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1 Introduction 

 

1.1 Bacterial toxins 

Bacteria produce a large number of different molecules that are toxic to eukaryotic 

hosts. Some of these molecules are structural components that form part of the 

bacterial cell and are released during the growth and death of microorganisms. 

These structural molecules are referred to as endotoxins because they are not 

actively released but just appear whenever bacteria are multiplying or being lysed. 

Endotoxins usually have no toxic effect by themselves, but trigger deleterious 

reactions because host cells recognize them as warning signals for the presence of 

invading pathogens. The most well-known example is lipopolysaccharide (LPS), the 

main building block of the outer membrane of Gram-negative bacteria. LPS consists, 

as the name suggests, of a lipid part (lipid A) that is linked to a so-called core 

polysaccharide and faces towards the inside of the cell. Bound to the core 

polysaccharide is the O side chain or O antigen, a polysaccharide chain extending 

outwards. As LPS forms the outermost barrier around Gram-negative bacteria it has 

fundamental function in protecting the microorganisms from environmental 

influences, such as bile salts, antibiotics or antibodies produced by the host immune 

system. The toxicity of LPS is conferred by lipid A. As it is the most conserved portion 

in Gram-negative bacteria it is recognized by the innate immune system’s pathogen 

recognition receptors (PRR). The specific receptor for LPS is toll-like receptor 4 

(TLR4) (Poltorak, 1998), which, upon activation, triggers the release of 

proinflammatory cytokines like IL1, IL6 and tumor necrosis factor alpha (TNFα). 

Whenever excessive amounts of LPS enter the host a possibly lethal 

hyperinflammatory reaction is induced due to uncontrolled cytokine release 

(endotoxin shock). During persistent or systemic infections patients often succumb to 

septic shock, caused by circulating endotoxin that, via the hyperactivated immune 

system, damages the endothelium. This leads to a loss of perfusion and subsequent 

multiple organ failure. Endotoxin-free equipment and materials are of great 

importance in modern medicine, as even very small doses (500pg/kg body weight; 

FDA, 2009) of parenterally administered endotoxin are dangerous to patients. 

Removal of endotoxins is difficult and expensive; their inactivation requires 

temperatures of at least 250°C. When heating is not  possible, endotoxins can also be 

removed by treatment with hydrogen peroxide or sodium hydroxide. In sensitive 
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samples like protein extracts, techniques like ion exchange chromatography or 

ultrafiltration are used.  

While endotoxin-like molecules are found in all bacteria, exotoxins are generally 

produced in pathogenic strains. Exotoxins are, in most cases, actively secreted and 

have toxic effects on the host, either by directly killing cells or otherwise disturbing 

the functions of the organism. Bacterial exotoxins are a large and heterogeneous 

group of proteins with diverse modes of action that include the most potent biological 

toxins known. The deleterious actions of different toxins range from apparently non-

specific lysis of eukaryotic cells by pore forming toxins from the group of cholesterol-

dependent cytolysins to highly specific blocking of the release of acetylcholine (Ach) 

by botulinum toxin in stimulatory motor neurons at neuromuscular junctions. The 

classification of a bacterial toxin is possible with regard to the microorganism 

producing it, its specific action or the affected tissue. Here, they will be listed 

according to their structure and general function.  

 

1.1.1 AB Toxins 

This group of exotoxins is the largest and includes toxins with several different 

activities and potencies. The name AB toxins originates from their shared 

organisation into one binding (B) and one enzymatically active (A) portion. The B 

portion is responsible for the specificity of the toxin as it binds to the cellular receptor 

on the plasma membrane of host cells. The A portion is responsible for the toxic 

effect after translocation to its destination inside the cell. The ratio of A to B is 

variable between the different toxins in this group. Depending on the specific toxin 

the two portions are either released as one protein that is cleaved by host proteases, 

as a disulfide-linked protein complex, or as single proteins that combine only after the 

specific cell surface ligand is bound by the B subunit (Figure 1.1.1). The ligand of the 

B subunit on the plasma membrane together with the intracellular target of the A 

subunit account for the tissue specificity of the toxins. Some exotoxins, like tetanus 

toxin, target only neuronal cells while others, like cholera toxin, can enter all kinds of 

cells because their ligand is ubiquitously expressed. The two most potent members 

of this group are botulinum neurotoxin (BoNT) and tetanus neurotoxin (TeNT). With 

lethal quantities in humans of 1.0 and 2.5 ng/kg body weight, respectively, these two 

are the deadliest biological toxins known today (Gill, 1982; Meyer and Eddie, 1951; 
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Bolton and Fish, 1902). The extremely low lethal dose is due to the specific action of 

the toxins at neuromuscular junctions in motor nerve termini. 

 
Fig 1.1.1 Entry and retrograde transport of differe nt AB toxins.  Adapted from Sandvig et al., 2010. 
 
 
Here, both BoNT and TeNT find the ligands of their respective B subunit, bind it and 

are subsequently endocytosed. Thereafter, the A subunit is released into the 

cytoplasm. In the case of BoNT it inhibits the membrane fusion of synaptic vesicles 

by degradation of SNARE proteins and the release of acetylcholine, which leads to a 

long-lasting relaxation of affected muscles (Schiavo, Shone, et al., 1993; Schiavo, 

Rossetto, et al., 1993; Binz et al., 1994; Foran et al., 1996). A systemic muscle 

paralysis, called botulism, can develop if Clostridium botulinum, the bacterium 

producing BoNT, is able to colonize the digestive tract or a wound. The first signs of 

botulism are loss of facial expressions and the inability to speak or open the eyelids 

and usually progress to paralysis of the limbs. In severe cases the diaphragm and 

accessory breathing muscles are affected, which results in asphyxiation if the patient 

is not mechanically ventilated. Botulism can also occur by ingestion of C. botulinum - 

contaminated food. Tetanus, the medical condition caused by TeNT, develops upon 

infection with Clostridium tetani. The bacterium, like C. botulinum, is an obligate 

anaerobe and usually infects deep cuts or punctures that were not disinfected 

properly. Once an infection is established the neurotoxin is released and causes 
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muscle rigidity and spasms. In general tetanus, like botulism, starts to affect the facial 

and neck area first and spreads downward. Respiratory failure and death occur when 

the spasms affect the diaphragm and accessory breathing muscles. TeNT disturbs 

the signal transduction to the muscles at a different point than BoNT. It disrupts the 

function of inhibitory interneurons and Renshaw cells, leading to unmodulated 

stimulation of skeletal muscles (Howard and Riley, 1965; Takano, 1985; Curtis et al., 

1976). The fatalities due to tetanus have decreased drastically (Hoheisel and 

Hoheisel, 1968; Blencowe et al., 2010) since the introduction of a successful 

vaccination campaign. 

Enterotoxins form another subgroup of AB toxins. They are produced by bacteria that 

enter the host via contaminated food or water, have a direct effect on the intestinal 

mucosa and elicit profuse fluid secretion. The best studied example is cholera toxin 

(CTx). Vibrio cholerae releases it upon reaching the small intestine and attaching 

itself to the intestinal epithelium. The resulting disease (cholera) manifests itself 

through profuse painless diarrhoea and vomiting of clear fluid. Untreated cholera 

patients may loose up to 20 litres of liquid daily, often with fatal results. CTx consists 

of a pentameric B subunit that is connected to a single A subunit by a disulfide bond. 

The B subunit binds GM1 gangliosides on the plasma membrane of intestinal 

epithelial cells and triggers the internalization of the toxin. Once inside the cell the 

toxin is transported from the Golgi apparatus to the endoplasmic reticulum (ER) via 

retrograde trafficking. In the ER the A subunit is cleaved off and released in the 

cytoplasm, where it ADP ribosylates the GTP binding protein Gsα (Hepler and 

Gilman, 1992; McRoberts et al., 1985). This leads to a massive elevation of 

intracellular cAMP levels, resulting in active chloride secretion (Field et al., 1972, 

1989). As a consequence, large quantities of water osmotically move into the 

intestinal lumen, exceeding the resorption capacity of the large intestine, resulting in 

severe secretory diarrhoea and life-threatening dehydration.     

Shiga toxin (STx), like CTx, consists of a pentameric B subunit that specifically binds 

the glycosphingolipid Gb3 in the plasma membrane of host cells (Sandvig et al., 

1992). Upon toxin endocytosis the A subunit is cleaved and thereby activated by a 

cellular enzyme called furin. The presence of this enzyme is a prerequisite for STx 

activity (Garred et al., 1995). STx follows a retrograde trafficking route like CTx, 

ending with the transport of the activated A subunit from the ER into the cytosol. Here 

it inhibits protein synthesis by removing one adenine from the 28S RNA (Endo et al., 
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1988), thereby killing the affected cells. STx is produced by Shigella dysenteriae, 

which causes hemorrhagic colitis, a disease that, unlike cholera, is characterized by 

small volumes of bloody stool and a painful inflammatory reaction. There are also 

strains of Escherichia coli (STEC) which are able to produce Shiga-like toxins that 

are very closely related to STx from S. dysenteriae. The main difference in the 

conditions caused by the two bacterial species is the high incidence of haemolytic 

uremic syndrome (HUS) in STEC-infected patients, as could be observed in the 

outbreak of E. coli O104:H4 in summer 2011 in Germany. 

 

1.1.2 Superantigens 

Superantigens (SAgs) are bacterial proteins disturbing the communication at the 

interface of the innate and the adaptive immune system. Under normal conditions a 

reaction of the adaptive immune system is triggered when a specific antigen is taken 

up by an antigen presenting cell (APC). Within the APC the antigen is processed, 

fitted into the major histocompatibility complex II (MHC II) and then presented to cells 

of the adaptive immune system. This way it can be recognized by one of the 

randomly-generated T-cell receptors (TCR). When a T-cell with a fitting receptor 

binds the antigen-MHC II-complex it is activated and starts to produce inflammatory 

cytokines like IL1 and TNFα (Figure 1.1.2, left side). Due to the specificity of the TCR 

any single antigen usually only activates a very small number of T-cells, which allows 

the host to react to infections with precision and a minimum of self-destruction due to 

the controlled inflammatory response. SAgs subvert the specificity of the T-cell 

activation by binding conserved parts of MHCII-molecules and TCRs, thereby 

mimicking the presence of a specific antigen (Alouf and Müller-Alouf, 2003; Figure 

1.1.2, right side). This can lead to an activation of up to 25% of all T-cells in the body. 

The resulting massive cytokine release, known as toxic shock syndrome (TSS), is 

deleterious for the host (Todd et al., 1978). In general the symptoms include high 

fever, hypotension, shock, respiratory distress and renal failure, mostly due to 

systemic endothelial damage and hyperinflammation. Many SAgs are produced by 

the two Gram-positive bacteria Staphylococcus aureus and Streptococcus pyogenes. 

While staphylococcal SAgs like Toxic shock syndrome toxin-1 are mostly responsible 

for TSS, the streptococcal pyrogenic exotoxins can trigger a more acute condition 

(streptococcal TSS or STSS). While the symptoms of TSS and STSS are very 
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similar, the fatality rate of STSS is much higher (up to 30%) (Stevens et al., 1989; 

McCormick et al., 2001). 

 
Fig 1.1.2 Schematic representation of antigen and s uperantigen binding to MHCII and TCR.  
Normal antigen presentation is shown on the left side while superantigen stimulation in the absence of 
antigen recognition is featured on the right side: Adapted from Janeway et al., 2001.  
 
 
1.1.3 Membrane Damaging Toxins 

Membrane damaging toxins (MDTs) exert their function by disruption, perforation or 

destabilization of the plasma membrane of target cells, which leads to an osmotic 

imbalance. The effects are always dependent on toxin concentrations and range from 

perturbations in regular cellular functions to massive release of inflammatory 

messengers and finally to the lytic destruction of cells. It has been proposed that 

toxin concentrations produced in vivo are mostly not sufficient to cause lysis in host 

cells, but more likely mediate the release of many different effectors in toxin-

damaged cells, especially in cells of the immune system (Billington et al., 2000). This 

includes cytokines, chemokines, nitric oxide and other molecules that are critical for 

cell signalling. Hence, a much more subtle mechanism of MDTs in bacterial virulence 

than just randomly killing host cells has been proposed (Kayal et al., 1999; Bryant et 

al., 2003; Bhakdi and Tranum-Jensen, 1988). Three distinct families of MDTs can be 

distinguished based upon the mechanism employed to damage eukaryotic cell 

membranes:  

 

1) Toxins that feature a detergent-like activity that leads to a solubilisation effect in 

membranes or partial insertions into their hydrophobic regions. Examples are the 

delta- and delta-like toxins of Staphylococcus aureus, Staphylococcus haemolyticus, 

and Staphylococcus lugdunensis, the heat-stable haemolysin from Pseudomonas 

aeruginosa, and Bacillus subtilis cyclolipopeptides (Freer and Arbuthnott, 1982; 

Rowe and Welch, 1994; Bernheimer and Rudy, 1986; Sheppard et al., 1991).   
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2) Enzymatically active toxins that function as phospholipases or sphingomyelinases 

and hydrolyse the phospholipids in the plasma membrane of target cells. They 

include C. perfringens α-toxin (phospholipase C) (Macfarlane and Knight, 1941) and 

S. aureus β-toxin (sphingomyelinase C) (Russell et al., 1976).  

 

3) Pore forming toxins (PFTs) that are able to create channel-like pores in the plasma 

membrane. This is the largest family of the bacterial protein toxins, including over 120 

members (Alouf and Popoff, 2005). The concept of proteins that perforate 

membranes is not limited to bacterial virulence factors but is also used by the 

immune system in the form of the complement system (Mayer, 1972) or perforin from 

cytotoxic T-cells to eliminate intruding organisms and silence dysfunctional or 

infected somatic cells (Podack and Konigsberg, 1984). To account for the differences 

in structure and mechanism a further sub-classification of the PFTs is necessary.  

• The subfamily of RTX (repeats in toxin) toxins are produced by a broad range 

of Gram-negative bacteria like members of the family Pasteurellaceae, E. coli, 

B. pertussis, V. cholerae, and other pathogens (Welch, 2001). They share 

several distinct structural and functional elements such as a series of glycine-

rich nonameric repeats in the C-terminal half of the protein, a size over 100 

kDa, a calcium (Ca2+)-dependent activity and the generation of short-lived, 

cation-selective pores (Felmlee et al., 1985; Welch, 1987; Lo et al., 1987). The 

exact mechanism of pore formation remains elusive, as the pores or pore-

forming structures have not been detected by electron microscopy yet. 

• The Serratia marcescens haemolysin (ShlA) is the prototype for a group of 

toxins that, unlike the rest of the exotoxins, depends on two separate genes 

for its function. The first gene (shlA) encodes the toxin itself while the second 

(shlB) encodes the outer membrane protein required for ShlA secretion and 

activation (Braun et al., 1987; Poole et al., 1988). S. marcescens is a 

pathogen that opportunistically causes respiratory and urinary tract infections, 

bacteraemia, endocarditis, keratitis, arthritis, and meningitis (Lyerly and 

Kreger, 1983; Maki et al., 1973). The haemolysin has been found in over 90% 

of tested clinical isolates of S. marcescens, toxins with similar sequences have 

been described in Proteus mirabilis, Haemophilus ducreyi, Edwardsiella tarda, 

and Photorhabdus luminescens (Brillard et al., 2002). Until today the exact 
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mechanism of pore formation is unknown but the experimentally determined 

pore size is below 1-3 nm in diameter (Hertle et al., 1999). 

• The PFTs produced by S. aureus are by themselves a heterogeneous family 

consisting of those with α-helical structures and those rich in β-strands. The 

staphylococcal δ-haemolysin for example forms a single amphiphilic α-helix 

that associates in a typical octameric, barrel-like pore (Tappin et al., 1988). 

This small molecule (26 amino acid residues) can attack a wide range of cell 

types. Other staphylococcal species like S. epidermidis, S. simulans and S. 

warneri were found to carry related toxins. In the group of staphylococcal 

PFTs rich in β-strand sequences, toxins that form homo-oligomeric pores like 

α-toxin can be further distinguished from the hetero-oligomeric bicomponent 

leukotoxins. Staphylococcal α-toxin is a protein of 293 amino acids produced 

by almost all S. aureus strains that assembles to hepta- or hexameric pores 

with a diameter of about 1.4 nm (Song et al., 1996). Staphylococcal α-toxin 

was found to preferentially bind membranes containing choline-type 

phospholipids and cholesterol (Freer et al., 1968). Recently caveolin-1 has 

been discovered to be essential for toxin binding and membrane penetration 

(Vijayvargia et al., 2004; Pany and Krishnasastry, 2007). Staphylococcal 

bicomponent leukotoxins function as a combination of two distinct proteins, a 

class S (31 kDa) and a class F protein (34 kDa). Together they create bipartite 

oligomeric pores in the membranes of their target cells, which are monocytes, 

macrophages, and polymorphonuclear cells (Woodin, 1960; Prevost et al., 

1995). Panton-Valentine-leukocidin (PVL) is a prominent example of this toxin 

class (Woodin, 1961). PVL was found to trigger apoptosis in leukocytes even 

at low concentrations and therefore plays an important role in the virulence of 

S. aureus (Genestier et al., 2005; Boyle-Vavra and Daum, 2007). Additionally, 

it is implicated in the increased incidence of community acquired infections 

with methicillin-resistant S. aureus (Tang et al., 2007; Brown et al., 2011). The 

last group of PFTs are the cholesterol dependent cytolysins (CDCs). This 

group will be discussed in detail in the following section. 

 

1.2. Cholesterol dependent Cytolysins 

CDCs have a long history. The first member of this group was already described in 

1898 when Paul Ehrlich (Ehrlich, 1898) reported the presence of a haemolytic agent, 
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tetanolysin, in culture supernatants from Clostridium tetani. Following this first report 

similar toxins were discovered in other Clostridium species and bacteria from the 

genera Arcanobacterium, Bacillus, Brevibacillus, Gardnerella, Listeria, Paenibacillus 

and Streptococcus.  

Until this day 25 toxins of this class that are produced by 27 bacterial species are 

known (Table 1). CDCs are exclusively produced by Gram-positive bacteria and, with 

the exception of PLY, are secreted into the extracellular medium. The toxin 

molecules are both water soluble in the secreted form and able to bind and interact 

with the lipid bilayer of plasma membranes. CDCs non-specifically lyse eukaryotic 

cells at high concentrations. Their activity can be suppressed by sulfhydryl-group 

blocking agents and reversibly restored by thiols or other reducing agents 

(Bernheimer and Avigad, 1970; Morgan et al., 1996). The common features of all 

CDCs include their dependence on cholesterol in membranes, as they are otherwise 

unable to bind and perforate them. Additionally, the toxins can be inactivated by 

preincubation with low cholesterol concentrations. Another common feature of CDCs 

is their ability to form very large pores, with maximum diameters of up to 45 nm, 

constituted of up to 50 toxin monomers. CDCs have significant levels of amino-acid 

similarity and share the same mode of action. 

 
 
Tab 1.2.1. List of all known CDCs and their bacteri al sources. Adapted from Alouf and Popoff, 
2005 and completed with Rottini et al., 1990; Jefferies et al., 2007; Nishiwaki et al., 2007.  
 

Genus Species Toxin 

Arcanobacterium A. pyogenes Pyolysin (PLO) 

Bacillus B. anthracis Anthrolysin O (ALO) 

 B.cereus Cereolysin O (CLO) 

 B. sphaericus Sphaericolysin (SPH) 

 B. thuringiensis Thuringiolysin O (TLO) 

Brevibacillus B. laterosporus Laterosporolysin (LSL) 

Clostridium C. bifermentans Bifermentolysin (BFL) 

 C. botulinum Botulinolysin (BLY) 

 C. chauvoei Chauveolysin (CVL) 

 C. histolyticum Histolyticolysin O (HTL) 

 C. novyi A (oedimatiens) Novyilysin (NVL) 

 C. perfringens Perfringolysin O (PFO) 

 C. septicum Septicolysin O (SPL) 

 C. sordelli Sordellilysin (SDL) 

 C. tetani Tetanolysin (TLY) 
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Most of the information available about the structural features and the mechanisms 

by which the CDCs perforate membranes is from studies on PFO, the first toxin to be 

crystallized from this family (Rossjohn et al., 1997).  

 

 
Fig 1.2.1 Crystal structure of pneumolysin.  PDB: 2BK2, obtained by fitting the alpha carbon trace of 
perfringolysin O into a cryo-EM map; created with PyMOL software. D1: amino acids (aa) 25–76, 113–
203, 254–299 and 376–398; D2: aa 77–112 and 399–415; D3: aa 204–253 abd 300–375; D4: aa 416–
529. 

Genus  Species  Toxin  

Gardnerella G. vaginalis Vaginolysin (VLY) 

Listeria L. ivanovii Ivanolysin O (ILO) 

 L. monocytogenes Listeriolysin O (LLO) 

 L. seeligerii Seeligerolysin O (LSO) 

Paenibacillus P. alvei Alveolyin (ALV) 

Streptococcus S. intermedius Intermedilysin (ILY) 

 S. mitis Mitilysin (MLY) 

 S. pneumoniae Pneumolysin (PLY) 

 

S. pyogenes 

S. dysgalactiae subsp. Equisimilis 

S. canis 

Streptolysin O (SLO) 

 S. suis Suilysin (SLY) 

D4 

D3 

D1 

D2 

undecapeptide 

TMH1 

TMH2 
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The common structure of CDCs is an elongated, β-sheet-rich shape that can be 

separated into four domains (Figure 1.2.1). Domain 4 has been recognized to be 

responsible for membrane binding. Within this domain, all CDCs share a highly 

conserved motive (ECTGLAWEWWR), the so called undecapeptide (coloured purple 

in figure 1.2.1), which is necessary for recognition and binding of cholesterol in 

membranes (Soltani et al., 2007; Smyth and Duncan, 1978; Sekino-Suzuki et al., 

1996). Together with the other three downward-facing loops of domain 4 it is 

anchored in cholesterol-containing membranes. This allows for its movement along 

the membrane and subsequent association with other toxin monomers to form a 

prepore complex (Ramachandran et al., 2002; Heuck et al., 2003). After prepore 

formation an unknown signal triggers conformational changes in domains 2 and 3. 

Structural changes in transmembrane helices THM1 and 2 in domain 3 – from three 

α-helices (coloured orange in figure 1.2.1) to one long amphipathic β-hairpin – initiate 

the formation of a membrane-spanning β-barrel, which is required for perforation of 

the cell membrane. In detail, these two amphipathic β-hairpins are injected into the 

plasma membrane and form the walls of the toxin pore (Shepard et al., 1998; 

Shatursky et al., 1999; Hotze et al., 2001).  

 

 
Fig 1.2.2 Proposed pore formation mechanism of CDCs . The toxin domains are indicated by 
numbers 1-4. CDCs are secreted as water-soluble monomeric proteins that bind cholesterol-
containing membranes (I). Single molecules oligomerize into a ring-like structure called the prepore 
complex (II). An unknown trigger starts conformational changes that lead to the insertion of the TMHs 
into the membrane bilayer to form the aqueous pore. Adapted from Heuck et al., 2010. 
 
 
A prerequisite for the insertion of the hairpins into the membrane is the collapse of 

domain 2, which brings domain 3 much closer to the surface of the membrane. This 

step is necessary because the hairpin structures formed by THM1 and 2 are 
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otherwise too short to span the distance through a lipid bilayer (Czajkowsky et al., 

2004). Monoclonal antibodies that are able to neutralize the cytolytic activity of CDCs 

were found to inhibit only pore formation but not membrane binding and 

oligomerization into a ring-shaped prepore (Darji et al., 1996; Nato et al., 1991). This 

indicates a stepwise process in pore formation that can be stopped after membrane 

binding and oligomerization of toxin monomers (Figure 1.2.2).  

 

1.2.1 Listeriolysin O 

LLO is the most important virulence factor of Listeria monocytogenes, a foodborne 

facultative intracellular pathogen. The production of a soluble haemolysin by the 

pathogen was discovered in 1941 (Harvey and Faber, 1941) and since then the toxin 

has been expressed, purified and extensively studied (Geoffroy et al., 1989). 

L. monocytogenes establishes infections via an intracellular life cycle after it comes 

into contact with human hosts (Figure 1.2.2) (Tilney and Portnoy, 1989). The bacteria 

express virulence factors called internalins (InlA and InlB) that enable them to invade 

epithelial, endothelial and liver cells. Once they are taken up into the cytoplasm by 

internalin-triggered endocytosis they are able to escape the vacuole, proliferate and 

spread from cell to cell without being detected by the immune system. The control of 

Listeria infections is dependent on macrophages, which phagocytose the bacteria 

and kill them by fusion of phagosomes with lysosomes. Virulent strains are able to 

block the fusion event and escape into the cytoplasm, where they multiply and move 

like in other cell types. The escape from macrophage phagolysosomes and hence 

destruction is dependent on LLO (Gedde et al., 2000). Deletion mutants or strains 

lacking the toxin gene are avirulent, as they are digested in phagolysosomes and 

hence rapidly cleared from the host. There is solid evidence that the phagosomal 

escape is the main function of LLO in the life cycle of L. monocytogenes. It was 

discovered early that the toxin functions best under acidic conditions with the highest 

activity at pH 5.5 (Kingdon and Sword, 1970), a property that is unique among the 

family of CDCs. Only recently it was found that LLO is not activated by low pH values 

like it was hypothesized for a long time but is quickly disabled by unstructured 

aggregation under alkaline conditions (Bavdek et al., 2012). When exposed to an 

acidic milieu, as within phagolysosomes, the toxin molecules are protected from 

forming inactive aggregates by a controlled dimerization process. Furthermore, CDCs 

in vitro must be activated by reducing agents, a task that is fulfilled inside a 
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macrophage phagosome by a thiol reductase called γ-interferon-inducible lysosomal 

thiol reductase (GILT).  

 

 
Fig 1.2.2 The intracellular life cycle of Listeria monocytogenes and the required virulence 
factors.  Adapted from Alouf and Popoff, 2005. (InlA, B: Internalin A, B)   
 

 

The effects of purified LLO on cells have been extensively tested. It was found to 

trigger a number of effects at low concentrations which did not lyse the target cells. 

LLO triggers apoptosis in some lymphocytes (Carrero et al., 2004; Guzmán et al., 

1996). It also leads to an influx of extracellular Ca2+ in HEK293 cells (Repp et al., 

2002), this disturbance of the cellular homeostasis seems to promote bacterial 

invasion in Hep-2 epithelial cells (Dramsi and Cossart, 2003) and activate Ca2+-

dependent kinases like PKC (Wadsworth and Goldfine, 2002; Shaughnessy et al., 

2007; Richter et al., 2009). Similar Ca2+-signalling induces bacterial uptake into J774 

macrophages and the escape from phagosomes (Goldfine and Wadsworth, 2002). It 

was also reported that the toxin is able to release Ca2+ from intracellular stores of 

mouse bone marrow-derived mast cells (Gekara et al., 2008). Recently, LLO was 

found to increase the permeability of HT-29/B6 colon epithelial cell monolayers in a 

Ca2+-dependent manner (Richter et al., 2009). Furthermore, the toxin can disturb 

mitochondrial function and thereby the internal energy supply of cells, presumably to 

reduce the cellular resistance to infection (Stavru and Cossart, 2011). Other effects of 

LLO which promote bacterial survival inside cells were also discovered recently. Lam 

et al. (Lam et al., 2011) could show that NOX2 NADPH-oxidase localization to 

phagosomes is inhibited by the toxin, allowing the bacteria to survive in the 

phagosomes and ultimately escape into the cytoplasm. Ribet et al. (Ribet et al., 

2010) reported that LLO pore formation interferes with the posttranslational 

modification system of SUMOylation by triggering the fast degradation of an enzyme 
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essential for this protein modification. The overall reduction of SUMOylated proteins 

promoted bacterial invasion. The authors suggested the involvement of TGF-ß 

signalling, the exact mechanism behind this finding is still obscure.  

Based on the information available, it is clear that LLO disturbs the cellular 

homeostasis in multiple ways to promote bacterial invasion and intracellular survival. 

The possibilities of inhibiting the deleterious effects of the toxin on single cells and 

whole tissue are scarce; the only recent description of a way to ameliorate the 

complex LLO-induced damages is about the so called TIP peptide. This is a circular 

17 amino acid peptide that mimics the lectin-like (TIP) domain of tumor necrosis 

factor (Lucas et al., 1994). In an acute lung injury model the peptide was able to 

restore the fluid balance and reduce the vascular permeability (Elia et al., 2003; 

Vadász et al., 2008; Hamacher et al., 2010; Bloc et al., 2002). It could also be shown 

to limit LLO-induced hyperpermeability in endothelial cells by inhibiting MLC 

phosphorylation (Xiong et al., 2010; Lucas et al., 2009; Yang et al., 2010). 

 

1.2.2 Pneumolysin 

PLY is found in all clinically relevant isolates of S. pneumoniae and is classified as 

one of its most important virulence factors (Paton et al., 1983; Kanclerski and Möllby, 

1987). Since its discovery as a haemolytic factor (Libman, 1905), several 

characteristics typical for the CDC family, like cholesterol dependence, oxygen lability 

and increased activity under reducing conditions (Cole, 1914; Cohen et al., 1937, 

1942; Avery and Neill, 1924), have been identified. After being cloned, sequenced 

and purified (Mitchell et al., 1989; Walker et al., 1987; Paton et al., 1986) it was 

further tested in order to understand its function in pneumococcal pathogenesis. S. 

pneumoniae carries an array of virulence factors enabling it to cause severe and 

persistent diseases. A major complication of pneumococcal pneumonia is the loss of 

epithelial and endothelial barrier function. When the pathogen succeeds in 

undermining the integrity of the lung epithelium it can enter the blood stream, causing 

sepsis. Another result of S. pneumoniae overcoming host barriers is meningitis, 

which requires the pathogen to cross the blood-brain barrier that is constituted by 

endothelial cells (Hippenstiel and Suttorp, 2003; Nassif et al., 2002). While there are 

reports of S. pneumoniae entering cells, this phenomenon seems to be restricted to a 

very low percentage of infecting bacterial cells in the host (Ring et al., 1998). 
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Therefore, the pathogen seems to be able to damage epi- and endothelial barriers in 

a way that allows the bacteria to transmigrate between cells.  

In the light of PLY being indispensable for pneumococcal pathogenicity, it seems 

curious that PLY, unlike all the other members of the CDC family, is stored in the 

cytoplasm of streptococci instead of being actively released. This is due to the lack of 

an N-terminal secretion signal sequence (Jedrzejas, 2001; Johnson and Aultman, 

1977). Host cells are exposed to PLY after lysis of the bacteria by a virulence factor 

called autolysin. The activation of autolysin can be triggered by the immune system, 

antibiotics or other bacterial virulence factors (Jedrzejas, 2001; Balachandran et al., 

2001; Anderson et al., 2007; Charpentier et al., 2000). Moreover, it is active when the 

bacteria reach a plateau in their growth phase in vitro (Sanchez-Puelles et al., 1986). 

This seemingly suicidal behaviour favours bacterial survival in the host because PLY 

has many immunomodulatory effects. It was found to inhibit migration, respiratory 

burst, degranulation and other bactericidal activities in polymorphonuclear leukocytes 

and monocytes (Ferrante et al., 1984; Nandoskar et al., 1986; Paton and Ferrante, 

1983). In addition, it is able to modify epigenetic regulation (Hamon et al., 2007) of 

host cells and influences the expression of several genes of cytokines, chemokines, 

caspases and adhesion molecules (Rogers et al., 2003; Thornton and McDaniel, 

2005).  

The structural basis for the pore formation by PLY was resolved by Tilley et al. (2005) 

with electron microscopy. The group was able to picture prepore and pore 

complexes, thereby confirming that oligomerization precedes the conformational 

changes in domain 2 and the refolding of the two α-helices in domain 3 into the 

membrane-perforating ß-hairpins. It is also shown that the collapse of domain 2 is 

necessary for pore formation, as domain 3 is previously too high above the 

membrane for the hairpins to insert.  

Like all CDCs, pneumolysin acts in a concentration-dependent manner on host cells. 

While higher amounts instantly lyse and kill cells in an unspecific manner, sublytic 

concentrations can interfere with cell signalling events by inducing an influx of 

extracellular Ca2+ and disturbances of osmotic homeostasis through the toxin pores. 

This activates host kinases like rho and rac GTPases rac-1 and rho-associated 

kinase (ROCK) (Iliev et al., 2007), mitogen-activated protein kinases (MAPK) like p38 

(Ratner et al., 2006) and phosphoinositide 3-kinase (PI3K) γ (Maus et al., 2007). 

When purified PLY is introduced into rat lungs it causes reactions very similar to the 
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symptoms of pneumonia, featuring neutrophilic alveolitis and lung injury (Feldman et 

al., 1991). It also alters alveolar permeability and affects epithelial tight junction 

integrity (Rubins et al., 1993; Rayner et al., 1995). The toxin is highly cytotoxic on 

alveolar epithelial cells and causes cytoplasmic blebbing, mitochondrial swelling and 

cell death (Steinfort et al., 1989). Its haemolytic activity also impairs ciliary function 

(Feldman et al., 2002) and damages endothelial cells, which contributes to 

pulmonary haemorrhage and oedema (Rubins et al., 1992; Lucas et al., 2012). In 

mouse experiments PLY-deficient S. pneumoniae mutants are cleared faster from the 

respiratory tract and have a reduced lethality upon intranasal application compared to 

toxin-producing strains (Kadioglu et al., 2002; Berry et al., 1989). Lung injury induced 

by PLY was suggested to result from direct pneumotoxic effects on the alveolar-

capillary barrier, rather than from resident or recruited phagocytic cells (Maus et al., 

2004). All these findings indicate a major role of PLY in the modulation of 

inflammatory reactions during infection with S. pneumoniae. However, the exact 

mechanism by which the toxin promotes pneumococcal virulence is not fully 

understood. 

 

1.2.3 Comparison of listeriolysin O and pneumolysin  

The comparison of the DNA and amino acid sequences of LLO and PLY with the 

EMBOSS Matcher tool (http://www.ebi.ac.uk/Tools/psa/emboss_matcher/) results in 

56% shared identity on the genetic level and 43% shared identity and 67% similarity 

between the two proteins. For this purpose the signal peptide and PEST sequence of 

LLO were disregarded, as PLY is missing both (see figure 1.2.3).  

 

 

        
 
Fig. 1.2.3 Motifs found in the amino acid sequences  of LLO and PLY. LLO has two N-terminal 
motifs, the signal peptide (aa 1-24, red) and the PEST sequence (aa 32-50, blue). The undecapeptide 
(aa 482-493, green) is found on the C-terminal end of the protein. PLY contains only the C-terminally 
located undecapeptide (aa 426-437, green).   
 
 
While the sequences are quite similar there are differences in the way the toxins are 

deployed during infection. The signal peptide of LLO mediates its active secretion 

into the extracellular space while PLY, for its lack of a signal peptide, is mainly 

released by lysed bacteria. As described before, LLO is highly adapted to the 

PLY 471 aa 

LLO 529 aa 
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phagolysosomal environment; the increased stability under acidic conditions and the 

PEST sequence are unique traits among the members of the CDC family. Besides 

these differences the activation through reducing agents, cholesterol dependence 

and mechanism of pore formation are shared by the both toxins. 

 

1.3 Objective 

The pore forming protein toxins LLO and PLY of Listeria monocytogenes and 

Streptococcus pneumoniae are indispensable for establishing infections in the 

human host. This study focused on the toxins known ability to disturb the cellular 

Ca2+ homeostasis at sublytic concentrations (Stringaris et al., 2002; Repp et al., 

2002) and the subsequent effects on epithelial cells. 

In the case of L. monocytogenes a successful invasion of the host starts with 

crossing of the epithelial barrier in the small intestine. The pathway by which Listeria 

reaches its cellular receptor, E-Cadherin, to induce its uptake into epithelial cells is 

not entirely understood. In healthy tissue E-Cadherin is protected by tight junctions. 

Current models support the idea that the bacteria overcome this obstacle by 

attacking at sites of cell extrusions (Pentecost et al., 2006). The first part of this work 

dealt with the ability of purified LLO to induce disturbances in cellular Ca2+ 

homeostasis and hence its ability to interfere with size and volume of cells in closed 

epithelial monolayers to make E-Cadherin available. Furthermore, LLO mutants with 

selected amino acid substitutions were tested on their haemolytic activity and their 

ability to induce an influx of extracellular Ca2+ and thereby trigger a loss in cell 

volume. 

S. pneumoniae induced lung damage and bacterial invasion of the blood stream and 

the central nervous system are detrimental to patients. The second part of this work 

was aimed to elucidate the effects of PLY on alveolar epithelial cells. It was examined 

whether purified PLY alone is able to impair alveolar epithelial integrity by increasing 

intracellular Ca2+ concentrations and the connected loss of cell volume. Furthermore, 

it was tested whether PLY could trigger the release of Ca2+ ions from intracellular 

stores and whether this is dependent on cellular ion channels. The way cells reacted 

to the toxin was compared to cells suffering hypertonic stress and it was tried to block 

the associated loss in cell volume and barrier integrity with inhibitors of Ca2+ channels 

and kinases.   
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2 Materials and Methods 

Glass pipettes and flasks, microcentrifuge tubes (1.5 ml) und pipette tips were 

autoclaved (121°C, 20 min) or heat sterilized at 18 0°C for 4h. Media and solutions 

were prepared using H2O from water purification systems (U>18 mΩ; mQH2O). 

Sterile media and solutions for cell culture applications were either autoclaved or 

sterile filtered (filter cut-off 0.22 µm). All concentrations for media and solutions are 

given as final concentrations. 

 

2.1 Equipment and consumables 
Table 2.1 List of the equipment and consumables used. 

Item Manufacturer 
 

General use  
Analytical balance Mettler, Kern 
Autoclave Getinge 
Centrifuges Eppendorf Centrifuge 5415D 
 Heraeus Biofuge 15 
 Heraeus Megafuge 1.0 R 
 Merck Gelaxy Mini 
Combitips 5 ml Eppendorf 
Cryovials Sarstedt 
Disposable scalpels Feather 
Disposable syringes Braun 
Electric pipette aid Integra 
Examination gloves Ansell 
Freezer (-20°C) Bosch, Liebherr 
Freezer (-80°C) Heraeus 
Fridge (4°C) Bosch, Elektrolux, Liebherr 
Glassware Schott 
Incubator  Heraeus 
Light microscope Wilovert 
Magnetic stirrer IKA 
Microcentrifuge tubes 1.5 ml Roth 
Microliter pipettes Gilson, Biohit, Eppendorf 
Microwave AEG 
Multipipette Biohit, Eppendorf 
Paper towels (lintless) Kimberly-Clark 
Parafilm Pechiney Plastic Packaging 
pH-Meter Knick (Electrode Nordantec) 
Pipette tips MBT Brand 
Pipette tips (with filter) Nerbe 
Plastic tubes 50 ml, 15 ml Greiner Bio-One 
Sterile filter (0.22 µm) Millex 
Sterile work bench Heraeus, Nuaire 
Thermomixer Eppendorf 
Vortex mixer VWR, IKA, Scientific Industries 
Water purification system TKA, Milipore 
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Item Manufacturer 
 
Bacterial culture  
CO2-incubator  Labotect 
96-well heated shaking photometer Tecan 
8-channel pipette Biozym 
Shaking incubator Infors  
96-well plates flat bottom Greiner 
Inoculating loops Nunc 
Photometer Thermo Fisher Scientific, GeneQuant 
Cuvettes Ratiolab 
Petri dishes (13.5 cm) Greiner 
 
Calcium measurements  
CCD camera TILL Photonics 
Software TILL Photonics 
Dichroic filter Olympus 
Emission filters Olympus 
Inverse light microscope Olympus 
Monochromator TILL Photonics 
Xenon arc lamp TILL Photonics 
Cover slips Menzel 

Cover slip incubation chamber 
self-made by the Institute of Physiology, JLU 
Gießen 

 
Cell culture  
Water bath Grant 
CO2-incubator  Thermo Forma 
Freezing chamber for eukaryotic cells Nalgene 
Inverted light microscope Hund 
Tissue culture dishes Becton Dickinson 
Multiwell tissue culture plates Becton Dickinson 
Disposable pipettes Greiner Bio-One 
 
Immunofluorescence  
Confocal microscope Leica 
Cover slips R. Langenbrinck 
Glass slides R. Langenbrinck 
 

 

2.2 Chemicals, inhibitors and media 

 
Table 2.2 List of the chemicals, inhibitors and media used. 

Item Manufacturer 
 
General use  

4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES) 

Serva 

Dimethyl sulfoxide (DMSO) Merck 
Dithiothreitol (DTT) Serva 
Ethanol  Sigma-Aldrich 
Glucose  Merck 
Hanks´ Salt Solution Biochrom AG 
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Item Manufacturer 
Hydrochloric acid Merck 
LLO Product of the Institute 
Magnesium chloride Merck 
Magnesium sulfate Merck 
Methanol  Fluka 
Monopotassium phosphate Merck 
Phosphate buffered saline (PBS) Biochrom AG 
PLY Product of the Institute 
Potassium chloride Merck 
RNase-free water Thermo Scientific 
Sodium chloride Roth 
Sodium hydroxide Roth 
Sorbitol Merck 
  
Bacterial culture  
Brain heart infusion (BHI) Difco 
Gentamicin Invitrogen 
Glycerol  Merck 
  
Calcium measurements  
Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich 
(1-(2-(5-Carboxyoxazol-2-yl)-     
6-aminobenzofuran-5-oxy)-2-(-2´-amino-  
5´methylphenoxy)-ethan-N,N,N´,N´-tetraacetate 
(Fura-2-AM) 

Invitrogen 

Ionomycin  Sigma-Aldrich 
Ryanodine Enzo Life Sciences 
Thapsigargin  Sigma-Aldrich 
Xestospongin C Enzo Life Sciences 
  
Cell culture  
Fetal bovine serum (FBS) PAA Laboratories 
MEM medium Invitrogen 
Non essential amino acids (NEA) Biochrom AG 
RPMI 1640 medium  Invitrogen 
Isopropanol Fluka 
Trypsin PAA Laboratories 
  
Immunofluorescence  
Bovine serum albumin (BSA) Sigma-Aldrich 
Formaldehyde Merck 
ProLong Gold Antifade with 4',6-diamidino-2-
phenylindole (DAPI) 

Invitrogen 

Triton X-100 Serva 
 
 

2.3 Handling of bacteria  

The bacterial strain used for this work was Listeria monocytogenes EGDe serotype 

1/2a (Glaser et al., 2001). Bacteria were handled exclusively under a sterile work 

bench. Sterile buffers, media, solutions, glass ware and reaction vessels were used 

while working with bacteria. 
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2.3.1 Media and solutions for bacteria 

BHI medium:     3.7% (w/v) BHI in sterile mQH2O 
BHI solution for agar plates:  BHI medium 
      1.5% (w/v) Agar  
 
10x PBS:     27 mM KCl 
      1.4 M NaCl 
      81 mM Na2HPO4 
      15 mM KH2PO4 
      pH 7.4 (adjusted with HCl) 
 

2.3.2 Growing of bacterial cultures 

Initial cultures were generated by inoculating 10 ml BHI medium with one bacterial 

colony. The cultures were then incubated overnight at 37°C with a shaking speed of 

180 rpm. Bacteria were prepared for long-term storage by mixing 750 µl of an 

overnight culture with 750 µl of 60% (v/v) glycerol in BHI in a cryovial. They could be 

stored for several years at -80°C un this way. For short term storage, bacteria from 

an overnight culture or a cryovial were plated out on BHI agar plates that were then 

incubated overnight at 37°C. The bacteria grown on agar plates could be stored for 

up to eight weeks at 4°C.  

 

2.3.3 Preparation of bacterial cultures for infecti on experiments 

The overnight grown bacterial culture was diluted 1:50 in fresh BHI medium. This 

new culture was incubated for approximately 2 h at 37°C and shaking at 180 rpm 

until it reached the middle of its exponential growth phase (=OD value between 0.4 

and 0.8). For infection experiments, it was necessary to reproducibly achieve a 

multiplicity of infection (MOI = ratio of bacteria to eukaryotic cells) of 10, meaning that 

for each cell there should be ten bacteria to infect it. It was possible to determine the 

amount of bacteria (or colony forming units, CFU) in each ml of liquid culture with a 

previously established growth curve for L. monocytogenes (growth curve by Juri 

Schlarenko). Thus, the OD value of a culture in mid-exponential growth could be 

converted into the number of CFU/ml. When the amount of cells to be infected was 

known the calculated volume of liquid culture was pipetted into a microcentrifuge tube 

(1.5 ml) and spun down [13000 rpm, 1 min, room temperature (RT), Eppendorf 

5415D centrifuge]. The bacterial pellet was then taken up in 1x PBS, resuspended 

and spun down again (13000 rpm, 1 min, RT). The bacteria were finally resuspended 

in FBS-free MEM medium, vortexed and added to the cells. 



2 MATERIALS AND METHODS 

 22 

2.3.4 Establishing bacterial growth curves 

Growth curves of L. monocytogenes in different media and with different 

concentrations of LaCl3 were established by using a plate reader capable of 

incubating and shaking 96-well flat bottom plates for several hours. 180 µl of medium 

and 10 µl of sterile filtered LaCl3 dilutions were pipetted onto the plate before 10 µl of 

an overnight bacterial culture were added to yield a total volume of 200 µl in each 

well. Sterile BHI medium was added to control wells instead of overnight culture for 

background correction. All LaCl3 concentrations used were measured on the same 

plate without bacteria to correct for the precipitate formation in medium containing 

higher amounts of the inhibitor. The plates were then transferred into the plate reader 

(Tecan) and the OD at 600 nm was measured every 20 min for 10h under constant 

shaking (200 rpm) and temperature control (37°C). A ll samples were measured as 

triplicates on each plate and each experiment was repeated at least three times 

independently. The results of all replicates were used to calculate the mean values 

and standard errors.  

 

2.4 Handling of eukaryotic cells  

The cell lines used in this work were H441, a human lung adenocarcinoma epithelial 

cell line (ATCC, order nr. HTB-174) and Caco-2, a human colorectal adenocarcinoma 

epithelial cell line (ATCC, order nr. HTB-37). Eukaryotic cells were handled routinely 

in a clean room under a sterile work bench. Sterile buffers, media, solutions, glass 

ware, reaction vessels and consumables were used while working with eukaryotic 

cells. 

 

2.4.1 Media and solutions for eukaryotic cells 

MEM:   Minimal essential medium (Eagle) with 
Earle's Salts, 6.0 g/l D-glucose, L-glutamine 

 
RPMI 1640:  RPMI 1640 with 4.5 g/l D-glucoseand L-

glutamine  
 
FBS:  100% foetal calf serum; inactivated at 56°C 

for 30 min  
 
NEA:      100x non essential amino acids 
 
Hanks´ Salt Solution:  1x Hanks´ Salt Solution; w/o Ca2+, Mg2+; w/o 

Phenol red  
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PBS:      1x PBS; w/o Ca2+, Mg2+ 
 
Trypsin/EDTA:    1x trypsin/EDTA; 0.05% / 0.02% in D-PBS 
 
Freezing medium:    90% FBS, 10% DMSO 
 

HEPES medium:    1.2 mM KH2PO4 
2.6 mM KCl 
2.25 mM MgSO4 
1.2 mM NaCl 

      25 mM HEPES 
      pH 7.4 at 37°C (adjusted with NaOH) 
      2.5 mM Glucose (sterile filtered) 
      1.3 mM CaCl2 (sterile filtered) 
 
Hyperosmotic RPMI 1640 medium: 70% RPMI 1640 

30% 1 M Sorbitol in mQH2O, sterile filtered 
 

2.4.2 Cultivation of eukaryotic cells 

Cells were generally kept in 10cm dishes filled with cell culture medium at 37°C in an 

atmosphere of 5% CO2. The media used were RPMI 1640 for H441 cells and MEM 

for Caco-2 cells. If not stated differently, FBS was added to both media at a 

concentration of 10% (v/v). MEM medium was also supplied with 1% NEA (v/v).  

Cells were split every two to three days when reaching confluence. For splitting the 

medium was removed completely and the cells were washed twice with 4 ml of 1x 

Hanks´ Salt Solution. To remove the adherent cells from the bottom of the dishes 

they were incubated with 1.5 ml trypsin at 37°C in a CO2-incubator until they were 

detached from the culture dish. The plates were also tapped gently to completely 

detach all cells. The enzymatic reaction of trypsin was stopped by adding 1.5 ml of 

medium containing 10% FBS. Detached cells were resuspended and distributed in 

the required dilutions onto new cell culture dishes containing fresh medium. The total 

volume of medium in each 10 cm dish was 10 ml. 

For storage detached cells were carried over into 15 ml tubes and centrifuged (1200 

rpm, 2 min, RT, Heraeus Megafuge 1.0 R centrifuge). The cell pellets were 

resuspended in freezing medium and transferred into cryovials. The cryovials were 

then placed in an isopropanol-filled freezing chamber that assured a cooling rate of 

1°C/min. This chamber was then placed in a -80°C fr eezer overnight. Afterwards the 

cryovials were either kept at -80°C or in liquid ni trogen for long-term storage.   

To reuse frozen cells from cryovials, they were thawed at 37°C, pipetted on a cell 

culture dish and mixed gently with 9 ml of fresh medium. To completely remove 
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DMSO, which is toxic to the cells, the medium was exchanged again after the cells 

had attached to the bottom of the dish.  

 

2.4.3 Preparing eukaryotic cells for calcium measur ements and 

immunofluorescence.  

H441 and Caco-2 cells were seeded three to five days before experiments. Adherent 

cells in 10 cm dishes were detached using trypsin as described in chapter 2.4.2. 

Resuspended cells were mixed with fresh medium and distributed in 6-well tissue 

culture plates for calcium measurements and 24-well tissue culture plates for 

immunofluorescence experiments. The wells of the plates had been previously 

equipped with one sterile cover slip in each well. The total volume of medium per well 

was 2 ml in 6-well plates and 0.5 ml in 24-well plates. The plates were then incubated 

at 37°C in an atmosphere of 5% CO 2 until the cells had grown to 50-80% confluence. 

On the day of the experiment, the old medium was completely removed and fresh 

medium was added to the cells, which were then kept at 37°C and 5% CO 2 for 1 h. 

After this time the medium was completely removed again and the cells were washed 

five times with prewarmed (37°C) 1x Hanks’ Salt Sol ution. The cells were then kept in 

fresh medium without FBS (in case of MEM also without NEA) for 2 h at 37°C and 

5% CO2. After this time they were ready to be used for calcium measurements and 

immunofluorescence. 

 

2.4.4 Preparing eukaryotic cells for infection assa ys 

Caco-2 cells were seeded two to three days before experiments. Adherent cells in 

10cm dishes were detached as described in chapter 2.4.2. Resuspended cells were 

mixed with fresh medium and equally distributed in 24-well tissue culture plates to 

yield a total volume of 0.5 ml per well. The plates were then incubated at 37°C in an 

atmosphere of 5% CO2 until the cells had grown to full confluence. Care was taken to 

avoid overgrowing, as Caco-2 cells tend to grow in multiple layers when cultured too 

long or seeded too dense. On the day of the experiment, the old medium was 

completely removed and fresh medium was added to the cells, which were then kept 

at 37°C and 5% CO 2 for 1 h. The medium was completely removed again and the 

cells were washed carefully three times with prewarmed (37°C) 1x Hanks’ Salt 

Solution. The cells were then kept in fresh medium without FBS for 2 h at 37°C and 

5% CO2. After this time they were ready to be used for infection assays.  
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2.5 Measuring the intracellular calcium concentration and total area 

covered by cells 

A video imaging system for fluorescence microscopy was used to measure the 

changes in intracellular calcium concentrations. The experimental setup allowed the 

simultaneous recording of the total surface area covered by cells. All calcium 

measurements were performed in the Calcium Lab (Institute of Physiology, JLU 

Gießen), where the required equipment was kindly provided for this work.  

All solutions, including toxins, inhibitors and other reagents, added during calcium 

measurements were diluted in HEPES medium to a final volume of 100 µl per 

administration and were carefully pipetted into the medium-filled chamber. This was 

necessary to assure adequate mixing while avoiding any movement of the coverslip 

during measurements.   

 

2.5.1 Video imaging system for fluorescence microsc opy  

The basis for measuring the intracellular calcium concentration and total cell surface 

area was fluorescence microscopy. The light was generated by a xenon arc lamp and 

the required wavelengths were selected by a monochromator. From there the light 

was directed through a dichroic mirror and an object lens onto cells that were 

previously loaded with a fluorescent dye. The fluorescent light emitted by the cells 

was directed through the same object lens and dichroic mirror and an emission filter 

to a digital camera that was connected to a computer. The data generated were 

interpreted using the TILL Photonics-Software. The fluorescence dye used was Fura-

2-AM, an acetoxymethyl (AM) ester that is able to permeate the cell membrane and 

accumulate in the cytoplasm. Here, the AM groups are cleaved off by endogenous 

esterases and Fura-2, being a charged molecule, can not leave through the 

membrane again. Fura-2 is excited at wavelengths of 340 and 380 nm, depending on 

the presence of free Ca2+ ions. Calcium-saturated Fura-2 is excited at 340 nm 

calcium-free Fura-2 at 380 nm. Its emission maximum lies at 510 nm. Changes in 

intracellular calcium concentrations were recorded by the software as changes in the 

ratio of 340/380 nm. The data collected from these experiments were either shown as 

percentage of the maximum possible signal induced by giving 5 µM Ionomycin or as 

fold change in arbitrary fluorescence of the 340/380 nm ratio.  
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2.5.2 Measuring intracellular calcium concentration s  

Cells were prepared for calcium measurements as described in chapter 2.4.3. For the 

experiments, they were loaded with 5 µM Fura-2 AM, incubated for 40 min at 37°C 

and 5% CO2 and then placed in microscopy chambers with 1 ml of HEPES medium. 

When Ca2+-free conditions were required the HEPES medium used was prepared 

without CaCl2. Before treating cells as described they were monitored for 10 min in 

order to get a baseline for the 340/380 nm ratio.   

The toxins used were prediluted to concentrations between 10 and 100 ng/ml. It is 

known that proteins in highly diluted solutions bind to the wall of microcentrifuge 

tubes and are not available at the desired concentrations. Therefore, bovine serum 

albumin was added at a concentration of 0.1% to the prediluted solutions to avoid 

this loss of toxin. When the toxins were activated in reducing conditions they were 

preincubated with 5 mM DTT for 10 min at RT. Activated toxins were stored at -20°C 

and could be used for several weeks.  

 

2.5.3 Measuring the total area covered by cells 

The fluorescence microscopy equipment used recorded images in grey scale that 

could be used for the evaluation of the total surface area covered by cells. For doing 

so, a small space within the recorded images that was not covered by cells was set 

as a background marker. Once the background was defined the software could mark 

each pixel of the images as “0” (not covered by cells) or “1” (cells). The amount of 

pixels standing for cell-covered areas in each acquired image was used to measure 

the change in the total surface covered by cells. This was expressed as percentage 

of “1”-pixels in cells at rest before any treatment was started. 

 

2.6 Infection assay 

Cells were prepared for infection assays as described in chapter 2.4.4. LaCl3 was 

added at indicated concentrations 10 min before the bacteria and was in the medium 

throughout the infection. The bacteria used were prepared as described in chapter 

2.3.3 and were added to the cells. After careful swivelling the cell culture plates were 

incubated for 1 h at 37°C and 5% CO 2. The supernatant was removed and pipetted 

into microcentrifuge tubes. The cells were then carefully washed three times with 1x 

Hanks´ Salt Solution and incubated for 30 min with FBS-free medium containing 50 

µg/ml Gentamicin to inactivate the remaining extracellular bacteria. Gentamicin is not 
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cell permeable at the concentration used and therefore did not act on intracellular 

bacteria. The cells were then washed carefully three times with 1x Hanks´ Salt 

Solution to completely remove Gentamicin and lysed in 0.5 ml of cold (4°C) 0.2% 

(v/v) Triton X-100-containing H2O for 20 min at RT. The bacteria in the cell lysates 

were diluted in 1x PBS and plated out on BHI agar plates. The plates were incubated 

overnight at 37°C and the colonies were counted on the next day.  

 

2.7 Bacterial survival assay 

The bacteria were prepared as described in chapter 2.3.3. The bacterial numbers 

used were calculated from the mean amount of CFUs used for the infection assays. 

Bacteria were pipetted into microcentrifuge tubes containing 0.5 ml HEPES medium 

with the indicated concentrations of LaCl3. After being shortly vortexed the 

microcentrifuge tubes were incubated for 1 h at 37°C and 5% CO2. The bacteria were 

then diluted in 1x PBS and plated out on BHI agar plates. The plates were incubated 

overnight at 37°C and the colonies were counted on the next day. 

 

2.8 Immunofluorescence 

This method employs antibodies coupled with fluorescent markers to visualize 

proteins within cells. E-Cadherin was visualized directly using an Alexa®488-coupled 

anti-E-Cadherin antibody (Cell Signalling), while NFAT5 was detected using an anti-

NFAT5 primary antibody (from rabbit, Thermo Scientific) in combination with an anti-

rabbit Alexa®555-coupled secondary antibody (Cell Signalling).  

Cells were prepared as described in chapter 2.4.3. PLY was activated before being 

added to the cells as described in chapter 2.5.2. The cells were treated as indicated 

in the specific experiments. When comparing the effects of PLY to those of 

hyperosmotic stress, the medium was changed again right before the start of the 

experiment. Control cells and cells to be treated with the toxin received fresh medium 

without FBS while the medium for the hyperosmotic group was also FBS-free but 

additionally contained Sorbitol to increase the osmolality to 500 mOsm/kg H2O. The 

toxin was administered immediately after the medium change.  

The cells were then incubated for the indicated times. After the incubation period the 

medium was completely removed and the cells were fixed with 500 µl of 3.7% 

formaldehyde (v/v) in 1x PBS for 10 min at RT. Fixed cells could be stored in 1x PBS 

overnight at 4°C. The coverslips were carefully was hed three times in 1x PBS and 
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permeabilized with either 0.2% Triton X-100 (v/v) in 1x PBS at RT or with ice-cold 

100% methanol at -20°C, both for 5 min, depending o n the recommendation of the 

antibody manufacturer. The cover slips were washed carefully three times in 1x PBS 

and incubated in 500 µl of blocking buffer [1% BSA and 0.3% Triton X-100 (v/v) in 1X 

PBS] for 1 h at RT. In the meantime, an incubation chamber was lined with a wet 

sheet of 3MM-Whatman paper covered with a layer of Parafilm. Antibodies were 

diluted in blocking buffer as described by the manufacturer (anti-E-Cadherin 1:1000 

and anti-NFAT5 1:2000). Then 5 µl of the diluted antibodies were pipetted on the 

Parafilm sheet and the blocked cover slips were placed on the droplets with the cells 

facing down. The incubation chamber was closed with a lid and incubated protected 

from light at 4°C overnight. 2 h of incubation with  a secondary antibody were 

necessary for indirect labelling. To remove the primary antibody, the cover slips were 

washed three times in 1x PBS. The incubation with anti-rabbit secondary antibody 

(dilution 1:1000) was carried out as described for primary antibodies, only this time at 

37°C. During the incubation period glass slides wer e labelled and prepared with 3 µl 

of ProLong Gold Antifade with DAPI for each cover slip. DAPI (4',6-diamidino-2-

phenylindole) is a fluorescent stain that binds strongly to A-T rich regions in DNA and 

is therefore used to label nuclei in fluorescence microscopy. Finally the cover slips 

were washed three times in 1x PBS, carefully dried of excess liquid and placed on 

the ProLong droplets with the cells facing down. The glass slides were kept in the 

dark at 4°C for 24 h to allow the antifade reagent to dry and were then viewed under 

the confocal microscope. 

 

2.9 Purification of Listeriolysin O and Pneumolysin 

Both toxins were purified and measured for their haemolytic activity by Martin Hudel 

in the Institute of Medical Microbiology, Justus-Liebig-University Gießen. The 

haemolytic activity was determined with a haemolytic titer assay under reducing 

conditions, using a serial dilution of the toxin in question. One haemolytic unit (HU) is 

defined as the amount of toxin needed to lyse 50 % of red blood cells in a 0.1 % 

solution of sheep erythrocytes.  

 

2.9.1 Listeriolysin O 

Listeria innocua strain NCTC 11288 was transformed with a pERL3 plasmid construct 

containing the structural genes hly, encoding LLO, and prfA, encoding the regulator 
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protein (Leimeister-Wächter and Chakraborty, 1989). The transformed bacteria were 

grown in minimal medium for several hours and the supernatant was subsequently 

concentrated using a filtration apparatus with a cut-off point of 10 kDa. Further 

purification was achieved by batch absorption of contaminants with Q-Sepharose and 

sterile filtration. The final step was the loading of the pre-filtered supernatant on a 

Mono-S HR5/5 column and the elution of retained material with a linear gradient of 

NaCl. The eluted fractions were tested for their haemolytic activity and finally dialysed 

against PBS (Darji et al., 1995). 

The used fraction of purified LLO had 1.0 x 107 HU/mg. In experiments with Caco-2 

cells loaded with Fura-2 it was determined that at a concentration of 250ng/ml of 

LLO+DTT (= 2.5 x 106 HU) had the same effect as the treatment with 5 µM 

Ionomycin, indicating immediate lysis of the cells. 

 

2.9.2 Pneumolysin 

A pIMK2 vector construct containing the gene encoding for pneumolysin, a His-tag 

and the signal peptide sequence from the hly gene was generated by Dr. Silke Silva 

in an unpublished recombinant strain. This vector was integrated into the 

chromosome of Listeria innocua strain NCTC 11288. After several hours of growth in 

minimal medium the supernatant was separated from the bacteria by centrifugation. It 

was concentrated using a filtration apparatus with a cut-off point of 10 kDa and 

subsequently batch loaded on a His-Trap column. After washing the retained material 

was eluted with imidazole, which was dialysed out against PBS. Finally the eluted 

fractions were tested for their haemolytic activity. 

The used fraction of purified PLY had 3.73 x 106 HU/mg. The lytic concentration of 

PLY on H441 cells was not determined as the toxin was only used in sublytic 

amounts in this work. It can be estimated by assuming that the same amount of HU 

of PLY should have similarly drastic effects on H441 cells as 2.5 x 106 HU of 

LLO+DTT had on Caco-2 cells. That would amount to a lytic concentration of 670ng 

of PLY+DTT. This must be considered as a rough approximation as the tolerance to 

LLO and PLY might differ between cell lines. 
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2.10 Crystal structure of LLO and target selection for mutations 

The highly purified and concentrated LLO produced in the Institute of Medical 

Microbiology was used by Stefan Köster and Özkan Yildiz from the Department of 

Structural Biology of the Max Planck Institute for Biophysics to resolve the crystal 

structure of the toxin (Köster, 2010). The data generated were jointly analyzed in both 

institutes. The alignment of the single LLO molecules in the crystals was similar to 

toxin oligomerization on the surface of cholesterol containing membranes. This 

circumstance allowed a novel insight into the assembly of toxin pores. In the crystal 

structures, the neighbouring LLO molecules had several contact points in domain 1. 

Especially the first 50 amino acids were in close proximity to the next toxin monomer. 

This area contains the PEST sequence that was found to be crucial for L. 

monocytogenes virulence (Decatur and Portnoy, 2000; Lety et al., 2001). These 

results led to the generation of several novel LLO mutants that were predicted to 

disrupt interacting interfaces, and hence LLO activity, in the 3D model.  

The crystal structure showed interactions between amino acids 39-43 with the 

residues S176, N179, N180 and N183 of the neighbouring toxin molecules. 

Therefore, mutants were designed carrying residues with opposite charges or much 

larger side chains to induce sterical hindrances at these allegedly important sites for 

oligomerization. In other mutants a permanent phosphorylation was simulated by 

exchanging serine for aspartic acid and glutamic acid. Furthermore, one polar and 

one acidic side chain were swapped for a large hydrophobic one to find out whether 

they have a specific function. As other members of the CDC family lack the N-

terminal PEST motive it was tested for its importance in LLO by deleting the first 51 

amino acids in one mutant. Mutants having a combination of changes within the N-

terminal region and substitutions in amino acids 175 and 176 were established to 

further investigate interactions between these sites during pore formation.  

 

2.10.1 Generation, expression and purification of L LO mutants 

The LLO mutants used in this work were generated, expressed and purified by 

Stefan Köster in the Department of Structural Biology of the Max Planck Institute for 

Biophysics in Frankfurt am Main.  

For the generation of LLO mutants with amino acid substitutions and deletions the 

QuikChange kit from Stratagene (Agilent Technologies, Waldbronn) was used. 

Following the instructions from the kit a set of two mutagenesis primers containing 
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the changed amino acid sequence was synthesized for each hly mutant. For deleting 

parts of the hly gene the primers were designed to bind upstream in sense direction 

and downstream in antisense direction of the region to be deleted. The mutated hly 

genes were cloned into a pET16b plasmid, which was introduced into competent E. 

coli cells. Transformed bacteria were grown in media containing selective antibiotics 

and expression was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside at 

30°C for four hours. The cells were then pelletised , lysed and centrifuged to remove 

all debris. For purification of the His-tagged proteins the supernatant was loaded on a 

Ni-NTA column. After washing the proteins were eluted by cleaving off the His-tag 

with thrombin. The eluates were concentrated using a 30 kDa cut-off and then 

afterwards loaded on a Superdex200 gel filtration column. The toxin-containing 

fractions were finally concentrated to 5 mg/ml and stored at -80°C. 

 

2.11 Statistical Analysis 

The data were calculated and represented as mean value +/- standard error of the 

mean (SEM) from n experiments using independent preparations. For infection and 

bacterial survival assays the statistical analysis toolkit included in the Microsoft Office 

Excel 2003 software package was used to test variances between experimental 

groups and subsequently run the appropriate t-tests. The “F-test two sample for 

variances” tool was used to test for equality of variances. If p > 0.1, the variances 

were treated as equal and if p < 0.1, as unequal. In case of equal variances the 

student’s t-test (“t-Test: Two-Sample Assuming Equal Variances”) was used to check 

for significant differences between the groups. The Welch test (“t-Test: Two-Sample 

Assuming Unequal Variances”) was used when unequal variances were found. For 

comparing curves of calcium and area measurements the linear mixed model tool 

from the SPSS software package was used. For all statistical operations p-values < 

0.05 were considered significant.  
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3 Results 

 

3.1 Sublytic concentrations of Listeriolysin O disturb cellular calcium 

homeostasis, weaken epithelial monolayers and enable the effective 

invasion of L. monocytogenes  

Listeriolysin O has long been identified as the major virulence factor of L. 

monocytogenes (Goebel et al., 1988). Its known function in the intracellular life cycle 

of the pathogen is to mediate the escape from phagosomes, thereby allowing 

movement within and between host cells without immune recognition (Gedde et al., 

2000). In 2002, Repp et al. discovered that LLO pore formation in the plasma 

membrane leads to a direct influx of Ca2+ ions from the extracellular space (Repp et 

al., 2002). This would explain most of the immunomodulatory effects of LLO on host 

cells that are dependent on Ca2+-signaling (Tang et al., 1996; Nishibori et al., 1996; 

Kayal et al., 1999). Recent studies revealed a connection between the deregulation 

of intracellular Ca2+ concentration ([Ca2+]i) by LLO and the activation of calcium-

dependent kinases like PKC (Wadsworth and Goldfine, 2002; Shaughnessy et al., 

2007; Richter et al., 2009). The recruitment and phosphorylation of PKC has direct 

effects on the actin cytoskeleton and the regulation of tight junctions (Larsson, 2006; 

Stuart and Nigam, 1995; Tsukamoto and Nigam, 1999). The ability of purified LLO to 

damage epithelial barriers in the gut was described with regard to fluid loss due to 

uncontrolled ion efflux in diarrhoea (Richter et al., 2009). Its effect on invasiveness in 

connection to Ca2+-permeable pores has been briefly addressed by Dramsi and 

Cossart in 2003 (Dramsi and Cossart, 2003).  

The connection between Ca2+-dependent changes in cell morphology, junctional 

constitution and invasion of epithelial monolayers by L. monocytogenes is still 

unknown. Therefore, the following experiments aimed to elucidate LLO’s role in the 

early stages of Listeria infection. 

 

3.1.1 Purified LLO triggers an increase in [Ca 2+] i in Caco-2 cells 

To test the effect of toxins from Gram-positive bacteria on epithelial cells, it was of 

great importance to ensure that no contaminations of lipopolysaccharides (LPS) were 

present. Epithelial cells are very sensitive to trace amounts of endotoxin and react in 

a manner indistinguishable from effects produced by CDCs (Allen, 1965; Shen et al., 

1989; Yamada et al., 1981; Raichvarg et al., 1982). The expression and purification 
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of recombinant LLO was done following an established protocol (Darji et al., 1995) in 

the non-pathogenic species Listeria innocua with some adjustments towards better 

yield and purity (see section 2.9.1 in Materials and Methods). The purified toxin was 

tested for protein concentration and lytic activity before employing it in cell culture 

experiments. LLO expression, purification, the protein concentration and activity 

assays were performed by Martina Hudel. All experiments were conducted with toxin 

from the same batch in order to ensure reproducibility.  

To measure the impact of LLO on epithelial barriers, Caco-2 cells were grown on 

glass coverslips to about 80% confluence. Fully closed monolayers could not be 

used, as small patches of free, non-cell covered surface were required for the 

determination of changes in the total cell covered area. Cells were loaded with Fura-2 

AM, incubated for 40 minutes and then placed in microscopy chambers in HEPES 

medium. Before treating cells as described, they were monitored for ten minutes in 

order to obtain a baseline for the 340/380 nm ratio. At the end of the experiments, the 

ionophore Ionomycin (Iono) was added to a final concentration of 5 µM to perforate 

the plasma membrane and allow for free exchange of Ca2+ ions with the medium. 

This was necessary to set a maximum signal, representing the equilibrium of [Ca2+]i 

with the concentration in the medium. The amount of calcium influx after LLO-

treatment was calculated as percentage of the maximum signal. In this way, it was 

possible to compare experiments and eliminate variations from cell status, optical 

equipment, light source and different batches of the calcium indicator.  

When treated with LLO, each single cell measured reacted differently. Figure 3.1.1 

shows the change in 340/380 nm ratio of four selected cells to illustrate recorded 

variations between single cells. To produce comparable results, at least 30 cells were 

measured in each experiment. Thereafter, the mean value of all cells for each time 

point was calculated. When experiments were repeated, the single mean values were 

again used to calculate a collective mean value and SEM (if n = 3, at least 90 

individual cells were measured). 

Different concentrations of LLO caused dose dependent reactions of the cells. 1000 

ng/ml of toxin triggered an increase in [Ca2+]i of about 50% maximum, cells treated 

with 500 ng/ml raised the [Ca2+]i by 20% and 250 ng/ml to about 5% of the maximum. 

When LLO was heat inactivated at 65°C for 5 minutes , the cells did not react to it 

while responding normally to Iono at the end of the experiment.  
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A) 

 

B) 

 
Fig 3.1.1 Individual cells respond differently to i ncubation with LLO while the average [Ca 2+] i of 
>30 cells reacts in a dose-dependent manner when tr eated with increasing toxin 
concentrations. Caco-2 cells were loaded with Fura-2 AM and monitored for changes in the emission 
at 340 and 380 nm when excited at 510 nm. The 340/380 nm ratio was calculated from the emission 
readings. The maximum signal measured after adding Iono (5 µM) at the end of the experiment was 
used to express the relative change in [Ca2+]i. LLO was added at indicated concentrations and cells 
were measured for 50 min before Iono was added.  
A) Each line shows the changes in [Ca2+]i in an individual cell during the same experiment. The four 
depicted cells were chosen to represent the whole spectrum of reactions that could be observed when 
cells were treated with 1000 ng/ml LLO.  
B) To compare the effects of the different toxin concentrations, all values are given in % maximum 
[Ca2+]i. The experiments consisted of at least 30 cells each. The results are shown as mean values of 
all measured cells.   
 

 

 

 



3 RESULTS 

 35 

3.1.2 The activity of LLO is markedly increased aft er exposure to reducing 

conditions 

The family of CDCs was at first named thiol activated cytolysins. This term came up 

due to the observation that oxidizing conditions reversibly inactivated them. When 

incubated with cysteine or hydrogen sulphate, the activity could be restored (Cohen 

et al., 1937). The addition of the reducing agent DTT was found to increase not only 

the activity of purified toxin, but also to enhance the cytotoxicity of L. monocytogenes 

on cell lines (Westbrook and Bhunia, 2000). It is speculated that the reduction of the 

thiol group of the single cysteine found in LLO is responsible for this effect.  

A direct comparison of the percentage of maximum [Ca2+]i increase triggered by toxin 

with and without DTT (5 mM) preincubation revealed a considerable gain in activity 

under reducing conditions (Figure 3.1.2). The amount of LLO used for a 50% 

maximum change in [Ca2+]i could be reduced from 1000 ng/ml to 20 ng/ml when 

preincubated with DTT, allowing for a more economical use of the toxin and a closer 

resemblance to conditions likely present inside the host GI tract during an infection 

with L. monocytogenes. This concentration is also well below the lytic concentration 

of 400 ng/ml of LLO+DTT that was found by Pillich et al. on another cell line (Pillich et 

al., 2012).  

 

 
Fig 3.1.2 Preincubation of LLO with DTT increases i ts ability to form Ca 2+-permeable pores and 
reduces the amount of toxin needed for a strong cel lular response. Caco-2 cells were loaded with 
Fura-2 AM and monitored for changes in the emission at 340 and 380 nm when excited at 510 nm. 
The 340/380 nm ratio was calculated from the emission readings. The maximum signal measured 
after adding Iono (5 µM) at the end of the experiment was used to express the relative change in 
[Ca2+]i. LLO was added at indicated concentrations and cells were measured for 10 min before Iono 
was added. 
The graph shows the mean values + SEM of three independent experiments for each group. 
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3.1.3 Treatment with LLO leads to a reduction of th e overall surface area 

covered by epithelial cells that depends on the inf lux of calcium ions into the 

cytoplasm 

The setup of the microscopy equipment used for the measurement of changes in the 

[Ca2+]i as well recorded images in grey scale that could be used for the evaluation of 

the total surface area covered by cells. To do so, the software needed a small space 

within the recorded images that was not covered by cells throughout the whole 

experiment as a background marker. Once the background was defined, the area 

covered by cells could be counted as the amount of pixels in each image that were 

not background. The amount of pixels standing for cell-covered areas in each 

acquired image was used to measure the change in total surface covered by cells.  

Figure 3.1.3 A shows the microscopic images of Fura-2 AM loaded cells before and 

after treatment with LLO. The signal of the emission wavelength at 380 nm was 

markedly decreased shortly after the addition of LLO, illustrating the reduction of the 

Ca2+-unbound form of the fluorophore once extracellular Ca2+ started to flow into the 

cytoplasm through the toxin pores. After about five minutes post LLO-treatment, the 

cell monolayer started to shrink. To visualize this effect, the white line in the five and 

ten minute frames was drawn exactly at the same position in both images. The 

overall loss of cell surface area after toxin incubation is shown in Figure 3.1.3 B. 

Important additional information gained from these images is that LLO treatment did 

not result in cells becoming necrotic or apoptotic. This would have been visible as a 

sudden drop of fluorescence in the Ca2+ measurement and, in the case of apoptosis, 

as rapid shrinking of single cells or as rupturing and total loss of intracellular 

fluorescence signal in necrotic cells. In each experiment, the calcium graphs of each 

single cell measured and the images taken were checked for signs of cell death. 

Experiments that showed events of cell death were excluded so that the surface area 

measurements were not faulted by dying cells. 
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A) 

 

B) 

 
Fig. 3.1.3 The total cell surface area of epithelia l monolayers is negatively affected by LLO. 
Caco-2 cells were loaded with Fura-2 AM and monitored for changes in the emission at 380 nm when 
excited at 510 nm.  
A) Cells at rest had a low [Ca2+]i, therefore the emission of the free Fura-2 AM molecules at 380 nm 
was high (=cells are white). Shortly after LLO+DTT at 20 ng/ml was administered, the 380 nm signal 
dropped (=cell are dark grey), indicating that most of the fluorophore was Ca2+-bound and the 
emission shifted to 340 nm (not shown). The white lines in the five and ten minutes’ frame were placed 
at the same position in both images, allowing a comparison of the area loss between the two time 
points.    
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count before addition of LLO was set to 100%. The graph 
represents the area loss in the same experiment from which the images in A were acquired.  

0 min  1 min  

5 min 10 min  
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To test if the shrinking of cells is linked to the increase in [Ca2+]i observed after LLO 

treatment, the long known non-specific Ca2+-channel blocker lanthanum was used in 

the form of lanthanum(III) chloride (LaCl3). Different studies reported that trivalent 

metal cations are able to inhibit an array of different ion channels in eukaryotic cells 

(Rangel-González et al., 2002; Huettner et al., 1998; Bryan-Lluka and Bönisch, 

1997). The ability of different trivalent cations to inhibit ion channels correlates with 

the ionic radius (Mlinar and Enyeart, 1993). La3+ has the largest ionic radius in the 

group of lanthanides and was also determined to have the lowest IC(50) on LLO pores 

(Bittenbring, 2005). The diameter of LLO pores was determined by electron 

microscopy to be as large as 50 nm (Vadia et al., 2011).The group of Vadia et al. 

used toxin concentrations in the milligram range which produce large pores that are 

highly lytic. When electrophysiological methods for the examination of membrane 

pores like patch clamp are applied, it is possible to use very low LLO concentrations 

and hence operate under sublytic conditions as used here. Researchers following 

this approach reported the existence of much smaller pores consisting of only few 

LLO monomers (Repp et al., 2002; Butler, 2004). These small pores occur at 

nanomolar toxin concentrations and offer an explanation for the blocking effect of 

trivalent metal ions.  

In the experiments described above, Iono could not be used to determine the 

maximum [Ca2+]i as La3+ at the used concentration completely blocked the ion flux 

through pores in the plasma membrane. The measurements therefore were 

expressed as the change in arbitrary fluorescence units from the 340/380 nm ratio. 

The respective 340/380 nm ratio of cells at rest before the start of the experiments 

was set to a value of one.  

When cells were preincubated with 10 mM LaCl3, the addition 250 ng/ml of LLO had 

no effect on the [Ca2+]i (Figure 3.1.4 A, blue line). The addition of LaCl3 to cells one 

minute after treatment with 20 ng/ml LLO immediately stopped further Ca2+ influx and 

the [Ca2+]i remained constant (red line) at a slightly raised level but never reached the 

same elevation as LLO at the same concentration alone (black line). At the end of the 

experiments, Thapsigargin, a non-competitive inhibitor of the sarco / endoplasmic 

reticulum Ca2+-ATPase (SERCA), was used to check if the cellular Ca2+ stores had 

remained untouched by the toxin. Thapsigargin was not administered after LLO 

treatment as the inflow of extracellular calcium ions would have completely masked 

the little amount released by the ER. When the toxin was interrupted by La3+, the 
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somewhat elevated [Ca2+]i could be increased further by Thapsigargin and showed a 

slow rise that is characteristic for the diffusion of Ca2+ out of the ER due to SERCA 

inhibition. Cells preincubated with LaCl3 also showed a normal reaction after 

Thapsigargin-treatment, indicating that the ER calcium stores were not affected by 

the toxin.  

 

A) 

 

B) 

 
Fig 3.1.4 Lanthanum ions are able to block LLO-indu ced influx of extracellular calcium and 
thereby inhibit cell surface loss.  
A) Caco-2 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 
380 nm when excited at 510 nm. From those emission readings, the 340/380 nm ratio was calculated 
and the change in arbitrary fluorescence units was set to be one in cells at rest.  
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count in cells at rest was set to 100%. The graphs 
represent the area loss in the same experiments that are shown in A). 
The cells were treated at indicated times with LLO+DTT at 20 ng/ml alone (black line), with LLO+DTT 
at 20 ng/ml and LaCl3 at 10 mM one minute later (red line) or were preincubated with 10 mM LaCl3 
and then treated with 250 ng/ml LLO+DTT (blue line). In the last two experiments, Thapsigargin 
(Thaps) was added at the end of the experiments at a concentration of 100 nM.  
In A) and B) the graphs show the mean values + SEM of at least three independent experiments for 
each group. 
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The change in cell surface area was monitored in the same experiments and 

revealed that there is a direct connection between increase in [Ca2+]i and cell 

shrinking (Figure 3.1.4 B). LaCl3-preincubated cells did not show any reduction in cell 

surface area although they were treated with a very high dose of LLO (250 ng/ml, 

blue line). When the Ca2+-influx through LLO pores was interrupted shortly after the 

application of the toxin, the loss in cell surface area was almost completely abolished 

(red line). In comparison to that, cells incubated with LLO alone lost 5% of their total 

surface area (black line) within ten minutes of toxin treatment. The treatment with 

Thapsigargin at the end of the experiments (red and blue line) increased the [Ca2+]i 

but had no negative effect on the cell surface area within a ten minutes’ time frame.  

 
3.1.4 Lanthanum reduces L. monocytogenes’  invasiveness in epithelial 

monolayers and has bactericidal effects at millimol ar concentrations  

The observation that epithelial monolayers start shrinking upon toxin incubation led to 

the hypothesis that LLO plays an important role in the pre-intracellular phase of L. 

monocytogenes infection. Upon ingestion, the bacteria enter the GI tract of the host 

with the epithelium blocking their way into the body. Only when the pathogen is able 

to invade or otherwise cross the epithelial barrier it can successfully cause infections. 

L. monocytogenes harbours virulence factors that enable it to invade non-phagocytic 

cells. It expresses a surface protein called Internalin A (InlA), which binds the host-

cell receptor E-Cadherin (ECad) and thereby achieves internalization of the bacteria 

(Hamon et al., 2006; Mengaud et al., 1996). ECad, which is the building block of 

adherens junctions (AJ), is fenced off towards the apical side of the barrier by tight 

junctions (TJ) in closed monolayers of polarized epithelial cells. It has been shown by 

Pentecost et al .(Pentecost et al,. 2006) that bacteria in need of otherwise 

inaccessible cellular ligands can attach at sites where apoptotic cells are budded off. 

The pathogens use the gaps that are produced by extrusion of senescent cells to find 

their way to the appropriate binding partner, enabling them to enter or cross the 

epithelial barrier. The authors found that most adhesion and invasion by L. 

monocytogenes on cultured polarized epithelial monolayers occurred at sites where 

multicellular junctions were formed after exclusion of single cells. The finding of 

reduction in cellular surface area upon LLO incubation lead to the hypothesis that the 

release of a pore forming toxin might allow the pathogen to get to its closed-off 

binding site. 
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To test whether active LLO secretion is sufficient for the break-up of TJs between 

cells and the release of ECad, closed monolayers of Caco-2 cells were infected with 

apically-applied L. monocytogenes strain EGDe. EGDe is used as a wild type control 

and expresses the full set of virulence factors known in Listeria, including LLO and 

Internalin A. The infection experiments showed that LaCl3 inhibits invasion in a 

concentration dependent manner (Figure 3.1.5). 

 

 
Fig 3.1.5 Preincubation with LaCl 3 protects Caco-2 monolayers from L. monocytogenes  
invasion. Caco-2 cells were grown to confluence and, on the day of the infection, were washed four 
times with PBS to remove all cholesterol from the FCS-containing growth medium. After washing, cells 
were kept in HEPES medium (+Ca2+) for 2 h to recover from the washing and the medium change. 
LaCl3 was added to the cells at indicated concentrations 10 min before infection. Cells were counted 
and infected with L. monocytogenes EGDe at MOI 10. After 1 h, the supernatant was collected and the 
cells were incubated with 50 µg/ml Gentamicin for 30 min. Then the antibiotic was washed off and the 
cells were lysed. Supernatants (gray bars) and cell lysates (black bars) were plated out and CFU were 
counted the next day. In the case of 5 and 10 mM LaCl3, undiluted samples were plated out.  
Results are shown as the percentage of control values. Each bar represents the mean value + SEM of 
at least three independent experiments. Significant differences from to the controls are indicated as * 
above the bars (p<0.05).  
 
 
Concentrations of 0.1; 0.25 and 0.5 mM LaCl3 reduced the amount of intracellular 

CFU (black bars) and at the same time increased the number of bacteria found in the 

supernatant (grey bars). This indicates that, when the action of LLO on the epithelial 

cells is blocked by La3+, the bacteria are not able to invade the cells efficiently. Higher 

concentrations of LaCl3 reduced the overall amount of bacteria, both in the cell 
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lysates and in the supernatants. 2.5 mM LaCl3 almost completely blocked the 

invasion of cells and the extracellular bacteria were reduced to about 50% of control. 

When 5 or 10 mM were employed, no more CFU were detected in either fraction. The 

changes in the amount of extracellular and intracellular bacteria were found to be 

significant in comparison to control values for all of the tested LaCl3 concentrations. 

 

 
Fig 3.1.6 When incubated without cells, L. monocytogenes  is more resistant to high LaCl 3 
concentrations. An amount of bacteria comparable to MOI 10 in the previous experiment was 
incubated in the same volume of HEPES (+ Ca2+) medium for 1 h with indicated LaCl3 concentrations 
before the samples were diluted, plated out and counted. 
The graph shows the counted CFU on a logarithmic scale. Each bar represents the mean value + 
SEM of at least three independent experiments. Significant differences from to the control are 
indicated as * above the bars (p<0.05). 
 
 
The next step was to distinguish whether bacterial killing was due to the high LaCl3 

concentrations or induced cellular defence mechanisms. The bacteria were incubated 

in HEPES (+Ca2+) medium containing LaCl3 concentrations that caused a reduction 

in overall CFU for the same time but without cells. The results (Figure 3.1.6) were 

unexpected, as 1 mM LaCl3 yielded an even higher CFU count than the untreated 

control (4.4x106 CFU ± 3.7x105 vs 3.2x106 CFU ± 1.7x105 for 1 mM and control, 

respectively). 2.5 mM LaCl3 did not change the CFU number when compared to 

control. At higher concentrations, a drastic reduction in bacterial numbers was 

observed. A decrease of more than three log was seen with 5 mM LaCl3, and in 

samples incubated with 10 mM the few residual bacteria could only be counted when 
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not diluted at all. In this last group, the reduction in bacterial numbers amounted to a 

loss of six log in comparison to the control. 

To better understand the effect of LaCl3 on L. monocytogenes, growth curves of the 

wild type bacteria in different media were generated with the same range of LaCl3 

concentrations as used in the previous experiments. To accelerate the process of 

data generation, the growth curves were run in a system that could automatically 

control the incubation time, temperature, shaking and OD measurements in 96-well 

microplates (see Material and Methods section 2.3.4).  

The HEPES medium used for the ratiometric calcium measurements and the 

infection and survival assays is devoid of amino acids and energy sources, except for 

glucose. Bacterial proliferation under these conditions was expected to be minimal to 

naught, even over a period of ten hours. The growth curve of untreated bacteria in 

this medium increased only marginally for about 5 h and then reached a plateau 

(Figure 3.1.7 A). Wells containing LaCl3 at 5 and 10 mM could not be evaluated 

because a cloudy, white precipitate formed and produced negative OD values when 

negative controls were subtracted. These two curves were therefore only plotted until 

the 220 min time point, after which both groups had only negative OD values. The 

curve of LaCl3 at 2.5 mM had an uneven course that was also due to slight 

precipitate formation. The high SEM (plotted as dashed error bars) of this group 

illustrates the high variability between experimental repetitions. All of the lower LaCl3 

concentrations showed a somewhat higher growth rate and yielded about two times 

higher OD values after 10h than EGDe did untreated. 

A minimal medium (MM) (Figure 3.1.7B) that contained low concentrations of amino 

acids, iron, glutamate and glucose was also tested (see Material and Methods full list 

of components). This formulation includes the absolute minimum nutrition that L. 

monocytogenes needs for successful multiplication. In MM, all concentrations of 

LaCl3, except for 10 mM, increased the growth rate of the bacteria. The highest OD 

values were achieved with 0.5 and 1 mM LaCl3. In the groups of 5 and 10 mM, the 

uneven curves were caused again by precipitations that interfered with the 

measurements. The problem was not as serious as in HEPES; the small error bars 

indicate a better reproducibility in MM. Due to the precipitate formation, it was not 

possible to judge whether 10 mM LaCl3 was really inhibiting bacterial growth or if the 

reduction in OD was due to unevenly distributed particle clouds in the negative 

control. 
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A) 

 

B) 

 

C) 

 
Fig 3.1.7 LaCl 3 has different effects on the growth rate of L. monocytogenes  EGDe in rich and 
poor media. Growth curves in A) HEPES, B) MM and C) BHI. All experiments were performed in 96-
well plates with a total volume of 150 µl in each well for 10h with continuous shaking at 37°C. EGDe 
cultures for inoculation were grown overnight in BHI and diluted 1:200 before being transferred into the 
wells containing the indicated LaCl3 concentrations. Bacterial growth was measured every 20 min as 
the change of optical density at 600 nm. Negative controls of all LaCl3 concentrations were used to 
account for different background values. Results are shown as mean values ± SEM of at least three 
independent experiments. SEM for 2.5 mM LaCl3 in A) is shown as dashed lines for better visibility of 
the other error bars.  
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Finally, bacteria were grown together with LaCl3 in Brain-Heart-Infusion (BHI) 

medium (Figure 3.1.7C). This complex and rich medium contains a broad array of 

nutrients and other essentials for bacterial growth from digested animal tissue and is 

used to cultivate a range of different microorganisms. In this group, the lower 

concentrations of LaCl3 from 0.1 to 0.5 mM had no net effect on the growth curves. 

With higher amounts, there was a dose-dependent inhibition of bacterial 

multiplication. Growth was almost inhibited with 10 mM LaCl3, 5 mM produced a 

much shallower rise in OD values and 2.5 and 1 mM showed an exponential growth 

phase similar to the control group but reached a plateau earlier.  

 

3.2 Assessment of LLO mutants for their ability to form Ca2+-permeable 

pores 

The LLO mutants generated by our cooperation partners at the Max Planck Institute 

of Biophysics in Frankfurt am Main were assayed for their haemolytic activity on 

sheep erythrocytes and their ability to form Ca2+-permeable pores in Caco-2 epithelial 

cells. The ability of the mutants to affect the cell surface area was tested in 

combination with the ratiometric calcium measurements as explained in chapter 

3.1.3. The wild type toxin that was used as reference in the following experiments 

was produced together with the mutants in the same lab and under the same 

conditions to ensure comparability. All protein and haemolytic assays with the 

mutants were performed by Martina Hudel. Following the determination of protein 

concentrations, Caco-2 cells were treated with the wild type and mutant toxins to 

assess the resulting increase in [Ca2+]i. Each toxin was preincubated with DTT and 

tested at a concentration of 50 ng/ml on the same batch of cells as the others to 

ensure comparability and avoid differences in results due to changes in cell status. 

As an example, figure 3.2.1 shows the cellular reactions to wild type toxin (WT) and 

the mutants A40W and A40W+K175E. The results of all the different mutants are 

listed in table 3.2.1, the single measurements can be found in the appendix (section 

8.1).  
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A) 

 

B) 

 
Fig 3.2.1 Comparison between wild type LLO and two mutant toxins 
A) Caco-2 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 
380 nm when excited at 510 nm. From the emission readings the 340/380 nm ratio was calculated. 
The maximum signal measured after adding Iono (5 µM) at the end of the experiment was used to 
express the relative change in [Ca2+]i.  
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count in cells at rest was set to 100%. The graph 
represents the area loss in the same experiments that are shown in A). 
The cells were treated with 50 ng/ml LLO+DTT (WT, black line), with 50 ng/ml mutant LLO 
A40W+DTT (red line) or with 50 ng/ml mutant LLO A40W+K175E+DTT (blue line). 
In A) and B) the graphs show the mean values + SEM of at least three independent experiments for 
each group. 
 

 

Mutations that yielded an increased Ca2+ influx and cell surface loss were A40W, 

S44D, delta 51 and N230W (coloured red in table 3.2.1). N230W was the only mutant 

in this group yielding a lower haemolytic activity than WT, the other three mutants all 

had a stronger lytic effect on erythrocytes. Mutations that triggered a little less Ca2+ 

influx and cell surface loss were (coloured blue in table 3.2.1) S44E, which had less 

haemolytic activity but yielded a stronger reduction in cell surface area than WT-LLO, 
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and N179C and D394W, both of which had a stronger haemolytic activity than WT 

toxin. 

Mutations that had lost almost all haemolytic activity and did not trigger any Ca2+ 

influx or cell surface loss were (coloured grey in table 3.2.1) K175E, S176W, E262W, 

the combination of A40W+K175E and the deletion of the first 50 aa in combination 

with K175E and S176W, respectively. It should be pointed out that the mutant 

E262W retained about 20% of its haemolytic activity on erythrocytes but was unable 

to form Ca2+-permeable pores in Caco-2 cells. 

 
 
Tab 3.2.1 Massive differences between the single mutants were  found in their ability to lyse 
erythrocytes, form Ca 2+-permeable pores and cause cell surface area loss i n cultured epithelial 
cells. For the haemolytic activity, the wild type was set to be 100%. To determine the toxins ability to 
form Ca2+-permeable pores, Caco-2 cells were loaded with Fura-2 AM and monitored for changes in 
the emission at 340 and 380 nm when excited at 510 nm. From the emission readings, the 340/380 
nm ratio was calculated, the maximum signal measured after adding Iono at the end of the experiment 
was used to express the relative change in [Ca2+]i. The change in cell surface area was determined by 
counting the pixels in the acquired images that had a signal above background levels. The pixel count 
in cells at rest was set to 100%. The cells were incubated with LLO+DTT at 50 ng/ml and were 
measured for 10 min before Iono was added.  
The table of tested mutated toxins is colour coded: red for toxins with a higher overall activity than WT, 
blue for toxins that triggered a smaller increase in [Ca2+]i and less loss in surface area and grey for 
toxins that lost all ability to perforate epithelial cells.   
 

LLO variety haemolytic activity in % % max [Ca 2+] i % max area loss 

WT 100 53 5.6 
A40W 134 82 13.8 
A40W + K175E 1.6 0 0.0 
S44D 112 71 6.0 
S44E 72 42 7.4 
delta 51 125 79 12.4 
delta 51 + K175E 1.2 0 0.0 
delta 51 + S176W 0.0001 0 0.0 
K175E 3 0 0.0 
S176W 3 0 0.0 
N179C 133 48 2.3 
N230W 84 72 6.6 
E262W 19 0 0.0 
D394W 136 42 3.3 
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3.3 Pneumolysin has similar effects as Listeriolysin O on calcium 

homeostasis and epithelial monolayer integrity, releases ER-stored Ca2+ 

and mimics hypertonic stress  

S. pneumoniae colonizes the upper respiratory tract in about ten percent of the 

population and is generally a dangerous pathogen in the very young, old and 

immunocompromised. When able to establish an infection, it triggers complex 

immunomodulatory reactions with an array of virulence factors. One present in all 

clinically relevant isolates is the toxin pneumolysin (PLY) (Paton et al., 1993; Paton et 

al., 1983), a member of the group of CDC. The toxin was found to be crucial for the 

establishment of a successful infection in the lung (Berry et al., 1992; Jounblat et al., 

2003; Rubins et al., 1996; Alexander et al., 1998) and for the spread of the bacteria 

into the bloodstream (Kadioglu et al., 2002; Orihuela et al., 2004; Berry, Yother, et al., 

1989), where it causes septicaemia. PLY is able to hinder cellular functions like ciliary 

beating in bronchial epithelial cells, respiratory burst in neutrophils and macrophages, 

chemotaxis, production of chemokines and antibodies and other antibacterial 

activities (Rubins and Janoff, 1998). It has also been determined microscopically that 

human primary epithelial tissue from the upper respiratory tract loses its integrity 

upon treatment with PLY or toxin-producing S. pneumoniae strains (Rayner et al., 

1995; Feldman et al., 2002). The effects of PLY on the cellular calcium homeostasis 

has been studied mostly in immune cells and parts of the nervous system (Stringaris 

et al., 2002; Hirst et al., 2004; Braun et al., 2002; Fickl et al., 2005). Only recently, 

Iliev et al. (2009) discovered a link between PLY-pores and changes in the actin 

cytoskeleton but attributed this finding to the activation of endogenous ion channels. 

PLY and LLO are closely related and share large parts of their sequence with the 

exception that pneumolysin has no signal peptide for secretion. To release the toxin 

and other virulence factors, S. pneumoniae produces an amidase called autolysin A 

(LytA), which lyses the bacteria themselves (Howard and Gooder, 1974; Berry, Lock, 

et al., 1989). The bacteria produce and store toxin during infection, but only a certain 

percentage of the pathogens undergo autolysis. When all the bacteria are killed in a 

narrow timeframe by antibiotics, large amounts of toxin are released, causing a 

common complication in pneumococcal infections where patients succumb to the 

disease although the affected tissue is found to be sterile. 
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To elucidate the connection between the toxins pore forming ability and the changes 

in calcium homeostasis, cell morphology, junctional constitution as well as epithelial 

barrier integrity, the following experiments were conducted.  

 

3.3.1 Purified PLY triggers an increase in [Ca 2+] i in H441 cells and is more 

active under reducing conditions 

The expression and purification of recombinant PLY in Listeria innocua was 

established by Martina Hudel and Dr. Silke Silva. The purified toxin was tested by 

Martina Hudel for protein concentration and lytic activity before it was used in cell 

culture experiments. All experiments were conducted with toxin from the same batch 

to ensure reproducibility.  

Changes in [Ca2+]i in H441 cells were measured in the same fashion as described in 

section 3.1.1. The treatment with 2000 ng/ml PLY led to different reactions of single 

cells within one experiment. Fig 3.3.1A depicts the changes in the 340/380 nm ratio 

of four single cells that were chosen to represent the whole spectrum of cellular 

responses that were observed. Due to the high intercellular variability, at least 30 

individual cells were measured in each experiment and the mean value for each time 

point was calculated. In the case of repetitive experiments, the single mean values 

were again taken together to calculate a collective mean value and SEM.  

To test whether the activity of PLY could be boosted under reducing conditions, like 

in the case of LLO, it was preincubated with 5 mM DTT before being added to the 

cells. The activated toxin was also used on cells after being heat inactivated at 65°C 

for 5 minutes as a control to prove that DTT itself had no effect on the cellular Ca2+-

homeostasis. The results of the three differently treated toxins are shown in figure 

3.3.1B. When compared to PLY at 2000 ng/ml, the reduced toxin could be used at 

100 ng/ml and still triggered the same increase of about 20% maximum [Ca2+]i. This 

showed that an increase in activity by a factor of 20 is achieved by using DTT-

preincubated toxin. Hence, all the following experiments were conducted with 

PLY+DTT, allowing for a more economic use of the toxin and a better resemblance to 

in vivo infections. The control experiment with reduced and heat inactivated toxin 

revealed that active PLY is the only source of disturbances of the cellular Ca2+-

homeostasis in this experimental setup. 
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A) 

 
B) 

 
Fig 3.3.1 Single cells respond differently to incub ation with PLY, which is more active under 
reducing conditions and inactive after short heat t reatment.  H441 cells were loaded with Fura-2 
AM and monitored for changes in the emission at 340 and 380 nm when excited at 510 nm. From the 
emission readings the 340/380 nm ratio was calculated. The maximum signal measured after adding 
Iono at the end of the experiment was used to express the relative change in [Ca2+]i. PLY was added 
at indicated concentrations and cells were measured for 10 min before Iono (5 µM) was added.  
A) Each line represents the changes in [Ca2+]i of a single cell during the same experiment. The four 
depicted cells were chosen to represent the whole spectrum of reactions that could be observed when 
cells were treated with 2000 ng/ml PLY.  
B) To compare the effects of the differently pretreated toxins, all values are given in % maximum 
[Ca2+]i. Results are shown as mean values ± SEM of at least three independent experiments. 
 

 

3.3.2 Epithelial monolayers treated with PLY suffer  from a reduction of the 

overall surface area that is caused by the toxin-in duced influx of calcium ions 

into the cytoplasm  

The experimental setup used to measure the change in total surface covered by cells 

was the same as described in section 3.1.3.   

The effects of PLY are shown in the microscopy images of Fura-2 AM loaded H441 

cells (Figure 3.3.2A). The recorded signal of the emission wavelength at 340 nm was 
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increased shortly after the addition of PLY when compared to untreated cells (0 min). 

This illustrates the higher population of the Ca2+-bound form of the fluorophore after 

extracellular Ca2+ entered the cells through the toxin pores. A few minutes after PLY 

was added, the closed intercellular spaces started to open (blue arrowheads). This 

was accompanied by the shrinking of cells, increasing the empty space between 

cells. After ten minutes of PLY incubation, large areas that had been covered by a 

closed cell monolayer at the beginning of the experiment were turned into cell-free 

gaps (blue arrowheads). The relative loss of cell surface area after toxin incubation is 

depicted in Figure 3.3.2B. The red arrowhead in figure 3.3.2A marks a cell that 

became apoptotic between one and three minutes after the PLY treatment. This 

event can be seen as a strong increase and following sudden loss of fluorescence in 

the Ca2+ measurement and as rapid shrinking of the affected cell. The rapid drop of 

the cell surface area shortly after 360 seconds on the x-axis of the graph represents 

the death of the cell. In all experiments, the calcium graphs of each single cell 

measured and the images taken were checked for those signs of cell death. 

Experiments that showed events of cell death, like the one presented in figure 3.3.2, 

were excluded so that the surface area measurements were not disturbed by dying 

cells.  

To investigate the status of intercellular junction integrity after the incubation of lung 

epithelial cell with sublytic PLY concentrations, H441 cells treated with PLY were 

prepared for immunofluorescence and stained for ECad, the protein constituting 

adherens junctions. Control cells were prepared the same way for comparability. The 

overall signal strength of ECad was reduced due to PLY treatment and the cells in 

this group did not present a closed monolayer, which was observed in the control 

group (Figure 3.3.3). Additionally, large intercellular spaces between cells that are 

comparable to those in figure 3.3.2 were formed (white arrows).  

The non-specific Ca2+-channel blocker LaCl3 was used again to test if the shrinking of 

cells upon PLY incubation is dependent on the increase in [Ca2+]i. The blocking effect 

of the trivalent lanthanum ions was described by Schramm (2004). This study used 

toxin at sublytic (nanomolar) concentrations in electrophysiological experiments and 

reported the formation of much smaller pores than described before when the toxin 

was used in lytic amounts (Tilley et al., 2005). 
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A) 

 

B) 

 
Fig 3.3.2 PLY causes the opening of intercellular g aps in closed cell layers and apoptosis in 
single cells. H441 cells were loaded with Fura-2 AM and monitored for changes in the emission at 
340 nm when excited at 510 nm.  
A) Cells at rest had a low [Ca2+]i, therefore the emission of the free Fura-2 AM molecules at 340 nm 
was also low (= dark grey cells). Shortly after PLY+DTT at 100 ng/ml had been administered, the 340 
nm signal increased (= light grey/white cells), indicating that more of the fluorophore was Ca2+-bound. 
The blue arrowheads point at the largest intercellular gaps formed during the PLY incubation. The red 
arrowhead marks the cell that became apoptotic shortly after addition of the toxin. 
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count before addition of PLY was set to 100%. The graph 
represents the area loss in the same experiment that the images in A were acquired from. 

0 min 

10 min 

1 min 

5 min 
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Fig 3.3.3 PLY-treated epithelial cells show a reduc ed signal from ECad and form large 
intercellular gaps. H441 cells were grown on glass cover slips and incubated with 100 ng/ml PLY or 
left untreated for 6 h before being fixed, permeabilized and incubated with an Alexa®488-coupled anti-
ECad antibody. Cover slips were mounted on microscope slides and examined by confocal 
microscopy. White arrows indicate gaps between PLY-treated cells. 
 
 
The measurements were expressed as the change in arbitrary fluorescence units. 

The 340/380 nm ratio of cells at rest before starting the experiments was set to a 

value of one. This was necessary because Iono could not be used to determine the 

maximum [Ca2+]i because La3+, at the concentration used, completely blocks the ion 

flux through its pores in the plasma membrane. 

The incubation with 10 mM LaCl3 before the addition 100 ng/ml PLY completely 

abolished the effect of the toxin on the [Ca2+]i (Figure 3.3.4A, blue line). The addition 

of LaCl3 to cells one minute after being treated with 100 ng/ml toxin immediately 

stopped the influx of Ca2+ and the [Ca2+]i returned to its starting level (red line). PLY 

alone triggered the highest peak in [Ca2+]i levels, which slowly declined over the 

course of the experiment but did not go back to values before toxin treatment (black 

line). At the end of the experiments, Thapsigargin was administered to check if the 

ER-stored Ca2+ was unaffected by the toxin. In the cells treated with PLY alone 

Thapsigargin was not used because the inflow of extracellular calcium ions would 

have completely masked the little amount released by the ER. When the toxin-

induced Ca2+-inflow was inhibited by the addition of LaCl3 before or shortly after the 

toxin, the cells showed a normal reaction to Thapsigargin, indicating that the ER 

calcium stores were not affected by the toxin.  

 

ctrl  PLY 
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A) 

 

B) 

 
Fig 3.3.4 LaCl 3 blocks the PLY-induced influx of extracellular Ca 2+ and prevents cell surface 
loss.  
A) H441 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 380 
nm when excited at 510 nm. From the emission readings the 340/380 nm ratio was calculated and the 
change in arbitrary fluorescence units was set to be one in cells at rest.  
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count in cells at rest was set to 100%. The graphs 
represent the area loss in the same experiments that are shown in A. 
The cells were treated at indicated times with PLY+DTT at 100 ng/ml alone (black line), with PLY+DTT 
at 100 ng/ml and LaCl3 at 10 mM one minute later (red line) or were preincubated with 10 mM LaCl3 
and then treated with 100 ng/ml PLY+DTT (blue line). In the last two experiments, Thapsigargin 
(Thaps) was added at the end of the experiments at 100 nM.  
In A) and B) the graphs show the mean values + SEM of at least three independent experiments for 
each group. 
 

The change in cell surface area was monitored in the same experiments (Figure 

3.3.4B). Cells that were incubated with LaCl3 before the addition of PLY did not show 

any reduction in cell surface area (blue line), indicating a direct connection between 

increase in [Ca2+]i and cell shrinking. The interruption of the Ca2+-influx through toxin 

pores by La3+ ions shortly after the application of PLY had the same effect, as no loss 
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in cell surface area was observed (red line). When cells were incubated with PLY 

alone, they lost more than 5% of their total surface area within ten minutes after toxin 

treatment (black line). The use of Thapsigargin at the end of the experiments (red 

and blue line) increased the [Ca2+]i (see Figure 3.3.4A) but had no negative effect on 

the cell surface area. 

 

3.3.3 Pneumolysin induces a release of ER-stored ca lcium into the cytoplasm 

that is not dependent on cellular ion channels 

Calcium ions are important for intracellular signalling events as second messengers. 

Eukaryotic cells store Ca2+ in organelles and release them into the cytoplasm for 

signal transduction. The [Ca2+]i in cells at rest is typically four orders of magnitude 

lower than in the extracellular environment. The low cytoplasmic concentrations can 

be elevated for messaging by releasing Ca2+ from the storage organelles [mostly 

from the endoplasmic reticulum (ER)]. If an amplification of the signal is required, 

there are calcium-signalling-activated ion channels in the plasma membrane that 

mediate the influx of much more calcium ions from the extracellular space. This 

amplification mechanism also works the other way around. When plasma membrane 

ion channels increase the [Ca2+]i, there are channels in the ER-membrane activated 

by calcium signalling events which release additional Ca2+ from the intracellular 

stores to increase the second messenger signal strength.  

As mentioned before, the group of CDCs was found to trigger many cellular reactions 

that are dependent on intracellular calcium signalling. It was long thought that this is 

due to the influx of extracellular Ca2+ through the pores formed by the toxins in the 

plasma membrane. In a recently published paper the group of Gekara (2007) found 

that purified LLO and toxin producing L. monocytogenes caused physical damage to 

the ER and possibly directly released ER-stored Ca2+ into the cytosol. The 

experiments were done in mast cells and bone marrow macrophages and the results 

hinted at two independent ways in which LLO might trigger the release of calcium. 

The first way was found to be dependent on cellular IP3R-gated Ca2+ channels 

whereas the second one was probably due to direct injury of intracellular Ca2+ stores. 

To elucidate whether pneumolysin could have the same effect on epithelial cells the 

following experiments were performed. H441 cells were monitored for changes in 

[Ca2+]i while being incubated in calcium free HEPES medium. To ensure that all 

traces of Ca2+ were gone, the metal ion chelator EGTA was added at a concentration 
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of 0.5 mM to the cells prior to the start of the experiments. EGTA is not cell 

permeable, so the intracellular calcium stores were not affected.  

The cells were treated with: 

i) PLY followed by Thapsigargin, to check whether the intracellular stores 

were completely emptied by the toxin 

ii) Thapsigargin first and then PLY, to deplete the ER-stores before the toxin 

could do so  

iii) Inhibitors of cellular calcium channels previous to PLY and Thapsigargin to 

determine their involvement in the reaction. 

The two classes of calcium-release channels in the ER are ryanodine receptors, 

which are activated by elevated Ca2+-levels in the cytoplasm and can be blocked with 

Ryanodine (Rya), and inositol trisphosphate (IP3) receptors, which are activated by 

the second messenger IP3 and can be blocked by Xestospongin C (XeC). 

Cells treated with PLY showed a sharp peak in [Ca2+]i that occurred some seconds 

later than in experiments with normal extracellular Ca2+ concentrations (Figure 3.3.5, 

black line). Addition of Thapsigargin had no further effect and, together with the 

transient nature of the reaction to PLY, hinted at the depletion of finite intracellular 

stores. The decrease in [Ca2+]i was probably due to disposal of excess calcium 

outside the cells, where it was immediately chelated by EGTA. When cells were 

preincubated with the calcium-release channel blockers Rya and XeC their reaction 

to PLY was slightly weaker in peak height, but showed the same kinetic (red line). 

Treatment with Thapsigargin showed that the depletion of the ER-Ca2+ store was not 

prevented by the two blocking agents. When Thapsigargin was added prior to the 

toxin, the increase in [Ca2+]i was stronger and declined slower (blue line). This 

difference might be due to the different modes of release, in case of the toxin the ions 

could flow out through a channel-like structure, whereas the SERCA-inhibition by 

Thapsigargin resulted in passive diffusion of Ca2+ out of the storage organelles 

following the concentration gradient from the cytoplasm to the extracellular space 

where it was chelated. The final addition of PLY after Thapsigargin caused minor 

calcium fluctuations, indicating that the toxin was still able to perforate the plasma 

membrane but could not interfere with the calcium homeostasis due to the emptied 

ER-stores.   

 



3 RESULTS 

 57 

 
Fig 3.3.5 Peaks in [Ca 2+] i after treatment with PLY in calcium-free medium are  caused by the 
release of ER-stored Ca 2+ and are not dependent on cellular ion channels.  
H441 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 380 nm 
when excited at 510 nm. From the emission readings the 340/380 nm ratio was calculated and the 
change in arbitrary fluorescence units was set to be one in cells at rest. Calcium-free HEPES with 0.5 
mM EGTA was used in all experiments. 
The cells were treated at indicated times with PLY+DTT (100 ng/ml) followed by Thapsigargin (Thaps) 
(100 nM) (black line), with Rya (5 µM) and XeC (3 µM) ten minutes before PLY+DTT (100 ng/ml) and 
Thaps (100 nM) (red line) or Thaps (100 nM) before PLY+DTT (100 ng/ml) (blue line).  
The graphs show the mean values + SEM of at least three independent experiments for each group. 
 
 
3.3.4 Pneumolysin triggers changes in epithelial ce lls that are similar to the 

cellular reaction to hyperosmotic conditions. 

The respiratory epithelium, which functions as a first line of defence against invading 

pathogens, is regularly exposed to different kinds of bacterial strains that are known 

to produce pore forming toxins. In this context it is not surprising that lung epithelial 

cells have been found to be very sensitive detectors of those bacterial toxins (Ratner 

et al., 2006). The activation of p38 mitogen-activated protein kinases (MAPK) is 

usually associated with the cellular reaction to hyperosmotic stress (Han et al., 1994). 

Under this condition, where the cell suffers a loss of water due to a changed osmotic 

gradient, the cellular volume decreases and the cytoplasm becomes crowded with 

macromolecules which leads to a series of dangerous changes in the cell like 

decreased or halted transcription and translation and damaged DNA and proteins. 

Another effect of increased tonicity on cells that was described early (Homsher et al., 

1974) is the fast and transient increase in [Ca2+]i.  

To compare the changes in [Ca2+]i upon hyperosmotic stress to the ones due to PLY, 

the cells were treated with Sorbitol to increase the osmolarity of the medium from a 

physiological level of 300 mOsm/kg H2O to 500 mOsm/kg H2O. Under these 
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conditions, the cells experience hyperosmotic stress but are able to adapt to it over 

time and survive for at least some hours.  

 

A) 

 

B) 

 
Fig 3.3.6 Hyperosmolarity induced by Sorbitol trigg ers an increase in [Ca 2+] i that is due to Ca 2+-
release from the ER. 
A) H441 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 380 
nm when excited at 510 nm. From the emission readings the 340/380 nm ratio was calculated and the 
change in arbitrary fluorescence units was set to be one in cells at rest. 
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count in cells at rest was set to 100%. The graphs 
represent the area loss in the same experiments that are shown in A. 
The cells were treated at indicated times with 200 mOsm of Sorbitol (Hyper), Thapsigargin (Thaps) 
(100 nM) and Iono (5 µM) (black line) or were preincubated with LaCl3 (10 mM) for 5 min before Hyper 
and Thaps treatment (red line).  
The graphs show the mean values + SEM of at least three independent experiments for each group. 
 
 
Upon changing the osmolarity of the medium by addition of Sorbitol, the cells reacted 

with a short-lived peak and a subsequent drop in [Ca2+]i below the level of cells at 

rest (Figure 3.3.6A, black line). When Thapsigargin was administered there was no 
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further reaction, indicating that Ca2+ was released from the ER into the cytoplasm in 

response to the hyperosmotic shock. The lower but stable levels of cytoplasmic 

calcium that occurred after the initial peak might be interpreted as an adaption to the 

decrease in cell volume. The cells reacted strongly to Iono at the end of the 

experiment, which shows that the [Ca2+]i was not saturated. In cells that were 

preincubated with LaCl3 to exclude the inflow of Ca2+ from outside the cells, the 

treatment with Sorbitol had a different effect on the [Ca2+]i (red line). The observed 

peak after initiation of hyperosmotic stress was stronger and did not drop back to or 

below initial levels. This stable increase was not altered by the addition of 

Thapsigargin. The different reaction after LaCl3 pretreatment is a hint that the stress-

induced Ca2+-release from the ER is cleared by pumping excessive calcium ions out 

of the cell, a process inhibited by La3+ (Herscher and Rega, 1997). These findings are 

opposing the reaction of an osteoblast cell line to osmotic stimuli described by 

Dascalu et al. (1995). In contrast to the diverging changes in the [Ca2+]i in both 

groups, the cell surface area reacted in exactly the same way, which can be seen in 

figure 3.3.6B as a sharp decrease of about 2% shortly after Sorbitol was added. A 

striking difference between the toxin- and hyperosmolarity-mediated losses in cell 

surface area is that the cells do not shrink continuously when treated with Sorbitol but 

stabilize quickly at a reduced level (compare figures 3.3.6B and 3.3.4B).   

Another similarity in the reaction of epithelial cells to hypertonic conditions and PLY 

at sublytic concentrations is the migration of the transcription factor NFAT5 

(TonEBP/OREBP) from the cytoplasm into the nucleus (Figure 3.3.7). In resting cells 

the transcription factor was located primarily in the cytoplasm, while hypertonic 

conditions and PLY-treatment led to a colocalization of NFAT5 with the nuclei of 

H441 cells. NFAT5 is an important player in cellular adaption to hyperosmotic 

conditions. It induces the transcription of genes that increase the concentration of 

organic osmolytes inside the cell, facilitate water reuptake and protect from cell death 

(Woo et al., 2002; Hasler et al., 2005; Burg et al., 2007; Ferraris and Burg, 2004).  
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Fig 3.3.7 Hyperosmolar medium and PLY treatment tri gger NFAT5 translocation to the nucleus. 
H441 cells were grown on glass cover slips and incubated with 100 ng/ml PLY+DTT, in medium with 
500 mOsm/kg H2O or left untreated for 6 h before being fixed, permeabilized and incubated with anti-
NFAT5 primary antibody and an Alexa®555-coupled secondary antibody. Cover slips were mounted 
on microscope slides and examined by confocal microscopy.  
 
 
3.3.5 The pneumolysin-triggered loss in cell surfac e area is dependent on 

conventional PKC-activity and is inhibited by the T IP peptide 

As mentioned in 3.1, CDC-induced perturbations of the cellular Ca2+-homeastasis 

were found to activate PKC. There is evidence that conventional PKCs (isoforms α, β 

I/II and γ, cPKC) are involved in the disassembly of tight junctions in epithelial cells 

(Tai et al., 1996). To test whether active cPKC was required in PLY-induced 

intercellular junction breakup and cell shrinking, the specific inhibitor Gö6976 

(Martiny-Baron et al., 1993) was used.  

PLY 

NFAT5 Merge DAPI 

Ctrl 
 

Hyper  



3 RESULTS 

 61 

A) 

 

B) 

 
Fig 3.3.8 Cell surface area loss due to PLY is inhi bited by Gö6976. 
A) H441 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 380 
nm when excited at 510 nm. From the emission readings the 340/380 nm ratio was calculated. The 
maximum signal measured after adding Iono (5 µM) at the end of the experiment was used to express 
the relative change in [Ca2+]i.  
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count in cells at rest was set to 100%. The graphs 
represent the area loss in the same experiments that are shown in A. 
The cells were treated at indicated times with PLY+DTT at 100 ng/ml (black line) or were pretreated 
with Gö6976 (1 µM) for 10 min before PLY+DTT at 100 ng/ml was added (grey line).  
In A) and B), the graphs show the mean values + SEM of at least three independent experiments for 
each group. 
 
 
Cells treated with sublytic PLY concentrations, showed a characteristic peak in [Ca2+]i 

that lasted for about ten minutes and then fell to a slightly elevated level that slowly 

increased over time (Figure 3.3.8A). The reaction in cells pretreated with Gö6976 

was initially weaker but not significantly different and adapted the same slowly 

ascending levels some ten minutes after the PLY addition. In contrast to that, the 

difference in cell surface loss between the two groups was significant. PLY-treated 
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cells continued to shrink from shortly after the toxin was administered until the end of 

the experiment, amounting to a mean loss of over 15% surface area in one hour. The 

pretreatment with the cPKC inhibitor abolished cell surface area loss almost 

completely. 

The lectin-like domain of tumor necrosis factor (TNF) was found to protect against 

pulmonary oedema formation in animal models and to alleviate the LLO-induced 

hyperpermeability of endothelial cells (Xiong et al., 2010; Bloc et al., 2002; Yang et 

al., 2010; Elia et al., 2003).The effect of the TNF-domain is mimicked by an artificially 

synthesized peptide called TIP. It was therefore investigated whether TIP was also 

able to prevent the loss of cell surface area in PLY-treated cells.  

Cells treated with PLY alone showed a similar reaction than described before in 

figure 3.3.8, with an initial Ca2+-peak and a loss of about 10% of the total cell surface 

area in one hour (Figure 3.3.9A, black line). The same was observed in cells 

pretreated with a control peptide containing the same amino acids as TIP but 

arranged in a random order (sTIP, gray dotted line). The only difference to PLY 

treated cell was a second small, delayed Ca2+-Peak. Cells pretreated with functional 

TIP (black dotted line) presented an initial peak similar to sTIP pretreated ones but 

later dropped to a level that was lower than before the toxin was added. There were 

no significant changes between the three groups regarding [Ca2+]i. No significant 

difference cell surface area between sTIP pretreatment and PLY alone was detected 

(Figure 3.3.9B), although the cells that were incubated with the non-functional 

peptide suffered a somewhat stronger loss in surface area. In cells pretreated with 

TIP, there was only a small decrease in cell volume that was significantly lower than 

in the other two groups. 
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A) 

 

B) 

 
Fig 3.3.9 Cell surface area loss due to PLY is inhi bited by TIP. 
A) H441 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 380 
nm when excited at 510 nm. From the emission readings the 340/380 nm ratio was calculated. The 
maximum signal measured after adding Iono (5 µM) at the end of the experiment was used to express 
the relative change in [Ca2+]i.  
B) The cell surface area was determined by counting the pixels in the acquired images that had a 
signal above background levels. The pixel count in cells at rest was set to 100%. The graphs 
represent the area loss in the same experiments that are shown in A. 
The cells were treated at indicated time points with PLY+DTT at 50 ng/ml (black line) or were 
pretreated with TIP (50 µg/ml) (black dotted line) or sTIP (50 µg/ml) (grey dotted line) for 30 min before 
PLY+DTT at 50 ng/ml was added.  
In A) and B) the graphs show the mean values + SEM of at least three independent experiments for 
each group. 
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4 Discussion 

 

4.1 The role of listeriolysin O in Listeria monocytogenes’ ability to cross 

the epithelial barrier  

The intestinal epithelium forms the first line of defence against food borne pathogens. 

Exactly how L. monocytogenes is able to cross this barrier after being taken up 

through contaminated food has been an unsolved question for a long time. The 

requirement of L. monocytogenes to establish a successful infection in the human 

host is its intracellular survival and replication (Tilney and Portnoy, 1989). It is well 

equipped to invade a range of different cell types, proliferate in their cytosol and 

spread to neighbouring cells without being detected by the immune system 

(Vázquez-Boland et al., 2001). The bacterium harbours virulence factors, the 

internalins, which enables it to trigger its uptake into epithelial cells. Internalin A (InlA) 

specifically binds the epithelial transmembrane adhesion molecule ECad and induces 

bacterial uptake into the cytoplasm (Mengaud et al., 1996). The problem that has to 

be overcome by the pathogen is that ECad, which forms the adherens junctions (AJ) 

in epithelial monolayers, is protected from access through the apical side of the 

barrier by tight junctions (TJ). This prevents the bacteria from entering directly into 

the cytoplasm of epithelial cells and their further spread in the host. Recently, cell 

extrusions displaying unprotected ECad on the apical side of the intestinal barrier 

were discovered as sites of Listeria attachment and invasion (Pentecost et al., 2006). 

There is more evidence today from whole tissue samples of animals that some 

specific areas of the intestine provide windows of opportunity for L. monocytogenes 

to reach behind the epithelial barrier (Nikitas et al., 2011). It was shown that the 

bacteria can translocate swiftly from the apical to the basolateral side of the 

epithelium once they find accessible ECad. This process relies solely on InlA and is 

independent of other virulence factors like ActA and LLO. Yet, the virulence factor 

LLO is an absolute necessity for the pathogenicity of L. monocytogenes. So far, the 

proposed main function of LLO in Listeria infections is its ability to provide a route of  

escape from macrophage phagosomes (Geoffroy et al., 1987; Gedde et al., 2000). 

This prevents the destruction of the pathogen by fusion of the phagosome with the 

lysosome and allows it to proliferate in the cytoplasm and spread to other cells.  

This work is based on other theories about possible functions of LLO to explain the 

invasive abilities of the pathogen. When applied extracellularly, LLO by itself has a 
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number of effects on eukaryotic cells even at sublytic concentrations (Gekara et al., 

2007). It forms permeable pores in the plasma membrane of cells, thereby allowing 

the influx of extracellular Ca2+ (Repp et al., 2002). Ca2+ is an important intracellular 

second messenger and uncontrolled changes in its cytoplasmic concentration can 

trigger different cellular reactions (Berridge et al., 2000). A connection between LLO-

mediated membrane perforation and the invasiveness of L. monocytogenes in 

epithelial cells was only briefly addressed in a single publication (Dramsi and 

Cossart, 2003). The authors found that bacterial entry is dependent on the influx of 

extracellular Ca2+ through LLO pores but did not identify the responsible mechanism. 

The main goal of the following experiments was to elucidate whether, and if, how the 

LLO-induced perturbations of the intracellular calcium homeostasis in epithelial cells 

facilitate the entry of the pathogen.   

Caco-2 cells, a continuous line of heterogeneous human epithelial colorectal 

adenocarcinoma cells that resemble the enterocytes lining the small intestine in 

phenotype and polarisation (Hidalgo et al., 1989), were chosen for this approach. 

The cells form a closed epithelial monolayer if grown to confluence. The use of video-

microscopy in combination with a ratiometric method to measure the intracellular 

Ca2+ concentrations ([Ca2+]i) allowed for continuous recordings and the simultaneous 

evaluation of three parameters: cell viability, the changes in [Ca2+]i levels and 

alterations of cellular volume. 

 

4.1.1 Purified LLO forms Ca 2+-permeable pores in cultured epithelial cells 

At first, it was tested if purified LLO could trigger an increase in [Ca2+]i when simply 

added to cholesterol-free growth medium at physiological pH and temperature. In 

accordance to the findings of Repp et al. (Repp et al., 2002) LLO causes a dose 

dependent increase in [Ca2+]i (Figure 3.1.1B). The heat inactivation of LLO did not 

yield cellular responses, thereby proving that the active toxin is indeed responsible 

for the [Ca2+]i changes observed. The reactions to LLO varied between single cells. 

This might be due to an unequal distribution of toxin molecules over the cell layer or 

the heterogeneity of the used cell line (Figure 3.1.1A). Despite the observed 

differences, the cellular reaction to LLO followed a common pattern. First, a few 

seconds after the toxin was added, an initial peak in [Ca2+]i occurred. Thereafter, the 

[Ca2+]i showed a fluctuating curve that slowly decreased and levelled off towards the 



4 DISCUSSION 

 66 

end of the experiment. The mean values of the measured curves of at least 30 cells 

in each experiment were calculated to account for the observed variations.  

 

4.1.2 Preincubation with a reducing agent strongly increases LLO activity  

CDCs were formerly known as thiol-activated cytolysins because almost all family 

members are inactivated under oxidising conditions (Cohen et al., 1937). This can be 

reversed by incubating the toxins with reducing agents like DTT (Westbrook and 

Bhunia, 2000). Indeed purified LLO was about 50 times more active when 

preincubated with 5 mM DTT (Figure 3.1.2). This allowed for a reduction of toxin 

concentrations in the following experiments. It is still unclear what mechanism is 

responsible for the activation and stabilisation of the toxin molecules under reducing 

conditions. A single cysteine residue within the tryptophan-rich C-terminal region (the 

undecapeptide) that is conserved in most of the CDCs was thought to be responsible 

for that effect (Smyth and Duncan, 1978). This cysteine residue is, however, not 

required for pore formation, but responsible for the sensitivity to reducing and 

oxidising environments (Saunders et al., 1989; Bernheimer and Avigad, 1970; 

Morgan et al., 1996; Billington et al., 1997). Upon introduction in toxins that naturally 

do not contain this cysteine residue, the sensitivity to reducing and oxidising agents 

can be reinstated (Billington et al., 2002). How a single residue with the ability to form 

disulfide bridges can increase the stability of large toxin complexes (pores) is unclear. 

An explanation for the importance of this one cysteine would be to invoke the idea of 

the presence of a so called “cysteine switch”, a mechanism known from matrix 

metalloproteinases. This switch provides a way of turning on an enzymatic function or 

a protein activity by intramolecular conformational changes. 

LLO within the phagosome of macrophages was shown to be reduced and activated 

by the thiol reductase GILT (Singh et al., 2008). When secreted by bacteria in the 

intestinal tract it would also be in its active state due to the lack of oxygen and the 

ensuing reducing environment. 

 

4.1.3 Treatment with LLO leads to an [Ca 2+] i –dependent reduction of the overall 

surface area covered by epithelial cells 

When the single frames of the recorded measurements were evaluated it became 

obvious that the cells reacted to the incubation with LLO not only with an increase in 

[Ca2+]i but also with a reduction in the total area covered by the cells (Figure 3.1.3A). 
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About five to ten minutes after the toxin addition the cell monolayer began to shrink 

back from its original size. This behaviour could be quantified by using the TillVision 

software package. After defining the intensity background levels the software 

converted all non-background signals (=cells) to a uniform pixel colour that was 

subsequently counted frame by frame. The change in amount of pixels representing 

cells was plotted on a graph as a percentage of the signal before the addition of LLO. 

Thereby, the loss of cell surface area could be quantified simultaneously to the 

changes in [Ca2+]i. Employing this method, a continuous shrinking of cells could 

detected, starting approximately two minutes after toxin-induced Ca2+ effects were 

detectable (Figure 3.1.3B). 

An emerging question was whether the loss in cell surface area was directly 

connected to the disturbance of the intracellular calcium homeostasis. Hence, an 

unspecific calcium channel inhibitor, LaCl3, was used to block the ion influx through 

the toxin pores. Lanthanides and other trivalent metal ions have been used before to 

block LLO-induced Ca2+ flow through plasma membranes (TranVan Nhieu et al., 

2004; Bittenbring, 2005; Butler, 2004; Repp et al., 2002; Dramsi and Cossart, 2003) 

and La3+ was found to have the lowest IC(50) value (Bittenbring, 2005). Previous 

studies employing electrophysiological methods proposed pores consisting of as little 

as three toxin molecules when using low LLO concentration (Repp et al., 2002; 

Butler, 2004). These pores would have a much smaller diameter than the ones 

consisting of up to 50 monomers described with electron microscopy. This might 

explain the pores’ relative specificity for Ca2+ and how lanthanum ions are able to 

block them. 

When cells were preincubated with 10 mM LaCl3, no reaction to the addition of LLO 

was observed. Even very high concentrations (250 ng/ml) of DTT-activated LLO 

could not trigger changes in [Ca2+]i or the cell surface area (Figure 3.1.4). When 

LaCl3 was given one minute after the toxin, the increase in [Ca2+]i stopped 

immediately and remained steady somewhat above the baseline. Also, no cell 

shrinking could be observed in this experiment. LLO alone at the same concentration 

(20 ng/ml) caused an approximately two times higher increase in [Ca2+]i and a drop in 

the cell surface area. Finally, Thapsigargin was administered to see if the intracellular 

Ca2+-stores were still intact. Thapsigargin inhibits the SERCA, which leads to a 

release of ER-stored Ca2+ that can be detected in the cytoplasm as a slow increase 

in [Ca2+]i that forms a very broad peak (Thastrup et al., 1990). In related experiments 



4 DISCUSSION 

 68 

with PLY the addition of Thapsigargin induced no further increase in [Ca2+]i (see 

appendix section 8.2). This might be because the amount of Ca2+ released from the 

ER was not large enough and was covered by the massive influx through the pores in 

the plasma membrane. Alternatively, the ER might have been damaged by the toxin 

incubation in some way and subsequently was emptied of Ca2+. As both LLO and 

PLY form Ca2+-permeable pores, the results from one toxin probably resemble the 

ones of similarly-conducted experiments with the other. Therefore, it was presumed 

that administration of Thapsigargin after LLO incubation would also show no further 

increase in [Ca2+]i. When LaCl3 was added before or shortly after LLO, the 

subsequent treatment with Thapsigargin triggered a slow increase in [Ca2+]i, 

indicating that the intracellular Ca2+-stores were not affected. This indicates that 

blocking LLO pores protects intracellular Ca2+-stores from direct or indirect effects the 

toxin might have on them. The release of ER-stored Ca2+ by Thapsigargin had no 

effect on the cell surface area. These findings indicate a direct link between the influx 

of extracellular Ca2+ and the shrinking of epithelial cells. The reason for the volume 

loss might be due to an osmotic reaction to the intracellular ion balance. When an 

imbalance was prevented by blocking the toxin pores the cells did not react with a 

reduction of their volume.  

 

4.1.4 Lanthanum reduces L. monocytogenes  invasiveness in epithelial 

monolayers and has bactericidal effects at millimol ar concentrations 

A reduction of the cell volume and ensuing strains or eventual breaks in intestinal 

epithelial monolayers might be helpful for L. monocytogenes in entering the host. The 

breaking of TJs and AJs would provide the bacteria access to ECad, the ligand for 

InlA, the virulence factor that triggers the bacterial uptake into epithelial cells (Figure 

4.1.1). Therefore, it was tested if the action of LLO on epithelial monolayers in vitro 

would increase the amount of bacteria inside the cells. Again, LaCl3 was used to 

block the shrinking of cells due to the toxin’s action when incubated with bacteria. 

This group was compared to mock-treated cells that were also infected with the same 

MOI of L. monocytogenes.  

To be sure that LaCl3 had no deleterious effects on the pathogen the supernatants 

were also checked for bacterial numbers. The results showed that increasing 

concentrations of LaCl3 could significantly reduce the number of bacteria inside cells 

and significantly increase their number in the supernatant in a dose-dependent 
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manner (Figure 3.1.5). This is in accordance to the observations of Dramsi and 

Cossart (Dramsi and Cossart, 2003). They also used LaCl3 to reduce the 

internalisation of L. monocytogenes but did not dwell on the link between Ca2+-influx 

and cell shrinking. 

 

 
Fig. 4.1.1  Model for invasion of epithelial cells by L. monocytogenes . ECad is inaccessible to 
bacteria in functional epithelial barriers. Volume loss triggered by LLO would cause TJ breakdown, 
making ECad available. 
 
 
Another interesting finding was that high amounts of LaCl3 seemed to be toxic for the 

pathogen. At concentrations of 1 mM LaCl3 and above, the bacterial numbers were 

strongly reduced inside as well as outside the cells. At concentrations of 5 mM and 

10 mM, it was not possible to detect any CFUs on the agar plates when the cell 

lysates and supernatants were plated out undiluted. 

To ensure that the observed reduction in bacterial numbers was indeed an effect of 

LaCl3 the following experiment was conducted. The same amount of bacteria was 

incubated in exactly the same medium and LaCl3 concentrations as in the previous 

experiment, but without the epithelial cells. Interestingly, the results were not the 

same as before. The bacteria did not only tolerate the presence of LaCl3 better, but at 

a concentration of 1 mM they did actually grow to significantly higher numbers than 

the control group (Figure 3.1.6). This was surprising, taking into account the sparse 

composition of the medium used. HEPES medium basically is just an isotonic and 

buffered solution containing no growth essentials like amino acids or trace metals 

besides Ca2+ and glucose. In the presence of 2.5 mM LaCl3; the bacterial count was 

unchanged in comparison to the control. At higher concentrations the numbers of live 

bacteria was reduced significantly. The CFUs went down by three log steps when 

incubated with 5 mM LaCl3 and by six log steps with 10 mM, but there were still 

colonies found to be counted. The difference in bacterial resistance to LaCl3 in the 
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presence or absence of cells could be caused by the active bacterial defence that is 

known from epithelial cells. This includes the production and release of antimicrobial 

peptides and reactive oxygen species. When the bacteria are subject to negative 

influences from both the cells and LaCl3, it is to be expected that their survival suffers 

under double pressure. 

The influence of LaCl3 on bacterial growth and survival was tested in more detail by 

establishing growth curves of L. monocytogenes in different media and increasing 

concentrations of LaCl3 (Figure 3.1.7). In HEPES medium, the untreated bacteria 

showed only a minimal increase in OD over the measurement period of ten hours. All 

groups grown together with LaCl3, with the exception of the two highest 

concentrations, were able to reach OD levels twice as high as the control. When 5 

and 10 mM LaCl3 were added to the microplate wells used in this assay a cloudy, 

white precipitate formed that made it impossible to detect the minuscule changes in 

OD values in HEPES medium. Even the background correction with the same LaCl3 

concentrations measured without bacteria could not counter this effect. The other two 

media used were MM, a minimal growth medium for bacteria and BHI, a rich and 

complex medium to achieve fast proliferation and dense cultures. The outcome in 

MM was similar to HEPES. The bacteria achieved higher OD values when growing in 

media containing LaCl3, except for the highest concentration. In 10 mM LaCl3, the 

bacteria grew distinctly worse but were still able to increase the optical density of the 

culture. It appeared that the gain in growth compared to the control in all other groups 

was lower than in the previous experiment. Also, the problem with precipitations of 

high LaCl3 concentrations was less pronounced so that all groups could be 

evaluated. When the bacteria were cultured in BHI, the presence of LaCl3 had 

completely different effects on the growth curves. Here, lower concentrations of up to 

0.5 mM LaCl3 had no influence on the multiplication speed or maximum OD values 

when compared to the untreated control. The groups treated with higher amounts 

clearly showed a dose-dependent growth inhibition. At concentrations of 1 mM LaCl3, 

the growth curve was identical to lower concentrations for up to five hours, after that it 

showed a weaker increase and levelled off shortly below the maximum OD of the 

control. Similar results were obtained in the 2.5 mM group that reached a plateau 

phase at a somewhat lower density. In the 5 mM group, the ascending slope of the 

growth curve was less steep and achieved a density that was about one third smaller 

than the control. High concentrations of LaCl3 (10 mM) seemed to have almost 
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bacteriostatic properties in BHI, as bacterial proliferation was strongly inhibited and 

the maximum density was about 75% below control values. From these multifaceted 

results one might conclude that there is a link between the availability of growth 

factors in the environment and the tolerability and even use of LaCl3 by the bacteria. 

There are reports that La3+ can increase the function of enzymes needing metal ions 

as cofactors or even replace the cations for enzymatic functions (Pang et al., 2002; 

Zhang et al., 2003, 2006). The most important cofactor for bacterial growth is iron 

(Fe). It is vital for energy production, gene regulation and DNA biosynthesis and 

therefore an absolute requirement for replication (Andrews et al., 2003) . The fact that 

enzymes like catalase and superoxide dismutase are more active in the presence of 

La3+ indicates that it is able to assume some functions of Fe-ions. As the medium 

becomes more complex and complete this could turn into a negative effect, where 

lanthanum ions at high concentrations compete with other metal ions of better 

functionality. This has been reported for some enzymes (Huber and Frieden, 1970; 

Marquis and Black, 1985) and could cause the observed reduction in replication 

efficiency. There is only little information in the literature about the toxicity of 

lanthanum towards bacteria. Early works dealing with the effects of lanthanides on 

bacteria are reviewed by Burkes and McCleskey (Burkes and McCleskey, 1947). The 

authors report that there were several studies between 1894 and 1941 that came to 

the same conclusions about the conflicting effects of low and high concentrations of 

LaCl3 on bacterial growth. The latest publications found that low amounts of La3+ 

increase the cell permeability of E. coli in a way that allows the bacteria to access 

nutrients in the medium more easily. Higher concentrations, on the other hand, were 

toxic to the bacteria because they accumulated inside the cells and disturbed their 

growth (Peng et al., 2004; Liu et al., 2006).  

To summarize this section, it can be stated that LaCl3 has differential effects on L. 

monocytogenes that are highly dependent on the environmental conditions. In the 

invasion model low concentrations reduced the number of bacteria found inside cells 

while increasing bacterial numbers in the supernatant. This strengthens the 

hypothesis that LLO-induced cell shrinking facilitates invasion of closed epithelial 

monolayers for L. monocytogenes by disrupting intercellular junctions and thereby 

making ECad accessible. The same low concentrations were found to be harmless to 

the bacteria; they even allowed better bacterial growth in the minimal medium used 

for these experiments. The latter is also true for higher LaCl3 concentrations (1 and 
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2.5 mM) that were found to be non-toxic for the bacteria when applied in the absence 

of cells. In contrast to that, these two concentrations significantly reduced bacterial 

numbers in the invasion model. It seems like the bacteria can tolerate and even make 

use of LaCl3 when no other factors, like the active bacterial defence of epithelial cells, 

cause disadvantageous conditions. The mechanisms the bacteria use to cope with 

unfavourable environments, whatever they might be, most likely fail when facing both 

cellular defences and higher LaCl3 concentrations.  

 

4.1.5 The assessment of LLO mutants allows insights  into its function 

The mechanism of pore formation by CDCs as it is understood today has been 

described in chapter 1.2. There are still plenty of open questions concerning the 

exact process of intermolecular binding and oligomerization of single toxin molecules 

after binding to a membrane.  

Towards this end, there have been no studies focusing on the role of single amino 

acid residues in domain 1 of LLO. The single amino acid mutations already studied in 

LLO were located either in the signal peptide on the N-terminal side of the protein or 

in the tryptophan-rich undecapeptide. These were aimed to understand and 

manipulate the secretion of LLO and its binding to cholesterol dependent membranes 

respectively (Schnupf et al., 2006; Lety et al., 2002; Glomski et al., 2002; Michel et 

al., 1990; P. Tang et al., 1996).  

To address the functional role of domain 1, mutants were created by collaborators 

(see section 2.10). These were tested for their haemolytic activity and the ability to 

induce an increase of [Ca2+]i and a reduction in cell surface area. The results (Table 

3.2.1) might give an idea about the functional importance of the altered residues.  

To generate comparable results, the toxins were tested at the same concentration in 

the microscopic experiments. The relative activity was expressed in percent of 

maximum increase in [Ca2+]i and the percentage of lost surface area. In the 

haemolytic assay, the amount of toxin necessary for 50% of total lysis was 

determined by dilution and expressed as percent of control values. All mutation sites 

are indicated in figure 4.1.2. 

The LLO mutants could be separated into three groups. The first yielded a stronger 

reaction throughout all three tested parameters. This group consisted of:  

- A40W, where alanine was exchanged with tryptophan to see if a sterical 

hindrance by the introduction of a very large residue at this position would 
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interfere with toxin activity. This was obviously not the case as this mutant 

was highly lytic and induced a very strong influx of Ca2+ and reduction in 

cell surface area. 

- S44D, where serine was exchanged with aspartic acid. From the literature 

it is known that an amino acid swap at this site could interfere with a 

possible phosphorylation of the serine residue (Schnupf et al., 2006), which 

resulted in increased cytotoxicity. This finding contradicts the increased 

activity of the S44D mutant, as this exchange was aimed to simulate a 

permanently phosphorylated site. As the group of Schnupf et al. used 

intracellular bacteria and their survival in macrophages as indicators it is 

questionable whether the results are comparable to the use of purified 

toxin alone. 

- delta 51 was a mutant lacking the first 51 amino acids, including the signal 

peptide and the PEST sequence. As both are only necessary if LLO is to 

be produced and secreted by L. monocytogenes in infection situations it 

was not expected that this mutant would suffer a loss in activity. Lety et al. 

(Lety et al., 2001) also reported an increased haemolytic activity in LLO 

mutants lacking the PEST sequence, a finding that correlates with the 

results presented in this work. 

- N230W, where asparagine was exchanged with tryptophan. This was the 

only mutation lying outside domain 1. It was introduced to determine the 

importance of a polar uncharged side chain at this site. The introduction of 

a large hydrophobic residue resulted in a somewhat reduced haemolytic 

activity. Nonetheless the influx of extracellular Ca2+ and the cell shrinking 

were stronger than in the wild type. 

In the second group, one parameter was increased compared to the control, whereas 

lower values were observed in the other two tests. This group consisted of: 

- S44E, where serine was changed to glutamic acid. This mutant was 

constructed with the same intention as S44D. The idea was to emulate a 

constantly phosphorylated residue. In this case, the haemolytic activity and 

the ability to induce an influx of extracellular Ca2+ were somewhat lower 

than in the wild type, while the loss in cell surface area was higher. The 

reason for the stronger cell volume reduction is not clear but might be due 

to differences in the status of cultured cells. 
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Fig. 4.1.2  A single LLO molecule including coloured mutation s ites.  The colour-coding is the 
same as in table 3.2.1. The green colour represents the first 51 amino acids at the N-terminus. Crystal 
structure of LLO as resolved by Köster (2010) used with permission from the authors.  
 

 
- N179C, where asparagine was exchanged with cysteine. The idea was to 

enhance the oligomerization of LLO by introducing another possible site for 

disulfide bond formation. Indeed, this mutant was more haemolytic and 

triggered a stronger increase in [Ca2+]i, Only the loss of cell surface volume 

was not as pronounced as in the wild type. 
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- D394W, where aspartic acid was exchanged with tryptophan to reveal 

whether an acidic residue was necessary at this position. The introduction 

of a bulky side chain decreased the effects of the toxin on epithelial cells 

with slightly lower Ca2+ influx and less shrinking, but led to a better 

haemolytic activity.  

It should be mentioned at this point that the previously described mutants yielded 

effects close to those of the wild type, regardless of minor deviations in the activities 

in the three test parameters. It was concluded that none of the substitutions 

mentioned above were actually inhibiting the functionality of LLO in a crucial fashion. 

The third group of mutant toxins on the other hand displayed severe inabilities in 

lysing erythrocytes and triggering reactions in epithelial cells, hence it is concluded 

that they are crucial for LLO function. This group consisted of: 

- K175E, where lysine was exchanged with glutamic acid. This mutant had 

no effects on epithelial cells and showed only very little haemolytic activity. 

The swap of a positively charged side chain with a negative one indicates 

that the correct charge at this position is vital for LLO’s function.  

- S176W, where a serine was exchanged for a tryptophan to evaluate the 

effects of a sterical hindrance at this position. The results were the same as 

for the previous mutant, indicating that this section of the molecule is 

important for toxin functionality. 

- E262W, where glutamic acid was exchanged with tryptophan. The 

haemolytic activity of this mutant was reduced below 20% as compared to 

the wild type and epithelial cells did not react to this toxin. A negative 

charge at this site seems to plays an important role in toxin function.  

- delta 51 + K175E, a combination that was only half as haemolytic as 

K175E alone. This mutant was produced to see if there was an interaction 

with the first 51 amino acids of neighbouring toxin molecules and the L175 

site. This seemed to be the case as the double mutant performed much 

worse in lysing erythrocytes.  

- delta 51 + S176W, a double mutant that had an activity that was reduced 

by a factor of 106. As in the previous mutant the idea was to check for 

interactions between the N-terminal region of the toxin and the α-helical 

region in which S176 is located. This mutant had the lowest activity of all 
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tested LLO variants, which points towards the importance of this site and 

its interactions with the N-terminal region of adjacent molecules.  

- A40W + K175E, which was generated due to the same train of thought as 

the other two double mutants. Again, the question was if there were 

interactions between K175 and the N-terminal side of the bordering toxin 

molecules. The effect was a further reduction in haemolytic activity, similar 

to the delta 51 + K175E mutant. This indicated that single residues in the 

first 51 amino acids and their interactions with other side chains in domain 

1 of the toxin are important for the functionality of LLO.  

In conclusion, the results from the mutant toxins allowed an insight into the 

importance of single residues in domain 1 and the first 51 amino acids on the N-

terminal side of LLO. The combination of changes in the α-helical region in which 

K175 and S176 are located and the deletion of the N-terminal region of the protein 

toxin produced mutants that were significantly less active than the single mutants. 

This led to the hypothesis that these two regions in domain 1 are important for the 

binding and oligomerization of LLO molecules to form a prepore complex. The 

mutations that did not yield a negative change in the toxins functionality were either 

not crucial for its activity or, like in the case of delta 51 or A40W, could be 

compensated for in some way. The exact mechanisms will have to be studied in 

more detail to increase the understanding of functional importance of residues in 

domain 1. 

 

4.2 Effects of pneumolysin on epithelial monolayers 

The most common cause for pneumonia are bacteria and especially Streptococcus 

pneumoniae, which is found in about half of all patient isolates (Sharma et al., 2007; 

Anevlavis and Bouros, 2010; Frei et al., 2011; Waterer et al., 2011). The bacteria 

colonize the upper respiratory tract in a part of the healthy population and 

opportunistically establish infections in the very young, the elderly or 

immunocompromised individuals. In these risk groups, they may cause medical 

conditions like acute sinusitis, otitis media, meningitis, bacteraemia, sepsis, 

osteomyelitis, septic arthritis, endocarditis, peritonitis, pericarditis, cellulitis, and brain 

abscess (Siemieniuk et al., 2011; Musher, 1992). S. pneumoniae carries an array of 

virulence factors (Mitchell and Mitchell, 2010). The most important ones are the 

polysaccharide capsule and PLY, the latter being found in all clinically relevant 
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isolates (Paton and Ferrante, 1983; Paton et al., 1993). The bacterial capsule inhibits 

phagocytic clearance of the pathogen and hinders the recognition of bound 

complement and antibodies by the immune system (Jonsson et al., 1985; Musher, 

1992). Furthermore, it prevents the mechanical removal of the bacteria with mucus 

and reduces the exposure to antibiotics (van der Poll and Opal, 2009; Nelson et al., 

2007). PLY plays a crucial role in the pathogens ability to invade the host and cause 

detrimental invasive diseases like sepsis and meningitis (Kadioglu et al., 2002; 

Orihuela et al., 2004; Berry et al., 1989). Unlike the other toxins in the group of 

CDCs, it is not actively secreted but stored in the cytoplasm of S. pneumoniae and is 

released upon lysis of the bacterial cells. This can be triggered by either the bacterial 

virulence factor autolysin, antimicrobial actions from the host immune system or 

antibiotics (Nau and Brück, 2002; Kalin et al., 1987; Wheeler et al., 1999; Howard 

and Gooder, 1974). Some PLY is also released during the growth of S. pneumoniae 

in an autolysin-independent manner (Balachandran et al., 2001). The toxin has 

multiple effects on the host that prevent S. pneumoniae from being mechanically 

removed or killed (Rubins and Janoff, 1998). Moreover, it can promote the 

pathogen’s invasiveness. This is due to the toxic effects of PLY on epithelial and 

endothelial cells (Rubins et al., 1992, 1993; Steinfort et al., 1989). There is also 

evidence from microscopic studies that the toxin disturbs the integrity of the epithelial 

barrier in primary tissue derived from the upper respiratory tract (Rayner et al., 1995; 

Feldman et al., 2002). Taking together the existing evidence, it can be assumed that 

PLY plays a critical role in the pathogens ability to cause pneumonia, cross the 

epithelial barrier in the lung and the blood-brain-barrier to induce meningitis.  

The following experiments aimed to elucidate the role of the pore forming action of 

PLY and the subsequent influx of extracellular calcium in the disruption of pulmonary 

epithelial monolayers. The hypothesis was, much like as with LLO, that sublytic 

concentrations of the toxin can trigger cellular reactions that facilitate the entry of S. 

pneumoniae into the host. Most of the previous studies that were looking at the 

effects of PLY on the intracellular calcium homeostasis were done in neuronal or 

immune cells. These findings mainly focused on the induction of apoptosis (Stringaris 

et al., 2002), the role of PLY in neuronal damage in general ( Braun et al., 2002) and 

the suppression of important defence mechanisms (Nandoskar et al., 1986; Kadioglu 

et al., 2000). In 2007, the group of Iliev et al (Iliev et al., 2007) reported that PLY is 

able to induce changes in the actin cytoskeleton of human neuroblastoma cells. The 
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group further investigated the effects of PLY on other neuronal cell types and 

concluded that, although the toxin pores were necessary for the observed 

remodelling of the cytoskeleton, it was the influx of extracellular calcium ions through 

endogenous Ca2+-channels that triggered the changes in cell morphology (Iliev et al., 

2009; Wippel et al., 2011; Hupp et al., 2012).  

In order to investigate the ability of purified PLY to form Ca2+-permeable pores at 

sublytic concentrations the same experimental approach was chosen as for LLO. The 

cell line used for all experiments with PLY is called H441 and consists of human lung 

adenocarcinoma epithelial cells. This cell line forms closed epithelial monolayers if 

grown to confluence and is widely used as a model for lung epithelium.  

 

4.2.1 Purified pneumolysin forms Ca 2+-permeable pores in cultured epithelial 

cells 

To verify the activity of purified PLY, the toxin was added to the cells at a 

concentration of 2000 ng/ml. The response to the presence of the toxin was an 

immediate increase in the 340/380 nm ratio, which indicated an influx of extracellular 

Ca2+ through the PLY-pores into the cytoplasm of H441 cells. This correlates with the 

previously described findings in other cell types that were incubated with PLY 

(Cockeran et al., 2001; Braun et al., 2002). Between single cells, the observed 

changes in [Ca2+]i varied strongly (Figure 3.3.1A). The reason for this was most 

probably an uneven distribution of toxin molecules bound to the plasma membrane 

among the monitored cells. Similar effects occurred with LLO in this work and were 

also described by others working with the two toxins and looking at the calcium 

homeostasis of single cells (Braun et al., 2002; Repp et al., 2002).  

Preincubation with the reducing agent DTT also increased the activity of PLY. This is 

consistent with one of the early discovered properties of CDCs. PLY under reducing 

conditions could be used at about 20 times lower concentrations than the untreated 

toxin to yield the same amount of Ca2+ influx into cells (Figure 3.3.1B) This is a 

considerably weaker activation than observed for LLO (see 4.1.2). The reason for this 

discrepancy in the reaction of the two toxins to reducing conditions is not clear; so far 

there is no information about this or other comparisons of CDCs in the literature. 

There was also a difference in the dynamics of the [Ca2+]i increase between PLY and 

LLO. Cells treated with PLY showed a slow increase that reached a peak two to three 

minutes after the toxin was added and a steady decline of Ca2+-levels from there until 
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the end of the experiment. In contrast to that, LLO triggered a sharp peak shortly 

after addition that declined to somewhat lower Ca2+-levels which then remained 

constant for the rest of the experiment. The diverging reactions to PLY and LLO were 

not necessarily due to differences between the toxins but might have simply been 

caused by the use of two different cell lines.     

Using PLY+DTT that was heat-inactivated at 65°C for  five minutes did not yield a 

response from the cells, indicating that the toxin was the only active substance used 

in the experiment.   

 

4.2.2 Pneumolysin reduces the overall surface area of epithelial monolayers by 

toxin-induced influx of calcium ions into the cytop lasm 

The evaluation of the single photographs taken by the video microscopy system 

revealed that almost confluent cells treated with sublytic concentrations of PLY (100 

ng/ml) lost contact to one another and started to shrink (Figure 3.3.2A). This started 

approximately five minutes after the toxin was added and was represented by a loss 

of junctions between cells and a subsequent opening of intercellular space. Over 

time these openings increased in size as the single cells lost more and more of their 

original circumference. At the end of the experiment, large gaps had formed in a 

formerly closed epithelial layer. As with LLO-treated cells it was possible to quantify 

the loss of cell surface area. Figure 3.3.2B shows the decline of the total area 

covered by cells on the same experiment from which the single frames in 3.3.2A 

were taken. The sudden decline at around 360s was caused by the death of a single 

cell that is marked with a red arrowhead in part A of the Figure. Dead cells 

completely lose the fluorescent dye and therefore have a large impact on the whole 

surface area measurement. To avoid an interference of the data by dead or dying 

cells only experiments without any such occurrences were evaluated. The frequency 

of dead cells during all of the experiments was extremely low, indicating that the used 

PLY concentrations were not lethal to the great majority of cells for the chosen 

experimental times. 

As a consequence of the observations made in the video microscopy footage the 

status of intercellular junctions in cells treated with PLY was assessed. Closed 

monolayers of H441 cells were incubated with 100 ng/ml PLY for six hours, fixed and 

stained with a fluorescence-labelled anti-ECad antibody. ECad is the building block 

of AJs, which lend physical strength and strain resistance to the epithelial barrier. If 
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PLY was able to damage the integrity of pulmonary epithelium, it should have a 

strong influence on AJs. The results obtained by confocal microscopy confirmed this 

hypothesis and were similar to the ones from the previous experiment (Figure 3.3.3). 

The control group showed a closed monolayer with strong ECad signals along the 

intercellular borders. Cells treated with PLY had a much weaker ECad signal and 

large gaps were found between them (white arrows). Taken together, the results of 

these last two experiments indicate that PLY has detrimental effects on the integrity 

of pulmonary epithelial barriers by weakening intercellular junctions and inducing 

volume loss in cells.  

Next, it was examined whether the increase in [Ca2+]i triggered by the influx of 

extracellular Ca2+ through toxin pores caused the destabilisation of epithelial integrity. 

Like in the experiments with LLO, the unspecific calcium channel inhibitor LaCl3 was 

used to block any ion flux through the PLY pores. LaCl3 was found to block Ca2+-

influx through PLY pores in patch-clamp experiments (Schramm, 2004). The same 

study claims the formation of PLY pores consisting of very few molecules when the 

toxin is used at nanomolar concentrations. In analogy to LLO (Repp et al., 2002), it is 

likely that PLY also forms small pores at sublytic levels. Indeed, the diameter of PLY 

pores consisting of 38 subunits was described to be 40 nm in electron microscopy 

studies using lytic (micromolar) amounts of toxin (Tilley et al., 2005). Sublytic toxin 

concentrations, as used in here, probably allow only for smaller oligomers to form, as 

the amount of molecules per cell is limited. This would explain the relative selectivity 

of the pores for divalent cations (Schramm, 2004) and the blocking capability of the 

larger lanthanum ions. 

When the cells were preincubated with LaCl3, the administration of toxin (100 ng/ml) 

had no measurable effect on the calcium homeostasis or the cell surface area (Figure 

3.3.4). When the inhibitor was given shortly after PLY, the influx of extracellular Ca2+ 

was stopped immediately and the [Ca2+]i quickly returned to its basal level. There 

was no change in the cell surface area in this group. PLY alone triggered a strong 

and fast increase in [Ca2+]i with peak levels about two fold higher than in cells at rest. 

This group was the only one to show a decrease in the total surface area covered by 

cells, which started shortly after the toxin was added and continued until the end of 

the experiment. In the groups employing LaCl3, it was also checked whether the toxin 

was able to empty intracellular calcium stores. The SERCA-blocker Thapsigargin was 

added at the end of the experiments to examine whether the [Ca2+]i would change 
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due to the release of calcium ions from the ER. Indeed, the cells in both groups 

reacted to the presence of Thapsigargin by a slow increase in intracellular calcium 

levels. This indicated that the incubation with PLY in combination with LaCl3 did not 

damage the intracellular calcium stores. When the cells were treated with PLY alone, 

Thapsigargin was not administered because of the relatively small amount of Ca2+ 

stored inside the organelles. The peak caused by the small amount of ER-stored 

Ca2+ would probably not have been detectable due to the massive ion influx from the 

extracellular space through the toxin pores (see results from a similar experiment in 

appendix section 8.2).  

 

4.2.3 Pneumolysin depletes intracellular calcium st ores independent of 

endogenous ion channels. 

The influence of PLY on intracellular calcium stores was examined in more detail to 

follow up on the existing evidence in the literature. In 2007, the group of Gekara et al. 

(Gekara et al., 2007) described that LLO-producing L. monocytogenes and the 

purified toxin by itself were able to injure the ER of exposed cells. This group also 

observed an increase in [Ca2+]i connected to the damaged organelles and concluded 

that LLO might directly trigger the release of ER-stored Ca2+. The results in this study 

were not conclusive about the exact mechanisms behind this. The increase in [Ca2+]i 

could be partially inhibited by blocking endogenous ER-calcium channels, hinting the 

involvement of cellular signalling events.  

The following experiments were performed to test whether toxins from the group of 

CDCs are able to directly release Ca2+ from intracellular stores or if they hijack 

cellular signalling events to do so. By completely removing all extracellular Ca2+ 

before the administration of the toxin, it was possible to visualize the emptying of 

storage organelles into the cytoplasm. To achieve a completely Ca2+-free 

extracellular environment, the cells were measured in medium that was prepared 

without CaCl2. Additionally, the membrane-impermeable metal-ion chelator EGTA 

was added to remove all traces of Ca2+ from the medium before the start of the 

experiment. When cells were treated with PLY under these conditions, they reacted 

differently than in medium containing extracellular Ca2+ (Figure 3.3.5). The increase 

in [Ca2+]i started with a few seconds delay and was represented by an almost 

symmetrical peak that quickly returned to basal levels. This progression might be 

interpreted as the release of Ca2+ from the stores in the ER until they were 
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completely depleted. As the internal Ca2+ stores were obviously not able to hold their 

cargo, the cells probably tried to remove excess Ca2+ from their cytoplasm to the 

extracellular space, where the ions would be chelated immediately by the dissolved 

EGTA. This gradient was probably responsible for the rapid return to initial calcium 

levels. To prove that the ER was the source of the Ca2+ entering the cytoplasm, 

Thapsigargin was added some time after the toxin. The SERCA-inhibitor did not 

trigger any further changes in the [Ca2+]i, indicating that the ER was completely 

depleted of Ca2+. As a proof of concept, cells were treated with Thapsigargin first to 

empty the ER Ca2+-stores. This treatment resulted in an immediate increase in 

[Ca2+]i. The reaction to Thapsigargin was stronger than to PLY, arguably because the 

diffusion through the membrane of the ER was slower than the release caused by 

PLY, as can be seen in figure 3.3.5. Therefore the [Ca2+]i could reach higher levels 

before triggering the cells to remove the surplus ions from the cytoplasm. When PLY 

was added after Thapsigargin, [Ca2+]i showed only a minuscule and short-lived 

fluctuation. The conclusion drawn from this behaviour is that PLY, while still able to 

perforate the plasma membrane of the cells, could not interfere with the calcium 

homeostasis because the internal stores were already depleted. These two 

experimental setups give strong evidence that PLY is indeed able to release ER-

stored Ca2+ into the cytoplasm. The next question to answer was whether this effect 

was dependent on endogenous ER calcium-release channels. The two types of 

channels responsible for the controlled release of Ca2+ into the cytoplasm are 

ryanodine receptors (RyR), which are activated by elevated Ca2+-levels in the 

cytoplasm, and inositol trisphosphate (IP3) receptors (IP3R), which are activated by 

the second messenger IP3. To investigate an involvement of these two endogenous 

channels in the PLY-triggered ER-store depletion, they were pharmacologically 

deactivated with specific inhibitors. RyR were blocked by Ryanodine (Rya) and IP3R 

were inhibited with Xestospongin C (XeC). Cells pretreated with a cocktail of both 

Rya and XeC showed a very similar reaction to PLY as did untreated cells. The 

maximum [Ca2+]i reached was a little lower, but the kinetic of the reaction was 

basically identical. Thapsigargin was added again at the end of the experiment to 

verify the Ca2+-depletion of the ER. The SERCA-inhibitor had no further effect, 

indicating that PLY released the stored Ca2+ independent from endogenous ER 

calcium-release channels. In connection to this, Stavru et al. (Stavru et al., 2011) 

recently reported that LLO is able to interfere with mitochondrial dynamics and 
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energy production when applied extracellularly. This could also hint to a change in 

the mitochondrial Ca2+-concentration due to the toxin, a possibility that was not 

addressed experimentally by the authors. Therefore, this is the first finding of a CDC 

directly depleting intracellular Ca2+-stores without relying on host signalling pathways. 

 

4.2.4 The effects of pneumolysin on epithelial cell s mimic those of 

hyperosmotic conditions. 

The reactions of cells to LLO and PLY, as described in sections 4.1.3 and 4.2.2, 

respectively, were reminiscent of those to hyperosmotic conditions found in the 

literature. Cells under hyperosmotic stress are known to show a number of changes 

in response to the non-physiological conditions (Burg et al., 2007). These include, 

among others, a rapid loss in cell volume (Hazama and Okada, 1988), a transient 

increase in [Ca2+]i (Dascalu et al., 1995; Homsher et al., 1974), the activation of MAP 

kinase p38 (Han et al., 1994) and the subsequent translocation of the transcription 

factor NFAT5 from the cytoplasm to the nucleus (López-Rodríguez et al., 2001). The 

incubation with PLY had triggered a loss in cell surface area that was dependent on 

the influx of extracellular Ca2+ in the previously discussed experiments (see section 

4.2.2). Therefore, the toxin’s effects were compared to those caused by hyperosmotic 

stress in the same cell type. 

Sorbitol was used as a membrane impermeable solute to increase the osmolarity of 

the medium from 300 mOsm/kg to 500 mOsm/kg while the cells were monitored for 

their [Ca2+]i and their total surface area. Upon addition of 200 mOsm Sorbitol, the 

[Ca2+]i increased slightly and returned to basal levels within about four minutes 

(Figure 3.3.6). Thapsigargin had no effect when given after Sorbitol, suggesting that 

the ER stores were depleted of Ca2+ by the induction of hyperosmotic stress. When 

the Ca2+-ionophore Iono was administered at the end of the experiment there was a 

fast and strong peak in [Ca2+]i that showed an intact ion gradient between the intra- 

and extracellular space. These findings are consistent with the existing results from 

other groups (Homsher et al., 1974; Hazama and Okada, 1988). To assess the 

influence of extracellular Ca2+, a second group of cells was preincubated with LaCl3 

to block the ion flux through eventually opened endogenous membrane channels 

upon induction of hyperosmotic stress. The pretreated cells reacted differently to the 

hyperosmotic stimulus, their initial increase in [Ca2+]i was slower but had an almost 

doubled magnitude compared to the non-pretreated cells. Over the next minutes the 
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calcium levels dropped only slightly and did not respond to the addition of 

Thapsigargin. The explanation for this diverging behaviour could be the same as in 

the case of Thapsigargin causing a stronger signal in Ca2+-free medium than PLY 

(see section 4.2.2). The slower rise was possibly due to the unspecific calcium 

channel blocker LaCl3 inhibiting migration of extracellular ions through membrane 

channels into the cytoplasm. In this scenario, all of the Ca2+ released would have 

originated from the ER, which fittingly did not react to incubation with Thapsigargin. 

Additionally, the presence of LaCl3 was probably responsible for the permanently 

elevated Ca2+ levels as it prevented the active removal of the excess ions from the 

cytoplasm.  

There were also changes in the second parameter measured. As soon as Sorbitol 

had been added, the cells in both groups immediately lost about 2% of their original 

surface area. The reaction was exactly the same in both setups independent of the 

preincubation with LaCl3.This indicated that the inflow of Ca2+ into the cytoplasm from 

intracellular stores and not the extracellular medium was directly linked to the loss of 

cell surface area. The striking difference in the reaction of cells to hyperosmotic 

stress was the quick adaption to the changed environmental conditions. The loss in 

surface area was sudden but stopped again immediately, leaving the cells with a 

reduced but stable volume. Cells treated with PLY lost more and more surface area 

over time, the perforation of their membranes left them without a way to stabilize their 

volume again (see section 4.2.2).  

The translocation of cytoplasmic NFAT5 into the nucleus is an important step in the 

adaptation of cells suffering from hyperosmotic stress. The transcription factor has 

been studied in detail in the last few years and was found to induce genes that have 

anti-apoptotic activities, activate the accumulation of organic osmolytes in the 

cytoplasm and facilitate the uptake of water into the cell (Woo et al., 2002; Hasler et 

al., 2005; Burg et al., 2007; Ferraris and Burg, 2004). 

Cells that were kept in regular medium (300 mOsm/kg) showed an almost even 

distribution of NFAT5 staining throughout the whole cell with a somewhat reduced 

signal in the nucleus (Figure 3.3.7). This is consistent with the literature, where it is 

described that NFAT5 is present in both nucleus and cytoplasm. The ratio of the 

transcription factor found in- and outside the nucleus at isotonic conditions is 

dependent on the cell type but is always directly responding to the osmotic conditions 

surrounding the cell (Dahl et al., 2001; Lopez-Rodríguez et al., 1999). Cells treated 
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with sublytic amounts of PLY (100 ng/ml) or kept in medium with an increased 

osmolarity (500 mOsm/kg) both featured a visible increase in NFAT5 signal 

colocalizing with the DAPI-stained nucleus. Translocation of NFAT5 to the nucleus 

under hyperosmotic stress is caused by a combination of increased intracellular ionic 

strength that is due to cell shrinking and the phosphorylation of the transcription 

factor by p38 and other kinases (Irarrazabal et al., 2004, 2008; Dahl et al., 2001; 

Ferraris et al., 2002; Ko et al., 2002). The fact that PLY is able to induce volume loss 

and thereby an increase in intracellular ionic strength together with the other finding 

that p38 is activated in epithelial cells in response to the presence of the toxin 

sufficiently explain why it also triggers the shift of NFAT5 into the nucleus. This is a 

previously undescribed effect of PLY or other members of the CDCs that allows 

further insights into the toxin’s mode of action on host cells. 

 

4.2.5 Blocking conventional PKC-activity and MLC-ph osphorylation inhibits the 

pneumolysin-triggered loss of cell surface area 

In the previous section it was established that cells react to the presence of sublytic 

concentrations of PLY in a way that is similar to hyperosmotic conditions. While 

volume loss due to an osmotic imbalance is easily explained, the question remained 

how the toxin could trigger the same effect. It had to be excluded that pore formation 

at the used concentration by itself was sufficient to cause the observed volume loss, 

e.g. by simply allowing the cellular content to exit through the pores. If this was the 

case, then interventions with the cells machinery should have no impact on the 

shrinking caused by the toxin. Promising targets to look at in this context were the 

cPKC. This subgroup of the PKC family is dependent on elevated Ca2+-levels to be 

active, a prerequisite that is given in cells treated with PLY. The cPKC were found to 

be involved in the disassembly of TJs and there is evidence that their activation 

negatively affects the integrity of epithelial monolayers (Tai et al., 1996; Chou et al., 

1998; Tepperman et al., 2005). In most studies investigating this train of thought, 

inhibitors that act specifically on the different subsets of the PKC family were used to 

determine which isoforms were responsible for the loss of epithelial integrity. It was 

reported that inhibitors with selectivity towards cPKC and especially the isoform PKC-

α prevented the detrimental effects of a general PKC activation. Furthermore PKC-α 

is involved in the regulation of the actin cytoskeleton (Larsson, 2006). It has functions 

in regulating the transport and distribution of integrins (Ng et al., 1999), the 
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prevention of F-actin bundling (Anilkumar et al., 2003) and the formation of stress 

fibres (Holinstat et al., 2003).  

Therefore, the effect of the PKC-α specific inhibitor Gö6976 (Martiny-Baron et al., 

1993) was tested on PLY-treated cells (Figure 3.3.8). The increase in [Ca2+]i upon 

PLY administration showed an initial difference between cells pretreated with Gö6976 

and those that were not pretreated. The Ca2+-levels in the untreated group featured a 

characteristic peak right after the toxin was given and later dropped somewhat but 

stayed elevated the whole time. The initial peak in the inhibitor-pretreated group was 

visibly lower; however, this difference in peak height was not statistically significant. 

Approximately ten minutes after PLY was added, both curves met and had a similar 

progression until the end of the experiment. When Iono was given, both groups 

showed a strong peak, indicating that the [Ca2+]i was not saturated. While the toxin-

induced inflow of extracellular Ca2+ was not really disturbed by Gö6976, the loss in 

surface area covered by cells was clearly alleviated by preincubation with the 

inhibitor. Cells treated with PLY alone had lost almost 20% of their surface area at 

the end of the experiment. In contrast to that, the cells in the Gö6976-pretreated 

group did not shrink in the presence of the toxin. This group only suffered a loss in 

cell surface area upon the addition of Iono, indicating that it was still sensitive to the 

massive perforation and subsequent ion influx caused by the ionophore. This result 

indicates that the decrease in cellular volume was not due to the leaking of 

intracellular material through toxin pores but a cellular mechanism that is PKC-α – 

dependent.       

Cells exposed to hypoosmotic medium are known to respond by the so called 

regulatory volume decrease (RVD), a cellular reaction to counteract excessive cell 

swelling and eventual membrane burst. To antagonise the increase of their volume, 

the cells follow a dual strategy. The first step is the release of intracellular osmolytes 

like taurine into the extracellular space in an attempt to equilibrate the osmotic 

pressure (Shennan et al., 1993). The second step is a reorganisation of the actin 

cytoskeleton that actively stabilizes the cell size and initiates shrinking to return to the 

physiological volume (Schmidt-Nielsen, 1975). The trigger starting this process is an 

increase in [Ca2+]i (Grinstein et al., 1982) followed by the activation of PKC-α (Liu et 

al., 2003). This in turn causes the phosphorylation of a part of the actin cytoskeleton, 

myosin light chain (MLC) (Marshall et al., 2005). Phosphorylated MLC induces a 

contraction of the actin cytoskeleton that has been shown to reduce epi -and 
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endothelial monolayer integrity and cause the formation of intercellular gaps (Turner 

et al., 1997; Kawkitinarong et al., 2004; Wu et al., 2010; Garcia et al., 1995; Verin et 

al., 1995). With the previous results of this work in mind, it was hypothesized that 

PLY at sublytic concentrations could simulate hypoosmotic conditions, thereby 

triggering a RVD-response in affected cells. This cellular reaction could explain the 

continuous loss in cell surface area, as it would go on as long as there is an elevated 

level of Ca2+ in the cytoplasm. It would also fit with the finding that the area loss is 

stopped immediately by LaCl3 through the blocking of Ca2+-permeable pores and 

prohibited by Gö6976 by inhibiting PKC-α activity. The formation of intercellular gaps 

in long-term PLY exposed cells (Figure 3.3.7) also points towards this explanation.  

To check the hypothesis that PLY induces counteractions to simulated hypoosmotic 

conditions rather than mimicking hyperosmotic ones, it was tried to interfere with the 

last step in the cellular RVD-reaction, the phosphorylation of MLC. To do so, cells 

were preincubated with a peptide called TIP. This is a circular 17 amino acid peptide 

that mimics the lectin-like (TIP) domain of tumor necrosis factor (TNF) (Lucas et al., 

1994). The TIP peptide was described to restore the fluid balance and reduce the 

vascular permeability in an acute lung injury model (Elia et al., 2003; Vadász et al., 

2008; Hamacher et al., 2010; Bloc et al., 2002) and to ameliorate LLO-induced 

hyperpermeability in endothelial cells by inhibiting MLC phosphorylation (Xiong et al., 

2010; Lucas et al., 2009; Yang et al., 2010).  

Cells preincubated with the TIP peptide were compared to a control group that was 

left untreated and a group of cells that was pretreated with a peptide containing the 

same amino acids as TIP but arranged in a random order, called scrambled TIP 

(sTIP). These three groups were treated with PLY like in the previous experiment and 

monitored for changes in [Ca2+]i and the surface area covered by cells (Figure 3.3.9). 

Control cells and those preincubated with the non-functional sTIP featured changes 

in [Ca2+]i that were characteristic for PLY-treated cells. The TIP-preincubated cells 

produced an initial peak that was a little smaller than in the other two groups. 

Interestingly the Ca2+ levels dropped below the baseline after a few minutes and 

stayed low until the end of the experiment in this group. These differences were not 

statistically significant, which might be due to the low number of replicates and the 

high deviations between them. It is not clear how the functional peptide affected the 

cells’ Ca2+-homeostasis, as it does not bind PLY or directly inhibits the inflow of 

extracellular ions (Xiong et al., 2010). A possible explanation for the continuously 
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reduced but still fluctuating Ca2+ levels could be that the peptide stimulates export 

mechanisms to reduce the cytoplasmic Ca2+ concentration, thereby effectively 

working against the PLY induced ion influx. Due to PLY, the sTIP-pretreated and 

control group both suffered a major decrease in the surface area covered by cells. 

Although the cells preincubated with the non-functional peptide were somewhat more 

affected, there was no significant difference to cells in the control group. Pretreatment 

with TIP had an effect similar to that observed by the use of the PKC-inhibitor in the 

previous experiment. Cells that were preincubated with the functional peptide before 

PLY was added showed only a minor decrease in cell surface area upon treatment 

with the toxin. The difference between this group and the control was found to be 

significant for the second half of the experiment. These results point towards the 

induction of a certain subset of cellular machinery by PLY via the simulation of 

hypoosmotic conditions, caused by continuously elevated [Ca2+]i  due to toxin pores 

in the plasma membrane.   

 

4.3 Summary 

The motivation for working with sub-lytic concentrations of two long-known and 

generally well-characterized toxins like LLO and PLY was that there are still open 

questions about their role in pathogenicity. The findings described in this work are 

summarized in figure 4.3.1.  

An important finding not mentioned before was the similarity of the cellular reactions 

to the toxins. Both LLO and PLY triggered a fast and permanent increase in [Ca2+]i at 

sublytic concentrations. They were also causing a loss of cell surface area that was 

causally linked to an influx of extracellular Ca2+. Seeing the similarities of the toxins’ 

effects, it is assumed that any effect observed with one toxin might be also found with 

others sharing the same mode of action. As an example, the ability of PLY to empty 

the ER stores of Ca2+ is probably shared by LLO and other members of the CDC 

family. Also the inhibitory effect of Gö6976 and TIP on the loss of cell surface area is 

assumed to be similar in LLO-treated cells, although any of these hypotheses have to 

be tested experimentally.  
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Fig 4.3.1 Model of toxin effects on epithelial cell s as described in this work.   
A) depicts epithelial cells confronted with a toxin like LLO or PLY.  
Middle cell: toxin pores allow influx of extracellular Ca2+, leading to the activation of PKC-α. Activated 
PKC-α in turn mediates the phosphorylation of MLC, which leads to a contraction of the actin 
cytoskeleton. LaCl3 stops the Ca2+ influx and thereby inhibits all sequential effects of the toxins. Cell 
shrinking is also significantly reduced when PKC- α or MLC phosphorylation are inhibited (by Gö6976 
or the TIP-peptide, respectively).  
Right cell: if the number of toxin pores is small enough, a Ca2+-dependent membrane repair 
mechanism is induced (see Corrotte et al., 2012) 
B) shows the effects of toxins on epithelial monolayers.  
Middle cell: in Ca2+-free medium it was found that toxin incubation rapidly empties the ER-Ca2+-stores 
into the cytoplasm. This reaction is independent from endogenous ER Ca2+-channels like IP3 receptors 
(IP3R ) and ryanodine receptors (RyR). The shrinking of cells disrupts intercellular junctions, leading to 
a loss of tight junction integrity. When the epithelial barrier becomes leaky it cannot fulfil its function to 
hinder pathogens from entering and fluid loss into the lumen of the lung or intestines. After a few hours 
of incubation with PLY the translocation of NFAT5 from the cytoplasm into the nucleus was observed, 
probably due to the increasing intracellular ionic strength in shrinking cells.  
Right cell: successful repair by endocytosis of toxin pores and subsequent resealing of the membrane. 
 
 
It was also observed that the cells incubated with toxins had, depending on the 

concentrations used, a certain capability to counteract the Ca2+ influx caused by LLO 

or PLY. It was found that the [Ca2+]i started to oscillate after the addition of toxin and 

that cells exposed to low concentrations could stabilize their Ca2+ homeostasis back 
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to basal levels after a few minutes (Figure 3.1.1 and 3.3.1). The cellular reaction 

obviously included the removal of excess Ca2+ from the cytoplasm, e.g. by the 

plasma membrane Ca2+ ATPase, but must have also had a kind of repair mechanism 

to remove or seal perforated areas of the plasma membrane. This is deduced by the 

wavelike changes in [Ca2+]i that indicate the continuous opening and closing of Ca2+ 

channels. 

A mechanism that re-establishes the cellular homeostasis has been described for 

SLO by Corrotte et al. (Corrotte et al., 2012). This group found that cells are able to 

reseal their membranes by forming endocytic vesicles of the perforate membrane 

areas in a Ca2+ dependent manner. Comparable results have been produced with 

perforin, an effector secreted by cytotoxic T lymphocytes that shares several 

structural and functional features of CDCs (Praper et al., 2011). It was published that 

perforin triggers invaginations and formation of internal vesicles much like the ones 

described with SLO.  

In conclusion, it can be stated that the role of LLO and PLY in host-pathogen 

interactions is multifaceted and complex. Further research is necessary to unravel all 

the distinct functions of the toxins in bacterial pathogenicity 

 

4.4 Outlook 

In this work it was possible to clarify several functional aspects of the two bacterial 

protein toxins LLO and PLY. It could be shown that sublytic concentrations of LLO 

induce a reduction of the overall surface area of closed epithelial monolayers that is 

dependent on the influx of extracellular Ca2+ through toxin pores into the cytoplasm of 

affected cells. The ability of LLO to disturb the integrity of epithelial monolayers with 

this mechanism was found to benefit the invasiveness of L. monocytogenes, as the 

blocking of the toxin pores reduced the number of bacteria found intracellularly and 

increased the amount of bacteria in the extracellular space. Therefore, the hypothesis 

was established that the toxin is increasing the availability of the cellular receptor 

ECad, which is needed by the bacteria to invade host cells. This needs further 

investigation, for example by using bacterial strains in infection experiments that 

express toxin mutants. By using a completely non-functional mutant or one that can 

bind the plasma membrane of cells but is unable to form ion-permeable pores, it 

could be excluded that the effects seen are due to a cellular response. This could be 

either a receptor recognizing the toxin molecule or some mechanism triggered by 
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LLO binding to the membrane, which could both lead to the opening of endogenous 

Ca2+ channels that could be responsible for the increase in [Ca2+]i. The used channel 

blocker (LaCl3) is too unspecific to exclude this possibility, as it acts on all channels 

allowing a Ca2+ flux (Lansman, 1990; Hagiwara and Takahashi, 1967). It was also 

seen that LaCl3 had a diverging effect on the growth capability of L. monocytogenes 

that depended not only on the concentration of the chemical but also on the 

composition of the medium used to grow the bacteria. The few publications dealing 

with the effects of lanthanides on the growth of bacteria do not reveal the 

mechanisms behind the inhibition or stimulation of bacterial growth. Therefore, it 

would be very interesting to test the bacteriostatic and bactericidal capacity of LaCl3 

on other bacteria to check if it is limited to the one strain used in this work or active 

on bacteria in general. The therapeutic potential of LaCl3 in infectious diseases is 

presumably very limited, as it acts on the ion homeostasis via multiple targets in a 

number of human tissues (Weiss, 1974; Huettner et al., 1998; Wengler et al., 2007; 

Herscher and Rega, 1997). Understanding of the mode of action of LaCl3 on bacterial 

growth and survival is still desirable, as it could help to develop new antibacterial 

treatments. 

The LLO mutants tested in this study revealed an important role of single amino acids 

for the function of the toxin in the so far neglected domain 1. It was found that some 

mutations were without a measurable effect on the activity of LLO, while others were 

either increasing the cellular reaction to the toxin or were corrupting it. The logical 

continuation would be to test the less active mutants for their ability to bind 

cholesterol-containing membranes, multimerise on them and form prepore 

complexes. This could be done using electron microscopy and artificial membranes. 

The knowledge gained from these experiments would be the role of each single 

mutated amino acid, and domain 1 as a whole, in the process of pore formation of a 

typical CDC. Non-functional toxin mutants could also be used to test whether pore 

formation and concomitant influx of Ca2+ are necessary to trigger cellular reactions or 

if toxin binding to the membrane is sufficient. The pores of CDCs (up to 45 nm 

diameter) are large enough for large molecules to passage directly into the 

cytoplasm. Mutants could be developed to form pores of a distinct size or selectivity 

as system for intracellular delivery. If the conformational changes in the process of 

pore formation were elucidated it might even be possible to generate toxin mutants 

that can be opened or closed at will via a switch-like mechanism.    
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The experiments with PLY on respiratory epithelial cells revealed that the potential to 

increase the [Ca2+]i and to damage the monolayer integrity is the same for both toxins 

used in this study. It was also shown that long-term incubation with sublytic 

concentrations of PLY caused a reduction in the amount of ECad present at 

intercellular junctions and the formation of large gaps in previously closed 

monolayers. When taken together, these results led to the hypothesis that all 

members of the CDC are able to injure epithelial barriers in the human host with the 

same mechanism, as all of them are able to form pores in the plasma membrane. 

This should be investigated further by testing other members of this group for their 

ability to disturb the Ca2+ homeostasis of host cells and their effect on epithelial 

monolayer integrity.  

The cellular reactions to sublytic PLY concentrations were studied in more detail. It 

was found that the toxin is able to trigger an increase in [Ca2+]i even when the 

affected cells were kept in Ca2+-free medium. A further investigation showed that the 

intracellular stores were emptied independently of endogenous channels in the 

presence of PLY. It was not clear how the release of Ca2+ from the intracellular stores 

was mediated. However, there is a publication that found related results in cells 

treated with LLO (Gekara et al., 2007). The authors observed an increase in the 

permeability of the ER membrane and a concomitant release of stored Ca2+ into the 

cytoplasm, concluding that the toxin was in some way directly damaging the 

organelle. Furthermore, Stavru et al. (Stavru et al., 2011) reported that LLO is able to 

interfere with mitochondrial morphology and energy production in a manner that is 

dependent on the influx of extracellular Ca2+. While this publication supports the 

hypothesis that CDCs can influence organelles when applied extracellularly, it strictly 

links the mitochondrial damage to an influx of extracellular Ca2+. The idea of LLO and 

PLY being able to directly affect the organelles of a cell is intriguing and should be 

followed in further studies. It should be considered that toxin binding to the plasma 

membranes by itself might trigger an unknown signalling pathway that causes the 

depletion of cellular Ca2+ stores and changes in organelle morphology. The possibility 

that toxins can enter cells through their own pores and perforate internal membranes 

should also be explored. Here, electron microscopy in combination with toxin specific 

gold-labelled antibodies can be used. Another way to detect interactions with 

organelles would be to separate them from the other cell components by 

ultracentrifugation and subsequent detection of the toxins using SDS-PAGE and 
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western blot. When looking at intracellular toxin actions, LLO has to be considered 

separately from all other CDCs. Due to its unique PEST-like sequence, LLO was 

described to be ubiquitinated and degraded quickly in the cytoplasm of eukaryotic 

cells (Decatur and Portnoy, 2000; Lety et al., 2001). Nevertheless, other publications 

(Quinn et al., 1993; Viala et al., 2008) showed an intracellular accumulation of the 

toxin after infection with L. monocytogenes, restoring the possibility of LLO having 

direct intracellular effects.  

Incubation with PLY for several hours induced the translocation of the transcription 

factor NFAT5 from the cytoplasm into the nucleus, an event that has been described 

to occur as a response to hyperosmotic stress. NFAT5 mobilisation is triggered by 

phosphorylation through activated p38 and increasing ionic strength in the cytoplasm, 

both occurring due to hyperosmotic conditions and toxin incubation. The question 

arising here was whether the active transcription factor could counteract the toxin’s 

impact on the cell physiology. To answer this it would be necessary to block NFAT5 

either by siRNA or by inhibitors in long term experiments to see if the cells would fare 

better or worse without it.        

In the last part of this work it was demonstrated that the volume loss of epithelial cells 

triggered by PLY can be inhibited by blocking PKC-α and the phosphorylation of 

MLC. The hypothesis derived was that the toxin-induced inflow of extracellular Ca2+ 

is responsible for the RVD activation. To substantiate this it could be tested if cells 

still shrink without Ca2+ being present in the medium. Additionally, one could remove 

all intracellular Ca2+ by using cell permeable chelators like BAPTA-AM and depleting 

intracellular Ca2+ stores with Thapsigargin. This way it would be possible to 

differentiate whether inflow of extracellular Ca2+ alone is sufficient to activate PKC-α 

and MLC phosphorylation or if an increase in [Ca2+]i mediated by the opening of 

intracellular stores triggers the same reaction.  
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5 Summary 

 
Listeriolysin O (LLO) and pneumolysin (PLY) are two bacterial protein toxins from the 

family of cholesterol dependent cytolysins (CDC) that are produced by Listeria 

monocytogenes and Streptococcus pneumoniae, respectively. The toxins are found 

in all clinically relevant bacterial isolates, highlighting their importance for the 

virulence of these bacterial pathogens. Both LLO and PLY generate pores in the 

plasma membrane of host cells. High toxin concentrations directly lyse affected cells, 

while lower (sublytic) concentrations trigger an influx of extracellular calcium ions 

(Ca2+) into the cytoplasm. Ca2+ is an important intracellular second messenger. An 

increase in its cytoplasmic concentration ([Ca2+]i) results in the activation of signalling 

pathways.  

Both toxins were tested for their ability to create an imbalance in the Ca2+-

homeostasis of epithelial cells at sublytic concentrations. It was shown that the toxins 

triggered a concentration-dependent increase in [Ca2+]i and caused the cells to 

shrink. This loss in cell surface area was dependent on the influx of extracellular 

Ca2+
, as it could be inhibited with LaCl3, an unspecific ion channel blocker. LLO 

variants harbouring single amino acid exchanges were compared to wild-type toxin to 

asses their functionality and gain further insights in the mechanism of pore formation.  

In infection experiments, it was determined that L. monocytogenes’ ability to invade 

closed epithelial monolayers was reduced by LaCl3 in a concentration-dependent 

manner. This implies that the LLO-induced increase in [Ca2+]i and the accompanying 

loss of intercellular connections are important for the bacteria to overcome epithelial 

barriers. 

Using PLY-treated epithelial cells, it was demonstrated that the toxin is able to empty 

intracellular Ca2+ stores independently of endogenous channels. No influx of 

extracellular Ca2+ was involved in this reaction, as these experiments were performed 

in Ca2+-free medium. Finally, the effects of PLY were compared to those of 

hyperosmotic conditions. It was shown that increased osmolarity and toxin 

administration had similar effects on the calcium homeostasis, intracellular Ca2+ 

stores and cell volume, which were accompanied by the translocation of the cell 

volume transcriptional regulator NFAT5. PLY-induced cell shrinking did not occur 

when PKC-α and MLC-phosphorylation were blocked. These inhibitors did not 

prevent the influx of extracellular Ca2+, suggesting that cellular signalling events are 

responsible for the loss in cell surface volume upon toxin treatment. 
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6 Zusammenfassung 

 
Listeriolysin O (LLO) und Pneumolysin (PLY) sind bakterielle Toxine, welche der 

Familie der Cholesterin-abhängigen Cytolysine (cholesterol dependent cytolysins, 

CDC) angehören und von Listeria monocytogenes bzw. Streptococcus pneumoniae 

produziert werden. Die Toxine werden von allen klinisch relevanten Stämmen dieser 

beiden Krankheitserreger gebildet, was ihre Bedeutung als Virulenzfaktoren aufzeigt. 

LLO und PLY entfalten ihre Wirkung durch die Bildung von Poren in der Zellmembran 

von Wirtszellen. Hohe Konzentrationen bewirken die sofortige Lyse der betroffenen 

Zellen, während geringere (nicht-lytische) Mengen den Einstrom von extrazellulären 

Calcium-Ionen (Ca2+) in das Zytoplasma ermöglichen. Unkontrollierte Veränderungen 

der intrazellulären Ca2+-Konzentrationen ([Ca2+]i) können verschiedenste 

Signalkaskaden aktivieren, da Ca2+ ein wichtiger intrazellulärer sekundärer Botenstoff 

ist.  

Es wurde untersucht ob nicht-lytische Mengen der beiden Toxine in der Lage sind, 

die Ca2+-Homöostase von Epithelzellen zu stören. Beide Toxine lösten einen 

konzentrationsabhängigen Anstieg der [Ca2+]i und eine Verminderung der 

Zelloberfläche aus. Beides konnte durch den Einsatz von LaCl3, einem 

unspezifischen Ionenkanalblocker, gestoppt werden. Dies zeigt, dass die 

Verminderung der Zelloberfläche durch den Einstrom extrazellulären Ca2+ ausgelöst 

wird. Um den Mechanismus der Porenbildung besser zu verstehen wurden LLO-

Mutanten, bei denen einzelne Aminosäuren ausgetauscht waren, auf ihre Aktivität 

getestet und mit dem Wildtyp verglichen. Des Weiteren wurde durch 

Infektionsversuche gezeigt, dass L. monocytogenes durch LaCl3 an einer effektiven 

Invasion von geschlossenen Epithelzellrasen gehindert wurde. Dies spricht dafür, 

dass der von LLO ausgelöste Anstieg der [Ca2+]i und das damit verbundene 

Schrumpfen der Zellen den Bakterien hilft, die epitheliale Barriere zu überwinden. 

In Zellen die mit PLY behandelt wurden konnte gezeigt werden, dass das Toxin die 

Entleerung der intrazellulären Ca2+-Speicher unabhängig von endogenen Kanälen 

auslösen kann. Da die Versuche in Ca2+-freiem Medium durchgeführt wurden, 

basierte dieser Effekt nicht auf einem Einstrom von extrazellulärem Ca2+. Zuletzt 

wurde untersucht, ob sich die zellulären Reaktionen auf PLY und hyperosmolare 

Bedingungen unterscheiden. Die Behandlung mit Toxin und eine erhöhte Osmolarität 

hatten ähnliche Auswirkungen auf die Ca2+-Homöostase, die intrazellulären Ca2+-

Speicher und das Zellvolumen, welche von der Translokation des Volumen-
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regulierenden Transkriptionsfaktors NFAT5 begleitet wurden. Durch die Inhibition von 

PKC-α und der Phosphorylierung von MLC konnte der von PLY ausgelöste 

Volumenverlust gestoppt werden. Dies verhinderte jedoch nicht den Einstrom von 

extrazellulärem Ca2+, was darauf hindeutet, dass das Schrumpfen der Zellen durch 

endogene Signalwege ausgelöst wird. 
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8.1 Graphs for ratiometric Ca2+ and total cell surface area measurements 

of single LLO mutants 
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K) 

 
Fig 8.1.1 LLO mutants and their effect on the [Ca 2+] i and the cell surface area.   
A)-K) Caco-2 cells were loaded with Fura-2 AM and monitored for changes in the emission at 340 and 
380nm when excited at 510nm. From the emission readings the 340/380nm ratio was calculated. The 
maximum signal measured after adding Iono (5µM) at the end of the experiment was used to express 
the relative change in [Ca2+]i. LLO WT and mutants, all preincubated with DTT, were added at 50ng/ml 
and cells were measured for 10min before Iono was added. In the same experiments the cell surface 
area was determined by counting the pixels in the acquired images that had a signal above 
background levels. The pixel count in cells at rest was set to 100%.  
The graph shows the mean values + SEM of three independent experiments for each group. 
 
 
8.2 Thapsigargin is without effect on [Ca2+]i when administered after PLY 

 

 
Fig 8.2.1 The addition of Thaps after PLY has no ef fect on the [Ca 2+] i. H441 cells were loaded with 
Fura-2 AM and monitored for changes in the emission at 340 and 380nm when excited at 510nm. 
From the emission readings the 340/380nm ratio was calculated and used to express the relative 
change in [Ca2+]i as arbitrary fluorescence units. 100ng/ml PLY+DTT and 100nM Thapsigargin 
(Thaps) were added at the indicated time points 
Results are shown as mean values ± SEM of at least three independent experiments 
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