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Zusammenfassung 
 

Alternatives Spleißen von prä-mRNAs trägt hauptsächlich dazu bei, aus einer 

verhältnismäßig kleinen Anzahl von Genen ein komplexes Proteom zu erzeugen. Es 

sind verschiedene Formen des alternativen Spleißens bekannt, die streng reguliert 

werden müssen, um eine fehlerfreie Expression von Proteinen zu gewährleisten.  

Repetitive CA-Sequenzen bilden eine neue Gruppe spleißregulatorischer 

Sequenzelemente. CA-Dinukleotidwiederholungen sowie CA-reiche Sequenzen 

können als Spleiß-Enhancer oder –Silencer auf alternative Spleißvorgänge wirken. 

HnRNP L gehört zur großen Gruppe der heterogenen nukleären Ribonukleoproteine 

(hnRNPs) und bindet CA repetitive Sequencen mit hoher Affinität. Die Identifizierung 

von Genen, deren alternatives Spleißen durch hnRNP L reguliert wird, soll dazu 

beitragen, weitere Erkenntnisse über den Regulationsmechanismus alternativer 

Spleißvorgänge zu gewinnen.  

Die Regulation von alternativen Spleißvorgängen wurde in dieser Arbeit anhand von 

drei ausgewählten Beispielen untersucht. Im Gen SLC2A2 wurden CA-

Dinucleotidwiederholungen als intonischer Spleiß-Silencer identifiziert, dessen 

Funktion von hnRNP L als trans-agierenden Faktor abhängt. Weitergehende 

Studien zum Mechanismus der Spleißregulation zeigten, dass hnRNP L mit der 

Erkennung der 5’ Spleißstelle durch den U1 snRNP interferiert. Eine kurze 

intronische CA-reiche Sequenz im TJP1 Gen konnte als Spleiß-Silencer 

charakterisiert werden, dessen Funktion ebenfalls von hnRNP L vermittelt wird. Im 

Gegensatz zu SLC2A2, konnte für TJP1 gezeigt werden, dass hnRNP L mit 

U2AF65 um die Bindung zum Polypyrimidine Trakt konkurriert. Für einen CA-

reichen Abschnitt im ersten Intron des ITGA2 Gens wurde gezeigt, dass dieser, 

abhängig von der Sequenz des gesamten Introns, entweder die Benutzung der 

nahe liegenden 5’ Spleißstelle aktiviert oder die Erkennung eines kryptischen Exons 

unterdrückt.  

Darüber hinaus konnte mit Hilfe einer Untersuchung, kombiniert aus Microarray und 

RNAi, eine neue Funktion von hnRNP L identifiziert werden, nämlich die Beteiligung 

an alternativer Polyadenylierung. Für das Gen ASAH1 wurde gezeigt, dass hnRNP 

L die Verwendung einer internen Polyadenylierungsstelle verhindert.  

Zusammenfassend ist zu sagen, dass die Ergebnisse der vorliegenden Arbeit neue 

Einblicke in den Mechanismus der Regulation von alternativen Spleißen durch 
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hnRNP L erlauben. Zudem konnte hnRNP L eine Beteiligung an der Auswahl 

alternativer Poly(A)-Stellen nachgewiesen werden. Im humanen System bildet 

hnRNP L damit ein vielseitiges Regulationsprotein.  
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Summary 
 

Alternative splicing of pre-mRNAs is the major contributor in the human system to 

generate complex proteomes from a comparatively low number of genes. Several 

modes of alternative splicing are known today which are tightly regulated to ensure 

accurate protein expression.  

We have identified intronic CA repeat and CA-rich sequences as a new class of 

regulatory elements acting as enhancers or silencers on alternative splicing. Their 

function is mediated by the heterogenous ribonucleoprotein (hnRNP) L which has 

been characterised as the main CA binding protein. Considering that CA repetitive 

sequences are very common in the human genome, the identification and analysis 

of hnRNP L target genes should give further insights into the mechanism of 

alternative splicing regulation.   

In this work, I studied alternative splicing regulation of three recently identified 

hnRNP L target genes. First, in the SLC2A2 gene CA repeats were identified as an 

intronic splicing silencer element. Their function was shown to depend on hnRNP L 

as the trans-acting factor. Further studies on the mechanism of splicing regulation 

demonstrated that hnRNP L interfered with 5’ splice site recognition by the U1 

snRNP.  Second, I characterised a short intronic CA-rich cluster in the TJP1 gene 

as an hnRNP L-dependent splicing silencer. In contrast to SLC2A2, hnRNP L was 

shown to compete with U2AF65 for binding to the polypyrimidine tract thus impairing 

3’ splice site recognition. Third, an intronic CA repeat in the ITGA2 gene either 

activated splicing of the corresponding exon or repressed recognition of a cryptic 

exon in a sequence-dependent manner.  

Furthermore, a combined microarray and RNAi analysis revealed new modes of 

hnRNP L-mediated splicing regulation and, moreover, a novel role for hnRNP L in 

alternative polyadenylation. In the ASAH1 gene, hnRNP L repressed usage of an 

internal poly(A) site.  

Taken together, I have studied different mechanism of splicing regulation on the 

basis of three genes, SLC2A2, TJP1, and ITGA2. The results revealed new 

functions of CA repeat and CA-rich sequences and hnRNP L in alternative splicing 

regulation.  

In sum, hnRNP L was shown to be a global and versatile regulator protein in the 

human system with roles in alterative splicing and polyadenylation.  
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1. Introduction 

 

1.1 Splicing of RNA 

 

Splicing of mRNAs is an essential step in the expression of genetic information 

since almost all eukaryotic protein-coding genes are interrupted by introns. Human 

introns have a mean length of about 3500 nucleotides and show, except for the 

splice sites, no sequence conservation (Deutsch & Long, 1999). Considering that on 

average, one human gene contains just four introns, the human dystrophin gene 

represents an extreme example (Pozzoli et al., 2002). It is the largest gene known 

so far, consisting of 79 exons, and spanning more than two million basepairs.  

Exons, on the other hand, are normally much shorter (100-200 nucleotides) than 

introns. Moreover, they contain the coding sequence and are therefore highly 

conserved. For gene expression, it is very important that the excision of introns and 

the joining of exons occur most accurately. In Eukarya there are four splicing 

mechanisms known (Abelson et al., 1998). These are two types of self-splicing 

introns, group I and group II, tRNA splicing and splicing of nuclear pre-mRNAs. 

Mechanistically, splicing of tRNAs is very different from the other types of splicing 

since it is catalysed by proteins. Group I and group II introns, on the other hand, are 

classical ribozymes, which catalyse their own excision without the help of trans-

acting proteins (Toor et al., 2008). Only in some cases proteins are needed to form 

the catalytic centre (Cech, 1990). Splicing of the protein-coding genes of higher 

eukaryotes occurs by a mechanism similar to that of group II introns although it is 

not autocatalytic. It proceeds in two subsequent transesterification reactions and is 

catalysed by the spliceosome.  

 

For recognition and subsequent catalysis by the spliceosome, three conserved 

intronic sequence elements are essential (Fig. 1.1). These are the exon-intron 

boundaries, namely the 5’ and 3’ splice sites, and the branch point sequence 

(Green, 1986; Sheth et al., 2006). The polypyrimidine tract, a pyrimidine-rich region 

of variable length upstream of the 3’ splice site, represents another conserved 

sequence element.   
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Figure 1.1 
Conserved sequence elements of major-class introns in the pre-mRNA. A two-
exon pre-mRNA is schematically shown with conserved sequence motifs of the 5’ splice 
site, branch site, and 3’ splice site with preceding polypyrimidine tract (Y)n. The height of a 
letter at a given position represents the frequency of the corresponding nucleotide at that 
position as determined by alignment of conserved sequences from 1,683 human introns. 
Nucleotides that are part of the classical consensus motifs are shown in blue, except for the 
branch point A, which is shown in orange. The vertical lines indicate the exon–intron 
boundaries (adapted from Cartegni et al., 2002). 
 

 

A distinction is drawn between the major (U2-dependent) and minor (U12-

dependent) spliceosomes according to their composition. The vast majority of 

introns are U2-dependent having the terminal dinucleotides GU-AG. Only few 

introns are spliced by the minor spliceosome frequently possessing AT-AC 

dinucleotides at their ends (Will & Lührmann, 2005).  

 

1.2 The splicing reaction 

 

The splicing reaction itself starts with the 2’ hydroxyl group of the branch site 

adenosine attacking the phosphodiester bond at the 5’ splice site (Krämer, 1996). 

Through this nucleophilic attack, the linkage between exon and intron is broken 

resulting in two splicing intermediates, released exon 1 and exon 2 with intron lariat 

(Fig. 1.2). The characteristic lariat structure results from an unusual 2’-5’ 

phosphodiester bond of the branch site adenosine which is thereafter linked to three 

nucleotides. The phosphodiester bond of the 3’ splice site is broken in the second 

step by the nucleophilic attack of the free 3’ hydroxyl group of the first exon. This 

leads to release of the intron lariat and joining of the two exons (Valadkhan & 
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Manley, 2001). The spliceosome, which catalyses the two transesterification steps, 

is described in more detail in the next chapter.  

 

 

Figure 1.2 
Two-step transesterification pathway of pre-mRNA splicing. Exons are depicted 
as boxes, the intron as a line. Phosphate groups are illustrated by rings. The branch point 
adenosine is highlighted. The removal of the intron from the pre-mRNA is carried out in two 
subsequent transestrification reactions leading to joining of the exons and release of the 
intron lariat.  
 

1.3 Spliceosome assembly 

 

The spliceosome, a large and dynamic ribonucleoprotein machine, is responsible for 

splicing of most eukaryotic mRNAs (Staley & Guthrie, 1998). Small nuclear 

ribonucleoproteins (snRNPs) represent the major components of the spliceosome, 

each composed of a small nuclear RNA (snRNA) and several proteins. Besides the 

snRNPs, more than 100 additional non-snRNP splicing factors, which are also 

required for the removal of introns, are associated with the spliceosome (Jurica & 

Moore, 2003).The five spliceosomal snRNAs are termed U1, U2, U4, U5, and U6, 

due to their uridine-rich sequence (Will & Lührmann, 2001). Each snRNA binds a set 

of seven Sm or Sm-like proteins and several specific proteins altogether forming the 

snRNP particle. 
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Figure 1.3 
The spliceosome cycle. Exons are represented by black boxes, the intron by a line. The 
branch point adenosine (A*), 5’ (GU), and 3’ (AG) splice sites are highlighted. Each snRNP 
is depicted as a coloured cycle. The nucleophilic attacks during the splicing reaction are 
shown by red arrows. The spliceosome cycle passes through three main phases, 
spliceosome assembly, splicing catalysis, and snRNP recycling which are marked by yellow 
boxes. The U4/U6 base-pairing in the di-snRNP is shown on the right as well as the base-
pairing of U2 and U6 in the active spliceosome. The secondary structure of the singular U6 
snRNP is depicted on the left (kindly provided by Dr. Jan Medenbach).  
 

The catalysis itself is mediated by extensive structural rearrangements of the 

spliceosomal complex (Nilsen, 1994). The assembly occurs in a highly ordered and 

stepwise manner on every intron starting with the formation of the ATP-independent 

E (early) complex (Fig. 1.3) (Brow, 2002; Hastings & Krainer, 2001; Schellenberg et 

al., 2008).  The spliceosomal E complex is characterised by the association of the 

U1 snRNP with the 5’ splice site through base-pairing of its snRNA component. 

Branch site, polypyrimidine tract, and 3’ splice site are recognised by non-snRNP 

splicing factors, such as SF1 (splicing factor 1) and U2AF (U2 auxiliary factor). 

Recruitment of the U2 snRNP to the branch site leads to formation of the A 

complex, the first ATP-dependent step in spliceosome assembly. The subsequent B 

complex is generated by association of the U4/U6•U5 tri-snRNP with the pre-mRNA. 

In the tri-snRNP the U4 and U6 snRNA are extensively base-paired whereas the U5 

snRNP is associated via protein-protein interactions. After recruitment of the tri-

snRNP the spliceosome has to undergo several RNA-RNA and RNA-protein 

rearrangements to form the catalytic core. Unwinding of the U4/U6 RNA-duplex, 
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destabilisation and release of the U1 and U4 snRNP lead to formation of the 

catalytically active C complex which carries out the first step of splicing. To facilitate 

the second step further structural rearrangements take place. After release of the 

spliced product and intron lariat, the tri-snRNP has to be reconstituted from 

postspliceosomal single U4, U5 and U6 snRNPs in order to participate in further 

rounds of splicing. In a recycling process U4 and U6 snRNAs reanneal to form the 

U4/U6 di-snRNP followed by association of the U5 snRNP yielding the splicing-

competent tri-snRNP (Raghunathan & Guthrie, 1998). 

 

1.4 Alternative splicing 

 

Based on expressed-sequence clustering, the human genome was initially 

estimated to contain 150,000 genes (Modrek & Lee, 2002). Therefore, the actual 

number of “only” 32,000 genes came as a surprise (Lander et al., 2001; Venter et 

al., 2001). Moreover, since the comparatively lower organism of the fruit fly 

Drosophila melanogaster contains already 14,000 genes. How can a relatively low 

number of human genes produce a much higher number of mRNAs? Alternative 

splicing was the answer to that question.  

Alternative splicing is the major contributor in the human system to generate 

complex proteomes. The analysis of alternative splicing using bioinformatics 

revealed a much greater number of alternatively spliced genes than were initially 

expected (Ast, 2004). It is currently estimated that more than 60% of all human 

genes undergo alternative splicing. Some bioinformatic analyses, however, 

anticipate an even greater number (Lee & Wang, 2005). Most genes encode 2-3 

different protein isoforms but there are also some extreme examples (Olson et al., 

2007). By taking into account all possible combination of exons the D. melanogaster 

Dscam (homolog of human Down syndrome cell adhesion molecule) gene can 

generate 38,016 isoforms.  

A constitutive exon is always spliced or included into the final mRNA whereas some 

exons are regulated (Black, 2003). Fig. 1.4 gives an overview of the five basic 

modes of alternative splicing. A regulated exon can be either skipped or included 

(panel A). By altering the 5’ or 3’ splice site exons can also be lengthened or 

shortened (panels B, C). In some cases, exons are mutually exclusive, always 

including only one of several possible exon choices into the final mRNA (panel D). 
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Finally, introns can be either removed or retained thereby contributing to alternative 

splicing modes as well (panel E). One mode of alternative splicing, however, is not 

restricted to one pre-mRNA species. Frequently, several alternative splicing events 

lead to a family of related proteins expressed from a single gene.  

 

 

 
Figure 1.4 
Alternative splicing patterns. The constitutive exons are represented by blue boxes, 
alternative exons by red boxes. Introns are illustrated by black lines. Alternative splicing 
pattern are indicated in each case (adapted from Ast, 2004). 
 

The effects of alternative splicing on the encoded proteins are very diverse. For 

example, it leads to the formation of protein isoforms that differ in functional 

domains, subcellular localisation or binding specificity (Black, 2000). Alternative 

splicing can be regulated in a tissue-, sex-, or developmental-specific manner. The 

somatic sex determination pathway in Drosophila melanogaster is one of the best-

studied examples of alternative splicing regulation (Black, 2003; Robida et al., 
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2007). The sex determination genes are spliced differently in male and female flies 

controlled by a series of alternative splicing events.  

Approximately one third of all alternative splicing events leads to the introduction of 

a premature termination codon (PTC) subjecting the mRNA to degradation by 

nonsense-mediated decay (NMD) (McGlincy & Smith, 2008). NMD represents one 

RNA surveillance pathway to ensure the fidelity of gene expression. 

 

1.5 Splicing enhancer and silencer 

 

For accurate splicing of pre-mRNAs, the spliceosome has to recognise 

comparatively small exons in often large stretches of intronic RNA (Cartegni et al., 

2002; Maniatis & Tasic, 2002). The only poorly conserved splice site sequences are 

not sufficient for correct identification of exons since cryptic splice sites, which 

loosely match the consensus sequence, are very common in introns. Besides the 

canonical splice site signals, additional sequence elements are therefore required to 

define genuine exon-intron boundaries. Splicing enhancer and silencer are cis-

acting regulatory elements containing the necessary information for either 

stimulating (enhancer) or repressing (silencer) splicing (Wang et al., 2005). They 

can be classified according to their location in either exons or introns as exonic 

splicing enhancers (ESEs), intronic splicing enhancers (ISEs), exonic splicing 

silencers (ESSs), and intronic splicing silencers (ISSs).  

Exonic splicing enhancers are the best characterised splicing regulatory elements. 

Sequences with enhancer activity were identified using functional in vitro and in vivo 

SELEX (systematic evolution of ligands by exponential enrichment) (Coulter et al., 

1997; Schaal & Maniatis, 1999). The two major classes are purine-rich and 

adenosine/cytosine-rich ESE sequences. These motifs, however, are generally very 

short, only 6-8 nucleotides long, degenerate and partially overlapping. By means of 

a web-based program called ESEfinder putative ESEs can be predicted (Cartegni et 

al., 2003; Smith et al., 2006). This is especially important for the prediction of 

disease-associated point mutations or polymorphisms which often result in pre-

mRNA splicing defects. ESEs mediate regulation through recruitment of trans-acting 

factors, mainly members of the serine-arginine-rich (SR) protein family (Wang & 

Burge, 2008). 
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Exonic splicing silencers are another major class of splicing regulatory sequences. 

ESSs interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) to inhibit 

use of adjacent splice sites (Wang et al., 2004). They have also been predicted 

based on mutational or computational approaches but most of these sequences 

show little similarity and are highly degenerate.  

Besides their role in constitutive splicing, ESEs and ESSs play an important role in 

the regulation of alternative splicing (Black, 2003).  

 

So far, only a few intronic splicing regulatory elements (ISREs), such as ISEs and 

ISSs, have been characterised. Yeo and co-workers found that up to 50% of ISREs 

were enriched near alternatively spliced exons suggesting their importance in 

regulation of alternative splicing (Yeo et al., 2007). CA-rich and CA repeat 

sequences represent one class of ISREs (Hui et al., 2005; Hung et al., 2008). These 

sequence elements have been shown to function both, as intronic splicing enhancer 

and silencer. The YCAY motif, which is bound by the neuron-specific Nova protein 

family, represents another example of an intronic splicing regulatory sequence, 

regulating a large number of splicing events in the brain (Ule et al., 2003; Ule et al., 

2006).  

 

1.6 Trans-acting factors 

 

Splicing enhancer and silencer meditate their function through binding of trans-

acting factors, which can be divided into two major groups, SR proteins and 

hnRNPs.  

Serine-arginine-rich (SR) proteins are a family of highly conserved non-snRNP 

splicing factors with diverse roles in constitutive and alternative splicing. 

Characteristic for all SR proteins is their variable-length arginine-serine-rich (RS) 

domain at the C-terminus which is required for protein-protein interactions with other 

RS domain-containing proteins (Graveley, 2000). The N-terminal part of SR proteins 

contains one or two RNA-recognition motifs (RRMs) which are sufficient for 

sequence-specific RNA binding. Other proteins, distinct from the SR proteins, which 

also contain an RS domain, are referred to as SR-related proteins. These proteins 

include the U2AF and U1 snRNP 70 kDa (U1 70K) protein (Table 1.1).    

 



1. Introduction 
 

9 

Table 1.1 
Human SR proteins and SR-related proteins (adapted from Graveley, 2000) 
 
SR proteins SR-related proteins 

U2 auxiliary factor 
U2AF65 
U2AF35 
snRNP components 
U1 70K 
U5 100K 
U4/U6●U5 27K 
hLuc7p 
Splicing regulators 
hTra2α 
hTra2β 
Splicing coactivators 
SRm160 
SRm300 
RNA helicases 
hPrp16 
HRH1 
Protein kinases 

 

SRp20 

SC35 

SRp46 

SRp54 

SRp30c 

ASF/SF2 

SRp40 

SRp55 

SRp75 

9G8 
 

Clk/Sty 
 
 
SR proteins are involved in the regulation of alternative splicing mostly through 

recognition of ESE sequences (Fig 1.5). SR proteins display several modes of 

action, however, one of their best-characterised functions is splice site activation 

(Graveley, 2000; Matlin et al., 2005). Through binding to an ESE close to a weak 5’ 

splice site, SR proteins can stimulate splicing by recruitment of the U1 snRNP 

mediated by interaction with U1 70K (Lam et al., 2003; Ryner et al., 1996). 

Activation of the 3’ splice site on the other hand is mediated by recruitment of 

U2AF65 to a weak pyrimidine tract (Zuo & Maniatis, 1996).  

 

Heterogeneous nuclear ribonucleoproteins (hnRNP) are factors that bind RNA 

polymerase II transcribed primary transcripts of protein-coding genes in the nucleus 

(Dreyfuss et al., 1993). These transcripts are called heterogeneous nuclear RNAs 

(hnRNAs) which is a historical term describing their size heterogeneity and cellular 

localisation. HnRNP proteins belong to the most abundant nuclear proteins in higher 

eukaryotes and participate in several RNA-related biological processes for example 

transcriptional regulation, splicing, 3’ end processing, and mRNA export (Kim et al., 

2000). Over 20 major hnRNPs and several isoforms have been identified so far, 
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designated from hnRNP A1 (34 kDa) to U (120 kDa) (Dreyfuss et al., 2002). A 

modular structure is a common feature of most hnRNP proteins, which usually 

contain one or more RNA-binding motifs and auxiliary domains for protein-protein 

interactions. HnRNP proteins, similar as SR proteins, participate in the regulation of 

alternative splicing. In contrast to SR proteins, most hnRNPs function as splicing 

repressors through binding to splicing silencer sequences. 

 

 

Figure 1.5 
Splicing regulation by SR proteins binding to exonic splicing enhancers. The 
5’ splice site (GU), branchpoint (A), polypyrimidine tract, and 3’ splice site (AG) are 
recognised by the splicing machinery. The exons contain exonic splicing enhancers (ESE) 
that are binding sites for SR proteins. SR proteins stimulate splicing by recruitment of the 
U1 snRNP to the downstream 5’ splice site and/or U2AF (65 and 35 kDa subunits) to the 
upstream polypyrimidine tract and 3’ splice site. Thereafter U2AF recruits the U2 snRNP to 
the branchpoint. SR proteins can also function across the intron (adapted from Maniatis and 
Tasic, 2002).  
 

 
HnRNP A1 and I (PTB, polypyrimidine tract binding protein) are well-characterised 

examples of alternative splicing regulators. HnRNP A1 has been shown to bind to a 

G-rich intronic splicing silencer in the chicken β-tropomyosin gene antagonising the 

function of a splicing enhancer (Expert-Bezancon et al., 2004). This displays, 

however, only one example of the genes regulated by hnRNP A1. Several target 

genes could be identified for PTB which generally acts as a splicing repressor as 

well (Spellman et al., 2005). Wollerton and co-workers demonstrated that PTB even 

autoregulates its own expression by alternative splicing (Wollerton et al., 2004). Like 

other hnRNP proteins, PTB shows an RNA binding specificity by preferentially 

binding to UCUU in a pyrimidine-rich context (Perez et al., 1997). HnRNP L, another 

hnRNP protein shall be introduced in detail in the next chapter.  
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1.7 HnRNP L 

 

The heterogeneous nuclear ribonucleoprotein (hnRNP) L is an abundant nuclear 

protein of 64 kDa (Pinol-Roma et al., 1989). Several functions could be assigned to 

hnRNP L. First of all, it was identified in connection with the nuclear export of 

intronless mRNAs (Guang et al., 2005; Liu & Mertz, 1995). It was shown that 

hnRNP L binds to a pre-mRNA processing enhancer derived from the intronless 

herpes simplex virus type 1 thymidin kinase (HSV-TK) gene, thereby enhancing 

cytoplasmic accumulation of mRNAs in an intron-independent manner. HnRNP L 

was also found to interact with the 3’ border of the hepatitis C virus (HCV) internal 

ribosomal entry site (IRES) (Hahm et al., 1998b; Hwang et al., 2008). Binding of 

hnRNP L to the IRES correlated with increased translation efficiencies of the HCV 

mRNAs. Thirdly, hnRNP L plays a role in mRNA stability. Shih and Claffey identified 

hnRNP L as the protein binding to a CA-rich region in the 3’-untranslated region of 

the human vascular endothelial growth factor (VEGF) gene (Shih & Claffey, 1999). 

This interaction mediated regulation of VEGF mRNA stability under hypoxic 

conditions. The human endothelial nitric oxide synthase (eNOS) gene represents 

another case where hnRNP L affects RNA stability (Hui et al., 2003a). The eNOS 

gene revealed, in addition, a novel function of hnRNP L in splicing regulation (Hui et 

al., 2003b). Intron 13 of the eNOS gene carries a polymorphic CA repeat sequence 

which we identified as a splicing enhancer element. The CA repeat length correlated 

thereby with the splicing activation mediated by hnRNP L. Moreover, the number of 

CA repeats represents an independent risk factor for coronary artery disease since 

eNOS plays an important role in vascular homeostasis (Stangl et al., 2000). With an 

in vitro SELEX approach, we determined the binding specificity of hnRNP L (Fig. 

1.6). The sequences obtained showed an enrichment of CA dinucleotides with 

ACAC and CACA representing the minimal high-score binding motifs for hnRNP L 

which also recognises certain CA-rich sequences (Hui et al., 2005).  

The identification of further target genes besides eNOS revealed hnRNP L as a 

global regulator of alternative splicing. HnRNP L was also reported to interact with 

an exonic splicing silencer in exon 4 of the human CD45 gene mediating repression 

of the corresponding exon (House & Lynch, 2006; Rothrock et al., 2005). CD45 

encodes a haematopoietic-specific transmembrane protein tyrosine phosphatase 
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which is important for T-cell development and signalling. Exon 4 is one of three 

variable exons in the CD45 gene which are repressed upon T-cell activation.  

 

 

 
Figure 1.6 
HnRNP L RNA binding specificity defined by in vitro SELEX. (A) Consensus 
sequence of hnRNP L binding. The height of a letter at a given position represents the 
frequency of the corresponding nucleotide. The boxes mark the two high-score hnRNP L 
binding motifs. (B) Tetranucleotide frequency in sequences selected by SELEX. The 20 
most common tetranucleotide sequences are given in order of their frequencies in the 108 
selected SELEX sequences (heavy line) and in 20 sequences taken from the initial pool 
(thin line, control). Both frequencies are diagrammed as percentage of the total. (C) 
Characteristics of 11 SELEX-derived (clone numbers on the left) and two control sequences 
(with asterisks; #20 and 15). Given are the individual sequences (with high-score motifs in 
red, low-score motifs underlined) and the KD values (in nM; with standard deviations, p < 
0.05) (adapted from Hui et al., 2005). 
 

Recently, hnRNP L-like (hnRNP LL), a closely related paralog of hnRNP L, was 

shown to regulate alternative splicing of CD45 exon 4 as well (Oberdoerffer et al., 
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2008; Topp et al., 2008). HnRNP LL expression was induced upon T-cell stimulation 

and promoted CD45 exon 4 skipping during T-cell activation.  

HnRNP L and LL share 58% amino acid identity and are very similar in size and 

domain organisation (Fig. 1.7). Both proteins contain four RNA recognition motifs 

(RRMs) and a glycine-rich region at the N-terminus which is less pronounced in 

hnRNP LL. In HeLa cells hnRNP LL is about ten times less abundant than hnRNP L 

(Hung et al., 2008). This observation and its participation in T-cell activation-induced 

alternative splicing suggest a tissue-specific role for hnRNP LL.      

 

 

Figure 1.7 
Domain structure of the hnRNP L proteins. Schematic representation of the domain 
structures of hnRNP L (P14866; 589 amino acids) and the closely related hnRNP L-like 
protein (Q53T80; 542 amino acids). Four canonical RNA recognition motifs (RRM) are 
represented by the red boxes. Glycine- and proline-rich regions are shown in blue and 
green, respectively.  
 

1.8 Splicing and disease 

 

Years ago it was estimated that 15% of point mutations leading to human genetic 

diseases disrupt splicing (Krawczak et al., 1992). This estimation, however, is likely 

to be an underestimate since mutations in splicing regulatory elements, such as 

enhancer and silencer, had not been taken into account yet. By disrupting a splicing 

cis-element, either canonical splice site signals or additional regulatory elements, 

mutations can affect a single gene (Faustino & Cooper, 2003). The expression of 

multiple genes can be affected when a splicing regulatory factor is concerned. Some 

examples of splicing-associated diseases shall be illustrated in the following. 

The first example, spinal muscular atrophy (SMA), is a recessive autosomal disorder 

characterised by degeneration of spinal cord motor neurons leading to muscle 

atrophy (Cartegni et al., 2006; Frugier et al., 2002). SMA represents one of the most 

common genetic causes of childhood mortality. The survival of motor neuron 

(SMN1) gene, which encodes an essential protein for assembly of ribonucleoprotein 
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complexes, is affected in the disease (Meister et al., 2002). The SMN1 gene is 

duplicated, resulting in the homologous copy called SMN2. The SMN2 gene, 

however, is not able to completely compensate for the loss of SMN1 protein since it 

carries a point mutation in exon 7 leading predominantly to skipping of the exon and 

resulting in a truncated protein that is non-functional. The nucleotide substitution is 

thought to disrupt a splicing regulatory element located in exon 7.   

Myotonic dystrophy (DM) represents another example for a splicing-linked disease. 

DM is an autosomal dominant disorder caused by a CTG expansion in the 3’ 

untranslated region of the DM protein kinase (DMPK) (Lukong et al., 2008; Philips & 

Cooper, 2000). Unaffected individuals have less than 40 repeats whereas patients 

with the severe type of DM can have up to 1,500 CTG repeats. The disease severity 

correlates thereby with the repeat length. The repeat-containing transcripts 

accumulate in the nucleus and alter the function of RNA-binding proteins that are 

involved in alternative splicing (Kuyumcu-Martinez et al., 2007; Lukong et al., 2008). 

At least two proteins, muscleblind-like 1 (MBNL1) and CUG-binding protein 

(CUGBP1), are now so far to bind to the expanded CTG repeats. The observed 

effects of DM correspond to a loss of MBNL1 and a gain of CUGBP1 function 

supporting the idea that these proteins are misregulated. MBNL1 loss of function is 

due to sequestration of the protein on the expanded CTG repeats, whereas steady-

state levels of CUGBP1 are increased in DM.  

 

1.9 Global analysis of alternative splicing 

 

Ever since alternative splicing was discovered the number of genes, which are 

thought to have alternative splice variants, increased constantly. Because of its 

importance high-throughput experimental approaches are used today for the 

genome-wide identification of alternative splicing events (Blencowe, 2006). The 

analysis of alternative splicing based on bioinformatics has become an important 

field over the past few years (Lee & Wang, 2005). The computational evaluation of 

expressed sequence tags (EST) was the first approach to identify alternative 

splicing events in larger scale. ESTs that come from the same gene are aligned to 

the genomic sequence which allows identification of differences that are consistent 

with alternative splicing (Modrek & Lee, 2002). This method, however, has its 

limitations due to experimental artefacts and biases. Some of the limitations have 
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been overcome recently by the development of custom microarrays and 

computational tools.  

To identify alternative splicing targets of hnRNP L on a genome-wide level we used 

the Affymetrix GeneChip Human Exon 1.0 Array (Hung et al., 2008). The array 

contains 1.4 million probe sets which interrogate more than 1 million exon clusters 

(http://www.affymetrix.com). One gene is covered by roughly 40 probes. Each exon 

is thereby represented by approximately four probes which allow detection of 

alterations in exon usage (Fig. 1.8). 

 

 

 
Figure 1.8 
Schematic representation of the Affymetrix GeneChip Human Exon 1.0 Array 
design.  The yellow and purple boxes display exons, the grey regions represent introns. 
Alternative splicing events are indicated. In the probe selection region (PSR) each exon is 
covered by several probes, which are shown as dashes (adapted from 
http://www.affymetrix.com).   
 

1.10 Aim of the work 

 

As described above, we identified the abundant nuclear protein hnRNP L as a 

global regulator of alternative splicing binding to CA-rich and CA repeat sequences. 

A genome-wide database search yielded few alternative splicing targets of hnRNP L 

(Hui et al., 2005). Recently, we validated additional hnRNP L target genes with a 

combined microarray and RNAi approach (Hung et al., 2008). On the basis of 

selected target genes obtained from database search as well as from the microarray 

approach I studied the mechanism of alternative splicing regulation by hnRNP L. 

This work is divided into four parts. First, I characterised an intronic splicing silencer 

in the SLC2A2 gene. This hnRNP L target gene contains an intronic CA-repeat 

sequence in close proximity to the 5’ splice site of the regulated exon. I tested the 
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hypothesis that hnRNP L binding to the splicing silencer element interferes with 

recognition of the 5’ splice site by the U1 snRNP.  

TJP1, the second hnRNP L target gene I investigated, was identified by a combined 

microarray and RNAi approach. I demonstrated that a CA-rich cluster close to the 3’ 

splice site of the regulated exon represents an intronic splicing silencer. Moreover, I 

studied the mechanism of exon repression mediated by hnRNP L binding to the 

silencer element. 

Third, in the ITGA2 gene I tested the influence of a CA-rich region in intron 1 on 

splicing of the corresponding exon. Recently, a polymorphic CA repeat in the mouse 

ITGA2 gene was shown to enhance splicing efficiency through binding of hnRNP L 

(Cheli & Kunicki, 2006).  

Finally, validation of the microarray data revealed a new role for hnRNP L in the 

regulation of alternative polyadenylation.  

 

Taken together, I have obtained further insights into hnRNP L’s mode of action as a 

global regulator of alternative splicing.  
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2. Materials and Methods 
 

2.1 Materials 

 

2.1.1 Chemicals and reagents 

 
2-mercaptoethanol Roth 
5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) Roche 
Acetic acid Roth 
Acrylamide Bio-Rad 
Acrylamide/bisacrylamide 30, 37.5:1 Roth 
Acrylamide/bisacrylamide 40, 19:1 Roth 
Agarose ultra pure Roth 
Ammonium persulfate (APS) Bio-Rad 
Ampicillin Roche 
Bacto-agar Roth 
Bacto-tryptone Roth 
Bacto-yeast extract Roth 
Bisacrylamide Bio-Rad 
Boric acid Roth 
Bovine serum albumin, RNase free Roche 
Bromphenol blue  Merck 
Calcium chloride Merck 
Chloroform Roth 
Coomassie brilliant blue R250 Merck 
Creatine phosphate Roche 
Dimethyl pyrocarbonate (DMPC) Sigma 
Di-sodium hydrogenphosphate (Na2HPO4) Merck 
Dithioreitol (DTT) Roche 
Ethanol absolute Roth 
Ethidium bromide Roth 
Ethylendiaminetetraacetic acid (EDTA) Roth 
Formamide Roth 
Glucose Sigma 
Glycerol Roth 
Glycine Roth 
Glycogen PeqLab 
Guanidium thiocyanate Roth 
Heparin Sigma 
Imidazole  Roth 
Isoamyl alcohol Roth 
Isopropanol Roth 
Isopropyl-1-thio-β-D-galactoside (IPTG) Roche 
Magnesium chloride Merck 
Methanol Roth 
N,N,N´,N´-tetramethylenediamine (TEMED) Bio-Rad 
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N-2-hydroxyethylpiperazine (HEPES) Roth 
Nonidet P-40 (NP-40) Sigma 
Phenylmethylsulfonyl fluoride (PMSF) Roth 
Polyoxyethyleneorbiten monolaurate (Tween 20) Sigma 
Polyvinylalcohol Merck 
Potassium chloride (KCl) Roth 
Psoralen Sigma 
Roti-phenol Roth 
Roti-phenol/chloroform Roth 
Sodium acetic acid (NaAc) Merck 
Sodium chloride (NaCl) Roth 
Sodium citrate Roth 
Sodium dihydrogen phosphate monohydrate (NaH2PO4·H20) Merck 
Sodium dodecyl sulfate (SDS) Roth 
Tris-hydroxymethylaminomethane (Tris) Roth 
Triton X-100 Merck 
Trizol Invitrogen 
tRNA from yeast Roche 
Urea Roth 
Xylenxyanol Fluka 
 

2.1.2 Nucleotides 

 
[α-32P]ATP (3,000 Ci/mmol) Hartmann Analytic 
Deoxynucleosidetriphosphate set (dNTP), 100 mM Roth 
m7GpppG cap analog Biozym 
Ribonucleosidetriphosphate set (NTP), 100 mM Roche 
 

2.1.3 Enzymes and enzyme inhibitors 

 
Expand reverse transcriptase, 50 U/µl Roche 
Protease inhibitor cocktail tablets Roche 
Proteinase K, 10 µg/µl Roth 
Restriction endonucleases New England Biolabs 
RNase A, 100 mg/ml Qiagen 
RNase H, 10 U/µl Ambion 
RNase inhibitor (RNase out), Invitrogen 
RQ1 RNase free DNase, 1 U/µl Promega 
Shrimp alkaline phosphatase, 1 U/µl Roche 
SP6 RNA polymerase, 20 U/µl New England Biolabs 
T4 DNA ligase, 400 U/µl New England Biolabs 
T7 RNA polymerase, 20 U/µl Fermentas 
Taq DNA polymerase Own purification 
 

2.1.4 Reaction buffers 

 
10x PCR buffer Promega 
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10x restriction enzyme buffer New England Biolabs 
10x RNase H buffer PeqLab 
10x RQ1 DNase buffer Promega 
10x SAP buffer Roche 
10x SP6 reaction buffer New England Biolabs 
5x Expand RT buffer Roche 
5x T4 DNA ligase buffer New England Biolabs 
 

2.1.5 Molecular weight markers 

 
DNA Dig-labelled molecular weight marker VIII Roche 
GeneRulerTM DNA ladder mix Fermentas 
peqGold protein marker IV PeqLab 
 

2.1.6 Kits 

 
Qiagen plasmid maxi kit Qiagen 
QIAprep spin miniprep kit Qiagen 
QIAquick gel extraction kit Qiagen 
RNeasy mini kit Qiagen 
Silver stain kit Bio-Rad 
SYBR Green Jumpstart Taq Readymix Sigma 
TOPO TA cloning kit Invitrogen 
 

2.1.7 Materials for mammalian cell culture 

 
10x Posphate-buffered saline (PBS) Invitrogen 
1x trypsin-EDTA Invitrogen 
Dulbecco’s modified Eagle’s medium (DMEM) Invitrogen 
Fetal calf serum (FCS) Invitrogen 
GlutaMAX-1 Invitrogen 
Opti-MEM Invitrogen 
Tissue culture dish Greiner 
 

2.1.8 Plasmids 

 
pcDNA3.0 Invitrogen 
pcDNA3-SLC2A2-WT, -sub described in Hui et al., 2005 
pCR2.1 TOPO Invitrogen 
pFAST-BAC Htb-hnRNP L-GST described in Hui et al., 2005 
pSP65-MINX described in Zillman et al., 1988 
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2.1.9 E.coli strains and mammalian cell lines 

 
HeLa (human cervix carcinoma cells) ATCC No. CCL-2 
JM109 high-competent cells Promega 
TOP 10 high-competent cells  Invitrogen 
 

2.1.10 Antibodies 

 
Anti-goat Immunoglobulin-Peroxidase Sigma 
Anti-hnRNP L monoclonal antibody (4D11) Sigma 
Anti-hnRNP L peptide polyclonal antibody (D-17) Santa Cruz Biotechnology 
Anti-mouse Immunoglobulin-Peroxidase Sigma 
Anti-rabbit Immunoglobulin-Peroxidase Sigma 
Anti-U2AF65 monoclonal antibody (MC3) Sigma 
Anti-γ-tubulin monoclonal antibody (GTU88) Sigma 
 

2.1.11 DNA oligonucleotides 

 
SLC2A2-C1 5’-TTAAAAGCTTGGGCTGAGGAAGAGACTGTG-3’ 
SLC2A2-C2 5’-TTAACTCGAGACTAATAAGAATGCCCGTGACG-3’ 
SLC2A2-C3 5’-CAGGGATATTGAGGGGCTTTCATTCAAGATA-3’ 
SLC2A2-C4 5’-TAAGAGCAATAGCTATTCCACAAGAAGAAAGA-3’ 
SLC2A2-C5 5’-TGGAATAGCTATTGCTCTTAGGTTAAAAAAAATC-3’ 
SLC2A2-C6 5’-AAAGCCCCTCAATATCCCTGAGTGCTACCA-3’ 
SLC2A2-C7    5’-CTCGGATCCACTAGTAACGGCCGCCCTACCTTTGTCTGAAAGTA-3’ 
SLC2A2-C8    5’-AGTGGATCCGAGCTCGGTACCAAGCTACTTACCACAATATAGTCCT-3’ 
M-SLC2A2 fwd 
       5’-CATTTCATTCTGAAGCAGTCCAATGACTACCTACCTTTGTCGGAAAGTA-3’ 
M-SLC2A2 rev 
      5’-GACTGCTTCAGAATGAAATGCAATAATGCACTTACCACAATATAGTCCTG-3’ 
T7-SLC2A2s fwd 5’-TAATACGACTCACTATAGGGCATATCAGGACTATATTGTGG-3’ 
SLC2A2s rev 5’-ACATCCGCCTTTAGAGTTAC-3’ 
  
HU6-6 5’-TGTATCGTTCCAATTTTA-3’ 
U1 140-124 5’-CCCACTACCACAAATTA-3’ 
U1 14-1 5’-TGCCAGGTAAGTAT-3’ 
  
BGH rev 5’-TAGAAGGCACAGTCGAGG-3’ 
  
TJP1 5’-ATATCCTCCTTACTCACCACAAGC-3’ 
TJP2 5’-TTCAAAACATGGTTCTGCCTC-3’ 
TJP-C1 
5’-GATGAAGCTTCTGCTTTCTATAAAATATTTAAAATATTTTAAATATAGTATTTCTGTTT 
ACTGCTAACT-3’ 
TJP-C2 5’-ACCGGAGTCTGCCATTACAC-3’ 
T7-TJP_exon19 fwd    5’-TAATACGACTCACTATAGGGATATCCTCCTTACTCACCAC-3’ 
TJP_exon20 rev 5’-GCAGAGGTTGATGATGCTG-3’ 
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T7-TJP-1 fwd     5’-TAATACGACTCACTATAGGGTGGAAAGTTAGCAGTAAACAG-3’ 
TJP-22 rev 5’-AGGGACTGGAGATGAAGCT-3’ 
TJP-33 rev 5’-GCAACACCGCAGCACAGG-3’ 
M-TJP rev 
5’-GATGAAGCTTCTGCTTTCTGCGAAGCGTTTAAAATATTTTAAATATAGTATTTCTGTTT 
ACTGCTAACTT-3’ 
M2-TJP rev 
               5’-GATGAAGCTTCTGCTTTCTGCGAAGCGTTTAAAATATTTTAAATATAGTG-3’ 
  
ITGA5 5’-TTAAAAGCTTGTCAGACCCAGGATGG-3’ 
ITGA6 5’-GCTTGACCTAAGTTGGGCTGCAGGACTC-3’ 
ITGA7 5’-CAGCCCAACTTAGGTCAAGCAAGTTTTCTTAA-3’ 
ITGA8 5’-TTAAGAATTCCAGTTGCCTTTTGGATTTATA-3’ 
ITGA9 5’-GTTTTAGGTAAGCATGGACAGTGTGGGG-3’ 
ITGA10 5’-TGTCCATGCTTACCTAAAACAAAGCACTCAC-3’ 
ITGA11               5’-CTCGGATCCACTAGTAACGGCCGCCAGTGTGCTAGCATGGACA-3’ 
ITGA12               5’-CCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTACCTAAAACA-3’ 
ITGA13 5’-AAGCTTGTCAGACCCAGGAT-3’ 
ITGA14 5’-ATTTTTGCTTCTGGGAGACC-3’ 
ITGA6-2 5’-TCTTACTAATCAGGGGAAGTTGGGCTG-3’ 
ITGA6-5 5’-TTGACCTAATCAAAGCCAGCAAGCACCG-3’ 
ITGA7-2 5’-ACTTCCCCTGATTAGTAAGATAATGAATTATGC-3’ 
ITGA7-5 5’-GCTGGCTTTGATTAGGTCAAGCAAGTTTTCTTA-3’ 
  
ASAH1 5’-GAGGAAATGAAGGGTATTGCC-3’ 
ASAH2 5’-ACTCCAAAATCCATGTTTCTCC-3’ 
ASAH3 5’-ATCACACCTCAATGGAAACTTG-3’ 
ASAH-2 5’-GGTAAAGTTCACTTAGAAGCT-3’ 
  
hnRNP L fwd 5’-TTCTGCTTATATGGCAATGTGG-3’ 
hnRNP L rev 5’-GACTGACCAGGCATGATGG-3’ 
hnRNP LL fwd 5’-ACCATTCCTGGTACAGCACTG-3’ 
hnRNP LL rev 5’-TGGCCAGCACTTGTAAAGC-3’ 
β-actin 703 5’-TGGACTTCGAGCAAGAGATG-3’ 
β-actin 994 5’-GTGATCTCCTTCTGCATCCTG-3’ 
 
These DNA oligonucleotides were ordered from Sigma or MWG Biotech. 
 

2.1.12 RNA oligonucleotides 

 
5’-Biotin-(CA)32-3’ Xeragon 
human hnRNP L H1 5’-GAAUGGAGUUCAGGCGAUGTT-3’ 
human hnRNP LL 5’-AGUGCAACGUAUUGUUAUATT-3’ 
luciferase GL2 5’-CGUACGCGGAAUACUUCGATT-3’ 
 
The siRNA oligonucleotides were ordered from MWG Biotech. 
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2.1.13 Other materials 

 
Eppendorf tube, 1.5 ml, 2 ml Eppendorf 
Falcon tube, 15 ml, 50 ml Greiner 
HeLa cell nuclear extract 4C Biotech 
Hybond ECL nitrocellulose membrane GE Healthcare 
Nickel-nitrilotriacetic acid (Ni-NTA) agarose Qiagen 
Protein A-Sepharose GE Healthcare 
Roti-Block Roth 
Streptavidin-agarose Sigma 
Lipofectamin 2000 Invitrogen 
X-ray film Kodak 

 

2.2 Methods 

 

2.2.1 DNA cloning 

 

2.2.1.1 Preparation of plasmid DNA 

 

Plasmid DNA was isolated from bacterial culture using either QIAprep spin miniprep 

kit or QIAGEN plasmid maxi kit according to the manufacturer’s instructions. The 

concentration of the plasmid DNA was determined by UV light absorption at 260 nm 

using a spectrophotometer (Eppendorf).  

 

2.2.1.2 Agarose gel electrophoresis 

 

Agarose was melted in 0.5x TBE buffer (100 mM boric acid, 100 mM Tris, 2 mM 

EDTA pH 8.8) using a microwave oven. After cooling, ethidium bromide was added 

in a 1:20,000 dilution and the gel was poured into a casting platform. DNA samples 

were mixed with 6x loading buffer (30% (v/v) glycerol, 0.025% (w/v) bromphenol 

blue) and loaded into the wells. 1-2% agarose gels were used to analyse DNA. Gels 

were run at 130 V for the appropriate time and visualised with a gel documentation 

system (SynGene).  
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2.2.1.3 Preparation of DNA fragments 

 

DNA bands were excised from agarose gels and purified using QIAqick gel 

extraction kit according to the manufacturer’s instructions. 

 

2.2.1.4 Restriction endonuclease digestion 

 

The DNA sample was mixed with 1x reaction buffer and restriction enzyme in a final 

volume of 50 µl. An amount of 1 to 5 units of enzyme was used to digest 1 µg of 

DNA. The reaction was incubated for 1 to 2 h at the recommended temperature. 

DNA was purified by gel extraction or phenolisation.  

 

2.2.1.5 Dephosphorylation 

 

After linearisation of plasmid vector DNA by endonuclease digestion, the vector was 

dephosphrylated at the 5’-terminus to prevent self-ligation. 10 µg of linearised vector 

DNA was incubated with 1x SAP buffer and 1 U/µl SAP in a total volume of 50 µl for 

30 min at 37°C. The enzyme was heat inactivated aft erwards by incubation at 65°C 

for 15 min.  

 

2.2.1.6 Ligation 

 

Appropriate amounts of linearised vector DNA and purified DNA fragment were 

incubated with 1x T4 ligation buffer and 1 µl T4 DNA ligase (400 U/µl) in a final 

volume of 10 µl. The incubation was carried out at either 16°C o/n or for 2 h at room 

temperature.  

 

2.2.1.7 Transformation 

 

10 µl of ligation reaction was mixed with 200 µl of competent JM109 E.coli cells and 

incubated on ice for 30 min. Cells were heat shocked at 42°C for 90 sec and 
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immediately chilled on ice. 500 µl of LB medium (1% (w/v) Bacto-tryptone, 0.5% 

(w/v) Bacto-yeast extract, 1% (w/v) NaCl) was added to each transformation culture. 

Cultures were grown at 37°C for 1 h, aliquots of ea ch culture were plated on pre-

warmed LB plates (1.5% (w/v) Bacto-agar in LB medium) containing 100 µg/ml 

ampicillin. The plates were incubated overnight at 37°C. Single-cell colonies were 

picked and grown in LB medium. Plasmids isolated from these clones were 

analysed by PCR and digestion with restriction endonucleases. Finally, plasmids 

were confirmed by sequence analysis (SeqLab, Göttingen). 

TOPO cloning was carried out in a similar way. Aliquots of the ligation reaction were 

transformed in TOP10 high-competent E.coli cells. For selection of recombinants by 

blue/white screening 40 µl of X-Gal (40 mg/ml) and 40 µl of IPTG (100 mM) were 

spread on each LB plate. 

 

2.2.2 Minigene constructs 

 

2.2.2.1 pcDNA3-SLC2A2 

 

Construction of SLC2A2 wildtype minigene construct was described by Hui et al., 

2005. For construction of the substitution minigene, a series of PCRs was 

performed using oligonucleotides SLC2A2-C1 and -C2 in combination with M-

SLC2A2 fwd and rev. The whole fragment, including restriction sites, was obtained 

by a second-step PCR using the previous PCR products as templates, cut with 

HindIII and XhoI, and inserted into the corresponding sites of the pcDNA3 vector. 

The CA repeat was replaced by a random sequence. 

DNA templates for [α-32P]ATP-labelled in vitro transcription were obtained by PCR 

using pcDNA3-SLC2A2 plasmid DNAs as template and oligonucleotides T7-

SLC2A2s fwd and SLC2A2s rev.  

 

2.2.2.2 pcDNA3-TJP1 

 

TJP1 minigene constructs consist of three exons and two introns. The TJP1 

genomic sequence for the minigene constructs was amplified using genomic DNA 
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isolated from primary HUVEC cells as template (kindly provided by Dr. Karl Stangl, 

Charité, Berlin) and oligonucleotides TJP-C2/2. The minigene unit was first TOPO-

cloned into pCR2.1 and then released by EcoRI digestion. The released fragment 

was recloned into pcDNA3 vector. To construct the TJP1 mutant derivative, a PCR 

was carried out using oligonucleotides T7 and TJP-C1, which carried five point 

mutations. The PCR product was digested with HindIII, followed by substituting the 

HindIII fragment in the wildtype minigene with it. For the TJP1 mutG and mutTG 

constructs the oligonucleotide combinations T7/M-TJP rev respectively T7/M2-TJP 

rev were used. These constructs were made by Dr. Jingyi Hui, Institute of 

Biochemistry an Cell Biology, Chinese Academy of Science, Shanghai. 

As described above for SLC2A2, TJP1 templates for in vitro transcription were 

obtained by PCR. The shorter PCR product of 84 nt was obtained using the 

oligonucleotide combination T7-TJP-1 fwd/TJP-22 rev, whereas for the longer 

product of 318 nt the oligonucleotide TJP-33 rev was used as reverse primer.  

 

2.2.2.3 pcDNA3-ITGA2 

 

All ITGA2 minigene constructs contain the first two exons and a shortened intron 1 

in between. 

In the ITGA2a minigene constructs most of the intron sequence was deleted, 

leaving ~400 nt downstream of the 5’ splice site and ~100 nt upstream of the 3’ 

splice site. The minigene unit was constructed using oligonucleotide combinations 

ITGA 5/6, ITGA 7/8, and ITGA 5/8 for a second-step PCR, and HUVEC genomic 

DNA as template. The PCR product was digested with HindIII and EcoRI and cloned 

into the corresponding sites of the pcDNA3 vector. To obtain the substitution 

derivative, a similar two-step PCR was carried out using oligonucleotide 

combinations ITGA 5/12, ITGA 8/11, and ITGA 5/8. In all ITGA2 substitution 

minigene constructs, the CA-rich sequence was replaced by a non-specific 

sequence amplified from the polylinker region of pcDNA3. In the CA0 minigene 

construct, the complete CA-rich sequence in intron 1 was deleted using 

oligonucleotide combinations ITGA 5/10, ITGA 8/9, and ITGA 5/8. These constructs 

were made by Marius Prohm. 

In the ITGA2b minigene constructs more of the sequence of intron 1 was included, 

leaving ~500 nt downstream of the 5’ splice site and again ~100 nt upstream of the 
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3’ splice site. The oligonucleotide combinations for the two-step PCR were ITGA 

5/6-5, ITGA 7-5/8, and ITGA 5/8. For the substiution derivative the two-step PCR 

was carried out with the same oligonucleotides already described for the ITGA2a 

substitution construct.  

In the ITGA2c minigene constructs intron sequence from ~400 nt downstream of the 

5’ splice site to ~200 nt upstream of the 3’ splice site was deleted. ITGA 5/6-2, ITGA 

7-2/8, and ITGA 5/8 were the oligonucleotide combinations used for the two-step 

PCR. The substitution derivative was constructed as described above.  

 

2.2.3 In vivo splicing analysis  

 

2.2.3.1 Cell culture  

 

HeLa cells were maintained in DMEM supplemented with 10% FCS at 37°C, and 

5% CO2. When the cells were 100% confluent (every 2-3 days), they were washed 

once with 1x PBS, detached from the plate by 1x trypsin-EDTA, split, and reseeded 

into new dishes.  

 

2.2.3.2 Transient transfection 

 

One day before transfection, 6x105 cells were seeded in 6 cm dishes. For 

transfection cells were not more than 80% confluent. 8 µg of plasmid DNA was 

mixed with 65 µl 1M calcium chloride solution in a polystyrene tube (Greiner). As a 

negative control (mock), plasmid DNA was left out. Sterile ddH2O was added to 

each reaction to a final volume of 260 µl. 260 µl of 2x HBS (50 mM HEPES pH 6.96, 

280 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4, 12 mM glucose) was added dropwise 

to the transfection mix with constant vortexing. After 20 min incubation at room 

temperature, the precipitate was applied dropwise to the cell medium.  
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2.2.3.3 Isolation of total RNA from HeLa cells 

 

Two days after transfection cells were harvested and total RNA was isolated using 

guanidium thiocyanate. First, cells were washed once with 3 ml of ice-cold 1x PBS. 

Then, cells were lysed by applying 2 ml of solution A (50% phenol, 2 M guanidium 

thiocyanate, 12.5 mM sodium citrate pH 7.0, 100 mM sodium acetate pH 4.0, 100 

mM β-mercaptoethanol). The lysate was transferred into a 15-ml falcon tube; 300 µl 

of chloroform/isoamyl alcohol (24:1) were added and mixed by vortexing. The lysate 

was kept on ice for 30 min and then distributed into two 2 ml tubes for centrifugation. 

After centrifugation at 14,000 rpm for 20 min at 4°C the upper aqueous phase was 

transferred into a new tube. Nucleic acids were precipitated by addition of 0.7 

volumes of isopropanol and incubation at -80°C for 15 min. Total RNAs were 

pelleted by centrifugation at 14,000 rpm for 20 min at 4°C, washed once with 500 µl 

of 70% ethanol, dried, and resuspended in 10 µl of DMPC-H2O. The concentration 

of total RNA was determined by UV light absorption at 260 nm.  

 

2.2.3.4 RQ1 DNase treatment 

 

To remove any co-precipitated DNA, total RNA was treated with RQ1 DNase. 20 µg 

of total RNA was mixed with 5 µl 10x RQ1 DNase buffer, 5µl 100mM DTT, 1 µl 

RNase inhibitor, and 5 µl RQ1 DNase. DMPC-H2O was added to a final volume of 

50 µl. After incubation at 37°C for 30 min, 150 µl DMPC-H2O was added to each 

reaction. Total RNAs were extracted with 200 µl phenol/chloroform/isoamyl alcohol 

(25:24:1) and then precipitated with 20 µl 3M NaAc pH 5.2 (1/10 vol), 600 µl ethanol 

(3 vol), and 1 µl glycogen. After pelleting, washing, and drying, total RNA was 

dissolved in 10 µl DMPC-H2O. The RNA concentration was determined again. 

 

2.2.3.5 Analysis of in vivo splicing by RT-PCR 

 

Reverse transcriptions were carried out by Expand RT. 2.5 µl of total RNA was 

mixed with 4 µM BGH rev primer in a total volume of 6.5 µl and incubated at 65°C 

for 10 min. Reactions were immediately chilled on ice. The RT reaction containing 

1x RT buffer, 8 mM DTT, 800 µM dNTPs, 1 U/µl RNase inhibitor, 2.5 U/µl Expand 
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RT and DMPC-H2O in a final volume of 20 µl was added to each reaction. Reverse 

transcriptions were carried out for 1 h at 42°C.  

The PCR was done in 25-µl reactions with 5 µl RT reaction, 1x PCR buffer, 400 µl 

dNTPs, 1 mM MgCl2, 600 µM forward primer, 600 µM reverse primer, and 0.2 U/µl 

Taq DNA polymerase. The following amplification profile was applied: 2 min of 

denaturation at 95°C, 30 cycles of amplification (3 0 sec at 95°C, 30 sec at 58°C, 

and 30 sec at 72°C), and a final elongation step fo r 7 min at 72°C. In the case of 

TJP1, the annealing temperature was increased to 62°C. 5 µl of PCR reaction were 

analysed on a 2% agarose gel by ethidium bromide staining. The GeneTools 

software (version 3.07; SynGene) was used for quantification of stained bands. 

 

2.2.4 In vitro transcription 

 

2.2.4.1 Transcription of 32P-labelled RNA 

 

RNAs were radioactively-labelled internally by T7 in vitro transcription. PCR 

products were used as templates for transcription. Only in the case of MINX, RNA 

was transcribed from a linearised plasmid. 5 µl of template DNA or 1 µl of plasmid 

DNA (1 µg/µl) were mixed with 5 µl 5x transcription buffer, 2.5 µl 100 mM DTT, 1.25 

µl 2 mM ATP, 1.25 µl 10 mM CTP, 1.25 µl 10 mM UTP, 1.25 µl 2 mM GTP, 1.25 µl 

m7GpppG cap analog, 0.5 µl RNase inhibitor, 2 µl [α-32P]ATP (3000 Ci/mmol), and 1 

µl T7 RNA polymerase (20 U/µl). With addition of DMPC-H2O, the final volume was 

adjusted to 25 µl. For MINX transcription, SP6 RNA polymerase was used instead of 

T7. Transcriptions were carried out at 37°C for 1 h . 2 µl RQ1 DNase was added to 

each reaction and incubation continued for 30 min at 37°C.  

 

2.2.4.2 Removal of unincorporated nucleotides by gel filtration 

 

Unincorporated nucleotides were removed from the transcription reactions using 

RNA spin columns following the manufacturer’s instructions.  

Transcribed RNAs were precipitated with 600 µl ethanol, 20 µl 3M NaAc pH 5.2, and 

1 µl glycogen. After pelleting, washing and drying, the amount of RNA was 
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measured using a scintillation counter (RNA [ng] = ATPtotal cold [µM] x volume of 

reaction [µl] x %incorporation x 0.0132). The transcripts were dissolved in an 

appropriate volume of DMPC-H2O.  

 

2.2.4.3 Transcription without 32P-label 

 

Transcription reactions were carried out as described above. Only, ATP was added 

in a final concentration of 500 µM instead of 100 µM because [α-32P]ATP was 

omitted. After transcription and DNase treatment, transcribed RNAs were extracted 

with 200 µl phenol/chloroform/isoamyl alcohol (25:24:1) and then precipitated. After 

pelleting, washing, and drying, transcripts were dissolved in 5 µl of DMPC-H2O. 

 

2.2.4.4 Determination of RNA concentrations 

 

1 µl of each transcription reaction was mixed with 4 µl DMPC-H2O and 5 µl 2x 

formamide loading buffer (80% (v/v) formamide, 10 mM EDTA pH 8.0). Samples 

were heated for 2 min at 95°C and immediately chill ed on ice. Transcripts were 

analysed on a 2% agarose gel and ethidium bromide staining. The concentration of 

RNA was estimated by comparison to tRNA standards. Transcripts were diluted with 

DMPC-H2O to a final concentration of 10 ng/µl. 

 

2.2.5 In vitro splicing of pre-mRNAs 

 

2.2.5.1 Splicing reaction 

 

In vitro transcribed pre-mRNAs were spliced in HeLa cell nuclear extract. 10 ng of 

pre-mRNA was incubated in a 25-µl reaction containing 60% HeLa nuclear extract, 

0.5 mM ATP, 3.2 mM MgCl2, 20 mM creatine phosphate, 1.6 U/µl RNase inhibitor, 

and 2.66% (v/v) PVA. The splicing reaction was incubated at 30°C. 20 µl aliquots 

were taken at different time points and stored at -20°C.  
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2.2.5.2 Proteinase K treatment 

 

Aliquots of the splicing reaction were mixed with 100 µl 2x PK buffer (200 mM 

Tris/HCl, 300 mM NaCl, 25 mM EDTA, 2% SDS), 4 µl PK (10 mg/ml), and 76 µl 

DMPC-H2O. Reactions were incubated for 30 min at 37°C. The  RNA was extracted 

with phenol, precipitated, washed, dried and dissolved in 5 µl DMPC-H2O.  

 

2.2.5.3 Analysis of in vitro splicing by RT-PCR 

 

Reverse transcriptions were carried out as described above (2.2.3.5). 1 µl of RNA, 

purified from a splicing reaction, was mixed with 2 µM of a gene-specific reverse 

primer. 5 µl of the RT reaction was used as template in the PCR assay. 5µl of each 

PCR reaction was analysed by agarose gel electrophoresis and ethidium bromide 

staining.  

 

2.2.6 Depletion of hnRNP L from HeLa nuclear extract 

 

HnRNP L was depleted from nuclear extract with a 5’-biotinylated (CA)32 RNA 

oligonucleotide that was bound to streptavidin agarose beads. First, 200 µl of 

packed streptavidin agarose beads were blocked in 500 ml blocking solution (4 mM 

HEPES pH 8.0, 0.2 mM DTT, 2 mM MgCl2, 20 mM KCl, 0.002% (v/v) NP-40, 0.2 

mg/ml tRNA, 1 mg/ml BSA, 0.2 mg/ml glycogen) at 4°C  o/n. The blocked beads 

were washed four times with 1 ml of WB 400 (20 mM HEPES pH 8.0, 1 mM DTT, 10 

mM MgCl2, 400 mM KCl, 0.01% (v/v) NP-40). For each depletion reaction, 20 µl of 

packed beads were then incubated with 6 µg of the 5’-biotinylated (CA)32 RNA 

oligonucleotide in 200 µl of WB 400 for 4 h at 4°C with rotation. A mock depletion 

was done in the absence of RNA oligonucleotide. Beads were washed four times 

with 1 ml of WB 400 and one time with buffer D (20 mM HEPES pH 8.0, 100 mM 

KCl, 0.5 M EDTA, 20% (v/v) glycerol, 1 mM DTT, 1 mM PMSF), followed by 

incubation with 200 µl of HeLa nuclear extract for 30 min at 30°C with rotation. 

Then, the KCl concentration was increased to 600 mM and the incubation continued 

for 20 min at 4°C. After removal of the streptavidi n beads, depleted nuclear extracts 

were dialysed against buffer D for 2 h. 
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2.2.7 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

 

4x stacking gel buffer containing 0.5 M Tris/HCl pH 6.8, 0.4% (w/v) SDS and a 4x 

separating gel buffer with 1.5 M Tris/HCl pH 8.8, 0.4% (w/v) SDS were used. The 

stacking gel (5% Acrylamide/bisacrylamide 37.5:1, 1x stacking gel buffer, 200 µl 

APS, 20 µl TEMED in 20 ml) covers the separating gel (10-12% 

Acrylamide/bisacrylamide 37.5:1, 1x separating gel buffer, 100 µl APS, 10 µl 

TEMED in 10 ml). Protein gels were run in SDS running buffer (25 mM Tris, 250 mM 

glycine pH 8.3, 0.1% (w/v) SDS) at 100 V until the samples reached the separating 

gel. Then, the voltage was increased to 150 V and run for an appropriate time. Gels 

were subjected to either Western blot analysis or Coomassie blue staining.  

 

2.2.8 Coomassie staining 

 

For Coomassie staining, the gel was incubated for 1 h in Coomassie blue staining 

solution (0.25% (w/v) Coomassie brilliant blue R250, 50% (v/v) methanol, 10% (v/v) 

acetic acid) with shaking and then destained with Coomassie blue destaining 

solution (50% (v/v) methanol, 10% (v/v) acetic acid) until the background became 

clear. The gel was dried using a vacuum gel dryer. 

 

2.2.9 Western blot 

 

Protein samples were first separated on a 10% SDS-PAGE and then transferred to 

Hybond ECL nitrocellulose membrane for 30 min at 300 mA using a semi-dry 

transfer cell (Bio-Rad). The protein transfer buffer contained 50 mM Tris, 380 mM 

glycine, 20% (v/v) methanol, 0.02% (w/v) SDS. The membrane was blocked 

overnight in blocking buffer (1x PBS, 1x Roti-Block, 0.2% (v/v) Tween). Before 

addition of the first antibody, fresh blocking buffer was applied to the membrane. 

Antibodies were diluted in blocking buffer as follows: anti-hnRNP L polyclonal 

peptide antibody (D-17), 1:500; anti-γ-tubulin monoclonal antibody (GTU-88), 

1:10,000; anti-U2AF65 monoclonal antibody (MC3), 1:10,000. Incubation with the 

first antibody was carried out for 1 h. The membrane was washed three times for 10 

min with washing buffer (1x PBS, 0.2% (v/v) Tween). The second, peroxidase 
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conjugated antibody was applied for 1 h in blocking buffer in the following dilutions: 

anti-goat IgG peroxidase-conjugate, 1:500; anti-mouse IgG peroxidase-conjugate 

1:10,000. The membrane was washed again three times for 10 min with washing 

buffer. The chemoluminescents reaction was carried out by application of 

peroxidase substrate (1x ECL, 30% (v/v) H2O2 1000:1) for 1 min and detection by 

autoradiography.  

For Western blot analysis of hnRNP L and LL knockdown, cells were lysed after 

RNAi in WB100 (20 ml HEPES pH 7.5, 1 mM DTT, 10 mM MgCl2, 100 mM KCl, 1% 

(v/v) NP-40) on ice for 10 min. For hnRNP LL, cell lysates were incubated with 20 µl 

of streptavidin beads with pre-bound 5’-biotinylated (CA)32 RNA oligonucleotide (see 

2.2.6). After washing once with WB400 and three times with WB100, SDS-PAGE 

loading buffer was added to the beads. Cell lysates (for hnRNP L) and (CA)32 affinity 

selected material (for hnRNP LL) were separated on a 10% SDS-PAGE. The 

Western blot for hnRNP L was carried out as described above. For hnRNP LL 

detection, anti-hnRNP LL polyclonal antibody (1:100) was used as primary antibody 

and anti-rabbit IgG peroxidase-conjugate as the secondary antibody. 

 

2.2.10 Purification of recombinant proteins 

 

The generation of baculovirus-expressed His-tagged hnRNP L was described 

before (Hui et al., 2005). Note that this hnRNP L expression construct (558 aa) is 31 

amino acids shorter than the annotated hnRNP L protein (NCBI, P14866) because it 

was annotated before with a different transcriptional start. Ni-NTA beads were used 

to purify recombinant hnRNP L from Sf21 cell pellet. The cell pellet from one 150 

cm2 TC flask was resuspended in 10 ml of lysis buffer (50 mM NaH2PO4 pH 8.0, 300 

mM NaCl, 10 mM imidazole, 1% (v/v) NP-40, protease inhibitor) and incubated on 

ice for 10 min. After centrifugation at 14,000 rpm for 10 min at 4°C, the supernatant 

was incubated with 100 µl of packed Ni-NTA beads for 2 h at 4°C with rotation. The 

beads were washed four times with 1 ml of wash buffer (50 mM NaH2PO4 pH 8.0, 

300 mM NaCl, 20 mM imidazole, 0.05% (v/v) NP-40). Finally, bound proteins were 

eluted from the beads with 200 µl of elution buffer (50 mM NaH2PO4 pH 8.0, 300 

mM NaCl, 250 mM imidazole, 0.05% (v/v) NP-40). The eluate was dialysed against 

buffer D for 2 h at 4°C. Recombinant GST-U2AF65 was  kindly provided by Prof. Dr. 

Juan Valcárcel, CRG, Barcelona. 
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2.2.11 Spliceosome assembly reaction 

 

The protocol described here is a modification of the method described by Das & 

Reed, 1999.  

5 ng of 32P-labelled substrate RNAs were incubated in 60% HeLa nuclear extract 

with 0.8 U/µl RNase inhibitor under E complex conditions in a total volume of 25 µl. 

ATP was depleted from the nuclear extract before use by incubation at room 

temperature for 30 min. The spliceosome assembly reaction was carried out at 

30°C. After 0, 10, and 30 min of incubation, a 3-µl  aliquot was taken and mixed with 

3 µl of 5x loading dye (1x TBE, 20% (v/v) glycerol, 0.25% (w/v) BPB, 0.25% (w/v) 

XC). Reactions were separated at 4°C on a 1.5% hori zontal low-melting-point 

agarose gel for 2.5 h at 100 V. The running buffer contained 50 mM Tris and 50 mM 

glycine. The gel was fixed in 10% acetic acid, 10% methanol for 30 min, and 

afterwards dried under vacuum at 70°C. Spliceosomal  complexes were visualized 

by autoradiography.  

 

2.2.12 Psoralen crosslinking 

 

The protocol for Psoralen crosslinking was modified after Wassarman, 1993.  
32P-labelled substrate RNAs (100,000 cpm) were incubated in 60% HeLa nuclear 

extract under splicing conditions (2.2.5.1). After 30 min of incubation at 30°C, 

psoralen was added to a final concentration of 20 µg/ml. For the time-course 

experiment, 25-µl aliquots were taken at different time points. The samples were 

transferred, as drops, to a sheet of parafilm that has been placed on a bed of ice. 

The ice-container was then covered with a glass plate. Samples were placed under 

an UV lamp (350 nm) with a distance of 5 cm to the light source and irradiated for 

30 min. Then, samples were transferred into a 1.5-ml tube. Proteinase K treatment 

was carried out as described before (2.2.5.2). Total RNA was extracted with phenol 

and recovered by ethanol precipitation. The purified RNAs were then either 

separated directly on an 8% denaturing polyacrylamide gel or subjected to RNase H 

cleavage.  
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2.2.13 Preparation of total RNA from HeLa nuclear extract 

 

15 µl of HeLa nuclear extract was incubated with 100 µl 2x PK buffer, 4 µl PK (10 

mg/ml), and 81 µl DMPC-H2O for 30 min at 37°C. Total RNA was extracted with 

phenol and precipitated with ethanol. After washing and drying, total RNA was 

dissolved in 15 µl of DMPC-H2O. 

 

2.2.14 RNase H cleavage 

 

DNA oligonucleotides used: U1 14-1, U1 140-124, HU6-6. 

5 µl of RNA, purified after psoralen crosslinking or from HeLa nuclear extract, was 

mixed with 1x RNase H buffer, 5 U/µl RNase H, and 50 ng/µl DNA oligonucleotide in 

a final volume of 20 µl. Reactions were incubated for 30 min at 37°C followed by 

phenol extraction and ethanol precipitation. Finally, RNAs were analysed on an 8% 

denaturing polyacrylamide gel and visualised by autoradiography. RNase H-treated 

total RNA, purified from HeLa nuclear extract, was analysed by silver staining. 

For U1 inactivation in HeLa nuclear extract the U1 14-1 DNA oligonucleotide was 

used. 20 ng/µl of the DNA oligonucleotide was mixed with 60% HeLa nuclear 

extract, 5 U/µl RNase H under splicing conditions (2.2.5.1), and incubated for 30 min 

at 30°C. The U1-inactivated nuclear extract was use d in either psoralen crosslinking 

assays or subjected to Proteinase K treatment (2.2.5.2). Total RNA was purified and 

analysed on an 8% denaturing polyacrylamide gel by silver staining.  

 

2.2.15 Silver staining 

 

RNA samples were separated on an 8% denaturing polyacrylamide gel. A Silver 

staining kit (BioRad) was used according to the manufacturer’s protocol. First, the 

gel was fixed for 1 h in 40% methanol, 10% acetic acid, followed by rinsing twice 

with 10% ethanol, 5% acetic acid for 15 min. The gel was washed with distilled 

water before impregnation with silver reagent for 20 min. Again, the gel was washed 

with distilled water and developed until the bands reached the desired intensity. To 

reduce background staining, the developer was changed several times. The 

reaction was stopped by incubation in 5% acetic acid for 15 min.   
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2.2.16 Electromobility shift assay (band shift) 

 

100 nM of 32P-labelled substrate RNAs were incubated with different amounts of 

recombinant hnRNP L protein (200, 400, or 800 nM). The reactions contained in 

addition 300 ng/µl tRNA and 2 U/µl RNase inhibitor, adjusted to a final volume of 10 

µl with buffer D (20 mM HEPES pH 8.0, 100 mM KCl, 100 mM MgCl2, 0.5 M EDTA, 

20% (v/v) glycerol, 1 mM DTT). Reactions were incubated on ice for 30 min and 

afterwards separated on a 6% native gel (6% acrylamide/bisacrylamide 80:1, 1x 

TBE, 400 µl 10% (v/v) APS, 40 µl TEMED filled up with H2O to 50 ml). The gel was 

pre-run for 30 min at 250 V. After loading of the samples, the gel was run for 30 min 

at 50 V and then 1 h 40 min at 250 V. Samples were visualised by autoradiography.  

For electromobility shift assays with U2AF65, 30 nM of 32P-labelled substrate RNAs 

were used. They were incubated as described above with increasing amounts of 

recombinant U2AF65 (0.3, 1, 4, 5, 10, 20 µM) 

 

2.2.17 UV crosslinking and immunoprecipitation 

 

2.2.17.1 UV crosslinking with purified proteins 

 
32P-labelled substrate RNA (20,000 cpm) was incubated with 1.5 mM ATP, 4.1 mM 

MgCl2, 30 mM creatine phosphate, 300 ng/µl tRNA, 300 ng recombinant hnRNP L 

adjusted to a final volume of 10 µl with buffer D. Reactions were incubated at either 

4 or 30°C for 30 min. As negative control, RNA was incubated alone without addition 

of recombinant protein. UV crosslinking was carried out at 500 mJ for 3 min. 

Crosslinked samples were incubated with 1.5 µg/µl RNase A at 37°C for 30 min. 

Crosslinked proteins were separated on a 12% SDS-PAGE and visualised by 

autoradiography.  

 

2.2.17.2 UV crosslinking in HeLa nuclear extract 

 
32P-labelled substrate RNA (200,000 cpm) was incubated in 25-µl reactions 

containing 60% HeLa nuclear extract (hnRNP L- or mock-depleted), 32 nM HEPES 
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pH 8.0, 0.5 mM ATP, 1.6 mM MgCl2, 20 mM creatine phosphate, 0.8 U/µl RNase 

inhibitor. For complementation analysis, 200 ng of recombinant hnRNP L was added 

to the hnRNP L-depleted nuclear extract. The splicing reactions were incubated at 

30°C for 30 min and then irradiated with UV-light ( 254 nm) at 400 mJ for 72 sec. 

Then, samples were treated with 60 ng/µl RNase A for 30 min at 37°C.  

 

2.2.17.3 Immunoprecipitation 

 

For immunoprecipitation of crosslinked proteins, either anti-hnRNP L monoclonal 

antibody (4D11) or anti-U2AF65 monoclonal antibody (MC3) were used. After 

RNase A treatment crosslinked samples were incubated with 3 µl of anti-hnRNP L 

or anti-U2AF65 antibody, respectively, in 25 µl NP-40 buffer (50 mM Tris/HCl pH 

8.0, 150 mM NaCl, 1% (v/v) NP-40) for 1h at 4°C wit h constant shaking. Then, 25 µl 

of packed Protein A-sepharose beads and 100 µl of NP-40 buffer were added to 

each reaction. Incubation was carried out for 1h at 4°C on a rotating wheel. Beads 

were washed three times with 500 µl of High Salt buffer (50 mM Tris/HCl pH 8.0, 

500 mM NaCl, 1% (v/v) NP-40), followed by washing once with 1 ml of NP-40 buffer. 

After removal of residual buffer, beads were boiled in 10 µl 4x SDS loading buffer 

(250 mM Tris/HCl pH 6.8, 40% (v/v) glycerol, 4% (w/v) SDS, 0.025% (w/v) 

bromphenol blue) for 10 min. Proteins were separated on a 10% SDS-PAGE and 

visualised using a phosphor imager.  

 

2.2.18 RNAi in HeLa cells 

 

2.2.18.1 siRNA knockdown 

 

One day before transfection, 4.3x105 HeLa cells were seeded in 10-cm culture 

dishes to be 30% confluent on the next day. The siRNA duplex (at a final 

concentration in culture medium of 30 nM) was transfected with Lipofectamine 2000 

according to the manufacturer’s protocol.  
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2.2.18.2 RNA isolation 

 

Four days after transfection, total RNA was isolated using Trizol and RNeasy kit. 

Cells were washed once with 3 ml of ice-cold 1x PBS. Then, cells were lysed by 

resuspending them in 5 ml Trizol. The lysate was transferred into 15-ml falcon tubes 

and vortexed for 1 min. After 2-3 min incubation at room temperature, 1 ml of 

chloroform (0.2 vol.-%) was added and mixed by vortexing. Samples were incubated 

for 5 min at room temperature and then centrifuged at 12,000 g for 15 min at 4°C. 

The upper aqueous phase was transferred into a new 15-ml falcon tube and 1 vol.-

% of 70% ethanol was added to each sample and after mixing applied to RNeasy 

columns. The columns were centrifuged at 10,000 rpm for 15 min at room 

temperature to allow binding of RNA. Columns were washed with 700 µl RW1 buffer 

and after centrifugation transferred into a new 1.5-ml tube. Columns were washed 

again with 500 µl of RPE buffer and centrifuged at 10,000 rpm for 2 min. To remove 

residual buffer, columns were centrifuged again for 1 min. The RNA was eluted from 

the column with 30 µl of DMPC-H2O. 

 

2.2.18.3 Real-time PCR analysis 

 

The first step of reverse transcription was carried out using 5 µg of total RNA, 8 µM 

oligo d(T)18 primer in a total volume of 6.5 µl and incubation at 65°C for 10 min. The 

reactions were immediately chilled on ice. The RT reaction containing 1x RT buffer, 

8 mM DTT, 800 µM dNTPs, 1 U/µl RNase inhibitor, 2.5 U/µl Expand RT and DMPC-

H2O in a final volume of 20 µl was added to each reaction. Reverse transcriptions 

were carried out for 1 h at 42°C.  

Real-time PCR assays for hnRNP L, LL and β-actin were performed in an iCycler 

(Bio-Rad) using SYBR Green Jumpstart Readymix kit and oligonucleotide 

combinations hnRNP L fwd/rev, hnRNP LL fwd/rev, and β-actin 703/994. 5 µl of the 

RT reaction was mixed with 12.5 µl 2x SYBR Green mix, 800 µM forward primer, 

and 800 µM reverse primer in a final volume of 20 µl. The following amplification 

profile was applied: 3 min of denaturation at 95°C,  40 cycles of amplification (30 sec 

at 95°C, 30 sec at 60°C, and 30 sec at 72°C). The r elative expression levels of 

hnRNP L and LL normalised to β-actin were determined with the Gene Expression 
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Macro (version 1.1; Bio-Rad) and presented as fold change in gene expression 

relative to luciferase control. A melting curve analysis confirmed that no primer 

dimers were generated. All primer pairs resulted in almost 100% amplification 

efficiency.  

 

2.2.19 Microarray analysis 

 

For data analysis and detection of alterative splicing targets see Hung et al. (2008). 

 

2.2.19.1 RT-PCR validation of hnRNP L target genes 

 

Total RNA was isolated after knockdown of hnRNP L, LL, or L/LL in HeLa cells 

using Trizol and RNeasy kit (see 2.2.18.2). RT-PCR reactions were carried out as 

described above (2.2.3.5). For TJP1, the oligonucleotide combination TJP1/TJP2 

was used. For ASAH1, a combination of three oligonucleotides 

ASAH1/ASAH2/ASAH3 was used for RT-PCR analysis. In a second assay, reverse 

transcription was carried out using an oligo d(T)18 primer. For PCR the 

oligonucleotide combination ASAH-2/oligo d(T)18 was used. Ethidium bromide-

stained bands were quantitated by TINA software, version 2.07d. 
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3. Results 
 

3.1 SLC2A2 

 

The SLC2A2 (solute carrier family 2) gene, also referred to as GLUT2 (glucose 

transporter 2), encodes a glucose transporter-like protein expressed 

predominantly in liver, insulin-producing β-cells, small intestine and kidney 

(Fukumoto et al., 1988; Thorens et al., 1988). It is an integral glycoprotein of the 

plasma membrane, mediating facilitated bidirectional transfer of glucose. Due to its 

low affinity to glucose, the protein may be part of a glucose-sensing mechanism in 

β-cells. Defects in the SLC2A2 gene are the cause of Fanconi-Bickel syndrome, a 

rare inherited disorder of carbohydrate metabolism (Santer et al., 1997), and 

suspected as the possible basis of inherited susceptibility to diabetes. The 

SLC2A2 gene (NM_000340), spanning approximately 30 kb, consists of 11 exons 

(Fig. 3.1), one of those, exon 4, is alternatively spliced. In intron 4 resides a (CA)19 

repeat sequence starting at position +7.  

 

 

Figure 3.1  
Schematic representation of the SLC2A2 gene structure and minigene 
constructs. Boxes display the exons, lines the introns (sizes in scale).The SLC2A2 
minigene comprises exons 3 to 5 with introns shortened (marked by the vertical lines 
within the introns). The colour highlights the alternatively used exon 4. The lines below the 
minigene represent the normal splicing pattern; the lines above show the alternative 
splicing pattern. Wildtype (WT) and substituted (sub) sequence elements are given with 
boundaries relative to the 5’splice site. The minigene constructs were placed under the 
control of T7 and CMV promoter (depicted as an arrow) for in vivo and in vitro splicing 
analysis.  
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Interestingly, Matsutani and co-workers characterised a polymorphism concerning 

this CA dinucleotide repeat sequence (Matsutani et al., 1992). Comparing nine 

alleles of the gene in three racial groups they identified a polymorphism of the CA 

repeat sequence ranging from 14 to 24 repeats. However, a linkage between the 

SLC2A2 polymorphic repeat region and development of non-insulin-dependent 

diabetes mellitus could not be found (Janssen et al., 1994).   

 

3.1.1 Intronic CA-repeat sequence represents a splicing silencer 

 

The SLC2A2 gene was selected, based on a genome-wide database search for 

alternative splicing targets of hnRNP L (Hui et al., 2005). As mentioned above, the 

gene contains a CA repeat sequence in intron 4 close to the alternatively spliced 

exon 4 (Fig. 3.1). To investigate the influence of this CA repeat on splicing of exon 

4, a mutational analysis was performed using minigene constructs. As shown in 

Fig. 3.1, these minigene constructs consist of exons 3 to 5 with the alternatively 

spliced exon 4 in between. Due to their length, introns 3 and 4 had to be 

shortened. In a substitution derivative, the CA repeat element was replaced by a 

non-specific control sequence. 

Splicing of minigene constructs was first tested in vivo (Fig. 3.2A). Two days after 

transient transfection of HeLa cells, total RNA was isolated and splicing was 

analysed by RT-PCR using gene-specific primers. Splicing of the wildtype SLC2A2 

construct resulted primarily in mRNA containing all three exons (lane 1). Only 

around 10% of exon skipping could be detected. In case of the substituted 

minigene construct, however, almost no exon skipping was determined (lane 2). 

As a control, a mock transfection was done in the absence of DNA (lane 3) 

showing that there was no detectable background from endogenous SLC2A2 

mRNA. Taken together, these data represented first evidence that the intronic 

(CA)19 repeat sequence is important for alternative splicing of SLC2A2 exon 4 

acting as an intronic splicing silencer in vivo. To support this finding splicing of the 

same minigene constructs was analysed in an in vitro splicing assay (Fig. 3.2B). In 

vitro transcribed pre-mRNAs were incubated in HeLa cell nuclear extract under 

splicing conditions and the splicing activity of each construct was analysed by 

semi-quantitative RT-PCR. After 240 min, around 42% exon inclusion could be 

detected for the wildtype minigene (lane 3). For comparison, splicing of the 



3. Results 
 

41 

substitution derivative resulted in 89% exon 4 inclusion (lane 6). These results 

confirmed consistent with the data obtained from the in vivo splicing experiment 

that the CA repeat sequence acts on alternative splicing of SLC2A2 exon 4 as a 

splicing silencer. As shown in Fig. 3.2B, an additional splicing product appeared 

for both constructs representing a case of intron retention. This alternative splicing 

event, however, was not investigated further. 

 

 

Figure 3.2 
Characterisation of SLC2A2 alternative splicing using minigene constructs. 
(A) HeLa cells were transiently transfected and alternative splicing of the minigene 
constructs was tested by RT-PCR (lanes WT, sub); the control transfection (lane mock) 
was done in the absence of DNA. The percentages of exon inclusion with standard 
deviations (n=3) are given below the corresponding lanes. (B) In vitro transcribed pre-
mRNAs were spliced in HeLa nuclear extract (lanes WT, sub). Aliquots were taken at the 
indicated times and alternative splicing was tested by RT-PCR. Positions of PCR products 
corresponding to pre-mRNA and splice variants are schematically shown on the left. The 
percentages of exon inclusion with standard deviations (n=3) are given below the 
corresponding lanes.  
 

 

In summary, results from in vivo and in vitro splicing assays confirm that an 

intronic CA repeat sequence close to the 5’ splice site of SLC2A2 exon 4 

negatively influences the inclusion of the exon into the mRNA thus acting as a 

splicing silencer.  
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3.1.2 HnRNP L mediates skipping of SLC2A2 exon 4 in vitro 

 
To investigate the importance of hnRNP L on alternative splicing of SLC2A2, I 

performed depletion/complementation experiments. HnRNP L was depleted from 

HeLa nuclear extract with a 5’-biotinylated (CA)32 RNA oligonucleotide. It was 

shown before that hnRNP L binding to (CA)32 is specific and occurs with high 

affinity (Hui et al., 2003b). Via binding to streptavidin agarose, hnRNP L can be 

removed from nuclear extract. As control, a mock depletion was done in the 

absence of RNA oligonucleotide.  

 

 

Figure 3.3 
HnRNP L mediates alternative splicing of SLC2A2 exon 4. (A) A biotinylated 
(CA)32 RNA oligonucleotide was used to deplete hnRNP L from HeLa nuclear extract. As 
control, mock-depletion was done in the absence of RNA oligonucleotide. Untreated (lane 
NE), mock-depleted (lane NE ∆ mock), and hnRNP L-depleted (lane NE ∆ L) nuclear 
extract were analysed by Western blot using anti-hnRNP L peptide antibody D-17. 
Additionally, γ-tubulin detection was used as internal standard. (B) In vitro splicing of 
SLC2A2 pre-mRNA in hnRNP L-depleted (lane NE ∆ L) or mock-depleted (lane NE ∆ 
mock) HeLa nuclear extract. The hnRNP L-depleted nuclear extract was complemented 
by the addition of increasing amounts of recombinant hnRNP L protein (100, 200, and 300 
ng per 25-µl splicing reaction) to the splicing reaction (lanes NE ∆ L + hnRNP L).  
 

Western blot analysis using an hnRNP L-specific antibody confirmed efficient 

depletion from HeLa nuclear extract (Fig. 3.3A). With that antibody, no remaining 
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hnRNP L was detected in the depleted extract (lane 1). Moreover, the level of 

hnRNP L in the mock-depleted extract remained unchanged when compared to 

untreated nuclear extract (compare lanes 2, 3). Detection of γ-tubulin was used as 

an internal loading control.  

To show that repression of SLC2A2 exon 4 inclusion is mediated by hnRNP L, 

wildtype pre-mRNA was spliced in hnRNP L-depleted or mock-depleted HeLa cell 

nuclear extract and alternative splicing was analysed by RT-PCR using gene-

specific primers (Fig. 3.3B). In mock-depleted nuclear extract, I detected 52% 

exon inclusion (lane 1), whereas over 70% exon inclusion was observed in hnRNP 

L-depleted extract (lane 2). Moreover, addition of recombinant hnRNP L to the 

depleted extract restored the inhibitory effect on exon 4 inclusion in a dose-

dependent manner (lanes 3-5). Addition of 200 or 300 ng per 25-µl splicing 

reaction of recombinant hnRNP L resulted in an even higher rate of exon skipping 

than observed in mock-depleted extract (compare lane 1 with 4, 5). However, with 

the addition of 100 ng per 25-µl splicing reaction I detected only a slight decrease 

in exon inclusion. Note that per 25-µl splicing reaction 200 ng of hnRNP L 

correspond to the normal level in HeLa nuclear extract (Hung et al., 2008).    

Taken together these data clearly show that hnRNP L works as a repressor on 

SLC2A2 exon 4 inclusion. Depletion of hnRNP L led to a significant increase in 

exon inclusion levels whereas adding back recombinant protein reversed the 

effect. Moreover, exon repression depended on the presence of the CA repeat 

sequence since no change in exon inclusion levels was detected upon splicing of 

the SLC2A2 substitution minigene construct in mock- or hnRNP L-depleted 

nuclear extract (data not shown).  

 

3.1.3 Intronic splicing silencer affects spliceosome assembly 

 

I obtained first evidence about the mechanism of splicing repression by analysing 

spliceosome assembly or, more precisely, formation of the spliceosomal E 

complex (Fig. 3.4). Wildtype and substitution SLC2A2 substrate RNAs comprise 

part of exon 4 (20 nt) and the 5’ splice site with the following (CA)19 repeat or 

substituted sequence in intron 4, respectively (panel A). The RNA substrates were 

labelled internally with [α32P]ATP by T7 in vitro transcription and incubated in 

HeLa nuclear extract. Since E complex formation is ATP-independent, ATP was 
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depleted from the extract by incubation at room temperature for 30 min (Das & 

Reed, 1999). Electrophoresis on polyacrylamide gels represents the commonly 

used method for resolution of spliceosomal complexes (Das & Reed, 1999). Under 

these conditions however, the E complex cannot be resolved since it comigrates 

with the non-spliceosomal H complex. Therefore, I used native agarose mini-gel 

electrophoresis to resolve specifically spliceosomal E complex (Fig. 3.4). 

 

 

Figure 3.4 
Analysis of spliceosome assembly. (A) Schematic representation of the SLC2A2 
minigene constructs and RNA transcripts (101 nt). Intron and exon parts are shown in 
scale. The colour highlights the alternatively used exon 4. Wildtype and substituted 
sequence elements are given below. (B) Resolution of the spliceosomal E5’ complex. 
Short SLC2A2 RNA probes were labelled internally with [α32P]ATP by T7 in vitro 
transcription. Wildtype and substituted RNAs were incubated in HeLa cell nuclear extract 
under E complex conditions (without ATP) for the indicated times. Aliquots were 
separated on a 1.5% agarose gel. Complexes formed are indicated on the right. 
 

The first complex to be assembled on the pre-mRNA is the ATP-independent H 

complex (Fig.3.4B). This complex lacks the spliceosomal snRNPs and assembles 

on every RNA independently of splicing (Bennett et al., 1992). The E complex 

represents the first distinct spliceosomal complex. The E complex was termed E5’ 
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in this experiment because the SLC2A2 substrates did not contain a full-length 

intron but only its 5’ part (Michaud & Reed, 1993). Therefore, it represents only a 

“half-substrate” lacking a branchpoint and 3’ splice site. Note that the E5’ complex 

cannot proceed further in spliceosome assembly due to the fact that the next step, 

formation of the A complex, requires the branchpoint sequence. A slow-mobility 

complex, which was not present at time point zero and accumulated with time, was 

identified as the spliceosomal E complex due to its sensitivity to the addition of 

heparin (data not shown). A second, fast-mobility complex corresponded to the H 

complex and was detected also at time point zero.  

As shown in Fig. 3.4B, formation of the E5’ complex could be observed for both 

transcripts, wildtype and substitution. But complex formation with the substitution 

derivative was more efficient than with the SLC2A2 wildtype construct (compare 

lanes 2, 3 to 4, 5). I could detect a strong signal for the E5’ complex with the 

substitution construct already after 10 min of incubation (lane 5). 

In summary, substitution of the CA repeat sequence led to an enhancement of 

spliceosomal E complex formation which is likely to be mediated by hnRNP L.  

 

3.1.4 HnRNP L binding to intronic splicing silencer interferes with 5’ 

splice site recognition by the U1 snRNP 

 

Next, I addressed the question for the mechanism of splicing repression by hnRNP 

L. The CA repeat sequence in SLC2A2 intron 4 is located in the immediate vicinity 

of the 5’ splice site of the regulated exon. Therefore, binding of hnRNP L may 

interfere with recognition of the splice site by the U1 snRNP.  

To test this hypothesis, psoralen crosslinking experiments were performed. 

Psoralen is a photochemical reagent, which intercalates in nucleic acid helices. 

Upon irradiation with long wavelength UV-light (~360 nm) it forms covalent bonds 

to pyrimidine bases. Psoralen can therefore be used to crosslink double-stranded 

nucleic acids (Wassarman, 1993). In this case, I used psoralen crosslinking to 

investigate RNA-RNA interactions between U1 snRNA and pre-mRNA.   

Again, short 32P-labelled RNA transcripts were used (see Fig. 3.4A). SLC2A2 

wildtype and substitution RNA transcripts were incubated in HeLa nuclear extract 

under splicing conditions. After addition of psoralen, RNAs were crosslinked at 350 

nm for 30 min, purified and separated on an 8% denaturating polyacrylamide gel.  
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Figure 3.5 
Identification of crosslinked bands by RNase H treatment. (A) Psoralen 
crosslinking. SLC2A2 wildtype and substitution RNA substrates (lanes Input) were 
labelled with [α32P]ATP by T7 in vitro transcription and incubated under splicing conditions 
in HeLa nuclear extract (lanes NE) or in U1-inactivated extract (lanes NE ∆ U1). RNAs 
were purified and analysed on an 8% denaturing polyacrylamide gel. Crosslinked species 
and free RNA are indicated on the right. For identification of the crosslinked bands, 
purified RNAs were treated with RNase H and an oligonucleotide complementary to U1 
snRNA (lanes ∆ U1). As control, a U6-specific oligonucleotide was used (lanes ∆ U6). (B) 
RNase H mediated knockout of U1 snRNA. HeLa nuclear extract (lanes 1, 2) or total RNA 
(lanes 3, 4) was treated with RNase H and an oligonucleotide complementary to U1 
snRNA. The oligonucleotide was directed against the 5’ end (14-1) or the Sm site (140-
124) of the U1 snRNA, respectively. RNA samples were separated on an 8% 
polyacrylamide gel, each representing 10% of total, and visualised by silver staining. 
Positions of snRNAs are indicated on the right. Cleavage products are indicated by an 
asterisk. The DNA molecular weight marker VIII (M) is given in bp.   
 

As shown in Fig. 3.5A, psoralen crosslinking of SLC2A2 RNA transcripts in HeLa 

nuclear extract resulted in two distinct bands (lanes 5, 6), the lower prominent 

band representing free RNA. Two independent RNase H cleavage assays were 

used to identify the U1/RNA crosslink. 

RNase H is an endonuclease that specifically cleaves the RNA component in a 

DNA/RNA duplex. First, U1 inactivation by RNase H cleavage was established in 
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HeLa nuclear extract (Fig. 3.5B, lanes 1, 2). No crosslinks were observed in 

subsequent psoralen crosslinking experiments when the U1-inactivated nuclear 

extract was used (Fig. 3.5A, lanes 3, 4). All crosslinked bands, detected with 

untreated nuclear extract, were therefore considered as U1-specific. Second, 

confirmation on the identity of crosslinks was also obtained by RNase H treatment 

of total RNA purified after psoralen crosslinking. U1-containing crosslinks were 

expected to shift in size due to cleavage of the U1 snRNA by RNase H. With a U1-

specific oligonucleotide the expected shift was observed but not with a U6-specific 

oligonucleotide, which was used as a control for specificity (panel A, compare 

lanes 7, 8 to 9, 10).  

Due to experimental requirements of the RNase H cleavage assays, it was 

necessary to use different U1-specific oligonucleotides. The oligonucleotide used 

for U1 inactivation in HeLa nuclear extract was directed against the 5’ end of the 

U1 snRNA (14-1) which is not bound by proteins and therefore freely accessible. 

But during spliceosome assembly the 5’ part of the U1 snRNA base-pairs with the 

5’ splice site of the pre-mRNA rendering it inaccessible to the 5’ end 

oligonucleotide (Krämer et al., 1984). Therefore, another U1-specific 

oligonucleotide had to be used for cleavage of U1-containing crosslinks after 

psoralen crosslinking. This oligonucleotide was directed against the Sm site of the 

U1 snRNA. In nuclear extract, the U1 snRNA exists as part of the snRNP particle 

where the Sm site is bound by a set of seven Sm proteins, called B/B’, D1, D2, D3, 

E, F, and G, which form a heptameric ring structure (Raker et al., 1999). For this 

reason, the Sm site DNA oligonucleotide (140-124) could only be used in protein-

free reactions on purified RNA. Due to the different target sites of the U1-specific 

oligonucleotides in the U1 snRNA, distinct U1 cleavage products can be observed 

for either oligonucleotide after RNase H treatment but both oligonucleotides led to 

a specific cleavage of the U1 snRNA whereas the other snRNAs were not affected 

(Fig. 3.5B).  

Comparison between the SLC2A2 wildtype and substitution derivative revealed 

different crosslinking efficiencies (Fig. 3.5A). The U1 crosslink with the wildtype 

RNA transcript was less efficient than with the substitution derivative (Fig. 3.5A, 

compare lanes 5, 6), supporting the idea that hnRNP L binding to the intronic 

silencer sequence interferes with 5’ splice site recognition by the U1 snRNP. 

To investigate the U1 snRNP interaction with SLC2A2 RNA transcripts further, I 

performed a time course experiment. Again, 32P-labelled SLC2A2 wildtype and 
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substitution RNA substrates were incubated in HeLa nuclear extract. After 5 and 

30 min samples were subjected to psoralen crosslinking and the purified RNAs 

were separated on an 8% denaturing polyacrylamide gel (Fig. 3.6). Crosslinked 

bands were observed for both substrates already after 5 minutes. Again, 

crosslinking of the SLC2A2 wildtype RNA transcript was less efficient (compare 

lanes 3, 5) and disappeared almost completely after 30 min of incubation (lane 4). 

A degradation band became visible instead. The U1 crosslink with the substituted 

transcript was also reduced but to a lesser extent (compare lanes 4, 6).  

 

Figure 3.6 
Depletion of hnRNP L promotes interaction of the U1 snRNP with SLC2A2 
RNA. Psoralen crosslinking. SLC2A2 wildtype (WT) and substituted (sub) RNA 
substrates (lanes Input) were labelled with [α32P]ATP by T7 in vitro transcription and 
incubated under splicing conditions in HeLa nuclear extract (lanes WT, sub) for the 
indicated times. Additionally, crosslinking of SLC2A2 wildtype RNA transcript was 
performed in hnRNP L-depleted (lane NE ∆ L) or mock-depleted (lane NE ∆ mock) HeLa 
nuclear extract. Purified RNA samples were separated on an 8% denaturing 
polyacrylamide gel each representing 10% of total and visualised by autoradiography. 
Crosslinked species and free RNAs are indicated.  
 

I performed psoralen crosslinking experiment with SLC2A2 wildtype RNA 

substrate in hnRNP L- and mock-depleted HeLa nuclear extract to confirm that 

hnRNP L is directly involved in the observed effect (Fig. 3.6, right panel). 

Compared to mock-depleted nuclear extract the crosslinked band in hnRNP L-

depleted extract was more prominent (compare lanes 7, 8) supporting the idea 

that the U1 interaction is impaired by hnRNP L. U1 crosslinking to SLC2A2 
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wildtype RNA was more efficient in the absence of hnRNP L. Taken together, the 

crosslinking experiments clearly show that the CA repeat sequence in SLC2A2 

intron 4 impairs the U1/RNA interaction and moreover, that this is mediated by 

hnRNP L. HnRNP L interfered with binding of the U1 snRNP to the 5’ splice site of 

SLC2A2 exon 4, resulting in skipping of the exon.   

 

3.2 TJP1 

 

3.2.1 HnRNP L knockdown in HeLa cells by RNA interference 

 

In the last few years, RNA interference (RNAi) has become a powerful tool for 

sequence-specific silencing of genes by small interfering RNAs (siRNAs). The 

siRNAs are usually between 21 to 25 nucleotides in size, complementary to both 

strands of the silenced gene, and can be transfected into cells to knockdown the 

expression of any gene (McManus & Sharp, 2002).  

I used siRNAs directed against hnRNP L and hnRNP LL, a closely related paralog, 

for knockdown protein expression in HeLa cells for the identification of target 

genes (Fig. 3.7). Knockdown of firefly luciferase served as a control. Each siRNA 

consisted of two 21-nucleotide single-stranded RNAs that formed a 19-base-pair 

duplex with two nucleotides overhang at the respective 3’ ends. The siRNA 

duplexes were transfected into HeLa cells. Four days after transfection, total RNA 

was isolated and the knockdown efficiencies were analysed for mRNA and protein 

expression. First, I assayed the reduction of mRNA levels by real-time PCR using 

gene-specific primer pairs (Fig. 3.7A). For quantification, the relative mRNA 

expression levels of hnRNP L and LL were normalised to the housekeeping gene 

β-actin and diagrammed as fold change in gene expression relative to the 

luciferase control. As shown in Fig. 3.7A, the hnRNP L mRNA was down-regulated 

to 19% and hnRNP LL to 12%. Simultaneous silencing of both factors resulted in 

reduced mRNA levels of hnRNP L and LL to 31% and 23%, respectively. 

Interestingly, upon knockdown of hnRNP L, the mRNA level of hnRNP LL 

increased 1.5-fold, whereas in the hnRNP LL knockdown no significant increase of 

hnRNP L mRNA could be detected.  

 



3. Results 

50 

 

Figure 3.7 
RNAi-mediated knockdown of hnRNP L and hnRNP L-like in HeLa cells. (A) 
Analysis of RNAi knockdown of hnRNP L and hnRNP L-like (LL) in HeLa cells by 
quantitative RT-PCR. HeLa cells were treated with siRNA oligonucleotides against hnRNP 
L, hnRNP LL, or both hnRNP L and LL. A siRNA oligonucleotide for luciferase serves as a 
control. Expression levels of hnRNP L and LL were normalised to β-actin and diagrammed 
as fold change in gene expression relative to the luciferase control. (B) Western blot 
analysis of hnRNP L (left panel) and hnRNP LL (right panel) knockdown using paralog-
specific antibodies. Detection of γ-tubulin served as an internal standard (adapted from 
Hung et al., 2008).  
 

The RNAi-mediated knockdown of hnRNP L and LL was also confirmed by 

Western blot analysis. Fig. 3.7B shows the efficient and paralog-specific reduction 

of protein levels using γ-tubulin as an internal reference protein. HnRNP L was 

detected by monoclonal antibody 4D11, whereas for hnRNP LL detection a 

polyclonal antibody was used.  

Taken together, these data clearly demonstrate that RNA interference is a suitable 

tool for silencing of hnRNP L as well as hnRNP LL expression in HeLa cells. I 

could show a significant and paralog-specific reduction of mRNA and protein 

levels by quantitative RT-PCR and Western blot analysis, respectively. 

 
3.2.2 Genome-wide search for hnRNP L target genes by a combined 
microarray and RNAi analysis 
 

After establishment of an efficient hnRNP L knockdown in HeLa cells, we used the 
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Affymetrix GeneChip Human Exon 1.0 Array to detected differences of exon 

expression signals in response to hnRNP L depletion.  

So far, we could identify only a few alternative splicing target genes of hnRNP L by 

an initial database search, which was based on hnRNP L’s binding specificity (Hui 

et al., 2005). Considering the abundance of CA repetitive sequences in the human 

genome, it seemed most likely that there are more target genes to be found. The 

microarray technology enabled us to search the overall human genome for more 

hnRNP L target genes. Furthermore, we wanted to identify alternative splicing 

targets for the hnRNP L paralog hnRNP LL.  

 

Figure 3.8 
Analysis and validation of microarray data for the TJP1 target gene. (A) 
Analysis of the microarray data; the diagram shows log2 ratios of probe-set signal 
intensities (dR) each relative to the luciferase control values across the TJP1 gene. Three 
values are given (Y-axis: ∆L, knockdown of hnRNP L, in red; ∆LL, knockdown of hnRNP 
LL, in green; ∆L+∆LL, knockdown of hnRNP L and LL, in black) for each probe set (X-
axis). Probe-set positions in TJP1 exons are shown below. (B) RT-PCR validation of TJP1 
alternative splicing. Total RNA was prepared after knockdown in HeLa cells and 
alternative splicing was analysed by RT-PCR. The asterisk marks an additional minor 
band representing an RT-PCR product due to mispriming within exon 20.The percentages 
of exon inclusion are given with standard deviations (n=3) below the corresponding lanes.  
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The design of the Affymetrix human exon array allows detection of alternative 

exon usage (see Fig. 1.8). In combination with RNAi-mediated knockdown of 

hnRNP L, we identified several new alternative splicing target genes, 11 of these 

could be validated experimentally (Hung et al., 2008). TJP1, one of the newly 

identified hnRNP L target genes, was investigated in further detail.  

Our microarray data analysis was based on the assumption that the ratio of mRNA 

concentration between knockdown and luciferase control samples corresponds to 

the ratio of microarray expression signals. Fig. 3.8 shows the ratio of expression 

signals as log2 values (dR) diagrammed across the TJP1 gene. A dR value around 

zero indicates that there is either no significant change in mRNA concentration 

between knockdown and control samples or that the probe yields no information. 

In the TJP1 gene, a single probe in exon 20 showed significantly higher dR values 

after hnRNP L and double knockdown than the rest of the probe sets indicating an 

alternative splicing event (panel A). By RT-PCR assays, it was confirmed 

experimentally that exon 20 inclusion increased upon hnRNP L and L/LL double 

knockdown (panel B). The percentage of exon inclusion increased from 13% in the 

luciferase control to almost 50% upon hnRNP L and L/LL double knockdown 

(compare lane Luc with lanes L, L+LL). In contrast, no change in the alternative 

splicing pattern of TJP1 exon 20 was observed upon knockdown of hnRNP LL 

(compare lanes Luc, LL).  

In summary, analysis and validation of the microarray data yielded several new 

target genes whose alternative splicing is regulated by hnRNP L. In the case of 

TJP1, hnRNP L could be identified as a repressor on exon 20 inclusion. 

 

3.2.3 TJP1, an hnRNP L target gene 

 

The tight junction protein 1 (TJP1), also referred to as ZO-1 (zona occludens), is 

located on the surface of cytoplasmic membranes in tight junctions. TJP1, a large 

protein of 225 kDa, is most likely involved in signal transduction, which is required 

for tight junction assembly. Spanning approximately 122 kb, the TJP1 gene 

consists of 28 exons (Fig. 3.9). 

Willott and co-workers reported an alternative splicing event resulting in the 

expression of two distinct isoforms (Willott et al., 1992). The two isoforms of TJP1 

differ by 80 amino acids, the so-called “motif-α”, and are generated by alternative 
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splicing of exon 20. They are likely to contribute to tight junction diversity in 

epithelia. Kurihara and co-workers demonstrated diverse distribution among renal 

junctions (Kurihara et al., 1992). The motif-α containing isoform is present in most 

epithelial junctions, whereas the shorter isoform of the protein occurs in 

endothelial cells. 

 
 

 

Figure 3.9 
Schematic representation of the TJP1 gene structure and minigene 
constructs. Boxes display the exons, lines the introns (sizes in scale). The TJP1 
minigene comprises exons 19 to 21. The colour highlights the alternatively used 
exon 20. The lines below the minigene represent the normal splicing pattern; the 
line above shows the alternative splicing pattern. Wildtype (WT) and mutated (mut; 
shown in red) sequence elements are given below. The underlined sequences 
represent hnRNP L high-score binding motifs as determined by SELEX. The 
minigene constructs were placed under the control of T7 and CMV promoter 
(depicted as an arrow) for in vivo and in vitro splicing analysis.  
 

3.2.4 Identification of an intronic splicing silencer in the TJP1 gene 

 

As demonstrated by the microarray data, TJP1 exon 20 inclusion is regulated by 

hnRNP L acting as a repressor (see Fig. 3.8). Examination of the sequence 

surrounding exon 20 revealed ten putative hnRNP L-binding motifs (Fig. 3.10A). 

We decided to further investigate a small cluster of high-score hnRNP L-binding 

motifs (motif no. 4) close to the 3’ splice site, which provides an intronic splicing 

silencer element (Fig. 3.10B; for calculation of scores see Hung et al., 2008). 

Mutational analysis of this putative silencer should give more insight into hnRNP 

L’s mode of action. For this reason, a set of minigenes was made, each consisting 

of exons 19 to 21 with the full-length introns in between. Five point mutations 

(C→T) were intended to abolish hnRNP L binding in the mutant minigene (see Fig. 

3.9).  
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Figure 3.10 
Sequence and location of potential hnRNP L-binding motifs in the TJP1 
target region. (A) Schematic representation of the TJP1 target region. Exons are 
represented by boxes, introns by lines. The alternatively used exon 20 is highlighted. The 
red bars above show positions of hnRNP L-binding motifs. The width of the bar 
corresponds to the length of the motif, the height to the score (for calculation of scores 
see Hung et al., 2008). All parts are shown in scale. (B) List of hnRNP L-binding motifs in 
the TJP1 target region. Given are the score and the sequence in 5’-3’ direction for each 
putative binding motif (adapted from Hung et al., 2008).  
 

I studied splicing of the minigene constructs in vivo by transient transfection of 

HeLa cells (Fig. 3.11A). Cells were harvested two days after transfection and total 

RNA was prepared using guanidium thiocyanate. Alternative splicing products 

were analysed by RT-PCR with primers specific for exon 19 and BGH rev (a 

vector-specific primer binding downstream of exon 21). Transfection of the 

wildtype TJP1 minigene resulted predominantly in exon 19-21 mRNA with exon 20 

skipped (lane 1), whereas the mutant derivative gave more than 50% exon 20 

inclusion (lane 2). A mock control done in the absence of transfected DNA gave 

almost no products (lane 3), demonstrating that RT-PCR products were due to the 

transfected minigenes and that endogenous TJP1 mRNA is not significant. Taken 

together, these data were first evidence that the CA-rich cluster in TJP1 intron 19 

represents a genuine intronic splicing silencer.  

For further support of this idea, I also tested splicing of TJP1 minigene constructs 

in in vitro assays. The three-exon minigenes, used for analysis of splicing in vivo, 

were too long to allow efficient in vitro transcription (data not shown). Therefore, I 

used shorter templates comprising only exons 19 and 20 with the full-length intron 

in between, which I obtained by PCR (Fig. 3.11B, right). TJP1 pre-mRNAs were 

synthesised by T7 in vitro transcription and spliced in HeLa nuclear extract for one 
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and two hours (Fig. 3.11B, left). The splicing activity was determined by semi-

quantitative RT-PCR with primers specific for the flanking exons 19 and 20. As 

shown in Fig. 3.11B, different splicing efficiencies of TJP1 wildtype and mutant 

constructs could be detected. With over 30%, the splicing efficiency was 

significantly higher with the mutant derivative (lane 2) than with the wildtype 

(15.2%, lane 4). A control for DNA contamination (-RT control) gave no products 

(data not shown). 

 

 

 

Figure 3.11 
CA-rich sequence acts as an hnRNP L-dependent splicing silencer on TJP1 
exon 20 inclusion. (A) Characterisation of TJP1 alternative splicing in vivo using 
minigenes illustrated on the right. Exons are shown by boxes, introns by lines. The 
alternatively spliced exon is highlighted. All exon and intron parts are shown in scale. 
Wildtype and mutated sequence elements are given. Minigene constructs were 
transfected into HeLa cells; the control transfection (lane mock) was carried out in the 
absence of DNA. Alternative splicing was analysed by RT-PCR (lanes WT, mut). Positions 
of the PCR products corresponding to the splice variants are indicated on the left. The 
percentages of exon inclusion with standard deviations (n=4) are given below the 
corresponding lanes. (B) In vitro transcribed pre-mRNAs were spliced in HeLa nuclear 
extract (lanes WT, mut). Aliquots were taken at the indicated time points and splicing 
tested by RT-PCR. Positions of PCR products corresponding to pre-mRNAs and spliced 
mRNAs are schematically shown on the left. Splicing efficiencies with standard deviations 
(n=3) are given below the corresponding lanes.  
 

As determined with MaxEntScan (a web-based tool to predict the strength of 

human splice sites) the 3’ splice site of exon 20 is very poor due to a weak 
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polypyrimidine tract (Yeo & Burge, 2004). Several adenosines interrupt the 

polypyrimidine tract sequence leading to in a low score of this 3’ splice site (WT 

5.2, mut 5.8). Due to this fact, it was not surprising that the overall splicing 

efficiency of both TJP1 minigene constructs was very low.  

In summary, these data confirm the in vivo splicing result identifing the CA-rich 

cluster in TJP1 intron 19 as a splicing regulatory sequence element. I could clearly 

show that this sequence element functions as an intronic splicing silencer on TJP1 

exon 20. 

 

3.2.5 Alternative splicing of TJP1 exon 20 is mediated by hnRNP L 

 

To support the data, obtained by microarray analysis, that repression of TJP1 

exon 20 is mediated by hnRNP L, I performed depletion experiments. As 

illustrated before for SLC2A2, hnRNP L was depleted from HeLa nuclear extract 

using a biotinylated (CA)32 RNA oligonucleotide (see Fig. 3.3A). Splicing of the in 

vitro transcribed TJP1 two-exon wildtype pre-mRNA was assayed by RT-PCR 

(Fig. 3.12). Although splicing efficiency was very low, a significant difference 

between hnRNP L- and mock-depleted nuclear extract could be detected in 

splicing. The splicing efficiency in the hnRNP L-depleted extract was considerable 

higher than in mock-depleted nuclear extract (compare lanes 2, 4). Depletion of 

hnRNP L leads to a significant increase in TJP1 exon 20 inclusion, supporting the 

idea that hnRNP L acts as a splicing repressor. 

 

 

Figure 3.12 
Repression of TJP1 exon 4 inclusion is mediated by hnRNP L. TJP1 wildtype 
pre-mRNAs were spliced in vitro in hnRNP L-depleted (lanes NE ∆ L) or mock-depleted 
(lanes NE ∆ mock) HeLa nuclear extract for the indicated times. Splicing efficiencies were 
determined by RT-PCR. Positions of PCR products corresponding to pre-mRNAs and 
spliced mRNAs are schematically shown on the left. 
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In summary, by mutational analysis, I identified a CA-rich cluster in TJP1 intron 19 

as splicing silencer sequence. Furthermore, I could show that splicing repression 

of TJP1 exon 20 is mediated by hnRNP L, confirming the data obtained from our 

microarray analysis.  

 

3.2.6 Mutational analysis of the intronic splicing silencer in TJP1 gene 

 

In order to obtain further insight into the sequence requirements of the newly-

discovered intronic splicing silencer in TJP1 gene, I made a new set of mutant 

minigene constructs (Fig. 3.13A). In the first new mutant derivative (mutTG), I 

introduced three point mutations. Taking the hnRNP L RNA binding specificity 

determined by in vitro SELEX (see Fig. 1.6) as a basis, one nucleotide was 

mutated in each of the three TJP1 intron 19 high-score binding motifs. In the 

second mutant minigene (mutG), I changed only two nucleotides (A→G), one in 

each of the two motifs closest to the 3’ splice site of exon 20. In contrast to 

mutantTG, the hnRNP L high-score binding motif ACAC, further upstream of the 

splice site, was kept intact. 

 

Figure 3.13 
Mutational analysis of the TJP1 intronic splicing silencer. (A) Schematic 
representation of the TJP1 minigene construct. Exons are shown as boxes, introns as 
lines. The alternatively used exon 20 is highlighted. Wildtype (WT) and mutated 
sequences are given below. Exon 20 sequence is  marked by a box. HnRNP L high-score 
binding motifs are shown in red. C to T mutations are depicted in bold, A to G mutations in 
blue. (B) HeLa cells were transiently transfected with minigene constructs. A control 
transfection (lane mock) was done in the absence of DNA. Alternative splicing was 
assayed by RT-PCR. Positions of alternative spliced products are displayed on the left.  
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Splicing of the new minigene constructs was tested in vivo. As described before, 

minigene constructs were transiently transfected into HeLa cells and alternative 

splicing was assayed by RT-PCR (Fig. 3.13B). Splicing of both new mutant 

constructs resulted predominantly in the exon 19-21 mRNA (lanes 3, 4). 

Compared to the wildtype, no increase in exon 20 inclusion could be detected 

(compare lane 1 with 3, 4). The introduced mutations were apparently not 

sufficient to impair the silencing effect on TJP1 exon 20 inclusion. Only with the 

initial mutant construct (mut), I could detect an enhanced level of exon 20 inclusion 

(lane 2), which was already shown before (see Fig. 3.11A).  

Anew inspection of the sequence of the new TJP1 mutant minigenes revealed that 

both still contained potential hnRNP L binding motifs. ATAC, ACGC, and CGCA 

resulted from mutation of the three hnRNP L high-score binding motifs in the 

mutantTG derivative (see Fig. 3.13A). All of them were among the 20 most 

common tetranucleotide sequences selected by SELEX (see Fig. 1.6B) meaning 

that hnRNP L may bind to this sequences although with low affinity. The mutantG, 

however, still contains one of the three high-score binding motifs since only two 

motifs were mutated.  

 

3.2.7 HnRNP L binds to TJP1 CA-rich intronic silencer sequence with 

high affinity  

 

Next, I wanted to investigate binding of  hnRNP L to TJP1 RNA by electromobility 

shift assays (EMSA). The TJP1 substrate RNAs used for this purpose consisted of 

the 5’ end of exon 20 and part of intron 19 including branch point and CA-rich 

cluster (Fig. 3.14A).  

The TJP1 substrates were labelled internally with [α32P]ATP via T7 in vitro 

transcription and incubated with increasing amounts of baculovirus-expressed 

recombinant hnRNP L. As a non-specific competitor for hnRNP L binding, tRNA 

was added to each reaction. Complexes were resolved on a native polyacrylamide 

gel and detected by autoradiography.  

As shown in Fig. 3.14B, complex formation on wildtype substrate was very efficient 

(lanes 2-4). Addition of a two-fold molar excess of protein (200 nM) over RNA 

resulted already in formation of a complex (lane 2). With further addition of hnRNP 

L (400 nM), a second complex became visible (lane 3), most likely due to multiple 
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hnRNP L binding motifs within the wildtype substrate RNA. No complexes could 

be detected for the first mutant (mut) transcript (lanes 6-8). As expected from the 

in vivo splicing study, the other two mutant derivatives (mutTG and G) formed 

complexes with hnRNP L (lanes 10-12, 14-16). Apparently, both mutated silencer 

sequence in TJP1 intron 19 were still able to bind hnRNP L, although with lower 

affinity than the wildtype (compare lanes WT with mutTG, mutG). However, mutTG 

and mutG displayed different affinities for hnRNP L binding (compare lanes mutTG 

with mutG). MutG still contained one of the three high-score binding motifs for 

hnRNP L (Fig. 3.14A) which correlated with the more efficient complex formation 

of this substrate compared to the mutTG derivative. 

 

 

Figure 3.14 
HnRNP L binding to TJP1 RNA. (A) Schematic representation of the TJP1 minigene 
constructs and RNA transcripts (84 nt). Intron and exon parts are shown in scale. The 
colour highlights the alternatively used exon 20. Wildtype and mutated (C→T shown in 
red, A→G in blue) sequence elements are given below. The underlined sequences 
represent hnRNP L high-score binding motifs. (B) Band shift assay, using RNA transcripts 
(shown in A) labelled with [α32p]ATP. TJP1 RNA substrates were incubated with 
increasing amounts of recombinant hnRNP L (200, 400, and 800 nM) and analysed on a 
native acrylamide gel. Positions of resulting RNA-protein complexes and free RNAs are 
indicated on the left.   
 

Surprisingly, I observed differences in the migration behaviour of free wildtype and 
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mutant transcripts although all transcripts had the same length. A different 

secondary structure of the transcripts is a likely explanation for this finding. 

In summary, I could show that hnRNP L directly interacts with the TJP1 wildtype, 

mutTG, and mutG RNA but not with the initial mutant (mut).  

 

I further studied the interaction between hnRNP L and TJP1 RNA by UV-induced 

crosslinking experiments. For that purpose, 32P-labelled RNA transcripts were 

incubated with baculovirus-expressed recombinant hnRNP L at different 

temperatures (4 and 30°C) and afterwards subjected to UV crosslinking (Fig. 

3.15).  

 

Figure 3.15  
Analysis of the interaction between hnRNP L and TJP1 RNA by UV 
crosslinking. Short 32P-labelled TJP1 wildtype (WT) and mutant (mut) RNA transcripts 
were incubated with 200 ng per 10 µl reaction of recombinant hnRNP L at either 4°C 
(lanes 4°C ) or 30°C (lanes 30°C ) and afterwards subjected to UV crosslinking. 
Crosslinked proteins were analysed on a 10% SDS-PAGE. As control, crosslinking was 
performed in the absence of protein (lanes 1 and 2). A schematic representation of the 
RNA transcripts is given at the right. The exon is represented by a box, the intron by a 
line. Wildtype and mutated sequence elements are given below. Exon and intron parts are 
shown in scale.  
 

To degrade unprotected RNAs all reactions were digested with RNase A. 

Crosslinked proteins were separated on a 10% SDS-PAGE and visualised by 

autoradiography. Additionally, crosslinking was done in the absence of 

recombinant protein as control for specificity (lanes 1, 2).  As shown in Fig. 3.15, 

hnRNP L could be crosslinked only to TJP1 wildtype RNA (lanes 3, 5). No 

crosslink was observed with the mutant derivative (lanes 4, 6). Comparison of the 

two incubation temperatures revealed no significant differences in the crosslinking 

efficiencies.  
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Within this purified system, the binding specificity of hnRNP L is well defined. I 

could show, consistent with the band shift data, that hnRNP L specifically binds to 

CA-containing transcripts. The interaction of hnRNP L with the substrate RNA 

occurs also at 4°C indicating that it is splicing i ndependent. 

 

3.2.8 U2AF65 interaction with polypyrimidine tract of TJP1 intron 19 is 

very weak 

 

How is TJP1 exon 20 skipping facilitated by hnRNP L? To address this question, I 

took a closer look at U2AF (U2 snRNP auxiliary factor). U2AF is a heterodimer (65 

and 35 kDa subunits) which plays an important role in spliceosome assembly 

(Zamore & Green, 1989). The 65 kDa subunit (U2AF65) directly contacts the 

polypyrimidine tract whereas U2AF35 interacts with the 3’ splice site of pre-

mRNAs. Binding of U2AF facilitates the subsequent recruitment of the U2 snRNP 

to the branch site. The hnRNP L binding sites in TJP1 intron 19 are located within 

the polypyrimidine tract. In the following, I therefore tested the hypothesis that 

hnRNP L binding impairs recognition of the polypyrimidine tract by U2AF65 

thereby mediating exon skipping.  

I first tested the interaction of U2AF65 with TJP1 RNA by electromobility shift 

assays. As described before for hnRNP L, TJP1 RNA transcripts were internally 

labelled with [α32P]ATP and incubated with increasing amounts of recombinant 

U2AF65 (Fig. 3.16). Purified GST-U2AF65 was analysed before on a protein gel 

(Fig. 3.16A).  

As shown in Fig. 3.16B, complex formation on TJP1 wildtype substrate was only 

detected at high U2AF65 concentrations (lanes 4, 6-8). Formation of a complex 

was first detected after addition of a 128-fold molar excess of protein (4 µM) over 

RNA (lane 4). Even with a 640-fold molar excess of U2AF65 (20 µM), free RNA 

was still visible (lane 8).MINX, a well characterised splicing substrate for in vitro 

applications (Zillmann et al., 1988), was used as a positive control (Fig. 3.16C). In 

the case of MINX, formation of a complex was detected already with an 8-fold 

molar excess of U2AF65 (0.3 µM, lane 2). Addition of increasing amounts of 

U2AF65 shifted all free RNA into complexes (lanes 3, 4). As mentioned before, 

TJP1 intron 19 contains a poor polypyrimidine tract whereas the one of MINX is 

very good. It is most likely that the strength of the polypyrimidine tract affects its 
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ability to interact with U2AF65. 

 

 

Figure 3.16 
U2AF65 binds to TJP1 RNA with low affinity. (A) Bacterially expressed GST-
U2AF65 was purified, separated on a 10% SDS-PAGE and visualised by Coomassie 
staining. (B) Electromobility shift assays. 32P-labelled TJP1 wildtype RNA transcripts were 
incubated with increasing amounts of recombinant U2AF65 (left panel 0.3, 1, and 4 µM; 
right panel 5, 10, and 20 µM). Complexes were separated on native polyacrylamide gels 
and visualised by autoradiography. Positions of RNA-protein complexes and free RNAs 
are indicated on the right. (C) MINX pre-mRNA, consisting of two exons, one intron, was 
incubated with increasing amounts of recombinant U2AF65 (0.3, 1, and 4 µM). Complexes 
were separated on a native polyacrylamide gel and visualised by autoradiography. 
Positions of RNA-protein complexes and free RNAs are indicated on the right. 
 

Taken together, these data showed that binding of U2AF65 to TJP1 RNA occured 

with very low efficiency. Nevertheless, the interaction between U2AF65 and TJP1 

RNA was investigated further in the following.  

 

3.2.9 HnRNP L interferes with binding of U2AF65 to TJP1 intron 19 

 

I tested the hypothesis that hnRNP L interferes with binding of U2AF65 by UV 

crosslinking experiments using TJP1 wildtype RNA transcripts which included the 

branch site, polypyrimidine tract, and 3’ splice site of exon 20 as well as the full-

length exon 20 with the 5’ splice site (Fig. 3.17A).  
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Figure 3.17 
HnRNP L antagonises binding of U2AF65 to TJP1 RNA.  (A) Schematic 
representation of the TJP1 wildtype minigene construct and RNA transcript (318 nt). Intron 
and exon parts are shown in scale. The colour highlights the alternatively used exon 20. 
The wildtype sequence element is given below. The underlined sequences represent 
hnRNP L high-score binding motifs. (B) UV crosslinking assay. 32P-labelled TJP1 wildtype 
(WT) RNA transcripts (shown in A) were incubated with either 600 ng of recombinant 
U2AF65 (lane 2), 200 ng of recombinant hnRNP L (lane 3) or both proteins at the same 
time (lane 4) in 13.5 µl reactions. Reactions were subjected to UV crosslinking; 
unprotected RNAs were degraded by RNase A. The crosslinked proteins were analysed 
on a 10% SDS-PAGE. As control, crosslinking was performed in the absence of protein 
(lane 1). The positions of crosslinked proteins are indicated on the right. An unspecific 
band is marked by the asterisk.  

 

TJP1 transcripts were internally labelled with [α32P]ATP by T7 in vitro transcription 

and incubated with either GST-U2AF65 (600 ng per 13.5-µl reaction), His-HnRNP 

L (200 ng per 13.5-µl reaction), or both of them at 4°C for 30 min before UV 

crosslinking at 250 nm. Unprotected RNAs were degraded by subsequent RNase 

A treatment. Crosslinked proteins were separated on a 10% SDS-PAGE and 

visualised by autoradiography. As negative control, crosslinking was done in the 

absence of protein. 

As shown in Fig. 3.17B, a band (asterisk) could be detected already without 

addition of recombinant protein (lane 1) most likely due to not properly degraded 

RNA. Besides the unspecific band, addition of recombinant U2AF65 resulted in a 

second band (lane 2) representing the crosslinked U2AF65 protein. Incubation 

with hnRNP L resulted in a specific crosslinked band as well with the expected 

size (lane 3). To test for competition, both proteins were incubated with the 

wildtype transcript simultaneously (lane 4). Only hnRNP L was observed to 
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crosslink to the TJP1 substrate RNA efficiently. The crosslink to U2AF65 on the 

other hand decreased significantly by comparison with incubation of U2AF65 

alone (compare lanes 2, 4). These results show that in this minimal system, 

hnRNP L was capable to prevent binding of U2AF65 to the TJP1 target RNA most 

likely by displacement from the polypyrimidine tract.  

 

I obtained further support for this idea by UV-induced crosslinking and 

immunoprecipitation experiments. TJP1 wildtype RNA transcripts were incubated 

under splicing conditions in hnRNP L- or mock-depleted HeLa nuclear extract. Fig. 

3.18A shows the result of the subsequent UV crosslinking experiment. Several 

crosslinked proteins could be detected in nuclear extract by autoradiography. Only 

one protein around 65 kDa, however, was reduced in hnRNP L-depleted nuclear 

extract (compare lane 2 with lanes 1, 3). By immunoprecipitation using anti-hnRNP 

L monoclonal antibody the crosslinked protein could be identified as hnRNP L (Fig. 

3.18B). In hnRNP L-depleted extract, immunoprecipitation of hnRNP L was 

strongly reduced compared to mock-depleted nuclear extract (compare lanes 1, 

2). With addition of recombinant hnRNP L (200 ng per 25-µl splicing reaction), 

protein crosslink and immunoprecipitation could be restored (lane 3). Levels of 

U2AF65 in the total crosslink were not visible (panel A). Since U2AF65 (65 kDa) 

and hnRNP L (64 kDa) are of similar size, they were expected to run 

approximately at the same position in a SDS-PAGE. Taking into account that 

hnRNP L bound TJP1 RNA with high affinity (see Fig. 3.14) it was most likely that 

hnRNP L signals concealed signals of U2AF65. Therefore, I determined U2AF65 

levels by UV crosslinking and immunoprecipitation with anti-U2AF65 monoclonal 

antibody (Fig. 3.18C). Detection of U2AF65 by immunorecipitation revealed that 

hnRNP L reduction was associated with an increase in the level of crosslinked 

U2AF65 (compare lanes 1, 2). With addition of recombinant hnRNP L, this effect 

could be reversed (lane 3) showing that increased binding of U2AF65 is directly 

linked to hnRNP L levels. 

In sum, these results clearly show that hnRNP L impairs binding of U2AF to TJP1 

RNA. Since the binding sites of both proteins reside in the same region of TJP1 

intron 19 hnRNP L competes with U2AF65 for binding, most likely displacing it 

from the RNA.   
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Figure 3.18  
HnRNP L levels influence binding of U2AF65 to TJP1 RNA. (A) UV crosslinking 
in HeLa nuclear extract. 32P-labelled TJP1 RNA transcripts were incubated in mock- (lane 
NE ∆ mock) or hnRNP L-depleted (lane NE ∆ L) nuclear extract under splicing conditions 
and subjected to UV crosslinking. HnRNP L-depleted extract was complemented by 
addition of purified recombinant hnRNP L (200 ng per 25-µl splicing reaction; lane NE ∆ L 
+ L). Crosslinked proteins were separated on a 10% SDS-PAGE. Molecular size marker is 
given on the left. (B) UV crosslinking and immunoprecipitation using anti-hnRNP L 
monoclonal antibody. The position of immunoprecipitated hnRNP L is indicated on the 
right. (C) UV crosslinking and immunoprecipitation using anti-U2AF65 monoclonal 
antibody. The position of immunoprecipitated U2AF65 is indicated on the right. 

 

3.3 ITGA2 

 
Recently, a study on the mouse ITGA2 (integrin alpha-2) gene identified a 

polymorphic CA-repeat region, (CA)21 versus (CA)6, in intron 1 which represents 

an intronic splicing enhancer (Cheli & Kunicki, 2006). Splicing activation was 

shown to be mediated by hnRNP L binding to the silencer sequence. The 

enhancement of splicing correlated thereby with the length of the CA repeat 

because hnRNP L bound to (CA)21 with higher affinity than to (CA)6. 

The human ITGA2 gene consists of 30 exons with a very long first intron of 37.2 

kb which carries a CA-rich region similar to the mouse gene (Fig. 3.19). The 

ITGA2 gene, also referred to as VLA-2 (very late activation protein 2 receptor), 

encodes the integrin alpha-2 subunit of a cell surface heterodimer (Takada & 

Hemler, 1989). Together with a common beta chain it forms a collagen receptor 
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which plays an important role in adhesion of platelets by coupling platelets to 

collagen thus contributing to blood coagulation (Inoue et al., 2003).  

 

 

Figure 3.19 
Schematic representation of the ITGA2 gene structure and minigene 
constructs . Exons are represented by boxes, introns by lines (all sizes in scale). The 
ITGA2 minigene consists of exons 1 and 2 with a shortened intron in between. The 
position of intron deletion is marked above the minigene by a ∆. The colour highlights a 
newly identified cryptic exon in intron 1. The lines above the minigene represent the 
normal splicing pattern; the lines below show an alternative splicing pattern. Wildtype 
(WT) and substituted (sub) sequence elements are given below. The minigene constructs 
were placed under the control of T7 and CMV promoter (shown as an arrow) for in vitro 
and in vivo splicing analysis.  
 

3.3.1 Analysis of ITGA2 minigene splicing leads to identification of a 

cryptic exon 

 
In order to test the influence of the CA-rich region in ITGA2 intron 1 on splicing a 

set of minigene constructs was made (Fig. 3.19). Each minigene consists of the 

first two exons with a shortened intron 1 in between (ITGA2a-WT). In addition, the 

CA-rich region was either substituted (ITGA2a-sub) or deleted (ITGA2a-CA0).  

I first tested splicing of the minigene constructs in vivo. For that purpose, HeLa 

cells were transiently transfected, total RNA was isolated, and splicing was 

analysed by RT-PCR. As shown in Fig. 3.20, splicing of wildtype minigene resulted 

exclusively in two-exon mRNA (lane 1) whereas additional splicing products were 

observed when the CA repeats were either substituted or deleted (lanes 2, 3). 

Sequencing of the additional products revealed that they reflect inclusion of a 

cryptic exon into the mRNA (Fig. 3.20, top).  
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Figure 3.20 
CA-rich sequence in ITGA2 intron 1 suppresses cryptic exon inclusion. 
Characterisation of ITGA2 splicing using minigene constructs (ITGA2a). Exons are 
represented by boxes, introns by lines. All exon and intron parts are shown in scale. The 
cryptic exon in intron 1 is highlighted. HeLa cells were transiently transfected and splicing 
of minigene constructs was analysed by RT-PCR. Positions of PCR products 
corresponding to splice variants are given schematically on the right. The CMV promoter 
is depicted as an arrow. 
 

The PCR product for the cryptic exon inclusion was shorter for the ITGA2a-CA0 

construct than for ITGA2a-sub corresponding to the size of the deleted CA-rich 

region (compare lanes 2, 3). Moreover, less cryptic exon inclusion was detected 

for the ITGA2a-CA0 construct than for the substitution derivative.  

Taken together, the in vivo splicing analysis indicated that the CA-rich region 

suppresses recognition of a cryptic exon in ITGA2 intron 1.  

 

3.3.2 Splicing analysis of additional ITGA2 minigene constructs 

 

Splicing analysis of ITGA2 minigenes required shortening of intron 1 due to its 

enormous length of 37.2 kb (see Fig. 3.19). Therefore, the ITGA2a minigene 

constructs displayed an artificial context which may have led to the creation of the 

cryptic exon in intron 1. As shown in Fig. 3.19 and 3.20, the intron 1 deletion lies 

within the cryptic exon. In the natural context the splice sites of the cryptic exon 

would be separated by around 37 kb. For this reason, it is very unlikely that within 

the full-length intron the cryptic exon would be recognised in the same manner.  
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A set of new minigene constructs was made to further investigate splicing of 

ITGA2 (Fig. 3.21). Each of the new minigenes contained more intronic sequence 

than the initial ITGA2a constructs (Fig. 3.21, top) to test if cryptic exon inclusion 

could still take place.  

 

 

 

Figure 3.21 
Comparative representation of ITGA2 minigene constructs. Exons are 
represented by boxes, introns by lines (all sizes in scale). The position of intron deletion is 
indicated above each minigene by a ∆. The cryptic exon is highlighted. Lines above each 
minigene show the normal splicing pattern, lines below the alternative pattern. Wildtype 
(WT) and substituted (sub) sequence elements are given. The CMV promoter is depicted 
as an arrow. 
 

 

 

In ITGA2b more of the 5’ part of the intron was included into the minigene 

construct (middle), whereas more of the 3’ part was retained in ITGA2c (bottom). A 

sequence alignment of the three ITGA2 minigene constructs is shown in Fig. 3.22. 
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Figure 3.22 
Sequence alignment of ITGA2 wildtype minigene constructs. Given are the 
complete intron 1 sequence and parts of the exon 1 and 2 sequence of the respective 
ITGA2 minigenes (ITGA2a, ITGA2b, and ITGA2c). Exons are shown in bold, the cryptic 
exon in blue, the CA-rich sequence in red. All splice sites are marked by an arrow.  
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In ITGA2b more of the 5’ part of the intron was included into the minigene 

construct (middle), whereas more of the 3’ part was retained in ITGA2c (bottom). A 

sequence alignment of the three ITGA2 minigene constructs is shown in Fig. 3.22. 

 

I tested splicing of the new minigene constructs in vitro in HeLa cell nuclear 

extract. Aliquots were taken after 0, 60, and 120 minutes and splicing was 

analysed by RT-PCR using gene-specific primers. Fig. 3.23 shows that the two 

sets of minigene constructs (ITGA2b, panel A; ITGA2c, panel B) displayed 

different splicing pattern.  

 

Figure 3.23 
In vitro splicing analysis of different ITGA2 minigene constructs. (A) 
Characterisation of ITGA2 splicing using ITGA2b wildtype (WT) and substitution (sub) 
minigene constructs. Exons are represented by boxes, introns by lines. All exon and intron 
parts are shown in scale. The position of intron deletion is indicated by a ∆. Wildtype and 
substituted sequence elements are given below the minigene. In vitro transcribed pre-
mRNAs were incubated in HeLa nuclear extract for the indicated times and splicing was 
analysed by RT-PCR. Positions of PCR products corresponding to pre-mRNA and spliced 
product are given schematically on the right. The asterisk marks an unspecific PCR 
product. The percentages of splicing efficiency are given below the corresponding lanes. 
(B) Schematic representation of ITGA2c minigene constructs. The cryptic exon is 
highlighted. In vitro splicing of ITGA2c wildtype (WT) and substitution (sub) minigene 
constructs was analysed by RT-PCR. The positions of pre-mRNA and splicing variants 
are schematically shown on the right. The percentages of splicing efficiency and cryptic 
exon inclusion are given below the corresponding lanes.   
 

For the ITGA2b constructs cryptic exon inclusion was not detected (Fig. 3.23A). 

Substitution of the CA-rich sequence resulted in a decrease of splicing efficiency 

from 34.5 to 14.6% after 120 minutes (Fig. 3.23A, compare lanes 3, 6). Note that 

the splice sites of the cryptic exon which was recognised in the ITGA2a 

substitution and deletion constructs were also present in ITGA2b and c. In contrast 
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to ITGA2b, splicing of the ITGA2c substitution derivative again resulted in inclusion 

of the cryptic exon (Fig. 3.23B, lanes 5, 6). Sequencing of the spliced product 

revealed that the same splice sites, as in ITGA2a, were used. Splicing of the 

wildtype pre-mRNA yielded exclusively the two-exon product (lanes 2, 3). 

Moreover, the overall splicing efficiency of the substitution construct was with 26% 

better than the wildtype (19%; compare lanes 3, 6).  

Taken together, these data indicated that the CA-rich sequence in the ITGA2b 

minigene context functions as an enhancer of splicing efficiency. The ITGA2c 

minigene constructs on the other hand showed the same splicing pattern than the 

ITGA2a constructs, where the CA region suppressed inclusion of a cryptic exon. 

 

3.4 ASAH1 

 

The human ASAH1 gene (N-acylsphingosine amidohydrolase 1) encodes an acid 

ceramidase, a lysosomal enzyme which catalyses the degradation of ceramide 

into sphingosine and fatty acid (Li et al., 1999). A deficiency in the acid 

ceramidase activity leads to a lysosomal storage disorder known as Farber 

disease. Three missense mutations in the human ASAH1 gene have been 

associated with the disease. The gene itself spans approximately 30 kb and 

contains 14 exons. The primary gene product represents a 50 kDa precursor 

polypeptide that is posttranscriptionally cleaved to give rise to the mature 

heterodimer which consists of a nonglycosylated α subunit (14 kDa) and a 

glycosylated β subunit (40 kDa). Until now, alternative polyadenylation was not 

reported for the ASAH1 gene. 

 

3.4.1 HnRNP L mediates alternative poly(A) site selection in the ASAH1 

gene 

 
The ASAH1 gene was one of the 11 hnRNP L target genes identified by our 

combined RNAi and microarray analysis (as described before for TJP1). This gene 

was particularly interesting since three probe sets downstream of exon 5 showed 

higher dR values upon hnRNP L and L/LL double knockdown whereas most of the 

downstream probe-set signals were reduced (Fig. 3.24A).  
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Figure 3.24 
Alternative poly(A) selection in the ASAH1 target gene. (A) Analysis of the 
microarray data for the ASAH1 gene. The diagram shows log2 ratios of probe-set signal 
intensities (dR) each relative to the luciferase control values across the ASAH1 gene. 
Three values are given (Y-axis: ∆L, knockdown of hnRNP L, in red; ∆LL, knockdown of 
hnRNP LL, in green; ∆L+∆LL, knockdown of hnRNP L and LL, in black) for each probe set 
(X-axis). Probe-set and primer positions in ASAH1 are shown below. (B) Total RNA was 
prepared after knockdown in HeLa cells (as indicated above the lanes) and 
splicing/alternative polyadenylation was assayed by RT-PCR. A combination of three 
gene-specific primers was used to detect spliced mRNA and internally polyadenylated 
mRNA as indicated on the right. The percentages of internal polyadenylation with 
standard deviations (n=3) are given below the corresponding lanes (because different 
reverse primers were used these values only allow comparison between knockdown and 
control samples and do not yield absolute numbers on the mRNA variants). (C) RT-PCR 
analysis using an oligo(dT) reverse primer and a gene-specific forward primer to detect 
use of the internal poly(A) site (as indicated on the right). 
 
 
An implication from this observation was that this may be a case of alternative 

polyadenylation. The usage of a poly(A) site in ASAH1 intron 5 may have 

produced an mRNA missing all downstream exons. To test this hypothesis, RT-
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PCR validation was performed using a combination of three primers (indicated in 

panel A). The forward primer was placed in exon 5 whereas two different reverse 

primers were used; one in exon 7 and one in intron 5 to detect the spliced mRNA 

as well as the internally polyadenylated mRNA. As shown in Fig. 3.24B, two 

distinct products were detected by RT-PCR analysis and which were also 

confirmed by sequencing. The upper band represented the normal splicing product 

consisting of exons 5 to 7 whereas the lower band corresponded to an mRNA 

containing exons 5 and part of intron 5 which we termed 5a. This alternative PCR 

product increased from 31% in the control knockdown (lane Luc) to 40% and 46% 

in hnRNP L and L/LL double knockdown, respectively (lanes L, L+LL). No 

significant increase was detected for the hnRNP LL knockdown (35%; lane LL). 

Direct evidence for alternative polyadenylation was obtained by RT-PCR analysis 

using a different reverse primer (shown in panel A). An oligo(dT) reverse primer in 

combination with the exon 5 forward primer allowed detection of internally 

polyadenylated mRNA (panel C). The level of alternatively polyadenylated mRNA 

increased upon hnRNP L and L/LL double knockdown, showing that the internal 

poly(A) site was properly polyadenylated, and supporting the previous data. In 

addition, usage of the internal polyadenylation site was confirmed by sequencing 

of the PCR product, which also allowed identification of the definite cleavage site.  

In summary, analysis of the microarray data revealed a new mode of regulation for 

hnRNP L. In the ASAH1 gene it was shown for the first time that hnRNP L can 

also function in alternative polyadenylation by repressing the use of an internal 

poly(A) site.  
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4. Discussion 
 

4.1 Microarray analysis: Genome-wide search for hnRNP L target 

genes 

 

The DNA microarray technology has developed over the last decade as a powerful 

tool for large-scale analysis of gene expression (Gershon, 2002). The underlying 

principle is based on the preference of single-stranded nucleic acids to bind 

complementary sequences. A microarray can contain up to millions of DNA 

molecules (probes) with known sequences, which are immobilised in an ordered 

manner on a solid support (e.g. glass or silicone). Samples, which are applied on 

the microarray, are fluorescently labelled and hybridise to the complementary 

probes on the array (Heller, 2002). After excitation by a laser beam, the emitted 

fluorescence, which is proportional to the degree of hybridisation, is detected and 

analysed by computational tools. There is a variety of applications for the 

microarray technology, for example gene expression analysis or screening of 

samples for single nucleotide polymorphisms (SNPs). In addition, microarrays are 

widely used for medical purposes e.g. in genetic disease and cancer diagnostics.   

More recently, the DNA microarray technology has emerged as a tool for the 

genome-wide analysis of alternative splicing (Lee & Roy, 2004). In order to allow 

detection of alternative splice variants, the microarray probe design had to be 

modified. In a standard microarray each gene is typically targeted by a single 

probe set placed at the 3′ end of the transcript (Okoniewski & Miller, 2008). For 

detection of alternative splicing on the other hand, it is necessary that probe sets 

cover each exon along the entire length of the gene (exon array). Exon junction 

arrays represent another possibility for the high-throughput analysis of alternative 

splicing. In this kind of microarrays, probes are designed to cover each exon-exon 

junction which might be spliced together in an alternative splicing event.  

Relevant for this work was the Affymetrix GeneChip Human Exon 1.0 Array, a 

microarray platform that allows detection of alternative splicing on a genome-wide 

level. Total RNA, prepared from the hnRNP L and LL knockdown as well as 

luciferase control reactions, was processed through the Affymetrix Exon Array. 

The huge amount of data obtained from the microarray was analysed using 
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computational tools to identify differences in exon expression signals between 

knockdown and control reactions (Hung et al., 2008). From an initial list of about 

50 target genes, we could experimentally validate reproducible differences in 

response to hnRNP L depletion for alternative splicing of 11 genes.  

Several recent studies showed that the Affymetrix exon array is a viable tool for 

the global analysis and identification of novel alternative splicing events. McKee 

and co-workers found stimulus-induced changes in alternative splicing that 

contribute to gene regulation (McKee et al., 2007). Cheung and co-workers 

validated 14 alternative splicing changes associated with primary brain tumors, 

seven of which were novel events (Cheung et al., 2008). A lot more examples of 

cancer-related alternative splicing events could by identified using exon array 

analysis (Gardina et al., 2006; Jhavar et al., 2008; Thorsen et al., 2008). Another 

major application for exon arrays is the search for tissue-specific alternative 

splicing (Clark et al., 2007; Das et al., 2007). Oberdoerffer and co-workers 

identified hnRNP L-like (hnRNP LL), a paralog of hnRNP L, as an inducible 

regulator of alternative splicing (Oberdoerffer et al., 2008). Exon array data 

suggested that hnRNP LL functions as a global regulator of alternative splicing in 

activated T-cells. This finding was especially important for our work since our 

microarray analysis yielded no alternative splicing targets in HeLa cells which 

points to a tissue-specific role of hnRNP LL (Hung et al., 2008). Several other 

splicing factors including hnRNP L have been shown to participate in alternative 

splicing of CD45 (House & Lynch, 2006; Rothrock et al., 2005). None of them, 

however, was induced upon T-cell activation. HnRNP L and LL were demonstrated 

to have overlapping but distinct binding specificities in the CD45 gene (Topp et al., 

2008). 

 

4.2 Crossregulation of the hnRNP L proteins 

 

RNAi knockdown of hnRNP L and LL in HeLa cells revealed a reciprocal 

regulation of the two proteins. Quantitative real-time PCR analysis confirmed 

efficient reduction of hnRNP L and LL mRNA levels after either single or double 

knockdown (see Fig. 3.7A). Interestingly, with the reduction of hnRNP L mRNA 

levels a simultaneous 1.5-fold increase of hnRNP LL expression was detected. In 

another experiment we also observed the reciprocal effect that hnRNP L levels 
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increased upon knockdown of hnRNP LL (Hung et al., 2008). Recently, we found a 

crossregulatory mechanism explaining the reciprocal regulation of the two proteins 

(Rossbach et al., 2009). It was demonstrated that hnRNP L autoregulates its own 

expression by alternative splicing. Inclusion of a “poison exon”, which introduces a 

premature termination codon into the mRNA leads to degradation of the respective 

mRNA by nonsense-mediated decay. HnRNP L was also shown to activate 

inclusion of a similar “poison exon” into the mRNA of hnRNP LL. But why did I 

observe no upregulation of hnRNP L levels upon hnRNP LL knockdown? Most 

likely, the effect on hnRNP L was more sensitive to biological variations than 

hnRNP LL, whose upregulation was very strong. Note that hnRNP L levels in 

HeLa cells are already very high. Quantitation of hnRNP L and LL protein levels by 

Western blot analysis showed that hnRNP L is approximately ten times more 

abundant in HeLa cells than hnRNP LL (Hung et al., 2008). High levels of hnRNP 

L upregulation in HeLa cells are therefore unlikely. Considering that hnRNP LL but 

not hnRNP L expression was induced upon T-cell activation it would be interesting 

to test other types of immune cells for hnRNP LL expression levels to confirm a 

tissue-specific role of the protein. Moreover, to find cell types, which express a 

higher level of hnRNP LL than HeLa cells, is an important task in order to 

investigate crossregulation between the hnRNP L proteins. 

 

4.3 Diverse roles of hnRNP L in splicing regulation 

 

HnRNP L was initially identified as a splicing activator of the human eNOS gene 

(Hui et al., 2003b). Determination of the binding specificity revealed that hnRNP L 

preferentially binds to CA repeats and certain CA-rich sequences (see Fig. 1.6 and 

Hui et al., 2005). Considering that CA-repetitive sequences represent the most 

common simple sequence repeat in the human genome (Waterston et al., 2002), it 

was very likely that hnRNP L also regulates splicing of other genes besides eNOS. 

The identification of new target genes revealed the involvement of hnRNP L in 

different types of splicing regulation mainly in regulation of alternative splicing. Fig. 

4.1 gives an overview on what we currently know about hnRNP L’s mode of 

action.  
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Figure 4.1 
Splicing regulation by hnRNP L. Schematic representation of alternative splicing 
events regulated by hnRNP L (depicted in grey) which acts as an activator (+) or 
repressor (-). Constitutive exons are represented by blue boxes; alternative exons are 
shown in red (adapted from Hung et al., 2008). (A) HnRNP L functions as an activator of 
exon inclusion or on splicing efficiency sometimes in a length-dependent manner (e.g. 
eNOS, ITGA2). (B) HnRNP L represses splicing of cassette-type exons by binding to 
intronic CA-rich silencer sequences either downstream or upstream of the regulated exon 
(e.g. SLC2A2, TJP1). (C) HnRNP L represses splicing of multiple alternative exons or 
pseudoexons by binding to exonic silencer elements (e.g. ARGBP2, LIFR, ITGA2, CD45). 
(D) HnRNP L acts as an activator of intron retention (e.g. DAF; note that this represents a 
hypothetical mechanism). (E) HnRNP L represses internal polyadenylation (e.g. ASAH1; 
note that this represents a hypothetical mechanism).  
 

First, hnRNP L was shown to determine the splicing efficiency of an intron by 

binding to an intronic CA-rich enhancer (panel A). In case of the human eNOS and 
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the mouse ITGA2 gene splicing activation correlated with the length of the CA 

repeat (Cheli & Kunicki, 2006; Hui et al., 2003b). HnRNP L can furthermore 

activate inclusion of an alternative exon into the mRNA (Hui et al., 2005). Second, 

it was shown for several cases that hnRNP L functions as a splicing repressor by 

binding to an intronic CA-rich silencer element which can be located either 

upstream or downstream of the regulated exon (panel B). TJP1 and SLC2A2 fall 

into this category. 

Third, hnRNP L binds to an exonic CA-rich silencer and represses inclusion of the 

exon into the mRNA (panel C). This mode of regulation by hnRNP L was first 

identified in the CD45 gene where hnRNP L represses inclusion of the variable 

exon 4 upon T-cell activation (Rothrock et al., 2005). Suppression of multiple 

alternative exons in one intron as shown for ARGBP2 and LIFR as well as 

suppression of a cryptic exon in the case of ITGA2 also belong in this category 

(Hung et al., 2008). The regulatory sequence resides in each case in an exon. 

Fourth, two genes, namely DAF and STRA6 are known where hnRNP L acts as an 

activator of intron retention (panel D). So far, it is not known however if the 

regulatory sequence is located in the intron or the flanking exons. Finally, 

alternative poly(A) site selection represents a new mode of hnRNP L-mediated 

regulation (panel E). In the ASAH1 gene, hnRNP L was shown to repress usage of 

an internal polyadenylation site. The mechanism of action is yet unknown. 

Taken together, hnRNP L displayed a surprising diversity of regulatory functions in 

both splicing and polyadenylation. This versatility clearly distinguishes hnRNP L 

form other proteins of the hnRNP family whose function in splicing is often 

restricted to splicing repression e.g. PTB, also referred to as hnRNP I, is 

homologous to hnRNP L and represent a well characterised repressor of 

alternative splicing (Spellman et al., 2005).  

 

4.4 The mechanism of alternative splicing repression by hnRNP L 

 

HnRNP L was revealed as a global regulator of alternative splicing. For the two 

genes SLC2A2 and TJP1 I have obtained further insights into the mechanism of 

splicing repression of cassette-type exons mediated by hnRNP L.  

 



4. Discussion 
 

79 

4.4.1 HnRNP L interferes with 5’ splice site recognition 

 

SLC2A2 was identified as an hnRNP L candidate gene by a genome-wide 

database search. By mutational analysis I could demonstrate that a CA repeat 

sequence in intron 4 of the gene represents a splicing silencer element (Fig. 3.2). 

Subsequent depletion and complementation experiments confirmed that 

alternative splicing of SLC2A2 is regulated by hnRNP L (Fig. 3.3). In addition, we 

could show in UV crosslinking and immunoprecipitation experiments that hnRNP L 

directly binds to the intronic CA-repeat silencer element (Hui et al., 2005). The 

position of the CA repeat, namely close to the 5’ splice site of the regulated exon, 

suggested that hnRNP L may interfere with spliceosome assembly.  

 

 

Figure 4.2 
Model of splicing regulation by hnRNP L in the SLC2A2 gene . Exons are 
represented by boxes, introns by lines. The alternatively spliced exon 4, the CA repeat 
sequence, and the 5’ splice site (GT) are highlighted. The 5’ splice site of SLC2A2 pre-
mRNA is recognised by the U1 snRNP in the absence of hnRNP L (top). This leads to 
inclusion of the regulated exon 4 in the mRNA. Bound hnRNP L proteins block 5’ splice 
site recognition by the U1 snRNP which leads to skipping of the regulated exon (bottom).  
 

Analysis of spliceosomal E complex formation which is characterised by the U1 

snRNP recognising the 5’ splice site of the pre-mRNA provided first evidence on 

the mechanism of SLC2A2 splicing regulation (Fig. 3.4). The E5’ complex formed 
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less efficiently on CA repeats-containing pre-mRNA than on the substitution 

derivative. Interaction of the U1 snRNP is mediated in part by base-pairing of the 

snRNA component with the first six nucleotides of the intron including the 5’ splice 

site (Krämer et al., 1984). Psoralen crosslinking experiments showed an increased 

U1/RNA interaction in the absence of CA-repeats or hnRNP L protein (Fig. 3.5 and 

3.6). Together with the data obtained from analysis of E complex formation these 

findings proposed a mechanism for repression of SLC2A2 exon 4 inclusion (Fig. 

4.2). The 5’ splice site of SLC2A2 exon 4 is recognised by the U1 snRNP in the 

absence of hnRNP L which leads to inclusion of the exon into the mRNA. If 

hnRNP L binds to the CA repeat sequence recruitment of the U1 snRNP is 

impaired resulting in exon 4 skipping.  

It has been proposed for PTB (hnRNP I) that in some cases, where multiple PTB 

binding sites flank the regulated exon, multimerisation of PTB proteins creating a 

zone of silencing (Wagner & Garcia-Blanco, 2001). It remains to be investigated if 

a similar mechanism where hnRNP L proteins bind cooperatively to long CA 

repeats can be shown for SLC2A2 splicing regulation.  

 

4.4.2 HnRNP L interferes with 3’ splice site recognition 

 

TJP1 represents one of 11 hnRNP L target genes identified by our microarray 

analysis (Fig. 3.8). TJP1 contains a variable exon whose inclusion was 

significantly increased upon knockdown of hnRNP L. I could demonstrate by 

mutational analysis that a CA-rich cluster in intron 19 functions as an hnRNP L-

dependent splicing silencer (Fig. 3.11). Band shift as well as UV crosslinking 

experiments confirmed that hnRNP L directly interacts with the intronic CA-rich 

silencer element (Fig. 3.14 and 3.15).The CA-rich splicing regulatory sequence 

resides in the polypyrimidine tract of TJP1 intron 19 and consists of three hnRNP L 

high-score binding motifs, one of those next to the 3’ splice site of the regulated 

exon (Fig. 3.9). These findings suggested that TJP1 exon 20 repression by hnRNP 

L is mediated through impaired 3’ splice site recognition.  

Early recognition of 3’ splice sites is mediated by the U2 snRNP auxiliary factor 

(U2AF) (Ruskin et al., 1988; Zamore et al., 1992). U2AF is composed of a large 

(U2AF65) and a small (U2AF35) subunit which interact with each other to form a 

stable heterodimer. Both subunits belong to the family of SR-related proteins (see 
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Table 1.1). UV crosslinking and immunoprecipitation experiments revealed that 

hnRNP L interferes with binding of U2AF65 to the polypyrimidine tract of TJP1 

intron 19 (Fig. 3.18). U2AF65 binds to the polypyrimidine tract of pre-mRNAs, 

interacts with U2AF35, SF1, and SF3b155,  and finally promotes recruitment of the 

U2 snRNP to the branch site (Jenkins et al., 2008). The U2AF65 protein contains 

several distinct domain structures to promote all of these interactions (Fig. 4.3). 

Two RRMs contact the polypyrimidine tract; a C-terminal U2AF homology motif 

(UHM) interacts with SF1 and SF3b155; a tryptophan-containing UHM ligand motif 

(ULM) positions the U2AF35 small subunit at the 3’ splice site and an N-terminal 

RS domain promotes recruitment of the U2 snRNP. Therefore, U2AF65 binding to 

the polypyrimidine tract represents a crucial step in 3’ splice site recognition.  

 

 

Figure 4.3 
Schematic representation of U2AF65 domain structure and interactions in 
spliceosomal E and A complex. (A) U2AF65 (P26368; 475 amino acids) protein 
contains two canonical RNA recognition motifs (RRM, blue), U2AF homology motif (UHM, 
red), UHM ligand motif (ULM, yellow), and an arginine-serine-rich domain (RS, green). (B) 
Schematic representation of the 3’ splice site in spliceosomal complexes E and A. UHM 
(red) interaction with tryptophan-containing ULM (W, yellow) is highlighted (adapted from 
Corsini et al., 2007). 
 

Regulation of alternative splicing is often mediated by promotion or inhibition of 

early events in spliceosome assembly such as 5’ splice site or 3’ splice site 

recognition. Several cases are known where splicing regulators interfere with 

binding of U2AF to the 3’ splice site region leading to exon skipping. One well 

studied example belongs to the sex determination pathway in Drosophila 

melanogaster (Black, 2003). In female flies, sex lethal (sxl) protein binds to the 3’ 
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splice site region of exon 2 in the transformer (tra) pre-mRNA thereby blocking 

recruitment of U2AF. This leads to the subsequent skipping of the exon which 

deletes a stop codon form the tra mRNA and allows expression of tra protein. 

Further examples for inhibition of 3’ splice site recognition are given by the 

polypyrimidine tract binding protein (PTB/hnRNP I) which is involved in the 

repression of several tissue-specific exons by preferentially binding to pyrimidine-

rich intronic silencers upstream or downstream of the regulated exon (Wagner & 

Garcia-Blanco, 2001). PTB has been shown to compete with U2AF65 for binding 

to the polypyrimidine tract, thereby blocking splicing of the corresponding exon 

(Matlin et al., 2007; Sauliere et al., 2006). For alternative splicing of TJP1 exon 20 

I could demonstrate a similar mechanism where hnRNP L represses splicing by 

interfering with U2AF binding most likely leading to inhibition of 3’ splice site 

recognition due to impaired recruitment of the U2 snRNP (Fig. 4.4) 

 

 

 
Figure 4.4 
Model of splicing regulation by hnRNP L in the TJP1 gene . Exons are 
represented by boxes, introns by lines. The alternatively spliced exon 20, the branch point 
adenosine (A), polypyrimidine tract (Y), hnRNP L binding motifs, and the 3’ splice site 
(AG) are highlighted. The 3’ splice site, polypyrimidine tract, and branch site of TJP1 pre-
mRNA are recognised by U2AF (65 and 35 kDa subunits) and the U2 snRNP in the 
absence of hnRNP L (top). This leads to inclusion of the regulated exon 20 in the mRNA. 
Binding of hnRNP L proteins blocks 3’ splice site recognition by U2AF which leads to 
skipping of the regulated exon (bottom).  
 

This hypothesis was supported by the finding that TJP1 intron 19 contains a 
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comparatively weak polypyrimidine tract (MaxEntScan score 5.2) whereas the 3’ 

splice site of exon 21 has an average strength (score 8.2). For comparison, the 3’ 

splice site of the good splicing substrate MINX has very high score of 12.5. The 

affinity of U2AF65 for TJP1 intron 19 was, in correlation with the low score, very 

low whereas hnRNP L showed a high affinity for the same RNA substrate (Fig. 

3.14 and 3.16). It has been shown that although dispensable for splicing of introns 

with a strong polypyrimidine tract (so-called AG-independent) U2AF35 is essential 

for splicing of introns that contain a weak polypyrimidine tract (Pacheco et al., 

2006). The small subunit of U2AF recognises the 3’ splice site consensus signal 

(Wu et al., 1999). Considering that one of the hnRNP L binding motifs resides next 

to the 3’ splice site in a poor polypyrimidine tract it would be very interesting to 

investigate if U2AF35 binding is dispensable for TJP1 intron 19 splicing. The in 

parts hypothetical mechanism of TJP1 exon 20 splicing repression is illustrated in 

Fig. 4.4 Without hnRNP L the 3’ splice site of exon 20 is recognised by U2AF 

which recruits the U2 snRNP to the branch site leading to splicing of the intron. 

The presence of hnRNP L blocks U2AF65 binding to the polypyrimidine tract and 

likely also recognition of the 3’ splice site by U2AF35 resulting in exon 20 skipping.   

 

4.4.2.1 Short TJP1 RNA transcripts form different secondary structures 

 

Surprisingly, free RNAs transcribed from wildtype and mutant TJP1 constructs did 

not show the same migration behaviour in band shift experiments although they 

were of the same length (Fig. 3.14). An implication of this finding was that the 

transcripts form different secondary structures.  

I used the RNAfold web server of the Vienna RNA Websuite which can be used to 

predict the minimum free energy (MFE) secondary structure and pair probabilities 

of single stranded RNA sequences (Gruber et al., 2008). Structure drawings of the 

predicted intra-molecular base-pairing interactions are shown in Fig. 4.5 

Surprisingly, the predicted secondary structures for TJP1 wildtype and the initial 

mutant construct show a higher similarity than the two new mutants mutTG and 

mutG. Apparently, the secondary structure cannot fully explain the differences 

observed in the migration behaviour of the short TJP1 RNA transcripts. 

One has to consider the possibility that the different hnRNP L binding abilities of 

the TJP1 RNA transcripts are due to their distinct RNA folding. To circumvent this 
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issue UV crosslinking and immunoprecipitation experiments were carried out with 

TJP1 wildtype RNA transcripts alone using hnRNP L-depleted nuclear extract.  

 

 

 

Figure 4.5 
Secondary structure of TJP1 short RNA transcripts. Secondary structure and 
base pair probabilities predicted for the TJP1 short RNA transcripts (84 nt) with the 
RNAfold web server of the Vienna RNA Websuite (http://rna.tbi.univie.ac.at). Point 
mutations (C→T in yellow; A→G in green) are highlighted. The hnRNP L binding motifs 
are encircled. The 3’ splice site is indicated for each transcript. 
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4.5 HnRNP L regulates alternative poly(A) site selection 

 

Almost all eukaryotic mRNAs undergo 3’ end processing namely polyadenylation 

which is responsible for the addition of poly(A) tails (Colgan & Manley, 1997).  

Polyadenylation of mRNAs occurs in a two-step reaction involving endonucleolytic 

cleavage at the polyadenylation site (poly(A) site) followed by synthesis of an 

adenosine tail (poly(A) tail). In mammals, several factors are known to participate 

in the polyadenylation reaction. These proteins include cleavage and 

polyadenylation specificity factor (CPSF), cleavage stimulation factor (CstF), 

cleavage factors CF I and CF II, and poly(A) polymerase (PAP). The mRNA 

cleavage and polyadenylation site is defined by conserved sequence elements, 

such as the polyadenylation signal AAUAAA, which are located 10 to 30 

nucleotides upstream of the cleavage site. 3’ end formation plays an important role 

in gene expression since improperly processed mRNAs are not transported out of 

the nucleus (Lutz, 2008). Poly(A) tails have been shown to influence mRNA 

stability and translation.  

Recent genome-wide studies concluded that the previously underestimated 

alternative polyadenylation represents a common mechanism contributing to 

protein diversity (Tian et al., 2005). Internal polyadenylation sites are usually 

located in intronic regions which lead to the conversion of an internal exon to a 3’ 

terminal exon. So far, more than half of mammalian genes were found to have at 

least one internal polyadenylation event that potentially results in an mRNA 

variant. Moreover, a number of studies have shown that alternative 

polyadenylation is often coupled to an alternative splicing event (Le Texier et al., 

2006; Tian et al., 2007).  

We have identified an alternative polyadenylation event in the ASAH1 gene which 

is regulated by hnRNP L (Fig. 3.24). Upon knockdown of hnRNP L, use of an 

internal polyadenylation site in intron 5 of the gene was increased. RT-PCR 

analysis with an oligo(dT) primer confirmed that this poly(A) site is genuine. 

Alternative polyadenylation of ASAH1 results in a shortened mRNA transcript due 

to conversion of an elongated exon 5 into the 3’ terminal exon. Until now the 

mechanism of poly(A) site selection by hnRNP L is unclear although potential 

hnRNP L binding motifs were found in the target region (Hung et al., 2008). It 

remains to be investigated if hnRNP L interacts with the polyadenylation 
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machinery or if the mechanism of alternative polyadenylation is different from 

constitutive polyadenylation. Since alternative polyadenylation was shown to be a 

common mechanism contributing to protein diversity it seems likely that other 

genes besides ASAH1 will be identified in further studies.  

 

4.6 HnRNP L represses inclusion of cryptic exons 

 

Recently, it was reported that a CA repeat sequence in the mouse ITGA2 gene 

functions as a length-dependent splicing activator mediated by hnRNP L (Cheli & 

Kunicki, 2006). These findings correlated with our splicing analysis of the human 

eNOS gene where hnRNP L activates splicing by binding to intronic variable-

length CA-repeats (Hui et al., 2003b). Sequence analysis of the human ITGA2 

gene revealed that it also contains a CA-rich region similar to the mouse gene 

(Fig. 3.19). Mutational analysis of ITGA2 minigene splicing led to the identification 

of a cryptic exon within intron 1 of the gene (ITGA2a; Fig. 3.20). The presence of 

the CA-rich sequence within the cryptic exon suppressed its inclusion into the 

mRNA. Surprisingly, additional ITGA2 minigene constructs showed differing 

splicing patterns (Fig. 3.23). Substitution of the CA-rich region in intron 1 resulted 

in either decreased splicing efficiency (ITGA2b) or inclusion of the cryptic exon 

(ITGA2c). Why was inclusion of the cryptic exon observed for only one of the two 

constructs? The constructs differ in parts of their intronic sequence but are of 

similar size and both contain the potential cryptic exon splice sites (Fig. 3.22). 

Recognition of the cryptic exon seems to be independent to a certain amount on 

distance between the two cryptic splice sites but rather depend on the sequence of 

the cryptic exon. It remains to be investigated which sequence element in ITGA2b 

prevents recognition of the cryptic exon. Furthermore, it is very unlikely that the 

cryptic splice sites would be used in the same manner in the natural context since 

they would be separated by approximately 37 kb. This does not exclude the 

possibility, however, that other cryptic exons may be recognised within ITGA2 

intron 1 with another combination of cryptic splice sites. Moreover, it was 

demonstrated in GST-pulldown experiments that hnRNP L directly binds to the 

CA-rich sequence in ITGA2 intron 1 with high affinity but not to an unrelated 

control sequence (data not shown). This finding implied that regulation of ITGA2 

splicing is mediated by hnRNP L binding to the intronic CA-rich element.  
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Recently, we have shown for two genes, ARGBP2 and LIFR, that hnRNP L 

suppresses recognition of multiple exons in long introns which represents a novel 

mechanism of splicing regulation by hnRNP L (Hung et al., 2008). A typical human 

protein-coding gene contains many sequences that match the splice site 

consensus but are normally not used (Sironi et al., 2004; Sun & Chasin, 2000). 

Such splicing signals are referred to as pseudo splice sites. Additional signals are 

necessary for the splicing machinery to distinguish between real and pseudo 

splice sites. Part of the pseudo exons may rely on silencer elements for splicing 

repression. It has been shown that disease-causing mutations can affect pseudo 

exons by leading to aberrant pseudo exon inclusion (Pagani et al., 2002; Sylvie 

Tuffery-Giraud, 2003). These findings suggest that hnRNP L may by involved in 

the repression of pseudoexons, most likely by binding to silencer elements located 

within the pseudoexon. The results from the mutational analysis of ITGA2 splicing 

suggest that this gene also falls into this category. It will be necessary to confirm 

experimentally that regulation of ITGA2 splicing is mediated by hnRNP L and 

furthermore if cryptic exons can be identified in the natural context of ITGA2 intron 

1.  

In the case of the ITGA2b minigene constructs, the CA-rich sequence functions as 

a splicing activator in correlation with the mouse data (Cheli & Kunicki, 2006). This 

finding also corresponds to our findings regarding the splicing regulation of the 

human eNOS gene (Hui et al., 2003b). 

 

4.7 Perspectives 

 

The identification of new hnRNP L target genes led to the discovery of novel 

modes of hnRNP L-dependent splicing regulation but considering the high 

abundance of CA-rich regions in the human genome, the target genes we 

identified so far may only be the tip of the iceberg. New methods are now available 

which can be used for the detection of hnRNP L target genes in living cells. UV 

crosslinking and immunoprecipitation (CLIP) in combination with the recently 

developed high-throughput sequencing methods represent a powerful new tool for 

the identification of in vivo targets of RNA-binding proteins such as hnRNP L (Ule 

et al., 2005; Wang et al., 2008). The knowledge of further target genes may help 

us to reveal common principles of splicing regulation mediated by hnRNP L 
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Little is known so far about hnRNP L-interacting proteins in connection with 

splicing regulation. HnRNP L was shown in yeast two-hybrid screens to interact 

with PTB (hnRNP I), hnRNP D/AUF1, hnRNP E2, and hnRNP K (Hahm et al., 

1998a; Kim et al., 2000; Park et al., 2007). The protein also forms homodimers 

and potentially also heterodimers with hnRNP LL (Kim et al., 2000, and data not 

shown). Rothrock and co-workers found hnRNP L, E2 and PTB associated with an 

exonic splicing silencer (ESS1) of the CD45 gene but only hnRNP L levels were 

decreased by mutation of the silencer sequence (Rothrock et al., 2005). 

Cooperative binding of the three proteins to the ESS1 could not be detected but 

the authors suggested that the interaction between these proteins may increase 

the overall stability of the ESS1-bound regulatory complex. To investigate if 

hnRNP L cooperates with other splicing factors and/or with components of the 

spliceosome machinery will be a major challenge for the better understanding of 

regulatory networks.  

 

Another main topic in splicing regulation by hnRNP L concerns post-translational 

modifications. Changes in the phosphorylation status are a common feature for the 

modulation of the splicing activity of SR proteins (Blaustein et al., 2005; Feng et 

al., 2008; Hagopian et al., 2008; Patel et al., 2005). However, our knowledge on 

post-translational modifications of hnRNPs in splicing regulation is currently very 

limited. For hnRNP A1 it has been shown that cytoplasmic accumulation of the 

protein upon osmotic shock is due to an increase in its phosphorylation state 

(Allemand et al., 2005; van der Houven van Oordt et al., 2000). The decrease in 

nuclear levels of hnRNP A1 led to alternative splicing changes in an E1A minigene 

reporter.  

It will be an interesting task to investigate whether the activity and/or subcellular 

localisation of hnRNP L is also regulated by post-translational modifications. 

Moreover, since hnRNP A1 and L are known shuttling proteins between nucleus 

and cytoplasm and hnRNP L was shown to enhance nucleoplasmic export of 

intronless mRNAs (Guang et al., 2005; Kim et al., 2000).  
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Abbreviations 
 
°C centigrade 
µg microgram 
µl microliter 
µM micromolar 
A adenosine 
aa amino acid(s) 
APS  ammonium persulfate 
ASAH1 N-acylshingosine 

amidohydrolase 1 
ATP adenosine triphosphate 
bp base bair(s) 
BSA bovine serum albumin 
C cytidine 
Ci Curie 
cm centimeter 
CMV cytomegalovirus 
cpm counts per minute 
CTP cytidine triphosphate 
DMEM Dulbecco’s Modified Eagle’s 

medium 
DMPC dimetyl pyrocarbonate 
DNA deoxyribonucleic acid 
DNase deoxyribonuclease 
dNTP deoxynucleoside triphosphate 
DTT dithiothreitol 
E.coli Escherichia coli 
e.g. exempli gratia (=for example) 
ECL enhanced chemiluminiscence  
EDTA ethylenediamine tetraacetic 

acid 
eNOS endothelial nitric oxide 

synthase 
ESE exonic splicing enhancer 
ESS exonic splicing silencer 
EST expressed sequence tag 
et al. et alii (=and others) 
FCS fetal calf serum 
g gram 
g acceleration of gravity 
G guanosine 
GST glutathione sulfate transferase 
GTP guanosine triphosphate 
h hour(s) 
HBS HEPES-buffered saline 
HEPES N-2-hydroxyethylpiperazine 
His histidine 
hnRNA heterogeneous nuclear RNA 
hnRNP heterogeneous nuclear 

ribonucleoprotein 

hnRNP LL hnRNP L-like 
HUVEC human umbilical vein 

endothelial cell 
IgG immunoglobulin G 
IPTG isopropyl-1-thio-β-D-

galactoside 
ISE intronic splicing enhancer 
ISRE intronic splicing regulatory 

element 
ISS intronic splicing silencer 
ITGA2 integrin alpha-2 
kb kilobasepair 
KD dissociation constant  
kDa kilodalton 
M molar 
mg milligram 
min minute(s) 
mJ millijoule 
ml  milliliter 
mM millimolar 
mmol millimole 
mRNA messenger RNA 
mut mutant 
N any nucleotide 
ng nanogram 
Ni-NTA nickel-nitrilotriacetic acid 
nm nanometer 
nM nanomolar 
NMD nonsense-mediated decay 
NP-40 nonidet P-40 
nt nucleotide(s) 
NTP ribonucleoside triphosphate 
OD optical density 
PAGE polyacrylamide gel 

electrophoresis 
PBS phosphate-buffered saline 
PCR  polymerase chain reaction 
PK proteinase K 
pmol picomol 
PMSF phenylmethylsulfonyl fluoride 
Poly(A) polyadenylic acid 
pre-mRNA precursor messenger RNA 
PTB polyprymidine tract binding 

protein 
PTC premature termination codon 
RNA ribonucleic acid 
RNAi RNA interference 
RNase ribonuclease 
rpm rounds per minute 
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RRM RNA recognition motif 
RT reverse transcription 
RT reverse transcriptase 
s second(s) 
SAP shrimp alkaline phosphatase 
SDS sodium dodecyl sulfate 
SELEX systematic evolution of ligands 

by exponential enrichment 
SF1 splicing factor 1 
siRNA small interfering RNA 
SLC2A2 solute carrier family 2 
snRNA small nuclear RNA 
snRNP small nuclear 

ribonucleoprotein 
SR serine-arginine-rich 
sub substitution 
T thymidine 
TEMED N, N, N’, N’-

tetramethylenediamine 
TJP1 tight junction protein 
Tris tris-

hydroxymethylaminomethane 
tRNA transfer RNA 
Tween20 polyoxyethylenesorbiten 

monolaurate 
U  uridine 
U unit 
U2AF U2 auxiliary factor 
U2AF35 U2AF 35 kDa subunit 
U2AF65 U2AF 65 kDa subunit 
UTP uridine triphosphate 
UV ultraviolet 
V volt 
v/v volume per volume 
W watt 
w/v weight per volume 
WT wildtype 
Y pyrimidine base 
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