebendmassezunahme in 74 Tagen bei Se-Mangelratten der zweiten Generation. Offensichtlich sind die initialen Selenkonzentrationen in den Geweben ausreichend, um in der Phase des stärksten Wachstums einen manifesten Se-Mangel zu vermeiden (MORENO-REYES et al. 2001). Auch ein kombinierter Se-/Vitamin E-Mangel in der ersten Generation führte ab der 7. Woche zu signifikant verringertem Gewicht (FISCHER 2002) und ab der 13. Woche zu massivem Gewichtsverlust mit Todesfolge (AwAD et al. 1994).

5.2 Selenkonzentrationen im Blut und in ausgewählten Organen

5.2.1 Selenkonzentrationen im Plasma und im Vollblut

Die Selenaufnahme zeigt im Plasma einen deutlich größeren Einfluss auf die Selenkonzentration als im Vollblut. Deshalb eignet sich die Bestimmung der Selenkonzentration im Plasma vor allem zur mittelfristigen Diagnose des Selenstatus, während die Selenkonzentration in den Erythrozyten den Selenstatus über einen längeren Zeitraum widerspiegelt.

Innerhalb von 10 Wochen sank die Se-Konzentration in Plasma und Vollblut der Se-Mangelratten auf 4,50 % und 3,41 % der Konzentration der Kontrolltiere. Plasma und Vollblut der Kontrollgruppe wiesen etwa gleich hohe Se-Konzentrationen auf, die mit den Ergebnissen anderer Autoren vergleichbar sind (BEHNE et al. 1982, BEHNE und WOLTERS 1983, YUAN et al. 1991).

In der Ebselengruppe erfolgte weder im Plasma noch im Vollblut eine Repletion. Die Se-Konzentration im Vollblut lag außer am Tag null und Tag 14 auf dem Niveau der Mangelgruppe. Die Ebselengruppe wird hinsichtlich aller untersuchten Parameter im Abschnitt 5.7 diskutiert.

Im Plasma lag die Se-Konzentration in der SeO₄²⁻-Gruppe nach 2- und 5-tägiger Repletionszeit signifikant über der SeMet-Gruppe und nach 8 Tagen auch signifikant

über der SeO₃²⁻-Gruppe. Nach 14-tägiger Repletion waren zwischen SeO₄²⁻, SeO₃²⁻ und SeMet keine Unterschiede mehr festzustellen, und nach 28 Tagen waren diese drei Gruppen statistisch nicht mehr von der Positivkontrolle zu trennen. Hinsichtlich der Repletionseffizienz ergab sich somit für die ersten 8 Tage der Repletion die Reihenfolge: SeO₄²⁻ > SeO₃²⁻ > SeMet. In einem anderen Versuch an Se-defizienten Ratten war die Se-Konzentration im Plasma SeMet-gefütterter Ratten bis zum 42. Repletionstag ebenfalls geringer als in der SeO₄²⁻- und SeO₃²⁻-Gruppe (FINLEY 1998). Bei Puten war die Repletionseffizienz im Plasma nach 8 Tagen auch bei SeO₄²⁻ am höchsten (SeO₄²⁻ > SeMet > SeO₃²⁻) (CANTOR und TARINO 1982). Beim Menschen hingegen war SeMet dem anorganischen SeO₃²⁻ hinsichtlich der Repletionseffizienz überlegen (SeMet > SeO₃²⁻). Der Repletionszeitraum betrug jedoch 16-20 Wochen, so dass nach dieser Zeit von einem höheren unspezifischen Einbau des SeMet ausgegangen werden muss. Die pGPx-Aktivität und die Plasma-SelP-Konzentrationen unterschieden sich jedoch nicht signifikant, so dass SeMet keine höhere Bioverfügbarkeit aufwies (XIA et al. 2005).

Im Vollblut lagen die Se O_4^{2-} - und die Se O_3^{2-} -Gruppe nach 2-tägiger Repletion signifikant höher als die SeMet-Gruppe. Nach 5 und 8 Tagen war nur die Se-Konzentration in der SeO₄²⁻-Gruppe signifikant größer als in der SeMet-Gruppe. Da nach 14 Tagen kein Unterschied mehr zwischen den drei Gruppen festzustellen war, ergab sich dieselbe Repletionseffizienz wie im Plasma: $SeO_4^{2-} > SeO_3^{2-} > SeMet$. Im Gegensatz zum Plasma lagen die Se-Konzentrationen im Vollblut dieser drei Gruppen nach 28 Tagen mit durchschnittlich 78,2 % noch nicht auf dem Niveau der Kontrollgruppe. Da die Se-Konzentration des Hämolysats hauptsächlich durch die Se-Konzentration in den Erythrozyten bestimmt wird und Erythrozyten eine Lebensdauer von 120 Tagen haben, war eine vollständige Repletion innerhalb von 28 Tagen nicht zu erwarten. Selen wird aber nicht nur in neue Erythrozyten eingebaut, sondern auch über die Reaktion mit GSSeSG an das Hämoglobin bestehender Erythrozyten gebunden (HARATAKE et al. 2005). In Vollblut und Erythrozyten von Puten war die Se-Konzentration im Gegensatz zu den eigenen Ergebnissen nach 8 Tagen Repletion in der SeMet-Gruppe am höchsten (SeMet > SeO_4^{2-} > SeO_3^{2-}) (CANTOR und TARINO 1982).

In Versuchen an Ratten, in denen vorher keine Depletion stattgefunden hat, traten hinsichtlich der Se-Konzentration in Plasma und Vollblut keine Unterschiede zwischen SeO₄²⁻, SeO₃²⁻ oder SeMet auf (BEILSTEIN und WHANGER 1986b, ZI-JIAN et al. 1992).

5.2.2 Selenkonzentrationen in Leber, Niere, Testis, Muskel und Gehirn

In Testes, Gehirn und anderen endokrinen Organen wird der Selengehalt über Regulationsmechanismen auch bei vorübergehend geringer Selenzufuhr weitgehend aufrecht erhalten (BEHNE et al. 1988). Entsprechend erfolgte in vorliegender Studie während des 10-wöchigen Selenmangels eine rasche Depletion der Leber auf etwa 2 % der Kontrollgruppe, während in Testis und Gehirn hohe Se-Konzentrationen aufrecht erhalten wurden (63 % bzw. 70 % der Positivkontrolle). Auch die Niere wurde mit 12 % der Se-Konzentration im Vergleich zur Kontrollgruppe nicht extrem depletiert, was andere Autoren ebenfalls beobachten konnten (BEHNE et al. 1982, MASUKAWA et al. 1984, YUAN et al. 1991, BATES et al. 2000). Auch im Gehirn von Mäusen waren nach 18-wöchigem Se-Mangel noch 74 % des Selens adäquat versorgter Tiere vorhanden (NAKAYAMA et al. 2007).

In Skelettmuskel, Blut und Leber sind bei der Ratte 73 % des gesamten Selens lokalisiert (HAWKES et al. 1985). Diese Hauptspeicher des Körpers werden bei unzureichender Selenversorgung sehr schnell depletiert und erst repletiert, wenn die Gewebespeicher der in der Hierarchie höher stehenden Organe aufgefüllt sind (KÖHRLE 1999). Die Plasma-Se-Konzentration repräsentiert den Leber-Se-Status, da SelP in der Leber gebildet und ins Plasma sezerniert wird (KATO et al. 1992). Das Gehirn bildet selbst SelP, welches als extrazellulärer Se-Speicher dient und einen Selenoprotein-Kreislauf innerhalb des Gehirns ermöglicht (SCHWEIZER et al. 2005). In der vorliegenden Studie war die Se-Konzentration wie bei HAWKES et al. (1985) am höchsten in der Niere, gefolgt von Testis und Leber. Möglicherweise ist der Se-Gehalt der Niere so hoch, weil diese das primäre Ausscheidungsorgan für Selen darstellt (WOLFFRAM 2005). Eine renale Reabsorption Se-haltiger Aminosäuren könnte zur Akkumulation von Selen in der Niere führen (OSTER et al. 1988). In vorliegender Studie war die Se-Konzentration in der Niere der SeMet-Gruppe jedoch nicht höher als in der SeO_4^{2-} und SeO_3^{2-} -Gruppe. Da die gewählte Supplementationshöhe (200 µg/kg FM) den Bedarf sicher abdeckt und Überschüsse damit vorwiegend renal ausgeschieden werden, kommt die hohe Se-Konzentration in der Niere vermutlich durch ihre Funktion als Ausscheidungsorgan zustande.

In der vorliegenden Arbeit war die Se-Konzentration in der Leber der SeO₄²⁻-Gruppe nach 2 Repletionstagen signifikant höher als in der SeMet-Gruppe. Das Niveau der Positivkontrollgruppe war in der Leber erst nach 28 Tagen erreicht. In die Testes

gelangt Selen ausschließlich als SelP, das in der Leber gebildet und ins Plasma sezerniert wird. Wie in Plasma und Leber hob sich auch im Testis nach 2 Tagen die SeO₄²⁻-, aber auch die SeO₃²⁻-Gruppe statistisch von der SeMet-Gruppe ab. Nach 14 Tagen war im Testis bereits das Niveau der Kontrollgruppe erreicht. Da die aufgeführten Unterschiede in Leber und Testis ab dem 5. Repletionstag nicht mehr signifikant waren, gilt nur für die ersten 2 Repletionstage folgende Reihenfolge bezüglich der Repletionseffizienz in Leber und Testis: SeO₄²⁻ > SeO₃²⁻ > SeMet.

In der Niere hingegen war zwischen den drei Selenverbindungen $SeO_4^{2^-}$, $SeO_3^{2^-}$ und SeMet auch zu Beginn der Repletion keine unterschiedliche Repletionseffizienz festzustellen und in den drei Repletionsgruppen nach 28 Tagen das Niveau der Kontrollgruppe erreicht.

Bei der Repletion von Gehirn und Muskel war SeMet die effektivste Se-Verbindung. Im Muskel war die Se-Konzentration in der SeMet-Gruppe bereits nach 2 Tagen signifikant höher als in der SeO₃²⁻-Gruppe, und ab dem 5. Tag auch höher als in der SeO₄²⁻-Gruppe. Nach 28 Tagen erreichte die SeMet-Gruppe im Muskel als einzige das Niveau der Kontrollgruppe. Im Gehirn war in der SeO₄²⁻- und SeO₃²⁻-Gruppe nach 2 Tagen im Gegensatz zur SeMet-Gruppe noch keine Repletion zu erkennen. Vom 5. - 21. Tag war die Se-Konzentration in der SeMet-Gruppe signifikant höher als in der SeO₄²⁻- und SeO₃²⁻-Gruppe. An Tag 28 wies die SeO₄²⁻-Gruppe eine sehr hohe Standardabweichung auf, so dass sich die SeO₄²⁻- und die SeMet-Gruppe nach 14 Tagen das Niveau der Kontrollgruppe erreichten, lag die SeMet-Gruppe bereits über dieser und stieg bis zum 28. Tag noch weiter an. Für die Skelettmuskulatur und das Gehirn ergibt sich somit die Repletionseffizienz SeMet > SeO₄²⁻ = SeO₃²⁻.

Sowohl die Selensalze als auch die Aminosäure SeMet gelangen nach der Absorption sehr schnell über die Pfortader zur Leber. Bei einer Repletion nach einem Se-Mangel wird das in der Leber anflutende Selen aus den beiden anorganischen Salzen vermutlich zunächst vollständig in SelP eingebaut und als solches ins Plasma sezerniert (KATO et al. 1992). In Abhängigkeit von der Methioninversorgung des Organismus wird SeMet entweder unspezisch anstelle von Methionin in Proteine eingebaut, oder SeMet wird zu Selenid abgebaut und als Selenocystein in funktionelle Proteine wie SelP eingebaut (WASCHULEWSKI und SUNDE 1988). Im Fall des unspezifischen SeMet-Einbaus würde die Se-Konzentration der Gewebe stärker ansteigen als bei SeO₄²⁻ und SeO₃²⁻. Da in der vorliegenden Studie eine ausreichende

Methioninversorgung durch Supplementation sichergestellt wurde, war in Leber, Niere und Testes kein übermäßiger unspezifischer SeMet-Einbau zu erwarten. Andere Autoren fanden in diesen Organen ebenfalls keine höheren Se-Konzentrationen durch Verabreichung von SeMet im Vergleich zu SeO₃²⁻ oder SeO₄²⁻ (BEILSTEIN und WHANGER 1986b, SALBE und LEVANDER 1990a, FINLEY 1998). In einer Rattenstudie erreichte die SeO₃²⁻-Gruppe nach 28-tägiger Repletion mit nur 75 µg Se/kg FM signifikant höhere Se-Konzentrationen in Leber und Niere als SeMet, nach 56 Tagen war der Unterschied aber nur noch in der Leber signifikant (CASES et al. 2001). In der Untersuchung von WHANGER und BUTLER (1988) an Ratten wurde kein Methionin zugelegt. Nach 9 Wochen (0,2 mg Se/kg FM) betrug die Se-Konzentration in der Leber der SeMet-Gruppe das 1,2fache der SeO₃²⁻-Gruppe. Für einen messbaren unspezifischen Einbau ist also im Wesentlichen die Methioninversorgung von Bedeutung.

Obwohl in der Skelettmuskulatur vergleichsweise geringe Selenmengen pro kg Frischmasse zu finden sind, ist wegen des hohen prozentualen Anteils dieses Gewebes am Körpergewicht ein Großteil des gesamten Selens hier lokalisiert. In Abhängigkeit von der Se-Verbindung beträgt dieser Anteil zwischen fast $1/_3$ bei mit SeO₃²⁻ supplementierten Ratten und mehr als die Hälfte des Gesamtselens bei SeMet-Supplementation (BEHNE und WOLTERS 1983, BEILSTEIN und WHANGER 1988). Im Zuge des Protein-Turnovers in der Skelettmuskulatur kann SeMet anstelle von Methionin schnell ins Muskelprotein eingebaut werden. Das erklärt die signifikant höhere Se-Konzentration in der SeMet-Gruppe im Vergleich zu den beiden Se-Salzen. Auch in anderen Untersuchungen bei Ratten war die Se-Konzentration im Muskel nach SeMet-Supplementation (BEILSTEIN und WHANGER 1986b, WHANGER und BUTLER 1988, SALBE und LEVANDER 1990a, VENDELAND et al. 1994, FINLEY 1998).

Bei der Selenretention liegt die Priorität in dem Gehirn, den Reproduktionsorganen und den endokrinen Geweben (BEHNE und HÖFER-BOSSE 1984, BEHNE et al. 1988, THOMPSON et al. 1998). Entsprechend wurden in der vorliegenden Studie Gehirn und Testis, gefolgt von der Niere, am schnellsten repletiert. In den Testes war die Retention nach einer $SeO_3^{2^2}$ -Injektion bei Se-defizienten Ratten 17fach höher als bei den adäquat versorgten Tieren. In der Niere betrug der Retentionsfaktor 6,4, in der Leber 1,5 und im Muskel 2,7 (BEHNE et al. 1982). In der vorliegenden Studie wurde die

Se-Konzentration im Gehirn durch SeMet effektiver repletiert. Auch ohne vorherige Depletion war die Se-Konzentration im Gehirn von Ratten der SeMet-Gruppe signifikant höher als in der SeO₄²⁻- und SeO₃²⁻-Gruppe (WHANGER und BUTLER 1988, ZI-JIAN et al. 1992). Ins Gehirn gelangt Selen zwar hauptsächlich, aber nicht obligat als SeIP. Da die ausschließlich über SeIP versorgten Testes in vorliegender Arbeit am effektivsten durch die anorganischen Verbindungen repletiert wurden, ist die hohe Repletionseffizienz des SeMet im Gehirn vermutlich durch seine Eigenschaft als Aminosäure und die damit gegebene Passierbarkeit der Blut-Hirn-Schranke zu erklären. Bei supranutritiver Se-Zufuhr (1-4 mg Se/kg FM) nahm der unspezifische SeMet-Einbau in die Strukturproteine zu, so dass die Se-Konzentration in allen Geweben SeMet-supplementierter Ratten höher war als bei den SeO₃²⁻-Tieren (WHANGER und BUTLER 1988).

5.2.3 Selenkonzentrationen im Dünndarmgewebe und in den Digesta

Nachträglich wurde der Darm einiger Tiere entnommen und die Se-Konzentration des Dünndarmgewebes und der Digesta bestimmt. Die Se-Konzentration in den Digesta der SeMet-Tiere war in allen untersuchten Darmabschnitten deutlich geringer als bei den SeO₄²⁻-Tieren. In allen distal des Duodenums angesiedelten Darmabschnitten wiesen die Digesta der SeMet-Tiere Se-Konzentrationen an der Nachweisgrenze auf. Auch im distal des Duodenums gelegenen Darmgewebe war die Se-Konzentration in der SeMet-Gruppe nur halb so hoch wie in der SeO₄²⁻-Gruppe. SeMet wird schneller und effektiver als SeO₄²⁻ absorbiert (VENDELAND et al. 1992a). In der vorliegenden Studie wurden die Faeces nicht gesammelt, so dass keine scheinbare Verdaulichkeit bestimmt werden konnte. In anderen Studien wiesen aber sowohl SeMet als auch SeO₄²⁻ intestinale Absorptionraten von > 90 % auf (THOMSON und ROBINSON 1986, FINLEY 1998, CASES et al. 2001).

Die Se-Konzentrationen in Digesta und Darmgewebe der Ebselentiere werden im Abschnitt 5.7 diskutiert.

5.3 Selenoenzyme

Eine umfassende Einschätzung der Bioverfügbarkeit von Selen ist durch die alleinige quantitative Erfassung der Se-Konzentration in den Geweben nicht möglich, sondern erfordert zusätzlich die Erfassung eines spezifischen funktionellen Parameters (HAKKARAINEN 1993). Die cGPx ist das empfindlichste Selenoprotein gegenüber einem Selenmangel und erreicht bei einer Repletion als Letztes seinen Ausgangszustand (HILL et al. 1997), weshalb sich dieser Parameter gut zur Untersuchung der Bioverfügbarkeit eignet. Die cGPx ist bei der adäquat versorgten Ratte das Selenoenzym mit der höchsten Expression und Aktivität. Da die cGPx im Se-Mangelzustand das Selen zur Synthese anderer Selenoproteine freisetzt, ist sie sehr gut als Indikator des Selenstatus geeignet (BURK et al. 1991).

5.3.1 Glutathionperoxidasen

Die GPx-Aktivität im Plasma eignet sich aufgrund der schnellen und dramatischen Abnahme im Se-Mangel als leicht zugänglicher und sehr sensibler Se-Statusparameter (COHEN et al. 1985). Deshalb wurde während der Depletionsphase wöchentlich Blut entnommen, um die pGPx-Aktivität (Abbildung 11) und die cGPx-Aktivität im Hämolysat zu erfassen (Abbildung 12).

Während die pGPx sehr schnell und drastisch innerhalb einer Woche abfiel, war der Abfall im Hämolysat erst nach 6 Wochen weitgehend beendet.

Abbildung 11: pGPx-Aktivität der Ratten während der 10-wöchigen Depletionsphase (n=6)

Abbildung 12: cGPx-Aktivität im Hämolysat der Ratten während der 10-wöchigen Depletionsphase (n=6)

Die cGPx stellt einen Se-Pool dar, der aus einer "mobilen" und einer "immobilen" GPx besteht, wobei nur der mobile Anteil depletiert wird (SUN et al. 2001a). In Abhängigkeit von der Gewebeart variieren diese beiden Pools. Im Gehirn von Ratten sinkt die cGPx-Aktivität während eines Se-Mangels nur um 30 %. Selenmangelratten der 2. Generation zeigten in diesem Gewebe aufgrund des großen immobilen GPx-Anteils keine weitere Beeinträchtigung (HILL et al. 1997, SUN et al. 2001a). In Leber, Niere, Milz und Lunge hingegen überwiegt der mobile Anteil, der sogenannte entbehrliche Se-Pool (BEHNE et al. 1988, SUNDE 1994), weshalb der Aktivitätsverlust im Se-Mangel in diesen Geweben am höchsten ist (BEHNE et al. 1982, HILL et al. 1987, WEITZEL et al. 1990, YUAN et al. 1991, HADLEY und SUNDE 2001). Auch in vorliegender Studie waren die cGPx-Aktivitäten dieser Organe durch einen Se-Mangel weitgehend depletiert. Die Restaktivitäten der cGPx und der pGPx der Negativkontrollgruppe ergeben sich nach 10-wöchiger Depletion wie folgt:

Niere Leber Plasma Hämolysat Milz Testis Lunge < < < 4.85 % 16,2 % 2.64 % 3,53 % 6.68 % 13,2 % 54.8 %

Im Testis konnte die cGPx-Aktivität nach 10 Wochen Se-Depletion zu 55 % erhalten werden, was auf einen relativ großen immobilen GPx-Anteil am Se-Pool, ähnlich wie im Gehirn, schließen lässt.

In Leber, Hämolysat und Niere der Positivkontrollgruppe wurden erwartungsgemäß die höchsten cGPx-Aktivitäten gefunden, während im Testis wie bei anderen Autoren die geringste Aktivität beobachtet wurde. Leber und Erythrozyten stellen die Haupt-cGPx-Pools dar, während in den Testes nur 1 % des Selens mit der cGPx assoziiert ist (BEHNE und WOLTERS 1983, HAWKES et al. 1985).

Im Plasma erfolgte die Repletion der GPx am effizientesten durch SeO₄²⁻, dieser Unterschied war jedoch ausschließlich nach 8 Tagen zwischen SeO₄²⁻ und SeMet signifikant. Die SeO₄²⁻-Gruppe erreichte als einzige das Niveau der Positivkontrolle bereits nach 14 Tagen. Auch bei Puten war SeO₄²⁻ nach 8-tägiger Repletion am effektivsten (SeO₄²⁻ > SeO₃²⁻ = SeMet) (CANTOR und TARINO 1982). Die pGPx wird ausschließlich in der Niere synthetisiert (AVISSAR et al. 1994). Die cGPx der Niere zeigte ein ähnliches Repletionsverhalten wie die pGPx. SeO₄²⁻ war auch hier die effektivste Verbindung. Nach 2, 8 und 14 Tagen war der Unterschied zur SeMet-Gruppe signifikant. Hinsichtlich der Se-Konzentration war in der Niere zwischen den Se-Verbindungen aber kein Unterschied festzustellen. In der vorliegenden Studie kann somit davon ausgegangen werden, dass Selen aus SeO₄²⁻ in der Niere effektiver zur pGPx- und cGPx-Synthese verwendet wird als die anderen untersuchten Se-Verbindungen.

Im Hämolysat zeigte sich kein eindeutiges Bild. Während SeO₃²⁻ nach 2 Tagen am effektivsten war, wurden nach 5 und 8 Tagen in der SeO₄²⁻-Gruppe die höchsten Aktivitäten erreicht. Ab 14 Tagen waren keine Unterschiede mehr zwischen den drei Verbindungen festzustellen, was mit den Ergebnissen anderer Autoren übereinstimmt (VENDELAND et al. 1994, FINLEY 1998). Nach 28 Tagen war die GPx noch nicht vollständig repletiert. In die Erythrozyten aufgenommenes Selen kann nicht in bestehende Proteine, sondern nur durch Neusynthese als SeCys in Selenoproteine oder als SeMet unspezifisch in Proteine eingebaut werden (MARCHALUK et al. 1995). Die Erythrozyten besitzen keinen Zellkern, so dass sie nicht zur Proteinbiosynthese befähigt sind. Eine Repletion der GPx wird folglich nur durch den Austausch der Erythrozyten erkennbar. Aufgrund der langen Lebensdauer (120 Tage) steigt die erythrozytäre GPx-Aktivität während der Repletion trotz ausreichend vorhandenen verfügbaren Selens nur langsam an.

In der Leber von Ratten sind 50-75% des Selens an die cGPx gebunden (BEHNE und WOLTERS 1983, WEISS SACHDEV und SUNDE 2001). In vorliegender Studie fiel die

Restaktivität in der Leber der Mangelgruppe während der Repletionsphase weiter auf 1,65 % ab. Im Gegensatz zu allen anderen untersuchten Geweben stieg die hepatische cGPx-Aktivität in der Kontrollgruppe während der Repletionsphase noch weiter an. Zu Beginn der Repletionsphase waren die Ratten etwa 13 Wochen, am Ende etwa 17 Wochen alt. ZHANG et al. (1989) stellten ebenfalls fest, dass die hepatische GPx-Aktivität bei adulten Tieren höher als bei jungen Ratten ist. In vorliegender Studie war SeO₃²⁻ nach 2 Tagen Repletion am effektivsten, und nach 5 Tagen lag die Aktivität bei beiden Se-Salzen etwa doppelt so hoch wie bei SeMet. Nach 8 Tagen lagen jedoch keine signifikanten Unterschiede mehr vor.

Nach längerer Repletionszeit (21-63 Tage) traten auch bei anderen Autoren zwischen den drei Se-Verbindungen hinsichtlich der Repletion der GPx in Leber, Erythrozyten und Plasma von Ratten keine signifikanten Unterschiede mehr auf (BEHNE et al. 1991, WEN et al. 1997, FINLEY 1998). Bei suboptimaler Se-Zufuhr (75 µg Se/kg FM) hingegen war SeO₃²⁻ nach 28 Tagen effektiver als SeMet bei der Repletion der GPx in Leber, Erythrozyten und Plasma von Ratten (CASES et al. 2001). Da in der vorliegenden Studie bedarfsdeckend supplementiert wurde, stand anscheinend trotz des unspezifischen SeMet-Einbaus in Proteine noch genügend Selen aus SeMet für die GPx-Synthese zur Verfügung.

Im Testis und in der Lunge wurden die niedrigsten cGPx-Aktivitäten gemessen. In Lunge und Milz werden wie in den Erythrozyten 100 % der GPx-Aktivität von der cGPx gestellt. In den Testes dagegen hat die non-SeGPx einen Anteil von 91 % bei ohnehin schon sehr geringer GPx-Aktivität (LAWRENCE und BURK 1978).

Im Testis war hinsichtlich der Repletionseffizienz kein signifikanter Unterschied zwischen den drei Se-Verbindungen zu beobachten. Die geringe GPx-Aktivität in der Lunge steigt bei hoher Sauerstoffkonzentration in der Atemluft und ermöglicht somit eine hohe Hyperoxidtoleranz (KIMBALL et al 1976). Bei der Repletion der cGPx war SeO₄²⁻ in der Lunge die effektivste Verbindung, jedoch war der Unterschied lediglich gegenüber SeMet und nur nach 5 und nach 21 Tagen signifikant.

In der Milz war die Reihenfolge der Repletionseffizienz für die cGPx innerhalb der ersten 8 Tage $SeO_4^{2-} > SeMet > SeO_3^{2-}$, anschließend traten zwischen den drei Verbindungen keine signifikanten Unterschiede mehr auf. Beim wachsenden Organismus ist die Milz neben der Aussonderung überalterter Erythrozyten wesentlich an der Erythrozytenbildung beteiligt. Die daraus resultierende hohe Proteinsyntheserate müsste eine vermehrte Aminosäuren- und damit auch SeMet-Aufnahme

aus dem Blut in die Milz zur Folge haben, was eine mögliche Erklärung für die vergleichsweise gute Repletionseffizienz des SeMet in der Milz sein könnte.

Das Ausmaß der Se-Bindung an die cGPx und die pGPx variiert erheblich in Abhängigkeit von der Tierart und der verabreichten Selenverbindung. Bei Ratten war in anderen Studien nach einer SeO₃²⁻-Supplementation in allen untersuchten Geweben ein größerer Anteil des Selens mit der cGPx assoziiert als nach der Supplementation mit SeMet. Außer im Testis korrelierte die cGPx-Aktivität bei SeO₃²⁻-Fütterung eng mit der Se-Konzentration in den Geweben, was bei SeMet nicht der Fall (WHANGER und BUTLER 1988). In der vorliegenden Studie war die war Repletionseffizienz des SeO₄²⁻ hinsichtlich der pGPx und der cGPx-Aktivität außer im Testis höher als die des SeMet, während die Se-Retention in den Geweben durch alle drei Verbindungen etwa gleich war. In einer Putenstudie war der mit der pGPx assoziierte Anteil des Selens im Plasma in der SeO42--Gruppe ebenfalls signifikant höher als bei SeMet (CANTOR und TARINO 1982). Die vorliegenden Ergebnisse verdeutlichen, dass die Bioverfügbarkeit der beiden verwendeten anorganischen Se-Salze für die cGPx und die pGPx höher als die des SeMet ist. Ebselen hingegen erbrachte keine Repletion der untersuchten Glutathionperoxidasen.

5.3.2 D1-Aktivität und T₃/T₄-Konzentrationen

Die gemessene D1-Aktivität variiert in den verschiedenen Studien sehr stark, was möglicherweise an den unterschiedlichen Reaktionsbedingungen liegt. Die eigenen Werte liegen etwa im Bereich derer von BECKETT et al. (1987), ARTHUR et al. (1990b) und CHRISTENSEN et al. (1995). Da die T₃-Konzentration in vorliegender Arbeit zum Zeitpunkt T0 schon außerhalb der Eichkurve lag, wurden die bei BECKETT et al. (1989, 1992) und VISSER et al. (1975) verwendeten T₄-Konzentrationen in vorliegender Arbeit erheblich reduziert, um Verunreinigungen des verwendeten T₄ mit T₃ zu reduzieren.

Die Deiodinase steht in der Hierarchie der Selenoproteine zwar über der cGPx und der pGPx, weist aber ebenfalls starke Aktivitätsverluste im Se-Mangel auf. Nach der 10-wöchigen Depletionsphase war die hepatische D1-Aktivität im Vergleich zur Kontrollgruppe auf 14,3 % abgefallen. Ein weiterer Aktivitätsverlust ließ sich während der 28-tägigen Repletionsphase jedoch nicht beobachten. Der Aktivitätsverlust in den Rattenlebern in vorliegender Arbeit ist mit Studienergebnissen anderer Autoren vergleichbar (BECKETT et al. 1987, 1989, ARTHUR et al. 1990a, b, BECKETT et al. 1992,

1993, CHANOINE et al. 1993, MEINHOLD et al. 1993, DEPALO et al. 1994, CHRISTENSEN et al. 1995, EDER et al. 1995, BATES et al. 2000, DHINGRA et al. 2004).

In der Niere von Ratten wurde von anderen Autoren ebenfalls eine stark verminderte D1-Aktivität während eines Se-Mangels beobachtet (DEPALO et al. 1994, CHRISTENSEN et al. 1995). In Schilddrüse und Testes dagegen war die D1-Aktivität durch einen Se-Mangel nicht beeinflusst und im Gehirn sogar signifikant erhöht (BATES et al. 2000).

Während der Repletionsphase war der Unterschied zwischen SeO₄²⁻, SeO₃²⁻ und SeMet hinsichtlich der Repletionseffizienz nicht statistisch signifikant. Die beiden anorganischen Verbindungen unterschieden sich im Gegensatz zum SeMet zwar bereits nach 2 Tagen Repletion statistisch signifikant von der Negativkontrolle, dieser Unterschied liegt aber vermutlich in der relativ hohen Standardabweichung der SeMet-Gruppe begründet. Nach 14 Tagen Repletion hatten alle drei Gruppen das Niveau der Positivkontrolle erreicht. Auch bei diesem Parameter erwies sich Ebselen als völlig ungeeignet, um den defizitären Zustand zu beseitigen, da zu keinem Repletions-zeitpunkt ein statistisch signifikanter Unterschied zur Negativkontrolle gegeben war.

Bei bisher in der Literatur durchgeführten Repletionsstudien wurde ausschließlich SeO_3^{2-} eingesetzt. Es existieren keine Studien zur Deiodinase, die die hier verwendeten Se-Verbindungen hinsichtlich ihrer Repletionseffizienz miteinander vergleichen. Entsprechend der Hierarchie der Selenoproteine fand die Repletion der Deiodinase in der Leber der Ratten schneller statt als die der cGPx. Bereits nach fünf Tagen waren in der SeO₄²⁻, der SeO₃²⁻ und auch der SeMet-Gruppe 65 % der Aktivität der Positivkontrolle erreicht. Andere Autoren konnten eine ähnlich schnelle Repletion der Deiodinase beobachten. Bei diesen Versuchen wurden jedoch relativ hohe SeO₃²⁻-Dosen (200 µg/kg KM) intraperitoneal verabreicht (BECKETT et al. 1989, ARTHUR et al. 1990b, DEPALO et al. 1994). Mit einem Zehntel der genannten Dosis konnten nach 72 Stunden nur 20 % des Kontrollniveaus erreicht werden (BERMANO et al. 1996a). Eine 4-wöchige Repletion mit 100 µg Se/kg FM als SeO₃²⁻ regenerierte die D1-Aktivität von Ratten nach 4-monatiger Depletion nur auf > 80 % des Kontrollniveaus (VADHANAVIKIT und GANTHER 1990). In vorliegender Arbeit konnte zwar keine unterschiedliche Repletionseffizienz für SeO₄²⁻, SeO₃²⁻ und SeMet festgestellt werden, die Repletionsdauer unterschied sich jedoch deutlich von der von VADHANAVIKIT und GANTHER (1990) durchgeführten Studie. Durch die verwendeten 200 µg Se/kg FM konnte das Kontrollniveau in der aktuellen Studie bereits nach 14

Tagen erreicht werden.

Da die Deiodinase die Konversion von T_4 zu T_3 katalysiert, wurden auch diese Parameter bestimmt.

Verglichen mit den adäquat versorgten Tieren war die T₃-Konzentration im Plasma nach 10-wöchiger Depletion erwartungsgemäß auf 70 % abgefallen. In der Mehrzahl der an selendefizienten Ratten durchgeführten Studien wurde ebenfalls ein signifikanter Abfall der T₃-Konzentration beobachtet (BECKETT et al. 1987, 1989, ARTHUR et al. 1990b, BECKETT et al. 1992, BERMANO et al. 1996a, GIRAY et al. 2003, DHINGRA et al. 2004). Zum Teil war die im Se-Mangel verringerte T₃-Konzentration jedoch statistisch nicht signifikant (BECKETT et al. 1993, CHANOINE et al. 1993). VADHANAVIKIT und GANTHER (1993) konnten sogar überhaupt keinen Einfluss eines Se-Mangels auf den Plasma-T₃-Spiegel beobachten.

In vorliegender Studie fiel die T₃-Konzentration in der Negativkontrollgruppe während der Repletionsphase nach 14 Tagen weiter auf 57 %, stieg dann aber bis zum Tag 28 wieder auf 63 % an. Der Unterschied zur Positivkontrolle war während der drei bestimmten Zeitpunkte in der Repletionsphase signifikant. Alle verwendeten Selenverbindungen zeigten nach zwei Tagen noch keinen Repletionserfolg. SeO₄²⁻, SeO₃²⁻ und SeMet erreichten aber bereits nach fünf Tagen durchschnittlich 87 % des Kontrollniveaus und hoben die T₃-Konzentration im Plasma innerhalb von 14 Tagen auf die Höhe der Positivkontrolle an, so dass sie von dieser statistisch nicht mehr zu trennen waren. Zwischen SeO₄²⁻, SeO₃²⁻ und SeMet konnten wie bei der Deiodinaseaktivität keine statistisch signifikanten Unterschiede hinsichtlich ihrer Repletionseffizienz beobachtet werden.

Die T₃-Konzentration in der Ebselengruppe ließ sich zu allen Repletionszeitpunkten statistisch von der Positivkontrolle, nicht aber von der Negativkontrolle trennen. Dies spiegelt das Ergebnis der Deiodinaseaktivität wider. Ebselen eignete sich daher erwartungsgemäß nicht dazu, die T₃-Konzentration im Plasma wieder anzuheben.

Die T₄-Konzentration im Plasma der Ratten blieb während der Versuchsdauer in vorliegender Arbeit stabil. Die in der Literatur durchgeführten Studien zum Einfluss eines Selenmangels auf die T₄-Konzentration im Rattenplasma zeigen keine eindeutige Tendenz. Während einige Autoren (MEINHOLD et al. 1993, EDER et al. 1995, BATES et al. 2000) ebenfalls keinen signifikanten Anstieg beobachteten, konnten andere eine mangelbedingte Erhöhung statistisch absichern (BECKETT et al. 1987,

1989, ARTHUR et al. 1990b, BECKETT et al. 1992, 1993, CHANOINE et al. 1993, BERMANO et al. 1996a, GIRAY et al. 2003). Eine Arbeitsgruppe (DHINGRA et al. 2004) wies sogar eine Verringerung der T₄-Konzentration im Plasma nach; eine Erklärung für diesen Umstand wurde jedoch nicht gefunden. Die T₄-Konzentration wird durch einen Feedbackmechanismus über Thyreotropin (TSH) aufrecht erhalten. Im Se-Mangel kann diese Regulation gestört sein (BECKETT et al. 1987, ARTHUR et al. 1990b). Der T₄-Anstieg könnte die Folge einer verminderten Umwandlung von T₄ zu T₃ durch die D1 sein oder aus einer gesteigerten T₄-Synthese resultieren. Letzteres ließe sich wie folgt erklären: T₄ wird durch die Schilddrüsenperoxidase aus Diiodothyrosin unter Verwendung von H₂O₂ gebildet (LAMAS et al. 1972). In der Schilddrüse Se-defizienter Ratten wurde eine verminderte GPx-Aktivität beschrieben (VADHANAVIKIT und GANTHER 1993). Die daraus resultierende Akkumulation von H₂O₂ fördert die Oxidation von aus dem Blut aufgenommenem lodid zu elementarem lod und somit die Synthese des Thyroxins (CHANOINE et al. 1993, EDER et al. 1995, VADHANAVIKIT und GANTHER 1993).

In vorliegender Studie unterschieden sich weder die Kontrollgruppen noch die Repletionsgruppen signifikant voneinander. Lediglich die T₄-Konzentration im Plasma der Ebselengruppe war nach 21 Tagen signifikant höher als die der anderen Repletionsgruppen. Der Unterschied zu den Kontrollgruppen war jedoch nicht signifikant. Nach 28 Tagen waren wieder keine Unterschiede zwischen den Repletionsgruppen und dieser zu den Kontrollgruppen messbar, so dass von einem ungerichteten Einfluss auszugehen ist.

Im T₄:T₃-Verhältnis zeigt sich bei uneinheitlichen Messergebnissen im Allgemeinen deutlicher, welchen Einfuss der mangelbedingte Abfall der Deiodinaseaktivität auf die Schilddrüsenhormonkonzentration im Plasma der Ratten hatte. Nach 10-wöchigem Se-Mangel und während der 4-wöchigen Repletionsphase unterschied sich in vorliegender Arbeit das T₄:T₃-Verhältnis (72:1) der Negativkontrolle statistisch signifikant von dem der +Se-Gruppe (48:1). Die extrathyroidale T₃-Produktion wird bei Ratten je zur Hälfte durch die D1 und die D2 katalysiert (NGUYEN et al. 1998). Die D2 bevorzugt T₄ als Substrat (CROTEAU et al. 1996) und fällt bei Ratten im Se-Mangel nur auf ca. 60 % ab, während die hepatische D1-Aktivität mangelbedingt auf 10 % ihrer ursprünglichen Aktivität absinkt (MEINHOLD et al. 1993, BECKETT et al. 1992, VADHANAVIKIT und GANTHER 1993). Der Einfluss des Selenmangels auf den Schilddrüsenhormonmetabolismus ist nicht zuletzt wegen der unterschiedlichen

Studienergebnisse und der Vielzahl der physiologischen Erklärungsmöglichkeiten nur vage verstanden. Das deutlich zugunsten des Thyroxins verschobene T₄:T₃-Verhältnis lässt jedoch auf eine mangelbedingt reduzierte Umwandlungseffizienz des T₄ zu T₃ vor allem durch die D1 schließen, zumal ihre Aktivität und der Mangeleinfluss in der Leber von Ratten höher ist als bei der D2. Da die T₄-Konzentrationen aller Gruppen dicht beieinander lagen, spiegelt das T₄:T₃-Verhältnis bezüglich der Repletionseffizienz das Ergebnis der T₃-Konzentration wider. Während nach zwei Tagen keine Repletion nachgewiesen werden konnte, war das Niveau der Positivkontrolle bereits nach 14 Tagen erreicht. Bezüglich der Repletionseffizienz konnte auch hier zwischen SeO₄²⁻, SeO₃²⁻ und SeMet kein Unterschied festgestellt werden. Ebselen eignete sich auch hier nicht zur Repletion.

5.4 Genexpression

In der vorliegenden Studie wurde die mRNA-Expression der cGPx und der PHGPx in der Leber untersucht. Die mRNA der cGPx reagiert von allen Selenoprotein-mRNA am sensitivsten bei einem Se-Mangel (HILL et al. 1992) und wurde deshalb als Parameter für die Repletionseffizienz auf mRNA-Ebene herangezogen. Da in der Leber höhere cGPx-mRNA-Konzentrationen als in der Niere zu finden sind (CHRISTENSEN et al. 1995), wurde die Untersuchung in der Leber durchgeführt. Da jeweils drei der sechs Tiere einer Gruppe gepoolt wurden, wurde das Ergebnis der Expressionsanalyse nicht statistisch ausgewertet.

Durch den 10-wöchigen Se-Mangel wurde die mRNA-Expression der hepatischen cGPx um den Faktor 13,5 herunterreguliert. Die Aktivität der cGPx sank im selben Zeitraum um das 28fache und damit mehr als doppelt so stark. In früheren Untersuchungen wurde im Se-Mangel eine ebenso drastische Herunterregulierung der cGPx-mRNA festgestellt (SAEDI et al. 1988, YOSHIMURA et al. 1988, CHRISTENSEN und BURGENER 1992, HILL et al. 1992, CHRISTENSEN et al. 1995, BERMANO et al. 1996a, WEISS et al. 1997, MÜLLER et al. 2008). Auch bei weiteren Selenoproteinen wie D1 und SelP ist die Herunterregulierung der cGPx im Selenmangel bekannt (CHRISTENSEN et al. 1995).

Die Repletion der mRNA-Konzentration wurde nach acht und nach 28 Tagen erfasst. In der Ebselengruppe war keinerlei Repletion der cGPx-mRNA nachweisbar. In den drei anderen Repletionsgruppen war die Expression nach 8 Tagen im Vergleich zur Mangelgruppe in folgender Reihenfolge hochreguliert: SeMet > SeO₄²⁻ > SeO₃²⁻. Während sich hinsichtlich der cGPx-Aktivität nach 8 Repletionstagen zwar eine signifikante Aktivitätserhöhung zeigte, aber keine Effizienzunterschiede zwischen SeO₄²⁻, SeO₃²⁻ und SeMet nachweisbar waren, traten bei der Expression also durchaus noch Unterschiede auf. Die cGPx-mRNA folgt bei der Repletion einem ähnlichen Verlauf wie die Aktivität der cGPx (BERMANO et al. 1996a). Dies konnte in vorliegender Studie bestätigt werden, jedoch variierte die Repletion der mRNA-Expression zwischen den Se-Verbindungen. Verglichen mit der Expression stieg die Aktivität der cGPx in der SeO₃²⁻.Gruppe um das 3,5fache, in der SeO₄²⁻.Gruppe um das 2,8fache und in der SeMet-Gruppe um das 1,9fache. Aus den Ergebnissen der m-RNA-Expression lässt sich schließen, dass SeMet die mRNA effektiver stabilisiert als die beiden anorganischen Se-Verbindungen.

Für die mRNA der PHGPx wird in der Literatur eine langsamere und geringere Depletion als für die cGPx beschrieben (LEI et al. 1995, BERMANO et al. 1996a, b, HADLEY und SUNDE 2001, WEISS SACHDEV und SUNDE 2001). Auch in der vorliegenden Studie konnte bei der PHGPx nach 10-wöchiger Se-Depletion keine Herunterregulierung der mRNA analog zur cGPx festgestellt werden.

In anderen Studien war die mRNA in der Leber von Ratten nach einer Repletion weder signifikant verändert (1,2 †) (BERMANO et al. 1996a), noch war bei der PHGPx eine parallele Veränderung von Aktivität und mRNA-Menge zu beobachten (BERMANO et al. 1995, 1996a, b). Bei gleichbleibender mRNA-Konzentration wurden nur 40 % der Aktivität aufrecht erhalten (BERMANO et al. 1995, LEI et al. 1995, HADLEY und SUNDE 2001). In vorliegender Arbeit konnte während der Repletionsphase dennoch eine Hochregulierung in den Repletionsgruppen beobachtet werden, wobei diese bis auf die SeMet-Gruppe (2,6 - 3,1) nur geringfügig war (< 2). Ebselen zeigte hier im Gegensatz zu allen anderen untersuchten Parametern die gleiche Regulierung wie SeO₄²⁻ und SeO₃²⁻. Da keine Depletion der PHGPx-mRNA erfolgte, kann also nicht von einer Repletionseffizienz der Se-Verbindungen gesprochen werden. Alle Se-Verbindungen führten jedoch bei einer Repletion nach 10-wöchigem Se-Mangel zu einer Hochregulierung, die bei SeMet am deutlichsten war.

Im Allgemeinen wird ab einer Veränderung der Genexpression um den Faktor 2 von einer vorhandenen Regulierung gesprochen, allerdings ist diese Grenze konventionell gesetzt. Da die mRNA-Konzentration über die Messung der optischen Dichte der Banden erfolgt (Abschnitt 3.5.15), hängt die gemessene mRNA-Konzentration maßgeblich von der Abgrenzbarkeit der Banden ab. Im Falle der Fragestellung der Repletionseffizienz verschiedener Se-Verbindungen ist die Genexpression zwar als zusätzlicher Parameter interessant, letzendlich ist für den Organismus jedoch die Aktivität der betrachteten Selenoenzyme entscheidend.

5.5 Glutathion S-Transferasen (GST)

Die GST verfügen über eine selenunabhängige GPx-Aktivität (non-SeGPx, Abschnitt 2.2.1.1). Im Se-Mangel steigt die GST-Aktivität vor allem in der Leber, aber auch in der Niere und Duodenalmukosa an (MASUKAWA et al. 1984), so dass eine kompensatorische Rolle der non-SeGPx-Aktivität der GST für die ausgefallene SeGPx vermutet wird (LAWRENCE et al. 1978, Lee et al. 1981b, MASUKAWA et al. 1984, Reffett et al. 1986, MCLEOD et al. 1997). Da die Kompensation in der Leber am größten war, wurde die Analyse in vorliegender Arbeit in diesem Organ durchgeführt.

Die in vorliegender Arbeit gemessenen Werte liegen im Bereich derer von BECKETT et al. (1987), ARTHUR et al. (1990b) und CHRISTENSEN et al. (2000). Im Vergleich zu anderen Säugetierarten stellt die niedrige GST-Aktivität in der Leber der Ratte eher die Ausnahme dar (IGARASHI et al. 1983, HIMENO et al. 1993, OSHINO et al. 1990).

Wie in früheren Untersuchungen (LAWRENCE et al. 1978, MASUKAWA et al. 1984, HILL et al. 1987, VADHANVIKIT und GANTHER 1990, CHRISTENSEN et al. 2000) wurde in vorliegender Studie nach 10-wöchigem Se-Mangel ein drastischer Anstieg der hepatischen GST-Aktivität (um 30 %) beobachtet. In einigen Studien wurde sogar ein bis zu 2facher Anstieg der GST-Aktivität festgestellt (BECKETT et al. 1987, ARTHUR et al. 1990b, BERMANO et al. 1996a, MATSUDA et al. 1998).

Während der Repletionsphase kehrte die hepatische GST-Aktivität in vorliegender Studie in der SeO₄²⁻-, SeO₃²⁻ und SeMet-Gruppe nach 5 Tagen auf ihre normale Aktivität zurück, während die Aktivität in der Ebselengruppe auch während der Repletionszeit unverändert hoch blieb. In anderen Studien sank die im Mangel erhöhte GST-Aktivität durch SeO₃²⁻-Repletion ebenso schnell, wobei die Verabreichung subkutan (79 µmol/kg KM) oder intraperitoneal (20 µg Se/kg KM) erfolgte (MASUKAWA et al. 1984, BERMANO et al. 1996a). Im Gegensatz zu den in vorliegender Arbeit verabreichten 200 µg Se/kg FM repletierten HILL et al. (1987) mit der halben oralen SeO₃²⁻-Dosis, was einen langsameren Abfall der GST-Aktivität (14 Tage) auf das

Niveau der Positivkontrolle zur Folge hatte.

Die GST-Aktivität steigt im Se-Mangel erst an, wenn die selenabhängige GPx-Aktivität auf unter 5 % fällt (HILL et al. 1987), was in vorliegender Arbeit bestätigt werden konnte. MASUKAWA et al. (1984) untersuchten die V_{max} der hepatischen GST für GSH und das artifizielle Substrat CDNB und fanden im Se-Mangel eine deutlich erhöhte V_{max}. Der Se-Status reguliert also die Geschwindigkeit der GST, während im Fall der selenabhängigen GPx die Biosynthese bzw. die mRNA-Stabilität durch den Se-Status reguliert wird. Die Gesamt-GPx-Aktivität setzt sich aus SeGPx und non-SeGPx zusammen. Im Se-Mangel fällt die Gesamt-GPx zwar ebenfalls ab, aber durch die GST bleibt eine Restaktivität von etwa 20 % erhalten. Bei einer Repletion verändert sich die Gesamt-GPx in den ersten 48 h nicht, da der gleichzeitige Aktivitätsverlust der GST die SeGPx-Neusynthese kompensiert (MASUKAWA et al. 1984, VADHANVIKIT und GANTHER 1990). Deshalb sank die GST-Aktivität in vorliegender Arbeit nach Beginn der Repletion wesentlich schneller wieder auf das Niveau der Kontrolltiere (Tabelle 38) als die SeGPx-Aktivität auf das Niveau der Kontrolltiere stieg (Tabelle 32). Zwischen SeO42-, SeO32- und SeMet konnte jedoch kein Unterschied hinsichtlich der Repletionseffizienz der GST-Aktivität beobachtet werden.

5.6 Glutathion

Die Glutathionbestimmung (TIETZE et al. 1969) wurde nach GRIFFITH (1980) modifiziert, da die Glutathionreduktase durch das hier verwendete 2-Vinylpyridin im Gegensatz zu N-Ethylmaleimid nicht gehemmt wird und die GSSG-Konzentration auf diese Weise nicht unterschätzt werden kann. Die in dieser Studie erfassten Glutathionkonzentrationen bewegen sich in der Größenordnung der Ergebnisse von SIES et al. (1972), BURK et al. (1978), IGARASHI et al. (1983), BALLATORI et al. (1986) und MAY et al. (1997).

Die Leber ist für exogenes GSH und GSSG nicht permeabel (HAHN et al. 1978, HILL und BURK 1985) und synthetisiert ihren eigenen GSH-Pool. In der vorliegenden Studie waren sowohl die Konzentrationen an Gesamtglutathion (tGSH) als auch an reduziertem Glutathion in der Leber der Se-Mangeltiere nur halb so hoch wie bei den adäquat versorgten Tieren. Da die GSSG-Konzentration in der Mangelgruppe sogar auf durchschnittlich 14,4 % im Vergleich zur Kontrollgruppe fiel, war das gebildete Verhältnis von reduziertem und oxidiertem Glutathion in der Mangelgruppe vervierfacht. In der +Se-Gruppe hatte das reduzierte GSH einen Anteil von durchschnittlich 88,0 % am tGSH, in der Mangelgruppe stieg der Anteil auf 96,7 %. Im Gegensatz dazu konnten andere Autoren in der Leber von Ratten keinen Se-Einfluss auf die Konzentration an reduziertem GSH beobachten. Wie in vorliegender Arbeit lag aber nahezu das gesamte Glutation in reduzierter Form vor (BURK et al. 1978, MAY et al. 1997).

In der Leber synthetisiertes GSH wird ins Blut sezerniert, um die Plasma-GSH-Konzentration aufrecht zu erhalten (BARTOLI und SIES 1978). Während eines Se-Mangels steigt die Glutathionkonzentration im Plasma als Folge der erhöhten GSH-Freisetzung ins Blut um das 2-3fache an (HILL und BURK 1982, BURK 1983, HILL und BURK 1985). Der Glutathionabfluss aus der Leber erfolgt hauptsächlich als GSH, zusätzlich wird GSSG aus der GPx-Reaktion freigesetzt (BARTOLI und SIES 1978). Der Ausfall der hepatischen cGPx im Se-Mangel könnte der Grund für den Abfall der hepatischen GSSG-Konzentration in der vorliegenden Arbeit sein. Das bei Seversorgten Tieren anfallende GSSG kann durch die Glutathionreduktase zum GSH regeneriert werden. Nach einer S-Konjugation muss GSH hingegen neu synthetisiert werden. Die Konzentration an tGSH hängt also vom Ausmaß der H₂O₂-Entgiftung durch die cGPx ab, so dass aus der geringeren GPx-Aktivität im Se-Mangel eine geringere tGSH-Konzentration resultiert (DICKINSON et al. 2003). Auch beim Fasten fällt die hepatische GSH-Konzentration bei der Ratte nach 48 h rapide ab (IGARASHI et al. 1983). Da die Tiere aller Versuchsgruppen über Nacht genüchtert wurden, kann der GSH-Abfall durch Fasten als Grund für die Differenz zwischen Mangel- und versorgten Tieren ausgeschlossen werden.

Hinsichtlich des Glutathionmetabolismus ließen sich in vorliegender Studie zwischen SeO₄²⁻, SeO₃²⁻ und SeMet keine Unterschiede feststellen. Im Myokard adäquat versorgter Kaninchen war die GSH-Konzentration bei mit hohen Ebselendosen (30 und 100 mg/kg) behandelten Tieren im Vergleich zur Kontrollgruppe signifikant erhöht (BALJINNYAM et al. 2006). Da Ebselen die Aktivität der GR in den Herzmuskelzellen erhöht (HOSHIDA et al. 1997), könnte dies der Grund für den GSH-Erhalt durch Ebselen sein. In vorliegender Studie konnte ein solcher Einfluss des Ebselens auf die GSH-Konzentration jedoch nicht beobachtet werden.

Während der Repletionsphase war in der SeO₄²⁻-, SeO₃²⁻- und SeMet-Gruppe hinsichtlich der tGSH- und GSH-Konzentrationen nach 2 Tagen noch keine

Veränderung gegenüber der Mangelgruppe festzustellen, obwohl die cGPx-Aktivität zu diesem Zeitpunkt schon signifikant über der Mangelgruppe lag. Die Reaktion der Glutathionkonzentrationen auf die Se-Versorgung ist wie die Reaktion der GST-Aktivität ein sekundäres Geschehen. Ähnlich der GST-Aktivität kehrten die Konzentrationen an tGSH und GSH nach 5-8 Tagen zu den Werten der Positivkontrollgruppe zurück und ließen sich nach 14 Tagen nicht mehr statistisch von dieser trennen. Die Reaktion der GSSG-Konzentration in diesen drei Gruppen auf die Repletion begann früher, verlief jedoch langsamer: Nach 2 Tagen lagen die GSSG-Konzentrationen in der SeO₄²⁻-, SeO₃²⁻- und SeMet-Gruppe bereits signifikant über der Mangelgruppe. Da auch die cGPx-Aktivität schon nach 2-tägiger Repletion signifikant über das Niveau der Mangelgruppe stieg und GSSG hauptsächlich bei der cGPx-Reaktion anfällt, könnte dies der Grund für den frühzeitigen GSSG-Anstieg im Gegensatz zu GSH und tGSH sein. Das Niveau der Positivkontrollgruppe war aber erst nach 28-tägiger Repletionszeit erreicht. Beim Verhältnis von reduziertem und oxidiertem Glutathion war in den oben genannten Gruppen entsprechend der GSSG-Konzentration bereits nach 2 Tagen eine Veränderung erkennbar, und nach 14 Tagen unterschieden sich SeO42-, SeO32- und SeMet nicht mehr signifikant von der +Se-Gruppe. Bislang wurde der Glutathionmetabolismus bei der Repletion eines Se-Mangelzustandes nicht untersucht. Aus den vorliegenden Ergebnissen wird deutlich, dass die Glutathionkonzentrationen durch Supplementation mit Ebselen nicht wieder zu ihrem Normalzustand zurückkehren und dass SeO42-, SeO32- und SeMet sich hinsichtlich ihres Einflusses auf den Glutathionmetabolismus nicht unterscheiden.

5.7 Ebselen

Ebselen wurde an Menschen, Schweine und Labortiere oral bislang nur in supranutritiven Selendosen verabreicht (5-100 mg/kg KM) (FISCHER et al. 1988, TAKASAGO et al. 1997, YAMAGUCHI et al. 1998, OGAWA et al. 1999, BALJINNYAM et al. 2006). Ziel der Ebselenzulage in diesem Versuch war es deshalb, die Verwertbarkeit von Ebselen in nutritiven Dosierungen aus einem Mischfuttermittel zu überprüfen und bei etwaiger effizienter Absorption die Gewebeverteilung und die Biopotenz in Abhängigkeit von der Applikationszeit zu ermitteln.

Bei einer Se-Konzentration von 200 μ g/kg FM und einer täglichen Futteraufnahme von 16,0 g ± 0,97 g nahmen die Tiere der Ebselengruppe täglich 3,19 μ g ± 0,19 μ g Selen

auf. An keinem der untersuchten Zeitpunkte konnte ein Anstieg der Selenkonzentration im Plasma oder den analysierten Organen festgestellt werden. Lediglich im Vollblut ließ sich die Ebselengruppe an zwei Zeitpunkten statistisch von der Mangelgruppe trennen. Nach 2 Tagen im Vergleich zu Tag null und nach 14 Tagen war die Se-Konzentration im Vollblut der Ebselengruppe zwar um 33,9 % höher als in der -Se-Gruppe, am Tag 28 aber sogar 2,16 % niedriger als in der -Se-Gruppe. Da die Werte beider Gruppen an der Bestimmungsgrenze lagen und in diesem Messbereich durch Absorptionsdifferenzen von 0,001 bereits Varianzkoeffizenten innerhalb einer Probe von 5-10 % zustande kommen, sind diese Unterschiede nicht überzubewerten. Im Vergleich dazu lag die Konzentration in den anderen drei Repletionsgruppen am Tag 2 der Repletionsphase bereits bei 330 - 438 %.

Verschiedene Autoren erwähnen eine schnelle und effiziente Absorption oral verabreichten Ebselens und begründen dies mit seiner geringen Molekülgröße und lipophilen Eigenschaft (YAMAGUCHI et al. 1988, TAKASAGO et al. 1997, OGAWA et al. 1999). Deshalb wäre bei Versuchsbeginn nicht zu erwarten gewesen, dass die Plasma-Se-Konzentrationen der Ebselengruppe auf dem Niveau der Mangelgruppe (22,2 \pm 2,57 µg/kg) liegen.

Andere Autoren dagegen konnten bei Ratten wenige Stunden nach oraler hoher Verabreichung Ebselendosen (50 mg/kg)KM, 14,4 mg Se/kg) Se-Konzentrationen von 3000-4000 µg/L im Serum messen (SAFAYHI et al. 1985, persönliche Kommunikation mit J. P. Löhr 1984 zitierend). Gegenüber einer niedrigeren oralen Ebselendosis (10 mg/kg KM) stieg die Plasma-Se-Konzentration bei höherer Supplementation (30 mg/kg KM) unterproportional an (TAKASAGO et al. 1997). Entweder sinkt die Absorptionsrate bei steigender Dosis, oder Selen wird schneller wieder aus dem Plasma eliminiert. Im Gegensatz zu diesen Studien waren die Ratten in vorliegender Arbeit zunächst Se-depletiert, und die Se-Dosis betrug pro Tag nur ca. 10 µg/kg KM. Nimmt man einen proportionalen Verlauf der Absorptionsrate an, würde die Se-Konzentration im Plasma nur um 0,59 µg/kg ansteigen und diese geringe Veränderung mit der verwendeten Methode nicht messbar sein. Bei tatsächlich effizienter Absorption müssten diese aufgenommenen 10 µg Se/kg KM nahezu vollständig absorbiert worden sein. Vor den Blut- und Organentnahmen wurden die Tiere über Nacht genüchtert. Da die Plasma-Se-Konzentration in der Untersuchung von TAKASAGO et al. (1997) bereits nach 1 h ihren Peak erreicht hatte, war das absorbierte Selen aus Ebselen in der vorliegenden Studie vermutlich bereits aus dem

124

Plasma verschwunden. Auch in der Arbeit von IMAI et al. (2001) fiel die Ebselenkonzentration im Plasma bei Ratten nach beendeter Ebseleninfusion (1 mg•kg⁻¹•h⁻¹) innerhalb von 1 h um ²/₃ ab. Ohne Angabe einer Quelle erwähnen YAMAGUCHI et al. (1998) dagegen, dass oral verabreichtes Ebselen schnell absorbiert wird und eine stabile Plasmakonzentration erreicht.

Die Selenkonzentration erreicht zwar im Plasma anscheinend schon wenige Stunden nach der oralen Ebselengabe ihren Peak, die antioxidative Wirkung des Ebselens ist aber erst später nachweisbar. Denn die protektive Wirkung des Ebselens auf die Lipidperoxidation (TBA-RS) ließ sich im Plasma von Ratten erst 24 h nach oraler Ebselengabe (50 mg/kg) feststellen, nicht aber nach nur 4 h. Nach 48 h war dieser Effekt wiederum nicht mehr nachweisbar (GRIFFTH et al. 1992).

Ebselen erreicht das Blut nicht unverändert, da es schnell metabolisiert wird (FISCHER et al. 1988, MÜLLER et al. 1988) (Abschnitt 2.1.4). Deshalb und aufgrund der Tatsache, dass es die Blut-Gehirn-Schranke einfach passieren kann, erachten IMAI et al. (2001) die intravöse Verabreichung von Ebselen als optimal.

Das Selen aus dem verabreichten Ebselen in dieser Studie war zum untersuchten Zeitpunkt (Schlachtung nach Nüchterung) weder in der Leber noch in der Niere zu finden. In einer anderen Studie wurde oral verabreichtes, radioaktiv markiertes Ebselen nach 48 h zwar nicht im Herzen, aber in der Leber von Mäusen wiedergefunden (WENDEL et al. 1984). Wie in Kapitel 2.1.4 beschrieben, passiert Ebselen die Leber. Die Leber verfügt aber offenbar nur über eine geringe Aufnahmeund Speicherkapazität für Ebselen (MÜLLER et al. 1988), so dass das Ebselen in der vorliegenden Arbeit die Leber zum Schlachtzeitpunkt vermutlich schon wieder verlassen hatte.

Das Selenatom im Ebselen gilt als nicht bioverfügbar (PARNHAM und KINDT 1984, WENDEL et al. 1984, SAITO und TAKAHASHI 2002). Weder oral noch intraperitoneal verabreichte supranutritive Dosen repletierten die pGPx- und die cGPx-Aktivität in Leber, Niere oder Makrophagen von Mäusen oder in humanen T-Zellkulturen. WENDEL et al. (1984) schlossen deshalb auf eine ausschließlich extrazelluäre antioxidative Wirkung des Ebselens. Entsprechend wurden die in der eigenen Studie untersuchten Selenoenzym-Aktivitäten (pGPx, cGPx, D1) nicht durch diese Se-Verbindung repletiert.

Für die pharmakologische Wirkung des Ebselens ist ein adäquater Selenstatus

obligatorisch: Im Falle eines Selenmangels wird auch das Selenoenzym TrxR depletiert, wodurch beispielsweise die Wirkung des Ebselens als DHA-Reduktase-Mimetikum (Abschnitt 2.1.4) nicht möglich ist. Entsprechend lag der DHA-Gehalt im Selenmangel bei anderen Autoren um 40 % niedriger (MAY et al. 1997). Der DHA-Gehalt und die TrxR-Aktivität wurden in vorliegender Arbeit jedoch nicht bestimmt, weshalb über diese Wirkung bezüglich der Repletion keine Aussage gemacht werden kann.

In vorliegenden hatte Ebselen Einfluss der Arbeit keinen auf den Glutathionstoffwechsel. Entgegen den eigenen Ergebnissen berichten jedoch andere Autoren von einem Ebseleneinfluss: Nach 12-24 h erhöhte Ebselen in vitro den intrazellulären Glutathiongehalt in der Leber um das 1,5fache, indem es die nrf-2abhängige¹ Transkription induzierte (TAMASI et al. 2004). Auch in Herzmuskelzellen erhöhte Ebselen in vitro für 24 h dosisabhängig die GSH- und GSSG-Konzentrationen. Das GSH/GSSG-Verhältnis blieb unverändert, und die GR-Aktivität war gegenüber der Kontrollgruppe signifikant erhöht (HOSHIDA et al. 1997). Der von BALJINNYAM et al. (2006) nachgewiesene kardioprotektive Effekt des Ebselens konnte bei perfundierten Kaninchenherzen zumindest teilweise auf die Aufrechterhaltung des GSH-Spiegels und eine Induktion des Hitzeschockproteins 72 durch Ebselen zurückgeführt werden. Darüberhinaus verhinderte die Ebselengabe den Abfall der Se-Konzentration im Herzen nach H₂O₂-Gabe (BALJINNYAM et al. 2006).

In vorliegender Arbeit lagen die Plasma-Se-Konzentrationen in der Ebselengruppe auf dem Niveau der Mangelgruppe, so dass sich die Frage stellte, ob Ebselen gar nicht erst absorbiert worden ist oder den Körper nach nächtlicher Nüchterung bereits wieder verlassen hatte. Zu diesem Zweck wurde der Darm stichprobenartig ausgewählter Ratten nachträglich entnommen und die Se-Konzentration im Darmgewebe und in den Digesta bestimmt (vgl. Tabelle 27, Abschnitt 4.8). Da die Se-Konzentration in den Digesta des Duodenums der Ebselentiere etwa auf dem Niveau der SeMet-Tiere und weit unter dem der SeO₄²⁻-Gruppe lag, ist davon auszugehen, dass das Selen aus dem Ebselen absorbiert worden ist. In den Digesta von Ileum und Colon lagen die Se-Konzentrationen in der Ebselengruppe jedoch weit über denen der anderen Gruppen, was die Vermutung nahe legt, dass das Selen aus Ebselen nach einer offenbar

¹ nrf-2 = Transkriptionsfaktor

effektiven Absorption (vgl. SeMet) über die Galle ausgeschieden worden ist.

Daraufhin wurden 3 selendepletierte Ratten eine Woche lang in Stoffwechselkäfigen gehalten und mit supplementiertem Se-Mangelfutter ad libitum gefüttert. Die Futteraufnahme sowie Faeces- und Urinmengen wurden erfasst und der Se-Analytik zugeführt. Über die Faeces wurden $42,4 \pm 4,66$ % und über den Urin $45,6 \pm 6,64$ % der aufgenommenen Se-Menge ausgeschieden. Um mit dem Urin ausgeschieden zu werden, muss dieser Teil des Selens aus dem Ebselen absorbiert worden sein. Das Selen in den Faeces kann sowohl ein über die Galle ausgeschiedener Ebselenmetabolit als auch nicht absorbiertes Ebselen sein. Nach der Sammelperiode wurden die Tiere über Nacht genüchtert und 2 h nach der Fütterung geschlachtet. Im Plasma der mit Ebselen gefütterten Tiere wurden 320 ± 30,8 µg Se/kg und im Hämolysat 167 ± 29,0 µg Se/kg gefunden. Die Se-Konzentration betrug in den Lebern 446 ± 48,5 µg/kg und in den Nieren 1113 ± 53,2 µg/kg. Da nur drei Tiere untersucht wurden, wurde keine statistische Auswertung vorgenommen. Die Se-Konzentration in der Leber entspricht aber dem 25fachen und die Se-Konzentration in der Niere dem 10fachen der -Se-Tiere des Hauptversuchs. Somit ist davon auszugehen, dass das Selen aus Ebselen schnell absorbiert, aber zum Zeitpunkt der Schlachtung aufgrund der langen Nüchterung bereits wieder ausgeschieden worden ist.

5.8 Hämoglobinkonzentration und Hämatokritwert

Die Hb-Konzentration ausgewachsener Ratten liegt bei 6,83-11,8 mmol/L und der Hk-Wert bei 40,5-54 % (PASS und FREETH 1993). Sowohl die Hb-Konzentration als auch der Hk-Wert in vorliegender Studie lagen in diesem Bereich. Bei einem alleinigen Selenmangel wurde bislang keine erhöhte Hämolyseneigung festgestellt. In Kombination mit einem Vitamin E-Mangel wurde aber zum Teil über eine gesteigerte Peroxid-induzierte Hämolyse berichtet. Die Ergebnisse anderer Rattenstudien bestätigend (CHAREONPONG-KAWAMOTO und YASUMOTO 1995, EDER et al. 1995, MATSUDA et al. 1998, CHRISTENSEN et al. 2000) traten hinsichtlich der Hb-Konzentration zwischen der Positiv- und der Negativkontrollgruppe im gesamten Versuchszeitraum keine signifikanten Unterschiede auf. Bezüglich des Hk-Wertes stellten CHAREONPONG-KAWAMOTO und YASUMOTO (1995) nach 12 Wochen einen signifikant niedrigeren Hämatokritwert bei Se-defizienten Ratten fest, der nach 24 Wochen wieder auf dem Niveau der Kontrollgruppe lag. Auch in vorliegender Untersuchung unterschieden sich die beiden Kontrollgruppen zwar zu Beginn der Repletionsphase signifikant, anschließend jedoch nicht mehr. In anderen Rattenstudien wurde über 20 Wochen kein Se-Einfluss auf den Hk-Wert (EDER et al. 1995, MATSUDA et al. 1998, CHRISTENSEN et al. 2000) beobachtet. Zwischen den Repletionsgruppen waren in vorliegender Studie keine gerichteten signifikanten Unterschiede hinsichtlich der hämatologischen Parameter festzustellen.

5.9 **TBA-RS**

Mit der TBA-RS-Methode wird Malondialdehyd als tertiäres Abbauprodukt mehrfach ungesättigter Fettsäuren erfasst. Sie ist also ein Parameter für die Lipidperoxidation (LPO). Die Erfassung der LPO ist allerdings kein alleiniges Maß für das Vorhandensein von oxidativem Stress, sondern nur ein Index. Um das Ausmaß von oxidativem Stress zu beziffern, existiert eine Vielzahl von Indizes mit über 100 verschiedenen umstrittenen Methoden (DOTAN et al. 2004).

In der vorliegenden Studie konnte kein gerichteter Einfluss der eingesetzten Se-Verbindungen oder eines Se-Mangels auf die TBA-RS-Konzentration beobachtet werden. Andere Autoren stellten nach bis zu 20 Wochen in der Leber von -Se-Ratten ebenfalls keine erhöhte TBA-RS-Konzentration fest, dafür aber eine 2fach erhöhte GST-Aktivität (HILL und BURK 1982, MATSUDA et al. 1998, MATSUMOTO et al. 2001, MOAK und CHRISTENSEN 2001). Auch durch Messung der F₂-Isoprostane zur Erfassung der LPO wurde nach 16 Wochen bei alleinigem Se-Mangel keine erhöhte LPO in Plasma, Leber, Lunge, Niere, Muskel, Herz und Gehirn von Ratten festgestellt (AwAD et al. 1994). Da die GST auch Lipidhydroperoxide reduziert und in den Lebern der Se-Mangeltiere aus vorliegender Arbeit signifikant höhere Aktivitäten aufwies, könnte eine durch den Se-Mangel verursachte höhere LPO durch die GST kompensiert worden sein. Die Kompensation der cGPx durch die non-SeGPx (GST-vermittelt) führen HAKKARINEN et al. (1986) als Begründung an, weshalb bei Ratten im Selenmangel 5 mg Vitamin E /kg FM zum Schutz der Membranphospholipide ausreichen.

Bei Ratten erbrachte ein Vitamin E-Mangel nach 21 Wochen signifikant erhöhte TBA-RS-Konzentrationen in der Leber (HILL und BURK 1982). Das im vorliegenden Versuch eingesetzte Futter enthielt lediglich das native Vitamin E aus dem Sojaöl, um kompensatorische Einflüsse des Vitamin E auf den Se-Mangelzustand zu verhindern. Da ein RRR-α-Tocopherol/PUFA-Verhältnis von 0,3 bei Ratten ausreicht, um einem Vitamin E-Mangel bei defizienter Se-Versorgung vorzubeugen (HAKKARAINEN et al. 1986), war trotz drastisch reduzierter cGPx-Aktivität keine erhöhte Lipidperoxidation (LPO) durch den Se-Mangel zu erwarten.

5.10 Katalase

Die Katalase ist bei der Ratte wie bei nahezu allen anderen Säugetieren ausschließlich peroxisomal lokalisiert, woraus eine insgesamt geringe Aktivität resultiert (YAMAMOTO et al. 1988). Die peroxidative Aktivität ist in Abhängigkeit von den Reaktionsbedingungen 600-700fach geringer als die katalytische Aktivität (WHEELER et al. 1990). Die in vorliegender Arbeit gemessenen Aktivitäten lagen etwa doppelt so hoch wie in Untersuchung von WHEELER et al. (1990), was wahrscheinlich der am unterschiedlichen Enzym-Substrat-Verhältnis liegt. In beiden Studien unterschieden sich die gemessenen peroxidativen Aktivitäten in den Leberhomogenaten der Seversorgten und Se-defizienten Ratten nicht signifikant voneinander. In einer anderen Rattenstudie hatte ein alleiniger Selenmangel ebenfalls keinen Einfluss auf die hepatische Katalaseaktivität, wohingegen ein kombinierter Se-/Vitamin E-Mangel zu einer erhöhten katalytischen Aktivität führte (LEE et al. 1981b). Da in der Untersuchung von BURK et al. (1978) die Katalasekonzentration (Protein) in der Leber von Ratten nach 12-wöchigem Selenmangel auf das fast 2½ fache der versorgten Tiere anstieg, vermuten die Autoren, dass die Katalase die im Se-Mangel verringerte H₂O₂-Entgiftung durch die cGPx-Aktivität kompensiert. Bei geringer H₂O₂-Konzentration (< 10^{-4} M) überwiegt der peroxidative Weg der Katalase (DEISSEROTH und DOUNCE 1970, CHANCE et al. 1979), so dass eine eventuelle kompensatorische Aktivität der Katalase in der vorliegenden Arbeit durch einen Antieg der peroxidativen Aktivität zu beobachten gewesen wäre.

5.11 Eisen

Der in den Versuchsfuttern angestrebte Eisengehalt von 35 mg/kg wurde um etwa das 1,5fache übertroffen. Bei der Kalkulation der Fe-Zulage wurde die Fe-Konzentration aus der Torulahefe einer früheren Charge verwendet. Der Fe-Gehalt der Hefe unterliegt natürlichen Schwankungen, weshalb dieser vermutlich unterschätzt worden ist. Auch in einem anderen Futter auf Basis von Torulahefe wurde bei der Mineralstoffanalyse ein auf das Vierfache der AIN-93-Empfehlungen erhöhter Eisengehalt gefunden (142 \pm 2 mg/kg) (CHAREONPONG-KAWAMOTO und YASUMOTO 1995). Die durchschnittliche Eisenkonzentration des in vorliegender Arbeit

verabreichten Futters von 56,2 mg/kg liegt laut NRC (1995) jedoch nicht im supranutritiven Bereich. Während der Trächtigkeit werden für Ratten 58 mg/kg als notwendig angegeben, um maximale Eisenspeicher des Nachwuchses zu erreichen. Im hier verwendeten -Se-Futter lag die analysierte Eisenkonzentration 27 % über der des +Se-Futters. Eine inhomogene Verteilung des eingemischten Eisens könnte die Ursache dieser Differenz sein. Mit steigender alimentärer Eisenzufuhr beobachteten LEE et al. (1981b) bei Ratten höhere Eisengehalte in der Leber. Auch nach einem Se-Mangel über 12 Wochen wurden signifikant höhere Fe-Konzentrationen in der Leber von Ratten festgestellt (ZHU et al. 1993, CHAREONPONG-KAWAMOTO et al. 1995, CHAREONPONG-KAWAMOTO und YASUMOTO 1995). Im Gegensatz dazu waren die Eisenkonzentrationen in den Untersuchungen von CHAREONPONG-KAWAMOTO et al. (1995) und CHRISTENSEN et al. (2000) nach 15-wöchiger Se-Depletion nicht verändert. In vorliegender Arbeit erhöhte weder der um etwa ¼ höhere Fe-Gehalt des Futters noch der Se-Mangel die Fe-Konzentrationen in Leber, Niere und Vollblut der Se-Mangelratten.

5.12 Schlussfolgerungen

Ziel der vorliegenden Studie war es, die Repletionseffizienz von Selenat (SeO₄²⁻), Selenit (SeO₃²⁻) und Selenomethionin (SeMet) zu ermitteln. Entscheidend für diese Fragestellung ist nicht allein die Absorptionsrate und die Selenkonzentration in den Geweben, sondern vor allem die Bioverfügbarkeit der verwendeten Se-Verbindungen. Aufgrund der zahlreichen positiven Eigenschaften, die dem Ebselen in der Vergangenheit zugesprochen wurden, fand diese Verbindung ebenfalls Verwendung. Im Gegensatz zu den meisten Repletionsstudien wurden die Tiere in vorliegender Arbeit zunächst depletiert. Es handelt sich hierbei um die bisher einzige Studie, die die beiden futtermittelrechtlich zugelassenen anorganischen Se-Verbindungen SeO₄²⁻ und SeO₃²⁻, die in kürzlich zugelassener Se-Hefe überwiegend vorliegende organische Verbindung SeMet und das synthetische Antioxidanz Ebselen bezüglich der Repletionseffizienz direkt in einem Tierversuch miteinander vergleicht.

Hinsichtlich der Gewebekonzentrationen war SeO_4^{2-} in der Leber in den ersten 2 Tagen gegenüber SeMet die Verbindung mit der höheren Repletionseffizienz, wohingegen SeO_3^{2-} statistisch nicht von den beiden anderen Verbindungen abzugrenzen war. Da die absorbierten Verbindungen zunächst in diesem Organ
anfluten, ist dieses Ergebnis richtungsweisend. In der Leber wird Selen in Selenoproteine eingebaut und in Form von Selenoprotein P ins Blut abgegeben, worüber es andere Organe erreicht. Das hauptsächlich in der Leber synthetisierte Transportprotein für Selen (SeIP) ist die einzige Form, in der Selen in die Testes aufgenommen werden kann. In vorliegender Studie waren die anorganischen Verbindungen in der Lage, neben der Leber auch das Plasma bzw. Vollblut und die Testes innerhalb von 2 Tagen effektiver zu repletieren als SeMet. Obwohl SeIP in den Geweben in der vorliegenden Arbeit nicht gemessen wurde, legt diese Verteilung nahe, dass das Ergebnis durch dieses Selenoprotein verursacht wurde. Im Plasma war SeO_4^{2-} in den ersten 8 Tagen ebenfalls die effektivste Se-Verbindung.

In Gehirn und Skelettmuskulatur dagegen erhöhte SeMet die Se-Konzentrationen sowohl in den ersten Repletionstagen als auch noch nach 28 Tagen stärker als die anorganischen Verbindungen. Der unspezifische Einbau des SeMet wird vor allem durch das SeMet/Met-Verhältnis im Futter bestimmt (SUNDE et al. 1981, WASCHULEWSKI und SUNDE 1988, BUTLER et al. 1989). In vorliegender Studie war Methionin ausreichend supplementiert worden (3 g/kg), so dass SeMet (0,5 mg/kg) nicht aufgrund eines Methioninmangels eingebaut werden musste. Darüber hinaus wird der Umfang des SeMet-Einbaus natürlich auch durch den Protein-Turnover bestimmt. Dieser hängt unter anderem von der Tierart, dem Alter, dem Gewebe, der Bewegungsintensität, der Energie- und der Proteinzufuhr ab. Die wachsende Ratte hat als kleine Spezies einen relativ hohen Protein-Turnover. Trotzdem war die Se-Konzentration in Geweben mit kurzer biologischer Halbwertszeit (Plasma, Leber) in der SeMet-Gruppe in den ersten 2 - 8 Repletionstagen signifikant niedriger als in der SeO₄²⁻-Gruppe. Ins Gehirn gelangt Selen im Gegensatz zu den anorganischen Verbindungen neben SelP vermutlich als SeMet aufgrund seiner Eigenschaft als Aminosäure, was die Ursache der höheren Repletionseffizienz im Gehirn sein könnte. Ebselen hat sich in den verabreichten nutritiven Dosierungen in keinem der untersuchten Gewebe angereichert. Die hohen Erwartungen aus der Literatur konnten damit keineswegs bestätigt werden. Aufgrund der Tatsache, dass Ebselen in einem Kontrollexperiment im Urin ausgeschieden wurde, ist es zwar absorbiert worden, verließ den Körper dann jedoch sehr schnell.

Die für einen Se-Mangel sensitivsten Parameter cGPx- und pGPx-Aktivität wurden in den untersuchten Geweben außer in den Testes am effektivsten durch die anorganischen Verbindungen repletiert. Insgesamt erwies sich SeO₄²⁻ gegenüber

131

SeO₃²⁻ nur teilweise als überlegen, häufig lagen beide Verbindungen jedoch bezüglich ihrer Repletionseffizienz gleichauf. SeMet dagegen war beiden anorganischen Verbindungen bezüglich der Bioverfügbarkeit deutlich unterlegen. Ebselen zeigte ähnlich wie bei der Se-Konzentration in den untersuchten Geweben keinen Repletionserfolg. Als Imitator der cGPx müsste Ebselen im GPx-Assay reagieren. Da es zu Versuchende vermutlich bereits wieder ausgeschieden war, konnte in keinem Gewebe der Ebselengruppe ein NADPH-Verbrauch (GPx-Assay) gemessen werden. Sollte oral verabreichtes Ebselen wie in der Literatur beschrieben in den Geweben in Form einer GPx-Aktivität in nutritiven Dosierungen überhaupt wirksam sein, müsste es demnach mehrmals täglich zugeführt werden.

Die weiteren untersuchten Parameter des antioxidativen Stoffwechsels 5'-Deiodinase, Glutathion S-Transferase und die Glutathionkonzentration wurden durch den Selenmangel ebenfalls deutlich beeinflusst. Ebselen zeigte auch hier absolut keinen Repletionserfolg. SeO_4^{2-} , SeO_3^{2-} und SeMet unterschieden sich bei diesen Parametern hinsichlich ihrer Repletionseffizienz jedoch nicht.

 $SeO_4^{2^-}$ und $SeO_3^{2^-}$ sind beide futtermittelrechtlich als Zusatzstoffe zugelassen. Das NRC und das AIN empfehlen die Verwendung von $SeO_4^{2^-}$ statt $SeO_3^{2^-}$ für Ratten und Mäuse. $SeO_3^{2^-}$ weist gegenüber $SeO_4^{2^-}$ zudem einige erhebliche Nachteile auf: Es kann durch andere Futterinhaltsstoffe in Abhängigkeit von den Lagerbedingungen und vom Wassergehalt des Futters leicht zu seleniger Säure reduziert werden und als Gas verloren gehen. Darüber hinaus kann eine weitere Reduktion zum nicht verfügbaren elementaren Selen stattfinden, und sogar eine prooxidative Wirkung ist in der Diskussion (EISENBERG 2007). Des Weiteren variierte die scheinbare $SeO_3^{2^-}$ Absorption im Unterschied zu $SeO_4^{2^-}$ in Abhängigkeit von der verzehrten Mahlzeit zwischen 13,6 % und 66,4 % (Fox et al. 2005). Hinsichtlich der in vorliegender Arbeit gezeigten leichten Überlegenheit des $SeO_4^{2^-}$ bezüglich der Repletionseffizienz und der aufgeführten Nachteile des $SeO_3^{2^-}$ kann die Empfehlung von NRC und AIN, bevorzugt $SeO_4^{2^-}$ einzusetzen, eindeutig bekräftigt werden.

Die Repletionseffizienz des SeMet ist deutlich schlechter als die der verwendeten anorganischen Verbindungen. Aufgrund des unspezifischen Einbaus in Proteine kann es jedoch bei der Fütterung landwirtschaftlicher Nutztiere gezielt genutzt werden, um die Produkte für den menschlichen Verzehr mit Selen anzureichern. SeMet wurde in Form von Se-Hefe kürzlich futtermittelrechtlich zugelassen und stellt in Se-Hefen zwar die dominierende Form des enthaltenen Selens dar (BEILSTEIN und WHANGER 1986a), Se-Hefe ist aber keinesfalls eine reine SeMet-Quelle. Neben SeMet wurde eine Vielzahl anorganischer und organischer Se-Verbindungen nachgewiesen, von denen noch nicht alle identifiziert wurden (BIRD et al. 1997, IP et al. 2000). Die Hersteller der zugelassenen Se-Hefen geben einen SeMet-Anteil von 63 % des Gesamtselens und einen Anteil anorganischer Se-Verbindungen von 1 - 3 % an. Hersteller von Se-Hefen bemängeln die begrenzten Einsatzmöglichkeiten anorganischer Se-Verbindungen aufgrund ihrer Toxizität und der geringen Effizienz in der Anreicherung von Milch, Fleisch und Eiern sowie der fehlenden Fähigkeit Selenreserven im Körper zu bilden. Für Se-Hefe wird vielfach argumentiert, dass das unspezifisch eingebaute SeMet als mobilisierbare Se-Reserve die Adaptationsfähigkeit des Körpers bei oxidativem Stress erhöht (FISININ et al. 2008, SURAI et al. 2008). Bei adäguater Selenzufuhr im Rahmen der futtermittelrechtlich zugelassenen Höchstmengen (0,5 mg Se/kg FM) wird überschüssiges Selen jedoch bei allen Nutztieren renal ausgeschieden. Se-Intoxikationen treten dagegen bei Konzentrationen von 2-5 mg/kg FM auf (WOLFFRAM 2000). Das Risiko einer chronischen Se-Vergiftung durch SeMet dagegen wird insbesondere bei unzureichender Met-Zufuhr diskutiert (BEHNE et al. 1991). Bei bedarfsdeckendem Methioningehalt des Futters ist eine übermäßige unspezifsche Akkumulation jedoch unwahrscheinlich. Darüber hinaus wird das unspezifisch eingebaute SeMet nur langsam und nicht in Abhängigkeit von der Se-Versorgung des Organismus mobilisiert.

Die drei Verbindungen $SeO_4^{2^-}$, $SeO_3^{2^-}$ und SeMet unterscheiden sich also hinsichtlich ihrer Repletionseffizienz vor allem in den ersten 8 Tagen. Die Verbindung mit der höchsten Repletionseffizienz ist $SeO_4^{2^-}$, gefolgt von $SeO_3^{2^-}$ und mit weiterem Abstand von SeMet. Oral verabreichtes Ebselen zeigte in nutritiven Dosierungen keine Repletionseffizienz. Da ein reiner Se-Mangel nicht sofort zu akuten Symptomen führt, ist der Repletionsvorteil des $SeO_4^{2^-}$ vor allem in kritischen Zuständen eines kombinierten Selen-/Vitamin E-Mangels zu suchen. Ob sich die höhere Repletionseffizienz bei Tierarten mit einem kritischen Verlauf dieses kombinierten Mangels (Pute, Meerschweinchen) reproduzieren lässt, muss zunächst offen bleiben, bietet aber interessante Ansatzmöglichkeiten für zukünftige Studien.

In der langfristigen Nutztierfütterung hat SeMet insofern eine Berechtigung, als dass es die defizitäre Se-Versorgung des Menschen in einigen Teilen der Erde verbessern könnte. Dies setzt allerdings den Verzehr vom Tier stammender Lebensmittel voraus.

6 Zusammenfassung

In der Vergangenheit wurden unterschiedliche anorganische und organische Selenverbindungen meist separat bezüglich ihrer Absorption, Bioverfügbarkeit und biochemischen Wirkung untersucht und nur teilweise miteinander verglichen. Trotz der Empfehlungen des NRC und der AIN Selenat (SeO_4^{2-}) anstelle von Selenit (SeO_3^{2-}) in Futtermitteln zuzulegen, wurden bezüglich ihrer Repletionseffizienz und/oder Bioverfügbarkeit bisher nur SeO_3^{2-} und Selenomethionin (SeMet) hinsichtlich ihrer langfristigen Wirksamkeit miteinander verglichen. Ziel dieser Studie war es deshalb, verschiedene Selenverbindungen oral in nutritiven Dosen an Se-defiziente Ratten zu verabreichen, um die kurzfristige Repletionseffizienz zu ermitteln.

Hierzu wurden 180 entwöhnte männliche Wistar-Ratten (40,8 g Körpermasse) in vier Repletions- und zwei Kontrollgruppen unterteilt. Die Negativkontrollgruppe und die vier Repletionsgruppen wurden zunächst über einen Zeitraum von 10 Wochen mit einem Se-armen Futter [< 15 µg Se/kg] auf Basis von Torulahefe depletiert, während die Positivkontrollgruppe dieses Basisfutter mit einer Se-Zulage von 200 µg/kg Frischmasse (FM) in Form von SeO₄²⁻ erhielt.

Nach diesen 10 Wochen wurden je sechs Tiere der Negativ- und der Positivkontrollgruppe geschlachtet. Die Tiere der Repletionsgruppen erhielten ab diesem Zeitpunkt zur Repletion das Se-arme Basisfutter mit einer Zulage von 200 μ g Se/kg FM als SeO₄²⁻, SeO₃²⁻, SeMet oder Ebselen.

Nach 2, 5, 8, 14, 21 und 28 Tagen wurden aus jeder Repletionsgruppe sechs Tiere geschlachtet. Aus den Kontrollgruppen wurden ebenfalls sechs Tiere am Tag 14 und 28 der Repletionsphase getötet. Die Tiere wurden vor dem Schlachten über Nacht genüchtert. Organe, Vollblut und Plasma wurden zur späteren Analyse bei -80 °C tiefgefroren. Als Se-Statuskontrolle wurde während der 10-wöchigen Depletionsphase wöchentlich Blut entnommen und die Aktivitäten der zellulären Glutathionperoxidase (cGPx) und der plasmatischen Glutathionperoxidase (pGPx) untersucht. Nach Versuchsende (jeweiliger Schlachtzeitpunkt) wurden die Se-Konzentrationen in Leber, Niere, Testes, Gehirn, Muskel, Vollblut und Plasma bestimmt. Als Parameter für die Bioverfügbarkeit des Selens wurden die Aktivitäten der Selenoenzyme pGPx, hepatische 5'-Deiodinase und cGPx in Hämolysat, Leber, Niere, Testes, Lunge und Milz gemessen. Darüber hinaus wurde die Genexpression der cGPx und der

Phospholipidhydroperoxid-Glutathionperoxidase (PHGPx) in der Leber erfasst. Weitere Parameter des antioxidativen Stoffwechsels wie die Konzentration an Thiobarbitursäurereaktiven Substanzen (TBA-RS) und Glutathion (GSH) sowie die peroxidative Katalase- und Glutathion *S*-Transferase- (GST) Aktivität in der Leber wurden ebenfalls erhoben. Des Weiteren wurden die Schilddrüsenhormonkonzentrationen (Triiodthyronin (T₃) und Thyroxin (T₄)) im Plasma und die Eisenkonzentrationen in Leber, Niere und Vollblut analysiert.

Entgegen verschiedenen Literaturangaben zeigte das synthetische, antioxidativ wirksame Ebselen keinen Einfluss auf die Se-Konzentrationen in den Geweben, die Aktivitäten der Selenoenzyme bzw. alle weiteren erhobenen Parameter. Daher wurden zu einem späteren Zeitpunkt stichprobenartig aus jeweils drei Restkörpern der SeO₄²⁻-, SeMet-, Ebselen- und Negativkontrollgruppe die Se-Konzentrationen in Dünndarm und Digesta des Dünn- und Dickdarms analysiert. Im Duodenum entsprach die Gewebekonzentration der Ebselentiere etwa der der SeMet-Gruppe, so dass von einer Absorption des Ebselens ausgegangen werden kann. In den Digesta des Colons war die Se-Konzentration in der Ebselengruppe erheblich höher als in den anderen Repletionsgruppen, weshalb eine Ausscheidung über die Galle als wahrscheinlich erachtet wurde. Um zu überprüfen, ob Ebselen in nutritiver Dosis tatsächlich absorbiert wird, wurden drei Tiere zunächst für drei Wochen depletiert, um ihnen danach ein Searmes Basisfutter mit 200 µg Se/kg FM in Form von Ebselen zu verabreichen. Aufgrund von Futteraufnahme und Exkretion konnte bestimmt werden, dass das aufgenommene Selen aus dem Ebselen je etwa zur Hälfte in Urin und Faeces ausgeschieden wurde. Deshalb muss davon ausgegangen werden, dass das Ebselen von den Versuchstieren zwar absorbiert wurde, aber zum Zeitpunkt des Schlachtens wegen der Nüchterung über Nacht bereits wieder ausgeschieden worden war.

In Muskel und Gehirn reicherte sich Selen aus SeMet signifikant schneller an als aus den anorganischen Verbindungen. Im Gehirn übertraf die Se-Konzentration sogar die der Positivkontrollgruppe. Während in der Niere kein Unterschied gefunden wurde, waren in den anderen Geweben die beiden anorganischen Quellen, mit einem leichten Vorteil des SeO₄²⁻, dem SeMet bis zum achten Repletionstag deutlich überlegen.

Auch bei den Aktivitäten der Selenoenzyme wiesen die beiden anorganischen Se-Verbindungen in den ersten Tagen der Repletion eine höhere Repletionseffizienz als SeMet auf, wobei SeO₄²⁻ wiederum teilweise effektiver als SeO₃²⁻ war. SeMet war bei diesen Parametern zwar den anorganischen Se-Verbindungen unterlegen, erreichte jedoch am Ende der Repletionsphase immer das Niveau der Positivkontrollgruppe. Nach 14 Tagen konnte bei diesen drei Verbindungen bezüglich der Repletionseffizienz kein Unterschied mehr beobachtet werden.

Hinsichtlich der untersuchten Genexpression war SeMet die effektivste Se-Verbindung. Die PHGPx-mRNA-Konzentration war ausschließlich durch SeMet nennenswert erhöht. Die cGPx-Expression wurde sowohl nach 8 als auch nach 28 Tagen Repletion durch SeO_3^{2-} wie auch etwas deutlicher durch SeO_4^{2-} hochreguliert. SeMet hingegen erbrachte bei der cGPx wiederum die stärkste Hochregulierung.

Bei den begleitenden Parametern Katalase- und GST-Aktivität, T₃- und T₄-, TBA-RS-, Glutathion- und Eisenkonzentration konnten keine Unterschiede in der Wirkung von $SeO_4^{2^-}$, $SeO_3^{2^-}$ und SeMet festgestellt werden.

Ein Selenmangel führt nicht sofort zu akuten Symptomen. Eine schnelle Repletion ist daher vor allem bei einem kombinierten Selen-/Vitamin E-Mangel, insbesondere bei schweren Verläufen wie bei Pute und Meerschweinchen, vonnöten. In diesen Fällen sollte aufgrund der höheren Repletionseffizienz vorrangig SeO_4^{2-} anstelle von SeO_3^{2-} verwendet werden. Wie in der Vergangenheit bereits diskutiert, ist SeMet allerdings zur Anreicherung in tierischen Geweben geeignet, um die Se-Versorgung in Se-Mangelgebieten zu verbessern. Ebselen wird im Darm zwar absorbiert, jedoch relativ schnell wieder über Niere und vermutlich Galle ausgeschieden. Von einer ernährungsphysiologischen Verfügbarkeit im eigentlichen Sinne kann bei Ebselen im Gegensatz zu SeO_4^{2-} , SeO_3^{2-} und SeMet jedenfalls nicht gesprochen werden.

7 Summary

The Efficiency of Different Selenium Compounds in the Repletion of Functional Selenoproteins in Selected Organs of Rats (*Rattus norvegicus*)

The absorption, bioavailability and biochemical properties of the inorganic and organic selenium compounds have so far only been investigated in part and separately. The American Institute of Nutrition (AIN) and NRC recommend selenate instead of selenite for food supplementation, but only selenite has been compared with selenomethionine for resupplementation in the literature. The aim of the study was therefore to compare the different selenium compounds in nutritional doses with regard to short term repletion efficiency.

A total of 180 weanling male Wistar rats (40.8 g BW) were divided into four repletion groups plus two control groups. The four groups and the negative control group were fed a selenium deficient diet based on Torula yeast for ten weeks. The positive control group received the selenium deficient diet [< 15 μ g Se/kg] with an addition of 200 μ g Se/kg food as selenate.

After ten weeks six animals from each control group were sacrificed. The repletion groups were then fed the selenium deficient diet with a supplementation of 200 μ g Se/kg food for repletion as selenate, selenite, selenomethionine or ebselen, respectively.

After 2, 5, 8, 14, 21 and 28 days from onset of repletion six animals from each repletion group were sacrificed. Six rats from both control groups were also sacrificed after 14 and 28 days of repletion. The animals were starved overnight prior to sacrificing. Organs, whole blood and plasma were stored at -80 °C for later analysis. Blood was obtained weekly to determine the Se-status via measurement of plasmatic glutathione peroxidase (pGPx) and cytosolic glutathione peroxidase (cGPx) activity during the depletion period. Se concentration in liver, kidney, testes, brain, muscle, whole blood and plasma was determined at the end of the trial. The activities of the selenoenzymes pGPx, hepatic 5'-deiodinase and cGPx in hemolysate, liver, kidney, testes, lung and spleen were investigated as parameters for the bioavailability of the Se compounds. In addition gene expression of cGPx and phosphatidylcholine hydroperoxide glutathione peroxidase (PHGPx) in the liver was measured. Further parameters of the

antioxidative metabolism thiobarbituric acid reactive substances (TBA-RS), glutathione (GSH) concentration, peroxidative catalase activity and glutathione *S* transferase (GST) activity in the liver were determined. The thyroid hormone concentrations (T_3 and T_4) in the plasma and the iron concentration in liver, kidney and whole blood were also analysed.

Contrary to the literature, the synthetic antioxidative compound ebselen did not show any influence on the Se concentration in the tissues, the activity of selenoenzymes and further parameters investigated. Therefore, tissues and digesta from the different segments of the intestine from randomly assigned carcasses of three animals from the repletion groups (selenate, SeMet, ebselen) and from the negative control group were additionally analysed. The selenium concentration in the tissue of the small intestine of the ebselen rats was as high as the concentration in the tissue of SeMet animals. Therefore, it seems likely that ebselen is absorbed from the small intestine. The selenium concentration in the digesta from the colon of ebselen rats was noticeable higher than in the other repletion groups. Consequently an excretion via the bile can be assumed. After the main trial, three rats were depleted for three weeks. The animals received a Se deficient diet with an addition of 200 µg Se/kg diet as ebselen after depletion to study the absorption of ebselen in nutritional doses. Taking the food intake and excretion into account it can be assumed that the selenium taken up from ebselen was excreted half via urine and half via faeces. In the main trial ebselen was presumably absorbed but at point of sacrifice was no longer present because of overnight starvation.

Selenium from SeMet enriched significantly faster in muscle and brain than selenium from the inorganic compounds. The selenium concentration in the brain exceeded the concentration in the positive control group at the end of the trial. There was no difference in the kidney, but in all the other tissues investigated selenium from the two inorganic sources, with a small advantage for selenate, was clearly superior to SeMet up to day 8 of repletion.

Both inorganic selenium compounds also showed higher repletion efficiency than SeMet in restoring the activity of the selenoenzymes during the first days of repletion. Selenate was again in part more effective than selenite. SeMet was inferior to the inorganic compounds, but at the end of the repletion period the parameters reached the positive control levels. After 14 days no difference could be determined with regard to the repletion efficiency between the three compounds tested.

Gene expression was most efficient in the SeMet group. Only SeMet increased the PHGPx mRNA expression in a noteworthy manner and the cGPx expression was considerably more upregulated with SeMet than with selenate or selenite after both 8 and 28 days of repletion.

There was no significant difference in repletion efficiency between selenate, selenite and SeMet in the parameters catalase and GST activity, T_3 and T_4 , TBA-RS, glutathione and iron concentration.

A fast repletion is important under conditions of combined Se/vitamin E deficiency. This should be taken into account especially for animals such as turkeys and guinea pigs with severe symptoms of a combined deficiency. Selenate should be recommended in preference to selenite because of its higher repletion efficiency. SeMet is suitable to enrich animal tissues to improve the selenium supply in selenium deficient areas of the world. Ebselen is absorbed in the intestine but the excretion via the kidney and presumably the bile is very fast. No information can be drawn from this study with regard to the antioxidative effect of ebselen, because it would be necessary to supply this compound permanently. Ebselen does not represent a nutritionally physiologically available selenium compound in contrast to selenate, selenate and SeMet.

8 Literaturverzeichnis

- ABBOTT WA, MEISTER A (1986): Intrahepatic transport and utilization of biliary glutathione and its metabolites. Proc Natl Acad Sci USA 83: 1246-1250
- ANUNDI I, HÖGBERG J, STÅHL A (1984): Absorption of selenite in the small intestine: interactions with glutathione. Acta pharmacol et toxicol 54: 273-277
- ARAI M, IMAI H, SUMI D, IMANAKA T, TAKANO T, CHIBA N, NAKAGAWA Y (1996): Import into mitochondria of phospholipid hydroperoxide glutathione peroxidase requires a leader sequence. Biochem Biophys Res Comm 227: 433-439
- ARDÜSER F, WOLFFRAM S, SCHARRER E (1985): Active absorption of selenate by rat ileum. J Nutr 115: 1203-1208
- ARDÜSER F, WOLFFRAM S, SCHARRER E, SCHNEIDER B (1986): Transport of selenate and selenite across the brush border membrane of rat and sheep small intestine. Biol Trace Elem Res 9: 281-290
- ARMSTRONG RN (1997): Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10: 2-18
- ARNÉR ESJ, HOLMGREN A (2000): Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267: 6102-6109
- ARTEEL GE, BRIVIBA K, SIES H (1999): Function of thioredoxin reductase as a peroxynitrite reductase using selenocystine or ebselen. Chem Res Toxicol 12: 264-269
- ARTHUR JR, NICOL F, BECKETT GJ (1990a): Hepatic iodothyronine 5'-deiodinase: the role of selenium. Biochem J 272: 537-540
- ARTHUR JR, NICOL F, HUTCHINSON AR, BECKETT GJ (1990b): The effects of selenium depletion and repletion on the metabolism of thyroid hormones in the rat. J Inorg Biochem 39: 101-108
- AVISSAR N, ORNT DB, YAGIL Y, HOROWITZ S, WATKINS RH, KERL EA, TAKAHASHI K, PALMER IS, COHEN HJ (1994): Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 266: C367-C375
- AWAD JA, MORROW JD, HILL KE, ROBERTS LJ, BURK RF (1994): Detection and localization of lipid peroxidation in selenium- and vitamin E-deficient rats using F₂-isoprostanes. J Nutr 124: 810-816
- BALJINNYAM E, HASEBE N, MORIHIRA M, SUMITOMO K, MATSUSAKA T, FUJINO T, FUKUZAWA J, USHIHUBI F, KIKUCHI K (2006): Oral pretreatment with ebselen enhances heat shock protein 72 expression and reduces myocardial infarct size. Hypertens Res 29: 905-913
- BALLATORI N, JACOB R, BOYER JL (1986): Intrabiliary glutathione hydrolysis. J Biol Chem 261: 7860-7865
- BAQUI MMA, GEREBEN B, HARNEY JW, LARSEN R, BIANCO AC (2000): Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141: 4309-4312
- BAQUI M, BOTERO D, GEREBEN B, CURCIO C, HARNEY JW, SALVATORE D, SORIMACHI K, LARSEN PR, BIANCO AC (2003): Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to

endosomes. J Biol Chem 278: 1206-1211

- BARTOLI GM, SIES H (1978): Reduced and oxidized glutathione efflux from liver. FEBS Lett 86: 89-91
- BASSLER R, PUTZKA H-A (1984): Neue EG-Methode zur Bestimmung von Rohfett in Futtermitteln. Kraftfutter 67: 129-134
- BATES JM, SPATE VL, MORRIS JS, ST. GERMAIN D, GALTON VA (2000): Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development. Endocrinology 141: 2490-2500
- BAUDHUIN P, BEAUFAY H, DE DUVE C (1965): Combined biochemical and morphological study of particulate fractions from rat liver. J Cell Biol 26: 219-243
- BECKETT GJ, BEDDOWS SE, MORRICE PC, NICOL F, ARTHUR JR (1987): Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats. Biochem J 248: 443-447
- BECKETT GJ, MACDOUGALL DA, NICOL F, ARTHUR JR (1989): Inhibition of type I and type II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency. Biochem J 259: 887-892
- BECKETT GJ, RUSSELL A, NICOL F, SAHU P, WOLF CR, ARTHUR JR (1992): Effect of selenium deficiency on hepatic type I 5-iodothyronine deiodinase activity and hepatic thyroid hormone levels in the rat. Biochem J 282: 483-486
- BECKETT GJ, NICOL F, RAE PWH, BEECH S, GUO Y, ARTHUR JR (1993): Effects of combined iodine and selenium deficiency on thyroid hormone metabolism in rats. Am J Clin Nutr Suppl 57: 240S-243S
- BEHNE D, HÖFER T, VON BERSWORDT-WALLRABE R, ELGER W (1982): Selenium in the testis of the rat: studies on its regulation and its importance for the organism. J Nutr 112: 1682-1687
- BEHNE D, WOLTERS W (1983): Distribution of selenium and glutathione peroxidase in the rat. J Nutr 113: 456-461
- BEHNE D, HÖFER-BOSSE T (1984): Effects of a low selenium status on the distribution and retention of selenium in the rat. J Nutr 114: 1289-1296
- BEHNE D, HILMERT H, SCHEID A, GESSNER H, ELGER W (1988): Evidence for specific target tissues and new biologically important selenoproteins. Biochim Biophys Acta 966: 12-21
- BEHNE D, KYRIAKOPOULOS A, MEINHOLD H, KOEHRLE J (1990): Identification of type I iodothyronine 5'-deiodinase as a selenoenzyme. Biochem Biophys Res Commun 173: 1143-1149
- BEHNE D, KYRIAKOPOULOS A, SCHEID S, GESSNER H (1991): Effects of chemical form and dosage on the incorporation of selenium into tissue proteins in rats. J Nutr 121: 806-814
- BEILSTEIN MA, WHANGER PD (1986a): Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins. J Nutr 116: 1701-1710
- BEILSTEIN MA, WHANGER PD (1986b): Chemical forms of selenium in rat tissues after administration of selenite or selenomethionine. J Nutr 116: 1711-1719
- BEILSTEIN MA, WHANGER PD (1988): Glutathione peroxidase activity and chemical forms of selenium in tissues of rats given selenate or selenomethionine. J Inorg Biochem 33: 31-46
- BERGGREN MM, MANGIN JF, GADASKA JR, POWIS G (1999): Effect of selenium on rat

thioredoxin reductase activity. Biochem Pharmacol 57: 187-193

- BERMANO G, NICOL F, DYER JA, SUNDE RA, BECKETT GJ, ARTHUR JR (1995): Tissuespecific regulation of Selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311: 425-430
- BERMANO G, NICOL F, DYER JA, SUNDE RA, BECKETT GJ, ARTHUR JR (1996a): Selenoprotein gene expression during selenium-repletion of selenium-deficient rats. Biol Trace Elem Res 51: 211-223
- BERMANO G, ARTHUR JR, HESKETH JE (1996b): Selective control of cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase mRNA stability by selenium supply. FEBS Lett 387: 157-160
- BERRY MJ, KATES AL, LARSEN PR (1990): Thyroid hormone regulates type I deiodinase messenger RNA in rat liver. Mol Endocrinol 4: 743-748 (abstr.)
- BERRY MJ, BANU L, LARSEN PR (1991a): Type I iodothyronine deiodinase is a selenium-containing enzyme. Nature 349: 438-440
- BERRY MJ, KIEFFER JD, LARSEN PR (1991b): Evidence that cysteine, not selenocysteine, is in the catalytic site of type II iodothyronine deiodinase. Endocrinology 129: 550-552 (abstr.)
- BERRY MJ, BANU L, CHEN Y, MANDEL SJ, KIEFFER JD, HARNEY JW, LARSEN PR (1991c): Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature 353: 273-276
- BERRY MJ, BANU L, HARNEY JW, LARSEN PR (1993): Functional characterisation of the eukaryotic SECIS elements which direct slenocysteine insertion at UGA codons. EMBO J. 12: 3315-3322
- BHABAK KP, MUGESH G (2007): Synthesis, characterisation, and antioxidant activity of some ebselen analogues. Chem Eur J 13: 4594-4601
- BIANCO AC, SALVATORE D, GEREBEN B, BERRY MJ, LARSEN PR (2002): Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23: 38-89
- BIRD SM, UDEN PC, TYSON JF, BLOCK E, DENOYER E (1997): Speciation of selenoamino acids and organoselenium compounds in selenium-enriched yeast using highperformance liquid chromatography-inductively coupled plasma mass spectrometry. J Anal Atomic Spectr 12: 785-788
- BJÖRNSTEDT M, KUMAR S, HOLMGREN A (1992): Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductases. J Biol Chem 267: 8030-8034
- BJÖRNSTEDT M, XUE J, HUANG W, ÅKESSON B, HOLMGREN A (1994): The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 29382-29384
- BJÖRNSTEDT M, HAMBERG M, KUMAR S, XUE J, HOLMGREN A (1995): Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem 270: 11761-11764
- BJÖRNSTEDT M, KUMAR S, BJÖRKHEM L, SPYROU G, HOLMGREN A (1997): Selenium and the thioredoxin and glutaredoxin systems. Biomed Environm Sci 10: 271-279
- BORCHERT A, SAVASKAN NE, KUHN H (2003): Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. J Biol Chem 278: 2571-2580

- BOYD CAR, SHENNAN DB (1986): Sulphate transport into vesicles prepared from human placental brush border membranes: inhibition by trace element oxides. J Physiol 379: 367-376
- BRADFORD MM (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
- BRIGELIUS-FLOHÉ R (1999): Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27: 951-965
- BRIGELIUS-FLOHÉ R (2006): Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 387: 1329-1335
- BURK RF, BROWN DG, SEELY RJ, SCAIEF CC (1972): Influence of dietary and injected selenium on whole-body retention, route of excretion, and tissue retention of ⁷⁵SeO₃²⁻ in the rat. J Nutr 102: 1049-1056
- BURK RF, NISHIKI K, LAWRENCE RA, CHANCE B (1978): Peroxide removal by seleniumdependent and selenium-independent glutathione peroxidases in hemoglobinfree perfused rat liver. J Biol Chem 253: 43-46
- BURK RF, GREGORY PE (1982): Some characteristics of ⁷⁵Se-P, a selenoprotein found in rat liver and plasma, and comparison of it with selenoglutathione peroxidase. Arch Biochem Biophys 213: 73-80
- BURK RF (1983): Biological activity of selenium. Ann Rev Nutr 3: 53-70
- BURK RF, HILL KE, READ R, BELLEW T (1991): Response of rat Selenoprotein P to selenium administration and fate of its selenium. Am J Physiol 261: E26-E30
- BURK RF, HILL KE, BOEGLIN ME, EBNER FF, CHITTUM HS (1997): Selenoprotein P associates with endothelial cells in rat tissues. Histochem Cell Biol 108: 11-15
- BURK RF, HILL KE, MOTLEY AK (2001): Plasma selenium in specific and non-specific forms. Biofactors 14: 107-114
- BURK RF, HILL KE, MOTLEY AK, AUSTIN LM, NORSWORTHY BK (2006): Deletion of selenoprotein P upregulates urinary selenium excretion and depresses wholebody selenium content. Biochim Biophys Acta 1760: 1789-1793
- BURK RF, HILL KE, OLSON GE, WEEBER EJ, MOTLEY AK, WINFREY VP, AUSTIN LM (2007): Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J Neurosci 27: 6207-6211
- BURMEISTER LA, PACHUCKI J, ST GERMAIN DL (1997): Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology 138: 5231-5237
- BUTLER JA, BEILSTEIN MA, WHANGER PD (1989): Influence of dietary methionine on the metabolism of selenomethionine in rats. J Nutr 119: 1001-1009
- CABAN K, COPELAND PR (2006): Size matters: a view of selenocysteine incorporation from the ribosom. Cell Mol Life Sci 63: 73-81
- CANTOR AH, TARINO JZ (1982): Comparative effects of inorganic and organic dietary sources of selenium on selenium levels and selenium-dependent glutathione peroxidase activity in blood of young turkeys. J Nutr 112: 2187-2196
- CARLBERG I, MANNERVIK B (1975): Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250: 5475-5480

- CARLSON BA, XU X, KRYUKOV GV, RAO M, BERRY MJ, GLADYSHEV VN, HATFIELD DL (2004): Identification and characterization of phosphoseryl-tRNA^{[Ser]Sec} kinase. Proc Natl Acad Sci 101: 12848-12853
- CARLSON BA, XU X-M, GLADYSHEV VN, HATFIELD DL (2005): Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem 280: 5542-5548
- CASES J, VACCHINA V, NAPOLITANO A, CAPORICCIO B, BESANÇON P, LOBINSKI R, ROUANET J-M (2001): Selenium from selenium-rich spirulina is less bioavailable than selenium from sodium selenite and selenomethionine in selenium-deficient rats. J Nutr 131: 2343-2350
- CHAMBERS I, FRAMPTON J, GOLDFARB P, AFFARA N, McBAIN W, HARRISON PR (1986): The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA. EMBO J 5: 1221-1227
- CHANCE, B, SIES H, BOVERIES A (1979): Hydroperoxide metabolism in mammalian organs. Phys Rev 59: 527-605
- CHANOINE J-P, BRAVEMANN LE, FARWELL AP, SAFRAN M, ALEX S, DUBORD S, LEONARD JL (1993): The thyroid gland is the major source of circulating T_3 in the rat. J Clin Invest 91: 2709-2713
- CHAREONPONG-KAWAMOTO N, YASUMOTO K (1995): Selenium deficiency as a cause of overload of iron and unbalanced distribution of other minerals. Biosci Biotech Biochem 59: 302-306
- CHAREONPONG-KAWAMOTO N, HIGASA T, YASUMOTO K (1995): Histological study of iron deposits in selenium-deficient rats. Biosci Biotech Biochem 59: 1913-1920
- CHAVATTE L, BROWN II BA, DRISCOLL DM (2005): Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struc Mol Biol 12: 408-416
- CHIDAKEL A, MENTUCCIA D, CELI FS (2005): Peripheral metabolism of thyroid hormone and glucose homeostasis. Thyroid 15: 899-903
- CHOPRA IJ (1977): A study of extrathyroidal conversion of thyroxine (T₄) to 3,3',5triiodothyronine (T₃) *in vitro*. Endocrinology 101: 453-463
- CHOMCZYNSKI P, SACCHI N (1987): Single step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159
- CHRISTENSEN MJ, BURGENER KW (1992): Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver. J Nutr 122: 1620-1626
- CHRISTENSEN MJ, CAMMACK PM, WRAY CD (1995): Tissue specificity of selenoprotein gene expression in rats. J Nutr Biochem 6: 367-372
- CHRISTENSEN MJ, OLSEN CA, HANSEN DV, BALLIF BC (2000): Selenium regulates expression in rat liver genes for proteins involved in iron metabolism. Biol Trace Elem Res 74: 55-70
- CHOW CK, TAPPEL AL (1974): Response of glutathione peroxidase to dietary selenium in rats. J Nutr 104: 444-451
- CHU F-F, ESWORTHY RS, DOROSHOW JH, DOAN K, LIU X-F (1992): Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood 79: 3233-3238

- CHU F-F, DOROSHOW JH, ESWORTHY RS (1993): Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 268: 2571-2576
- CHU F-F, ESWORTHY RS, CHU PG, LONGMATE JA, HUYCKE MM, WILCZYNSKI S, DOROSHOW JH (2004): Bacteria-induced intestinal cancer in mice disrupted *Gpx1* and *Gpx2* genes. Cancer Res 64: 962-968
- COHEN G, HOCHSTEIN P (1963): Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrozytes. Biochemistry 2: 1420-1428
- COHEN HJ, CHOVANIEC ME, MISTRETTA D, BAKER SS (1985): Selenium repletion and glutathione peroxidase- differential effects on plasma and red blood cell enzyme activity. Am J Clin Nutr 41: 735-747
- CONDELL RA, TAPPEL AL (1982): Amino acid sequence around the active-site selenocysteine of rat liver glutathione peroxidase. Biochim Biophys Acta 709: 304-309
- CONRAD M, JAKUPOGLU C, MORENO SG, LIPPL S, BANJAC A, SCHNEIDER M, BECK H, HATZOPOULOS AK, JUST U, SINOWATZ F, SCHMAHL W, CHIEN KR, WURST W, BORNKAMM GW, BRIELMEIER M (2004): Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24: 9414-9423
- COPELAND PR, DRISCOLL DM (1999): Purification, Redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J Biol Chem 274: 25447-25454
- COPELAND PR, FLETCHER JE, CARLSON BA, HATFIELD DL, DRISCOLL DM (2000): A novel RNA binding protein, SBP2, is required for the translation of mammalian Selenoprotein mRNAs. EMBO J 19: 306-314
- COTGREAVE IA, MORGENSTERN R, ENGMAN L, AHOKAS J (1992): Characterisation and quantitation of a selenol intermediate in the reaction of ebselen with thiols. Chem-Biol Interact 84: 69-76
- CROTEAU W, DAVEY JC, GALTON VA, ST GERMAIN DL (1996): Cloning of the mammalian type II iodothyronine deiodinase. J Clin Invest 98: 405-417
- CURCIO C, BAQUI MMA, SALVATORE D, RIHN BH, MOHR S, HARNEY JW, LARSEN PR, BIANCO AC (2001): The human type 2 iodothyronine deiodinase is a selenoprotein highly expressed in a mesothelioma cell line. J Biol Chem 276: 30183-30187
- CURCIO-MORELLI C, GEREBEN B, ZAVACKI AM, KIM BW, HUANG S, HARNEY JW, LARSEN PR, BIANCO AC (2003a): In vivo dimerization of types 1, 2, and 3 iodothyronine selnodeiodinases. Endocr 144: 937-946
- CURCIO-MORELLI C, ZAVACKI AM, CHRISTOFOLLETE M, GEREBEN B, DE FREITAS BCG, HARNEY JW, LI Z, WU G, BIANCO AC (2003b): Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J Clin Invest 112: 189-196
- DANIELS LA (1996): Selenium metabolism and bioavailability. Biol Trace Elem Res 54: 185-199
- DE HAAN JB, BLADIER C, GRIFFITHS P, KELNER M, O'SHEA RD, SANG CHEUNG N, BRONSON RT, SILVESTRO MJ, WILD A, SHAN ZHENG S, BEART PM, HERTZOG PJ, KOLA I (1998): Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative

stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273: 22528-22536

- DEISSEROTH A, DOUNCE A (1970): Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Phys Rev 50: 319-375
- DE JESUS LA, HOFFMANN PR, MICHAUD T, SMALL-HOWARD A, STILLWELL RJ, MOROZOVA N, HARNEY JH, BERRY MJ (2006): Nuclear assembly of UGA decoding complexes on Selenoprotein mRNAs: a mechanism for eluding nonsense-mediated decay. Mol Cell Biol 26: 1795-1805
- DEMELASH A, KARLSSON J-O, NILSSON M, BJÖRKMAN U (2004): Selenium has a protective role in caspase-3-dependent apoptosis induced by H₂O₂ in primary cultured pig thyrocytes. Eur J Endocr 150: 841-849
- DE PALO D, KINLAW WB, ZHAO C, ENGELBERG-KULKA H, ST GERMAIN DL (1994): Effect of selenium deficiency on type I 5'-deiodinase. J Biol Chem 269: 16223-16228
- DHINGRA S, SINGH U, BANSAL MP (2004): Effect of selenium depletion and supplementation on the kinetics of type I 5'-iodothyronine deiodinase and T_3/T_4 in rats. Biol Trace Elem Res 97: 95-104
- DIAMOND AM, CHOI IS, CRAIN PF, HASHIZUME T, POMERANTZ SC, CRUZ R, STEER CJ, HILL KE, BURK RF, McCLOSKEY JA, HATFIELD DL (1993): Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA^{[ser]sec}. J Biol Chem 268: 14215-14223
- DICKINSON DA, MOELLERING DR, ILES KE, PATEL RP, LEVONEN A-L, WIGLEY A, DARLEY-USMAR VM, FORMAN HJ (2003): Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 384: 527-537
- DING F, GRABOWSKI PJ (1999): Identification of a protein component of a mammalian tRNA^{Sec} complex implicated in the decoding of UGA as selenocysteine. RNA 5: 1561-1569
- DIXON, WJ (1953): Processing data for outliers. Biometrics 9: 74-89
- DOTAN Y, LICHTENBERG D, PINCHUK I (2004): Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Progr Lipid Res 43: 200-227
- DUAN Y-J, KOMURA S, FISZER-SZAFARZ B, SZAFARZ D, YAGI K (1988): Purification and characterization of a novel monomeric glutathione peroxidase from rat liver. J Biol Chem 263: 19003-19008
- EDER K, KRALIK A, KIRCHGESSNER M (1995): Beeinflussung des Stoffwechsels der Schilddrüsenhormone bei defizitärer bis subtoxischer Selenversorgung. Z Ernährungswiss 34: 277-283
- EDMONDSON AJ, NORMAN BB, SUTHER D (1993): Survey of state veterinarians and state veterinary diagnostic laboratories for selenium deficiency and toxicosis in animals. JAVMA 202: 865-872
- EISENBERG S (2007): Relative stability of selenites and selenates in feed premixes as a function of water activity. J AOAC Int 90: 349-353
- EPP O, LADENSTEIN R, WENDEL A (1983): The refined structure of the selenoenzyme glutathione peroxidase at 0,2-nm resolution. Eur J Biochem 133: 51-69
- ESAKI N, NAKAMURA T, TANAKA H, SUZUKI T, MORINO Y, SODA K (1981): Enzymatic synthesis of selenocysteine in rat liver. Biochemistry 20: 4492-4496
- ESAKI N, NAKAMURA T, TANAKA H, SODA K (1982): Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. J Biol Chem 257: 4386-4391

- ESCOBAR-MORREALE HF, OBREGÓN MJ, HERNÁNDEZ A, ESCOBAR DEL REY F, MORREALE DE ESCOBAR G (1997): Regulation of iodothyronine deiodinase activity as studied in thyroidectomized rats infused with thyroxine or triiodothyronine. Endocrinology 138: 2559-2568
- ESWORTHY RS, SWIDEREK KM, HO Y-S, CHU F-F (1998): Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of the rodent intestine. Biochim Biophys Acta 1381: 213-226
- FAGEGALTIER D, HUBERT N, YAMADA K, MIZUTANI T, CARBON P, KROL A (2000): Characterisation of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 19: 4796-4805
- FANG J, ZHONG L, ZHAO R, HOLMGREN A (2005): Ebselen: a thioredoxin reductasedependent catalyst for α-tocopherol quinine reduction. Toxicol Appl Pharmacol 207: S103-S109
- FEKKES D, VAN OVERMEEREN-KAPTEIN E, DOCTER R, HENNEMANN G, VISSER TJ (1979): Location of rat liver iodothyronine deiodinating enzymes in the endoplasmic reticulum. Biochim Biophys Acta 587: 12-19
- FILIPOVSKA A, KELSO GF, BROWN AE, BEER SM, SMITH RAJ, MURPHY MP (2005): Synthesis and characterisation of a triphenylphosphonium-conjugated peroxidase mimetic. J Biol Chem 280: 24113-24126
- FINLEY JW (1998): The absorption and tissue distribution of selenium from highselenium broccoli are different from selenium from sodium selenate, sodium selenate, and selenomethionine as determined in selenium-deficient rats. J Agric Food Chem 46: 3702-3707
- FINLEY JW (2005): Selenium accumulation in plant foods. Nutr Rev 63: 196-202
- FISCHER H, DEREU N (1987): Mechanism of the catalytic reduction of hydroperoxides by ebselen: a selenium-77 NMR study. Bull Soc Chim Belg 96: 757-768
- FISCHER H, TERLINDEN R, LÖHR JP, RÖMER A (1988): A novel biologically active selenoorganic compound. VIII. Biotransformation of ebselen. Xenobiotica 18: 1347-1359
- FISCHER A (2002): Untersuchungen zum Einfluss von Selen und Vitamin E auf differentielle Genexpression, antioxidative Schutzmechanismen und Zellschädigungen bei der Ratte. Diss. oec. troph. JLU Gießen
- FISININ VI, PAPAZYAN TT, SURAI PF (2008): Selenium in poultry nutrition. In: SURAI PF, TAYLOR-PICKARD JA (Hrsg): Current advances in selenium research and applications. Wageningen Academic, Niederlande
- FLOHÉ L, EISELE B, WENDEL A (1971): Glutathion-Peroxidase. I. Reindarstellung und Molekulargewichtsbestimmungen. Hoppe-Seyler's Z Physiol Chem 352: 151-158
- FLOHÉ L, GÜNZLER WA, SCHOCK HH (1973): Glutathione peroxidase: a selenoenzyme. FEBS letters 32: 132-134
- FLORIAN S, WINGLER K, SCHMEHL K, JACOBASCH G, KREUZER OJ, MEYERHOF W, BRIGELIUS-FLOHÉ R (2001): Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic Res 35: 655-663
- FORSTROM JW, ZAKOWSKI JJ, TAPPEL AL (1978): Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17: 2639-2644

- FOX TE, ATHERTON C, DAINTY JR, LEWIS DJ, LANGFORD NJ, BAXTER MJ, CREWS HM, FAIRWEATHER-TAIT SJ (2005): Absorption of selenium from wheat, garlic, and cod intrinsically labeled with Se-77 and Se-82 stable isotopes. Int J Vitam Res 75: 179-186
- GANTHER HE (1966a): Dietary control of selenium volatilization in the rat. J Nutr 88: 55-60
- GANTHER HE (1966b): Enzymic synthesis of dimethyl selenide from sodium selenite in mouse liver extracts. Biochemistry 5: 1089-1098
- GANTHER HE (1968): Selenotrisulfides. Formation by the reaction of thiols with selenious acid. Biochemistry 7: 2898-2905
- GANTHER HE (1971): Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry 10: 4089-4098
- GANTHER HE (1984): Selenium metabolism and function in man and animals. In: BRATTER P, SCHRAMMEL P (eds): Trace element analystical chemistry in medicine and biology. Proceedings of the third international workshop 3: 3-24, Neuherberg, Deutschland, Walter de Gruyter, Berlin, NY
- GE K, YANG G (1993): The epidemiology of selenium deficiency in the etiological study of endemic diseases in China. Am J Clin Nutr Suppl 57: 259S-263S
- GELPI C, SONTHEIMER EJ, RODRIGUEZ-SANCHEZ JL (1992): Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci 89: 9739-9743
- GEREBEN B, GONCALVES C, HARNEY JW, LARSEN PR, BIANCO AC (2000): Selective proteolysis of human type 2 deiodinase: A novel ubiquitin-proteasomal mediated mechanism for regulation of hormon activation. Mol Endocrinol 14: 1697-1708
- GIRAY B, RIONDEL J, ARNAUD J, DUCROS V, FAVIER A, HINCAL F (2003): Iodine and/or selenium deficiency alters tissue distribution pattern of other trace elements in rats. Biol Trace Elem Res 95: 247-258
- GIULIVI C, HOCHSTEIN P, DAVIES KJA (1994): Hydrogen peroxide production by red blood cells. Free Rad Biol Med 16: 123-129
- GLADYSHEV VN, JEANG K-T, STADTMAN TC (1996): Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci USA 93: 6146-6151
- GODEAS C, TRAMER F, MICALI F, ROVERI A, MAIORINO M, NISII C, SANDRI G, PANFILI E (1996): Phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis nuclei is bound to chromatin. Biochem Mol Med 59: 118-124
- GOUVEIA CHA, CHRISTOFFOLETE MA, ZAITUNE CR, DORA JM, HARNEY JW, MAIA AL, BIANCO AC (2005): Type 2 iodothyronine selenodeiodinase is expressed throughout the mouse skeleton and in the MC3T3-E1 mouse osteoblastic cell line during differentiation. Endocrinology 146: 195-200
- GRIFFITH OW (1980): Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106: 207-212
- GROMER S, ARSCOTT LD, WILLIAMS CH, SCHIRMER RH, BECKER K (1998): Human placental thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem 273: 20096-20101

- GROSSMANN A, WENDEL A (1983): Non-reactivity of the selenoenzyme glutathione peroxidase with enzymatically hydroperoxidized phospholipids. Eur J Biochem 135: 549-552
- GUIMARAES MJ, PETERSON D, VICARI A, COCKS BG, COPELAND NG, GILBERT DJ, JENKINS NA, FERRICK DA, KASTELEIN RA, BAZAN JF, ZLOTNIK A (1996): Identification of a novel *selD* homolog from eukaryotes, bacteria, and archea: Is there an autoregulatrory mechanism in selenocysteine metabolism? Proc Natl Acad Sci 93: 15086-15091
- GÜNTHER R, HÖLLRIEGL V, VORMANN J, BUBECK J, CLASSEN HG (1994): Increased lipid peroxidation in rat tissues by magnesium deficiency and vitamin E depletion. Mg Bull 16: 38-42
- GÜNZLER WA, STEFFENS GJ, GROSSMANN S, KIM S-MA, ÖTTING F, WENDEL A, FLOHÉ L (1984): The Amino-acid sequence of bovine glutathione peroxidase. Hoppe-Seyler's Z Physiol Chem 365: 195-212
- GUTTERIDGE JMC, TICKNER TR (1978): The characterisation of thiobarbituric acid reactivity in human plasma and urine. Anal Biochem 91: 250-257
- HABIG WH, PABST MJ, JAKOBY WB (1974): Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139
- HABIG WH, JAKOBY WB (1981): Glutathione S-Transferases (rat and human). Meth Enzymol 77: 218-231
- HADLEY KB, SUNDE RA (2001): Selenium regulation of thioredoxin reductase activity and mRNA levels in rat liver. J Nutr Biochem 12: 693-702
- HAHN R, WENDEL A, FLOHÉ L (1978): The fate of extracellular glutathione in the rat. Biochim Biophys Acta 539: 324-337
- HAKKARAINEN J, TYÖPPÖNEN J, JÖNSSON L (1986): Vitamin E requirement of the growing rat during selenium deficiency with special reference to selenium dependent and selenium independent glutathione peroxidase. J Vet Med A 33: 247-258
- HAKKARAINEN J (1993): Bioavailability of selenium. Norw J Agric Sci 11 (Suppl): 21-35
- HALPERIN Y, SHAPIRO LE, SURKS MI (1994): Down-regulation of type II L-tyroxine, 5'monodeiodinase in cultured GC cells: different pathways of regulation by Ltriiodthyronine and 3,3',5'-triiodo-L-thyronine. Endocrinology 135: 1464-1469
- HARATAKE M, FUJIMOTO K, ONO M, NAKAYAMA M (2005): Selenium binding to human hemoglobin via selenotrisulfide. Biochim Biophys Acta 1723: 215-220
- HASSOUN BS, PALMER IS, DWIVEDI C (1995): Selenium detoxification by methylation. Res Comm Mol Pathol Pharmacol 90: 133-142
- HAWKES WC, WILHELMSEN EC, TAPPEL AL (1985): Abundance and tissue distribution of selenocysteine-containing proteins in the rat. J Inorg Biochem 23: 77-92
- HEMLER ME, COOK HW, LANDS WEM (1979): Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch Biochem Biophys 193: 340-345
- HENNEMANN G, DOCTER R, FRIESEMA ECH, DE JONG M, KRENNING EP, VISSER TJ (2001): Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22: 451-476
- HERRMANN JL (1977): The properties of a rat serum protein labelled by the injection of sodium selenate. Biochim Biophys Acta 500: 61-70

- HILL KE, BURK RF (1982): Effect of selenium deficiency and vitamin E deficiency on glutathione metabolism in isolated rat hepatocytes. J Biol Chem 257: 10668-10672
- HILL KE, BURK RF (1985): Effect of selenium deficiency on the disposition of plasma glutathione. Arch Biochem Biophys 240: 166-171
- HILL KE, BURK RF, LANE JM (1987): Effect of selenium depletion and repletion on plasma glutathione and glutathione-dependent enzymes in the rat. J Nutr 117: 99-104
- HILL KE, LYONS PR, BURK RF (1992): Differential regulation of rat liver Selenoprotein mRNAs in selenium deficiency. Biochem Biophys Res Com 185: 260-263
- HILL KE, LLOYD RS, BURK RF (1993): Conserved nucleotide sequences in the open reading frame and 3' untranslated region of Selenoprotein P mRNA. Proc Natl Acad Sci 90: 537-541
- HILL KE, MCCOLLUM GW, BOEGLIN ME, BURK RF (1997): Thioredoxin reductase activity is decreased by selenium deficiency. Biochem Biophys Res Commun 234: 293-295
- HILL HE, ZHOU J, MCMAHAN WJ, MOTLEY AK, ATKINS JF, GESTELAND RF, BURK RF (2003): Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278: 13640-13646
- HILL HE, ZHOU J, AUSTIN LM, MOTLEY AK, HAM A-JL, OLSON GE, ATKINS JF, GESTELAND RF, BURK RF (2007): The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintainance of whole body selenium. J Biol Chem 282: 10972-10980
- HIMENO S, TAKEKAWA A, IMURA N (1993): Species differences in hydroperoxidescavenging enzymes with special reference to glutathione peroxidase in guineapigs. Comp Biochem Physiol 104B: 27-31
- HINCHMAN CA, BALLATORI N (1990): Glutathione-degrading capacities of liver and kidney in different species. Biochem Pharmacol 40: 1131-1135
- Ho Y-S, MAGNENAT J-L, BRONSON RT, CAO J, GARGANO M, SUGAWARA M, FUNK CD (1997): Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272: 16644-16651
- HOFFMANN PR, HÖGE SC, PING-AN L, HOFFMANN FW, HASHIMOTO AC, BERRY MJ (2007): The selenoproteome exhibits widely varying, tissue-specific dependence on Selenoprotein P for selenium supply. Nucl Acids Res 35: 3963-3973
- HOLM S (1979): A simple sequentially rejective multiple test procedure. Scand J Statist 6: 65-70

HOLMGREN A (1985): Thioredoxin. Ann Rev Biochem 54: 237-271

- HOSHIDA S, AOKI K, NISHIDA M, YAMASHITA N, IGARASHI J, MASATSUGU H, KUZUYA T, TADA M (1997): Effects of preconditioning with ebselen on glutathione metabolism and stress protein expression. J Pharmacol Exp Ther 281: 1471-1475
- Howie AF, Walker SW, Åkesson B, Arthur JR, Beckett GJ (1995): Thyroidal extracellular gluathione peroxidase: a potential regulator of thyroid-hormone synthesis. Biochem J 308: 713-717
- HSIEH HS, GANTHER HE (1975): Acid-volatile selenium formation catalyzed by glutatione reductase. Biochemistry 14: 1632-1636

- HUANG SA, DORFMAN DM, GENEST DR, SALVATORE D, LARSEN PR (2003): Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. J Clin Endocr Metab 88: 1384-1388
- HUANG SA (2005): Physiology and pathophysiology of type 3 deiodinase in humans. Thyroid 15: 875-881
- HURT HD, CARY EE, VISEK WJ (1971): Growth, reproduction, and tissue concentrations of selenium-depleted rat. J Nutr 101: 761-766
- IGARASHI T, SATOH T, UENO K, KITAGAWA H (1983): Species difference in glutathione level and glutathione related enzyme activities in rats, mice, guinea pigs and hamsters. J Pharm Dyn 6: 941-949
- IMAI H, MASAYASU H, DEWAR D, GRAHAM DI, MACRAE IM (2001): Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 32: 2149-2154
- IMBACH A, STERNBERG J (1967): Metabolic studies with seleniated compounds. I-Kinetic studies with Se⁷⁵O₃ in rats. Int J Appl Rad Isot 18: 545-556
- IP C, BIRRINGER M, BLOCK E, KOTREBAI M, TYSON JF, UDEN PC, LISK DJ (2000): Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J Agric Food Chem 48: 2062-2070
- ITOH M, SUZUKI KT (1997): Effects of dose on the methylation of selenium to monomethylselenol and trimethylselenonium ion in rats. Arch Toxicol 71: 461-466
- JAKOBSSON P-J, MANCINI JA, FORD-HUTCHINSON AW (1996): Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C₄ synthase activity and significant sequence identity to 5lipoxygenase-activating protein and leukotriene C₄ synthase. J Biol Chem 271: 22203-22210
- JAKUPOGLU C, PRZEMECK GKH, SCHNEIDER M, MORENO SG, MAYR N, HATZOPOULOS AK, HRABÉ DE ANGELIS M, WURST W, BORNKAMM GW, BRIELMEIER M, CONRAD M (2005): Cytoplasmatic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25: 1980-1988
- JAMESON RR, DIAMOND AM (2004): A regulatory role for Sec tRNA^{[ser]sec} in Selenoprotein synthesis. RNA 10: 1142-1152
- JANGHORBANI M, LYNCH NE, MOOERS CS, TING BTG (1990): Comparison of the magnitude of the selenite-exchangeable metabolic pool and whole body endogenous selenium in adult rats. J Nutr 120: 190-199
- JOHANSSON LH, BORG LAH (1988): .A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174: 331-336
- JOHNSEN-SORIANO S, BOSCH-MORELL F, MIRANDA M, ASENSIO S, BARCIA JM, ROMÁ J, MONFORT P, FELIPO V, ROMERO FJ (2007): Ebselen prevents chronic alcoholinduced rat hippocampal stress and functional impairment. Alcohol Clin Exp Res 31: 486-492
- KAJANDER EO, HARVIMA RJ, ELORANTA TO, MARTIKAINEN H, KANTOLA M, KÄRENLAMPI SO, ÅKERMAN K (1991): Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells. Biol Trace Elem Res 28: 57-68
- KAMIGATA N, TAKATA M, MATSUYAMA H, KOBAYASHI M (1986): Novel ring opening reaction of 2-aryl-1,2-benziselenazol-3(2H)-one with thiols. Heterocycles 24: 3027-3030 (abstr.)

- KATO T, READ R, ROZGA J, BURK RF (1992): Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction. Am J Physiol 262: G854-858
- KAYANOKI Y, FUJII J, NAZRUL ISLAM K, SUZUKI K, KAWATA S, MATSUZAWA Y, TANIGUCHI N (1996): The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen species. J Biochem 119: 817-822
- KELLY MP, POWER RF (1995): Fractionation and identification of the major selenium containing compounds in selenized yeast. J Dairy Sci 78 (Suppl 1): 237
- KERNEBECK T, LOHSE AW, GRÖTZINGER J (2001): A bioformatical approach suggests the function of the autoimmune hepatitis target antigen soluble liver antigen/liver pancreas. Hepatology 34: 230-233
- KESTER MHA, MARTINEZ DE MENA R, JESUS OBREGON M, MARINKOVIC D, HOWATSON A, VISSER TJ, HUME R, MORREALE DE ESCOBAR G (2004): Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab 89: 3117-3128
- KETTERER B, MEYER DJ, CLARK AG (1988): Soluble glutathione transferase isoenzymes. In: SIES H, KETTERER B (Hrsg): Glutathione conjugations. Mechanisms and biological significance. London, Acad Press, S. 73-135
- KIL J, PIERCE C, TRAN H, GU R, LYNCH ED (2007): Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear Res 226: 44-51
- KIM IY, STADTMAN TC (1995): Selenophosphate synthetase: Detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaen *Methanococcus vannielii*. Proc Natl Acad Sci 92: 7710-7713
- KIM S-W, HARNEY JW, LARSEN PR (1998): Studies of the hormonal regulation of type 2 5'-iodothyronine deiodinase messenger ribonucleic acid in pituitary tumor cells using semiquantitative reverse transcription-polymerase chain reaction. Endocrinology 139: 4895-4905
- KIMBALL RE, REDDY K, PEIRCE TH, SCHWARTZ LW, MUSTAFA MG, CROSS CE (1976): Oxygen toxicity: augmentation of antioxidant defense mechanisms in rat lung. Am J Physiol 230: 1425-1431
- KINZY SA, CABAN K, COPELAND PR (2005): Characterization of the SECIS binding protein 2 complex required for the co-translational insertion of selenocysteine in mammals. Nucl Acids Res 33: 5172-5180
- KOBAYASHI Y, OGRA Y, ISHIWATA K, TAKAYAMA H, AIMI N, SUZUKI KT (2002): Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. PNAS 99: 15932-15936
- KÖHRLE J (1999): Local activiton and inactivation of thyroid hormones: the deiodinase family. Mol Cell Endocrinol 151: 103-119
- KÖHRLE J (2004): Schilddrüsenhormone: Metabolismus und Wirkungen. Z ärztl Fortbild Qual Gesundh 98 Suppl 5: 17-24
- KRYUKOV GV, CASTELLANO S, NOVOSELOV SV, LOBANOV AV, ZEHTAB O, GUIGÓ R, GLADYSHEV VN (2003): Characterization of mammalian selenoproteomes. Science 300: 1439-1443
- KUMAR S, BJÖRNSTEDT M, HOLMGREN A (1992): Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 207: 435-439

- LAMAS L, DORRIS ML, TAURIG A (1972): Evidence for a catalytic role for thyroid peroxidase in the conversion of diiodotyrosine to thyroxine. Endocrinology 90: 1417-1429
- LASH LH, JONES DP (1985): Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. Arch Biochem Biophys 240: 583-592
- LAUTERBURG BH, ADAMS JD, MITCHELL JR (1984): Hepatic glutathione homeostasis in the rat: efflux accounts for glutathione turnover. Hepatology 4: 586-590
- LAWRENCE RA, BURK RF (1976): Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958
- LAWRENCE RA, BURK RF (1978): Species, tissue and subcellular distribution of non Sedependent glutathione peroxidase activity. J Nutr 108: 211-215
- LAWRENCE RA, PARKHILL LK, BURK RF (1978): Hepatic cytosolic non seleniumdependent glutathione peroxidase activity: its nature and the effect of selenium deficiency. J Nutr 108: 981-987
- LEE YH, LAYMAN DK, BELL RR (1981a): Glutathione peroxidase activity in iron-deficient rats. J Nutr 111: 194-200
- LEE YH, LAYMAN DK, BELL RR, NORTON HW (1981b): Response of glutathione peroxidase to excess dietary iron in rats. J Nutr 111: 2195-2202
- LEE BJ, WORLAND PJ, DAVIS JN, STADTMAN TC, HATFIELD DL (1989): Identification of a selenocysteyl-tRNA^{Ser} in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem 264: 9724-9727
- LEI XG, EVENSON JK, THOMPSON KM, SUNDE RA (1995): Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125: 1438-1446
- LEONARD JL, ROSENBERG IN (1980): lodothyronine 5'-deiodinase from rat kidney: substrate specificity and the 5'-deiodination of reverse triiodothyronine. Endocrinology 107: 1376-1383
- LEONARD JL, EKENBARGER DM, FRANK SJ, FARWELL AP, KÖHRLE J (1991): Lokalisation of type I iodothyronin 5' deiodinase to the basolateral plasma memdrane of rat kidney and LLC-PK1 renal cortical cells. J Biol Chem 266: 11262-11269
- LEONARD JL, VISSER TJ, LEONARD DM (2001): Characterization of the subunit structure of the catalytically active type I iodothyronine deiodinase. J Biol Chem 276: 2600-2607
- LESOON A, MEHTA A, SINGH R, CHISOLM GM, DRISCOLL DM (1997): An RNA-binding protein recognizes a mammalian selenocysteine insertion sequence element required for cotranslational incorporation of selenocysteine. Mol Cell Biol 17: 1977-1985
- LESSER R, WEISS R (1924): Über selenhaltige aromatische Verbindungen. Chem Ber 57: 1077-1082
- LI N, REDDY PS, THYAGARAJU K, REDDY AP, HSU BL, SCHOLZ RW, TU CD, REDDY CC (1990): Elevation of rat liver mRNA for selenium-dependent glutathione peroxidase by selenium deficiency. J Biol Chem 265: 108-113
- LOBANOV AV, HATFIELD DL, GLADYSHEV VN (2008): Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol. 9: R62, doi: 10.1186/gb-2008-9-3-r62

- LOW SC, HARNEY JW, BERRY MJ (1995): Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem 270: 21659-21664
- Low SC, BERRY MJ (1996): Knowing when not to Stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci 21: 203-208
- LUTHMAN M, HOLMGREN A (1982): Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry 21: 6628-6633
- MA S, HILL KE, CAPRIOLI RM, BURK RF (2002): Mass spectrometric characterization of full-length rat Selenoprotein P and three isoforms shortened at the C terminus. J Biol Chem 277: 12749-12754
- MADDIPATI KR, MARNETT LJ (1987): Characterization of the major hydroperoxidereducing activity of human plasma. J Biol Chem 262: 17398-17403
- MAHAN DC (2000): Effect of organic and inorganic selenium sources and levels on sow colostrum and milk selenium content. J Anim Sci 78: 100-105
- MAIA AL, HARNEY JW, LARSEN PR (1995): Pituitary cells respond to thyroid hormone by discrete, gene-specific pathways. Endocrinology 136: 1488-1494
- MAIA AL, KIM BW, HUANG SA, HARNEY JW, LARSEN PR (2005): Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Invest 115: 2524-2533
- MAIORINO M, ROVERI A, COASSIN M, URSINI F (1988): Kinetic mechanism and substrate specifity of glutathione peroxidase activity of ebselen (PZ51). Biochem Pharmacol 37: 2267-2271
- MAIORINO M, ROVERI A, URSINI F (1992): Antioxidant effect of ebselen (PZ 51): peroxidase mimetic activity on phospholipid and cholesterol hydroperoxides vs free radical scavenger activity. Arch Biochem Biophys 295: 404-409
- MAIORINO M, AUMANN K-D, BRIGELIUS-FLOHÉ R, DORIA D, VAN DEN HEUVEL J, MCCARTHY J, ROVERI A, URSINI F, FLOHÉ L (1995): Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe-Seyler 376: 651-660
- MAIORINO M, SCAPIN M, URSINI F, BIASOLO M, BOSELLO V, FLOHÉ L (2003): Distinct promoters determine alternative transcription of *gpx-4* into phospholipid-hydroperoxid glutathione peroxidase variants. J Biol Chem 278: 34286-34290
- MANNERVIK B, ÅLIN P, GUTHENBERG C, JENSSON H, TAHIR MK, WARHOLM M, JÖRNVALL H (1985): Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA 82: 7202-7206
- MANSO C, WRÓBLEWSKI F (1958): Glutathione reductase activity in blood and body fluids. J Clin Invest 37: 214-218
- MARCHALUK E, PERSSON-MOSCHOS M, THORLING EB, AKESSON B (1995): Variation in selenoprotein P concentration in serum from different European regions. Eur J Clin Nutr 49: 42-48
- MASUKAWA T, NISHIMURA T, IWATA H (1984): Differential changes of glutathione *S*transferase activity by dietary selenium. Biochem Pharmacol 33: 2635-2639
- MATSUDA A, KIMURA M, ITOKAWA Y (1998): Influence of selenium deficiency on vital functions in rats. Biol Trace Elem Res 61: 287-301

- MATSUMOTO K, INAGAKI T, HIRUNUMA R, ENOMOTO S, ENDO K (2001): Contents and uptake rates of Mn, Fe, Co, Zn, and Se in Se-deficient rat liver cell fractions. Anal Sci 17: 587-591
- MAURI P, BENAZZI L, FLOHÉ L, MAIORINO M, PIETTA PG, PILAWA S, ROVERI A, URSINI F (2003): Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS. Biol Chem 384: 575-588
- MAY JM, MENDIRATTA S, HILL KE, BURK RF (1997): Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 272: 22607-22610
- McCAUGHAN KK, BROWN CM, DALPHIN ME, BERRY MJ, TATE WP (1995): Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci 92: 5431-5435
- McConnell KP, Portman OW (1952): Excretion of dimethyl selenide by the rat. J Biol Chem 195: 277-282
- MCCONNELL KP, CHO GJ (1965): Transmucosal movement of selenium. Am J Physiol 208: 1191-1195
- McConnell KP, CHO GJ (1967): Active transport of L-selenomethionine in the intestine. Am J Physiol 213: 150-156
- McCoy KEM, WESWIG PH (1969): Some selenium responses in the rat not related to vitamin E. J Nutr 98: 383-389
- McDowell LR (2003): Selenium. In: Minerals in animal and human nutrition. Elsevier, Amsterdam, NL, S. 397-448
- MCLEOD R, ELLIS EM, ARTHUR JR, NEAL GE, JUDAH DJ, MANSON MM, HAYES JD (1997): Protection conferred by selenium deficiency against aflatoxin B1 in the rat is associated with the hepatic expression of an aldo-keto reductase and a glutathione S-transferase subunit that metabolize the mycotoxin. Cancer Res 57: 4257-4266
- McSHEEHY S, YANG L, STURGEON R, MESTER Z (2005): Determination of methionine and selenomethionine in selenium-enriched yeast by species-specific isotope dilution with liquid chromatography-mass spectrometry detection. Anal Chem 77: 344-349
- MEINHOLD H, CAMPOS-BARROS A, WALZOG B, KÖHLER R, MÜLLER F, BEHNE D (1993): Effects of selenium and iodine deficiency on Type I, Type II, and Type III iodothyronine deiodinases and circulating hormone levels in the rat. Exp Clin Endocrinology 100: 87-93
- MEISTER A, TATE SS (1976): Glutathione and related γ-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem 45: 559-604
- MILLS GC (1957): Hemoglobin catabolim. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229: 189-197
- MILLS GC (1958): The purification and properties of glutathione peroxidase of erythrozytes. J Biol Chem 234: 502-506
- MIRANDA-VIZUETE A, DAMDIMOPOULOS AE, PEDRAJAS JR, GUSTAFSSON J-Å, SPYROU G (1999): Human mitochondrial thioredoxin reductase. cDNA cloning, expression and genomic organization. Eur J Biochem 261: 405-412
- MIZUTANI T, KURATA H, YAMADA K (1991): Study of mammalian selenocysteyl-tRNA synthesis with [⁷⁵Se]HSe⁻. FEBS Lett. 289: 59-63

- MIZUTANI T, KURATA H, YAMADA K, TOTSUKA T (1992): Some properties of murine selenocysteine synthase. Biochem J 284: 827-834
- MOAK MA, CHRISTENSEN MJ (2001): Promotion of lipid oxidation by selenate and selenate and indicators of lipid peroxidation in the rat. Biol Trace Elem Res 79: 257-269
- MORENO SG, LAUX G, BRIELMEIER M, BORNKAMM GW, CONRAD M (2003): Testis-specific expression of the nuclear form of phospholipid hydroperoxide gleutathione peroxidase (PHGPx). Biol Chem 384: 635-643
- MORENO-REYES R, EGRISE D, NÈVE J, PASTEELS J-L, SCHOUTENS A (2001): Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and ostepenia. J Bone Miner Res 16: 1556-1563
- MORGENSTERN R, COTGREAVE IA, ENGMAN L (1992): Determination of the relative contributions of the diselenide and selenol forms of ebselen in the mechanism of its glutathione peroxidise-like activity. Chem-Biol Interactions 84: 77-84
- MORI K, YOSHIDA K, FUKAZAWA H, KISO Y, SAYAMA N, KIKUCHI K, AIZAWA Y, ABE K (1995): Thyroid hormone regulates rat placental type III iodothyronine deiodinase activity by inducing kinetic changes different from those in same isoenzyme in rat brain. Endocr J 42: 753-760
- MORIARTY PM, REDDY CC, MAQUAT LE (1998): Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol Cell Biol 18: 2932-2939
- MOSIALOU E, EKSTRÖM G, ADANG AEP, MORGENSTERN R (1993): Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation. Biochem Pharmacol 45: 1645-1651
- MOTSENBOCKER MA, TAPPEL AL (1982): A selenocysteine-containing seleniumtransport protein in rat plasma. Biochim Biophys Acta 719: 147-153
- MÜLLER A, CADENAS E, GRAF P, SIES H (1984): A novel biologically active selenocompound-I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51. Biochem Pharmacol 33: 3235-3239
- MÜLLER A, GABRIEL H, SIES H, TERLINDEN R, FISCHER H, RÖMER A (1988): A novel biologically active selenoorganic compound-VII. Biotransformation of ebselen in perfused rat liver. Biochem Pharmacol 37: 1103-1109
- MÜLLER C, WINGLER K, BRIGELIUS-FLOHÉ R (2003): 3'UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stability and selenocysteine incorporation efficiency. Biol Chem 384: 11-18
- MÜLLER AS, KLOMANN SD, WOLF NM, SCHNEIDER S, SCHMIDT R, SPIELMANN J, STANGL G, EDER K, PALLAUF J (2008): Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver. J Nutr 138: 2328-2336
- MULLIS KB, FALOONA FA (1987): Specific synthesis of DNA in vitro via a polymerasecalalyzed chain reaction. Methods Enzymol 155: 335-350
- Мүккалел HM, Wasserman RH (1989): Uptake of ⁷⁵Se-Selenite by brush border membrane vesicles from chick duodenum stimulated by vitamin D. J Nutr 119: 242-247
- Муккалел HM, Wasserman RH (1990): Relationship of membrane-bound sulfhydryl groups to vitamin D-stimulated uptake of [⁷⁵Se]Selenite by the brush border

membrane vesicles from chick duodenum. J Nutr 120: 882-888

- NAKAYAMA A, HILL KE, AUSTIN LM, MOTLEY AK, BURK RF (2007): All regions of mouse brain are dependent on selenoprotein P for maintainance of selenium. J Nutr 137: 690-693
- NATIONAL RESEARCH COUNCIL (1995): Nutrient Requirements of Laboratory Animals. 4th revised edition. National Academy Press, Washington DC
- NAUMANN C, BASSLER C (1997): Methodenbuch Band III des Verbandes deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten: Die chemische Untersuchung von Futtermitteln, 4. Ergänzungslieferung und Online-Ergänzung 2001, VDLUFA-Verlag, Darmstadt
- NGUYEN TT, CHAPA F, DISTEFANO III JJ (1998): Direct measurement of the contributions of type I and type II 5'-deiodinases to whole body steady state 3,5,3'triiodothyronine production from thyroxine in the rat. Endocrinology 139: 4626-4633
- NIKAWA T, SCHUCH G, WAGNER G, SIES H (1994a): Interaction of ebselen with glutathione S-transferase and papain in vitro. Biochem Pharmacol 47: 1007-1012
- NIKAWA T, SCHUCH G, WAGNER G, SIES H (1994b): Interaction of albumin-bound ebselen with rat liver glutathione S-transferase and microsomal proteins. Biochem Mol Biol Int 32: 291-298
- NOMURA K, IMAI H, KOUMURA T, ARAI M, NAKAGAWA Y (1999): Mitochondrial phospholipide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem 274: 29294-29302
- NONN L, WILLIAMS RR, ERICKSON RP, POWIS G (2003): The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 23: 916-922
- OGAWA A, YOSHIMOTO T, KIKUCHI H, SANO K, SAITO I, YAMAGUCHI T, YASUHARA H (1999): Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis 9: 112-118
- OKUNO T, KUBOTA T, KURODA T, UENO H, NAKAMURO K (2001): Contribution of enzymic α, γ-elimination reaction in detoxification pathway of selenomethionine in mouse liver. Toxicol Appl Pharmacol 176: 18-23
- OKUNO T, MOTOBAYASHI S, UENO H, NAKAMURO K (2005): Purification and characterisation of mouse hepatic enzyme that converts selenomethionine to methylselenol by its α , γ -elimination. Biol Trace Elem Res 106: 77-93
- OLSEN GE, WINFREY VP, NAGDAS SK, HILL KE, BURK RF (2005): Seleoprotein P is required for mouse sperm development. Biol Reprod 73: 201-211
- OLSEN GE, WINFREY VP, NAGDAS SK, HILL KE, BURK RF (2007): Apolipoprotein E rezeptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282: 12290-12297
- OSHINO R, KAMEI K, NISHIOKA M, SHIN M (1990): Purification and characterization of glutathione S-transferases from guinea pig liver. J Biochem 107: 105-110
- OSTER O, SCHMIEDEL G, PRELLWITZ W (1988): The organ distribution of selenium in german adults. Biol Trace Elem Res 15: 23-45
- O'TOOLE D, RAISBECK MF (1995): Pathology of experimental induced chronic selenosis (alkali disease) in yearling cattle. J Vet Diagn Invest 7: 364-373

- PAGLIA DE, VALENTINE WN (1967): Studies on the quantitative and qualitative characterisation of erythrozyte glutathione peroxidase. J Lab Clin Med 70: 158-169
- PALMER IS, FISCHER DD, HALVERSON AW, OLSON OE (1969): Identification of a major selenium excretory product in rat urine. Biochim Biophys Acta 177: 336-342
- PALMER IS, GUNSALUS RP, HALVERSON AW, OLSON OE (1970): Trimethylselenonium ion as a general excretory product from selenium metabolism in the rat. Biochim Biophys Acta 208: 260-266
- PARK Y-C, KIM J-B, HEO Y, PARK D-C, LEE I-S, CHUNG HW, HAN J-H, CHUNG W-G, VENDELAND SC, WHANGER PD (2004): Metabolism of subtoxic level of selenite by double-perfused small intestine rats. Biol Trace Elem Res 98: 143-157
- PARNHAM MJ, KINDT S (1984): A novel biologically active seleno-organic compound-III. Effects of PZ51 (ebselen) on glutathione peroxidase and secretory activities of mouse macrophages. Biochem Pharmacol 33: 3247-3250
- PARNHAM M, SIES H (2000): Ebselen: prospective therapy for cerebral ischemia. Exp Opin Invest Drugs 9: 607-619
- PASS D, FREETH G (1993): The rat. ANZCCART Facts Sheet In: ANZCCART News 6: 1-4
- PEARSON JK, BOYD RJ (2007): Density functional theory study of the reaction mechanism and energetics of the reduction of hydrogen peroxide by ebselen, ebselen diselenide and ebselen selenol. J Phys Chem A 111: 3152-3160
- PEETERS RP, FRIESEMA ECH, DOCTER R, HENNEMANN G, VISSER TJ (2002): Effects of thyroid state on the expression of the hepatic thyroid hormone transporters in rats. Am J Physiol Endocrinol Metab 283: E1232-E1238
- PFEIFER H, CONRAD M, ROETHLEIN D, KYRIAKOPOULOS A, BRIELMEIER M, BORNKAMM GW, BEHNE D (2001): Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J 15: 1236-1238
- POILEY SM (1972): Growth tables for 66 strains and stocks of laboratory animals. Lab Anim Sci 22: 757-779
- PRYOR WA, STANLEY JP, BLAIR E (1976): Autoxidation of polyunsaturated fatty acids: II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides. Lipids 11: 370-379
- READ R, BELLEW T, YANG J-G, HILL KE, PALMER IS, BURK RF (1990): Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum. J Biol Chem 265: 17899-17905
- REDDY K, TAPPEL AL (1974): Effect of dietary selenium and autoxidized lipids on the glutathione peroxidase system of gastrointestinal tract and other tissues in the rat. J Nutr 104: 1069-1078
- REEVES PG, NIELSEN FH, FAHEY GC (1993): AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-51
- REFFETT JK, SPEARS JW, PRABOWO A (1986): Lipid peroxidation and glutathione peroxidase, catalase and superoxide dismutase activities in lambs fed high dietary iron. Nutr Rep Internat 34: 977-984
- RENKO K, WERNER M, RENNER-MÜLLER I, COOPER TG, YEUNG CH, HOLLENBACH B, SCHARPF M, KÖHRLE J, SCHOMBURG L, SCHWEIZER U (2008): Hepatic

selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in *Sepp*-knockout mice. Biochem J 409: 741-749

- RICHMAN PG, MEISTER A (1975): Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 250: 1422-1426
- ROTRUCK JT, POPE AL, GANTHER HE, SWANSON AB, HAFEMAN DG, HOEKSTRA WG (1973): Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588-590
- ROVERI A, CASASCO A, MAIORINO M, DALAN P, CALLIGARO A, URSINI F (1992): Phospholipid hydroperoxide glutathione peroxidase of rat testis. J Biol Chem 267: 6142-6146
- ROVERI A, MAIORINO M, NISII C, URSINI F (1994): Purification and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes. Biochim Biophys Acta 1208: 211-221
- ROVERI A, URSINI F, FLOHÉ L, MAIORINO M (2001): PHGPx and spermatogenesis. Biofactors 14: 213-222
- SAEDI MS, SMITH, CG, FRAMPTON J, CHAMBERS I, HARRISON PR, SUNDE RA (1988): Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem Biophys Res Comm 153: 855-861
- SAFAYHI H, TIEGS G, WENDEL A (1985): A novel biologically active seleno-organic compound-V. Inhibition by ebselen (PZ 51) of rat peritoneal neutrophil lipoxygenase. Biochem Pharmacol 34: 2691-2694
- SAFRAN M, FARWELL AP, LEONARD JL (1991): Evidence that type II deiodinase is not a Selenoprotein. J Biol Chem 266: 13477-80
- SARFAN M, LEONARD JL (1991): Comparison of the physicochemical properties of type I and type II iodothyronine 5'-deiodinase. J Biol Chem 266: 3233-3238
- SAIKI RK, SCHARF S, FALOONA F, MULLIS KB, HORN GT, ERLICH HA, ARNHEIM N (1985): Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnostics of sickle cell anemia. Science 230: 1350-1354
- SAITO Y, TAKAHASHI K (2002): Characterization of selenoprotein P as a selenium supply protein. Eur J Biochem 269: 5746-5751
- SAKURAI T, KANAYAMA M, SHIBATA T, ITOH K, KOBAYASHI A, YAMAMOTO M, UCHIDA K (2006): Ebselen, a seleno-organic antioxidant, as an electrophile. Chem Res Toxicol 19: 1196-1204
- SALBE AD, LEVANDER OA (1990): Effect of various dietary factors on the deposition of selenium in the hair and nails of rats. J Nutr 120: 200-206
- SALVATORE D, LOW SC, BERRY M, MAIA AL, HARNEY JW, CROTEAU W, ST GERMAIN DL, LARSEN PR (1995): Type 3 iodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. J Clin Invest 96: 2421-2430
- SALVATORE D, HARNEY JW, LARSEN PR (1999): Mutation of the Secys residue 266 in human typ 2 selenodeiodinase alters 75-Se incorporation without affecting its biochemical properties. Biochimie 81: 535-538
- SANTINI F, CHOPRA IJ, HURD RE, CHUA TECO GN (1992): A study of the characteristics of hepatic iodothyronine 5'-monodeiodinase in various vertebrate species. Endocrinology 131: 830-834

SANTINI F, CHIOVATO L, LAPI P, LUPETTI M, DOLFI A, BIANCHI F, BERNARDINI N, BENDINELLI G, MAMMOLI C, VITTI P, CHOPRA IJ, PINCHERA A (1995): The location and the regulation of the type I-iodothyronine 5'-monodeiodinase (type I-MD) in the rat thyroid: studies using a specific anti-type I-MD antibody. Mol Cell Endocrinol 110: 195-203

SCHEWE T (1995): Molecular actions of ebselen. Gen Pharmakoc 26: 1153-1169

- SCHNEIDER EG, DURHAM JC, SACKTOR B (1984): Sodium-dependent transport of inorganic sulfate by rabbit renal brush-border membrane vesicles. J Biol Chem 259: 14591-14599
- SCHOMBURG L, SCHWEIZER U, HOLTMANN B, FLOHÉ L., SENDTNER M, KÖHRLE J (2003): Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J 370: 397-402
- SCHRAUZER GN (1998): Selen. 3. Aufl., Barth Verlag, Heidelberg/Leipzig
- SCHWARZ K, FOLTZ CM (1957): Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79: 3292-3293
- SCHWEIZER U, STRECKFUß F, PELT P, CARLSON BA, HATFIELD DL, KÖHRLE J, SCHOMBURG L (2005): Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J 386: 221-226
- SENN E, SCHARRER E, WOLFFRAM S (1992): Effects of glutathione and of cysteine on intestinal absorption of selenium from selenite. Biol Trace Elem Res 33: 103-108
- SHENNAN DB, BOYD CAR (1986): Sulfate transport in human placental brush-border membrane vesicles: competitive inhibition by selenate. Biochim Biophys Acta 859: 122-124
- SIES H, GESTENECKER C, MENZEL H, FLOHÉ L (1972): Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett 27: 171-175
- SIES H (1993): Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic Biol Med 14: 313-323
- SILVA JE, LEONARD JL (1985): Regulation of rat cerebrocortical and adenohypophyseal type II 5'-deiodinase by thyroxine, triiodothyronine, and reverse triiodothyronine. Endocrinology 116: 1627-1635
- SMALL-HOWARD A, MOROZOVA N, STOYTCHEVA Z, FORRY EP, MANSELL JB, HARNEY JW, CARLSON BA, XU X, HATFIELD DL, BERRY MJ (2006): Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol Cell Biol 26: 2337-2346
- SNOKE JE, BLOCH K (1952): Formation and utilization of γ-glutamylcysteine in glutathione synthesis. J Biol Chem 199:407-414
- SNOKE JE, YANARI S, BLOCH K (1953): Synthesis of glutathione from γglutamylcysteine. J Biol Chem 201: 573-586
- SODA K, OIKAWA T, ESAKI N (1999): Vitamin B6 enzymes participating in selenium amino acid metabolism. Biofactors 10: 257-262
- SOERENSEN J, JAKUPOGLU C, BECK H, FÖRSTER H, SCHMIDT J, SCHMAHL W, SCHWEIZER U, CONRAD M, BRIELMEIER M (2008): The role of thioredoxin reductases in brain development. PloS ONE 3: e1813, doi: 10.1371/journal. pone.0001813
- SOUCI SW, FACHMANN W, KRAUT H (2008): Die Zusammensetzung der Lebensmittel. Nährwerttabellen. 7. Aufl., Medpharm Stuttgart

SPYROU G, ENMARK E, MIRANDA-VIZUETE A, GUSTAFSSON J-A (1997): Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 272: 2936-2941

STADTMAN TC (1996): Selenocysteine. Annu Rev Biochem 65:83-100

- STEINSAPIR J, BIANCO AC, BUETTNER C, HARNEY J, LARSEN PR (2000): Substrateinduced down-regulation of human type 2 deiodinase (hD2) is mediated through proteasomal degradation and requires interaction with the enzyme's active center. Endocrinology 141: 1127-1135
- STERNBERG J, IMBACH A (1967): Metabolic studies with seleniated compounds. II-Turnover studies with Se⁷⁵-Methionine in rats. Int J Appl Rad Isot 18: 557-568
- STOYTCHEVA Z, TUJEBAJEVA RM, HARNEY JW, BERRY MJ (2006): Efficient incorporation of multiple selenocycteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck. Mol Cell Biol 26: 9177-9184
- SUN Q-A, WUY, ZAPPACOSTA F, JEANG K-T, LEE BJ, HATFIELD DL, GLADYSHEV VN (1999): Redox regulation of cell signalling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 274: 24522-24530
- SUN Y, BUTLER JA, WHANGER PD (2001a): Glutathione peroxidase activity and selenoprotein W levels in different brain regions of selenium-depleted rats. J Nutr Biochem 12: 88-94
- SUN Q-A, KIRNARSKY L, SHERMAN S, GLADYSHEV VN (2001b): Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci 98: 3673-3678
- SUN Q-A, SU D, NOVOSELOV SV, CARLSON BA, HATFIELD DL, GLADYSHEV VN (2005): Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase. Biochemistry 44: 14528-14537
- SUNDE RA, GUTZKE GE, HOEKSTRA WG (1981): Effect of dietary methionine on the biopotency of selenate and selenomethionine in the rat. J Nutr 111: 76-86
- SUNDE RA, Evenson JK (1987): Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J Biol Chem 262: 933-937
- SUNDE RA (1994): Intracellular glutathione peroxidases-structure, regulation, and function. In: Selenium in biology and human health (Burk RF, ed). S. 47-77, Springer-Verlag, NY, USA
- SURAI PF, FISININ VI, PAPAZYAN TT (2008): Selenium deficiency in Europe: causes and consequences. In: SURAI PF, TAYLOR-PICKARD JA (Hrsg): Current advances in selenium research and applications. Wageningen Academic, Niederlande
- SUZUKI KT, SHIOBARA Y, ITOH M, OHMICHI M (1998): Selective uptake of selenite by red blood cells. Analyst 123: 63-67
- TAKAHASHI K, AVISSAR N, WHINTIN J, COHEN H (1987): Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch Biochem Biophys 256: 677-686
- TAKASAGO T, PETERS EE, GRAHAM DI, MASAYASU H, MACRAE IM (1997): Neuroprotective efficacy of ebselen, an antioxidant with antiinflammatory actions, in a rodent model of permanent middle cerebral artery occlusion. Br J Pharmacol 122: 1251-1256

- TAKEBE G, YARIMIZU J, SAITO Y, HAYASHI T, NAKAMURA H, YODOI J, NAGASAWA S, TAKAHASHI K (2002): A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and Selenoprotein P. J Biol Chem 277: 41254-41258
- TAMASI V, JFFRIES JM, ARTEEL GE, FALKNER KC (2004): Ebselen augments its peroxidase activity by inducing nrf-2-dependent transcription. Arch Biochem Biophys 431: 161-168
- TAMURA T, STADTMAN TC (1996): A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA 93: 1006-1011
- TAPPEL AL (1978): Glutathione peroxidase and hydroperoxides. Methods Enzymol 52: 506-513
- TAPPEL ME, CHAUDIERE J, TAPPEL AL (1982): Glutathione peroxidase activities of animal tissues. Comp Biochem Physiol 73B, 945-949
- THOMAS JP, GEIGER PG, MAIORINO M, URSINI F, GIROTTI AW (1990): Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta 1045: 252-260
- THOMPSON KM, HAIBACH H, EVENSON JK, SUNDE RA (1998): Liver selenium and testis phospholipid hydroperoxide glutathione peroxidase are associated with growth during selenium repletion of second-generation Se-deficient male rats. J Nutr 128: 1289-1295
- THOMSON CD, ROBINSON MF (1986): Urinary and fecal excretions and absorption of a large supplement of selenium: superiority of selenate over selenite. Am J Clin Nutr 44: 659-663
- THOMSON CD (1998): Selenium speciation in human body fluids. Analyst 123: 827-831
- TIETZE F (1969): Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal Biochem 27: 502-522
- TOYODA H, HIMENO S, IMURA N (1990): Regulation of glutathione peroxidase mRNA level by dietary selenium manipulation. Biochim Biophys Acta 1049: 213-215
- TOYODA N, BERRY MJ, HARNEY JW, LARSEN PR (1995): Topological analysis of the intergral membrane protein, type 1 iodothyronine deiodinase (D1). J Biol Chem 270: 12310-12318
- TU HM, LEGRADI G, BARTHA T, SALVATORE D, LECHAN RM, LARSEN PR (1999): Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology 140: 784-790
- TUJEBAJEVA RM, COPELAND PR, XU X, CARLSON BA, HARNEY JW, DRISCOLL DM, HATFIELD DL, BERRY MJ (2000): Decoding apparatus for eukaryontic selenocysteine insertion. EMBO R 1: 158-163
- ULLRICH V, WEBER P, MEISCH F, VON APPEN F (1996): Ebselen-binding equilibria between plasma and target tissues. Biochem Pharmacol 52: 15-19
- URSINI F, MAIORONO M, GREGOLIN C (1985): The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochem Biophys Acta 839: 62-70
- URSINI F, MAIORINO M, BRIGELIUS-FLOHÉ R, AUMANN KD, ROVERI A, SCHOMBURG D, FLOHÉ L (1995): Diversity og glutathione peroxidases. Meth Enzymol 252: 38-53

- URSINI F, HEIM S, KIESS M, MAIORINO M, ROVERI A, WISSING J, FLOHÉ L (1999): Dual function of the selenoprotein PHGPx during sperm maturation. Science 285: 1393-1396
- VADHANAVIKIT S, GANTHER HE (1990): Effects of selenium depletion and repletion on hepatic 5'deiodinase (type I), glutathione-S-transferase, and glutathione peroxidase in the rat. FASEB J 4: A371
- VADHANAVIKIT S, GANTHER HE (1993): Selenium requirements of rats for normal hepatic and thyroidal 5'-deiodinase (type I) activities. J Nutr 123: 1124-1128
- VAN BLADEREN PJ (2000): Glutathione conjugation as a bioactivation reaction. Chem-Biol Interact 129: 61-76
- VAN KAMPEN EJ, ZIJLSTRA WG (1961): Standardization of hemoglobinmetry. II. The hemoglobin-cyanide method. Clin Chim Acta 6: 538-544
- VATASSERY GT, SMITH WE (1987): Determination of α-tocopherolquinone (Vitamin E quinone) in humane serum, platelets, and red cell membrane samples. Anal Biochem 167: 411-417
- VDLUFA -- Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (1976, mit Ergänzungslieferungen bis 2006): Methodenhandbuch. Band III. VDLUFA-Verlag, Darmstadt
- VENDELAND SC, BUTLER JA, WHANGER PD (1992a): Intestinal absorption of selenite, selenate, and selenomethionine in the rat. J Nutr Biochem 3: 359-365
- VENDELAND SC, DEAGEN JT, WHANGER PD (1992b): Uptake of selenotrisulfides of glutathione and cysteine by brush border membranes from rat intestines. J Inorg Biochem 47: 131-140
- VENDELAND SC, DEAGEN JT, BUTLER JA, WHANGER PD (1994): Uptake of selenite, selenomethionine and selenate by brush border membrane vesicles isolated from rat small intestine. BioMetals 7: 305-312
- VISSER TJ, VAN DER DOES-TOBE I, DOCTER R, HENNEMANN G (1975): Conversion of thyroxine into tri-iodothyronine by rat liver homogenate. Biochem J 150: 489-493
- VISSER TJ, VAN DER DOES-TOBE I, DOCTER R, HENNEMANN G (1976): Subcellular localization of a rat liver enzyme converting thyroxine into tri-iodothyronine and possible involvement of essential thiol groups. Biochem J 157: 479-482
- VISSER TJ, LEONARD JL, KAPLAN MM, LARSEN PR (1982): Kinetic evidence suggesting two mechanisms for iodothyronine 5'-deiodination in rat cerebral cortex. Proc Natl Acad Sci USA 79: 5080-5084
- VISSER TJ, KAPLAN MM, LEONARD JL, LARSEN PR (1983): Evidence for two pathways of iodothyronine 5'-deiodination in rat pituitary that differ in kinetics, propylthiouracil sensitivity, and response to hypothyroidism. J Clin Invest 71: 992-1002
- VIVEK SAGAR GD, GEREBEN B, CALLEBAUT I, MORNON J-P, ZEÖLD A, DA SILVA WS, LUONGO C, DENTICE M, TENTE SM, FREITAS BCG, HARNEY JW, ZAVACKI AM, BIANCO AC (2007): Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol Cell Biol 27: 4774-4783
- WAGNER G, SCHUCH G, AKERBOOM TPM, SIES H (1994): Transport of ebselen in plasma and its transfer to binding sites in the hepatocyte. Biochem Pharmacol 48: 1137-1144

- WAHLLÄNDER A, SIES H (1979): Glutathione S-conjugate formation from 1-chloro-2,4dinitrobenzene and biliary S-conjugate excretion in the perfused rat liver. Eur J Biochem 96: 441-446
- WALCZAK R, CARBON P, KROL A (1998): An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation. RNA 4: 74-84
- WASCHULEWSKI IH, SUNDE RA (1988): Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. J Nutr 118: 367-374
- WEINANDER R, EKSTRÖM L, RAZA H, LUNDQVIST G, LINDKVIST B, SUN T-H, HEBERT H, SCHMIDT-KREY I, MORGENSTERN R (1996): Microsomal glutathione transferase dimensions. In: Glutathione S-transferases. Structure, function and clinical implications. Hrsg: VERMEULEN NPE, MULDER GJ, NIEUWENHUYSE H, PETERS WHM, VAN BLADEREN PJ. Taylor/Francis, London
- WEISS SL, EVENSON JK, THOMPSON KM, SUNDE RA (1997): Dietary selenium regulation of glutathione peroxidase mRNA and other selenium-dependent parameters in male rats. Nutr Biochem 8: 85-91
- WEISS SL, SUNDE RA (1998): Cis-acting elements are required for selenium regulation of glutathione peroxidase-1 mRNA levels. RNA 4: 816-827
- WEISS SACHDEV S, SUNDE RA (2001): Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem J 357: 851-858
- WEITZEL F, URSINI F, WENDEL A (1990): Phospholipid hydroperoxide glutathione peroxidase in various mouse organs during selenium deficiency and repletion. Biochim Biophys Acta 1036: 88-94
- WEITZEL F, WENDEL A (1993): Selenoenzymes regulate the activity of leukocyte 5lipoxygenase via the peroxide tone. J Biol Chem 268: 6288-6292
- WEN YH, DAVIS RL, SHI B, CHEN J-J, CHEN L, BOYLAN M, SPALLHOLZ JE (1997): Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine, and sodium selenite assessed in selenium-deficient rats. Biol Trace Elem Res 58: 43-53
- WENDEL A, FAUSEL M, SAFAYHI H, TIEGS G, OTTER R (1984): A novel biologically active seleno-organic compound-II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem Pharmacol 33: 3241-3245
- WHANGER PD, WESWIG PH (1975): Effects of selenium, chromium and antioxidants on growth, eye cataracts, plasma cholesterol and blood glucose in selenium-deficient, vitamin E-supplemented rats. Nutr Rep Int 12: 345-?
- WHANGER PD, BUTLER JA (1988): Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats. J Nutr 118: 846-852
- WHANGER P, VENDELAND S, PARK Y-C, XIA Y (1996): Metabolism of subtoxic levels of selenium in animals and humans. Ann Clin Lab Sci 26: 99-113
- WHANGER PD, PEDERSEN ND, HATFIELD J, WESWIG PH (1976): Absorption of selenite and selenomethionine from ligated digestive tract segments in rats. Proc Soc Exp Biol Med 153: 295-297
- WHEELER CR, SALZMAN JA, ELSAYED NM, OMAYE ST, KORTE DW Jr (1990): Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem. 184: 193-199

- WINGLER K, BÖCHER M, FLOHÉ L, KOLLMUS H, BRIGELIUS-FLOHÉ R (1999): mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur J Biochem 259: 149-157
- WINGLER K, MÜLLER C, BRIGELIUS-FLOHÉ R (2001): Stability of gastrointestinal glutathione peroxidase mRNA in selenium deficiency depends on its 3'UTR. Biofactors 14: 43-50
- WOLFFRAM S, ARDÜSER F, SCHARRER E (1985): In vivo intestinal absorption of selenate and selenite by rats. J Nutr 115: 454-459
- WOLFFRAM S, ANLIKER E, SCHARRER E (1986): Uptake of selenate and selenite by isolated intestinal brush border membrane vesicles from pig, sheep, and rat. Biol Trace Elem Res 10: 293-306
- WOLFFRAM S, STINGELIN Y, SCHARRER E (1987): Inhibition of sulphate and selenate transport in sheep jejunum by oxalate and other dicarboxylate anions. J Vet Med A 34: 679-683
- WOLFFRAM S, GRENACHER B, SCHARRER E (1988): Transport of selenate and sulphate across the intestinal brush-border membrane of pig jejunum by two common mechanisms. Quart J Exp Physiol 73: 103-111
- WOLFFRAM S, BERGER B, GRENACHER B, SCHARRER E (1989a): Transport of selenoamino acids and their sulfur analogs across the intestinal brush border membrane of pigs. J Nutr 119: 706-712
- WOLFFRAM S, BERGER B, SCHARRER E (1989b): Transport of selenomethionine and methionine across the intestinal brush border membrane. In: Selenium in biology and medicine, Proceedings of the 4th international symposium on selenium in biology and medicine, WENDEL A (ed.), S. 109-113, Springer Verlag, Berlin, Heidelberg, New York
- WOLFFRAM S (1995): Mechanismen der intestinalen Absorption von Selen. Med Klin 90 (Suppl 1): 1-5
- WOLFFRAM S (2000): Der Stoffwechsel ernährungsphysiologisch relevanter anorganischer und organischer Selenverbindungen. Übers Tierernährung 28: 65-94
- WOLFFRAM S (2005): Spurenelemente. In: Allgemeine und spezielle Pharmakologie und Toxikologie. Aktories K, Förstermann U, Hofmann F, Starke K (Hrsg.), 9. Aufl., S. 765-771, Urban/Fischer, München, Jena
- WU SH, OLDFIELD JE, WHANGER PD, WESWIG PH (1973): Effect of selenium, vitamin E, and antioxidants on testicular function in rats. Biol Reprod 8: 625-629
- WU ASH, OLDFIELD JE, SHULL LR, CHEEKE PR (1979): Specific effect of selenium deficiency on rat sperm. Biol Reprod 20: 793-798
- WU Q, HUANG K, XU H (2003): Effects of long-term selenium deficiency on glutathione peroxidase and thioredoxin reductase activities and expressions in rat aorta. J Inorg Biochem 94: 301-306
- WU Q, HUANG K (2006): Effect of selenium compounds on the damage induced by oxysterol on rat arterial walls. Biol Trace Elem Res 112: 273-283
- WÜRMLI R, SCHARRER E, WOLFFRAM S, STINGELIN Y (1987): Stimulierung der intestinalen Absorption von Selen durch Cystein. J Anim Phys Anim Nutr 58: 38-39

- WÜRMLI R, WOLFFRAM S, STINGELIN Y, SCHARRER E (1989): Stimulation of mucosal uptake of selenium from selenite by L-cysteine in sheep small intestine. Biol Trace Elem Res 20: 75-85
- XIA Y, HILL KE, BYRNE DW, XU J, BURK RF (2005): Effectiveness of selenium supplements in a low-selenium area of China. Am J Clin Nutr 81: 829-834
- XU X-M, MIX H, CARLSON BA, GRABOWSKI PJ, GLADYSHEV VN, BERRY MJ, HATFIELD DL (2005): Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the seleoprotein synthesis machinery. J Biol Chem 280: 41568-41575
- YAMAGUCHI T, SANO K, TAKAKURA K, SAITO I, SHINOHARA Y, ASANO T, YASUHARA H (1998): Ebselen in acute ischemic stroke. A placebo-controlled, double-blind clinical trial. Stroke 29: 12-17
- YAMAMOTO K, VÖLKL A, HASHIMOTO T, FAHIMI D (1988): Catalase in guinea pig hepatocytes is localized in cytoplasm, nuclear matrix and peroxisomes. Eur J Cell Biol 46: 129-135
- YAMAMOTO Y, NAGATA Y, NIKI E, WATANABE K, YOSHIMURA S (1993): Plasma glutathione peroxidase reduces phosphatidylcholine hydroperoxide. Biochem Biophys Res Comm 193: 133-138
- YANG G, WANG S, ZHOU R, SUN S (1983): Endemic selenium intoxication of humans in China. Am J Clin Nutr 37: 872-881
- YANG J-G, HILL KE, BURK RF (1989): Dietary selenium intake controls rat plasma selenoprotein P concentration. J Nutr 119: 1010-1012
- YANG Y, SHARMA R, ZIMNIAK P, AWASTHI YC (2002): Role of α class glutathione *S*transferases as antioxidant enzymes in rodent tissues. Toxicol Appl Pharmacol 182: 105-115
- YOSHIMURA S, TAKEKOSHI S, WATANABE K, FUJII-KURIYAMA Y (1988): Determination of nucleotide sequence of cDNA coding rat glutathione peroxidase and diminished expression of the mRNA in selenium deficient rat liver. Biochem Biophys Res Comm 154: 1034-1028
- YOSHIMURA S, WATANABE K, SUEMIZU H, ONOZAWA T, MIZOGUCHI J, TSUDA K, HATTA H, MORIUCHI T (1991): Tissue specific expression of the plasma glutathione peroxidase gene in rat kidney. J Biochem 109: 918-923
- YUAN C, PENTTILÄ KE, ALFTHAN G, LINDROS KO (1991): Role of selenium-dependent glutathione peroxidase in protecting against *t*-butyl hydroperoxide-induced damage in hepatocytes. Pharmacol Toxicol 68: 196-200
- YUAN J, PALIOURA S, SALAZAR JC, SU D, O'DONOGHUE P, HOHN MJ, CARDOSO AM, WHITMAN WB, SÖLL D (2006): RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archea. Proc Natl Acad Sci 103: 18923-18927
- ZHANG L, MAIORINO M, ROVERI A, URSINI F (1989): Phospholipid hydroperoxide glutathione peroxidase: specific activity in tissues of rats of different age and comparison with other glutathione peroxidases. Biochim Biophys Acta 1006: 140-143
- ZHAO R, HOLMGREN A (2002): A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J Biol Chem 277: 39456-39462
- ZHAO R, MASAYASU H, HOLMGREN A (2002): Ebselen: A substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. PNAS 99: 8579-8584
- ZHAO R, HOLMGREN A (2004): Ebselen is a dehydroascorbate reductase mimic, facilitating the recycling of ascorbate via mammalian thioredoxin systems. Antiox Red Sign 6: 99-104
- ZHONG L, ARNÉR ESJ, LJUNG J, ÅSLUND F, HOLMGREN A (1998): Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem 273: 8581-8591
- ZHU Z, KIMURA M, ITOKAWA Y (1993): Mineral status in selenium-deficient rats compared to selenium-sufficient rats fed vitamin-free casein-based or torula yeast-based diet. Biol Trace Elem Res 37: 219-230
- ZI-JIAN W, JIE Z. AN P (1992): Metabolic differences and similarities of selenium in blood and brain of the rat following the administration of different selenium compounds. Biol Trace Elem Res 33: 135-143

9 Anhang

			Gewichtsentwicklung [g/Woche]									Gesamt [g]	[g/Tag]
Gruppe	Tier	1	2	3	4	5	6	7	8	9	10	1-10	
	1	19,1	27,7	35,6	29,2	25,2	22,2	18,2	9,70	13,9	15,3	216	3,09
	2	24,0	35,0	42,7	33,5	27,1	30,3	10,7	14,2	15,6	12,1	245	3,50
	3	23,4	31,7	37,9	35,2	34,3	20,4	18,8	13,9	11,0	10,1	237	3,38
	4	25,7	30,8	40,8	34,4	33,9	29,0	26,0	21,0	8,10	15,5	265	3,79
	5	23,6	26,7	32,3	30,5	33,7	27,4	21,9	16,7	17,8	20,8	251	3,59
	6 7	23,8	28,7	41,2	37,0	34,6	28,0	32,7	16,0	7,50	14,3	264	3,77
. 50	/ 0	20,2	16,0	33,9 42.2	20,0	28,9	22,9	20,3	6,10	8,90	0,70	190	2,71
+Je Docitiv	0	19,5	30,4 42.0	42,3	32,0	30,7	21,3	20,2 20,6	9,00	7.50	10,9	240	3,52
POSILIV-	10	27,5	42,9 29.4	49,Z	41,9	30,9	აა,ა ევე	30,0 22.1	22.0	7,50	11,1	299	4,27
KUITUUIE	10	23,0	20,4	20,1	30,1	20.0	20,2	23, I 47 5	20,9	16.9	4,00	209	3,42
	12	21,0	32,1	39,0	30,0	38,9	30,Z	47,5	2,00	0.30	5 80	200	4,00
	12	20,9	22,0	18 8	<i>JJJ</i> 1	30,3 ∕13.2	38.5	23,1	17,9	9,30	3,00	230	3,00 1 1 2
	14	25,0	20,5	40,0 35 3	30.1	45.8	20,5 20,4	33.4	25.4	22.8	135	203	4,12
	15	21.3	17.6	46 Q	44 3		23,4 42.4	27.2	12 Q	16 1	20.3	200	4 30
	16	23.4	40.6	48.1	43 3	51.6		37.7	26.0	20.0	25.4	342	4,30
	17	23.3	36.9	44 8	38.7	39.0	17.3	34.6	23.9	14.2	17.9	291	4 15
	18	19.0	28.3	21.9	34.0	33.0	18.2	33.2	20.7	19.1	17.9	245	3.50
	м	22.8	20.7	38.0	36.0	37.2	28.3	27.0	16 /	13.7	13.0	264	3 77
	SD	22,0 2,48	29,1 7,27	30,9 7,87	30,0 5,34	37,2 7,38	20,3 6,94	27,9 8,48	6,72	4,78	6,48	204 35,4	3,77 0,51
	19	29,3	36,7	42,7	34,2	32,2	30,9	23,3	14,1	16,7	18,2	278	3,98
	20	24,5	37,3	44,2	39,6	43,6	29,9	26,0	16,2	12,3	7,10	281	4,01
	21	25,6	33,1	42,0	38,6	33,2	26,8	26,3	12,3	17,5	10,4	266	3,80
	22	18,2	30,9	37,4	31,9	28,6	35,5	26,2	13,2	17,6	17,3	257	3,67
	23	21,7	31,8	41,5	32,6	36,6	17,3	27,0	12,2	-1,2	11,4	231	3,30
	24	25,3	36,0	46,0	39,9	42,4	27,5	23,5	27,6	11,5	10,4	290	4,14
-	25	24,8	36,3	44,9	39,4	35,5	27,8	23,9	20,5	7,10	9,90	270	3,86
-Se	26	19,2	28,8	39,0	29,1	37,5	27,3	24,2	17,6	10,7	14,6	248	3,54
Negativ-	27	16,6	31,5	37,0	25,7	30,9	28,0	30,5	22,2	13,8	17,2	253	3,62
kontrolle	28	19,3	31,4	27,9	32,4	33,0	29,1	33,6	15,8	18,7	15,6	257	3,67
	29	20,7	34,7	34,1	44,9	44,5	42,4	37,9	23,3	9,4	14,9	307	4,38
	30	21,0	38,1	35,1	43,5	37,8	40,8	30,8	19,2	10,0	7,20	284	4,05
	31	30,2	43,5	46,1	40,0	40,0	37,0	33,5	16,9	16,8	17,9	322	4,60
	32	27,0	39,8	41,5	36,2	31,4	27,7	23,8	10,5	19,2	17,0	274	3,92
	33	25,6	38,2	46,3	30,1 20.4	24,2	35,1 05 0	∠8,8 00.7	18,1	10,5	14,5	2//	3,96
	34	22,4	32,3	39,5	30,1	36,8	25,2	23,7	14,6	8,4	11,7	245	3,50
	35 26	∠1,0 22.4	∠4,ŏ 22.4	30,5 25 5	20,0 27.6	31,1 22 C	∠4,5 21 ⊑	21,2 21 E	22,5 12 5	0,/	10,7	220	3,23
	30	∠3,1	JJ,4	JJ,5	31,0	JZ,0	31,5	∠1,5	12,5	9,4	14,0	202	3,00
	M SD	23,1 3,73	34,4 4,39	39,8 5,00	35,4 5,57	35,1 5,33	30,2 6,09	27,0 4,63	17,2 4,64	12,0 5,25	13,4 3,59	268 24,7	3,82 0,35

Anhangstabelle 1: Wöchentliche Lebendmassezunahme der Kontrollgruppen (+Se, -Se) während der Depletionsphase

			Gewichtsentwicklung [g/Woche]									Gesamt [g]	[g/Tag]
Gruppe	Tier	1	2	3	4	5	6	7	8	9	10	1-10	
	37	23,2	35,0	44,3	35,6	31,1	27,4	30,1	18,0	9,30	10,4	265	3,78
	38	22,0	37,6	37,9	39,1	40,3	34,2	27,8	19,9	15,4	11,1	285	4,08
	39	23,9	32,3	38,8	37,0	31,6	27,7	24,3	15,7	9,70	15,2	256	3,66
	40	26,4	36,7	39,1	35,6	32,1	25,1	26,0	19,8	19,7	17,7	278	3,97
	41	17,9	36,3	44,5	35,2	34,2	34,4	24,2	23,5	12,8	15,8	279	3,98
	42	17,4	33,2	31,7	29,8	36,1	26,2	27,9	19,5	4,70	3,00	230	3,28
2	43	29,4	38,8	43,2	37,0	37,9	31,1	20,7	12,3	5,70	7,60	264	3,77
SeO ₄ ²⁻	44	24,2	32,9	38,1	42,4	44,4	26,1	31,2	25,5	19,5	23,8	308	4,40
Selenat	45	26,6	32,1	43,2	36,9	34,1	25,1	30,6	15,0	9,60	19,3	273	3,89
	46	21,0	34,5	39,4	35,2	60,1	30,4	31,6	13,2	4,10	16,5	286	4,09
	47	19,5	31,8	33,4	34,3	71,7	33,7	21,5	18,1	3,50	23,5	291	4,16
	48	20,6	35,9	40,3	30,1	35,1	36,1	25,6	11,3	16,7	15,0	267	3,81
	49	19,8	40,2	41,3	30,6	46,0	28,3	26,8	14,6	5,20	11,0	264	3,77
	50	25,9	40,3	46,9	27,8	54,4	22,2	32,2	17,3	14,6	1,20	283	4,04
	51	21,7	37,2	42,8	27,8	50,7	28,9	34,0	21,4	5,10	10,4	280	4,00
	52	18,7	30,2	35,5	29,2	40,4	24,2	22,7	15,1	9,90	14,9	241	3,44
	53	14,0	26,6	35,9	32,5	29,0	26,7	22,7	17,9	9,80	5,80	221	3,16
	54	12,5	25,8	36,2	34,9	39,9	25,3	23,5	14,1	13,0	12,8	238	3,40
	55	26,3	37,5	43,6	35,9	36,2	32,4	27,9	12,3	18,2	14,5	285	4,07
	56	19,6	28,4	34,2	25,1	27,3	21,5	21,7	8,80	4,50	10,3	201	2,88
	57	26,9	32,9	42,5	37,6	32,8	36,1	29,6	21,6	18,3	17,1	295	4,22
	58	21,7	29,0	34,3	29,7	34,0	22,7	28,2	18,6	10,8	17,4	246	3,52
	59	18,3	32,9	45,8	37,4	40,8	27,1	32,5	25,8	17,3	16,4	294	4,20
	60	30,7	43,3	50,6	38,5	40,7	28,0	33,1	14,4	10,8	14,8	305	4,36
	61	25,1	39,3	44,4	40,7	38,2	27,5	32,9	18,8	17,8	21,1	306	4,37
	62	22,5	31,7	33,2	34,3	34,4	29,7	21,6	20,4	9,60	13,2	251	3,58
	63	28,2	40,3	46,7	37,6	42,2	25,7	25,2	19,0	13,6	12,7	291	4,16
	64	23,3	38,1	40,5	45,0	41,2	32,2	36,7	21,1	14,1	26,7	319	4,56
	65	24,7	31,3	42,2	39,5	43,1	30,6	26,6	19,7	12,3	8,50	279	3,98
	66	19,0	34,5	40,2	43,9	42,1	32,4	34,9	28,4	20,5	21,5	317	4,53
	67	22,0	43,0	44,5	36,8	35,9	27,1	24,7	17,2	11,5	14,2	277	3,96
	68	21,3	40,1	42,3	41,5	39,2	33,7	30,8	16,9	8,90	9,80	285	4,06
	69	17,9	30,7	32,6	29,1	30,4	18,5	23,0	18,7	12,8	9,30	223	3,19
	70	21,4	35,6	45,7	35,6	39,5	33,0	27,8	20,7	7,90	15,9	283	4,04
	71	26,4	35,7	45,8	40,3	39,5	29,5	29,0	18,4	8,10	9,00	282	4,02
	72	21,7	29,6	40,6	36,1	35,8	27,4	24,9	12,4	9,60	16,7	255	3,64
	M SD	22,3 4,06	34,8 4,41	40,6 4,69	35,4 4,76	39,5 8,73	28,6 4,22	27,6 4,26	17,9 4,25	11,5 4,87	14,0 5,59	272 27,6	3,89 0,39

Anhangstabelle 2: Wöchentliche Lebendmassezunahme der Selenatgruppe $(SeO_4^{2^-})$ während der Depletionsphase

			Gewichtsentwicklung [g/Woche]										[g/Tag]
Gruppe	Tier	1	2	3	4	5	6	7	8	9	10	1-10	
	73	27,6	34,1	47,1	45,8	36,0	30,5	24,1	16,2	5,90	12,5	280	4,00
	74	26,6	34,7	40,8	40,8	35,8	26,6	27,5	21,0	3,40	11,6	269	3,84
	75	23,1	33,0	39,4	31,2	32,1	19,7	24,7	20,5	12,7	15,4	252	3,60
	76	23,4	36,0	36,6	26,1	32,0	29,2	30,4	20,6	18,3	21,5	274	3,92
	77	20,6	25,4	47,3	14,9	24,3	34,0	23,1	18,7	4,60	10,1	223	3,19
	78	22,8	36,0	24,8	37,8	39,6	31,0	26,0	19,9	10,6	8,50	257	3,67
	79	25,0	42,8	48,8	38,6	44,1	33,8	32,7	18,3	13,4	22,6	320	4,57
SeO ₃ ²⁻	80	26,9	34,5	44,4	36,2	36,6	29,6	29,0	12,8	8,80	14,8	274	3,91
Selenit	81	24,5	38,3	42,1	37,1	35,2	33,3	28,0	17,1	6,00	9,10	271	3,87
	82	25,9	36,0	42,4	37,7	34,0	23,5	27,6	9,60	8,10	12,6	257	3,68
	83	22,4	30,3	40,5	31,5	35,6	29,5	21,9	23,8	5,90	6,10	248	3,54
	84	19,9	38,6	46,3	46,2	49,3	33,5	34,4	22,0	16,0	21,1	327	4,68
	85	23,4	17,0	47,7	40,0	38,2	33,6	27,9	23,5	5,00	24,5	281	4,01
	86	23,0	29,6	45,3	38,3	34,3	26,2	27,9	16,4	-2,3	12,4	251	3,59
	87	29,4	39,4	51,7	38,7	38,2	28,9	29,4	18,5	-1,4	27,0	300	4,28
	88	24,7	27,2	36,8	31,1	34,9	16,4	21,8	14,3	4,60	8,10	220	3,14
	89	21,2	28,7	37,1	31,6	30,5	27,2	23,0	15,8	4,90	11,3	231	3,30
	90	22,8	40,4	47,4	44,2	52,5	31,8	31,5	23,8	4,40	21,8	321	4,58
	91	24,2	39,2	42,0	38,9	40,2	25,8	28,4	19,0	13,4	15,8	287	4,10
	92	21,9	29,5	36,2	30,7	31,8	33,4	26,8	23,1	15,6	17,6	267	3,81
	93	25,4	41,0	47,9	43,0	42,4	32,6	33,6	24,0	12,9	15,2	318	4,54
	94	28,5	35,2	46,9	42,3	37,7	-5,7	58,6	18,6	6,70	15,3	284	4,06
	95	19,2	29,8	42,6	42,4	53,8	29,9	33,8	24,1	2,30	8,80	287	4,10
	96	24,8	32,7	47,7	41,0	41,3	32,4	34,2	14,2	18,4	20,8	308	4,39
	97	27,4	39,2	47,6	41,9	39,4	35,8	23,2	20,3	9,70	14,2	299	4,27
	98	20,3	30,4	41,8	36,9	37,5	25,6	26,6	21,1	2,70	6,90	250	3,57
	99	27,0	34,5	40,1	29,7	36,2	27,0	22,5	15,9	8,10	9,80	251	3,58
	100	29,2	45,5	49,4	45,5	18,6	52,2	30,4	15,0	17,2	19,5	323	4,61
	101	19,8	34,9	44,6	40,5	21,3	44,5	27,2	14,2	2,90	12,2	262	3,74
	102	24,2	36,8	41,4	36,5	20,0	34,7	26,5	15,8	10,6	12,4	259	3,70
	103	26,4	35,6	26,7	44,9	36,2	27,8	26,1	20,0	12,5	16,0	272	3,89
	104	25,7	32,6	23,9	31,9	31,8	24,7	22,6	12,9	5,70	9,80	222	3,17
	105	21,0	35,7	27,5	36,7	45,0	33,4	35,3	20,0	10,2	9,50	274	3,92
	106	20,0	36,7	43,3	39,6	40,9	33,6	12,5	33,5	16,6	16,7	293	4,19
	107	21,9	33,3	37,2	36,3	30,9	30,6	5,50	26,7	14,5	10,6	248	3,54
	108	18,4	37,2	40,9	37,9	34,5	27,9	5,00	29,0	17,3	10,3	258	3,69
	M SD	23,8 2,95	34,5 5,31	41,5 6,95	37,3 6,30	36,2 7,76	29,6 8,62	26,9 8,73	19,5 4,84	9,1 5,62	14,2 5,29	273 29,1	3,89 0,42

Anhangstabelle 3:	Wöchentliche Lebendmassezunahme der Selenitgruppe (Se $O_3^{2^-}$)
	während der Depletionsphase

			Gewichtsentwicklung [g/Woche]										[g/Tag]
Gruppe	Tier	1	2	3	4	5	6	7	8	9	10	1-10	
	109	22,1	29,0	45,3	34,8	35,1	34,1	42,5	7,00	12,5	22,4	285	4,07
	110	21,4	28,0	37,6	32,2	34,9	27,8	26,3	18,1	11,0	6,00	243	3,48
	111	24,6	42,0	45,0	39,2	34,4	31,0	30,8	15,7	18,3	18,2	299	4,27
	112	23,4	39,1	45,6	39,3	43,6	30,3	31,8	21,0	9,70	10,9	295	4,21
	113	25,9	35,4	36,6	35,3	36,2	31,6	27,9	18,7	15,1	12,9	276	3,94
	114	21,2	32,4	36,7	41,6	37,1	35,4	31,6	12,6	5,60	14,2	268	3,83
	115	25,3	41,2	50,4	46,8	46,7	31,4	34,3	12,2	20,2	18,4	327	4,67
SeMet	116	30,2	39,2	51,9	37,5	35,3	33,3	30,5	5,70	17,6	20,1	301	4,30
Seleno-	117	24,4	38,0	43,2	39,2	39,9	31,5	28,4	12,1	9,80	6,30	273	3,90
methionin	118	27,1	36,4	46,0	37,3	18,9	30,2	30,4	22,3	8,60	12,8	270	3,86
	119	25,3	42,0	48,2	39,3	-0,3	21,7	24,8	12,5	6,30	3,80	224	3,19
	120	19,8	34,6	42,0	34,6	36,2	20,9	22,0	15,1	11,3	4,00	241	3,44
	121	23,0	31,3	29,1	29,9	31,9	27,8	22,4	15,3	12,4	1,60	225	3,21
	122	26,7	35,8	36,8	32,7	34,2	26,8	27,4	18,9	6,60	7,70	254	3,62
	123	22,2	34,2	41,0	30,5	41,9	27,6	26,8	20,4	15,0	8,10	268	3,82
	124	21,7	39,2	40,5	39,3	42,6	24,6	25,3	14,7	13,6	17,5	279	3,99
	125	19,6	36,2	42,6	37,5	52,6	27,8	35,5	12,2	16,3	13,4	294	4,20
	126	24,8	36,0	44,7	43,2	44,6	24,9	31,5	21,9	17,2	13,5	302	4,32
	127	17,5	38,5	39,6	37,0	31,3	30,7	19,3	15,5	12,6	12,1	254	3,63
	128	21,1	37,6	43,1	39,0	36,5	28,7	34,2	6,10	6,60	7,70	261	3,72
	129	20,2	33,8	37,6	35,2	31,0	24,8	30,0	18,4	8,70	9,60	249	3,56
	130	23,2	32,8	40,3	38,3	34,7	32,1	21,5	17,3	16,0	15,0	271	3,87
	131	22,0	35,5	39,6	34,2	35,5	26,7	25,6	18,2	17,0	10,5	265	3,78
	132	22,7	31,0	36,7	37,5	37,0	28,9	27,3	17,6	16,4	12,5	268	3,82
	133	25,9	36,1	48,8	33,8	38,4	35,5	32,0	17,6	18,2	16,6	303	4,33
	134	22,5	38,3	42,9	38,3	32,8	34,0	24,0	15,2	19,7	12,5	280	4,00
	135	21,5	27,3	39,8	28,2	28,8	27,4	30,1	16,8	-0,8	7,00	226	3,23
	136	19,6	27,2	31,1	33,4	31,0	24,8	25,4	12,4	11,2	10,0	226	3,23
	137	21,4	28,8	29,1	39,1	34,8	31,0	25,1	14,3	15,5	15,7	255	3,64
	138	19,3	37,0	26,1	38,7	35,4	42,0	36,9	15,1	13,2	7,30	271	3,87
	139	29,1	39,8	45,9	37,8	38,8	24,3	23,9	14,3	4,30	16,2	274	3,92
	140	25,0	38,1	45,6	38,6	40,1	28,0	26,1	22,8	3,40	22,7	290	4,15
	141	21,5	40,4	42,0	37,1	42,0	31,1	26,5	20,5	2,40	19,3	283	4,04
	142	26,0	38,1	45,2	44,5	38,4	27,7	16,1	22,4	10,3	9,50	278	3,97
	143	22,3	36,3	44,0	37,2	36,1	27,2	15,3	28,7	19,0	15,3	281	4,02
	144	23,2	36,7	43,5	41,3	44,0	29,7	17,8	29,7	11,4	9,70	287	4,10
	M SD	23,1 2,80	35,6 4,09	41,2 5,89	37,2 3,90	35,9 8,50	29,3 4,15	27,4 5,78	16,6 5,28	12,0 5,31	12,3 5,25	271 24,4	3,87 0,35

Anhangstabelle 4: Wöchentliche Lebendmassezunahme der Selenomethioningruppe (SeMet) während der Depletionsphase

			Gewichtsentwicklung [g/Woche]										[g/Tag]
Gruppe	Tier	1	2	3	4	5	6	7	8	9	10	1-10	
	145	28,3	36,9	49,8	45,4	41,0	28,0	30,0	19,8	11,0	10,7	301	4,30
	146	21,5	31,8	38,2	33,2	39,2	22,5	25,9	11,0	15,4	14,8	254	3,62
	147	21,7	28,4	34,9	34,8	34,7	34,3	25,6	16,6	7,90	11,2	250	3,57
	148	20,3	28,8	40,3	32,0	36,8	31,7	30,6	22,2	11,9	13,5	268	3,83
	149	21,1	29,6	54,1	37,6	41,7	32,0	32,0	23,8	7,60	9,90	289	4,13
	150	25,9	38,3	40,2	37,5	43,7	27,9	26,5	20,1	6,90	18,8	286	4,08
	151	28,1	39,4	49,3	33,9	37,3	38,4	28,7	17,5	18,4	17,0	308	4,40
Ebselen	152	25,7	35,4	42,5	34,7	31,8	31,9	26,6	11,3	6,70	13,9	261	3,72
	153	23,9	35,2	41,0	32,5	42,1	29,2	29,9	20,6	11,7	18,6	285	4,07
	154	23,0	34,8	40,1	39,1	33,5	23,5	23,3	14,7	9,50	14,4	256	3,66
	155	27,8	37,2	45,3	42,9	44,0	22,3	30,4	30,8	6,70	13,2	301	4,29
	156	21,2	33,6	41,0	38,3	37,1	25,2	22,9	17,5	16,9	14,3	268	3,83
	157	24,9	28,8	41,9	32,0	40,0	23,8	22,4	16,3	7,80	15,5	253	3,62
	158	22,5	26,0	41,9	39,2	47,8	36,3	34,0	15,9	9,20	26,3	299	4,27
	159	23,1	26,4	43,0	32,2	44,4	29,7	33,3	17,3	2,00	28,9	280	4,00
	160	21,2	25,8	39,2	34,7	37,2	30,7	28,9	19,2	13,5	16,8	267	3,82
	161	14,5	29,9	33,2	36,9	32,0	27,6	24,4	17,1	13,5	5,50	235	3,35
	162	16,4	38,2	40,7	41,1	42,0	31,0	26,6	19,7	10,8	20,0	287	4,09
	163	24,1	22,7	48,2	32,6	38,5	17,8	34,0	18,0	14,8	15,8	267	3,81
	164	23,0	24,8	41,6	32,5	32,4	16,0	27,4	13,4	9,30	10,6	231	3,30
	165	22,3	25,9	49,0	40,6	39,9	19,8	31,4	20,6	22,3	15,1	287	4,10
	166	18,7	34,6	45,0	33,8	41,1	37,4	29,6	23,2	16,4	18,3	298	4,26
	167	15,8	34,4	44,4	35,8	42,3	34,5	27,9	19,0	6,10	12,6	273	3,90
	168	15,8	32,1	36,6	31,4	32,6	33,3	28,6	18,9	9,90	15,5	258	3,68
	169	23,8	35,6	44,7	35,2	35,5	34,8	27,2	12,1	14,8	19,0	283	4,04
	170	19,2	27,9	41,8	30,7	32,3	38,6	22,3	15,5	8,30	10,2	247	3,53
	171	22,5	30,9	33,6	32,4	38,6	30,1	26,4	15,6	8,60	15,9	255	3,64
	172	26,3	34,4	40,7	36,1	35,8	11,3	37,7	19,9	18,7	19,0	280	4,00
	173	24,6	33,6	45,3	34,1	41,4	9,70	32,4	20,9	14,7	13,4	270	3,86
	1/4	20,2	32,3	41,2	29,2	35,9	11,0	35,3	21,5	18,9	6,50	252	3,60
	175	21,3	45,4	49,7	37,8	35,4	24,3	25,5	7,40	5,80	8,40	261	3,73
	176	21,6	40,4	44,7	35,8	42,3	30,6	24,2	18,3	19,7	20,5	298	4,26
	1//	14,8	33,3	41,8	32,9	30,4	28,2	20,6	19,2	9,40	12,9	244	3,48
	1/8	25,1	34,3	43,0	20,2	37,6	29,1	23,6	14,9	13,2	12,9	254	3,63
	1/9	22,8	32,0	34,9	21,3	48,6	28,1	27,6	22,2	18,1	17,2	2/3	3,90
	180	26,0	35,2	36,7	21,4	39,4	29,4	24,3	17,2	17,3	18,8	266	3,80
	M SD	22,2 3,61	32,6 4,92	42,2 4,79	34,2 5,37	38,5 4,52	27,5 7,46	28,0 4,04	18,0 4,21	12,0 4,83	15,2 4,83	271 19,9	3,87 0,28

Anhangstabelle 5: Wöchentliche Lebendmassezunahme der Ebselengruppe während der Depletionsphase

		Tiergewicht [g]							
				Reple	tionszei	tpunkt			
Gruppe		0d	2d	5d	8d	14d	21d	28d	
		262	-	-	-	255	-	382	
+Se		287	-	-	-	326	-	376	
Positivkontrolle		276	-	-	-	365	-	391	
		305	-	-	-	299	-	421	
		289	-	-	-	337	-	361	
		304	-	-	-	304	-	329	
	M SD	287 16,4	-	-	-	314 37,4	-	377 30,9	
		352	-	-	-	339	-	414	
-Se		323	-	-	-	307	-	351	
Negativkontrolle		307	-	-	-	320	-	329	
		296	-	-	-	314	-	305	
		271	-	-	-	358	-	295	
		325	-	-	-	330	-	322	
	Μ	308	_	-	-	328	-	336	
	SD	21,5		014	040	18,6	004	42,9	
0 · 0 ²⁻		-	302	311	313	352	391	364	
SeO ₄		-	326	359	339	263	313	376	
Selenat		-	294	317	335	361	370	292	
		-	310	329	283	313	400	380	
		-	318	338	262	348	344	389	
	5.4	-	203	310	283	380	411	335	
	IVI SD	-	302	328 18.1	303	330 42.2	37 A	300	
	50	-	324	371	336	364	385	362	
SeO ²⁻		-	307	323	296	336	334	309	
Selenit		-	286	312	352	393	320	371	
Colorin		-	311	299	269	351	402	385	
		-	258	294	275	349	338	338	
		-	290	376	373	379	331	340	
	м		296	329	317	362	352	351	
	SD	-	23,3	35,6	43,0	21,1	33,1	27,4	
		-	323	381	269	304	368	362	
SeMet		-	286	350	300	321	340	392	
Selenomethionin		-	332	319	311	304	290	372	
		-	323	314	326	323	293	364	
		-	311	266	352	329	322	365	
		-	304	288	354	330	347	366	
	Μ	-	313	320	318	318	327	370	
·	SD		16,5	41,5	32,6	11,9	31,0	11,4	
Theolog		-	340	355	300	335	363	337 200	
EDSEIEN		-	298	307	359	295	313	380	
		-	280	331	321	343	324 254	334 220	
		-	300	305	31Z	302	301	320 254	
		-	317	339 207	270	331 212	343 202	304	
	N.4	-	319	307	347	313 224	323	340	
	SD	-	310 19,2	3∠4 21,0	317 28,1	33 1 23,7	330 19,3	340 21,4	
				,	,	,	,	,	

Anhangstabelle 6: Tiergewichte [g] während der 28-tägigen Repletionsphase

		Hämoglobin [g/dL]								
				Reple	tionszeit	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		8,80	-	-	-	9,43	-	8,13		
-Se		8,77	-	-	-	9,22	-	8,66		
Positivkontrolle		8,73	-	-	-	7,68	-	9,06		
		9,37	-	-	-	9,12	-	8,25		
		8,67	-	-	-	8,88	-	9,12		
		9,63	-	-	-	9,31	-	9,61		
	M SD	8,99 0,402	-	-	-	9,19 0,208	-	8,81 0,566		
		8,22	-	-	-	5,38	-	7,81		
-Se		9,28	-	-	-	8,52	-	9,65		
Negativkontrolle		8,20	-	-	-	9,08	-	8,56		
		10,1	-	-	-	8,80	-	8,32		
		9,44	-	-	-	9,68	-	7,93		
		8,37	-	-	-	8,54	-	7,62		
	Μ	8,94	-	-	-	8,92	-	8,31		
	SD	0,784	0.40			0,479	0.74	0,738		
0.02		-	9,49	8,99	8,62	9,53	8,71	8,73		
SeO ₄ -		-	9,63	9,35	9,64	9,52	10,0	9,57		
Selenat		-	9,86	9,24	8,57	9,10	9,31	9,10		
		-	8,57	8,97	9,46	9,07	9,03	8,15		
		-	10,1	9,29	9,35	9,39	8,94	9,12		
		-	10,5	10,0	9,61	9,69	8,87	8,70		
		-	9,68	9,30	9,21	9,38	9,15	8,89		
	30		0,644 Q /Q	9.05	0,400 0 / 1	8.82	8 7/	9.05		
SeO. ²⁻		_	9,40	9,00	9,41	9.27	9 37	9,00 8 95		
Selenit		_	9.27	9,00	0,40	9.24	9,57 9 1 <i>4</i>	8.67		
Ocicini		-	9.88	9.56	9,00	9.41	8 93	8 59		
		-	9,66	9.56	8 84	9.56	8 98	8 32		
		-	9,00	9.45	9 15	8 76	8 43	9.06		
	м		9.62	9 47	9.22	9 17	8.93	877		
	SD	-	0,260	0,260	0,233	0,321	0,323	0,297		
		-	9,06	9,15	9,54	8,89	9,01	8,92		
SeMet		-	9,12	9,58	9,90	8,89	9,66	9,02		
Selenomethionin		-	9,43	9,72	9,87	9,76	9,37	8,83		
		-	8,78	9,44	8,91	9,79	8,80	9,40		
		-	10,4	9,76	8,11	10,2	10,3	9,20		
		-	9,27	8,40	9,38	9,40	9,08	9,43		
	Μ	-	9,34	9,34	9,29	9,48	9,37	9,13		
	SD		0,554	0,511	0,681	0,522	0,538	0,247		
		-	9,08	9,50	9,46	8,62	8,80	8,61		
Ebselen		-	9,21	9,69	8,41	9,21	8,48	9,08		
		-	9,32	9,75	8,84	8,51	9,08	8,31		
		-	9,93	10,2	8,62	7,94	9,02	8,52		
		-	9,15	9,58	9,88	8,25	8,72	9,18		
	M	-	9,31	9,02	9,57	8,33	8,99	ð,//		
	IVI SD	-	9,33 0,306	9,62 0,379	9,13 0,588	४,4४ 0,428	8,85 0,227	8,/4 0,335		

Anhangstabelle 7: Hämoglobinkonzentrationen [g/dL] der Ratten während der 28-tägigen Repletionsphase

		Hämotokrit [%]							
				Reple	tionszeit	punkt			
Gruppe		0d	2d	5d	8d	14d	21d	28d	
		48,7	-	-	-	47,7	-	45,0	
+Se		52,0	-	-	-	47,3	-	46,7	
Positivkontrolle		49,3	-	-	-	41,7	-	46,0	
		48,0	-	-	-	47,0	-	46,7	
		52,0	-	-	-	44,7	-	49,9	
		49,0	-	-	-	47,0	-	49,7	
	M SD	49,8 1,74	-	-	-	45,9 2,33	-	47,2 1,80	
		47,3	-	-	-	42,3	-	40,7	
-Se		47,0	-	-	-	45,7	-	50,0	
Negativkontrolle		49,0	-	-	-	47,7	-	45,3	
0		45,0	-	-	-	45,0	-	43,7	
		48,7	-	-	-	47,7	-	45,3	
		48,7	-	-	-	44,0	-	41,7	
	M SD	47,6 1.51	-	-	-	45,4 2.09	-	44,4 3.32	
		-	48,3	43,3	45,0	50,0	47,3	47,0	
SeO ₄ ²⁻		-	50,7	46,0	49,3	48,7	52,0	48,7	
Selenat		-	48,7	48,0	44,0	46,7	48,0	51,3	
		-	45,0	44,3	47,0	47,7	47,0	43,0	
		-	51,0	45,0	47,0	49,0	47,3	49,7	
		-	51,7	46,7	48,3	47,3	51,7	47,0	
	Μ		49,2	45,6	46,8	48,2	48,9	47,8	
	SD	-	2,46	1,68	2,00	1,22	2,31	2,86	
		-	48,0	47,0	48,0	46,0	47,7	47,7	
SeO ₃ ²⁻		-	50,0	45,0	47,0	47,7	51,0	46,7	
Selenit		-	49,7	45,7	46,0	45,7	48,7	45,0	
		-	50,0	46,7	46,7	49,0	46,3	45,0	
		-	50,0	48,0	49,7	47,0	47,0	45,0	
		-	50,7	45,7	46,7	44,7	46,3	50,3	
	Μ	-	49,7	46,3	47,3	46,7	47,2	46,6	
	SD		0,905	1,10	1,32	1,55	1,79	2,13	
		-	45,0	44,3	47,3	44,7	45,0	46,0	
SeMet		-	48,0	47,0	48,7	45,0	50,0	48,7	
Selenomethionin		-	50,0	48,0	50,0	49,7	48,0	48,0	
		-	45,0	46,0	46,0	50,7	47,0	49,3	
		-	51,3	48,0	44,7	49,3	44,3	49,0	
		-	48,0	40,3	48,0	48,0	45,7	49,0	
	M SD	-	47,9 2,57	45,6 2,93	47,4 1,91	47,9 2,52	46,0 2,11	48,3 1,23	
-		-	45,7	47,3	48,0	46,0	47,7	45,0	
Ebselen		-	48,0	47,3	45,7	47,7	47,7	47,0	
		-	49,7	47,0	48,0	45,3	45,3	47,0	
		-	50,3	48,0	47,7	42,7	45,0	46,0	
		-	48,3	45,3	49,7	44,0	46,7	49,0	
		-	48,0	45,0	48,3	46,0	49,7	44,7	
	M SD	-	48,3	46,7	47,9 1,29	45,3 1.74	47,0 1.73	46,4	
	50		.,02	.,	.,20	.,	.,. 0	.,00	

Anhangstabelle 8: Hämatokritwerte [%] der Ratten während der 28-tägigen Repletionsphase

		Selen im Vollblut [µg/kg]							
				Reple	tionszeit	tpunkt			
Gruppe		0d	2d	5d	8d	14d	21d	28d	
		517	-	-	-	551	-	583	
+Se		522	-	-	-	518	-	570	
Positivkontrolle		508	-	-	-	456	-	522	
		556	-	-	-	501	-	511	
		465	-	-	-	529	-	503	
		524	-	-	-	539	-	519	
	Μ	515	-	_	_	516	-	535	
	SD	29,7				33,7		33,3	
-		19,8	-	-	-	13,9	-	21,5	
-Se		16,2	-	-	-	17,3	-	19,4	
Negativkontrolle		19,1	-	-	-	14,4	-	17,7	
		11,8	-	-	-	15,5	-	18,7	
		20,1	-	-	-	20,1	-	19,3	
		18,5	-	-	-	17,3	-	19,4	
	M	17,6	-	-	-	16,4	-	19,3	
	SD	3,15	70.5	150	219	2,30	256	1,25	
SoO 2-		-	79,5	139	210	300	300	399	
Selonot		-	746	145	240	323	240	400	
Selenal		-	74,0	140	230	340	349	3/0	
		-	77,4	100	215	290	341	309	
		-	00,0	107	200	297	304	403	
	М	-	70,1	164	210	<u>313</u>	332	206	
	SD	-	5.07	12 1	230 16.4	191	349 11.0	12.6	
	02	-	74.1	118	196	308	362	437	
SeO ₃ ²⁻		-	72.9	151	202	269	330	396	
Selenit		-	65.8	137	207	339	351	426	
•••••		-	70,4	165	189	334	330	430	
		-	71 4	144	198	339	351	417	
		-	76.1	146	234	274	362	425	
	м		71.8	143	204	310	348	422	
	SD	-	3,55	15,6	15,9	32,5	14,6	14,1	
		-	54,9	113	173	298	343	417	
SeMet		-	62,3	125	190	320	354	452	
Selenomethionin		-	62,5	150	181	313	358	409	
		-	60,4	123	216	322	361	430	
		-	57,2	152	199	323	386	406	
		-	50,9	135	193	299	361	439	
	М	-	58,0	133	192	312	361	425	
	SD		4,59	15,6	14,8	11,7	14,2	18,0	
E h a shara		-	25,3	16,9	20,7	22,4	19,6	18,6	
Ebselen		-	24,7	20,4	19,5	23,9	16,4	15,9	
		-	28,3	17,2	22,3	17,4	18,3	18,6	
		-	18,8	18,0	17,4	21,7	23,3	20,5	
		-	22,8	16,9	18,3	22,5	26,0	18,4	
		-	21,4	16,2	21,0	24,0	24,4	21,5	
	M SD	-	23,6	1/,6 1/0	19,9	22,0	21,3 3.79	18,9	
	50		5,51	1,43	1,02	∠,4∠	5,70	1,34	

Anhangstabelle 9: Selenkonzentrationen im Vollblut [µg/kg] der Ratten während der 28-tägigen Repletionsphase

		Selen im Plasma [µg/kg]								
				Reple	tionszeit	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		492	-	-	-	558	-	539		
+Se		530	-	-	-	542	-	556		
Positivkontrolle		508	-	-	-	503	-	550		
		533	-	-	-	509	-	546		
		538	-	-	-	574	-	545		
		552	-	-	-	528	-	558		
	M SD	525 21,8	-	-	-	536 27,6	-	549 7,25		
		29,1	-	-	-	18,0	-	24,8		
-Se		23,3	-	-	-	16,8	-	22,9		
Negativkontrolle		27,7	-	-	-	22,1	-	22,0		
-		14,3	-	-	-	19,0	-	22,9		
		25,0	-	-	-	20,6	-	23,8		
		22,3	-	-	-	19,2	-	26,6		
	M SD	23,6 5.24	-	-	-	19,3 1.87	-	23,8 1.65		
	02	-	138	279	374	479	526	547		
SeO42-		-	138	319	450	514	646	575		
Selenat		-	139	250	410	548	564	511		
		-	130	306	407	496	551	509		
		-	119	289	468	458	538	598		
		-	133	291	395	499	553	517		
	Μ	_	133	298	417	499	563	543		
	SD	-	3,79	23,7	35,3	25,9	42,5	37,1		
		-	122	219	370	512	516	613		
SeO ₃ ²⁻		-	143	263	357	469	586	535		
Selenit		-	126	249	361	570	584	529		
		-	115	289	338	493	472	521		
		-	123	250	394	500	509	524		
		-	191	286	394	419	551	555		
	M	-	137	259	369	494	536	546		
	SD		28,2	26,0	22,0	37,6	45,3	35,0		
SoMot		-	00,1	190	329	491	490	004 576		
Selenemethionin		-	102	220	<u> </u>	512	503	576		
Selenomethionin		-	122	270	323	000 615	04Z	541		
		-	95,7	222	307	400	570	510		
		-	07.5	203	343	490	579	530		
	м	-	<u> </u>	223	334	<u> </u>	5/4	535		
	SD	-	15.5	36.3	13.8	19.5	33.6	30.2		
		-	29.9	22.6	25.8	28.8	20,5	24,8		
Ebselen		-	30,2	23,4	27,2	34,2	26,3	21,6		
		-	25,1	31,9	35,1	19,1	24,1	20,6		
		-	18,9	20,1	21,5	25,0	31,8	29,5		
		-	33,3	28,9	37,9	21,3	18,2	23,2		
		-	31,6	20,2	26,5	18,9	20,6	33,3		
	M	-	28,1	24,5	29,0	24,6	23,6	25,5		
	50		5,23	т,05	0,22	0,00	т,50	т,35		

Anhangstabelle 10: Selenkonzentrationen im Plasma [µg/kg] der Ratten während der 28-tägigen Repletionsphase

		Selen in der Leber [µg/kg]							
				Reple	tionszeit	tounkt			
Gruppe		0d	2d	5d	8d	14d	21d	28d	
		969	-	-	-	851	-	890	
+Se		864	-	-	-	848	-	1044	
Positivkontrolle		859	-	-	-	665	-	969	
		926	-	-	-	766	-	993	
		836	-	-	-	1034	-	942	
		811	-	-	-	926	-	930	
	Μ	878				849		961	
	SD	58,9	-	-	-	127	-	53,5	
		27,2	-	-	-	14,5	-	17,7	
-Se		18,2	-	-	-	15,8	-	16,3	
Negativkontrolle		17,6	-	-	-	16,2	-	18,9	
		20,1	-	-	-	17,2	-	15,6	
		24,0	-	-	-	11,3	-	18,6	
		13,2	-	-	-	13,0	-	16,0	
	M SD	20,1 4,96	-	-	-	14,7 2,20	-	17,2 1,41	
		-	99,8	193	341	717	711	1050	
SeO ₄ ²⁻		-	82,0	250	389	707	809	886	
Selenat		-	98,9	184	415	585	815	857	
		-	81.1	201	375	713	720	767	
		-	78,1	189	523	566	769	771	
		-	91.5	303	376	517	847	922	
	М		88.5	220	403	634	778	875	
	SD	-	9,48	47,0	63,6	88,6	54,9	106	
		-	66,7	152	436	603	759	842	
SeO ₃ ²⁻		-	76,4	166	333	898	746	730	
Selenit		-	78,6	126	414	645	811	945	
		-	72,7	192	507	592	728	852	
		-	71,0	234	297	719	933	734	
		-	81,9	267	408	639	787	931	
	Μ		74,5	189	399	683	794	839	
	SD	-	5,49	53,2	75,1	114	74,1	92,6	
		-	71,7	169	238	587	808	871	
SeMet		-	76,9	176	323	627	915	853	
Selenomethionin		-	76,0	193	307	785	909	854	
		-	61,3	156	344	697	854	989	
		-	81,5	185	366	672	846	863	
		-	69,4	182	282	696	706	923	
	Μ	-	72,8	177	310	677	839	892	
	SD		7,03	13,1	45,7	68,0	77,0	54,2	
Chaolor		-	17,2	15,1	22,U	18,0	15,7	19,0	
Ebselen		-	19,9	14,4	16,2	14,4	16,1	16,9	
		-	21,3	12,0	18,1	12,2	22,9	19,1	
		-	12,4	14,1	14,8	15,1	21,8	18,6	
		-	15,4	15,2	18,8	15,5	20,7	18,4	
		-	14,0	11,9	16,8	15,7	24,8	19,0	
	M SD	-	16,7 3,44	13,8 1,48	17,8 2,50	15,2 1,89	20,3 3,68	18,5 0,829	

Anhangstabelle 11: Selenkonzentrationen in der Leber [µg/kg] der Ratten während der 28-tägigen Repletionsphase

		Selen in der Niere [µg/kg]								
				Reple	tionszei	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		888	-	-	-	1253	-	1306		
+Se		1025	-	-	-	850	-	1442		
Positivkontrolle		887	-	-	-	1241	-	1003		
		1151	-	-	-	1123	-	1381		
		1081	-	-	-	930	-	1318		
		1122	-	-	-	1267	-	951		
	M SD	1026 115	-	-	-	1110 180	-	1233 205		
		126	-	-	-	55,6	-	70,4		
-Se		60,4	-	-	-	70,3	-	64,4		
Negativkontrolle		126	-	-	-	128	-	132		
		167	-	-	-	132	-	153		
		133	-	-	-	57,2	-	168		
		113	-	-	-	134	-	73,0		
	M SD	121 34,8	-	-	-	96,2 38,9	-	110 46.2		
		-	126	294	466	748	1110	1169		
SeO ₄ ²⁻		-	181	379	418	851	992	1255		
Selenat		-	341	430	611	982	1073	1226		
		-	251	343	607	997	1044	937		
		-	312	290	852	795	823	1195		
		-	339	645	601	968	1073	1427		
	Μ	-	258	397	593	890	1019	1208		
	SD		89,0	133	151	107	104	176		
2-		-	275	443	361	998	1033	855		
SeO ₃ ²		-	139	504	366	1027	1068	1161		
Selenit		-	395	271	758	640	874	1192		
		-	144	515	634	659	/38	1338		
		-	170	493	925	643	1169	1128		
		-	369	312	869	1073	1103	1188		
	M	-	249	423	652	793	998	1144		
	30		373	105	240	617	1260	159		
SoMot		_	162	533	600	10/3	1200	025		
Selenomethionin		_	140	310	693	1168	1137	794		
Ocicitoritettionin		-	128	294	549	665	1012	1256		
		-	255	362	704	885	1012	1117		
		-	254	334	595	613	826	1060		
	м		219	379	595	832	1078	1109		
	SD	-	94,0	88,8	144	238	156	250		
		-	178	140	134	57,1	46,8	140		
Ebselen		-	61,2	128	65,7	68,1	169	142		
		-	131	167	65,7	116	204	180		
		-	148	170	128	175	223	65,1		
		-	74,8	63,4	147	50,9	236	151		
		-	74,0	139	138	62,9	84,1	67,0		
	M	-	111	135	113	88,3	161	124		
	5D		41,1	38,6	37,2	48,4	78,0	47,2		

Anhangstabelle 12: Selenkonzentrationen in der Niere [µg/kg] der Ratten während der 28-tägigen Repletionsphase

		Selen im Testis [µg/kg]									
				Reple	tionszeit	tounkt					
Gruppe		0d	2d	5d	8d	14d	21d	28d			
		855	-	-	-	910	-	930			
+Se		863	-	-	-	839	-	874			
Positivkontrolle		886	-	-	-	829	-	849			
		804	-	-	-	283	-	860			
		862	-	-	-	827	-	890			
		821	-	-	-	868	-	814			
	Μ	849				855		869			
	SD	30,4	-	-	-	35,2	-	39,4			
		560	-	-	-	427	-	491			
-Se		545	-	-	-	481	-	555			
Negativkontrolle		596	-	-	-	432	-	374			
		391	-	-	-	531	-	455			
		628	-	-	-	470	-	477			
		496	-	-	-	440	-	239			
	М	536	-	-	-	464	-	432			
	SD	84,2	000	000	744	38,9	040	111			
C - C ²⁻		-	660	628	711	752	810	832			
SeO ₄		-	703	680	744	763	831	825			
Selenat		-	644	584	750	764	859	922			
		-	636	678	/56	867	813	808			
		-	605	/14	765	634	820	800			
		-	691	659	/81	793	843	801			
	M	-	657	657	751	762	829	831			
	SD		36,2	45,6	23,5	75,5	19,0	51,5			
S=0 ²⁻		-	001	093	733	110	020	000			
SeU ₃		-	671	711	758	821	830	844			
Selenit		-	621	559	743	809	825	804			
		-	668	678	722	782	806	802			
		-	723	652	702	761	843	819			
		-	/4/	645	732	739	842	795			
	M	-	680	657	732	781	829	819			
	30		40,7 572	43,0 625	744	30,0	952	23,3			
SoMot		-	576	023 500	744	201	942	257			
Solonomothionin		-	570 670	509	776	02 I 920	942	207			
Selenometrionin		-	670 571	612	730	807	040	700			
		-	170	620	742	824	900	199			
		-	170	560	726	762	033	00Z 917			
	M	-	433 664	<u> </u>	720	<u> </u>	<u>957</u>	014 024			
	SD	-	304 84.8	5 9.4	19.1	28.4	37.7	034 29.6			
	00	-	523	488	610	501	553	518			
Ebselen		-	545	582	485	511	450	473			
		-	538	528	541	473	515	496			
		-	492	502	527	573	552	568			
		-	553	272	453	574	578	513			
		-	487	440	-00 512	562	528	392			
	м		523	469	521	532	529	493			
	SD	-	27,8	107	53,7	42,8	44,6	-33 58,7			
			,				,				

Anhangstabelle 13: Selenkonzentrationen im Testis [µg/kg] der Ratten während der 28-tägigen Repletionsphase

		Selen im Muskel [µg/kg]								
				Replet	tionszeit	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		95,7	-	-	-	102	-	116		
+Se		124	-	-	-	101	-	108		
Positivkontrolle		105	-	-	-	120	-	105		
		99,4	-	-	-	97,5	-	107		
		93,4	-	-	-	110	-	103		
		86,1	-	-	-	94,2	-	102		
	M SD	101 12,9	-	-	-	104 9,22	-	107 4,99		
		9,80	-	-	-	4,30	-	7,41		
-Se		8,77	-	-	-	11,73	-	6,40		
Negativkontrolle		6,60	-	-	-	4,74	-	8,26		
0		6,70	-	-	-	2,30	-	5,14		
		5,42	-	-	-	6,20	-	8,14		
		8,68	-	-	-	8,84	-	8,30		
	M SD	7,66	-	-	-	6,35	-	7,28		
	02	-	11.6	19.5	25.0	48.3	56.1	65.8		
SeO42-		-	15.3	20.9	32.4	43.0	56.3	62.1		
Selenat		-	10.9	20.1	29.2	47.5	55.0	66.2		
		-	11,5	19,8	27,1	42,6	50,3	58,1		
		-	13.0	16.8	31.6	49.7	47.8	64.1		
		-	11,9	20,1	26,4	49,0	61,4	77,5		
	Μ		12,4	19,5	28,6	46,7	54,5	65,6		
	SD	-	1,59	1,41	2,97	3,10	4,84	6,51		
		-	10,7	19,8	23,1	40,0	60,3	69,5		
SeO ₃ ²⁻		-	12,1	19,7	27,1	43,6	58,7	56,6		
Selenit		-	13,9	12,2	24,9	43,1	54,7	60,6		
		-	9,90	16,9	26,2	46,8	48,6	57,1		
		-	11,4	19,1	30,4	40,9	51,5	72,5		
		-	11,8	23,2	32,1	42,2	51,1	56,6		
	Μ	-	11,6	18,5	27,3	42,8	54,2	62,1		
	SD		1,76	3,68	3,37	2,39	4,61	7,07		
0.11.1		-	15,8	30,2	32,3	61,8	93,0	95,6		
Selviet		-	14,6	25,2	37,0	62,1	92,3	108		
Selenomethionin		-	15,8	21,4 25.5	30,9	63,1 72.0	84,8 82 7	104		
		-	12,9	25,5	40,4	72,9	83,7	107		
		-	13,9	27,3	39,2	63,6	92,1	97,0		
	84	-	89,8	30,3	36,4	54,8	93,4	96,6		
	IVI SD	-	14,0 126	∠1,1 219	379 379	5.80	09,9 4 41	1 U 1 5.58		
	00	-	4.30	5.60	7.88	4 08	6.21	7.50		
Ebselen		-	8,20	7,12	5.82	6,63	5,70	5.07		
		-	8 22	4 48	5.91	5 76	7 53	7 47		
		-	7.38	6.50	6.29	5.85	8.05	19.7		
		-	7.23	6.65	7.57	6.58	6.11	5.13		
		-	7,25	7.82	6.93	4,90	5,90	5.82		
	М		7,10	6,36	6,73	5.63	6,58	8,45		
	SD	-	1,44	1,18	0,867	0,990	0,965	5,62		

Anhangstabelle 14: Selenkonzentrationen im Muskel [µg/kg] der Ratten während der 28-tägigen Repletionsphase

		Selen im Gehirn [µg/kg]								
				Replet	tionszeit	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		123	-	-	-	105	-	124		
+Se		84,7	-	-	-	103	-	108		
Positivkontrolle		103	-	-	-	92,9	-	105		
		108	-	-	-	90,8	-	121		
		106	-	-	-	105	-	102		
		111	-	-	-	108	-	107		
	Μ	106				101		111		
	SD	12,4	-	-	-	7,11	-	8,80		
		87,9	-	-	-	77,4	-	77,0		
-Se		65,0	-	-	-	84,5	-	83,9		
Negativkontrolle		77,4	-	-	-	82,3	-	86,6		
		71,1	-	-	-	80,0	-	74,3		
		70,4	-	-	-	82,3	-	62,2		
		73,8	-	-	-	93,9	-	88,3		
	З W	74,3	-	-	-	83,4	-	78,7		
	30	7,04	85.6	77.8	87.8	<u> </u>	08.0	<u>9,76</u> Q/ 1		
SeO. ²⁻		_	85.0	85 A	79.9	92,2	101	87 1		
Selenat		_	72.6	70.9	01 3	108	101	1/0		
Selenal			72,0	85.2	91,5	90.3	101	100		
		-	74,1	79.4	90,0 95 1	99,3 80.6	00.1	00.4		
		-	21.0	76,4	87.0	09,0	100	99,4 00 7		
	М	-	78.2	73,4	<u> </u>	90,3	100	<u> </u>		
	SD	-	6 50	70,9 563	635	95,0 7.07	1 70	22.9		
	00	-	89.5	73.3	88.1	109	99.8	119		
SeO ²⁻		-	76.3	86.9	83.1	107	98.2	105		
Selenit		-	67.4	75.8	91 7	97 7	107	112		
Colorin		-	84.2	79.5	100	91.6	103	96.5		
		-	90.5	76.7	106	97.3	103	112		
		-	79.9	68.2	99.2	90.0	99.5	88.4		
	м		81.3	76.7	94.6	98.7	102	105		
	SD	-	8,70	6,26	8,43	7,20	3.20	11,2		
		-	90,1	84,1	108	106	128	137		
SeMet		-	90,8	89,6	105	116	138	134		
Selenomethionin		-	96,0	95,4	112	112	129	138		
		-	77,1	85,9	119	122	135	114		
		-	93,5	92,0	105	119	135	141		
		-	82,1	91,4	111	116	137	121		
	Μ		88,3	89,7	110	115	134	131		
	SD	-	7,21	4,13	5,50	5,44	4,25	10,6		
		-	98,1	81,2	78,4	80,0	81,2	83,9		
Ebselen		-	73,8	74,7	87,4	89,9	82,0	62,2		
		-	75,4	75,7	82,0	81,4	80,0	88,0		
		-	83,4	76,1	86,8	84,5	89,2	82,7		
		-	78,3	83,5	73,4	82,0	84,8	80,9		
		-	91,1	70,8	78,6	81,6	87,7	77,3		
	M	-	83,4	77,0	81,1 5 42	83,3	84,1	79,2		
	50		5,55	-,05	0,42	0,00	5,12	5,02		

Anhangstabelle 15: Selenkonzentrationen im Gehirn [µg/kg] der Ratten während der 28-tägigen Repletionsphase

			pGPx-Aktivität [mU/mg Protein]								
			Depletionswoche								
Gruppe		0	1	2	3	4	5	6	7	8	9
		49,6	39,2	46,0	34,4	47,0	47,6	40,1	39,5	45,8	42,7
+Se		35,2	48,4	46,5	44,1	47,0	49,7	37,1	56,8	58,2	46,3
Positivkontrolle		51,8	51,1	45,0	38,0	44,6	45,3	39,8	45,2	41,8	42,1
		45,2	40,6	46,1	48,7	49,3	40,4	51,5	40,5	32,6	46,2
		40,1	36,7	42,4	47,3	36,3	45,7	41,1	42,5	45,7	37,1
		33,2	47,3	43,9	51,6	45,9	45,4	51,5	48,3	44,8	38,7
	Μ	42,5	43,9	45,0	44,0	45,0	45,7	43,5	45,5	44,8	42,2
	SD	7,61	5,79	1,59	6,62	4,55	3,09	6,34	6,42	8,25	3,76
		39,8	13,2	6,89	4,32	2,86	2,59	1,92	2,23	2,65	1,88
-Se		48,2	9,15	7,83	12,5	3,03	3,38	2,00	2,75	2,58	2,19
Negativkontrolle		44,6	13,4	5,52	4,41	2,93	2,24	1,70	1,67	1,85	1,97
		36,4	5,89	6,99	8,31	2,79	2,96	1,60	2,97	2,76	1,06
		50,3	7,59	7,26	5,11	3,28	3,31	1,82	3,61	2,62	1,13
		37,5	9,02	5,81	6,26	3,61	2,86	2,33	3,42	2,04	1,30
	Μ	42,8	9,71	6,72	6,81	3,08	2,89	1,90	2,77	2,42	1,59
	SD	5,77	3,03	0,882	3,14	0,311	0,435	0,257	0,732	0,375	0,482

Anhangstabelle 16: Plasmatische GPx-Aktivitäten der Ratten während der Depletionsphase

Anhangstabelle 17: cGPx-Aktivitäten im Hämolysat der Ratten während der Depletionsphase

		cGPx-Aktivität [mU/mg Protein]									
			Depletionswoche								
Gruppe		0	1	2	3	4	5	6	7	8	9
		442	380	513	363	438	489	425	458	416	410
+Se		396	364	384	424	424	477	578	315	443	440
Positivkontrolle		441	478	486	495	421	345	405	403	369	394
		480	460	382	506	424	396	447	465	408	453
		417	384	461	388	458	432	302	535	493	368
		440	508	426	495	476	396	385	438	399	459
	Μ	436	429	442	445	440	423	424	436	421	421
	SD	28,4	60,4	53,8	61,8	22,6	54,5	90,5	73,3	42,6	36,0
		479	364	207	151	137	53,5	30,0	44,8	31,2	22,5
-Se		365	305	247	182	136	69,8	40,3	45,9	43,4	46,2
Negativkontrolle		399	366	281	147	95,1	76,6	61,5	57,2	64,2	58,0
		444	341	202	228	131	54,6	35,7	47,7	38,1	53,4
		468	363	269	160	112	92,2	55,4	61,0	35,6	38,6
		448	381	347	138	126	57,8	21,1	55,0	40,4	54,3
	Μ	434	353	259	167	123	67,4	40,7	51,9	42,1	45,5
	SD	43,4	27,0	53,7	33,4	16,4	15,2	15,3	6,70	11,6	13,2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Gruppe Od 2d 5d 8d 14d 21d 28d +Se 45,3 - - - 44,5 - 42,4 +Se 41,6 - - - 44,5 - 42,4 Positivkontrolle 42,5 - - - 48,5 - 39,0 44,9 - - - 40,3 - 39,1 - 39,1 39,5 - - - 42,3 - 39,2 - 37,7 - 42,3 - 39,2 - 39,1 - 39,2 - 37,7 - 44,3 - - 39,2 - 37,7 - - 38,2 - 44,4 - - 38,5 2,44 - - 38,5 2,44 - - 38,5 2,44 - - - 1,45 - 1,44 SD A2,10 <t< th=""><th></th></t<>	
+Se 45,3 - - - 44,5 - 42,6 Positivkontrolle 42,5 - - - 48,5 - 39,9 44,9 - - - 48,5 - 39,9 39,5 - - - 40,3 - 39,9 39,5 - - - 39,2 - 37,9 48,3 - - - 39,2 - 39,2 M 43,7 - - - 38,2 - 44,0 SD 3,12 - - - 3,85 2,44 -Se 2,83 - - - 2,18 - 2,40 Negativkontrolle 2,10 - - 1,45 - 1,44 1,74 - - - 1,45 - 1,44 2,18 - - - 1,45 - 1,44 2,18 - - - 1,45 - 1,46	ł
+Se 41,6 - - - 48,5 - 39,6 Positivkontrolle 42,5 - - - 40,3 - 39,0 44,9 - - - 42,3 - 39,0 39,5 - - - 39,2 - 37,0 48,3 - - - 38,2 - 44,0 SD 3,12 - - 38,5 2,44 SD 3,12 - - 2,18 - 2,44 -Se 2,83 - - - 1,76 - 2,00 Negativkontrolle 2,10 - - - 1,45 - 1,44 1,74 - - - 1,45 - 1,44 2,18 - - - 1,48 - 2,19 SD 0,276 - - 1,48 - 2,19 SD 0,276 - - - 0,474 0,455 Selenat <td>3</td>	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ł
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
Negativkontrolle $2,10$ - - - $2,64$ - $1,44$ $1,74$ - - - 1,45 - $1,42$ $2,18$ - - - 1,55 - $1,55$ $1,88$ - - - 1,48 - $2,19$ M $2,12$ - - - 1,84 - $2,19$ SD $0,276$ - - - 1,84 - $2,19$ SEO ₄ ²⁻ - - - - 1,84 - $0,474$ $0,455$ SeO ₄ ²⁻ - - 8,75 $26,3$ $32,0$ $37,8$ $42,1$ $36,0$ Selenat - $5,96$ $13,4$ $31,7$ $38,9$ $37,2$ $42,0$ - - $5,31$ $16,2$ $28,7$ $39,1$ $40,2$ $33,5$ - - $5,68$ $16,7$ $32,0$ <	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
SeO42 $8,75$ $26,3$ $32,0$ $37,8$ $42,1$ $36,0$ Selenat- $5,96$ $13,4$ $31,7$ $38,9$ $37,2$ $42,0$ $5,31$ $16,2$ $28,7$ $39,1$ $40,2$ $33,3$ $5,68$ $16,7$ $32,0$ $38,5$ $41,1$	<u>></u> I
Selenat - 5,96 13,4 31,7 38,9 37,2 42,1 50,3 $-$ 5,96 13,4 31,7 38,9 37,2 42,1 $-$ 5,31 16,2 28,7 39,1 40,2 33,5 $-$ 5,68 16,7 32,0 38,5 41,1 54,3	ר
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,)
-5.68 16.7 32.0 38.5 41.1 54.	,
	, 5
- 6.05 14.3 32.1 32.9 39.5 34.4	, ,
M 675 154 311 375 400 374	<u>,</u>
SD 1,57 1,50 1,42 2,34 1,67 3,95	1
- 4,63 13,2 30,7 34,2 40,4 36,8	3
SeO ₃ ²⁻ - 6,87 14,4 27,8 38,2 36,1 36,7	7
Selenit - 4,42 16,5 28,0 34,5 41,4 39,5	3
- 7,16 17,5 31,0 35,2 34,9 39,4	1
- 4,63 15,4 31,4 32,4 34,2 38,	
- 7,63 18,1 29,1 41,8 33,0 34,	7
M 5,89 15,8 29,7 36,0 36,7 37,5	5
SD 0,30 1,86 1,57 3,39 3,44 1,80	1
- 3,81 11,2 24,8 33,0 3 <i>1,5</i> 37,3	3
SeMet - 5,92 10,2 23,9 24,8 40,5 36,9)
Selenomethionin - 6,29 13,7 21,6 34,7 36,9 39,8	3
- 5,30 15,4 30,2 <i>41,0</i> 37,5 41, ⁷	7
- 3,48 15,5 26,9 34,6 37,9 36,7	7
- 2,94 13,1 28,1 32,9 40,5 39,7	l
M - 4,62 13,2 25,9 33,8 38,6 38,0 SD - 1,40 2,17 3,11 0,978 1,72 1,98	5
- 2,38 1,43 1,66 2,45 3,22 1,80)
Ebselen - 4,55 1,50 1,60 2,53 1,46 1,3	1
- 2,30 1,28 2,02 1,43 1,49 2,08	3
- 1,34 1,07 1,38 1,93 2,33 2,40)
- 2,35 1,76 1,40 2,34 1,57 1,58	3
- 2,24 1,22 1,35 2,22 1,84 1,94	1
M 2,53 1,38 1,57 2,15 1,98 1,80 SD 1,07 0,242 0,255 0,410 0,687 0,37	<u></u> ز

Anhangstabelle 18: pGPx-Aktivitäten im Plasma der Ratten während der 28-tägigen Repletionsphase

	cGPx Hämolysat [mU/mg Protein]								
			Reple	tionszeit	punkt				
Gruppe	0d	2d	5d	8d	14d	21d	28d		
	420	-	-	-	408	-	346		
+Se	425	-	-	-	337	-	436		
Positivkontrolle	427	-	-	-	412	-	362		
	370	-	-	-	328	-	375		
	406	-	-	-	286	-	369		
	410	-	-	-	621	-	435		
M	407	-	-	-	399	-	387		
SD	20,9				119 16 7		38,7		
-50	27,5	-	-	-	10,7	-	23,2 15 <i>1</i>		
- Je Nogotivkontrollo	20,2	-	-	-	19,1	-	15,4		
Negativkontrolle	29,2	-	-	-	15,6	-	10,9		
	23,7	_	_	_	15.2	-	21.0		
	20,1	_	_	_	16.7	_	20.9		
м	23,1	-	-	-	16,7	-	20,9		
SD	2,76	-	-	-	1,33	-	3,08		
	-	19,4	71,8	51,9	119	134	347		
SeO ₄ ²⁻	-	17,2	36,4	65,6	232	217	146		
Selenat	-	28,4	51,0	42,0	122	170	159		
	-	22,2	57,9	62,7	85,2	133	217		
	-	14,7	51,5	123,5	82,0	172	168		
	-	25,1	54,8	86,9	16,1	111	203		
М	-	21,2	53,9	72,1	102	156	207		
SD		5,07	11,5	29,4	21,5	37,9	73,8		
• • ²	-	36,4	28,5	39,7	76,5	154	131		
SeO ₃ ²	-	47,0	60,4	25,4	74,4	133	182		
Selenit	-	25,2	39,3	45,6	103	120	115		
	-	29,3	52,0	44,4	89,9	106	123		
	-	32,8	39,7	38,0	97,4	135	111		
	-	40,9	32,7	34,8	85,8	122	140		
NI D	-	35,3	42,1	38,0	87,8	129	133		
	-	<u>7,93</u> 21.1	24.3	37.9	99.9	137	161		
SeMet	_	21,1	33.2	39.3	73 3	159	135		
Selenomethionin	_	19.0	20.1	54.9	70,8	150	148		
Celenomethornm	-	24.0	32.1	70.6	87.1	199	186		
	-	24.7	37.2	54.9	126	223	223		
	-	21.9	25.1	26.3	99.0	122	169		
М		22.5	28.6	47.3	92.8	165	170		
SD	-	2,19	6,49	15,8	20,5	38,7	31,9		
	-	29,9	32,5	21,2	25,7	17,5	18,7		
Ebselen	-	19,2	15,9	22,7	17,1	20,7	15,4		
	-	35,2	16,2	23,6	19,0	32,1	15,7		
	-	22,7	30,9	22,0	19,2	18,6	18,9		
	-	24,9	17,1	49,4	19,7	19,2	17,5		
	-	27,0	16,7	18,2	38,5	17,8	24,9		
M	-	26,5 5.62	21,6 7,89	26,2 11,5	23,2 8,03	21,0 5,55	18,5 3,47		

Anhangstabelle 19: cGPx-Aktivitäten im Hämolysat der Ratten während der 28tägigen Repletionsphase

		cGPx Leber [mU/mg Protein]								
				Reple	tionszeit	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		310	-	-	-	333	-	551		
+Se		251	-	-	-	311	-	573		
Positivkontrolle		274	-	-	-	316	-	509		
		318	-	-	-	344	-	576		
		249	-	-	-	329	-	623		
		313	-	-	-	331	-	571		
	M	286	-	-	-	327	-	567		
	50	9.76	-	-	-	12,3	-	7.03		
-Se		11 4	_	_	_	14.3	_	12.3		
Negativkontrolle		9.24	_	_	_	10.0	_	8 69		
Negativitoritione		11 7	_	_	_	8.07	_	7.00		
		9 54	_	_	_	9.21	_	10.1		
		8 81	_	_	_	10.6	_	11.0		
	м	10.1				10,0		9.35		
	SD	1,21	-	-	-	2,32	-	2,16		
		-	16,4	62,4	205	347	585	763		
SeO ₄ ²⁻		-	16,4	98,2	120	317	479	774		
Selenat		-	18,9	44,7	163	302	453	736		
		-	16,3	79,9	148	463	693	735		
		-	19,8	55,2	226	313	500	704		
		-	23,1	83,9	135	348	651	704		
	Μ	-	18,5	70,7	166	348	560	736		
	SD		2,72	20,0	41,3	59,2	98,4	29,0		
2-		-	24,3	44,9	181	470	468	753		
SeO ₃ ²		-	20,0	71,0	192	389	552	574		
Selenit		-	26,0	64,1	144	304	642	791		
		-	12,2	73,7	126	362	498	725		
		-	23,0	84,3	154	327	581	596		
		-	24,4	48,3	167	425	433	677		
	M	-	23,5	64,4	161	380	529	686		
	5D		2,23	20.6	24,5	426	470	87,0 557		
SoMot		-	17,2	39,0	100	420	479 521	337 401		
Solonomothionin		-	10,2	34,0	125	426	JZ 1 450	491 592		
Selenometrionin		-	10,9	31,9	125	420	409 520	701		
		-	15,1	31,0 40.6	155	201	529	560		
		-	10,0	40,0	103	391	550	679		
	М	-	14,4	36.3	152	304	<u> </u>	<u> </u>		
	SD	-	1.64	3.59	21.5	33.6	40.4	79.8		
		-	11,9	10,2	11,1	11,3	9,60	10,1		
Ebselen		-	11.5	10.7	12,5	9,57	11,3	10.3		
		-	11.5	9,67	12,4	11.8	11,8	12.0		
		-	11,4	10,6	10,0	11,8	12,2	10,1		
		-	10,1	11,4	12,8	10,4	12,3	8,13		
		-	9,46	11,2	9,46	10,7	9,54	10,4		
	Μ	-	11,0	10,6	11,4	10,9	11,1	10,2		
	SD		0,962	0,627	1,41	0,880	1,25	1,22		

Anhangstabelle 20: cGPx-Aktivitäten in der Leber der Ratten während der 28-tägigen Repletionsphase

		cGPx Niere [mU/mg Protein]								
				Reple	tionszeit	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		518	-	-	-	583	-	426		
+Se		550	-	-	-	393	-	419		
Positivkontrolle		536	-	-	-	397	-	368		
		343	-	-	-	507	-	449		
		347	-	-	-	456	-	512		
		463	-	-	-	401	-	587		
	M	459	-	-	-	456	-	460		
	50	13.2	-	-	-	11.4	-	11.6		
-Se		14.5	-	-	-	9.66	-	12.3		
Negativkontrolle		11.2	-	_	-	13.8	-	11.2		
Nogalivitoritiono		11.3	-	-	-	14.2	-	13.4		
		10.3	-	-	-	11.8	-	13.0		
		12.1	-	-	-	13.4	-	14.6		
	м	12,1				12.4		12.7		
	SD	1,55	-	-	-	1,75	-	1,24		
2		-	20,3	64,5	130	301	313	502		
SeO ₄ ²⁻		-	21,2	61,0	142	242	336	457		
Selenat		-	27,8	73,3	126	233	350	439		
		-	25,9	77,8	155	233	334	361		
		-	26,4	72,7	149	186	307	344		
		-	25,1	69,5	153	244	348	382		
	Μ	-	24,4	69,8	143	240	331	414		
	SD		3,01	6,19	12,0	36,7	18,0	61,6		
C - O ²⁻		-	25,3	87,9	137	176	330	346		
SeU ₃		-	19,8	64,7 72.0	119	200	290	417		
Selenit		-	20,9	73,0	158	213	333	333		
		-	10,0	44,7	124	190	310	300		
		-	21,0	54,5 47 E	145	204	310	303 226		
	M	-	22,2	47,5	149	201	343	330		
	IVI SD	-	21,4 225	02,1	1 30 15 1	201 30.2	317 186	301		
	00	-	20.8	47 1	80.8	148	361	432		
SeMet		-	24.3	59.3	104	167	229	374		
Selenomethionin		-	21.1	71 4	95.3	221	357	276		
Colonomounoum		-	14.9	58.5	130	202	316	362		
		-	17.8	73.0	94.3	197	333	416		
		-	15.1	68.9	135	157	232	306		
	М		19.0	<u>63.1</u>	107	182	305	361		
	SD	-	3,72	9,92	21,5	28,9	59,8	61,0		
		-	13,7	14,8	14,6	15,5	14,9	16,3		
Ebselen		-	15,6	12,4	12,6	17,1	12,8	12,6		
		-	9,10	13,2	13,6	13,2	13,1	13,0		
		-	11,0	12,9	14,4	13,8	11,9	15,5		
		-	14,6	13,5	13,4	11,5	13,7	14,2		
		-	9,93	13,4	14,7	14,3	17,1	11,6		
	M	-	12,1	13,4	13,9	14,2	13,9	13,4		
	30		2,09	0,131	0,042	1,52	1,00	1,43		

Anhangstabelle 21: cGPx-Aktivitäten in der Niere der Ratten während der 28-tägigen Repletionsphase

		cGPx Testis [mU/mg Protein]									
				Reple	tionszeit	tpunkt					
Gruppe		0d	2d	5d	8d	14d	21d	28d			
		7,95	-	-	-	8,07	-	9,24			
+Se		6,75	-	-	-	7,39	-	8,10			
Positivkontrolle		8,39	-	-	-	7,01	-	7,74			
		7,63	-	-	-	7,75	-	7,26			
		7,09	-	-	-	8,50	-	7,35			
		5,86	-	-	-	8,16	-	7,60			
	M SD	7,28 0,909	-	-	-	7,81 0,547	-	7,88 0,730			
		4,20	-	-	-	4,25	-	4,90			
-Se		3,63	-	-	-	4,10	-	4,00			
Negativkontrolle		4,13	-	-	-	3,23	-	3,62			
		3,27	-	-	-	3,75	-	3,86			
		4,79	-	-	-	3,24	-	3,42			
		3,91	-	-	-	4,74	-	4,08			
	M	3,99	-	-	-	3,88	-	3,98			
	50	- 0,521	4 90	4 17	4 98	5 47	673	7.80			
SeQ ²⁻		-	4 79	4 96	4 85	5 55	7.38	7,26			
Selenat		-	4 73	4 22	5 10	6,66	6,66	7 28			
Colonat		-	4 75	4 70	4 85	8 12	7.56	6.22			
		-	3 18	3.86	4 97	7.55	6 47	7 40			
		-	5.00	4.84	4.60	5.22	6.34	7.35			
	М		4.56	4.46	4.89	6.43	6.86	7.22			
	SD	-	0,684	0,436	0,172	1,21	0,499	0,526			
		-	4,80	5,01	4,94	6,64	7,19	7,45			
SeO ₃ ²⁻		-	4,20	4,65	5,16	6,10	7,45	8,08			
Selenit		-	3,58	3,89	4,18	6,61	7,63	7,65			
		-	4,83	4,88	5,12	6,73	7,47	7,84			
		-	3,35	4,77	4,02	6,86	6,74	6,96			
		-	5,10	4,66	4,48	6,25	7,45	6,37			
	Μ	-	4,31	4,65	4,65	6,53	7,30	7,39			
	SD		0,721	0,394	0,491	0,293	0,317	0,631			
 .		-	4,25	5,16	4,25	5,98	7,69	7,38			
SeMet		-	5,94	4,97	5,28	6,56	7,26	7,56			
Selenomethionin		-	3,89	5,05	5,18	6,11	6,54	7,40			
		-	4,43	4,30	4,72	7,31	6,60	6,81			
		-	3,78	3,79	4,60	5,96	7,83	6,21			
	84	-	4,20	3,91	4,90	6,15	6,71	7,57			
	IVI SD	-	4,41 0,783	4,53 0,607	4,82 0,382	0,35 0,521	7,11 0,569	7,16 0,540			
		-	5,24	3,69	4,30	3,84	4,58	4,50			
Ebselen		-	4,40	3,56	3,42	3,71	4,22	4,39			
		-	3,58	4,24	4,29	3,70	4,51	4,59			
		-	4,51	4,72	3,20	4,24	4,07	3,93			
		-	3,59	2,73	3,46	3,01	4,62	3,47			
		-	3,25	4,38	3,70	4,06	4,34	3,29			
	M SD	-	4,10 0,750	3,89 0,715	3,73 0,467	3,76 0,423	4,39 0,219	3,94 0,562			

Anhangstabelle 22: cGPx-Aktivitäten im Testis der Ratten während der 28-tägigen Repletionsphase

		cGPx Lunge [mU/mg Protein]								
				Replet	tionszeit	tpunkt				
Gruppe		0d	2d	5d	8d	14d	21d	28d		
		14,4	-	-	-	17,2	-	13,5		
+Se		18,9	-	-	-	14,7	-	13,1		
Positivkontrolle		15,3	-	-	-	14,3	-	13,8		
		14,8	-	-	-	12,9	-	15,4		
		12,3	-	-	-	11,7	-	12,8		
		10,3	-	-	-	10,3	-	14,1		
	M	14,3	-	-	-	13,5	-	13,8		
	5D	2,91				2,44		0,93		
-50		3,27	-	-	-	1,70	-	1,00		
- Je Negativkontrolle		1,00	_	_	_	1,37	_	2,10		
Negalivkontiolle		2.60	_	-	_	1,77	_	1,35		
		2,03	_	_		1,90	-	1,37		
		2,27	_	-	_	2.06	_	1,75		
	м	1,00 2 21	-	-	-	2,00	-	1,00		
	SD	0,576	-	-	-	0,180	-	0,276		
		-	2,26	4,30	3,46	10,4	8,89	10,7		
SeO ₄ ²⁻		-	1,82	3,71	4,82	5,89	10,8	11,1		
Selenat		-	2,19	3,90	6,57	10,4	8,29	10,1		
		-	2,17	4,72	7,84	9,00	9,03	10,9		
		-	2,72	4,53	5,57	6,38	8,11	10,3		
		-	2,66	4,33	4,88	6,12	8,63	11,3		
	Μ	-	2,30	4,25	5,52	8,03	8,59	10,7		
	SD		0,336	0,381	1,53	2,15	0,390	0,471		
2-		-	2,78	3,30	4,17	9,51	9,07	9,88		
SeO ₃ ²		-	2,54	4,03	4,22	5,55	8,97	10,3		
Selenit		-	2,29	3,79	4,77	6,15	8,52	11,0		
		-	2,23	4,64	3,68	7,37	7,73	12,6		
		-	2,77	3,70	5,80	9,61	8,01	9,73		
		-	2,33	2,39	5,81	7,45	7,87	9,20		
	M	-	2,49	3,64	4,74	7,61	8,46	10,4		
	5D		0,242	0,756	0,895	1,68 5 7 2	0,574	1,22		
SoMot		-	∠,40 2.24	2,10	3,50	$0, 1 \ge$	7,14 Q 51	0,20 10 2		
Solonomothionin		-	2,24	3,55	3,57	9,00	7 70	10,3		
Selenomethionin		-	1,09	2,13	0,00 1 20	4,00	1,1U 8 21	10,1		
		-	2,52	2,50	4,32	9,74	0,21	0.24		
		-	2,90	3,44	4,70	0,49	7,57	9,34		
	М	-	2 20	2 75	<u> </u>	<u> </u>	7,13	0.87		
	SD	-	2,23 0,471	0.654	0.835	1,92	0,561	9,07 0,946		
	-	-	1.81	1.52	2.52	1.63	1.57	1.47		
Ebselen		-	2,16	2,13	2,01	2,08	2,05	1,62		
		-	2,09	2,07	1,83	1,93	1,37	1,74		
		-	1,88	1,94	1,81	1,70	1,65	1,37		
		-	1,90	1,39	1,76	2,26	1,87	1,91		
		-	1,80	1,97	1,86	1,95	1,42	1,73		
	Μ	_	1,94	1,84	1,96	1,92	1,65	1,67		
	SD	-	0,150	0,303	0,287	0,236	0,261	0,200		

Anhangstabelle 23: cGPx-Aktivitäten in der Lunge der Ratten während der 28tägigen Repletionsphase

		cGPx Milz [mU/mg Protein]						
				Replet	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		325	-	-	-	358	-	334
+Se		347	-	-	-	294	-	302
Positivkontrolle		269	-	-	-	316	-	314
		399	-	-	-	296	-	348
		316	-	-	-	321	-	339
		352	-	-	-	258	-	345
	M	335	-	-	-	307	-	330
	SD	43,0				33,5		18,3 22 /
50		39,5	-	-	-	41,0	-	32,4
-Je Nagotiv kontrollo		29,0	-	-	-	37,0	-	42,9
Negativkontrolle		39,9	-	-	-	40,3	-	20,3
		40,0	-	-	-	34,4	-	30,9 27 5
		55,5 57,2	-	-	-	30,∠ 21.7	-	27,3
	54	37,3	-	-	-	31,7	-	27,1
	SD	44,2 10,0	-	-	-	30,9 3,66	-	32,0 6,50
		-	113	113	145	207	334	367
SeO ₄ ²⁻		-	64,0	115	155	195	284	341
Selenat		-	71,4	106	170	200	213	231
		-	60,7	126	151	218	238	269
		-	85,5	112	169	188	230	328
		-	106	122	146	208	334	298
	Μ	-	83,6	116	156	203	272	306
	SD		22,2	7,20	11,0	10,7	53,6	49,8
2		-	61,4	99,1	143	208	320	328
SeO ₃ ²⁻		-	66,8	110	132	184	259	347
Selenit		-	59,4	84,2	110	171	210	312
		-	50,8	103	129	250	241	287
		-	62,2	74,0	127	196	321	298
		-	48,0	82,1	131	248	222	366
	Μ	-	58,1	92,1	129	209	270	323
	SD		7,21	14,0	10,6	33,1	48,1	30,3
CoMot		-	82,7	110	135	169	288	292
Selviet		-	90,1	99,7	173	171	323	237
Selenomethionin		-	80,4	111	152	1/1	224	490
		-	70,4	105	140	193	230	209
		-	75,2	93,7	144	194	204	300
	54	-	70,4	115	119	203	230	311
	SD	-	79,0 6,72	7,94	1 45 18,1	1 04 14,8	200 39,5	290 44,1
		-	56,4	39,7	41,9	58,0	24,0	37,2
Ebselen		-	47,1	36,4	37,4	39,0	20,2	45,6
		-	47,8	42,9	36,0	32,9	29,5	39,7
		-	39,0	37,5	48,9	56,1	21,0	39,3
		-	37,7	33,9	40,8	32,5	26,0	34,9
		-	44,4	20,5	40,5	39,4	38,1	43,5
	M SD	-	43,2	35,1	40,9	43,0	26,5	40,6
	50		יט,ד	1,11	т, т э	11,0	0,00	טו,ד

Anhangstabelle 24: cGPx-Aktivitäten in der Milz der Ratten während der 28-tägigen Repletionsphase

		Deiodinase [fmol T ₃ /(min*mg Protein)]						
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		47,8	-	-	-	44,7	-	36,7
+Se		26,0	-	-	-	19,6	-	45,2
Positivkontrolle		44,5	-	-	-	41,2	-	41,3
		44,5	-	-	-	50,1	-	38,3
		34,4	-	-	-	33,9	-	35,9
		34,5	-	-	-	44,6	-	32,4
	Μ	38,6	-	-	-	39,0	-	38,3
	SD	8,35				10,9		4,46
50		3,04	-	-	-	0,10	-	4,40
-Se Nagativkantralla		4,43	-	-	-	7,00	-	7,50
negativkontrolle		4,04	-	-	-	3,69	-	1,08
		5,03 5,06	-	-	-	3,54	-	0,73
		5,60 0.95	-	-	-	2,00	-	0,02
	54	9,00	-	-	-	5,34	-	<u>0,11</u>
	IVI SD	3,3 1 2.39	-	-	-	3,08 2.17	-	3,42 2.35
		_,	8,80	25,5	25,6	40,7	47,6	36,0
SeO ₄ ²⁻		-	11,7	25,9	26,5	42,5	38,6	44,6
Selenat		-	7,51	24,1	33,5	43,8	42,6	39,1
		-	7,81	24,2	27,5	34,6	40,3	33,7
		-	8,09	21,8	28,0	38,3	41,0	135
		-	11,2	22,0	37,6	39,9	38,5	42,2
	Μ	_	9,18	23,9	29,8	40,0	41,4	39,1
	SD	-	1,80	1,74	4,73	3,27	3,38	4,42
		-	12,5	32,4	32,9	43,6	39,1	36,3
SeO ₃ ²⁻		-	13,2	27,0	31,9	47,4	122	40,6
Selenit		-	10,8	27,9	49,5	25,9	41,1	31,2
		-	7,83	35,1	30,9	46,9	34,7	42,4
		-	8,76	26,7	33,1	24,7	41,7	43,8
		-	13,8	25,9	27,8	43,8	34,6	35,0
	Μ	-	11,2	29,2	34,3	38,7	38,3	38,2
	SD		2,46	3,70	7,68	10,5	3,42	4,86
0-14-1		-	5,54	24,3	24,7	34,9	43,1	43,8
Selviet		-	9,99	13,3	38,4	38,3	33,7	41,3
Selenomethionin		-	13,3	29,5	38,3	47,6	36,2	44,2
		-	12,1	24,9	28,6	38,2	29,7	32,3
		-	5,97	25,1	29,1	30,1	37,3	49,Z
		-	8,82	14,8	41,1	43,0	51,1	35,5
	IVI SD	-	9,∠ŏ 3,15	22,0 6,42	33,4 6,73	39,1 4,74	38,3 7,57	41,1 6.18
	00	_	4 85	5.91	6.02	2.89	2 61	4 92
Ebselen		-	35.1	6.67	6.21	10.0	3.34	6.39
		-	6.75	9.31	7.96	3.90	10.7	4.28
		-	2,19	1.17	5.37	2.30	3.51	3.50
		-	3.43	8.14	8.74	11.2	9,92	1,46
		-	2,72	4,53	48.5	4,42	5,98	4,16
	М		3,99	5,95	6,86	5,79	6,01	4,12
	SD	-	1,84	2,88	1,42	3,82	3,53	1,63

Anhangstabelle 25: Deiodinaseaktivitäten in der Leber der Ratten während der 28tägigen Repletionsphase

		GST Leber [mU/mg Protein]						
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		309	-	-	-	346	-	353
+Se		298	-	-	-	315	-	275
Positivkontrolle		265	-	-	-	349	-	351
		355	-	-	-	363	-	360
		284	-	-	-	344	-	291
		319	-	-	-	276	-	335
	M SD	305 31.1	-	-	-	332 31.7	-	327 35.8
	-	477	-	-	-	422	-	378
-Se		414	-	-	-	495	-	476
Negativkontrolle		383	-	-	-	475	-	407
0		452	-	-	-	379	-	381
		364	-	-	-	414	-	394
		370	-	-	-	415	-	420
	Μ	410	_	_	_	433	_	409
	SD	46,2	-	-	-	43,0	-	36,4
2-		-	414	317	266	300	274	319
SeO ₄ ²		-	380	327	387	297	251	352
Selenat		-	441	489	337	265	306	267
		-	396	478	304	311	340	277
		-	367	331	284	301	311	279
		-	448	253	270	346	324	289
	M	-	408	366	308	303	301	297
	30	_	32,0 /17	95,6 311	40,5 271	20,3	<u>32,7</u> 271	32,1
SoO. ²⁻		_	417	340	2/1	201	211	320
Selenit		_	318	340	273	331	200	301
Ocicini		_	405	376	296	326	294	309
		-	434	364	309	318	313	286
		-	381	309	306	343	333	266
	м		402	341	300	305	303	297
	SD	-	48,3	27,2	26,5	43,8	22,0	19,2
		-	326	302	346	280	373	319
SeMet		-	424	328	350	281	267	283
Selenomethionin		-	399	380	278	377	250	292
		-	351	375	321	275	275	268
		-	421	296	311	429	295	346
		-	341	313	264	261	372	277
	Μ	-	377	332	312	317	306	297
	SD		42,8	36,9	35,0	69,1	53,8	29,2
F haala <i>n</i>		-	451	395	460	4/1	485	356
Ebselen		-	394	398	496	413	3/9	489
		-	436	365	415	396	397	391
		-	500	416	438	409	300 205	405
		-	402	499	400 207	408	385 420	320 277
	R 4	-	511	480	301	407	439	3/1
	IVI SD	-	449 48.6	425 52.8	444 30 2	437 35.6	4U/ 46.6	4U1 62 9
	50		40,0	52,0	JJ,Z	55,0	-10,0	02,3

Anhangstabelle 26: GST-Aktivitäten in der Leber der Ratten während der 28-tägigen Repletionsphase

			tGSH [µmol/g Frischmasse]					
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		4,17	-	-	-	5,21	-	5,23
+Se		4,17	-	-	-	6,07	-	5,41
Positivkontrolle		4,73	-	-	-	5,78	-	6,14
		6,03	-	-	-	5,28	-	5,55
		6,07	-	-	-	5,27	-	5,67
		5,59	-	-	-	4,11	-	4,79
	M SD	5,13 0,884	-	-	-	5,29 0,671	-	5,47 0,450
		2,16	-	-	-	3,56	-	2,27
-Se		3,12	-	-	-	2,72	-	2,88
Negativkontrolle		2,11	-	-	-	2,30	-	2,56
		3,28	-	-	-	3,41	-	2,80
		2,49	-	-	-	2,33	-	2,93
		3,40	-	-	-	2,09	-	3,16
	M SD	2,76	-	-	-	2,73	-	2,77
	00	-	2.98	4.57	3.92	3.68	4.54	5.81
SeQ ₄ ²⁻		-	3.00	3.25	4.14	3,43	4.08	6.43
Selenat		-	2.45	3.23	4.67	5.09	5.28	5.33
		-	3.21	3.97	5.13	4.38	5.96	4.66
		-	3.10	3.07	4.66	4.67	5.07	5.26
		-	2.53	4.04	3.48	5.21	4.42	4.81
	М		2.88	3.69	4.33	4.41	4.89	5.38
	SD	-	0,314	0,593	0,597	0,730	0,683	0,654
		-	3,64	3,50	3,37	3,68	4,25	5,25
SeO ₃ ²⁻		-	1,99	3,55	4,62	5,42	5,81	5,58
Selenit		-	2,74	3,13	4,02	4,30	5,71	5,74
		-	2,95	3,72	4,22	3,79	4,41	5,22
		-	3,11	3,85	4,65	4,13	4,44	5,45
		-	2,73	3,27	4,36	4,99	4,73	5,13
	Μ	-	2,86	3,50	4,21	4,39	4,89	5,39
	SD		0,543	0,268	0,472	0,688	0,689	0,237
SoMo+		-	3,53	3,90	4,79	4,01	5,21 € 20	4,20 E 04
Selviet		-	2,09	4,30	4,80	4,88	5,30	5,04
Selenomethionin		-	3,02	4,70	3,92	4,715	5,24 4 00	5,60 5,60
		-	3,09	2,20	4,34	4,04	4,90	5,69
		-	2,99	3,44	4,75	4,93	4,19	5,92
	М	-	2,40	2,70	<u> </u>	4,43	4,55	5,10
	SD	-	0.519	0.972	0.507	0.340	-,30 0.450	0.682
		-	2,35	3,38	2,58	2,18	2,91	2,93
Ebselen		-	2,82	2,42	2,63	2,31	3,06	2,46
		-	2,36	3,26	3,13	2,40	2,61	3,09
		-	3,09	2,53	2,39	2,55	2,20	2,81
		-	3,15	2,35	2,52	3,65	2,66	2,68
		-	2,89	2,58	3,14	3,04	2,78	2,58
	M	-	2,78	2,75	2,73	2,69	2,70	2,76
	อบ		0,347	0,451	0,324	0,560	0,298	0,231

Anhangstabelle 27: Konzentrationen an Gesamtglutathion (tGSH) in der Leber der Ratten während der 28-tägigen Repletionsphase

		GSH [µmol/g Frischmasse]						
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		3,63	-	-	-	4,61	-	4,52
+Se		3,59	-	-	-	5,23	-	4,61
Positivkontrolle		4,21	-	-	-	5,08	-	5,42
		5,43	-	-	-	4,68	-	4,94
		5,44	-	-	-	4,71	-	5,04
		4,79	-	-	-	3,59	-	4,30
	M SD	4,52 0,836	-	-	-	4,65 0,577	-	4,81 0,406
		2,08	-	-	-	3,42	-	2,19
-Se		3,02	-	-	-	2,64	-	2,79
Negativkontrolle		2,02	-	-	-	2,22	-	2,48
-		3,18	-	-	-	3,29	-	2,70
		2,41	-	-	-	2,27	-	2,82
		3,30	-	-	-	2,01	-	3,08
	Μ	2,67	-	-	-	2,64	-	2,67
	SD	0,569	0.00	4.00	0.50	0590	0.00	0,308
0 · 0 ²⁻		-	2,83	4,32	3,56	3,21	3,83	5,08
SeO ₄ -		-	2,82	3,07	3,80	2,91	3,68	5,59
Selenat		-	2,35	2,98	4,31	4,81	4,80	4,53
		-	3,06	3,84	4,77	3,97	5,35	4,17
		-	2,97	2,80	4,44	4,25	4,57	4,77
		-	2,42	3,88	3,08	4,74	3,99	4,16
		-	2,74	3,48	3,99	3,98	4,37	4,72
	30	_	3.50	3 20	3.00	0,784	3 78	0,557
SeO. ²⁻		_	1.82	3 30	0,00 ∕\ 31	0,10 ∕1 Q1	5.26	4,01
Selenit		_	2 65	2 95	3 70	3.94	5,20	4,00 5 1 <i>1</i>
Oelerin		_	2,00	2,35	3,70	3.45	3.82	4 56
		_	2,02	3,40	4 30	3 70	3 91	4,86
		_	2,57	3,05	4,00	4 62	4 26	4,00
	м		2,30	3 31	3.80	3.02	4.37	4,44 1 71
	SD	-	0.550	0.270	0.492	0.673	0.675	0.258
		-	3,40	3,77	4,45	3,57	4,78	3,57
SeMet		-	1,97	4,18	4,48	4,41	4,88	4,24
Selenomethionin		-	2,86	4,45	3,68	4,30	4,72	5,31
		-	2,95	2,01	4,01	4,23	4,31	5,36
		-	2,87	3,35	4,39	4,50	3,57	5,13
		-	2,28	2,61	3,24	4,01	3,88	4,44
	Μ	_	2,72	3,40	4,04	4,17	4,36	4,67
	SD	_	0,515	0,942	0,500	0,339	0,536	0,713
		-	2,26	3,29	2,51	2,09	2,82	2,84
Ebselen		-	2,73	2,33	2,53	2,22	2,96	2,37
		-	2,27	3,16	3,02	2,30	2,51	2,99
		-	2,99	2,45	2,30	2,45	2,11	2,72
		-	3,05	2,26	2,44	3,55	2,57	2,57
		-	2,78	2,49	3,04	2,94	2,70	2,49
	M SD	-	2,68 0,344	2,66 0,443	2,64 0,315	2,59 0,554	2,61 0,296	2,66 0,232

Anhangstabelle 28: Konzentrationen an reduziertem Glutathion (GSH) in der Leber der Ratten während der 28-tägigen Repletionsphase

			GSSG [µmol/g Frischmasse]					
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		0,536	-	-	-	0,603	-	0,714
+Se		0,581	-	-	-	0,836	-	0,802
Positivkontrolle		0,518	-	-	-	0,697	-	0,720
		0,598	-	-	-	0,603	-	0,610
		0,632	-	-	-	0,560	-	0,624
		0,803	-	-	-	0,521	-	0,487
	IVI SD	0,611 0,103	-	-	-	0,637 0,114	-	0,660 0,013
		0,080	-	-	-	0,139	-	0,082
-Se		0,100	-	-	-	0,079	-	0,086
Negativkontrolle		0,088	-	-	-	0,082	-	0,088
		0,096	-	-	-	0,118	-	0,099
		0,085	-	-	-	0,055	-	0,115
		0,097	-	-	-	0,081	-	0,079
	M	0,091	-	-	-	0,092	-	0,092
	30	0,000	0 145	0 247	0 366	0,030	0 711	0 724
SeQ. ²⁻		-	0,143	0,247	0,334	0,475	0.392	0,724
Selenat		-	0,100	0,756	0.355	0,279	0.480	0,000
Colonat		-	0 149	0,200	0.354	0.411	0,400	0 487
		-	0 129	0,100	0,220	0 421	0,506	0 493
		-	0,120	0 155	0,397	0 473	0 431	0.653
	М		0.136	0.206	0.338	0.429	0.521	0.664
	SD	-	0,031	0,058	0,061	0,083	0,119	0,148
		-	0,137	0,206	0,376	0,496	0,461	0,639
SeO ₃ ²⁻		-	0,162	0,154	0,306	0,513	0,549	0,722
Selenit		-	0,092	0,178	0,315	0,356	0,551	0,599
		-	0,134	0,253	0,269	0,341	0,588	0,660
		-	0,136	0,158	0,352	0,437	0,538	0,589
		-	0,156	0,209	0,284	0,377	0,471	0,690
	Μ	-	0,136	0,193	0,317	0,420	0,526	0,650
	SD		0,024	0,037	0,041	0,073	0,050	0,052
Callat		-	0,125	0,187	0,332	0,439	0,426	0,635
Selviet		-	0,126	0,177	0,318	0,476	0,418	0,794
Selenomethionin		-	0,164	0,251	0,231	0,398	0,524	0,554
		-	0,137	0,191	0,330	0,406	0,593	0,533
		-	0,124	0,090	0,305	0,430	0,010	0,700
	54	-	0,110	0,090	0,309	0,420	0,034	0,720
	SD	-	0.017	0,104	0,324	0.028	0,539	0,071
	-	-	0.091	0.096	0.078	0.089	0.095	0.093
Ebselen		-	0,088	0,087	0,095	0,088	0,093	0,094
		-	0,087	0,104	0,112	0,093	0,102	0,094
		-	0,096	0,081	0,088	0,094	0,084	0,087
		-	0,095	0,084	0,080	0,105	0,097	0,110
		-	0,105	0,087	0,097	0,099	0,089	0,092
	M	-	0,094	0,090	0,092	0,095	0,093	0,095
	5D		0,007	0,009	0,013	0,006	0,006	0,008

Anhangstabelle 29: Konzentrationen an oxidiertem Glutathion (GSSG) in der Leber der Ratten während der 28-tägigen Repletionsphase

					GSH:GSSG)		
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		6,77	-	-	-	7,65	-	6,33
+Se		6,18	-	-	-	6,26	-	5,75
Positivkontrolle		8,14	-	-	-	7,28	-	7,53
		9,07	-	-	-	7,77	-	8,10
		8,60	-	-	-	8,41	-	8,09
		5,97	-	-	-	6,89	-	8,83
	M SD	7,46 1,32	-	-	-	7,38 0,747	-	7,44 1,17
		26,0	-	-	-	24,6	-	26,7
-Se		30,2	-	-	-	33,3	-	32,4
Negativkontrolle		23,1	-	-	-	27,1	-	28,3
-		33,3	-	-	-	27,9	-	27,2
		28,2	-	-	-	41,2	-	24,5
		33,9	-	-	-	24,9	-	38,8
	M SD	29,1 4,22	-	-	-	29,8 6.39	-	29,6 5.18
		-	19.5	17.5	9.72	6.76	5.38	7.03
SeO ₄ ²⁻		-	15,4	17,0	11,4	5,65	9,40	6,71
Selenat		-	23,4	11,6	12,1	17,2	10,0	5,71
		-	20,6	29,6	13,5	9,66	8,78	8,55
		-	23,0	10,4	20,2	10,1	9,04	9,68
		-	22,8	25,0	7,78	10,0	9,25	6,37
	Μ		20,8	18,5	12,5	9,90	8,64	7,34
	SD	-	3,05	7,49	4,28	4,05	1,65	1,49
		-	25,6	16,0	7,96	6,42	8,21	7,21
SeO ₃ ²⁻		-	11,3	22,0	14,1	9,57	9,59	6,73
Selenit		-	28,8	16,6	11,8	11,1	9,36	8,59
		-	21,1	13,7	14,7	10,1	6,51	6,91
		-	21,9	23,3	12,2	8,46	7,26	8,25
		-	16,6	14,6	14,3	12,3	9,05	6,43
	M	-	20,9	17,7	12,5	9,65	8,33	7,35
	SD		6,28	4,00	2,52	2,04	1,24	0,870
SoMot		-	21,2	20,2	13,4	0,12	11,2	5,6Z
Solonomothionin		-	13,0	23,7	14,1	9,20	0.01	0,50
Selenomethionin		-	21.5	10.5	10,0	10,8	9,01	9,56
		-	21,0	10,5	12,2	10,4	1,21 5.77	10,1
		-	23,2 10.2	37,4 20.1	8 79	9.54	5.03	0,52
	м	_	20.7	17 /	127	9,34	<u> </u>	7.21
	SD	-	4.18	11.4	2.41	1.00	2.58	2.06
		-	24.9	34,2	32.1	23.4	29.6	30.7
Ebselen		-	31,1	26.7	26.6	25.3	31,8	25,2
		-	26,1	30,4	27,0	24,6	24,5	31,7
		-	31,3	30,2	26,3	26,2	25,0	31,3
		-	31,9	27,0	30,4	33,8	26,6	23,3
		-	26,6	28,6	31,3	29,7	30,4	27,2
	M SD	-	28,7 3,13	29,5 2,75	29,0 2,60	27,2 3,88	28,0 3,03	28,2 3,53

Anhangstabelle 30: Verhältnis von oxidiertem und reduziertem Glutathion (GSH:GSSG) der Ratten während der 28-tägigen Repletionsphase

		T₃ [nmol/L]						
				Reple	tionszei	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		1,20	-	-	-	1,07	-	1,22
+Se		1,11	-	-	-	1,29	-	1,17
Positivkontrolle		1,25	-	-	-	1,21	-	1,06
		1,32	-	-	-	1,16	-	1,19
		1,23	-	-	-	1,42	-	1,49
		1,26	-	-	-	1,11	-	1,16
	M SD	1,23 0.072	-	-	-	1,21 0.128	-	1,22 0.146
		0,883	-	-	-	0,737	-	0,906
-Se		0,864	-	-	-	0,610	-	0,986
Negativkontrolle		0,935	-	-	-	0,857	-	0,506
-		0,599	-	-	-	0,765	-	0,710
		1,00	-	-	-	0,558	-	0,862
		0,876	-	-	-	0,620	-	0,619
	Μ	0,859	_	_	_	0,691	_	0,765
	SD	0,138				0,113		0,184
a a ²		-	0,715	0,954	1,09	1,25	1,21	1,14
SeO ₄		-	0,913	1,07	1,10	1,22	1,27	1,31
Selenat		-	0,798	1,05	1,07	1,01	1,22	1,01
		-	0,884	1,16	0,971	1,27	1,16	1,10
		-	1,04	1,09	1,10	1,03	1,31	1,39
	84	-	1,14	1,22	1,15	1,11	1,13	1,31
	IVI SD	-	0,914	1,09	1,08	1,15	1,22	1,∠1 0.148
	50	-	0.962	0.975	1.05	1.30	1 04	1.38
SeO ₂ ²⁻		-	0,980	1.51	1 01	1 45	1.38	1,32
Selenit		-	0.810	1.00	1,15	1.23	1,25	1.24
Colorine		-	0.841	0.993	1.25	1.10	1.23	0.981
		-	0.940	0.991	1.18	1.30	1.29	1.32
		-	0.870	1.04	1.28	0.912	1.17	1.28
	М		0.900	1.09	1.16	1.21	1.23	1.25
	SD	-	0,070	0,210	0,108	0,186	0,116	0,141
		-	0,603	1,03	0,824	1,16	1,30	1,17
SeMet		-	0,782	1,27	1,39	0,970	1,17	1,26
Selenomethionin		-	1,09	1,16	1,24	1,15	1,10	1,06
		-	0,872	0,786	0,711	1,03	1,15	1,22
		-	1,23	1,02	1,08	1,20	1,19	1,05
		-	1,02	0,863	1,25	1,17	0,979	1,18
	M	-	0,931	1,02	1,08	1,11	1,15	1,16
	SD		0,225	0,179	0,264	0,092	0,107	0,084
Ebsolon		-	0,701	0,710	0,070	0,120	0,700	0,927
Enseien		-	0,091	0,900	0,970	0,993	0,800	0,014
		-	0,973	0.642	1 01	0.00	0,700	0,000
		-	0,000	0,042	0 700	0,000	1 10	0,374
		-	0,880	0,302	0,730	0,000	0.951	0,000
	м		0.873	0.885	0 884	0.856	0.878	0.870
	SD	-	0,072	0,208	0,089	0,155	0,132	0,135

Anhangstabelle 31: T₃-Konzentrationen im Plasma [nmol/L] der Ratten während der 28-tägigen Repletionsphase

Gruppe Od 2d 5d 8d 14d 21d 28d +Se 53,9 - - - 49,2 - 57,2 Positivkontrolle 54,7 - - 54,5 - 56,5 Positivkontrolle 54,7 - - 54,5 - 41,5 66,3 - - - 47,3 - 61,3 66,3 - - - 41,6 - 65,9 M 68,9 - - - 74,6 - 75,3 SD 60,3 - - - 74,5 - 75,3 -Se 76,4 - - - 59,8 - 69,3 42,3 - - - 59,7 - 59,9 71,0 - - - 54,7 - 66,8 Seto_2 ² - 60,8 65,9 53,8 62,2						T₄ [nmol/L]			
Gruppe Od 2d 5d 8d 14d 21d 28d +Se 48,8 - - - 49,2 - 57,2 Positivkontrolle 54,7 - - 67,5 - 56,5 Positivkontrolle 54,7 - - 47,3 - 61,3 59,4 - - - 41,6 - 65,9 50 8.03 - - - 67,6 - 61,6 50 8.03 - - - 74,5 - 75,3 -Se 76,4 - - - 59,8 - 62,9 71,0 - - 59,8 - 62,3 - 72,6 62,0 - 72,6 62,0 - 74,7 6,68 62,0 - 74,7 6,68 62,0 - 64,0 63,1 56,7 50,1 54,4 49,7 - 64,0					Renle	tionszeit	tnunkt		
+Se 53.9 - - 49.2 - 57.2 Positivkontrolle 48,8 - - - 67,5 - 67,2 Positivkontrolle 54,7 - - 47,3 - 61,3 66,3 - - 67,6 - 61,6 59,4 - - 41,6 - 65,9 M 58,9 - - 74,5 - 75,3 SD 8.03 - - 74,5 - 75,3 -Se 43,0 - - 59,8 - 69,3 42,3 - - - 57,6 - 72,6 62,0 - - - 57,6 - 72,6 62,0 - - - 64,7 - 60,7 44,1 Secl_12 - 70,6 63,4 53,2 55,8 68,2 Selenat - <	Gruppe		0d	2d	5d	8d	14d	21d	28d
+Se 48,8 - - - 67,5 - 56,5 Positivkontrolle 54,7 - - 54,5 - 41,5 70,0 - - - 67,6 - 61,3 66,3 - - - 67,6 - 65,9 80,83 - - - 54,6 57,7,3 - 64,3 SD 8.03 - - 74,5 - 75,3 - 76,4 - - 74,5 - 75,3 - 76,4 - - - 59,8 - 62,4 - 76,4 - 7 7,6 - 7,2,6 62,0 - - - 57,6 - 7,2,6 66,6 62,0 - - 60,7 - 66,6 - 7,2,6 66,6 62,2 55,8 68,2 55,8 68,2 55,8 68,2 55,8 59,9 64,3			53,9	-	-	-	49,2	-	57,2
Positivkontrolle 54,7 - - 54,5 - 41,5 70,0 - - 47,3 - 61,3 66,3 - - 67,6 61,6 59,4 - - 67,6 61,6 59,4 - - 54,6 57,3 SD 8,03 - 10,9 8,48 -Se 43,0 - - 68,8 - 62,4 Negativkontrolle 75,0 - - 57,6 - 72,6 62,0 - - 57,6 - 72,6 62,7 - 66,8 SD 15,5 - - 7,47 - 66,8 SeQ_2^2 - 70,6 63,4 53,2 52,0 67,7 44,1 SeQ_4^2 - 60,8 65,9 53,8 62,2 55,8 55,8 55,8 55,9 62,2 56,3 56,2 56,3 55,	+Se		48,8	-	-	-	67,5	-	56,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Positivkontrolle		54,7	-	-	-	54,5	-	41,5
66,3 - - - 67,6 - 61,6 59,4 - - 41,6 - 65,9 SD 8,03 - - 10,9 - 8,48 SD 8,03 - - 76,4 - - 76,3 -Se 43,0 - - - 66,8 - 62,4 Negativkontrolle 75,0 - - - 59,8 - 69,3 42,3 - - - 57,6 - 72,6 62,0 - - - 54,7 - 59,9 71,0 - - 60,7 - 60,7 - 60,8 SD 15,5 - - 747 6,88 - 62,2 55,8 68,2 Selenat - 67,4 61,0 53,8 62,2 55,8 68,2 56,3 56,2 56,3 56,2 56,3			70,0	-	-	-	47,3	-	61,3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			66,3	-	-	-	67,6	-	61,6
M 58,9 50 50,03 - - 10,9 - 8,48 SD 8,03 - - - 74,5 - 75,3 -Se 43,0 - - - 68,8 - 62,4 Negativkontrolle 75,0 - - - 59,8 - 69,3 42,3 - - - 54,7 - 59,9 62,0 - - - 54,7 - 60,1 62,0 - - - 60,7 - 60,1 50 15,5 - - 7,47 6,68 Sol 15,5 - - 7,47 6,68 SeQ ₄ ²⁺ - 60,8 65,9 53,8 62,2 55,8 68,2 Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 - 62,6 62,2 50,5 56,3			59,4	-	-	-	41,6	-	65,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		M SD	58,9 8.03	-	-	-	54,6 10,9	-	57,3 8,48
-Se 43,0 - - - 68,8 - 62,4 Negativkontrolle 75,0 - - - 59,8 - 69,3 42,3 - - - 57,6 - 72,6 62,0 - - - 54,7 - 59,9 71,0 - - 60,7 - 60,1 M 61,6 - - - 66,6 SeO 4 ²⁻ - 60,8 65,9 53,8 62,2 55,8 68,2 Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 - 64,0 63,1 56,5 56,3 56,2 60,6 62,2 50,1 54,4 52,1 - 68,3 66,5 56,5 56,3 56,2 60,6 Selenat - 62,6 62,2 50,2 58,2 54,3 48,8 Selenat <t< th=""><th></th><th>-</th><th>76,4</th><th>-</th><th>-</th><th>-</th><th>74,5</th><th>-</th><th>75,3</th></t<>		-	76,4	-	-	-	74,5	-	75,3
Negativkontrolle 75,0 - - - 59,8 - 69,3 42,3 - - - - 57,6 - 72,6 62,0 - - - 60,7 - 60,1 M 61,6 - - - 60,7 - 66,6 SD 15.5 - - 7.47 - 66,6 SD 15.5 - - 7.47 - 66,6 SeQ.4 ²⁻ - 60,8 65,9 53,8 62,2 55,8 68,2 Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 - 64,0 63,1 56,7 50,1 54,4 52,1 Selenat - 63,7 62,4 57,2 58,2 56,3 56,2 60,6 62,2 50,2 58,2 54,3 48,8 57,0 48,8 57,0 48,8 57,3 60,	-Se		43,0	-	-	-	68,8	-	62,4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Negativkontrolle		75.0	-	-	-	59.8	-	69.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- J		42.3	-	-	-	57.6	-	72.6
71,0 - - 60,7 - 60,1 M 61,6 - - - 62,7 - 66,6 SD 15,5 - - 7,47 6,68 SeO ₄ ²⁻ - 60,8 65,9 53,8 62,2 55,8 68,2 Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 - 64,0 63,1 56,7 50,1 54,4 52,1 - 68,3 66,5 56,5 56,3 56,2 60,6 - 51,3 54,6 68,7 73,0 52,2 59,8 SeO ₃ ²⁻ - 62,6 62,2 50,2 58,2 54,3 48,8 SeO ₃ ²⁻ - 67,8 75,1 55,1 52,9 63,3 60,9 Selenit - 55,8 <t< th=""><th></th><th></th><td>62.0</td><td>-</td><td>-</td><td>-</td><td>54.7</td><td>-</td><td>59.9</td></t<>			62.0	-	-	-	54.7	-	59.9
M 61,6 SD 71,6 15,5 62,7 7,47 66,6 6,68 SeO ₄ ²⁻ - 70,6 60,8 63,4 55,9 53,2 53,8 52,0 62,2 67,7 44,1 44,1 6,68 SeO ₄ ²⁻ - 60,8 67,4 61,0 63,1 56,7 56,7 55,8 51,4 49,7 - 64,0 63,1 56,7 56,5 56,3 56,2 56,2 60,6 60,6 - 64,0 63,7 62,4 57,2 58,2 56,3 56,2 56,3 60,6 - 51,3 54,6 68,7 73,0 52,2 59,8 59,8 55,8 SD 6,99 4,33 5,79 8,35 5,90 8,70 55,8 56,3 55,8 56,3 50,0 8,70 SeO ₃ ²⁻ - 62,6 62,2 50,2 50,2 58,2 54,3 48,8 SeO ₃ ²⁻ - 67,8 75,1 55,1 55,0 49,3 63,1 59,8 Selenit - 55,8 56,7 49,9 51,9 62,4 60,3 57,6 58,1 59,3 57,7 SD - 5,88 8,33 5,91 7,64 7,64 7,07 4,98 4,94 53,0 Selenomethionin -			71.0	-	-	-	60.7	-	60.1
SD 15.5 - - - 7,47 - 6,68 SeQ4 ²⁻ - 60,8 65,9 53,8 62,2 55,8 68,2 Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 - 64,0 63,1 56,7 50,1 54,4 52,1 - 64,0 63,1 56,5 56,3 56,2 60,6 - 51,3 54,6 68,7 73,0 52,2 59,8 M 63,7 62,4 57,2 58,2 56,3 56,5 SD 6.99 4,33 5,79 8,35 5,90 8,70 SeO ₃ ²⁻ - 67,8 75,1 55,1 52,9 63,3 60,9 Selenit - 55,8 59,5 62,4 70,9 56,3 59,8 Selenit - 55,8 59,5 62,4 70,9 56,5 Selenit -		М	61.6				62.7		66.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SD	15,5	-	-	-	7,47	-	6,68
SeO ₄ ²⁻ - 60,8 65,9 53,8 62,2 55,8 68,2 Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 - 64,0 63,1 56,7 50,1 54,4 52,1 - 68,3 66,5 56,5 56,3 56,2 60,6 - 51,3 54,6 68,7 73,0 52,2 59,8 SD - 63,7 62,4 57,2 58,2 56,3 55,8 SD - 62,6 62,2 50,2 58,2 54,3 48,8 SeO ₃ ²⁻ - 67,8 75,1 55,1 52,9 63,3 60,9 Selenit - 55,8 59,5 62,4 70,9 56,3 59,8 Selenit - 58,7 49,9 51,9 62,1 67,6 57,3 Selenit - 62,9 60,3 57,6 58,1 59,3 <t< th=""><th></th><th></th><th>-</th><th>70,6</th><th>63,4</th><th>53,2</th><th>52,0</th><th>67,7</th><th>44,1</th></t<>			-	70,6	63,4	53,2	52,0	67,7	44,1
Selenat - 67,4 61,0 54,5 55,8 51,4 49,7 - 64,0 63,1 56,7 50,1 54,4 52,1 - 68,3 66,5 56,5 56,3 56,2 60,6 - 51,3 54,6 68,7 73,0 52,2 59,8 M - 63,7 62,4 57,2 58,2 56,3 55,8 SD 6.99 4,33 5,79 8,35 5.90 8,70 SeO ₃ ²⁻ - 62,6 62,2 50,2 58,2 54,3 48,8 SeO ₃ ²⁻ - 67,8 75,1 55,1 52,9 63,3 60,9 Selenit - 55,8 59,5 62,4 70,9 56,3 59,8 Selenit - 55,8 59,5 62,4 70,9 56,3 59,8 Selenit - 55,8 59,5 62,4 70,9 56,5 55,0 M - 62,9 60,3 57,6 58,1 59,3 57,	SeO ₄ ²⁻		-	60,8	65,9	53,8	62,2	55,8	68,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Selenat		-	67,4	61,0	54,5	55,8	51,4	49,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	64,0	63,1	56,7	50,1	54,4	52,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	68,3	66,5	56,5	56,3	56,2	60,6
M 63,7 62,4 57,2 58,2 56,3 55,8 SD 6,99 4,33 5,79 8,35 5,90 8,70 SeO ₃ ²⁻ - 67,8 75,1 55,1 52,9 63,3 60,9 Selenit - 55,8 59,5 62,4 70,9 56,3 59,8 - 60,8 56,5 62,5 55,0 49,3 63,1 - 58,7 49,9 51,9 62,1 67,6 57,3 - 71,6 58,8 63,5 49,4 64,9 56,5 M - 62,9 60,3 57,6 58,1 59,3 57,7 SD - 52,4 58,9 54,8 61,1 58,4 53,0 Selenomethionin - 60,1 64,8 72,1 47,0 54,5 54,6 Selenomethionin - 69,0 63,7 64,7 57,6 57,1 56,0			-	51,3	54,6	68,7	73,0	52,2	59,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Μ		63,7	62,4	57,2	58,2	56,3	55,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SD	-	6,99	4,33	5,79	8,35	5,90	8,70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	62,6	62,2	50,2	58,2	54,3	48,8
Selenit- $55,8$ $59,5$ $62,4$ $70,9$ $56,3$ $59,8$ - $60,8$ $56,5$ $62,5$ $55,0$ $49,3$ $63,1$ - $58,7$ $49,9$ $51,9$ $62,1$ $67,6$ $57,3$ - $71,6$ $58,8$ $63,5$ $49,4$ $64,9$ $56,5$ M- $62,9$ $60,3$ $57,6$ $58,1$ $59,3$ $57,7$ SD- $52,4$ $58,9$ $54,8$ $61,1$ $58,4$ $53,0$ SeMet- $60,1$ $64,8$ $72,1$ $47,0$ $54,5$ $54,6$ Selenomethionin- $69,0$ $63,7$ $64,7$ $57,6$ $57,1$ $56,0$ - $62,0$ $53,0$ $67,7$ $48,8$ $57,7$ $66,2$ - $61,1$ $67,4$ $56,7$ $61,8$ $51,1$ $47,4$ M- $61,3$ $61,2$ $60,3$ $55,8$ $57,4$ $55,4$ SD- $53,9$ $5,17$ $9,71$ $6,36$ $4,84$ $6,14$ - $58,9$ $60,0$ $76,5$ $53,4$ $61,1$ $68,6$	SeO ₃ ²⁻		-	67,8	75,1	55,1	52,9	63,3	60,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Selenit		-	55,8	59,5	62,4	70,9	56,3	59,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	60,8	56,5	62,5	55,0	49,3	63,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	58,7	49,9	51,9	62,1	67,6	57,3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	71,6	58,8	63,5	49,4	64,9	56,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Μ	-	62,9	60,3	57,6	58,1	59,3	57,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SD		5,88	8,33	5,91	7,64	7,07	4,98
Semet- $60,1$ $64,8$ $72,1$ $47,0$ $54,5$ $54,6$ Selenomethionin- $69,0$ $63,7$ $64,7$ $57,6$ $57,1$ $56,0$ - $63,4$ $59,2$ $45,7$ $58,5$ $65,6$ $55,6$ - $62,0$ $53,0$ $67,7$ $48,8$ $57,7$ $66,2$ - $61,1$ $67,4$ $56,7$ $61,8$ $51,1$ $47,4$ M- $61,3$ $61,2$ $60,3$ $55,8$ $57,4$ $55,4$ SD- $53,9$ $5,17$ $9,71$ $6,36$ $4,84$ $6,14$ - $58,9$ $60,0$ $76,5$ $53,4$ $61,1$ $68,6$	• • • •		-	52,4	58,9	54,8	61,1	58,4	53,0
Selenomethionin - $69,0$ $63,7$ $64,7$ $57,6$ $57,1$ $56,0$ - $63,4$ $59,2$ $45,7$ $58,5$ $65,6$ $55,6$ - $62,0$ $53,0$ $67,7$ $48,8$ $57,7$ $66,2$ - $61,1$ $67,4$ $56,7$ $61,8$ $51,1$ $47,4$ M - $61,3$ $61,2$ $60,3$ $55,8$ $57,4$ $55,4$ SD - $5,39$ $5,17$ $9,71$ $6,36$ $4,84$ $6,14$ - - $58,9$ $60,0$ $76,5$ $53,4$ $61,1$ $68,6$	SeMet		-	60,1	64,8	72,1	47,0	54,5	54,6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Selenomethionin		-	69,0	63,7	64,7	57,6	57,1	56,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	63,4	59,2	45,7	58,5	65,6	55,6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	62,0	53,0	67,7	48,8	57,7	66,2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	61,1	67,4	56,7	61,8	51,1	47,4
- 58,9 60,0 76,5 53,4 61,1 68,6		IVI SD	-	61,3 5,39	61,2 5.17	60,3 9,71	55,8 6,36	57,4 484	55,4 6.14
		00	-	58.9	60.0	76.5	53.4	61 1	68.6
Ebselen - 75.3 63.4 66.0 68.5 66.2 64.0	Ebselen		-	75.3	63.4	66.0	68 5	66.2	64 0
- 639 753 674 810 716 707	Eboolon		-	63.9	75.3	67.4	81.0	71.6	70.7
- 56.7 66.9 61.3 64.3 60.2 68.0			-	567	66.9	61.3	64.3	60.2	68.0
- 66.9 670 641 627 692 756			-	66.9	67.0	64 1	62 7	69.2	75.6
- 65.8 67.8 67.7 68.0 75.1 51.5			-	65.8	67.8	67.7	68.0	75.1	51.5
M 64.6 66.7 67.2 66.3 67.2 66.4		м		64.6	66.7	67.2	66.3	67.2	66.4
SD 6,57 5,10 5,15 9,02 5,88 8,25		SD	-	6,57	5,10	5,15	9,02	5,88	8,25

Anhangstabelle 32: T₄-Konzentrationen im Plasma [nmol/L] der Ratten während der 28-tägigen Repletionsphase

					T ₄ /T ₃			
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		44,9	-	-	-	45,9	-	47,0
+Se		44,1	-	-	-	52,4	-	48,5
Positivkontrolle		43,8	-	-	-	44,9	-	39,0
		53,1	-	-	-	40,7	-	51,4
		54,1	-	-	-	47,6	-	41,2
		47,0	-	-	-	37,4	-	56,7
	M SD	47,8 4,59	-	-	-	44,8 5.27	-	47,3 6.51
-	-	86,6	-	-	-	101	-	83,1
-Se		49,7	-	-	-	113	-	63,3
Negativkontrolle		80.2	-	-	-	69.8	-	137
		70.6	-	-	-	75.3	-	102
		61.8	-	-	-	98.0	-	69.6
		81.9	-	-	-	97.9	-	97.1
	М	71.8				92.5		92.1
	SD	14,0	-	-	-	16,5	-	26,7
		-	98,8	66,5	48,6	41,6	56,1	38,8
SeO ₄ ²⁻		-	66,6	61,7	49,1	51,0	44,1	52,2
Selenat		-	84,5	58,2	51,1	55,3	42,3	49,4
		-	72,4	54,3	58,4	39,4	46,7	47,2
		-	65,9	61,1	51,1	54,8	43,0	43,6
		-	45,1	44,7	59,7	65,5	46,2	45,6
	Μ		72,2	57,7	53,0	51,3	46,4	46,1
	SD	-	18,2	7,55	4,81	9,64	5,08	4,66
		-	65,1	63,8	47,6	44,8	52,4	35,4
SeO ₃ ²⁻		-	69,2	49,7	54,6	36,6	45,9	46,1
Selenit		-	68,9	59,5	54,4	57,5	45,0	48,0
		-	72,3	56,9	49,9	50,1	40,2	64,3
		-	62,4	50,4	43,9	47,7	52,4	43,5
		-	82,3	56,6	49,5	54,2	55,6	44,1
	Μ	-	70,1	56,1	50,0	48,5	48,6	46,9
	SD		6,94	5,39	4,08	7,37	5,84	9,54
• • • •		-	86,8	57,2	66,6	52,7	44,8	45,1
SeMet		-	76,8	51,1	52,1	48,4	46,7	43,3
Selenomethionin		-	63,5	54,9	52,4	50,0	51,9	52,6
		-	72,8	75,3	64,3	56,9	57,1	45,5
		-	50,5	52,0	62,7	40,7	48,5	63,1
		-	60,1	78,1	45,4	52,8	52,2	40,3
	M SD	-	68,4	61,4 12.1	57,2 847	50,2	50,2 4 44	48,3 8 29
	50	_	78.4	83.9	87.3	73.4	80.4	73.9
Fbselen		-	84 4	66.0	68 1	69 0	82 7	104
		_	65 G	61 7	78 /	75.0	02,7	81 5
		-	66 7	104	60.7	74 7	67.6	69.8
		-	75.2	69 7	81 1	92.2	62.9	88.0
		-	74 8	83 7	84 7	85.5	78.9	52.8
	м		74 2	78 2	76 7	78.3	77 6	78.4
	SD	-	7,12	15,7	10,3	8,72	10,9	17,4

Anhangstabelle 33: Verhältnis von T₄ und T₃ im Plasma der Ratten während der 28tägigen Repletionsphase

		TBA-RS [nmol/g Frischmasse]						
				Reple	tionszeit	tpunkt		
Gruppe		0d	2d	5d	8d	14d	21d	28d
		40,4	-	-	-	26,1	-	34,4
+Se		34,2	-	-	-	35,9	-	25,3
Positivkontrolle		41,2	-	-	-	27,5	-	26,4
		27,8	-	-	-	14,5	-	26,6
		31,0	-	-	-	25,1	-	32,8
		36,8	-	-	-	23,7	-	28,8
	M SD	35,2 5,28	-	-	-	25,5 6,88	-	29,0 3,76
		34,7	-	-	-	29,0	-	22,9
-Se		41,8	-	-	-	32,6	-	30,8
Negativkontrolle		31,4	-	-	-	32,2	-	31,8
		27,4	-	-	-	21,6	-	34,7
		28,0	-	-	-	21,8	-	27,6
		20,1	-	-	-	24,0	-	27,0
	M SD	30,6 7,33	-	-	-	26,9 5.04	-	29,1 4 18
	00	-	23.1	25.4	27.4	28.1	33.5	30.0
SeO₄ ²⁻		-	37.7	24.5	25.0	40.4	22.6	39.8
Selenat		-	32.7	29.7	38.1	32.3	33.5	29.3
		-	27.8	29.4	39.7	29.3	30.7	37.2
		-	21.9	36.8	32.7	30.0	33.3	38.4
		-	43.1	34.0	25.1	21.6	36.4	35.9
	Μ		31,0	30,0	31,3	30,3	31,7	36,1
	SD	-	8,35	4,79	6,52	6,11	4,79	4,06
		-	18,1	21,2	24,9	23,5	22,3	30,3
SeO ₃ ²⁻		-	27,1	34,2	37,5	28,6	32,2	34,0
Selenit		-	27,0	31,0	25,8	22,8	29,1	25,5
		-	19,7	20,6	16,7	28,0	22,3	28,7
		-	25,0	24,3	36,5	24,7	28,0	30,4
		-	22,8	35,5	29,8	28,7	25,3	29,1
	Μ	-	23,3	27,8	28,5	25,5	26,6	29,7
	SD		4,74	6,61	7,81	2,64	3,96	2,78
•••		-	29,4	28,3	23,2	25,7	22,4	22,4
SeMet		-	26,8	26,2	21,8	25,1	29,2	26,7
Selenomethionin		-	26,9	32,3	25,3	25,1	26,7	24,9
		-	29,5	22,2	19,6	22,1	25,4	21,1
		-	25,1	24,2	22,3	26,5	25,4	27,9
		-	26,0	22,8	21,9	21,0	23,8	20,8
	IVI SD	-	27,3 1,81	26,0 3,83	22,4 1,88	2 4,2 2,18	25,5 2,36	2 4,0 2,98
		-	26,4	19,9	24,1	22,7	30,3	21,4
Ebselen		-	29,7	22,6	23,1	26,1	16,9	17,6
		-	17,5	28,3	26,3	23,1	20,7	40,0
		-	30,5	24,2	22,3	25,7	23,1	26,8
		-	20,9	19,7	18,6	26,3	18,1	21,0
			33,8	18,4	<u>19</u> ,0	26,4	24,9	26,7
	M	-	26,5	22,2	22,2	25,1	22,3	25,6
	50		0,21	0,00	0,00	1,00	ч,00	1,02

Anhangstabelle 34: Thiobarbitursäurereaktive Substanzen [nmol/g FM] in der Leber der Ratten während der 28-tägigen Repletionsphase

Zoitouokt	peroxidative Katalas	eaktivität [U/mg Protein]
Zenpunkt	+Se	-Se
	0,710	0,976
0 d	0,838	0,860
	0,953	0,887
	0,863	0,683
	0,750	0,650
	0,887	0,861
Μ	0,828	0,820
SD	0,097	0,126
	0,924	0,917
14 d	0,934	0,848
	0,781	0,981
	0,754	0,606
	0,768	0,790
	0,953	0,962
Μ	0,852	0,851
SD	0,094	0,139
	0,852	0,826
28 d	0,776	0,913
	0,842	0,892
	0,967	0,676
	0,886	0,816
	0,779	0,889
М	0,850	0,835
SD	0,072	0,087

Anhangstabelle 35: Peroxidative Katalaseaktivität in der Leber der Ratten nach 10, 12 und 14 Wochen adäquater Selenversorgung (+Se) bzw. Selenmangel (-Se)

	Leber [µg/g]		Niere [µg/g]		Vollblut [µg/g]	
	+Se	-Se	+Se	-Se	+Se	-Se
	348	257	71,9	80,8	770	463
	369	233	79,0	76,6	584	678
0 d	241	319	65,1	59,3	514	466
	187	328	74,6	88,5	494	449
	212	317	79,5	86,2	544	490
	279	287	83,0	68,5	580	465
М	273	290	75,5	76,6	581	502
SD	73,5	10,4	6,41	11,1	99,1	87,4
	231	321	76,6	51,1	500	425
	266	333	68,3	80,6	486	447
14 d	229	349	90,7	68,3	357	473
	252	306	72,0	63,1	560	460
	325	439	67,8	79,2	450	480
	346	302	72,4	n.a.	492	444
Μ	275	342	74,6	68,4	474	455
SD	49,4	3,85	8,51	11,7	67,7	20,4
	245	209	81,1	85,6	472	583
	290	298	70,6	78,5	557	495
28 d	295	289	82,4	44,9	482	659
	269	275	71,4	58,6	590	621
	212	175	80,9	58,8	492	636
	209	328	75,1	92,5	529	399
Μ	253	262	76,9	69,8	520	565
SD	37,6	111	5,24	18,5	46,5	99,5

Anhangstabelle 36: Eisenkonzentration in Leber, Niere und Vollblut der Ratten nach 10, 12 und 14 Wochen adäquater Selenversorgung (+Se) bzw. Selenmangel (-Se)
Danksagung

Herrn Prof. Dr. Josef Pallauf danke ich herzlich für die Überlassung des interessanten Dissertationsthemas und die Betreuung dieser Arbeit.

Bei Herrn Prof. Dr. Edgar Weigand bedanke ich mich für die Übernahme des Korreferates, die konstruktiven Hinweise zur Arbeit und den wissenschaftlichen Austausch.

Allen Mitarbeitern des Instituts für Tierernährung und Ernährungsphysiologie danke ich für die schöne Zeit und dafür, dass sie mir immer mit Rat und Tat zur Seite gestanden haben.

Für die umfangreiche Unterstützung bei der Vorbereitung und Durchführung der Rattenversuche danke ich Silke Hees, Marco Jäger, Steffen Brückel und Annika Fischer ganz herzlich. Sabrina Stiehler, Mirjam Hildebrand und Hildes Papa sei Dank für unzählbar viele beschriftete Cups und Tütchen.

Frau Dr. Erika Most danke ich für die Betreuung der Mineralstoff- und Vitamin E-Analysen. Mein ganz besonderer Dank gilt dabei Frauke Frank für unzählige Selen-Messungen am AAS-Gerät, Silke Hees für ebenso viele Mikrowellenaufschlüsse, Tina Schneider für die Mineralstoff-Messungen am ICP und dem gesamten Trio für den Spaß bei der Arbeit. Anja Marx danke ich für die Vitamin E-Analytik, Nicole Krämer für ihre Hilfe bei der enzymatischen Analytik und Helmut Henzel für die Weender Analyse und den morgentlichen Kaffee. Herrn Dr. Andreas Müller danke ich für seine Unterstützung bei der Genexpressionsanalyse.

Herrn Dr. Manfred Hollenhorst bin ich für die Unterstützung bei der statistischen Auswertung der Versuchsdaten sehr dankbar.

Frau Dr. Christine Jensen danke ich für den intensiven fachlichen Austausch, das kritische Korrekturlesen des Manuskripts, den PC-Support und eine schöne und in vieler Hinsicht lehrreiche gemeinsame Doktorandenzeit.

Meinen Eltern bin ich für ihre Unterstützung, die das Studium und damit diese Arbeit überhaupt erst ermöglicht haben, sehr dankbar. Bei meiner Familie und den ganz besonderen Freunden möchte ich mich an dieser Stelle für die emotionale Unterstützung ganz herzlich bedanken. Es ist schön zu wissen, dass Ihr immer für mich da seid. Der Lebenslauf wurde aus der elektronischen Version der Arbeit entfernt.

The curriculum vitae was removed from the electronic version of the paper.