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1. INTRODUCTION 

1.1 Definitions  
Chronic obstructive pulmonary disease (COPD) is a slowly progressive disease condition 

characterized by poorly reversible airflow limitation that is associated with an abnormal 

inflammatory response in the lung. The inflammation is chronic and occurs both in the large 

and small airways, resulting in a heterogeneous disease phenotype with morphological 

changes in three regions of the lungs: central airways (chronic bronchitis), peripheral airways 

(small airway disease), and the lung parenchyma (emphysema)1. Spirometric definition of the 

disease emphasizes the degree of air flow obstruction with a forced expiratory volume per 

second (FEV1) of <70% and ratio of FEV1/ forced vital capacity (FVC) of < 0.7 1. 

                                            

The etymology of COPD started with the Greek word emphysema, meaning “to blow into”, 

“air-containing” or “inflated”. COPD was described as “voluminous lungs” by Bonet in 1679 

and as “turgid lungs particularly from air” described by Morgagni in 1769 2, 3. Later, the first 

description of emphysema with enlarged lung airspaces in the human was furnished by Ruysh 

in 1721, followed by Matthew Baillie in 1807, who not only clearly recognized and illustrated 

emphysema, but also pointed out its essentially destructive character. In the early 1800s, 

Laennec made contributions to the basic description of the pathologic changes in COPD by 

distinguishing interstitial emphysema. It was further described with enlarged airspaces to the 

clinical syndrome of emphysema and its association with chronic bronchitis and 

bronchiectasis2, 3. The foundation of the pathologic anatomy of pulmonary emphysema was 

laid by J. Gough in 1952, who described centrilobular emphysema and panlobular 

emphysema4. A comprehensive microscopic description of emphysema was provided by Mc 

Lean, who demonstrated the relationship between the tissue destruction and inflammatory 

alterations to the bronchioles and the vasculature. Later a Ciba Guest Symposium in 1959 

defined emphysema in anatomical terms as “a condition of the lung characterized by increase 

beyond the normal of airspaces, distal to the terminal bronchiole, either from dilatation or 

from destruction of their walls”5.  

 

Subsequent definitions of COPD have been associated with physiological functions, rather 

than the original definition which was confined only to tissue destruction. However, these 

definitions were also restricted to the alveolar compartment and its associated structures of the 

respiratory system. Chronologically the definition of COPD arose as follows: 
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In 1995, the ERS guideline6 definened COPD as “… a disorder characterized by reduced 

maximum expiratory flow, and slow forced emptying of the lungs, features which do not 

change markedly over several months. Most of the airflow limitation is slowly progressive 

and irreversible. The airflow limitation is due to varying combinations of airway diseases and 

emphysema; the relative contribution of two processes is difficult to define in vivo. 

Emphysema is defined anatomically; chronic bronchitis is defined clinically...”  After this, in 

1995, ATS guidelines7 defined COPD as “…..a disease characterized by the presence of 

airflow obstruction due to chronic bronchitis or emphysema; the airflow obstruction is 

generally progressive, may be accompanied by airway hyperreactivity, and may be partially 

reversible”. Further “COPD may include a significant reversible component and some patients 

with asthma may go on to develop irreversible airflow obstruction indistinguishable from 

COPD.”  The BTS guidelines8 defined COPD in 1997 as “….a general term which covers 

many previously used clinical labels that are now recognized as being different aspects of the 

same problem. Diagnostic labels encompassed by COPD include chronic bronchitis, 

emphysema, chronic obstructive airway diseases, chronic airflow limitation and some case of 

chronic asthma. COPD is a chronic, slowly progressive disorder characterised by airways 

obstruction (FEV1 <80% predicted and FEV1/ FVC ratio <70%) which does not change 

markedly over several months. The impairment of lung function is largely fixed but is 

partially reversible by bronchodilator (or other) therapy. Most cases are caused by tobacco 

smoking. COPD causes significantly more mortality and morbidity than do other causes of 

airflow limitation in adults”. The Gold guidelines9 defined COPD in 2003 as “…. a disease 

state characterized by airflow limitation that is not fully reversible. The airflow limitation is 

usually both progressive and associated with an abnormal inflammatory response of the lungs 

to noxious particles or gases”.  

 

However, none of the above definitions addressed the issue of vascular and systemic 

involvement in COPD. Further, the ATS/ ERS standards10 in 2004 acknowledged the systemic 

importance of COPD by defining “…a preventable and treatable diseases state characterized 

by airflow limitation that is not fully reversible. The airflow limitation is usually progressive 

and is associated with an abnormal inflammatory response of the lungs to noxious particles or 

gases, primarily caused by cigarette smoking. Although COPD affects the lungs, it also 

produces significant systemic consequences”.  
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The definition of COPD remains incomplete because of its broad association with vascular 

disease and many morbid/ co-morbid conditions. A short comparision of the spirometric 

definition of COPD is given in Table 1. 

Table 1 Comparision of spirometric definition of COPD including classification of disease severity based 
on FEV1 

   ATS ERS BTS GOLD1 ATS/ERS1 
Definition 
 

FEV1/VC 
<0.75 

FEV1/VC<88 pp2 

FEV1/VC<89 pp3 
FEV1/VC<0.70
FEV1<80 pp FEV1/VC<0.70 

FEV1/VC≤0.70 
 

Severity at risk 
 

_ 
 

_ 
 

_ 
 

normal 
spirometry5 

FEV1/VC<0.70
FEV1≥80 pp6 

Mild  >50 pp ≥70 pp 60-90 pp ≥80pp ≥80 pp 
Moderate 35-49 pp 50-69 pp 40-59 pp 50≤and<80 pp 50-80 pp 
Severe <35 pp <50 pp <40 pp 30≤and<50 pp 30-50 pp 
Very severe _ _ _ <30 pp <30 pp 
1refer to value after bronchodilatation  
2in men and 3women 
4 based on percent predicted (pp) of FEV1 according to all guidelines 
5 and reported respiratory symptoms 
6 patient who smoke and have exposed to pollulant, cough, or dyspnea   

1.2 Epidemiology 

The World Health Organization (WHO) estimated that COPD is predicted to be the third 

leading cause of death worldwide by 2020. Accordingly, the age adjusted death rate of COPD 

is increasing tremendously after causing considerable disability with COPD patients  
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Figure 1. Changes in age-adjusted death rate in the USA, from 1965 to 1998 (%) 

whereas mortality from cardiovascular disease, cancer and other diseases has declined over 

the past 30 years by new innovative treatments 11 (Fig. 1).  
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1.3 Risk factors 

COPD arises from an interaction between environmental exposure and host factors, which 

probably play a major role and account for much of the heterogeneity in susceptibility to 

smoke and other risk factors. The human lung from infancy through to old age can be 

subjected to deleterious oxidative events as a consequence of inhaling environmental 

pollutants or irritants since the lungs are continuously exposed to relatively high oxygen 

tensions12.  

Table 2 Different environmental and host risk factors for COPD 

Environmental factors Host factors 
Smoking:  active, passive and 
maternal smoking 
 
Air pollution 
 
Occupation 
 
Socioeconomic status/ poverty  
 
Nutrition 
 
oxidants 

Polyunsaturated fatty acid metabolism, infection 
 
α1-antitrypsin deficiency 
 
Genetics, Family history  
 
Age  
 
Airway hyperresponsivenes,  
 
Low birthweight 

 

Symptoms of COPD include breathlessness on exertion, cough, irregular sputum production, 

infective exacerbations, fatigue and its complications include cor pulmonale, anemia, 

pneumothorax and respiratory failure6, 11, 13. Genes regulating proteases/antiproteases, 

antioxidant factors, mucociliary clearance and inflammatory mediators are amongst important 

factors of the disease 14-16. 

1.4 Pathology  

1.4.1 Chronic bronchitis 

The presence of chronic cough and sputum production for at least three months of two 

consecutive years is termed chronic bronchitis. The chronically inflamed bronchial epithelium 

with hypertrophy of the mucus glands and increased goblet cells are indicative of chronic 

bronchitis. Further, the cilia are destroyed and the efficiency of the mucociliary escalator is 

impaired. Mucus viscosity and mucus production are increased. Pooling of the mucus leads to 

increased susceptibility to infection. Repeated infections and inflammation cause irreversible 

damage of the airways structure due to narrowing and distortion of the peripheral airways17, 18.  
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1.4.2 Emphysema 

Emphysema is characterised by abnormal dilatation of the terminal air spaces distal to the 

terminal bronchioles, with destruction of their wall and loss of lung elasticity. The distribution 

of the abnormal air spaces in panacinar emphysema results in distension and destruction of the 

whole acinus, particularly in the lower half of the lungs whereas the centriacinar emphysema 

involves damage around the respiratory bronchioles affecting the upper lobes and upper parts 

of the lower lobes of the lung19. Destruction of the lung parenchyma results in floppy lungs 

and loss of the alveoli, which can result in a collapse of the small airways and air trapping 

with hyperinflation of the lungs. Hyperinflation flattens the diaphragm results in less effective 

contraction, reduced alveolar efficiency and further air trapping. Over time this leads to severe 

airflow obstruction, resulting in insufficient expiration to allow the lungs to deflate fully prior 

to the next inspiration20. 

1.4.3 Systemic effects 

A low body mass index and loss of lean muscle mass are common in COPD patients with 

severe emphysema and chronic bronchitis, as in “pink puffers”. Weight loss is a poor 

prognostic sign and a low body mass index increases the risk of death from COPD having 

emphysema. However, patients with severe chronic bronchitis with less emphysema are 

overweight as like seen in the so-called “blue bloater” 21.  

1.4.4 Pulmonary vascular changes 

An increase in arterial muscle media thickness as well as intimal fibrosis in the muscular 

arteries, and a progressive muscularization of the small arterioles has been found in COPD. A 

progressive increase in the numbers of smaller muscularized arteries, percentage of the medial 

thickness, and percentage of intimal thickness of muscularized arteries has been shown to be 

associated with COPD patient20, 22.  

1.5 Functional changes  

Many pulmonary function abnormalities are occuring in COPD, but a persistent reduction in 

maximal forced expiratory flow is the defining physiological feature. Increased airway 

resistance, increased residual volume, increased compliance, increased residual volume/total 

lung capacity ratio, decreased inspiratory capacity, maldistribution of ventilation, and 

ventilation-perfusion mismatching are the typical functional changes observed23, 24. 
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1.6 Cigarette smoke 
Cigarette smoke is a complex mixture containing up to 4,700 chemicals with 1,017 molecules 

per puff as well as high concentrations of free radicals and other oxidants. Nitric oxide is one 

of the major oxidants present in cigarette smoke, at concentrations of 500–1,000 ppm25. The 

tar phase of cigarette smoke contains stable radicals, including the semiquinone radical, which 

can react with oxygen to produce O2·-, ·OH and H2O2 
26. Inhaling cigarette smoke produces an 

abnormal or enhanced inflammatory response that leads to pathological changes in the lungs 

of all smokers including the severe COPD patients.  

 

The respiratory epithelium is a major target for oxidative injury from oxidants generated 

either exogenously from cigarette smoke/air pollutants or endogenously from 

phagocytes/other cell types. Thus, the lung’s efficient enzymatic and non-enzymatic 

antioxidant systems are very important in the protection of the airways against exogenous and 

endogenous oxidants. If an imbalance of oxidants and antioxidants e.g., the excess of oxidants 

and/or a depletion of antioxidants, oxidative stress occurs27, 28. Oxidative stress from reactive 

oxygen species and reactive nitrogen species (ROS and RNS, respectively) has been thought 

to play a major role in the pathogenetic mechanisms of COPD28.  
 
Oxygen is a key molecule involved in the process of energy fixation. The total oxygen 

consumption in the respiratory chain undergoes tetravalent reduction to produce water by a 

cytochrome oxidase (cytochrome-C: oxygen oxidoreductase) (O2+4e−+4H→2H2O) of the IV 

complex in the mitochondrial electron transport chain. Tetravalent reduction of oxygen can 

result in the production of ROS with at least one unpaired electron and nonradical oxidants. 

The addition of one electron to oxygen produces superoxide (O2·-), a second electron 

produces hydrogen peroxide (H2O2) and a third electron forms the very reactive hydroxyl 

radical (·-OH) and the addition of a fourth electron generates water29. These ROS can react 

with other molecules such as proteins, lipids and DNA. Other oxidants include the alkoxyl 

(RO·), peroxyl (RO2·) and hydroperoxyl free radicals, singlet oxygen and hypochlorous acid 

(HOCl). The ·OH is the most reactive of all the radicals and reacts immediately with organic 

molecules at its site of production30.  

 

Nitric oxide (NO·) is produced endogenously, from its amino acid substrate L-arginine, by 

nitric oxide synthases28. The inducible form of NOS is calcium-independent, and generates 

NO·  in large amounts over long periods of time31. 
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Figure 2. Synthesis of nitric oxide (NO·-) and NO·- related products.  

NADP+ Nicotinamide adenine dinucleotide phosphate, NADPH: reduced NADP+, FAD: Falvin adenine 
dinucleotide, FMN: Flavin mononucleotide, s-GNO; s-nitrosglutathione 
 

The NO2- is a major end-product of NO and the reaction of NO· with O2·- forms the potent 

oxidant peroxynitrite (ONOO-). The ONOO- can react with and cause nitration of various 

compounds. The amino acid tyrosine is particularly susceptible to nitration, forming 

3-nitrotyrosine, which has been used as a marker for the generation of RNS in vivo. NO· 

contains an odd number of electrons, making it a radical, and is highly reactive in nature. The 

reaction of NO· with O2·- results in the formation of ONOO- and secondarily can result in 

NO2
- generation. NO2- is also a substrate for myeloperoxidases (MPO) and the eosinophil 

peroxidase (EPO), which catalyzes peroxidase-mediated oxidation of biological targets32. NO· 

also reacts with compounds containing thiol groups, resulting in the formation of 

S-nitrosothiols (SNO). SNOs such as S-nitroso-l-glutathione may inhibit enzymes such as 

glutathione (GSH) peroxidase (GPx), GSH reductase (GR), glutathione-S-transferase (GST) 

and glutamate cysteine ligase (GCL). These enzymes rapidly respond to oxidative stress by 

converting SNOs into nitrate. NO· also reacts rapidly with free radicals to form RNS25 (Fig. 

2).  

 

The oxidants from cigarette smoke can (i) damage lipids, nucleic acids and proteins, (ii) 

deplete antioxidants such as GSH; enhance the respiratory burst in phagocytic cells, (iii) 

inactivate protease inhibitors such as α1-antitrypsin (α1-AT); enhance molecular mechanisms 

involved in pro-inflammatory gene expression, (iv) decrease binding affinity and translocation 

of steroid receptors, (v) increase apoptosis, and (vi) impair skeletal muscle function28. 
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1.7 Pathogenesis  

1.7.1 Inflammation  

Cigarette-smoke exposure induces an inflammatory response in the lung which involves 

different structural and inflammatory cells and a large array of inflammatory mediators. The 

interaction of these complex steps eventually leads to airway remodeling as well as 

obstruction and emphysema. Inflammatory cells27, 33, 34, including neutrophils and alveolar 

macrophages from the lungs of smokers are more activated and release increased amounts of 

ROS, such as O2·- and H2O2, which further increases the oxidative burden produced directly 

by inhaling cigarette smoke35, 36. The generation of oxidants in the lungs of smokers is 

enhanced by the presence of increased amounts of free iron in the airspaces37. Free iron in the 

ferrous form can generate the ·OH radical in a Fenton reaction.  

 

Lung epithelial cells are other possible sources of ROS. Type II alveolar epithelial cells have 

been shown to release both H2O2 and O2·- in similar quantities to alveolar macrophages. ROS 

released from type II epithelial cells are able, in the presence of MPO, to inactivate 

α1-antitrypsin in vitro38. ROS can also be generated intracellularly as a by-product of normal 

metabolism. Mitochondrial respiration is one of the possible sources of free radicals, resulting 

from electrons leaking from the electron transport chain on to oxygen to form O2·- . Morever, 

xanthine dehydrogenase has also been shown to be increased in bronchoalveolar lavage fluid 

from COPD patients compared with normal subjects, and is associated with increased O2·- 

and uric acid production39, 40. A substantial amount of O2·- is also produced by membrane 

oxidases and the NADPH oxidase system. In addition, NO· is generated by the action of 

inducible form of NOS found in the respiratory epithelium, endothelial cells and activated 

macrophages41, 42.  

 

It is likely that genetic and epigenetic factors are also involved in determining the progression 

of the inflammatory cascade, as supported by studies in animal models with mouse strains. 

Mouse strains resistant to cigarette smoke-induced emphysema have a genetic response to 

smoke exposure that decreases the expression of multiple inflammatory genes and increases 

the expression of anti-inflammatory genes, which effectively prevents inflammation and likely 

emphysema. Genetically different susceptible strains react in an opposite manner increasing 

the expression of inflammatory genes both of the innate and adaptive immunity43. Both ROS 
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and RNS can perpetuate inflammation. To depict this important inflammatory immune 

response, their free radical footprints are listed in Table 3. 

Table 3  Free radicals and their foot prints in chronic obstructive pulmonary disease 

         Marker Change 
Carbon monoxide44 
8-isoprostanes45, 46 
Ethane45, 46 
Nitrotyrosine47 
Alpha 1 proteinase inhibitor activity48 
Hydrogen Peroxide49 
Nitric oxide50 

Increase 
Increase 
Increase 
Increase 
Decrease 
Increase 
Increase 

 

The progressive airflow limitation in COPD is caused by the remodeling and narrowing of 

small airways as well as by the destruction of the lung parenchyma and the airways due to 

emphysema. There is a specific pattern of inflammation in the airways and lung parenchyma, 

with increased numbers of macrophages, T-lymphocytes, a predominance of CD8 (cytotoxic) 

T-cells, and, in more severe disease stages, B-lymphocytes; with increased numbers of 

neutrophils in the airway lumen51. The inflammatory response in COPD involves both innate 

and adaptive immune responses. Multiple inflammatory mediators are increased in COPD, 

and are derived from inflammatory and structural cells of the airways and lungs52. The 

molecular basis of this amplification of inflammation may be partly determined by 

genetically. For many years, it was assumed that the inflammatory reaction in the lungs of 

smokers consisted of neutrophils and macrophages and that neutrophil elastases and 

macrophage proteinases were responsible for the lung destruction in COPD. This concept has 

recently been changed to include more complicated inflammatory process. In this regard, the 

infiltration of T-cells into the lung has been demonstrated in COPD patients. Further analysis 

of the immune cell profiles in the alveoli and small airways of COPD patients has revealed an 

increase in all of the cell types, including macrophages, T-lymphocytes, B-lymphocytes and 

neutrophils53, 54.  

1.7.2 Protease–antiprotease imbalance 

There is an increased protease burden in the lungs of patients suffering from COPD as a result 

of the influx and activation of inflammatory leukocytes which release proteases. The 

deficiency of antiproteases such as α1-antitrypsin is the result of inactivation by oxidants 

which creates a protease-antiprotease imbalance in the lungs. Inactivation of α1-antitrypsin 

(α1-AT) by oxidants occurs at a critical methionine residue in its active site. This can be 

caused by oxidants from cigarette smoke or oxidants released from inflammatory leukocytes, 
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resulting in a marked reduction in the inhibitory capacity of α1-AT in vitro55, 56. In addition, 

secretion of proteases by lung epithelial cells leads by itself to an increase in the release of 

ROS,57 creating a protease-antiprotease imbalance in lung.  

1.7.3 Oxidative stress 

The oxidant burden in the lungs is enhanced in smokers by the increased numbers of 

neutrophils and macrophages in the alveolar space58. Oxidative stress may reach the 

circulation during cigarette smoking, which could decrease the deformability of neutrophils, 

increasing their sequestration in the pulmonary microcirculation59, 60. Thus, cigarette smoking 

increases neutrophil sequestration in the pulmonary microcirculation, at least in part, by 

decreasing neutrophil deformability. Once neutrophils are sequestered, components of 

cigarette smoke can alter neutrophil adhesion to the endothelium by upregulating CD18 

integrins61, 62 and ultimately by upregulating the NADPH oxidase H2O2 − generating 

system63,61. These sequestered neutrophils may subsequently respond to chemotactic 

components in cigarette smoke and become more adhesive to pulmonary vascular endothelial 

cells. 

 

Studies using animal models of smoke exposure64 have demonstrated increased neutrophil 

sequestration in the pulmonary microcirculation in situ, associated with an upregulation of 

adhesion molecules on the surface of these cells63. Activation of neutrophils sequestered in the 

pulmonary microvasculature65 could also induce the release of reactive oxygen intermediates 

and proteases within a microenvironment, with limited access for free radical scavengers and 

antiproteases. Thus, destruction of the alveolar wall as it occurs in emphysema might be the 

result of a proteolytic insult derived from the intravascular space.   

 

The influx of inflammatory cells into the lungs may perpetuate inflammatory mechanisms 

through the regulation of cytokine secretion. Patients with COPD inhibit increased levels of 

interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α and IL-8 in airway secretions66,67,68. 

Oxidative stress may also be a mechanism for enhancing airspace inflammation and is a 

characteristic feature of COPD11. Oxidative stress can result in the release of chemotactic 

factors such as IL-8 from airway epithelial cells69, and epithelial cells from COPD patients 

release more IL-8 than do those of smokers or healthy individuals68. Lipid peroxidation 

products such as 8-isoprostane can also act as signalling molecules and cause the release of 

inflammatory mediators such as IL-8 from lung cells70. The lipid peroxidation product 
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4-hydroxy-2-nonenal can cause the upregulation of TGF-β71 and can up regulate antioxidant 

enzyme gene expression72. Oxidative stress has a fundamental role in enhancing inflammation 

through the upregulation of redox-sensitive transcription factors, such as nuclear factor 

(NF)-kB and activating protein (AP)-1 and also by activation of the extracellular signal related 

kinase, Jun N-terminal kinase and the p38 mitogen-activated protein kinase pathways73, 74. 

 

Oxidative stress activates histone acetyltransferase (HAT) activity in epithelial cells75. Histone 

acetylation occurs following cigarette-smoke exposure of epithelial cells and is prevented by 

antioxidant therapy with N-acetylcysteine (NAC)76. Furthermore, in animal models of 

cigarette-smoke exposure, increased levels of acetylated histone and decreased histone 

deacetylase (HDAC) activity have been reported in lung cells. Both of these events can 

enhance gene expression77. HDAC activity in alveolar macrophages obtained from cigarette 

smokers is downregulated, which can enhance gene expression76. This event may be due to 

nitration of HDAC2 by ONOO- 78. Recent studies have suggested that acetylated histone 

residues, specifically histone H4, are present to a greater extent in lung tissue in smokers and 

in smoking COPD patients. This is associated with a decrease in HDAC2, specifically in 

smoking COPD patients and in patients with severe COPD79. Thus, oxidative along with 

nitrosative stress has fundamental effects on the molecular mechanisms regulating 

inflammation in COPD. 

1.7.4 Apoptosis 

The loss of alveolar endothelial cells and epithelial cells by apoptosis may be an initial event 

in the development of emphysema80. Apoptosis occurs to a greater extent in endothelial cells 

in emphysematous lungs than in nonsmoker lungs81. Airway lymphocytes and stimulated 

peripheral blood leukocytes from patients with COPD also exhibit apoptosis. The process of 

endothelial apoptosis is thought to be regulated by vascular endothelial growth factor 

receptor-2 (VEGF-R2). Downregulation of VEGF-R2 has been shown to produce emphysema 

in animal models and reduced expression of VEGF-R2 is evident in emphysematous human 

lungs82. Studies have also reported that the "apoptosis/emphysema" induced by VEGF 

inhibition in animal models is associated with increased markers of oxidative stress and is 

prevented by antioxidants, suggesting oxidative stress is involved in this process. 
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1.7.5 Systemic oxidative stress 

After smoking, nitrite, nitrate and cysteine levels in peripheral blood decrease. In some 

studies, no difference has been observed in the production of reactive oxygen intermediates 

from peripheral blood neutrophils following smoke exposure. The antioxidant capacity of the 

blood also fell immediately after smoke exposure and the concentration of plasma lipid 

products increased. It is now recognized that COPD is not only a disease which affects the 

lungs, but has important systemic consequences, such as cachexia and effects on skeletal 

muscle function. This increasing evidence suggests that similar mechanisms involving 

oxidative stress and inflammation in the lung may also be responsible for many of the 

systemic effects of COPD83.  

 

Peripheral blood neutrophils from COPD patients have been shown to release more ROS. 

Products of lipid peroxidation are also increased in the plasma in smokers and patients with 

COPD. Increased levels of nitrotyrosine have been reported in the plasma of COPD patients 

as a marker of systemic oxidative stress. Patients with COPD often display weight loss, which 

correlates inversely with the occurrence of exacerbations. Inducible NOS expression is 

increased in the skeletal muscle in response to inflammatory cytokines, and is dependent on 

NF-kB activation84. Furthermore, oxidative stress may result in the apoptosis of muscle cells, 

which has also been described in skeletal muscle cells in patients with COPD who have lost 

weight and may contribute to oxidative stress-dependant muscle atrophy85, 86. Both local and 

systemic oxidative stresses are involved in many of the pathogenic processes in COPD patient 

as well as in the systemic phenomena such as skeletal muscle dysfunction. 

1.7.6 Nitrosative stress 

Nitric oxide (NO) and related compounds are produced by a wide variety of residential and 

inflammatory cells like eosinophils, neutrophils, monocytes, macrophages in the respiratory 

system. The NO is generated via a five electron oxidation of the terminal guanidium nitrogen 

on the amino acid L-arginine and this reaction is catalyzed by NOS, which exist in three 

different forms like constitutive NOS (cNOS): NOS3 or endothelial NOS (eNOS), NOS1 or 

neuronal NOS (nNOS). These cNOS is expressed in neuronal, epithelial and endothelial cells 

whereas NOS2 or inducible NOS (iNOS) is mainly expressed in macrophages, epithelial, 

endothelial and vascular smooth muscle cells. The iNOS isoform is upregulated by 

proinflammatory cytokines like TNF-α, INF-ϒ and IL-β and releases NO in large amounts for 

longer periods of time87. The ROS, NO and RNS are essential for many physiological 
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reactions and for host defense. However, if exposure to airway pollutants, infections, 

inflammatory reactions, or decreased levels of antioxidants, as well as enhanced levels of 

ROS and RNS may ultimately cause deleterious effects in the airways87,88,89, 90.  

 

Recently, exhaled NO has been partitioned into central and peripheral portions of lung, with 

reduced NO in the bronchial fraction, but increased NO in the peripheral fraction, which 

includes the lung parenchyma and small airways32, 38. The increased peripheral NO in COPD 

patients may reflect increased expression of inducible NO synthase in epithelial cells and 

macrophages of patients with COPD91, 92.  This unstable peroxynitrite is degraded to nitrate 

that is increased in exhaled breath condensate of COPD patients93. Peroxynitrite can modify 

tyrosine residues, thiols and heme groups87 in the lung, and macrophages of COPD 

patients92,78. Morever, peroxynitrite increases airway hyper-responsiveness, respiratory 

epithelial damage and eosinophil activation94 along with inactivation of surfactants, inhibition 

of protein phosphorylation that associated with different signal transduction pathway87. 

Peroxynitrite also able to activate matrix metalloproteinase (MMP)95 to inactivate 

α1-antiproteinase96 and to enhance the production of the potent neutrophil chemoattractant 

interleukin-8 (IL-8)97. All of these factors perpetuate inflammatory processes in the lung 

through nitrosative stress. Further, peroxynitrite can alter its protein which may result in cell 

death by mitochondrial damage, DNA strand breakage and structural/functional modification 

of proteins. Such modified proteins are recognized as antigens by the adaptive immune system 

which can thus elicit an autoimmune T-cell response. 

1.7.7 Hypoxia 

Progressive airflow limitation and destruction of the alveolar capillary network may lead to 

decreased oxygen transport and alveolar hypoxia in COPD. Vascular endothelial growth 

factor (VEGF) receptor blockade signaling caused emphysema in rodents with decrease 

VEGF and VEGF receptor expression in emphysematous lungs98, 99. Recent evidence has 

demonstrated that cigarette smoke impairs hypoxia inducible factor-1α (HIF-1α) expression 

in ischemic limbs of mice, causing decreased revascularization. Moreover, protein translator 

regulator (RTP-801) or “regulated in development and DNA damage-1” (Redd-1), a negative 

regulator of mammalian target of rapamycin (mTOR) signaling and hypoxia-responsive gene 

products are induced by cigarette smoke. Knockdown of the RTP801 gene in mice resulted in 

significant resistant to cigarette smoke-induced inflammation and emphysema98, 99. About 

60% of patients with COPD suffer from mild pulmonary hypertension and the pulmonary 
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hypertension in COPD can not fully be explained by hypoxia alone, as it occurs in 

nonhypoxic patients as well100. A direct toxic effect of cigarette smoke on the pulmonary 

vasculature has been suggested to act in concert with a potential hypoxic effect observed in 

COPD. Further, the progression of tissue destruction and loss of pulmonary vasculature may 

mismatch perfusion ventilation to the gradual increase in alveolar and tissue hypoxia98. Thus, 

It is still not clear that the direct and indirect involvement of hypoxia for the pathogenesis of 

COPD. 

 

1.8 Animal models 

 

COPD is a complex disease involving several biomolecular, histological, and molecular 

abnormalities. A systematic approach to understand these aspects is essential to have in-depth 

knowledge of this disease. To date, three major experimental approaches have been adopted to 

study COPD. COPD was either induced by inhalation of cigarette smoke or by noxious 

stimuli, tracheal instillation of tissue-degrading enzymes to induce emphysema-like lesions, or 

gene-modifications leading to a COPD-like phenotype19, 20. 

 

A number of animal models have been reported that exhibit at least one of the features of the 

complicated pathology of COPD, such as chronic bronchitis101 and emphysema 20, 102, 103. In 

these models, airspace enlargement has been demonstrated after chronic exposure to 

mainstream smoke, and also in shorter exposures to high concentrations of smoke. Ideally, 

such models need to represent the various patterns of alveolar wall destruction that have been 

reported in humans, as well as host factors that parallel the etiology of the pathological 

condition. Animal models with genetic predisposition (e.g., an inherent α1-AT deficiency or 

increased sensitivity to oxidative stress) to develop emphysema are probably the most 

relevant, in mimicking the susceptible human population 104, 105. The application of genetic 

engineering strategies in mice offers a great potential to dissect the pathogenetic pathways of 

emphysema.  

 

Examining the role of inflammation and excessive proteolysis in pulmonary tissue destruction 

in COPD are some of the major focuses of recent research106. Evidence was provided that the 

alveolar epithelial cell apoptosis causes emphysema in C57Bl/6J mice. Inflammation, 

proteolysis, oxidative stress, apoptosis, or cell homeostasis in general are interrelated 

mechanisms that contribute to cigarette smoke-induced emphysema106, 107. Tobacco smoke has 
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been routinely used as a noxious stimulant to induce COPD in a wide variety of animals. In 

addition to rabbits, mice, dogs, and rats, guinea pigs have been shown to be very susceptible 

species. Within a few months of exposure to active tobacco smoke, guinea pigs develop 

COPD-like lesions and emphysema-like airspace enlargement106, 108.  

 

Thus, the manifestation of COPD is thought to occur by triggering of inflammatory pathways 

with the influx of leukocytes and cytokines due to chronic irritation by smoke. This 

inflammatory cellular influx and cytokines can induce cellular local ROS and RNS generation 

by activating NADPH oxidases (leukocytes and mitochondria) and nitric oxide synthases. In 

addition, alveolar and tissue hypoxia may be responsible for the disease manifestation due to 

NF-kB and xanthine/xanthine oxidase activation (Fig. 3)83.  
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source: Langen,R.C., Korn,S.H., & Wouters,E.F. ROS in the local and systemic pathogenesis of COPD. Free 
Radic. Biol. Med. 35, 226-235 (2003). (modified) 

Figure 3. ROS in the local and systemic pathogenesis of COPD 

 

Thus, the prevailing pathological concept of the development of COPD consists of a sequence 

of airway inflammation, followed by chronic bronchitis, airway remodeling and lastly 

pulmonary emphysema11, 109. However, recent pathological concepts view COPD as a 

systemic disease involving skeletal muscle wasting, diaphragmatic dysfunction and systemic 

inflammation17. Furthermore, the pulmonary hypertension noted in COPD patients was 

thought to occur as a consequence of hypoxic association. 

 

However, there is a growing body of evidence suggests that cigarette smoke has a direct 

impact on the pulmonary vasculature, indicating that cor pulmonale and pulmonary 
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hypertension are not necessarily secondary to hypoxia and airway remodeling in COPD 

patients110-112. Thus, the disease progression in COPD is not clear yet and experiments are 

lacking to identify the relationship of pulmonary hypertension to COPD from a physiology as 

well molecular and cellular biology stand point. Further, it is not clearly understood if the 

progression of the disease is triggered by a change either in alveolar or the vascular 

compartments of the lung. Against this background, the current dogma that COPD is first and 

foremost an airway disease was challenged by showing that vascular changes induced by 

cigarette smoke inhalation that may cause alveolar destruction110, 112. However, no 

investigation identified the time course of the development of vascular pathology in COPD in 

relation to the development of lung emphysema. Moreover, the roles of NO synthases and 

oxidative stress in vascular alterations in COPD have not been deciphered yet.  
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2. AIMS OF STUDY  

Against this background, the overall goal of this thesis was to investigate the mechanisms for 

the development of lung emphysema and to characterize the possible involvement of vascular 

pathobiology and endothelial dysfunction in a smoke-induced mouse model of COPD. In 

particular, this thesis aimed: 

1. To examine the structural and functional alveolar changes in chronic tobacco smoke 

exposed mice.  

2. To evaluate vascular changes, hemodynamics and vasoreactivity in chronic tobacco smoke 

exposed mice. 

3. To compare the time course of a possible vascular phenotype with the development of lung 

emphysema in tobacco-smoke exposed mice. 

4. To decipher the role of eNOS and iNOS in the observed changes. 

 

The overall working-hypothesis of this thesis was to challenge the current dogma that COPD 

is primarily an airway disease and to develop on this hypothesis a therapeutic compound to 

treat COPD as with its direction. 
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3. MATERIALS 

3.1 Solutions and substances  
• Sodium hydroxide 1N (1mol/l) Merck, Darmstadt, Germany 

• Chlorhidric acid 1N (1mol/l) Merck, Darmstadt, Germany 

• Isoflurane Forene® Abbott, Wiesbach, Germany  

• Atropinsulfate 0.5 mg/ ml  Braun, Melsungen, Germany  

• Medetomidinhydrochloride 1 mg/ ml Domitor®, Pfizer, Karlsruhe, Germany  

• Atipamezolhydrochloride 5 mg/ ml Antisedan® Pfizer, Karlsruhe, Germany  

• Heparine Liquemin N 25000® Roche, Basel, Swiss  

• Ketamin hydrochloride 100 mg/ ml Ketamin® Pharmacia, Erlangen, Germany  

• Oncotic agent HAES® Fresenius Kabi, Bad Homburg, Germany  

• Lidocainhydrochloride 2% Xylocain® Astra Zeneca, Wedel, Germany  

• Physiological Saline solution For washing and weting Baxter S.A., München, 

Germany  

• Ventilation gas, 50% O2, 50%N2, Air Liquid, Siegen, Germany  

3.2 Consumables  
• Single use syringes 1ml, 2ml, 5ml, 10ml Inject Luer® Braun, Melsungen, Germany  

• Needle 26G (0.9mm x 25mm) BD Microlance 3® Becton Dickinson, Heidelberg, 

Germany  

• Medical adhesive bands Durapore® 3M St. Paul, MN, USA  

• Cannula for vein catheter support 22G and 20G Vasocan Braunüle® Braun, 

Melsungen, Germany  

• Gauze 5 x 4 cm Purzellin® Lohmann und Rauscher, Rengsdorf, Germany 

• Single use gloves Transaflex® Ansell Surbiton, Surrey, UK  

• Gauze balls size 6 Fuhrman Verrbandstoffe GmbH, Much, Germany 

• Perfusor-tubing 150 cm Original-Perfusor®-tubing Braun, Melsungen, Germany  

• Combi-Stopper Intermedica GmbH, Kliein-Winternheim, Germany 

• Stopcock for infusion therapy and pressure monotoring Discofix®-Braun, Melsungen, 

Germany  

• Napkins Tork, Mannheim, Germany  

• Threads Nr. 12 Coats GmbH, Kenzingen, Germany  

• Surgical threads non-absorbable Size 5-0 ETHIBOND EXCEL® Ethicon GmbH, 

Norderstedt, Germany  
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• Surgical threads with needle size 5-0, 6-0 and 7-0 ProleneTM, Ethicon GmbH, 

Norderstedt, Germany  

• Surgical instruments Martin Medizintechnik, Tuttlingen, Germany  

• Heating pad Thermo-Lux® Witte und Suttor, Murrhardt, Germany  

• Tracheal cannula from BD Microlance 15 or 20G shortened to 1.5cm Becton 

Dickinson, Heidelberg, Germany  

3.3 Systems and machines for animal experiments  
• System for isolated ventilated and perfused mouse lung experiments  Hugo Sachs 

Electronics, Harvard apparatus GmbH, March-Hugstetten, Germany  

• Ventilator for mice SAR830A/P Ventilator IITH Inc. Life Science Woodland Hills, 

California, USA  

• PET-Tubes with different diameters Tygon® Saint-Gobain Performance Plastics 

Charny, France  

• Blood analyzer ABL 330 Radiometer, Copenhagen, Denmark  

• Polyethylene cannula for systemic arterial pressure  measurement in mice, Fine 

Science Tools GmbH, Heidelberg, Germany  

• Silicone catheter for right heart chateterization custom-made instrument for venous 

catheter insertion with hemostatic ventil 5F Intradyn® Braun, Melsungen, Germany  

• Computer and monitor transducer Combitrans monitoring met mod. II for arterial 

blood pressure measurement Braun, Melsungen, Germany 

3.4 Histology 
• Parafilm American National Can Menasha, Wisconsin, USA  

• Urine pots with covers, Leica Microsystems, Nussloch, Germany  

• 100ml Automated microtom RM 2165,  Leica Microsystems, Nussloch, Germany  

• Flattening table HI 1220 Leica Microsystems, Nussloch, Germany  

• Flattening bath for paraffin sections HI 1210 Leica Microsystems, Nussloch, Germany  

• Tissue embedding machine EG 1140H Leica Microsystems, Nussloch, Germany  

• Cooling plate EG 1150C Leica Microsystems, Nussloch, Germany  

• Tissue processing automated machine TP 1050 Leica Microsystems, Nussloch, 

Germany  

• Stereo light microscope DMLA Leica Microsystems, Nussloch, Germany 

• Digital Camera Microscope DC 300F Leica Microsystems Nussloch,Germany 

• Ethanol 70%, 95%, 99.6% Fischer,  Saarbrücken, Germany  
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• Isopropanol (99.8%) Fluka Chemie, Buchs, Swiss  

• Methanol, reinst Fluka Chemie, Buchs, Swiss  

• Formaldehyd alcohol free =37% Roth, Karlsruhe, Germany  

• Resorcin Fuchsin Chroma, Münster, Germany  

• Kernechtrot Aluminiumsulfat Chroma, Münster, Germany  

• Roti-Histol (Xylolersatz) Roth, Karlsruhe, Germany  

• Xylol Roth, Karlsruhe, Germany  

• Hydrogen peroxide 30% pro analysi Merck, Darmstadt, Germany  

• Universal-embedding cassettes / cover slips 24x36mm, Menzel, Germany  

• Leica Microsystems, Nussloch, Germany  

• Histological glass slides Superfrost Plus® R. Langenbrinck,  Emmendingen, Germany  

• Microtom blades S35 Feather, pfm - Produkte für die  Medizin AG, Köln, Germany 

• Paraffin embedding medium Paraplast Plus® Sigma Aldrich, Steinheim, Germany  

• Pikric acid Fluka Chemie, Buchs, Swiss  

• Mounting medium Pertex® Medite GmbH, Burgdorf, Germany 

• Natriumchlorid pro analysi Roth, Karlsruhe, Germany 

• Di-Natriumhydrogenphosphat Dihydrat, pro analysis Merck, Darmstadt, Germany  

• Kaliumdihydrogenphosphat pro analysi Merck, Darmstadt, Germany  

• Trypsin Digest All 2® Zytomed, Berlin, Germany  

• Avidin-Biotin-Blocking Kit Vector/ Linaris, Wertheim-Bettingen, Germany  

• Normal Horse Serum, Alexis Biochemicals, Grünberg, Germany 

• Normal Goat Serum, Alexis Biochemicals, Grünberg, Germany  

• Normal Rabbit Serum, Alexis Biochemicals, Grünberg, Germany  

• Vectastain Elite ABC Kits anti-mouse anti-rabbt, anti-goat, Vector/ Linaris, 

Wertheim-Bettingen, Germany  

• Vector VIP Substrat Kit, Vector/ Linaris, Wertheim-Bettingen, Germany  

• DAB Substrat Kit, Vector/ Linaris, Wertheim-Bettingen, Germany  

• Methylgreen Counterstain, Vector/ Linaris, Wertheim-Bettingen, Germany  

• Silicon,  Sigma-Aldrich Biochemie GmbH, Steinheim, Germany 

• Acetone, Sigma-Aldrich Biochemie GmbH, Steinheim, Germany 

• Nitric oxide synthase inhibitor (L-NIL), Sigma-Aldrich Biochemie GmbH, Steinheim, 

Germany 

• Laser capture micro dissection, Leica Microsystems, Nussloch, Germany 
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3.5 Antibodies   
• Anti-alpha-smooth muscle Actin; Clone 1A4 monoclonal, mouse antihuman dilution 

1:1000 Sigma Aldrich, Steinheim, Germany  

• Anti-von Willebrand factor polyclonal, rabbit anti-human dilution 1:1000 Dako 

Cytomation, Hamburg, Germany  

• Rabbit polyclonal nitrotyrosine antibody, Sigma Aldrich, Steinheim, Germany  

• Rabbit polyclonal iNOS Antibody, Santa cruz biotechnology, Heidelberg  Germany 

• Rabbit Polyclonal eNOS antibody, Biotrend chemikalien GmbH, Koln, Germany 

3.6 Systems and software for morphometry 
• Computer Q 550 IW Leica Microsystems Nussloch, Germany  

• Software Q Win V3 Leica Microsystems Nussloch, Germany  

• Makro for Muscularization degree, wall thickness, septum (alveolar morphometry) 

Leica Microsystems, Nussloch, Germany 

3.7 Smoke generating system 
• Smoke generator, Custom-made, Tübingen, Germany 

• Vacuum pump for smoke generator, Custom-made, Tübingen,Germany  

• Pump for removing smoke, TSE, Tübingen, Germany  

• Smoke chamber, TSE, Tübingen, Germany 

• Millipore filter Millipore, Schwalbach, Germany 

• Cigarette, University of Kentucky, Lexington, USA 

• Computer program for monitoring smoke, TSE, Tübingen, Germany 
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4. METHODS 
4.1 Animals 

Adult WT C57Bl/6J and iNOS–/– with eNOS–/– (B6.129P2-Nos2tm1Lau/J with B6.129P2-

Nos3tm1Unc/J) mice, 20–22 g were obtained from Charles River Laboratories, Sulzfeld, 

Germany. Animals were housed under controlled conditions of equal day light cycle of 12 

hours with food and water supply ad libitum. Animals were randomly allocated to smoke 

exposed and unexposed groups of 6 mice each, with parallel groups for: (i) alveolar 

morphometry, (ii) vascular morphometry including right ventricular and systemic arterial 

blood pressure measurements, (iii) protein and mRNA analysis, (iv) lung function tests, and 

(v) vasoreactivity. All experiments were approved by the governmental ethics committee for 

animal welfare (Regierungspräsidium Giessen, Germany). 

 

4.2 Experimental design and tobacco smoke exposure 

WT, eNOS–/–, and iNOS–/– mice were exposed to the mainstream smoke of 3R4F cigarettes; 

(University of Kentucky, Lexington, KY, USA) at a concentration of 140 mg particulate 

matter/m3 for 6 h/day, 5 days/week for up to 8 months. After assessing the time course of 

COPD development in WT mice and in the knockout mice, WT animals were exposed to 

smoke with parallel treatment with the iNOS inhibitor L-NIL at a concentration known to be 

highly iNOS selective (600 μg/ml in drinking water, Biotium, USA) in a separate set of 

experiments. To assure age-matched controls, respective control groups were kept under 

identical conditions as smoke-exposed mice but without smoke exposure. The age of the 

control mice had no significant effect on any of the parameters measured in this study and 

given respective control group as 0 months of smoke exposure. 

Experimental plan / time table of analysis 
 

876543210 876543210
Months of smoke exposure

ABABABAAAB ABABABAAABWild-Type mice
(C57BL/6J)

Knock out mice
(NOS2+NOS3)

Treatment 
(C57BL/6J) NOS2 
inhibitor L-NIL

ABAB ABAB

ABAB ABAB

A: Alveolar morphometry, vascular morphometry, right heart hypertrophy, hemodynamics

AB: Alveolar morphometry, vascular morphometry, right heart hypertrophy, hemodynamics, lung function test, isolated perfused
mouse lung experiment, real time PCR, Western blot, different target staining by immunohistochemistry and immunofluorescence, 
in-situ hybridization  
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4.3 Mice preparation  

Mice after smoke exposure were anesthetized by intraperitoneal injection with 

ketamine/xylazine (20µl ketamine/20µl xylazine/40µl NaCl) and sacrificed for 

morphometrical investigation. During sacrifice, mice were given first incision in longitudinal 

ventral area from trachea to abdomen, diaphragm was opened and tracheal area was cleaned. 

 

For alveolar morphometry, lungs were fixed in chest by infusion of 4.5% formaldehyde 

solution at 22 cm H2O of inflating pressure via the trachea. For vascular morphometry, lungs 

were first flushed free of blood with the saline via the pulmonary artery after making opening 

through incision in left ventricle and then fixed by passing zamboni fixative solution at 22 cm 

H2O pressure. During fixation, tracheal pressure of 12 cm H2O was maintained. For both 

alveolar and vascular morphometry, lungs were isolated from the chest cavity after 20 minutes 

and allowed to immerse overnight in respective fixative solution. Thus fixed lungs were 

transferred to 0.1 M phosphate buffered saline the following day. 

 

After this, the lung lobes were individually placed in histological cassettes and dehydrated in 

an automated dehydration station and than embedded in paraffin blocks. Staining was done on 

3µm lung sections for alveolar/vascular-luminal morphometry and number of alveoli: number 

of vessels. Similar study was also carried out with human COPD patient lungs too.  

 

4.3.1 Alveolar morphometry  

The mean linear intercept, mean air space and mean septal wall thickness were measured from 

paraffin sections of each lung’s lobe after staining with hematoxylin and eosin (HE)113. The 

detailed protocol is given in Appendix I. This HE stained lung sections were scanned to build 

mosaics picture and each mosaics were investigated microscopically by using a Qwin macro 

program from Leica. Bronchi, airways and vessels were excluded in measurement. Maximum 

50-100 smaller mosaics areas were investigated in blinded fashion from each lung’s lobe. 

 

4.3.2 Vascular morphometry 

The degree of muscularization in small pulmonary arteries was investigated in mouse lung 

paraffin sections after staining for smooth muscle and endothelial cells using specific marker 

α-actin and Willebrand factor (vWf) antibodies respectively. The detailed protocol is given in 

Appendix II.  
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Morphometric quantification was carried out microscopically using a Qwin macro program 

from Leica114, 115. This program automatically recognized α-actin stained colour and 

categorized vessel into fully muscularized (>70% vessel circumference), partially 

muscularized (5%-70% vessels circumference) and nonmuscularized (<5% vessels 

circumference). One hundred pulmonary artieries (85 vessels for 20-70 micrometer diameter 

vessels, 10 vessels for 70-150 micrometer vessels and 5 vessels for more than 150 micrometer 

vessels) were analyzed from each lung lobe in a blinded fashion. The degree of 

muscularization is given as percentage of total vessel count. 

 

4.3.3 Lumen morphometry  

The lumen areas of pulmonary arteries were investigated in elastica Van Gieson stained 

parrafin lung section. The detail staining protocols are given detail in Appendix III. This 

staining was used to differentiate between elastic fibers (purple black staining), the cell 

nucleus (dark brown staining), the collagenous fibers (red staining) and the muscle fiber and 

cytoplasm (yellow staining).  

 

Morphometrical quantification was carried out microscopically using a Qwin macro program 

from leica115, 116.  From each stained section, 85 vessel (20-70 micrometer diameter), 10 

vessels (70-150 micrometer diameter) and 5 vessels (more than 150 micrometer diameter) 

were measured. The specific mosaic picture automatically differentiated the external diameter 

of vessel (tunica externa), internal diameter of vessel (intimal layer) and calculated the 

vascular lumen area. All vascular lumen areas were averaged after categorization to different 

vessel size as given above.  

 

4.3.4 Ratio of the number of alveoli / number of vessels 

For counting the total number of vessel and alveoli, above stained lung sections for vascular 

morphometry (α-actin and vWf)  were analyzed by using a Qwin macro program from leica to 

create 32 number of smaller mosaic picture under magnification of X10 in a blinded fashion. 

Each mosaic was marked with definite scale for measuring area. All alveoli and vessels 

number were counted averaged and the ratio of alveolai/vessels was calculated.  

 

4.4 Isolated perfused mouse lung experiment 

For measurement of vasoreactivity and lung functional parameters, an isolated perfused 

mouse lung setup was used. Isolated mouse lung perfusion was performed in a water-jacketed 
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chamber (type 839, Hugo Sachs Elektronik, March-Hugstetten, Germany). Deeply 

anesthetized and anticoagulated animals were intubated via a tracheostoma and ventilated 

with room air (positive pressure ventilation 250 μl tidal volume, 90 breaths/min and 2 cm H2O 

positive end-expiratory pressure). A midsternal thoracotomy was followed by an insertion of 

catheters into the pulmonary artery. Lungs were perfused with Krebs–Henseleit buffer (120 

mM NaCl, 4.3 mM KCl, 1.1 mM KH2PO4, 2.4 mM CaCl2, 1.3 mM MgCl2, and 13.32 mM 

glucose as well as 5% (w/v) hydroxyethylamylopectin as an oncotic agent; NaHCO3 was 

adjusted to result in a constant pH of 7.37– 7.40) at a flow rate of 2 ml / min using a peristaltic 

pump (ISM834A V2.10, Ismatec, Glattbrugg, Switzerland). In parallel to perfusion, the 

ventilation was changed from room air to a pre-mixed normoxic gas (21% O2, 5.3% CO2, 

balanced with N2). After rinsing the lungs with ∼20 ml buffer, the perfusion circuit was closed 

for recirculation and the left arterial pressure was set at 2.0 mmHg. Meanwhile, the flow was 

slowly increased from 0.2 to 2 ml / min and the entire system was heated to 37°C. The 

pressure in the pulmonary artery and in the left ventricle was registered via catheters. 

 

The artificial thorax was closed and the lungs were ventilated with negative pressure of -2 cm 

H2O and -12 cm H2O, respectively. The end-expiratory pressure was kept constant at -2 cm 

H2O. The tidal volume, pulmonary resistance and dynamic lung compliance were calculated 

using the HSE Pulmodyn program (Hugo Sachs Elektronik, March Hugstetten, Germany)117. 

 

After assessment of the lung function, the lungs were ventilated with positive pressure at a 

tidal volume of 250 μl and an end-expiratory pressure of 2 cm H2O. For evaluation of 

vasoreactivity, a hypoxic ventilation with a gas mixture containing 1% O2, 5.3% CO2, 

balanced with N2 was used. Two 10-min periods of hypoxic ventilation (1% O2) were 

alternated with 15 min normoxic periods. This was followed by application of increased doses 

of phenylepinephrine (0.1, 1, 10, 100 μM) into the buffer fluid. Each dosage increase was 

performed after pulmonary artery pressure reached a constant value. After application of the 

highest phenylepinephrine concentration, the response to inhaled NO (10, 100 ppm) and 

intravascularly infused acetylcholine (1, 10 μM) was determined. 

 

4.5 In vivo hemodynamic measurements 

Mice were anaesthetized with ketamine (6 mg/100 g, intraperitoneally) and xylazine 

(1mg/100g, intraperitoneally) and were anticoagulated with heparin (1000 U/Kg). The trachea 

was cannulated, and the lungs were ventilated with room air at a tidal volume of 0.2 ml and at 
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a rate of 120 breaths per minute maintained at a physiological temperature throughout the 

experiment. Systemic arterial pressure was determined by catheterization of the carotid artery. 

For measurement of right ventricular systolic pressure (RVSP) a PE-10 tube was inserted into 

the right ventricle via the right vena jugularis. The changes in the carotid arterial with the right 

ventricular pressure were monitored continuously and the mice were maintained in 

homeothermic condition114. 

 

4.6 Heart ratios 

All hearts from mice of different group were isolated and dissected for right ventricular 

weight (RV) and left ventricle plus septum weight (LV+ septum). After sectioning, they were 

dried for 1 week at room temperature. The right to left ventricle plus septum weight ratio was 

calculated114.  

 

4.7 Localization of eNOS, iNOS, and nitrotyrosine 

Localization of eNOS and iNOS was investigated in lung sections from cryopreserved tissue 

by immunostaining118. Lung sections (10 μm) were fixed in ice-cold acetone/methanol 

solution (1:1) and blocked with 3% (w/v) bovine serum albumin (BSA) in phosphate buffered 

saline (PBS) for 1 hour followed by an overnight incubation with an 1:50 dilution of anti-

eNOS (BD Biosciences, Heidelberg, Germany) or 1:100 dilution of anti-iNOS (Abcam, 

Cambridge, UK) antibody, diluted in PBS with 3% (w/v) BSA. Indirect immunofluorescence 

was obtained after incubation for 90 min with a 1:500 dilution of Alexa Fluor® 555 

conjugated anti-rabbit antibody (Invitrogen, Karlsruhe, Germany) in BSA. Nuclear 

counterstaining was performed with Hoechst-33258 (1:10000 dilution in PBS; Invitrogen, 

Karlsruhe, Germany) for 10 min. 

  

Nitrotyrosine was detected in paraffin-embedded lung sections of both mouse and human lung 

tissue using a rabbit anti-nitrotyrosine antibody (Sigma, Munich, Germany). The expression 

of nitrotyrosine was assessed on 3 μm, paraffin-embedded lung sections in animal and human 

lung tissue samples. After heating at 61°C, lung sections were deparaffinized in xylene and 

rehydrated. The endogenous peroxidase activity was quenched with 3% (v/v) H2O2 in 

methanol. For staining, a 1:250 dilution of antinitrotyrosine antibody (rabbit anti-

nitrotyrosine; Sigma, Munich, Germany) was used. Subsequently the immune complexes 

were visualized with a peroxidase-conjugated secondary antibody (Vector labs, LINARIS, 
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Wertheim-Bettingen, Germany). An additional methyl green counterstaining of the sections 

was performed. 

4.8 Non-isotopic in situ hybridization (NISH) combined with immunofluorescence on 
mouse lung sections 
Localization of mRNA by non-isotopic in situ hybridization was determined in cryostat lung 

sections118. The generation of single-stranded digoxigenin (DIG)-labelled riboprobes for non-

isotopic in situ hybridization was done by the in vitro transcription method. For the generation 

of the probes, the template was amplified by nested PCR out of cDNA from lung homogenate 

using the following primers: 

NISH iNOS (F) 5′-GCCCCTGGAAGTTTCTCTTC-3′ 

NISH iNOS (R) 5′-ACCACTCGTACTTGGGATGC-3′   

NISH iNOS (F) T3 5′-AATTAACCCTCACTAAAGGTTCCAGAATCCCTGGACAAG-3′ 

NISH iNOS (R) T7 5′-TAATACGACTCACTATAGGTGCTGAAACATTTCCTGTGC-3′ 

NISH eNOS (F) 5′-AAGTGGGCAGCATCACCTAC-3′ 

NISH eNOS (R) 5′-GTCCAGATCCATGCACACAG-3′ 

NISH eNOS (F) T3 5′-AATTAACCCTCACTAAAGGCTTCAGGAAGTGGAGGCTGA-3′ 

NISH eNOS (R) T7 5′-TAATACGACTCACTATAGGAGTAACAGGGGCAGCACATC-3′ 

 

In brief, 1μg of the purified PCR-amplified template containing T3 and T7 RNA polymerase 

promoter sequences was mixed with 2 μl digoxigenin-11-uridine triphosphate (Roche, 

Mannheim, Germany), 4 μl of 5x transcription buffer (Promega, Mannheim, Germany), 1 μl 

of RNasin (Peqlab, Erlangen, Germany) and 2 μl of T3 or T7 Phage polymerase (Promega, 

Mannheim, Germany) in a total reaction volume of 20 μl. The reaction mixture was incubated 

at 37°C for 2 h. The RNA probes were purified with a PCR purification kit (Qiagen, Hilden, 

Germany). The non-isotopic in situ hybridization was performed on 8 μm thick Tissue-Tek®-

embedded (Sakura Finetek, Staufen, Germany) mouse lung cryostat sections. 

 

4.9 Laser-assisted microdissection  

Microdissection was performed to isolate pulmonary arterial vessels from cryostat lung 

sections118, 119. In brief, cryosections (10μm) of Tissue-Tek®-embedded (Sakura Finetek, 

Staufen, Germany) lung tissue were mounted on membrane-coated glass slides. After 

hemalaun staining for 45 s, mouse lung sections were subsequently immersed in water, 70%, 

96% and stored in 100% ethanol until use. Human lung cryosections were stained with 
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hematoxylin for 10 s, washed with water, stained with eosin (1:5) for 20 s and subsequently 

immersed in water, 70%, 96% and stored in 100% ethanol until use. 

 

Intrapulmonary arteries with a diameter 50–150 μm were selected and microdissected under 

optical control using the Laser Microbeam System (P.A.L.M., Bernried, Germany). 

Afterwards, the microdissected vessels were catapulated to an inverted Eppendorf tube lid 

filled with 25 μl of mineral oil. After collection, the vessels were spun down in 300 μl of 

RNA lysis buffer, vortexed and directly frozen to store in liquid nitrogen until analysis. 

 

4.10 RNA isolation, pre-amplification, cDNA synthesis and real-time polymerase chain 

reaction 

RNA from laser-microdissected or homogenized mouse and human lung tissue was isolated 

by RNeasy Micro and Mini kits, respectively (Qiagen, Hilden, Germany). The isolated RNA 

was pre-amplified and relative quantification of the eNOS, iNOS subunits was done using the 

iQ SYBR Green Supermix (BIO-RAD, Munich, Germany). Total messenger RNA was 

extracted from frozen human lung tissue and microdissected vessels by using an RNeasy Mini 

or Micro Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The 

isolated RNA was subsequently pre-amplified with a modified Quick Amp Labelling Kit 

(Agilent, Böblingen, Germany). PCR with reverse transcription was performed with 1 μg of 

RNA each, using the iScript cDNA Synthesis Kit (BIO-RAD, Munich, Germany). The 

condition for the reverse transcription was as follows: 1 cycle at 25°C for 5 min; 1 cycle at 

42°C for 30 min; 1 cycle at 85°C for 5 min.  

 

Real-time PCR was performed with the iQ SYBR Green Supermix according to the 

manufacturer’s instructions (BIO-RAD, Munich, Germany). In brief, a 25 μl mixture was 

used containing 12.5 μl iQ SYBR Green Supermix, 0.5 μl forward and reverse primer, 9.5 μl 

sterile water and 2 μl of the 1:5 diluted complementary DNA template. A negative control 

(non-template control) was performed in each run. The real time PCR was performed with a 

Mx3000P (Stratagene, Heidelberg, Germany) under the following conditions: 1 cycle at 95°C 

for 10 min, then 40 cycles at 95°C for 10 s, 59°C for 10 s, 72°C for 10 s, followed by a 

dissociation curve. The intron-spanning primers were designed by using sequence information 

from the NCBI database. The Ct values were normalized to the endogenous control 

(Porphobilinogen deaminase, PBGD). 
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PBGD mouse (F) 5′-GGGAACCAGCTCTCTGAGGA-3′ 

PBGD mouse (R) 5′-GAATTCCTGCAGCTCATCCA-3′ 

iNOS mouse (F) 5′-TGATGTGCTGCCTCTGGCT-3′ 

iNOS mouse (R) 5′-AATCTCGGTGCCCATGTACC-3′ 

eNOS mouse (F) 5′-ACACAAGGCTGGAGGAGCTG-3′ 

eNOS mouse (R) 5′-TGGCATCTTCTCCCACACAG-3′ 

PBGD human (F) 5′-CCCACGCGAATCACTCTCAT-3′ 

PBGD human (R) 5′-TGTCTGGTAACGGCAATGCG-3′ 

iNOS human (F) 5′-ATGAGGAGCAGGTCGAGGAC-3′ 

iNOS human (R) 5′-CTGACATCTCCAGGCTGCTG-3′ 

eNOS human (F) 5′-ACCTCGTCCCTGTGGAAAGA-3′ 

eNOS human (R) 5′-CCTGGCCTTCTGCTCATTCT-3′ 

 

4.11 Western blots 

For the quantification of eNOS, iNOS and nitrotyrosine in mouse and human lung tissue, the 

polyclonal antibodies anti-eNOS (BD Biosciences, Heidelberg, Germany), or antiiNOS 

(Abcam, Cambridge, UK) and anti-nitrotyrosine (Abcam, Cambridge, UK) raised in rabbits 

were used. Frozen mouse and human lung tissue samples were homogenized in RIPA buffer, 

containing 1 mM sodium vanadate, 0.1 mM phenylmethylsulphonyl fluoride (PMSF), 40 

μl/ml protease-inhibitor mix complete (Roche, Mannheim, Germany) and 30 μl/ml β- 

mercaptoethanol. Subsequently the samples were centrifuged for 10 min at 8000 g. The 

supernatant (containing 4x LDS loading buffer) was heated at 99°C for 10 min and equal 

amounts of protein were loaded on an 8% SDS polyacrylamide gel. The proteins were 

transferred to a polyvinylidene fluoride membrane (Pall Corporation, Dreieich, Germany) by 

the semi dry-blotting method. The membrane was washed for 5 min with wash buffer (20 mM 

Tris-Cl, pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween 20) and subsequently blocked in 6% (w/v) 

non-fat dry milk powder dissolved in wash buffer at room temperature. 

 

Incubation with a diluted primary antibody (iNOS_ab3523 1:2000, Nitrotyrosine_ab7048 

1:1000, both Abcam, Cambridge, UK; eNOS`610298 1:1000, BD Biosciences, Heidelberg, 

Germany; β-actin_A5316 1:30000, Sigma-Aldrich, Munich, Germany) was performed at 4°C 

overnight. After washing several times with wash buffer, a horseradish peroxidase-conjugated 

secondary antibody (anti-rabbit_W401B and anti-mouse_W402B respectively, Promega, 

Mannheim, Germany) was applied for 1 h at room temperature. After washing the membrane, 



METHODS                                                                                                                              30 

 

visualization was carried out using the enhanced chemiluminescence kit (ECL, Amersham, 

Braunschweig, Germany) and X-ray photo film (Kodak, Stuttgart, Germany). 

 

4.12 Patient characteristics 

Human lung tissues were obtained from transplanted COPD patients (Gold stage IV) and 

donor controls. The studies were approved by the Ethics Committee of the Justus-Liebig- 

University, School of Medicine (AZ 31/93). The human lung tissue was snap-frozen directly 

after explantation for mRNA and protein extraction or fixed in 4.5% paraformaldehyde or 

Tissue-Tek® (Sakura Finetek, Staufen, Germany), respectively for histology and laser 

assisted microdissection. Patients’ characteristics details are given in Table 4. 

Table 4 Patient characteristics 

Patient FEV1/FVC Diagnosis Age (yr) Sex Pack/ years Treatment 
1 COPD 49.3% COPD 53 m 39 IB / T/ SC 
2 COPD 45.0% COPD 48 m 31 IB / ICS 
3 COPD 30.6% COPD 58 m 88 IB / ICS / T 
4 COPD 39.7% COPD 58 m 70 IB / SC /T 
5 COPD 62.9% COPD 59 m 5 IB/ ICS 
1 Donor  Normal 24 m   
2 Donor  Normal 52 f   
3 Donor  Normal 61 f   
4 Donor  Normal 26 m   
5 Donor  Normal 29 m   

 

4.13 Statistical analyses 

All data are expressed as means ± SEM. Comparison of multiple groups was performed by 

analysis of variance (ANOVA) with the Student–Newman–Keuls post-test. For comparison of 

two groups a Student’s t-test was performed. P value below 0.05 was considered as statistical 

significant for all analysis. 

 
 
 
 
 
 

 

 



RESULTS                                                                                                                                31 

5. RESULTS 

5.1 Lung emphysema development in wild-type mice exposed to tobacco smoke 
Exposure of wild-type (WT) mice to cigarette smoke for up to 8 months resulted in 

development of lung emphysema starting after 6 months, as evident from an increase in the 

mean linear intercept, an increase in the airspace and a decrease in the septal wall thickness. 

The lung emphysema was more pronounced after 8 months of tobacco exposure. There was 

no difference in the mean linear intercept, air space, and septal wall thickness between the 

non smoke exposed age matched controls (0 months) (Fig. 4 a–d).  
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Figure 4. Comparison of the time course for the development of emphysema during 8 months of smoke 
exposure in wild-type (WT) mice.  

 (a) mean linear intercept, (b) air space and (c) septal wall thickness, quantified from lung sections stained with 
hematoxylin & eosin (HE), (d) representative histology from lung sections satined with HE (I, II). Data are 
given for n = 6 lungs each in the time course of tobacco smoke exposure for up to 8 months. ∗significant 
differences (P<0.05) compared with respective unexposed controls (0 months of exposure). 
 

d.

WT 
8 months of smoke exposure 

WT  
0 months of smoke exposure 

I 

II 

a. b. c.
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5.2 Lung functional changes in wild-type mice exposed to tobacco smoke 
 
The late onset of lung emphysema development was mirrored by the development of lung 

functional changes. This lung functional data showed increased dynamic lung compliance, 

increase dynamic lung tidal volume and decreased lung airway resistance after 8 months of 

tobacco smoke exposure. There was no difference in the dynamic lung compliance, increase 

dynamic lung tidal volume and decreased lung airway resistance between the non smoke 

exposed age matched controls (0 months) (Fig. 5 a-c).  
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Figure 5. Lung compliance, tidal volume and airway resistance during the course of smoke exposure for 8 
months in wild-type (WT) mice. 

Lung functional parameters determined in isolated, artificially ventilated and perfused mouse lungs under negative 
pressure ventilation. (a) lung compliance, (b) tidal volume and (c) airway resistance in WT mice. ∗significant 
differences (P<0.05) compared with respective unexposed controls (0 months of exposure). 

5.3 Pulmonary hypertension development in wild-type mice exposed to tobacco smoke 

5.3.1 Hemodynamics, heart ratio and number of alveoli / number of vessels 

Most interestingly, tobacco smoke exposure caused development of pulmonary hypertension, 

which preceded the development of lung emphysema. This was shown by an increase in right 

ventricular systolic pressure and increase in the ratio of the absolute numbers of alveoli: 

number of vessels within 3 months, followed by right heart hypertrophy after 6 months of 

tobacco smoke exposure. There was no difference in the right ventricular systolic pressure, 

the ratio of the absolute numbers of alveoli: number of vessels (Fig. 6a, b) and the heart ratio 

(Table 5) between the non smoke exposed age matched controls (0 months).  

 

In contrast to the increased right ventricular pressure, mean systemic artery pressure was 

significantly and consistently decreased after 3 months of smoke exposure in WT mice. There 

was no difference in the right ventricular pressure, mean systemic artery pressure between the 

non smoke exposed age matched controls (0 months) (Fig. 6c).  

 

a. b. c. 
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Figure 6. Comparison of the time course of the development of pulmonary hypertension during 8 months 
of smoke exposure in wild-type (WT) mice.  

(a) right ventricular systolic pressure quantified by right heart catheterization in anesthetized animals. (b) ratio of the 
number of alveoli to the number of vessels per area quantified from lung sections co-stained against α-smooth muscle 
actin and von Willebrand factor. (c) systemic arterial pressure in WT mice. Data are given for n = 6 lungs each in the 
time course of tobacco smoke exposure for up to 8 months. ∗significant differences (P<0.05) compared with 
respective unexposed controls (0 months of exposure). 
 

The weight of left ventricle plus septum remained same till 8 months of smoke exposure and 

only the right ventricular weight was increased after 6 months of smoke exposure as shown in 

Table 5. 

Table 5 Comparision of the mass of the right ventricle (RV), the left ventricle+septum (LV+S) and thew 
ratio of RV/(LV+S) during 8 months of smoke exposure in WT mice. 

 Group RV (g) ± SEM LV+ S (g) ± SEM RV/(LV+S) ± SEM 
Months of smoke 
exposure Non smoke Smoke Non smoke Smoke Non smoke Smoke 
1 month  0.0051 

±0.0002 
0.0055 
±0.0002 

0.0210 
±0.0008 

0.0236 
±0.0004 

0.2400 
±0.0035 

0.2300 
±0.0052 

2 months  0.0057 
±0.0003 

0.0058 
±0.0004 

0.0232 
±0.0014 

0.0230 
±0.0011 

0.2400 
±0.0045 

0.2500 
±0.0063 

3 months  0.0052 
±0.0002 

0.0056 
±0.0002 

0.0210 
±0.0003 

0.0224 
±0.0009 

0.2500 
±0.0075 

0.2500 
±0.0045 

6 months  0.0051 
±0.0002 

0.0063 
±0.0003∗ 

0.0202 
±0.0006 

0.0208 
±0.0010 

0.2500 
±0.0041 

0.3000 
±0.0046∗ 

8 months  0.0052 
±0.0001 

0.0064 
±0.0002∗ 

0.0206 
±0.0003 

0.0206 
±0.00091 

0.2500 
±0.0036 

0.3100 
±0.0132∗ 

∗significant difference (P<0.05) compared with respective months age-matched non-smoke exposed controls. 

 

5.3.2 Degree of musculariazation and vascular lumen area 

Pulmonary hypertension was accompanied by an increase in the degree of muscularization of 

lung resistance pulmonary arteries (of diameter 20–70 μm) and a reduction in mean vascular 

lumen area after 3 months of smoke exposure. There was no difference in the degree of 

muscularization and narrowing of vascular lumen between the non smoke exposed ages 

matched controls (0 months) (Fig.7a–c).  

a. b. c.
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Figure 7. Degree of muscularization and narrowing of vascular lumen during 8 months of smoke exposure 
in wild-type (WT) mice.  

(a) degree of muscularization of small pulmonary arteries (diameter 20–70 μm). Data are given as percentage of 
total vessel count for fully muscularized (Full), partially muscularized (Partial) and non-muscularized (None) 
vessels from lung sections costained against α-smooth muscle actin and von Willebrand factor. (b) mean 
vascular lumen area (μm2) of small pulmonary arterial vessels (diameter 20–70μm) from van Gieson stained 
lung section. (c) representative histology from lung sections stained antibodies against α-smooth muscle actin 
and von Willebrand factor (I, II). Data are given for n = 6 lungs each in the time course of tobacco smoke 
exposure for up to 8 months. ∗significant differences (P<0.05) compared with respective unexposed controls (0 
months of exposure). 
 

 

A similar increase in the degree of muscularization and narrowing of vascular lumen was 

found in larger pulmonary arteries. There was no difference in the degree of muscularization 

and narrowing of vascular lumen between the non smoke exposed ages matched controls (0 

months) (of diameter 71–150 μm, and those >150 μm, Fig. 8a-d). 

 

 

a. b.

WT   
 0 months of smoke exposure 

WT 
 8 months of smoke exposure 

I II
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Figure 8. Degree of muscularization and narrowing of vascular lumen in pulmonary arterial vessels 
during 8 months of smoke exposure in wild-type (WT) mice with COPD. 

(a) development of the increase in the degree of muscularization of pulmonary arterial vessels (diameter 70–150 
μm). (b) development of the increase in the degree of muscularization of pulmonary arterial vessels (diameter 
>150 μm). (c) development of the decrease in the mean vascular lumen area (μm2) of pulmonary arterial vessels 
(diameter 70–150 μm). (d) development of the decrease in the mean vascular lumen area (μm2) of pulmonary 
arterial vessels (diameter >150 μm). Data are given for n = 6 lungs each in the time course of tobacco smoke 
exposure for up to 8 months. ∗significant differences (P<0.05) compared with respective unexposed controls (0 
months of exposure). 

 

5.4 Regulation of iNOS and eNOS expression in the pulmonary vasculature of wild-type 
mice after exposure to tobacco smoke  

5.4.1 Localization of iNOS and eNOS in mRNA and protein level 

As the regulation of NOS is thought to contribute to the development of COPD, eNOS and 

iNOS expression was focussed during the course of tobacco smoke exposure. 

Immunofluorescence staining suggested that iNOS protein expression was prominently 

upregulated in the pulmonary vasculature in smoke-exposed mice (Fig. 9a I). In situ 

hybridization mirrored these results, showing upregulation of iNOS messenger RNA in the 

pulmonary vasculature, with some additional reactivity found in bronchi (Fig. 9b I).  

 

 

 

a. b. 

c. d. 
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Figure 9. Localization of the inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase 
(eNOS) in wild-type (WT) mouse lungs.  

(a) immunostaining (I, II, red) and (b) non-isotopic in situ hybridization (I, II, green) for iNOS and eNOS in WT 
mouse lung sections. Data are given for 3 and 8 months of smoke exposure as well as for unexposed controls. V 
= vessel, B = bronchus. (In situ hybridization kindly provided by Michael Seimetz) 
 

In contrast to iNOS, immunofluorescence staining suggested a downregulation of eNOS in 

the pulmonary vasculature, again backed up by in situ hybridization, with some transient 

upregulation within the first 3 months of smoke exposure (Fig. 9a, b). Non-vascular areas 

that were positive for iNOS and eNOS may represent bronchial smooth muscle cells and 

alveolar cells.  

5.4.2 Expression of iNOS and eNOS on mRNA and protein level 

Further these results were confirmed by quantitative PCR analysis of microdissected 

pulmonary vessels (50–100 μm) and by Western blotting from homogenized lung tissue 

showing the upregulation of iNOS after 3 months of smoke exposure on the mRNA and 

protein level (Fig. 10 a, b). By contrast eNOS was transiently upregulated in mRNA but was 

downregulated after 8 months of tobacco smoke exposure in protein level (Fig. 11 a, b). 

 

a.

b. I. iNOS 

II. eNOS 

I. iNOS 

II. eNOS 

0 months 
Duration of smoke exposure

8 months 3 months



RESULTS                                                                                                                                37 

 

Months of smoke exposure

0

2

4

6

8

0 3 0 8

∗
∗

R
el

at
iv

e 
iN

O
S

ex
pr

es
si

on
 (Δ

ct
)

  Months of smoke exposureR
el

at
iv

e 
in

te
ns

ity
 (i

N
O

S/
β-

ac
tin

)

0.00

0.45

0.90

1.35

1.80

2.25

0 3 0 8

∗

∗

 
Figure 10. Relative quantification of the inducible nitric oxide synthase (iNOS) in wild-type (WT) mouse 
lungs.   
 
(a) quantitative RT-PCR analysis for iNOS mRNA of laser-microdissected small pulmonary arteries (diameter 
50–100 μm). iNOS values were related to porphobilinogen deaminase (PBGD) mRNA levels. Data are from 
duplicate measurements of n = 20 vessels from n = 3 lungs each. (b) Western blot analysis of iNOS from lung 
homogenate, normalized to β-actin. The full blot is shown on the right and densitometry is given on the left. 
Values are derived from duplicate measurements of n = 3 individual lungs each. Data are given for 3 and 8 
months of smoke exposure as well as for unexposed controls (0 months). *significant difference (P<0.05) 
compared with respective 0 month of smoke exposure. 
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Figure 11. Relative quantification of the endothelial nitric oxide synthase (eNOS) in wild-type (WT) 
mouse lungs. 
 
 (a) quantitative RT-PCR analysis for eNOS mRNA of laser-microdissected small pulmonary arteries (diameter 
50–100 μm). eNOS values were related to PBGD mRNA levels. Data are from duplicate measurements of n = 
20 vessels from n = 3 lungs each. (b) Western blot analysis of eNOS from lung homogenate, normalized to β-
actin. The full blot is shown on the right and densitometry is given on the left. Values are derived from duplicate 
measurements of n = 3 individual lungs each. Data are given for 3 and 8 months of smoke exposure as well as 
for unexposed controls (0 months). *significant difference (P<0.05) compared with respective 0 month of smoke 
exposure.  

5.5 iNOS but not in eNOS deficient mice are completely protected from lung emphysema 

development upon tobacco smoke exposure 

The development of emphysema after 8 months of tobacco smoke exposure in iNOS–/–, 

eNOS–/– and WT mice was compared. The iNOS deficient mice were completely protected 

against the development of emphysema as evident from quantification of increased mean 

linear intercept, increased air space, decreased septal wall thickness; where as the eNOS–/– 

were susceptible to emphysema like smoke exposed WT mice (Fig. 12a-d).  

a. b.
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Figure 12. Comparison of the development of emphysema after 8 months of smoke exposure in wild-type 
(WT) mice and in mice lacking the inducible nitric oxide synthase (iNOS–/–) or endothelial nitric oxide 
synthase (eNOS–/–).  

 (a) mean linear intercept, (b) air space, (c) septal wall thickness quantified from lung sections stained with 
hematoxylin & eosin (HE). (d) representative histology from lung sections stained with HE in eNOS–/– (I, II) and 
iNOS–/–  (III, IV) mice Data are given for n = 6 lungs each. *significant difference (P<0.05) compared with the 
respective unexposed control (0 months).  
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5.6 iNOS but not in eNOS deficient mice are completely protected from lung functional 

changes upon tobacco smoke exposure 

The development of functional alterations in iNOS–/–, eNOS–/– and WT mice after 8 months 

of tobacco smoke exposure were compared. The functional alteration in eNOS-deficient mice 

were similar to those seen in smoke exposed WT controls as indicated by increased lung 

compliance, increased tidal volume and decreased airway resistance. However, iNOS–/– mice 

showed resistant to these functional parameters upon smoke exposure (Fig. 13 a-c).  

      

Figure 13. Lung compliance, tidal volume, airway resistance during the course of smoke exposure for 8 
months in wild-type (WT) mice and in mice lacking the inducible nitric oxide synthase (iNOS–/–) or 
endothelial nitric oxide synthase (eNOS–/–). 

Lung functional parameters determined in isolated artificially ventilated and perfused mouse lungs under 
negative pressure ventilation. (a) lung compliance, (b) tidal volume, and (c) airway resistance compared with 
unexposed controls (0 months). *significant difference (P<0.05) compared with the unexposed controls.  
        

5.7 iNOS but not in eNOS deficient mice are completely protected from pulmonary 

hypertension development upon tobacco smoke exposure 

The development of pulmonary hypertension after 8 months of tobacco smoke exposure in 

iNOS–/–, eNOS–/– and WT mice was compared. 

5.7.1 Hemodynamics, heart ratio and number of alveoli / number of vessels 

As similar to the functional parameter, iNOS deficient mice were completely protected 

against the development of pulmonary hypertension as evident from the right ventricular 

systolic pressure, right ventricular hypertrophy and the ratio of number of alveoli / number of 

vessels where as the eNOS–/– mice were susceptible to development of pulmonary 

hypertension  upon smoke exposure (Fig. 14a, b, Table 6). In addition, the decrease in 

systemic aterial pressure seen in WT mice did not occur in the iNOS- deficient mice, but 

occur in eNOS–/– mice (Fig. 14c).  

a. b. c.
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Figure 14. Comparison of development of the pulmonary hypertension after 8 months of smoke exposure 
in wild-type (WT) mice and in mice lacking the inducible nitric oxide synthase (iNOS–/–) or endothelial 
nitric oxide synthase (eNOS–/–).  

(a) right ventricular systolic pressure quantified by right heart catheterization in anesthetized animals. (b) ratio 
of number of alveoli to the number of vessels per area quantified from lung sections co-stained against α-smooth 
muscle actin and von Willebrand factor and (c) Systemic arterial pressure. Data are given for n = 6 lungs each. 
*significant difference (P<0.05) compared with the respective unexposed control (0 months). 
 

Table 6 Comparision of the mass of the right ventricle (RV), the left ventricle+septum (LV+S) and the 
ratio of RV/(LV+S) during 8 months of smoke exposure in wild-type (WT) mice and in mice lacking the 
inducible nitric oxide synthase (iNOS–/–) or endothelial nitric oxide synthase (eNOS–/–). 

   RV (g) ± SEM LV+S (g) ± SEM RV/(LV+S) ± SEM 
Months of 
smoke exposure 

Non 
smoke Smoke 

Non 
smoke Smoke 

Non 
smoke Smoke 

8 months (WT) 0.0062 
±0.0002 

0.0080 
±0.0001∗ 

0.0253 
±0.0003 

0.0260 
±0.0004 

0.2400 
±0.0071 

0.3000 
±0.0072∗ 

8 months 
(eNOS–/–) 

0.0056 
±0.0001 

0.0076 
±0.0004∗ 

0.0238 
±0.0004 

0.0238 
±0.0014 

0.2400 
±0.0044 

0.3200 
±0.0059∗ 

8 months 
(iNOS–/–) 

0.0055 
±0.0001 

0.0057 
±0.0002 

0.0227 
±0.0009 

0.0231 
±0.0005 

0.2400 
±0.0043 

0.2400 
±0.0063 

∗significant difference (p<0.05) compared with respective months of untreated smoke exposure group. 

 

Further, iNOS deficient mice are completely protected from right heart hypertrophy as 

evident from the quantification of right ventricle weight, RV/LV+ septum ratio whereas 

eNOS–/– mice were susceptible to right heart hypertrophy to the same degree as WT mice. 

The weight of LV+ Septum did not change in iNOS–/– and eNOS–/– mice like WT mice upon 

smoke exposure (Table 5). 

5.7.2 Degree of musculariazation and vascular lumen area 

Pulmonary hypertension was accompanied by an increase in the degree of muscularization of 

lung resistance pulmonary arteries (diameter 20–70 μm) and a reduction in the mean vascular 

lumen area. This increase was completely absent in iNOS–/– mice but not in eNOS–/– mice 

upon smoke exposure. In the latter, the increase in the degree of muscularization as well as 

the reduction of the vascular lumen area was identified to the change observed in WT mice 

after 8 months of smoke exposure (Fig. 15a–c).              

a. b. c.
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Figure 15. Degree of muscularization and vascular lumen area after 8 months of smoke exposure in wild-
type (WT) mice and in mice lacking the inducible nitric oxide synthase (iNOS–/–) or the endothelial nitric 
oxide synthase (eNOS–/–).  

 (a) degree of muscularization of small pulmonary arteries (diameter 20–70 μm). Data are given as percentage of 
total vessel count for fully muscularized (Full), partially muscularized (Partial), and non-muscularized (None) 
vessels from lung sections costained against α-smooth muscle actin and von Willebrand factor. (b) mean 
vascular lumen area (μm2) of small pulmonary arterial vessels (diameter 20–70 μm) from elastica van Gieson-
stained lung sections. (c) representative histology from lung sections from eNOS–/– mice (I, II) and iNOS–/– mice 
(III, IV) stained with antibodies against α-smooth muscle actin and von Willebrand factor. Data are given for n 
= 6 lungs each. *significant difference (P<0.05) compared with the respective unexposed controls (0 months). 
 

 

A similar increase in the degree of muscularization and narrowing of the vascular lumen as 

for the small vessels (diameter 20–70 μm) was found in larger pulmonary arteries (diameter 

71–150 μm, and >150 μm) in eNOS–/– and WT mice, but not in mice deficient for the iNOS 

(Fig. 16 a-d). 
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Figure 16. Degree of muscularization and vascular lumen area after 8 months of smoke exposure in wild-
type (WT) mice and in mice lacking the inducible nitric oxide synthase (iNOS–/–) or the endothelial nitric 
oxide synthase (eNOS–/–).  

 (a) degree of muscularization of pulmonary arterial vessels (diameter 70–150 μm). (b) degree of 
muscularization of pulmonary arterial vessels (diameter >150 μm). (c) mean vascular lumen area (μm2) of 
pulmonary arterial vessels (diameter 70–150 μm). (d) mean vascular lumen area (μm2) of pulmonary arterial 
vessels (diameter >150 μm). *significant difference (P<0.05) compared with the unexposed controls. 

5.7.3 Vasoreactivity measurement 

Further investigations using isolated, perfused and ventilated lungs revealed pulmonary 

vascular dysfunction in WT mice after 8 months of exposure to tobacco smoke, represented 

by an increased vasoreactivity to hypoxic ventilation and phenylephrine application, as well 

as reduced vasorelaxation to acetylcholine and inhaled NO. These alterations were completely 

prevented in the smoke-exposed iNOS–/– mice (Fig. 17 a, b). 

a. b.

c. d.
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Figure 17. Vasoreactivity to acute alveolar hypoxia, phenylephrine, acetylcholine and inhaled NO in WT 
and iNOS–/– mice after 8 months of smoke exposure compared with unexposed controls. 

Data were derived from isolated perfused and ventilated lung experiments. (a) WT mice. (b) iNOS–/– mice. (I) 
strength of hypoxic pulmonary vasoconstriction induced by the reduction of O2 concentration in the inspired gas 
from 21 to 1%. (II) vasoconstrictor response to increasing doses of phenylephrine. (III) Vasodilation in response 
to increasing doses of acetylcholine. (IV) Vasodilation in response to increasing doses of inhaled nitric oxide. 
Data are derived from n = 5–6 animals per group. *significant difference (P<0.05) compared with the respective 
unexposed control. Error bars are not shown when falling into symbol. 
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5.8 Treatment of WT mice with the iNOS inhibitor L-NIL protected against the 
development of emphysema upon tobacco smoke exposure 
 

Treatment of WT mice with the iNOS-specific inhibitor L-NIL by oral application in the 

drinking water (600μg/ml) resulted in a complete protection against the development of lung 

emphysema as evident from alveolar morphometry which showed decrease mean linear 

intercept, decrease air space and increase septal wall thickness after 8 months of tobacco 

smoke exposure as seen in WT mice but not in L-NIL treated mice (Fig. 18a–d). 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 18. Comparison of the development of emphysema after 8 months of smoke exposure in L-NIL-
treated wild-type (WT) mice  

Alveolar morphometry given as (a) mean linear intercept, (b) air space, (c) septal wall thickness quantified from 
lung sections stained with hematoxylin & eosin (HE). (d) representative histology from lung sections stained 
using HE (I, II) comparing L-NIL-treated mice with untreated mice following 8 months of smoke exposure. 
Data are for n = 6 lungs each. *significant difference compared with untreated mice after 8 months of smoke 
exposure. 
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5.9 Treatment of WT mice with the iNOS inhibitor L-NIL protected against the 
development of lung functional changes upon tobacco smoke exposure  
 
Above structural findings were mirrored by determination of lung functional parameters. 

These investigations showed decreased lung compliance, decreased tidal volume and 

increased airway resistance in L−NIL treated mice compared to WT mice after 8 months of 

tobacco smoke exposure as seen in WT mice (Fig. 19 a-c). The values for the L−NIL treated 

mice were in same range as those observed in non-exposed control mice. 

 

 

 

 
 
 
 
 
 

Figure 19. Lung compliance, tidal volume, airway resistance and systemic arterial pressure during the 
course of smoke exposure for 8 months comparing L-NIL-treated with untreated mice.  

Lung functional parameters determined in isolated artificially ventilated and perfused mouse lungs under 
negative pressure ventilation. (a) lung compliance (b) tidal volume and (c) airway resistance. *significant 
difference (P<0.05) compared with 8 months of smoke exposure. 

 

5.10 Treatment of WT mice with the iNOS inhibitor L-NIL protected against the 
development of pulmonary hypertension upon tobacco smoke exposure  

5.10.1 Hemodynamics, heart ratio and number of alveoli / number of vessels 

The treatment of WT mice with the iNOS-specific inhibitor L-NIL furthmore resulted in 

complete protection from the development of pulmonary hypertension, as evident from 

decrease right ventricular systolic pressure and decrease number of alveoli: number of vessels 

compared to non-treated smoke exposed mice. In addition, the decrease in systemic aterial 

pressure seen in WT mice was not seen after the treatment with the iNOS-specific inhibitor L-

NIL L-NIL treatment resulted in a complete prevention of the change induced by tobacco 

smoke in WT mice, as L-NIL treated mice showed similar values after smoke exposure as 

unexposed control mice (Fig. 20 a–c). 

 

 

a. b. c.
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Figure 20. Comparison of development of the pulmonary hypertension during the course of smoke 
exposure for 8 months comparing L-NIL-treated with untreated mice. 

(a) right ventricular systolic pressure (b) ratio of number of alveoli to the number of vessels and (c) Systemic 
arterial pressure compared Data are given for n = 6 lungs each. *significant difference (P<0.05) compared with 
the respective exposed control (8 months). 
 

Furthermore, the L-NIL treated mice were completely protected from right heart hypertrophy 

as evident from the quantification of right ventricle weight and the RV/LV+Septum ratio after 

8 months of tobacco smoke exposure. The weight of LV+Septum did not change in both 

treated and untreated mice (Table 7). 

Table 7 Comparision of the mass of the right ventricle (RV), the left ventricle + septum (LV+ S) and the 
ratio of RV/(LV+S) during the course of smoke exposure for 8 months comparing L-NIL treated with 
untreated mice with untreated mice.  

Group (RV) (g) ±  SEM LV+ S (g) ± SEM RV / (LV+S) ± SEM 
Months of 
smoke exposure Non smoke Smoke Non smoke Smoke Non smoke Smoke 
8 months (WT) 0.0052 

±0.0001 
0.0067 
±0.0002∗ 

0.02100 
±0.0003 

0.0216 
±0.0009 

0.2500 
±0.0075 

0.3100 
±0.0032∗ 

8 months  
(L-NIL treated)  

0.0059 
±0.0002∗  

0.0242 
±0.0010  

0.2400 
±0.0048∗ 

∗significant difference (P<0.05) compared with smoke exposed controls. 

 

5.10.2 Degree of musculariazation and vascular lumen area 

The treatment of WT mice with the iNOS-specific inhibitor L-NIL also protected from the 

increased degree of muscularization of small pulmonary arteries (20–70 μm) after 8 months 

of smoke exposure (Fig 21 a-c). 

a. b. c.
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Figure 21. Degree of muscularization and vascular lumen area of pulmonary vessels during the course of 
smoke exposure for 8 months comparing L-NIL-treated with untreated mice.  

(a) degree of muscularization of small pulmonary arteries (diameter 20–70 μm) as percent of total vessel count 
for fully muscularized (Full), partially muscularized (Partial), and non-muscularized (None) vessels. (b) mean 
vascular lumen area (μm2) of small pulmonary arterial vessels (diameter 20–70 μm). (c) representative histology 
from lung sections stained using antibodies against α-smooth muscle actin and von Willebrand factor (I, II), 
comparing L-NIL-treated mice with untreated mice after 8 months of smoke exposure. Data are from n = 6 lungs 
each. *significant difference compared with untreated mice after 8 months of smoke exposure. 
 

In addition, the treatment with L-NIL also protected from an increase in the degree of 

muscularization and a narrowing of vascular lumen in the categories of a vessel diameter of 

70–150 μm and >150 μm (Fig. 22 a-d). 

 

a. b.

c. I. 

II. 

WT 
0 months of smoke exposure

WT 
8 months of smoke exposure + L-NIL 
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Figure 22. Degree of muscularization and vascular lumen area of pulmonary vessels during the course of 
smoke exposure for 8 months comparing L-NIL-treated with untreated mice.  

(a) degree of muscularization of pulmonary arterial vessels (diameter 70–150 μm). (b) degree of muscularization 
of pulmonary arterial vessels (diameter >150 μm). (c) mean vascular lumen area (μm2) of pulmonary arterial 
vessels (diameter 70–150 μm). (d) mean vascular lumen area (μm2) of pulmonary arterial (vessels diameter >150 
μm). Data are for n = 6 lungs each. *significant difference (P<0.05) compared with the 8months exposed mice. 

 

5.11 Comparison of the degree of emphysema between human COPD and in the mouse 
model of tobacco smoke induced emphysema  
When comparing lung tissue from healthy human donors to that from GOLD stage IV 

patients with a history of smoking (Table 4), increased mean linear intercept and air space as 

well as a decrease septal wall thickness was found. These changes were similar to those found 

when compared to non-smoke exposed WT mice exposed to 8 months of tobacco smoke (Fig. 

23 a-d).  

 

c. d.

a. b.
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                                 Donor                                                         COPD 
Figure 23. Alterations in the alveolar structure in lungs from human patients with severe chronic 
obstructive pulmonary disease (COPD) and healthy donors. 

Alveolar morphometry given as (a) mean linear intercept, (b) air space, (c) septal wall thickness quantified from 
lung sections stained with hematoxylin & eosin (HE), (d) Representative histology from lung sections stained 
with HE (I, II). 

5.12 Comparison of vascular alteration in human COPD with the mouse model of tobacco 
smoke induced COPD 
As in smoke-exposed mice, an increase in the ratio of the number of alveoli to the number 

 
 
 
 
 

 

Figure 24. Alterations in vascular structure in lungs from human patients with severe chronic obstructive 
pulmonary disease (COPD) and healthy donors. 

(a) degree of muscularization of small pulmonary arteries (diameter 20–70 μm). (b) ratio of number of alveoli to 
number of vessels per area quantified from lung sections stained against α-smooth muscle actin and von 
Willebrand factor. (c) representative histology from lung sections stained with antibodies against α-smooth 
muscle actin and von Willebrand factor (I, II). 

I. 

a. b. c.

d.

a. b.

COPDDonor

I. II.
c.

II.
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vessels and the degree of muscularization were found in the human lung from COPD patients  

with a smoke history (Fig. 24 a-c). 

 

Similarly, the degree of muscularization in larger pulmonary arterial vessel (diameter 70-150 

μm and >150 μm) was increased in lung from human COPD patients compared to donor (Fig. 

25a, b). 

 

Figure 25. Degree of muscularization of pulmonary arterial vessels (diameters 71–150 μm, >150 μm) in 
lungs from human patients with COPD compared to healthy donor control lungs.  

Degree of muscularization in pulmonary arterial vessels (a) diameter 71–150 μm (b) diameter >150 μm from 
lungs of human patients with COPD compared with healthy donor controls. *significant difference (P<0.05) 
compared with healthy donor controls. 
 

5.13 Comparison of iNOS and eNOS protein localization in lung sections from human 
COPD and from the mouse model of tobacco smoke induced COPD 
 

As in smoke exposed WT and non-exposed control mice, localization and expression of iNOS 

and eNOS showed similar pattern like upregulation of iNOS and downregulation of eNOS in 

pulmonary vasculature in the COPD and donor controls human lungs (Fig. 26 I, II).  

  

Figure 26. Localization of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase 
(eNOS) in lungs from human patients with severe chronic obstructive pulmonary disease (COPD) and 
from healthy donors.   

iNOS (I) and eNOS (II) immunostaining in GOLD stage IV COPD lungs and in healthy donor controls. 

COPD Donor 

a. b.

II. eNOS 

I. iNOS 
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The iNOS and eNOS localization were seen specific to pulmonary vasculature however they 

are also expressed in alveolar compartment like alveolar epithelium, smoth muscle cell, 

bronchi. In human COPD lungs when compare to healthy donor controls, a similar regulation 

was seen  in WT  smoke exposed mice after 8 months compare to non–smoke exposed 

controls. 

5.14 Comparison of iNOS and eNOS mRNA and protein expression in the pulmonary 
vasculature of lung from human COPD and lung from in the mouse model after tobacco 
exposure  
Immunostaining for iNOS and eNOS was mirrored by a upregulation of iNOS on the mRNA 

and protein level and a downregulation of eNOS on the protein level as seen in WT smoke 

exposed mouse (Fig. 27a, b). In human COPD lungs when compare to healthy donor 

controls, a similar regulation was seen  in WT  smoke exposed mice after 8 months compare 

to non–smoke exposed controls. 

    

                                                                           

 

 

 

             

 

 

                                                                          

 
 

 

 

 
 
 

 
Figure 27. Alterations in inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase 
(eNOS) in lungs from human patients with severe chronic obstructive pulmonary disease (COPD) and 
healthy donors.  

Expression of (a) iNOS mRNA (I), iNOS protein (II), (b) eNOS mRNA (III), eNOS Protein (IV) in GOLD 
stage IV COPD lungs and healthy donor controls. mRNA data are derived from microdissected vessels (diameter 
50–100 μm); protein data are derived from homogenized lung tissue. mRNA data were normalized to 
porphobilinogen deaminase, and protein data were normalized to α-actin. Representative blots are given on the 
right and densitometry is given on the left. Data are derived from n = 5 lungs each. ∗significant difference 
(P<0.05) compared with healthy donor controls. 
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5.15 Comparison of the localization and expression of nitrotyrosine in lungs tissue from 
human COPD and in lungs from the mouse model of tobacco smoke induced COPD  

5.15.1 Lung tissue of human end stage COPD  

Western blotting and immunohistochemical staining revealed increased level of nitrotyrosine 

in the pulmonary vasculature and alveolar septae from human COPD lungs compared with 

lung from healthy donor controls (Fig. 28 a, b). 

 
           

 

 

 

 

 

Figure 28. Nitrotyrosine expression in lungs from patients with severe chronic obstructive pulmonary 
disorder (COPD) and healthy human donors. 

(a) localization of nitrotyrosine in lung tissue from human GOLD stage IV COPD patients and healthy donor 
control lungs. The reddish color is the anti-nitrotyrosine staining. In the negative control, the primary antibody 
was omitted. (b) Western blot analysis of nitrotyrosine from homogenized lung tissue from GOLD stage IV 
COPD lungs and healthy donor controls. Data were normalized to α-actin and are given for n = 5 lungs each. 
Densitometric data are given on the left and the original blot is given on the right. ∗significant difference 
(P<0.05) compared with healthy donor controls. 
 

5.15.2 Nitrotyrosine localization and expression in mouse lungs after tobacco smoke 
exposure  

The nitrotyrosine findings in lungs from human COPD patients were compared to 

investigations of mice lung exposed for 8 months to tobacco smoke. These WT mice had 

increased nitrotyrosine levels in the pulmonary vasculature and alveolar septae (Fig. 29 a, b). 

Further eNOS–/– mice did show a similar upregulation in nitrotyrosine after smoke exposure. 

In contrast, iNOS–/– mice did not show upregulation of nitrotyrosine. The L-NIL treated WT 

COPD Donor 

a. 

b. 

β-actin

Nitrotyrosine 

Donor COPD 
42 kDa 
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mice did not also show any change in nitrotyrosine regulation with regards to both 

localization and expression (Fig. 29 a, b).  

 

 
Figure 29. Nitrotyrosine expression in lungs from wild-type mice, inducible nitric oxide synthase-deficient 
(iNOS–/–), endothelial nitric oxide synthase-deficient (eNOS–/–), and L-NIL-treated WT mice.  
(a) nitrotyrosine staining in untreated WT and L-NIL-treated WT mice. Representative vessels (I, III) and 
alveolar structures (II, IV) are depicted. Data are given for mice with 8 months of smoke exposure and 
unexposed controls. (b) Western blot analysis of nitrotyrosine from homogenized lungs in WT, iNOS–/–, eNOS–/–

, and L-NIL-treated WT mice. Data were normalized to α-actin and are given for n = 5 lungs each. *significant 
difference (P<0.05) compared with the respective exposed/ unexposed controls (0 and 8 months of exposure). 
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6. DISCUSSION 
 
It has been known that pulmonary hypertension can be a complication of chronic obstructive 

pulmonary disease. However, the prevalence of pulmonary hypertension is not known, because of 

a lack of systematic screening using right heart catheterization in large numbers of COPD 

patients. Earlier COPD research was also less prioritized to study alterations to the pulmonary 

vascular bed. All prior studies were dealing only with the alveolar compartment and thereby 

revealing less evidence about the association of pulmonary hypertension with COPD human 

patients as well as in animal models51, 52. However, it has been shown that the progression of 

pulmonary hypertension in COPD over time and its severity correlate with the degree of airflow 

obstruction as well as with the impairment of pulmonary gas exchange100, 110, 111. Recent reports 

have also suggested that pulmonary hypertension may precede lung emphysema development in 

COPD2, 110, 111. 

 

It has now been demonstrated in the present study that cigarette smoke induced alterations in lung 

vascular structure and function precede airway remodeling and the development of emphysema 

formation. Furthermore, the present study provided evidence that iNOS is a key molecular player 

in the development of COPD.  Inhibition or deletion of iNOS resulted in full prevention of both 

pulmonary hypertension and emphysema induced by tobacco smoke in mice. Finally, similar 

changes regarding iNOS and eNOS expression, nitrotyrosine formation, alveolar/vascular 

morphology as found in the chronic mouse model were also detected in explanted lungs from 

COPD patients that underwent transplantation compared to healthy human donor lungs. 

6.1 Structural and functional alteration in mouse lungs after tobacco smoke exposure 
 

The structural and functional alterations occurring after chronic tobacco smoke exposure in the 

alveolar compartment has been well characterized in mouse models. The approach used in this 

thesis to induce lung emphysema has also been utilized previously as chronic tobacco smoke 

exposure which is regarded as the major cause of the disease19, 20, 120. Another important trigger 

for COPD is air pollution which explains a stead increase in the incidence of COPD worldwide, 

although the incident of cigarette smoking has decreased121, 122. Long-term exposure of mice to 

cigarette smoke in this current model enables a through analysis of the sequential changes to 
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structure and function in both the pulmonary vasculature as well as in the airway and alveolar 

levels. Changes in the alveolar structure to determine the degree of emphysema formation have 

been quantified by means of an increase in the mean linear intercept and air space as well as a 

decrease in the septal wall thickness123-125.  

 

It has been shown that the development of lung emphysema, the end stage of lung destruction, of 

this currently used model is well inline with previous reports investigating mice after tobacco 

smoke exposure123, 126.  The investigations of this thesis have demonstrated the increased 

alveoli/vessel ratio, which were evident earlier (after third month of smoke exposure) and can be 

compared to the acute effect of tobacco smoke exposure in the mouse lung from other studies. 

This acute effect might be caused by a significant decrease in total antioxidant capacity with 

changes in oxidized glutathione, ascorbic acid, protein thiols and prostaglandin (PGF-2α) in 

bronchoalveolar lavage fluid. Moreover, the reduction in antitrypsin activity and an increase in 

metalloelastase activity of neutrophil and macrophage (MME/MMP-12) as well the increase 

levels of desmosine (marker of elastin breakdown) and hydroxyproline (a marker of collagen 

breakdown) in BALF may cause further breakdown of connective tissue in early stage of 

exposure127, 128. Thereafter, the later stage of emphysema in the mouse model might be caused by 

the increased activity of these proteases (serine elastases and MMPs) and the influx of 

inflammatory cells with their mediators to increase oxidative/nitrosative stress that ultimately 

leads the degradation of the lung matrix120, 129. It is known that the occurrence of this 

inflammatory cascade is initiated after the activation of macrophages and the epithelial cells by 

tobacco smoke that release chemokines and cytokines to recruit different monocytes, neutrophils 

and T and B-lymphocytes cells in the pulmonary circulation as well as into the alveolar 

compartment. These chemotactic mediators, proteases, and oxidants induce structural changes by 

degrading connective tissue. This chronic continuous insult of tobacco smoke may lead further 

destruction of lung parenchyma as well the loss of number of alveoli/vessel and thinning of septal 

wall to produce lung emphysema52. 

 

Structural changes in the lung parenchyma were also accompanied by alterations in lung 

functional parameters such as increased lung compliance, increased tidal volume and decreased 

airway resistance. It has been shown that the loss of  elastic recoil or tissue elasticity arises from 

the destruction of elastic fiber network with degradation of extracellular matrix in lung 



DISCUSSION                                                                                                                               56 

 

parenchyma so that the lung cannot deflate back to its original position in expiration after being 

stretched by inspiration23, 24.  Thus, the degradation of matrix elements and the loss of alveolar 

surface reduce lung elastic recoil which is typical for emphysema. Moreover, it has been shown 

that destroyed alveolar walls and enlarged alveolar spaces can increase the total lung capacity22, 

which explain the increase in the tidal volume found in the experiments of this thesis in the 

mouse model after smoke exposure. Interestingly, the mouse model was characterized by 

decreased airway resistance120 upon smoke exposure, whereas COPD patients have an increased 

airway resistance. This discrepancy, however, can be explained by the differences in the airway 

anatomy in combination with a less pronounced end-expiratory closure of terminal airways, as 

shown previously23, 24. 

 6.2 Development of pulmonary hypertension precedes emphysema development in wild-type 
mice exposed to tobacco smoke 
 

The exact temporal relation of possible vascular structural and functional alterations to alveolar 

destruction in tobacco smoke induced emphysema has not been investigated yet in detail. In this 

regard, the current investigation found that the chronic tobacco smoke inhalation caused an 

inward vascular remodeling with an increase in the degree of muscularization, and the 

development of pulmonary hypertension, quantified by an increase in right ventricular systolic 

pressure and subsequent development of cor pulmonale. Also, evidence of endothelial 

dysfunction and perturbed vascular reactivity was provided. Most interestingly, vascular 

remodeling and pulmonary hypertension including a loss of vessels was detected before a 

significant alveolar structural and functional deterioration in terms of emphysema during tobacco 

smoke exposure.  

 

Moreover, these data suggest that a degree of pulmonary hypertension is caused by a loss of 

vascular lumen area not only due to inward vascular remodeling but also due to a loss of vessels 

by destruction of the lung. However, as the ratio of the number of alveoli to the number of vessels 

increases again supports the notion that the loss of vessels occurs prior to a loss of the alveolar 

structure. These findings suggest that vascular structural and functional alterations may be the 

driving force for emphysema development. 
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This concept challenges the classical explanation for pulmonary vascular alterations which 

suggest that alveolar hypoxia, vascular pruning and increased intrathoracic pressures in 

association with the emphysema drive the pulmonary vascular changes130, 110. Instead, they are 

consistent with a direct impact of cigarette smoke on the pulmonary vasculature110-112. The likely 

reason may be the close proximity of alveolar and vascular structures in the lung that may explain 

a potential direct effect of inhaled noxious agents on pulmonary resistance vessels131. Also, the 

increased numbers of inflammatory cells in the adventitia of pulmonary muscular arteries 

produce an inflammatory reaction by activated T lymphocytes, predominantly CD8+ T-cells, 

leading to impaired endothelium-dependent vascular relaxation and the thickening of the intimal 

layer. Thereby, increased CD8+ T-cell infiltration of pulmonary arteries of smokers without 

airflow obstruction supports the hypothesis that an inflammatory mechanism related to tobacco 

smoking may contribute to the development of the structural and functional alterations to the 

pulmonary circulation in the early stages of COPD112.  In addition, increased pulmonary blood 

flow is associated with the increase in the pulmonary artery pressure due to the loss of vascular 

distensibility and the inability to recruit unused vasculature100, 112, 132 as evident with the increased 

right ventricular systolic pressure by tobacco smoke. 

 

It has been suggested that a variety of vascular growth factors contribute to the evolution of the 

chronically hypertensive pulmonary vascular bed in COPD. These growth factors may promote 

endothelial and smooth muscle proliferation and the extension of smooth muscle cells into the 

smaller, peripheral vessels, which may be a cause for the observed narrowing of the vascular 

lumen and thus, elevations in pulmonary artery pressure and pulmonary vascular resistance132. 

The subsequent increase in the right ventricular after load than leads to right heart 

hypertrophy100,110-112.  

 

Moreover, the muscular pulmonary arteries constrict in response to a variety of stimuli in COPD, 

including hypoxia; the most potent and frequent stimulus for pulmonary vasoconstriction. This 

vasoconstriction is unique to pulmonary artery smooth muscle cells and in this regard, it has been 

shown that the observed changes to the vascular structure were paralleled by alterations in 

vascular function100. The exaggerated responsiveness to alveolar hypoxia and phenylephrine and 

the loss of vasodilatory capacity to acetylcholine and NO found in present study indicates 

endothelial and smooth muscle cell dysfunction, and are well inline with previous findings from 
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studies in human COPD133, 134, 135, 111, 136, 137.  Moreover, the studies reported in this thesis have 

shown that the current model is feasible for the analysis of structural and functional changes in 

the pulmonary vasculature, airways and alveolar structures upon smoke exposure. 

6.3 iNOS upregulation and eNOS downregulation in the pulmonary vasculature - a major 
driving force for the development of emphysema and pulmonary hypertension induced by 
tobacco smoke exposure 
 

It has previously been shown that cigarette smoke exposure induces rapid changes in gene 

expression of VEGF, VEGF receptor-1, ET-1, inducible NOS and other mediators that control 

vascular cell growth and vessel contraction, and thus are candidates which may be involved in the 

pathogenesis of pulmonary vascular changes of COPD100, 110, 112, 136. Earlier studies have also 

shown that active and passive exposure of both coronary and systemic arteries to tobacco smoke 

can result in endothelial dysfunction43, 54, 135, 138. Moreover, the exposure of pulmonary artery 

endothelial cells to cigarette smoke caused an irreversible inhibition of eNOS activity by 

diminishing eNOS protein and mRNA54, 112, 139. Such disturbances to vascular function have long 

since been attributed to the increased oxidative and nitrosative stress via inflammation through 

nitrotyrosine formation140. In this regard, dysregulation of iNOS and nitrotyrosine formation have 

been proposed as underlying mechanisms of COPD 92, 129, 141-143. Against this background, the 

regulation and localization of eNOS, iNOS, and nitrotyrosine was investigated in this own study. 

 

The iNOS was found to be permanently upregulated in the smoke-exposed mouse lung with 

predominant expression in the pulmonary vasculature. In contrast, the eNOS protein was 

transiently increased but then downregulated. The iNOS was predominantly expressed in 

α-smooth muscle actin positive lung cells after eight months of exposure to cigarette smoke, 

whereas eNOS was not. Against this background, it can be speculated that some uncoupling of 

eNOS contributes to the oxidative stress in COPD, whereas iNOS is responsible for increased NO 

generation and this concept is inline with previous findings of uncoupled eNOS and oxidative 

stress as well as nitrotyrosine formation140, 141, 143-145. This interpretation is further supported by 

our own findings of increased nitrotyrosine levels in WT mice upon smoke exposure.  

 

Along these lines, it has been shown that nitrotyrosine can induce apoptosis146 a mechanism 

important for the development of lung emphysema. In this regard, the RNS have previously been 
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causally linked to the development of lung emphysema through the activation of proteases147. 

Further, the upregulation of iNOS and nitrotyrosine as well as peroxynitrite has been shown to 

cause nitration of proteins and to alter protein functions129, 144. Furthermore, RNS alter lipid 

oxidation can cause DNA damage and inhibit mitochondrial respiration also leading to apoptosis 

and necrosis that can be active in emphysema formation129, 144. Also the mitogen-activated protein 

kinases (MAPK) may mediate signal transduction pathways induced by reactive nitrogen species 

in lung epithelial cells leading to cell death148. Moreover, peroxynitrite can inactivate surfactant 

and inhibits protein phosphorylation by tyrosine kinases, thus interfering again with signal 

transduction mechanisms that can contribute emphysema development129, 149.   

 

The protective anti-remodeling effects of iNOS inhibition in other vascular beds (e.g. coronary 

arteries) are related to suppress metalloproteinase-9 activity and thus restoration of the balance 

between proteases and anti-proteases150. Peroxynitrite may activate matrix metalloproteinase 

(MMP) which in turn can inactivate α1-antiproteinase. It can also enhance the production of the 

potent neutrophil chemoattractant IL-8 to perpetuate inflammatory process75, 78. Furthermore, 

peroxynitrite has been shown to strongly inhibit the activity of Akt and to increase 5′-AMP-

activated kinase-dependent phosphorylation of eNOS, resulting in enhanced O2·
- release and 

inhibition of NO release, further, contributing to oxidative stress production.  

 

All of these factors may participate in the progression of COPD in the smoke-exposed mice of 

this own investigation due to airway inflammatory mechanisms, protease-antiprotease imbalance, 

and apoptotic mechanism through oxidative stress via the production of nitrotyrosine87, 129. 

6.4 iNOS inhibition by genetic deletion or application of the iNOS inhibitor L-NIL protects 
mice from pulmonary hypertension, emphysema and functional alterations induced by tobacco 
smoke exposure. 
 

The role of eNOS or iNOS was further investigated by determination of the development of 

vascular and alveolar structural and functional alterations in eNOS–/– and iNOS–/– mice upon 

long-term tobacco smoke exposure. These investigations demonstrated that iNOS–/– mice were 

completely protected against the vascular and alveolar alterations caused by tobacco smoke 

inhalation, including vascular and lung dysfunction, whereas the smoke-induced changes in 

eNOS–/– mice were similar to those of WT mice.  Along these lines, vasoreactivity measurement 
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also showed resistance towards the smoke-induced changes on hypoxic and phenylnephrine 

induced vasoconstriction as well as the nitric oxide and acetylcholine induced vasodilatation in 

iNOS–/– but not with eNOS–/– mice. It is known that nitric oxide is synthesized in vascular 

endothelial cells from L-arginine by eNOS after stimulation of muscarinic acetylcholine receptors 

and this NO stimulate soluble guanylate cyclase activity to increase intracellular cGMP 

concentration for vasorelxation151. Furthermore, this muscarnic acetylcholine receptor can be 

induced by acetylcholine and the investigations in this study have also shown an impaired 

relaxation response in pulmonary arterial vessels in lungs to tobacco smoke induced WT mice but 

not in iNOS–/– mice compared to non-smoke exposed controls. Furthermore, this impaired 

receptor activity to induce eNOS for the production of NO indicates the dysfunction of 

endothelial cell. Endothelial dysfunction may be caused by nitrotyrosine-dependent mechanism 

as the lower amounts of nitrotyrosine were seen in iNOS–/– but not with eNOS–/– and WT mice.  

 

In an independent approach, the current thesis examined the effect of an oral treatment with 

L-NIL in WT mice during tobacco smoke exposure. As found for iNOS–/– mice, this approach 

completely prevented the development of pulmonary hypertension and emphysema as determined 

by morphometry and assessment of functional parameters. Even in this approach, a reduction in 

nitrotyrosine level was seen, further supporting the concept that nitrotyrosine plays a major role 

for the occurrence of COPD involving both alveolar and vascular compartment for structural and 

functional changes. Besides the more likely explanation of an impaired left-ventricular function 

due to pulmonary hypertension induced reduction in left heart pre-load, systemic effects of 

tobacco smoke could explain systemic hypotension. Consistent with the effects on the lung in 

iNOS–/– mice and after L-NIL-treatment, mice were protected from smoke-induced systemic 

hypotension. These findings are reminiscent of the effects of selective iNOS inhibition in short 

term models of COPD, also focusing on systemic effects152.  

6.5 Comparing human COPD Gold stage IV to the COPD mouse model of tobacco smoke 
induced emphysema 

 

To demonstrate the relevance of these findings to human disease, lung tissue from five severe 

COPD (GOLD IV) patients who had undergone lung transplants was examined. Interestingly, 

similar alveolar and vascular structural alterations as for the mouse model were found in human 

COPD patient lungs. The ratio of the number of alveoli/ number of vessels was also increased and 
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a similar upregulation of iNOS and downregulation of the eNOS expression as well as their 

localization in the pulmonary vascultaure was found. This is in line with the previous suggestion  

that an activation of iNOS might be important for the occurrence of COPD in humans153. The 

increase in nitrotyrosine levels in lungs of human COPD patients as well as the mouse model 

further support the concept of nitrosative stress being a key player in COPD development154.  

 

 In this regard, it is important to mention that the progressive impairment of lung function and 

airflow obstruction via amplification of nitrosative stress-mediated inflammatory process 

ultimately can cause degradation of extracellular matrix, resulting in alveolar wall destruction and 

small airways collapse as well responsible for the observed pulmonary vascular abnormalities and 

endothelial dysfunction. This concept of nitrosative/oxidative stress can be supported by the 

decreased level of nitrotyrosine in iNOS–/– compared to eNOS–/– and WT mouse lung as well as 

after L-NIL treatment of WT mice.  

   

In conclusion, this study demonstrated and deciphered in detail that COPD is not only an alveolar 

but also a vascular disease characterized by alterations to the structure and function of the 

pulmonary vasculature, suggesting that these alteration are the driving force for emphysema 

development. Moreover, the current experiments suggest that an upregulation of the inducible 

nitric oxide synthese might play a key role for the disease induction. As 1) genetic deletion as 

well as iNOS inhibition prevented the vascular and alveolar alteration in the mouse model, 

selective iNOS inhibition could offer a potential as a preventive treatment of COPD and 2) 

similar alteration as in the mouse model were found in human COPD lungs. 
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7. APPENDICES 
Appendix I Protocols for HE staining 
 

 

 

 

 

 

 

 

 

 

 

 

SN Time Reagent Remarks 

1 20' Heating slide with paraffin section  60οC 

2 10' Rothistol   

3 10' Rothistol   

4 10' Rothistol   

5 5' Ethanol absolute 99.6%   

6 5' Ethanol absolute 99.6%   

7 5' Ethanol 96%   

8 5' Ethanol 70%   

9 2' Aqua dest.   

10 20' Hematoxylin nack Mayer   

11 5' H2O (Flow tap water)   

12 1' Ethanol 96%   

13 4' Eosin solution   

14 Flow water Ethanol 96%   

15 2' Ethanol 96%   

16 5' Ethanol absolute 99.6%   

17 5' Isopropyl alcohol   

18 5' Rothihistol   

19 5' Rothihistol   

20 5' Xylol   

21   Coverslip with pertex   
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Appendix II Protocols for double antibody immunostaining for α−actin and VWF factor   

SN Time Reagent Remarks 

1 20' Heating slide with parrafin section  60οC 

2 10' Rothistol   

3 10' Rothistol   

4 10' Rothistol   

5 5' Ethanol absolut 99.6%   

6 5' Ethanol absolut 99.6%   

7 5' Ethanol 96%   

8 5' Ethanol 96%   

9 15' H2O2 (180ml) + methanol (20 ml)   

10 5' Aqua dest   

11 5' Phosphate buffered saline   

12 15' Trypsin (370)  (Trypsin 0.5 ml+ diluent 1.5ml) 

13 5' Phosphate buffered saline   

14 15' Avidin blocking   

15 5' Phosphate buffered saline   

16 15' Biotin blocking   

17 5' Phosphate buffered saline   

18 15' 10% Bovine serum albumin   

19 5' Phosphate buffered saline   

20 60' Mouse IgG blocking reagent (MOM kit) 

 2 μl IgG blocking reagent 

+ 2.5ml PBS 

21 5' Phosphate buffered saline   

22 5' MOM diluent/ protein blocking (MOM kit) 

7.5ml PBS+ 

 600μl protein concentrate 

23 30' Primary antibody (alpha actin) mouse 1:900 dilution with 10% BSA 

24 5' Phosphate buffered saline   

25 10' MOM biotinylated IgG reagent (MOM kit) 

10μl reagent 3+  

2.5 ml MOM diluent 

26 5' Phosphate buffered saline   

27 5' Vector MOM Kit ABC reagent (MOM kit) 

2.5 ml PBS+ 2 drop reagent A 

+ 2 μl reagent B 

28 5' Phosphate buffered saline   

29 3' to 4' Vector VIP substrat kit 

5ml PBS +3 μl reagent 1+3 μl reagent 

2 +3 μl reagent 3 +3 μl reagent 4 
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30 5' H2O (Tap water)   

31 5' Phosphate buffered saline   

32 15' Avidin blocking   

33 5' Phosphate buffered saline   

34 15' Biotin blocking   

35 5' Phosphate buffered saline   

36 15' 10% Bovine serum albumin   

37 5' Phosphate buffered saline   

38 30' Blocking serum 

1ml goat serum+ 9 ml Phosphate 

buffered salineer 

39 30' Primary antibody (vWF) rabbit  (370) 

1:900 dilution with 10% bovine serum 

albumin 

40 5' Phosphate buffered saline   

41 30' 

Biotinylated secondary antibody 

 (anti rabbit kit) 

10 ml PBS+ 3 drop goat serum+ 

 1 μl rabbit serum 

42 5' Phosphate buffered saline   

43 30' ABC reagent (anti rabbit kit) 

2.5 ml PBS+ 1 μl reagent A 

+ 1 μl reagent B 

44 5' Phosphate buffered saline   

45 20" DAB substrat Kit 

5 ml aqua dest +2 μl reagent 1+2 μl 

reagent 2 +2 μl reagent 3 +2 μl reagent 

4 

46 5' H2O (Tap water)   

47 3' Counter stain with methyl green  under 61ο C in heating plate 

48 5' Aqua dest   

49 2' Ethanol 96%   

50 2' Ethanol 96%   

51 5' Isopropyl alkohol   

52 5' Isopropyl alkohol   

53 5' Rothistol   

54 5' Rothistol   

55 5' Xylol   

56   

Coverslip fixation with pertex (glass 

covering)   
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Appendix III Staining protocol for elastica van giesson staining  
SN Time Reagent Remarks 

1 20' Heating slide with parrafin section  600C 

2 10' Rothistol   

3 10' Rothistol   

4 10' Rothistol   

5 5' Ethanol absolut 99.6%   

6 5' Ethanol absolut 99.6%   

7 5' Ethanol 96%   

8 5' Ethanol 70%   

9 Overnight Resorcin- Fuchsin   

10 Immesrsion Aqua dest  

11 5’ 

Fe-hemtoxylin with Weigert solution A and B ( 

1:1) 

 100ml solution. A 

+100ml Solution B 

12 Immersion Aqua dest   

13 15’ Flow  tap water  

14 Immersion Aqua dest  

15 10’ Elastica van giesson reagent   

16 Very short  Aqua dest   

17 2’ Ethanol 96%   

18 2' Ethanol 96%   

19 5' Ethanol absolut 99.6%   

20 5' Isopropyal alcohol   

21 5' Rothistol   

22 5' Rothistol   

23 5' Xylol   

24   Coverslip with pertex   
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8. SUMMARY 
Chronic obstructive pulmonary disease is a major cause of high morbidity and mortality with a 

high socioeconomic burden worldwide. The contribution of vascular alterations to the 

pathogenesis of the disease remains controversial and there is still ongoing debate about the 

possible development of pulmonary hypertension in COPD. Against this background, the current 

thesis aimed to decipher the time course for the development of lung emphysema as well as 

vascular alterations to the pulmonary circulation by use of a mouse model of tobacco smoke-

induced COPD. For this purpose, WT mice were exposed for up to eight months to tobacco 

smoke (6 h/day, 5 days/week). It was demonstrated that both vascular structural and functional 

alterations occurred, including loss of pulmonary vessels, narrowing of vascular lumen, an 

increased degree of muscularization, pulmonary hypertension as well as endothelial dysfunction. 

Against the background, it was hypothesized that oxidative as well nitrosative stress plays a 

major role to the development of COPD by the regulation of inducible as well as the endothelial 

NO synthases. An upregulation of the inducible nitric oxide synthase (iNOS) was found in the 

pulmonary vasculature concomitant with increased nitrotyrosine levels. Comparing the 

development of vascular alteration and emphysema in WT, iNOS–/–, and eNOS–/– mice, this study 

found that iNOS–/– were completely protected from these structural and functional changes. 

Moreover, the same effect was observed by the treatment of wild-type mice with the iNOS 

inhibitor L-NIL. Similar regulatory processes and structural alterations as for tobacco smoke 

exposed mice were found in GOLD stage IV for explanted COPD patient lungs. Thus, iNOS 

inhibition may be a strategy for prevention of COPD in the future. 
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9. ZUSAMMENFASUNG 

COPD ist weltweit eine der wichtigsten Ursachen für hohe Morbidität und Mortalität mit hoher 

sozioökonomischer Bedeutung. Der Beitrag von vaskulären Veränderungen zur Pathogenese der 

COPD ist derzeit umstritten und es besteht eine laufende Debatte über die mögliche Entwicklung 

und Bedeutung der pulmonalen Hypertonie in der COPD. Vor diesem Hintergrund, war das Ziel 

der vorliegenden Arbeit, den zeitlichen Verlauf der Emphysementwicklung und der vaskulären 

Veränderungen anhand des Mausmodells der Tabakrauch induzierten COPD zu entschlüsseln. 

Für diesen Zweck wurden Wildtyp-Mäuse für acht Monate Tabak-Rauch für 6 Stunden/Tag und 5 

Tage/Woche ausgesetzt. Es konnte gezeigt werden, dass sowohl strukturelle als auch funktionelle 

Gefäßveränderungen stattfinden, einschließlich des Verlusts der Lungengefäße, der Verengung 

des Gefäßlumens, des erhöhten Muskularisierungsgrades von Gefäßen, pulmonaler Hypertonie 

und endothelialer Dysfunktion. Basierend auf diesen Beobachtungen, wurde die Hypothese 

aufgestellt, dass oxidativer so wie nitrosativer Stress eine wichtige Rolle bei der Entwicklung von 

COPD spielen, indem es zu einer Regulation von induzierbaren und endothelialen NO-Synthasen 

kommt. Tatsächlich konnte in der vorliegenden Arbeit im pulmonalen Gefäßsystem eine 

Hochregulierung der induzierbaren NO Synthase (iNOS) nachgewiesen werden, einhergehend 

mit erhöhtem Vorkommen von Nitrotyrosin. Durch den Vergleich der Entwicklung von 

Gefäßveränderungen und der Emphysementwicklung in Wildtyp-, iNOS-/-- und eNOS-/-- Mäusen, 

konnte diese Studie zeigen, dass iNOS–/– -Mäuse vor den genannten strukturellen und 

funktionellen Änderungen komplett geschützt waren. Darüber hinaus, konnte der gleiche Effekt 

nach Behandlung von Wildtyp-Mäusen mit dem iNOS Inhibitor L-NIL beobachtet werden. 

Ähnliche regulatorische Prozesse und strukturelle Veränderungen wie in den Wildtyp-

Mauslungen nach Rauchexposition wurden in Resektaten von Lungen von Patienten mit COPD 

(GOLD stage IV) nachgewiesen. Demnach könnte die Inhibierung von iNOS in Zukunft eine 

Strategie zur COPD Prävention darstellen. 
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