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Plant functional groups—
in our case grass, herbs,
and legumes—and their
spatial distribution can
provide information on key
ecosystem functions such
as species richness,
nitrogen fixation, and
erosion control.

Knowledge about the spatial distribution of plant functional
groups provides valuable information for grassland
management. This study described and mapped the distribution
of grass, herb, and legume coverage of the subalpine grassland
in the high-mountain Kazbegi region, Greater Caucasus,
Georgia. To test the applicability of new sensors, we compared
the predictive power of simulated hyperspectral canopy
reflectance, simulated multispectral reflectance, simulated
vegetation indices, and topographic variables for modeling plant
functional groups. The tested grassland showed characteristic
differences in species richness; in grass, herb, and legume
coverage; and in connected structural properties such as yield.
Grass (Hordeum brevisubulatum) was dominant in biomass-
rich hay meadows. Herb-rich grassland featured the highest

species richness and evenness, whereas legume-rich grassland

was accompanied by a high coverage of open soil and showed

dominance of a single species, Astragalus captiosus. The best

model fits were achieved with a combination of reflectance,

vegetation indices, and topographic variables as predictors.

Random forest models for grass, herb, and legume coverage

explained 36%, 25%, and 37% of the respective variance, and

their root mean square errors varied between 12–15%.

Hyperspectral and multispectral reflectance as predictors

resulted in similar models. Because multispectral data are more

easily available and often have a higher spatial resolution, we

suggest using multispectral parameters enhanced by vegetation

indices and topographic parameters for modeling grass, herb,

and legume coverage. However, overall model fits were merely

moderate, and further testing, including stronger gradients and

the addition of shortwave infrared wavelengths, is needed.

Keywords: Remote sensing; subalpine grassland composition;

random forest; spatial distribution of grass; grass cover; herb

cover; legume cover; Georgia.
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Introduction

Worldwide, high-mountain grasslands are species-rich
habitats that include numerous endemic species (K€orner
2004) but are commonly highly affected by natural and
land use-triggered erosion, land degradation, and land use
changes (eg Tasser and Tappeiner 2002; Lehnert et al
2014; Wiesmair et al 2016). The high species richness of
subalpine to alpine grasslands results from, and is affected
by, long-term agricultural use. During the last decades,
central European mountain grassland communities have
been altered by the introduction of modern farming
practices in grassland management on the one hand, and
by the abandonment of agricultural use on the other
(Tasser and Tappeiner 2002). Traditional high-mountain
land use systems with low input of system-specific organic

fertilizers had greatly contributed to a distinct floristic
pattern. This changed when mineral fertilizers and more
effective agricultural techniques were introduced, making
more intensive management regimes applicable to large
grassland sites while modifying the traditional mowing
and grazing regimes, as well as homogenizing floristic
patterns (Homburger and Hofer 2012). The introduction
of mineral nitrogen and phosphorus fertilizers caused the
greatest change in the floristic composition of grassland
and resulted in an increased abundance of ubiquitous
species (B€uhler and Roth 2011).

In contrast, the subalpine grassland in our study area,
the Kazbegi region, Greater Caucasus, Georgia, has been
traditionally managed without any mineral fertilizer
application (Tephnadze et al 2014). Therefore, near-
natural, species-rich, and quite distinct grassland types with
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a strong relation to topography and land use type
dominate the subalpine and alpine landscape of the
Kazbegi region (Py�sek and �Srutek 1989; Nakhutsrishvili
1999; Tephnadze et al 2014). Species-rich grassland,
characterized by a dense and vertically structured
vegetation layer and a diverse and deep root system,
contributes to the functioning of the high-mountain
ecosystem, especially to erosion control (Pohl et al 2009;
K€orner 2003).

The legume content of grassland stands is closely linked
to various ecosystem functions. By their ability to fix
nitrogen, legumes influence the nitrogen pool within the
soil system, which further affects the root system as well as
biomass production and vegetation cover (Spehn et al
2002)—important factors for erosion mitigation (Tasser
and Tappeiner 2002; Lehnert et al 2014; Wiesmair et al
2017). Therefore, detailed spatial knowledge about the
distribution of plant functional groups (PFGs)—groups of
plants (grasses, herbs, legumes) that share similar traits and
perform similar ecosystem functions—provides valuable
information for grassland management (Blondel 2003).

Previous studies indicate the feasibility of using
remotely sensed imagery and topographic information to
model grass, herb, and legume coverage (Zha et al 2003;
Biewer, Erasmi, et al 2009; Biewer, Fricke, et al 2009;
Himstedt et al 2009; Psomas et al 2011). However, studies
using grass, herb, and legume coverage as a target variable
have so far been limited to controlled systems, achieving
best results with a homogenous yield. In contrast, our
study was based on seminatural mountain grassland with
varying yields and cover.

We characterized grassland composition and structure
of the researched grassland types and subsequently
modeled and mapped the PFGs’ spatial distribution. We
further tested whether hyperspectral reflectance (HR)—in
our case from field spectrometric data—enhanced the
model’s quality. We therefore aimed to (1) model and map
grass, herb, and legume coverage and (2) test whether
simulated HR improved the model quality.

Study area

Steep slopes and a harsh continental climate characterize
the high-mountain range of the Central Greater Caucasus,
Georgia, and especially the environmental conditions of
the isolated Kazbegi region (Figure 1). The Tergi River
runs north; the main village, Stepantsminda (1700 masl),
stretches along its banks. West of the river, Mount Kazbeg
(5033 masl) rises as the highest summit in the region
(Ketskhoveli et al 1975). The climate of the valley is
relatively continental, with long, cool summers and
winters with low snow cover. The mean annual
temperature is 4.78C, leading to a vegetation period of 5
to 6 months. The mean annual precipitation at 1850 masl
amounts to 806 mm (Nakhutsrishvili 1999; Lichtenegger et
al 2006). The bedrock of the study area comprises Jurassic

sediments (clay schists), quaternary volcanic rocks
(andesite and dacite), and quaternary pyroclastic deposits
and fluvial sediments. Younger, Pleistocene glacial
sediments as well as Holocene peats can also be found
(Akhalkatsi et al 2006). The main soil types on the higher
part of slopes are shallow Leptosols, used mainly as
pastures, whereas on the lower slopes and accumulation
areas, depending on the bedrock, moderately deep
Cambisols can be found; these are located mainly close to
the villages, where they are used as meadows or potato
fields (Tephnadze et al 2014).

The landscape is characterized by large, low-
productivity, pastured grassland alternating with small
remnants of birch forests (Betula litwinowii) and
shrubberies. The grassland of north-facing slopes exhibits
a relatively high biomass but is often characterized by
unpalatable plant species such as Veratrum lobelianum or
Festuca varia (Nakhutsrishvili 2012). On alluvial fans and
close to the villages, young hay meadows occur on former
organically fertilized arable fields characterized by
Hordeum brevisubulatum (Tephnadze et al 2014). Older,
nonfertilized and species richer hay meadows grow on
steeper slopes and further away from the villages. We
found no indication of the application of mineral
fertilizers in our study region. For a detailed description
of the study area, see Nakhutsrishvili (1999), Magiera et al
(2013), and Tephnadze et al (2014).

Material and methods

Vegetation data

In summer 2014, the grassland vegetation within walking
distance of 6 selected villages in the Kazbegi Valley
(Stepantsminda, Gergeti, Pansheti, Sioni, Phkelsche, and
Goristhikhe) was sampled in a stratified random design
including low-, medium-, and high-productivity sites
(strata). Exact locations of the plots, however, were chosen
randomly. In order to avoid edge effects, we sampled only
large homogeneous grassland patches at a minimum
distance of 50 m from each other.

The vegetation composition of 90 plots, each covering
25 m2, was assessed using the modified Braun-Blanquet
scale and including all vascular plant species. The
nomenclature follows The Plant List 1.1 (2013).
Furthermore, we recorded the total vegetation cover as
well as the cover of open soil and bare rocks. The cover
percentage and height of the upper and lower herb layers
were assessed separately. In order to estimate the cover
fractions of the functional plant groups (grass [Poaceae,
Juncaceae, Cyperaceae], legume [Fabaceae], and herb [all other
species]), the Braun-Blanquet scale was transformed to
cover percentages (r¼0.6%,þ¼1.2%, 1¼2.5%, 2m¼5%,
2a¼ 10%, 2b ¼ 20%, 3 ¼ 40%, 4 ¼ 80%, 5 ¼ 160%). We
summarized the coverage of all species belonging to each
functional group and used this as 100% coverage for
comparison (van der Maarel 2007). We further identified
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the most dominant (mean coverage of 5%) and frequent
(present in at least 30% of the vegetation relev�es) species
within the 3 previously defined grassland vegetation types:
H. brevisubulatum meadow, Gentianella caucasea grassland,
and Astragalus captiosus grassland. In this paper we use the
term grassland where the land-use type is ambiguous
(haymaking and pasturing), whereas the term meadow is
used where haymaking occurs.

To depict the main floristic gradients, we performed a
nonmetric multidimensional scaling (NMDS; Kruskal 1964)
ordination. Ordination is a commonly used tool to reduce
the n-dimensional vegetation dataset to lower dimensional
floristic gradients. NMDS was chosen as an ordination
method because it is a robust, distance-based method that
accurately displays the ordinally scaled vegetation data. We
calculated an NMDS ordination with 3 dimensions using
the monoMDS function of the R package vegan 2.4-1
(Oksanen 2011). An NMDS was calculated for the plant
species composition of the plots based on Bray-Curtis
distances as a distance measure (Bray and Curtis 1957). The
NMDS axes were rotated by principal component rotation,
so that the new axis 1 pointed in the direction of the largest
variance (Clarke 1993).

Moreover, we tested structural vegetation parameters
for significant differences between the 3 grassland
vegetation types, using a Kruskal-Wallis analysis of
variance and a Nemenyi test for multiple comparisons of
rank sums implemented in the R package PMCMR 4.1.

Preprocessing of hyperspectral field spectrometric data,

satellite imagery, and topographic data

We tested hyperspectral field spectrometric data and
multispectral satellite imagery, including vegetation
indices (VIs) and topographic data, for modeling grass,
herb, and legume coverage. Compared to the coarse
spectral resolution of multispectral data, commonly
including 3 to 10 discrete bands, the high spectral
resolution of hyperspectral data allows for a higher
flexibility in the selection of spectral features (Feilhauer et
al 2013). VIs are either ratios or linear combinations of
sensor bands that aim to enhance the vegetation signal
and allow conclusions on the status and condition of
vegetation (Jackson and Huete 1991).

In mid-July 2014, at the time of the highest biomass, we
acquired hyperspectral field spectrometric canopy

FIGURE 1 The study area in the Kazbegi region, Greater Caucasus, Georgia. (Map by Anja Magiera and

Tim Theissen)
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reflectance using a handheld field spectrometer (ASD
HH2), covering a range of 325–1075 nm (750 wavelengths,
with a 1-nm resolution) of the solar electromagnetic
spectrum. The measurements were taken from the same 5
3 5-m plots as the vegetation relev�es. To cover the entire
plot, we took 4 measurements per plot with 5 repetitions
(each measurement with an internal averaging of 50
spectra), totaling up to 20 spectra per plot, collected with
a 258 conical field of view. The measurements were
collected close to the solar noon, on days with clear sky
and low wind speed. Atmospheric changes were
accounted for by measuring relative to a white standard
panel (Spectralont, Labsphere Inc., North Sutton, NH),
with a recalibration at least every 5 minutes. During
preprocessing, the 20 spectra sampled per plot were
averaged and filtered. A Savitzky-Golay filter with a
quartic polynom and a filter length of 51 nm was used to
smooth the spectra (Savitzky and Golay 1964).

Filtered field spectrometric reflectance measurements
were used to test the applicability of hyperspectral sensors
compared to multispectral sensors for modeling PFGs by
simulating the bands of the sensors AISA Eagle
(hyperspectral, 400�970 nm) and RapidEye (multispectral,
440–840 nm). PFGs have already successfully been
predicted by AISA dual data as pollination types (Feilhauer
et al 2016) and as vegetation types by moderate-resolution
imaging spectroradiometer data (Sun et al 2008). Moreover,
Lehnert et al (2013) have used hyperspectral data to
discriminate grass from nongrass, but studies using
multispectral data to model plant functional types are
rather scarce. Both sensors were chosen because they cover
a similar spectral range and offer high spatial resolution.
To calculate the spectral signal of the AISA Eagle sensor,
we cut the wavelengths of the AISA sensor (118
wavelengths) out of the hyperspectral field spectrometric
data, whereas the function simulatoR (Feilhauer et al 2013)
and the spectral response curve were used to simulate
RapidEye reflectance.

Multispectral, space-borne imagery was acquired on 21
June 2014 by the RapidEye sensor. This sensor provides
information on canopy reflectance in 5 bands (blue 440–
510 nm, green 520–590 nm, red 630–685 nm, red edge
690–730 nm, and near infrared [NIR] 760–850 nm;
Weichelt et al 2011). The imagery was orthorectified
(product level 3-A) and converted to top-of-atmosphere
reflectance. Differences in illumination due to the
topography were corrected with a cosine topographic
correction (Teillet et al 1982). Besides the 5 original
bands, we included a set of previously published VIs in the
analysis (Magiera et al 2017). The VIs were chosen because
of their close relationship with plant characteristics. We
used simple ratios, including red edge/red, NIR/red edge,
red edge/NIR, NIR/red, and NIR/green. Moreover, we
included the Atmospherically Resistant Vegetation Index
2 (ARVI; Kaufman and Tanre 1992), the Blue-Wide
Dynamic Range Vegetation Index (BWDRVI; Gitelson
2004), the Modified Soil Adjusted Vegetation Index

(MSAVI; Qi et al 1994), the Enhanced Vegetation Index
(EVI; Huete et al 1999), the Normalized Difference
Vegetation Index (NDVI), and the Red Edge NDVI
(Herrmann et al 2010). All indices were calculated by
using the R raster package Version 2.5-8.

We included topographic data from a digital elevation
model (DEM) with a 20 3 20-m resolution; we then
calculated derivatives from that DEM, eastness, northness
(Zar 1998), and slope (Horn 1981), as well as plan
curvature, mean curvature, profile curvature, solar
radiation, compound topographic index (Gessler et al
1995), heat load index (Mc Cune and Keon 2002), and
surface relief ratio (Pike and Wilson 1971) with the Arc
Map 10.2.1 tool box and the Geomorphometry and
Gradient Metrics Toolbox version 1.0. The topographic
data were selected to reflect those environmental
conditions induced by the terrain that are known to
impact vegetation characteristics (Moeslund et al 2013).
We extracted the VIs and topographic variables for the
positions of each vegetation relev�e.

Modeling the vegetation structure

We tested the predictive power of hyperspectral canopy
reflectance against multispectral reflectance (MR) for
modeling PFGs. Moreover, we enhanced the multispectral
model by using VIs and topographic variables.

As a modeling technique, we chose random forest
regression (Breiman 2001), an ensemble method belonging
to bagged machine learning as implemented in the R
package randomForest version 4.6-12 (Liaw and Wiener
2002). The random forest regression algorithm requires no
assumption about data distributions; therefore,
transformations are not necessarily needed (Breiman 2001;
Liaw and Wiener 2002). The algorithm can capture
nonlinear data structures that are often inherent in
vegetation data. Moreover, it is robust towards outliers and
can handle noise introduced by many predictor variables.
The error rate of a random forest is assessed via out-of-bag
estimation. The importance of a variable is assessed as a
percentage increment of the mean square error (MSE) by
permuting the out-of-bag data and the resulting error
increase when one variable is left out (Liaw and Wiener
2002). Models were validated by a 100-fold bootstrapping
procedure using the full dataset, as the sample size was
relatively small. Adjusted R2 as well as the root MSE were
calculated for the relationship between predicted versus
observed data. All 3 resulting maps were stacked and
plotted in the red–green–blue (rgb) color code with r¼
legume coverage, g¼grass coverage, and b¼herb coverage.

Results

Grassland

The 90 vegetation relev�es contained 177 plant species
belonging to 35 families (26 graminoid species, 125
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herbaceous species, 22 fabaceous species, and 4 sedge
species). The NMDS ordination accurately depicts the 2
main floristic gradients, with a stress level of 0.14 (Figure 2).
Most of the original variation in the data (61%) is explained
by the first NMDS axis; the second and third axes represent
26% and 0.5%, respectively. The color scheme represents
the distribution of grass, herb, and legume in the rgb color
space; that is, greenish points represent high grass coverage.
Grassland vegetation is characterized by broad transitions,
which explains the high species richness but makes it
difficult to delineate grassland vegetation types.

The high grass coverage of the H. brevisubulatum
meadow was accompanied by significantly higher total
cover and yield (Table 1). Dominated by H. brevisubulatum
and in the drier and stonier parts by Agrostis vinealis,
Trifolium repens, Ranunculus caucasicus, and Ranunculus
ampelophyllus, these meadows occurred on deep soils. The
high herb coverage detected in the G. caucasea grassland
was caused by species richness—mainly of herb species—
and coverage more evenly distributed among single
species; many species exhibited an average coverage below
15%. In contrast, dominance was established mainly by
grassland matrix species shared with the A. captiosus
grassland, such as T. repens, Trifolium ambiguum, Bromus

variegatus, and Poa alpina. A high number of legume
species, high legume coverage (eg Medicago glutinosa as a
dominant species), and an overall low vegetation cover
characterized the A. captiosus grassland.

Modeling PFGs

For modeling and mapping the selected PFGs for grass
coverage, the most important predictor variables were the
red-edge/NIR ratio, the ARVI, and the WDRVI. For herb
coverage, the most important predictors were elevation,
the red-edge band, and the profile curvature; for legume
coverage, the main predictors were elevation, the NIR
band, and the MSAVI.

The map shows that large areas of grassland were
characterized by a high herb coverage, whereas grass-
dominated patches were only small and established in
close proximity to the settlements (Figure 3B, C, D). In
contrast, patches dominated by legumes (mainly A.
captiosus) covered larger areas mainly in the floodplains or
on steep, south-exposed slopes characterized by open soil
and bare rock (Figure 3C).

We further tested whether simulated hyperspectral
field spectrometric reflectance, which matches the
spectral characteristics of the AISA sensor, enhanced the
model quality compared to simulated MR (RapidEye) or a
mix of simulated MR, simulated VIs, and topographic
variables as predictor variables.

The best-fitting models resulted from a mixed set of
simulated MR, VIs, and topographic variables, whereas
simulated HR performed equally well to the simulated MR
(Table 2).

For the prediction of grass coverage, the blue and green
bands played a key role when only MRwas used as predictor
(Figure 4). Eastness, elevation, and profile curvature were
the most successful predictors in MR, VIs, and topographic
parameters (TPs). Considering simulated AISA reflectance,
wavelengths of 722–727 nm (red edge) resulted in the
strongest increase in MSE. Wavelengths in the green part of
the electromagnetic spectrum of light (511 nm) were strong
predictors as well. Herb coverage was mostly predicted by
the MR blue, green, and red bands, whereas elevation,
eastness, profile curvature, and the red-edge/red ratio
contributed the most to the MR, VI, and TP models. The
variable importance for predicting legume coverage shows
a high predictability of the blue band, the green band, and
the NIR band in MR. Strong predictors in MR, VI, and TP
were elevation, BWDRVI, and the NIR/green ratio. In HR,
strong predictors were found in the blue (405 nm) region of
the spectrum and the red edge (731 nm).

Discussion

Composition of grassland swards and management
implications

The tested high-mountain grassland exhibited a
vegetation structure common for unfertilized high-

FIGURE 2 NMDS ordination diagram of the 2 main floristic gradients. The

arrows point in the direction of the strongest change in topographic gradients

(eastness, surface relief ratio [SRR], and elevation [DEM]) as well as

vegetation-based gradients (grass [G], herb [H], legume [L], legume species

number [LSN], species number, Shannon index, and evenness, as well as the

vegetation types H. brevisubulatum meadow [HB], G. caucasea grassland [GC],

and A. captiosus grassland [AC]). The length of the arrow represents the

relationship between ordination and gradient, with a significance level of P �
0.01. Point size is fitted to grassland biomass (maximum biomass ¼ 13.4

t*ha�1, minimum biomass ¼ 0.25 t*ha�1).
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mountain grassland (Rudmann-Maurer et al 2008). Within
all 3 tested vegetation types, herbs and legumes achieve
high coverages compared to central European,
nonintensively used grassland that is typically composed
of 45% grass, 10% legume, and 45% herb coverage
(Voigtlaender et al 1987). Grass coverage was significantly
higher in H. brevisubulatum meadows in our dataset but was
still within the range of unfertilized farmland, which has
been almost lost in central Europe because of intensive
farming practices but is in part conserved in high-
mountain systems. Moreover, many species typical of
central European grassland with a deep-growing root
system, such as Rumex obtusifolius, Festuca pratense, and
Geranium sylvaticum, were frequent in our data.

Higher herb coverage characterized the G. caucasea
grassland, the species richest of all 3 grassland types. This
was mostly caused by altering, low-intensity land use
practices: although its biomass is moderate, G. caucasea
grassland is mown whenever winter fodder is scarce; it is

also pastured in spring with a low cattle density. This
diverse, low-intensive land use without any mineral
fertilizer has contributed to the species diversity of this
grassland type. An abandonment of this management
practice would lead to a considerable loss of high-
mountain plant diversity (Maurer et al 2006).

Low species diversity, as analyzed for the legume-
dominated A. captiosus grassland, and the typically scant
vegetation coverage indicate areas potentially prone to
erosion, mostly on southeast exposed slopes (Wiesmair et
al 2016). Because of nutrient-poor soil conditions and
drought, where erosion had started only a few species
were able to establish themselves and maintain a
vegetation cover. This highlights the importance of single
species—especially the dominant A. captiosus with its
immense (90 cm) root length and ability to provide
nitrogen to co-occurring species—for mitigating erosion
processes (Spehn et al 2002; Caprez et al 2011).

TABLE 1 Structural variables of the grassland types.a)

H. brevisubulatum meadow, n ¼ 23 G. caucasea grassland, n ¼ 36 A. captiosus grassland, n ¼ 31

Median 25th Pctl 75th Pctl Median 25th Pctl 75th Pctl Median 25th Pctl 75th Pctl

Yield (Mg*ha�1) 5.97 4.80 7.98 2.61b) 1.81 3.17 2.66b) 2.13 3.16

Cover total (%) 100.00 98.00 100.00 95.50b) 93.50 98.00 95.00b) 90.00 96.00

Coverage litter (%) 0.00 0.00 0.00 0.50b) 0.00 2.00 0.00b) 0.00 2.50

Open soil (%) 0.00 0.00 2.00 2.50b) 1.00 5.00 4.00b) 2.00 5.00

Bare rock (%) 0.00b) 0.00 0.00 0.00b)c) 0.00 0.00 1.00c) 0.00 4.50

Grass coverage 39.00b) 31.00 54.00 21.00c) 15.00 29.00 22.00c) 19.00 29.00

Herb coverage (%) 43.00b) 32.00 54.00 59.00 50.00 68.00 43.00b) 32.00 50.00

Legume coverage (%) 12.00b) 8.00 16.00 16.00b) 9.00 23.00 35.00 18.00 43.00

Species number 28.00b)c) 25.00 32.00 31.00b) 28.00 35.00 27.00c) 21.00 32.00

Shannon index 2.78b) 2.49 2.92 2.99 2.82 3.18 2.69b) 2.62 3.02

Evenness 0.83b) 0.76 0.86 0.88b)c) 0.86 0.91 0.84c) 0.81 0.89

a) Pctl, percentile.
b) Homogeneous groups after a Kruskal-Wallis analysis of variance for multiple comparisons of rank sums P � 0.01.
c) Homogeneous groups after a Nemenyi test for multiple comparisons of rank sums P � 0.01.

TABLE 2 Adjusted R2 of the random forest models as determined via correlation between predicted and observed values in calibration and validation

(bootstrapping).a)

PFGs

HR in validation MR in validation MR, VI, TP in validation

Adjusted R2 RMSE (%) Adjusted R2 RMSE (%) Adjusted R2 RMSE (%)

Grass coverage (%) 0.05 14.39 0.03 14.48 0.19 13.20

Herb coverage (%) 0.18 13.90 0.15 14.14 0.24 13.51

Legume coverage (%) 0.28 11.84 0.25 12.10 0.33 11.48

a) HR, simulated hyperspectral reflectance; MR, simulated multispectral reflectance; VI, simulated MR vegetation indices, TP, topographic parameters; RMSE,

root mean square error.
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Modeling and mapping of PFGs

Even though the overall model quality was moderate, the
calculated errors (11–15%) compare with the errors of
visual field estimations; moreover, the resulting map

depicts clear patterns of grass, herb, and legume coverage.
The overall low variability in the dataset could explain the
moderate model fits with a standard deviation for grass
coverage of 14.74, for herb coverage of 15.05, and for

FIGURE 3 Modeled PFG coverage, with random forest models explaining 36% of the variance in the data, a root MSE in

prediction (RMSEP)¼13% for grass coverage, a 25% explained variance and an RMSEP¼12% for herb coverage, and a

37% explained variance and an RMSEP¼ 11% for legume coverage in calibration, using MR, VIs, and TPs as predictors.

Maps depict the villages: (A) Stepantsminda; (B) Gergeti; (C) Pansheti; (D) Goristhikhe and Phkelsche; (E) Sioni; (F)

refers to the whole Kazbegi region. (Land use mapped by Tim Theissen)
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legume coverage of 14.15. Indeed, Biewer, Erasmi, et al
(2009) found that in sown swards, varying sward age and
the closely connected biomass distorted the relationship
between VIs and grass and legume content.

VIs and topographic variables enhanced the model
quality of the multispectral dataset, with elevation and
profile curvature being the most important topographic
variables because near-natural vegetation mainly follows
topographic gradients (Moeslund et al 2013). Moreover,

important canopy characteristics, such as vegetation cover
and the distribution of grass, herb, and legume species,
relate to the topographic gradient, adding to the
characteristic reflectance pattern (Pfitzner et al 2006).

We compared modeling results for predicting PFGs
with HR and simulated multispectral data to test the
potential of hyperspectral imagery for modeling PFGs.
Using the resampled field, spectrometric data minimized
the effects of illumination differences in multidate

FIGURE 4 Variable importance calculated as percentage increment MSE using (A) simulated MR (RapidEye); (B) simulated MR (RapidEye),

simulated VIs, and TPs; and (C) simulated HR (AISA) as predictors for grass, herb, and legume cover.
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comparisons (Nilson and Peterson 1994). Moreover, both
datasets originated from the same spectra, unlike in a
comparison of real satellite imagery where images are
often recorded weeks apart. Therefore, we avoided
inaccuracies introduced by rapid phenological
development in high-mountain regions (K€orner 2003).
However, the spatial scale as a crucial sensor
characteristic was not taken into account: the field of view
of the spectrometer covers areas below 1 m2, depending
on the average height above ground, whereas the
rescalable, airborne AISA Eagle imagery has varying pixel
sizes (,5 3 5 m) and the spaceborne RapidEye sensor
delivers imagery with a pixel size of 5 3 5 m. The number
of species in a pixel size increases with pixel size; we
counteracted this problem by averaging spectra on 5 3 5-
m plots. Using actual imagery might result in different
model qualities (Magiera et al 2016; Meyer et al 2017).

The high spectral resolution of the hyperspectral data
offered only a small advantage when modeling grass, herb,
or legume coverage. Hyperspectral reflectance
outperformed the MR by only 2–3%, whereas the
combination of MR, VIs, and TPs explained another 10%
of variance compared to the simple model with MR.
However, hyperspectral imagery with a high spatial
resolution is costly. The ability of MR to model floristic
composition (Feilhauer et al 2013) as well as aboveground
biomass and vegetation cover (Meyer et al 2017) is
generally high. Both data types may be enhanced by
including topographic variables, especially in a high-
mountain study area. Moreover, spectral information
from the shortwave infrared range, which is sensitive to

the water and dry-matter content of the leaves, may add
valuable information to the models (Feilhauer et al 2013).
Such information is, however, available for only a few
sensors with high spatial resolution (eg the commercial
Worldview 3). Free multispectral imagery as delivered by
Sentinel 2 could improve the model quality because it
offers 3 red-edge, 2 NIR, and 2 shortwave infrared bands.
However, the main pitfall of Sentinel 2 data is the rather
coarse spatial resolution (20 3 20-m pixel size) compared
to RapidEye (5 3 5-m pixel size). Further testing while
using a broader spectral range, as provided by Sentinel 2,
is therefore needed.

Conclusion

The high-mountain grassland of the Kazbegi region
displays a unique species composition with a high
coverage of herbs and legumes, resulting in a typical
structure and vegetation cover. Mapping grass, herb, and
legume coverage revealed the spatial limitation of grass-
rich swards for haymaking and the domination of legumes
on large areas with low vegetation coverage, which should
be grazed with a low cattle density. Producing grass, herb,
and legume cover maps could therefore aid in developing
case-sensitive grassland management recommendations
for a sustainable, economically and ecologically viable
land use concept in these species-rich grasslands. To
enhance model fits, further testing, including even
stronger vegetation gradients and the addition of
shortwave infrared wavelengths, is needed.
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