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Assigning the absolute configuration of single
aliphatic molecules by visual inspection
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Deciphering absolute configuration of a single molecule by direct visual inspection is the next
step in compound identification, with far-reaching implications for medicinal chemistry,
pharmacology, and natural product synthesis. We demonstrate the feasibility of this
approach utilizing low temperature atomic force microscopy (AFM) with a CO-functionalized
tip to determine the absolute configuration and orientation of a single, adsorbed [123]tet-
ramantane molecule, the smallest chiral diamondoid. We differentiate between single
enantiomers on Cu(111) by direct visual inspection, and furthermore identify molecular dimers
and molecular clusters. The experimental results are confirmed by a computational study that
allowed quantification of the corresponding intermolecular interactions. The unique toolset of
absolute configuration determination combined with AFM tip manipulation opens a route for
studying molecular nucleation, including chirality-driven assembly or reaction mechanisms.
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ARTICLE

ife as we know it would not exist without chirality. Homo-

chirality of biological building blocks, e.g., L-amino acids and

D-sugars, is critical for molecular recognition and has been
fundamental for the evolution of life on Earth!. The mirror
images (enantiomers or right-handed and left-handed forms) of
the same compound can interact with living organisms in a
completely different manner. As a consequence, for individual
enantiomers we often observe differences in taste, smell, and in
the case of pharmaceuticals, adverse medical effects®. Louis Pas-
teur was the first to demonstrate molecular chirality by separating
right-handed and left-handed forms of tartaric acid crystals using
a light microscope and then analyzing their optical activity®. At
first glance, preferential crystallization seems to be a facile
method for obtaining enantiomerically pure material; however,
compounds capable of spontaneous symmetry breaking upon
crystallization are quite rare and this phenomenon is not well
understood® °. Formation of single-enantiomer crystals occurs so
rarely because the Gibbs free energy (AG) of racemate crystal-
lization is almost always negative, thereby favouring the forma-
tion of a racemic crystal containing both enantiomers®.
Additionally, the chirality of crystals does not translate directly
into the absolute stereochemistry of a molecule because the
absolute configuration can be assigned only after fitting molecular
orientation to the crystal polar axis’. Since the time of Pasteur’s
experiment, various analytical techniques have been perfected to
help determine the absolute configurations of compounds, e.g.,
measurement of optical rotation, circular dichroism, X-ray ana-
lysis, NMR spectroscopic methods, etc.® %, but to assign absolute
configuration of individual molecules directly by visual inspection
remains a highly attractive goal'?. This would constitute a major
advance for chemistry.

Previously, assignment of enantiomers without chromophores,
e.g., chiral alkanes'! 2 and many natural products, which display
very small optical rotations, was particularly difficult and led to
high uncertainties and well-documented misassignments'>.
Although isolation and structure elucidation of natural products
has progressed dramatically'®, their identification by direct
observation of single molecules would eliminate some persistent
problems connected with natural product isolation and/or total
synthesis, e.g., limited compound availability and a necessity for
further functionalization requiring additional synthetic steps.
Taking into account the present need for such a direct method,
we decided to use helically chiral [123]tetramantane!® as a model
system for determining absolute configuration by means of visual
inspection of single molecules.

[123]Tetramantane, a natural product that can be isolated from
petroleum!®, is a chiral alkane belon%ing to the class of molecules
known as diamondoids (Fig. 1)'” 8. Assignment of its
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enantiomers is particulargy challenging using the established
methods described above!® because it requires multiple tedious
steps including: (1) HPLC separations using a chiral stationary
phase, (2) crystal growth, (3) chemical functionalization, and (4)
use of a variety of analytical and theoretical techniques to
unambiguously assign the structures. To underscore the challenge
of assigning the absolute configuration of some molecules without
classic chromophores, it is noteworthy that the [a]p value of
[123]tetramantane enantiomers is only 34°. Therefore, there are
no interpretable absorptions in the circular dichroism (CD)
spectrum and the structure could only be reliably assigned using a
match of computed and measured vibrational circular dichroism
spectral®. Owing to these difficulties, we decided to approach the
problem differently, by using a single molecule perspective.

With methods such as scanning tunneling microscopy (STM)
or atomic force microscopzy (AFM) it is possible to study chirality
at the molecular level'®!. In particular, the reduction of the
degrees of freedom, which results from analyzing adsorbed 2D
molecular layers or small 2D clusters can facilitate differentiation
between enantiomers. Following this strategy, along with choos-
ing a substrate where surface reconstruction can take place, it is
sometimes possible to identify the chirality of molecular dimers
even without submolecular resolution?!. However, to assign the
absolute configuration at the level of individual molecules sub-
molecular resolution is essential. For example, Ernst et al. recently
demonstrated the concept of stereochemical assignment for
helical molecules on a metal surface using the submolecular
resolution capabilities of standard STM'?. Furthermore, high-
resolution AFM was also used to identify products of on-surface
chirality transfer reactions from helicene substrates by deter-
mining the handedness of mostly planar single molecules?. In
these two exemplary cases, however, the unique structure of the
studied types of helical molecules facilitates their identification.
Additionally, since such helicenes are non-natural aromatic
hydrocarbons that typically have large optical rotations and
intense CD spectra, their assignment by conventional means is
straightforward. Extending the assignment of absolute config-
uration by direct visual inspection to single sp> systems would
therefore represent a significant advance.

For small bulky molecules it is difficult and unreliable to assign
their configuration by using standard STM measurements (i.e.,
without tip functionalization) and only a rough estimation of
their orientation is feasible, as demonstrated for single tetra-
mantane molecules on a Au(111) surface?® 2%, Hence, in order to
study such types of molecules a technique with higher lateral
resolution is needed, which can, e.g., be accomplished by func-
tionalizing the STM/AFM tip. This so-called “bond imaging”
technique has previously been introduced by Gross et al. who

Helical
axis

Fig. 1 Structures of adamantane and enantiomers of [123]tetramantane. a Depiction of adamantane. b (M)-enantiomer and (P)-enantiomer of [123]
tetramantane with hydrogen atoms omitted for clarity (numbers 1-4 are used to indicate the directions in Cartesian space of the diamond lattice and four
red spheres in molecules indicate the centers of four corresponding adamantane cages). ¢ The (P)-enantiomer illustrating the helical core (bonds marked in
yellow) and close contacts between the hydrogens inside the molecular groove (transparent net area)

2 | (2018)9:2420 | DOI: 10.1038/541467-018-04843-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04843-z

ARTICLE

demonstrated that AFM resolution can be signiﬁcantl;f enhanced
by functionalizing the tip with a single CO molecule?®. Similarly,
proper tip functionalization can provide enhanced contrast in
specific STM techniques?®=28, In particular, for the study of
aromatic compounds on surfaces these methods have been suc-
cessfully applied to identify chemical structures, length, and order
of intramolecular and intermolecular bonds, molecular assembly
mechanisms, on-surface reaction pathways, and even chirality-
related phenomena?? 2% 29-38,

Here we applied this technique to differentiate between single
enantiomers of [123]tetramantane on a Cu(111) surface and
determine their absolute configuration. This is the first time single
enantiomers of naturally occurring bulky molecules have been
distinguished solely by direct visual inspection. In addition, we
studied the self-assembly of chiral molecules on metal surfaces
and imaged [123]tetramantane dimers and small clusters which
may act as centers for crystal nucleation.

Results and Discussion
STM/AFM imaging. In order to investigate single [123]tetra-
mantanes, the racemic mixture was sublimed onto a cold Cu(111)
surface (below =15 K) through the opened temperature shields of
the low-temperature STM/AFM instrument. At higher tempera-
tures tetramantane tends to form islands®® %%, which are caused
by a low diffusion barrier paired with strong intermolecular
London dispersion (LD) interactions®. Figure 2 shows STM (a)
and AFM (b-d) scans of single [123]tetramantanes that were
measured at 5K with a CO functionalized AFM tip*>. The
appearance of the molecules in two different imaging modes is
rather different. In the STM mode the molecules appear as cloud-
like structures that exhibit sub-molecular features (Fig. 2a). Since
the STM contrast depends strongly on the local density of states,
these features in general do not allow for direct identification of
molecular structures. The AFM contrast, however, is mainly
determined by short-range repulsive interactions, ie., Pauli
exchange repulsion and electrostatic interactions®> 3%, which are
known to produce a more detailed view of the chemical structure
of adsorbed molecular species.

For 3D objects such as bulky cage molecules, however, direct
identification of their structures and orientations on the surface is
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Fig. 2 Single [123]tetramantane molecules on a Cu(111) surface. a Images
obtained in STM scan mode. b-d Images obtained by constant height
AFM scans. Parameters:a U=200mV, =10 pA,b-d U= —-0.5mV, Az=
170 pm (b), 160 pm (c), 150 pm (d), respectively. Scale bars: a 0.5 nm,
b-c 0.3nm

not straightforward3® 3% 49-43 3lthough some recent advances in
characterizing aliphatic moieties have been made®® %3, The CO
molecule at the tip, which facilitates the submolecular contrast, is
flexible and provokes distortions in the image contrast®> 30 41,
This flexibility of the CO tip leads to a force-dependent tilting
that can impede the identification of 3D objects during constant
height scanning. Therefore, the formation of the image contrast
has to be addressed thoroughly at different imaging heights in
order to resolve the atomic structure and determine the precise
orientation of the molecules. Recently, we were able to image
[121]tetramantanes with atomic resolution and determine their
precise orientation on the surface®®, so this method can be
applied in a similar way to the [123]tetramantanes studied here.

In Fig. 2b-d three AFM images of the same molecule are
depicted, which were determined at three different heights above
the Cu substrate. All images were obtained in the constant height
mode and the Az-offset is given with regard to the tip height over
the Cu surface in tunneling feedback (U=200mV, I =10 pA).
Displayed is the frequency shift of the oscillating tuning fork
sensor vs. its x/y-position. While repulsive tip-sample interac-
tions lead to positive frequency shifts (bright colors), attractive
interactions lead to negative frequency shifts (dark colors). The
observed image contrast changes significantly when approaching
the CO-tip to the sample surface. Initially, at distances relatively
far away from the molecule, a dark region appears that is due to
attractive LD interactions (not shown). Closer to the surface
(Fig. 2b, c¢), the images reveal five bright spots, whose
arrangement bears similarity to the Olympic rings (as indicated
by dashed orange circles in c¢). When further approaching the
surface artificial lines appear between the bright spots that are
caused by the previously mentioned flexibility of the CO molecule
(Fig. 2d). For closer tip-sample distances these effects get more
severe and make the images non-analyzable.

Determining the absolute configuration. In the following we
demonstrate that the observed Olympic ring pattern of five bright
spots allows us to determine the precise orientation of the indi-
vidual [123]tetramantane molecules and their absolute config-
uration. Fig. 3 shows three different orientations of [123]
tetramantane that have been observed on the Cu(111) surface
(left (a, d, g), middle (b, e, h), and right column (c, f, 1)). The first
two rows depict side and top views of the correspondin
computed orientations (for details about the used GFN-xTB*
computational method vide infra). To each of the side views a
semi-transparent plane was added, indicating the imaging planes
of the corresponding AFM experiment. AFM images for each of
the observed molecular orientations are depicted in the third row.
Hydrogen atoms facing the Cu(111) surface are marked in blue,
while hydrogen atoms within the imaging plane are marked
in orange. All other hydrogen atoms are shown as white sticks for
clarity. Each orientation leads to a characteristic pattern of
hydrogen atoms within the imaging plane, which resemble
the shape of the Olympic rings (d, g), a triangle (e, h), and a
rhombus (f, i).

The majority of imaged molecules is found in the Olympic ring
pattern (a, d, g) and the other two orientations are rarely
observed. These orientations may be found after accidentally
manipulating the molecules with the tip since this can happen
during STM measurement with high tunneling setpoint or if the
tip approaches the surface too closely during AFM constant
height scanning. This observation is in agreement with our
computational results, since the computed Gibbs energies at 15K
show that the orientation in the left column (Olympic ring
pattern) is by 11.1 and 10.2 kcal mol™! more favourable than the
orientations in the middle and right columns, respectively (see
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a Hydrogen in imaging plane
@ Hydrogen in surface plane

Fig. 3 Three different orientations of (M)-[123]tetramantane. In the first two rows side (a-c) and top views (d-f) of the corresponding computed
orientations are depicted. The planes in the first row indicate the imaging plane of the corresponding AFM scans (shown in the third row, g-i). Hydrogen
atoms in the imaging and surface planes are marked in orange and blue, respectively. Each orientation results in a characteristic pattern of hydrogen atoms
within the imaging plane, which resemble the shape of the Olympic rings (d, g), a triangle (e, h), and a rhombus (f, i). Scale bars: 0.3 nm

Supplementary Table 7). In general, the adsorption of (M)-[123]
tetramantane on a Cu(111) surface was found to be a favourable
process, e.g., at 15 K the orientation in the left column is stabilized
by -30.3 kcal mol™! upon interaction of the isolated tetramantane
molecule with the modelled copper slab.

In the following we will focus on identifying the absolute
configuration of two [123]tetramantane enantiomers by visual
inspection. Since the majority of the molecules are found with the
Olympic ring pattern facing upwards (left column), we will
describe the identification process using this orientation as an
example.

Fig. 4a-c shows side view and two top view sketches of the (M)-
enantiomer and the (P)-enantiomer. In b and c¢ two specific
hydrogen atoms that are located =130 pm below the imaging
plane are marked in red color, respectively. While these two
specific hydrogens are located at the right side above the Olympic
ring pattern for the (M)-type molecule, they are located at the left
side for the (P)-type molecule (see top views b and c). Hence, for
an unambiguous identification of the absolute configurations the
positions of two specific hydrogen atoms, which reside =130 pm
below the imaging plane, have to be determined. Figure 4d and e
shows two constant height AFM scans of two different [123]
tetramantanes. These scans reveal that the molecules are slightly
tilted with respect to the surface plane, ie., one side of the
Olympic ring pattern appears slightly brighter than the other, as
indicated by the white and dark arrows. To identify the absolute
configuration of the molecules by imaging the specific hydrogens,
we varied the height of the imaging plane during scanning as
indicated in the sketch in Fig. 4a. The resulting AFM images are
presented in Fig. 4f and g. Both scans were started at the bottom
of the image and scanned in upward direction. After the tip has
passed the Olympic ring pattern, the Az-offset was gradually
reduced by =130 pm. The two red dashed lines indicate the image

region where the offset was reduced. Apparently, both images
reveal characteristic features (see red dashed oval in f) at the
positions where the two specific hydrogen atoms are expected,
i.e, at the right and left sides above the Olympic ring patterns.
Herewith, we can unambiguously identify the (M)-enantiomer in
Fig. 4f and the (P)-enantiomer in Fig. 4g (see also molecular
overlays in Fig. 4h and i).

After performing this identification procedure, it is possible to
distinguish between the two enantiomers by standard constant
height AFM scans (i.e., without custom height profile). Since
the molecules are not perfectly parallel to the surface plane, the
brighter side of the Olympic ring pattern indicates the absolute
configuration (see black and white arrows in Fig. 4d-g).
Presumably the observed tilting of the molecules is caused by
their C,-symmetry. The five hydrogen atoms within the Olympic
ring pattern in the surface plane (see blue hydrogens in Fig. 4a—c)
are rotated by 60° with respect to the Olympic ring pattern in the
imaging plane (orange hydrogens). Two specific hydrogens (red
atoms), which are indicators of handedness, also have corre-
sponding counterparts close to the surface (red dashed circles in
Fig. 4a—c). For the (M)-enantiomers and (P)-enantiomers, these
hydrogens are located at opposite sides (cf. Fig. 4b and c).
Interactions between these hydrogens and the Cu(111) surface are
believed to pull down the molecules at the corresponding edges,
provoking the observed tilting (see Supplementary Fig. 1 for more
details).

Computation of on-surface structures. To further confirm such
tilting of [123]tetramantane on Cu(111) and to provide an esti-
mate of the tilting angle, we performed semiempirical computa-
tions using the GEN-xTB approach*!. This modern method
allows for computation of large systems with the advantage of
also taking non-covalent interactions into account. Since LD
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Hydrogen in imaging plane
@ Hydrogen in surface plane
@ Specific hydrogen ~130 pm below imaging plane
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Fig. 4 Adsorption structure of [123]tetramantanes. a Side view sketch of (M)-[123]tetramantane with the Olympic ring pattern of hydrogen atoms facing
upwards (see five orange hydrogens). The absolute configuration can be determined by locating two specific hydrogen atoms (red atoms) ~130 pm below
the imaging plane. b, ¢ Top view sketches of (M)-[123]tetramantane and (P)-[123]tetramantane showing the arrangement of Olympic ring patterns in the
imaging and surface planes (orange and blue atoms) and the specific hydrogen atoms (red atoms and red dashed circles). d, e Constant height AFM scans
of two different [123]tetramantanes. White and black arrows indicate the brighter (higher) and darker (lower) sides of the molecules, respectively. f, g
Same molecules imaged with custom height profile, i.e., in the region between the two dashed red lines the imaging height was linearly decreased by ~130
pm. Both scans were started in the bottom of the images. Both images reveal a bright halo (red dashed oval in f), which is either located on the right or the
left side of the Olympic ring pattern (dashed orange circles). h, i Corresponding AFM scans with overlaid molecular structures of (M)-[123]tetramantane
and (P)-[123]tetramantane. For clarity, only the plane containing the two specific hydrogens is plotted. Please note that the specific hydrogens are either
connected to the C-12 or C-22 sites (according to IUPAC designated carbon numbers for [123]tetramantane). Scale bar: 0.3 nm

interactions play a vital role in the behavior of tetramantane
molecules’®, GFN-xTB that includes the well-established D3
dispersion correction was a method of choice for our system. As a
sufficient representation of the Cu(111) surface we took a copper
slab consisting of 216 Cu atoms, with dimensions of 18 x 18 x 5
A. After introducing the corresponding orientation of tetra-
mantane on the Cu slab and freezing the copper lattice, geometry
optimizations and frequency analyses were performed. The
obtained geometries along with their coordinates and corre-
sponding energies are given in the Supplementary Information
and the Supplementary Data (Supplementary Fig. 1, Supple-
mentary Table 7, and Supplementary Data Set 3). Herewith, we
successfully confirm that (M) and (P)-type molecules are tilted in
opposite directions and we found tilting angles on the order of
4-5° with regard to the x/y plane.

Note that the shown molecular orientations correspond to local
minima on the potential energy surface, i.e., other orientations
with similar adsorption energies coexist. However, from our AFM
experiments we can clearly infer the orientation of the Olympic
ring pattern with regard to the Cu(111) lattice (see Supplemen-
tary Fig. 2). Our AFM images reveal that the Olympic ring
pattern aligns to the crystallographic [1-10] direction (and
equivalent [-101] and [01-1] directions), hence [123]tetraman-
tanes are snapping to the Cu(111) lattice. We also used the tip as
a manipulation tool in order to rotate the molecules. The
manipulations result in rotations that correspond to integer
multiples of 60°. Furthermore, the tilting with regard to the x/y
plane was preserved after rotational manipulation, which
supports the rationale that the observed tilting is not caused by

a sometimes observed slight asymmetry of the CO-tip. Hence,
from a number of computed orientations that correspond to
different local minima we chose those that are most comparable
to our experimental results.

Imaging of dimers and small clusters. Next we applied the bond
imaging method to different dimers and a small cluster of [123]
tetramantanes. Fig. 5 depicts (P,P) (a, b), (M,P) (c, d), and (M,M)
(e, f) dimers. The absolute configuration of each molecule was
identified by the observed molecular tilting with regard to the x/y
plane (see black and white arrows). Overlays with the corre-
sponding molecular structures are depicted in the right column of
Fig. 5b, d, f. In the case of molecular dimers the Olympic ring
patterns of the individual molecules also align with the crystal-
lographic [1-10] direction (see Supplementary Fig. 3). Precise
knowledge about molecular orientation allows for determination
of close contacts between two molecules within the dimers. Such
information can also be used to quantify LD interactions between
the molecules and pinpoint the onset of the crystallization pro-
cess®. Using these structural data as a starting point, we per-
formed a detailed computational study for two series of
dispersion-bound complexes consisting of two enantiomers, (M,
P) and (M,M)-[123]tetramantanes, respectively (details are pro-
vided in Supplementary Figs. 4, 5 Supplementary Tables 1-6).
The obtained results confirmed that dimer formation is indeed an
energetically favourable process driven by LD and the strength of
these interactions was successfully quantified.

A cluster of six [123]tetramantanes is depicted in Fig. 6a and b.
As in the previous figures, the AFM scans allow the assignment of
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Fig. 5 Constant height AFM scans of [123]tetramantane dimers. a, b (P,P)-
[123]tetramantane dimers. ¢, d (M,P)-[123]tetramantane dimers. e, f (M,
M)-[123]tetramantane dimers. Tilting of the molecules is indicated by black
and white arrows (as in Fig. 4). b, d, f AFM scans overlaid with molecular
structures. For clarity only the plane containing the two specific hydrogens
is plotted (cf. Fig. 4). Scale bars: 0.5 nm

absolute configuration and the precise determination of mole-
cular orientation. An overlay of the molecular structures is shown
in (¢, d). Images (a, c) were taken before, while images (b, d) were
obtained after deliberately manipulating the molecules with the
AFM tip. Therefore, the molecular cluster has been imaged in
STM mode while the gap voltage and tunneling current were
systematically changed until manipulation of the molecules was
observed. Fig. 6b reveals that five of the six molecules have been
rotated by this procedure. Comparing the arrangement of the
molecules before and after manipulation reveals very similar
patterns of close contacts between the molecules, showing that
intermolecular LD interactions have a significant influence on the
process of molecular assembly.

Finally, we discuss how cluster formation depends on the
interplay between intermolecular LD interactions and
molecule-surface interactions. The observed snapping of single
[123]tetramantanes and molecular dimers to the Cu lattice
demonstrates that molecule-surface interactions play a significant
role in on-surface assembly (see Supplementary Figs. 2, 3). The
imaged molecular cluster, however, reveals a slight deviation
regarding the molecular orientations, i.e., in Fig. 6a the three
observed orientations of the Olympic ring patterns (see red lines
indicated with numbers 1-3) are not perfectly parallel to the
crystallographic [1-10], [10-1], and [01-1] directions (see three
red arrows). This indicates that intermolecular LD interactions
start to have an increased role in molecular assembly as more
bulky molecules are being added to the cluster.

Fig. 6 Constant height AFM scans of a molecular cluster consisting of [123]
tetramantane. a Scan before manipulation by AFM tip. b Scan after
manipulation by AFM tip. The numbered red lines indicate the three main
directions of molecular alignment. The three red arrows indicate the
crystallographic [0-11], [10-1], and [-110] directions. The two blue lines in
b indicate molecules that were not rotated by inter multiples of 60°.

¢, d AFM scans overlaid with molecular structures. The cluster contains five
(P)-enantiomers and one (M)-enantiomer. For clarity only the plane
containing the two specific hydrogens is plotted (see Fig. 4). Scale bar: 1nm

This observation is even more pronounced after deliberately
manipulating the molecules with the CO tip. Fig. 6b shows that
three out of five manipulated molecules are rotated by integer
multiples of approx. 60°, while two molecules are found to be
misaligned by a few degrees (see blue lines). The two blue lines
show an even stronger deviation from the crystallographic [1-10]
directions than the three red lines. Hence, for the studied
molecular cluster intermolecular LD interactions start to
dominate the assembling process, while molecule-surface inter-
actions play here only a minor role. This is in line with our
previous results, which show that LD interactions can direct
the self-assembly of [121]tetramantane within larger clusters
(approx. 10 molecules) and big islands®®. Furthermore, the
possibility to directly assign the precise orientation and the
absolute configuration of the molecules paired with
the manipulation capabilities of scanning probe techniques will
allow future studies of chirality driven assembly mechanisms at a
new level of accuracy.

To summarize, we assigned by direct visual inspection the
absolute configuration and orientation of adsorbed [123]tetra-
mantanes on Cu(111) using low temperature AFM with a CO
functionalized tip. The approach was successfully applied to
single molecules, molecular dimers, and small molecular clusters.
We determined the intermolecular arrangement of enantiomers
with atomic precision and supported the experimental findings
with a systematic computational study. The present approach for
assigning absolute configurations of chiral molecules can thus be
considered as an emerging tool for studying molecular recogni-
tion and reactivity of chiral compounds on surfaces, capable of
providing a new level of sophistication.

Methods

STM/AFM measurements. [123] Tetramantane was isolated from petroleum and
purified by multiple HPLC separations as described previously'®. We used an ultra-
high vacuum low temperature STM/AFM (ScientaOmicron, Germany) with a base
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pressure below 1 x 100 mbar. The Cu(111) single crystal substrate (MaTecK,
Germany) was cleaned prior to the experiment, by multiple (up to 100) cycles of
Ar*T sputtering (1.5 keV, 3-6 x 107° mbar, 3-4 pA) and subsequent annealing (up
to 1000 K). For evaporation a small amount of molecule powder was inserted into a
stainless steel tube that was attached to an Omicron sample plate and kept at room
temperature®®. The molecules were deposited onto the Cu surface (below 15K)
through the opened temperature shields of the STM/AFM instrument. All mea-
surements were performed with the tip connected to ground and the sample
connected to bias voltage at a temperature of 5 K. Commercial (ScientaOmicron)
and homemade*® sensors with tungsten tips have been used (resonant frequency =
19.3 or 27.0 kHz, Q-factor = 15,000-30,000, oscillation amplitude = 60-160 pm),
CO molecules have been picked up from the Cu surface using the recipe of Bartels
et al ¥’ or by applying voltage pulses of 3-4 V.

Computations. Semiempirical computations of [123]tetramantane molecules on a
Cu(111) surface were performed using the GFN-xTB approach developed by
Grimme et al*%. A copper crystal surface cut-out with dimensions of 18 x 18 x 5 A
consisting of 216 Cu atoms was taken and the atoms were frozen to simulate the
copper lattice. Tetramantane molecules of the corresponding orientation observed
in the AFM images (Olympic rings, triangle, and rhombus) were placed on the
copper slab, optimized and their frequency analyses were performed. The obtained
geometries were then compared with the structural parameters obtained from AFM
imaging.

Data availability. The data supporting the findings of this study are available
within the paper and its Supplementary Information files.
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