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Zusammenfassung

Die starke Kopplungsentwicklung von Gittereichtheorien führt zu Polyakov-Loop Mod-
ellen, welche eine effektive Beschreibung der Gluodynamik bei niedrigen Temperaturen
liefern. Zusammen mit der Hopping-Expansion der Fermion-Determinante erlaubt dies
Einsichten in das QCD-Phasendiagramm bei endlicher Dichte und niedrigen Temper-
aturen, auch wenn die erreicharen Pionmassen vergleichsweise groß sind. Bei hohen
Temperaturen bricht die starke Kopplungsentwicklung jedoch schließlich zusammen und
es wird erwartet, dass die Wechselwirkungsterme von Polyakov-Loops zunehmend nicht-
lokal werden. Daher verwenden wir die inverse Monto-Carlo Methode, um eine reine
SU(2) Yang-Mills Theorie auf verschiedene nicht-lokale Polyakov-Loop Modelle abzu-
bilden. Wir beziehen dabei Polyakov-Loops in höheren Darstellungen mit ein und fügen
schrittweise Wechselwirkungsterme bei höheren Abständen hinzu, um herauszufinden,
wie gut wir die volle Theorie beschreiben können, und das konvergente Verhalten gegen
die volle Theorie zu untersuchen. Wir untersuchen dabei verschiedene Observablen und
sind insbesondere an der Qualität unserer Modelle bei zunehmender Gittergröße in-
teressiert. Des Weiteren versuchen wir ein möglicherweise analytisches Verhalten des
Abfalls der Kopplungen der nicht-lokalen Terme (mit dem Wechselwirkungsabstand) zu
bestimmen. Wir testen verschiedene Möglichkeiten für solch ein Verhalten, vergleichen
unsere Resultate mit existierenden Aussagen, und versuchen einen Zusammenhang zur
Korrelationslänge der vollen Theorie herzustellen.
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Abstract

The strong coupling expansion of the lattice gauge action leads to a Polyakov loop model
that effectively describes the gluodynamic at low temperatures and together with the
hopping expansion of the fermion determinant allows for insights into the QCD phase
diagram at finite density and low temperatures, although the accessible pion masses are
rather large. At high temperatures the strong coupling expansion breaks down and it
is expected that the interaction of Polyakov loops becomes non-local. Therefore we use
inverse Monte-Carlo methods to map SU(2) gluodynamic to different non-local Polyakov
loop models . We take into account Polyakov loops in higher representations and grad-
ually add interaction terms at larger distances to find out how well we can describe the
full theory and to investigate the convergent behavior towards the full theory. We inves-
tigate thereby different kind of observables and are particularly interested in the quality
of our models in the large volume limit. Furthermore we try to determine a possibly
analytical behavior for the fall-off of the couplings of the non-local terms (with respect
to the interaction distance). We test different possibilities for such a behavior, compare
our results to existing statements and try to find connections to the correlation length
of the full theory.
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Introduction

The standard model of particle physics describes the fundamental forces between parti-
cles. Its mathematical framework is quantum field theory, which yields a quantization
procedure of classical field equations, whose description relie on gauge symmetries, i.e.
local symmetries of the system. The first prototype of a quantum field theory was real-
ized by quantum electrodynamics (QED), the quantized theory of the electromagnetic
field [1–3]. Local invariance under the abelian gauge group U(1) was built into the
corresponding classical equations almost by accident and only later was the importance
of gauge invariance understood; especially in context of quantum field theories, where
the gauge principle ensures the avoidance of divergences that cannot be dealt with and
makes the theories renormalizable [4, 5]. The gauge principle was extended to non-
abelian gauge groups later and the framework of quantum field theory was successfully
applied to describe the weak force, which was unified with the electromagnetic force into
a single electroweak force based on the gauge group U(1)× SU(2) [6–8], and the strong
force, based on the gauge group SU(3) [9, 10] . This has lead to an almost complete
description of nature in terms of quantum field theories. Today the standard model of
particle physics describes with the electrodynamic, the weak and the strong force, 3 of
the 4 fundamental forces (with only the gravitational force persistently resisting a quan-
tum field theoretical description), making the standard model the most successful theory
ever written. Among some of its successes are the calculation of the anomalous magnetic
moment of the electron within the QED sector, with an unmatched accuracy to an order
beyond of 10−9 [11–14], the correct prediction of various particles, such as the top quark,
the W and Z bosons [15] and the most recently discovered Higgs boson [16, 17]. Even
the prediction of completely new interactions between particles, such as the interaction
between particles based on neutral currents within the electroweak sector [18–22], can
be accounted to the successes of the standard model.

However, in spite of the overwhelming success of the standard model there are still
many open questions to answer and problems to solve. Some of those problems are of
very theoretical nature and are for example dealing with rigorous mathematical formula-
tions of the theory itself or proofs of mechanisms that seem to be correctly implemented
into the standard model but not fully understood, such as the mechanism behind mass
generation, the realization of a mass gap or the confinement mechanism in quantum
chromodynamics (QCD), the sector of the standard model which describes the strong
force between quarks, the constituents of protons, neutrons and other hadrons. Other
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problems deal with the many hints that point towards different possible extensions of
the standard model, in order to make sense of features realized in nature but not fully
explained or not implemented at all by the standard model. Examples for not explained
features are the different constants of the standard model and their values [23], the hi-
erarchy problem [24], which deals with the differences in strengths of the fundamental
forces, or the non-breaking of CP invariance within the QCD sector (known as the strong
CP problem) [25,26]. Examples of features that have not been implemented by the stan-
dard model correctly or even at all are the non-vanishing neutrino masses observed in
nature [27], the existence of dark matter and the value of dark energy [28, 29]. Also, in
order to get a consistent picture of all interactions down to the Planck scale, and be able
to describe situations that occur in black holes or in the early stages of the universe,
one has to find a way in order to incorporate gravity into the same framework with
the other 3 forces, which might require the development of a drastic new mathematical
description [30].

Apart from such very theoretical problems, there are also more straight forward,
practical problems one has to deal with in the standard model, regarding the highly non-
trivial nature of the equations, which makes performing actual calculations a challenging
task. The QCD sector of the standard model is especially puzzling. The interaction be-
tween quarks is described in the QCD sector by complex rotations in the 3-dimensional
complex space, corresponding to the 3 different charges, referred to as the colors red,
green and blue. It is based on the non-abelian symmetry group SU(3) and the classical
equations of QCD are a straight forward generalization of electrodynamic equations,
obtained by generalizing the local gauge invariance based on the abelian group U(1),
to non-abelian symmetry groups. The non-abelian nature of QCD yields a direct self-
interaction of the gluon field, i.e. the QCD gauge field, by exchange of gluons and leads
in addition to the expectation that bound states consisting purely of gluons, called glue-
balls, must exist, to several other profound implications, which are in good agreement
with experimental observations. One of those implications is asymptotic freedom [31,32],
the feature that the strong interaction becomes increasingly weak and particles there-
fore become asymptotically free at short distances (or equivalently at large energies). On
larger scales on the other hand, the non-abelian structure leads to confinement, the ob-
servation that the interaction strength becomes large enough to force quarks and gluons
into colorless bound states, such that color-charged particles have never been observed
directly by themselves in nature. With rising energy of the system, QCD therefore pos-
sesses a deconfinement phase transition, which describes the transition from a phase,
where color-charged particles are confined, into a phase of almost freely moving quarks
and gluons, called quark-gluon plasma (QGP) [33]. The QGP was experimentally veri-
fied in heavy ion collisions as preformed at RHIC and LHC [34–36]. One believes that
the confining behavior of QCD is due to the self-interaction of the gluon field, which
leads to some sort of anti-screening effect of the vacuum, forcing the field lines between
quark anti-quark pairs into a flux tube, giving at large separation distances rise to a
linearly rising potential between quarks and anti-quarks [37, 38]. However. the situa-
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tion is to this day not fully understood and there is no analytical proof of a mechanism
for confinement. Furthermore, also abelian systems in appropriate dimensions [39–41]
or non-abelian systems with gauge groups with trivial center [42–44] can exhibit such
behaviors. The fact that quarks interact strongly in large regions of the theory and
therefore are bound into hadrons, makes it challenging on the experimental side to in-
vestigate the theory, creating demand for larger and larger particle colliders in order to
reach the energy levels needed for an investigation of the theory. On the theoretical side
it makes perturbative approaches to calculations impossible in many regions of interest,
creating a demand for non-perturbative approaches. The most straight forward non-
perturbative approach to deal with the theory is lattice field theory, which we are also
using in this thesis, in which the spacetime continuum is taken to be closed and replaced
by a lattice of discrete points. However the notorious sign problem [45, 46], which we
will talk about later, makes it impossible to apply lattice methods easily to calculations
with non-zero chemical potential, restricting us essentially to the µ = 0 line in the phase
diagram. The problem arises from the fact that lattice calculations rely on Monte-Carlo
methods, in which integrals are evaluated numerically by approximation with finite sums
over sets of randomly chosen supporting points. The method breaks down if applied to
integrals of functions that are highly oscillating, with a near-cancellation of their oscil-
lations, which would require a computational precision far beyond achievable in order
to obtain useful results. Unfortunately this is exactly the case in QCD with fermions at
non-zero chemical potential and the severity of the problem increases exponentially with
the lattice volume, meaning that the problem, which is already hard to handle on very
small lattices, gets quickly impossible to deal with on larger ones and therefore makes
an extrapolation to the continuum or even just calculations on lattices large enough to
give some meaningful results impossible. This leads to an only very crude understand-
ing of the QCD phase diagram and in order to obtain insight into the phase diagram
away from the line of zero chemical potential a combination of different theoretical and
experimental approaches, as discussed in greater detail in [47–49], must be applied. A
rough sketch of of the resulting idea about the QCD phase diagramm is shown in Fig.
1 in the µ-T -plane (chemical potential vs. temperature plane).

From the experimental side input for the phase diagram is coming from heavy ion
collisions performed at particles colliders such as RHIC, LHC, ALICE, FAIR and others,
of which a few have been depicted in the phase diagram in Fig. 1 at the range at which
they operate.
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Figure 1: Hypothetical QCD phase diagram as obtained by different model calculations
taken from [50]

From the theoretical side there are many approaches and attempts to get insight
into the QCD phase diagram away from the line of zero chemical potential one has
to either use methods that deal with the sign problem, such as as the Taylor ex-
pansion in terms of µ/T [51, 52], the analytical continuation of imaginary chemical
potential to real values [53, 54], complex Langevin methods [55–58], density of states
methods [59] or simulations on Lefschetz-Thimbles [60]; or one has to apply completely
different non-perturbative techniques, as provided by the functional renormalization
group (FRG) [61] and by methods based on Dyson-Schwinger equations (DSE) [62–64].
Another way to circumvent the sign problem is to resort to the use of simpler effective
models, such as provided by the Nambu-Jona-Lasinio (NJL) [65,66] model, quark-meson
models [67], Polyakov-NJL models [68–72] and Polyakov-quark-meson models [73–75].
A similar approach is given by the investigation of models referred to as QCD-like the-
ories [76, 77], which preserve important features of QCD, such as a deconfinement and
chiral restoration phase transition, while at the same time avoiding the sign problem in
lattice calculations by modifying the gauge action. Examples of QCD-like theories are
adjoint QCD [78], where the SU(3) gauge group acts in the adjoint representation on
fermions, and QCD-like theories based on other non-abelian gauge groups, such as SU(2)
or G2 [79–85]. All these techniques come with their own issues or predictive restrictions
and collaborate effort has to be made in order to get an insight into the phase diagram
which is as accurate as possible.

As depicted in the phase diagram in Fig. 1, this collaborate effort of theoretical
and experimental efforts has left us with an idea of what to expect, over a large region
of the phase diagram. Chiral symmetry (whose order parameter is given by the chiral
condensate 〈ψψ̄〉) is explicitly broken by the non-zero quark masses. But even in the
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chiral limit, where the quark masses are taken to be zero, at low values for T and µ
the ground state of QCD breaks chiral symmetry spontaneously. With increasing values
for T and µ this symmetry is restored. At small values of the chemical potential this
restoration comes with an analytical cross over around 155 MeV, which is confirmed by
lattice results [86–88]. At larger values for µ results the picture becomes less clear, as the
sign problem prevents straight forward lattice calculations of QCD. However, model and
DSE calculations suggest that the transition of chiral symmetry restoration becomes a
true phase transition of the order 1, which ends at a critical point [48, 89, 90]. At small
temperatures and chemical potential quarks are confined into hadrons, which break up
at larges values for T and µ, leading to the deconfined phase of the quark gluon plasma,
where quarks and gluons move almost freely. The phase transition of chiral symmetry
restoration is accompanied at zero chemical potential by the deconfinement phase tran-
sition. Within the confined hadronic phase there is another 2nd order liquid-gas phase
transition [91] ending in a critical point as well and within the deconfined phase at
moderate temperatures and large baryon chemical potential one expects from large-Nc

calculations that the deconfined phase is reached without a restoration of chiral sym-
metry at the same time, leading to a quarkyonic phase [92], with quark matter in many
different phases similar to the many different phases of ice. At even larger values of
µ, color superconducting phases are expected, where residual quark-quark interactions
lead to their condensation, similar to what is described by the BCS theory for supercon-
ductivity. It seems to lead at large values of the chemical potential to a condensation
of quark pairs with only certain flavor-color-combinations possible, referred to as color
flavor locked (CFL) phase [93,94].

To get an even better understanding of the phase diagram techniques and models
are constantly developed and improved. Another method of interest, which leads to a
sign problem weak enough to be dealt with [95–100], is to reduce the gauge degrees of
freedom of QCD to Polyakov loop variables, leading to effective Polyakov loop models,
while applying a hopping expansion for quarks at large masses at the same time. How-
ever, to derive such effective models analytically from a given theory can be challenging
already for a pure gauge theory, and can be usually done only in small areas of the phase
diagram and up to a few orders in a given expansion, which is usually not enough to
accurately describe the dynamics of the system, especially near the deconfinement phase
transition. In this work, where we will discuss such effective Polyakov loop models, our
main interest therefore lies in the mapping of SU(2) Yang-Mills theories onto different
highly non-local Polyakov models by the use of inverse Monte-Carlo methods [101–103]
and the investigation of the so obtained effective SU(2) models. SU(2) gauge theories
pose an excellent starting point to investigate the construction of non-local Polyakov
loop models via inverse Monte-Carlo methods, as the group structure is much simpler
compared to SU(3) and other gauge groups of interest, while still possessing a rich
enough structure to be worth investigated (in fact as we will see the confinement char-
acter of a theory is determined by its pure gauge part and yields a deconfinement phase
transition already for the pure SU(2) Yang-Mill theory). Furthermore for SU(2) based
theories the fermionic sign problem can be avoided, which makes future extension of our
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research by inclusion of dynamical fermions easier compared to SU(3) theories. Also the
inverse Monte-Carlo method itself turns out to be less problematic for SU(2) theories
and appears to very stable in contrast to the SU(3) case. In order to derive different
effective models, we will show how to construct ansatzes for Polyakov loop models by
strong coupling expansion and how to numerically map full gauge theories onto to given
ansatzes via inverse Monte-Carlo methods. In this way we will obtain mappings for
different competing models, which we will systematically improve and compare to each
other. We will investigate those models on lattices of different sizes in order to obtain
insight regarding their convergence towards the full theory in the limit of an increasing
number of terms taken into account on fixed lattices sizes and in the continuum limit.
We will also search for analytical forms of the numerically obtained mappings.

This work is structured as follows: The first part is devoted to the theoretical framework
used. In the first chapter we will give a review of the theoretical foundations of quantum
field theory and QCD in the continuum and on the lattice. In chapter 2 we will then
summarize the mathematical concepts of Lie groups and Lie algebras, which we will
be using when deriving the ansatzes for different effective Polyakov loop models and in
the discussions of the inverse Monte-Carlo method. The reader already familiar with
the mathematical theory of Lie groups and Lie algebras is invited to skip that chapter.
In the third chapter we will then talk about different SU(2) Polyakov loop models and
their motivation by the strong coupling expansion. In the fourth chapter we will then
derive the so called inverse Monte-Carlo method, which we will use to map the full SU(2)
Yang-Mills theory to different ansatzes for effective Polyakov loops models, before we
turn to the investigation of those models in the remaining result chapters in the second
part of this work. The final chapter will consist of a conclusion and a summary of open
question, as well as an outline of possible future ways in order to progress this work.
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Chapter 1

Non-Abelian Gauge Theories in the
Continuum and on the Lattice

Let us start in this chapter the discussion of our theoretical framework with a short
summary of non-abelian gauge theories. We will begin with introduction of the Lagrange
Density, talk about its quantization in the continuum and the Euclidean formulation of
quantum field theories, which allows us to interpret the equations in terms of a statistical
quantum system and investigate its phase structure. We will then turn our discussion
to confinement, especially in pure gauge theories, as we will be later on in this work
concerned with SU(2) gauge theories only. In the last sections, we will then give a
short introduction into the lattice formulation of quantum field theories, talk about
their advantages and disadvantages to continuum formulations, as well as about Monte-
Carlo methods used in lattice calculations and the resulting numerical sign problem.
This chapter is mainly based on [104–106] and partly on other material, which we will
explicitly reference, when used.

1.1 Lagrange Density

The Lagrange density of a non-abelian gauge theory is a straight forward generalization
of the electrodynamical Lagrange density, obtained by demanding the gauge invariance
ψ → ψ′ = Ωψ, Ω ∈ G, with a non-abelian Lie group G, of the kinetic term for fermions
ψ, which are now elements of an n-dimensional vector space on which the gauge group
G is acting. The gauge field Aµ is then an element of the tangent space, hence the Lie
algebra and can be expanded in form of a basis {T1, . . . , Tr} of the Lie algebra. Writing
all gauge-field dependent variables in terms of the covariant derivate Dµ, and allowing
different fermions flavors ψj, labeled by the index j. the Lagrange density takes the (to

9
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the electrodynamical density analogous) form

L = −1

4
F a
µνF

aµν + ψ̄i (i(γµD
µ)−mi)ψi,

Dµ = (∂µ − igAaµT a),

Fµν =
i

g
[Dµ, Dν ],

with the gauge transformations

ψ → Ωψ,

AaµT
a → ΩAaµT

aΩ−1 +
i

g
Ω(∂µΩ−1),

Dµ → ΩDµΩ−1,

Fµν → ΩFµνΩ
−1, (1.1)

Ω ∈ G, where the gauge transformation of the gluon field (and hence the field strength
tensor Fµν and the covariant derivative Dµ) are set by demanding gauge invariance of
the term containing the fermionic part of the action and the additional trace for the
Yang-Mills (pure gauge theory) part is needed in order to guarantee gauge invariance
for the pure gauge theory by itself. The gamma matrices used in eq. (1.1) satisfy the
Clifford algebra and often used choices for the representation are given by the the Dirac
representation and the chiral representation (see A.1).

1.2 Geometric Interpretation of Gauge Theories

As the term “covariant derivative”, which we are familiar with from general relativity,
already suggests, the Lagrange density (1.1) yields a geometric interpretation of gauge
theories. In analogy to general relativity, where one has to deal with fibre bundles1

with curved manifolds as the base space, the tangent space as the fibre, and the affine
connection in the covariant derivative takes into account the change of the fibre as one
moves along the base space, the covariant derivative of gauge theories,

Dµψ = 1+ iAµψ(x), (1.2)

takes into account the change of the fibre space, which is given by the gauge group
manifold, as one moves along the base space, which is the ordinary space-time. The
gauge field Aµ takes the role of the connection in this interpretation and the field strength

1A fibre bundle E is a manifold that can be locally written as a product manifold B×F , where B is
referred to as the base space and F the fibre, which in general exhibits a topology, i.e. global geometry,
different from the product manifold. The local isomorphy is understood by the existence of a surjective
projection π : E 7→ B, such that the inverse π−1(p) ' F for all p ∈ B. For the precise mathematical
definition we refer to the appropriate mathematical literature, e.g. [107]. The simplest example of a
non-trivial fibre bundle is the Möbius strip.
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tensor is the analog of the curvature term. The parallel transport from a point x to point
a y along the path Cyx is then obtained by

ψ(y) = U(Cyx)ψ(x),

U(Cyx) = P

(
exp

(
i

∫
Cyx

Aµdx
µ

))
∈ G, (1.3)

where U is called parallel transporter, and P is the path ordering operator, which yields
in an expansion of the exponential function an ordering of the product of operators with
respect to the path and is necessary due to the non-abelian nature and the related non-
commutativity of the connection operators in the expansion. The parallel transporter
then transforms under the action of the gauge group according to

U(Cyx)→ Ω(y)U(Cyx)Ω(x)−1. (1.4)

We will use this interpretation later to motivate the lattice formulation of quantum field
theories.

1.3 Functional Integral Quantization

After having discussed the Lagrange density of non-abelian gauge theories, let us now
introduce quickly the quantization scheme used in this thesis. There are different pos-
sible ways to quantize a field theory. In hindsight of the rest of this work, we will here
discuss the functional integral quantization (also referred to as path integral quantiza-
tion) of field theories, which is the most suitable one for lattice formulations. Here the
quantization is obtained by calculating expectation values for observables O over field
configurations that are weighted with the exponential of the classical action, i.e.

Z =

∫
D[ψ, ψ̄, A] exp(iS), S =

∫
d3x dtL

〈O〉 =
1

Z

∫
D[ψ, ψ̄, A]O exp(iS). (1.5)

Note that this integral is, although from a physical point of view intuitive, from
a mathematical point of view very problematic. First of all, it contains integrals of
variables, defined at every point of space-time. Hence we are dealing with uncountably-
infinite dimensional integrals, with the integration variables being labeled by continuous
parameters (~x, t) ∈ R4 (or in the more general case of an arbitrary dimensional spacetime
R
d). It is in general unclear how to define such an integration, i.e. how to construct an

appropriate measure. Even in the 1-dimensional case of ordinary quantum mechanics,
where integral (1.5) can be interpreted as a true path integral, a measure on the space
on continuous paths can only be constructed in the Euclidean version (introduced in
the next section), where the oscillating complex weight factor exp(iS) is changed into
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a Boltzmann-like real weight factor exp(−SE),. This leads to the construction of the
Wiener measure connected to stochastic processes. In the case of quantum field theory
however, where quantum fields are distributions, a measure is only applicable for non-
interacting quantum fields. For interacting quantum field theories on the other hand, we
would have to deal with products of distributions which are mathematically ill-defined.
This makes the situation from a rigorous mathematical point of view quite unclear. No
measure can be defined in general and one has to regularize the theory in some way in
order to make sense of the integral (1.5) at all. However in lattice formulations, which we
will introduce in the end of this chapter, the spacetime is taken to be of finite volume and
is then discretized. Therefore problems arising from having to deal with distributions are
avoided, a rigorous formulation of the theory is applicable and a regularization of infrared
and ultraviolet divergences is implemented automatically, due to the finite volume of the
spacetime and the finite value of the lattice spacing a (the minimal lattice distance of
two neighboring lattice points). Apart from regularization issues in the continuum,
another problem one has to deal with arises from the gauge invariance of the action.
Gauge invariance implies that the action is constant on configurations connected by
gauge transformation and leads to a redundant integration over gauge orbits of gauge
equivalent configurations. This redundant integration leads at every point of spacetime
to an additional factor vol(G), which is the volume of the gauge group and therefore
introduces another kind of divergence into the equations of quantum field theory. This
makes gauge fixing, where one restricts the system to one configurations per gauge
orbit, in continuum theories necessary and leads to the introduction of Faddeev-Popov
operators and additional auxiliary and ghost fields, which can be done systematically
via the BRST formalism (see [108]). However such a gauge fixing procedure is also
problematic in the non-perturbative regime, since the closed topology of the gauge groups
prevents the possibility of imposing gauge conditions with a unique solution. Instead,
one obtains several solutions, known as Gribov copies, which cancel each other on a
non-perturbative level. However, the problem of gauge invariance is also automatically
taken care of in lattice formulations, as the additional volume factor for every space time
point leads to an overall factor vol(G)#sites. Due to the finite number of lattice sites, this
factor is finite and the uniform over-counting in integrals cancels for expectation values
of observables, due to the factor Z−1, making a gauge fixing procedure unnecessary in
lattice formulations (although gauge fixing is often done anyways to simplify calculations
or compare results of gauge dependent objects, such as n-point functions, with other
formulations).
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1.4 Euclidean Quantum Field Theory and Statisti-

cal Physics

In order to take care of the oscillating complex weight factor in (1.5), which spoils
convergent behavior in the sum over all field configurations, one usually adds a small
imaginary term into the action, which acts as dampening factor for the oscillation. The
problem of a purely imaginary argument in the weight factor also shows itself in explicit
calculations of n-point functions, such as propagators, for which real poles occur, which
need to be shifted slightly into the complex plane by adding small imaginary terms,
which can be sent to zero after evaluating the occurring integrals. An equivalent way,
which avoids the adding of small imaginary parts, is to apply a Wick rotation, which
involves a rotation of the real time variable onto the imaginary axis by applying the
complex rotation x0 → ix4. As we switch from a real to an imaginary time variable, the
metric for the time component switches signs, and in our signature of the metric, this
results in a negative Euclidean metric. In order to avoid doing a Wick rotation by hand,
one can equivalently just replace the Minkowski metric by an Eudclidean metric

(gµνMinkowski)→ (δµν), (1.6)

which will also result in a redefinition of related quantities, such as gamma matrices,
gauge fields and integrals (see [109]). The so obtained quantum field theory is referred
to as Euclidean quantum field theory, with the resulting equations given by

Z =

∫
D[ψ, ψ̄, A] exp(−SE),

SE =

∫
dDx

(
1

4
F a
µνF

aµν + ψ̄i ((γµD
µ)ij +miδij)ψj

)
,

Dµ = (∂µ + igAaµT
a). (1.7)

In a strict mathematical formulation the quantum field theory defined on the Minkowski
space does not exist due to the ill-defined integrals and in an axiomatic approach one
starts with the formulation of a Euclidean field theory (see [110]). The n-point function
of the real time variables are then obtained by again rotating the time variable in the
complex plane, for which one has to construct analytical continuations of those n-point
function. On the lattice such analytical continuations are problematic and a straight for-
ward analytical continuation is in general not possible due to the finite set of lattice data.

An interesting feature of the equations (1.7) is its analogous form to the equations
of statistical system. Putting the Euclidean field theory on a finite volume with tem-
poral extend βT and applying periodic boundary conditions to the bosonic gauge fields
and anti-periodic boundary conditions to the fermionic fields, we obtain the partition
function

Z =

∫
anti-periodic

D[ψ, ψ̄]

∫
periodic

D[A] exp

(
−
∫ β

0

dt

∫
dD−1x SE

)
. (1.8)
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In analogy to statistical mechanics, we can identify this partition function with the
partition function of a statistical system, where the temporal extend is identified with
the inverse Temperature, i.e. βT = 1/T , yielding the possibility to calculate statistical
observables for the quantum field theory. Having made the transition from usual quan-
tum field theory of interacting particles to a statistical quantum field system, it is only
natural to add a quark density to the Lagrange density in order to model the thermody-
namical behavior of systems away from the vacuum. With statistical physics familiar,
we introduce the chemical potential term µNq, where the quark number operator Nq is
the integral over the time component of the conserved Dirac current ψ̄γµψ. This leads
in the continuum to adding for each quark flavor a term ψ̄µγ4ψ to the Lagrange density,
hence

LE =
1

4
F a
µνF

aµν + ψ̄i ((γµD
µ)ij + (m+ µγ4)δij)ψj, (1.9)

where µ is refered to as baryon chemical potential.

1.5 Confinement in Pure Gauge Theories

As already mentioned confinement is the feature that color-charged particles in nature
are never observed by themselves but always in color-neutral bound states. Yet the re-
quirement of color-neutrality is not strong enough to make up for the lack of observation
of free quarks in nature, as a color-neutral hadronic state could (from group theoreti-
cal arguments only) in principle consist of color-charged quarks, which are spatially far
apart. The potential energy between quarks in a bound state has to rise with the dis-
tance in a way that confines the different quarks into a small area. A precise definition
of the confinement is difficult but can be given in the quenched theory, where the quark
masses are taken to infinity, i.e. in a pure gauge theory.

Now it might be counter intuitive that the concept of confinement of quarks can be
described in the most easiest way in a theory without fermions at all. However in a
theory with fermions that are infinitely heavy confinement can be explained by a linear
rising of the potential at large separation distances of a quark anti-quark pair. In an un-
quenched theory this rising would eventually stop, since the energy would become large
enough to produce another quark anti-quark pair within the flux tube, screening the
former particles and resulting in two separated quark anti-quark pairs, which is known
as string-breaking. As we will see, the observable related to potential can be formulated
and interpreted in terms of a pure gauge theory. Furthermore in pure gauge theory,
with non-trivial center subgroup, we can connect the deconfinement phase transition to
the spontaneous breaking of center symmetry and define an order parameter via the
Polyakov loop variable, which we will show in the next section. In a fermionic theory
center symmetry is explicitly broken by the fermion fields and the Polyakov loop can
only be regarded as an approximate order parameter, which makes a precise definition



15 1.5. Confinement in Pure Gauge Theories

of confinement and a description in terms of symmetries problematic.

1.5.1 Wilson Line and Static Quark Potential

In a gauge theory with quarks we can define a quark anti-quark creation operator Q(t),
which creates at a time t a gauge invariant quark anti-quark pair (coupled by the gauge
field, i.e. connected by parallel transport) with spatial separation distance R. In a
quenched theory with infinite large fermion masses, where string breaking effects can
be neglected, the potential between the quark anti-quark pair rises linearly for large
separations R. In fact, in the infinite mass limit, we can integrate out the fermionic fields,
which yields for the expectation value of a quark anti-quark pair at spatial seperation
R, created at the time t = 0 and annihilated at t = T , the expression

〈
Q(T )†Q(0)

〉
∼ 〈Tr[U(R, T )]〉 =: W (R, T ), (1.10)

where the Wilson loop operator W (R, T ) := Tr[U(R, T )] is the trace of the parallel
transporter around a closed rectangular loop of spatial size R and temporal size T .
Inserting a unity in the operator formalism we obtain the form

W (R, T ) ∼
〈
Q(T )†Q(0)

〉
=

∑
n,m

〈
0|Q(0)†|n

〉
〈n| exp(−HT )|m〉 〈m|Q(0)|0〉

〈0| exp(−HT )|0〉
=
∑
n

|cn|2 exp(−∆EnT ). (1.11)

Now the requirement of a linear rising quark-anti quark potential at large distances R
means that the Wilson loop operator around the closed rectangular loop must take the
form

W (R, T ) ∼ exp[σRT − 2V0T ] (1.12)

or for a general closed loop the form

W (C) ∼ exp[σA(C)− V0P (C)], (1.13)

where A(C) is the area enclosed by the loop and P (C) is the perimeter, yielding an area
law fall-off for large spatial extends. The distance depended term of the potential V (R)
is obtained in the limit T →∞ by

V (R) = − lim
T→∞

log

[
W [R, T + 1]

W [R, T ]

]
, (1.14)

which must yield for a rectangular loop in the limit of large R the linear form

V (R) ∼ σR. (1.15)
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We see that the confinement character of a gauge theory, which is defined in a straight
forward manner only in a quenched theory, is determined by the fall-off of the Wilson
loop operator, due to its relation to the propagation of a static quark anti-quark pair
through time. However in the end the Wilson line is the trace of a product of gauge
variables around a closed loop and only depending on the gauge degrees of freedom. It
is perfectly defined in pure gauge theories, being a measure for the vacuum fluctuations
of the gauge field. Hence the confining character of a theory is determined by the
vacuum fluctuations of the pure gauge theory and we can observe deconfinement phase
transitions in pure gauge theories, including (as we will see later) the SU(2) Yang-Mill
theory, and also in the corresponding effective Polyakov loop models. It is known that
the SU(2) Yang-Mill theory exhibits a 2nd order deconfinement phase transition [79–82],
in contrast to SU(3) Yang Mills theory, which shows a 1st order phase transition.

1.5.2 Center Symmtery and Polyakov Loops

The effect of the gauge group of a gauge theory on its confining character (or lack of
it), suggests that the symmetry corresponding to the deconfinement phase transition is
somehow connected to the gauge group. However, as known by Elitzur’s theorem, local
(gauge) symmetries cannot be broken. Also a breaking of remnant symmetries seems
not to give the right results. As it turns out for gauge groups with non-trivial center, the
phase transition can be related to the breaking of center symmetry, a global symmetry
related to the center of the corresponding gauge group. Looking at the Yang-Mills part
of the action defined in (1.8), one can actually see that it possesses a larger symmetry
than just given by the gauge group and the extended transformations, leaving the action
invariant, are given by the non-periodic gauge transformations

Ω(~x, x4 + β) = zU(~x, x4), Ω ∈ G, z ∈ Z(G), (1.16)

where the element z ∈ Z(G) of the center of the gauge group G introduces the additonal
center symmetry of the action. In contrast to gauge transformations, there is an ob-
servable which is non-invariant under a global center transformation. The non-invariant
observable is given by the Polyakov loop

P (~x) = Tr P
(

exp

(∫ βT

0

dx4A4(~x, x4)

))
, (1.17)

which is gauge-invariant but transforms non-trivially under center transformations ac-
cording to

P (~x)→ P (~x)′ = zP (~x), z ∈ Z(G). (1.18)

hence making the expectation value

〈P (~x)〉 =

{
0 in the unbroken phase,

non-zero in the broken phase,
(1.19)
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of the Polyakov loop into an order parameter for center symmetry.

It can be shown that the Polyakov correlator is related via 〈P (~x)P (~y)〉 ∝ exp(−Fqq̄)
to the free energy in a quark anti-quark pair. For large separation distances asymptotic
independence of the Polyakov loop variables implies 〈P (~x)P (~y)〉 ≈ 〈P (~x)〉〈P (~y)〉 and we
can write the expectation value of the Polyakov loop as

〈P (~x)〉 ∝ exp(−βFq), (1.20)

where Fq can be interpreted as the free energy of a quark, in an quark anti-quark
pair, with its anti-quark taken to infinity. Hence a vanishing expectations value of
the Polyakov loop yields an infinite free energy and therefore confinement, connecting
preservation of center symmetry to confinement and its breaking to deconfinement. We
want to stress again that this is only true for gauge theories with non-trivial center
and cannot explain the full picture, since non-abelian gauge theories with trivial center
(such as gauge theories based on the exceptional Lie group G2) exist, which also exhibit
a confinement-deconfinement phase transition [42–44].

1.6 Lattice Field Theory

Let us now introduce the lattice formulation of quantum field theories. In lattice formu-
lations the continuous spacetime of Euclidean field theories, given by a torus, is replaces
with a discrete, usually hyper-cubic lattice. With the spatial extend Ns and temporal
extend Nt the discrete spacetime is given by

(~x, x4) ∈ [1, Ns]
3 × [1, Nt] ' {1, . . . , L}, L = N3

sNt. (1.21)

As we saw ealier, the temporal extend of the euclidean theory can be identified with the
inverse temperature of a statistical system, which yields for the lattice theory

1

T
= aNt, (1.22)

where a is the lattice spacing, the physical distance between two neighboring lattice sites.
Lattice field theories provide a natural non-perturbative approach to perform numerical
calculations and have several advantages compared to continuum formulations regarding
regularization.

In order to obtain a discretization of the equations of quantum field theory and an
appropriate formulation on the lattice on has to realize that the derivatives involved in
the fermionic part of the action will become finite difference quotients on the lattice.
The differences involved at spacetime points of finite distance will demand, just like
in general relativity, a parallel transport of the fermionic degrees of freedom, in order
to preserve gauge invariance. Therefore in a lattice field theory, the gauge degrees of
freedom are formulated in terms of the parallel transporter (1.3) between neighboring
lattice points. The finite lattice version of such a parallel transporter between a lattice
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point x and its neighboring lattice point in direction µ ∈ {1, . . . , d} is given by the link
variables

Uµ = exp (iaAµ (x)) ∈ G, (1.23)

which are elements of the compact gauge group G (in contrast to the vector potential
Aµ, which lives in the unbound algebra) and thereby also avoids a numerical integration
over an unbound space. The link variables transform under gauge transformations in
the adjoint representation and satisfy the condition

U−µ(x) = U−1
µ (x− µ̂). (1.24)

Using the link variables as the fundamental degrees of freedom, it can be shown
that Yang mills action can be approximated up to higher orders O(a2) by the Wilson
action [40]

SG[U ] = β
∑
n∈Λ

∑
µ<ν

Re tr (1− Uµν(n)) , β =
2Nc

g2
, (1.25)

where Nc is the number of colors, i.e. the dimension of the vector space, the gauge group
is acting on, and the plaquette variables Uµν are defined by

Uµν(x) = U+µ(x)U+ν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂). (1.26)

Note that the lattice action is only determined by its continuum limit, and the Wilson
action is only one possibility to obtain the desired continuum limit but also leaves the
possibility to apply improved actions, which contain terms of higher order in the lattice
spacing a.

In order to discretise the fermionic part of the interaction, the occuring derivatives
are replaces with discrete difference quotients,

∂µψ(x)→ 1

2a
(ψ(x+ µ̂)− ψ(x− µ̂)). (1.27)

Since the fermionic fields transform under the gauge action according to

ψ(x)→ Ω(x)ψ(x), ψ̄(x)→ ψ̄(x)Ω(x)−1, (1.28)

terms like ψ̄(x)ψ(x±µ̂) coming from ψ̄(x)ψ∂µψ(x) are not gauge invariant and the terms
shifted by ±µ̂ have to be parallel transported to the lattice point x in order to obtain a
gauge invariant difference quotient. This yields a fermionic action of the form

SF [ψ, ψ̄, U ] = a4

Nf∑
f=1

∑
n∈Λ

(
ψ̄f (n)

±4∑
µ=±1

(1− γµ)
Uµ(n)ψf (n+ µ̂)

2a
+mf ψ̄f (n)ψf (n)

)
.

(1.29)
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However it can be shown that this naive discretization leads to a description of 2d

fermions instead of just one, which is known as the doubler problem. This problem can
be circumvented or reduced in different ways, for example by making use of different
lattice versions of fermions, such as Wilson fermions or staggered fermions, where ei-
ther option comes with a trade off. For example it can be shown that Wilson fermions,
which avoid the occurrence of doublers in the continuum limit by introducing an extra
mass term for the unphysical doubler modes, which vanishes in the continuum limit
with 1/a, break chiral symmetry. On the other hand one could use staggered fermions,
which respect a lattice version of chiral symmetry, but only reduce the doubler problem,
on a 4-dimensional spacetime by a factor of 4, which still leaves 4 different flavors of
fermions, which have to be reduced by the controversial rooting procedure. In fact the
Nielsen-Ninomiya theorem states there is no discrete version of a Dirac operator which
is free of doublers, local, translational invariant and does not break chiral symmetry all
at the same time. Hence any lattice version of fermions will cause some sort of problems.

Using Wilson fermions gives rise to the fermionic action

SF [ψ, ψ̄, U ] = a4
Nf∑
f=1

∑
n∈Λ

ψ̄f (n)
±4∑

µ=±1

(1− γµ)
Uµ(n)ψf (n+ µ̂)

2a
+

(
mf +

4

a
r

)
ψ̄f (n)ψf (n)

 .

(1.30)

Discretization of the chemical potential part of the action is a non-trivial task. A
naive discretization yields to divergences. A way to avoid this and introduce the chem-
ical potential into the action in a way that reproduces the continuum action correctly,
is to multiply temporal links in positive and negative time-direction with the factors
exp(±µaδµ,4). For a detailed discussion of this we again refer to [104]. For our purposes
it is enough to state that this can be done but will lead to the fermionic sign problem
on the lattice, discussed in the upcoming sections.

Before moving on to the next section, we quickly introduce the lattice formulation
of the Polyakov loop (1.17) and the center transformation introduced in (1.16), as they
will be of major interest in the final results chapters of this work. The Polyakov loop on
the lattice is given by

P (~x) = Tr
Nt∏
t=1

U0(~x, t) (1.31)

and transformations of center symmetry are given by a multiply of all temporal link
variables at a fixed time slice t = t0, i.e.

U0(~x, t0)→ zU0(~x, t0), z ∈ Z(G), for all ~x and t0 fixed. (1.32)
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1.7 Lattice Regularization and Continuum Limit

In order to obtain a reasonable approximation of the continuum theory, the continuum
limit a→ 0, where the lattice spacing is sent to zero, must eventually be taken. However,
in the partition function we have control only over dimensionless parameters such as β
and am, where m is the bare quark mass. (For a pure theory a is still implicitly contained
in the link variables.) So the question arises how the physical value of the lattice spacing
a is determined by lattice calculations and how to send it to zero. This can be done
in several ways depending on the context. For a pure gauge theory we can calculate at
a fixed value of β the expectation value of the Wilson loop around a rectangular loop
which extends over ns sites in spatial direction and nt sites in timelike direction, which
can be shown to have the form

〈W (ns, nt)〉 = C exp(−ntaV (nsa)). (1.33)

By first fixing ns and varying nt one can then determine (by a fit) the dimensionless
parameters C and aV (nsa). This can be then done for different values of ns to determine
aV (nsa) as a function of ns. Via the shape of the potential a certain value n∗s can be
identified with the Sommer parameter r0 ' 0.5fm [111]), which then determines the
value of lattice spacing by

n∗s(β)a = r0. (1.34)

For a theory with fermions, hadron correlators, which decay exponentially with the
distance, are calculated and the hadron masses are then related to the correlation length
via

aMH = ξH(β). (1.35)

This determines the value of the lattice spacing a by fixing eq. (1.35) to the experimental
value of a hadron mass. Since MH is a constant, the correlation length ξH must diverge
in the limit a → 0, which corresponds to a 2nd order phase transition. In order to
have reached an approximation close enough to the the continuum limit all length scales
related to physical quantities must be much larger than the lattice spacing, i.e.

ξ � a. (1.36)

We have seen how the lattice spacing can be extracted from lattice results and also
the behavior of correlation length in the continuum limit. However this still leaves the
question of how to actually perform the continuum limit. Equations (1.34) and (1.35)
already suggest that the lattice spacing, over whose value we have no direct control,
somehow depends on the values of the other couplings such as β (or equivalently the
coupling constant g) and quark mass terms of the form am. To understand this we
have to realize that the finite lattice spacing a regulates the theory by introducing a
cutoff in the momentum space and that the bare couplings g and m in the action do not
directly correspond to physical observables. In order to obtains the physically observable
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values, quantum corrections up to the corresponding scale, at which the physical values
are observed, must be taken into account. Those quantum corrections depend on the
lattice spacing a, due the corresponding momentum cut-off and the thereby neglected
corrections at momenta beyond the cut-off. Hence the bare couplings depend on the
renormalization scale, i.e. g = g(a), m = m(a). The requirement that any physical
observable O(a, g) of the lattice theory does not depend on the lattice spacing, gives rise
to the renormalization group equation [112–115][

a
∂

∂a
− β(g)

∂

∂g

]
O(a, g), β(g) = −a∂g

∂a
, (1.37)

where the β-function calculates the change of the bare coupling g as a function of the
lattice spacing. Near a fixed point g∗ of the RG flow, which satisfies

β(g∗) = 0, (1.38)

the beta function can by explicitly calculated by use of an expansion. Asymptotic
freedom of QCD implies that a fixed point exists in the ultraviolet, i.e.

g∗ = lim
a→0

g(a) = 0. (1.39)

Using using perturbation theory to 1-loop order [116] one can derive the running coupling
equation

g2(a) =
1(

11
3
Nc − 2

3
Nf

)
log
(

Λ2
QCD

a2

) , (1.40)

which shows a logarithmic decrease of the quadratic coupling constant with the quadratic
momentum.

We see that the continuum limit is approached by sending the bare coupling g → 0
(β → ∞), while at the same time compensating for the shrinking of the lattice, due to
the implicit limit a→ 0, by taking the thermodynamical limit. Therefore the continuum
limit is obtained by applying

Ns, Nt →∞, β →∞. (1.41)

with hadron masses fixed by (1.35) and the temperature given by

1

T
= a(β)Nt. (1.42)
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1.8 Monte-Carlo Method

Monte-Carlo methods provide a powerful method for numerical calculation of non-trivial,
high-dimensional integrals as they occur in lattice field theory. The integral over the
space of field variables is replaced by a sum of configurations that are in the field space
which are chosen randomly. For an 1-dimensional integral this written as∫

d(x)µ(x)f(x)→ 1

|{xi}|
∑
j

f(xj), (1.43)

where the set of configurations {xi} is distributed along the µ(x)-part of the measure
d(x)µ(x). Of course replacing the integral by a finite sum yields an approximation of
the real result, which will improve when increasing the number of configurations taken
into account.

For the high dimensional integral

〈O〉 =
1

Z

∫
D[ψ, ψ̄, U ]O[ψ, ψ̄, U ] exp(−S). (1.44)

of lattice field theory, the exponential Boltzmann factor is usually viewed as part of the
measure and the Monte-Carlo sum takes therefore the form

〈O〉 =
1

|{C}|
∑
{C}

O(C), (1.45)

where {C} denotes the set of configurations, which is distributed with respect to the
Boltzmann factor exp(−S). In order to ensure such a distribution, which is referred to
as important sampling, appropriate update algorithms that produce from a chosen start-
ing point in the space of configurations Markov chains with the appropriate distribution.
Possible algorithms are the given by the Metropolis algorithm and the Hybrid-Monte-
Carlo algorithm.

1.9 Numerical Sign Problem

When trying to apply Monte-Carlo methods to calculate the integral of a highly os-
cillatory function, with near-cancellation of the positive and the negative parts of the
oscillations, one is faced with the issue that the near-cancellation needs to be calculate
with an accuracy usually far beyond the accuracy attainable in order to have a useful
approximation of the integral. Unfortunately this is exactly the case in ordinary QCD
with gauge group SU(3) if one takes into account the contribution of a non-vanishing
chemical potential. The Grassmann integration of the fermionic fields yields a factor
in the bosonic integrals given by the complex determinant of the Dirac operator and
its highly oscillatory nature prevents us from simply applying Monte-Carlo methods on
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lattices of meaningful size, as the accuracy, which one needs, rises exponentially with
the lattice volume. Interpreting the determinant as part of the measure is not possible
either, as the complex determinant cannot be interpreted as a probability weight, and
important sampling methods which are supposed yield a set of configurations distributed
along the measure cannot be applied, unless the measure is real and positive.

For vanishing chemical potential the complex nature of the Dirac operator’s deter-
minant can be avoided, if the Dirac operator satisfies the γ5-hermicity condition

γ5Dγ5 = D†, (1.46)

which is the case for QCD with zero chemical potential. It yields for the determinant of
the Dirac operator

det[D]∗ = det[D†] = det[γ5Dγ5] = det[D], (1.47)

hence the determinant is real but in general it will be still not positive. The positivity
can be achieved if the masses of the two light quarks u, d are taken to be equal, which
yields for the corresponding Dirac operators Du = Dd ≡ D, and the overall factor

det[Du]det[Dd] = det[D]2 = det[D]det[D†] = det[DD†] ≥ 0 (1.48)

in the bosonic integrals is therefore positive, making a interpretation in terms of a prob-
ability weight possible.

However for finite chemical potential the attained factor in the bosonic integrals is
due to

γ5D(µ)γ5 = D(−µ∗)†, (1.49)

det[D(µ)]∗ = det[D†(µ)] = det[γ5D(−µ∗)γ5] = det[D(−µ∗)], (1.50)

even in the limit of two mass degenerate light quarks not real (unless the two mass de-
generate quarks have a chemical potentials that differ by a reflection along the imaginary
axis, i.e. µu = −µ∗d, which is satisfied for example by using purely imaginary potentials
and setting µu = µd, or using the (real) isospin chemical potential µ = µu = −µd).
However in the case of SU(2), pseudo-reality of the gauge group yields and additional
symmetry for the system, which can be used in order to show that the sign problem can
be avoided.

This concludes our discussion of the basics of quantum field theories. In the next
chapter we will discuss the mathematical concepts needed for the derivation of the
effective Polyakov loop models and the inverse Monto-Carlo method later in this work.
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Chapter 2

Basics of Lie Groups and Lie
Algebras

In the upcoming chapters of this work, where we will derive effective Polyakov loop
models for the SU(N) gauge theories and introduce the IMC method, we will have to
make use of different concepts and features of the gauge group, which is a Lie group, and
its underlying Lie algebra. Therefore in this chapter we want to give a short introduction
into needed concepts and theorems. Lie groups in physics are usually first encountered
in terms of the classical Lie groups, which are the real and complex rotation groups
SO(N), SU(N) and U(1). Especially SU(2) plays a crucial role in quantum mechanics,
describing the spin degree of freedom of fermions. The classical Lie groups consist of
uncountably infinite many elements, that can be parametrized by a finite number of
continuous parameters ~λ ∈ Rn in the form of an exponential function

G =

{
exp

(
i

n∑
j=1

λjHj

)∣∣∣∣∣~λ ∈ Rn
}
, (2.1)

where the set {H1, . . . , Hn} are called the generators of the group. Such a parametriza-
tion shows that Lie groups are differentiable manifolds. For SU(N) the generators are
given by the N2−1 hermitian (N×N)-matrices with determinant equal to 1 and again it
is well known for SU(2) that endowed with the commutator they satisfy closed algebraic
relations, hence the vector spaced spanned by generators forms a Lie algebra, associated
with the Lie group. From the mathematical treatment of spin-1/2 particles, we are also
familiar with the concept of forming tensor products of particles, hence vector spaces,
and tensor products of the group and algebra elements that act on those spaces, yielding
operators that act on higher dimensional spaces and satisfy the same group theoretic
and algebraic relations. Building tensor products results in higher dimensional represen-
tations of the Lie group and algebra. In a strict mathematical treatment the emphasis is
put on those group theoretic and algebraic relations, where group and algebra elements
are not given the explicit form of matrices. That way all possible matrix representations
on vector spaces of arbitrary dimension, i.e. all possible representations of a group and
its algebra are can be considered later on. As we will see, a special class of represen-
tations, called fundamental representations, can be identified and used to construct all

25
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other representations, just like in the case of SU(2), where higher spin representations
are obtained by tensor products of spin-1/2 particles. In this chapter we will give a
short introduction into the mathematical theory of Lie groups and Lie algebras, based
on [107,117–119], with emphasis on SU(2) and SU(3). Note that the results as presented
here are in general only true for semi-simple Lie algebras and their associated Lie groups,
which include the classical Lie groups, although some results might also extend to more
general cases. This introduction will be a simplified heuristic discussion. For a strict
mathematical discussion and proofs of the statements that are presented here we refer
to the mathematical literature.

2.1 Basic Definitions

Let us first start with the mathematical definitions of Lie groups and Lie algebras and
a few basic relations between them.

Lie Group: A Lie group G is a differentiable manifold, which is endowed with a
group structure, such that the group operations

G×G 7→ G, (g1, g2)→ g1 · g2,

G 7→ G, g → g−1, (2.2)

are differentiable.

Lie Algebra: A Lie algebra is a vector space A over a field K equipped with a Lie
bracket, a bilinear function [., .] : A× A 7→ A satisfies (for x, y, z ∈ A and λ, β ∈ K)

[αx+ βy, z] = α[x, z] + β[y, z],

[x, y] = −[y, x],

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (2.3)

Given a basis {t1, . . . , tn}, we can expand the result of a Lie bracket between two ele-
ments according to [ta, tb] =

∑
c f

c
abtc, where the numbers fab,c, with a, b, c = 1, . . . , n, are

called structure constants.

Semi-Simple Lie algebra: A semi-simple Lie algebra is a direct sum of simple
Lie algebras. A simple Lie algebra g is a non-abelian Lie algebra, which contains no
ideal except of g itself and the zero-space, where an ideal is a subspace i ⊆ g, such that
[g, i] ⊆ i.

Cartan algebra and Rank: The Cartan algebra h ⊂ g of a Lie algebra g is defined
as the maximal abelian sub-algebra, i.e. the maximal sub-space which satisfies

[a, b] = 0, ∀a, b ∈ h. (2.4)
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The rank of a Lie algebra or Lie group is the dimension of its Cartan algebra.

Lie groups and algebras are deeply connected. Given a local parametrization of the
group manifold, one can show that the tangent space at the neutral element is the lie
algebra and that the algebra elements are related to the group elements by the expo-
nential map. To generalize the concept of a directional derivative on a usual manifold
to a Lie group, let us recall the directional derivate. For a manifold M with p ∈M one
defines the derivative at point p in direction of an element v of the tangent space, by
taking a path γ : [−1, 1] 7→ M , with γ(0) = p, γ′(τ)|t=0 = v and defining the derivative
as ∇vf(p) = d

dτ
f(γ(τ))|τ=0 which, as can be shown, is independent of the specific choice

of γ. The straight forward generalization to Lie groups is done by setting the path to
γ(t) = exp(t ·a) g or γ(t) = g exp(t ·a), where we see that, due to the non-commutativity
of the group structure, we have to be careful if we multiply the exponential map to the
group element from the left or the right, which introduces the concept of right- and
left-derivatives.

Exponential Map: As the tangent space of a Lie group is a Lie algebra, it can be
shown that all closed and connected Lie groups can be given in terms of the exponential
map exp : g 7→ G, i.e. if g ∈ G and then there is an a ∈ g, such that

g = exp(a) (2.5)

Left-Derivative: In this form the left-derivative of a function on the Lie group G
in direction of the a-th basis element ta ∈ g can be written as

La(f(g)) :=
d

dt
f(exp(t · ta)g)|t=0 = lim−→

t→0

f(exp(t · ta)g)− f(g)

t
, (2.6)

where the word left refers to multiplication with exp(t · ta) from the left. The right-
derivative can be defined analogously.

2.2 Representations

Now that we have defined Lie groups and Lie algebras solely via their group and alge-
bra structure, we can define representations of them, which will yield matrix sets that
respect the same group or algebra structure.

Representation of a Lie Group: A representation D of a Lie Group G over a
Vector space V is a map from the group to GL(V ), the space of Linear functions on V ,
such that it preserves the structure of the group, i.e.

D(e) = 1, D(gh) = D(g)D(h), ∀g, h ∈ G, (2.7)

where e ∈ G is the neutral element.
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Representation of a Lie Algebra: A representation ρ of a Lie algebra g over a
Vector space V is a map from the algebra to gl(V ), such that it preserves the structure
of the algebra, i.e.

ρ([x, y]) = [ρ(x), ρ(y)], ∀x, y ∈ g, (2.8)

where gl(V ) is the Lie algebra given by GL(V ) endowed with the commutator as its Lie
bracket.

Irreducible and Reducible Representations: A representation is called re-
ducible if there exists an invariant true subspace of V, and irreducible otherwise.

For groups such as SU(N) and SO(N) and their corresponding Lie algebras, which
are originally defined in a matrix representation, we already start with a distinguished
representation, called the defining representation. Another special representation,
which is available for any Lie group / algebra and is of special mathematical interest is
the adjoint representation. It gives a natural representation on the vector space given by
the algebra itself and many characteristics of the Lie group can be understood in terms
of the adjoint representation of its algebra. Also we will be able to define a metric on
the group manifold in terms of its adjoint representation.

Adjoint representation of a Lie group: The adjoint representation Ad : G →
GL(g) of a Lie group G is given by

Adg(y) := gyg−1, for all g ∈ G, y ∈ g (2.9)

Adjoint representation of a Lie algebra: The adjoint representation ad : g →
gl(g) of a Lie algebra g is defined by

ad(y)(x) := [x, y]. (2.10)

By expanding

gyg−1 = exp(tx) · y · exp(−tx) = y + t[x, y] +O(t2), (2.11)

for some x ∈ g, we can see the relationship

d

dt
Adexp(tx)(y)|t=0 = [x, y],

Ad = exp(ad) (2.12)

between the adjoint representation a Lie group and its Lie algebra.
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Using the adjoint representation we can define a bilinear form, which will yield a
metric on the group manifold.

Killing Form: The Killing form is a symmetric bilinear form B : g× g 7→ K defined
by

B(x, y) ≡ (x, y) := Tr(ad(x) ◦ ad(y)). (2.13)

The Killing form is associative and skew symmetric and invariant under the adjoint
action of the Lie group, i.e.

B([x, y], z) = B(x, [y, z]), x, y, z,∈ g

B(ad(z)x, y) = −B(x, ad(z)y), x, y, z,∈ g

B(Ad(g)x,Ad(g)y) = B(x, y) x, y ∈ g, g ∈ G. (2.14)

It can be shown that it is non-degenerate exactly if the Lie algebra is semi-simple, in
which case case the Killing form is negative definite and −B defines on the Lie group a
Riemannian metric, called the Killing metric. In the case of SU(N) it can be explicitly
calculated and is given by

(a, b) = 2N · Tr(a · b), for all a, b ∈ su(N). (2.15)

2.3 Representation Theory and Multiplets

In this section we use the previous definitions to discuss how different representations
can be classified, the connection between representations and multiplets, which we are
familiar with from the discussion of particles with spin, which are arranged in SU(2)
multiplets, or the hadron spectrum which can be arranged into SU(3) multiplets.

Lets consider a Lie algebra gd of of dimension d and rank r, with Cartan sub-algebra
hr ⊂ gd. We can then choose the generator such that the algebra decomposes into

gd = hr ⊕ ed−r, (2.16)

where ed−r is the (d− r)-dimensional orthogonal complement to hr. Now one can choose
a basis E1, . . . , Ed−r of ed−r in terms of eigenfunctions of adH with H ∈ hr, i.e. satisfying

[H,Ej] = αj(H)Ej, αj ∈ H∗, j = 1, . . . , d− r, (2.17)

where αj are elements of H∗, the dual space of H, and are called roots. Now we can
consider a n-dimensional representation of the Lie algebra, where all algebra elements are
given in terms of (n× n)-matrices rather than as abstract algebraic elements. Since the
Cartan algebra is the maximal commuting sub-algebra, all elements are simultaneously
diagonalizable and we can choose an eigenbasis e1, . . . , en such that for H ∈ hr

Hea = Ma(H)ea, Ma ∈ H∗, a = 1, . . . , n, (2.18)
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where Ma are called weights. Using relation (2.17) we can show

HEjea = (Ma(H) + αj(H))Ejea, j = 1, . . . , d− r, a = 1, . . . , n (2.19)

a = 1, . . . , n, (2.20)

i.e. that Ej-elements, the chosen basis elements of the Cartan algebra’s complement
ed−r, act as ladder operators by mapping an eigenvector ea of Cartan algebra to another
eigenvector, with the eigenvalue with respect to H ∈ h raised by α(H). One can show
that the dimension d− r and the number of ladder operators is even and that if αj is a
root, then so is −αj, hence we can split the basis E1, . . . , Ed−r into E±1 , . . . , E

±
d−r

2

, where

if E+
j raises the eigenvalue of an eigenvector by αj, then E−j will do so by −αj.

If we choose a basis H1, . . . , Hr of the Cartan algebra, then the elements αj,Ma ∈ H∗,
j = 1, . . . , d− r, a = 1, . . . , n are completely determined by the values they take for the
basis elements Hi and choosing a basis {β1, . . . , βr} for H∗, such that

βi(Hj) = δij, i, j = 1, . . . , r (2.21)

we can write

αj =
∑
i

α(Hi)βi ≡ (αj(H1), . . . , αj(Hr))
T = ~αj ∈ Rk ' H∗. (2.22)

Hence we can depict the elements αj ∈ H∗, with j = 1, . . . , d − r, as vectors
~αj = (αj(H1), . . . , αj(Hr))

T ∈ R
r, and likewise the elements Ma ∈ H∗ as vectors

~Ma = (Mj(H1), . . . ,Mj(Hr)
T ) ∈ R

r, in the r-dimensional plane, where the n vectors
~Ma correspond to the n eigenstates of the Cartan algebra, depicted in R

r by their their
r eigenvalues with respect to the Cartan generators H1, . . . , Hr. Likewise the (d − r)
vectors ~αj represent the shifts between the eigenstates due to the ladder operators Ej
in the space R. All eigenvectors of the n-dimensional vector space, which are connected
by ladder operators are part of the same, (so-called) multiplet.

Now it is possible to have several multiplets in one representation, such that the lad-
der operators only connect states of the same multiplet. Since then neither the ladder
operators map states of different multiplets to each other and nor Cartan generators do
(as the eigenvectors where chosen to be eigenvalues of the Cartan algebra) the sub-spaces
spanned by each multiplet are invariant subspaces of the whole algebra, hence of the
group and each multiplet spans an individual irreducible representation of the algebra,
where the dimension of the spanned subspace is the dimension of the irreducible sub-
representation.

We see that within an irreducible representation the states can be labeled by their
eigenvalues with respect to the Cartan generators, which we depict as vectors in R.
We can get a whole irreducible representation by acting with ladder operators on an
eigenvector, to get all other eigenvectors which span the representation. Furthermore
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we can also label the different representation by appropriate eigenvalues. Therefore we
use the eigenvalues of the Casimir operators, which are operators that are polynomes of
algebra elements (hence not algebra elements themselves) and commute with all algebra
elements. One can show that the number of Casimir operators that exist equals the
rank of the algebra. The most easily defined Casimir operator is the quadratic Casimir
operator given by

Ω =
∑
i

TiT
i, (2.23)

where {T i : i = 1, . . . , d} provides a basis of the Lie algebra and {Ti : i = 1, . . . , d}
is the dual basis with respect to the Killing metric. Now as Casimir operators com-
mute with all algebra elements, it is easy to show that their eigenvalues are constant
on each multiplet. Furthermore, one can show that the set of Casimir eigenvalues
{c1, . . . , cr} are different on inequivalent representations. Hence, we can label differ-
ent representations by their Casimir eigenvalues ~c = (c1, . . . , cr) and different eigen-
states within a representation by their eigenvalues with respect to the Cartan generators,
~M = (M(H1), . . . ,M(HN)) ∈ Rr.

Now let us look at the familiar case of the 3 dimensional algebra of SU(2), with rank
1. In the discussion of spin-1/2 one starts with the 2-dimensional defining representation,
with the 3 algebra generators given by the 2×2 Pauli matrices. We then split the algebra
into a 1 dimensional Cartan sub-algebra and its orthogonal complement, i.e.

g3 = h1 ⊕ e2 (2.24)

and set a basis for each subspace via

H1 = Lz, E1 = L+, E2 = L−. (2.25)

The operators satisfy the relation (2.17), which, after choosing a basis of the Cartan
algebra, i.e. a basis of the spin-projection operator Lz, yields that L± act as ladder
operators on the multiplet, which is represented by the two spin-1/2 Cartan eigenvalues

+1/2, −1/2 and depicted along the line R. The Casimir operator ~L2 labels the spin
number of particles. From the discussion of how spin particles couple to each other,
we already know that the eigenvalues to the Cartan generator of the two particles are
additive, hence coupling 2 multiplets of the form −1/2,+1/2 will yield a representation
with Cartan eigenvalues 1, 0, 1, where the 0 eigenvalue is occupied by two different
states, each belonging to a different multiplet, and the space decomposes into 2 invariant
subspaces 1, 0, 1, which is identified via the Casimir eigenvalue as a spin-1 particle, and
a subspace 0, which is identified as a spin-0 particle, which we write in dimensional
notation as

[2]⊗ [2] = [3] + [1]. (2.26)
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Figure 2.1: Tensor product of two triplet representation yielding an octet and singlet,
i.e. [3]⊗ [3̄] = [8] + [1]

In the case of SU(3) the dimension of the algebra is 8 and its rank is 2. Hence, we
can split the algebra g8 into

g8 = h2 ⊕ e6 (2.27)

where the two Cartan generators are set to Y and T3 (see A.31), and the ladder op-
erators that generate the complement are set to T±, U±, V ± (see A.32). Multiplets of
SU(3) can be depicted in R

2 by the eigenvalues with respect to the 2 Cartan genera-
tors. We have shown the form of typical multiplets in Fig. 2.1, where we have depicted
the defining representation (labeled in dimensional notation as [3]) and its conjugate
representation (obtained by conjugation of the defining representation’s generators and
labeled in dimensional notation by [3̄]). Multiplet on the r.h.s results from a product
a product of those two representations. As we can see, the pattern that emerges from
the product is again obtained by vector addition of the eigenvalues of the two represen-
tation, which yields 9 states, i.e. a 9 dimensional representation. The eigenvalue (0, 0)
is 3-fold “occupied“. One can show that one of the states at (0, 0) decouples into its
own invariant subspace and the 9 dimensional representation reduces to two irreducible
representations denoted by [8] + [1] in dimensional notation.

2.4 Dynkin Labels and Fundamental Representations

We have seen how to decompose Lie algebras into a Cartan algebra and its orthogonal
complement, and use a set of Cartan generators and generators of the complement in
form of ladder operators in order to depict irreducible representation in Rr via root and
weight systems, and how to label different irreducible representations by their Casimir
eigenvalues. Let us now introduce another way to label different irreducible representa-
tions in a systematic way via Dynkin labels, which will yield a classification of funda-
mental representations, which build in a way the basis for all other representations. In
order to do so, the first step is to define an ordering of the roots (for which there will
be no unique way) and weights in the space Rr. Given an (ordered) basis {β1, . . . , βr}
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of H∗ (which can be set for convenience again to the basis defined in (2.21)) we define
a root ~αa to be positive, if the first non-vanishing entry in the expansion in terms of
basis elements βi is positive, if it is not, then it is called negative. In the basis 2.21
this just means that a root ~αj ∈ Rk is positive if its first non-vanishing entry is positive.
(Having a notion of positive and negative roots we can now equally distinguish between
raising and lowering operators.) Furthermore we define positive roots which cannot be
written as the sum of two other positive roots as simple roots, which means that the
corresponding raising and lowering operators raise and lower by a minimal basic amount.
The number of simple roots equals the rank of the algebra, and all other positive roots
can be written as a sum of simple roots. We can then define an order for the roots, such
that λ ≥ µ if λ−µ is a non-negative combination of simple roots. Analogously we define
and order for the weights of a representation and obtain a highest weight. In Fig. 2.2
we have shown the weight and root system of [3], the defining representation of SU(3),
where we have depicted weights as bullets and roots as vectors. Note the transition
between different weights by applying a root. The positive roots are shown in blue, and
the positive roots which are also simple in red.

•

••
T3

Y

Figure 2.2: Weights (bullets) and roots (vectors) system of [3]. The positive roots are
depicted in blue, the simple roots in red.

Having defined the simple weights ~αi =
∑

j αijβj ≡ αj ∈ H∗, with i = 1, . . . , r, we

can define on the space of weights an inner product for a weight ~λ =
∑

j λjβj ≡ λ ∈ H∗
its Dynkin label via

Λi = 2
〈λ, αi〉
〈αi, αi〉

∈ N0, (2.28)

where Λi, i = 1, . . . , r are the Dynkin indices and ~Λ = (Λ1, . . . ,Λr) ∈ N
r
0 is called

Dynkin Label. The inner product 〈., .〉 : H∗ 7→ R hereby is defined via the Killing
metric

〈α, β〉 := (hα, hβ), (2.29)

where the element hα ∈ H is defined by α ∈ H∗ such that [hα, ·] = α(·) ∈ H∗.
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There are r = rank(g) so called fundamental weights ~ωi, i = 1, . . . , r that satisfy

2
〈ωi, αj〉
〈αj, αj〉

= δij, (2.30)

and form a basis for the weights, i.e. all weights can be expanded, such that their entries
with respect to this basis are non-negative integers, hence

λ =
∑
i

Λiωi. (2.31)

With this we can label a representation by the Dynkin label of its highest weight, i.e.
~ΛHW and a representation is called fundamental representation if its highest weight
λHW is a fundamental weight, i.e if〈

λHW , αi
〉

〈αi, αi〉
= δpi, for some p ∈ {1, . . . , r}

~ΛHW = (0, . . . , 0, 1︸︷︷︸
p-th position

, 0, . . . , 0), (2.32)

There are r fundamental representations for a Lie group of rank r and we we call a
fundamental representation with the entry 1 at the p-th position of the Dynkin label
the p-th fundamental representation. (Of course the order depends on the order of the
basis but usually there is a standard order and in case of SU(N) the 1st fundamental
representation is the defining representation, given by the defining matrices on and N -
dimensional vector space).

As we saw earlier, from tensor products of representations other representations are
obtained and it can show that the fundamental representations are enough to obtain all
other possible irreducible representation in that way. In general we can reduce a tensor
product of representations to a sum of irreducibles, i.e.

Vµ ⊗ Vν =
∑
λ

Cλ
µνVλ (2.33)

where the indices µ, ν, λ label all possible irreducible representations (e.g. by their
Dynkin labels) and the Clebsch-Gordon coefficients determine which representations oc-
cur in a given tensor product. We will later give for SU(N) a formula, with which one
can calculate the sum of irreducible representation that occurs in a product of funda-
mental representations, from which we can read off the corresponding Clebsch-Gordon
coefficients.
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2.5 Integration on Lie Groups, Class functions and

Characters

The integration over function on Lie groups, which will be used later in this work, re-
lies on the construction of an appropriate measure. For Rn a measure is given by the
Lebesque measure, which is defined in a way that ensured its translational invariance (as
one needs to ensure that a given volume does not change under translation in the vector
space, in order to have a meaningful integral) and with a normalization condition, such
that the volume of the n-dimensional cube [1, 0]n is set to one. A generalization of this
measure to the manifold of Lie groups is given by the Haar measure.

The Haar measure for groups is required to have similar features. Again the vol-
ume of a given subset of the group shouldn’t change if one shifts each element of the
subset in a equal manner. Since we are dealing with groups and an arbitrary manifold,
this shift is obviously given by the multiplication of the subset with an arbitrary group
element, where due to the non-commutativity of multiplications in general one has to
consider left- and right-shifts independently, which leads (similar to the translational
invariance for the Lebesque measure) to the requirement of left- and right-invariance of
the Haar measure. Left- and right invariance already determines the measure uniquely,
up to multiplication with a constant. One has therefore a choice of normalization, and
chooses the integration over the whole group to be equal to 1. When speaking of the
Haar measure we will always refer to the unique Haar measure with this normalization
condition.

Haar measure: The Haar measure µ on a Lie group G is therefore defined as the
(as can be shown) unique measure, satisfying the conditions

µ(H) = µ(gH) = µ(Hg), for all g ∈ G,H ⊂ G, (2.34)

µ(G) = 1 (2.35)

or in integral form

∫
h∈H

dµ(h) =

∫
h∈H

dµ(gh) =

∫
h∈H

dµ(hg), for all g ∈ G,H ⊂ G, (2.36)∫
h∈G

dµ(g) = 1. (2.37)

Construction of the Haar measure: Given an explicit parametrization of the
group elements by U = U(α1, . . . , αN2−1) we can construct the Haar measure for SU(N)
(up to a constant, which we can by normalization) via the metric tensor

gmn = Tr

(
∂U †

∂αn
· ∂U

†

∂αn

)
, (2.38)

dU =
√
det(gmn)dα1 · · ·αn. (2.39)
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Adjoint Classes and Class functions A complex group function f on a Lie group
G is a map f : G 7→ C. A Lie group G can be divided into different sub-manifolds (but
not sub-groups), which are called adjoint classes. The adjoint class of 〈g〉 an element
g ∈ G is defined by

〈g〉 = {hgh−1|h ∈ G}. (2.40)

Adjoint classes are sub-manifolds, which are invariant under the adjoint action. A group
function f is called class function, if it is constant on each class, i.e.

f(h) = f(hgh−1) for all g, h ∈ G. (2.41)

Every element g ∈ G is conjugate to an element of the maximal Torus T, i.e. of the
maximal connected abelian subgroup of G. Therefore the class functions are only func-
tions of coordinates that parametrize the maximal abelian torus T.

Characters: The character χρ(g) of an element g ∈ G in a representation ρ is given
by

χρ(g) := Tr(ρ(g)), (2.42)

which is the most simple class function one can think of. One can show that the char-
acters in the fundamental representations form a basis for class functions.

The reduction of representation (2.33) carries over to characters

χµ(g)χν(g) =
∑
λ

Cλ
µνχλ(g) (2.43)

(2.44)

Reduced Haar measure for class functions: Class functions are constant on
each class, therefore integration over the redundant degrees of freedom can be executed
and yields only a constant, leaving us with the so called reduced Haar-measure on
the maximal abelian torus, which we could get by explicit parametrization in terms of
class variables and additional variables and then integrate out the redundant degrees in
equation (2.39). An easier way though is obtained by using the fact that the fundamental
characters build a basis for class functions and we can therefore obtain the Haar measure
via the Jacobian of the characters, hence∫

G

dµredf(U) =

∫
φ

dφ1 . . . dφrdet(
dχp(U)

dφj
)f(U), (2.45)

with p, j = 1, ..., rank(G).

Orthogonality of characters: Integration over the characters yields the orthogo-
nality relation

(χµ, χν) :=

∫
G

dµredχµχ̄ν = δµν , (2.46)

which defines a scalar product.



37 2.6. SU(N) Formulas

2.6 SU(N) Formulas

The final section of this chapter will present a short summary of formulas for SU(N)
that we will need in the rest of this work. Let us first recall that SU(N) belongs to the
classical Lie algebras, which are defined in terms of matrices, hence defined in a certain
representation to start with. These representations are called defining representations
and are denoted by a Dynkin labels (1, 0, . . . ) and are of of dimension N , hence labeled in
dimensional notation by [N ]. Furthermore to a certain representation we can obtain the
conjugate representation by conjugation of the generators given in that representation,
such a representation obtains a Dynkin label with inverted entry of the Dynkin label
and has obviously the same dimension as the former one. Conjugation of the defining
representation yields the conjugate representation labeled by (0, . . . , 0, 1) and in dimen-
sional notation by [N̄ ].

Reduction Formulas: Later in this work we will encounter products of fundamen-
tal representations, which we will need to reduce to a sum of irreducible representations.
For products of two fundamental representation, or characters in fundamental represen-
tations, in SU(N), one can show the formulas

Vp ⊗ Vq = V(Λp+Λq) + VΛp−1 ⊗ VΛq+1 , for p ≤ q,

χpχq = χ(Λp+Λq) + χΛp−1χΛq+1 , for p ≤ q. (2.47)

where Λp is the Dynkin label of the p-th fundamental representation.

The Dimension D of a representation of SU(N), which is of rank r = N − 1, given
by the Dynkin label (Λ1, . . . ,Λr) can be calculated via

D(Λ1, . . . ,ΛN−1) =
N−1∏
k=1

[
N−k∏
i=1

(
1 +

∑i+k−1
j=i λj

k

)]
. (2.48)

Using those formulas we see that

(1, 0, . . . , 0)⊗ (0, . . . , 0, 1) = (1, 0, . . . , 0, 1) + (0, . . . , 0), (2.49)

[N ]⊗ [N̄ ] = [N2 − 1] + [0] (2.50)

Hence the product of the first fundamental (defining) and the anti-fundamental repre-
sentation, yields one of dimension N2 − 1, which is the adjoint representation and a
0-dimensional representation, the trivial one.
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The Quadratic Casimir Operator: For SU(N) we can calculate the eigenvalues
of the quadratic Casimir operator (2.23) in different irreducible representations. For the
p-th fundamental a fundamental representation, given by a Dynkin label with entry one
at its p-th position, the Casimir eigenvalue is given by

cp =
N + 1

N
p(N − p). (2.51)

Casimir eigenvalues for an irreducible representation whose Dynkin vector is obtained
by adding two Dynkin vectors of fundamental representations, i.e. representations that
are obtain from a product of two fundamental ones, then can be obtained by

c(Λp+Λq) = cp + cq + 2
(

min(p, q)− pq

N

)
. (2.52)

Reduced Haar measure: A parametrization of the maximal abelian torus in terms
of

D =


exp(iφ1)

. . . ,
exp(iφN−1),

exp
(
−i
(∑N−1

i=1 φi

))
 , (2.53)

with φi ∈ [0, 2π), r = rank(g) yields for the reduced Haar measure (2.45) the form

dµred =
∏
i<j

sin2

(
φi − φj

2

)∏
i

dφi. (2.54)

With this we have now introduced all group theoretical concepts needed for the
derivation of effective Polyakov loop models, which we will turn our discussion to in the
next chapter.



Chapter 3

Effective Polyakov Loop Models

As already mentioned in the introduction, due to the sign problem, QCD at finite density
is still a challenge and one way to get further insight into the QCD phase diagram is
to use effective Polyakov loops models, in which the sign problem is weak enough to be
dealt with [95–100]. The deconfinement phase transition of a pure Yang-Mills theory in
d dimensions is determined by the dynamics of Polyakov loops [120,121], which already
motivates an effective model with Polyakov loops as the degrees of freedom. From the
arguments by Svetitsky and Yaffe [122,123] it shares in the presence of a 2nd order phase
transformation universal behavior with a spin model in d− 1 dimensions, and therefore
Polyakov-loop models are for SU(2) Yang-Mills theories especially excellent candidates
of effective field theories to describe this behavior. In such effective models the Polyakov
loops are viewed in the sense of Landau-Ginzburg theories, as the relevant macroscopic
variables of the theory and the effective theory is then obtained by averaging over all
irrelevant microscopic link variables. Hence we write for the partition function

Z =

∫
DUe−S[U ] =

∫
DUDP δ(P − P [U ])e−S[U ] =

∫
DPe−Seff[P ] (3.1)

and obtain for the so defined effective action

Seff[P ] = − ln

∫
DU δ(P − P [U ])e−S[U ], (3.2)

where Px(U) =
∏Nt

t=1 U0(x, t) is the (untraced) Polyakov loop. As we will see later,
integrating out all spatial links will already yield a Boltzmann factor that depends
on Polyakov loops (given in terms of the microscopic link variables of the theory) only,
making it possible to just substitute the remainng products of temporal link variables by
Polyakov loop variables, yielding an effective theory in terms of Polyakov loop variables
and for the effective action the more simple form

Seff[P ] = − ln

(∫
DUi exp(−S[U ])

)∣∣∣∣
P=P [U ]

. (3.3)

39
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Effective Polyakov loop models can be derived from the underlying full theory in dif-
ferent ways, either weak coupling methods or strong-coupling expansions are applicable,
leaving out a direct derivation in the intermediate area of the deconfinement phase tran-
sition. Using the strong coupling expansion, which is inherent to lattice formulations,
we can integrate out the spatial links of the lattice and calculate the effective action
given by eq. (3.3). The strong coupling expansion is known to have a finite range of
convergence and yielding good results until close to the phase transition. Polyakov loop
models derived in this region reproduce some observables of the underlying Yang-Mills
theory, like the expectation value of the Polyakov loop itself, already in leading order
quite well . Other observables, such as Polyakov loop correlators and local Polyakov
loop distributions, can be improved by including terms of higher order. Unfortunately,
however, with increasing temperature the strong-coupling expansion eventually breaks
down as non-local terms in the effective action become of increasing significance. In
particular, local Polyakov-loop models typically fail to describe the full Yang-Mills the-
ory when the temperature approaches the phase transition and one is therefore left with
non-local Polyakov-loop models whose effective couplings need to be mapped to the full
theory in other ways.

Given an ansatz for a non-local effective theory, inverse Monte Carlo methods will
provide us with numerical ways of mapping the coupling of the full Yang-Mills theory
to the effective coupling. As the aim of this work is to investigate different models,
especially how to improve local models in a systematic way in order to hopefully con-
verge to the full theory even around the phase transition, we will discuss in this chapter
the various forms and ansatzes of the models we will use. It will be still worthwhile to
motivate those ansatzes by a derivation via the strong coupling expansion (even though
the couplings one would obtain in this way are expected to not yield the best results), as
we want to improve models that hold in the strong coupling regime and possibly extend
reliability to a larger region. Moreover the strong coupling expansion will reveal the gen-
eral form of terms that can occur in such effective models and it will give us a guideline
how to systematically add terms to our ansatz in order to obtain gradual improvements.
However we will use the order, as obtained by the strong coupling expansion, only as a
general guideline, as it is clear that with increasing coupling constant the relevant order
of the terms should increasingly change.

In the next section we will therefore first derive effective Polyakov loops model from
the strong coupling expansion for SU(N) theories in order to show the general form of
non-local effective models, before we turn explicitly to the case of SU(2) in the rest of the
chapter. There we will motivate different non-local ansatzes for effective models and also
introduce a semi-analytical non-local model proposed by Greensite and Langfeld [124,
125], who already suggested a partially analytical mapping of the Yang-Mills coupling
onto the effective couplings of non-local Polyakov loops models.
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3.1 SU(N) Polyakov Loop Models from Strong Cou-

pling Expansion

We will now show how SU(N) effective Polyakov loop models can be derived from strong
coupling expansion as shown in [126, 127]. For details of the strong coupling expansion
and the graphical interpretation of the arising terms we refer to [128–131]. Since we
will later map the coupling constants of the full Yang-Mills theory onto the effective
couplings of our models numerically via inverse Monte Carlo methods, we will drop here
the explicit discussion of irrelevant factors in front of the Polyakov loop terms and be
only interested in the form of the terms themselves.

In order to do the integration given in eq. (3.3), we can re-write the link depended
part of Boltzmann factor of the Wilson action (1.25) as a product over all plaquettes
and apply for small values of β the strong coupling expansion

exp(−S(U)) =
∏
p

exp(−βSp[χ(Up)]) =
∏
p

(∑
k

βk
(χ+ χ̄)k(Up)

k!

)
, (3.4)

(where χ(Up) denotes the character of a plaquette Up in the defining representation) to
evaluate the integral order by order. However this leads to an integration over products
of characters with arbitrary large powers per plaquette. In order simplify the occur-
ring integrals over spatial links by avoiding higher powers, we can apply an character
expansion,

exp(−βSp) =

(∑
R

aR(β)χR(Up)

)
with aR(β) =

∫
dU exp(−βSp)χ̄R(Up), (3.5)

instead, where the factors aR(β) themselves contain the exponential function, hence
contain arbitrary large powers of β, and can be expanded to

exp(−βSp) =
∞∑
k=0

βk

 ∑
R∈Irrep(k)

aR,kχR[Up]

 , (3.6)

where the second sum runs over all representation in Irrep(k), the set of all irreducible
representations that occur in a reduction of the tensor product ([N ] + [N̄ ])k (which can
be easily seen by applying the strong couplings expansion first and then applying the
character expansion to (3.4)). Since for the representations R ∈ Irrep(k) the relation
|R| ≤ k holds, a representation R can arise to infinite many powers k with k ≥ |R| but
not in the powers k < |R|. Hence

aR(β) =
∑

k:(R∈Irrep(k))

βkaR,k =
∑
k≥|R|

βkaR,k = O(β|R|). (3.7)
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For SU(2) for example R ∈ Irrep(|R| + 2k) for every k ∈ N0, hence aR(β) =∑∞
k=0 β

|R|+2kaR,|R|+2k. With this we can write the overall Boltzmann factor, including
the product over all plaquettes as

exp(−S) =
∏
p

(∑
R

aR(β)χR(Up)

)
=
∏
p

(
1 +

∑
R 6=0

aR(β)χR(Up)

)
,

aR(β) =
∑

k(R∈Irrep(k))

βkaR,k = O(β|R|), (3.8)

which we can interpret in a graphical way as a (possibly disconnected) surface composed
by different plaquette surfaces, in possibly different representations. According to (3.3)
the effective action

exp(−Seff[P ]) =

∫
DUi

∏
p

[
1 +

∑
R 6=0

aR(β)χR(Up)

]
, (3.9)

is obtained by integrating over all spatial links, for which we will have to calculate
integrals of the form ∫

DUχr1(UV1) · · ·χrn(UVn) (3.10)

occuring from n plaquettes Un = UVn intersecting in a common spatial link U . Such
integrals can be in general caluclated by reducing products of character functions to a
sums of irreducible representations, to see each integral will only not vanish if the trival
representation is occurs in the sum (see [128]). For SU(2) 2 and 3 intersecting plaquettes
can yield a non-vanishing contribution if they are for example of the form

[2]× [2] = [3] + [1],

[2]× [2]× [3] = [5] + [3] + [3] + [1]. (3.11)

For the integration of a spatial link, where (at most) two plaquettes intersect, and
other thereby emerging integrals we will make use of the integration rules∫

DUχr(XU)χs(U
−1Y ) = δrsd

−1
r χr(XY ), (3.12)∫

DUχr(UXU
†Y ) = d−1

r χr(X)χr(Y ), (3.13)

where dr is the dimension of the representation r.
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From (3.12) it is (with s = 0) clear that terms that do not vanish in the integral
cannot have spatial links that are occupied only once, hence cannot have a spatial
boundary. Examples for contributing surfaces are given by the closed surface of an
elementary (smallest possible) cube or an elementary ladder, a surfaces of Nt plaquettes,
which are placed next to each other in timelike direction, such that the surfaces wraps
around the lattice. Other possibilities of contributing surfaces can be build by putting
elementary surfaces together in different ways. They might be disconnected, share only
a common lattice point, a common link or be attached to each other in a common
plaquette. In the last case the shared plaquette of course only arises once and one needs
to check that it comes in an appropriate representation, such that the the resulting
surface will still contribute. For SU(2) and elementary surfaces in the fundamental
representation for example, the common plaquette of the resulting surfaces shown in
Fig. 3.1 can according to (3.11) be either in the adjoint or in the trivial representation
(i.e. be removed completely).

Figure 3.1: Ladder with cube attached (left), double cube (right)

Figure 3.2: Graphical interpretation of the integration rule 3.12

In order to perform the integration over to spatial links of such contributing surfaces
we can interpret eq. (3.12) in a graphical way as shown in Fig. 3.2. Integrating over a
common link of two character functions of two equally oriented neighboring plaquettes
will make the two associated surfaces join into one, which represents the joining of two
character function into one. The argument of the character function is then the bound-
ary of the new surfaces with its orientation inherited directly from the arguments of the
former character functions (i.e. surfaces) that were joined.
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Applying this graphical integration rule successively, one can join more and more
plaquettes that are seperated by a spatial links, until we have joined all connected1 pla-
quettes into a single surface (i.e. a single character function) and have thereby exhausted
the integration rule (3.12), which then cannot be used for the integration of remaining
link variables anymore.

Figure 3.3: Elementary ladder (left) and elementary cube (right) after integration of
spatial links

Figure 3.4: Surfaces yielding an interaction term between Polyakov loops at diagonal
distance

√
2a and straight distance 2a

For the elementary cube and elementary ladders the intermediate results (which is
trivial for the elementary ladder and in the case of the cube graphically dervied in the
appendix B.1) are shown in Fig. 3.3, which correspond to terms of the form

Scube = χr

(∏
i

Ui

)(∏
i

Ui

)−1
 = χr(1) = const., (3.14)

Sladder = χr(UPiU
†P †i+1). (3.15)

We see that elementary cubes, and similarly other closed surfaces, can contribute,
even after performing the remaining spatial integrations, only constant terms to the

1Note that from now on, whenever we speak of connected surfaces we will implicitly mean connected
via spatial links. Since we integrate only over spatial links, the integration over surfaces that are
connected only via timelike link variables will decompose just like for disconnected surfaces. Hence for
our purposes we will refer to both cases as disconnected.
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effective action. For the elementary ladder the remaining integrals will narrow down to
an integral over the spatial link on the left and on the right end of the ladder (seemingly
two links identified with each other by periodicity of the lattice). By applying rule (3.13)
this will yield an interaction term between two Polyakov loops of the form

∫
DU χr(UPiU

†P †i+1) ∼ χr(Pi)χ̄r(Pi+1). (3.16)

It can be easily checked that doing the same for other surfaces that wrap around
the lattice in temporal direction, such as shown in Fig. 3.1 (left), will in the same
way also yield interaction terms between Polyakov loops. Wider connected surfaces,
such as shown in Fig. 3.4, will yield interaction terms between Polyakov loops at larger
distances. (Note the extra decorations with additional spatial plaquettes in Fig. 3.4
connecting the otherwise disconnect elementary ladders, yielding one interaction pair
at larger distances instead of a product of two neighboring interaction terms. We have
shown in appendix B.2 and B.3 that for two elementary ladders without additional
spatial decorations each of the ladders independently leads to an Polyakov interaction
pair just like two completely unconnected surfaces, whereas spatial connection between
the two elementary ladders yields one connected interaction term at larger distances).
Taking into account that contributing terms in the integral (3.9) can consist of multiple
disconnected components, each yielding interaction terms between Polyakov loops, the
effective Boltzmann factor takes the form

exp(−Seff) = c(β) +
∑
r

∑
R1,...,Rr

∑
<xi,yi>

cR1,...,Rr
x1,y1,...,xr,yr

(β)
r∏
i

SRi
xi,yi

with SRx,y = χR(Px)χ̄R(Py) + c.c., < xy >2∈ N, (3.17)

where < x, y > is the lattice distance between the lattice sites x,y and the products
consist strictly of disconnected components.

Now we can naively determine the content of the effective action by simply applying
the logarithm to the Boltzmann factor in the form above and then expanding it. This
would lead to higher powers of the terms above, yielding a fairly complicated form for
the effective action, involving arbitrary combinations of disconnected interaction pairs
between Polyakov loops, which are themselves of arbitrary power, i.e. winding number.
However one can suspect that the effective action should only be a sum of connected
terms, and that disconnected products in the Boltzmann factor arise only due to taking
the exponential of the sum. If this is true then disconnected terms of the same form,
arising at different powers in the logarithmic expansion, should cancel each other due
to the alternating sign in the logarithmic expansion. This suspicion is supported by the
argument that the free energy

F = − 1

V
log(Z), (3.18)
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and therefore also

F ∗ = − 1

Vd−1

log

(∫
DUi exp(S)

)
=

Seff

Vd−1

(3.19)

should exist in the thermodynamical limit V → ∞. Therefore the effective action
itself should grow linearly with the spatial volume Vd−1. One can show that precisely
terms with disconnected components occur with a multiplicity proportional to higher
powers of Vd−1. This can be seen by noticing that rotating or translating a term’s
disconnected components separately on the lattice will not change its contribution to
the effective action. Hence terms obtained from each other by rotating and translating
their disconnected components independently can be grouped together. Now the number
of possible ways to arrange each disconnected term on the lattice is proportional to the
number of lattice points, hence Vd−1. Therefore the multiplicity, with which the different
kind of terms on the lattice occur, is proportional to V q

d−1, where q is the number of
disconnected components. Hence only connected components should arise in the effective
action2. Using this result, we can just expand the logarithm and drop contributions
coming from terms with multiple disconnected parts to see that the effective action will
be of the form

Seff = c(β) +
∑
r

∑
R1,...,Rr

∑
<x,y>

CR1,...,Rr
x,y (β)

r∏
i

SRi
x,y

with SRx,y = χR(Px)χ̄R(Py) + c.c., < xy >2∈ N. (3.20)

where the occurring product is now connected and therefore there the factors in the
product all come with the same lattice indices x, y. Every interaction term in the
representation R contributes a factor aR(β)n to the overall constant CR1,...,Rn

x,y (β), where
n is the number of plaquettes the interaction term is obtained from. Note that this
number is not unique, as different surfaces yield the same interaction term and one can
decorate a surface with additional spatial plaquettes without changing its contribution
to the effective action. However for nearest neighbor interaction it is clear that the
minimum number of plaquettes for a interaction pair is Nt. Hence every term that is
of a new form will first arise to an order pNt. Therefore we can take into account the
contribution of all different type of terms by increasing the order in β by multiple powers
pNt and take into account all terms of the form

SR1
x,y · · ·SRr

x,y, with
r∑
i=1

|Ri| = p (3.21)

with the overall coupling aR1(β)Nt . . . aRr(β)Nt . Surfaces that consist of plaquettes that
are not multiples of Nt then contribute to a sub-order which can be taken into account

2In fact using the ”moments and cumulants method“ one can show (see [128]) that when taking the
logarithm disconnected surfaces will not contribute anymore ensuring the existence of F ∗ and the free
energy in the thermodynamical limit.



47 3.2. Explicit Nearest Neighbor Form for SU(2)

afterwards by calculating their contributing corrections to the former couplings. For
non-local interactions the situation is more complicated, since some terms’ leading order
is not a multiple of pNt. Examples of such surfaces are shown in Fig. 3.4, whose leading
order contributions are of the orders β2Nt+2 and β2Nt+6. We therefore cannot keep track
of all terms in correct order, if we just look at orders of the form βpNt . We will talk
about this more in the explicit discussion of SU(2).

Now the occurrence of interaction terms of higher winding number in addition to
those of higher representation is somewhat redundant, since higher winding numbers
can be reduced. In a strictly analytical treatment within the strong coupling expansion
it makes sense to keep both, the higher representations and the higher winding numbers,
since the latter will emerge at higher order of β. Within the IMC method we can not
really make a difference between terms according to their order, since the couplings will
still have to be determined, but only by the form of the terms themselves. It therefore
makes sense to further reduce terms of higher winding number and we can write the
effective action (see [102,103]) in the form

−Seff =
∑
P,Q

∑
x,y

λP,Q(β)(χP,xχQ,y + c.c.), (3.22)

where sum then runs over pairs of Dynkin labels P,Q such that χPχQ contains the trivial
representation. For SU(2) with labels P = (p), Q = (q) this is given by p = q mod 2,
whereas for SU(3) with P = (p1, p2), Q = (q1, q2) we have p1 + q1 = p2 + q2 mod 3. This
ansatz, with all couplings treated as independent parameters, can be derived entirely by
arguments using center symmetry [132], and does not necessarily rely on an a deriva-
tion via the strong coupling expansion. However a derivation from the strong coupling
expansion can provide an ordering scheme to progressively add terms.

Note that in this form, due to the reduction of higher winding numbers, which leads
to interaction pairs of mixed representation and due to the regrouping of higher and
lower order terms of the same form, it is in general difficult to keep track of all terms
contributing to a main order of the form pNt. However for SU(2) we will be able to
write down the general form for all terms that first occur to any given main order quite
easily. We will show this in the next section.

3.2 Explicit Nearest Neighbor Form for SU(2)

As we have seen, the representations of interaction terms contribute to the order in β just
like their distance (or rather the number of plaquettes involved to span the distance).
Also have we mentioned that sub-orders can arise, due to additional spatial plaquettes
that an elementary ladder (or other surfaces) can be decorated with. This makes it fairly
complicated to write down non-local models, where all terms to an certain order in β are
added simultaneously. If one for example takes into account large distances, one has to
consider smaller representations for those distances, than for the short distances, so that
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the overall order in β is the same. However such complicated expressions are beyond
feasible and might not be necessary, since in the strong coupling limit we do not have to
add many terms to the effective model in order to obtain good results, and in the area
of interest, where the phase transition occurs, the order provided by the strong coupling
expansion is not reliable in the first place. Gradually adding terms to the leading order
contribution while sticking strictly to the order given by the strong coupling expansion
might be unnecessarily complicated. In order to obtain a more simple systematic way
of improving models, instead of adding all terms that belong to the same order in β
simultaneously, which are hard to keep track of (especially when taking non-local terms
into account), we will take look at the terms occurring at a certain order of β, when tak-
ing nearest neighbor interactions into account only. Interaction terms of higher winding
number will thereby be reduced, as discussed in the last section, and grouped together
with lower order terms of the same form. Having obtained a certain order for nearest
neighbor interaction terms, we then increase the interaction distances for all interaction
terms, without being concerned about the additional contribution of terms to the order
in β coming from the increased interaction distance. I.e. we make our models non-local
by ordering all terms only by the order in β of their nearest neighbor analogs.

Considering only nearest-neighbor interaction terms for now, we can derive the SU(2)
effective action easily. As we discussed in the previous sections, in order too obtain
interaction terms at larger distances, one has to put elementary ladders together and
connect them with additional spatial plaquettes. Therefore neglecting spatial plaquettes
in eq. (3.9), we immediately arrive at an effective action only containing nearest neighbor
interactions, which can be written (see [128,133]) as

− Seff =
∑
<x,y>

ln

[
1 +

∞∑
p1

κpχp(Px)χp(Py)

]
, κp(β) = ap(β)Nt = −

[
Ip+1(β)

I1(β)

]Nt

.

(3.23)

Expanding and ordering the terms occurring in the effective action (as shown in [103])
by the power of β to which they arise (which is now strictly an integer multiple of Nt,
since no sub-orders occur due to the lack of spatial plaquettes), we can write the action
−Seff as a sum of the terms

S1 =
∑
<x,y>

κ1χ1,xχ1,y,

S2 =
∑
<x,y>

(κ2χ2,xχ2,y −
1

2
κ2

1χ
2
1,xχ

2
1,y),

S3 =
∑
<x,y>

(κ3χ3,xχ3,y − κ1κ2χ1,xχ1,yχ2,xχ2,y +
1

3
κ3

1χ
3
1,xχ

3
1,y),

..., (3.24)

where Sp ∼ βpNt . We can see that, in agreement with our previous statement, the terms
in Sp proportional to βp·Nt are given by all products of interaction pairs χri,xiχri,yi such



49 3.2. Explicit Nearest Neighbor Form for SU(2)

that
∑

i ri = p. Reduction of all terms of higher winding number leads to the form

S1 =
∑
<x,y>

λ
(1)
11 χ1,xχ1,y,

S2 =
∑
<x,y>

λ
(2)
22 χ2,xχ2,y + 2d

∑
x

λ
(2)
20 χ2,x,

S3 =
∑
<x,y>

[
λ

(3)
11 χ1,xχ1,y + λ

(3)
33 χ3,xχ3,y + λ

(3)
13 (χ1,xχ3,y + χ3,xχ1,y)

]
,

... (3.25)

with

λ
(1)
11 = κ1 λ

(3)
11 = −κ1κ2 +

4

3
κ3

1,

λ
(2)
22 = κ2 −

1

2
κ2

1, λ
(2)
20 = −1

2
κ2

1,

λ
(3)
33 = κ3 − κ1κ2 +

1

3
κ3

1,

λ
(3)
13 = −κ1κ2 +

2

3
κ3

1. (3.26)

We see that terms of the same form will occur to different order and grouping them
together we can write the action as a sum of the terms

S̃1 =
∑
<x,y>

λ11χ1,xχ1,y,

S̃2 =
∑
<x,y>

λ22χ2,xχ2,y +
∑
x

λ20χ2,x,

S̃3 =
∑
<x,y>

[λ33χ3,xχ3,y + λ13(χ1,xχ3,y + χ3,xχ1,y)] ,

... (3.27)

with λpq = λ
(max(p,q))
pq + λ

(max(p,q)+2)
pq + λ

(max(p,q)+4)
pq + . . . .

This provides us with an ordering scheme in β for the ansatz (3.22), which is mean-
ingful for the IMC method, since terms of the same form are grouped together.
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3.3 Extended Linear Polyakov Models for SU(2)

Now we are ready to take the former results in order to write an ansatz for our first
non-local linear Polyakov loop model (where linear refers to the linear dependence on the
coupling constants). Taking the local action given by (3.27) we can write it in general
form as

S =

pmax∑
p=1

S̃p, S̃p =
∑

q∈{p,p−2,...p%2}

∑
<x,y>=1

λpq(χp,xχq,y + χq,xχp,y) (3.28)

and then extending it to a non-local version, where we take the same form for all
terms, no matter at which distance and sum over all possible distances in lattice unit,
hence we obtain the form

Sxlin =
rmax∑
r2=1

pmax∑
p=1

S̃p,r, S̃p,r =
∑

q∈{p,p−2,...p%2}

∑
<x,y>=r

λpq,r2(χp,xχq,y + χq,xχp,y). (3.29)

This will be our first class of non-local Polyakov loop models, which we will refer to as
full linear or extended linear Polyakov loop model, since in principle it contains all terms
one can possible get by sending pmax, rmax →∞. Later on we will investigate the cases
where pmax = 1, 2, 3.

3.4 Simple Linear Polyakov Models for SU(2)

As we already mentioned, the order given by the strong coupling expansion is only meant
as a rough guideline for improving the leading order contribution, but not meant too
strictly as it is not reliable in the region of the phase transition. Therefore it is not
clear if all terms to a given index p in the previous form of the action (3.29) are still of
the same relevance and we might simplify this model, which will be complicated enough
provided that we will go to large distances rmax, by only taking parts of the terms to the
same order p into account. Furthermore in the previous form of the action (3.29) or in
general (3.27), we expanded all function and reduced terms of higher winding numbers
completely. The IMC method will treat each of those couplings as an independent
parameter, thereby neglecting all relations between those couplings, which occur when
expanding the logarithm and hold in the strong coupling limit. This is on the one
hand an advantage, since the relationships given by the strong coupling expansion are
expected to not hold near the phase transition, where we mainly want to improve our
models. Neglecting the constraints will give the model more freedom to reproduce the
results of the full Yang-Mill theory as well as possible. However it is known that too
much freedom can affect the performance of the IMC method negatively (see [102]).
Strictly speaking this was shown for SU(3), where the IMC method is very sensitive to
the number of coupling constants and one can see such an effect already when taking
into account just a few coupling constants. However our models for SU(2) will include
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a large number of coupling constants, far beyond common calculations and we cannot
exclude the occurrence of a similar effect at a number of degrees of freedom that large.
Therefore it might be useful to simplify the model (3.29) and reduce the number of
coupling constants. A straight forward simplification is to not take into account terms
that arise only from terms with higher winding number, i.e. the interaction terms with
mixed representations. For such a simplification the model is then given by

Slin =
rmax∑
r2=1

pmax∑
p=1

S̃p,r, S̃p,r =
∑

<i,j>=r

λpp,r2χp,iχp,j, (3.30)

which leads to another class of linear non-local models, which we refer to as the sim-
ple linear Polyakov-loop models. A simplification by neglecting Polyakov loops with
multiple winding number can also be interesting, since the next model we will discuss
somewhat prioritizes the effect of higher winding numbers by summing them up into a
logarithmic form, before taking into account contributions from higher representations
or larger distances. This simplification is therefore in a way complementary to the pri-
oritizing of larger winding numbers in the next model.

Note that if p is even in the model above, then the sum over q will include 0, hence
the trivial representation with χ0(U) = 1 for all g ∈ G. Hence the interaction pairs
proportional to λp0,r2 do not really dependent on the second Polyakov loop in the trivial
representation and therefore not on the distance and we will summarize all terms of
the same form in the coupling constant λp0,0, leaving us for this kind of interaction
terms with the introduction of only 1 coupling constant, which does not depend on the
distance. This situations occurs for p = 2, where∑

r2

∑
<i,j>=r

λ20,r2χp,iχ0,i = λ20,0

∑
i

χ2,i (3.31)

introduces a potential term χ2,i = χ2
1,i − 1 into the action.

3.5 Logarithmic Resummation for SU(2)

In the previous section we have improved the local Polyakov loop leading order term

λ1S1 = uNt
∑
<ij>

χ1,iχ1,j, (3.32)

of the effective action S = λ1S1 + λ2S2 + . . . , where u = a1(β) as defined in (3.23), by
first adding higher representations that arise directly due to the character expansion in-
volved, but also from reduction of terms with higher winding numbers that occur due to
the expansion of the logarithm, and then by increasing the interaction distance of such
terms, making the model non-local. Another way to improve the local model (as shown
in [130, 131]) is, instead of reducing terms of higher winding number and grouping all
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similar terms together, to do a resummation of terms of higher winding number. Hereby
one also takes into account the contribution that come from decorations of elementary
ladders with additional spatial plaquettes, which have been initially neglected, in order
to get an improved local action, which we can then again extend to a non-local version.

Let us first discuss the resummation of the elementary ladder and higher order graphs
which arise from its decoration with spatial plaquettes. In Fig. 3.5, 3.6 we can see two
of such surfaces resulting in the same nearest neighbor interaction pair χ1,iχ1,i+1, but of
higher sub-orders βNt+4 and βNt+8. Hence the form of the resulting terms will be the
same, only their contribution to the effective coupling will be different.

Figure 3.5: Elementary ladder with decorations leading to an order in β proportional to
∼ (Nt + k), k = 4 (left), k = 8 (right)

Figure 3.6: Elementary ladder with decorations leading to an order in β proportional to
∼ (Nt + 8)

Following the calculations in [130, 131] we can calculate explicitly the contributions
to the effective action of the sub-order surfaces given shown in Fig. 3.5 and Fig. 3.6
(left) which are given by

φ1 = uNt [4Ntu
4]S1, (3.33)

φ2 = uNt

[
1

2!
(4Ntu

4)4(Nt − 3)u4

]
S1, (3.34)

φ1 = uNt [4Ntu
43Ntu

4]S1, (3.35)
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where the powers of u in the square brackets arise due to the additional plaquettes of
which each contributes a factor u and the additional factors take into account the com-
binatoric multiplicity of such decorations. The factors Nt takes into account the number
of different positions where a cubic decoration can be placed onto the elementary ladder
(hence the factor Nt − 3 instead of Nt in φ2, taking into account the 3 unavailable po-
sitions for the second cubic decoration). The factor 4 in front of Nt takes into account
the number of spatial directions one can direct a cubic decoration. Note that the factor
3 instead of 4 in front of the 2nd cubic decoration in φ3 again arises due to the fact
that one has to subtract one direction, which would lead to a double cube decoration,
belonging to another class of surfaces.

Neglecting higher order terms, we can then write the sum of the decorated elementary
ladders as

φ1 + φ2 + φ3 = uNtexp[Nt(4u
4 − 12u8)]S1, (3.36)

where of course the polynomial in the exponent reflects only a partial resummation of
higher order terms. For example there are, as already mentioned, double cube decora-
tions of order u6 or triple cube decorations of order u8 (Fig. 3.6 (right)), which are not
included. However similar calculations have also been presented in [130, 131] up to the
order u10, which yield for λ1(u,Nt)

λ1(u, 2) = u2 exp

[
2(4u4 − 8u6 +

134

3
u8 − 49044

405
u10

]
, (3.37)

λ1(u, 3) = u3 exp

[
3(4u4 − 4u6 +

128

3
u8 − 36044

405
u10

]
, (3.38)

λ1(u, 4) = u4 exp

[
4(4u4 − 4u6 +

140

3
u8 − 37664

405
u10

]
, (3.39)

λ1(u,Nt ≥ 5) = uNt exp

[
Nt(4u

4 − 4u6 +
140

3
u8 − 36044

405
u10

]
. (3.40)

In general the effective coupling will then be of the form

λ1(u,Nt) = uNtexp[NtP (u,Nt)], (3.41)

where the polynomial P (u,Nt) takes into account higher order corrections from all pos-
sible decorations. Now doing a resummation of the terms of higher winding number in
(3.24) will again yield an logarithmic form∑

<ij>

(
χ1,iχ1,j −

λ2
1

2
χ2

1,jχ
2
1,i +

λ3
1

3
χ3

1,iχ
3
1,j − . . .

)
=
∑
<ij>

ln(1 + λ1χ1,iχ1,j) (3.42)

for the action, where the coupling λ1(u,Nt) is now the full effective action, with sub-
order contributions by decorations taken into account (in contrast to the logarithmic
action (3.23)).
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3.6 Logarithmic Polyakov Models for SU(2)

Doing the same resummation for Polyakov terms in higher representations and with
larger interaction distances, we can motivate another class of generalized non-local
ansatzes for Polyakov models, which we will investigate later on, given by

Slog =
rmax∑
r2=11

pmax∑
p=1

S̃p,r, S̃p,r = −
∑

<i,j>=r

ln (1 + gpp,r2χp,iχp,j) , (3.43)

with coupling constants gpp,r2 , which we refer to as the logarithmic Polyakov-loop models.

Again we will later investigate the cases pmax = 1, 2, 3. For the action above, we can
see that we run into a sign problem unless we satisfy the condition

0 < 1 + gpp,rχp,iχp,j (3.44)

and for the 3 cases mentioned we can see from

χ1 = χ1 ∈ [−2, 2]

χ2 = (χ2
1 − 1) ∈ [−1, 3]

χ3 = χ1(χ2
1 − 2) ∈ [−4, 4]

⇒ χp,iχp,j ≥


−4, p = 1

−3, p = 2

−16, p = 3

(3.45)

that the condition is satisfied if the effective couplings satisfy the conditions

gpp,r <


1/4 = 0.25, p = 1,

1/3 ' 0.33, p = 2,

1/16 ' 0.06, p = 3.

(3.46)

In the results sections of this work we will later see that this conditions are indeed
satisfied for SU(2) on the full range of interest.
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3.7 Semi-Analytical Polyakov loop Model from Rel-

ative Weights Method

Later on in this work we will try to make sense of the fall-off of the non-local couplings
with the interaction distance, try to relate it to the correlation length of the theory
and investigate the fall-off in order to determine a possibly analytical behavior. This is
in hindsight of possible extensions of investigations to SU(3) gauge theories especially
important, since a known analytical behavior would reduce the number of needed free
parameters drastically, which the SU(3) IMC method is, as mentioned, very sensitive
to. In this context we will introduce another non-local model proposed by J. Greensite
and K. Langfeld [124], which is quite interesting, since it already comes with the fall-off
for the non-local couplings, with respect to the interaction distance, given in analytical
form. The action of this model is given by

SGL = −1

8
c1

∑
x

χ2
x +

1

2
c2

∑
x,y

χxQ(x− y)χy, (3.47)

where the couplings c0 and c1 are determined numerically but the operator Q, deter-
mining the fall-off of the couplings, is given by

Q(x− y) =

{
(
√
−∇2)xy, |x− y| ≤ rmax,

0, |x− y| > rmax.
(3.48)

Its eigenvalues can can be determined by Fourier transformation of the lattice momenta

(
√
−∇2)xy =

1

L3

∑
k

kL exp(i~k · (~x− ~y)),

with kl =

√√√√4
3∑
i=1

sin2

(
1

2
ki

)
, ki =

2π

L
mi, ~m ∈ V. (3.49)

and are depicted in Fig. 3.7.

Note the different values at certain values of r, i.e. at r = 3 coming from two different
vectors (3, 0, 0), (2, 2, 1) with the same length, and the missing values for some values of
r, due to the non-existence of a 3-dimensional integer vector with such a length, e.g. on
a 3 dimensional lattice there is no integer vector ~v with |~v|2 = 7.

On a 163 × 4 lattice at β = 2.22 the constants c1 and c2 are determined numerically
in [124] and given by

c1 ≈ 4.417(4), c2 ≈ 0.498(1). (3.50)
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Figure 3.7: Eigenvalues of (−
√
−∇2)r=|x−y| for differnt lattices with Ns = 16, 32

As can be seen, ansatz (3.47) proposed by Greensite and Langefeld is quite similar to
our ansatzes (3.29) and (3.30). If we set pmax = 1 in our linear ansatzes, add an additional
term λ11,0

∑
i χ

2
1,i we can roughly identify the models by applying the mapping

λ1,0 = −1

8
c1 +

1

2
c2Q(0)

and λ1,r2 = c2Q(r)

with Q(r) ≈ 1

|{x : |x| = r}|
∑
|x|=r

Q(x). (3.51)

This concludes our discussion of effective Polyakov loop models. Having derived
different ansatzes for non-local effective Polyakov loop models, we will show in the next
chapter how to map the full Yang-Mills theory via inverse Monte-Carlo methods onto
those non-local ansatzes.
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Inverse Monte-Carlo Method

As already mentioned our aim is to map the coupling of the full Yang-Mills theory to
different non-local Polyakov loop models in order to investigate them. In general we can-
not map the couplings of the full theory to those of the effective Polyakov-loop models
(3.30) and (3.43) analytically. Using the strong coupling expansion to find approxima-
tions for such mappings does not work due to the sheer number of couplings and terms
involved, and even more importantly due to the breakdown of the strong coupling ex-
pansion itself in the main area of interest. Therefore we need other methods to obtain a
mapping between the couplings. There are different methods available to do so, such as
treating the couplings of the effective theories as independent parameters to investigate
the theory and then map those couplings, via matching of different observables, back to
the coupling of the full theory. Other methods, such as the inverse Monte-Carlo method
(IMC) [101–103], which we will use in this work, use a more direct approach to find a
mapping between the couplings. In the IMC method we first generate configurations
of the full theory via Monte-Carlo methods, calculate the corresponding configurations
in terms of the degrees of freedom of the effective theory, and then use the latter to
determine the couplings of the effective theory in the IMC step (see Fig. 4.1).

Wilson action
S[U ]

effective action
Seff[P ]

configurations
C(U)

eff. configurations
C(P )

(not possible)
integrate out

U

MC

calculate

P = P (U)

IMC

Figure 4.1: Inverse Monte-Carlo-Method

57
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In principle the IMC step is done by taking an ansatz for an effective action Seff(λ)
with yet to determine coupling constants λ. As in the derivation of Dyson-Schwinger
equations (DSEs) we use that expectation values of total derivatives with respect to
the fields in the effective action must vanish and require that this remains true when
replacing the effective theory with the full theory for the calculation of these expectation
values via, i.e.

0 =

〈
δSeff

δϕ
(λ)

〉
eff

!
=

〈
δSeff

δϕ
(λ)

〉
full

. (4.1)

This requirement means that if we view the total derivative itself as an observable, its
expectation value must vanish if calculated on a set of configuration of the variables of
the effective theory, which are distributed with respect to the measure of the full theory,
and obtained by reducing the full theory‘s variables to effective ones. The requirement
implicitly determines the coupling constants of the effective theory.

4.1 Geometric Ward-Identities and DSE’s

In order to apply the IMC method we first will need to derive a Dyson-Schwinger equa-
tion, which we can impose the requirement (4.1) onto. For a pure gauge theory we will
have to consider derivatives and integrals with respect to the gauge field variables. Since
in lattice gauge theory the gauge degrees of freedom are given in terms of link variables,
which are elements of a gauge group G, in order to derive a DSE we need to consider
derivatives and integrations with respect to group elements. The left invariance of the
Haar measure yields for the left derivative La of a function f on G

∫
dµ(g)(Laf)(g) =

∫
dµ(g)

d

dt
f(exp(t · Ta)g) =

d

dt

∫
dµ(g)f(exp(t · Ta)g) =

d

dt

∫
dµ(exp(t · Ta)g)f(exp(t · Ta)g) =

d

dt

∫
dµ(g)(Laf)(g) = 0, f ∈ L2(G) , (4.2)

where g ∈ G is a group element and Ta is the a-th generator of the algebra, which can
be used to derive a DSE from geometric Ward-identities [134]. The aim hereby is to
calculate the derivative in the equation above, on an appropriate choice for the function
f , such that it inserts the Boltzmann factor into the integral equation and we can write
it as an expectation value, leaving us with the desired DSE, which we can use for the
IMC method. Since the full and effective theories can only depend on class functions
of the gauge group, we want to use the equation above also in a way that only involves
class functions, i.e. write a class function as a derivative of other class functions.
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This is achieved by

~L · (F ~LF̃ ) = F ~L2F̃ + ~LF · ~LF̃ . (4.3)

For class functions F and F̃ , the choice (4.3) is then a class function itself, which can

be proven (see C.1) by first showing that ~L2 acts as the quadratic Casimir operator and
therefore commutes with all group elements and then using the fact that invariance of
the Killing metric Tr(TaTb) under the adjoint action Ta → h−1Tah implies that h−1Tah
can be expanded as Rc

aTc with an orthogonal matrix R, to show invariance under the
adjoint action of the second term in 4.3. Inserting the function (4.3) into the identity
4.2 leaves us with an integration over the adjoint classes,

0 =

∫
dµred~L · (F ~LF̃ ) =

∫
dµred(F ~L

2F̃ + ~LF · ~LF̃ ), (4.4)

with the appropriate measure given by the reduced Haar measure. Making an appropri-
ate choice of the function F̃ , calculating the derivatives and reducing higher powers of
character function will then leave us with a master equation, which we will be able to
write, by insertion of the Boltzmann factor via choice of the function F , in form of an
Dyson-Schwinger equation.

In the first step we set F̃ = χp, for some p ∈ {1, ..., r} and then calculate the first
part on the r.h.s of equation 4.4. By applying the eigenvalue equation∑

a

L2
aχp(g) = −cpχp(g) (4.5)

for the Laplacian ~L2, we can write the first term in the sum of 4.4 as

F ~L2F̃ = −cpχp(g)F. (4.6)

In the next step we then calculate the second term on the r.h.s of eq. 4.4. Using the
fact that the fundamental characters χq, with q ∈ {1, . . . , r = rank(G)}, provide a basis
for class functions, we can apply a character expansion

LaF (χ) =
r∑
q=1

∂F (χ)

∂χq(g)
Laχq(g). (4.7)

Reducing then all terms χµχν to

χµχν =
∑
λ

Cλ
µνχλ, (4.8)

where Cλ
µν are Clebsch-Gordon coefficients and the sum runs over all irreducible repre-

sentations λ, we can write∑
a

L2
aχpχq =

∑
a

((L2
aχp)χq + 2(Laχp)(Laχq) + χp(L

2
aχq)) = (4.9)

−
∑
a

(cp + cq)χpχq +
∑
a

2(Laχp)(Laχq) = −
∑
ρ

Cρ
pqcρχρ (4.10)
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and therefore get

(~Lχp) · (~Lχq) =
1

2

∑
a

[
(cp + cq)χpχq −

∑
ρ

Cρ
pqcρχρ

]
, (4.11)

and for the second term in the sum of 4.4

~LF · ~LF̃ = ~LF · ~Lχ̃p =
r∑
q=1

∂F (χ)

∂χq(g)
~Lχq(g) · ~Lχp(g). (4.12)

Inserting equations 4.6 and 4.11 into equation 4.4, one derives the master equation

0 =

∫
G

dµred

{
1

2

∑
q

Kpq
∂F (χ)

∂χq(g)
− cpχp(g)F

}
,

Kpq :=

[
(cp + cq)χpχq −

∑
ρ

Cρ
pqcρχρ

]
, (4.13)

where Cρ
pq are Clebsch-Gordon coefficients, cρ eigenvalues of corresponding Casimir op-

erators, the first sum runs over all fundamental representations q and the second sum
runs over all irreducible representations ρ.

One equation of the form (4.13) holds independently for every point on the d − 1
dimensional lattice of our effective theory. Therefore, inserting a unity in terms of
Π = exp(−Seff) times its inverse, one can write the lattice average of these equations
in the form of expectation values. In the last step we replace the measure for these
expectation values with that of the full theory,

V −1
∑
i∈L

〈
1

2

∑
q

Kpq,i
∂ ~Fi
∂χq,i

Π(~λ)−1 − cp χp,i ~Fi Π(~λ)−1

〉
full

= ~0. (4.14)

Moreover, we have collected sets of as yet unspecified class functions per lattice site i
in large vectors ~Fi because their number needs to match that of the couplings in the
ansatz for the effective action, i.e. dim(~Fi) = dim(~λ), so that the resulting system of

DSEs (4.14) can be solved to determine the couplings ~λ via the IMC method.

Since the function Π usually factorizes into a product, by setting the functions ~Fi ≡
~fiΠ most of the factors Π−1 cancel and we obtain

V −1
∑
i∈L

〈
1

2

∑
q

Kpq,i

(
∂ ~fi
∂χq,i

+ ~fi
∂ ln Πq,i(~λ)

∂χq,i

)
− cp χp,i ~fi

〉
full

= ~0, (4.15)
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where Πq,i denotes the factor of Π which depends on the lattice index i and the repre-
sentation q.

In general this equation is of non-linear depenence of the coupling constants ~λ and
solving it will require non-linear methods but in the case of a linear depenence, as for
our linear Polyakov loops models, the effective action and its derivatives with respect to
the characters can be written as

ln Π(~λ) = ~ST · ~λ, (4.16)

∂ ln Πq,i(~λ)

∂χq,i
=
∂~STq,i
∂χq,i

· ~λ, (4.17)

an we get the matrix equation ~λ = A−1
p ~vp, with

Ap =
∑
i∈L

〈
1

2

∑
q

Kpq,i

(
~fi ·

∂~STq,i
∂χq,i

)〉
full

,

~vp = −
∑
i∈L

〈
1

2

∑
q

Kpq,i

(
∂ ~fi
∂χq,i

)
− cp χp,i ~fi

〉
full

, (4.18)

which can be solved by matrix inversion.

4.2 IMC for SU(2) Polyakov-Loop Models

For the case of a SU(2) gauge theory, where we have proposed three classes of models
(extended linear, simple linear and logarithmic models), we can now insert into the
geometric DSE the factors Π, where Π = Πxlin for the extended linear model (3.29),
Π = Πlin for the simple linear model (3.30) and Π = Πlog for the logarithmic model
(3.43) respectively. Since there is only one fundamental representation we set p = q = 1
and use eq. 2.51, 2.52, 2.47 to determine all Casimir eigenvalues and Clebsch-Gordon
coefficients involved, which yields

c0 = 0, c1 = 3/2, c2 = 4,

C0
11 = 1, C2

11 = 1, (4.19)

and hence

K11,i = 3χ2
1,i − 4χ3,i. (4.20)

By then setting the functions ~Fi ≡ ~fiΠ most of the factors Π−1 in (4.15) cancel and it

remains to make a choice for the functions ~fi, such that we avoid any coupling constant
from only occuring in terms that contain odd powers of some Polyakov loop χl,i, which
would then lead to an independence of eq. (4.15) of that coupling after group integration.
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A convenient choice to achieve this is given for the simple linear and logarithmic models
(where only interaction terms with Polyakov loops in the same representation contribute)
by

fl,d,i =
1

λll,d

∂ ln(Πll,d,i)

∂χ1,i

, and fl,d,i =
1

gll,d

∂Πll,d,i

∂χ1,i

, (4.21)

with (~fi)d+(l−1)·r2
max

= fl,d,i for the quadratic distance d ∈ {1, . . . , r2
max} and the represen-

tation l ∈ {1, . . . , pmax}. Πll,d,i now denotes the factor of the product Π with interactions
between Polyakov loops only at squared distance d with one of the loops sitting at lattice
point i and both in representation l.

For the extended linear model we need additional functions due to the interaction
terms with mix representations, which introduce the coupling constants λ20,0 (which does
not depend on the distance due to the trivial representation of one of the two Polyakov
loops in the interaction terms) and λ13,r2 . For the additional coupling constants we
introduce equally many new functions

f0,0,i =
1

λ02,0

∂ ln(Π20,0,i)

∂χ1,i

, and fpmax+1,d,i =
1

λ13,d

∂ ln(Π13,d,i)

∂χ1,i

, (4.22)

With this we can now apply the IMC method to our different SU(2) Polyakov loop
models.
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Chapter 5

Logarithmic vs. Linear Models

In this and the following chapters we will present our results for the effective Polyakov
loop models as obtained by IMC methods. Generating the configurations of the full
Yang-Mills theory has been done with a local Hybrid-Monte-Carlo (HMC) algorithm,
where a number of 1000 configurations has been used in this work (unless explicitly
mentioned otherwise). Via IMC we have minimized the geometric DSE (4.14) with
respect to the effective coupling constants, in order to map different values of the Yang-
Mills coupling constant β onto the coupling constants of different effective models. For
the linear models all dependences on the coupling constants are linear and eq. (4.14)
reduces to a matrix equation of expectation values which have been solved by simple
matrix inversion. In the logarithmic case we solve the then non-linear eq. by applying
a secant method. Doing so we have used the obtained coupling constants ~λ(β), to

simulate different observables
〈
O(~λ(β))

〉
eff

= 〈O(β)〉eff in the effective theories, which

are presented as functions of β and compared to their results 〈O(β)〉YM as obtained by
simulations of the full theory. We want to stress that the IMC algorithm provides us with
coupling constants that contain numerical errors, where we drop the error interval for
simulations of the effective theories due to the computational costs. Therefore error bars
in plots for the effective theories only contain statistical errors due the simulation itself
but not the errors resulting from determining the effective coupling constants in the IMC
method. For the simulation of the effective theories we have used the basic Metropolis
algorithm. We consider effective models with different values of r2

max up to 81, and pmax
up to 3. This leads to a maximum number of independent coupling constants up to
81 · 3 = 243 for the logarithmic and simple linear model. For the extended linear model
we obtain a maximum number of 325 independent coupling constants. In this chapter we
will start by comparing the logarithmic model to the two different (simple and extended)
linear models on a lattice with Nt = 4. First in the local case, with Polyakov loops only
in the fundamental representation included, then we will add higher representations,
before we look at the non-local case. The lattices used for this chapter are all of the size
163 × 4 unless mentioned otherwise.
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5.1 Local models in fundamental representation

First we compare the linear and the logarithmic models with only nearest neighbor
interactions and taking into account only fundamental Polyakov loops (r2

max = 1 and
pmax = 1). Note that at this level the simple and the extended linear models coincide
and differences only occur for pmax ≥ 2.
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Figure 5.1: Polyakov loop expectation value 〈|P |〉 for local models in fundamental
representation: Linear model (left) and logarithmic model (right)

In Fig. 5.1 we compare 〈|P |〉, the expectation value of the absolute value of the
(non-normalized) fundamental Polyakov loop (P = χ1), as a function of β, for the full
Yang-Mills theory to the effective local models in the fundamental representation (linear
model on the left, logarithmic on the right). In both cases we see that the value of the
Polyakov loops are matched very poorly in the center symmetry broken phase. However,
both effective models show a phase transition from a center symmetric to a broken phase
and the form of the Polyakov loop as a function of β is qualitatively correct. Compared
to the critical value βc ≈ 2.30 of the full Yang-Mills theory, the values of β, where the ef-
fective models undergo a phase transition, are shifted to significantly larger values. The
logarithmic resummation improves this and shifts the effective critical value towards its
Yang-Mills value compared to the linear model. This is obviously due to the interaction
terms of higher winding number implicitly included into the logarithmic form, whereas
the linear form only contains the leading order term of the strong coupling expansion.

In Fig 5.2 (left) we have depicted the local Polyakov loop distributions of the effective
models and the full model at different values of β, right before the phase transition and
slightly in the broken phase. In. Fig. 5.2 (right), we have shown the same again, but
divided the local Polyakov loop distribution by the scaling factor of the reduced SU(2)
Haar measure, i.e. the Vandermonde potential, which describes the local Polyakov loop
distributions of the Yang-Mills theory (see [135]). The (reduced) SU(2) Haar measure



67 5.2. Local models with higher representations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−2−1.5−1−0.5 0 0.5 1 1.5 2
P

0

0.5

1

1.5

2

2.5

3

3.5

−2−1.5−1−0.5 0 0.5 1 1.5 2
P

lin., β = 3.00
log., β = 2.68
YM, β = 2.28
lin., β = 3.12
log., β = 2.84
YM, β = 2.44

Figure 5.2: Local Polyakov loop distributions of the local linear and logarithmic models
compared to the full theory immediately before the phase transition and in the broken
phase (left); divided by the SU(2) Haar measure (right). The legend on the right applies
to both figures.

in terms of the (non-normalized) Polyakov loop P = Tr Diag (exp(iφ)), (exp(−iφ)) =
2 cos(φ) is given by (see 2.54)

2

π
sin2(φ)dφ =

2

π
sin2(φ)

∣∣∣∣∂P∂φ
∣∣∣∣−1

dP =
1

π

√
1− P 2

4
dP. (5.1)

We see that the distribution of the Yang-Mills theory in the symmetric phase is given
by the symmetric Haar measure, whereas for the effective linear model we can see a de-
formation compared to the full theory, which leads to a flattening with a local minimum
around |P | = 0 and two global maxima emerging on the sides. In the logarithmic model
the deformation is very small, compared to the linear case. In the broken phase, the
distributions become asymmetric and the maximum of the full theory shifts from P = 0
to larger values of |P |. The deformation of the local Polyakov distribution of the linear
model clearly carries on into the broken phase, which agrees with the results in [136].

5.2 Local models with higher representations

As a next step we take into account higher representations for the local effective models,
first for the linear model, then for the logarithmic one. Note that from now on we will
include terms for our models that were labeled by pmax = 2, 3. Hence there will be a
difference between the simple linear model (which we will label in plots and equations
by “lin.”) and the extended linear model (labeled by “xlin.”).
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5.2.1 Simple Linear Model

In Fig. 5.3 (left) we compare the Polyakov loop expectation value 〈|P |〉 for the local
simple linear model, where we gradually increase via the value of pmax the number of
representations taken into account, to the full theory. We do the same for the local
Polyakov loop distributions in Fig. 5.3 (right) with the local linear model at pmax = 1, 3
only. As we can see, in the linear model the results for the expectation value of the
Polyakov loop are improved significantly, if we add up to three representations, reaching
roughly the same quality as the logarithmic model with the fundamental representation
only. However the critical coupling is still far from that of the full theory and the small
improvement between pmax = 2 and pmax = 3 indicates that this would not improve fur-
ther even if we take into account higher representations. The shape of the local Polyakov
loop distributions do not seem to improve on increase of pmax, still showing a significant
flattening around zero and too high values away from zero.
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Figure 5.3: Polyakov loop expectation value 〈|P |〉 for the local simple linear model
with pmax = 1, 2, 3 compared to the full Yang-Mills theory (left) and local Polyakov
loop distributions of the local simple linear model with pmax = 1, 3 compared to the
full theory at fixed value of 〈|P |〉, corresponding to values of β shortly before and after
phase transition (right).

Furthermore, in Fig. 5.4 we compare the coupling constants of the effective linear
models for fundamental and adjoint interaction terms as obtained by the inverse Monte-
Carlo method to the prediction of the strong coupling expansion. We see that our results
differ significantly from the predictions in the region of interest with β & 2.2, indicating
the breakdown of the strong coupling expansion around the phase transition and beyond.
However as we see by the Polyakov loop expectation values and local distributions, also
with the numerically matched coupling constants, results of the full theory are still
matched only poorly by the local simple linear model, due to the very restricted ansatz.
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Figure 5.4: Couplings of the local interaction terms in fundamental (λ11,1) and adjoint
(λ22,1) representation calculated in the simple linear model from IMC (dots) vs. analyt-
ical prediction from strong coupling expansion (lines)

5.2.2 Logarithmic Model

When adding higher representations in the local logarithmic model, the results for the
expectation value of the Polyakov loop model and shape of local Polyakov loop distribu-
tions do not improve much (Fig. 5.5). This is due to the fact, that the logarithm arises
from the resummation of terms of higher winding number and implicitly contains higher
order representations. The proper resummation of higher representations can also been
seen in Fig. 5.6 (left), where we have plotted the resulting couplings of the fundamental
representation of the logarithmic model after expansion of the logarithm vs. the fun-
damental and the adjoint coupling constants of the linear model. We have also plotted
in Fig. 5.6 (right) the coupling constants of the local logarithmic model with three
representations and we see that they are small enough, satisfying the three conditions
(3.46), preventing us from running into a sign problem on the range of interest. This
will be also true for the non-local action, as the coupling constants of the non-local parts
decrease with the distance and are smaller than the local coupling constants.

5.2.3 Extended Linear Model

So far we have seen that increasing pmax until a value of two or three, i.e. taking into
account local higher order terms in β, improves the result for the simple linear model,
such that the expectation value of the Polyakov loop is roughly of the same quality as
the logarithmic model in the fundamental representation only. However the shape of
local Polyakov loop distributions is still deformed significantly with no noticeable im-
provement at all. The logarithmic model seems to neither improve when looking at the
Polyakov loop expectation value, nore the local distributions.
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Figure 5.5: Polyakov loop expectation value 〈|P |〉 for the local logarithmic model with
pmax = 1, 2, 3 compared to the full Yang-Mills theory (left) and local Polyakov loop
distributions of the local simple linear model with pmax = 1, 3 compared to the full
theory at fixed value of 〈|P |〉, corresponding to values of β shortly before and after
phase transition (right).

In. Fig. 5.7 we see that for increasing pmax the extended linear model also improves
the expectation value of the Polyakov loop, yielding approximately the same quality as
the other local models (simple linear and logarithmic). However in contrast to the simple
linear model, the shape of the local Polyakov loop distributions is improved significantly
already at pmax = 2, such that the shape is very similar to that given by the logarithmic
model. Hence the shape of the distributions, which is given for the full theory by the
Haar measure at small β, is improved by the mixed interaction term between adjoint
and trivial representation proportional to λ20,0, which is equivalent a quadratic potential
term

λ20,0 χ2,i χ0,j = λ20,0 (χ2
1,i − 1)χ0,j = λ20,0 (χ2

1,i − 1). (5.2)

By expansion of the logarithmic model with pmax = 1, it is apparent that such
a potential term is implicitly also contained in the logarithmic model. Hence similar
improvements in the local Polyakov loop distributions are achieved by logarithmic re-
summation and by adding a potential term in the extended linear ansatz.

5.3 Non-local Models

The seemingly convergence (when increasing pmax) in all local models towards a simi-
lar Polyakov loop expectation value and critical coupling constants, which are still far
from the values of the full theory, suggests that further improvements in the region of
the phase transition won’t be obtained by adding more nearest-neighbor terms to our
ansatzes. Instead, we must take into account non-local interaction terms, which we will
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Figure 5.6: IMC couplings for the linear model as obtained by expansion of the loga-
rithmic model vs. IMC coupling constants of the simple linear model (left). Coupling
constants of the logarithmic model (right).

do in this section. We will gradually increase the interaction distance rmax = 1, 2, . . . , 9
to improve the models. However, we want to stress again, that the order in which we
add terms, by increasing the interaction distance, is motivated by the strong coupling
expansion, where higher distances are of higher order in β. As the strong coupling ex-
pansion breaks down at large values of β, near the phase transition, the order in which
independent terms contribute should change as well. Hence it is not clear if the mod-
els improve in a monotone way, when increasing the maximal distance and if values of
operators will converge in a clear way to a certain value at all. In fact, we will see that
this is not the case for the logarithmic model.

For the local logarithmic model we saw in the last sections that is was sufficient to
consider interaction terms in the fundamental representation. In Fig. 5.8 (left) we see
that increasing the maximum interaction distance taken into account on a lattice of the
size 163 × 4 results in the expectation value of Polyakov loops being improved first, but
when increasing the interaction distance further, the values for the Polyakov loop do not
converge to the full theory but we have some kind of “overshooting” instead. The sus-
picion, that this overshooting is a finite volume effect, which vanishes on larger lattices,
cannot be confirmed. This overshooting vanishes first on the larger lattice of size 323×4
(Fig. 5.8 (middle)), but then we see that adding higher representation terms does (in
contrast to the local case) change results significantly for the non-local model. The over-
shooting re-occurs on the larger lattice when taking into account higher representations
(Fig. 5.8 (right)). All together there seems to be a competing effect of adding higher
order terms, which leads to an overshooting Polyakov loop expectation value, and in-
creasing the lattice size, which together lead to a non-monotone behavior. This makes a
correct convergence on fixed lattices sizes and also in the thermodynamical limit unlikely.
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Figure 5.7: Polyakov loop expectation value 〈|P |〉 for the local extended linear model
with pmax = 2, 3 compared to the full Yang-Mills theory (left) and local Polyakov loop
distributions of the local extended linear model with pmax = 2, 3 compared to the full
theory at fixed value of 〈|P |〉, corresponding to values of β shortly before and after phase
transition (right).

Similar investigations for the linear models show a very different behavior. In Fig.
5.9 we have plotted the expectation value of the Polyakov loop of the non-local sim-
ple Polyakov loop model compared to the full theory, when increasing the interaction
distance taken into account gradually. We have done this for the non-local model with
pmax = 1 (left), pmax = 2 (middle) and pmax = 3 (right). We see that increasing the in-
teraction distance in all three cases leads to a monotone improvement of Polyakov loop
expectation values, where no overshooting occurs. Furthermore taking into account
higher representations yields the same result as in the local case, the improvement slows
down around pmax = 3, indicating that even higher representation should not change re-
sults too much. The Polyakov loop expectation values seem to converge for pmax = 2, 3
in the non-local case to values very close to those around the full theory. Nevertheless
the model approaches the full theory very slowly around the critical βc ≈ 2.30, indicating
that we need to increase rmax much further in this region, if we want to obtain a better
approximation. This is expected considering that the correlation length peaks at βc.

We have checked on a larger lattice of Ns = 32 that this results do not change for the
simple linear model. Also the extended linear model shows a similar behavior, with the
Polyakov loop expectation values being hardly distinguishable from those of the simple
model.

The qualitatively different behavior of the logarithmic and linear models, where the
logarithmic model fails to describe the full theory correctly when generalizing it to the
non-local case can be understood by realizing that the logarithm is a resummation of
formally similar terms that are of different winding number. When grouping those terms
together for the resummation into a logarithmic form, one uses relations between the
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Figure 5.8: Polyakov loop expectation value for the log. model with pmax = 1 on a
163 × 4 lattice (left), pmax = 1 on a 323 × 4 lattice (middle) and pmax = 3 on a 323 × 4
lattice (right)
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Figure 5.9: Polyakov loop expectation value for the non-local simple linear model with
pmax = 1 (left), pmax = 2 (middle) and pmax = 3 on a 163 × 4 lattice

coupling constants of those terms, which is only justified in the strong coupling limit
but fairly unclear for larger values of β. The linear ansatz provides a much more general
ansatz that can be justified even without the strong coupling expansion. Restrictions
are not imposed and the coupling constants of all terms are left independent, giving the
IMC method more freedom. We must conclude that the logarithmic model seems not
to be suitable as an ansatz for highly non-local models, in contrast to the linear models,
which both show a similar behavior. Therefore we will drop further investigations of
the logarithmic model and will investigate the linear ansatzes in more detail in the next
chapter.
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Chapter 6

The Linear Models in Detail:
Simple vs. Extended Model

After having seen that the logarithmic model seems not to be an useful ansatz for highly
non-local models, we will discuss in this chapter the two classes of linear models in
more detail. We will investigate and compare the behaviors of different observables
when increasing the non-locality rmax at different values of β, with special interest in the
region of the deconfinement phase transition on lattices of the size 163× 4. We will also
discuss the convergence of the different models in the large rmax limit and investigate
their behavior on larger lattices with Nt = 4, 6, 8.

6.1 Comparing Observables for Large rmax at Nt=4
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Figure 6.1: Polyakov loop expectation value for the simple linear model and extended
linear model with pmax = 2, 3 and rmax = 9
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As mentioned, in the non-local case the expectation value for the Polyakov loop looks
very similar for the simple linear and extended linear models. Instead of plotting the
Polyakov loop expectation value of the extended model in detail as well, we have plotted
in Fig. 6.1 a direct comparison of the Polyakov loop expectation values of the simple
linear and the extended linear model.

We compare the simple and extended linear model with pmax = 2, 3 and rmax = 9. We
can see that the extended linear model yields slightly better results right before the phase
transition and around the phase transition, but shortly after the phase transition the
simple model seems to yield better results. The differences are hardly noticeable for the
Polyakov loop expectation values. Also it is not clearly visible if we get an improvement
in every step in which we are increasing the interaction distance, as there is hardly a
difference for the models with large maximal interaction distances, say for rmax = 8 and
rmax = 9. However taking a look at other observables such as Polyakov loop correlation
functions and local Polyakov loop distributions, we get a better insight. In Fig. 6.2
we show the correlation functions of the simple linear and extended linear model with
pmax = 3 at different values of β, while gradually increasing the interaction distance
and we see in fact more clearly now an improvement in every step when increasing the
interaction distance, especially in the broken phase.
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Figure 6.2: Polyakov loop correlation functions of the non-local simple linear model
(top) and the extended linear model (bottom) with pmax = 3 at β = 2.28 (left), β = 2.30
(middle), β = 2.32 (right)
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Before the phase transition and right at the Yang-Mills phase transition (Fig. 6.2
left and middle), where the effective models are still in the unbroken phase, we can
clearly see that the Yang-Mills correlation function is matched the best by the effective
model with the largest interaction distance. We can also see that the extended linear
model yields better results. Slightly in the broken phase (Fig. 6.2 right) it looks like the
Yang-Mills correlator is best matched by linear models with short interaction distances
of about rmax = 2, 3. However the seemingly better match is misleading, as we have to
remember that correlation functions before and after a phase transition look qualitatively
very similar and only flatten right around the phase transition. As the full Yang-Mills
theory is already in the broken phase at β = 2.32, while the effective models with short
maximal interaction distances are still deep in the unbroken phase, their correlation
functions look similar by coincidence. In order to compare our models to the full theory,
we must keep in mind that the full model is already in the broken phase and compare
its correlation functions to the effective models that are also in their broken phases, i.e.
whose correlation functions are past their flattest form. When increasing at fixed value of
β the interaction distance for the effective models we clearly see that for larger interaction
distances the correlation functions start to flatten, and for even larger distances they
start to sink again towards the Yang-Mills results, indicating that the critical value βc for
models with larger interaction distances gets closer and closer to the full theory’s value.
Looking at the correlation function that started to sink again only, we can clearly see
that the larger the interaction distance, the better we match the Yang-Mills correlation
functions. Furthermore we see that the simple linear model takes over in the broken
phase and approximates the full theory better than the extended model, which can be
seen even more clearly in Fig. 6.3, where we have plotted the correlation functions of
the simple and extended linear models at rmax = 9 and rmax = 2, 3 in the broken phase
at β = 2.32.
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Figure 6.3: Correlation functions of the simple and extended linear models at pmax = 2, 3
and rmax = 9 in the broken phase at β = 2.32
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The reason for the switch in qualities between the competing models (linear and
extended linear) before and after the phase transition is unclear and can only be spec-
ulated about. A possible reason is the IMC method itself, which might be more precise
(especially after the phase transition) when not taking into account too many terms,
hence yielding better result for the simple model. Another reason might be the break-
down of the order of terms given by the strong coupling expansion around and after
the phase transition. We already saw that the interaction terms of mixed representa-
tion and especially the interaction term between fundamental and trivial representations
(the quadratic potential term), improves results significantly before the phase transition,
enforcing a more Haar measure like, symmetrical local distribution of Polyakov loops.
This might need to be suppressed again in the broken phase. The breakdown of the
order given by the strong coupling expansion leaves the possibility for so far neglected
higher order terms gaining importance in the broken phase, which could possibly cancel
the effect of the potential term. After all, it was already expected that the order, which
holds in the strong coupling limit, changes in the broken phase, and it was also unclear if
the IMC method will be stable considering the huge number of coupling constants taken
into account. Therefore a steady improvement of the models when adding higher order
terms could not be expected easily in the first place and it is an even more astonishing
result that increasing interaction distances gradually also improves results steadily even
when we go as far as rmax = 9, which requires the introduction of up to 325 coupling
constants.
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Figure 6.4: Local Polyakov loop distributions of the non-local simple linear model (top)
and the extended linear model (bottom) with pmax = 3 and rmax = 1, . . . , 9 at β = 2.08
(left), β = 2.29 (middle), β = 2.30 (right)
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Another observable of interest is the local Polyakov distribution. We saw earlier in
the local case, that only the extended linear model gives the right shape for the distribu-
tions in the unbroken phase. In Fig. 6.4 (right) we see that as the critical coupling of the
effective models moves closer to the Yang-Mill critical value, results for the distributions
get also improved in the broken phase and around the phase transitioning. Around the
phase transition the local Polyakov loop distributions of the simple model gets more
Haar-measure like, as we increase non-locality, however the extended model still yields
a better shape for the distributions, and deep into the unbroken phase results for the
effective models do not improve at all. Hence for small values of β only the extended
model yields a distribution given by the Haar-measure, whereas the simple model pre-
serves its deformed shape. Again we see that the extended model yields better results
in the unbroken phase, where it is the potential term that leads to Haar-measure like
distribution. In fact making the models non-local does not improve the shape of the
distributions at all for small β, as can be concluded from Fig. 6.5 (left), where we have
plotted the simple and extended linear models at rmax = 9 and pmax = 3, compared to
the local extended model with pmax = 2 and the local logarithmic model with pmax = 1.
Furthermore we see from the local Polyakov distribution in Fig. 6.5 (right) more clearly
that the simple model again yields better results in the broken phase.
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Figure 6.5: Local Polyakov loop distributions of the linear models with pmax = 2, 3 and
rmax = 9 on a 163 × 4 lattice with β = 2.20 (left) and β = 2.32 (right)

Let us summarize our results before we move on to the next section. So far we have
seen that making the linear models non-local and gradually increasing the maximum
interaction distance improves the models steadily. We have seen in multiple observables
that before the phase transition the extended model yields better results, due to the
potential term, which dominates the shape of the Polyalov loop expectation value and
local Polyakov loop distributions. However, after phase transitioning the simple effective
model quickly takes over and yields slightly better results in the region where center
symmetry is broken.
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6.2 Convergence via rmax at Nt=4

As we can describe the Yang-Mills theory at least deep in the broken and deep in the
unbroken phase fairly well by either the non-local extended or simple linear model, we see
that at least in certain regions we do not need to include all terms occurring in the strong
coupling expansion to obtain correct results with the effective models. Furthermore we
saw almost no improvement when increasing pmax from 2 to 3 for our linear models
on the one hand but on the other hand a steady improvement when increasing the
interaction distance, even in the area around and after the phase transition, which is
the area described by the effective models with the least accuracy. This raises naturally
the question if it is necessary to include all possible interaction terms into our models
in order to converge towards the full theory, or if its enough to increase the interaction
distance while keeping pmax = 3 fixed. Therefore in this section we will try to determine
the behavior of the linear models under increase of rmax for a fixed value pmax = 3 and
fixed timelike lattice extend Nt = 4. The area of interest here is mainly the region right
after the phase transition, where we have the least accurate match between the effective
models and the full theory.
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Figure 6.6: Polyakov loop expectation value for the simple and extended linear model
with pmax = 3 as a function of r2

max for β = 2.30 (left) and β = 2.36 (right)

Since on the lattice the quadratic lattice distance r2 takes integer values with only
a few possibilities not applicable (for example a squared distance r2 equal to 7 or 15
cannot be realized on a 3-dimensional lattice), for our effective models the number
of coupling constants up to a maximum distance rmax grows quadratically with the
maximum distance. Hence we cannot increase the maximum distance taken into account
much further in order to investigate convergent behavior in the limit of large rmax, as
the number of coupling constants would grow and increase computational costs quickly.
Instead we try to extrapolate the obtained results for rmax = 1, . . . , 9 to larger values.
However this turns out difficult, as 9 reference points are not a lot to obtain a reasonable
extrapolation and observables are not necessary expected to behave under increasing
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value of rmax in a way that can be extrapolated easily. In Fig. 6.6 we have plotted for the
simple and extended linear model with pmax = 3 the expectation value of the Polyakov
loop as a function of the (squared) maximum interaction distance r2

max compared to the
Yang-Mills value. We have plotted the results around the Yang-Mills phase transition
(left) and in the broken phase (right). As we can see again in the broken phase the
model approaches a value very close to the Yang-Mills value but due to the lack of date
a reasonable extrapolation and determining a limit is not possible. Around the phase
transition at β = 2.30 we see that the improvement of the values of the effective model
is significantly slowed down and it is not clear if the theory converges to the Yang-Mills
result, rather it seems very unlikely. However drawing the conclusion that the model
does not converge to the right result around β = 2.30 might be a bit rash. Keeping
in mind the form of the Polyakov loop expectation value as a function of β, which is
growing quickly around the phase transition but is relatively constant before and after,
and taking into account that increasing the maximum interaction distance shifts the
critical coupling of the effective models closer to the Yang-Mills value, hence shifts the
quickly growing region of the Polyakov loop expectation value to lower values, the growth
of 〈|P |〉 slightly above the Yang-Mills phase transition is expected to speed up under
increase of rmax once the critical value of the effective model is shifted into the region,
making an extrapolation of data difficult.
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malized to the Yang-Mills critical coupling as a function of r2

max (left); Polyakov loop
susceptibilities of simple linear model at Nt = 4, Ns = 16 (right)

A better way for investigating convergent behavior might be to directly extract the
critical value βc,model of the effective models as a function of the (squared) maximum
interaction distance, which we have plotted (normalized to the critical value βc,YM) for
the simple and extended linear model in Fig. 6.7 (left). The critical values βc have been
extracted from the Polyakov loop susceptibilities as shown for the simple linear model
in Fig. 6.7 (right). Again we see in Fig. 6.7 a quick improvement of the critical value
towards a value close to the one of the full Yang-Mills theory, which slows down at larger
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values of rmax, where the limit value is difficult to determine due to the limited number
of data points.

Overall determining limits of the models for large maximum interaction distances is
difficult due to the expected change of behavior with growing rmax and lack of functional
form of certain observables such as 〈|P |〉 on the one hand, and a lack of sufficient data
points, which is difficult to improve due to the quadratic growth of number of degrees
of freedom with the maximum interaction distance on the other hand.

6.3 Increasing the Lattice Size: Nt=4,6,8

Up until now we have only investigate lattices with temporal extend of Nt = 4. As we
could not determine convergent behavior of the effective models under increase of the
maximum interaction distance, we will turn our investigation to larger lattices in this
section, where we consider lattices with Nt = 4, 6, 8, from which we will try to make
predictions for the effective models in the thermodynamical limit.

Before we do so, we want to discuss appropriate spatial extends for the different
values of Nt, in order to avoid too large finite volume effects. So far we have used the
proven aspect ratio of Ns/Nt = 4, where finite volume effects are expected to be small.
Having kept this aspect ratio, we have plotted the Polyakov loop expectation values for
the simple (top) and extended (bottom) linear models with pmax = 3 and with gradual
increase of rmax on lattices with Nt = 4, 6, 8 (left,middle,right) in Fig. 6.8. It shows that
on lattices with larger temporal extend (especially on the Nt = 8 lattice) the quality
of the effective model after the phase transition seems to decrease with increasing Nt.
On the Nt = 8 lattice there opens up a huge gap between the effective models with
rmax = 9 and the full Yang-Mill theory. In addition to the gap, the effective models
seems to show small signs of an additional phase transition, which is located around
the Yang-Mill transition, before the proper phase transition of the effective models. To
make sure that these effects are not finite size effect and that the aspect ratio of 4 is
justified, we will discuss in this section finite volume effects in more detail. We will look
into finite volume effects on lattices with Nt = 4 and Nt = 8, as calculations are the
cheapest on the former one, and the gap between the effective model and the full theory,
as well as the sign of the additional phase transition, are the most obvious on the latter
one.

6.3.1 Finite volume effects at Nt=4

In order to investigate finite size effects on a lattice with Nt = 4, we have plotted in
Fig. 6.9 the Polyakov expectation value for the simple linear model with pmax = 3 at
increasing maximum interaction distance with an aspect ratio of 4, i.e. Ns = 16 (mid-
dle). We have also decreased and increased the aspect ratio by a factor of 2 by setting
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Figure 6.8: Polyakov loop expectation value of simple linear model (top) and extended
linear model (bottom) with pmax = 3, on a lattice with Nt = 4, 6, 8 (left,middle,righ) at
fixed aspect ratio of Ns/Nt = 4

Ns = 8 (left), where we expect severe finite volume effects and Ns = 32 (right), to show
no significant change in results when increasing the aspect ratio beyond 4. Indeed we
see an increase of the aspect ratio beyond the value 4 does not change results much,
but decreasing it by 2 leads to a more smeared out phase transition in both, the full
and effective theories, resulting in a small gap opening up between the full theory and
the effective models. It is worth noticing that the gap seems to open up due to the less
sharp phase transition of the full theory and the shifted critical value for the coupling
constant of the effective theory (see Fig. 6.10).

On the one hand this shows that at least for lattices with Nt = 4 an aspect ratio of
4 is justified, on the other hand the gap opening up between full and effective theory
and the slow rising of the Polyakov loop expectation value suggest that for Nt = 8 the
gap between effective model and full theory and the small sign of an additional phase
transition might also be finite volume effects, as similarities between the Polyakov loop
expectation values on the 83 × 4 and the 323 × 4 lattices are apparent. This makes a
further discussion of the aspect ratio on the lattice with Nt = 8 necessary.
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Figure 6.9: Polyakov loop expectation value of the simple linear model with pmax = 3,
Nt = 4 and Ns = 8, 16, 32 (left, middle, right)
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Figure 6.10: Polyakov loop expectation value of the simple linear model with pmax = 3
and rmax = 9 on lattices with Nt = 4, Ns = 8, 16

6.3.2 Finite volume effects at Nt=8

In Fig. 6.11 we have plotted the Polyakov loop expectation value for the simple linear
model with pmax = 3 on a lattices with Nt = 8. On the lattice with Ns = 16 (left),
we see in comparison to the lattice with Ns = 32 (right) a slight finite size effect in the
full theory. On the larger lattice the rise of the Polyakov loop expectation value is a bit
sharper right around βc. However this effect is not strong as in the case of Nt = 4 as
the phase transition is less sharp for Nt = 8 anyways.

When comparing the effective models we see that increasing the aspect ratio from
2 to 4 indeed leads to a decrease of the small sign of the additional phase transition
around the critical Yang-Mills value. Hence the small sign of the phase transitioning in
the effective model seems not to be purely a finite size effect. Rather it seems like the
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Figure 6.11: Polyakov loop expectation value of the simple linear model with pmax = 3,
Nt = 8 and Ns = 16, 32 (left,right)

Polyakov loop expectation value of the highly non-local effective models are following
the values of the full theory until near the Yang-Mills phase transition, but eventually
start to deviate right at the phase transition, when the strong coupling expansion breaks
down and the order of terms given by the expansion does not apply any longer. The
qualitative change in behavior at the phase transition can also be seen in the dominant
coupling constant λ11,1 for interaction terms between nearest-neighbor Polyakov loops
in the fundamental representation, which we have plotted for the simple and extended
linear model with pmax = 3 and rmax = 9 on lattices with an aspect ratio of 4 and
Nt = 4, 6, 8 in Fig. 6.13 (right). The horizontal lines indicate the critical Yang-Mills
coupling constant (line at lower value of β) and the critical coupling of the effective
model (line at higher value of β), as obtained by the peak position of Polyakov loop
susceptibilities, at Nt = 4 (green), Nt = 6 (yellow), Nt = 8 (blue). We see that on all
lattices a kink in the fundamental coupling constants occurs around at the critical value
of β in the Yang-Mills theory, rather than the at the critical value in the effective mod-
els. This can be seen more clearly for the lattices of Nt = 6, 8, as for growing temporal
lattice extend the critical values of the Yang-Mills theory and the effective model tend
to drift further and further apart from each other. Due to the more smeared out phase
transition, for small lattices the Polyakov loop expectation value in the effective models
(although having their own proper phase transition at larger values of β) start to “feel”
the phase transition of the full theory and rise before such a deviation occurs. Increasing
the lattice size on the other hand will result in a more sharp phase transition and hence
in a smaller rise in the Polyakov loop expectation values of the effective models before
their results start to deviate from the Yang-Mill results. But still the rise indicates that
the effective models “feel” the phase transition of the full theory before properly phase
transitioning at larger values of β themselves. (We will later in section 7.3, where we
will investigate the analytical structure of the coupling constants and their fall-off with
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Figure 6.12: Polyakov loop susceptibilities for the simple linear model with pmax = 3 on
a 323 × 8 lattice

the interaction distance, see additional signs for the effective models “feeling” the phase
transition of the full theory.) However the gap that opens up between the full theory
and the effective models, which indicates a growing difference in the values of critical
constants, seems not to decrease for larger aspect ratios. In fact, when increasing the
aspect ratio the sharpening of the phase transition results in the decrease of the addi-
tional bump in the Polyakov loop expectation value, while the position and shape of the
actual phase transition does not change. Therefore the gap between the full theory and
the effective models becomes even clearer. We conclude that the gap between model and
full theory is not a finite size effect but results from missing terms in our ansatz. This is
supported by the fact that the extended model yields a smaller gap than the linear model
(compare Fig. 6.8 top, right vs. bottom, right), indicating that the gap results from
the lack of interaction terms with Polyakov loops in higher representations and mixed
representations. For Nt = 4 we actually saw a similar behavior where the extended
model yields better results in a small region after the phase transition, before the simple
model takes over. This region where higher and mixed representation terms become
more important seems to be of increased size for Nt = 8 and most likely suggests that
narrowing down the gap requires taking into account even more representation terms.
We also see, in contrast to the Nt = 4 lattice, no region in the broken phase where the
simple model takes over again and yields better results than the extended model (see
Fig. 6.13). This holds also true when comparing local Polyakov loop distributions and
correlation functions.

It is interesting to note that for the lattice of Nt = 8 our ordering and improvement
scheme, although resulting in a gradual improvement of results, deforms the shape of
the Polyakov loop expectation value as a function of β due to the small bump around
the Yang-Mills phase transition. Furthermore the deformation looks quite different for
the simple linear and for the extended linear model. This raises the question if the
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Figure 6.13: Polyakov loop expectation value for simple and extended linear model
with pmax = 2, 3 and rmax = 9 on a 323 × 8 lattice (left); dominant coupling constant
λ11,1 for the simple and extended linear model with pmax = 3, rmax = 9 on lattices
Ns/Nt = 4, Nt = 4, 6, 8 (right). The horizontal lines indicate the critical Yang-Mills
coupling constant (line at lower value of β) and the critical coupling of the effective
model (line at higher value of β), as obtained by the peak position of Polyakov loop
susceptibilities, at Nt = 4 (green), Nt = 6 (yellow), Nt = 8 (blue)

improved models still yield the same universal behavior as the full model. From the
Svetitsky-Yaffe conjecture, we know that short-range Polyakov loop models yield the
same universal behavior as the full Yang-Mills theory. Furthermore we expect Polyakov
loop models where all significant terms are taken into account to exhibit, as an expansion
of the Yang-Mills theory, also the same universal behavior. However, for our models,
where different truncation schemes have been applied, preservation of universal behavior
is not clear for all values of rmax, since Polyakov loop models with long-range interaction
terms are neither subject to the Svetitsky-Yaffe conjecture, nor are they near the phase
transition (especially for large values of Nt) a good approximation of the full Yang-Mills
theory. In principle it is at least possible that we change universal behavior or that
only carefully chosen truncation schemes leave the universal behavior of the theories
unaffected.

However, concerning the aspect ratio, the fact that a growing aspect ratio seems to
only decrease the additional bump in the effective theories indirectly by sharpening the
phase transition of the full theory and that changes are already fairly small for an increase
of the aspect ratio from 2 to 4, seems to justify further use of the ratio 4. Furthermore
the position and form of the actual phase transition in the effective models seems not
to be influenced much by finite size effects either. This can be seen by comparing the
critical coupling constants, read off from the Polyakov loop susceptibilities of the simple
linear model with pmax = 3 in Fig. 6.12, to the position of the phase transition in Fig.
6.11 (right). We see that the position of the peak in Polyakov loop susceptibilities is not
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disturbed by the small additional rising in the Polyakov loop expectation value for an
aspect ratio of 4 and agrees with the actual phase transition, which also speaks for an
aspect ratio of 4 being sufficient.

6.3.3 Comparing rmax at Nt=4,6,8

Although we could not determine convergence of the effective models on a lattice of
fixed size in the large rmax limit we can still try to compare the effective models at fixed
rmax at different lattice sizes. Comparing how well the effective models approximate the
full theory on different lattices sizes will then hopefully give us some insight about the
thermodynamical limit. However, the gap that opens up between the effective model and
the full theory on lattices with larger temporal extend is actually difficult to compare
to the smaller gap on lattices with smaller values of Nt, since with increasing temporal
extend the phase transition gets shifted and blurred out over larger areas in the β-axis,
resulting in a very different form of the Polyakov loop expectation value as a function of
β. Scaling the critical values to 1, by plotting the Polyakov loop expectation value as a
function of β/βc,YM(Nt), yields a better way for comparing the the effective models. In
Fig. 6.14 we have shown the resulting functions for the simple linear and extended linear
model at pmax = 3. The critical coupling constants of the Yang-Mills theory, which are
depending on Nt, have been calculated according to [135] via

βc(Nt) = a0 + b0 log(Nt)− log(log(Nt))
c0 ,

(6.1)

with a0 = 1.1579(6), b0 = 0.9398(1), c0 = 1.627(2).

As we see, scaling down the Polyakov loop expectation values results on all lattices
in a critical Yang-Mills value of 1, but besides that the shape of the Polyakov loop
expectation values still differ a lot as a function of β. A direct comparison is still difficult,
but it seems unlikely that the gap, which is opening up between effective models and full
theories on lattices with larger values of Nt, can be explained by scaling alone. Rather
it seems to be indicating a loss of quality of the approximation given by the effective
models at fixed rmax with increasing timelike extend of the lattices. This loss of quality
at constant interaction distance actually makes sense, as the interaction distance rmax

is given in lattice units. If at all, then we should expect a comparable quality of results
with fixed maximal interaction distance in physical units (rmax · a), instead of a fixed
value of rmax. As the critical temperature on lattices with different temporal extends
should be constant, we can conclude from

1

Tc
= a(βc)Nt (6.2)

that the lattice spacing at the critical coupling should decrease with increasing temporal
extend of the lattice. Therefore with increase of Nt we should also increase the lattice
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Figure 6.14: Polyakov loop expectation value as a function of β/βc,YM for the simple
(left) and extended (right) linear model with pmax = 3 and rmax = 9 on lattices with
Nt = 4, 6, 8

distance rmax in order to obtain a constant maximum physical interaction distance. In
the following we will compare effective models on lattices with Nt = 4, 6, 8 where we
choose the maximal lattice interaction distance rmax such that the corresponding physical
distance is approximately constant on the different lattices, in order to make predictions
about the models in the thermodynamical limit.

Considering equation (6.2) and demanding the critical temperature of the Yang-
Mill theories to be constant on lattices of different size, we get a rough estimation of
how to increase the maximal lattice interaction distance rmax(Nt) in order to obtain a
constant distance rmax · a in physical units. As the critical temperature is constant,
the lattice spacing a(βc(Nt)) should be proportional to N−1

t . Therefore we must chose
rmax(Nt) ∼ Nt. As the simulations taken into account are restricted to rmax = 1, . . . , 9,
we do not have much choice but to set

rmax(Nt) = Nt or r2
max(Nt) = N2

t (6.3)

to compare results on the different lattices with size Nt = 4, 6, 8.

In Fig. 6.15 we have compared the critical coupling constants (normalized by the
Yang-Mills critical coupling) of the effective simple linear (left) and extended linear
model (right) for pmax = 3 as a function of r2

max on lattices with Nt = 4, 6, 8. The critical
coupling constants have been determined again by the position of the peak in Polyakov
loop susceptibilities. The yellow line fitted to the data points(

r2
max(Nt), βc,model/βc,YM(Nt)

)
=
(
N2
t , βc,model/βc,YM(Nt)

)
, Nt = 4, 6, 8, (6.4)

should be approximately constant for a constant quality of the effective models with
fixed value pmax = 3 and fixed maximum interaction distances in physical units. How-
ever this is not the case, indicating that with growing lattice size the critical coupling is
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Figure 6.15: βc,model/βc,YM as a function of r2
max for different Nt = 4, 6, 8 at Ns = 16

not approximated equally well by models with similar physical interaction range. This
agrees with our previous observation that with growing Nt higher order representations
seem to gain importance around the Yang-Mills phase transition and that on lattices
with large temporal extend we cannot get away with a simple truncation of interaction
terms by setting pmax = 3.

Before moving on to the next part of our investigations, let us summarize this chapter.
We have tried to determine the behavior of the non-local models in the limit of large
interaction distances and also in the thermodynamical limit for fixed physical interaction
distances. Determining the limit of our models for large maximum interaction distances
at fixed lattice size turned out to be difficult. On the Nt = 4 lattice we saw that
we approximate the full theory very well, however a convergence to the full theory
could neither be confirmed nor disproven as a reliable way of determining limits of
observables was not possible. Furthermore we made arguments that suggest that in the
thermodynamical limit we will not be able to approximate the full theory by simply
increasing the maximum interaction distance of the models. Instead, we must take
into account terms of higher order, which include higher representations and mixed
representations of Polyakov loops.



Chapter 7

Non-Local Couplings of the Linear
Models

In this chapter we will now investigate the fall-off of the non-local coupling constants
with respect to the interaction distance and try to find an analytical form which de-
scribes the fall-off. The coupling constants λpq,r2 typically decrease quickly for larger
values of p, q, r2.

The coupling constants of interaction terms including a representation with p = 3 are
already so small compared to their errors, that, regarded as a function of r2, a certain
structure is not really recognizable. However for λ11,r2 , λ22,r2 (the coupling constants of
the interaction terms in fundamental and adjoint representation), plotting the coupling
constants as a function of the interaction distance typically yields a fall-off with the
distance of the form shown in Fig. 7.1, where a structure is clearly visible. The coupling
constants tend to show an exponential fall-off with respect to the interaction distance for
smaller interaction distances, followed by an almost constant plateau at larger distances.
As the structure is the clearest for λ11,r2 , we will focus on those coupling constants in
the following detailed discussion of possible analytical forms, with their values obtained
by the IMC method for the simple linear model with pmax = 3.

7.1 The constant plateau

Although for fixed value of β the form of the coupling constants λ11,r2(β) as a function
of the interaction distance r2 (Fig. 7.1) shows an exponential fall-off for small distances,
taking into account the plateau at larger distances, the overall shape seems to coin-
cide the most with a fall-off described, as proposed by Greensite and Langfeld, by the
Laplacian kernel Q (3.48). However in such non-local models one typically applies a
hard cut-off to the interaction distances taken into account, as the arguments made by
Svetitsky and Yaffe suggest that an effective spin model for the full Yang-Mills theory
should contain only short-range interactions. Hence such an cut-off is applied at rela-
tively short distances (see [124]). Therefore before investigating the analytical form of

91



Chapter 7. Non-Local Couplings of the Linear Models 92

10−6

10−5

10−4

10−3

10−2

10−1

1

1 2 3 4 5 6 7 8
r

−λ11,r2 at β = 2.30

10−6

10−5

10−4

10−3

10−2

10−1

1

1 2 3 4 5 6 7 8
r

−λ11,r2 at β = 2.32

10−4

10−3

10−2

1 2 3 4 5 6 7 8
r

λ22,r2 at β = 2.30

10−5

10−4

10−3

10−2

1 2 3 4 5 6 7 8
r

λ22,r2 at β = 2.32

Figure 7.1: Coupling constants for of the interaction terms in fundamental (top) and
adjoint (bottom) representation as a function of the interaction distance r at β = 2.30
(left) and β = 2.32 (right) taken from the simple linear model with pmax = 3

the non-local coupling constants, we will first discuss if such a hard cut-off at larger dis-
tances is justified, when trying to obtain an effective model that goes beyond universal
behavior and yields an accurate approximation for the full theory and we will discuss
if the plateau reached in the coupling constants is physical or only due to statistical
errors. Although we have seen that increasing the maximum interaction distance up
to 9 gradually improves our effective models, without further investigation one cannot
exclude the possibility that such an improvement only occurs because the interaction
terms at larger distances compensate for statistical errors in the original configurations
of the Yang-Mills theory, thereby allowing the coupling constants for the short distance
interaction terms to attain values closer to their “true” values. In this sense adding
larger distance interaction terms might only yield a stabilization of the IMC method for
the short term coupling constants. In this section we will argue that this scenario seems
not to be the case and that the specific values of the large distance coupling constants
are of relevance for improvements of the models, hence cannot be explained by statistical
errors alone.
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A first argument for the large distance terms being of relevance beyond stabilization
of the short term coupling constants is obtained by realizing that an increase rmax → r′max

of the maximal interaction distance usually effects primarily coupling constants λpp,r2

with r close to rmax. Especially for the dominant coupling constants, such as λ11,r2 with
small values of r2, increasing the maximum interaction distance further than a few steps
leaves the results for those coupling constants almost unchanged, which seems the con-
tradict the stabilization argument. In Fig. 7.2 we have plotted the coupling constant of
the fundamental interaction terms at interaction distance r2 = 1 (left) and at interaction
distance r2 = 2 (right) as a function of β and of the maximum interaction distance r2

max.
We see that when increasing the maximum interaction distance, the coupling constants
quickly converge to a value and then do not change too much anymore with any further
increase of the maximum interaction distance. This suggests that increasing the maxi-
mum interaction distance mainly effects the coupling constants of interaction terms with
distance close to the maximum interaction distance.

Furthermore in Fig. 7.3 we have plotted again the Polyakov loop expectation value
for the simple linear model, where we have taken into account interaction distances
until rmax = 9 in the calculation of the coupling constants via the IMC method, but
then applied a position space cut-off, where we have dropped for the simulation of the
effective theory all interaction terms at distances larger than that cut-off. We applied a
cut-off at rmax = 3 (left) and rmax = 6 (right). The plots show that for a fixed cut-off
value the best result is obtained by taking in the IMC method only interaction terms
into account until that cut-off. If we take more terms into account, and then drop them
in the simulation afterwards results become less accurate is the effective model. Hence
the larger distance interaction do not act as a stabilization for the IMC results at short
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distances only but really improve the effective models by the specific value they take.
At least for the maximum interaction distances considered here, a hard cutoff seems not
to be justified and we have to take into account the shape of the fall-off over the whole
interaction range when trying to determine the analytical form.
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Figure 7.3: Polyakov loop expectation value for simple linear model with pmax = 3 and
rmax = 3 (left), rmax = 6 (right) in simulation of the effective theories, where the coupling
constants up to distance 3 and 6 have been calculated via IMC method with interaction
terms up to a maximum distance rmax = 3, . . . , 9 (left) and rmax = 6, . . . , 9 (right)

7.2 Laplacian Fit

Having established that the actual value of the large range coupling constants are rel-
evant for the improvement of our models, we cannot simply ignore them when trying
to explain the analytical form of the fall-off in Fig. 7.1. In this context comparing the
fall-off of the coupling constants with the fall-off of the Laplacian kernel Q (3.48), one
sees that the shape of the fall-offs are very similar. Therefore we have fitted at β = 2.32
the coupling constants λ11,r2 to −c2Q(r) via the free variable c2. In Fig. 7.4 we see that
the shape of the coupling constants then agree very well.

We have done the same for the linear model at pmax = 1 with an additional potential
term λ11,0

∑
i χ

2
1,i. The obtained model is then very similar to the model (3.47) proposed

by J. Greensite and K. Langfeld. On a lattice of with 163 × 4 and at β = 2.22 we have
applied to our couplings λpp,r2 (calculated in the IMC method) the mapping 3.51. A
fit to our coupling constants obtained with the IMC-Method leads to c1 = 3.6(7) and
c2 = 0.42(7), which are not too far from the values c1 ≈ 4.417(4) and c2 ≈ 0.498(1),
calculated by Greensite and Langfeld.
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Figure 7.4: Fit of −c2Q(r) to coupling constants λ11,r2 , obtained by IMC for the simple
linear model with pmax = 3 at β = 2.32, yielding the fitted value c2 = 0.39± 0.07

These results suggests that a Laplacian form Q(r) might indeed be the correct ansatz
in order to describe the coupling constants as a function of the interaction distance.
However, as mentioned, in the work of Greensite and Langfeld such a Laplacian form
has only been used for short-range interaction terms, where a hard cut-off is applied
at rmax = 3. In Fig. 7.5 we have therefore plotted the Polyakov loop expectation
value for the simple linear model (left) and the simple linear model with an additional
potential term (right), where we have applied the mapping 3.51 upfront and calculated
the remaining coupling constants c1, c2 directly via the IMC method, to then simulate
the resulting effective models. However, instead of applying a cut-off at rmax = 3, we go
beyond that value and again gradually increase the maximum interaction distance up
to the value 9. The results reveal that the Laplacian fall-off seems to describe the Yang-
Mills theory well in the center symmetric phase until right before the phase transition
with a cut-off applied at rmax = 3. However it fails to describe the theory in the broken
phase. Trying to improve results in the broken phase by increasing the cut-off value rmax

fails, as an unphysical peak around the Yang-Mills phase transition occurs when going
to large values for rmax. This suggests that the Laplacian kernel Q yields only in the
unbroken phase, where it is sufficient to include short range interaction terms, a good
approximation for the coupling constants, but cannot be used beyond that for highly
non-local models. Although the match of the independent coupling constants and the
coupling constants related via the Laplacian kernel Q presented in 7.4 seemed to be
qualitatively well, the resulting models yield quite different results.
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Figure 7.5: Polyakov loop expectation value for the linear model (left) and simple linear
model with an additional potential term (right) both with pmax = 1, with number of
coupling constants for non-local terms reduced to 1 by assuming a Laplacian slope

7.3 Exponential Fit

Since a complete description of the non-local coupling constants as a function of the
interaction distance, as depicted in Fig. 7.1, seems to be difficult and not matching
the Laplacian Kernel Q(r), let us now focus on the short distance part, which seems
to obey an exponential fall-off. We already noticed earlier that an approximation of
the full theory with non-local effective models is less accurate in the region around the
phase transition and requires taking into account interaction terms of larger distance and
higher representations in the effective action. The exponential fall-off of the coupling
constants at short interaction distances might reflect the need for large range interaction
terms. In order to quantify this behavior we will apply an exponential fit, which will be
dominated by the first few coupling constants, and define a correlation length ξ(β) in
order to check for critical scaling via

λ(r) ∝ a(β) · exp

(
− r

ξ(β)

)
. (7.1)

The resulting characteristic length as a function of β for fixed temporal extend and two
different values Ns = 16, 32 is shown in Fig. 7.6. As can be seen, there is a rather small
peak in the characteristic length around βc ≈ 2.30, which seems not to scale with the
spatial volume at all. In Fig. 7.7 we have done the same for different values Nt = 4, 6, 8
at constant aspect ratio equal to 4. As we see with increasing value of Nt the size of the
peak grows (Fig. 7.7 (left)), corresponding to a growth of the correlation the long range
coupling constants in the large Nt limit. However this describes the growth of charac-
teristic length in lattice units. Dividing the characteristic length by Nt (Fig. 7.7 (right))
gives us a rough estimation of the characteristic length in physical units and we see
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that the characteristic length measured in physical units actually decreases in the large
Nt limit. The non-scaling for large Ns and the decrease in physical units for large Nt

might suggest that the effective models become local again in the thermodynamical limit.
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Figure 7.7: Characteristic length ξ(β) (left) and ξ(β)/Nt (right) of the coupling constants
λ11,r2 as a function of β for different values Nt = 4, 6, 8 at fixed aspect ratio 4

An interesting feature of the peak in the characteristic length is that it arises around
the phase transition of the full theory instead of the effective model, which can be seen
very clearly for Nt = 8, where the difference between critical Yang-Mills value and crit-
ical values of the effective model is the largest. In Table 7.1 we have summarized the
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Nt βc
simple lin. model

YM Pos. of peak in char. length ξ(β) Pos. of peak in susceptibilities
4 2.30 2.25± 0.05 2.32± 0.05
6 2.43 2.35± 0.07 2.52± 0.05
8 2.51 2.44± 0.06 2.71± 0.05

Table 7.1: Critical value βc from Yang-Mills theory obtained by eq. (6.1) vs. critical
value from of the simple linear model (pmax = 3, rmax = 9) by determining the peak
in the characteristic length ξ(β) (7.1) and determining the peak in the Polyakov loop
susceptibility.

critical values βc of the full Yang-Mills theory as obtained by eq. 6.1 vs. the critical value
for the simple linear model (pmax = 3, rmax = 9) determined by the location of the peak
in the characteristic length ξ(β) vs. the critical value obtained by the location of the
peak in the Polyakov loop susceptibility. As we see the peak in Fig. 7.7 is approximately
at the phase transition of the full theory, instead of the phase transition of the effective
model. This means that even though the effective models critical coupling constants are
shifted to larger values, the information about the critical coupling of the full theory
is still contained in the effective model. We have seen earlier a related behavior in the
effective models, where the dominant coupling constant λ11,1(β) showed a kink at the
Yang-Mills phase transition.
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Figure 7.8: Coupling constants λ11,r2 for the fundamental (left) and λ22,r2 for the adjoint
(right) representation as a function of the distance r taken from model with pmax = 3 at
β = 2.30 for 103 and 104 configurations compared
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The fact that the characteristic length, which is defined by an exponential fit of the
coupling constants, has a peak exactly at the critical coupling constant of the full theory,
suggests that, even though at larger distances the coupling constants reach a plateau,
there might be more to an exponential fit than we first assumed. We have argued earlier
that we cannot cut off the plateau, as the value of the long range coupling constants
are important for the improvement of results in the effective models. We had argued
that their taken values can therefore not be completely disregarded as statistical errors.
However, keeping in mind the significance of the exponential fall-off, we can suspect that
the values at large distances are shifted away from their “true” values due to errors. It
seems plausible that with more accuracy the exponential fall-off should extend to large
interaction distances. If this is true, then the plateau should sink towards the extrap-
olation of the exponential fit at short distances, when we increase the accuracy of the
calculations by increasing the number of configurations. In Fig. 7.8 we have plotted the
coupling λ11,r2 as a function of the interaction distance for different numbers of configu-
rations (103 and 104). It seems that increasing the number of configurations by a factor
of 10 indeed yields a slight sinking of the plateau. Although this effect is very small and
therefore does not prove our assumption, it at least leaves the possibility that our suspi-
cion is right and we would get an over all more exponential form with sufficient accuracy.

Concluding this chapter we have seen that the non-local coupling constants as a
function of the interaction distance yield an exponential fall-off at short interaction
distances and a constant plateau at larger ones. We have found arguments that applying
a hard-cutoff for large distance interactions seems not to be justified if one wants to go
beyond universal behavior and obtain an approximation of the full Yang-Mills theory
in term of non-local Polyakov loop models. Furthermore we have seen that a Laplacian
kernel Q(r) seems to describe the non-local fall-off only for small values of β before the
phase transition, where one can neglect long range interaction terms. However, such a
description breaks down after the phase transition where one has to take into account
interaction terms at larger distances. We have furthermore found that approximating
the fall-off by an exponential function reveals critical behavior of the effective models in
the corresponding characteristic correlation length, suggesting that in spite of the long
range plateau, and exponential fall-off seems the most plausible ansatz to describe the
non-local behavior of the coupling constants. We then found signs that for large enough
accuracy the plateau might indeed sink and yield an exponential fall-off over a larger
range.



Chapter 7. Non-Local Couplings of the Linear Models 100



Chapter 8

Conclusion and Outlook

In this work we have investigated for the SU(2) Yang-Mills theory different non-local
Polyakov loop models. After having introduced the basic physical theory, including con-
cepts of quantum field theory, Lie groups and Lie algebras, we discussed how to derive
different effective Polyakov loop models and ordering schemes in the strong coupling
limit. We then introduced the inverse Monte-Carlo method and explained how to use
it in order to map the Yang-Mills theory at given values of the coupling constant β to
the coupling constants of our effective models, which have been used as free parameters
for the IMC method. In the results chapter we have then used the obtained effective
coupling constants λ(β) to simulate different observables 〈O(β)〉eff for the non-local ef-
fective models and compared them to the results 〈O(β)〉YM of the full Yang-Mills theory,
in order to investigate the non-local models.

We saw that in case of a SU(2) theory the IMC method works fairly well, producing
consistent improvements for the models by a gradual increase of the number of degrees
of freedom taken into account, even up to a number of 325. In the first results chapter
we saw that for local theories a logarithmic resummation of higher order terms occurring
in the strong coupling expansion improves results, especially local Polyakov loop distri-
butions, significantly compared to the linear model, where shapes of local Polyakov loop
distributions near and in the broken phase are deformed and the value of the critical
coupling is shifted to larger values compared to the full theory. Taking into account local
terms with higher representations, we saw that the logarithmic model does not improve
much. Although the linear model does improve, it is not until we include a potential
term that shapes of Polyakov loop distributions in the broken phase can be reproduced
correctly.

In all cases, the critical value βc of the effective local models seems to converge to a
similar value still shifted significantly away to larger values compared to the Yang-Mill
result. We saw that we have to take into account non-local terms in order to fix this.
Trying to extend the logarithmic models to the non-local case, we run into problems
regarding the convergence of observables in the logarithmic model. The expectation
value of the Polyakov loop does not improve gradually when increasing the non-locality
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of the logarithmic model and a convergence to the Yang-Mills theory seems rather un-
likely, forcing us to drop the logarithmic model as an useful ansatz for non-local models
in order to derive effective models that provide us with good results in the region of
the phase transition. On the other hand both classes (simple and extended) non-local
linear models provide suitable ansatzes for non-local effective models, yielding gradual
improvements in every step, when increasingly taking into account terms of higher or-
ders. On a lattice with Nt = 4 the effective linear models already provide very good
approximations of the full theory at pmax = 3 and rmax = 9 . We argued that this
good behavior, compared to the difficult behavior of the logarithmic models, arises from
the fact that linear ansatzes provide much more general ansatzes and in contrast to the
logarithmic models, which assume certain relations between different terms, which only
hold true in the strong coupling limit.

In spite of the gradual improvements of the linear models by increase of the max-
imum interaction distance, improvements near the phase transition seemed to rather
slow, which, as we argued, reflects the large range correlation of the Yang-Mills theory
at the phase transition, forcing us to take into account terms of even higher order and
distances in order to obtain further improvements in that region. Further investigations
of convergence of the linear models in the limit of large interaction distances on a lattice
of fixed size have proven to be rather difficult and we therefore turned to arguments
that let us speculate about the behavior of the models in the thermodynamical limit.
Therefore we first showed that an aspect ratio Ns/Nt = 4 yields, even for the highly
non-local models, finite size effects that are rather small. We then investigated the effec-
tive models on larger lattices with Nt = 4, 6, 8 and Ns/Nt = 4. The results on the larger
lattices suggested that at fixed physical maximum interaction distance, the effective lin-
ear models yield approximations with decreasing accuracy as we increase the temporal
extend of the lattice. We argued that this is due to the fact that including terms with
Polyakov loops in higher and mixed representations gain significance when increasing
the value of Nt.

In the last results-chapter of this work we then focused on investigating the non-local
behavior of the effective models. We tried to determine the analytical form of the fall-off
of the non-local coupling constants with the interaction distance. We showed that the
coupling constants as a function of the interaction distance typically show an exponen-
tial fall-off at short distances, followed by a plateau at larger ones. We argued that
the plateau at larger distances cannot be neglected and that the values of the coupling
constants at larger distances indeed are important in providing improvements for the
effective models. We found that, although the fall-off qualitatively looked like it could
be described by the Laplacian kernel Q, proposed by Greensite and Langfeld, it is only
in the center symmetric phase, where including short range interactions is sufficient,
an appropriate description of the coupling constants, but leads to wrong results in the
broken phase. An exponential fit of the coupling constants at short distances defines an
characteristic length associated with the coupling constants, which describes their corre-
lation at large distances. We saw that this characteristic length exhibits critical behavior
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around the phase transition of the full Yang-Mills theory, instead of the effective phase
transition, which seems to suggest that indeed an exponential fall-off of the coupling
constants is be the most reasonable ansatz between the suggestes ones. Therefore we
argued that, even though the values of the coupling constants at large distances cannot
be neglected completely, their values as obtained by the IMC method could be shifted to
larger values due to statistical errors and that increasing the accuracy of the calculations
should provide an exponential fall-off for the non-local coupling constants over a larger
range of interaction distances. Increasing the number of configurations we found a small
decrease of the plateau, which left the possibility for our argument to hold true. But as
the decrease was rather small, it provided no reliable proof for our claim.

As for future ways in order to progress this work, it would be interesting to further
check the possibility of an exponential form for the fall-off of the non-local couplings.
Therefore we could apply the IMC method and simulations to effective models that
assume an exponential fall-off already in the ansatz for the action. A calculation of
critical exponents of our effective models might also yield interesting insights, since (as
already mentioned) spin models with long-range interaction terms are not subject to the
Svetitsky-Yaffe conjecture and it is therefore not clear if the various ways of gradually
extending truncation schemes and taking into account more interaction terms leaves the
universal behavior of the models unaffected. Furthermore we can extend the non-local
ansatzes to models containing fermions and combined with the hopping expansion we
could then investigate the phase diagramm of non-local Polyakov loop theories with
heavy fermions and perform calculations at finite density. It would be also interesting to
extend the used ansatzes and method to derive effective models for gauge theories with
other gauge groups, such as G2 and SU(3), where results for an ansatz that assumes an
exponential fall-off between the coupling might be especially interesting, as we know,
we cannot include too many couplings in order to avoid instabilities of the IMC method
and therefore have to reduce the number of couplings of non-local models by assuming
some kind of analytical relationship between the couplings.
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Appendix A

Represenations of Groups and
Algebras

A.1 Gamma Matrices

The gamma matrices satisfy the Clifford algebra, whose defining property is the anti-
commutation relation

{γµ, γν} = γµγν + γνγµ = 2ηµν14×4. (A.1)

where ηµν is the Minkowski metric with signature (+,−,−,−).

Furthermore

γµ = ηµνγ
ν =

{
γ0,−γ1,−γ2,−γ3

}
, γ5 := γ0γ1γ2γ3 (A.2)

The Dirac represenation of the gamma matrices is given by

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (A.3)

The Weyl or Chiral represenation is given by

γ0 =

(
1

1

)
, γi =

(
σi

−σi
)
, γ5 =

(
−1

1

)
(A.4)

such that γ5 and chiral projection operators are diagonal

γ5 =

(
−1

1

)
, PL =

1− γ5

2
=

(
1

0

)
, PR =

1 + γ5

2
=

(
0

1

)
. (A.5)
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A.2 The Lie Group SU(2)

The Lie group SU(2) can be parametrized in the defining represenation via

SU(2) =
{

exp
(
− i

2
~α · ~σ

)∣∣ ~α ∈ R3
}
, (A.6)

where the matrices σi, i = 1, 2, 3 are a basis for the algebra, given by all traceless, her-
mitian (2×2)-matrices.

Its algebra is of dimension 3 and a possible choice are the Pauli matrices, defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.7)

With

σ0 :=

(
1 0
0 1

)
(A.8)

they satisfy the relation

σ2
1 = σ2

2 = σ2
3 = σ2

0 = σ0. (A.9)

The values of their determinants and traces are

detσi = −1

trσi = 0
for i = 1, 2, 3, (A.10)

which implies that the Pauli matrices σi have eigenvalues +1 und -1.
Furthermore they satisfy the relations

σ1 σ2 σ3 = iσ0, (A.11)

and

σi σj = δijσ0 + i
3∑

k=1

εijk σk for i, j = 1, 2, 3, (A.12)

(A.13)

hence the angular momentum and Clifford algebras

[σi , σj] = σi σj − σj σi = 2 i
3∑

k=1

εijk σk for i, j = 1, 2, 3, (A.14)

{σi , σj} = σi σj + σj σi = 2 δijσ0 for i, j = 1, 2, 3. (A.15)
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A.2.1 SU(2) Reduction Formulas

Using formula 2.48 we get

[D(p)] = (p),∈ N0,

D(p) = p+ 1 (A.16)

Dynkin labels vs. dimension of represenation. As known by Spin: dr = 2s + 1,
(2s) = 1, 2, . . . is the Dynkin label and dr is the dimension of the represenation, i.e.
the dimension of the multiplet with spin s.

(0) = [1], (trivial represenation)

(1) = [2], (fundamental represenation)

(2) = [3], (adjoint represenation)

(3) = [4] (A.17)

Using formula 2.47 for the Reduction of products, as known by coupling of particles
with spin s = 1/2

[2]⊗ [2] = [3]⊕ [1]

[2]⊗ [2]⊗ [2] = [4]⊕ [2]⊕ [2] (A.18)

and for the Characters χ(n1,...,nrk) = χ[dr]. We will label the caracters by the dimension
of its represenation insteaf of its Dynkin label and ommit the brackets.

χ2

χ3 = χ2
2 − 1,

χ4 = χ2(χ2
2 − 2). (A.19)

A.3 The Lie Group SU(3)

The Lie group SU(3) is of rank 2 and its algebra if of dimension 8. It can be parametrized
in the defining represenation via

SU(3) =
{

exp
(
−i~α · ~T

)∣∣∣ ~α ∈ R8
}
, (A.20)

where the matrices αi, i = 1, . . . , 8 are a basis of the set of traceless, hermitian (3x3)-
matrices.

The standard choise of generatros in the defining representation, are given by

Ta =
λa
2

(A.21)

where the Gell-Mann matrices
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λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0


λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 (A.22)

are the analog of the Pauli matrices in SU(2) and obtained by different embeddings of
the subgroup SU(2).

The T- generators obey the relations

[Ta, Tb] = i
8∑
c=1

fabcTc (A.23)

{Ta, Tb} =
1

3
δab +

8∑
c=1

dabcTc (A.24)

or equivalently

{λa, λb} =
4

3
δab + 2

8∑
c=1

dabcλc, (A.25)

with the structure constants

f123 = 1

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
(A.26)

f458 = f678 =

√
3

2
,

while the remaining structure constants, which are not related to these by permutation,
are zero.
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The symmetric coefficient d-coefficients take the values:

d118 = d228 = d338 = −d888 =
1√
3

d448 = d558 = d668 = d778 = − 1

2
√

3
(A.27)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
.

As a topological space SU(3) is a non-trivial, locally trivial bundle of a 3-sphere over
a 5-sphere.

Casimir operators and eigenvalues

SU(3) has two Casmimir operators. The squared sum of the Gell-Mann matrices
gives the quadratic Casimir operator and yields for the defining represenation

C =
8∑
i=1

λiλi = 4/3. (A.28)

The second Casimir operator is cubic and the both of them are given in terms of the
generators via

Ĉ1 =
∑
k

T̂kT̂k = (p2 + q2 + 3p+ 3q + pq)/3, (A.29)

Ĉ2 =
∑
jkl

djklT̂jT̂kT̂l = (p− q)(3 + p+ 2q)(3 + q + 2p)/18. (A.30)

Cartan generators and ladder operators

The standard choice of generators for the Cartan algebra is given by

T3 = F3

Y =
2√
3
F8 (A.31)

and the corresponding ladder operators are given by

T± = F1 ± iF2

V± = F4 ± iF5

U± = F6 ± iF7 (A.32)
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A.3.1 SU(3) Reduction Formulas

Dynkin labels vs. dimension of represenation

(0, 0) = [1], (trivial represenation),

(1, 0) = [3], (0, 1) = [3̄], (fundamental represenations)

(2, 0) = [6], (0, 2) = [6̄], (1, 1) = [8],

(2, 1) = [15], (1, 2) = [1̄5], (3, 0) = [10], (0, 3) = [1̄0] (A.33)

[D(p, q)] = (p, q) ∈ N2
0,

D(p, q) =
1

2
(p+ 1)(q + 1)(p+ q + 2), (A.34)

Reduction

[3]⊗ [3] = [6]⊕ [3̄]

[3]⊗ [3̄] = [8]⊕ [1]

[3]⊗ [6] = [10]⊕ [8]

[3]⊗ [6̄] = [1̄5]⊕ [3̄]

[3]⊗ [8] = [15]⊕ [6̄]⊕ [3̄] (A.35)

Characters χ(n1,...,nrk) = χ[dr] (for SU(3) we can ommit the different kind of brackets,
since it is clear if we using the Dynkin label or the dimension as an index)

χ3, χ3̄,

χ6 = χ2
3 − χ3̄,

χ8 = χ3χ3̄ − 1,

χ10 = χ3
3 − 2χ3χ3̄ + 1,

χ15 = χ2
3(χ3̄ − 1)− 2χ3 + χ3̄ (A.36)

the others are obtained by

χī = χ̄i (A.37)



Appendix B

Surface Integrals in Spatial Strong
Coupling Expansion

B.1 Elementary Cube

We integrate over spatial links of an elementary cube, which can either enclose a spatial
volume and hence contain not timelike links, or a spacetime-volume, in which case the
time-like axis is set to be in horizontal direction.

Figure B.1: Integration of Spatial Links of an Elementary Cube

We integrate step by step over spatial links, using integration rule 3.12, until all
plaquettes are connected integration rule 3.12 is exhausted. For illustration purposes,
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we start with one plaquette and gradually add the others plaquettes to the picture, such
that the new plaquette is connected to the others via a spatial link, and immidiately
integrate over a the common spatial link. We see that not all links will be integrated out
before integration rule 3.12 is exhausted but the remaining links describe a path back
and forth and yields a term of the form

χr

( 7∏
i=1

Ui

)(
7∏
i=1

Ui

)−1
 = χr(1). (B.1)

B.2 Two Timelike Connected Elementary Ladders

We integrate over the spatial links of two elementary ladders in timelike direction that
are connected only via timelike links (fig. B.2 (top)).

Figure B.2: Integration of spatial links for two by spatial links not connected elementary
ladders

We us integration rule 3.12 to integrate in the first step over all inner spatial links
(fig. B.2 (bottom, left)). In the second step we use the integration rule 3.13 to inte-
grate over the spatial links on the left and right edge of the lower elementary ladder,
which are identified via lattice periodicy and obtain an interaction pair (fig. B.2 (bot-
tom,middle)). We do the same for the upper elementary ladder and obtain another
elementary interaction pair (fig. B.2 (bottom, right)), leading to an overall interaction
term of the form

∼ χ̄r(Pi)χr(Pj) · χ̄r(Pj)χr(Pk), < i, k >=
√

2a. (B.2)
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B.3 Two Ladders Connected by spatial Decorations

We integrate over the spatial links of two elementary ladders in timelike direction that
are connected only via additonal spatial decorations (fig. B.3).

Figure B.3: Two elementary ladders connected via spatial decorations

We integrate step by step over the spatial links (fig B.4). We see that the whole
surface can be joined by applying integration rule 3.12, yielding only one character
function for the whole surface. In the last step we use integration rule 3.13, to integrate
over the spatial links on the left and on the right edge of the surface, which are indentified
by lattice periodicy, and obtain one interaction term of the form

∼ χr(Pi)χ̄(Pj), < i, j >=
√

2a. (B.3)

Figure B.4: Integration of spatial links for two by spatial links connected elementary
ladders
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Appendix C

IMC Method

C.1 Class Function Proof

Claim:

For class functions F and F̃

~L · (F ~LF̃ ) = F ~L2F̃ + ~LF · ~LF̃ , (C.1)

is again a class function itself.

Proof:

It can be easily shown by applying a character expansion to the functions F and F̃ ,
which takes for F̃ (and similarly for F ) to apply a sum over characters in all irreducible
represenations χr of the form

F̃ (g) =
∑
k

akχk(g). (C.2)

which reduces all derivatives occuring in eq. C.1 to the derivatives

Laχp(g) = lim
t→0

χp(exp(t Ta)g − χp(g))

t
= χp

(
(exp(t Ta)− 1)

t
g

)∣∣∣∣
t=0

= χp(Tag), (C.3)

L2
aχp(g) = χp(T

2
a g) (C.4)

and one is therefore left with showing for eq. C.1 the invariance of the terms∑
a

χp(T
2
a g),

∑
a

χp(Tag)χq(Tag), (C.5)

under the action g → hgh−1, for h ∈ G. Invariance of the first term is obvious since∑
a χp(T

2
a g) = χp(

∑
a T

2
a g) and

∑
a T

2
a is the quadratic Casimir operator and commutat-

ing with all group elements. The latter statement can be seen by noticing that invariance
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of the Killing metric Tr(TaTb) means that h−1Tah is just a rotation of Ta with respect
to this metric and can be expanded as Rc

aTc with an orthogonal matrix R. Therefore∑
a

χp(Tahgh
−1)χq(Tahgh

−1) =
∑
a

χp(h
−1Tahg)χq(h

−1Tahg) =∑
a

χp(R
c
aTcg)χq(R

d
aTdg) =

∑
c,d

δcdχp(Tcg)χq(Tdg) =
∑
a

χp(Tag)χq(Tag), (C.6)

proving alltogether the invariance of eq. C.1.

C.2 SU(3) IMC Method

For SU(3) there are two fundamental represenation, complex conjugated to each other,
hence p, q = 1, 2 The characters and the gemetric DSE will be complex.

Πlin =

pmax∏
p=1

rmax∏
r=1

∏
<i,j>=r

exp (−λp,r(χp,iχ̄p,j + χ̄p,iχp,j)) (C.7)

We have two differnt geometric DSEs according to the two different values of p, hence∑
i∈L

〈
1

2
Kp1,i

(
∂ ~fi
∂χi

+ ~fi
∂lnΠ1,i(~λ)

∂χi

)
+Kp2,i

(
∂ ~fi
∂χ̄i

+ ~fi
∂lnΠ2,i(~λ)

∂χ̄i

)
− cp χp,i ~fi

〉
full

= ~0,

(C.8)

with p = 1, 2.

The lowest Casimir eigenvalues are given by

c[3] = c[3̄] =
8

3
,

c[8] = c(1,1) = c[3] + c[3̄] + 2

(
1− 2

3

)
=

16

3
+

2

3
= 6,

c[6] = c(2,0) = c[3] + c[3] + 2

(
1− 1

3

)
=

16

3
+

4

3
=

20

3
,

c[6̄] = c(0,2) = c[3̄] + c[3̄] + 2

(
2− 4

3

)
=

16

3
+

4

3
=

20

3
. (C.9)

From the reduction formulas we know that for a product of fundamental characters the
reduction involves only the trival, the 6- and the 8 dimensional represenations and the
only non-vanishing Glebsch-Gordon coefficients are all equal to one, hence

C
[8]
12 = C

[8]
21 = C

[1]
12 = C

[1]
21 = 1,

C
[6]
11 = C

[3̄]
11 = 1,

C
[6̄]
22 = C

[3]
22 = 1. (C.10)
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Therefore we get for Kpq,i

K11 =
16

3
χ2 − 20

3
χ6 −

8

3
χ3̄ =

16

3
χ2 − 20

3
(χ2 − χ̄)− 8

3
χ̄ = −4

3
χ2 + 4χ̄

K12 = K21 =
16

3
χχ̄− 6χ8 =

16

3
χχ̄− 6(χχ̄− 1) = −2

3
χχ̄+ 6

K22 = K∗11 =
16

3
χ̄2 − 20

3
χ6̄ −

8

3
χ3 =

16

3
χ2 − 20

3
(χ̄2 − χ)− 8

3
χ = −4

3
χ̄2 + 4χ, (C.11)

where have omitted the lattice index i and we have used for K12 that the Casimir
eigenvalue of the trivial represenation is zero.

Since

∂lnΠ2,i(~λ)

∂χ̄i
=
∂lnΠ1,i(~λ)

∂χi

∗

, (C.12)

if we set the functions f differently for each value p = 1, 2 according to

f
(1)
l,d,i =

1

λl,d

∂ ln(Πl,d,i)

∂χ1,i

, and f
(2)
l,d,i =

1

λl,d

∂ ln(Πl,d,i)

∂χ̄1,i

= f
(1)∗
l,d,i , (C.13)

we get two complex conjugate equations

∑
i∈L

〈
1

2
Kp1,i

(
∂ ~f

(p)
i

∂χi
+ ~f

(p)
i

∂lnΠ1,i(~λ)

∂χi

)
+Kp2,i

(
∂ ~f

(p)
i

∂χ̄i
+ ~f

(p)
i

∂lnΠ2,i(~λ)

∂χ̄i

)
− cp χp,i ~f (p)

i

〉
full

= ~0,

(C.14)

with p = 1, 2.

For the linear systems we can write the equations as

0 = A~λ+ ~v = Re(A)~λ+ iIm(A)~λ+ ~v + i~v,

A =
∑
i∈L

〈
1

2
Kp1,i

(
~f

(p)
i

∂S1,i(~λ)

∂χi

)
+Kp2,i

(
~f

(p)
i

∂S2,i(~λ)

∂χ̄i

)〉
full

,

~v =
∑
i∈L

〈
1

2
Kp1,i

(
∂ ~f

(p)
i

∂χi

)
+Kp2,i

(
∂ ~f

(p)
i

∂χ̄i

)
− cp χp,i ~f (p)

i

〉
full

. (C.15)
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dense quark matter,” Rev. Mod. Phys. 80, 1455 (2008) [arXiv:0709.4635 [hep-ph]].

[94] M. G. Alford, K. Rajagopal and F. Wilczek, “Color flavor locking and chiral
symmetry breaking in high density QCD,” Nucl. Phys. B 537, 443 (1999) [hep-
ph/9804403].

[95] C. Gattringer, “Flux representation of an effective Polyakov loop model for QCD
thermodynamics,” Nucl. Phys. B 850, 242 (2011) [arXiv:1104.2503 [hep-lat]].

[96] Y. Delgado Mercado and C. Gattringer, “Monte Carlo simulation of the SU(3) spin
model with chemical potential in a flux representation,” Nucl. Phys. B 862, 737
(2012) [arXiv:1204.6074 [hep-lat]].

[97] M. Fromm, J. Langelage, S. Lottini and O. Philipsen, “The QCD deconfinement
transition for heavy quarks and all baryon chemical potentials,” JHEP 1201, 042
(2012) [arXiv:1111.4953 [hep-lat]].



Bibliography 126

[98] M. Fromm, J. Langelage, S. Lottini, M. Neuman and O. Philipsen, “Onset Tran-
sition to Cold Nuclear Matter from Lattice QCD with Heavy Quarks,” Phys. Rev.
Lett. 110, no. 12, 122001 (2013) [arXiv:1207.3005 [hep-lat]].

[99] G. Aarts and F. A. James, “Complex Langevin dynamics in the SU(3) spin model
at nonzero chemical potential revisited,” JHEP 1201, 118 (2012) [arXiv:1112.4655
[hep-lat]].

[100] J. Greensite and K. Splittorff, “Mean field theory of effective spin models as a
baryon fugacity expansion,” Phys. Rev. D 86, 074501 (2012) [arXiv:1206.1159 [hep-
lat]].

[101] C. Wozar, T. Kaestner, A. Wipf, T. Heinzl and B. Pozsgay, “Phase structure of
Z(3)-Polyakov-loop models,” Phys. Rev. D 74, 114501 (2006) [hep-lat/0605012].

[102] C. Wozar, T. Kaestner, A. Wipf and T. Heinzl, “Inverse Monte-Carlo determina-
tion of effective lattice models for SU(3) Yang-Mills theory at finite temperature,”
Phys. Rev. D 76, 085004 (2007) [arXiv:0704.2570 [hep-lat]].

[103] T. Heinzl, T. Kaestner and A. Wipf, “Effective actions for the SU(2)
confinement-deconfinement phase transition,” Phys. Rev. D 72, 065005 (2005)
[arXiv:hep-lat/0502013].

[104] C. Gattringer, C.B. Lang, “Quantum Chromodynamics on the Lattice”, Springer
Verlag, 2009.

[105] J. Greensite, “An Introduction to the Confinement Problem”, Springer Verlag,
2011.

[106] A. Wipf, “Statistical Approach to Quantum Field Theory: An Introduction”,
Springer Verlag, 2012.

[107] M. Nakahara, “Geometry, Topology and Physics”, Institute of Physics Publishing,
2003

[108] N. Nakanishi, I. Ojima, “Covariant Operator Formalism Of Gauge Theories And
Quantum Gravity”, World Scientific Lecture Notes in Physics, 1990.

[109] C. D. Roberts and S. M. Schmidt, “Dyson-Schwinger equations: Density, temper-
ature and continuum strong QCD,” Prog. Part. Nucl. Phys. 45, S1 (2000) [nucl-
th/0005064].

[110] R. Haag, “Local Quantum Physics: Fields, Particles, Algebras”, Springer Verlag,
2013

[111] R. Sommer, “A New way to set the energy scale in lattice gauge theories and its
applications to the static force and alpha-s in SU(2) Yang-Mills theory,” Nucl. Phys.
B 411, 839 (1994) [hep-lat/9310022].



127 Bibliography

[112] C. G. Callan, Jr., “Broken scale invariance in scalar field theory,” Phys. Rev. D 2,
1541 (1970).

[113] K. Symanzik, “Small distance behavior in field theory and power counting,” Com-
mun. Math. Phys. 18, 227 (1970).

[114] A. Petermann and E. C. G. Stueckelberg, “Restriction of possible interactions in
quantum electrodynamics”, Phys. Rev., 82, 548 (1951).

[115] K. G. Wilson, “The Renormalization Group: Critical Phenomena and the Kondo
Problem,” Rev. Mod. Phys. 47, 773 (1975).

[116] L. H. Ryder, “Quantum Field Theory”. Cambridge University Press, Cambridge,
UK, 1985.

[117] R. N. Cahn, “Semi-Simple Lie Algebras and Their Representations”, Benjamin-
Cummings, 1984.

[118] Marina von Steinkirch, “Introduction to Group Theory for Physicists”, Lectures
at State University of New York, 2011.

[119] W. Greiner, B. Müller, “Quantum Mehcanics: Symmetries”, Springer Verlag, 1994

[120] A. M. Polyakov, “Thermal Properties of Gauge Fields and Quark Liberation,”
Phys. Lett. 72B, 477 (1978).

[121] L. Susskind, “Lattice Models of Quark Confinement at High Temperature,” Phys.
Rev. D 20, 2610 (1979).

[122] B. Svetitsky and L. G. Yaffe, “Critical Behavior at Finite Temperature Confine-
ment Transitions,” Nucl. Phys. B 210, 423 (1982).

[123] L. G. Yaffe and B. Svetitsky, “First Order Phase Transition in the SU(3) Gauge
Theory at Finite Temperature,” Phys. Rev. D 26, 963 (1982).

[124] J. Greensite and K. Langfeld, “Effective Polyakov line action from the relative
weights method,” Phys. Rev. D 87, 094501 (2013) [arXiv:1301.4977 [hep-lat]].

[125] J. Greensite and K. Langfeld, “Effective Polyakov line action from strong lat-
tice couplings to the deconfinement transition,” Phys. Rev. D 88, 074503 (2013)
[arXiv:1305.0048 [hep-lat]].

[126] Guy Buss, “Analytische Aspekte effektiver SU(N)-Gittereichtheorien”, Diplomar-
beit, FSU Jena, 2004.

[127] B. H. Wellegehausen, “Effektive Polyakov-Loop-Modelle für SU(N)- und G2-
Eichtheorien”, Diploma thesis, 2008.



Bibliography 128

[128] I. Montvay and G. Münster, “Quantum Fields on a Lattice”. Cambridge University
Press, Cambridge, UK, 1994.

[129] J. M. Drouffe and J. B. Zuber, “Strong Coupling and Mean Field Methods in
Lattice Gauge Theories,” Phys. Rept. 102, 1 (1983).

[130] J. Langelage, S. Lottini and O. Philipsen, “Centre symmetric 3d effective actions
for thermal SU(N) Yang-Mills from strong coupling series,” JHEP 1102, 057 (2011)
Erratum: [JHEP 1107, 014 (2011)] [arXiv:1010.0951 [hep-lat]].

[131] J. Langelage, S. Lottini and O. Philipsen, “Effective Polyakov-loop theory for
pure Yang-Mills from strong coupling expansion,” PoS LATTICE 2010, 196 (2010)
[arXiv:1011.0095 [hep-lat]].

[132] A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos and R. D. Pisarski, “Deconfining
phase transition as a matrix model of renormalized Polyakov loops,” Phys. Rev. D
70, 034511 (2004) [hep-th/0311223].

[133] M. Billo, M. Caselle, A. D’Adda and S. Panzeri, “Toward an analytic determi-
nation of the deconfinement temperature in SU(2) LGT,” Nucl. Phys. B 472, 163
(1996) [hep-lat/9601020].

[134] S. Uhlmann, R. Meinel and A. Wipf, “Ward identities for invariant group inte-
grals,” J. Phys. A 40, 4367 (2007) [hep-th/0611170].

[135] D. Smith, A. Dumitru, R. Pisarski and L. von Smekal, “Effective potential for
SU(2) Polyakov loops and Wilson loop eigenvalues,” Phys. Rev. D 88, no. 5, 054020
(2013) [arXiv:1307.6339 [hep-lat]].

[136] P. Scior, D. Scheffler, D. Smith and L. von Smekal, “Effective SU(2) Polyakov
Loop Theories with Heavy Quarks on the Lattice,” PoS LATTICE 2014, 173 (2015)
[arXiv:1412.7089 [hep-lat]].



Acknowledgment

First of all I would like to thank Prof. Lorenz von Smekal for giving me the opportunity
and support to do my PhD in his research group. Furthermore, I would like to thank
Prof. Christian Fischer for his feedback during the PhD committee meetings and for
taking his to be the second examiner of this thesis. Next, I would like to thank the
members of the research group and those who have supported and helped me over
the past few years. I am grateful to Lukas Holicki, who was always willing to give
programming related advice, to Eduard Seifert for his helpful feedback and to my parents
and uncle who were always supportive. A special thanks goes to Björn Wellegehausen
who mentored me over the past three and a half years and without whose advice, not
only regarding the physics but also the programming methods involved, this thesis would
not have been possible.

129



Bibliography 130



Erklärung
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