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Introduction 1

1. Introduction 
Pulmonary hypertension (PH), a chronic disorder of the pulmonary 

vasculature, is characterized by progressive elevation in pulmonary artery 

pressure and the ultimate development of right heart failure and death (1). It is a 

devastating disease that drastically limits physical capacity and seriously reduces 

life expectancy. On average, without treatment, patients had a median life 

expectancy of less than 2.8 years post diagnosis (2). However, the true incidence 

of PH is rare, 1–2/million/year and approximately 10% appear to be familial (3). 

Interestingly, a preponderance of females among PH patients was noted with a 

ratio of female to male varying between 1.7 and 3.5:1(4).  

Pulmonary hypertension (PH) was first described over 100 years ago by Ernst 

von Romberg, a distinguished German physician and clinical scientist, in a 

patient with right-heart failure whose necropsy showed no obvious reason for 

pulmonary arteriosclerosis and diagnosed as "sclerosis" of the pulmonary 

arteries. In 1901, Ayerza noted the profound cyanosis associated with this 

disorder, and described the disorder as "cardiacos negros", but it was Dresdale 

and coworkers who first used the term primary pulmonary hypertension (PPH) 

and subsequently demonstrated the involvement of pulmonary vasoconstriction 

in the pathogenesis of PPH (5). Interest in so-called PPH was excited in 1967–

1972 by an epidemic that was attributed to the ingestion of an appetite 

suppressant, aminorex fumarate (6). This epidemic “Wake-up call” to the 

scientific community prompted the first WHO sponsored symposium, monograph 

on diagnosis and treatment and a substantial progress in understanding the 

pathogenesis of this disorder.  

 
1.1 Definition & Classification 
Pulmonary hypertension is defined as a sustained elevation of pulmonary arterial 

pressure to more than 25 mm Hg at rest or to more than 30 mm Hg with 

exercise, with a mean pulmonary-capillary wedge pressure and left ventricular 

end-diastolic pressure of less than 15 mm Hg. In the past, based on etiology, 

pulmonary hypertensive was divided into two categories (7). 
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i) Primary pulmonary hypertension (PPH): describes PH without a demonstrable 

etiology.  

ii) Secondary pulmonary hypertension (SPH): describes PH that results from a 

coexisting condition known to be complicated by pulmonary hypertension.  

However, due to similar histopathological features and treatment responses 

among these two groups of patients, in 1998, during the Second World 

Symposium on PH held in Evian, France, a new clinical classification of PH was 

proposed (8). 

The Evian classification consisted of five categories and had focused mainly on 

the basis of mechanisms, rather than the associated conditions: 1) pulmonary 

arterial hypertension (PAH), 2) pulmonary venous hypertension (PVH), 3) PH 

associated with disorders of the respiratory system or hypoxemia, 4) PH caused 

by thrombotic or embolic diseases, and 5) PH caused by diseases affecting the 

pulmonary vasculature. PAH has been further divided into idiopathic pulmonary 

arterial hypertension (IPAH) and, when supported by genetic evidence, familial 

pulmonary arterial hypertension (FPAH). Like wise, within each category are 

subsets that reflect diverse causes and sites of injury. This classification served 

as a useful guide to the clinician in organizing the evaluation of a patient with PH 

and developing a treatment plan.  

Recently, a revised clinical classification was proposed at Venice conference in 

2003 (1) (Table 1, Page 3). This classification has preserved the structure and 

spirit of the Evian classification. However, it includes changes that reflect recent 

advances in the understanding and management of PH and uses consistent 

terminology and defines pulmonary hypertension more precisely than previous 

versions.  
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Table 1: Clinical Classification of Pulmonary hypertension 
 

 
 
 1. Pulmonary arterial hypertension (PAH)  

 1.1. Idiopathic (IPAH)  
 1.2. Familial (FPAH)  
 1.3. Associated with (APAH):  

 1.3.1. Collagen vascular disease  
 1.3.2. Congenital systemic-to-pulmonary shunts**  
 1.3.3. Portal hypertension  
 1.3.4. HIV infection  
 1.3.5. Drugs and toxins  
 1.3.6. Other (thyroid disorders, glycogen storage disease, Gaucher  
           disease, hereditary hemorrhagic telangiectasia,  
           hemoglobinopathies, myeloproliferative disorders, splenectomy)  

 1.4. Associated with significant venous or capillary involvement  
 1.4.1. Pulmonary veno-occlusive disease (PVOD)  
 1.4.2. Pulmonary capillary hemangiomatosis (PCH)  

 1.5. Persistent pulmonary hypertension of the newborn  
 

 2. Pulmonary hypertension with left heart disease  
 2.1. Left-sided atrial or ventricular heart disease  
 2.2. Left-sided valvular heart disease  
 

 3. Pulmonary hypertension associated with lung diseases and/or  
               hypoxemia  

 3.1. Chronic obstructive pulmonary disease  
 3.2. Interstitial lung disease  
 3.3. Sleep-disordered breathing  
 3.4. Alveolar hypoventilation disorders  
 3.5. Chronic exposure to high altitude  
 3.6. Developmental abnormalities  
 

 4. Pulmonary hypertension due to chronic thrombotic and/or embolic
               disease  

 4.1. Thromboembolic obstruction of proximal pulmonary arteries  
 4.2. Thromboembolic obstruction of distal pulmonary arteries  
 4.3. Non-thrombotic pulmonary embolism (tumor, parasites, foreign material)  
 

 5. Miscellaneous  
 Sarcoidosis, histiocytosis X, lymphangiomatosis, compression of  

  pulmonary vessels (adenopathy, tumor, fibrosing mediastinitis) 
 
 
 
(Revised classification of pulmonary hypertension (Venice 2003) from Simonneau G et al., J Am 
Coll Cardiol. 2004 Jun 16;43:5S-12S). 
        

In addition, a functional classification (Table 2, Page 4) patterned after the New 

York Heart Association (NYHA) for heart disease was developed to allow 
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comparisons of patients with respect to the clinical severity of the disease 

process (8).  

 
Table 2: Functional Classification NYHA 
 

 
Class 

 

 
Description 

 
I 

 
 
 

II 
 
 
 

 
III 

 
 
 
 

IV 

 
Patients with pulmonary hypertension but without resulting 
limitation of physical activity. Ordinary physical activity does not 
cause undue dyspnea or fatigue, chest pain or near syncope. 
 
Patients with pulmonary hypertension resulting in slight limitation 
of physical activity. They are comfortable at rest. Ordinary 
physical activity causes undue dyspnea or fatigue, chest pain or 
near syncope. 
 
Patients with pulmonary hypertension resulting in marked 
limitation of physical activity. They are comfortable at rest. Less 
than ordinary physical activity causes undue dyspnea or fatigue, 
chest pain or near syncope. 
 
Patients with pulmonary hypertension with inability to carry out 
any physical activity without symptoms. These patients manifest 
signs of right heart failure. Dyspnea and/or fatigue may even be 
present at rest. Discomfort is increased by any physical activity. 
 

 
(Rich S. Primary pulmonary hypertension: executive summary. Evian, France: World Health 
Organization, 1998).  

 
1.2 Histopathology 
Histopathologically, the pulmonary arteries in PAH patients showed intimal 

thickening, medial hypertrophy, adventitial thickening, obliteration of small 

arteries, and occasionally, vasculitis in the walls of the pulmonary veins (Figure 

1). A fascinating focal vascular structure, the plexiform lesion, is also found in 

many cases of PAH (9-11). 

Plexiform lesion: is a focal proliferation of endothelial channel lined by 

myofibroblasts, smooth muscle cells and connective tissue matrix. They 
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represent a mass of disorganized vessels that arise from pre-existing pulmonary 

arteries (Figure 1A, B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Histology of PAH. (A), Plexiform lesion (magnification 10X). Note plexiform lesion 

occurs distal to vascular obstruction, suggesting a role for angiogenesis in its origin. (B), 
Magnification of plexiform lesion seen in A magnification 25X). (C), Intimal fibrosis of small 

pulmonary artery causing vascular obstruction (magnification 25X). (D), Medial hypertrophy 

(magnification 25X). (Archer S et al., Circulation. 2000)   

 

Intimal fibrosis: is a thickening and fibrosis of intimal layer due to migration and 

proliferation of smooth muscle cells, fibroblast and myofibroblast into the intima. 

This may arise in concentric luminar, eccentric or concentric non luminar fashion. 

In addition, a hallmark of severe pulmonary hypertension the neointima is the 

formation of a layer of myofibroblasts and extracellular matrix between the 

endothelium and the internal elastic lamina, termed the neointima (Figure 1C).  

Media hypertrophy: is an increase in the cross sectional area of the media of 

pre and intra acinar pulmonary arteries. This originates due to both hypertrophy 
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and hyperplasia of smooth muscle fibres as well as increase in connective tissue 

matrix and elastic fibres in the media of muscular arteries (Figure 1D).  

Adventitial thickening: is a thickening of adventitia due to increased fibroblast 

cellularity and extracellular matrix (ECM) deposition. This is highly prominent in 

the small, muscular pulmonary arteries and occurs in most cases of PAH. 

Nevertheless, it is extremely difficult to evaluate.  

All the above changes are seen typically in clinical classification IPAH; FPAH and 

APAH. Histopathological changes in various forms of PAH are qualitatively 

similar but with quantitative differences in the distribution and prevalence of 

pathological changes in the different components of the pulmonary vascular bed 

including arterioles, capillaries and veins.  

 

1.3 Pathophysiology/Pathological mechanisms 
The pathogenesis of IPAH is complex and multifactorial. Increased pulmonary 

vascular resistance in IPAH patients probably results from a combination of 

pulmonary vasoconstriction, vascular-wall remodeling and thrombosis. However, 

a growing body of evidence implicates the central role of endothelial dysfunction 

in the initiation and progression of IPAH. 

 

1.3.1 Endothelial dysfunction/Vasoconstriction 
One of the complex and multifactorial processes that contribute to the 

development of pulmonary hypertension involves endothelial cell dysfunction. 

Endothelial cells play an integral role in the maintenance of normal vascular 

structure and function. An injury and subsequent dysfunction of the endothelium 

causes altered production of endothelial mediators and growth factors that 

thereby facilitates vasoconstriction and pulmonary arterial smooth muscle cell 

(PASMC) hypertrophy, leading to pulmonary vascular remodeling and in situ 

thrombosis (Figure 2, Page 8) (12,13). 

The mechanisms responsible for endothelial activation are yet to be fully 

elucidated. However, a number of stimuli, including cytokines, viral infection 

(HIV), free radicals, shear stress from increased pulmonary blood flow, and 
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alveolar hypoxia, may potentially activate vascular endothelial cells to elicit basic 

alterations in their local production of vasoactive and vasoconstrictive mediators. 

The abnormal balance of these mediators in the pulmonary vasculature 

culminates in the development of endothelial cell proliferation and 

vasoconstriction (14,15). Though, it is yet unclear whether a disturbance in 

humoral mediators causes pulmonary hypertension or is a result of it. Of those 

local mediators, nitric oxide, prostacyclin, and endothelin-1 are among the best 

studied and most commonly implicated in the pathogenesis of IPAH.  

 

1.3.1.1 Nitric oxide 
Nitric oxide (NO)/Endothelium derived relaxing factor (EDRF) is a potent 

vasodilator and an inhibitor of platelet activation and vascular smooth-muscle cell 

proliferation (16,17). Nitric oxide (NO) is constitutively produced in the lung 

endothelium by endothelial nitric oxide synthase (eNOS). Nonetheless, the 

expression of eNOS can be modulated by diverse stimuli such as shear stress 

and increased pulmonary blood flow (18). 

Interestingly, patients with IPAH have low levels of NO in their exhaled breath. In 

fact, the severity of pulmonary hypertension correlates inversely with NO levels 

estimated by measurement of NO reaction products in bronchoalveolar lavage 

fluid (19). Furthermore, decreased levels of the eNOS have been observed in the 

pulmonary vascular tissue of patients with pulmonary hypertension, particularly 

those with IPAH (20,21). Though, controversial reports exist in concern to eNOS 

expression in IPAH patients, which were discussed in detail in later part of the 

thesis. 

 

1.3.1.2 Endothelin-1 
Endothelin-1 (ET-1) produced by human endothelial cells, is the most potent 

vasoconstrictor and mitogen, with the ability to induce cell proliferation in a 

number of cell types, including vascular smooth muscle cells. The peptide exerts 

its biologic effects via interacting with two G-protein-coupled receptors, ETA and 

ETB (22). In patients with IPAH, several derangements in ET-1 expression and 
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activity have been demonstrated. Patients with IPAH have been shown to have 

higher serum levels of ET-1 and higher arterial-to-venous ratios of ET-1 than do 

healthy controls. Endothelin levels have also been shown to correlate with 

pulmonary hemodynamics (23). In addition, lung specimens from patients with 

IPAH when compared to healthy donors, exhibit increased ET-1 staining of the 

muscular pulmonary arteries (24). 
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Figure 2: Pathogenesis of pulmonary arterial hypertension (PAH). Schematic outline of 

abnormalities seen in PAH that may contribute to its cause or progression. An injury and 

subsequent dysfunction of the endothelium by a variety of stimuli causes altered production of 

endothelial mediators and growth factors that thereby facilitates vasoconstriction and pulmonary 

arterial cell types (endothelial cells (EC), smooth muscle cells (SMC) and fibroblasts (FB)) 

proliferation and migration, leading to pulmonary vascular remodeling and in situ thrombosis. The 

reduction of cross-sectional area of the pulmonary microvasculature contributes to the increased 

pulmonary vascular resistance observed in this disease (Author's Slide). 

 

1.3.1.3 Prostacyclin 
The endothelium also produces prostacyclin (PGI2) by cyclooxygenase 

metabolism of arachidonic acid. It possesses strong vasodilatory, anti-

aggregatory, anti-inflammatory, and anti-proliferative properties (25). Prostacyclin 

synthesis is disturbed in endothelial cells of IPAH patients. Analysis of urinary 

metabolites of prostacyclin showed a decreased excretion of 6-ketoprostaglandin 

F1, a stable metabolite of prostacyclin in patients with IPAH (26). In addition, a 

decrease in prostacyclin synthase expression has been noted in pulmonary 

arteries of patients with severe IPAH, portopulmonary hypertension and HIV-

associated PAH, further underscoring the role of endothelial dysfunction in the 

pathobiology of PAH (27). 

 

1.3.2 Remodeling 
In addition to pulmonary vasoconstriction that results from dysregulation of the 

local endothelial mediators as discussed above, pulmonary vascular remodeling 

seems to play a major role in the increased vascular resistance seen in IPAH 

(13). Pulmonary vascular remodeling is characterized by thickening of all three 

layers of the blood vessel wall, the adventitia, the media and the intima (28). The 

thickening is due to hypertrophy (cell growth) and/or hyperplasia (proliferation) of 

the predominant cell type within each of the layers and increased deposition of 

extracellular matrix components (e.g., collagen, elastin, and fibronectin) (29-32). 

These cellular changes usually results from the anti-mitogenic and mitogenic 

substances (NO, PGI2, and Endothelin) that are deranged by endothelial injury. 

In addition, other stimuli that derives from depolarized smooth muscle cells 
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(voltage-gated potassium channels (Kv)) and locally activated platelets 

(thromboxane A2 and serotonin) also plays a major role in the vascular cell 

proliferation. 

 

1.3.2.1 Serotonin  
Serotonin (5-hydroxytryptamine) is a vasoconstrictor that promotes smooth-

muscle cell hypertrophy and hyperplasia. A role of 5-HT has been suggested in 

IPAH. Plasma serotonin levels are increased in IPAH patients compared with 

control subjects, and IPAH platelets have decreased serotonin concentrations 

(33). These increased levels were shown to be associated with mutations in the 

serotonin transporter (5-HTT), the 5-hydroxytryptamine 2b receptor (5-HT2B), or 

both that have been described in platelets and lung tissue from patients with 

IPAH (34). Most interestingly, various studies suggest that appetite suppressant, 

aminorex fumarate induced risk of IPAH is mainly mediated via its interaction 

with serotonin transporter, 5-HTT (6). 

 

1.3.2.2 Potassium channels 
Potassium channels are the transmembrane-spanning proteins that have a 

greater selectivity for K+ ions. There are three major classes K+ channels 

channels: Kv channels (including Ca2+-sensitive channels, KCa), the inward 

rectifier channels (Kir), and a family with a tandem, 2-pore motif (TASK). Among 

these, Kv channels have a voltage sensor and both respond to and contribute to 

determining membrane potential in PASMCs (35). However, patients with IPAH 

have low expression Kv1.5 channel that lead to membrane depolarization of 

PASMCs and to an increase in intracellular calcium resulting in both 

vasoconstriction and proliferation (36,37).  

 

1.3.2.3 Thromboxane  
Thromboxane, like prostacyclin, is an arachidonic acid metabolite and produced 

by endothelial cells and platelets. It is a potent vasoconstrictor, a smooth muscle 

mitogen, and an inducer of platelet aggregation (25). An increased production of 
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thromboxane A2 metabolites is seen in IPAH (26). Furthermore, thromboxane-

receptor density is increased in the right ventricle of patients with IPAH (38). 

 

1.3.3 In situ thrombosis 
The third major characteristic pathophysiologic abnormality in pulmonary 

hypertension is in situ thrombosis. It is believed to be initiated by abnormalities in 

the clotting cascade, the endothelial cells, or the platelets and thereby promoting 

the release of procoagulation mediators (39). Indeed, intravascular coagulation 

seems to be a continuous process in IPAH patients, characterized by increased 

blood thrombin activity and decreased thrombomodulin expression (40,41). In 

addition, PGI2 and NO, both inhibitors of platelet aggregation, are decreased at 

the level of the injured endothelial cell, as discussed above.  

Furthermore, circulating platelets in patients with IPAH seem to be in a 

continuous state of activation and contribute to the prothrombotic milieu by 

aggregating at the level of the injured endothelial cells (42). In most cases, 

however, it remains unclear whether thrombosis and platelet dysfunction are 

causes or consequences of the disease. 

 

1.4 Diagnosis and evaluation 
1.4.1 Clinical presentation 
The onset of IPAH symptoms is usually insidious with several years elapsing 

before the diagnosis is actually made. Furthermore, pulmonary hypertension 

often presents with nonspecific symptoms. The most common initial clinical 

manifestation of IPAH is dyspnea, which is most apparent during effort or 

exercise (43). General fatigue and chest pain are common complaints as well. 

Other signs that are presented as the disease progresses include cyanosis, 

raised jugular venous pressure, right-ventricular heave, loud pulmonary 

component of the second heart sound, murmurs of tricuspid regurgitation, 

hepatomegaly, ascites and peripheral edema (44,45). An adaptation of the NYHA 

classification of functional capacity has proven useful in qualitatively assessing 

disease progression (Table 2, Page 4). 
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1.4.2 Diagnostic evaluation 
A high index of suspicion, a meticulous history and a careful physical 

examination are paramount to the diagnosis of IPAH (45). Patients with above 

mentioned signs and symptoms were initially investigated with 

electrocardiogram, chest radiograph, and respiratory function tests. Once they 

were suspected of pulmonary hypertension, an extensive evaluation was 

performed to determine the etiology, severity and the responsiveness to 

vasodilator challenge. It includes echocardiography, serologic evaluations, 

ventilation-perfusion (V/Q) scanning, pulmonary function testing and an 

assessment of functional capacity (6 min walk test). The final step in this 

evaluation is right heart catheterization for the assessment of 

vasoresponsiveness (46). 

 

1.5 Treatment  
No cure for IPAH currently exists. However, medical therapies currently available 

can improve the functional status and quality of life of the patients. Treatment for 

IPAH patients begins with conventional therapies for the treatment include 

anticoagulants, inotropic agents, diuretics, and supplemental oxygen (47).  

The anticoagulant agent warfarin is recommended for use by all patients with 

IPAH in order to prevent further formation of thrombotic lesions in the pulmonary 

arterioles. Retrospective and prospective studies have demonstrated that 

warfarin treatment is associated with increased survival. Diuretics are 

recommended if edema is present and adapted to prevent an excessive 

decrease in right ventricular preloads in the presence of tricuspid regurgitation. 

Further, as hypoxia is a potent stimulus to vasoconstriction, oxygen requirements 

should be assessed at rest and during exercise, and oxygen should be 

supplemented to achieve a saturation of >90% at all times (47,48). 

Apart from the above, vasodilator therapy is considered to be the mainstay of 

treatment in patients with IPAH. Such therapy is used in an attempt to reduce 

pulmonary artery pressure and, thus, right-ventricular afterload. Before 

vasodilator therapy is initiated for IPAH, patients should be identified as 
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“responders” or “nonresponders” by measuring the change in pulmonary artery 

pressure and pulmonary vascular resistance in response to short-acting 

vasodilators such as inhaled nitric oxide, intravenous prostacyclin, or adenosine. 

Patients with a positive response (>20% reduction in mean pulmonary arterial 

pressure (mPAP) or pulmonary vascular resistance (mPVR)) are more likely to 

benefit from long term vasodilator therapy with calcium channel blockers (CCB) 

(49). During acute vasodilator testing, these patients showed significantly lower 

levels of both mPAP and mPVR, which reached near-normal values. Patients 

with a vasodilator response of this magnitude who are treated with a CCB have a 

reported survival of up to 94% at five years (compared with 38% in those who 

failed to respond and were not treated with a CCB). Nevertheless only a small 

subgroup of patients with PAH benefits from CCB therapy (<25%) (50).  

As the medical therapies with pure vasodilators have provided little or no 

beneficial effects on survival in the vast majority of patients, the focus of the 

treatment in recent years has changed from vasodilators to anti-proliferative 

agents. Goals of specific IPAH therapy should include reduction of pulmonary 

pressure and pulmonary vascular resistance, inhibition or reversal of pulmonary 

vascular remodelling and improvement of right ventricular function. 

 

1.5.1 Prostacyclin analogues 
These agents act through an increase in cAMP, thereby mediating vasodilation 

and inhibition of platelet aggregation and PASMCs proliferation. Continuous 

intravenous infusion of epoprostenol (PGI2 analogue) for 3 months, in a 

prospective, randomized, controlled trial in 81 patients with class III or IV IPAH 

demonstrated improved survival and exercise tolerance, increased cardiac 

output, and decreased pulmonary vascular resistance (51). Moreover, a 

significant improvement occurred in patients who do not respond acutely to 

pulmonary vasodilatation, indicating that long-term treatment may be influencing 

cellular proliferation, a crucial mechanism in pulmonary vascular remodeling (52). 

However, due to the lack of pulmonary selectivity, intravenous epoprostenol may 

induce hypotension and worsening of the ventilation-perfusion mismatch. In 
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addition, use of epoprostenol is complicated with short half-life, cost and 

complicated modes of delivery.  

Nonetheless, the beneficial effects of continuous PGI2 therapy have led to trials 

using more stable analogues and alternative routes of administration. These 

include iloprost, available for intravenous, oral and inhalation use; UT-15, which 

is administered subcutaneously; beraprost, an orally active analogue. Inhaled 

iloprost, a stable prostacyclin analogue holds great promise in the PAH 

treatment. A randomized double-blind placebo-controlled multicentre trial of three 

months duration conducted in Europe in 203 patients with severe PAH 

demonstrated improved exercise capacity, symptoms, hemodynamic and quality 

of life in actively treated patients compared to placebo (53). 
 

1.5.2 Inhaled nitric oxide 
Since pulmonary arterial hypertension is associated with a defect in the 

production of potent and pulmonary specific vasodilator - nitric oxide, 

supplementation with inhaled nitric oxide (iNO) has been proposed as a potential 

therapy (54). Short-term inhalation of nitric oxide has substantial pulmonary 

specific vasodilator effects and proved beneficial in the treatment of IPAH (55). 

However, this treatment modality suffers from two potential complications. First, 

iNO causes increase in the pulmonary artery wedge pressure subsequent to 

pulmonary edema formation. Second, sudden termination of iNO occasionally 

causes a potentially life threatening hypertensive rebound effect. In addition, long 

term iNO therapy in large number of IPAH patients is limited by its short half life 

and cost (55,56). 

 

1.5.3 Endothelin antagonists 
As described above, endothelin plays a significant pathogenetic role in the 

development and progression of IPAH. Bosentan, an orally active dual endothelin 

receptor ETA /ETB antagonist, has been evaluated in a large randomized 16-

week trial with NYHA class III and IV IPAH and PAH related connective tissue 

disease. Bosentan improved pulmonary hemodynamics, exercise capacity, 
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functional status, and the clinical outcome (57,58). However, severe side effects 

such as abnormal hepatic function and anemia developed in a significant 

percentage of patients taking this drug. 

 

1.5.4 Phosphodiesterase inhibitors  
Cyclic nucleotide phosphodiesterases (PDEs) comprise a large and complex 

group of structurally related enzymes, which catalyze the hydrolysis of cAMP and 

cGMP, and thereby regulate intracellular concentrations of these important 

"second messengers". In this manner, PDEs can affect various biological 

processes including the effects mediated by nitric oxide and prostanoids. Till 

date, eleven different mammalian PDE gene families have been identified 

(59,60). Of these, PDE5 is shown to be largely responsible for cGMP metabolism 

in the lung (61). The development of potent and selective PDE5 inhibitors, such 

as sildenafil, E4021, and E4010, has provided an opportunity to examine the 

effects of PDE5 inhibition as a treatment for PAH.  

Sildenafil, when used for the treatment, has been shown to have acute 

hemodynamic effects in IPAH (61,62). Its clinical use in patients with IPAH in 

several, nonrandomized trials has been associated with improvements in function 

and hemodynamics (63). Thereby, suggesting the therapeutic efficiency of PDE5 

inhibitors in IPAH and drives towards exploiting other PDE subtypes and their 

inhibitors in this disease.  

Though not described in detail, other potential therapies include vasoactive 

intestinal peptides and selective serotonin reuptake inhibitors. 

 

1.6 Nitric Oxide 
NO is a gaseous free radical with only a few seconds of biological half-life, and 

has been identified as critical player in a remarkable array of essential biological 

processes, ranging from neurotransmission, the control of vascular tone, 

apoptosis to inflammation (16,64). 

A glance back in history of NO, early studies by Furchgott and Zawadski 

demonstrated that endothelial cells are able to release a labile factor upon 
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acetylcholine stimulation, named as endothelium derived relaxing factor (EDRF) 

that diffuses to the adjacent muscle layer and causes vasorelaxation (65). 

Finally, in 1987, Ignarro and colleagues pharmacologically and chemically proved 

EDRF to be NO (66). This discovery and subsequent findings related to its 

biological functions such as platelet aggregation, vasodilation and 

neurotransmission were honored by Nobel Prize in 1998.  

 

1.6.1 Nitric oxide synthase 
NO is synthesized from amino acid L-arginine by a family of enzymes termed 

nitric oxide synthases (NOS) (67). Nitric oxide synthases are dimeric heme 

containing enzymes composed of oxygenase and reductase domains which 

possess binding sites for flavine dinucleotide (FAD), flavine mononucleotide 

(FMN), calmodulin (CaM) and tetrahydrobiopterin (BH4). In its active form, NOS 

forms a tetramer where two NOS monomers associate with two calmodulins and 

catalyzes five-electron oxidation of the terminal guanidino nitrogen atoms of L-

arginine to generate L-citrulline and NO (Figure 3, Page 17) (68). 

To date, three distinct isoforms of NOS enzymes have been identified, they are 

neuronal (nNOS or NOS1), inducible (iNOS or NOS2) and endothelial (eNOS or 

NOS3) NOS, the genes for which are located on chromosomes 12, 17 and 7 

respectively (17). NOS 1, 2 and 3 were originally purified from neurons, vascular 

endothelium and cytokine-induced macrophages although the three isoforms are 

now known to be distributed across a wide spectrum of cell types and tissues. 

Furthermore, a particular type of cell can express more than one isoform of NOS 

(69). 

Despite distinctions, due to high degree of sequence homology at c-terminal 

reductase domain, all NOS isoforms share important biochemical features mainly 

in concern to catalysis. All are NADPH and calmodulin-dependent and contain 

consensus binding sites for FAD and FMN, BH4, and a heme complex and 

mediates a five-electron oxidation of L-arginine to form NO and L-citrulline (68). 

Notably, for all three NOS isoforms, NO synthesis depends upon the enzyme's 

binding of the ubiquitous calcium regulatory protein calmodulin. For eNOS and 
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nNOS, increases in resting intracellular Ca2+ concentrations [Ca2+
i] are required 

for their binding to calmodulin and, consequently, for their becoming fully 

activated. In contrast, iNOS appears able to bind calmodulin with extremely high 

affinity even at the low [Ca2+
i] characteristic of resting cells. Thus, the intracellular 

activity of the eNOS and nNOS may be closely modulated by transient changes 

in [Ca2+
i], and signaling molecules such as bradykinin, acetylcholine and 

glutamate that increases intracellular Ca2+ concentration through receptor 

associated mechanisms (17,18). On the contrary, iNOS activity is no longer 

temporally regulated by intracellular calcium transients. Its expression and 

activity can be induced by various cytokines and produces huge amounts of NO 

for long periods of time (70). 
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Figure 3: Nitric Oxide (NO) synthesis. NO is synthesized from the amino acid L-arginine by 

endothelial nitric oxide synthase (eNOS) in endothelial cells. Under basal conditions, eNOS is 

tethered to caveolin-1 (Cav-1) and inactive. However, with agonist (Bradykinin or fluid shear 

stress) induced increases in intracellular Ca2+, calmodulin (CaM) binds to eNOS and displaces 

Cav-1 in a mechanism facilitated by cooperative binding of hsp-90, leading to activation of eNOS 

activity. In addition, kinases like Akt and PKA also facilitates CaM interaction with eNOS. The 

activated eNOS then translocates to the cytoplasm where it catalyzes NO generation from the 

amino acid L-arginine that was transported inside the cell via. a family of transporters called 

cationic amino acid transporter (CAT-2B). Tetrahydrobiopterin (BH4) is an important cofactor 

needed for NO generation (Author's Slide).  

 
As discussed above, NO is a potent vasodilator known and plays an important 

role to maintain the stability of systemic and pulmonary hemodynamics. It causes 

relaxation by diffusing across the endothelial cell and stimulating soluble 

guanylate cyclase on the vascular smooth muscle cell. This converts GTP into 

cGMP. Relaxation results from an accumulation of cGMP, which then modifies 

several intracellular processes, lowers intracellular calcium and inhibits the 

contractile apparatus within the vascular smooth muscle cell (71). In addition, NO 

can also directly activate calcium-dependent potassium channels (72) leading to 

endothelium-dependent hyperpolarization of vascular smooth muscle cells, 

resulting in vasodilation.  

The effects mediated NO are versatile and multifactorial. Beyond vasodilation, it 

also regulates leukocyte adhesion to the endothelium, inhibits vascular smooth 

muscle cell proliferation, apoptosis, platelet aggregation, and angiogenesis 

(Figure 4, Page 19). These intracellular processes are mediated not only by 

cGMP-dependent but also in a guanylate cyclase and cGMP - independent 

manner. cGMP independent biological functions involving high levels of NO, 

where NO reacts with superoxide anion (O2-) to yield peroxynitrite anion  (ONOO-

). Peroxynitrite by lipid peroxidation, direct deamination of DNA and inactivation 

of proteins mediates cytotoxic effects and tissue injury the effects that were 

mainly observed in iNOS induced inflammation. These controversial responses, 

cytoprotective and cytotoxic, can only be explained by direct and indirect 

interactions of nitric oxide (73).  
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Figure 4: Pleotropic effects of Nitric oxide (NO). NO is an important molecular mediator of 

numerous physiologic processes in virtually every organ. In the vasculature, endothelium derived 

NO plays a crucial role in the regulation of vascular tone, inflammation, growth and the pro-

thrombotic and anti-thrombotic properties (Author's Slide). 

 
1.6.2 Regulation of NO 
Due to short biological half-life and rapid diffusion rates, the cellular 

concentrations of NO are mainly dependent on rates of synthesis by the enzyme 

nitric oxide synthase (NOS). Therefore, cellular concentrations of NO depend on 

(i) NOS expression, (ii) NOS activity, (iii) substrate availability, (iv) NO half life, 

and (v) sensitivity to NO.  

Although eNOS is constitutively expressed in vascular endothelial cells, both in 

vivo and vitro studies have demonstrated that basal expression and stability of 
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eNOS mRNA can be influenced by several stimuli. Shear stress, estrogen, 

lysophosphatidylcholine, and oxidized low density lipoprotein have been found to 

upregulate eNOS expression. On the other hand, tumor necrosis factor-α (TNF-

 α), erythropoietin, and high concentrations of oxidized LDL downregulates eNOS 

expression (74,75). Most interestingly, as a negative-feedback regulatory 

mechanism eNOS expression is modulated by NO itself via a cGMP-mediated 

process (76). 

NO production in the endothelial cells can also be influenced by posttranslational 

modifications and subcellular targeting of eNOS. These post-translational 

modifications include phosphorylation, N-myristoylation and thiopalmitoylation. 

Studies from many research groups have indicated that the localization of eNOS 

within the cell, mainly at caveolae also determines its activity. In caveolae, 

caveolin-1 inhibits eNOS activity is by interfering with the calmodulin binding site. 

Factors like Ca2+i increase, shear stress and certain post-translational 

modifications were shown to displace caveolin-1 and subsequently eNOS 

activation. Besides these, changes in substrate and cofactor availability, protein–

protein interactions and phosphorylation state have gained importance as 

significant regulators of NOS activity (77). 

The amino acid L-arginine is the only physiological substrate for NOS; hence 

regulation of its availability could be a major determinant in NO production. 

Interestingly, intracellular levels of L-arginine far exceed the Km of the NOS 

enzyme, so its availability is unlikely ever to be the rate-limiting step in the 

formation of NO by the endothelium in normal physiological conditions. However, 

a number of in vivo and in vitro experiments have shown that L-arginine 

availability can be rate-limiting for the generation of NO; especially in endothelial 

dysfunction associated pathophysiological conditions. This availability of L-

arginine is not only influenced by its synthesis and degradation but also by its 

transcellular transport into the cell (77,78). A high-affinity carrier resembling the 

cationic amino acid transport (CAT) system y+ is responsible for the transcellular 

transport of L-arginine and its analogues. The transporter activity is mediated by 

the CAT family that is composed of four isoforms, CAT-1, CAT-2A, CAT-2B, and 
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CAT-3. The recent finding that y+ transporter co-locates with caveolin-bound 

eNOS suggest that activity of this transporter may be important to determine the 

local concentrations of L-arginine and their analogues (79). Various exogenous 

stimuli such as lipopolysaccharide (LPS), interleukin-1ß (IL-1ß), TNF-α, insulin, 

angiotensin II and  bradykinin have been found to stimulate the L-arginine 

transport into endothelial cells by the y+ system, which may increase NO 

production (80). Finally, an increasing number of reports in the literature indicate 

that endogenously produced inhibitors of NOS majorly regulate NO generation 

and may be responsible in numerous endothelial dysfunction associated disease 

states.  

 

1.6.2.1 Endogenous NOS inhibitors 
The guanidino-methylated L-arginine analogues NG, monomethyl-L-arginine (L-

NMMA), NG,NG-asymmetric dimethylarginines (ADMA); NG,NG-symmetric 

dimethylarginines (SDMA) have been shown to endogenously modulate L-

arginine handling and / or NO synthesis in biological systems (Figure 5).  

 

 

 

 

 

 

 

 

 

Figure 5: Chemical structures of methylarginines. (Masuda H, Nippon Yakurigaku Zasshi. 

2002) 

The biological significance of guanidino-methylated L-arginine analogues, mainly 

L-NMMA was first identified in 1986 as a compound that inhibits cytotoxic effects 
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of activated macrophages and prevents the release of nitrite and nitrate derived 

from L-arginine within these cells (81). Afterwards, L-NMMA became the 

standard nitric oxide synthase inhibitor used to evaluate the role of the L-arginine 

- nitric oxide pathway.   

Methylarginines are endogenously derived from the proteolysis of methylated 

arginine residues on wide range of highly specialized nuclear proteins that are 

involved in RNA processing and transcriptional control (82). The methylation is 

carried out by a group of enzymes referred to as protein-arginine methyl 

transferases (PRMT) (83). Subsequent proteolysis of proteins containing 

methylarginine groups leads to the release of free methylarginine into the 

cytoplasm.  However, the release of specific methylarginines depends on the 

subtypes of PRMT (PRMT I and PRMT II). PRMT type I catalyses the production 

of L-NMMA and ADMA in non-myelin basic protein substrates whereas PRMT 

type II catalyzes L-NMMA and SDMA in myelin basic protein substrates.  

Plasma L-NMMA, ADMA and SDMA enter the cell through the y+ cationic amino 

acid transporter and most interestingly they compete with each other as well as 

with L-arginine for transport (80). In addition, among these L-NMMA and ADMA 

effectively inhibits NOS but not SDMA. In cases of L-arginine limitation, they can 

even influence eNOS to generate even free oxygen radicals (84). However, 

ADMA seems to be more important as it is predominantly present (10 fold 

greater) than L-NMMA in plasma.  

Once methyl arginines are released from methylated proteins by proteolysis, the 

two principal factors controlling levels are renal clearance and metabolism 

(85,86). SDMA is largely cleared by renal excretion. By contrast, the vast majority 

of ADMA and L-NMMA generated within the body is metabolized by the enzyme 

dimethylarginine dimethylaminohydrolase (DDAH) (Figure 6, Page 23). 
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Figure 6: Schematic overview of the biochemical pathways related to methylarginines. 
Methylation of arginine residues within proteins or polypeptides occurs through N-

methyltransferases (PRMTs), which utilize S-adenosylmethionine as a methyl group donor. After 

proteolytic breakdown of proteins, free ADMA, SDMA and L-NMMA are released into the 

cytoplasm. ADMA and L-NMMA acts as inhibitors of NOS by competing with the substrate of this 

enzyme, L-arginine, and causes endothelial dysfunction that was associated with various 

vascular diseases. SDMA can’t inhibit NOS but it can efficiently compete with substrate L-arginine 

for its intracellular transport. ADMA is eliminated from the body via metabolism by the enzyme 

dimethylarginine dimethylaminohydrolase (DDAH) to citrulline and dimethylamine (Boger RH, 

Cardiovasc Res. 2003). 

 

1.6.2.2 Dimethylarginine dimethylaminohydrolase (DDAH) 
Identified and purified from rat kidney in 1987 by Ogawa and co-workers DDAH 

demonstrated specific hydrolysis of ADMA and L-NMMA to L-citrulline and either 

mono- or dimethylamine (86). Several studies suggest that DDAH is the key 

elimination route for ADMA as 83% of ADMA that was generated each day in 

humans is metabolized by DDAH and remaining small amount via renal system. 

Further, inhibition of DDAH activity with specific inhibitor, S-2-amino-4(3-

methylguanidino) butanoic acid (4124W) on isolated vascular segments caused a 
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gradual vasoconstriction by elevating ADMA, evidenced for the first time the 

critical role of DDAH on ADMA levels and subsequent NO synthesis (87). This 

notion has been strengthened by recent observations made from a transgenic 

DDAH mouse model (88). The transgenic animals showed an increased DDAH 

activity and reduced ADMA levels. The reduction in plasma ADMA is associated 

with a significant increase in NOS activity and reduced systolic blood pressure, 

systemic vascular resistance, and cardiac stroke volume. 

To date, two isoforms of DDAH have been described, DDAH1 and 2 located on 

chromosome 1p22 and 6p21.3, respectively (89). The overall amino acid 

sequence similarity between both isoforms is approximately 62% and is highly 

conserved among species. Isoforms, DDAH1 and 2 show different specific tissue 

distributions, DDAH1 is typically found in tissues expressing nNOS, whereas 

DDAH2 predominates in tissues containing the endothelial isoform of NOS 

(eNOS), supporting the hypothesis that intracellular ADMA concentration is 

actively regulated by DDAH in NO-generating cells. 

Moreover, crystallographic analysis of DDAH have demonstrated that the active 

site of DDAH contains a free cysteine residue and one tightly bound non-catalytic 

zinc ion, which through reversible binding to the active site regulates the 

enzymatic activity (90), thus making it exquisitely sensitive to oxidative stress.  

Human endothelial cells synthesize methylarginines and ADMA is produced in 

quantities that may affect NO synthesis. Chronic exposure of cultured endothelial 

cells with ADMA (2µM) has demonstrated intriguing changes in endothelial 

behavior (91). Yet under physiological conditions the production of ADMA and its 

effects are balanced by DDAH. 

Intriguingly, plasma levels of ADMA were elevated and found to associate with 

endothelial vasodilator dysfunction in patients with coronary and peripheral 

arterial disease, and those with risk factors such as hypercholesterolemia, 

hyperhomocysteinemia, chronic renal failure and chronic heart failure (92-95). 

Specifically, each of these risk factors for cardiovascular disease is associated 

with endothelial oxidative stress and inactivation of DDAH (96,97). The impaired 

DDAH activity thereby allows ADMA to accumulate and to block NO synthesis. 



Introduction  25 

 

Impaired DDAH activity in these disease conditions may be modulated by 

inflammatory cytokines, oxidized lipoproteins, glucose and homocysteine which 

are increased in endothelial oxidative stress. 

 

1.6.3 NO and pulmonary hypertension 
As described above, patients with IPAH have decreased levels of NO in their 

lungs, which may contribute to the development of pulmonary hypertension. 

Recently, patients with IPAH also illustrated reduced intrabronchial NO and NO 

biochemical reaction products compared with healthy individuals (19). 

Interestingly, the low levels of NO products correlated directly with the severity of 

disease. Even in experimental conditions, exposure to hypoxia impairs 

endothelium- dependent relaxation of isolated pulmonary vascular rings and the 

release of NO from cultured pulmonary endothelial cells (98). Thereby indicating 

the important role of NO axis in the regulation of vascular tone and remodeling of 

the hypertensive pulmonary circulation. The mechanisms of this impairment are 

undoubtedly multifactorial and may vary from patient to patient.  

On the other hand, eNOS expression levels in IPAH patients remains 

controversial.  Giaid and Saleh reported decreased eNOS expression (99) 

whereas Xue and Johns reported increased (100) and Tuder et al. unaltered 

eNOS immunostaining (27). While, eNOS expression is increased in the 

endothelium of the resistance pulmonary arteries in chronic hypoxia, 

Monocrotaline and the fawn hooded rats (101).  

Thus, decreased levels of NO in the face of normal or increased NOS expression 

can be explained only by impaired NOS activity. Activity of arginase, an enzyme 

that metabolizes L-arginine was higher in PAH serum than in controls, 

suggesting that substrate availability affects NOS activity in the pathophysiology 

of PAH (102). If so, supplementary L-arginine could theoretically reverse this 

abnormality. Conversely, L-arginine infusion did not show any long term 

beneficial effects in these patients (103). 

In experimental induced PAH, abnormal coupling with caveolin and HSP 90 were 

also shown to reduce NOS activation (104). Nevertheless, none of these entities 
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have shown to majorly influence the NO axis in pulmonary arterial hypertension. 

Despite the impact of endogenous NO-synthase inhibitors such as 

dimethylarginines (ADMA and SDMA) have come into the focus of attention for 

various endothelial dysfunction associated cardiovascular disorders. As current 

evidence strongly suggests a central role for endothelial dysfunction in the 

initiation and progression of IPAH, the plausible role of dimethylarginines is 

speculated in this disease. Hence forth, the present study was undertaken to 

investigate the potential role of dimethylarginines in the course of chronic 

pulmonary hypertension. 
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2. Aims of the study 
 
Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and life- 

limiting disorder which is associated with impaired bioactivity and/or synthesis of 

endogenous nitric oxide (NO). The mechanisms resulting in this impairment are 

multifactorial. Recently, the impact of endogenous NO-synthase inhibitors such 

as dimethylarginines (ADMA and SDMA) has come into the focus of attention in 

the pathogenesis and progression of various cardiovascular diseases associated 

with endothelial dysfunction. However, the potential role of dimethylarginines 

(ADMA and SDMA) in patients with IPAH has not yet been explored. 

The aim of the present study was to evaluate dimethylarginines levels in IPAH 

patients and monocrotaline induced pulmonary hypertensive (MCT-PAH) rats. 

This was accompanied by assessing the precise mechanisms responsible for the 

altered dimethylarginines such as protein arginine methylation and/or alterations 

of the metabolizing enzyme DDAH in the course of chronic pulmonary 

hypertension were also investigated.  This series of studies include the following 

aspects: 

 

1. To evaluate plasma levels of L-arginine, ADMA and SDMA in IPAH patients 

and in MCT- PAH rats. 

 

2. To evaluate biosynthesis of dimethylarginines in lung tissues from patients 

suffering from IPAH as well as on tissue from MCT- PAH rats. 

 

3. To evaluate expression of DDAH isoforms in lung tissues from patients 

suffering from IPAH as well as on tissue from MCT-PAH rats. 

 

4.  To elucidate the molecular mechanisms responsible for DDAH alterations. 
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5. To test the therapeutic efficacy of selective phosphodiesterase inhibitors 

(PDEi) on the pulmonary hemodynamics and structural and molecular 

changes underlying MCT - PAH rats. 

 

6. To test the hypothesis that selective PDEi may be effective in NO axis 

modulation and reversal of endothelial dysfunction associated with MCT-PAH.  

 

7. To elucidate the effects of PDEi on dimethylarginines and subsequently on 

their biosynthesis and metabolism. 
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3. Materials and Methods 
 
3.1. Materials 

For RT-PCR analysis of human and rat tissue 

huDDAH1 (NM_012137) 
Forward   5’ GCAACTTTAGATGGCGGAGA 3´  

Reverse   5’ TGGAAAGGCCCACAAAAA 3´ 

 

huDDAH2 (NM_013974) 
Forward   5’ CTGTTGTGGCAGGCAGCAG 3´  

Reverse   5’ GTCAGGGAGGCATATGGGTG 3´ 

 

huGAPDH (NM_002046) 
Forward   5’ CGTCATGGGTGTGAACCATG 3´  

Reverse   5’ GCTAAGCAGTTTGTGGTGCAG 3´ 

 
rDDAH1 (NM_022297) 
Forward   5’ ATGGTGGGGACGTCCTATTC 3´  

Reverse   5’ GCACCTCGTTGATTTGTCCT 3´ 

 

rDDAH2 (NM_212532) 
Forward   5’ AGGGTCCAGAGAGGCGTAGG 3´  

Reverse   5’ GGCTGGAAGCAGTGAGGCT 3´ 

 

rGAPDH (NM_017008) 
Forward   5’ GTGATGGGTGTGAACCACGAG 3´  

Reverse   5’ CCACGATGCCAAAGTTGTCA 3´ 
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Antibodies 
Antibodies used in the experiments are all commercially available. They were 

used for both western blot and immunohistochemistry until specifically specified.  

Primary antibodies        

Anti-DDAH1 (polyclonal) rabbit  Orbigen Inc, San Diego, USA 

Anti-DDAH2 (polyclonal) goat    Calbiochem, BadSoden,   

       Germany 

Anti-GAPDH (monoclonal) mouse   Abcam,Cambridge, UK  

Anti-ADMA (polyclonal) rabbit Upstate, Hamburg, Germany 

Anti-SDMA (polyclonal) rabbit      Upstate, Hamburg, Germany 

Anti-alpha actin (monoclonal) mouse  Sigma,Steinheim,Germany 

anti-von Willebrand factor (polyclonal) rabbit Dako, Hamburg, Germany 

 

HRP-conjugated secondary antibodies 

Anti-mouse IgG rabbit    Sigma,Steinheim,Germany 

Anti-rabbit IgG goat      Abcam,Cambridge, UK 

Anti-goat IgG rabbit      Abcam,Cambridge, UK 

 

Fluorophore-conjugated secondary antibodies 

Anti-goat IgG rabbit Texas red conjugated DakoCytomation, Hamburg, 

Germany 

Anti-rabbit IgG goat FITC conjugated Molecular Probes, Karlsruhe, 

Germany 

 

Kits 
Gibco, Eggenstein, Germany 

DNeasy Tissue kit     Qiagen, Hilden, Germany 

Gel extraction kit     Qiagen, Hilden, Germany 

 

qPCR™ Mastermix  Euro-genetec, Seraing, Belgium  
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Dye Reagent Concentrate Bio-Rad, Muenchen, Germany 

ECL detection kit      Amersham,Freiburg, Germany  

Vectastain ABC kit      Vector, Burlingame, USA  

Vector VIP substrate kit    Vector, Burlingame, USA 

Vector DAB substrate kit    Vector, Burlingame, USA 

 

Instruments 

Cardiotherm 500-X Harvard Apparatus GmbH, 

March-Hugstetten, Germany 

ABI 7700 Sequence Detection System   Applied Biosystems, Darmstadt, 

Germany 

Electrophoresis apparatus    Biometra, Gottingen, Germany 

Small animal ventilator IITC Life science, Woodland Hills, 

USA 

Photodiode array detector, Waters Corp, Milford, USA 

cation-exchange extraction cartridges  Waters Corp, Milford, USA 

BioDoc Analyzer  Biometra, Gottingen, Germany 

Minigel-Twin Biometra, Gottingen, Germany 

Semi dry transfer unit Biometra, Gottingen, Germany 

Dot blot apparatus  Bio-Rad, Richmond, USA 

Automatic vacuum tissue processor Leica, Bensheim, Germany 

Leica QWin Image Processing System  Leica, Bensheim, Germany 

T3 Thermocycler     Biometra, Gottingen, Germany 

 
 
 
 
 
 



Materials and Methods                                                                                         32 
 

 

Table 3: Buffer solutions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffer or solution Components

1x PBS 7.2 g/L NaCl, 1.48 g/L Na2HPO4, 0.43 g/L KH2PO4, pH 7.4

1x Running buffer 3 g Tris base, 14.4 g Glycine, 10mL 10% SDS made to 1 Lit with DDH2O

Transfer buffer 6 g Tris base, 3 g Glycine, 200 mL Methanol to 1 Lit with DDH2O

5x Laemmli buffer 1.8 mL DDH2O, 2.5 mL 0.5 M Tris-HCl (pH 6.8), 2.5 mL Glycerol, 2 mL 20%
SDS, 1mL ß-mercaptoethanol,  0.2 mL 1% (w/v) Bromophenol blue (in water) 

Blocking solution 5 g Skim milk powder in 100 mL 1x TBST 

1x TBST 2.24 g Tris base, 8.85 g  NaCl, 1.8 g EDTA, 1 mL Tween 20 made to 
1 Lit with DDH2O

1x Lysis buffer 50 µl 1M Tris (pH 7.6), 10 µl 1M CaCl2,100µl 1.5 M NaCl, 100µl 0.6 M NaN3, 
10µl 10% Triton X, protease inhibitor cocktail made to 1 mL with DDH2O 

Sodium phosphate
Buffer (pH 7.2) 

68.4 mL 1 M Na2HPO4, 31.6 mL 1 M NaH2PO4

5x TAE buffer 54 g Tris base, 11 mL Acetic acid, 20 mL of 0.5 M EDTA 
(pH 8.0) to1 Lit with DDH2O

12.5 mL 0.5 M Tris-HCl (pH 6.8), 0.7 mL ß-Mercaptoethanol, 20 mL
10% SDS

Stripping buffer 
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3.2 Methods 
3.2.1 Patient characteristics and measurements 
Eleven consecutive patients referred to our centre for diagnosis and treatment 

suffering from idiopathic pulmonary arterial hypertension (according to the 

classification of the Third World Symposium on Pulmonary Arterial Hypertension; 

(all NYHA class III or IV) gave written informed consent before inclusion into the 

study. Standard diagnostic procedures (imaging techniques, clinical chemistry, 

lung function testing, echocardiography, etc.) excluded other than the above 

mentioned causes for pulmonary hypertension. All patients were treated with 

chronic oral anticoagulation and diuretics before, but none received specific 

therapy for the pulmonary hypertension at timepoint of inclusion. Venous blood 

samples were drawn after a minimum resting period of two hours. Pulmonary and 

systemic hemodynamics were assessed by right heart catheterization following 

standard procedures of our Pulmonary Hypertension Centre. Exercise capacity 

was assessed by means of six minute walking test (according to the guidelines of 

the American Thoracic Society). 

Human lung tissue was obtained from 7 donors and 7 IPAH patients undergoing 

lung transplantation. Patient lung tissue was snap frozen directly after 

explantation for mRNA and protein extraction or directly transferred into 4% 

buffered paraformaldehyde, fixed for 24 h at 4°C and embedded in paraffin. 

Hemodynamic measurements in 5 of the 7 IPAH patients who underwent 

transplantation revealed a mean pulmonary artery pressure of 68.4±8.5 mmHg. 

Tissue donation was regulated by the national ethical committee and national 

law. All patients enrolled in this study gave written informed consent.  

 

3.2.2 Animal experiments 
Adult male Sprague Dawley rats (300-350g body weight) were obtained from 

Charles River Laboratories (Sulzfeld, Germany). The experiments were 

performed in accordance with the National Institutes of Health Guidelines on the 

Use of Laboratory Animals. Both the University Animal Care Committee and the 
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Federal Authorities for Animal Research of the Regierungspräsidium Giessen 

(Hessen, Germany) approved the study protocol. 

 

3.2.3 MCT treatment 
The alkaloid Monocrotaline (MCT) (Sigma) was dissolved in 0.5 N HCl, and the 

pH was adjusted to 7.4 with 0.5 N NaOH. The MCT (20mg/ml) solution was given 

as a single subcutaneous injection (60 mg/kg) to male Sprague-Dawley rats. 

Control rats received an equal volume of isotonic saline.  

 

3.2.4 Chronic dosing study 
For chronic intervention studies, rats were randomized to receive either placebo 

or tolafentrine by osmotic minipumps. Tolafentrine (chemical name : (-)-cis-8,9-

Dimethoxy-1,2,3,4,4a-10b-hexahydro-2-methyl-6-(4-p-toluenesulfonamido-

phenyl)-benzo[c][1,6]naphthyridine) was synthesized in the laboratories of 

ALTANA Pharma, Konstanz, Germany. Tolafentrine, the active drug, is a mixed 

selective PDE3/4 inhibitor with PDE3 inhibitory activity with an IC50 of 60 nmol/L 

and inhibiting activity of PDE4 with an IC50 of 100 nmol/L. The dose of 

tolafentrine (625 ng/kg per minute) was chosen according to preceding pilot 

experiments, addressing long-term tolerability of this agent under investigation. 

Treatment was started 2 weeks after injection of MCT, during development of 

pulmonary hypertension, for duration of 2 weeks.  

 

3.2.5 Surgical preparation and tissue preparation 
Two weeks after a single MCT injection, rats were subjected to inhalation of 

tolafentrine or sham nebulization in an unrestrained, whole body aerosol 

exposure system as described. For assessment of chronic effects of inhaled 

saline or tolafentrine (dose deposited in the lungs ~ 120 µg/kg day), 15 min 

nebulization maneuvers using a jet nebulizer with a constant flow rate of 6 l/min 

(Pari LC Star, Pari, Starnberg, Germany) were repeated twelve times per day for 

2 weeks (day 14 – 28).  
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At the end of the treatment protocol, the animals were anesthetized with 

intraperitoneal pentobarbital and tracheostomized. They were artificially 

ventilated with a small animal ventilator 10 ml per kg body weight (BW) and a 

frequency of 60 s-1. Inspiratory oxygen (FIO2) was set at 0.5, and a positive end-

expiratory pressure of 1.5 cm H2O was used throughout. Anesthesia was 

maintained by inhalation of isoflurane. The left carotid artery was cannulated for 

arterial pressure monitoring, and a right heart catheter (PE 50 tubing) was 

inserted through the right jugular vein for measurement of right ventricular 

systolic pressure (RVSP) with fluid-filled force transducers (zero referenced at 

the helium). Cardiac output (CO) was measured by thermodilution technique 

using Cardiotherm 500-X. Briefly, a thermistor (1.5F) was placed into the 

ascending thoracic aorta via the right carotid artery for measurement of 

transpulmonary thermodilution CO. A 0.15-mL bolus of room-temperature saline 

was injected into the right ventricle as the indicator. CO was averaged from three 

consecutive determinations and indexed to the weight of the animal to obtain 

cardiac index.  

Arterial and mixed venous samples were collected (150 µl) and analyzed for PO2, 

pH and PCO2. Hemoglobin and oxygen saturation were measured using an 

OSM2 Hemoximeter. After exsanguination, the lungs were flushed with isotonic 

saline at a constant pressure of 22 cm H2O via the pulmonary artery. The right 

lung was ligated at the hilus and shock frozen in liquid nitrogen, and stored at –

80 °C for molecular studies. The left lobe was perfused for 5 minutes with 

Zamboni’s fixative at a pressure of 22 cm H2O via the pulmonary artery. The 

tissue was fixed in Zamboni’s fixative for 12 hours at 4°C and then transferred 

into 0.1 M phosphate buffer. 

As an index of right ventricular hypertrophy, the ratio of the right ventricle weight 

to left ventricle plus septum weight (RV/LV+S) was calculated. 

 

3.2.6 RNA isolation 
Total RNA was isolated from exponentially growing cells and lung tissue 

homogenates using TRIzol® reagent. 100 mg of lung tissues were homogenized 
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in 1.0 ml TRIzol® reagent using polytron homogenizer and incubated for 10 min. 

Following 10 min incubation, 200 µl of chloroform was added to these samples. 

Samples were shaken vigorously by hand for 15 sec and incubated at 15-30°C 

for 2-3 min and centrifuged at 12,000 x g for 15 min at 4°C. The aqueous phase 

was removed after centrifugation and RNA was precipitated from the aqueous 

phase by adding 0.5 ml of isopropanol per 1 ml of TRIzol reagent used for initial 

homogenization. RNA was incubated for 10 min at room temperature and 

centrifuged at 12,000 x g for 10 min at 4°C. The RNA pellet was washed with 1 

ml of 70% ethanol per 1 ml of TRIzol reagent used for initial homogenization. The 

sample was centrifuged at 7,500 x g for 5 min at 4°C. The RNA pellet was re-

dissolved in DEPC treated water and stored at -70°C.  

RNA concentration and purity were measured spectroscopically by its 

absorbance at 260 nm and 280 nm. For the estimation of RNA concentration the 

below formula was employed. 

 

 

 

For the estimation of purity, A260/A280 ratio is calculated. The Ratio between 1.7 to 

2 is considered to be good RNA in our experiments. 

 

3.2.7 cDNA Synthesis 
Complementary DNA was synthesized from total RNA using Improm II Reverse 

Transcriptase (Promega, Germany). Two µg of total RNA was combined with 0.5 

µg of Oligo(dT)15 in nuclease-free water for a final volume of 5µl per RT reaction. 

This mixture was denatured at 70°C for 5 min followed by rapid cooling. After a 

short spin, the reverse transcription reaction mix was added and incubated at 

25°C for 5 min followed by incubation at 42°C for 1 hr. After synthesis, cDNA 

samples were either used immediately for PCR, or stored at -20˚C. 

 

RNA concentration = A260 x dilution x 40 µg/ml 
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Reverse Transcriptase reaction mix: 

 

 

 
 

 

 

 

 

 
3.2.8 Polymerase chain reaction 
To check for the presence of the gene of interest either in the animal tissue or 

primary cells, PCR was performed. PCR signal was amplified using the gene-

specific primers (as described) designed from the sequence available in the 

Genbank. For standard PCR, 20-23 bp long primers were designed, AT and GC 

content was checked and the difference in the melting temperature (Tm) between 

the forward and reverse primers was kept not more then 2-4ºC. The primer 

sequence was checked using the NCBI BLAST search for probable similarity with 

unrelated genes. PCR reaction was done in 0.2 ml thin wall tubes in T3 

Thermocycler. Negative control without template performed to check for self-

annealing of primer pair. PCR for cDNA without reverse transcriptase was also 

done to check the genomic DNA contamination. Each primer pair was checked 

with several annealing temperatures depending on the Tm of the primer pair to 

get a single and specific PCR band. 

 

3.2.9 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 
Semi quantitative RT-PCR was performed on cDNA samples by use of Taq 

polymerase (Promega, Germany). The reaction mixture included.  

ImProm-II™ 5X Reaction Buffer            4.0µl 

MgCl2, 25mM         2.0µl 

dNTP Mix, 10mM       1.0µl 

RNasin® Ribonuclease Inhibitor     1.0µl 

ImProm-II™ Reverse Transcriptase      1.0µl 

Nuclease-Free Water        6.0µl 

Final Volume         15.0µl 
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PCR master mix 

 

 

 
 

 

 

 

 

 

 

The tubes were flicked to mix and microfuged briefly before taking to the PCR 

machine. The thermal cycler’s program was as follows:  

 

 

 

 

 

 

For quantitative real-time RT-PCR analysis, 2 µl cDNA was placed into 50µl 

reaction volume containing SYBR Green PCR mix and sequence-specific 

oligonucleotide primers. In all cases forward and reverse primers were designed 

flanking an intron to make sure that the amplification signal comes from mRNA 

and not genomic DNA. 

Real time PCR master mix: 

 

 

 

 

 

Nuclease-Free Water        35.0µl 

10X polymerase reaction buffer       5.0µl 

MgCl2, 25mM           3.0µl 

PCR Nucleotide Mix, 10mM         1.5µl 

Forward Primer, 10µM         1.0µl 

Reverse Primer, 10µM        1.0µl 

Taq DNA Polymerase (5.0 units)        0.5µl 

Volume of RT reaction added        3.0µl 

Total PCR Volume        50.0µl 

Activation of HotstarTaq          95oC      2 min  

Denaturation      94oC    30 s 

Annealing     variable   30 s 

Extension     72oC    45 s 

Final extension    72oC    10 min 

Cycles    30-35

Nuclease-Free Water         16.0µl 

2x-Invitrogen Super Mix-Buffer      25.0µl 

ROX Reference Dye 50x         1.0µl 

MgCl2, 50mM            2.0µl  

Forward Primer, 10µM          1.0µl 

Reverse Primer, 10µM           1.0µl 

Volume of RT reaction added         1-3µl 

Total PCR Volume        50.0µl 
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The thermal cycle conditions used for all reactions were as follows:  

 

 

 

 

 

 

 

All real-time reactions were carried on ABI 7700 Sequence Detection System, 

and analysis was performed with the accompanying software. At the end of the 

PCR cycle, a dissociation curve was generated to ensure the amplification of a 

single product and the threshold cycle time (Ct values) for each gene was 

determined. Relative mRNA levels were calculated based on the Ct values and 

normalized to house keeping gene GAPDH. 

 

3.2.10 Agarose gel electrophoresis and PCR product purification 
PCR reactions were analyzed on 1% agarose gels in 1X TAE buffer, containing 1 

µg/ml ethidium bromide. Samples were prepared in 6x loading buffer (containing 

bromophenol blue dye) (MBI Fermentas). Gel was run in 1X TAE buffer for 60 

min at 80 V. Depending on the fragment size either GeneRuler 100bp DNA 

Ladder (1 kb) or GeneRuler DNA Ladder Mix (10 kb) (MBI Fermentas) used. 

DNA bands were visualised under UV-Transilluminator of Biometra system. 

For Semi-quantitative analysis of the PCR product, 10 – 20 µl of each reaction 

was used for electrophoresis. PCR signals were quantified in arbitary units (A.U) 

from optical density x band area. PCR signals were normalized to the GAPDH 

signal of the corresponding RT product to get a semi-quantitative estimate of the 

gene expression.  

The PCR product was purified with the QIAGEN gel extraction kit. Briefly, 

samples were loaded onto the gel. After gel run the corresponding bands were 

Activation of Taq           50oC    2 min  

Denaturation      95oC    10 min 

Denaturation II   95oC    10 s 

Annealing    60oC    5 s 

Cycles     40 
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excised and placed in 1.5 ml eppendorf tubes. Then add 300 µl of buffer QG for 

every 100 mg of gel. Incubated the gel slices in buffer at 50°C for minimum 15 

min. Then add 100 µl of isopropanol and placed in a QIAquick column. 

Centrifuge for 1 min at maximum speed. Then add 500 µl of buffer QG to the 

column and centrifuge again. After add 700 µl of buffer PE (containing ethanol) to 

the column and incubated for 5 min at room temperature. After centrifugation, 

Place the column into a fresh 1.5 ml recovery tube and added 30 µl of 

prewarmed buffer EB directly to the center of the column. Incubated for 10 min at 

room temperature and then centrifuged for 2 min at 12,000 rpm. Discarded the 

column and stored the DNA at -20°C. Further DNA was sent for sequencing. 

 

3.2.11 Western blotting 
Lung tissues were homogenized in 1x lysis buffer including protease inhibitor 

cocktail using a polytron tissue homogenizer. Later, samples were centrifuged at 

14,000 rpm in a pre-cooled centrifuge for 20 min. Supernatant was transferred 

into a fresh tube and measured for Protein concentration using Bradford assay 

with a bovine serum albumin standard. Lysates were aliquoted and stored at  

-80°C. In case of cells, confluent cells (6 well plates) were washed 1x with ice-

cold PBS and lysed in 100 µl of 1x lysis buffer. The cell lysate was gently mixed 

on a rotator for 15 min at 4°C. Lysate was then sonificated 3x10 sec in 

Ultrasonificator on ice followed by centrifugation. Supernatant was measured for 

Protein content as described above. 

When necessary, tissue and cell lysates containing equal amounts of protein 

were diluted with 5 x laemmli buffer (5:1 ratio of sample volume to buffer volume), 

boiled for 5 min at 95°C and subsequently pipette into the gel chambers for 

electrophoresis. The SDS PAGE was run at a constant voltage of 130 V for 1-1.5 

hr in 1 x running buffer. Upon completion of electrophoresis, the gel was 

removed from glass plates and allowed to soak in transfer buffer for 15 min. Gels 

were blotted onto nitrocellulose membrane using a semi dry technique. From 

bottom to top, the following layers were put in a blotting apparatus: three layers 

of whatman filter paper soaked followed by the nitrocellulose membrane, the gel, 
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and three layers of whatman paper soaked in 1x transfer buffer. Special attention 

was paid to eliminate all air bubbles between the layers. Electroblotting occurred 

for 1-1.5 hr at 100 mA per two gels. Afterwards, membranes were incubated in 

blocking solution for 1 hr at room temperature, and then incubated with a 

polyclonal rabbit DDAH1 (1:10,000), polyclonal goat DDAH2 (1:5000) or a mouse 

monoclonal GAPDH (1:5000) antibody overnight at 4°C. Later the membranes 

were washed (3x10 min) with wash buffer, incubated with the respective HRP-

conjugated polyclonal secondary antibodies for I hr at room temperature. Finally 

after three washing steps with wash buffer antibodies bound to the proteins on 

the membrane were detected using the “ECL Western Blotting Detection 

Reagent”, according to the manufacturer’s manual. 

 

3.2.12 Dot Blotting 
Samples were adjusted to 2 µg/L of protein and adsorbed on to a nitrocellulose 

membrane by using a dot blot apparatus. After non-specific blocking with 5% 

(w/v) lipid free milk, the membranes were incubated overnight with ADMA or 

SDMA antibody (1:1000) and then with HRP-conjugated goat anti-rabbit IgG 

(1:5000) for 1 hr at room temperature. Membranes were developed with ECL 

detection kit. The intensity of the dots were analyzed and quantified by Biometra 

image analysis software. Equal amount of protein loading was also confirmed by 

dot blotting membranes with an antibody against GAPDH.  

 
3.2.13 Immunohistochemical staining 
Paraffin-embedded lung tissue sectioned at a 3 µm thickness was deparaffinized 

in xylene and rehydrated in a graded ethanol series to phosphate-buffered saline 

(PBS, pH 7.2). Antigen retrieval was performed by pressure cooking in citrate 

buffer (pH 6.0) for 15 min. Immunohistochemical staining was performed using 

anti-ADMA, anti-SDMA, anti-DDAH1 and anti-DDAH2 antibodies in conjunction 

with an avidin-biotin-peroxidase kit. Briefly, the sections were pre-treated with 3% 

hydrogen peroxide to quench endogenous peroxidase activity. Then, the sections 

were incubated for 1h in 10% normal goat serum to block non-specific binding 
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sites prior to the application of primary antibodies. Sections were then incubated 

overnight at 4°C with the primary antibodies (Abs). Biotinylated anti-rabbit or anti-

goat immunoglobulins (Ig) and avidin-biotinylated enzyme complex (ABC kit) 

were applied according to the manufacturer's instructions. After each incubation 

step, sections were washed briefly in PBS. Development of the reaction was 

carried out with VIP substrate for horseradish peroxidase for 10 min. Finally, 

sections were counterstained with methylgreen and dehydration using graded 

alcohol and xylene. The sections were then cover slipped and allowed to dry 

overnight. 
 

3.2.14 Histological analysis 
After dehydration in automatic vacuum tissue processor and paraffin embedding, 

5µm sections were stained for Elastin-Nuclear Fast Red to assess the medial 

wall thickness. For quantitative analysis of the degree of muscularization of small 

pulmonary arteries a double staining for alpha smooth muscle actin and von 

Willebrand (vWF) factor was performed. For visualization of the alpha smooth 

muscle actin the Vector Vip substrate kit for horseradish peroxidase and for 

visualization of the anti-vWF antibody 3, 3′-diaminobenzidine (DAB) substrate 

was used. Nuclear counterstaining was done with methyl green. 

 

3.2.15 Measurement of ADMA and SDMA 
L-arginine, ADMA, and SDMA were simultaneously analyzed by high-

performance liquid chromatography (HPLC). Briefly, plasma was mixed with 

internal standard and PBS and applied to Oasis MCX solid-phase extraction 

cartridges. After washing with Hydrochloric acid and methanol, amino acids were 

eluted with 1.0 ml of concentrated ammonia/water/methanol (10/40/50). The 

solvent was evaporated under a stream of nitrogen and the amino acids were 

derivatized with o-phthaldialdehyde reagent containing 3-mercaptopropionic acid. 

The derivatized amino acids were separated by isocratic reversed-phase 

chromatography on a C18 column at a column temperature of 30°C using a 

mobile phase consisting of potassium phosphate buffer (50 mmol/L ; pH 6.5), 
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containing 8.7% acetonitrile at a flow-rate of 0.3 ml/min. Fluorescence detection 

was performed at excitation and emission wavelengths of 340 and 455 nm, 

respectively. The stable derivatives were separated with near baseline resolution. 

Using a sample volume of 0.2 ml, linear calibration curves were obtained with 

limits of quantification of 0.08 µM for L-arginine and 0.01 µM for ADMA and 

SDMA.  

 

3.2.16 DDAH activity assay 
DDAH activity was assayed by determining L-citrulline formation in tissue 

homogenates by colorimetric method in 96-well microtiter plates. 

Lung tissues were homogenized using polytron homogenizer and centrifuged at 

13000 rpm to separate soluble material from insoluble cell debris. Aliquots of 

lysates were assayed for DDAH activity with a colorimetric assay in 96-well 

microtiter plates for citrulline production. For colorimetric assays, 55 µl of tissue 

lysate in 100 mM Na2HPO4, pH 6.5 was incubated at 37 °C for 60 min with 5 µl of 

containing 80 mM L-NMMA, ADMA, SDMA or L-arginine, or with buffer alone. 

After incubation, the reaction was stopped, and the activity was calculated after 

measuring the concentration of L-citrulline with a chromogenic reaction that 

specifically determines ureido groups. The calibration curve was obtained using 

L-Cit concentrations between 0 and 400 µM. One unit of enzyme activity was 

defined as the amount of enzyme catalyzing the formation of 1 µmol/L L-citrulline 

per min at 37°C. As the assay blank, the homogenate was subjected to the same 

determination process of DDAH activity in the absence of ADMA to provide the 

background values. Genuine DDAH activity was obtained by experimental data 

subtracting the background values. 

 

3.2.17 NOx measurements 
Plasma samples were stored at –80°C for less than 2 weeks before analysis. At 

the time of NOx assay, plasma samples were ultrafiltered (30 kDa molecular 

weight cut-off) and centrifuged at 1000 g for 60 min in order to remove 

hemoglobin, which is known to interfere with spectrophotometric measurements. 
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NOx concentration in different dilutions of plasma ultrafiltrate was determined by 

using a reagent kit (Cayman, Ann Arbor, USA) based on the Griess reaction, 

which consists of three main steps: 1) enzymatic conversion of nitrate to nitrite by 

means of nitrate reductase in the presence of 5 mmol/l NADPH; 2) incubation 

with Griess reagent (0.1% N- (1-naphthyl) ethylenediamine dihydrochloride and 

1% sulfanilamide in 2.5% H3PO4) for 10 min at 25°C to convert nitrite into a 

chromophore compound; 3) quantitative estimation of nitrite concentration by 

spectrophotometric measurement of the absorbance at 540 nm. Standards for 

calibration curves were prepared with nitrate and taken through the full assay 

procedure. The results were expressed as µmol/l of NOx. 

 

3.2.18 Culture of human HUVEC cells 
ECs were isolated from human umbilical veins (HUVEC) and grown in EGM-2 

culture medium including supplements and growth factors by the vendor 

(Cambrex Bio Science, Walkersville, USA) at 37°C in a CO2 incubator. For 

assessment of cytokine mediated DDAH expression, HUVECs at passage 3 or 

less were grown in 6-well plates and after  95% confluence incubated with 10 

ng/mL interferon gamma (IFNγ) or 10 ng/mL tumor necrosis factor-α (TNF-α) or 

both. After 24 hrs cells were scrapped with protein lysis buffer.  

 

3.2.19 Data analysis 
All data are given as mean ± SEM. Differences between the groups were 

assessed by student’s t test with a p value < 0.05 regarded to be significant. 

 



Results 
 

45

4. Results 
 

4.1 IPAH patients 
4.1.2 IPAH patient characteristics 
Patient characteristics are given in Table 4. Blood from eleven patients with IPAH 

(all NYHA class III and IV) was collected and L-arginine, ADMA and SDMA levels 

were determined. Mean pulmonary artery pressure was 52.7±3.2 mmHg and 

cardiac index 2.19±0.11 l/min m2 with the pulmonary vascular resistance index 

(PVRI) calculated at 1360±104 dyne s cm-5 m-2. The six-minute-walk distance 

was 318±28 m.  

 

Patient NYHA SMW HR mSAP mPAP PAWP CVP SVRI PVRI CI SaO2 SvO2 

  [m] beats/min [mmHg] [mmHg] [mmHg] [mmHg] [dyne s cm-5 m2 ] [dyne s cm-5 m2 ] [l/min m2] [%] [%] 

1 3 432 90 97 60 5 5 1968 1176 2.17 99.1 69.3 

2 3 401 73 112 64 10 7 1683 866 2.92 96.6 73.2 

3 3 333 94 86 56 7 18 1397 1104 1.87 92.6 65.3 

4 3 347 73 85 62 11 11 1691 1166 2.25 83.3 62.2 

5 3 290 74 74 31 6 6 3425 1259 1.59 96.5 65.9 

6 4 168 63 67 51 10 8 2517 1749 1.87 86.2 57.9 

7 3 415 82 88 63 11 11 2898 1957 2.13 80.0 64.2 

8 4 145 80 125 50 8 9 3811 1380 2.43 92.2 57.9 

9 3 370 84 102 47 8 7 2831 1162 2.68 98.6 74.8 

10 3 302 64 99 39 5 4 3613 1293 2.10 92.2 56.0 

11 3 298 86 135 57 8 7 4854 1858 2.11 89.8 64.2 

Mean  318 78 97.3 52.7 8.1 8.5 2789 1360 2.19 91.6 64.6 

SEM  28 3 6.2 3.2 0.7 1.2 323 104 0.11 1.9 1.8 
 

Patient NYHA SMW HR mSAP mPAP PAWP CVP SVRI PVRI CI SaO2 SvO2 

  [m] beats/min [mmHg] [mmHg] [mmHg] [mmHg] [dyne s cm-5 m2 ] [dyne s cm-5 m2 ] [l/min m2] [%] [%] 

1 3 432 90 97 60 5 5 1968 1176 2.17 99.1 69.3 

2 3 401 73 112 64 10 7 1683 866 2.92 96.6 73.2 

3 3 333 94 86 56 7 18 1397 1104 1.87 92.6 65.3 

4 3 347 73 85 62 11 11 1691 1166 2.25 83.3 62.2 

5 3 290 74 74 31 6 6 3425 1259 1.59 96.5 65.9 

6 4 168 63 67 51 10 8 2517 1749 1.87 86.2 57.9 

7 3 415 82 88 63 11 11 2898 1957 2.13 80.0 64.2 

8 4 145 80 125 50 8 9 3811 1380 2.43 92.2 57.9 

9 3 370 84 102 47 8 7 2831 1162 2.68 98.6 74.8 

10 3 302 64 99 39 5 4 3613 1293 2.10 92.2 56.0 

11 3 298 86 135 57 8 7 4854 1858 2.11 89.8 64.2 

Mean  318 78 97.3 52.7 8.1 8.5 2789 1360 2.19 91.6 64.6 

SEM  28 3 6.2 3.2 0.7 1.2 323 104 0.11 1.9 1.8 
  

Table 4: IPAH patient characteristics. NYHA = New York Heart Association functional classes; 

SMW = six minute walk testing (according to the guidelines of the American Thoracic Society); 

HR = heart rate; mSAP = mean systemic arterial pressure; mPAP = mean pulmonary artery 

pressure; PAWP = pulmonary artery wedge pressure; CVP = central venous pressure; SVRI = 

systemic vascular resistance index; PVRI = pulmonary vascular resistance index; CI = cardiac 

index; SaO2 = arterial oxygen saturation; SvO2 = venous oxygen saturation. 

 
4.1.2 ADMA and SDMA elaboration in IPAH patients 
We have observed elevated plasma levels of ADMA and SDMA in patients with 

IPAH. As compared to healthy subjects, ADMA was increased from 0.48±0.04 to 

1.06±0.06 µmol/l and SDMA from 0.53±0.07 to 1.46±0.24 µmol/l (Figure 7).We 
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also have found that plasma levels of L-arginine decrease significantly in IPAH 

patients compared to healthy subjects. Most impressively, L-arginine/ADMA ratio 

is also reduced in IPAH patients. 

 

                                  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Measurement of ADMA and SDMA levels from plasma of healthy subjects and 
patients with IPAH.  Free ADMA and SDMA were measured by reverse phase HPLC from 

plasma of healthy subjects and patients with IPAH. Values are means ± SEM and represent 11 

patients and 8 healthy subjects. *, p<0.05 versus healthy subjects. 

 

4.1.3 Localization of dimethylarginines in lungs from patients with IPAH 
Immunohistochemical staining for asymmetric and symmetric dimethylated 

arginine proteins within human lung tissue is shown in Figure 8. In normal human 

lung, immunoreactivity to specific asymmetric and symmetric dimethylated 

arginine proteins was observed in the bronchiolar ciliated and terminal cuboidal 

epithelium, type I and type II alveolar epithelium, arterial and capillary 

endothelium, and alveolar macrophages with very little difference in their 

distribution throughout the lung. In comparison, the specific asymmetric and 
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symmetric dimethylated arginine proteins immunoreactivity was preferentially 

increased in the pulmonary endothelium of lung specimens from patients with 

IPAH. Immunostaining was more marked in those areas with more severe medial 

hypertrophy, as well as in plexiform lesions. In contrast, no staining difference 

was observed in alveolar or bronchiolar epithelium.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8: Immunostaining of dimethylated arginine proteins in lungs from healthy donors 
and patients with IPAH. Lung sections from a healthy donor and IPAH patient with anti-ADMA 

and anti-SDMA shows immunoreactivity of asymmetric and symmetric dimethylated arginine 

proteins in pulmonary arterial endothelial cells and in alveolar epithelial cells. , indicates 

endothelium; , indicates epithelium. Scale bar: 100µm; PA: pulmonary artery.  

 

4.1.4 Increased biosynthesis of dimethylarginines in lungs from patients 
with IPAH 
The tissue levels of asymmetric and symmetric dimethylated arginine proteins 

were quantified by dot-blotting. Significant higher degree of dimethylation was 

demonstrated in IPAH compared to healthy donors (Figure 9). As compared to 

donor lungs, asymmetric and symmetric dimethylated arginine proteins were 

upregulated 210 ±18 % and 240 ± 26% respectively, in IPAH lungs. 
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Figure 9: Dot blot analysis of dimethylated arginine proteins in lungs from healthy donors 
and patients with IPAH. (A) Dot blotting with anti-ADMA and anti-SDMA antibodies and 

subsequent (B) quantification of asymmetric and symmetric dimethylated arginine proteins in lung 

homogenates from healthy donors and patients with IPAH. Values (means ± SEM) are expressed 

as percentage of expression found in donor tissue (n=7). *, p<0.05 versus donor. 

 
4.1.5 Localization of DDAH isoforms in lungs from patients with IPAH 
Immunohistochemical localization of DDAH isoforms within human lung tissue is 

shown in Figure 10. Immunostaining was detected strongly in the endothelium of 

all generations of arteries, with a weak or no immunostaining for DDAH1 and 

DDAH2 expression in either vascular smooth muscle or adventitial cells. 

Additional immunostaining was detected in both alveolar (low level) and 

bronchiolar epithelium; specific and intense staining for DDAH1 was observed 

particularly on the apical surface of the bronchiolar epithelium, whereas DDAH2 

dominated in basal cells of the bronchiolar epithelium. Neither airway smooth 
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muscle nor adventitial cells exhibited DDAH1 or DDAH2 immunostaining. When 

compared to controls, a marked reduction or even absence of DDAH2 

immunoreactivity was observed in the endothelium of sections from patients with 

pulmonary arterial hypertension. In contrast, no significant difference was 

observed in DDAH1 immunostaining density between IPAH and healthy donor 

lungs. There was no immunostaining observed in the negative control sections. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

Figure 10: Immunostaining of DDAH isoforms in healthy donor and IPAH patient lungs. 
Lung sections from a healthy donor show immunoreactivity of DDAH1 and DDAH2 in pulmonary 

arterial endothelial cells and in alveolar epithelial cells. Lung sections from patients with IPAH 

even show strong immunoreactivity of DDAH1 with in pulmonary arterial endothelial cells and in 

alveolar epithelial cells but with no detectable immunostaining of DDAH2 in endothelial layer of 

pulmonary arteries.  , indicates endothelium; , indicates epithelium Scale bar: 100µm; PA: 

pulmonary artery. 
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4.1.6 Decreased metabolism of dimethylarginines in lungs from patients 
with IPAH 
4.1.6.1 mRNA expression of DDAH isoforms  
DDAH1 mRNA levels were unchanged, while DDAH2 expression was 

significantly reduced, when comparing IPAH lungs to healthy donor lungs (Figure 

11). DDAH2 was significantly downregulated by a factor of 2.12±0.38 fold in 

lungs from IPAH patients compared to healthy donors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 11: Real time RT-PCR analysis of DDAH isoforms from healthy donor and IPAH 
patient lungs. Relative quantification of mRNAs encoding for (A) DDAH1 and (B) DDAH2 related 

to the housekeeping gene GAPDH was undertaken by real-time RT-PCR. (C) Gel picture 

showing DDAH1 and DDAH2 expression in total RNA isolated from healthy donor and IPAH 

patient lung tissues.  All values are given as mean ± SEM (n=3). *, p<0.05 versus donor.  

 

4.1.6.2 Protein expression of DDAH isoforms  
Western blot analysis of lung homogenates using a polyclonal DDAH1 antibody 

showed that the 34-kDa DDAH1 protein was strongly expressed in the donor 
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lungs and remains unaltered or change insignificantly in the IPAH patient lungs 

(Figure 12A, B). Densitometry revealed that the IPAH patient lungs expressed 

10% less DDAH1 protein than those of donor lungs. 

In contrast, Western blot analysis of lung homogenates using a polyclonal 

DDAH2 antibody revealed a band at 42-kDa DDAH2 protein and was significantly 

reduced in the IPAH patient lungs as compared to donor lungs. Densitometry 

revealed 77% reduction in DDAH2 expression compared to healthy donor lungs 

(Figure 12A, B).  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 12: Western blot analysis of DDAH isoforms in lungs from healthy donors and 
patients with IPAH.  (A) Western blot analysis was performed with anti-DDAH1 and anti-DDAH2 

antibodies in lung homogenates from healthy donors and patients with IPAH. The specific 

antibodies recognize protein at a molecular weight of 34kDa and 42kDa. (B) Quantification of the 

DDAH1 and DDAH2 signal in each group. Values (means ± SEM) are expressed as percentage 

of expression found in donor tissue (n=7). *, p<0.05 versus donor. 

Donor IPAH

Q
ua

nt
ifi

ca
tio

n 
in

 %
 o

f D
on

or

0

20

40

60

80

100

120

140

DDAH1

A)

B)

Donor IPAH

GAPDH

DDAH1

DDAH2

Donor IPAH

Q
ua

nt
ifi

ca
tio

n 
in

 %
 o

f D
on

or

0

20

40

60

80

100

120

140

DDAH2

*



Results                                                                                                                 52 
 

 

In addition, a significant negative correlation between DDAH II expression 

(normalized to GAPDH) and mean pulmonary arterial pressure of the 

transplanted IPAH patients (Figure 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Correlation of DDAH2 expression to mean PAP of 5 transplanted IPAH patients. 
DDAH2 expression is given in arbitary units and normalized to GAPDH expression. Mean 

pulmonary arterial pressure (mPAP) is given in mmHg. 

 

4.2 Monocrotaline (MCT) treated rats 
4.2.1 Hemodynamics and right heart hypertrophy 
Monocrotaline (MCT) treatment caused a marked increase in right ventricular 

systolic pressure (64.5±5.7 mm Hg) when compared to saline injected control 

animals (22.4±1.7 mm Hg) (Figure 14) without a significant difference in systemic 

arterial pressure. The ratio of right ventricular to left ventricular plus septal weight 

(RV/LV+S), an indirect index of severity of pulmonary hypertension, was 

significantly increased after monocrotaline administration (0.29±0.04 to 

0.52±0.03). The MCT-treated groups had significantly lower BW than time-
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hypertrophy of pulmonary vessels, increased distal pulmonary artery 

muscularization and a subsequent reduction in the number of peripheral 

pulmonary arteries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Hemodynamics, gas exchange and right heart hypertrophy in control and MCT-
induced pulmonary hypertensive rats. Right ventricular systolic pressure (RVPsys, in mmHg), 

systemic arterial pressure (SAP, in mmHg), cardiac index (CI, in ml/min 100 g bodyweight), right  

to left ventricular weight ratio (RV/LV+S) and arterial oxygenation (PaO2/FiO2) are given (mean ± 

SEM of 8 independent experiments each). *, p<0.05 versus control.  

 
4.2.3 Increased plasma levels of ADMA and SDMA in MCT-PAH rats 
Plasma levels of ADMA were four-fold increased (0.37±0.08 versus 1.60±0.15 

µmol/l), and SDMA levels seven fold increased from 0.41±0.10 to 2.74±0.21 

µmol/l in MCT-treated rats compared to control rats (Figure 15).  
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Figure 15: Plasma concentrations of ADMA and SDMA from control and MCT-PAH rats. 
Plasma ADMA and SDMA levels were measured by HPLC in saline treated (control) rats and rats 

4 weeks after a single injection of monocrotaline (MCT). Values are given as mean ± SEM (n=8). 

*, p<0.05 versus control. 
 
4.2.3 Localization of dimethylated arginine proteins in MCT-PAH rat lungs 
Immunostaining of asymmetric and symmetric dimethylated arginine proteins in 

rat lung tissue results were well in line with those of the human lung tissue. In the 

control rat lungs, specific immunoreactivity of the asymmetric and symmetric 

dimethylated arginine proteins was observed in the bronchiolar ciliated and 

terminal cuboidal epithelium, type I and type II alveolar epithelium, arterial and 

capillary endothelium, and alveolar macrophages with very little difference in their 

distribution throughout the lung. However, MCT - exposure caused an increased 

immunostaining density of asymmetric and symmetric dimethylated arginine 

proteins in pulmonary arteries (Figure 16).  
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Figure 16: Immunoreactivity of dimethylarginines in lungs from control rats and rats with 
MCT-PAH. Immunostaining of control rat lung sections with anti-ADMA and anti-SDMA show a 

moderate immunoreactivity to asymmetric and symmetric dimethylated arginine proteins in 

pulmonary arterial endothelial cells and in alveolar epithelial cells. Distinctly, a much stronger 

immunoreactivity, especially in the endothelial layer of pulmonary arteries was illustrated in MCT-

PAH rat lung sections. , indicates endothelium; , indicates epithelium. Scale bar: 100µm; PA: 

pulmonary artery 

 
4.2.4 Augmentation of dimethylated arginine proteins in MCT-PAH rat lungs 
The tissue levels of asymmetric and symmetric dimethylated arginine proteins 

were detected by dot-blot and a significant higher degree of dimethylation was 

demonstrated in MCT-treated rats (Figure 17A, B). As compared to control rat 

lungs, asymmetric and symmetric dimethylated arginine proteins were 

upregulated 218 ± 17 % and 268 ± 19% respectively, in MCT-PAH lungs. 
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Figure 17: Dot blot analysis of dimethylated arginine proteins in lungs taken from control 
rats and rats with MCT-PAH. (A) Dot blotting with anti-ADMA and anti-SDMA antibodies and 

subsequent (B) quantification of asymmetric and symmetric dimethylated arginine proteins in lung 

homogenates from control rats and rats with MCT-PAH. Values (means ± SEM) are expressed as 

percentage of expression found in control tissue (n=4). *, p<0.05 versus control. 

 
4.2.5 Localization of DDAH isoforms in MCT rat lungs 
Similar to ADMA and SDMA, DDAH isoform (Figure 18) immunostaining of rat 

lung tissue results were well in line with those of the human lung tissue. As 

compared to humans, a greater degree of DDAH1 and DDAH2-like 

immunostaining was seen in vascular smooth muscle cells of the control rat 

lungs. Interestingly, a drastic reduction in DDAH2 immunoreactivity in pulmonary 

endothelium of MCT-PAH rat lungs was demonstrated when compared with 

control tissues. In contrast, DDAH1 immunoreactivity remained unaltered.  
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Figure 18: Immunoreactivity of DDAH isoforms in lungs from control rats and rats with 
MCT-PAH.  Lung sections from a control rat demonstrate a moderate to strong DDAH1 and 

DDAH2 immunoreactivity in pulmonary arterial endothelial cells, smooth muscle cells and in 

alveolar epithelial cells. Lung sections from rats with MCT-PAH even show strong 

immunoreactivity of DDAH1 with in pulmonary arterial endothelial cells and in alveolar epithelial 

cells but with no detectable immunostaining of DDAH2 in endothelial layer of pulmonary arteries. 

, indicates endothelium; , indicates epithelium. Scale bar: 100µm; PA: pulmonary artery. 
 
4.2.6 MCT inhibits expression of DDAH isoforms at mRNA level 
The expression of DDAH1 at the mRNA level was unchanged, while DDAH2 was 

significantly decreased in MCT-treated rat lungs (Figure 19). As compared to 

control rat lungs DDAH2 expression was significantly decreased by a fold of 

3.12±0.39 in MCT-treated rats. 
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Figure 19: Real time RT-PCR analysis of DDAH isoforms from control and MCT-PAH rat 
lungs. Relative quantification of mRNAs encoding for (A) DDAH1 and (B) DDAH2 related to the 

housekeeping gene GAPDH was undertaken by real-time RT-PCR. (C) Gel picture showing 

DDAH1 and DDAH2 expression in total RNA isolated from control and MCT-PAH rat lung tissues.  
All values are given as mean ± SEM (n=3). *, p<0.05 versus control.  

 
4.2.7 MCT inhibits expression of DDAH isoforms at protein and activity 
level 
MCT-exposure caused significant changes in dimethylarginine metabolism. 

DDAH isoform expression and activity was significantly altered. DDAH1 protein 

expression was reduced by 12% (Figure 20A, B). In contrast, DDAH2 protein in 

lungs from monocrotaline-treated animals was reduced by 48% (Figure 20B, D). 

Total DDAH activity was reduced by 79% (Figure 21). 
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Figure 20: Expression of DDAH2 in lung homogenate from control and MCT-PAH rats.  
(A,B) Western blot analysis was performed with anti-DDAH1 and anti-DDAH2 antibodies in lung 

homogenates from control rats and rats with MCT-PAH. The specific antibodies recognize protein 

at a molecular weight of 34kDa and 45kDa. (C,D) Quantification of the DDAH1 and DDAH2 signal 

in each group. Values (means ± SEM) are expressed as percentage of expression found in 

control tissue (n=4). *, p<0.05 versus control. 
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Figure 21: Activity of DDAH2 in lung homogenate from control and MCT-PAH rats. DDAH 

enzyme activity was determined by in vitro assay of crude lung homogenates from control and 

MCT-PAH rats. DDAH activity was assayed by the conversion of L-citrulline from ADMA. One unit 

of the enzyme was defined as the amount that catalyzed the formation of 1 mM L-citrulline from 

ADMA per minute at 37°C. Values (means ± SEM) are expressed as percentage of expression 

found in control tissue (n=4). *, p<0.05 versus control. 

 

4.2.8 TNF-α and IFN-γ mediates DDAH dysregulation 

HUVEC cells treatment with proinflammatory cytokines, TNF-α, IL-1β and IFN-

γ dramatically modulated DDAH2 expression. TNF-α and IFN-γ treatment 

reduced DDAH2 expression by 53% and 41% respectively. In contrast IL-

1β induced DDAH2 expression by 138 % (Figure 22)  

 
 
 
 
 
 
 
 
 
Figure 22: DDAH modulation by cytokines. (A) Western blot analysis of DDAH2 and GAPDH 

expression in HUVEC cells treated with TNF-α, IL-1β and IFN-γ (10 ng/ml)  for 24 hrs. (B) 

Quantification of the DDAH2 signal related to the house keeping gene GAPDH in each group. 

Values (means ± SEM) are expressed as percentage of expression found in control cells (n=3). *, 

p<0.05 versus control. 

 
4.3 Chronic effects of aerosolized tolafentrine in MCT treated rats 
4.3.1 Acute vasodilatory effects  
Aerosolized tolafentrine reduced right ventricular systolic pressure [RVSP] in 

MCT[28d] rats in a dose-dependent manner (Figure 23). As depicted, this 

pulmonary vasodilatation was accompanied by less pronounced decrease in 

systemic arterial pressure. 
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Figure 23: Immediate vasodilatory effects of inhaled tolafentrine in MCT-induced PAH. 
Monocrotaline (MCT[28d]) treated animals received tolafentrine over an inhalation period of 5 min 

subsequent to catheterization. The decrease in right ventricular systolic pressure (RVSP, in 

mmHg) and systemic arterial pressure (SAP, in mmHg) in response to the vasodilatory treatment 

is given. All values are given as mean ± SEM (n=8). 

 
4.3.2 Hemodynamics 
After injection of monocrotaline, pulmonary hypertension developed (right 

ventricular systolic pressure on day 28 = 66.5±3.2 mm Hg (n=11), as compared 

to 25.9±4.0 mm Hg in the control animals (n=10)) (Figure 24). No significant 

changes in systemic arterial pressure occurred. As compared to control animals 

(36.5±3.5 ml/min 100 g body weight), cardiac index was slightly decreased on 

day 28 (31.8±1.3 ml/min/100 g body weight). Aerosolized tolafentrine treatment 

(625 ng/kg per minute) for 2 weeks significantly lowered right ventricular pressure 

to 43.4±2.1 mmHg.  
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Figure 24: Influence of inhaled tolafentrine on hemodynamics in MCT–induced PAH. Right 

ventricular systolic pressure (RVSP, in mmHg), systemic arterial pressure (SAP, in mmHg), 

cardiac index (CI, in ml min-1 100 g body weight-1) and pulmonary vascular resistance index 

(PVRI, in mmHg min ml-1 100 g body weight-1) are given. Tolafentrine was applied by repetitive 

inhalations from day 14 to day 28. All values are given as mean ± SEM (n=9). *, p<0.05 versus 

control; †, p<0.05 versus MCT[28d]. 
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MCT treatment was normalized (~70%) in the tolafentrine-treated animals (Figure 

25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

Figure 25: Influence of long-term treatment with inhaled tolafentrine (Tola) on BW and 
blood gases in MCT-induced PAH. Animals were investigated 28 days after MCT treatment 

(MCT[28d]). BW (in g), PaO2/ FIO2 (in mm Hg), and SvO2 (in %) are given. Tolafentrine was 

applied by repetitive inhalations from day 14 to day 28 (MCT[28d]/Tola). Control animals received 

sham injection of saline. All values are given as mean ± SEM (n=9).  *, p<0.05 versus control. 
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Four weeks after injection of MCT, animals demonstrated significant right heart 

hypertrophy, as indicated by an increase in the right ventricular to left ventricular 

plus septum weight ratio (RV/LV+S) from 0.29±0.02 (control animals) to 0.53± 

0.04. Inhaled tolafentrine prevented and slightly reversed established right 

ventricular hypertrophy (MCT[28d]/Tola = 0.47±0.03) (Figure 26). 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 26: Influence of inhaled tolafentrine on right heart hypertrophy. Right to left 

ventricular plus septum ratio (RV/LV+S) of different treatment groups is given. Tolafentrine was 

applied by repetitive inhalations from day 14 to day 28.  All values are given as mean ± SEM 

(n=9). *, p<0.05 versus control; †, p<0.05 versus MCT[28d]. 

 
4.3.4 Histopathology 
Elastin staining and subsequent morphometric analysis of pulmonary arteries 

demonstrated a markedly increased medial wall thickness in both the MCT[28d] 

and the MCT[28d] groups, when compared with the saline-treated group. Most 

impressively, medial wall thickness was significantly reduced by long term 

treatment of aerosolized tolafentrine (Figure 27). The hemodynamic changes 

were accompanied by significant media hypertrophia of pulmonary vessels that 

was reversed by long term treatment of aerosolized tolafentrine (Figure 27). 
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Figure 27: Effect of inhaled tolafentrine on the degree of muscularization and on the 
medial wall thickness of small pulmonary arteries. Immunohistochemical analysis of lung 

sections originating from saline (Control), monocrotaline (MCT[28d]) and monocrotaline plus 

tolafentrine (MCT[28d]/Tola) treated animals. Staining was undertaken for von willebrand-factor 

(brown; endothelial cells) and alpha smooth muscle actin (purple; smooth muscle cells) as well as 

elastin.  Scale bar: 20 µm. 
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Tolafentrine treatment of MCT rats for 2 weeks caused a substantial and 

significant decrease in the plasma ADMA and SDMA levels. Plasma ADMA 

levels in the tolafentrine lungs is decreased from 1.65±0.15 to 0.31±0.04 
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absolute concentration of SDMA decreased from 2.75±0.35 to 0.37±0.07, 

suggesting decreased protein turnover in tolafentrine treated MCT lungs. 

 

 

 

 

 

 

 

 

 

 
 
Figure 28: Effect of tolafentrine on plasma monocrotaline induced ADMA and SDMA levels. 
(A) Plasma ADMA and (B) SDMA levels of rats treated with saline (Control), monocrotaline 

(MCT[28d]) and monocrotaline plus tolafentrine (MCT[28d]/Tola) treated animals. All values are 

given as mean ± SEM (n=8). *, p<0.05 versus control; †, p<0.05 versus MCT[28d]. 

 

4.3.6 Effect of tolafentrine on DDAH expression 

DDAH2 mRNA levels that were significantly reduced by MCT treatment were 

upregulated with 2 weeks treatment of tolafentrine (Figure 29). Further, western 

blot analysis confirmed that DDAH2 protein expression was also increased by 

tolafentrine treatment of MCT treated (MCT[28d]) rats (Figure 30). Interestingly, the 

DDAH2 expression at both mRNA and protein level was near normalized to 

control rat lung DDAH2 expression.  

 

 

 

 

 

 

 

A) B)

Control MCT[28d] MCT[28d]/Tola

AD
M

A 
[µ

m
ol

/L
]

0.0

0.5

1.0

1.5

2.0 *

†

Control MCT[28d] MCT[28d]/Tola
SD

M
A

 [µ
m

ol
/L

]
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 *

†



Results                                                                                                                 67 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 29: Effect of tolafentrine on DDAH2 mRNA expression. (A) mRNA expression and 

subsequent (B) quantification of DDAH2 in lung homogenates of rats treated with saline (Control), 

monocrotaline (MCT[28d]) and monocrotaline plus tolafentrine (MCT[28d]/Tola) treated animals. All 

values are given as mean ± SEM (n=3). *, p<0.05 versus control; †, p<0.05 versus MCT[28d]. 

 

 

 

 

 

 

 

 

 
Figure 30: Effect of tolafentrine on DDAH2 protein expression. (A) Immunoblots and 

subsequent (B) densitometric quantification of DDAH2 in lung homogenates of rats treated with 
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saline (Control), monocrotaline (MCT[28d]) and monocrotaline plus tolafentrine (MCT[28d]/Tola) 

treated animals. All values are given as means ± SEM (n=4). *, p<0.05 versus control; †, p<0.05 

versus MCT[28d]. 

 

4.3.7 Effect of tolafentrine on DDAH Activity 

Figure 30 shows the effects of tolafentrine on DDAH activity of MCT lungs. As 

expected, DDAH activity was decreased by 4 fold after MCT treatment as 

compared to controls. 2 weeks treatment of MCT rats with tolafentrine restored 

DDAH activity nearly to a normal level compared with MCT (MCT[28d]) group 

(Figure 31). But tolafentrine treatment of control lungs per se did not affect DDAH 

activity compared with control lungs.  

 

 

 

 

 

 

 

 

 

Figure 31: Effect of tolafentrine on DDAH activity. DDAH enzyme activity was determined by 

in vitro assay of crude lung homogenates from rats treated with saline (Control), monocrotaline 

(MCT[28d]) and monocrotaline plus tolafentrine (MCT[28d]/Tola) treated animals. All values are 

given as mean ± SEM (n=4). *, p<0.05 versus control; †, p<0.05 versus MCT[28d]. 

 

4.3.8 Effect of tolafentrine on NO synthesis 

In parallel to the alterations in DDAH activity, tolafentrine also induced 

statistically significant increase in plasma nitrite/nitrate (NOx) levels (Figure 32). 
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14.8±4.7 to 3±1.28 µmol/l in control rats. Most impressively, treatment of MCT 

rats with tolafentrine significantly elevated NOx levels from 3±1.28 to 12.9±3.4 

µmol/l and nearly normalized to control plasma NOx values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Effect of tolafentrine on nitrite/nitrate (NOx) levels. Plasma nitrite/nitrate levels 

was determined by griess reagent from rats treated with saline (Control), monocrotaline (MCT[28d]) 

and monocrotaline plus tolafentrine (MCT[28d]/Tola) treated animals. All values are given as mean 

± SEM (n=8). *, p<0.05 versus control; †, p<0.05 versus MCT[28d]. 
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5 Discussion 
 
5.1 Increased levels and reduced catabolism of asymmetric and symmetric 
dimethylarginines in pulmonary hypertension 
An increase in levels of ADMA, an endogenous inhibitor of nitric oxide synthases 

is known to contribute to the pathogenesis and progression of various 

cardiovascular diseases associated with endothelial dysfunction. Interestingly, 

Increased plasma concentrations of ADMA (1.06 µmol/L) were also observed in 

the currently studied IPAH patients as compared to levels in healthy subjects 

ranging between 0.30 to 0.42 µmol/L. This increase is comparable with values 

obtained from other conditions associated with endothelial dysfunction such as in 

patients with pulmonary hypertension associated with congenital heart disease 

(0.55µmol/L), hypercholesterolemia (0.60µmol/L), Type 2 diabetes mellitus 

(1.59µmol/L) and hyperhomocystinemia (1.6µmol/L) (92-95).  

 

In the present investigation, we employed monocrotaline for induction of severe 

pulmonary hypertension in rats, as documented by a threefold increase in right 

ventricular systolic pressure and right heart hypertrophy (105). Similar to 

previous observations in hypoxia-induced experimental pulmonary hypertension 

(106), a marked increase in plasma ADMA levels was noted in the MCT treated 

animals. Such enhanced ADMA levels may well result in substantial NOS 

inhibition, and it is in line with this reasoning that reduced NO production is an 

underlying mechanism responsible for impaired endothelium-dependent 

relaxation, that was previously illustrated in response to MCT treatment 

(107,108).  

 

Moreover, the main endothelial ADMA metabolizing enzyme, DDAH2, was found 

to be drastically reduced in response to MCT treatment, as shown on the mRNA, 

protein and functional level and by immunohistochemistry. This loss of DDAH2 

activity may result in local (intracellular) ADMA levels even surpassing those in 

the blood compartment, thereby aggravating the suppression of endothelial NO 
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formation. This notion is in line with previous studies in hypoxic lungs, where 

reduced DDAH expression was also observed (106). The molecular mechanisms 

underlying DDAH suppression in hypoxia- and MCT-induced pulmonary 

hypertension remain to be elucidated, but may include the impact of oxidative 

stress (96), viral infection (97) and the nuclear receptor PPARγ on the 

transcriptional and translational control of DDAH (109). Recently, several 

polymorphisms within the DDAH2 promoter were identified which could be a risk 

factor for cardiovascular diseases (110). In our study, we found that protein 

levels of DDAH were affected by pro-inflammatory cytokines, TNF-  and IFNγ. 

DDAH expression of endothelial cells was decreased to almost 50% of baseline 

values by incubation with TNF-  and IFNγ. The study nicely corroborates with 

human IPAH patients that had an aggravated production of TNF-alpha as well as 

with MCT-induced PAH rats causing endothelial dysfunction. 

 

Interestingly, the plasma levels of SDMA also markedly increased in MCT-treated 

rats. The role of SDMA in vascular dysfunction is not yet clear, however, since 

SDMA is an inhibitor of the human cationic amino acid transporter hCAT-2B (80), 

it may indirectly inhibit NO synthesis by interfering with arginine uptake. Thus, 

enhanced SDMA levels are to be expected to synergize with enhanced ADMA 

levels in causing endothelial NOS inhibition, along with a substantial amount of 

substrate depletion by transstimulation, which may well contribute to prolonged 

pulmonary vasoconstriction and lung vascular remodeling in the MCT model.  

 

As demonstrated by dot-blot and immunohistochemistry, asymmetric and 

symmetric dimethylated arginines are highly increased in both human lung tissue 

of idiopathic pulmonary arterial hypertension and rat tissue of monocrotaline 

induced pulmonary hypertension. The source of asymmetric and symmetric 

dimethylated arginines are protein arginine N-methyltransferases (PRMTs) which 

were shown to be upregulated in response to oxidative stress in human 

endothelial cells (111). Since oxidative stress is involved in pulmonary 

hypertension (112,113), it is possible that both, an increase biosynthesis of 
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methylated arginines by upregulation of PRMTs and the reduction of metabolism 

by downregulation of DDAH are involved in the pathogenesis of pulmonary 

hypertension (Figure 33).  

 
 
Figure 33: Central role of ADMA, SDMA and DDAH in the pathogenesis of pulmonary 
hypertension. Schematic depiction of methyl arginine (ADMA and SDMA) elevation and their 

contribution to impaired NOS activity and its substrate (L-arginine) depletion that subsequently 

leads to reduced NO production, an underlying mechanism responsible for the pathogenesis of 

PAH. This elevation as evidenced by our experiments is due to both increased dimethylation and 

decreased expression of ADMA metabolizing enzyme, DDAH. The molecular mechanisms 

underlying DDAH suppression may include pro-inflammatory cytokines, TNF-  and IFNγ (Author's 

Slide).  

 

Most impressively, corresponding changes in dimethylarginines were also 

encountered in the human system: patients with IPAH displayed significantly 
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enhanced plasma and tissue ADMA and SDMA levels, and lung tissue DDAH2 

was markedly reduced on both the mRNA and protein level, in line with 

immunohistochemical findings. This consistency of results between the 

experimental model and the human disease strongly suggests that changes in 

dimethylarginine regulation may be of major importance for endothelial 

dysfunction in pulmonary hypertension. 

Besides the NO pathway, corresponding changes in dimetylarginines may 

influence various vasoactive mediator pathways, as suggested by previous 

findings. A positive correlation between plasma ADMA levels and endothelin 

(known to be a potent vasoconstrictor and mitogen), was found in various 

disorders of endothelial dysfunction. In denuded vessel endothelium an 

accumulation of endogenous NOS inhibitors (L-NMMA and ADMA) was 

accompanied by an increased endothelin-1 content within the vessel wall (114). 

Ohnishi et al demonstrated that ET-1 inhibits NO-mediated vasodilation in part 

via increased ADMA production in chronic heart failure (CHF). Furthermore, 

administration of an ET (A) receptor antagonist can prevent this increase in 

plasma ADMA levels, and also the increase in peripheral vascular resistance 

observed in these patients (115). Piatti et al. suggest that acute intravenous L-

arginine infusion in patients with angina pectoris decreases endothelin-1 levels 

and improves endothelial function (116). However, the influence of non selective 

or selective ET receptor antagonist treatment on endogenous dimethyl arginines 

(ADMA, SDMA), in the context of PAH, has not yet been addressed in detail. 

 

Future studies have to address the question whether enhanced supply with L-

arginine may overcome increases in dimethylarginine levels. Studies with L-

arginine supplementation for treatment of experimental or clinical pulmonary 

hypertension have provided controversial results. First, L-arginine analogues 

SDMA and ADMA, compete with L-arginine for intracellular uptake, but also drive 

out the intracellular L-arginine (80). Therefore, we believe that the huge increase 

of ADMA and SDMA, observed in our study (in both human and rat MCT model 

of PH) may competes with L-arginine uptake which results in a substantial 
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substrate depletion even when provided extracellularly. Second, increased levels 

of ADMA, the endogenous NOS inhibitor, may also “uncouple” endothelial NOS 

(84). In such conditions, molecular oxygen becomes the substrate for electron 

transfer rather than L-arginine, thereby blocking or inhibiting the access of 

intracellular L-arginine to NOS. Subsequently, endothelial NOS generates 

superoxide anion, increases oxidative stress, attenuates NO bioactivity, and 

induces additional endothelial dysfunction. Third, L-arginine may not be useful in 

later stages of pulmonary hypertension, in which cytokine- or lipid-induced 

instability and/or reduced transcription of NOS may decrease its expression. On 

the other hand, L-arginine supplementation showed beneficial effects on 

hemodynamics in patients with primary, secondary and precapillary pulmonary 

hypertension (56,103). Possible explanations for these short-term beneficial 

effects include nonenzymatic generation of NO from L-arginine, release of growth 

hormone or insulin, or effects at the level of the CAT proteins responsible for 

cellular uptake of L-arginine. Nevertheless, reversal of the effects of ADMA 

represents a persuasive mechanism. Another therapeutic strategy is 

manipulation of DDAH expression and function to foster dimethylarginine 

catabolism by DDAH overexpression or by existing therapies of pulmonary 

hypertension such as statins, ET receptor antagonist or prostacyclin analogues. 

This may represent new strategies for treatment of this enigmatic disease. 

 

In conclusion, we were able to demonstrate that enhanced dimethylarginine 

levels contribute to vascular abnormalities in severe pulmonary hypertension. 

Furthermore, suppression of endothelial DDAH2 expression and function 

represents an important underlying mechanism in the course of the disease.  

 

These findings are confirmed in a well-established animal model of pulmonary 

hypertension as well as in tissue and plasma of patients suffering from idiopathic 

pulmonary arterial hypertension. The current study might stimulate development 

of novel therapeutics that target the signaling pathway of endogenous NOS 

inhibitors and support the functional capacity of DDAH. 
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5.2 Tolafentrine increases nitric oxide synthesis in MCT induced pulmonary 
hypertension: a role for the induction of DDAH2 
Astonishingly, in our screening tolafentrine was identified as novel therapeutic 

that can target the signaling pathway of endogenous NOS inhibitors. Daily 

repetitive inhalations of tolafentrine, a combined PDE 3/4 inhibitor, to MCT-PAH 

rats restored DDAH expression and activity. Besides, it also improved the 

impairment of endothelium-dependent relaxation and normalized nitrite levels in 

MCT-induced pulmonary hypertensive rats. Furthermore, the inhalative therapy 

commenced during the development of pulmonary hypertension, 2 weeks after 

application of monocrotaline, improved pulmonary hemodynamics and reversed 

structural and molecular changes underlying MCT induced PAH in rats. 

 

The phosphodiesterases (PDEs) are a large family of intracellular enzymes that 

degrade cyclic nucleotides cAMP and cGMP (59,60). cAMP- PDEs, mainly PDE 

3 and 4 isoenzymes have been demonstrated as essential players co-regulating 

cAMP catabolism in many organs, including the lung, and were shown to be 

upregulated in experimental PAH models (117-119). Moreover, experimental 

evidence has suggested that combined phosphodiesterase (PDE) 3/4 inhibitors 

increase cyclic AMP levels within cells greater than inhibition of either isoenzyme 

alone (120). Because of cAMP potential for altering a variety of cellular 

responses, cAMP-PDEs are appealing targets for the treatment of PAH (121). 

cAMP-PDEs may become a very useful tool for the treatment of PAH. 

 

A recent study by our group showed that intravenous infusion of the combined 

selective PDE 3/4 inhibitor (tolafentrine) prevented the development of 

pulmonary hypertension and right ventricular hypertrophy in response to 

monocrotaline (122). However, the complexity and complications associated with 

the intravenous application of an agent exerting at the same time pulmonary and 

systemic vasodilation prompted us to evaluate the inhalative route of application 

in the present study. Moreover, the therapeutic potential of tolafentrine, and its 
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impact on molecular mechanisms closely linked with the structural wall changes 

were not addressed in the previous study. 

 

For the inhalation therapy, aimed to achieve a selective pulmonary vasodilation, 

a 15 fold lower dose compared with the intravenous route of application was 

employed (120µg/kg day versus 2mg/kg day). Even with such low dose, 

tolafentrine treatment drastically improved MCT-induced hemodynamic 

abnormalities: RVSP values were markedly lower than those before onset of 

treatment, and cardiac index as well as pulmonary vascular resistance was fully 

normalized. Accordingly, the right heart hypertrophy was found to be largely 

decreased, as were the structural changes of the lung vasculature evoked by 

monocrotaline treatment. To our knowledge, we were the first to demonstrate the 

efficacy of combined selective PDE 3/4 inhibition in prevent the development of 

pulmonary hypertension both with respect to hemodynamics and the structural 

remodeling of the lung vasculature. These most impressive beneficial effects of 

tolafentrine may in part be explained by cAMP-mediated inhibition of proliferation, 

cell cycle progression of PASMC (123,124). In one of our previous studies we 

showed that cAMP-PDEi mainly combined PDE 3/4 inhibitors prevents 

experimental induced PAH by anti-migratory and matrix (MMP) regulation 

properties. Those were mainly mediated by downregulation of gelatinases, 

MMP2 and MMP9 (122). 

 

Besides, we have shown for the first time that tolafentrine reverses endothelial 

dysfunction in chronic pulmonary hypertensive rats. This may be related to 

increased synthesis of endothelial NO, as evidenced by increased nitrite/nitrate 

levels. Consistent with the functional data, PDE3 and PDE4 were the major 

cAMP hydrolysis enzymes in intact endothelial cells and their role in lung 

inflammation and hyperpermeability of pulmonary endothelial monolayers, 

strongly suggests the protective role of combined PDE 3/4 inhibitors on vascular 

endothelial function (125-127).The mechanisms responsible for the cAMP 

enhancement mediated NO formation are not yet fully understood and may 
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include both eNOS expression and activity modulation. Nevertheless, to date, no 

data are available regarding effects of cAMP on endogenous NOS inhibitors.  

Most interestingly, cAMP augmentation by PDE3/4 inhibition was shown to 

influence dimethylarginines levels. Tolafentrine treatment of MCT-PAH rats for 2 

weeks drastically reduced both ADMA and SDMA levels that were upregulated 

during development of MCT-induced PAH. Decreased ADMA levels can be partly 

explained by restored DDAH2 expression and activity mediated by tolafentrine. 

Because DDAH is a key regulator of endogenous ADMA levels, increased DDAH 

expression and activity may accelerate the degradation of endogenous ADMA, 

thereby enhancing the activity of eNOS and eventually augmenting the synthesis 

of NO. Clearly evidenced by our experiments, nitrite levels were near normalized 

to control values in tolafentrine treated pulmonary hypertensive rats (Figure 34). 

 

 
Figure 34: Tolafentrine: Augmentation of NO production in chronic pulmonary 
hypertensive rats. Schematic depiction of molecular mechanisms responsible for augmented 
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NO production by Tolafentrine. Tolafentrine, a combined PDE 3/4 inhibitor by increasing 

intracellular cAMP levels enhances NO production by modulating methyl arginine (ADMA and 

SDMA) concentrations, that were altered during progressive pulmonary hypertension. These 

modulatory effects as evidenced by our experiments are due to an upregulation of DDAH 

expression and activity (Author's Slide). 

 

Although we did not address the effects of tolafentrine on eNOS expression and 

activity, previous reports suggest that a rise in intracellular cAMP may activate 

endothelial NOS (eNOS) either directly or indirectly and evoke NO cGMP 

mediated relaxation (128,129). Chen et al. reported that eNOS is phosphorylated 

at Ser-1177 by protein kinase A that can be phosphorylated and activated by 

cAMP (130). Importantly, two recent studies by Fulton et al and Dimmeler et al 

found that eNOS is an efficient substrate for protein kinase Akt (PKB). PKB via 

activation PI3 kinase phosphorylates eNOS directly and thereby increases its 

activity (131,132). Further, Niwano K et al. showed that additional regulatory 

mechanisms control eNOS expression via cAMP signaling in vitro (133). Even 

though, the effect of cAMP on eNOS transcription in vivo remained speculative.  

Several anti-inflammatory molecules were already shown to reduce ADMA levels 

by reducing oxidative stress and subsequent enhancement of DDAH activity 

(134,135). But the results of two small studies of antioxidant vitamins have been 

negative or inconclusive, thereby cautioning to target DDAH enzyme expression. 

Our study identified combined PDE 3/4 inhibitor as one of the transcriptional 

modulator of DDAH2 other than all-trans-Retinoic Acid (109). In addition to 

transcriptional regulation, combined PDE 3/4 inhibitor by its potent anti-

inflammatory properties directly influences DDAH activity. Therefore, these two 

pathways together enhance the bioavailability of NO, improving the impairment of 

endothelium-dependent relaxation induced by MCT.  

In conclusion, combined PDE 3/4 inhibitors by increasing NO synthesis and 

bioactivity acutely reduces pulmonary pressures by its effects on vasoreactivity 

and chronically reduces the progression of disease-media hypertrophy, intimal 

hyperplasia, and thrombosis by elevating both NO and cAMP.  
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6. Summary 
 
Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and life- 

limiting disorder which is associated with impaired bioactivity and/or synthesis of 

endogenous nitric oxide (NO). The mechanisms resulting in this impairment are 

multifactorial. Recently, the impact of endogenous NO-synthase inhibitors such 

as dimethylarginines (ADMA and SDMA) has come into the focus of attention for 

various endothelial dysfunction associated cardiovascular disorders. As current 

evidence strongly suggests a central role for endothelial dysfunction in the 

initiation and progression of pulmonary arterial hypertension (PAH), the plausible 

role of dimethylarginines is speculated in this disease. Hence forth, the present 

study was undertaken to investigate the potential role of dimethylarginines in the 

course of chronic pulmonary hypertension. If this speculation was to be proven, 

further studies aimed to delineate the precise mechanisms responsible for these 

alteration including biosynthesis and metabolism of these mediators. These 

studies were performed mainly on plasma and lung tissues obtained from both 

IPAH patients and monocrotaline induced pulmonary hypertensive (MCT-PAH) 

rats.   

Interestingly, in both MCT-PAH rats and patients suffering from IPAH (NYHA 

class III and IV), a marked increase in plasma ADMA and SDMA levels 

compared to their healthy counterparts was observed. These findings were nicely 

corroborated by increased biosynthesis as evidenced by high expression of 

asymmetric and symmetric dimethylated arginine proteins in lung tissues from 

patients suffering from PAH as well as from MCT-PAH rats. Moreover, the main 

endothelial ADMA metabolizing enzyme, DDAH2, was found to be drastically 

reduced in IPAH patients and MCT-PAH rat tissue, at both the mRNA and the 

protein level with no significant changes in DDAH1 expression. The consistency 

of results seen in human disease and in an established experimental animal 

model of pulmonary hypertension strongly suggests that changes in 

dimethylarginine regulation may contribute considerably to the course of the 

disease. The current study also suggests that novel therapeutics that target the 
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signaling pathway of endogenous NOS inhibitors and promote the functional 

capacity of DDAH2 would be beneficial for the treatment of IPAH. 

Interestingly, we identified the phosphodiesterase 3/4 inhibitor, tolafentrine as the 

first transcriptional modulator of DDAH2 in chronic MCT-PAH rats. Daily 

repetitive inhalation of tolafentrine by augmenting intracellular cAMP levels 

restored DDAH expression, activity and nitrite levels that were decreased during 

the development of MCT-induced PAH. DDAH2 activity restoration was 

functionally evidenced by near normalized ADMA plasma levels in tolafentrine 

treated MCT-PAH rats. Furthermore, we also observed a decreased SDMA 

levels in tolafentrine treated animals, although the mechanisms responsible for 

this change is not yet clear. Finally, as a regulator of endogenous NOS inhibitors, 

tolafentrine treatment drastically improved MCT-induced hemodynamic 

abnormalities and reversed structural and molecular changes underlying MCT 

induced PAH in rats in the current study. 
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7. Zusammenfassung 
 
Die chronische pulmonalarterielle Hypertonie (PAH) hat eine schlechte Prognose 

und betrifft ein großes und zudem wachsendes Patientenkollektiv. Als Auslöser 

dieser Erkrankung gelten Hypoxie, Entzündung, Thromboembolie und 

Hyperzirkulation. Ein wesentlicher Pathomechanismus ist die Verschiebung des 

komplexen Gleichgewichts vasokonstriktiver und vasodilatativer Mediatoren in 

Richtung der Vasokonstriktoren, verbunden mit verschiedenen strukturellen 

Veränderungen an den Pulmonalarterien. Der Mangel an Vasodilatatoren wie 

Stickstoffmonoxid und Prostazyklin und die Überexpression von 

Vasokonstriktoren, wie Endothelin und Thromboxan, tragen allerdings nicht nur 

zum erhöhten vaskulären Tonus bei, sondern sind auch maßgeblich am Verlust 

der physiologischen flussabhängigen Vasodilatation beteiligt. Insbesondere die 

Stickstoffmonoxidsynthase (NOS) spielt eine zentrale Rolle in der 

Pathophysiologie dieser pulmonalvaskulären Dysfunktion. Kürzlich konnte 

gezeigt werden, dass bei verschiedenen kardiovaskulären Erkrankungen erhöhte 

Konzentrationen endogener Hemmstoffe (symmetrisch dimethyliertes Arginin 

(SDMA) oder asymmetrisch dimethyliertes Arginin (ADMA)) der NOS messbar 

sind. 

In der vorliegenden Arbeit wurden zunächst Untersuchungen an Plasma und 

Lungengewebe von Patienten mit idiopathischer pulmonalarterieller Hypertonie 

(IPAH) und Ratten mit experimenteller pulmonaler Hypertonie durch Injektion von 

Monocrotalin (MCT-PAH) untersucht. Dabei wurde erstbeschreibend gefunden, 

dass in IPAH Patienten (NYHA Klasse III und IV) und MCT-PAH Ratten die 

Plasmaspiegel der endogenen NOS-Hemmstoffe ADMA und SDMA im Vergleich 

zu Kontrollen drastisch erhöht sind. Die erhöhte Biosynthese von ADMA und 

SDMA wurde im Gewebe durch immunhistochemische und biochemische 

Untersuchungen nachgewiesen. Es konnte weiterhin gezeigt werden, dass das 

ADMA metabolisierende Enzym Dimethylarginin-Dimethylaminohydrolase 

(DDAH2) hochsignifikant bei klinischer und experimenteller pulmonaler 
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Hypertonie herabreguliert ist. Durch die verringerte Aktivität des Enzyms wird die 

gefäßengstellende Wirkung des ADMA verstärkt und verlängert.  

Die transkriptorische Modulation der DDAH2 Expression gelang mit Hilfe des 

dual-selektiven Phosphodiesterase Inhibitors Tolafentrin, welcher nach 

chronischer Applikation bei experimenteller PAH eine Hochregulation der DDAH2 

und dadurch Reduktion der Plasmaspiegel von ADMA induzierte. Durch 

Erhöhung der intrazellulären cAMP Spiegel wurde die DDAH2-Expression 

(gezeigt durch immunhistochemische und biochemische Methoden) sowie -

Aktivität angehoben. Diese pharmakologische Hochregulation der DDAH2 führte 

neben der Reduktion der Plasmaspiegel von ADMA und SDMA auch zu 

Verbesserungen der Hämodynamik und zu einer deutlichen Verbesserung der 

strukturellen Gefäßveränderungen. Zusammenfassend konnte erstmalig gezeigt 

werden, dass endogene Hemmstoffe der NO-Synthase bei pulmonalarterieller 

Hypertonie erhöht sind, was durch eine erhöhte Synthese im Lungengewebe, 

aber auch reduzierten Abbau durch die im Gefäß herunterregulierte DDAH2 

erklärt werden kann. Gleichzeitig gelang es in der vorliegenden Arbeit, durch 

eine pharmakologische Intervention dieses Schlüsselenzym im kardiopulmonalen 

Gefäßsystem hoch zu regulieren, was in dem experimentellen Modell des 

Lungenhochdrucks zu einer Normalisierung der hämodynamischen und 

histologischen Veränderungen führte.  
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