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Abstract

Present and future high-energy physics experiments pose challenging demands on the

detector systems and analysis methods. This dissertation addresses both aspects by

focusing on the optimisation and characterisation of a novel technology demonstrator

for a monolithic silicon sensor design and the development of model-agnostic analysis

techniques for the pixel detector at the Belle II experiment.

In the first part, the requirements of vertex and tracking detectors for future Higgs

factories such as the Compact Linear e+e−– Collider (CLIC) or the Future Circular

e+e−– Collider (FCCee) are addressed. The experimental conditions at these colliders

require high-precision sensors with a low material content. The CLIC Tracker Detector

(CLICTD) is a technology demonstrator for a monolithic pixel sensor fabricated in a mod-

ified 180 nm CMOS imaging process that targets the requirements of the CLIC tracker.

The performance of the sensor is assessed for different operation conditions, pixel designs

and wafer materials. A spatial resolution down to (3.9±0.2) µm, time resolution down to

(4.8± 0.1) ns as well as a hit detection efficiency >99.7 % over a wide range of detection

thresholds is observed and the CLIC tracker requirements are found to be fulfilled.

Modern silicon sensors such as CLICTD incorporate complex sensor designs that are

challenging to simulate and model. This dissertation presents a combination of elec-

trostatic finite-element and transient Monte Carlo simulations to provide simultaneous

access to precise sensor modelling and high-statistics simulation samples. The advanced

simulation approach is validated against data and excellent agreement is found over a

wide range of different operation conditions.

In the second part, patterns of minimally-processed pixel hits recorded by the Belle II

pixel detector are investigated. In particular, a focus on model-agnostic approaches is

placed that enable an unbiased exploration of data, while filtering out anomalous detector

signatures that could hint at new physics scenarios. The identification of hypothetical

magnetic monopoles against Belle II beam background is presented using Self-Organizing

Kohonen Maps and Autoencoders. The two unsupervised algorithms are compared to a

convolutional Multilayer Perceptron and a superior signal efficiency at high background-

rejection levels is found for the unsupervised techniques.
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Zusammenfassung

Heutige und zukünftige Experimente der Hochenergiephysik stellen hohe Anforderun-

gen an die Detektorsysteme und Analysemethoden. Diese Dissertation befasst sich mit

beiden Aspekten, indem sie sich auf die Charakterisierung eines neuartigen Technolo-

giedemonstrators für ein monolithisches Silizium-Sensordesign und die Entwicklung von

modellagnostischen Analysetechniken für den Pixeldetektor des Belle II Experiments konzen-

triert.

Im ersten Teil werden die Anforderungen an Vertex- und Tracker-Detektoren für

zukünftige Higgs-Fabriken wie den Compact Linear e+e−– Collider (CLIC) oder den

Future Circular e+e−– Collider (FCCee) behandelt. Die experimentellen Bedingungen

an diesen Collidern erfordern hochpräzise Sensoren mit geringem Materialeinsatz. Der

CLIC Tracker Detector (CLICTD) ist ein monolithischer Pixelsensor, der in einem modi-

fizierten 180 nm CMOS Imaging Prozess hergestellt wird und die Anforderungen des CLIC

Trackers anvisiert. Die Leistung des Sensors wird für verschiedene Betriebsbedingungen,

Sensordesigns und Wafermaterialien bewertet, und es wird eine räumliche Auflösung von

bis zu 3.9 ± 0.2 µm, eine zeitliche Auflösung von bis zu 4.8 ± 0.1 ns sowie eine Detek-

tionseffizienz besser als 99.7 % über einen breiten Schwellwertbereich gemessen, was die

Anforderungen des CLIC-Trackers erfüllt.

Sensoren wie CLICTD verfügen über komplexe Sensordesigns, deren Simulation und

Modellierung eine Herausforderung darstellt. In dieser Dissertation wird eine Kombi-

nation aus elektrostatischen Finite-Elemente- und transienten Monte-Carlo-Simulationen

vorgestellt, die einen simultanen Zugang zu präziser Sensormodellierung und hoher Statis-

tik ermöglichen. Der fortschrittliche Simulationsansatz wird anhand von Daten vali-

diert, und es wird eine hervorragende Übereinstimmung über einen weiten Bereich unter-

schiedlicher Betriebsbedingungen festgestellt.

Im zweiten Teil werden Muster in Belle II Pixeldetektordaten untersucht. Insbeson-

dere wird ein Schwerpunkt auf modellagnostische Ansätze gelegt, die eine unvorein-

genommene Untersuchung der Daten ermöglichen und gleichzeitig anomale Detektorsig-

naturen herausfiltern, die auf neue physikalische Szenarien hindeuten könnten. Die

Identifizierung hypothetischer magnetischer Monopole gegen Untergrund mit Hilfe von
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selbstorganisierenden Kohonenkarten und Autoencodern wird vorgestellt. Die beiden

unüberwacht lernenden Algorithmen werden mit einem überwachten mehrlagigem Perzep-

tron verglichen, und es wird festgestellt, dass die unüberwachten Verfahren bei hoher

Hintergrundunterdrückung eine bessere Signaleffizienz aufweisen.
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Introduction

Equipped with our five senses, along with telescopes and microscopes and mass spectrom-

eters and seismographs and magnetometers and particle accelerators and detectors across

the electromagnetic spectrum, we explore the universe around us and call the adventure

science.

— Neil DeGrasse Tyson

Curiosity and the innate human desire for problem solving are the originators for scientific

endeavours for millennia of human history and are the driving force behind innumerable

technologies, rigorous theories and ever-improving innovations. Modern science is marked

by the advent of the scientific method, whose central pillar is the acquisition of knowl-

edge by empirical methods, whereby hypotheses are formulated, consequences are derived

by logical reasoning and experiments are carried out to challenge and refine the initial

assumptions. The measurement-based assessment of testable hypotheses can range from

table-top experiments to the largest machine ever built by humans: the Large Hadron

Collider (LHC) [1].

The search for new knowledge has led to the investigation of the fundamental con-

stituents of matter and their interactions. The theoretical and experimental efforts culmi-

nated in the formulation of the highly-successful Standard Model of Particle Physics, that

summarises our current understanding of elementary particles and processes. A major

scientific milestone was marked by the discovery of the Higgs Boson by LHC experiments

in 2012 [2,3], which was considered the last missing puzzle piece in the Standard Model.

However, the quest for undiscovered particle physics is far from complete. In the face of

inexplicable phenomena and incomplete formulations, extensions to the Standard Model

are urgently called for. The search for Beyond the Standard Model physics as well as

stringent tests of Standard Model predictions are thus cornerstones in the physics pro-

grammes of present and future High-Energy Physics experiments.

The instrumental facet of this endeavour requires the development of detectors with

ever-increasing accuracy, which can withstand harsh experimental environments, while

1
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maintaining reliable operation. In addition, the flood of complex data from these detec-

tors requires in-depth analyses with cutting-edge algorithms operating and pushing at

the frontier of today’s computing capabilities. This thesis is focused on the development

of new instruments and methods in both fields: the characterisation and simulation of a

novel silicon pixel sensor as well as the investigation of innovative analysis techniques for

today’s and tomorrow’s High-Energy Physics experiments.

For this purpose, the thesis is divided into two parts: The first part is dedicated to

the characterisation of a technology demonstrator for a monolithic silicon sensor design

using laboratory studies, experiments with charged particle beams and simulations. In

the second part, a proof-of-concept for unsupervised anomaly detection in pixel detector

data is demonstrated, which represents a principle change of paradigm compared to tra-

ditional data analysis techniques in High-Energy Physics.

Silicon vertex and tracker detectors have contributed to groundbreaking discoveries by

providing high-resolution spatial and temporal information of charged particle trajecto-

ries. In the face of ever-increasing demands for high-performance detectors, innovative

design concepts for silicon sensors making up vertex and tracker detectors are needed.

In this dissertation, a pixelated monolithic silicon sensor is characterised and its perfor-

mance is assessed against the requirements for future tracker detectors at high-energy

lepton colliders such as the Compact Linear Collider (CLIC). CLIC is a concept for a

linear electron-positron collider with centre-of-mass energies up to 3 TeV, whose physics

objectives include precision measurements of the Standard Model top quark and Higgs

boson as well as direct and indirect searches for Beyond the Standard Model physics. To

this end, the CLIC detector requires a low-mass tracker detector with a large surface area

of 137 m2, which combines a spatial resolution of . 7 µm with a time resolution of . 5 ns

and excellent hit-detection efficiency. The CLICTD sensor is a technology demonstrator

for advanced front-end and sensor design concepts that aims to fulfil these requirements,

while being equally relevant for other applications as well such as future upgrades of the

LHC detectors [4].

In this thesis, the novel design choices are studied in laboratory measurements and in

charged particle beams. The sensor is assessed and various design flavours and operation

settings are compared. The measurements are also used for the verification of an advanced

simulation approach involving three-dimensional finite-element and transient Monte Carlo

simulations. These simulations enable a combination of a precise sensor modelling from

the finite-element method with high-statistics simulation samples provided by the Monte

Carlo approach. Once validated, they help to comprehend and interpret measurement

results by giving insight into underlying processes that are not directly accessible in the
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measurement data. They also aid in the optimisation of sensor designs and are therefore

indispensable tools in various stages in the silicon-detector development cycle.

The second part of this thesis is dedicated to the detection of anomalous particle sig-

natures in Belle II pixel detector data. The Belle II experiment is located at the asym-

metrical electron-positron collider SuperKEKB. Its innermost sub-detector - the pixel

detector (PXD) - is subject to high data rates that require a sophisticated data han-

dling. This dissertation explores a possible extension to the PXD readout scheme to

increase sensitivity to anomalous data that could indicate undiscovered physics scenar-

ios. The study is based on machine learning techniques that have proven to be a valuable

tool in reconstruction and analysis tasks for High-Energy Physics [5]. In particular, the

classification of signal and background using machine learning algorithms has sparked

significant interest. The majority of these algorithms are trained in a supervised manner,

and therefore rely on a prior definition of signal provided by a theoretical framework and

simulations. However, detector signatures corresponding to elusive Beyond the Standard

Model Physics (BSM) processes might be missed owing to a narrow signal definition or

a mis-modelling of either signal or background.

Unsupervised and semi-supervised methods aim at the identification of signal fea-

tures while minimizing predictions about signal or background. A data-driven approach

is adopted allowing for a model-agnostic analysis that has the advantage of being indepen-

dent from theoretical assumptions and therefore not confined to specific signal hypotheses

and background modelling. In this thesis, unsupervised machine learning methods are

presented with the objective to identify anomalous detector patterns that are potential

indicators for unaccounted physics scenarios.

To demonstrate the approach, hypothetical long-lived magnetic monopoles are simu-

lated and discriminated against measured pixel-detector background data. Two classes of

unsupervised algorithms are investigated: Self-Organising Maps and Autoencoders. They

are compared to a convolutional Multilayer Perceptron, that is trained in a supervised

manner and their suitability for anomaly detection is assessed.

Outline

The content of this thesis is structured as follows: The first part presents the motiva-

tion and theoretical background starting from the Standard Model of Particle Physics

in Chapter 1 to the principles of semiconductors as detector material in Chapter 2 and

concepts related to silicon pixel detectors in Chapter 3. In Chapter 4, the principal ob-

ject of investigation - the CLICTD technology demonstrator - is introduced. Chapters 5
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and 6 cover the laboratory measurements by first introducing the setup and methodical

background and subsequently the measurement results. Measurements with charged par-

ticle beams (test beams) were conducted at the DESY II Test-Beam Facility. Chapter 7

introduces the test-beam infrastructure and the experimental setup. The reconstruction

and analysis strategies of the test-beam data are presented in Chapter 8 and the results

in Chapter 9. The simulation setup is introduced in Chapter 10 and the validation and

application of the simulation approach is presented in Chapter 11.

In the second part, the Belle II experiment is briefly outlined in Chapter 12. Sub-

sequently, highly-ionising particles and in particular hypothetical magnetic monopoles

are introduced in Chapter 13, as they represent the main research objects to assess the

anomaly detection techniques. Chapter 14 presents the machine learning algorithms used

in this thesis. After the analysis and reconstruction strategy is outlined in Chapter 15,

the algorithms are applied first to simulation and then to data in Chapter 16. Lastly, a

summary and an outlook to future developments is given.
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Characterisation of Silicon Sensors

5





Chapter 1

Introduction to Particle Physics

In this chapter, the theoretical background of our present state of knowledge and future

endeavours in High-Energy Physics (HEP) are introduced with a focus on collider ex-

periments for particle physics. First, the Standard Model of Particle Physics is briefly

outlined, as it summarises our current understanding of fundamental particle physics.

Next, limitations of the Standard Model are discussed and the necessity for an extended

model is motivated.

Novel theoretical approaches require careful experimental testing. In HEP, measure-

ments at particle colliders have proven to be successful instruments to probe fundamental

particles and interactions and search for physics beyond the Standard Model. In partic-

ular, concepts for future lepton colliders target high-precision measurements to challenge

the predictions of the Standard Model. The Compact Linear Collider (CLIC) is a concept

for a future linear electron-positron collider, which is reviewed in more detail, since the

requirements for its tracking detector motivate the development of the new silicon sensor

prototype presented in this thesis.

1.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is the theoretical basis for our present

understanding of fundamental particles and the interactions between them [6]. The model

has proven to deliver accurate predictions of experimental measurements in a wide energy

range from a few eV to several TeV [7].

The SM is based on elementary particles, that can be divided into two groups:

fermions and (gauge) bosons. While the former are the building blocks of matter, the lat-

ter function as mediators of interactions. Three of the four fundamental interactions are

described by the SM: the electromagnetic, weak and strong interaction. Mathematically,

the SM is described by a relativistic Quantum Field Theory (QFT), with the equations

7
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of motions derived from a Lagrangian density [8].

In the following, a brief overview of the particles and interactions in the SM are

given. Subsequently, the limitations of the SM are described and possible extensions are

discussed.

1.1.1 Particles and Interactions

Table 1.1. Elementary fermions of the Standard Model and the fundamental interactions they

participate in.

Generation Interaction

1st 2nd 3rd Strong Weak Electromagnetic

Quarks
u c t X X X

d s b X X X

Leptons
e µ τ X X

νe νµ ντ X

The strong interaction is described by Quantum Chromodynamics (QCD) and fea-

tures the symmetry group SUC(3), where the subscript C denotes the colour charge.

Eight QCD gauge bosons (gluons) exist that couple to the colour charge. The weak

interaction is mediated by three massive gauge bosons Z0, W± [9, 10] and the electro-

magnetic interaction by the photon coupling to electric charge [11, 12]. A unification of

the weak and electromagnetic interaction gives rise to the concepts of weak isospin I and

weak hypercharge Y [13–15]. The theory adheres to the SUL(2) and UY (1) symmetry

groups, where L denotes the weak isospin of left-handed particles. The Higgs mecha-

nism [16, 17] evokes electroweak symmetry breaking, through which the Z0, W± acquire

their mass [18, 19]. The mechanism introduces the Higgs field, whose non-zero vacuum

expectation value results in the scalar Higgs boson that was experimentally verified at

LHC experiments [20]. Altogether, the symmetry group of the SM Lagrangian can be

summarised as SU(3)C⊗ SU(2)L⊗U(1)Y [21].

An overview of the fundamental fermions in the SM is given in Table 1.1. Quarks and

leptons are grouped in three different generations, with increasing mass from the first

to the third generation. Within each generation, two quark types exist with different

quantum numbers. Similarly, each lepton generation has a charged particle and an asso-

ciated neutrino that is only liable to the weak interaction. While quarks are subject to all

three interactions, leptons have no colour charge and are therefore unable to participate
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in the strong interaction. Each fermion has a partner with opposite charges, referred to

as antiparticle [22, 23].

1.1.2 Physics Beyond the Standard Model

Despite its outstanding phenomenological success, there is theoretical and experimental

evidence indicating that the SM is not a complete theory. Some of the most compelling

reasons to search for extensions of the SM are outlined in the following:

• Firstly, only three of the four fundamental interactions are described in the SM,

since it falls short of including gravitation in a fully coherent manner [24].

• Among the most critical questions presently unanswered by the SM is the matter-

antimatter asymmetry in the universe [25], which is a major physics motivation for

various experiments such as Belle II [26] or LHCb [27].

• The SM cannot explain certain cosmological phenomena such as the rotational

behaviour of certain galaxies [28] and gravitational lensing [29], that suggest the

existence of a new type of matter (dark matter) [30] 1.

• Similarly, cosmological observations such as distant type Ia supernovae [33] and

studies of the cosmic microwave background (CMB) [34] imply an accelerated ex-

pansion of the universe, that could indicate the existence of dark energy.

• From a theoretical perspective, the SM has some undesirable properties such as free

parameters [35] and the lack of an explanation as to why there are exactly three

generations of fermions [36].

There are a number of theoretical approaches attempting to answer these unresolved

questions such as Supersymmetry [37], Grand Unification theories [38] or Extra Dimen-

sions [39]. Details about some prevalent theories are presented elsewhere [40,41].

The majority of these theoretical frameworks predict the existence of undiscovered

particles or mechanisms. Presently, no experimental confirmation for any of the pro-

posed theories can be given. However, with the advent of new experimental endeavours

operating at the energy and intensity frontier, a previously inaccessible parameter region

will be explored. At the time of writing, preparations for a high-luminosity upgrade of

the LHC (HL-LHC) [4] are in full swing, which is foreseen to run up to 2040 [42]. There

are several propositions for the successor of the LHC such as the Future Circular e+e−

1Alternative theoretical approaches exist that e.g. introduce a modification to the theoretical descrip-

tion of gravity such as Modified Newtonian Dynamics (MOND) [31,32]
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Collider (FCC-ee) [43] or the Compact Linear Collider (CLIC) [44]. Both propositions

are lepton colliders and can be considered as Higgs factories due to their strong focus

on precision Higgs physics. In this thesis, the more stringent technological requirements

of the CLIC experiment are considered to develop and characterise a new detector pro-

totype. The technological advances of the detector components is a crucial ingredient

in the search for BSM physics, since they pave the way for high-precision measurements

while withstanding harsh experimental conditions.

1.2 The Compact Linear Collider

The Compact Linear Collider (CLIC) [44] is a design concept for a future linear electron-

positron collider for the post HL-LHC period. The CLIC accelerator is intended to be

built in three centre-of-mass (CM) energy stages, starting with ECM = 380 GeV. In the

second stage, the CM energy is increased to ECM = 1.5 TeV and in the final stage the CM

energy reaches ECM = 3.0 TeV. So far, CLIC is the only design concept for a multi-TeV

electron-positron collider. The multi-stage construction and the resulting wide energy

range enables an extensive physics program, which is introduced in the following.

1.2.1 The Physics Case

Lepton colliders provide well-defined initial conditions and reduced background levels

from quantum chromodynamics processes compared to hadron colliders. Therefore, they

are well-suited for precision measurements and direct or indirect searches for undiscovered

particles.

The CLIC physics programme consists of detailed studies of Standard Model particles

such as the Higgs boson [45] and the top quark [46,47] as well as searches for BSM physics.

The search techniques comprise direct detection as well as indirect searches, which are

based on precision measurements of parameters such as coupling constants or particle

masses [48]. As the Higgs boson couples strongly to B mesons, resolving secondary B

meson vertices using precise tracking measurements with the vertex and tracker detectors

is of utmost importance, as detailed below.

The centre-of-mass energy of 380 GeV, available in the initial energy stage, is par-

ticularly suited for detailed SM top quark and SM Higgs boson studies. The model-

independent determination of the Higgs boson decay width and the measurement of the

top quark mass using an energy scan around the top quark pair production threshold are

foreseen. The first stage would run for up to eight years and collect a total integrated

luminosity of Lint = 1.0 ab−1. For the second energy stage of 1.5 TeV, the coupling of
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Figure 4.2: Overview of the CLIC layout at
Ô
s = 3 TeV.

4.3.1 Main-Beam Injector Complex
Some modifications of the 380GeV complex are required to accommodate the high energy pa-
rameters. The injectors have to be modified to deal with smaller bunch charges and number of
bunches, while the BDS and spent beam system have to be modified to accommodate the higher
energy.

At injection into the Main Linac the bunch charge at 3 TeV is smaller than at 380 GeV
and the trains contain fewer bunches while the vertical emittance and the beam energy remain
the same. This reduces the impact of wakefields in the injector and booster linacs leading to
better beam stability and more relaxed tolerances for misalignments. The smaller bunch charge
and number also reduces the beam loading in the injector, so that the klystrons can be operated
at lower output power. Only two beam parameters are more ambitious than at 380GeV, the
horizontal emittance is smaller and the bunch length is also smaller. Both values depend strongly
on the damping ring. The reduced bunch produces a smaller horizontal emittance because it
leads to reduced intra-beam scattering. It also leads to a reduced longitudinal emittance which
means shorter bunch length in the compressors of the RTML transport system. The di�culty
in reaching these parameters remains roughly the same independent of energy.

4.3.2 Main Linac
The preservation of the beam quality in the Main Linac is slightly more challenging at the
high energy than at 380 GeV. However, the specifications for the performance of alignment and
stabilisation systems for the 380 GeV stage are based on the requirements for the 3 TeV stage.
They are therefore su�cient for the high energy stage and no upgrades of these systems are
required.

4.3.3 Beam Delivery System and Extraction Line
In the BDS the magnets will have to be replaced with stronger ones for the higher energy, in
particular for the final doublet. The overall system has also to be increased in length. The
main reason is the required increase in the length of the energy collimation system. This system
protects the machine from the most important failure, which is the failure of one of the kickers
that dispatches the Drive-Beam pulses into the decelerators. This will prevent one of the Drive-
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Figure 1.1. Schematic of the CLIC accelerator design at the final energy stage. From [50].

the top quark to the Higgs boson and the Higgs branching ratios can be determined with

high precision allowing for a detailed comparison against SM predictions. Most notably,

the top-Yukawa coupling and the Higgs self-coupling would be investigated and a total

luminosity of Lint = 2.5 ab−1 in about eight years would be collected. In the final energy

stage of 3.0 TeV, rare Higgs decays and the Higgs self-coupling can be probed further.

In addition, a strong focus is placed on searches for BSM physics [49]. The integrated

luminosity of the last stage is foreseen to amount to Lint = 5.0 ab−1.

1.2.2 CLIC Accelerator

Accelerator Design Compared to circular lepton colliders, the linear design of the

CLIC accelerator has the advantage of reducing energy losses related to synchrotron

radiation [51]. However, a linear accelerator has to reach the final collision energy in

a single pass through the acceleration structures. For a maximum collider length of

approximately 50 km, acceleration gradients of 100 MVm−1 must be obtained to reach

3 TeV. To this end, an innovative two-beam acceleration scheme has been developed that

is able to achieve high gradients using room temperature acceleration structures [50]. The

schematic layout of the acceleration complex is depicted in Fig 1.1. First, a low-energy,

high-current drive-beam is generated using klystron accelerating cavities. Subsequently,

the energy of the drive beams is transferred to low-current high-energy main beams that

are brought to collision at the interaction point.

Nanometre bunch sizes of 40 nm× 1 nm in the transverse plane are required to reach

the CLIC design luminosity of 5.9× 1034 cm−1 s−1 at 3 TeV. The longitudinal bunch size
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Figure 1.2. Schematic of the CLIC detector design. Close-ups of the tracking and vertex

detectors are depicted on the left of the figure. Modified from [54].

is foreseen to be 44 µm. 312 of these small bunches are combined into so-called bunch

trains, that last for a duration of 156 ns. The repetition rate of the bunch trains is 50 Hz,

which yields a duty cycle of less than 0.001 % [44].

Beam Background The main source of beam background is related to the electromag-

netic interaction of beam particles with the opposing beam (Beamstrahlung photons) [52].

Most notably, incoherently produced e+e− pairs and γγ → hadrons events arise from the

Beamstrahlung photons [53]. The suppression of background events is crucial to achieve

the intended physics objectives. The CLIC detector system is therefore optimised to cope

with the beam background, as outlined in the next section.

1.2.3 Detector Concept

The CLIC detector needs to be optimised for its intended physics programme and the

experimental conditions of a high-energy linear lepton collider. The CLICdet detector

design is based on detailed full-detector simulation studies and experiences from extensive

technology R&D [55, 56]. It is optimised for operation at the highest energy stage since

this stage has the most challenging experimental conditions. A schematic of the detector

design is displayed in Fig. 1.2.

CLICdet targets precision measurements based on Particle Flow Analysis (PFA) [57].
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Table 1.2. Requirements for the CLIC tracker. Data from [55].

Parameter Value

Spatial resolution (transversal) 7 µm

Granularity (longitudinal) 1 – 10 mm

Hit-time resolution 5 ns

Hit detection efficiency > 99.7 %

Material content (per layer) 1 – 2 %X0

Power dissipation 150 mWcm−2

Non-Ionizing Energy Loss (inner layer) < 1010neqcm−2y−1

Total Ionizing Dose (inner layer) 1 Gyy−1

PFA enables the combination of information from a high-resolution tracking system with

fine-grained calorimeter energy measurements. The combined analysis allows for the

identification of individual particles within jets and from beamstrahlung. The all-silicon

vertex and tracking system makes up the inner region of CLICdet. It consists of a

central barrel and several disks in the endcap sections, as depicted in the close-ups in

Fig. 1.2. The tracking system is discussed in more detail in the next section. A highly-

granular silicon-tungsten sampling electromagnetic calorimeter (ECAL) is used for the

energy measurement of charged particles. It consists of 40 alternating layers of absorber

material and silicon detectors as active layer. It is surrounded by the hadronic calorimeter

(HCAL) measuring the energy of hadronic particles. It follows the same design principle

as the ECAL, with 60 alternating planes of steel absorber material and scintillator plates

equipped with Silicon Photomultipliers as an active layer. The inner sub-detectors are

surrounded by a central superconducting solenoid magnet with a magnetic field of 4 T.

The magnet return yoke is interleaved with detectors for muon identification.

Two calorimeters are foreseen for the forward region of the detector: The luminosity

calorimeter (LumiCal) and the beam calorimeter (BeamCal) that provide luminosity

measurements and forward electron-tagging of Bhabha scattered electrons.

1.2.4 The CLIC Tracking System

The CLIC tracking system consists of the vertex and tracker detectors. The principle

task of the former is an accurate reconstruction of displaced vertices of heavy quark

flavours or of τ leptons. To this end an impact parameter resolution of σ(d0) = 5 ⊕
15/(p[GeV] sin3/2 θ) µm is needed. As this thesis addresses the R&D for the tracker, the

following section focuses solely on its layout and detector requirements. Detector studies
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for the CLIC vertex detector can be found elsewhere [58]

The CLIC tracker comprises six layers in the barrel as well as eleven discs on each

detector side, as illustrated in Fig. 1.2. The total sensor area spans 137 m2. The tracking

detector is required to have a transverse momentum resolution for high-pT tracks (≥
100 GeV) of σpT /p

2
T ≤ 2 × 10−5 GeV−1, which is needed for precision measurements of

e.g. the Higgsstrahlung process [59]. To achieve this resolution in a 4 T magnetic field,

a single point resolution of less than 7 µm is required in the direction perpendicular to

the magnetic field. In the direction parallel to the magnetic field, the maximum allowed

pixel size is limited by the expected occupancy to 1 – 10 mm. Smaller cell sizes may be

enforced by the chosen technology. The hit-time tagging of the tracking detector needs to

be better than approximately 5 ns to suppress the impact of beam-induced background.

The hit-detection efficiency is required to exceed 99.7 % [59].

The material content is required to be below 1 –2% of radiation length X0 per layer.

A water-based cooling system enables an average power dissipation of 150 mWcm−2 for

room temperature operation. Requirements on the radiation hardness of the detector are

less stringent compared to hadron colliders. The radiation level from non-ionising energy

loss at the inner-most tracker layers is expected to be of the order of 1010neqcm−2y−1

and the total ionising dose is approximately 100 Gy per year. The requirements are

summarised in Table 1.2.

Power Pulsing The low duty cycle of the CLIC accelerator allows for a power-pulsing

scheme [60]. Hereby, the front-end electronics are switched to a low-power mode between

bunch crossings in order to reduce the average power consumption and heat dissipation.

In this way, meeting the stringent requirements on cooling and the material content

is facilitated for the CLIC vertex and tracker detectors [61]. Power pulsing also has

implications for the readout scheme of the silicon detectors, as they can be switched to

an inactive state between collisions (cf. Section 4.2).



Chapter 2

Fundamentals of Semiconductor

Physics

Semiconductor detectors have become indispensable instruments in HEP experiments and

have successfully contributed to historical discoveries and high-precision measurements

in the past years [62]. The rapid advancement of the semiconductor industry allows

for technology-driven innovations that provide ever-improving materials. In particular,

silicon-based detectors are prevalent in innumerable experimental setups and are the main

focus of this thesis. To lay the theoretical basis for the results shown in subsequent chap-

ters, the fundamental principles of semiconductor physics in view of detector applications

are described in the following. Instead of detailing full theoretical frameworks, the focus

is placed on selected phenomenological models that are especially relevant for this thesis.

Most importantly, these models are an essential input to the simulations introduced in

Chapter 10.

First, the band structure of semiconductors as well as the difference between intrinsic

and extrinsic semiconductors is outlined. Subsequently, the interaction between ionising

radiation and semiconductor material is described, with a particular focus on energy

deposition models for charged particles and photons. In addition, the propagation of

liberated charge carriers within the semiconductor is covered and different transport

mechanisms are described. Charge carrier recombination models are discussed as well

due to their high relevance for the simulations. Lastly, the functionality of a pn-junction

is outlined. Detailed reviews of semiconductor physics for HEP applications can be found

for example in [63–65]

15



16 2.1. Band Structure

EF Band gap

Valence band

Conduction band

Conductor Semiconductor Insulator

En
er

gy

Figure 2.1. Schematic representation of the energy band configuration in conductors, semi-

conductors and insulators. The Fermi energy EF is shown as well.

2.1 Band Structure

In crystalline materials, electrical properties are determined by the arrangement and

density of atomic energy levels. The energy levels in a crystal lattice are subject to an

energy split caused by the interaction of neighbouring atoms [64]. However, their high

energetic density with energy distances of the order of meV, allows them to be treated

as continuous energy bands. The probability of electrons occupying specific energy levels

(occupancy probability) follows the Fermi-Dirac statistics [66]. The Fermi energy EF is

a hypothetical energy level that is characterised by an occupancy probability of 1/2 at

thermal equilibrium [67]. At 0 K, the energy levels up to the Fermi level are filled, with

the highest fully occupied band denoted as valence band. Above the valence band, the

conduction band is characterised by unoccupied energy states, that contribute to the

conductivity of the material. The energy distance (band gap) between the two bands is

essential for the electric properties of solid state materials. According to the width of the

band gap, solid-state materials are classified as insulators, semiconductors or conductors.

In insulators, the strong binding force between neighbouring atoms gives rise to a

large band gap (≈ 10 eV) between the valence and the conduction band, as schematically

illustrated in Fig. 2.1. While the valence band is fully occupied, the conduction band is

devoid of electrons. The electrons are tightly bound in the valence band and therefore

do not contribute to the electrical conductivity.

In semiconductors, the energy band gap is of the order of a few eV [64]. Hence,

thermal or electrical excitation can induce the transition of an electron from the valence
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into the conduction band. Owing to the unoccupied energy states in the conduction

band, electrons are able to propagate freely resulting in a higher conductivity compared

to insulators. The freed energy state in the valence band is referred to as a hole. Like

electrons in the conduction band, holes in the valence band can transition between energy

states, thus contributing to the overall electrical conductivity.

For conductors, the conduction band is either partially occupied or valence and con-

duction band overlap. As a result, conductors exhibit a characteristically high conduc-

tivity.

The energy distance between valence and conduction band is determined by the lattice

constant of the material. Temperature and external pressure can thus affect the size of

the band gap [68]. For silicon at room temperature (300 K) and standard atmospheric

pressure (1013 hPa) the band gap is approximately 1.12 eV [7].

2.2 Intrinsic and Extrinsic Semiconductors

In intrinsic semiconductors, the concentrations of electrons in the conduction band n

and holes in the valence band p is balanced for a given temperature. The intrinsic carrier

concentration ni is then given by:

n · p = n2
i . (2.1)

The intrinsic carrier concentration is a function of the temperature and the properties of

the semiconductor such as the width of the band gap [64]. At room temperature, silicon

has an intrinsic charge carrier concentration of ni ≈ 1010 cm−3 [69].

The electrical properties of semiconductors can be tuned by introducing impurities

into the crystal lattice that add additional energy levels between valence and conduction

band. The controlled insertion of impurities is referred to as doping. The doping of silicon

by a group V element such as phosphorous or arsenic increases the number of electrons in

the conduction band, which then exceed the number of holes in the valence band (n-type

doping). As a result, the Fermi energy level is shifted closer to the conduction band, as

schematically depicted in Fig. 2.2.

Conversely, using a group III element as dopant such as boron, the number of holes

in the valence band becomes larger than the number of electrons in the conduction band

(p-type doping) and the Fermi energy is shifted closer to the valence band. A doped

semiconductor is referred to as extrinsic.

A measure of the doping concentration is the electrical resistivity ρ, that is given

by [70]:

ρ = (q ·N · µ)−1 , (2.2)
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Figure 2.2. Schematic representation of the energy bands in n-doped and p-doped semicon-

ductors. The donator ED and acceptor EA energy levels are displayed as well.

where q is the charge, N the doping concentration and µ the mobility of the major-

ity charge carriers. Further details about the charge carrier mobility are presented in

Section 2.4.

A locally restricted placement of dopants in a bulk material is referred to as implant.

Implants are often characterised by a high doping concentration, which is indicated by

the symbols n+ or p+

2.3 Energy Deposition of Ionising Radiation

The detection of particles is based on their interaction with detector material, leading to

the deposition of a fraction or all of their energy. Different mechanisms are responsible for

the energy transfer of ionising radiation. The ones relevant for this thesis are reviewed in

the following. The section is split into two parts: First, the energy deposition of charged

particles is described and second the interaction of photons with matter is presented.

2.3.1 Energy Deposition of Charged Particles

Charged particles traversing matter undergo Coulomb interactions with the medium.

When the interaction is purely elastic, the particle is only deflected from its original

path. In inelastic interactions, part of the particle’s energy is transferred to the medium

or emitted via e.g. bremsstrahlung. Depending on the medium and the properties of the

incoming particle, the energy transfer can lead to ionisation or excitation of electrons. In

semiconductor materials, the excitation of electrons into the conduction band (electron-
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hole-pair creation) is particularly relevant. The mean energy loss of the particles can be

described by the so-called stopping power, that is outlined in the following.

Mean Energy Loss The stopping power can be expressed by the Bethe formula, that

relates the mean energy loss for an infinitesimal path 〈dE/dx〉 to the properties of the

incoming particle and the medium [7,71]:

〈dE/dx〉 ∝ Z

Aβ

[
ln

(
2mec

2β2γ2Tmax

I2

)
− β2

]
, (2.3)

where Z, A and I are the atomic number, mass and the mean excitation energy of the

medium, respectively. The charge of the incoming particle is denoted by z and β as well

as γ are related to the particle velocity via β = v/c and γ = 1/
√

1− β2. The electron

mass is given by me and c denotes the speed of light. The maximum energy transfer

in a single collision is represented by Tmax. Over the years, various correction terms to

the Bethe formula have been introduced such as Bloch corrections [72], Fermi density

corrections [73] or corrections for the Barkas-Andersen-effect [74]. The formula is not

applicable to electrons.

Eq. 2.3 is commonly parametrised in units of βγ, which allows for the identification

of characteristic energy loss regions: At low βγ << 3, particles are highly ionising and

deposit a large amount of energy in the material. At βγ ∼ 3, a global minimum is

reached and the energy loss is comparably low. Particles in this regime are referred to as

Minimum Ionising Particles (MIPs) 1. At larger βγ, radiative processes lead to a shallow

increase in energy loss.

Energy Loss Fluctuations Stochastic fluctuations around the mean energy loss are

caused by variations in the transferred energy in each interaction and differences in the

number of interactions per unit length. For instance, a head-on collision of the incident

particle with an orbital electron in the material leads to a large energy transfer causing

the electron to be knocked out of the bound state. These electrons, referred to as δ-

electrons, can create additional electron-hole pairs resulting in a large fraction of energy

deposition in the medium [75].

For sufficiently thick materials, the energy loss fluctuations can be approximated by

a Landau-Vavilov distribution [76, 77]. The distribution is characterised by a Gaussian

core and a pronounced tail towards large values caused by δ-electrons. Therefore, the

Most Probable Value (MPV) of the distribution is lower compared to its mean.

1Typically, the term MIP is also used for particles with a βγ value slightly higher than three due to

the shallow slope of the function towards increasing βγ values.
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For thin materials, statistical fluctuations play a prominent role due to the low number

of interactions between incoming particle and the medium [78]. Instead of the Landau-

Vavilov model, the Bichsel model [75] provides a better description, which is especially

relevant for sensors with a thin active layer. Alternatively, the Photo Absorption Ion-

ization (PAI) model [79] predicts the energy loss in thin materials with high accuracy as

well and is compatible with results from the Bichsel model [80, 81]. The PAI model is

implemented in the simulations performed in later chapters.

Multiple Scattering A particle beam is subject to Coulomb scattering with the nuclei

in solid state materials and even in ambient air [82]. The scattering processes are respon-

sible for a deflection of the particle trajectory, which has important implications for the

track reconstruction of charged particles. Multiple scattering describes the occurrence of

several subsequent scattering events with small scattering angles. The RMS of the total

angular dispersion θRMS is described by [83,84]:

θRMS =
13.6 MeV

βcp
z
√
x/X0 (1 + 0.038 ln(x/X0)) , (2.4)

where (x/X0) is the material content in radiation lengths, p is the particle momentum, z

is the charge and βc the velocity. The radiation length is a characteristic property of the

material and expresses the mean distance over which the energy of a high-energy electron

decreases to a fraction of 1/e of its original energy.

For singly-charged, highly-relativistic particles and material contents in the range

10−3 < x/X0 < 100, an accuracy of 11 % is expected from Eq 2.4 [7].

2.3.2 Energy Deposition of Photons

Unlike charged particles, the interaction of photons with matter is localised and follows

three main mechanisms: the photoelectric effect, Compton scattering and pair produc-

tion.

• The photoelectric effect dominates at low photon energies (. 0.01 MeV in sili-

con). The incident photon transfers all of its energy to a silicon atom by exciting

a bound electron out of its orbit. The liberated photo-electron carries the energy

difference between the incoming photon energy and the binding energy and can

further ionise or excite the material.

• The Compton effect becomes relevant in the energy range between 0.01 MeV

and 1 MeV in silicon. The incoming photon is subject to incoherent scattering with

bound or free electrons. The photon transfers a fraction of its initial energy to an

electron and is thereby deflected by the scattering angle θ. If the binding energy
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of electrons is negligible compared to the photon energy, they can be treated as

quasi-free and the differential cross section for Compton scatting can be expressed

by the Klein-Nishina formula [85].

• Electron-positron pair production dominates at high photon energies exceed-

ing approximately 1 MeV, whereby the incoming photon converts into an electron-

positron pair by interacting with the electric field of a nucleus. The energy of the

photon needs to be larger than the rest mass of the final-state particles (Eγ &

1.022 MeV) to initiate the process. This mechanism is of no importance for the cal-

ibration measurements performed in this thesis, since the relevant photon energies

are well below the production threshold.

2.4 Charge Carrier Propagation

The energy deposited by ionising radiation is converted into electron-hole pairs in semi-

conductor materials such as silicon. These charge carriers are subject to drift in the

presence of electric fields and random diffusion that resembles a Brownian motion. Be-

fore these two transport mechanisms are described in more detail, the concept of charge

carrier mobility is introduced.

2.4.1 Mobility

Charge carriers propagating through a semiconductor are constantly subject to scatter-

ing processes with lattice vibrations (phonons), impurities, surfaces or other imperfec-

tions [86]. In the transport equations, the charge carrier mobility is used to account for

these microscopic effects. It is thus linked to the charge carrier velocity as presented in

Sections 2.4.2 and 2.4.3.

The mobility depends on various macroscopic parameters such as the temperature,

doping concentration or the electric field. Phenomenological mobility models are typically

valid for a restricted parameter space, which makes the selection of the appropriate model

for a given problem an essential task.

In this thesis, the mobility is parametrised by a combination of the Masetti [87] and

the Canali model [88]. The parametrisation takes the mobility dependence on the electric

field E, the temperature T and the doping concentration N into account. In addition,

the velocity saturation for high electric field values is modelled to avoid an overestimation

of the mobility. The Masetti-Canali mobility is given by:

µMasettiCanali =
µm(N)(

1 + (µm(N) · E/vm)β
′
)1/β′

, (2.5)
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where vm and β′ are phenomenological parameters from the Canali model, which depend

on temperature and the charge carrier type and µm(N) is the doping-dependent Masetti

mobility. Details about the parametrisation of these quantities can be found in the

Appendix A.

2.4.2 Drift

Drift occurs in the presence of electric fields. Charge carriers propagate with an aver-

age drift velocity vdrift that results from acceleration caused by the electric field E and

microscopic scattering events. The velocity is therefore expressed by

vdrift,e/h = µe/hE, (2.6)

where µe/h denotes the electron/hole mobility that accounts for the scattering processes.

A macroscopic current density Jdrift can be defined:

Jdrift,e/h = ne/hµe/hqE, (2.7)

with the electron/hole concentration ne/h and the charge q [64].

2.4.3 Diffusion

Diffusion is based on random walk of charge carriers in the material. In case of a non-

uniform distribution of charge carriers, a diffusion along the charge carrier gradient takes

place.

Diffusion can be parametrised by introducing a diffusion constant De/h for elec-

trons/holes, that is related to the charge carrier mobility according to the Einstein-

Smoluchowski relation [89,90]:

De/h =
kB · T · µe/h

q
; (2.8)

where kB is the Boltzmann constant, T the temperature and q the charge of the particle.

The diffusion current density Jdiff is then given by the concentration gradient ∆n and

the diffusion constant

Jdiff,e/h = −qDe/h∆n. (2.9)

2.5 Charge Carrier Generation-Recombination Mod-

els

Semiconductors are constantly subject to generation-recombination mechanisms that take

place to keep a state of equilibrium. However, the generation of electron-hole pairs
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Figure 2.3. Schematic representation of the Shockley-Read-Hall and Auger recombination

mechanisms. For the Auger recombination, the e-e-h (left) and the e-h-h (right) processes are

shown. In the Shockley-Read-Hall recombination, a hole/electron in the valence/conduction

band recombines with an electron/hole trapped in an energy level in the band gap.

by ionising radiation causes a disturbance in the system. To return to equilibrium, a

net recombination occurs, which depends critically on semiconductor properties such as

temperature or doping concentration [86].

Similar to the mobility models, generation-recombination mechanisms are typically

described by empirical models that apply to a specific parameter space. For this thesis,

two main recombination mechanisms are relevant: the Shockley-Read-Hall (SRH) and

the Auger recombination.

2.5.1 Shockley-Read-Hall Recombination

The Shockley-Read-Hall recombination mechanism [91,92] is mediated by additional en-

ergy levels in the band gap, as schematically shown in Fig. 2.3. Electrons/holes trapped

in these energy levels can recombine with holes/electrons in the valence/conduction band.

As the energy levels are created by dopants, defects and impurities, the doping level of

the semiconductor plays an essential role in the SRH recombination. If the recombination

centres are close to the middle of the band gap, the minority charge carrier lifetime τSRH

is given by [93,94]:

τsrh(Nd) =
τ0

1 +Nd/Nd0

(2.10)
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where Nd is the doping concentration. τ0 and Nd0 are the reference lifetime and

reference doping concentration, respectively, which are taken from [93] as

τ0,e = 1× 10−5 s

Nd0,e = 1× 1016 cm−3

τ0,h = 4.0× 10−4 s

Nd0,h = 7.1× 1015 cm−3

for electrons and holes, respectively.

2.5.2 Auger Recombination

The Auger recombination mechanism becomes increasingly important at high doping

levels exceeding 5× 1018 cm−3 [95]. The model assumes that the excess energy created by

electron-hole recombinations is transferred to another electron (e-e-h process) or another

hole (e-h-h process), as depicted schematically in Fig. 2.3. The total recombination rate

is then given by [96]:

Ra = Cnn
2p+ Cpnp

2

where Cn and Cp are the Auger coefficients. The first term corresponds to the e-e-h

process and the second term to the e-h-h process. In highly-doped silicon, the Auger

lifetime for minority charge carriers can be written as

τa =
1

Ca ·N2
d

(2.11)

where Ca = Cn+Cp is the ambipolar Auger coefficient. The coefficients can be determined

experimentally and for the simulations presented in this thesis, the values have been taken

from [97] as

Cn = 2.8× 10−31 cm−6/s

Cp = 0.99× 10−31 cm−6/s,

resulting in Ca = 3.79× 10−31 cm−6/s.

Combination The two charge carrier recombination models are combined by inversely

summing the individual lifetimes calculated by the models via

τ−1(Nd) = τ−1
srh(Nd) + τ−1

a (Nd). (2.12)

Other recombination mechanism such as recombinations at surfaces are less relevant

for the sensor types presented in this thesis.
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2.6 The pn-Junction

While the number of free charge carriers in intrinsic silicon is of the order of 1010 cm−3 at a

temperature of 300 K [69], the number of electron-hole pairs created by a charged particle

is about 104 for the entire sensor [98]. It is therefore beneficial to reduce the number of

free charge carriers, which act as a noise source, in order to use silicon as a detection

medium. To this end, a region depleted of free charge carriers is created by combining a

p- and n-type doped semiconductor. The interface between the two materials is referred

to as pn-junction.

In the p-doped material, holes are the majority charge carriers and in the n-doped

material electrons are more abundant. At the interface of the two, the difference in charge

carrier concentration leads to a diffusion current Idiff . Electrons in the n-doped region

propagate into the p-doped material and vice versa. Owing to recombination processes

between electrons and holes, the interface region becomes depleted of free charge carriers

and is therefore referred to as depletion zone. As the bound atoms in the depletion zone

are ionised, the n-doped part of the zone is characterised by a positive space charge and

the p-doped material by a negative one. Consequently, there is an electrical field between

the differently doped materials which gives rise to a current (drift current) Idrift. In

absence of an external field, the drift and diffusion current are in a thermal equilibrium.

The electrostatic potential in the equilibrium is referred to as built-in potential Φ. It can

be obtained by solving the Poisson equation [64]:

d2Φ(x)

d2x
= −ρ(x)

ε0εr
, (2.13)

where ρ(x) is the charge density at position x; ε0 and εr denote the permittivity in vacuum

and silicon, respectively. For a one-dimensional planar interface, the equation is solved

by

Φ(x) =

{
− NA

2ε0εr
(x+ dp)

2 for p-type region
ND

2ε0εr
(x+ dn)2 for n-type region,

(2.14)

where NA/ND are the doping concentrations and dp/dn the thickness of the depleted

region for acceptors/donors, respectively. The built-in voltage Ubi can be calculated by

evaluating Eq. 2.14 at the boundary of the n- and p-doped region:

Ubi =
1

2ε0εr
· |Neff | · d2, (2.15)

with the effective doping concentration is given by Neff = ND − NA and d is the total

thickness of the depleted region.
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2.6.1 Application of External Voltage

The depleted region can be extended or compressed by the application of an external

voltage Ubias:

d(Ubias) =


√

2ε0εr
|Neff |

(Ubi + Ubias) for (Ubi + Ubias) > 0

0 for (Ubi + Ubias) ≤ 0.
(2.16)

If the sum of the built-in voltage and the bias voltage is negative, the depletion thickness

reduces to 0 and a current can flow through the pn-junction (forward bias). For the

opposite polarity of the bias voltage, the depletion region is enlarged proportional to

the square root of the applied bias voltage Ubias (reverse bias). Moreover, the thickness

follows an inverse square law in relation to the effective doping concentration. A lower

doping concentration (higher resistivity) is therefore beneficial to obtain a large depleted

region. Semiconductor detectors are usually operated in reversed bias mode.

2.6.2 Capacitance

The capacitance of a pn-junction has a crucial impact on the sensor performance as

presented in Chapter 6. In a simplified model, a planar pn-junction can be treated as a

plate capacitor, which yields the following relation for reversed bias operations:

C = A
ε0εR

d(Ubias)
= A

√
ε0εr|Neff |

2(Ubi + Ubias)
, (2.17)

where A is the surface area of the pn-junction. A reduction of the capacitance is obtain-

able with higher bias voltages, lower doping concentrations or a smaller surface area.

2.6.3 Current-Voltage Characteristics

Leakage current is characterised by a steady flow of current in the absence of external

radiation. There are several effects contributing to leakage current such as the motion of

charge carriers into the depleted volume and the thermal generation of charge carriers [99].

The latter represents the main contribution to the leakage current in silicon detectors and

is proportional to

Ithermal ∝ T 2e−Eg(T )/2kBT (2.18)

with the temperature-dependent energy gap Eg(T ) and the Boltzmann constant kB. An

increase in temperature is therefore expected to lead to high leakage currents.

The leakage current is also increased by radiation-induced damage [100]. Since the

tolerance of sensors to radiation damage is not presented in this thesis, it is not addressed

in more detail.



Chapter 3

Silicon Pixel Detector Concepts

Silicon detectors are used in a wide-range of HEP experiments. They are typically seg-

mented to improve position sensitivity, decrease their input capacitance and limit hit oc-

cupancy of individual readout channels. Two main segmentation schemes have emerged:

strip detectors and pixel detectors. While the former partitions the sensitive area only

in one dimension, a pixel structure provides a two-dimensional division. Pixels are typi-

cally designed in a rectangular shape 1 and can be characterised by the distance between

repeating unit cells (pixel pitch), which is of the order of tens of micrometers in modern

HEP experiments.

In this chapter, the concepts of silicon pixel detectors are outlined with a focus on

design characteristics relevant for this thesis. To begin with, the signal formation in silicon

detectors is described and subsequently an overview of typical front-end components is

given. Electrical noise sources stemming from the front-end components are discussed as

well. Lastly, different detector types are introduced.

3.1 Signal Formation

The electron-hole pairs generated by an incident particle need to be collected in order

to contribute to the signal. For this purpose, an external electric field is applied to the

sensor, which induces a drift of charge carriers towards the readout electrodes. In their

vicinity, the motion of charge carriers induces a current on the electrodes, which can

be modelled by the Shockley-Ramo theorem [103, 104]. The instantaneous current I ind

induced by the infinitesimal motion of a charge q with velocity ~v can be calculated from

the weighting field ~Ew:

I ind = q ~Ew~v. (3.1)

1Notable exceptions with e.g. a hexagonal pixel shape exist such as the FASTPIX sensor [101,102]

27
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Figure 3.1. Schematic block diagram of a typical front-end processing chain in pixel detectors

for HEP applications. Based on [99]

The theorem requires knowledge of the weighting field or the weighting potential φw,

that is obtainable using analytical calculations or by means of finite-element simulations

by setting the electrode of the pixel under consideration to unit potential, and all other

electrodes to ground [105].

The Shockley-Ramo theorem then relates the induced charge Qind to differences in

the weighting potential φw between the previous location ~x0 at time t0 and the current

position ~x1 at time t1:

Qind =

∫ t1

t0

I inddt = q [φw(~x1)− φw(~x0)] . (3.2)

3.2 Front-End Electronics

The on-chip readout electronics are responsible for signal processing of the induced cur-

rent. For HEP applications, they are specifically designed to cater to the needs of the

experiment [106], leading to complex demands such as a fast processing speed or high

radiation tolerance.

The fundamental building blocks of the front-end electronics are Metal Oxide Semi-

conductor Field-Effect Transistors (MOSFETs). In particular, Complementary Metal

Oxide Semiconductor (CMOS) transistors are used in modern pixel detector electronics

and more details about their functionality can be found in e.g. [107]. A schematic block

diagram of a generic readout chain for one readout channel is portrayed in Fig. 3.1. The

individual parts are briefly outlined in the following and a detailed explanation can be

found for example in [99].
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• Sensor: In the block diagram, one sensor channel is represented by an effective

detector capacitance Cdet. The current induced on the collection electrode is mod-

elled by a current source Isig and in parallel to that the leakage current is given by

Ileak.

• Charge-Sensitive Amplifier (CSA): First, an amplification stage integrates

the current pulse and converts it into a voltage step with an amplitude propor-

tional to the integrated signal. The gain of the CSA is determined by the feedback

capacitance Cf around it. In order to probe the response of the analogue front-end,

a test pulse can be injected. To this end, a test-pulse capacitor Ctest is discharged

to generate a signal at the CSA input.

• Feedback Circuit: The feedback circuit around the CSA allows for the removal

of signal charge at the CSA input and the return to initial values at the CSA output.

• Shaper: Sensors typically employ a shaper after the amplification stage to sup-

press high-and low-frequency noise. The shaper also shortens the pulse duration to

prevent signal pile-up.

• Discriminator: A discriminator compares the output of the shaper to a config-

urable threshold. Signals below the threshold are excluded from further processing

in order to cut away noise contributions with a low amplitude. If a signal exceeds

the threshold, it is passed on to the digital logic. The logic can be placed in the

periphery or directly in the pixel.

Three types of readout schemes are commonly used in silicon detectors for HEP ap-

plications: the frame-based, the data-driven and the trigger-based readout. In the frame-

based readout, data is collected in discrete time windows called frames. A shutter signal

controls the data acquisition. Once the shutter is opened, the frame starts and the device

is active for a configurable amount of time. Afterwards, the shutter is closed and the

signal processing begins. A data-driven device aims for constant data acquisition leading

to a continuous readout and data stream. A trigger-based readout relies on an external

trigger signal. Data is stored for a specified latency interval and only shifted out if a

trigger signal arrives during this time.

The digital logic can be responsible for the extraction of time and energy information

from the processed signal. In a shutter-based device, the Time Of Arrival (ToA) can

be determined with respect to the shutter close signal. The calculation is illustrated

schematically in Fig. 3.2. Once the amplifier output crosses the detection threshold while

the shutter is open, the number of clock cycles until the falling edge of the shutter is
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Figure 3.2. Schematic representation of the Time-over-Threshold (ToT) calculation in blue

and Time-of-Arrival (ToA) computation in red.

counted. The ToA measurement is affected by a systematic signal-dependent shift de-

noted as time walk and depicted in Fig. 3.3. The slope of the signal depends on its

height leading to a later threshold crossing for small signals, which is responsible for a

degradation of the time resolution. If a simultaneous energy measurement is available,

the time-walk effect can be mitigated by correcting the ToA based on energy values 2.

For the energy measurement, the number of clock cycles above threshold is considered

(Time over Threshold (ToT)), exploiting that the signal length is linked to the amount of

energy deposited in the active part of the sensor. The measurement principle is depicted

in Fig. 3.2 as well. The threshold crossing of the amplifier output sets the discriminator,

which remains high until the signal falls below threshold again. The number of clock

cycles between the two threshold crossings defines the ToT, even if the falling edge of the

discriminator is outside of the active shutter window.

3.3 Electronics Noise Sources

The occurrence of noise is an inherent property in all measurement procedures presented

in this thesis. While noise can originate from all steps in the measurement chain, electrical

noise is expected to be the dominant source for the sensors in this thesis. Specific examples

of the most prominent noise sources are listed in the following. A detailed treatment can

be found elsewhere [108].

2This time-walk correction may not be feasible in online applications despite the energy information.
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Figure 3.3. Schematic representation of time walk. The signal height affects the slope and

therefore the threshold-crossing time at the discriminator leading to different ToA values.

• Thermal Noise is related to the Brownian motion of charge carriers and is there-

fore correlated with temperature. Thermal noise is considered to be white noise i.e.

it covers a wide frequency range

• Shot Noise originates from the discrete nature of charge carriers and occurs at po-

tential barriers. In silicon sensors, the statistical generation of individual electron-

hole pairs is subject to shot noise and results in variations of the current level.

Therefore, shot noise can manifest itself in leakage current. Owing to its stochastic

nature, shot noise can be modelled by a Poisson process.

• 1/f Noise subsumes all noise sources that have a frequency-dependent noise spec-

trum that falls with 1/f , where f denotes the frequency. For electrical circuits, 1/f

noise is commonly related to capture processes with random relaxation times.

3.4 Fabrication of Silicon Sensors

The fabrication of silicon detectors is an intricate multistage process that combines a

plethora of different technologies. In the following, two steps in the fabrication process are

outlined that have a high relevance for the results obtained in this thesis: the fabrication

of the silicon wafers and the introduction of dopants.
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3.4.1 Fabrication of Silicon Wafers

The silicon wafer used as bulk material for the sensor is obtained from large cylindrical

single silicon crystals (boules). Two main fabrication techniques are commonly used to

manufacture a boule: the float-zone and the Czochralski fabrication.

The float-zone method [109] employs vertical zone melting to produce high-purity

silicon. A polysilicon rod is passed through an RF heating coil, creating a molten zone,

from which impurities segregate, since they are typically more soluble then the crystal.

The melt then solidifies to a single crystal, which can have resistivities up to 50 kΩ cm [63]

The ambient air is evacuated or filled with an inert gas to prevent the introduction of new

impurities. In industry, the float-zone method is used for devices such as high-voltage

MOSFETs.

In the Czochralski method [110], high-purity polysilicon fragments are melted in a

crucible. A seed crystal is dipped into the melt and then pulled upwards in a rotational

movement to produce a single-crystal silicon ingot. The technique requires exact control

of the speed in the upwards movement and the rotation to obtain the desired result.

Impurity control is more complicated compared to the float-zone technique, resulting in

typical resistivities lower than 50 Ω cm. The Czochralski method is commonly used for

integrated circuits.

3.4.2 Doping

To obtain n- or p-type silicon, dopants must be introduced in the material. There are

two principle methods: doping by diffusion and ion implantation.

In the former, the silicon is heated to 800 – 1000◦C in a gaseous atmosphere en-

riched with the desired dopant. The doping concentration is controlled by the heating

temperature and the exposure time.

Ion implantation [111] on the other hand enables a precise control of doping concen-

trations and depth. The dopants are ionised and accelerated to energies from keV up to

MeV. A dopant beam is directed onto the silicon bulk, whereby dopants are implanted in

interstitial sites. They are bound into the lattice using thermal annealing, whereby the

dopants diffuse further into the material than placed by the initial implantation step.

3.5 Silicon Pixel Detector Types

Due to the wide-spread applications in HEP and the resulting diverse requirements, differ-

ent detector types have emerged, each with its particular advantages and disadvantages.

The detector types can be divided into hybrid and monolithic silicon detectors, depending
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Figure 3.4. Schematic representation of a bump-bonded hybrid assembly. The readout elec-

tronics are indicated in dark red and the collection electrode in light red.
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Figure 3.5. Schematic representation of

a large collection-electrode monolithic CMOS

sensor.
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Figure 3.6. Schematic representation of

a small collection-electrode monolithic CMOS

sensor.

on the integration of the readout electronics on a different chip or in the active sensor

volume. In the following, the main differences between hybrid and monolithic pixel de-

tectors are outlined and a few example technologies are presented. This section does not

claim to be exhaustive, but only focuses on a limited selection of technologies relevant

for this thesis.

3.5.1 Hybrid Pixel Detectors

Hybrid pixel detectors consist of two separate components: a sensor and a readout ASIC.

While the sensor acts as the sensitive part of the detector, the readout chip houses

the readout electronics such as amplifiers, state machines or discriminators. For the

interconnection of the two components, different techniques are available. Typically solder

bump bonds are used, though alternative interconnection techniques are explored as

well such as capacitive coupling using a layer of glue [112] or anisotropic conductive

films [113, 114]. A schematic of a bump-bonded hybrid assembly is depicted in Fig. 3.4.

The lower part represents the active sensor with its collection electrodes and the upper

chip houses the electronics.

A major advantage is the possibility to optimise the sensor and readout ASIC in-

dependently. In this way, advanced industry processes and innovative sensor concepts
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can be explored. The interconnection between the two components represents the main

challenge for the hybrid technology, since it can result in a higher material content, ad-

ditional costs in the fabrication process and a limitation on the pixel size. Alternative

interconnection techniques could partially mitigate these challenges.

The development of hybrid pixel detectors was strongly driven by the RD19 collab-

oration [115] and one of the first applications was the pixel detector in the DELPHI

experiment [116]. They are presently used in the inner detector setups of the major

LHC experiments [62] and are also considered in detector upgrades for experiments at

the high-luminosity LHC and additionally for the vertex detector in CLIC [58].

3.5.2 Monolithic Pixel Detectors

In monolithic pixel detectors, the readout electronics are integrated in the detection

volume. Therefore, no interconnection between different components is required, which

reduces the material content of the sensor. Typically, monolithic sensors are fabricated

in commercially available CMOS processes with some modifications to adapt them to

HEP applications. Mass production can therefore profit from the established fabrication

capabilities of the CMOS industry, which can result in a significant reduction in cost per

sensor.

A major challenge in this design is the interaction between the active sensor and the

readout electronics. Part of these electronics are placed in the periphery of the sensor,

that is separated from the active pixel matrix and another part is integrated directly in

the pixel (on-pixel). Two main pixel designs were developed with different approaches

to cope with the integration of the readout circuitry into the pixel, that are presented

below.

Monolithic CMOS sensors gained notable popularity in the early 1990s in various

scientific disciplines [117]. For high-energy physics applications, significant progress was

made by the IPHC/IRFU collaboration [118], resulting in a sensor for beam telescope

applications and the STAR vertex detector [119], which is presently operating at RHIC.

Large Collection-Electrode Design In the large collection-electrode design, the

readout circuitry is placed into the collection electrode [120], as schematically depicted in

Fig. 3.5. Inside the electrode, the electronics are well-shielded from the rest of the sensor,

which enables the application of a high bias voltage O(100 V) that leads to a sizeable

depletion region and uniform field configurations. The size of the collection electrode is

driven by the necessity to house the required on-pixel electronics. As a consequence, its

large surface results in a high sensor capacitance, that can limit the achievable signal-to-

noise ratio, as explained in Section 2.6,



3.5. Silicon Pixel Detector Types 35

The large collection-electrode design is used e.g. in the Mu3e experiment [121] and

also studied for the CLIC tracker [122].

Small Collection-Electrode Design In the small collection-electrode design, the

readout electronics are placed on deep well structures that are separated from the col-

lection electrode, as illustrated in Fig 3.6. As a result, the size of the electrode can be

minimised, which is beneficial for a low sensor capacitance. In the following, the example

of an n-type collection electrode embedded in a p-type substrate and p-type shielding

wells is described.

In this design, the bias voltage can be applied to the deep p-type wells (p-wells). Non-

depleted regions in the sensor lead to the connection of the bias voltage to the substrate

and the depletion can then evolve from the pn-junction of the collection electrode with the

sensor substrate. However, the pn-junction between on-pixel NMOS transistors used for

readout and the shielding p-wells is also affected by the bias voltage, which has important

implications for the front-end performance of the sensor. Therefore, the applicable bias

voltage is limited, to avoid breakdown of the NMOS transistors [123].

As a consequence of the limited depletion voltage and the small pn-junction from

which the depletion evolves, only a fraction of the sensor is depleted. The pixel implants

are typically embedded in a high-resistivity material to achieve a larger depletion region.

However, since parts of the sensor can remain undepleted, modifications of the sensor

design have been developed to mitigate this challenge, as discussed in Section 4.1

The small collection-electrode design is used for instance in the ALICE Inner Tracking

System upgrade [124] and is considered for the future CBM Micro-Vertex Detector [125].

It is also used in the CLICTD sensor, which is the main focus of this thesis. In the

following chapter, CLICTD is described in detail.





Chapter 4

The CLIC Tracker Detector

Technology Demonstrator

The CLIC Tracker Detector (CLICTD) is a technology demonstrator for a monolithic

silicon sensor fabricated in a modified 180 nm CMOS imaging process, which combines

complex sensor layouts with an innovative front-end design [127]. While CLICTD targets

the requirements for the CLIC tracker that were discussed in Section 1.2.4, its design

characteristics are also of broad interest beyond CLIC, e.g. for HL-LHC tracking detector

upgrades.

The CLICTD sensor features a matrix of 16 × 128 detection channels with a size of

300 µm× 30 µm. In the 300 µm column dimension, the channels are segmented into eight

sub-pixels with a size of 37.5 µm× 30 µm as detailed below. The main design parameters

of the chip are summarised in Table 4.1 and its layout is depicted in Fig. 4.1. The pixel

matrix is shown in the upper 3.84 mm of the sensor. The lower part contains the analogue

and digital periphery. The local coordinate system is defined by columns from left to right

and rows from bottom to top.

In the following, the sensor process used for CLICTD is described. Subsequently, the

Table 4.1. Main design parameters of the CLICTD sensors. Values taken from [55].

Parameter Value

ASIC size 5 mm× 5 mm

Sensitive area 3.84 mm× 4.8 mm

Matrix size 128× 16 detection channels

Detection channel pitch 30 µm× 300 µm

Sub-pixel pitch 30 µm× 37.5 µm

Readout scheme Shutter-based

37
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Figure 7.16 Layout of the CLICTD chip.

5 
m

m

5 mm

3.
84

 m
m

Column

Ro
w

Figure 4.1. Layout of the CLICTD chip. The upper 3.84 mm are part of the pixel matrix and

the lower part shows the analogue and digital periphery. Modified from [126]

design of the analogue front-end and the digital logic is outlined and the relevant as-

pects for this thesis are pointed out. After the operation mode of the sensor is reviewed,

an overview of all sensor types and operation conditions investigated in this thesis is

presented. Lastly, the optimisation of operation and front-end parameters is briefly ex-

plained.

4.1 The Sensor Design

In this thesis, a monolithic 180 nm CMOS imaging process is considered that is modified

for HEP applications [128]. Different pixel flavours have been fabricated in this process,

as sketched in Fig. 4.2. Whereas the sensor geometry differs between the pixel flavours,

the readout circuitry are identical. All pixel flavours pertain to the small collection-

electrode design having an n-type collection electrode that is placed on a high resistivity

p-type epitaxial layer with a thickness of 30 µm. A 0.8 V reset voltage is applied to the

electrode, leading to the collection of electrons that induce a measurable signal. The

epitaxial layer is grown on top of a low-resistivity p-type substrate, amounting in a total

sensor thickness of 300 µm. CLICTD sensors with smaller thicknesses were produced by

removing substrate material, as described in Section 4.5.

The on-channel electronics, which are described in Section 4.2, are placed on deep p-

wells separated from the n-type collection electrode. The deep p-wells shield the CMOS

transistors from the electric field inside the sensor and prevent the injection of noise
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Figure 4.2. Different pixel flavours of the modified 180 nm CMOS imaging process. CLICTD

is fabricated in the following flavours: continuous n-implant, segmented n-implant and extra

p-well. The dashed line indicates the edge of the depleted volume. Not to scale.

into the sensor due to fast-switching circuitry components. Moreover, the shielding is

required to avoid charge loss owing to charge collection by electrodes other than the

collection electrode.

The Pixel Flavours The investigated small-collection electrode sensor process is fab-

ricated in different pixel flavours. The first pixel flavour in Fig. 4.2a was already suc-

cessfully tested within the framework of the ALPIDE sensor development for the ALICE

Inner Tracking System upgrade [129, 130]. The second flavour in Fig. 4.2b is optimised

to achieve full lateral depletion in the epitaxial layer. To this end, a continuous low-dose

deep n-implant is introduced underneath the p-wells [131]. In the third pixel flavour

in Fig. 4.2c, the deep n-implant is segmented to obtain a lateral doping gradient below

the p-wells. The gradient generates a lateral electric field, which leads to an accelerated

propagation of charge carriers towards the collection electrode [132]. The fourth pixel

flavour in Fig. 4.2d invokes a similar effect: an extra deep p-implant is added underneath

the p-wells as an additional vertical junction resulting in an increase of the lateral electric

field and consequently a faster charge collection.

In the flavour without n-implant, a reverse bias voltage is applied to terminals in the

p-wells. The voltage is connected with the low-resistivity substrate of the sensor owing

to non-depleted regions between the pixel cells. With increasing voltage, the depletion
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starts to grow from the small collection electrode into the p-type epitaxial layer. The

maximum applicable bias voltage is limited to -6 V to avoid breakdown of the on-channel

NMOS transistors in the p-wells [123]. The small size of the collection electrode and the

low bias voltage limits the achievable depleted volume.

With the integration of the n-type implant in the second pixel flavour, an additional

pn-junction is introduced between the n-type implant and the p-type epitaxial layer (deep

planar junction). A second bias voltage is applied to the substrate of the sensor leading

to growth of the depletion from the deep planar junction into the high-resistivity p-type

epitaxial layer. The difference between p-well and substrate voltage is limited by the

punch-through current between the two nodes, as detailed in Section 6.1. A second pn-

junction is formed by the deep n-implant with the p-wells. The depletion grows from this

junction into the deep n-implant, towards the n-type collection electrode. The applied

bias voltage at the p-wells, the doping concentration of the deep n-implant, as well as the

size of the p-wells determine the extent of the depletion region in the epitaxial layer.

The depletion region for the flavour with segmented deep n-implant and extra deep

p-well evolve in a similar fashion. However, a potential punch-through between the p-

wells and the substrate nodes is aggravated by the gap in the low-resistivity implant or

by the protruding p-well structure, respectively.

CLICTD is fabricated in the flavour with continuous n-implant, segmented n-implant

and extra deep p-well and therefore no measurements for the design without n-implant

are presented in this thesis. Comprehensive experimental studies for this pixel flavour

can be found for instance in [123, 133]. A few examples involving the flavour with no

n-implant are only presented in the simulation studies in Chapter 11.

The available CLICTD samples are summarised in Section 4.5.

4.2 The CLICTD Detection Channel

The CLICTD sensor consists of 16 × 128 elongated detection channels with a size of

300 µm× 30 µm. In the 300 µm column direction, the channels are segmented into eight

sub-pixels, each featuring its own collection electrode and analogue front-end. The dis-

criminator outputs of the eight front-ends are combined in one digital logic of the detection

channel. The architecture is depicted schematically in Fig. 4.3. The segmentation scheme

ensures a fine pixel pitch while reducing the digital footprint of the device. In the fol-

lowing, the analogue front-end and the digital logic are outlined. A detailed description

with focus on the implementation of the electronics is given elsewhere [126]
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Figure 7.4 Layout of the CLICTD pixel, where the analog part is segmented in eight
front-ends.

continuous power (before power pulsing). The power consumption of the analog front-end
can be controlled by DACs in the analog periphery, to explore operation points suitable for
different applications (e.g. particle tracking, dosimetry or imaging applications).

7.2.2 Digital logic

The on-pixel digital logic, presented in the block diagram in Figure 7.5, consists of two parts.
The first part stores binary hit information for each individual front-end in eight flip-flops
connected at the outputs of the discriminators (hit map). Each front-end output can be masked
and therefore excluded from any further processing. Test pulses can be injected to the input
of each individual front-end. The bits stored in the digital logic of each CLICTD pixel are
summarised in Figure 7.6 (MSB on the left).

In the second part of the digital logic, the logic "OR" of the discriminated outputs from
all eight front-ends is performed. Front-end outputs that have been masked are excluded from
this operation. All further processing of the signal (e.g. ToA, ToT measurement) is performed
using the combined output. In its nominal operation, the CLICTD digital pixel performs a
simultaneous time and energy measurement. The ToA is measured using a 100 MHz clock
distributed in the pixel, and the result is stored in an 8-bit counter. A programmable clock
divider is placed in the CLICTD pixel, where the 100 MHz clock can be divided by a factor
of 2� 16, to generate the clock used for the ToT measurement, as described in Table 7.1.
This enables the option to adjust the range of the energy measurement. The division factor is

Figure 4.3. Schematic of the CLICTD detection channel. The channel features a common

digital logic for eight analogue front-ends pertaining to eight sub-pixels. From [127].

4.2.1 Analogue Front-End

Eight analogue front-ends are integrated in one detection channel. A block diagram of the

channel is presented in Fig. 4.4. At the left side of the diagram, a compact representation

of only two analogue front-ends is shown instead of eight, due to the repetitive nature

of the front-end architecture. Each front-end pertains to one sub-pixel and comprises a

collection diode connected to a reset transistor to ensure a continuous reset of the diode.

The diode is attached to a level shifter, which in turn is linked to a voltage amplifier that

amplifies the signal. An analogue test pulse can be injected at the input of the amplifier

using the capacitance CTest (cf. Section 4.3.1).

The amplified voltage pulse is compared to a global threshold VTH at the discrim-

inator of each sub-pixel. Variations of the effective threshold at the discriminator can

be corrected with a local threshold tuning DAC that is implemented as a 3-bit binary

weighted current source. The discriminator outputs of the eight sub-pixels are connected

to the on-channel digital logic.

4.2.2 Digital Logic

The on-channel digital logic can be divided into two parts: The first consists of eight

flip-flops that store the binary hit pattern of the eight sub-pixels, as shown in the block

diagram in Fig. 4.4. Each of the eight front-end inputs can be masked individually to

prevent further processing. Moreover, a digital test pulse can be injected to probe the

digital logic independent from the analogue front-end of the device.

The second part implements a logic OR to combine the discriminator outputs of the
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Figure 7.5 Block diagram of the CLICTD channel.

Figure 7.6 Data stored in one CLICTD pixel.

Figure 4.4. Block diagram of the CLICTD detection channel. On the left-hand side, two

analogue front-end blocks are depicted, the other six are omitted, since they are conceptually

identical. The right-hand side shows the digital logic with its Asynchronous State Machines

(ASM) connected to the ToA and ToT counters. From [127].
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eight sub-pixels. As CLICTD can be configured to perform simultaneous time and energy

measurements, the ToA and ToT of the combined signal is computed as well. The ToA

measurement is based on a 100 MHz clock, yielding ToA bins of 10 ns. A global shutter

signal sets the time reference for the ToA, which is defined as the number of clock cycles

from crossing the detection threshold until the shutter is closed. The granularity of the

ToA bins sets a lower limit of 10 ns/
√

12 = 2.9 ns to the measured time resolution. Noise

and jitter in the amplifier originating e.g. from the input clock and the digital logic can

degrade the resolution even further.

For the ToT measurements, a programmable clock divider is used to divide the

100 MHz clock by a factor 2-16, depending on the length of the signal. For the mea-

surements presented in this document, the clock divider is fixed to the highest value,

yielding a 6.25 MHz clock.

When the sub-pixel discriminator outputs are combined, the ToA is set by the sub-

pixel with the earliest time stamp. The ToT corresponds to the number of clock cycles

during which at least one sub-pixel is above threshold. This readout scheme limits the

achievable measurement precision if more than one sub-pixel detects a signal above thresh-

old, due to the ambiguity of the ToA and ToT assignment in this case. The implications

will be discussed in Chapter 6.

4.3 The Periphery and Interface

The CLICTD periphery at the bottom of the sensor contains analogue and digital com-

ponents (cf. Fig. 4.1). The analogue part contains Digital-to-Analogue Converters to

bias the analogue front-end. In addition, it houses differential receivers and drivers for

clock in/-outputs and for data readout. The digital periphery features a slow-control in-

terface for programming of the chip as well as the readout logic for data acquisition. The

slow control is based on an I2C interface [134] and handles the configuration of DACs,

programming the pixel matrix, sending test pulses and initiating the readout [126]. Test-

pulse injection and issuing readout commands is also possible through I/O pins, which

profits from an increased speed and controlled timing.

4.3.1 Injection of Test Pulses

The injection of test pulses in the analogue front-end and the digital logic probes the

on-channel electronics, while excluding contributions from the sensor. In this way, the
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Table 4.2. Selectable measurement modes in the CLICTD sensor.

Mode Description

ToA + ToT 8-bits time stamping + 5-bits energy

Long ToA 13-bits time stamping

Photon counting 13-bits number of hits above threshold

front-end and logic can be characterised independently 1. Test pulsing can be enabled

for individual sub-pixels or for the entire matrix.

Once enabled, the analogue test pulse signal is generated in the analogue periphery

using the voltage difference between two DACs (VANALOG1 and VANALOG2). The signal

is propagated from the periphery along the column until it reaches the sub-pixels with

enabled test pulsing. The signal charges the test pulse capacitor CTest, which is connected

to the input of the on-pixel amplifier, thus mimicking charge induction on the collection

diode. Similarly, the digital test pulse is introduced at the output of the logic OR in the

digital logic of individual detection channels while masking the front-end output.

4.4 Mode of Operation

CLICTD employs a shutter-based (or frame-based) data acquisition mode, whereby a

shutter signal opens the acquisition window for a configurable duration. Once the shutter

is closed, the acquisition window ends and the readout is initiated. A serial readout based

on a 40 MHz clock is used and data is shifted out of the matrix column by column. During

the readout, the shutter remains closed and no pixel hits can be recorded, resulting in a

dead time of the sensor.

The frame-based readout is suitable for the low duty cycle of < 0.001 % in the CLIC

operation scheme (cf. Section 1.2.2). During the bunch train crossing, the shutter is

opened and the chip records data. In the 20 ms before the next bunch train arrives, the

readout takes place and afterwards the chip is switched to a low-power mode to reduce

power dissipation.

During readout, a zero-compression algorithm can be enabled. As the maximum

expected pixel-hit occupancy in the CLIC tracker is approximately 1 %, the data volume

is drastically reduced by only reading out the detection channel that detects a hit. For

the other channels, only one bit indicating the lack of a hit is stored. The compression

algorithm reduces the readout time and the amount of data per shutter frame by a factor

1It should be noted that the front-end is still indirectly affected by the sensor due to the required

operation conditions such as the application of a bias voltage to the p-wells.
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Table 4.3. Power consumption of the CLICTD sensor. The power consumption during readout

are extracted from simulations and the average power consumption assumes a duty cycle with

30 µs acquisition time, 340 µs readout time and 20 ms standby time. Data from [127]

Component Acquisition Readout Standby Average

Analogue - matrix [mW/cm2] 524 2 2 2.8

Analogue - periphery [mW] 9 9 9 9

Digital - matrix [mW/cm2] 279 112 0.6 2.9

Digital - periphery [mW] 40 40 40 40

Total - matrix [mW/cm2] 803 114 2.6 5.7

Total - periphery [mW] 49 49 49 49

of 15 for hit occupancies expected in the CLIC tracker [126].

The different measurement modes available in CLICTD are listed in Table 4.2. The

combined ToA and ToT mode enables simultaneous acquisition of time and energy infor-

mation and is the main operation mode for test-beam measurements. Long ToA is needed

for timing studies in test-beam measurements with low hit rates. The photon counting

mode delivers binary hit information and is beneficial in several laboratory measurements,

where occupancy curves are relevant.

4.4.1 Power Consumption

The CLICTD sensor profits from a power-pulsing scheme introduced in Section 1.2.4

in order to reduce the average power consumption. Between acquisitions, the chip can

be switched to a low-power standby mode. In the analogue part, the main on-channel

current consuming nodes (level-shifter, voltage amplifier, discriminator and threshold-

tuning DAC) are switched to a low-power mode, enabling an average reduction by a

factor of about 50 [126]. In the digital domain, clock gating is employed by enabling the

clock only for those columns that are read out. In this way, the number of switching

gates is minimised. In contrast to the on-channel electronics, no power pulsing is applied

to the periphery, since the power consumption is expected to scale only minimally with

the matrix size. In potential larger versions of the CLICTD sensors, their contribution is

therefore expected to remain similar.

The power consumption during acquisition, readout and standby are listed in Ta-

ble 4.3. The values for acquisition and standby are extracted from static measurements

and the values for the readout phase are taken from simulations. The average values

assume a duty cycle consisting of 30 µs acquisition time, 340 µs readout time and 20 ms
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standby time. The acquisition time is significantly longer than the bunch-crossing dura-

tion of 156 ns to ensure that the chip stabilises before data is recorded. The readout time

corresponds to the time required to read out a 1 cm2 matrix with a 40 MHz clock and

compression algorithm enabled, assuming a hit occupancy of 1 %. The values are well

within the requirements for the CLIC tracker, which foresees an average power consump-

tion of less than 150 mWcm−2 (cf. Section 1.2.4). As the active periods are comparably

small, the power consumption is dominated by the standby power, which underlines the

importance of a low-power mode.

4.5 Overview of the CLICTD Sensor Types and Op-

eration Conditions

The CLICTD sensor was produced in various design flavours. To facilitate compari-

son between the different designs and operation parameters, a standard configuration is

defined, against which design and operation variations are assessed. The standard con-

figuration denotes samples fabricated on wafers with epitaxial layer with a continuous

low-dose n-implant and a sensor thickness of 300 µm. The samples are operated at a p-

well and substrate bias voltage of -6 V and their respective minimum operation threshold.

The following variations from the standard configuration are considered:

• Different Detection Thresholds: The test-beam measurements were performed

at various threshold points, allowing for an investigation of all performance parame-

ters as a function of varying detection sensitivity. Typically, different sensor designs

or operation conditions are compared by means of these threshold scans.

• Different Inclination Angles: Similar to the detection threshold, the angle

between beam axis and sensor surface is varied systematically to investigate the

effect of oblique particle incidence.

• Different Bias Voltages: Since a fixed limit of -6 V for the p-well voltage is set,

only a decrease in absolute bias voltage is explored. In all test-beam measurements

involving samples with epitaxial layer, the p-well and substrate bias voltages are

lowered simultaneously to avoid high leakage currents or potential damage to the

device. For the samples fabricated on high-resistivity Czochralski material, the

absolute substrate voltage can be increased substantially with respect to the p-well

bias voltage and is therefore varied independently.
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• Different Pixel Flavours: The three pixel flavours realised in CLICTD are the

ones with continuous deep n-implant, segmented deep n-implant and extra deep

p-well. The optional segmentation and extra deep p-well are only applied in the

column direction. In the row direction, a high degree of charge sharing is desired

in order to improve the spatial resolution, as presented in Section 9.4.

• Different Doping Concentrations of the Deep n-implant: Three different

doping concentrations of the low-dose deep n-implant are available that are denoted

as low, intermediate and high. The doping concentration influences how the deple-

tion evolves in the upper part of the sensor, which has important implications for

the sensor capacitance. In addition, the doping concentration of the deep n-type

implant is crucial for a high radiation tolerance. The radiation tolerance is not

considered in this thesis and results can be found elsewhere [135].

• Different Sensor Thicknesses: CLICTD sensors with different thicknesses were

produced by removing substrate material from 300 µm thick sensors via backside

grinding. In this way, devices with thicknesses of 100 µm, 50 µm and 40 µm were

produced. The quoted thickness includes a metal stack on top of the sensor, which

has an extent of approximately 10 µm [136].

• Different Wafer Materials: The vertical size of the depleted volume is limited

by the thickness of the high-resistivity epitaxial layer. To increase the depletion

depth, an alternative wafer material is investigated. Instead of an epitaxial layer

on top of a low-resistivity substrate, the pixel implants are directly implemented on

a high-resistivity (few kΩ cm) p-type Czochralski substrate without an additional

epitaxial layer [137]. The advantages of the high-resistivity wafer material are

two-fold: First, the isolation between p-well and substrate bias nodes is improved,

allowing for a larger difference of the two voltages. Second, the depletion can evolve

further in depth owing to the larger size of the high-resistivity volume.

An overview of all CLICTD sensors investigated in this thesis is presented in Table 4.4.

4.6 Optimisation of Operation Parameters

The on-channel NMOS transistors are affected by the negative bias voltage applied to

the p-well biasing nodes [127].

As a result, the transistors are not operated in optimal conditions and are expected

to slow down. This effect is not well-modelled in simulations, since the original transistor

fabrication process does not foresee the application of such a high negative bias voltage
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to the transistor bulk. Consequently, the operating point of nodes in the circuit required

re-tuning for bias voltages lower than -3 V. The modified DAC configurations are listed

in the Appendix B.

With the optimised DAC settings, the sensor operation down to -6 V is ensured, which

is essential to obtain the optimal performance of the device. However, the effect is not

fully mitigated and manifests itself e.g. in non-linearities of the ToT measurement and

the threshold-tuning DAC, which is further investigated in the laboratory measurements

in Chapter 6.

4.6.1 Operation of High-Resistivity Czochralski Sensors

For the high-resistivity Czochralski samples, the default configuration of the sensor listed

in Appendix B needs to be modified. The sensors fabricated on high-resistivity Czochral-

ski wafers have a larger depleted volume, especially if high substrate bias voltages are

applied (cf. Section 9.7). In these conditions, the sensors are also subject to a larger

leakage current that saturates the first stage of the readout electronics and makes the

sensor inoperable.

To counteract the saturation, the front-end settings are adapted such that a faster

return to baseline at the input node is achieved. With these settings, the sensor can be

operated up to -20 V substrate bias voltage before any saturation effects set in. However,

the adaptations reduce the signal gain, which leads to coarser steps in the threshold

settings and a larger minimum operation threshold, since the front-end is operated in

conditions it was not optimised for. The higher thresholds have important implications

for the sensor performance, as presented in Chapter 9.

It should be emphasised that the higher threshold is not related to the sensor or the

high-resistivity wafer material itself, but to the front-end architecture that was solely

optimised for sensors with a thin epitaxial layer. The front-end could be adapted in a

new submission of the CLICTD sensor, which would allow for the application of higher

substrate bias voltages without an increase in threshold.



4.6. Optimisation of Operation Parameters 49

Table 4.4. Overview of the tested CLICTD sensors. Cont. - Continuous n-implant, Segm. -

Segmented n-implant, Extra P. - Extra deep p-well, Epi. - Epitaxial layer, Cz. - High-resistivity

Czochralski substrate, Lab. - Laboratory measurements, TB - Test-beam measurements.

ID Flavour n-impl. Dose Thickness [µm] Material Measurements

A1 Cont. Low 300 Epi. Lab. + TB

A2 Cont. Low 300 Epi. Lab. + TB

A3 Cont. Low 300 Epi. Lab.

A4 Cont. Low 300 Epi. Lab. + TB

A5 Cont. Low 100 Epi. Lab.

A6 Cont. Low 50 Epi. Lab. + TB

A7 Cont. Low 100 Epi. Lab. + TB

A8 Cont. Low 40 Epi. Lab.

A9 Cont. Low 40 Epi. Lab.

A10 Cont. Low 40 Epi. Lab. + TB

B1 Segm. Low 300 Epi. Lab. + TB

B2 Segm. Low 300 Epi. Lab. + TB

B3 Segm. Low 300 Epi. Lab.

B4 Segm. Low 300 Epi. Lab. + TB

B5 Segm. Low 100 Epi. Lab. + TB

B6 Segm. Low 50 Epi. Lab.

B7 Segm. Low 50 Epi. Lab. + TB

B8 Segm. Low 40 Epi. Lab.

B9 Segm. Low 40 Epi. Lab.

B10 Segm. Low 40 Epi. Lab. + TB

W8 Extra P. Intermediate 100 Epi. Lab. + TB

W15 Segm. Intermediate 100 Cz. Lab. + TB

W18 Extra P. High 100 Cz. Lab. + TB





Chapter 5

Laboratory Setups and

Methodologies

The first tests of novel pixel detector prototypes are laboratory studies, whereby basic

functionalities are examined. Only if satisfactory results are established, further studies

involving charged particle beams are justified. Besides these fundamental quality checks,

the well-controlled laboratory environment allows for the characterisation of the sensor

response, in particular with focus on the front-end components, which can be probed

independently from the sensor. The characterisation involves tuning of operation settings

and their calibrations, which is an indispensable input to advanced measurements with

particle beams. In this regard, laboratory measurements support and complement all

other aspects of the development cycle of novel silicon sensors.

The following chapter presents the setups and the methodical background of the

laboratory measurements shown in this thesis. It comprises an overview of the readout

system, different measurement setups and the analysis strategies of each measurement.

The measurement results are presented in Chapter 6.

5.1 The Caribou Data Acquisition System

The Caribou versatile data acquisition system is used for powering, slow-control and

readout of the CLICTD sensor [138–140]. The flexible modular design of the Caribou

framework allows for the adjustment of the DAQ system to various detector prototypes,

thus reducing cost and time required for the integration and testing of new devices. A

picture of the setup is shown in Fig. 5.1.

The hardware consists of a Xilinx Zynq System-on-Chip (SoC) on a ZC706 evalua-

tion board (Zynq board) [141]. The SoC contains a Kintex-7 Field Programmable Gate

Array (FPGA) and a dual-core ARM Cortex-A9 CPU, which has an Ethernet connec-

51
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Figure 5.1. Picture of the Caribou setup. The ZC706 evaluation kit (Zynq board) is connected

to the Carboard. The CLICTD chipboard is connected to the Carboard as well and receives

the two reverse bias voltages from high-voltage Keithley power supplies. A low-voltage power

supply delivers power to the setup.
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tion to the network for remote operation. The FPGA fabric handles data acquisition

and configuration of the prototype by providing a hardware interface to the device. The

FPGA registers are coupled to the ARM processor using an AXI bus, thus rendering

reading/writing of registers possible within software. The Zynq board is connected to

the Carboard using an FPGA Mezzanine Card (FMC) connection. The Carboard houses

the hardware environment for several target sensors such as analogue-to-digital converters

and adjustable voltage/current references [55]. Additionally, the Carboard can receive

input from external clocks and trigger signals provided by a Trigger Logic Unit (TLU).

The Carboard is connected to a Printed Circuit Board (PCB), which houses the pro-

totype sensor (CLICTD chipboard). Connection is established using a 320 pin SEARAY

connector [142] and communication with the CLICTD sensor is handled by an I2C in-

terface bus on the Carboard. The sensor itself is glued [143] and wire-bonded to the

chipboard, which is described in the subsequent section.

An external power supply provides 12 V DC to power the entire Caribou setup. In

addition, two Keithley 2450 SourceMeter power supplies [144] are used to provide the bias

voltages to the CLICTD sensor and to monitor the leakage currents. They are connected

directly to the chipboard as detailed below.

The data acquisition software Peary enables software-based communication with the

Caribou system [145]. A Hardware Abstraction Layer acts as an interface between hard-

ware and software and allows the user to control and communicate with different periphery

components. A Command Line Interface can be used for stand-alone applications such as

laboratory measurement and an Application Programming Interface enables integration

into other DAQ systems, which is beneficial for test-beam operation, where the device

needs to be synchronised with other detectors.

For the CLICTD prototypes, the sensor is configured using matrix and pattern con-

figuration files that are read in with the Peary software interface and executed in a state

machine on the FPGA. The matrix file contains the configuration of each sub-pixel in-

cluding the local threshold DAC settings or flags to indicate if the sub-pixel is masked

or if test pulsing is enabled. The pattern file specifies the operation time pattern such as

the assertion of the shutter signal or the injection time of test pulses.

5.2 The CLICTD Chipboard

The CLICTD sensor is glued and wire-bonded to a dedicated PCB, which is depicted in

Fig. 5.2. The chipboard design ensures compatibility with the Caribou readout system, to

which it can be connected using a SEARY connector as explained above. The chipboard

houses only passive components and the power is provided by the Carboard. The only
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(a) PCB without cut-out below the sensor. (b) PCB with cut-out below the sensor.

Figure 5.2. Custom Printed Circuit Board (PCB) for the CLICTD sensor. The sensor is glued

and wire-bonded to the PCB. (a) PCB without cut-out behind the sensor and (b) PCB with

cut-out to reduce material content in the beam. From [126]

exceptions are the external bias voltages, which can be applied directly to the PCB using

two Lemo connectors, where one connector handles the voltage to the p-wells and the

other one the voltage to the substrate. A detailed description of the board is provided

in [126].

Material Content The amount of material traversed by a charged particle beam deter-

mines the contributions of multiple scattering to the particle trajectory. It is thus crucial

to reduce the material content, which the beam has to traverse. It is equally important

to map the material content out to account for multiple scattering in the reconstruction

of particle tracks and for realistic simulations.

For the estimation of the material content of CLICTD prototypes including the PCB

layers behind the sensor, the material contribution of each component is expressed as per-

centage of radiation length, as presented in Table 5.1. The first rows display the material

of the CLICTD sensor itself, assuming a metal stack with a thickness of 10 µm [136].

Since the device was thinned to thicknesses ranging between 40 µm and 300 µm, the total

material content varies over a range of 0.043 % to 0.321 %.

The custom chip board was fabricated in two versions: the first has PCB material

behind the sensor and the second features a cut-out to minimise material content for a

particle beam passing through the setup. For the latter, the total material content in

the beam only comprises the sensor and no additional calculation of the PCB is needed.

For the former, the material of the PCB is shown in the lower rows of Table 5.1 and the

total material content of the PCB evaluates to 2.16 %. The PCB has nine vias, each with

a diameter of 0.3 mm. Their contribution is neglected, due to their comparably low fill
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Table 5.1. Estimation of material content X/X0 of the CLICTD sensor and the carrier PCB.

X0 is the radiation length of the material and X the thickness of the component. The values

for the radiation length X0 are taken from [146,147].

Layer Material X0 [mm] X [µm] X/X0 [%]

Sensor 40 - 300 0.043 - 0.321

Sensor Silicon 93.6 30 - 290 0.032 - 0.31

Metal stack Aluminium 88.9 10 0.011

PCB 1744 2.16

Metal layers Copper 14.3 144 1.00

Substrate
Glass fibre

(60% of FR-4)
97.66 960 0.98

Resin
Epoxy resin

(40% of FR-4)
349.89 640 0.18

factor of a few percent.

5.3 X-ray Fluorescence Measurement Setup

X-ray fluorescence measurements are performed for the energy calibration of CLICTD

samples, as detailed below. The experimental setup is shown schematically in Fig. 5.3.

Primary X-ray photons are created in an X-ray machine model PW3373/10 Ceramic Tube

Cu LFF [148] by accelerating electrons onto a copper target. The primary photons are

directed onto a secondary target, from which secondary fluorescence X-rays are emitted

that are incident on the Device Under Test (DUT). The energy spectrum of the secondary

photons is determined by the material of the secondary target. For this study, different

secondary targets consisting of titanium, calcium, iron and copper are used.

5.4 Sensitivity to Light and Temperature

While the frontside of the CLICTD sensors is covered with metal layers (cf. Section 5.2),

the backside is unprocessed and susceptible to incoming photons from ambient light

sources. For CLICTD sensors with epitaxial layer and a thickness exceeding 50 µm, the

light from the backside is largely absorbed in the first tens of micrometers [149], which

is inactive sensor material (cf. Section 9.7). Therefore, no significant number of photons

can enter the active sensor region and the sensor remains unaffected by ambient light.
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Figure 5.3. Schematic of the setup for X-ray fluorescence measurements. The symbol e-

denotes electrons and γ represents X-ray photons.

However, for 40 µm thick sensors, the inactive material is mostly removed (cf. Sec-

tion 9.7) and a substantial amount of light enters the active sensor volume resulting in

a saturation of the readout from the increased leakage current. To mitigate this effect

and protect the sensor from ambient light, a thin black sheet is used to cover the cut-out

of the PCB. For sensors that were operated with the sheet in place, the material budget

calculations in Section 5.2 are corrected to account for the extra material.

The thin sensors are also prone to over-heating due to insufficient heat transfer to the

PCB or ambient air. As a result, the leakage current can increase to the point, where

the sensor is inoperable. To prevent over-heating, the samples are constantly air-cooled

by employing a low-power fan. The air-cooling allows for sufficient heat transfer and no

additional cooling system is needed.

5.5 Methodology

In the following, the methodologies and analysis strategies for the laboratory measure-

ments are presented. In all measurements, the Caribou readout system is employed to

operate the sensor and to handle data acquisition. The measurements are performed

at room temperature and with ambient lighting, unless explicitly stated otherwise. The

samples are cooled using a fan that provides a laminar air flow over the sensor surface.

While the p-well and substrate bias voltages is varied in the different measurements, the

voltage at the collection diode is always fixed to 0.8 V.
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Table 5.2. Energy and mean number of liberated charge carriers for the target materials used in

the X-ray calibration measurements [153]. The expected amount of created charge is calculated

assuming a mean electron-hole pair creation energy of 3.66± 0.03 eV in silicon [151,152].

Target Kα energy [keV] Created charge [e]

Calcium 3.69 1008± 8

Titanium 4.51 1232± 10

Iron 6.4 1749± 14

Copper 8.05 2199± 18

5.5.1 Current-Voltage Characterisation

The current-voltage characteristics allow for an electrical characterisation of the sensors

and are used to determine the voltage range, in which they can be operated. Current-

voltage (IV) curves are recorded by setting the p-well bias voltage to a fixed value and

scanning the substrate voltage. The scan range starts from the fixed negative p-well

voltage level and is gradually increased to higher absolute bias voltages using a step size

of 1 V. It is interrupted once the leakage current exceeds 700 µA to prevent damage of the

device. The scan is repeated ten times and the mean of the recorded p-well and substrate

currents is calculated per scan step.

5.5.2 Threshold Calibration

The detection threshold is calibrated using the X-ray fluorescence setup presented above.

The Kα lines of the fluorescence spectra have characteristic well-defined energies with line

widths of a few eV [150]. The known energies of these Kα peaks are therefore ideal as an

energy reference in order to convert the threshold DAC steps into physical units.

Up to four different target materials are used in the measurement, resulting in four

relevant Kα lines that are listed in Table 5.2. The expected amount of charge that is

created in the silicon is also shown, assuming a mean creation energy of 3.66 ± 0.03 eV

per electron-hole pair [151,152].

For a given target, the threshold DAC step is determined that corresponds to the Kα

energy of the material. To this end, the DUT is exposed to the fluorescence X-rays and

the pixel hits are recorded in a 1 ms shutter window. The sensor is operated in photon-

counting mode and the counts for the entire matrix are aggregated to a single value per

shutter. During the exposure, the threshold DAC setting is scanned by increasing the

DAC step by one unit after each acquisition. The scan is repeated 200 times and the

mean count value per threshold DAC step is calculated.



58 5.5. Methodology

Subsequently, the number of counts as a function of threshold (occupancy curve) is

fitted with an S-shaped function

Cnts(x) = A ·
(

1− erf

(
−x− µS√

2σ

))
+B, (5.1)

where Cnts(x) is the number of counts for a given threshold x. B is a constant offset, A a

normalisation constant, µS is the turn-on threshold associated with the mean Kα energy

of the X-rays and σ is related to the threshold dispersion and noise. The error function

erf(x) is defined as:

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (5.2)

The analysis is repeated for all targets and the different turn-on thresholds µs are

plotted against the known energy of the fluorescence Kα lines. A linear function is fitted,

that provides the calibration parameters for the conversion between threshold DAC steps

and physical energy units.

The method is cross-checked by employing a modified analysis technique, whereby

the derivative of the occupancy curve is used. The derivative represents the fluorescence

X-ray spectrum, which allows for a visual identification of the Kα peak. A Gaussian

function is fitted to the peak, where the mean of the Gaussian µg corresponds to the

turn-on energy of the mean Kα energy and the width σ is associated with the threshold

dispersion and the noise level. Although the turn-on threshold and the mean of the

Gaussian are mathematically equivalent, their fitted value can differ due to the different

fitting procedures. Similar to the method above, the mean of the Gaussian is plotted

against the energy of the Kα peaks for different targets and a linear fit is used to find a

relation between the threshold DAC step and the energy in physical units.

5.5.3 Equalisation

The effective threshold applied to each sub-pixel is uniformised by using a local 3-bit

tuning DAC. The correct tuning DAC code for each sub-pixel is selected by considering

the sub-pixel baseline distributions. To do so, a fixed tuning DAC step is set for the entire

matrix and the threshold DAC setting is scanned over the full DAC range, while the

corresponding noise hits are being recorded. Ten acquisitions per threshold are measured

and the mean number of noise hits is considered in the analysis. During the scans,

only 1/16-th of the sub-pixels are responsive, the rest of the matrix is masked to avoid

saturation of the readout and to inhibit a large voltage drop along the power lines due to

the increased power consumption when the entire matrix responds. In this way, multiple

hits in the same detection channel are prevented as well, thus ensuring an unambiguous
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assignment of the measured value to the correct sub-pixel. The scan is therefore repeated

16 times with different parts of the matrix unmasked.

Subsequently, the noise hits as a function of threshold are considered for each tuning

DAC step. The peaks of the distributions are extracted as single sub-pixel baselines.

The sub-pixel baseline distributions for two central tuning DAC steps are plotted and

the average of the two mean values is used to define a target baseline. Next, the optimal

tuning DAC step for each sub-pixel is determined by selecting the DAC step such that

the distance of the sub-pixel baseline to the target baseline is minimised.

The remaining threshold dispersion is calculated as the RMS of the sub-pixel baseline

distribution after the equalisation procedure.

5.5.4 Noise Characterisation

The single sub-pixel noise is determined from the threshold scans taken for the equalisa-

tion procedure. For each sub-pixel, the number of noise hits as a function of threshold

is considered and the RMS of the noise hit distribution is extracted. The distribution of

single sub-pixel noise RMS is plotted and the most probable value is determined.

5.5.5 Minimum Operation Threshold

The minimum operation threshold is defined as the lowest global threshold at which a

noise-free operation (< 1 × 10−3 hits/sec for the pixel matrix) of the sensor is possible.

Exceptionally noisy pixels are excluded from this definition by masking them online. The

number of masked sub-pixels is less than one per mille of the entire matrix. It should be

noted that data taking is in principle feasible below the minimum operation threshold

without significant performance loss, since minor noise contributions can be removed in

the data reconstruction.

5.5.6 ToT Calibration

For the conversion of ToT values to physical units, a ToT calibration is required. The

calibration is performed in a two-step procedure: First, a calibration of ToT values to

equivalent voltage levels is performed using test pulses injected into the analogue front-

end. Second, a calibration between voltage levels and energy in electrons is computed

using the results of the threshold calibration. Combining the two calibrations yields a

direct conversion from ToT values to physical units.

ToT-to-Voltage Conversion Test-pulses with varying amplitudes are injected into

the analogue front-end. The test-pulse injection is triggered 1 µs before the end of a
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500 µs long CLICTD frame and is repeated 50× per sub-pixel. Only 1 out of 16 sub-

pixels is pulsed at a time to avoid cross talk.

For each sub-pixel, the test-pulse voltage as a function of the mean recorded ToT is

evaluated and a surrogate function is fitted:

ToT = ax+ b− c

x− t , (5.3)

where a, b, c and t are the fit parameters and x the amplitude of the injected test pulse.

The inverse of the function is used to compute an equivalent voltage level for a given ToT.

A fit with the surrogate function is chosen since it captures the shape of the ToT turn-on

curve. The physical interpretation of the fit parameters is discussed in Section 6.6.

Voltage-to-Energy Conversion For the conversion from voltage levels to energy,

the results from the threshold calibration are exploited by setting a fixed threshold and

varying the test-pulse amplitude using the same settings as before. The derivative of

the number of recorded hits with respect to the test-pulse amplitude is computed and

the central part of the distribution is fitted with a Gaussian function for every sub-pixel

individually. The known relationship between the threshold DAC values and physical

charge is used to relate the mean of the Gaussian function to a physical charge value.

The procedure is repeated for various threshold points and a linear function is fitted

between the physical charge values and the test-pulse amplitudes extracted from the

Gaussian fits µx:

Charge = p0 · µx + p1, (5.4)

where p0 is used as conversion factor and p1 is an offset that should be close to zero.

5.5.7 Front-End Time Resolution

The front-end time resolution is determined using the response-time difference of test

pulses injected into the analogue front-end and digital logic of each sub-pixel. The test-

pulse injection is triggered approximately 1 µs before the end of a CLICTD frame and

occurs asynchronously to the ToA clock to ensure a random phase between the clock

and the injection time. The test-pulse amplitude is scanned and the mean ToA of 200

acquisitions per amplitude is calculated.

For each sub-pixel, a correction for time-walk effects is performed and the corrected

value is used in the analysis. The correction is based on ToT values and cross-checked

using the test-pulse amplitude, which allows for a finer granularity.

The residuals of the corrected ToA values for the analogue and the digital test-pulse

injection are evaluated to estimate the front-end time resolution. A lower limit of the
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resolution is determined by considering only pulse heights that induce a ToT of 11, which

is equivalent to the most probable energy deposition of a minimum ionising particle, as

presented in Section 9.2.





Chapter 6

Results of Laboratory Measurements

The following chapter summarises the laboratory measurements for the CLICTD sensor.

The laboratory-based characterisation allows for a first assessment of the detector perfor-

mance and enables the identification of performance differences between sensor designs

and operation conditions. In addition, the calibration of the detector response and the

impact of front-end electronics on the performance of the device is studied, which is an

essential input to the test-beam measurements in Chapter 9.

This chapter is based on the setups and methodologies presented in Chapter 5. First,

the electrical properties of the sensors are studied by investigating the current-voltage

characteristics. Subsequently, a calibration of the threshold DAC is performed and the

signal gain is determined. The pixel matrix is then equalised by determining the ap-

propriate threshold-tuning DAC for each sub-pixel and the sensor noise is characterised.

Moreover, the minimum operational threshold is determined. Finally, a calibration of the

ToT values is presented and the front-end time resolution is investigated. For all studies

except for the ToT/ToA calibration, the sensor is operated in photon-counting mode.

The chapter only shows results from selected CLICTD samples. Measurements from the

other samples listed in Section 4.5 agree with the example results and are therefore not

shown.

6.1 Current-Voltage Characteristics

The operation range and optimal configuration of the bias voltages are determined from

IV characteristics. In the following IV scans, the current is measured for the full chip.

First, different pixel flavours are studied for a fixed p-well bias voltage in order to iden-

tify differences between the sensor designs. Next, only the pixel flavour with segmented

n-implant is considered and the p-well bias voltage is varied. Afterwards, samples with

different thicknesses are investigated and lastly a sensor fabricated from high-resistivity

63
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Figure 6.1. IV curves for different pixel flavours at a p-well bias voltage of -6 V. The sensors

have a thickness of 100 µm.

Czochralski material is compared to a sample with epitaxial layer.

Pixel Flavours The substrate and p-well currents as a function of the substrate voltage

are presented in Fig. 6.1 for the three available pixel flavours. For all samples, a fixed

bias voltage of -6 V is applied to the p-wells.

The onset of a punch-through between the nodes in the p-wells and substrate is

visible by the simultaneous increase in both substrate and p-well current with higher

absolute substrate voltage. The pixel flavour with continuous n-implant can sustain

higher substrate voltages owing to the blanket n-implant that acts as an isolation between

the p-well and substrate nodes. The isolating structure is disrupted for the flavour with

segmented n-implant resulting in higher currents for a given substrate voltage. The same

holds true for the flavour with extra deep p-well, where the protruding p-well structure

gives rise to an earlier onset of the punch-through current.

Despite the possibility to apply higher substrate voltages for the flavour with continu-

ous n-implant, no significant improvement in performance is expected for higher voltages,

since the depletion depth is limited to the thin epitaxial layer. Details are discussed in

Section 11.2.2, where device simulations of the sensors are presented.

The following paragraphs only present IV curves for the pixel flavour with segmented

n-implant, since the trends are qualitatively the same for all pixel flavours.

P-well Bias Voltage IV scans are recorded for different voltages at the p-wells, as pre-

sented in Fig. 6.2 for the pixel flavour with segmented n-implant. The current rises rapidly

for an increasing difference between p-well and substrate voltage. The measurements in-
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Figure 6.2. IV curves for different p-well bias voltages using the pixel flavour with segmented

n-implant. The sensor has a thickness of 300 µm.

dicate that a similar bias voltage should be applied to the two nodes, as measurements

with different voltages result in a high current in the sensor.

Thinned Samples IV curves for different sensor thicknesses are displayed in Fig. 6.3

for the pixel flavour with segmented n-implant and a bias voltage of -6 V applied to the

p-wells. While results are similar for sensor thicknesses between 50 µm and 300 µm, the

current is slightly elevated for the 40 µm sample. Similar results are observed for other

pixel flavours as well, which implies a degraded isolation between the two biasing nodes

and potentially an increase in defect current related to sensor damage introduced by the

backside grinding [154,155].

Starting Materials The high-resistivity Czochralski material benefits from an im-

proved electrical isolation between the p-well and substrate nodes. As a consequence, the

onset of the punch-through current is strongly suppressed, as displayed in Fig. 6.4 for

samples with segmented n-implant and a bias voltage of -6 V at the p-wells.

Compared to the samples with epitaxial layer, the depletion can evolve further into

the sensor, since a larger fraction of the sensor contains high-resistivity silicon (cf. Sec-

tion 11.2.3). The enlarged depletion zone has important implications for the sensor

performance, as presented in Chapter 9.
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Figure 6.3. IV curves for different sensor thicknesses for the pixel flavour with segmented

n-implant. A bias voltage of -6 V is applied to the p-wells.
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Figure 6.4. IV curves for different wafer materials. The samples have a segmented n-implant,

a thickness of 100 µm and are biased at -6 V.
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Figure 6.5. Threshold in units of voltage as a function of internal threshold DAC settings.

The red line marks a linear fit to the data points.

1100 1200 1300 1400
Threshold [DAC step]

0

100

200

300

310×

Su
m

 c
ou

nt
s

χ2/ndof
μs 1190 ± 1

56/24

σs 30.2 ± 1.3

Threshold [mV]

Figure 6.6. Sum of counts for the full matrix

as a function of threshold for a titanium target.
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Figure 6.8. Energy calibration of the detection threshold using fit results to the Kα peak of

the X-ray fluorescence spectra of different target materials.

6.2 Threshold Calibration

In the following, the X-ray calibration procedure is exemplified with a sensor in the

standard configuration. The threshold is set with an external voltage to achieve a better

threshold resolution. The conversion between the internal threshold DAC settings and

voltage levels is determined by recording the voltage for each DAC step and fitting the

distribution with a linear function, as depicted in Fig. 6.5. The slope evaluates to 3.199±
0.001 mV/DAC step and is used as conversion factor between the two quantities.

The sum of pixel counts for the full matrix as a function of the external detection

threshold is displayed in Fig. 6.6 for a titanium target. The S-shaped function in Eq. 5.2

is fitted to the distribution and a turn-on threshold of µs = (1190± 1) mV is extracted.

To cross check the results, the derivative of the occupancy curve is considered in

Fig. 6.7. A peak corresponding to the Kα line is distinguishable. The width of the peak

is dominated by the detector resolution since the natural line width is of the order of

few eV [150]. The non-Gaussian region left of the peak has a strong contribution from

hits, where the created charge carriers are not collected by a single pixel but shared to

its neighbours. In addition, contributions from the Kβ peak to the right of the peak are

expected, which also promotes a non-Gaussian shape of the tail. For this reason, only

the central part of the peak is fitted and a mean of µg = (1191 ± 3) mV is extracted in

accordance with the results from the S-curve fit.

The procedure is repeated with different target materials. In Fig. 6.8, the turn-

on thresholds for the different targets is plotted against their respective Kα energies.

As expected, a linear trend is observable between the turn-on thresholds and physical

energies. The measured points are therefore fitted with a linear function and the slope
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of the fit is used as conversion factor between the threshold DAC and physical energies.

The slope in Fig. 6.8 evaluates to 2.9 e/mV, which corresponds to 8.9 e/DAC steps. The

conversion factor of other samples with the same design and operation characteristics is

within ±0.2 e/DAC steps of this value.

Systematic uncertainties Different sources of systematic uncertainties are studied

to quantify their impact on the final conversion factors. First, the analysis is repeated

with different types of target materials and varied fit ranges to exclude systematic effects

related to the analysis itself. A maximum deviation of ±0.2 e/DAC steps is found.

Second, simulation studies based on finite-element and Monte Carlo simulations in-

dicate a charge collection loss of approximately 20 e, as detailed in Section 11.2.7. The

charge carrier loss is related to sub-threshold effects and to recombinations in the tran-

sition region to the highly-doped substrate, where the charge carrier lifetime is only a

few nanoseconds (cf. Section 11.2.5). Taking this estimate on charge collection loss into

account yields a one-sided uncertainty of −0.07 e/DAC steps. The statistical uncertainty

amounts to ±0.02 e/DAC steps. The total uncertainty is propagated to all laboratory

and test-beam measurements.

6.2.1 Determination of Signal Gain

The signal gain is affected by a convolution of the input capacitance of the sensor and

electronics effects from the front-end. In the measurements shown in the following section,

the signal gain is determined for a minimum-capacitance configuration, where the pixel

layout and the sensor operation are chosen such that the input capacitance is minimised.

Subsequently, operation configurations with increased capacitance are presented to study

the impact of the capacitance on the signal gain. The reason for the different input

capacitance is investigated in simulation presented in Section 11.2.1.

Minimum-Capacitance Configuration The capacitance is minimal for sensors in

the standard configuration, i.e. a sensor with deep low-dose continuous n-implant with

a bias voltage of -6 V/-6 V at the p-wells/substrate is investigated. The signal gain

corresponds to the inverse of the slope of the linear fit in Fig. 6.8 and is consequently the

inverse of the conversion factor. For the minimum-capacitance configuration, it evaluates

to 359+39
−54 (syst.)±3(stat.) mV/ke, taking the systematic and statistical uncertainties into

account, that were presented above.

Configurations with Increased Capacitance The capacitance is increased with

decreasing absolute bias voltage applied to the p-well terminals. Therefore, the signal
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Figure 6.9. Gain as a function of the bias voltage applied to the p-wells and substrate for two

different pixel flavours.

gain decreases, as depicted in Fig. 6.9, where the measured gain as a function of the

p-well and substrate bias voltage is presented for two different pixel flavours. The two

voltages are varied simultaneously to avoid an increase in leakage current. As expected,

the different pixel designs have no impact on the gain, but the decrease in bias voltage

reduces it by a factor of 2.5 from -6 V to 0 V. Qualitatively, the findings are confirmed by

the simulations in Section 11.2.1.

On the other hand, variations of the substrate bias voltage alone have a minor effect

on the capacitance and consequently only a small impact on the signal gain, as illustrated

in Fig. 6.10. In the measurements, the p-well voltage is fixed to -3 V and the substrate

voltage is scanned from -3 V to -7 V. The increase in gain for a step of -1 V is approxi-

mately 0.6 %, which confirms that the effect of the substrate bias is negligible compared

to the p-well bias voltage.

The sensor capacitance is also affected by different doping concentrations in the deep

n-well implants. Consequently, the signal gain changes, as displayed in Fig. 6.11, where

the gain for three different doping levels is shown. A bias voltage of -6 V/-6 V was applied

to all three sensors.

While the high n-well dose lowers the gain by approximately 30 %, a comparably small

decrease is observable for the intermediate dose, implying that the two samples have a

similar sensor capacitance.
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Figure 6.13. Sub-pixel baseline mapped onto the CLICTD pixel matrix after threshold equal-

isation.

6.3 Equalisation

Pixel-by-pixel variations in the manufacturing process are responsible for differences in

the local threshold level of each individual pixel [99]. For a given global threshold, the

variations in local threshold lead to a non-homogeneous pixel response across the matrix,

which is uniformised using the 3-bit threshold tuning DAC in every sub-pixel.

An example for the pixel baseline distributions for all tuning DAC settings is presented

in Fig. 6.12a. The mean of the distributions increases with increasing tuning DAC setting,

which confirms its functionality. The threshold dispersion is defined as the RMS of the

individual distributions and widens as well from approximately 100 e for the central trim

DAC settings to about 400 e for trim 7. The increase in width is an unintentional artefact

of non-linearities in the threshold-tuning DAC settings, as explained in Section 4.6. For

this reason, the threshold equalisation cannot benefit from established equalisation pro-

cedures, which leverage the linearity of the tuning DAC like in e.g. [58,156]. Instead, the

equalisation is adapted by probing all tuning DAC settings for all sub-pixels, as described

in Section 5.5.3.

Systematic uncertainties The systematic uncertainty is estimated by propagating

the uncertainty on the threshold conversion factor to the threshold dispersion, which

yields +0.5
−0.8 e. Additional sources of systematic uncertainties are studied by repeating the

equalisation with different environmental conditions and readout schemes. In total, a

maximum deviation of ±3 e is found. The statistical uncertainty is in the sub-electron

range and therefore negligible.
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Figure 6.14. Threshold dispersion as a func-

tion of the bias voltages applied to the p-wells

and substrate for two different pixel flavours.
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Figure 6.15. Threshold dispersion for differ-

ent n-implant doses. The bias voltage is fixed

to -6 V/-6 V at the p-wells/substrate.

Minimum-Capacitance Configuration The sub-pixel baseline distribution before

and after equalisation is displayed in Fig. 6.12b for a sample in the minimum-capacitance

configuration. The threshold dispersion for the equalised curve evaluates to 29± 3 e. For

other samples in the minimum-capacitance configuration, the dispersion is found to be

between 27 e and 35 e after the equalisation procedure. These values are about three

times lower compared to the threshold dispersion without equalisation, which underlines

its importance to obtain the optimal sensor performance.

The equalised sub-pixel baseline mapped onto the CLICTD pixel matrix in Fig. 6.13

does not exhibit any visible patterns, which indicates that there are no unaccounted

systematic effects across the matrix related to e.g. the routing of lines.

Configurations with Increased Capacitance The threshold dispersion increases

with decreasing p-well bias voltage, as illustrated in Fig. 6.14. The error bars correspond

to the systematic uncertainties described above. At 0 V bias voltage, the dispersion is

increased threefold with respect to the value at -6 V. The effect is only partially covered

by the lower signal gain, which yielded a reduction by a factor of 2.5. Instead, the

remaining difference in threshold dispersion is associated with the tuning of the front-end

parameters (cf. Section 4.6). As the parameters were optimised for high absolute bias

voltages applied to the p-wells, the performance at lower bias voltages deteriorates with

the chosen front-end tuning.

The threshold dispersion also increases for higher doping levels of the deep n-implant,

as depicted in Fig. 6.15. Within the uncertainties, the increase is covered by the simul-

taneous decrease in signal gain.
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Figure 6.16. Single sub-pixel noise distribution for the minimum-capacitance configuration.

6.4 Noise Characterisation

The small collection-electrode design results in low noise levels owing to a small input

capacitance. It is thus essential to keep the capacitance minimal and avoid sensor designs

or operation conditions that increase it. To gauge the effects of an increased capacitance

on the noise level, sensors operated in the optimal minimum-capacitance configuration

are compared to sensors in high-capacitance configurations.

Minimum-Capacitance Configuration The single sub-pixel noise is extracted from

threshold scans, as detailed in Section 5.5.4. An example distribution is presented in

Fig. 6.16 for the minimum-capacitance conditions. The most probable value evaluates to

11±1 e, where the uncertainty is calculated with the same procedure as for the threshold

dispersion. For other sensors in the minimum-capacitance configuration, the single sub-

pixel noise ranges between 10 e and 14 e.

A two-dimensional map of the single sub-pixel noise across the CLICTD pixel matrix

is displayed in Fig. 6.17. A regular pattern along the column direction is distinguishable,

which corresponds to the channel layout of the device i.e. the single sub-pixel noise

depends on the sub-pixel position within a channel. Since the digital logic of the front-

end spans the entire channel, differences in parasitic capacitances along the layout or

different sources of noise coupling give rise to the pattern.

The pattern in row direction is related to the integration of additional buffers in the

digital logic that repeat every 8 rows. The buffers are responsible for the distribution of

the clock and shutter signals from the periphery to the top of the matrix. The modified

layout in these rows is responsible for a difference in the single sub-pixel noise that leads

to the observed pattern.
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Figure 6.17. Single sub-pixel noise mapped onto the CLICTD pixel matrix.

The visible tail in Fig. 6.16 is caused by the columns and rows with an exceptionally

high single sub-pixel noise .

Configurations with Increased Capacitance In Fig. 6.18, the single sub-pixel noise

is displayed as a function of the p-well bias voltage. The noise increases with decreasing

absolute bias voltage by a factor of 3 - 3.5 from -6 V to 0 V. The increase in noise is

rooted in the lower signal gain and is also affected by the front-end tuning, similar to the

threshold dispersion presented above. A similar effect is observable for the different doses

of the deep n-implant presented in Fig. 6.19. The higher noise has important implications

for the minimum operation threshold, which will be discussed in the following section.

6.5 Minimum Operation Threshold

Operating the CLICTD sensors at low detection thresholds is beneficial for all perfor-

mance parameters (cf. Chapter 9). The minimum achievable threshold is dictated by the

single sub-pixel noise and threshold dispersion and thus depends critically on the sensor

capacitance 1.

Minimum-Capacitance Configuration To determine the minimum operation thresh-

old, the number of noise hits as a function of the detection threshold is considered in

Fig. 6.20. The non-Gaussian noise hits at the right-hand side of the distribution are

1In long-term operations, the detection threshold needs constant adaptation due to e.g. radiation

damage or changing environmental conditions.
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Figure 6.18. Single sub-pixel noise as a func-

tion of the bias voltages applied to the p-wells

and substrate for two pixel flavours.
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Figure 6.19. Single sub-pixel noise for differ-

ent n-implant doses. The bias voltage is fixed

to -6 V/-6 V at the p-wells/substrate.
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Figure 6.20. Noise hits as a function of detection threshold in a 1 ms shutter window. The

red line represents the minimum operation threshold.
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Figure 6.21. Minimum operation threshold

as a function of the bias voltages applied to

the p-wells and substrate for two pixel flavours
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Figure 6.22. Minimum operation threshold

for different n-implant doses. The bias voltage

is fixed to -6 V/-6 V at the p-wells/substrate.

caused by a few noisy pixels, which are masked online and thus excluded from the data

taking in order to achieve a lower operation threshold. The number of masked pixels per

CLICTD sample varies between 0.03 % and 0.13 % of the pixel matrix depending on the

sample.

The minimum operation threshold for the sensor in Fig. 6.20 evaluates to 135+4
−5 e

according to the definition in Section 5.5.5. The uncertainty is purely systematic and

was propagated from the uncertainty on the threshold conversion factor. The minimum

operation threshold for other samples ranges between 120 e and 160 e for the minimum-

capacitance configuration.

Configurations with Increased Capacitance An increased sensor capacitance leads

to a higher minimum operation threshold, as illustrated in Fig. 6.21. While the oper-

ation threshold increases by approximately 30 % between -3 V and -6 V, it is about 2.5

times larger at 0 V compared to -6 V, which results in a severe degradation of the sensor

performance.

The minimum operation threshold also increases with a higher n-well dose, as pre-

sented in Fig. 6.22. Similar to the results above, the difference between low and interme-

diate dose is negligible within the error bars. The high dose on the other hand leads to

a 80 % increase in operation threshold.
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Figure 6.23. Calibration of (a) VANALOG1 and (b) VANALOG2, which control the test-pulse

amplitude.

6.6 ToT Calibration

A calibration of ToT values to physical units is performed using the methods described

in Section 5.5.6.

6.6.1 Calibration of Test-Pulse Amplitude

The amplitude of the injected test pulses is configurable using the two test-pulse DACs

VANALOG1 and VANALOG2, as described in Section 4.3.1. To calibrate the test-pulse ampli-

tude and confirm its linearity, the pulse height as a function of VANALOG1 and VANALOG2

DAC values is measured, as illustrated in Fig. 6.23. Only one DAC is scanned at a

time while the other one is fixed. Both VANALOG1 and VANALOG2 are found to be suffi-

ciently linear over a wide range. A linear fit to the curves gives a conversion factor of

3.516± 0.001 mV/DAC for VANALOG1 and 7.049± 0.002 mV/DAC for VANALOG2.

6.6.2 ToT-to-Voltage Conversion

Test pulses with varying amplitude are injected into the analogue front-end and the

corresponding ToT values are recorded, as exemplified by the two distributions in Fig. 6.24

that were obtained for single sub-pixels. The two distributions exhibit a distinct difference

in the smoothness of the curves: while the sub-pixel in Fig. 6.24a displays discrete steps

that are related to the individual ToT values, the response in Fig. 6.24b is smoothed out.

In addition, the maximum achievable ToT value is 13 for the sub-pixel on the right and
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Figure 6.24. ToT as a function of the injected test-pulse signal for a sub-pixel with (a) slow

and (b) fast signal return to baseline. The surrogate function Eq. 5.3 is fitted to the curves.

reaches 25 for the sub-pixel on the left, which indicates that the variance of ToT values

for the same voltage levels can be substantial.

The difference between individual sub-pixel ToT curves is related to variations in the

analogue pulses at the discriminator. A faster signal return to the baseline level for some

sub-pixels causes a shorter time interval above threshold leading to a lower ToT value

for a given signal. The lower maximum ToT value for the sub-pixel in Fig. 6.24a is a

direct consequence of this phenomenon. In addition, the amplitude jitter is inversely

proportional to the slope of the pulse. Therefore, a slow return to baseline results in a

high amplitude jitter, that smears out the ToT steps in Fig. 6.24b. These sub-pixel by

sub-pixel variations are caused by differences in the effective current pulling the signal

back to baseline level.

The surrogate function Eq. 5.3 is fitted to the ToT curves of every sub-pixel and the fit

parameters are extracted. Distributions of the fit parameters for one exemplary CLICTD

pixel matrix are shown in Fig. 6.25. All parameters display two distinctive peaks that arise

from column-by-column and row-by-row variations that are also observable in Fig. 6.26,

where the four parameters are plotted across the CLICTD matrix. The regular pattern

that repeats every 8 sub-pixels is similar to the results for the single sub-pixel noise in

Section 6.4. The origin of the pattern is related to the layout of the digital logic as

detailed above.

The goodness of the surrogate function fit is checked by computing the fit χ2 divided

by the degrees of freedom (ndof). The distribution for all sub-pixels in a matrix is shown
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Figure 6.25. One-dimensional distributions of the surrogate function fit parameters.
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Figure 6.26. Two-dimensional distributions of the surrogate function fit parameters mapped

across the CLICTD matrix.
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Figure 6.27. Fit χ2/ndof distribution for the sub-pixels in the CLICTD matrix.
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Figure 6.28. Two-dimensional fit χ2/ndof mapped across the pixel matrix.

in Fig. 6.27. While the peak at a value of χ2/ndof = 1 indicates satisfactory fit results,

a pronounced tail that extends up to χ2/ndof = 15 is observable. The two dimensional

representation of the distribution in Fig. 6.28 reveals a regular pattern as well. Sub-pixels

in the tail of the distribution are associated with specific sub-columns in the pixel matrix.

6.6.3 Voltage-to-Electrons Conversion

The derivative of the recorded pixel hits as a function of the test-pulse amplitude is shown

in Fig. 6.29 for a detection threshold of approximately 1770 e, which corresponds to the

mean charge creation by Kα X-rays associated with the iron target. The peak of the

distribution is fitted with a Gaussian function and the fitted mean is extracted. It is

plotted against the corresponding Kα energy as displayed in Fig. 6.30 for two different
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Figure 6.32. Fit parameter p0 mapped across the CLICTD pixel matrix.

thresholds.

A linear calibration for each sub-pixel is performed by fitting Eq. 5.4 and extracting

the slope of the linear function. A two-dimensional map of the extracted slope values p0

across the CLICTD pixel matrix is displayed in Fig. 6.32. No visible pattern over the

matrix is discernible and the few outliers are randomly distributed across the matrix.

The conversion of test-pulse voltage to physical units combined with the ToT cali-

bration to test-pulse voltage allows for a sub-pixel specific conversion of ToT values to

physical units. The application of the calibration will be shown on test-beam data in

Section 9.2. However, the calibration suffers from a number of shortcomings limiting its

applicability, that will be discussed in the following.

6.6.4 Limitations of the ToT Calibration

The ToT calibration was found to have limited precision for the following reasons:

• The capacitance of the test-pulse injector is insufficient to trigger the highest pos-

sible ToT in all sub-pixels, as illustrated for the sub-pixel in Fig. 6.24a. Some of

the sub-pixels are therefore not calibrated correctly in the high-ToT range. This

constraint affects single sub-pixel signals with & 2.1 ke and is therefore relevant for

the high-energy tail of the MIP signal.

• The on-channel NMOS transistors are affected by the negative bias voltage applied

to the p-wells. As a consequence, the operation margin of the circuits is reduced

leading to a strong non-uniformity and non-linearity in the ToT response [127].
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• The combination of the sub-pixel discriminator outputs in a detector channel yields

a single value. If several sub-pixels in a channel are hit in the same readout frame,

the combined ToT value cannot be attributed to a specific sub-pixel. In the labo-

ratory measurements, only one sub-pixel per channel is pulsed at a time to avoid

this ambiguity. In test-beam measurements at the operation threshold, the simul-

taneous detection of more than one sub-pixel hits per channel occurs for 6% of all

clusters for pixel flavours optimised for fast charge collection such as the one with

segmented n-implant and 20% of all clusters for the pixel flavour with continuous

n-implant, for which charge sharing is more prominent. In these cases, the ToT

value is attributed to all sub-pixel hits in the channel and the conversion is per-

formed for each sub-pixel individually i.e. the sub-pixel specific conversion factors

are used to convert ToT to electrons.

These constraints complicate the application of the ToT conversion for the test-beam

reconstruction, since it introduces major systematic uncertainties, that are not easily

quantifiable. For this reason, the conversion is not applied, except for the cluster charge

measurements in Section 9.2.

6.7 Front-End Time Resolution

The time resolution of the analogue front-end is determined by evaluating the time resid-

uals between test-pulse injection into the digital and analogue front-end. First, the ToA

after digital test-pulse injection is studied, followed by an investigation of the front-end

time resolution using analogue test pulses.

Digital Test Pulsing In Fig. 6.33a, the mean of the sub-pixel ToA distributions after

digital test-pulse injection is mapped across the CLICTD pixel matrix. The vertical

gradient is related to the signal propagation speed of the ToA clock and the shutter

signal through the matrix. The signals are distributed from the periphery at the bottom

of the matrix to the top and the propagation speed is limited by signal buffers in every

8th row that were implemented to reduce the capacitive load and prevent spikes in the

digital power consumption. As a consequence, the actual test-pulse injection time with

respect to the ToA clock is different in the vertical direction of the matrix resulting in

the pattern visible in Fig. 6.33a. Likewise, the slight column dependence of the mean

ToA arises from the horizontal distribution of the ToA clock and shutter signal through

the matrix.
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(a) Digital test-pulse injection.
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(b) Analogue test-pulse injection.

Figure 6.33. Mean sub-pixel ToA mapped across the CLICTD pixel matrix after (a) digital

and (b) analogue test-pulse injection. The nominal delay between injection and closing of the

shutter is 1 µs.

Analogue Test-Pulsing The same procedure is repeated with test pulses injected

into the analogue front-end. The mean of the sub-pixel-specific ToA distributions is

presented in Fig. 6.33b. The mean ToA values are at least 3 units lower compared to

the injection into the digital logic due to the processing time of the analogue readout

chain. Moreover, the variance of the recorded ToA values is significantly higher as a

result of jitter and noise contributions in the analogue electronics. Similar patterns as

for the digital test-pulse injection are distinguishable that also arise from the finite signal

propagation speed through the matrix and the different way the analogue/digital power

supplies are distributed over the matrix.

Time Resolution of the Analogue Front-End For each sub-pixel, the time residuals

between the ToA values recorded for the analogue and digital test pulse are evaluated.

An example distribution showing the time residuals as a function of the recorded ToT

is displayed in Fig. 6.34a. Low signal heights cross the threshold later, which leads to

the slow tail for low ToT values (cf. Section 3.2). This time-walk effect is corrected

by subtracting the mean time residual for each ToT bin separately, which yields the

distribution shown in Fig. 6.34b. A considerable variance in the time residuals at low

ToT values is still observable, which is related to time jitter at the threshold-crossing

point.

The RMS of the time residuals for each ToT is depicted in Fig. 6.35. For low ToT

values, the RMS of the time residuals can be as high as 20 ns. For higher ToT values, a
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(b) After time-walk correction.

Figure 6.34. Time residuals between the ToA values recorded for analogue and digital test-

pulse injection (a) before and (b) after time-walk correction.

plateau at approximately 5 ns is distinguishable. The most probable energy deposition

of a minimum ionising particle is equivalent to ToT 11, which is well within the plateau

region of the distribution. To estimate a lower limit on the front-end time resolution, the

RMS at ToT 11 is extracted.

For this measurement, systematic uncertainty introduced by the uncertainty on the

threshold conversion factor is negligible. The analysis is repeated by lowering and raising

the considered signal range by one ToT bin and a deviation of ±0.1 ns is found. The

statistical uncertainty is ±0.1 ns. Therefore, the measurement yields an RMS of the ToA

residual distribution of:

5.1± 0.1 (stat.)± 0.1 (syst.) ns.

The front-end time resolution after time-walk correction is therefore larger than expected

from a 10 ns ToA binning (cf. Section 4.2). The time resolution of the entire device is a

convolution of the front-end resolution and the sensor resolution. From simulation studies

presented in Section 11.2.8, the sensor time resolution is expected to be a few nanoseconds,

which implies that the front-end dominates the time resolution and therefore places a fixed

limit to the achievable performance of the detector (cf. Section 9.5).

6.8 Conclusion

The CLICTD front-end design, in which the discriminator outputs of eight sub-pixels are

combined in a shared digital logic, was confirmed to operate successfully in laboratory
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Figure 6.35. Time resolution of the analogue front-end as a function of the recorded ToT

value.

measurements. Solely the ToT calibration and the front-end time resolution were shown

to be limited due to non-linearities in the front-end that are caused by the bias voltage

applied to the p-wells.

After threshold equalisation of the pixel matrix, the noise-free minimum operation

threshold evaluates to < 150 e for sensors in the minimum-capacitance configuration. If

the absolute bias voltage at the p-wells is lowered or sensors with increased doping levels

of the deep n-type implant are used, the input capacitance increases and the minimum

operation threshold rises as well. Similarly, the single-pixel noise was determined to be

< 15 e and the threshold dispersion < 35 e for the minimum-capacitance configuration,

but increases significantly if the capacitance is increased. In the test-beam measurements

presented in the next sections, the focus is thus placed on sensor types and operation

conditions, which minimise the capacitance in order to guarantee the optimal sensor

performance.



Chapter 7

The DESY II Test-Beam Facility

and Reference Telescope

Measurements involving a beam of charged particles (test beam) allow for a realistic

characterisation of silicon sensors, beyond the studies that are feasible in the laboratory.

They enable an in-depth assessment of the sensor response to ionising particles in a

scenario that is similar to the foreseen operation conditions in vertex or tracking detectors.

As the availability of high-energy particle beams is linked to an exceptional technolog-

ical and infrastructural effort, there are dedicated test-beam facilities that offer particle

beams with often unique beam properties regarding energy, particle species or intensity.

The test-beam measurements performed for this thesis were carried out at the DESY II

Test-Beam Facility that is introduced in the following section. Moreover, the test-beam

setup is described and the operation of the CLICTD sensors during the measurements is

detailed.

7.1 The DESY II Test-Beam Facility

The DESY II Test-Beam Facility [157] is located at the Deutsches Elektronen-Synchrotron

(DESY) in Hamburg, Germany. The generation of test beams starts in the DESY II

synchrotron with a circumference of 292.8 m, that receives 450 MeV electrons or positrons

from the linear accelerator LINAC II (LINear ACcelerator). A bunch of electrons is stored

for two magnet cycles in the DESY II synchrotron and is twice accelerated to a default

energy of 6.3 GeV, which is extendable up to 7 GeV. Besides being the injector for the

PETRA III synchrotron light source, the primary beam from the DESY II synchrotron

is also used to produce the test beams by employing double conversion instead of direct

extraction.

First, a fiber target in the beam orbit induces bremsstrahlung photons, as schemati-

89
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Figure 7.1. Schematic of the test-beam generation at the DESY II Test Beam Facility. Based

on [157]

cally illustrated in Fig. 7.1. Next, the generated photons interact with a secondary target

producing electron-positron pairs. The particle species and the momentum can be se-

lected by changing the polarity and strength of a magnetic dipole field placed in front

of a collimator. There are three beam lines, each with a dedicated primary target, that

allow for an independent selection of beam parameters. For this thesis, an electron beam

with a momentum of 5.4 GeV was chosen. The selected beam is then steered towards the

beam line, where the CLICTD sensors were installed in a reference beam telescope. All

of the three beam lines were used in the measurements presented in this thesis.

7.2 The Reference Telescope

An external reference is required to evaluate the sensor response in an unbiased manner.

In measurements with charged particles, a beam telescope consisting of well-characterised

sensors can provide such an external reference by reconstructing the incoming particle

tracks. In this way, the performance of the DUT is determined against the well-defined

trajectory of beam particles, which enables detailed studies beyond the intrinsic resolution

of the DUT.

The beam telescope used in this thesis is depicted in Fig. 7.2. While the upper part

shows a photograph of the telescope setup, the lower part is a schematic illustration of

the individual components. The beam telescope is based on six MIMOSA-26 telescope
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Figure 7.2. Telescope setup at the DESY II Test-Beam Facility. The DUT is placed between

three MIMOSA-26 planes in the upstream and downstream arm, respectively. An additional

Timepix3 plane is placed behind the last MIMOSA-26 plane in the downstream arm.

planes and a single Timepix3 plane at the end [158]. The global coordinate system is

depicted on the bottom right of the photograph. The beam enters the telescope along

the z-axis. The first three planes are referred to as upstream planes and the other ones

as downstream planes.

In the following, the individual components of the telescope are described. The data

acquisition for all devices is handled by the EUDAQ2 framework [159].

• The AIDA Trigger Logic Unit (TLU) [160] generates a global clock signal and

time reset that is communicated to all other components in the telescope. Two

trigger devices placed in front of the first telescope plane are connected to the

TLU. Their trigger acceptance is comparable to the acceptance of the telescope

planes. The trigger devices consist of a scintillator attached to a photomultiplier

tube and register the passage of beam particles. The TLU issues a trigger, if it

receives a signal from both trigger devices in coincidence. The trigger is distributed

to the other sensors in order to initiate a synchronous readout.

• Six MIMOSA-26 telescope planes are grouped in the upstream and downstream

arm around the DUT. Each telescope plane is equipped with one well-characterised

MIMOSA-26 sensor [161,162]. The monolithic sensors have an active area of 1152 ×
576 pixels, each measuring 18.4 µm× 18.4 µm, and a thickness of 50 µm. The planes
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Figure 7.3. Schematic representation of the triggered shutter-close readout scheme. The

shutter is closed 200 ns after CLICTD receives a trigger signal.

are read out continuously in a rolling shutter readout scheme with a periodicity of

115.2 µs. The data is stored if the telescope planes receive a trigger from the TLU,

otherwise it is discarded. A trigger ID is assigned to the read-out pixel hits to

facilitate offline synchronisation (cf. Section 8.1).

• A Timepix3 plane is placed behind the last downstream MIMOSA-26 plane. The

plane features a Timepix3 hybrid pixel detector assembly [163] that is composed of

a 100 µm thick n-in-p type sensor with a pixel pitch of 55 µm× 55 µm bump-bonded

to a readout ASIC. It is read out by the SPIDR DAQ system [164] in a continuous

data-driven acquisition mode. The Timepix3 plane is used to obtain a precise track

time reference with a resolution of 1.1 ns after offline correction [165].

The particle beam traverses the sensors in perpendicular incidence (perpendicular

to the sensor surface). The positioning of the telescope planes is crucial to minimise

multiple scattering contributions and thereby optimise the track reconstruction and the

pointing resolution of the track at the position of the DUT. In the default configuration,

the MIMOSA-26 planes adjacent to the DUT are placed as close as mechanically possible

to the DUT. The outer-most planes on the other hand are positioned at the edges of the

telescope rail to increase the interpolation length for the reconstructed track.

7.3 Operation of the Device Under Test

During test-beam measurements, the DUT is integrated into the data-acquisition system

controlled by the EUDAQ2 framework. While the readout is still handled by the Caribou

system, the sensor is not operated independently like in the laboratory but has to adhere

to the constraints imposed by the other telescope devices.



7.3. Operation of the Device-Under-Test 93

α

3x Mimosa26
(upstream)

3x Mimosa26
(downstream) CLICTDTimepix3

Particle beam

Scintillators 
+ PMTs

74 cm

xy

z

Figure 7.4. Beam telescope with a rotated DUT. The rotation angle is measured between the

global x-axis and the DUT. The telescope planes closest to the DUT are adjusted to provide

enough clearance for the rotation.

Data Acquisition Mode In order to increase data taking efficiency, CLICTD is oper-

ated in a triggered shutter-close data-acquisition mode, which is illustrated schematically

in Fig. 7.3. When a trigger signal is issued by the TLU, the CLICTD shutter is closed

after a fixed delay of 200 ns and the readout is initiated. During readout, the sensor

experiences a dead time, where it is insensitive to incoming particles. The length of the

dead time is proportional to the hit occupancy and is of the order of . 100 µs for 1 %

occupancy. Once the readout is completed, the shutter is opened again until the next

trigger signal arrives.

During test-beam data taking, the zero compression algorithm is enabled, which en-

sures that only data from channels that registered a hit is shifted out (cf. Section 4.2).

In a low-occupancy environment with approximately 1 % of the matrix registering a hit,

the readout frequency is of the order of 1 kHz.

The sensor is operated in 5-bit ToT plus 8-bit ToA mode to enable simultaneous energy

and time measurements. The same DAC settings as for the laboratory measurements are

used (cf. Appendix B).
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7.4 Rotation of the Device Under Test

To assess the performance of prototype sensors to inclined particle tracks, the DUT is

rotated with respect to the beam axis. To this end, the DUT is mounted on a Physikalis-

che Instrumente M-060 precision rotation stage with an estimated precision of less than

40 µrad [166].

A photograph of the rotation setup is depicted on the top part of Fig. 7.4. A schematic

of the arrangement of telescope planes is depicted at the bottom. The rotation angle is

defined as the angle between the surface of the DUT and the global x-axis. The distance

between the telescope planes and DUT is increased compared to the previous setup to

provide sufficient clearance for rotation. The planes are adjusted such that rotations up

to 80◦ are possible without contact between the DUT and telescope planes. The wide

plane configuration is maintained for smaller rotation angles as well to retain a similar

track pointing resolution at the DUT, which suppresses the introduction of systematic

uncertainties related to tracking. The rotation studies are performed around both DUT

axes.



Chapter 8

Test-Beam Reconstruction and

Analysis

The reconstruction and analysis of test-beam data is an intricate multi-step procedure.

The following chapter will present each of these steps by starting with the data reconstruc-

tion, which includes tasks such as event building, clustering, or the track reconstruction.

Moreover, the telescope and DUT alignment procedures are detailed and the analysis

techniques are explained including the systematic uncertainties that arise from these

methods. In particular, the cluster position reconstruction is described using different

reconstruction techniques that were tested and are compared in Section 9.8.

In the test-beam reconstruction and analysis, the CLICTD sub-pixels are treated as

regular pixel cells, and therefore the term sub-pixel is replaced by pixel to emphasise this

choice.

8.1 Reconstruction

The reconstruction and analysis of test-beam data is based on dedicated software tools

such as the Corryvreckan framework [167–169]. Corryvreckan has a modular setup to

enable a flexible approach to the reconstruction and analysis. An example of a recon-

struction and analysis chain used in this thesis is presented in Fig. 8.1. Each of the boxes

represents a module and data objects are passed from left to right through the module

chain. In the following, each reconstruction step is described and the corresponding mod-

ules are introduced. The detailed configuration of the module parameters is listed in the

Appendix E.
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Figure 8.1. Schematic of the Corryvreckan reconstruction and analysis chain. The boxes

represent individual Corryvreckan modules and data is passed from left to right through the

module chain.

8.1.1 Offline Pixel Masking

To guarantee a high hit-detection efficiency of the sensor planes, their detection threshold

is set to the lowest possible value with a tolerable noise rate. At the selected threshold,

the noise is dominated by the contribution from a limited number of pixel cells (noisy

pixels) [161]. A veto can be applied to these pixels to exclude them from the reconstruc-

tion and analysis (offline masking). The exclusion of the noisy pixels lowers computation

times and reduces the noise floor in the final plots.

The MaskCreator module creates a detector-specific noise mask based on the distri-

bution and frequency of pixel hits. As this module is only applied once before the rest of

the reconstruction and analysis, it is not shown explicitly in Fig. 8.1.

For each sensor, the single-pixel hit rate is calculated. The rate is compared to the

local noise rate of neighbouring pixel cells. If a significant deviation from the local hit

rate is found, the pixel is masked automatically. The radius of the considered neighbours

and the degree of deviation is tuned for each test-beam period due to small differences

in the data taking conditions (e.g. different MIMOSA-26 telescope, temperature in the

hall, achievable beam rate etc.). For each MIMOSA-26 telescope plane, approximately

0.2 % of the matrix is masked. A noise mask for the Timepix3 sensor is not needed, as

the noisy pixels are already masked during data taking.

The noise mask for the DUT is established manually by considering the hit rates in
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Figure 8.2. Schematic of the Corryvreckan event building scheme. The CLICTD frames define

the events and data from the other sensors are assigned based on their hit-time stamp or trigger

number. Not to scale.

a single run and identifying pixels with hit rates at least one order of magnitude above

the mean hit rate of the matrix. Typically, less than 10 pixels are masked with this

procedure, which corresponds to less than 0.1 % of the matrix.

8.1.2 Event Building

The raw data is decoded and sorted into events to have manageable data chunks for the

subsequent reconstruction steps. An event contains data from all devices in a finite time

interval that is much shorter than the total run length. Event building is the process of

dividing data into these time windows by comparing either time or trigger information.

The subsequent reconstruction steps are then processed event-by-event i.e. only a single

event at a time is considered.

Different EventLoader modules are available in Corryvreckan to handle the decoding

and the event building. The generic EventLoaderEUDAQ2 module is capable of decoding

data written in the EUDAQ2 binary file format and is therefore used to handle the data

files from all devices: the MIMOSA-26 sensors, the TLU, the Timepix3 plane and the

CLICTD sensor.

A natural segmentation of the data stream is already provided by the CLICTD frames.

The frames are therefore exploited for event building by defining the start of an event

as the opening of the CLICTD shutter and the event end by the closing of the shutter.

In-between the frames, the readout of the CLICTD sensor leads to a dead time, which
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depends on the amount of recorded data in the previous frame. The dead time is not

considered in the event building i.e. CLICTD is required to be operational for the entire

event. This event building scheme is schematically depicted in Fig. 8.2.

Data from the other devices need to be assigned to the correct event. The Timepix3

assembly provides a continuous stream of data with time stamps associated to each pixel

hit. Comparing these time stamps to the event times enables the assignment to the

correct event. The individual MIMOSA-26 sensors do not store precise hit time stamps.

Instead, the trigger number can be exploited by using the TLU information, that provides

both a time stamp as well as a trigger number allowing a link to be established between

the two quantities. The approach is illustrated in Fig. 8.2: A time window is spanned

around each TLU trigger to account for the MIMOSA-26 integration time. The time

window covers 115 µs (one rolling shutter readout cycle) before and 230 µs (two rolling

shutter readout cycles) after the trigger time [170].

If a trigger is within a CLICTD frame, the trigger number is assigned to the respective

event and the corresponding MIMOSA-26 pixel hits are considered. The trigger number

is discarded, if the trigger occurs outside the event, as depicted for trigger number 4 in

the schematic.

This event building scheme guarantees that data is only considered, if it was recorded

during the active window of CLICTD. In this way, an accurate determination of the

CLICTD efficiency is ensured (cf. Section 8.4), since the CLICTD dead time should not

lower the calculated efficiency.

8.1.3 Clustering

Several pixels may register a hit from a single ionising particle, due to the motion of

charge carriers to neighbouring pixels or from inclined particle tracks that traverse several

adjacent cells. Neighbouring pixel hits are therefore grouped into clusters and treated

as a single object. The Corryvreckan module Clustering4D clusters pixel hits based on

their spatial and temporal proximity. For the MIMOSA-26 sensors, pixel hits that are

direct neighbours to a cluster are added to it 1. A gap between pixel hits is not permitted.

The same requirement is imposed for the clustering of CLICTD pixel hits, except for the

CLICTD data-taking periods, where the sensor is inclined with respect to the beam axis.

In this case, a gap of one pixel hit is allowed (split clusters). The time information of

CLICTD is not considered in the clustering.

For the Timepix3 plane, the same requirements on the spatial distance are imposed

and additionally a time cut is employed: The pixel hits are required to be within a 200 ns

1The clustering starts from a single pixel hit, which acts as a seed for the cluster.
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Figure 8.3. (a) Spatial correlations in y-direction and (b) time correlations between the DUT

and a reference plane.

time interval with respect to the earliest pixel hit in the cluster.

The cluster position is reconstructed with the methods described in Section 8.3.

8.1.4 Correlations

Correlations between the telescope planes and the DUT are a useful indicator for data

quality. The relatively quick calculations provide a fast in-situ feedback of the data

quality before results from in-depth analyses are available. In addition, correlations are

considered to identify an appropriate starting point for the alignment procedure (cf.

Section 8.2).

The Corryvreckan module Correlations calculates the spatial and time residuals

between all detector planes and a reference plane. In Fig. 8.3, examples of the spatial

and temporal correlation peaks are depicted. The spatial correlation in y direction is

computed between the DUT and the last MIMOSA-26 upstream plane. As expected, the

core of the peak resembles a Gaussian and the entries outside of the peak are related to

noise and combinatorics. The temporal correlation is considered between the DUT and

the Timepix3 plane. The peak exhibits a prominent tail to the left, which is associated

with time walk (cf. Section 3.2). The phenomenon is studied in more detail in Chapter 9.

8.1.5 Particle-Track Reconstruction

Reconstructed tracks are used as a reference for the assessment of the DUT performance.

The tracking procedure is therefore an essential step that requires careful optimisation,
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since a high track quality ensures an accurate sensor evaluation in the later stages.

The formation of particle tracks is a two-step procedure: First in the track finding,

track candidates are identified by connecting pairs of clusters on the first and last telescope

plane with a straight line and consecutively adding clusters from the inner planes if they

are within selectable spatial and temporal cuts. In this stage, the reference track is

continuously updated.

Second, a track fitting is employed using an appropriate track model. A straight-line

track fit is a common choice, which requires a negligible effect of multiple scattering (cf.

Section 2.3.1). This condition is only met if high-energy beams and a sufficiently small

material content of the telescope planes are available. At the DESY II Test-Beam Facility,

multiple scattering has to be accounted for owing to the low beam momentum. Therefore,

a General Broken Lines track fit [171, 172] is chosen, that allows for kink angles in the

fitted track at the position of each scatterer and in air.

The reconstructed tracks are required to have an associated cluster on each of the

seven telescope planes. In addition, the spatial search radius is set to 240 µm on the

MIMOSA-26 planes and 600 µm on the Timepix3 plane. An implicit time cut is applied

by only considering data associated to a given CLICTD frame. The DUT is excluded to

guarantee an unbiased tracking procedure. Instead, it is considered as passive scatterer,

which allows for a kink in the track model at the position of the DUT.

8.1.6 Track-Cluster Association

Once the reference tracks are generated, they are associated to clusters on the DUT.

The correct association is critical for the calculation of performance parameters such as

residuals or the hit-detection efficiency (cf. Section 8.4).

The association is performed by interpolating each reference track to the position of

the DUT. The distance between the track intercept with the DUT and each reconstructed

DUT cluster is determined. A cluster is associated with a specific track if the cluster edge

is within a configurable distance from the intercept. If more than one cluster is within

the search radius, the closest cluster to the intercept is selected. The optimisation of the

spatial association cut is presented in Section 9.4.

8.2 Telescope and DUT Alignment

A precise knowledge of the positions of the detector planes is required to guarantee a

high track quality and correct association with DUT clusters. A manual measurement is

not sufficient since the required resolution is of the order of < 5 µm in x and y-direction.
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Figure 8.4. Schematic of the Corryvreckan alignment chain. Three different alignment steps

are performed.

Instead, the precise plane positions in x/y are determined in Corryvreckan using a multi-

stage alignment procedure. Alignment in z-direction (parallel to the beam direction)

is not performed for geometrical reasons and is instead measured with an accuracy of

approximately 1 mm. Systematic uncertainties arising from a potential misalignment in

z-direction are addressed in Section 8.5.

Three consecutive steps are performed: the prealignment, the telescope alignment and

finally the DUT alignment. A Corryvreckan reconstruction and analysis chain with these

three alignment modules is presented in Fig. 8.4.

Prealignment First, a prealginment is needed as a starting point to achieve conver-

gence in the subsequent steps. The Prealignment module performs a translational align-

ment by centering the spatial correlation peaks in x- and y-direction. The correlations

are calculated with respect to the last MIMOSA-26 upstream plane. While this method

ignores rotational misalignment and is too inaccurate for the precision needed in the DUT

analysis, it provides a starting point for the more precise track-based alignment.

Telescope Alignment The telescope alignment is based on the iterative minimisa-

tion of the χ2 value of the fitted track. For this purpose, the Corryvreckan module

AlignmentTrackChi2 is employed. In each step, a translational and rotational move-

ment of the telescope planes is performed and the tracks are re-fitted until the χ2 is

minimal and convergence is achieved. The minimisation procedure is handled by the Mi-
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Figure 8.5. Distribution of χ2 divided by the number of degrees of freedom (ndof) after

track-based alignment. The General Broken Line track model is fitted to the track candidates.

nuit2 package, that is specifically conceived to identify the minimum of a multi-parameter

function [173]. In total, three rotational degrees of freedom (around the x-, y- and z-axes)

and two translational degrees of freedom (in x- and y-direction) per detector plane are

considered.

A distribution of the fit χ2 divided by the number of degrees of freedom (ndof) is

displayed in Fig. 8.5. The distribution has a maximum at one after the track-based align-

ment has converged, which indicates good fit results. A pronounced tail towards larger

values is discernible, which is related to strong contributions from multiple scattering. In

the subsequent analysis, a cut at χ2/ndof = 3 is applied to exclude the tail.

DUT Alignment The position of the DUT is not calculated in the telescope alignment

procedure, since it is excluded from the tracking. Instead, the AlignmentDUT module is

employed to deliver rotational and translational alignment by minimising the unbiased

spatial residuals between the DUT and the reference tracks. Similar to the telescope

alignment, the z-direction is not considered but taken from mechanical measurements.

To avoid misalignment related to poor track fits, solely tracks with a χ2/ndof smaller

than three are considered.

8.3 Cluster Position Reconstruction

Silicon sensors are segmented into strips or pixels to obtain position information about

particles traversing the sensor. If individual segments (strips or pixels) only register

whether the induced signal exceeds a given threshold (binary hit information), the achiev-
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able spatial resolution σx is driven by the segmentation pitch p

σ2
x = 1/p

∫ p/2

−p/2
x2dx = p2/12, (8.1)

assuming that the contribution of charge carrier diffusion is negligible. Eq. 8.1 represents

the variance of a uniform distribution across one pixel cell.

The availability of charge information in each segment enables a charge-weighted

interpolation that can improve the position reconstruction. Various algorithms have

been developed to optimise the reconstruction. Ultimately, the operation conditions and

sensor properties determine the success of a particular algorithm. In the following, the

position reconstruction techniques employed in this thesis are described. In addition, an

alternative approach based on machine learning is developed and evaluated in Section 9.8.

Centre-of-Gravity Algorithm A charge-weighted centre-of-gravity algorithm (CoG)

determines the cluster centre xc as the charge-weighted single pixel positions xi divided

by the total cluster charge:

xc =

∑
i qixi∑
i qi

, (8.2)

where qi is the single-pixel charge of the i-th pixel in the cluster. If no charge information

is available all qi are set to one and the algorithm yields the geometrical cluster centre.

In this thesis, the centre-of-gravity algorithm is employed for the MIMOSA-26 sensors

and the Timepix3 device. For CLICTD, the cluster position is first estimated with the

centre-of-gravity algorithm and subsequently corrected to account for non-linear charge

sharing as detailed in the following.

η-Correction The centre-of-gravity algorithm assumes a linear relationship between

the amount of deposited energy and reconstructed charge in a given pixel cell. An over-

estimation/underestimation in a pixel cell would bias the cluster position towards/away

from this pixel. The non-uniform field configuration in the CLICTD sensor is responsible

for a non-linear diffusion of charge carriers between pixel cells contrary to the assump-

tions of the centre-of-gravity algorithm. Therefore, a correction for the non-linear charge

sharing is necessary, which is provided by the so-called η-algorithm [174,175].

The η-algorithm used in this thesis is a data-driven method, that is based on the η-

function which provides a link between the cluster position reconstructed with the CoG

algorithm and the more accurate position given by the telescope reference track. First,

the construction of the η-distribution for pixels with a size of two in a given spatial

dimension is considered. In this case, the reconstructed cluster position relative to the

edge between the two pixels (in-pixel position) is plotted against the in-pixel intercept
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Figure 8.6. η-distribution for 2-pixel clusters in row direction. The collection electrodes of

the adjacent pixels are located at ±15 µm. A 5-th order polynomial η-function is fitted to the

distribution.

position of the reference track with the DUT. An example of the η-distribution in row

direction is displayed in Fig. 8.6. A 5th order polynomial fitted to the distribution is used

to correct the reconstructed cluster position.

For the CLICTD sensor, cluster sizes larger than two in a given spatial dimension

are rare if the beam enters perpendicularly to the sensor surface (cf. Section 9.1). If

the sensor is rotated relative to the beam, larger clusters can occur and the η-correction

needs to be adapted by using only the two pixels with the highest single-pixel charge.

Head-Tail Algorithm The Head-Tail algorithm assumes that the outer pixels in a

cluster (the head and tail) contain most information to reconstruct the cluster posi-

tion [176,177]. The cluster position xHT is therefore given by:

xHT =
xhead − xtail

2
+
qhead − qtail

2q̄
· pitch, (8.3)

where xhead/tail and qhead/tail are the position and charge of the head/tail pixel, respectively,

and q̄ is the average single pixel charge in the cluster.

In the case of two-pixel clusters, the head-tail algorithm is identical to the centre-

of-gravity reconstruction. Therefore, the head-tail algorithm is only used for CLICTD

studies involving inclined particle tracks, where the cluster size in one dimension exceeds

two.
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8.4 Performance Evaluation

Once tracks are reconstructed, they are used as external reference to assess the perfor-

mance of the DUT. In this way, the spatial and time resolution are evaluated and the

hit-detection efficiency is determined. In addition, the cluster size is studied, as it is

particularly suited to investigate the charge-sharing behaviour.

8.4.1 Cluster Size

Charge sharing describes the energy deposition in several pixel cells or the motion of

created charge carriers to adjacent pixels. The degree of charge sharing is encoded in

the number of pixels in a reconstructed cluster (cluster size), which therefore serves

as an observable to investigate charge-sharing properties. Owing to the asymmetrical

pixel pitch and sensor layout of CLICTD, charge sharing in row and column direction

is expected to be different. For this reason, the projection of the cluster onto the row

and column direction is studied as well. It should be noted that the cluster size depends

critically on the detection threshold, since charge carriers reaching pixel cells that do not

exceed the threshold are effectively lost (sub-threshold effect).

8.4.2 Hit-Detection Efficiency

The hit-detection efficiency is defined as the number of tracks associated to a CLICTD

cluster over the total number of tracks. The tracks used for the hit-detection efficiency

calculation are required to pass through the acceptance region of the DUT, which com-

prises the physical pixel matrix of the sensor excluding one column/row at the matrix

edge. It has been verified that the exclusion of additional columns/rows close to the

matrix edge does not alter the results. If the track intercept position on the DUT lies

within a masked pixel or its direct neighbours, the track is rejected.

8.4.3 Spatial Resolution

The spatial resolution is calculated from the spatial residuals xresidual between the recon-

structed cluster position xDUT and the intercept of the reference track on the DUT xref:

xresidual = xref − xDUT. (8.4)

The residuals are referred to as unbiased, since the DUT is excluded from the tracking

to avoid biasing the measurement. The reduced RMS of the central 3σ of the unbi-

ased residual distribution σRMS,3σ is determined and the track pointing resolution at the
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position of the DUT σtrack is quadratically subtracted from the value:

σresolution =
√
σ2

RMS,3σ − σ2
track, (8.5)

which yields the spatial resolution σresolution. Eq. 8.5 is only exact if the distributions are

identical to Gaussian functions.

An estimate for the telescope pointing resolution is calculated using the GBL Track

Resolution Calculator [178]. The calculator uses the GBL formalism to take multiple

scattering in the telescope planes and the surrounding air into account. For the nar-

row telescope configuration, the track pointing resolution at the position of the DUT

is between 2.4 µm and 2.8 µm depending on the exact plane positions. For the rotation

studies, a wide telescope configuration is required resulting in a track pointing resolution

between 4.8 µm and 6.5 µm.

8.4.4 Time Resolution

Similar to the spatial resolution, the time residual tresidual is obtained from the time

difference between the DUT measurement tDUT and the track time tref

tresidual = tref − tDUT. (8.6)

The RMS of the central 3σ of the time residual distribution τRMS,3σ is calculated and the

track time resolution τtrack is quadratically subtracted:

τresolution =
√
τ 2

RMS,3σ − τ 2
track. (8.7)

The track time resolution corresponds to the time resolution of the Timepix3 plane.

After offline corrections that are detailed elsewhere [165, 179], the time resolution of the

Timepix3 plane evaluates to 1.1 ns [122].

8.5 Uncertainties

Statistical uncertainties arise from the limited amount of data recorded for a particu-

lar measurement. In the test-beam measurements presented in this thesis, statistical

uncertainties at the minimum operation threshold are of the order of < 0.1 % of the mea-

sured value and therefore negligible. At higher thresholds, the statistical uncertainty can

increase to a few percent and is indicated by uncertainty bands or error bars.

The principle source of systematic errors is linked to the calibration of the detection

threshold (cf. Section 6.2). To account for the threshold uncertainty, it is propagated

to the test-beam observables by interpolating between measurements performed at two

different threshold.
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The other sources of systematic uncertainty are specific to the measured value. They

are listed in the following:

• Efficiency: The statistical uncertainties arise from the uncertainties on the effi-

ciency values calculated using a Clopper-Pearson confidence interval of one sigma [180].

No additional sources of systematic uncertainties are considered.

• Spatial resolution: Systematic uncertainties arise from the calculation of the

track pointing resolution (cf. Section 8.4.3). The single plane resolution entering

the calculation is varied within its uncertainties given in [158]. In addition, the plane

positions in z-direction are shifted independently by ±1 mm. The quadratic sum of

the individual deviations is computed and yields a total uncertainty of ±0.1 µm.

• Time resolution: The main uncertainty emerges from variations in the front-end

time resolution related to the sub-pixel position in the detection channel . Therefore,

each analysis is repeated for every sub-pixel position individually and the spread

of the resulting time resolutions is extracted. A maximum deviation of ±0.1 ns is

found.

• Rotation studies: While the relative precision of the rotation stage is well be-

low 0.01◦, a global offset of the rotation angles is a potential source of systematic

uncertainties (cf. Section 7.4). The offset is determined from the expected DUT

orientation computed by the alignment procedure. In all analyses, the offset is

used to correct the expected rotation angle. It was confirmed that the alignment

has converged by manually modifying the plane orientation by ±0.5◦ and repeating

the alignment. A deviation of less than 0.01◦ is found with respect to the initial

alignment.

In addition, the influence of multiple Coulomb scattering on the rotation angle is

investigated. To this end, the expected scattering angle θRMS is calculated with

Eq. 2.4, using a momentum of pc = 5.4 GeV and a material content (x/X0) that

is equivalent to 55 µm of silicon and two 25 µm Kapton foils on either side of the

sensor [158] and a value of θRMS = (2.9± 0.3)× 10−3 deg is found. An uncertainty

of 11 % is expected, according to [7].

The scattering angle at each plane is also reconstructed during tracking. An exam-

ple distribution of scattering angles at the second MIMOSA-26 plane is displayed

in Fig. 8.7. The RMS of the distribution evaluates to (2.5± 0.1)× 10−3 deg, which

is in reasonable agreement with the theoretical expectation presented above.

The angular distribution of beam particles entering the telescope is considered as

well by using a straight-line track fit instead of the GBL fit and extracting the track
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Figure 8.7. Distribution of kink angles at a

MIMOSA-26 detector plane.
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Figure 8.8. Distribution of track angles using

a straight-line fit.

angles with respect to the nominal beam axis. The distribution of track angles is

depicted in Fig. 8.8. As the spread of scattering and track angles are less than a

few mrad, they are considered to be negligible compared to the rotation angle.

All test-beam measurements are cross-checked with several CLICTD samples in order

to exclude additional systematic uncertainties and the results are found to agree within

the stated uncertainties.



Chapter 9

Performance in Test-Beam

Measurements

This chapter summarises the measurement results from five one-week and one two-week

test-beam campaigns between 2019 and 2021 at the DESY II Test-Beam Facility. In total,

about 80 × 106 events of the recorded data were used to obtain the results presented in

the following chapter. The test-beam facility and the reference telescope are described

in Chapter 7 and the reconstruction and analysis techniques are explained in Chapter 8.

In addition, this chapter uses the calibration and front-end tuning results obtained in

Chapter 6.

The chapter is divided according to the observables discussed in Section 8.4, namely

charge sharing, hit-detection efficiency as well as time and spatial resolution. First,

measurements with perpendicular incidence of the beam are discussed and subsequently

the impact of oblique incidence angles is studied. These inclined particle trajectories

are also exploited to estimate the active sensor depth. Lastly, the evaluation of different

cluster position reconstruction techniques to improve the spatial resolution is presented

including a novel approach using neural networks.

The chapter aims to pin down the performance and characteristics for the different

operation conditions, sensor designs and wafer materials. To this end, most sections

follow a similar structure, where the results for the standard configuration are presented

first, followed by measurements with varied p-well bias voltages and the different pixel

flavours. Next, the impact of the sensor thickness on the measurements is shown and

lastly the results for different wafer materials is described, including measurements with

different substrate bias voltages.

109
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Figure 9.1. Total cluster size distribution for the standard configuration.

9.1 Charge Sharing

Charge sharing between adjacent pixels has important implications for all performance

figures and thus needs to be adapted to the specific requirements of the silicon device.

The geometrical features of the pixel cell, the field configurations and the depleted re-

gions within the sensor determine the charge-sharing behaviour. Their impact is therefore

studied using measurements from CLICTD samples with different designs or in different

operation scenarios. First, the standard configuration is shown and subsequently devia-

tions from the standard configuration are studied.

Standard Configuration The total cluster size distribution for the standard config-

uration is presented in Fig. 9.1. For each measurement shown in this section, error bars

or uncertainty bands are included in the figure, but may not be visible owing to their

small size. The majority of clusters consist of more than one pixel, confirming that the

motion of charge carriers to neighbouring pixels has a considerable impact on the sensor

response. Projections of the cluster in column and row direction are depicted in Fig. 9.2.

The fraction of two-pixel clusters is higher in row direction due to the smaller pixel pitch

in this dimension, which enhances the degree of charge sharing.

The cluster size is expected to depend on the impact position of a beam particle

within the pixel cell. The effect is visualised in the in-pixel representation of the total

cluster size, as shown in Fig. 9.3. In this representation, the cluster size is plotted as a

function of the reconstructed track-incident position within a pixel cell by folding data

from a full CLICTD pixel matrix into a single cell. The origin of single-pixel clusters is

confined to the innermost part of the pixel since charge carriers are created in the lateral

vicinity of the collection electrode. The largest clusters originate from the pixel corners
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(a) Cluster size in column direction
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(b) Cluster size in row direction

Figure 9.2. Cluster size distribution in (a) column and (b) row direction for the standard

configuration.
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Figure 9.3. In-pixel representation of the total cluster size for a sensor in standard configura-

tion.
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(a) Cluster size in column direction
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(b) Cluster size in row direction

Figure 9.4. In-pixel cluster size in (a) column and (b) row direction for the standard configu-

ration.

owing to geometrical effects and the low electric field in this region resulting in a high

contribution from charge carrier diffusion.

A similar effect is observable in the in-pixel representation of the cluster size in row

and column direction, which are depicted in Fig. 9.4. Whereas clusters with a single pixel

in column direction originate from particles impinging in a 20 µm wide band around the

middle of the pixel cell, two-pixel clusters only occur for particles incident on the pixel

borders. A similar effect is visible in row direction, although the region associated with

two-pixel clusters extends further into the pixel cell due to the smaller pixel pitch.

The cluster size is highly sensitive to the detection threshold, since individual pixel sig-

nals can remain below the applied threshold, thus reducing the size of the cluster. To

study the impact of the threshold in detail, the mean cluster size is depicted in Fig. 9.5

as a function of the detection threshold. The shaded area around the curve represents

the uncertainty discussed in Section 8.5. With increasing detection threshold, more and

more pixels fall below it, thus decreasing the cluster size. At approximately 1500 e, the

curve has converged to a cluster size close to one, since only the pixel with the highest

charge (seed pixel) remains above threshold.

Bias Voltage The p-well bias voltage affects the depletion regions in the upper part

of the sensor. It is shown in Section 6.2 that a lower absolute p-well bias voltage results

in a lower gain and consequently a higher operational detection threshold. Although, the

cluster size for a given threshold is not affected by the p-well bias voltage, as illustrated in

Fig. 9.6, the difference in minimum operation threshold affects the maximum achievable
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Figure 9.5. Total cluster size as a function of the detection threshold for the standard config-

uration. The shaded area around the curve represents the uncertainty discussed in Section 8.5.
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Figure 9.6. Total cluster size as a function of detection threshold for two different p-

well/substrate bias voltages using a sample with continuous n-implant and a thickness of 300 µm.
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Table 9.1. Cluster size at the minimum operation threshold for two different p-well bias

voltages. The investigated sensor has a continuous n-implant and a thickness of 300 µm.

Bias [-V] Thd [e] Cluster size Cluster size (col.) Cluster size (row)

3 200+4
−5 1.92± 0.01 1.37± 0.01 1.45± 0.01

6 139+4
−5 1.99± 0.01 1.40± 0.01 1.48± 0.01

Table 9.2. Mean cluster size at the minimum operation threshold for different pixel flavours.

All sensors were operated at a bias voltage of -6 V/-6 V at the p-well/substrate nodes.

Flavour Thd [e] Cluster size Cluster size (col.) Cluster size (row)

Continuous n-implant 139+4
−5 1.99± 0.01 1.40± 0.01 1.48± 0.01

Segmented n-implant 136+4
−5 1.82± 0.01 1.30± 0.01 1.46± 0.01

Extra deep p-well 148+4
−5 1.84± 0.01 1.31± 0.01 1.47± 0.01

cluster size. The difference is quantified in Table 9.1, where the mean cluster size for the

two operation points is listed at their respective minimum threshold. The cluster size

for the higher absolute bias voltage is considerably larger owing to the lower minimum

operation threshold. The same holds true for the projection of the cluster size in both

directions. The larger cluster size has important implications for the position resolution,

as presented in Section 9.4.

Pixel Flavours The pixel flavours with segmented n-implant and extra deep p-well

were designed to accelerate charge collection and consequently reduce charge sharing.

This is reflected in the total cluster size as a function of the detection threshold in

Fig. 9.7, where sensors operated at -6 V bias voltage with a total thickness of 100 µm

were used. As expected, a decrease in the cluster size in column direction for the flavour

with segmented n-implant and extra deep p-well is observable owing to the suppressed

charge sharing.

The mean cluster size in column and row direction are presented in Fig. 9.8. A

difference in cluster size is only seen in column direction, where the implant modifications

were applied. The cluster size in row direction remains unaffected since the pixel layout

is the same for all pixel flavours. The mean cluster size at the minimum operation

threshold in Table 9.2 underlines the results: while the cluster size in column direction

is approximately 7 % smaller for the optimised flavours, the size in row direction is the

same within the uncertainties.
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Figure 9.7. Total cluster size as a function of the detection threshold for the different pixel

flavours. The sensors have a thickness of 100 µm and were operated at a bias voltage of -6 V/-6V.
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(a) Mean cluster size in column direction.
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Figure 9.8. Total cluster size as a function of the detection threshold in (a) column and (b)

row direction for the different pixel flavours. The sensors have a thickness of 100 µm and were

operated at a bias voltage of -6 V/-6 V.
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Table 9.3. Total cluster size at the minimum operation threshold for CLICTD sensors with

different thicknesses. A bias voltage of -6 V/-6 V was applied to all sensors.

Thickness [µm] Flavour Threshold [e] Cluster size

300 Continuous n-implant 139+4
−5 1.99± 0.01

100 Continuous n-implant 136+4
−5 1.94± 0.01

50 Continuous n-implant 140+4
−5 1.91± 0.01

40 Continuous n-implant 181+4
−5 1.86± 0.01

300 Segmented n-implant 136+4
−5 1.82± 0.01

100 Segmented n-implant 140+4
−5 1.81± 0.01

50 Segmented n-implant 131+4
−5 1.83± 0.01

40 Segmented n-implant 130+4
−5 1.73± 0.01

Thinned Sensors The low material content of thin sensors is beneficial to reduce mul-

tiple scattering and thus enables precision measurements. However, if sensor thinning

involves the removal of active sensor volume, the performance of the device might get

compromised owing to the lower number of liberated electron-hole pairs that can con-

tribute to the signal. In case of the CLICTD sensor fabricated with an epitaxial layer on a

low-resistivity substrate, the active sensor volume is expected to span only the upper part

of the sensor. Thus charge carriers generated in the lower low-resistivity substrate are

unable to propagate to the vicinity of the collection electrode, where they would induce

a current. The lower part of the sensor is therefore considered to be inactive material

and removing it should leave the total signal unaltered.

This assumption is challenged experimentally by investigating CLICTD sensors with

different sensor thicknesses. The total cluster size as a function of the detection threshold

for four different thicknesses is displayed in Fig. 9.9 using CLICTD samples with contin-

uous and segmented n-implant. For a given threshold, the cluster size stays unaltered for

sensors with a thickness of 300 µm, 100 µm and 50 µm. The same holds true for the mean

cluster size at the minimum operation threshold listed in Table 9.3. This observation

confirms that the removed sensor volume was inactive material that did not contribute

to the signal and only the upper part of the structure is essential to maintain the same

sensor properties.

On the other hand, the 40 µm thick sample exhibits a noticeable reduction in cluster

size, both in the threshold scan and at the minimum operation threshold. The sample

consists of approximately 10 µm of metal layers and 30 µm sensor material, implying that

the low-resistivity substrate is largely remove, since the nominal thickness of the epitaxial
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(b) Segmented n-implant

Figure 9.9. Total cluster size as a function of detection threshold for different sensor thicknesses

using CLICTD sensors with (a) continuous and (b) segmented n-implant. The sensors were

operated at a bias voltage of -6 V/-6 V.

layer is 30 µm as well 1. In addition, sensor damage is expected from the grinding process

that could further decrease the active sensor volume [181]. Consequently, the smaller

cluster size is assumed to arise from the removal of active sensor material that leads to a

lower signal. This conjecture is tested in the coming sections using other observables as

well.

The reduction in cluster size is more pronounced for the flavour with segmented n-

implant compared to the one with continuous implant, which is consist with the reduced

charge sharing for the former. A higher amount of charge sharing leads to the distribution

of the total signal to several adjacent pixel cells, thus reducing the amount of signal per

pixel. In particular, charge carriers generated at the lower border of the active sensor

region are subject to intense charge sharing, since their longer propagation path allows

for a stronger contribution of diffusion processes. If the induced signal on a given pixel

is not enough to surpass the threshold, the charge carriers that propagated to this cell

are effectively lost (sub-threshold effect). Therefore, this phenomenon is particularly

important for the flavour with continuous n-implant and affects mostly charge carriers

from the lower part of the active sensor volume. A removal of this volume is thus less

severe, since a fraction of charge carriers are anyway lost due to sub-threshold effects. The

stronger concentration of charge carriers in the seed pixel for the segmented n-implant

avoids the charge-sharing-induced signal loss and is consequently more sensitive to the

1There is however no sharp border between the epitaxial layer and the substrate but a smooth

transition as explained in Section 10.1.1.
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Table 9.4. Mean cluster size at the minimum operation threshold for CLICTD sensors with

different wafer materials. Both sensors have a segmented implant, a thickness of 100 µm and

are biased at -6 V/-6 V.

Material Threshold [e] Cluster size

Epi 157+4
−5 1.86± 0.01

Cz 151+4
−5 2.36± 0.01
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Figure 9.10. Cluster size as a function of detection threshold for samples fabricated with

an epitaxial layer on a low-resistivity substrate (Epi + LR substrate) and a high-resistivity

Czochralski substrate (HR-Cz substrate). Both sensors have a segmented n-implant, a thickness

of 100 µm and are biased at -6 V/-6 V.

thinning procedure.

Wafer Material In the previous paragraph, it was shown that large parts of the 300 µm

thick sensor can be removed without a loss of signal, since the active sensor depth only

covers the upper < 50 µm of the device. While this result allows sensors to be thinned to

a few tens of micrometers, it also implies that the maximum achievable signal is limited to

a few thousand electrons per MIP (cf. Section 2.3.1). Since a higher signal is expected to

improve the sensor performance, a larger high-resistivity layer is desirable to increase the

thickness of the active sensor volume. Unlike samples with epitaxial layer, the availability

of high-resistivity Czochralski wafers provides such a large high-resistivity region, since

its thickness is not limited to tens of micrometers but can easily scale to hundreds of

micrometers.

The effect of the alternative sensor material is first studied in the threshold scan

of the mean cluster size, as displayed in Fig. 9.10. Both sensors have a thickness of
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(b) Extra deep p-well at a detection threshold

of 488 e.

Figure 9.11. Cluster size as a function of substrate voltage for samples with high-resistivity

Czochralski wafer. The samples have a (a) segmented n-implant and (b) extra deep p-well. The

p-well bias voltage is fixed to -6 V/-6 V.

100 µm, a segmented n-implant and are operated at a bias voltage of -6 V/-6 V for direct

comparison, although the high-resistivity Czochralski samples could be biased at lower

substrate bias voltages. The cluster size for the Czochralski sample is clearly larger,

which is also reflected in the mean cluster size at the minimum operation threshold in

Table 9.4. There, the increase in mean cluster size even exceeds 25 %.

Since the implant structures are the same for both samples, a higher amount of charge

sharing on its own is not expected to lead to this increase in cluster size. Instead, the

larger size is expected to arise from a higher number of electron-hole pairs that generate a

higher signal, as conjectured above. The coming sections will investigate this assumption

in more detail.

The depletion region within the high-resistivity Czochralski sample is not expected to

cover the entire sensor at a bias voltage of -6 V/-6 V, which still limits the active sensor

depth. An increase in substrate bias voltage, increases the depletion depth and therefore

also affects the active depth, as illustrated in Fig. 9.11, where the mean cluster size as

a function of the substrate bias voltage is displayed for two different flavours. Both

sensors are 100 µm thick and the p-well voltage remains at -6 V. A detection threshold

of 348 e is applied to the sample with segmented n-implant and 488 e to the one with

extra deep p-well, which is significantly higher than the minimum operation threshold at

-6 V/-6 V. The high threshold results from the different front-end operation settings that

are necessary to achieve high efficiency with these samples, as explained in Section 4.6.1.
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Figure 9.12. Cluster seed signal distribution for the pixel flavour with continuous and seg-

mented n-implant. The sensors have a thickness of 300 µm and a bias voltage of -6 V/-6 V is

applied.

9.2 Signal

The seed signal as the highest single-pixel signal in a cluster is shown in Fig. 9.12 for

pixel flavours with continuous and segmented n-implant. The seed signal is converted

to physical units using the ToT calibration from Section 6.6. The distributions are not

expected to follow Landau-Gauss functions owing to charge sharing and the limitations

of the charge measurement and calibration. However, it is still instructive to observe the

lower seed signal for the pixel flavour with continuous n-implant, which is a consequence

of the higher degree of charge sharing.

The cluster charge is not evaluated quantitatively in this document owing to the

limited precision in the conversion of ToT values to physical units. In addition, all

further reconstruction steps that require charge information are performed using the ToT

values in order to prevent the introduction of systematic effects from the conversion. The

consequences of using ToT values will be reflected in the following sections.

The in-pixel representation of the cluster seed charge is presented in Fig. 9.13 for

the standard configuration. As expected, the seed pixel charge exhibits a maximum in

the pixel centre and decreases towards the pixel corners due to increased charge sharing.

The in-pixel distribution of the seed pixel has important implications for the detection

efficiency, as presented in the next section.
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Figure 9.13. In-pixel representation of the cluster seed charge for the standard configuration.

The seed charge is not calibrated and therefore given in ToT values.

9.3 Hit-Detection Efficiency

An inefficient sensor is detrimental for detectors operating in high-energy physics ex-

periments, since data taking can become incomplete or even meaningless. A high hit-

detection efficiency is therefore fundamental for satisfactory measurement results and is

consequently a principle performance indicator for silicon sensors. In this section, the hit-

detection efficiency is investigated as a function of numerous parameters and sensor types.

First, the standard configuration is presented and afterwards the same modifications as

introduced above are studied.

Standard Configurations The hit-detection efficiency depends on the association cut

between reconstructed telescope track and clusters on the DUT. If the cut is too small,

the signal is cut out and the sensor is falsely labelled as inefficient. If it too wide, noise

might be wrongly identified as particle hits leading to an artificial increase in efficiency.

For the CLICTD sensor, the later restriction is of no practical concern, since the sensor

and operation characteristics enable minimal noise levels that prevent a false increase in

efficiency. For the former constraint, the cluster-track association cut is tuned to data, as

presented in Fig. 9.14. The plot depicts the hit-detection efficiency as a function of the

association cut in column direction. The decrease in efficiency sets in below 30 µm, which

is less than the pixel pitch of 37.5 µm in this direction. The association cut is therefore

fixed to 1.5 times the pixel pitch, which gains enough margin to avoid cutting into the

signal.

With the fixed association cut, the hit-detection efficiency is calculated for different

detection thresholds, as presented in Fig. 9.15 for the standard configuration. A close-up
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Figure 9.14. Efficiency as a function of the cluster-track association cut in column direction.

The pixel pitch in this direction is 37.5 µm and the nominal association cut is selected to be 1.5

times the pixel pitch.
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Figure 9.15. Efficiency as a function of the detection threshold in the standard configuration.
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of the high-efficiency region is shown in Fig. 9.15b. The sensor achieves efficiencies well

above 99 %, which is in agreement with other sensor prototypes using similar pixel layouts

such as the ALPIDE sensor [182]. Remaining inefficiencies at low thresholds are most

likely related to the low-energy tail of the energy deposition distribution.

In accordance with the CLIC tracker requirements, the sensor is declared fully efficient

if the efficiency exceeds > 99.7 % (cf. Section 1.2.4). While full efficiency is achieved at

low detection thresholds, the efficiency deteriorates for values greater than 500 e, since all

pixel signals in a cluster fall below the detection threshold. The threshold range in which

the sensor is fully efficient is denoted as efficient operation window. It is calculated by

subtracting the minimum operation threshold from the threshold, at which the efficiency

is inferior to the 99.7 % limit. In Fig. 9.15, the efficient operation window evaluates to

207± 12 (stat.)+5
−7 (syst.) e.

Therefore, the detection threshold can be varied in a range of several hundred electrons

before a reduction of efficiency is to be expected. For long-term data-taking scenarios,

where alteration in the detection thresholds might become necessary due to radiation

damage or increased noise levels, this result gives room to adapt to changing operation

conditions.

For high thresholds, inefficient regions start to form at the pixel edges, as illustrated

in Fig. 9.16, where the in-pixel hit-detection efficiency is shown at a threshold of 1950 e

for the standard configuration. The diffusion of charge carriers to neighbouring pixels is

enhanced at the edges, leading to a smaller signal per pixel. In particular, the measured

signal in the seed pixel is closely related to the detection efficiency: If the seed charge of a

given cluster falls below the applied threshold, the cluster is lost leading to inefficiencies.

Bias Voltage The detection efficiency for bias voltages of -3 V/-3 V and -6 V/-6 V is

depicted in Fig. 9.17. For a given threshold, the efficiency is insensitive to the difference

in bias voltage. Since a similar charge sharing behaviour for the two bias voltages was

found in the previous section, it can be concluded that the overall signal above threshold is

independent of the bias voltage in the range -3 V to -6 V. This observation is supported by

simulations presented in Section 11.2.2 and is different to standard planar silicon sensors,

where a higher absolute bias voltage increases the depleted volume and consequently the

signal. However, with the limited depletion depth in the samples with epitaxial layer, the

increase in bias voltage has no effect on the active depth or the signal.

Pixel Flavours The detection efficiency for the different pixel flavours is presented in

Fig. 9.18. The flavours with segmented n-implant and extra deep p-well exhibit a higher
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Figure 9.16. In-pixel representation of the hit-detection efficiency for the standard configura-

tion at a threshold of 1950 e.
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Figure 9.17. Detection efficiency as a function of threshold for two different bias voltages.

The investigated sensor has a thickness of 300 µm, a continuous n-implant and are biased at

-6 V/-6 V.
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Figure 9.18. Detection efficiency as a function of threshold for the three pixel flavours. The

samples have a thickness of 100 µm and are operated at -6 V/-6 V bias voltage.

efficiency at high threshold values due to to the reduced charge sharing that leads to a

stronger concentration of charge carriers in the seed pixel. The suppression of charge

sharing is slightly enhanced for the flavour with segmented n-implant in accordance with

the reduced cluster size shown in the previous section.

This result has important implications for future sensor prototypes with thin active

sensor volumes such as current developments for monolithic sensors using a 65 nm CMOS

process [183]. The pixel flavours with reduced charge sharing might become obligatory

to guarantee fully efficient operations.

Thinned Sensors The efficiency as a function of the detection threshold is studied for

different sensor thicknesses in Fig. 9.19 for the flavour with continuous n-implant and

segmented n-implant. A similar performance is observed for sensor thicknesses ranging

between 50 µm and 300 µm.

For the 40 µm thick sample, the efficiency plateau becomes narrower at high threshold

values. In agreement with the smaller cluster size observed in the previous section,

the degraded efficiency indicates an overall reduction in signal compared to the thicker

samples. These results underpin the assumption of a smaller active depth due to the

removal of active sensor volume. The pixel flavour with segmented n-implant exhibits a

stronger deterioration in efficiency. Similar to the cluster size, the reduced charge sharing

prevents sub-threshold charge carrier loss in the lower parts of the active region leading

to a stronger degradation in efficiency when this part is removed.

Wafer Material The larger active sensor volume expected from the high-resistivity

wafers has important implications for the efficiency at high thresholds, as depicted in
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Figure 9.19. Efficiency as a function of detection threshold for different sensor thicknesses. A

bias voltage of -6 V/-6 V is applied to all sensors.
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Figure 9.20. Detection efficiency as a function of threshold for the different wafer materials.

The sensors have a thickness of 100 µm, a segmented n-implant and are biased at -6 V/-6 V.
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Figure 9.21. Efficiency as a function of substrate voltage for a sample on high-resistivity

Czochralski wafer material. The sensors have a thickness of 100 µm and a bias voltage of -6 V

at the p-well terminals.

Fig. 9.20. In the plot, the efficiency is displayed for different wafer materials as a function

of the detection threshold for samples with a thickness of 100 µm and segmented n-

implant. The efficient operation window is significantly extended for the high-resistivity

wafers owing to a larger seed signal. The higher seed signal with the simultaneous increase

in cluster size discussed in the previous section, supports the notion of a larger active

sensor depth.

The impact of the substrate voltage on the efficiency is shown in Fig. 9.21a for a high-

resistivity sample with segmented n-implant at a threshold of 1692 e and in Fig. 9.21b for

a sample with extra deep p-well at a threshold of 1647 e. Since these threshold values are

about one order of magnitude higher than the minimum operation threshold, a significant

reduction in efficiency is measured in both cases. The efficiency loss is less severe for high

substrate voltages, since a higher seed signal is expected from the increased depletion

depth. For the sample with extra deep p-well, the efficiency increases by about 10 %

between -6 V and -25 V substrate bias voltage.

9.4 Spatial Resolution

The intrinsic spatial hit resolution of vertex and tracking detectors is essential to resolve

secondary vertices and to achieve a high momentum resolution. Besides the physical pixel

size, charge sharing is a strong driving force to obtain an excellent spatial resolution. To
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Figure 9.22. Spatial resolution as a function fo the association cut in (a) column and (b) row

direction. The telescope resolution is not subtracted.

study the impact of charge sharing on the spatial resolution, different CLICTD samples

with their heterogeneous charge sharing properties are investigated. In the following, the

spatial resolution is introduced first for the standard configuration followed by the same

modifications described above.

Standard Configuration Similar to the hit-detection efficiency, a wrong choice of

the track-cluster association cut can distort the reconstruction of the spatial resolution.

Therefore, the resolution as a function of the association cut is studied, as presented in

Fig. 9.22. The spatial resolution is artificially improved for cut values below 10 µm, since

clusters in the tails of the residual distributions are rejected. In the plateau region, the

spatial resolution is stable confirming that the association cut lies outside the tails of the

residual distribution. Moreover, the plateau region has a flat shape, which demonstrates

that no false associations with CLICTD noise hits are occurring owing to the low noise

rate of the sensor. The association cut is left at 1.5 times the pixel pitch in accordance

with the results from the efficiency measurement.

The unbiased spatial residuals between the reconstructed cluster position and the

track intercept on the DUT are presented in Fig. 9.23 for the standard configuration.

In row direction, the η-correction was applied to account for non-linear charge sharing.

The RMS of the central 3σ (99.7%) of the distribution amounts to 8.1 µm in column and

5.4 µm in row direction. After the track pointing resolution of 2.8 µm is subtracted in

quadrature, the spatial resolution evaluates to 7.6±0.2 µm and 4.6±0.2 µm in column and

row direction, respectively (cf. Section 8.4.3). The uncertainties are purely systematic,
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Figure 9.23. Spatial residuals in (a) column and (b) row direction between the telescope

incident position and the reconstructed cluster position for the standard configuration.

as explained in Section 8.5. The binary resolution is given by pitch/
√

12 and evaluates

to 10.8 µm in column direction and 8.7 µm in row direction. The measured resolution is

therefore far superior to the binary resolution, which underlines the importance of charge

interpolation for this measurement.

The achievable resolution depends on the impact position of a particle in the pixel

cell. The in-pixel representation of the spatial resolution in row direction is depicted

in Fig. 9.24 with and without η-correction. The best spatial resolution is observed for

incident positions close to the middle of the pixel cell along the row dimension. Without

η-correction, the spatial resolution deteriorates towards to pixel edges, where two-pixel

clusters are most common, as shown in Fig. 9.4b. Despite the additional charge informa-

tion from the adjacent pixel, the spatial resolution deteriorates, since the non-linearity in

the charge sharing is not considered.

After applying the η-correction, the spatial resolution improves at the pixel edges,

as displayed in Fig. 9.24a. The in-pixel region ±6 µm from the pixel centre exhibits the

worst performance owing to a considerable fraction of single-pixel clusters, that cannot

profit from additional charge information of neighbouring pixels. The lack of information

leads to the position reconstruction of these single-pixel clusters at the pixel centre, which

introduces the dominant imprecision of the measurement, since the particle incident po-

sition is a few micrometers off from the centre. Therefore, a lower detection threshold or

increased charge sharing in these pixel regions could further improve the spatial resolu-

tion. For the CLICTD sensor, whose spatial resolution is already well within the CLIC

tracker requirements, such improvements are not needed.
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η-correction
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correction

Figure 9.24. In-pixel representation of the spatial resolution in row direction (a) before (b)

after η-correction for the standard configuration.

Table 9.5. Spatial resolution in row and column direction for the different bias voltages. The

investigated sample has a thickness of 300 µm and a continuous n-implant.

Bias voltage Thd [e] Spatial res. (col.) Spatial res. (row)

3 200+4
−5 7.3± 0.2 5.2± 0.2

6 139+4
−5 6.7± 0.2 4.6± 0.2

With increasing threshold, the cluster size decreases and the charge information from

neighbouring pixels is lost. The impact on the spatial resolution is illustrated in Fig. 9.25,

where the resolution as a function of the detection threshold is displayed. The spatial

resolution deteriorates at higher thresholds, but never exceeds the binary resolution of

10.8 µm in column and 8.7 µm in row direction. For threshold values above 1000 e, an

improvement of the spatial resolution is caused by the formation of inefficient regions

at the pixel edges, as displayed in Fig. 9.16. These inefficiencies lead to an effectively

smaller pixel pitch that results in an artificial improvement in spatial resolution.

Bias Voltages The spatial resolution for different p-well bias voltages is depicted in

Fig. 9.26 for a 300 µm sample with continuous n-implant. As expected, the resolution

for a given threshold remains unaffected owing to the similar cluster size observed in

Section 9.1. The spatial resolution at the minimum operation threshold is listed in Ta-

ble 9.5. The lower detection threshold that is achievable with the higher absolute bias
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Figure 9.25. Spatial resolution in (a) column and (b) row direction as a function of detection

threshold for the standard configuration.
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Figure 9.26. Spatial resolution in (a) column and (b) row direction as a function of detection

threshold for different p-well bias voltages. A sample with a thickness of 300 µm and continuous

n-implant is used and a bias voltage of -6 V/-6 V is applied.
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Table 9.6. Spatial resolution in row and column direction for the different pixel flavours. The

samples have a thickness of 100 µm and are operated at -6 V/-6 V bias voltage.

Flavour Thd [e] Spatial res. (col.) Spatial res. (row)

Continuous n-implant 139+4
−5 6.5± 0.2 4.6± 0.2

Segmented n-implant 136+4
−5 7.6± 0.2 4.6± 0.2

Extra deep p-well 148+4
−5 7.2± 0.2 4.7± 0.2
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Figure 9.27. Spatial resolution in (a) column and (b) row direction as a function of detection

threshold for the different pixel flavours. The samples have a thickness of 100 µm and are biased

at -6 V/-6 V .

voltage allows for a 10 % improvement of the spatial resolution in both directions.

Pixel Flavours The modifications in the pixel design affect the charge sharing and

are therefore expected to alter the spatial resolution as well. The threshold scans of

the spatial resolution in column direction in Fig. 9.27 confirm this assumption. The

resolution in column direction for the sensor with continuous n-implant is superior to the

other flavours due to the higher cluster size at a given threshold (cf. Section 9.1). The

spatial resolution at the minimum operation threshold is approximately 15 % better for

this pixel flavour, as listed in Table 9.6. Since there are no stringent requirements on the

spatial resolution in the column direction, this result is of no practical concern for the

target application in the CLIC tracker but is mostly instructive in order to comprehend

the impact of the implant modifications on the spatial resolution.

The resolution in row direction is unaffected, since no modifications in the sensor de-

sign were applied in this direction. The CLIC requirement demanding a spatial resolution
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(b) Segmented n-implant

Figure 9.28. Spatial resolution in row direction as a function of detection threshold for different

sensor thicknesses. The samples have a (a) continuous and (b) segmented n-implant and are

biased at -6 V/-6 V.

below 7 µm in row direction is therefore reached by all pixel flavours.

Thinned Sensors Hereafter, only the spatial resolution in row direction is presented,

since stringent demands imposed by the CLIC tracker requirements only apply in this

direction. Qualitatively, the trends discussed in the following are also observed in the

column direction.

The spatial resolution for different sensor thicknesses is presented in Fig. 9.28 for the

pixel flavour with continuous and segmented n-implant. Within the uncertainties, the

spatial resolution for sensors ≥ 50 µm are in good agreement owing to the similar cluster

size at a given threshold. The deviations for the 300 µm thick samples at high thresholds

are related to challenges in the reconstruction caused by limited statistics. The spatial

resolution at the minimum operation threshold is presented in Table 9.7 and confirms that

the resolution is unaffected by the sensor thickness, except for the 40 µm thick sample,

which performs slightly worse. The smaller cluster size leads to a deterioration in spatial

resolution, in particular for thresholds below 1000 e. The difference vanishes at high

thresholds, where single-pixel cluster dominate for all sensor thicknesses.

Wafer Material The higher signal from high-resistivity Czochralski sensors leads to

a larger cluster size and consequently an improved spatial resolution, as displayed in

Fig. 9.29. The difference is particularly noticeable at small threshold values in accordance

with the larger difference in cluster size that was shown in Fig. 9.10. At the minimum

operation threshold listed in Table 9.29, the resolution improves by about 15 %. At high
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Table 9.7. Spatial resolution in row direction at the minimum operation threshold for CLICTD

sensors with different thicknesses. A bias voltage of -6 V/-6 V is applied to all sensors.

Thickness [µm] Flavour Threshold [e] Spatial res. (row) [µm]

300 Continuous n-implant 139+4
−5 4.6± 0.2

100 Continuous n-implant 136+4
−5 4.6± 0.2

50 Continuous n-implant 140+4
−5 4.6± 0.2

40 Continuous n-implant 181+4
−5 5.3± 0.2

300 Segmented n-implant 136+4
−5 4.6± 0.2

100 Segmented n-implant 140+4
−5 4.5± 0.2

50 Segmented n-implant 131+4
−5 4.6± 0.2

40 Segmented n-implant 130+4
−5 4.8± 0.2

Table 9.8. Spatial resolution at the minimum operation threshold for CLICTD sensors with

different wafer materials. Both sensors have a segmented-implant and are 100 µm thick. A bias

voltage of -6 V/-6 V is applied.

Material Threshold [e] Spatial res. [µm]

Epi 131+4
−5 4.5± 0.2

Cz 151+4
−5 3.9± 0.2

thresholds, the mean cluster size converges to one resulting in an identical resolution

within the uncertainties.

With increasing substrate bias voltage, the depleted region expands evoking a higher

signal that leads to a larger cluster size as presented above. Therefore, the spatial resolu-

tion improves in the same manner, as illustrated in Fig 9.30 for high-resistivity Czochralski

samples with segmented n-implant and extra deep p-well. The samples were operated at

comparably high detection thresholds due to the modified front-end operation settings

(cf. Section 7.3). A further improvement in spatial resolution is expected, if the front-

end is adapted to the high-resistivity material, as it would allow for smaller detection

thresholds.

9.5 Time Resolution

A time resolution below approximately 5 ns is required to guarantee efficient background

suppression in the CLIC experiment. This section is thus dedicated to the determination

of the time resolution of CLICTD and to studying the impact of different sensor designs
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Figure 9.29. Spatial resolution in row direction as a function of detection threshold for a

sample with epitaxial layer and a high-resistivity Czochralski substrate. Both samples have a

segmented n-implant, a thickness of 100 µm and are biased at -6 V/-6 V.
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of 488 e.

Figure 9.30. Spatial resolution in row direction as a function of substrate bias voltage for a

high-resistivity Czochralski sample. The samples have a (a) segmented n-implant and (b) extra

deep p-well and a thickness of 100 µm The p-well bias voltage is fixed to -6 V.
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Figure 9.31. Residuals between track time stamp and reconstructed cluster time stamp as

a function of seed pixel charge (a) before and (b) after time-walk correction for the standard

configuration. The black crosses denote the mean of each ToT bin.

and operation conditions. The total time resolution of the device is a convolution of the

sensor and front-end time resolution. In the laboratory measurements in Section 5.5.7, a

front-end time resolution of several nanoseconds was found. This already places a limit

on the achievable detector resolution, which is presented in the following section. An

estimation of the sensor resolution excluding front-end effects is provided by simulations

discussed in Section 11.2.8.

Standard Configuration In Fig. 9.31a, the time residuals are depicted as a function

of the seed pixel ToT for the standard configuration. As expected, the signal-dependent

time-walk effect leads to a slower response at low signal heights (cf. Section 3.2). A time-

walk correction is performed for each ToT bin separately by subtracting the mean time

difference between the track time stamp and the measured ToA. The time residuals after

correction as a function of the seed pixel ToT are shown in Fig. 9.31b. While the signal-

dependence of the mean time residuals is largely removed, the width of the time residuals

is still slightly larger for low seed signals due to the stronger impact of amplitude noise

causing a time jitter. The time jitter is inversely proportional to the slope of the signal at

the threshold-crossing point. As the slope flattens towards the peak of the signal, lower

signal heights have a smaller amplitude slope at the threshold-crossing point leading to

a stronger impact of time jitter on the time resolution.

A projection of Fig. 9.31 onto the y-axis yields the one-dimensional time residuals

distributions, as depicted in Fig. 9.32. The time resolution is calculated using the RMS

of the central 99.7% of the distribution, which amounts to 6.6 ns for the residuals after
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Figure 9.32. Time residuals between track time stamp and CLICTD time stamp (a) before

and (b) after time-walk correction for the standard configuration.

time-walk correction without subtraction of the track time resolution. The same quantity

before time-walk correction evaluates to 8.3 ns, which is more than 20 % higher and

underlines the importance of the correction procedure.

The time resolution associated with the track time stamp (1.1 ns) is quadratically sub-

tracted from the RMS of the corrected time residuals, which yields a hit-time resolution

of (6.5±0.1) ns. According to the simulations presented in Section 11.2.8, the sensor time

resolution is below 3 ns, which confirms that the measured time resolution is dominated

by the front-end.

The time resolution depends on the incident position of the particle in the pixel cell,

as shown in Fig. 9.33a, where the in-pixel time resolution before time-walk correction is

presented. The time walk is particularly strong in the pixel corners, where a lower seed

signal is expected. After time-walk correction, the timing is more homogenous across

the pixel cell, as illustrated in Fig. 9.33b. The remaining in-pixel pattern suggests that

slow signals arise predominantly from incident positions at the pixel corners, which is in

agreement with simulations indicating that the time resolution degrades in the pixel edge

regions (cf. Section 11.2.8). In addition, the lower signal height coming from hits in the

pixel corners lead to a stronger contribution of amplitude jitter and possibly remaining

time-walk effects that can further deteriorate the time resolution.

The time resolution deteriorates with increasing threshold as shown in Fig. 9.34. The

degradation is linked to time jitter, similar to the effect observed for small signal heights.

With increasing threshold, the amplitude slope at the threshold-crossing point decreases

leading to an increase in time jitter, which culminates in a deterioration of the time
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Figure 9.33. In-pixel time residuals for the standard configuration (a) before and (b) after

time-walk correction.
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Figure 9.34. Time resolution as a function of the detection threshold in the standard config-

uration.
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Table 9.9. Time resolution for the different pixel flavours. The samples have a thickness of

100 µm and are operated at -6 V/-6 V bias voltage.

Flavour Thd [e] Time res. [ns]

Continuous n-implant 139+4
−5 6.5± 0.1

Segmented n-implant 136+4
−5 5.5± 0.1

Extra deep p-well 148+4
−5 5.5± 0.1
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Figure 9.35. Time resolution as a function of detection threshold for different pixel flavours.

The sensors have a thickness of 100 µm and are biased at -6 V/-6 V.

resolution [64].

Pixel Flavours The pixel flavours with segmented n-implant and additional deep p-

well are optimised to accelerate charge collection, which is expected to improve the time

resolution. The results in Fig. 9.35 confirm this trend, although the improvement in time

resolution is limited owing to the dominating front-end time resolution. The outliers at

high detection thresholds can be attributed to challenges in the time-walk correction. At

the minimum threshold presented in Table 9.9, a 15 % improvement in time resolution is

observable for the optimised flavours.

Thinned Sensors The time resolution for different sensor thicknesses is presented in

Fig. 9.36 for the continuous and segmented n-implant and no significant difference is

found. This result is confirmed in Table 9.10, where the resolution at the minimum

threshold is listed.

The time resolution of thinned sensors is affected by two competing mechanisms: On

the one hand, a smaller seed charge from the thinned sensors is expected to degrade
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Table 9.10. Time resolution at the minimum operation threshold for CLICTD sensors with

different thicknesses.

Thickness [µm] Flavour Threshold [e] Time res. [ns]

300 Continuous n-implant 139+4
−5 6.5± 0.1

100 Continuous n-implant 136+4
−5 6.5± 0.1

40 Continuous n-implant 181+4
−5 6.5± 0.1

300 Segmented n-implant 136+4
−5 5.6± 0.1

100 Segmented n-implant 131+4
−5 5.5± 0.1

40 Segmented n-implant 130+4
−5 5.3± 0.1
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Figure 9.36. Time resolution as a function of detection threshold for different sensor thick-

nesses. A bias voltage of -6 V/-6 V is applied.

the resolution. On the other hand, time variations in the collection of charge carriers

from different sensor depths are reduced. Since the performance for the 40 µm sample is

unaffected within the uncertainties, it can be concluded that the net effect resulting from

the two mechanisms is overshadowed by the dominant front-end time resolution.

Wafer Material An improvement in time resolution for samples fabricated on high-

resistivity Czochralski wafer material is observable in Fig. 9.37. The resolution at the

minimum threshold is shown in Table 9.37 and presents a 12 % improvement for the

Czochralski sample owing to a higher seed signal, which suppresses time jitter. An

increase in substrate bias voltage leads to an additional improvement in time resolution,

as shown in Fig. 9.38 for the pixel flavours with segmented n-implant and extra deep
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Table 9.11. Time resolution at the minimum operation threshold for CLICTD sensors with

different wafer materials. Both sensors have a segmented-implant and are 100 µm thick. A bias

voltage of -6 V/-6 V is applied.

Material Threshold [e] Time res. [ns]

Epi 131+4
−5 5.5± 0.1

Cz 151+4
−5 4.8± 0.1
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Figure 9.37. Time resolution as a function of detection threshold for different wafer materials.

The sensors have a segmented n-implant and a thickness of 100 µm. A bias voltage of -6 V/-6 V

is applied.

p-well.

9.6 Performance with Inclined Particle Tracks

The silicon sensors operated at vertex and tracking detectors of HEP collider experiments

are typically inclined with respect to the incoming particle tracks. The rotation is related

to the bent trajectory of the particles themselves and a mechanical rotation of the modules

to compensate for Lorentz drift or improve the spatial resolution [184,185]. This section is

thus dedicated to the assessment of the sensor performance using inclined particle tracks.

The performance criteria charge sharing, hit detection efficiency as well as spatial and

time resolution are investigated.

Charge Sharing The amount of active silicon traversed by particles is varied by rotat-

ing the sensor relative to the beam. For high rotating angles, particle tracks cross several

adjacent pixel cells, giving rise to a larger cluster size as illustrated in Fig. 9.39 for a
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Figure 9.38. Time resolution as a function of substrate bias voltage for high-resistivity

Czochralski samples with a (a) segmented n-implant and (b) extra deep p-well. The sensors

have a thickness of 100 µm and a bias voltage of -6 V is applied to the p-well terminals.
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Figure 9.39. Cluster size in column and row direction as a function of the rotation angle for

the standard configuration. Tilt column denotes a tilt in the column direction and tilt row in

the row direction.
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(b) Cluster size in row direction

Figure 9.40. Cluster size as a function of detection threshold for different rotation angles for

the standard configuration. The sensor is tilted in row direction.

sample in the standard configuration. The figure depicts measurements, where the sen-

sor was tilted in column direction (tilt column) and row direction (tilt row). The cluster

size in the tilt direction increases non-linearly, due to the deposition of energy in multiple

adjacent pixels. A small increase in the perpendicular direction is observable as well,

that is related to an overall increase in the number of liberated electron-hole pairs. Espe-

cially the charge carriers created in the lower part of the active sensor material undergo

undirected diffusion to neighbouring cells in both directions.

The cluster size as a function of the detection threshold is displayed in Fig. 9.40 for

different rotation angles. As the sensor is rotated in row direction, the mean cluster size

in column direction increases only slightly due to the higher energy deposition. In row

direction, a pronounced increase over a wide threshold range is observable. At 70◦, the

mean size still exceeds size one at high threshold values above 2000 e.

The cluster size depends on the incident position on the pixel cell, as illustrated in the

in-pixel representation of the cluster size in column direction in Fig. 9.41 for two different

rotation angles. The sensor depicted in the figure was tilted in column direction. At a

small rotation angle of 5◦, the cluster size map resembles the maps shown in Fig. 9.4

for perpendicular tracks with an increased cluster size at the pixel edges due to charge

sharing by diffusion and a size of one at the pixel centre. Therefore, charge sharing by

diffusion still dominates and no significant rotation effects are observable at such a small

inclination angle.

For higher rotation angles, the rotation-induced charge sharing dominates, as shown
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(a) Rotation angle: 5◦
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Figure 9.41. In-pixel representation of the cluster size in column direction showing two dif-

ferent rotation angles for the standard configuration. The sensor is tilted in column direction.

in Fig. 9.41b for a rotation angle of 60◦. A larger cluster size for particles impinging

in the pixel centre is visible. The situation is schematically depicted on the right of

Fig 9.42. It should be noted that the in-pixel track intercept position for inclined tracks

does not correspond to the intersection of the track with the sensor surface. In order

to comply with the definition of the reconstructed cluster position, which is based on a

charge-weighted centre-of-gravity algorithm, the intersection of the track with the sensor

is in the central region of the active silicon traversed by the beam. The exact location

of the track intercept with the sensor is determined in the offline alignment procedure,

where the detector position is reconstructed such that the spatial residuals between track

position and reconstructed cluster position are minimized. In Fig. 9.42, the track position

is approximated by a star. Consequently, the left track in the schematic is associated

with a hit in the pixel edge and the right track in the pixel centre.

Hit Detection Efficiency With increasing rotation angle, the total energy deposition

in the sensor increases due to the longer path in the active sensor region. As a result,

a higher signal is detected, which leads to an appreciable increase in efficiency at high

thresholds, as depicted in Fig. 9.43. The threshold scans were measured with the standard

configuration, while setting three different rotation angles. At a threshold of 2300 e, the

increase in efficiency is approximately 75 % between 0◦ and 70◦.

Spatial Resolution The spatial resolution in row direction as a function of the rotation

angle is depicted in Fig. 9.44. The sensor is in the standard configuration and was tilted

in row direction. For the black curve, only a centre-of-gravity reconstruction is applied,
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Figure 9.42. Schematic representation of inclined particle tracks impinging on a pixel cell for

two different angles. The stars indicate the reconstructed track intercept with the sensor. Not

to scale.
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Figure 9.43. Detection efficiency as a function of threshold using different rotation angles for

the standard configuration.
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Figure 9.44. Spatial resolution as a function of the rotation angle using a charge-weighted

centre-of-gravity algorithm (CoG) and an η-correction (ETA) to reconstruct the cluster position

on the DUT.

and for the red curve an additional η-correction is performed. Both curves exhibit an

improvement with increasing rotation angle until approximately 40◦, where the spatial

resolution evaluates to 3.6± 0.2µm after η-correction.

The results highlight the necessity of the η-correction for rotation angles below 40◦.

At higher angles, an increase of cluster size ≥ 3 complicates the application of the η-

correction and no improvement with respect to the centre-of-gravity algorithm is achiev-

able. Alternative reconstruction techniques attempting to mitigate this challenge are

explored in Section 9.8. However, it should be noted that inclinations angles well above

50◦ are not relevant for the majority of measurements at HEP vertex or tracking detec-

tors [186, 187]. Therefore, the degradation at high rotation angles is of little practical

concern.

Time Resolution The time resolution as a function of the detection threshold for

different rotation angles is depicted in Fig. 9.45. A small improvement for high rotation

angles is observable that is attributable to a higher cluster seed charge. However, the

sensor effects are mostly overshadowed by the time resolution of the front-end. Therefore,

no sensible conclusion about the time resolution for inclined particle tracks can be drawn

at this stage.

Conclusion Overall, an improvement in sensor performance is measured if particle

tracks are inclined with respect to the sensor surface. In particular, the efficiency at high

thresholds improves steadily with increasing angle due to the longer particle path in the

sensor. For the spatial resolution, an optimal inclination angle of approximately 35− 40◦
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Figure 9.45. Time resolution as a function of the detection threshold for different rotation

angles using a sensor in the standard configuration. The sensor is tilted in row direction.
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Figure 9.46. Schematic representation of the cluster size dependence on the inclination angle

of the particle track.

was found using a charge-weighted centre-of-gravity reconstruction with η-correction.

9.7 Estimation of Active Depth

The size of the active sensor volume determines the number of charge carriers contributing

to the signal. Since a higher number is beneficial for an improved signal-to-noise ratio, a

large active sensor volume is desirable to maximize the performance of silicon sensors.

The results from the previous sections suggest that only the upper part of the sensors

with epitaxial layer are part of the active volume, since thinning the sensors to 50 µm

does not affect their performance. To quantify the thickness of the active sensor volume,

grazing angle measurements [185] are performed, whereby inclined particle tracks are
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used to pin down the maximum sensor depth, from which charge carriers contribute

to the signal. In the following, the method is described for a sensor in the standard

configuration. Subsequently, the active depth of different sensor variants is compared.

In all measurements, the sensors were operated at -6 V/-6 V, unless explicitly stated

otherwise.

Standard Configuration An estimation of the active sensor depth is given by geo-

metrical considerations, as sketched in Fig. 9.46. The simple geometrical model relates

the cluster size in the tilt direction to the incident angle α and the active depth d. Charge

carriers created below the active depth do not contribute to the measured signal and thus

have no effect on the cluster size.

The following geometrical relation is considered to extract the active depth d:

cluster size (tilt direction) =
d tanα

pitch
+ s0 (9.1)

where s0 is the cluster column size for no rotation (α = 0). The active depth is extracted

with a linear fit to the mean cluster size as a function of the tangent of the rotation angle,

as displayed in Fig. 9.47 for the standard configuration and a tilt in column direction.

The model neglects non-rotation induced charge sharing, i.e. charge sharing via pixel

crosstalk or diffusion is not accounted for. Since the cluster size at small rotation angles

is dominated by diffusion effects, as demonstrated in Section 9.6, data points below 40◦

are excluded from the fit. The effect of diffusion-induced charge sharing is considered in

the systematic uncertainties by repeating the fit routine four more times with varied fit

ranges by including/excluding points at the edges of the fit range. Additional systematic

uncertainties related to sub-threshold effects or diffusion-induced charge sharing are dis-

cussed in Section 11.2.6, where simulation studies are used to investigate the validity of

the model.

The fit in Fig 9.47 yields an active depth of

31.4± 0.1 (stat.)+0.2
−2.4 (syst.)µm.

The value is larger than the simulated depletion depth for this sample, which evaluates

to 21± 1µm (cf. Section 11.2.2). Therefore, a significant contribution of charge carriers

from the undepleted region is possible due to random diffusion into the depleted part of

the sensor.

The estimated active depth agrees well with the nominal thickness of the epitaxial

layer, which indicates that charge carriers from the undepleted low-resistivity substrate

are negligible. The results are in accordance with the high recombination probability in

the substrate, which is further discussed in Section 11.2.5.
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Figure 9.47. Cluster size in column direction

as a function of the tangent of the rotation an-

gle for the standard configuration.
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Figure 9.48. Cluster size in column direction

as a function of the tangent of the rotation an-

gle for different sensor thicknesses.

Table 9.12. Active depth for all investigated sensors with an epitaxial layer and low-resistivity

substrate.

Flavour Thickness [µm] Active Depth [µm]

Continuous n-implant 300 31.4± 0.1 (stat.)+0.2
−2.4 (syst.)

Continuous n-implant 100 30.7± 0.1 (stat.)+0.3
−1.8 (syst.)

Continuous n-implant 50 29.4± 0.1 (stat.)+0.9
−1.0 (syst.)

Continuous n-implant 40 26.2± 0.1 (stat.)+0.8
−1.0 (syst.)

Segmented n-implant 300 30.8± 0.2 (stat.)+0.4
−1.2 (syst.)

Segmented n-implant 50 29.8± 0.1 (stat.)+0.6
−1.0 (syst.)

Sensor Thickness The active depth is calculated for sensors with different thicknesses.

The fitted curves are displayed in Fig. 9.48 and the fit results are summarised in Ta-

ble 9.12. All sensors have an epitaxial layer, a continuous n-implant and are biased at

-6 V/-6 V.

Although there is a trend towards smaller active depths with decreasing sensor thick-

ness, it is not significant for thicknesses between 50 µm and 300 µm. Only the active

depth for the 40 µm sample is clearly smaller compared to the other sensors, which is

in agreement with the results from the previous sections, where the reduced signal was

attributed to the removal of active material. It should be noted that the total thickness

includes the metal stack with a size of approximately 10 µm, leaving a sensor thickness

of about 30 µm. Moreover, the backside grinding is expected to introduce defects in the

lower layer of the sensor, which justifies the assumption that the lower part of the 30 µm
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is effectively inactive.

Measurements for the pixel flavour with segmented n-implant are also listed in Ta-

ble 9.12. The pixel flavour has no noticeable effect on the active depth, as expected from

simulations.

It can be concluded that the CLICTD sensors with an epitaxial layer of 30 µm can

be thinned down to a total thickness of 50 µm without suffering from a significant loss

in sensor performance. For thinner sensors, performance degradations emerge due to the

removal or damage of the active sensor volume.

Wafer Material Unlike the samples with epitaxial layer, the depletion for the high-

resistivity Czochralski wafers is not limited in depth by the thickness of the epitaxial

layer. The increased depletion region gives access to a larger active sensor volume, as

illustrated in Fig. 9.49, where the active depth as a function of the substrate voltage is

depicted for a high-resistivity Czochralski sample with segmented n-implant.

The active depth at a substrate voltage of -6 V evaluates to

34.2± 0.1 (stat.)+1.5
−0.6 (syst.)

and is therefore slightly larger compared to the samples with epitaxial layer. With higher

absolute substrate voltages, the active depth increases and reaches

65.4± 0.1 (stat.)+0.5
−0.7 (syst.)

at a substrate voltage of -16 V. At this voltage, the active depth is twice as large as

the depth for the samples with epitaxial layer and a corresponding increase in signal is

expected. The higher signal translates into a better performance as shown in the previous

section. However, it should be emphasised that the improvement is strongly limited by

the front-end, which is not optimised for the large signal generated in the high-resistivity

material (cf. Section 4.6.1). It can be expected that an adaptation of the front-end for

future sensors would enable a full exhaustion of their potential.

9.8 Alternative Cluster Position Reconstruction

The results for the spatial resolution in Section 9.4 have shown the importance of the

η-correction that takes non-linear charge sharing into account. The η-algorithm was

originally constructed for clusters with an extent of two pixels in a given spatial dimen-

sion [174] and its adaptation to larger clusters is not optimal. Moreover, the original

η-correction does not allow for a correlation between column and row direction, since

both are treated independently 2.

2There are advanced versions of the η-correction taking the correlations into account such as [188].
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Figure 9.49. Active depth as a function of the substrate voltage for a high-resistivity Czochral-

ski sample with segmented n-implant and a thickness of 100 µm. The p-well bias voltage is fixed

to -6 V. The error bars are too small to be visible.

For perpendicular incidence of the particle beam, these limitations are negligible, since

the cluster size in both directions is typically smaller than three. In addition, column and

row direction exhibit no strong correlation in the relevant threshold range. However, if

the particle track is sufficiently inclined with respect to the sensor surface, larger clusters

become more frequent and the η-correction in unable to improve the results compared to

the charge-weighted centre-of-gravity reconstruction (cf. Section 9.6). These observations

justify the investigation of alternative position reconstruction techniques, especially for

applications with inclined particle tracks. A technique commonly used for long clusters

is the Head-Tail algorithm introduced in Section 8.3. The algorithm only takes the pixel

charge of the first and last pixel in the cluster into account and ignores the central

ones. Additionally, the cluster position reconstruction using a Multilayer Perceptron is

explored, as introduced in the following.

9.8.1 Multilayer Perceptron

The application of neural networks for regression tasks has gained much popularity in the

past years, largely due to the possibility to consider high-dimensional input vectors [5].

To investigate the performance of a machine learning approach against the established

algorithms presented in Section 8.3, a Multilayer Perceptron (MLP) is employed. Since

the MLP plays an important role in the second part of this thesis, more details about

its operating principle are given in Section 14.2. Here, the MLP is constructed using the

TMVA-toolkit for multivariate data analysis [189].
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Table 9.13. Architecture of the Multilayer Perceptron (MLP) used for the cluster position

reconstruction.

Hyperparamter Value

Nodes 8 - 32 - 16 - 1

Batch size 30

Activation function Sigmoid

Loss function Mean squared error

Optimizer Adaptive Moment Estimation (Adam)

Initial learning rate 0.02

Training Method Broyden-Fletcher-Goldfarb-Shannon (BFGS)

The Input Vector Different combinations of input parameters and network architec-

tures were tested. The best results were achieved by considering the ToT values of the

four nearest neighbours to the cluster seed charge in row direction. Including pixels in

column direction has adverse effects for the regression, due to the channel design of the

sensor, where neighbouring sub-pixels in column direction are assigned the same ToT

value if they are in the same channel. Since this ambiguity is not easily resolved by a

simple MLP, only adjacent sub-pixels in row direction are considered 3. In addition to the

five ToT values, the total cluster size and the cluster size in column and row direction are

added to the input vector. All parameters are normalised to the interval [-1, 1] to avoid

dominance of a single variable. The reconstruction target is given by the track incident

position relative to the centre of the seed pixel.

The data is split into three different samples: 80 k vectors in the training set, 20 k

vectors in the testing set and 60 k clusters in the evaluation set. While the training and

testing set are used in the training phase, the evaluation set is used in the subsequent

evaluation phase to assess the performance of the network.

Network Architecture and Training A simple network architecture of four fully

connected layers was chosen, as listed in Table 9.13, where an overview of the hyper-

parameters for the network is given. The input vectors are presented to the network in

batches of 30 in order to speed up the training phase. The mean squared error was selected

as loss function, since it is commonly used in regression problems [190]. The Adaptive

Moment Estimation (Adam) optimizer is employed, which adapts the initial learning rate

3A more involved architecture of the MLP and possibly the introduction of additional techniques

might cope with the challenges in the column direction. However, these studies are beyond the scope of

this thesis.
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Figure 9.50. Spatial resolution as a function of the rotation angle for different cluster re-

construction techniques using a sensor in the standard configuration. A stand-alone Centre-of-

Gravity (CoG) reconstruction, a CoG with an η correction (Eta), the Head-Tail algorithm (HT)

and the Multilayer Perceptron (MLP) are considered.

automatically in each training step. The Broyden-Fletcher-Goldfarb-Shannon (BFGS) al-

gorithm [191–194] is chosen as training method. The algorithm is similar to the common

back propagation but uses second derivatives to adapt weights, which typically needs less

iterations but requires more computing time especially for large networks [189]. As the

considered network is comparably small, the longer computing time can be tolerated.

The testing set is fed into the network after every 5 training epochs. If 100 training

epochs are completed without a significant improvement in the test error (< 10−6), the

training is stopped and the evaluation phase is started. A separate network was trained

for each rotation angle.

Evaluation In the evaluation phase, the independent evaluation data set is presented

to the network. The vectors in the set were not seen before by the network to guarantee

an unbiased assessment. The reconstructed cluster position is extracted and the residuals

between the track incidence position and the cluster position are calculated. As before,

the RMS of the central 3σ of the distribution is extracted and the telescope resolution

is quadratically subtracted.

The resulting spatial resolution is plotted as a function of the rotation angle in

Fig. 9.50 for a sensor in the standard configuration tilted in row direction. For com-

parison, the spatial resolution using other reconstruction algorithms is shown as well.

The reconstruction using only a Centre-of-Gravity (CoG) algorithm and a CoG with an

η-correction (Eta) were already presented before. Additionally, the Head-Tail algorithm

(HT) is employed, which is particularly suited for long clusters. The MLP outperforms
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the other algorithms except for the highest rotation angle, where the Head-Tail algorithm

is superior. The η-correction has a similar performance as the MLP for perpendicular

incidence but deteriorates with higher rotation angles.

While the MLP allows for a better spatial resolution for nearly all inclination angles,

the improvement is limited by the CLICTD channel design that complicates the consid-

eration of information in column direction. In addition, uncalibrated ToT values had to

be used in the network. Using a calibration would remove pixel-by-pixel variations in the

ToT value and could potentially improve the results (cf. Section 6.6).

Nevertheless, it can be concluded that using neural networks for the cluster position

reconstruction can enhance the spatial resolution especially at intermediate rotation an-

gles. The results are especially relevant for applications where offline reconstructions are

performed and the larger implementation effort of an MLP can be tolerated. For ap-

plications, where only limited statistics are available, the training of an MLP becomes

challenging. In this case, robust algorithms such as the CoG or the HT are preferable

since they do not rely on the prior computation of a correction function/mechanism.

9.9 Conclusion

In conclusion, various design and operation parameters of the CLICTD technology demon-

strator were assessed using charged particle beams. An overview of the main performance

parameters in comparison to the requirements of the CLIC tracker is given in Table 9.14.

Although the values correspond to measurements with particle beams perpendicular to

the sensor surface, which is the worst-case scenario for most performance indicators, the

requirements are all met simultaneously.

Most notably, the pixel flavours optimised for fast charge collection exhibit an im-

proved time resolution as well as reduced charge sharing, which leads to a wider effi-

ciency plateau. Moreover, the samples with epitaxial layer can be thinned down to 50 µm

without a significant degradation in sensor performance.

The results for samples fabricated on high-resistivity Czochralski wafers are superior

to the ones with epitaxial layer due to the larger active sensor region, which gives rise

to a higher signal. The advanced wafer material is thus able to reconcile the small

collection electrode design with a large active sensor volume, which can inspire future

sensor prototypes aiming at high signal-to-noise ratios. For CLICTD, the improvement

is still limited by the front-end of the sensor that was not optimised for the high signal,

but could be adapted in future versions of the sensor. Likewise, the time resolution is

obscured by the front-end resolution and could be improved in the future.

Measurements with inclined particle beams demonstrated an improvement of the ef-
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Table 9.14. Principle performance parameters for the CLICTD sensor using particle beams

perpendicular to the sensor surface in comparison to the requirements of the CLIC tracker.

Parameter Required Epitaxial layer High-resistivity Czochralski

Spatial resolution < 7 µm 4.5± 0.2µm 3.9± 0.2µm

Time resolution ∼ 5 ns 5.3± 0.1µm 4.8± 0.1µm

Efficiency > 99.7 % > 99.7 % > 99.7 %

ficiency with increasing inclination angle. The spatial resolution has an optimum at an

inclination angle of 35 − 40◦. The inclined particle tracks were also used to estimate

the active depth of the different sensor types and operation characteristics. Whereas the

samples with epitaxial layer have an active depth of about 30 µm, a two-fold increase in

active depth is observed for the high-resistivity Czochralski samples using a substrate

bias voltage of -16 V.

Lastly, a novel method for the cluster hit reconstruction was presented and a notewor-

thy improvement in the spatial resolution was found for intermediate inclination angles.





Chapter 10

Simulation Approach

Sensor simulation studies are essential ingredients in the development of silicon detec-

tors. They are crucial in the design phase by guiding the optimisation of the sensor

layout. Simulations also help to comprehend measurement results by providing insight

into underlying mechanisms.

The complex non-uniform field configurations in small collection-electrode monolithic

silicon sensors require advanced simulation tools. To guarantee an accurate sensor mod-

elling of the underlying fields, finite-element simulations are used. While this simulation

approach offers a detailed insight into the electrical properties of the sensor, they require

a high computational effort and are therefore unsuited for studies where high-statistics

samples are needed. Instead, Monte Carlo simulations enable high simulation event

rates by implementing simplified signal formation algorithms. Combining electrostatic

finite-element simulations and Monte Carlo simulations leverages the advantages of both

approaches, i.e. a precise sensor modelling and high event rates are achieved simultane-

ously.

In the following, both simulation approaches are introduced and the simulation setup

is presented. While this chapter treats the methodical background and implementation,

the simulations are validated and applied to specific problems in Chapter 11.

10.1 Finite-Element Simulations

Three-dimensional Technology Computer Aided Design (TCAD) simulations with the

Synopsys Sentaurus framework [195] are used to model the electromagnetic properties of

the sensor as well as its response to charge injection. This approach relies on the finite-

element simulation method, whereby the underlying electromagnetic field and transport

equations are solved on a discrete simulation grid.

First, an introduction to the simulated geometry is given. Subsequently, the setups

157
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Figure 10.1. Simulated three-dimensional pixel cell of the CLICTD sensor in TCAD. The

colour scale denotes the electrostatic potential and the white lines mark the edge of the depleted

volume.

of the electrostatic and the transient simulations are presented. The relevant simulation

parameters are summarised in the Appendix C.

10.1.1 Geometry

The pixel geometry introduced in Chapter 4, is implemented in TCAD. A three-dimensional

model is built (3D TCAD), since a two-dimensional projection of the sensor is insufficient

to e.g. capture effects at the pixel corners correctly. The simulated structure is displayed

in Fig. 10.1 and a schematic of it is shown in Fig. 10.2. While the z-direction follows the

sensor depth, the x-direction is parallel to the column direction with the larger pixel pitch

(37.5 µm) and the y-direction follows the row direction with the shorter pitch (30 µm).

The top view in Fig. 10.2 allows for a visualisation of the simulated volume with respect

to the pixel grid. In the schematic, a cut of the xy-plane at the sensor surface is de-

picted. The simulated volume is centred around a pixel corner and comprises 1/4-th of

four neighbouring cells. This choice steers the focus onto the pixel corner that requires

particular attention in the sensor optimisation [132]. Only a single pixel structure is

simulated to reduce computation times. In a real device, neighbouring pixels modify the

field configurations of a given pixel cell. To account for this effect, periodic boundary
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Figure 10.2. Schematic representation of the simulated CLICTD pixel cell. The three-

dimensional model is presented in (b) and the top view of the structure in (a) with the shaded

square representing the simulation domain, which comprises 1/4-th of four neighbouring pixels.

A two-dimensional cross section of the simulated structure showing the doping implants is pre-

sented in (c). A Gaussian diffusion at the lateral implant edges and at the lower vertical edge

of the epitaxial layer (transition region) is included as well. Not to scale.
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conditions are applied to the simulation that mimic an infinitely expanding pixel grid.

A schematic of the doping profiles in a two-dimensional cross section is displayed

as well in the figure. The TCAD simulations comprise only the epitaxial layer and

the implants. The substrate is not included, since contributions from the substrate are

negligible for the studies performed with 3D TCAD (cf. Section 11.2.1). The substrate is

later included in the Monte Carlo simulations. The circuits in the p-well are also excluded

from the simulation, since they are shielded by the p-wells and are therefore not expected

to modify the field configurations or the charge collection behaviour. Doping profiles for

the p-well implants, the deep n-implants and the collection-electrode implant are obtained

from process simulations performed by the foundry [131]. Since the profiles only contain

the vertical extent of the implants, they are replicated in the lateral dimension. A diffusion

at the implant edges into the bulk is modelled by a Gaussian function. The extent of the

diffusion region is essential for the field configurations inside the sensor since it alters the

distance between the p-well and the n-implant. Consequently, a significant impact on the

charge-collection behaviour is expected, that is discussed in Section 11.1.3.

The doping profile of the epitaxial layer is obtained from measurements using the

Spreading Resistance Profiling (SRP) technique [123]. The doping profile of a 18 µm

thick epitaxial layer was measured, that is scaled to 30 µm to match the dimensions of

the CLICTD sensor. The profile is characterised by a transition region between the high-

resistivity epitaxial layer and the low-resistivity substrate, that arises from the diffusion

of dopants out of the substrate into the epitaxial layer.

Aluminium metal contacts are placed at the backside, on top of the p-well and on top

of the collection electrodes of the simulated structure. They allow for the application of

the reset voltage at the collection electrodes and the bias voltages at the backside and the

p-well. In the real device, the backside bias voltage is applied via undepleted regions at

edge of the pixel matrix (cf. Chapter 4). As the simulation only comprises a single pixel

cell and periodic boundary conditions are applied, the bias voltage is connected directly

to the backside.

In finite-element simulations, the simulated structure is embedded in a mesh and the

solution of the Poisson equation is computed at the mesh edges. The granularity of the

mesh is therefore essential for the precision of the simulation. If the mesh is too coarse,

no convergence is achievable or the solutions become inaccurate. A cross section of the

default mesh is displayed in Fig. 10.3. The mesh is composed of tetrahedrons covering

the entire structure. A finer mesh is applied to the regions with a high doping gradient

such as the p-wells or at the edges of the implants. A coarser mesh is used for the

epitaxial layer, where a low doping gradient is prevalent. The granularity of the mesh is

scrutinised by repeating the simulations multiple times with modified mesh granularities
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Figure 10.3. Two-dimensional cross section through the three-dimensional simulation model

of CLICTD. The mesh is depicted as black lines spanning the entire pixel cell. It is finer in

the upper part of the structure, where the collection electrode and the p-wells are located. The

white lines indicate the border of the depleted region and the colour denotes the electrostatic

potential.

and comparing the results (cf. Section 11.1.1).

10.1.2 Electrostatic Simulation

In the electrostatic simulation, the bias and reset voltages are applied to the metal con-

tacts and the Poisson equation is solved numerically at each mesh point. The solutions

give a full electrostatic description of the sensor, including properties such as the electric

field configuration, the potential, sensor capacitance or the electron/hole densities.

As an example, the two-dimensional cross section of the electrostatic potential is

depicted in Fig. 10.4 for the pixel flavour with continuous n-implant. The complexity

and non-uniformity of the potential are a direct consequence of the small collection-

electrode design and demands a precise modelling of the sensor for accurate performance

predictions. The black arrows denote the electric field streamlines and the star indicates

an electric field minimum below the p-wells in the pixel corners. Charge carriers close to

these corners first drift into the field minimum before they propagate to the collection

electrode, resulting in a slow charge collection and increased charge sharing, as detailed

in [132]. As a consequence, the impact of charge carrier diffusion and recombination are

crucial in this part of the pixel cell.

The white line at the bottom of the structure shows the border of the depleted volume

indicating that the sensor is only partially depleted in depth. Moreover, the depleted

volume does not reach into the substrate that is included in the Monte Carlo simulations.
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Figure 10.4. Two-dimensional cross section of a 3D TCAD simulation of the CLICTD pixel

cell showing the electrostatic potential and electric field streamlines for the pixel flavour with

continuous n-implant. The white lines indicate the edge of the depleted volume and the yellow

star marks the electric field minimum. The collection electrodes are located at the left and right

edge of the structure.

In these regions, the impact of diffusion is particularly high (cf. Section 2.4).

10.1.3 Transient Simulation

Transient simulations allow for an investigation of the sensor response to the injection of

charge carriers, which mimics the energy deposition of ionising radiation. In particular

the charge collection properties are studied using transient 3D TCAD simulations by

iteratively solving the underlying electrodynamic and transport equations in discrete

time steps.

In the simulation, charge carriers are injected uniformly along a straight line at the

pixel corners as visualised in Fig. 10.2. In total, 63 electron-hole pairs per microme-

ter [196] are injected and the injection line is smeared laterally by a Gaussian distribution

with a standard deviation of 50 nm. The meshing along the injection line is particularly

fine, even in the lower part of the epitaxial layer.

After the charge injection, the drift and diffusion equations are numerically solved for

each discretised timestep. The alteration of the local electric field by the injected charge

carriers is taken into account, which offers a fully self-consistent time-resolved description

of the sensor response.

The motion of charge carriers in the vicinity of the collection electrode induces a

current on the electrode, that is computed in each simulation step. In this way, the

current pulse is determined as a function of time as illustrated in Fig. 10.5. Two exemplary
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Figure 10.5. Current pulses extracted from transient 3D TCAD simulations after charge

injection in the pixel corner for the pixel flavour with continuous n-implant and segmented

n-implant . Both flavours are biased at -6 V/-6 V.

curves belonging to sensors with continuous and segmented n-implant are shown. The

faster charge collection for the optimised flavour with segmented n-implant is visible by

the prompt pulse that peaks at approximately 3 ns after the charge is injected. The

slower charge collection for the flavour with continuous n-implant leads to a large tail

that extends to tens of nanoseconds (cf. Chapter 4).

10.1.4 Limitations

While finite-element simulations provide a fully self-consistent solution to the field equa-

tions, their computing-intensive nature makes them unsuited for applications, where large

simulation samples are required. For instance, the charge injection at different points in

the pixel cell would require numerous transient simulations. If statistical fluctuations are

included as well, the number of simulated charge injection events must be increased even

more, which typically results in prohibitively long simulation times.

However, large simulations samples are required to assess certain performance param-

eters and to simulate a scenario that replicates the measurements with charged particles.

Therefore, a different simulation approach is needed that can provide high simulation

rates. The Monte Carlo (MC) method [197] offers a statistical approach, that delivers

solutions with less computational effort.
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10.2 Monte Carlo Simulations

MC simulations employ a probabilistic modelling of the underlying processes to create a

simplified representation of the simulated scenario. Since the simulations rely on empirical

models of the physical processes, they are not fully self-consistent and can only serve as

approximations. Compared to finite-element simulations, high precision is traded for

simulation speed.

The combination of both simulation approaches - the finite-element simulations and

the MC approach - leverages the advantages of both methods, while suppressing their

weak points. Electrostatic finite-element simulations are employed to obtain a precise

electromagnetic description of the sensor that is imported into the MC simulation. The

MC framework then handles the simulation of the particle-sensor interaction, the charge

carrier propagation and the digitization based on the static 3D TCAD maps. The mod-

ification of the electromagnetic field by the charge carriers is neglected, which is a good

approximation due to the low charge carrier density.

In the following, the combined simulation approach is described in more detail. For

this purpose, the MC framework Allpix2 is introduced and the full simulation chain is

discussed.

10.2.1 The Allpix Squared Simulation Framework

Allpix2 is a generic, open-source simulation framework for silicon detectors [198,199], that

enables an end-to-end simulation of the interaction of silicon sensor devices with particles.

While there are other MC frameworks with similar approaches such as Garfield++ [200],

KDetSim [201] or PixelAV [202], Allpix2 offers a modular structure that is based on a

configurable simulation chain. A schematic of the simulation chain that is used to repli-

cate the test-beam measurements is depicted in Fig. 10.6 and Fig. 10.7 and an example

configuration file is listed in the Appendix D. The following section gives an overview of

each step in the simulation chain.

Building the Geometry First, the GeometryBuilderGeant4 module is used, which

provides an interface to Geant4 [203–205] to create the geometry consisting of a sin-

gle CLICTD sensor. Instead of simulating an entire telescope setup, only the DUT is

simulated and the Monte Carlo information is used to obtain a reference track.

Energy Deposition Different energy deposition modules are used depending on the

particular study. For the comparison against 3D TCAD presented in Section 11.1.2, a

simplified energy deposition is used to replicate the transient 3D TCAD simulation. To
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Figure 10.7. Schematic of the digitization step in the simulation chain for replicating the

test-beam measurements. The DefaultDigitizer module is used multiple times with different

threshold (Thd) settings.
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Figure 10.8. Cross section of an exemplary weighting potential for the CLICTD sensor. The

collection electrode is located at the centre of the structure.

this end, the DepositionPointCharge module is employed to generate a fixed number of

electron-hole pairs along a line through the sensor. For all simulations seeking to replicate

the test-beam conditions, the DepositionGeant4 module is selected. The module uses

Geant4 to provide a realistic interaction between an incident particle with the silicon

sensor including stochastic fluctuations and the creation of secondary particles. A 5.4 GeV

electron beam is simulated to match the test-beam measurements and the beam cross-

section is chosen much smaller than the sensor surface in order to exclude effects stemming

from the matrix edge. The Photoabsorption Ionization (PAI) model is used to improve

the description of energy deposition in the sensor, which is essential for sensors with a

thin active volume [81]. The Monte Carlo information of the incident particles is stored

and is used as a reference in the subsequent analysis.

For the simulations reproducing X-ray measurements, a photon beam is simulated

with a fixed mean energy and a Gaussian energy spread around it. The mean energy

and the energy spread correspond to the Kα peaks of selected fluorescence spectra (cf.

Section 5.5.2).

Importing Field, Doping and Potential Maps To ensure a high accuracy of the

sensor simulation, the electric field, the weighting potential and the doping concentration

in the epitaxial layer are imported into Allpix2. The maps are obtained from 3D TCAD

and converted to a regularly spaced mesh using the Mesh Converter tool [206] in order

to speed up the look-up of field values. A mesh granularity of 0.2 µm is selected. It has

been verified that the granularity is sufficiently fine, as explained in Section 11.1.1.



10.2. Monte Carlo Simulations 167

Charge Carrier Transport The propagation of charge carriers is simulated using the

TransientPropagation module, which employs a fourth-order Runge-Kutta-Fehlberg

integration method [207].

The combined Masetti-Canali mobility model is used to calculate the charge carrier

mobility (cf. Section 2.4). The electric field strength and doping concentration necessary

for the calculation are obtained from the converted 3D TCAD maps at any given point

in the sensor. Likewise, the doping-dependent charge carrier lifetime is computed in each

simulation step using the combined Shockley-Read-Hall and Auger recombination model

(cf. Section 2.5).

The induced current on the electrodes is calculated according to the Shockley-Ramo

theorem (cf. Section 3.1). For the CLICTD sensor, it is sufficient to consider only

the pixel, below which the charge carrier is located and ignore the neighbouring pixels

since the weighting potential is concentrated around the collection electrode (small-pixel

effect) [99]. An exemplary weighting potential map showing the concentration around

the collection electrode is depicted in Fig. 10.8.

The charge carrier transport is halted after an integration time of 50 ns, which corre-

sponds to the estimated front-end integration time of CLICTD and is significantly larger

than the expected signal formation time for all CLICTD pixel flavours.

Current Pulses and Digitisation For each pixel, the final current pulses are com-

puted using the PulseTransfer module. These pulses are analysed in Section 11.1.2. For

the comparison against measurements, a simplified front-end simulation is performed with

the DefaultDigitizer module. The module sets a detection threshold that is adapted

to the threshold used in measurements. In addition, electronics noise contributions are

simulated by randomly drawing from a Gaussian distribution with configurable width

and adding it to the digitized signal. Likewise, the threshold dispersion is emulated by

drawing from a Gaussian as well and adding it to the threshold.

For the threshold scans, the primary events are reprocessed with different threshold

settings, as schematically depicted in Fig. 10.7.

Reconstruction and Analysis The MC information is used to construct a reference

track. First, the MC particles are filtered by selecting only primary particles. Secondary

particles pertaining to δ-electrons are not considered. The intercept position of the pri-

mary MC particles with the sensor is computed by linear interpolation between the entry

and exit points with the sensor surfaces. This position is smeared with a Gaussian dis-

tribution to account for the limited track resolution of an external reference system. The

width of this Gaussian is adapted to the telescope track resolution of the respective test-
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beam measurements (cf. Chapter 8). Subsequently, the same reconstruction and analysis

steps as for the test-beam data are applied (cf. Section 8.4).



Chapter 11

Validation and Application of

Simulation

The simulation of monolithic small collection-electrode sensors is essential for predict-

ing and comprehending their properties and performance. However, the complex field

configurations require sophisticated simulation tools that need to be validated in order

to avoid wrong predictions and interpretations. The first part of this chapter is there-

fore dedicated to the validation of the transient Monte Carlo simulations by comparing

them to established transient 3D TCAD simulations and test-beam data. In the second

part, selected application scenarios will exemplify the usefulness and versatility of the

simulations. The illustrative examples tie in with the measurements shown in the previ-

ous sections and enable an in-depth understanding of the experimental results. For all

studies, the simulation setup introduced in Chapter 10 is used.

11.1 Validation of the Simulation

While finite-element simulations can be considered a well-established technique to model

silicon devices [208], combining them with a MC framework is a comparatively novel

approach that necessitates validation for sensors with a complex sensor design such as

CLICTD. As the MC simulations rely on empirical models, that are typically valid for

a limited parameter space, it is especially important to select the appropriate models

and confirm their applicability for different sensor types. In the following section, the

combined TCAD and MC simulations are therefore scrutinized before they are applied

to predict and interpret measurements.

First, systematic uncertainties of the simulation approach are discussed. Next, the

transient MC simulations are validated against transient 3D TCAD simulations by com-

paring current pulses. Before the simulations are compared to data, the influence of

169
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doping diffusion at the implant edges is discussed, since they are the main source of

uncertainties in the comparison.

11.1.1 Systematic Uncertainties

The spatial and temporal granularity of both the 3D TCAD and the Monte Carlo sim-

ulation need to be fine enough to resolve the relevant physical features and processes.

The temporal granularity of the simulated charge carrier transport in Allpix2 is set to

7 ps. The value has been varied from 1 ps to 20 ps and the impact on the final observables

was found to be negligible. The 3D TCAD simulation applies an adaptive spatial and

temporal granularity, using a fine-grained mesh down to 10 nm for small feature sizes and

time steps down to 10 ps. It has been verified that a further decrease in mesh size and

temporal granularity does not alter the results. The spatial granularity of the 3D TCAD

maps imported in Allpix2 is fixed to 0.2 µm× 0.2 µm× 0.2 µm. A finer meshing has no

significant effect on the final observables.

The charge carrier transport in Allpix2 is sped up by transporting charge carriers in

groups. Here, the number of charge carriers per group is set to 10. The value was varied

between 1 and 15 and no significant impact was observed. The time interval in which the

charge carriers are transported is fixed to 50 ns. It has been verified that continuing the

simulation beyond the 50 ns does not significantly alter the results for the CLICTD pixel

flavours confirming that the majority of liberated charge carriers have either recombined

or reached the collection electrode within this time window. Smaller values lead to a

decrease in the integrated induced signal, as expected. It should be noted that this does

not apply to the pixel flavour without the n-implant, which was not used in CLICTD

and is therefore not relevant for this discussion.

The principle source of systematic uncertainties is related to the knowledge of the

doping profiles. Section 11.1.3 is dedicated to these uncertainties, since it only affects the

comparison to data and not the comparison against transient 3D TCAD, which relies on

the same doping profiles,

11.1.2 Comparison to Transient 3D TCAD

For the small collection-electrode design, the optimisation of the sensor properties is

especially relevant at the pixel corners, since the distance to the collection electrodes is

maximal and the charge collection therefore slower compared to the rest of the pixel cell.

It also represents a challenging simulation scenario, since charge carriers created at the

pixel corners traverse a large part of the active sensor volume, thereby probing the field

distribution inside the pixel cell.
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Figure 11.1. Transient current pulses for transient 3D TCAD and Allpix2 combined with

electrostatic 3D TCAD after charge injection at the pixel corner. Three different sensor designs

were tested: a design with (a) no n-implant, (b) continuous n-implant, (c) segmented n-implant

for the CLICTD geometry using a pixel pitch of 37.5 µm× 30 µm and an epitaxial layer thickness

of 30 µm.

In transient 3D TCAD, the pixel corner is investigated by injecting electron-hole

pairs along a straight line at the intersection of four neighbouring pixels, as explained

in Section 10.1.3. The same simulation conditions are replicated with Allpix2 using the

static field maps obtained from the electrostatic 3D TCAD simulation. The average pulse

of 50 Allpix2 simulation events is computed to smooth out statistical fluctuations, except

for the design without the deep n-implant, where 200 simulation events are averaged.

The simulation time per event is about 0.1 - 0.2 s compared to typically 8 h using 3D

TCAD on the same machine and the same number of CPUs.

The resulting current pulses induced on one pixel cell are shown in Fig. 11.1 for

transient 3D TCAD and Allpix2 combined with electrostatic 3D TCAD. The pulses for

all three sensor designs are displayed.

The different pixel flavours have significant differences in charge collection times and

field configurations, but it can be seen that the two different simulation approaches give

compatible results in all cases. The combination of Allpix2 and electrostatic 3D TCAD

is therefore suitable for a range of different devices without the need for prior adaptation

of the simulation setup to the sensor design.

11.1.3 Uncertainty on Doping Profiles

The sensor properties were found to be highly sensitive to the doping profiles used to

model the sensor. This section therefore seeks to quantify the uncertainties related to the



172 11.1. Validation of the Simulation

1 2 3 4 5
Cluster column size

0

0.2

0.4

0.6

0.8

E
nt

rie
s

Simulation - High smearing
Simulation - Low smearing
Simulation - Nominal
Data

(a) Varied diffusion at p-wells

1 2 3 4 5
Cluster column size

0

0.2

0.4

0.6

0.8

E
nt

rie
s

Simulation - High smearing
Simulation - Low smearing
Simulation - Nominal
Data

(b) Varied diffusion at collec-

tion electrode

1 2 3 4 5
Cluster column size

0.2

0.4

0.6

0.8

E
nt

rie
s Simulation - High smearing

Simulation - Low smearing
Simulation - Nominal
Data

(c) Varied diffusion of the

substrate dopants into the

epitaxial layer

Figure 11.2. Cluster size in column direction for different degrees of diffusion at the (a) p-well,

(b) collection electrode and (c) substrate into the epitaxial layer. The distributions are recorded

at the minimum threshold using a sample with epitaxial layer and continuous n-implant biased

at -6 V/-6 V.

Table 11.1. Simulation of cluster size for different diffusions of the collection electrode, p-well

implants and the substrate. The upper uncertainty represents the reduced and the lower value

the increased diffusion.

Parameter Nominal C-electrode P-well Substrate

Cluster size [pixels] 1.99 −0.04
+0.01

+0.05
−0.05

+0.02
−0.09

Cluster row size [pixels] 1.49 −0.07
+0.01

+0.01
−0.03

+0.02
−0.05

Cluster column size [pixels] 1.37 −0.03
+0.01

+0.02
−0.03

+0.01
−0.03

doping profiles in order to provide a proper treatment in the comparison against data.

The Spreading Resistance Profiling (SRP) technique [209] was used to measure the

resistivity of a 18 µm thick epitaxial layer, that was scaled to 30 µm to match the investi-

gated sensor design [123] (cf. Section 10.1.1). The profile is characterised by a transition

region between the high-resistivity epitaxial layer and the low-resistivity substrate, that

arises from the diffusion of dopants out of the substrate into the epitaxial layer. The

slope of the transition region was varied by a factor of three in both directions to account

for uncertainties in the SRP measurement and the scaling of the profile to 30 µm. For the

collection electrode and the p-well implant, the vertical extent of the doping profiles are

taken from process simulations performed by the foundry. The lateral diffusion of these

profiles is not known and is therefore accounted for by varying the nominal diffusion value

by a factor of three in both directions.
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The uncertainty is determined by varying the lateral diffusion at the p-well and at the

collection electrode as well as the vertical diffusion of the substrate individually and re-

peating the simulation. As an example, the cluster column size distributions for the

nominal diffusion and the varied values is depicted in Fig. 11.2. The diffusion of the

collection electrode implant in Fig 11.2a has an impact on the electric field configuration

and thus on the charge sharing. The effective size of the collection electrode is larger

for the higher diffusion, which gives rise to an increased electric field and consequently a

smaller cluster size. Similar effects can be observed for different diffusions of the p-well

implant, as displayed in the centre of the same figure. For higher diffusion values, the

effective distance between collection electrode and p-well implant is decreased leading to

a smaller lateral electric field, which promotes charge sharing and consequently a larger

cluster size. Lastly, a higher diffusion of the substrate doping reduces the sensitive vol-

ume of the sensor, resulting in a smaller signal and therefore a smaller cluster size, as

illustrated in Fig 11.2c.

The mean cluster size as well as the mean size in column and row direction are pre-

sented in Table 11.1 for the varied diffusion values. The different sources of uncertainty

are assumed to be uncorrelated and for each observable, the residuals between the simu-

lations with nominal values and the ones with varied doping profiles are determined and

then summed quadratically to determine the systematic uncertainty.

11.1.4 Comparison to Test-Beam Data

In the following, different observables from the test-beam measurements and the simula-

tion are compared for sensors in the standard configuration at the minimum operation

threshold of approximately 150 e, as well as in a threshold scan applying charge thresh-

olds between approximately 100 e and 2000 e. The comparison for other pixel flavours

is qualitatively the same and is therefore not shown in this thesis, but can be found

in other publications by the author [210, 211]. While the experimental results were al-

ready discussed in Chapter 9, this section focuses on the comparison between data and

simulation.

Charge Sharing

The cluster size is strongly influenced by charge sharing between neighbouring pixel cells.

It is therefore well-suited to study the electric field especially around the pixel edges and

in the corners.

Fig. 11.3 compares the total cluster size distribution observed in data and simula-
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Figure 11.4. Cluster size distributions of the size in (a) column and (b) row direction for data

and simulation in the standard configuration.
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Table 11.2. Mean cluster size and spatial resolution in row direction for data and simulation

for the standard configuration.

Parameter Data Simulation

Total cluster size 1.94± 0.01 2.00+0.05
−0.12

Cluster column size 1.36± 0.01 1.37+0.03
−0.04

Cluster row size 1.44± 0.01 1.49+0.06
−0.07

Spatial resolution (row) 4.4± 0.2 µm 4.3+0.43
−0.04 µm
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Figure 11.5. (a) Total cluster size and cluster size in (b) row direction as a function of the

detection threshold for data and simulation in the standard configuration.

tion operated at the minimum operation threshold in the standard configuration. The

projections on the column and row dimensions are shown in Fig. 11.4a and Fig. 11.4b, re-

spectively. The indicated uncertainties correspond to the contributions from the diffusion

of the doping profiles.

The overall shape of the size distribution is well captured both for the total cluster size

as well as the projections, and the differences between data and simulation are within the

systematic uncertainties that dominate over the statistical ones. It can be observed that

the uncertainties on cluster size in the row direction obtained from simulation are larger

than in the column direction. This is a direct effect of the shorter pixel pitch in that

direction and the resulting stronger effect of the lateral electric field components in the

edge region on the charge sharing behaviour. The results are summarised in Table 11.2.

The statistical uncertainty is of the order of 10−4 for both data and simulation.
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Figure 11.6. Mean cluster column size as a function of the rotation angle for data and

simulation in the standard configuration.

Threshold scan With increasing threshold the cluster size decreases, as more and

more pixels fall below the detection threshold. Fig. 11.5a demonstrates this effect both

for data and simulation, and it can be observed that the agreement between the two

curves is well within the uncertainty over the full threshold range. The same holds true

for the projected cluster sizes as a function of the detection threshold, shown e.g. for

the row direction in Fig. 11.5b. The maximum deviation is of the order of 5 % for very

low detection thresholds and is covered by the systematic uncertainties. This agreement

over a wide range indicates that both the electric field and the charge propagation model

replicate the physical situation in the sensor sufficiently well.

Rotation scan The agreement in charge sharing can be further probed by performing

incident angle studies, in which the sensor is rotated relative to the particle beam and

therefore the total path length traversed in silicon by a charged particle is changed. With

increasing rotation angles, the cluster size increases and charge carriers are created in

different depths of the sensor in the pixels along the cluster. Owing to the different

electric field strength in the sensor regions as well as the different dominant effects of

charge collection via diffusion or drift, the size of the resulting clusters is very sensitive

to a correct modelling of the signal formation.

For these measurements, the sensor was rotated around its vertical axis along a pixel

column, and correspondingly an increase of the cluster column size is expected. This is

demonstrated in Fig. 11.6, where the mean cluster column size is shown as a function of

rotation angle.

While the agreement is excellent for low rotation angles, a slightly higher deviation can
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Figure 11.7. Detection efficiency as a function of the applied threshold for data and simulation

in the standard configuration.

be observed towards larger rotation angles that is however still covered by the systematic

uncertainty. Here, additional signal contributions from the upper part of the substrate

and the transition region between substrate and epitaxial layer have a significant impact

on the cluster size, and the increasing difference can be attributed to the simplified

modelling of this transition region. The systematic deviation towards larger cluster sizes

in data indicates that a lower substrate diffusion in the simulation better describes the

sensor under these operating conditions.

Hit-Detection Efficiency

A comparison of the hit-detection efficiency as a function of the detection threshold in

data and simulation is shown in Fig. 11.7. While data indicates a larger detection effi-

ciency than predicted by simulation for very high thresholds, the efficiency is adequately

reproduced for low detection thresholds. The distribution of the efficiency throughout the

pixel cell at a threshold of approximately 1850 e is presented in Fig. 11.8a and Fig. 11.8b

for data and simulation, respectively. The simulated efficiency drops more rapidly from

the centre of the pixel cell towards the edges than observed in the data - an indication that

diffusion effects at the pixel implants are not modelled correctly. This is in agreement

with the findings from the previous section.

Spatial Resolution

The spatial resolution is calculated from the width of the residual distribution between

reconstructed cluster position and the track position or the Monte Carlo particle position,

for data and simulation, respectively. The width is defined as the reduced RMS of the
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Figure 11.8. In-pixel distribution of the detection efficiency as a function of the particle

incidence position for data (a) and simulation (b) at a detection threshold of approximately

1850 e for a sensor in the standard configuration.

central 3σ (99.7 %) of the distribution. The track resolution is subtracted quadratically

from the width, to obtain the intrinsic sensor resolution

The residuals between the reconstructed cluster position and the particle incident

position on the sensor are shown in Fig. 11.9 for the row direction. The width evaluates

to 5.3 µm for data and 5.2 µm for simulation. The telescope track resolution of 2.8±0.1 µm

is quadratically subtracted from the RMS, yielding a spatial resolution of 4.4 ± 0.2 µm

in data and 4.3+0.43
−0.04 µm in simulation, which is in excellent agreement.

Threshold scan The spatial resolution in the row direction is presented in Fig. 11.10

as a function of the detection threshold for data and simulation. The degradation of

the spatial resolution with increasing threshold as well as the artificial improvement at

very high thresholds (cf. Section 9.4) are faithfully reproduced in the simulation. The

maximum deviation is approximately 5 % and still within the uncertainty band.

Conclusion

The combined electrostatic finite-element and transient Monte Carlo simulations exhibit

excellent agreement with transient 3D TCAD as well as test-beam data over a wide

parameter range. The limiting factors in the simulation precision are found to pertain

to the available information on the doping profiles. The good agreement confirms that

the simulations can be applied to interpret and complement the experimental results, as

presented in the next section.
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and simulation in the standard configuration.
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Figure 11.10. Spatial resolution as a function

of the detection threshold for data and simu-

lation in the standard configuration. The tele-

scope resolution is subtracted

11.2 Application of the Simulation

With the simulations validated against data, they can be applied to optimise sensor de-

signs, interpret measurement results or enrich data by providing additional insight into

the sensor response. In this section, various applications of the simulations are presented

to showcase their predictive and explanatory power. First, stand-alone 3D TCAD sim-

ulations are used to investigate the sensor capacitance and the depletion depth in order

to gain a more profound understanding of the measurement results from Chapter 6 and

Chapter 9. Next, the advantages of the combined 3D TCAD and Monte Carlo sim-

ulations are presented by investigating transient pulses using high-statistics simulation

samples. These simulations are then employed to validate the geometrical model used to

extract the active depth in Section 9.7. In addition, systematic uncertainties in the X-ray

calibration measurement are studied and the sensor time resolution is investigated.

11.2.1 Sensor Capacitance

A low sensor capacitance is beneficial to obtain a high signal-to-noise ratio (cf. Sec-

tion 2.6.2). Sensor variants or operation characteristics that lead to an increased ca-

pacitance are penalised with a reduced signal gain and consequently a high minimum

operation threshold (cf. Section 6.2), which is detrimental for all figures of merit. The

minimisation of the sensor capacitance is therefore of utmost importance to maximise the

sensor performance. In the small collection-electrode design, the capacitance is closely
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Figure 11.11. Two-dimensional cross section of the electrostatic potential for three different

doping levels of the deep n-type implant. The edge of the depleted volume is shown as a white

line. The collection electrodes are at the edges of the structure and the p-wells are in the centre.

related to the size of the collection electrode. While the physical size of the electrode

is the same for all investigated CLICTD samples, the depletion region around it can be

different, which affects the effective size of the electrode and thus the sensor capacitance.

The phenomenon is visualised in the cross-sections of the simulated electrostatic field

map in Fig 11.11. Three different doping levels of the deep n-implant were used that cor-

respond to the three expected concentrations in the real devices. The white lines mark

the borders of the depleted volume.

Whereas the region around the collection electrode is fully depleted for the structure

with the low n-implant dose, the depleted volume for the high n-implant dose does not

evolve all the way to the collection electrode, leading to an increase in sensor capacitance.

In case of the intermediate dose, the undepleted area around the electrode is only slightly

enlarged. The different evolution of the depletion region is caused by the effective doping

levels in the n-implant, as predicted by Eq. 2.16 1.

A similar effect is visible for lower absolute p-well bias voltage, as illustrated in

Fig. 11.12. The area around the collection electrode is not fully depleted leading to

a higher sensor capacitance.

The increase in capacitance is quantified in Fig. 11.13, where the capacitance is de-

1The formula for the depleted volume was derived for a simple plate capacitor and is therefore not

able to capture the complex fields of the small collection-electrode design. However, it still gives an

qualitative description of the underlying processes.
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Figure 11.12. Two-dimensional cross section of the electrostatic potential for different bias

voltages at the p-wells/substrate for sensors with epitaxial layer. The white line marks the edge

of the depleted volume.

picted as a function of the p-well voltage for the three different doping concentrations.

At a bias voltage of -6 V, the capacitance is approximately 30 % higher for the inter-

mediate dose compared to the low dose and approximately twice as large for the high

dose. Similarly, the increase in capacitance at lower absolute bias voltages evaluates to

approximately 60 % between -6 V and -3 V for the low doping concentration of the n-type

implant, which agrees well with the change in signal gain presented in Section 6.2.1. This

result underlines the importance of a high absolute bias voltage at the p-well in this

sensor design.

11.2.2 Depletion Depth for Sensors with Epitaxial Layer

The depletion depth for sensors with epitaxial layer is estimated using the simulations

shown in Fig. 11.11. For the sensor in standard configuration, the depletion depth eval-

uates to 21 ± 1µm. The uncertainty accounts for different measurement lines, since the

depletion depth is slightly lower if the measurement is performed from the p-well to the

edge of the depleted volume instead of the sensor surface between p-well and collection

electrode. The depth is limited by the thickness of the epitaxial layer or more specifically

the extent of the transition region to the low-resistivity substrate. Therefore, the deple-

tion depth is independent of the different n-type implants and even the bias voltage at

the p-wells and substrate, as illustrated in Fig. 11.12. The depletion depth of the sensors
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Figure 11.13. Simulated sensor capacitance as a function of the p-well bias voltage for the

three different doping levels of the deep n-implant.

fabricated on high-resistivity Czochralski wafers, on the other hand, depends strongly on

the bias voltage, as presented in the next section.

11.2.3 Depletion Depth for Sensors on Czochralski Wafers

Estimation of Doping Levels No information about the substrate doping concen-

tration of the high-resistivity Czochralski wafers were available at the time they were

measured in the laboratory and test beam. This lack of knowledge poses a problem for

simulation studies since the outcome is highly sensitive to the doping levels in the sensor.

Since excellent agreement between data and simulation was already demonstrated when

a decent modelling of doping profiles is available, the simulation is used to extract the

unknown observable from data. Once a good agreement is established between data and

simulation for a specific doping concentration, it is assumed that the given concentration

is a good estimate for subsequent studies.

To this end, the cluster size in the simulated test-beam scenario is determined, as

presented in Fig. 11.14 for a sensor on a high-resistivity Czochralski wafer, segmented n-

implant and bias voltage of -6 V/-6 V. The measured curve is plotted as well to compare

it against three example simulations with different doping levels. With higher doping

levels, the depletion depth increases in accordance with Eq. 2.16. As a consequence,

more charge carriers contribute to the signal leading to a larger cluster size.

The simulation with a doping level of 4.4 kΩ cm exhibits the best agreement with data

and is thus used in the following to estimate the depletion depth for different substrate

bias voltages. It should be noted that this study aims to investigate the depletion depth

on a qualitative level. For a quantitative study, a more precise determination of the
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Figure 11.14. Cluster size as a function of detection threshold for data and simulations

assuming different doping levels of the Czochralski wafer material.

doping levels would be required.

Depletion Depth The high-resistivity Czochralski samples yield the best measurement

results for all performance parameters investigated in this thesis. The superiority of these

samples was attributed to the larger signal that results from an increased active depth

(cf. Section 9.7), resulting from a larger depletion region that extends deeper into the

sensor volume, compared to the sensors with epitaxial layer. To quantify the increase in

depleted volume, electrostatic 3D TCAD simulations showing the potential and depleted

volume for high-resistivity Czochralski samples are displayed in Fig. 11.15. A bias voltage

of -6 V is applied to the p-wells of both sensors. For the left sensor, the substrate bias

voltage is fixed at -6 V, resulting in a depletion depth of 34.5± 1µm, which is more than

10 µm larger compared to sensors with epitaxial layer and the same bias configuration. If

the substrate bias voltage is increased to -16 V, the depletion depth evolves further into

the silicon bulk and reaches 71.5± 1µm.

The depletion depth as a function of the substrate bias voltage is presented in Fig. 11.16.

The p-well voltage is fixed to -6 V and the band around the curve represents different

measurement lines. The depletion depth increases non-linearly with increasing substrate

voltage and resembles the trend observed for the active depth in Fig. 9.49. This trend

qualitatively agrees with Eq. 2.16, which predicts an increase in the depletion region with

the square root of the applied bias voltage.
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Figure 11.15. Electrostatic potential for high-resistivity Czochralski samples. The white line

marks the edge of the depleted volume. The substrate bias voltage is at (a) -6 V and (b) -16 V

and the p-well voltage is -6 V in both cases.
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Figure 11.16. Simulated depletion depth as a function of substrate voltage. The p-well bias

voltage is fixed to -6 V. The band represents different measurement lines.
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Figure 11.17. Transient current pulses for different charge injection positions for (a) the flavour

with continuous n-implant and (b) the flavour with segmented n-implant. In the CLICTD pixel

geometry, the segmentation is only applied at the long pixel edge.
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Figure 11.18. Integrated induced charge for different charge injection positions for (a) the

flavour with continuous n-implant and (b) the flavour with segmented n-implant. In the

CLICTD pixel geometry, the segmentation is only applied at the long pixel edge.
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(a) Transient sensor response
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Figure 11.19. (a) Transient pulse distribution and (b) integrated charge for the pixel design

with continuous n-implant, obtained from a full Monte Carlo simulation including secondary

particles and energy deposition fluctuations. The black stars represent the average pulse height

and integrated charge per bin, respectively.

11.2.4 Transient Current Pulses

In the previous sections, the capabilities of stand-alone 3D TCAD simulations were pre-

sented to study the electromagnetic properties of the sensors. Combining these simula-

tions with Allpix2 allows for the generation of high-statistics simulation samples, from

which the sensor response can be studied for different charge injections positions over

the pixel cell. In Fig. 11.17 the transient pulses for four different positions are depicted

using two different pixel flavours and the CLICTD pixel geometry. As expected, charge

injection in the pixel centre leads to the fastest response due to the close vicinity of

charge carriers to the collection electrode. The pulses for injection at the long pixel edge

are distinctly different for the two pixel flavours due to the altered field configuration.

The segmentation gives rise to a higher lateral electric field and consequently an accel-

erated charge collection leading to a current pulse that peaks around 2 ns, in contrast

to the flavour with continuous n-implant, that exhibits a heavy tail extending to tens

of nanoseconds. In addition, the transient pulse for injection in the pixel corner, which

represents the worst case scenario in terms of sensor time performance, is improved for

the flavour with segmented n-implant.

Similar effects are visible in the integrated induced charge for the different injection

positions in Fig. 11.18. While charge carriers injected in the pixel centre are collected

after about 1 ns, the charge collection at the pixel corner requires approximately 30 ns for

the flavour with continuous n-implant and 15 ns for the one with segmented n-implant.
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In addition, the time resolution is affected by variations of charge carrier collection times

and consequently by the spread between the curves in Fig. 11.18. The larger variation for

the flavour with continuous n-implant indicates a worse sensor time resolution compared

to the more homogenous response of the flavour with segmented n-implant.

Statistical fluctuations of the charge deposition as well as the generation of secondary

particles such as δ-rays can also be taken into account with reasonable statistics in the

MC simulation. In Allpix2 this can be achieved by switching the charge deposition stage

of the simulation to the DepositionGeant4 module (cf. Section 10.2.1)

The transient pulse distribution for particles incident on the pixel corners is displayed

in Fig. 11.19a and their integrated induced current in Fig. 11.19b. Here, the black stars

indicate the average pulse height value and integrated charge in the respective time bin.

The pulse-by-pulse variations underline the importance of including statistical effects in

the simulation setup.

11.2.5 Charge Carrier Recombination

For sensors with epitaxial layer, the active depth measurements in Section 9.7 yielded a

value of approximately 30 µm, which corresponds to the nominal thickness of the epitaxial

layer. Consequently, charge carriers created below the depleted volume still contribute to

the measured signal, since the the depletion depth evaluates to only 21± 1µm. However,

these results also imply that charge carriers created in the low-resistivity bulk have no

sizeable contribution to the signal, which is expected to result from the high charge carrier

recombination rate in the substrate. Simulation studies using the recombination models

from Section 2.5 are used to investigate this assumption in more detail.

A two-dimensional map of the recombination rate for a sensor in the standard configu-

ration is depicted in Fig. 11.20. The figure shows a cross-section in the yz-plane, where z

goes along the sensor depth. The collection electrode is located at the central position in

the y-direction and the p-wells are at the edges. No recombinations are registered inside

the p-wells, since electrons in the upper part of the structure drift towards the collection

electrode, making propagation into the p-wells unlikely. The high recombination rate at

the collection electrode has no physical significance, since charge carriers are considered

to be collected when they arrive at the electrode.

As expected, the recombination rate in the epitaxial layer is very low, since the lifetime

of charge carriers is of the order of milliseconds [212]. In the transition region between

epitaxial layer and low-resistivity substrate (approx. 20 - 25 µm on the z-axis), the

recombination rate increases drastically. In this region, Auger recombination starts to

dominate over SRH recombination due to the high doping concentration (cf. Section 2.5)



188 11.2. Application of the Simulation

0 5 10 15 20 25 30
m]µIn-pixel y [

0

10

20

30

40

50

m
]

µ
In

-p
ix

el
 z

 [

1

10

210

310

410

510

 #
 R

ec
om

bi
na

tio
ns

Figure 11.20. Two-dimensional map of the recombination rate for a cross section of the yz

plane through the sensor volume. The nominal thickness of the epitaxial layer is 30 µm and

thus extends from z = 50 µm to z = 20 µm.

Table 11.3. Estimation of active depth for different detection thresholds. The results are

obtained for simulations using a sensor in the standard configuration and the nominal diffusion

values.

Threshold [e] Active depth [µm]

140 26.7± 0.1 (stat.)+0.4
−0.2 (syst.)

180 26.7± 0.1 (stat.)+0.2
−0.2 (syst.)

300 26.5± 0.1 (stat.)+0.2
−0.1 (syst.)

and the lifetime of charge carriers is of the order of tens of nanoseconds. The high

recombination rate prevents them from contributing to the signal, which renders the

low-resistivity substrate inactive.

11.2.6 Active Depth Model

In Section 9.7, the active depth was estimated using a simple geometrical model based

on the incident particle angle and the cluster size. Two fundamental effects are not

considered in the model: First, the detection threshold is not accounted for, which could

give rise to potential sub-threshold effects in the cluster size. Second, charge sharing

by diffusion is not inherent in the model, which could bias the results. To exclude the

introduction of systematic effects, it is imperative to study the impact of both effects on

the estimated active depth using simulations.
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Figure 11.21. Mean cluster column size as a function of the tangent of the rotation angle for

(a) different thresholds and (b) different lateral diffusions at the p-well implant. The solid lines

are linear fits to the simulated points.

Detection Threshold The active depth studies are replicated in simulation and the

impact of the detection threshold on the active depth estimation is investigated by ap-

plying different thresholds to the simulation and repeating the analysis. The mean clus-

ter size as a function of the rotation angle for three different thresholds is displayed in

Fig. 11.21a. While lower thresholds lead to an offset of the curve owing to an overall

larger cluster size, the slope of the curve remains unaltered. The fit results in Table 11.3

confirm the invariance of the slope within the uncertainties. The influence of the detec-

tion threshold on the estimated active depth is therefore considered to be negligible. It

should be noted that the systematic uncertainties only cover the ones related to the active

depth model and not the doping-dependent uncertainties, since no direct comparison to

data is needed.

Charge Sharing by Diffusion of Charge Carriers To investigate the sensitivity of

the active depth model to charge sharing by diffusion of charge carriers, the simulations

are repeated for different lateral diffusions at the p-well implants. Differences in the

doping diffusion lead to alterations in the charge sharing behaviour and are therefore

an appropriate check for the robustness of the model. The corresponding distributions

with linear fits are displayed in Fig. 11.21b and the fit results are listed in Table 11.4.

The active depth values are compatible within their uncertainties, which implies that

moderate differences in the charge sharing leave the results unchanged.
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Table 11.4. Estimation of active depth for different lateral diffusions at the p-well implants.

The results are obtained for simulations using a sensor in the standard configuration and the

nominal diffusion values for the other implants. The threshold is fixed to 140 e.

Diffusion at p-well implants Active depth [µm]

Low 26.7± 0.1 (stat.)+0.4
−0.2 (syst.)

High 27.1± 0.1 (stat.)+0.3
−0.3 (syst.)
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Figure 11.22. Simulation of the threshold-calibration procedure.

11.2.7 Systematic Uncertainties in X-ray Measurement

The X-ray calibration measurements presented in Section 6.2 are replicated in sim-

ulation to investigate systematic uncertainties in the analysis. The Allpix2 module

DepositionGeant4 is used to simulate a monochromatic X-ray beam with a mean energy

of 6.4 keV in accordance with the values for iron fluorescence in Table 5.2.

The threshold is varied in the simulation and the number of pixel hits recorded, as

illustrated in Fig. 11.22a for the standard configuration. The red line marks the S-curve

fit with Eq. 5.1 and the fit result are listed in Table 11.5. The derivative of the distribution

Table 11.5. X-ray energies using an S-curve and a Gaussian fit. The theoretical value was

calculated in Section 5.5.2.

Theoretical value [e] S-curve fit [e] Gaussian fit [e]

1749 1731± 3 1732± 2
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(b) Time residuals after correction

Figure 11.23. Time residuals as a function of the highest single pixel charge in a cluster

before (a) and after (b) correction of the charge-dependent threshold crossing time. The black

stars denote the mean of each charge bin.

in Fig. 11.22b exhibits the characteristic Kα peak, that is fitted with a Gaussian to cross

check the results. While the estimated mean from the Gaussian and the S-curve fit agree

within their respective uncertainties, a deviation of approximately 20 e to the theoretical

value is observable that is related to charge loss owing to charge carrier recombination.

To account for this difference in the energy calibration, the deviation is propagated

to the measured calibration parameters and the detection threshold in electrons (cf.

Section 5.5.2). At the minimum threshold, the difference amounts to 1 − 2 e and is

therefore much smaller than the threshold DAC step, which is of the order of 10 e. The

deviation is used as systematic uncertainty instead of modifying the nominal value in

order to comply with the threshold calibration procedure used in other sensors (e.g.

[122,133,213]) and to maintain comparability.

11.2.8 Sensor Time-Resolution Studies

Laboratory and test-beam measurements indicate that the time resolution of CLICTD is

dominated by front-end effects instead of the sensor time performance. This assumption is

put to the test by using simulations to investigate the sensor time resolution independent

from direct contributions of the readout electronics. In this study, the inclusion of all

relevant statistical elements of the signal formation is particularly important to provide a

realistic prediction about the sensor time resolution. Here, the approach is exemplified by

evaluating the time resolution for different pixel pitches and the sensor with continuous

n-implant, i.e. the CLICTD pixel geometry is slightly modified to investigate the impact
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Figure 11.24. Width of the threshold-

crossing time as a function of the detection

threshold for different pixel pitches.
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Figure 11.25. Width of the threshold-

crossing time as a function of the pixel pitch

at a detection threshold of 150 e.

of the pixel pitch. Similar to the functioning of many detector front-ends, the time at

which the current pulse crosses the chosen detection threshold (threshold-crossing time)

is used to compute the time residuals of the sensor.

Fig. 11.23a shows the time residual distribution as a function of the signal charge for

a sensor with a pixel pitch of 30 µm× 30 µm. Small transient pulses cross the threshold

later, which leads to a tail observable for low signal values. This charge-dependence

in threshold crossing time is corrected by subtracting the mean time offset for each

charge bin separately, yielding the corrected distribution displayed in Fig. 11.23b. The

observed behaviour matches very well the time-walk effect known from measurements (cf.

Section 9.5). The simulated time however only comprises the effects related to the signal

formation in the sensor such as longer charge collection times in the pixel corners but not

the additional contributions from the front-end electronics.

Using this corrected time residual distribution, the time resolution of the sensor can be

extracted and the width of the distribution can be compared between different prototype

designs. Here, the width of the time residual distribution is quoted as the RMS of the

central 3σ. Fig. 11.24 shows the width of the distribution as a function of the applied

detection threshold for different pixel pitches. As expected, the time resolution improves

for smaller pixel pitches due to a more homogeneous time response across the pixel

cell. The improvement starts to converge to about 100 ps, as visualised in Fig. 11.25 for

the threshold-crossing time at a detection threshold of 150 e. With increasing detection

threshold, a deterioration of the time resolution can be observed, owing to the flattening

shape of the signal resulting in a stronger contribution of time jitter.
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11.3 Conclusion

The combination of electrostatic finite-element and Monte Carlo simulations profits from

a detailed sensor modelling and the simultaneous access to high-statistics simulation

samples. Simulations for the small collection-electrode monolithic sensor design were

compared to transient finite-element simulations as well as test-beam data and excellent

agreement over a wide parameter range was found with deviations mostly below 5 % and

still covered by the systematic uncertainties.

Several example applications of the simulations were shown that complement the lab-

oratory and test-beam mismeasurements. For instance, the capacitance was shown to

depend critically on the depletion region around the collection electrode and the deple-

tion depth was found to be limited to approximately 20 µm. Moreover, the sensor time

resolution was investigated and determined to be a few nanoseconds, which confirms that

the time resolution of the CLICTD sensor is limited by the front-end resolution.

The simulations will be used for further development of monolithic CMOS silicon

sensor with similar sensor designs, in particular in the stages of sensor optimisation and

experimental assessment.
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Chapter 12

The Belle II Experiment

The Belle II experiment is a next-generation flavour factory operating at the intensity

frontier of particle physics. The experiment is located at the high-luminosity electron-

positron collider SuperKEKB, that is designed for collision energies in the energy region

of the Υ resonances.

Belle II is the successor of the Belle experiment [214] that was operational from 1999

to 2010. Results from the Belle experiment such as measurements of CP asymmetries

in B decays, discoveries in charm and tau lepton physics or hadron spectroscopy had a

crucial impact on our understanding of hadron and particle physics. The success of the

Belle experiment motivated the upgrade to Belle II, which also involved an update of the

accelerator KEKB to SuperKEKB to further increase luminosity.

The following chapter introduces the Belle II experiment by starting with a brief

overview of its physics motivation. Next, the SuperKEKB accelerator is described and

lastly the detectors, trigger and data acquisition system of Belle II are outlined.

12.1 Physics Motivation

Belle II has a rich and diverse physics programme, that optimally complements analyses

at the LHC, BES III and other collider and non-collider experiments. The general exper-

imental orientation of the Belle II physics programme builds upon the findings from its

predecessor Belle.

The well-defined initial state and the clean collision environment allow for measure-

ments with unprecedented precision. Through indirect observations, the mass reach for

searches beyond the Standard Model can be as high as O(100 TeV) [26].

A few selected highlights of the physics programme are given in the following:

• The measurement of charge-parity (CP) violations are a principal objective at
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Figure 12.1. Schematic of the SuperKEKB collider. The accelerator complex consists of

the linear electron-positron acceleration units, a positron damping ring and the main electron-

positron storage rings. The Belle II detector is located the interaction point. From [221]

Belle II. Studies for both direct and indirect CP-violation are targeted, with a par-

ticular focus on potential new CP-violating phases in the quark sector [215].

• Lepton Flavour Violation beyond the SM is investigated by analysing decays of τ

leptons [216].

• Charmonium spectroscopy in B-decays enables access to a large set of different

quantum numbers, complementary to dedicated charm factories such as BES III or

BaBar. Most notably, the discovery and investigation of exotic states are a major

goal in order to refine our understanding of their nature [217].

• Various direct and indirect searches for dark-matter candidates are performed, in-

volving for instance Axion-like particles (ALPs) [218, 219] or a new massive vector

boson Z’ [220].

Details about on-going and planned analyses at Belle II are summarised in [26].

12.2 The SuperKEKB Collider

The SuperKEKB is an asymmetric electron-positron collider at the High Energy Accel-

erator Research Organisation (KEK) [222,223].
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A schematic of the SuperKEKB accelerator complex is displayed in Fig. 12.1. The

main storage units are arranged in a double-ring structure, with the High Energy Ring

(HER) for electron storage and the Low Energy Ring (LER) for the storage of positrons.

Before injection into the main rings, the electrons are accelerated to 7 GeV and the

positrons to 4 GeV using linear electron-positron acceleration units. To guarantee a low

emittance of the positron beam, the particles are guided through a Positron Damping

Ring, where radiation damping is employed to reduce emittance.

The particles are brought to collision at the interaction point, where the Belle II

detector is positioned. The default centre-of-mass energy is 10.58 GeV, which corresponds

to the rest mass of the Υ(4S) resonance. The asymmetric collision energies are responsible

for a boost (βγ = 0.28) in the direction of the electron beam, allowing for an improved

identification of displaced vertices of B-mesons.

The commissioning of the accelerator and therefore also of Belle II is divided into

three phases. Phase 1 in early 2016 was dedicated to accelerator operations without

any particle collisions. Phase 2 in 2018 saw first collisions and even enabled the Belle II

detector to take relevant data and Phase 3 is on-going since March 2019.

12.2.1 Luminosity

The ambitious design luminosity of 8× 1035 cm−2 s−1 foreseen for the SuperKEKB accel-

erator requires advanced acceleration and collision schemes 1. The luminosity L can be

expressed as [222]

L =
γ±

2ere

(
1 +

σ∗y
σ∗x

)
I±ζy,±
β∗y,±

RL

Rζy

. (12.1)

The subscripts +/− stand for the electron/positron beam. γ denotes the Lorentz factor,

σ∗y/σ
∗
x the beam size aspect ratio, re and e the classical electron radius and charge,

respectively, I the beam current, ζy the beam-beam parameter and β∗y the vertical β-

function. RL and Rζ,y are the luminosity and vertical beam-beam reduction factors with

a ratio close to one.

Besides an increase in beam currents, the generation of nano-beams is the main in-

gredient to achieve the luminosity objective, whereby the vertical beam size is strongly

reduced close to the interaction point, which minimises the β-function.

12.3 The Belle II Detector

The Belle II detector is positioned at the interaction point (IP) of the SuperKEKB col-

lider. Its design is optimised for the physics objectives, experimental conditions and in

1The instantaneous luminosity is about 30 times larger compared to the predecessor KEKB.
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Figure 12.2. Schematic of the Belle II detector. The Pixel Detector (PXD) and the Silicon

Vertex Detector (SVD) are the innermost sub-detectors, followed by the Central Drift Chamber

(CDC), the Time of Propagation (TOP) detector, the Electromagnetic Calorimeter (ECL) and

the KL-muon (KLM) detector. An Aerogel Ring Imaging Cherenkov (ARICH) detector is

positioned in the forward direction. Modified from [224,225]

particular the high luminosity provided by the SuperKEKB collider.

A schematic of the detector is displayed in Fig. 12.2. The z-axis of the right-handed

coordinate system is aligned with the direction of the electron beam. The y-axis is

oriented vertically upwards and the x-axis points outside of the ring. Accordingly, φ is

the azimuthal angle and θ the zenith angle [226]. The acceptance region of the detector

covers the full azimuthal angle and a zenith angle of 17◦ < θ < 150◦.

Belle II consists of various sub-detectors that are briefly introduced in the following

section.

12.3.1 The Vertex Detector (VXD)

The Vertex Detector (VXD) is responsible for precise measurements of decay vertices. It

consists of two components: the inner Pixel Detector (PXD) and the outer Silicon Vertex

Detector (SVD). The PXD constitutes the main focus of this study and is therefore

described in detail in Section 12.4.

The SVD is composed of four layers of Double-sided Silicon Strip Detectors (DSSDs) [227].

The DSSDs consist of an n-doped silicon bulk positioned between p- and n-doped strip

implants. The passage of ionising radiation through the silicon bulk creates electron-hole

pairs that induce a signal on the strips. Different sensor shapes are employed in the
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forward region (trapezoidal shape) and in the barrel (rectangular shape).

12.3.2 The Central Drift Chamber (CDC)

The Central Drift Chamber (CDC) is the principle tracking detector of Belle II [228]. By

measuring the trajectories of charged particles in the magnetic solenoid field, their mo-

mentum is reconstructed. Additionally, the energy loss of charged particles is determined,

which delivers essential information for particle identification. The CDC also contributes

trigger information, as explained in 12.5.

The CDC surrounds the VXD in the barrel region of the detector. It consists of 14366

sense wires and 42240 field wires to generate an electric field. The sense wires are arranged

in 9 super-layers, each of which are divided into 6 layers, except for the innermost super-

layer, which has two more layers to deal with the increased occupancy. The sense wires

are either oriented parallel to the beam (axial layers) or tilted by -74 mrad to 70 mrad

(stereo layers).

The CDC volume is filled with a gas mixture of 50 % helium and 50 % ethane, which

is ionised by the passage of a charged particle. The drift of the liberated electrons induces

a signal on the sense wires. The position of the wire and the signal time allow for the

reconstruction of the particle trajectory.

12.3.3 Particle Identification

The particle identification system of Belle II is based on the detection of Cherenkov pho-

tons [229]. It consists of the Time of Propagation Counter (TOP) in the barrel region

and the Aerogel Ring-Imaging Cherenkov Detector (ARICH) in the forward endcap [230].

Charged particles faster than the speed of light in a given medium emit Cherenkov radi-

ation, that follows a distinct angular distribution determined by:

cos Θ =
1

βn(λ)
, (12.2)

where Θ is the opening of the Cherenkov cone, n(λ) the refractive index of the radiator

material for a given wavelength λ and β the particle velocity over the speed of light.

The TOP is composed of 16 modules hosting rectangular quartz radiators. The pas-

sage of charged particles exceeding the speed of light in quartz generates Cherenkov pho-

tons that are internally reflected at the radiator walls until they impinge on photoelectric

sensors at the end of the quartz block. The sensors are arranged as 32 micro-channel

plate photomultiplier tubes (MCP-PMTs) and a prism is positioned before the sensors

to expand the detectable area.
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The MCP-PMTs have a time resolution of approximately 50 ps [231], which allows

for a time-tagged measurement of the Cherenkov light between the bunch crossings. The

propagation time of the Cherenkov photons depends on the angle Θ that is different for

the particle species at a given momentum. Using the tracking information of the CDC,

a likelihood estimation is calculated in order to obtain probabilities for different particle

hypothesis.

The ARICH operates in a similar manner. It consists of an Aerogel radiator, where

Cherenkov photons are produced when a charged particle with a sufficiently high velocity

passes through the volume. The Cherenkov cone is directed towards a photon-detector

plane composed of Hybrid Avalanche Photodetectors (HAPDs). Particle identification is

then based on the measured Cherenkov angle Θ.

12.3.4 Electromagnetic Calorimeter (ECL)

The Electromagnetic Calorimeter (ECL) has a high energy resolution and efficiency and

is thus able to differentiate between photons in an energy range from tens of MeV to

several GeV [232]. In addition, the ECL provides an identification criterium for electrons

and photons and contributes crucial information for the trigger system.

The ECL consists of 8736 thallium-doped caesium iodine CSI(TI) crystals equipped

with a pair of Hamamatsu S2744-08 photodiodes. Particles traversing the crystals deposit

energy by ionisation or generation of particle showers. The scintillating crystals generate

photons that are detected by photodiodes and digitised by Flash ADCs.

12.3.5 Superconducting Solenoid

A superconducting solenoid magnet envelops the inner sub-detectors and immerses them

in a magnetic field of 1.5 T. The field lines are aligned with the main detector axis in

z-direction. Charged particles are subjected to the Lorentz force when they traverse the

magnetic field. The curvature of the particle trajectories allows for a reconstruction of

their momenta using the tracking detectors.

12.3.6 KL and Muon Detector (KLM)

The KL and Muon Detector (KLM) is designed for the detection of long-lived KL mesons

and muons. It exploits the magnet return yoke for particle detection by interleaving it

with detection layers. In the outer layers, Resistive Plate Chambers (RPCs) are used

and in the inner layers and endcaps Silicon Photo Multipliers (SiPMs) are employed to

handle high particle rates.
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Fig. 1. Cross-section of a DEPFET pixel cell (u–v plane is vertical to the depth of bulk) [6].

Fig. 2. View of a PXD module. The module size is 15 mm by 67.975 (84.975) mm, witha matrix of 12.5 mm by 44.80 (61.44) mm for the inner (outer) layer modules. Onethird of the matrix (dark gray) closest to the interaction point adopts a finer granularityto improve resolution. Chips of Switchers, DCDs and DHPs are bump bonded aroundthe matrix.

3.2. Readout and services

The readout scheme for PXD (Fig. 4) can operate up to an averageoccupancy of 3%, which corresponds to a data rate up to 10 GB/sfrom PXD alone, without data loss. Upon receiving a trigger, data ofone frame is transmitted via a 1.6Gb/s LVDS link per DHP to the DataHandling Hybrid (DHH) system over a 15m long fiber optics link. TheFPGA-based DHH is responsible for assigning the event number anddoing sub-event building for data acquisition, as well as synchronizingand configuring the system for operation [12]. Data is then distributedby an event-based round-robin scheme to the ONline SElection Nodes(ONSEN) [13], which are located in the Electronics-hut next to the BelleII detector. The ONSEN system buffers PXD data until the High LevelTrigger (HLT) has made physics-level event selections and calculatedthe Regions of Interest (ROI) by extrapolating reconstructed tracks fromouter trackers back to the PXD planes. Only the matched data withinthe ROIs is sent out from ONSEN to the full event building and thenstored. The data rate is reduced first at the stage of HLT event filterto one third and then at ROI selections by a factor of 10. In total, the

readout scheme provides the mandatory data reduction by a factor of30 to compensate the high occupancy in the normal operation withmuch increased luminosity.
The power supply system provides a set of precisely controlledsupply voltages to operate the DEPFET matrix and ASICs. Specificsequences of power supply activation and PXD configuration are imple-mented. The voltages are distributed over 15 m long cables while assur-ing stability, good transient response and low output impedance [14].A hardwired over-voltage protection mechanism is enforced for safetyconcerns. The slow control system is implemented utilizing the EPICSframework [15].
PXD and SVD share the common two-phase CO2 cooling plant aswell as environmental monitoring and alarm system. Diamond sensorsaround the interaction region provide both continuous monitoring ofradiation doses and beam abort signals.

4. PXD commissioning and operation
The PXD participated in the periods of data taking in 2019 withoutmajor problems. During operation, calibration of pedestals are regularlyupdated to correct for small variations of the PXD working point frompossible environmental changes. Noise distribution, cluster sizes andcharge are calculated as well. Typical cluster signal-to-noise ratio (SNR)distributions for inner and outer layer PXD modules are shown inFig. 5. The cluster signal is defined by the total charge of all pixelsin a cluster, while the noise of each cluster is calculated from thesum in quadrature of the noise of single pixel. In the distribution, aLandau-shaped peak with the SNR in a range of 40 to 50 is shownfrom the contribution of charged particles, the peak is mainly composedof multi-pixel clusters as most particles traverse the PXD at someincident angles. A prominent structure in the lower region is originatedfrom low energy photons (<10 keV), which originate from synchrotronradiation backgrounds [16,17]. The photon contribution is dominatedby single pixel clusters and featured more significantly in the innerlayer modules.

Fig. 3. Layout of DEPFET based pixel detector for Belle II experiment. A de-scoped detector system, as illustrated, had been installed closest to the central beam pipe in 2018

summer.
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the charge would interfere with the next measurement. This is done via a clear contact (n+ type im-
plant) that is placed on the periphery of each pixel. The potential barrier between the clear contact
and the internal gate is modulated with an additional implant called cleargate.

amplifierFET gate

p+source n+clear p+drain

clear gate

depleted
n-Si bulk
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deep n-doping
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Figure 1: Sketch of a DEPFET pixel
where one can appreciate the internal
gate where electrons produced by parti-
cles are accumulated.

Thanks to its specific architecture, the DEPFET sen-
sors provide detection with fast charge collection and in-
ternal amplification at the same time. The low capaci-
tance of the internal gate and the small intrinsic noise, in
the order of ⇠50nA, allow to build thin detectors with an
excellent signal over noise ratio [5].

2.1.1 Radiation tolerance

Two main radiation damage mechanisms will af-
fect the performance of the DEPFET sensors. The first
one, due to surface damage as a result of the expected
⇠2Mrad/year, will affect the threshold voltage of the
pMOS and clear gates and, also, in the case of the pMOS
gate, reduce the internal amplification of the device due to
the reduced mobility of the charge carriers in the pMOS
conducting channel. The second has to do with, mainly,
the increase of leakage current and noise produced by the expected 1.2⇥1013 cm�2 1MeV neutron
equivalent fluence per year. The former problem is solved by a combination of oxide thinning in
the pMOS gate and the addition of a very thin layer of Si3N4 on top of the usual SiO2, which has
some nice features like the fact that it can also trap electrons leading to a compensation of radiation
effects. The loss of internal gain due to oxide thinning can be compensated by reducing the gate
length. The latter problem is solved by reducing the operating temperature of the sensors.

2.2 The DEPFET pixel matrix

A DEPFET pixel detector is made of an array of small DEPFET pixels arranged in a rect-
angular matrix. In order to operate the matrix a steering chip, SwitcherB [6], is needed to drive
the pMOS gate and clear voltages and a second chip, the DCDB [7], to digitise the pMOS drain
current. A third chip, the DHP [8], is also used in the Belle II PXD for data reduction (pedestal,
common mode and zero suppression) as well as for handling of timing and control signals. Details
of the ASICs can be found in the references given above.

The matrix is operated in rolling shutter mode, i.e. one row is activated and read at a time
and then cleared. In the case of the PXD DEPFET module 4 rows are read at a time to reduce the
time required to read a full frame. All the pixels in a stripe of 4 rows are connected to the same
SwitcherB clear and gate channels. Only the activated rows consume power, while the others, even
if not active, are still sensitive to charge. This is key to keep the power consumption very low in
the sensitive region of the module. All the channels in the same column share the same DCDB
channel. Long drain readout lines are used to keep most of the material (DCD and DHP chips) and
generated heat out of the acceptance region. Fig. 2 shows a 3D model of a PXD module with the
steering chips along the side and the digitiser and data handling chips at the end of the module.

3

vu

Figure 12.3. PXD module consisting of the active pixel matrix and the readout ASICs

(Switcher, Drain Current Digitizer (DCD) and Digital Handling Processor (DHP)). A schematic

of the DEPFET pixel design is depicted at the top. Modifed from [233,234]

While KL mesons are recognized by particle showers that they generate during their

passage through the KLM, muons traversing the detector are identified using a likelihood

fit involving CDC track information.

12.4 The Pixel Detector (PXD)

The PXD is the innermost sub-detector, with the principle objective of precise measure-

ments of secondary vertices. Its close proximity to the IP demands high resilience against

background events and sophisticated data handling to cope with large data rates.

The PXD consists of 40 modules arranged in two layers of a windmill-like structure,

as depicted on the left of Fig. 12.2. The layers are positioned at radii of 14 mm and 22 mm

from the IP, respectively. Presently, the inner layer is fully assembled and in the outer

layer four modules are installed. Each module is populated with DEPleted Field Effect

Transistor (DEPFET) pixel detectors [65, 235] and dedicated readout ASICs, which are

introduced in the following.
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12.4.1 The DEPFET Pixel Sensors

The monolithic DEPFET pixel sensors are characterised by an extremely low material

content of 0.2 %X0 which is achieved with sensors thinned down to 75 µm. The reduced

material budget enables a high vertex resolution owing to the suppression of multiple

scattering.

A schematic of the sensor design is depicted on the top of Fig 12.3. A p-channel

MOSFET is combined with a high-resistivity silicon bulk [235], which can be fully de-

pleted by sufficiently high bias voltages applied to the backside. The detection principle

is based on a potential minimum created below the transistor channel, which is formed

by a phosphorous implant referred to as internal gate. The passage of charged particles

generates electron-hole pairs in the sensor. The electrons drift to the internal gate, where

they modulate the channel current [236]. The amplification change in drain current is a

measure for the number of generated electrons and consequently for the amount of de-

posited energy. After readout, the electrons are cleared from the internal gate by applying

a positive voltage to an n+ contact, which provokes a punch-through to the internal gate.

The pixel pitch can vary between 55 µm to 80 µm depending on the layer and the

distance to the IP.

12.4.2 The PXD Module

The DEPFET sensors are placed on PXD modules, that provide a light-weight support

structure as well as dedicated readout ASICs. A schematic of the module design is

displayed in Fig 12.3.

A local coordinate system is defined on the modules, with the v-axis parallel to the

global z-axis and the u-axis perpendicular to it. The sensitive pixel matrix can be divided

into two segments with respect to their distance to the IP: the inner segment consisting

of 256× 250 pixels in u × v direction and the outer one housing 512× 250 pixels with

slightly larger pixel pitches due to the lower occupancy.

The readout chain on the modules is handled by dedicated ASICs. The sensors are

read out in a rolling-shutter mode, where four rows are processed in parallel. Six Switchers

at the rim of the modules initiate the readout by driving gate and clear voltages of

selected pixels [237]. The source-drain current is monitored by Drain Current Digitizer

(DCD) chips and subsequently digitized in an 8-bit ADC [238]. The Digital Handling

Processor (DHP) stores the data in a ring buffer until it receives a trigger signal (cf.

Section 12.5) [239]. After pedestal subtraction and zero suppression, the DHP sends the

data package to the data acquisition system.
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12.5 The Trigger System

The Belle II trigger system is divided into two parts: the Level 1 (L1) trigger operating

on hardware level and the Level 2 (L2) trigger, which is software-based.

For the L1 trigger, the sub-trigger input from different sub-detectors is combined

in the Global Reconstruction Logic (GRL) and then sent to the Global Decision Logic

(GDL) that is responsible for a final trigger decision. In particular, the CDC and the

ECL provide essential information for the trigger decision. If a trigger is issued, it is

distributed to all sub-detectors to initiate further data acquisition.

While the L1 trigger is able to sustain a maximum rate of 30 kHz, the rate is further

reduced to maximum 10 kHz by the L2 or High Level Trigger (HLT) [242]. The software

trigger bases its decision on an offline reconstruction involving all sub-detectors except for

the PXD. If the event topology meets the trigger conditions, data is written to permanent

storage.

During Phase 2, the HLT was operated in pass-through mode. With increasing lumi-

nosity in Phase 3, the HLT is switched on to ensure a tolerable data rate.

12.6 The Data Acquisition System

The Data Acquisition System (DAQ) is responsible for the collection and transfer of data

after a L1 trigger is issued. A unified readout link called Belle2Link [240] delivers the

data to the Common Pipeline Platform for Electronics Readout (COPPER) [241], where

sub-event building is performed. The HLT performs a full event reconstruction using

data from all sub-detectors except for the PXD. Based on predefined trigger patterns,

the HLT decides to discard events or write them to permanent storage. If the event is

kept, PXD data is added in a subsequent event building step.

12.6.1 The PXD Data Acquisition

The DAQ of the PXD has to handle high data rates due to the large number of readout

channels and the high occupancy caused by the close proximity to the IP. Even though

a maximum trigger rate of 30 kHz and a maximum occupancy of 3 % is tolerated, the

expected data rate is still exceeding 20 GB/s [243]. Therefore, an innovative readout

scheme is necessary to apply an online data reduction, while keeping pixel hits related to

potentially relevant physics events.

The on-module ASICs are read out by the Data Handling Hub (DHH) [244], which

features a two-layer architecture. The first layer is based on Data Handling Engines

(DHEs), which receive pixel data from the DHP. The DHE reformats and enriches the
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data with meta information before sending it to the second layer - the Data Handling

Concentrator (DHC). The DHC adds more metadata and performs 5-to-4 multiplexing.

In addition, it provides an interface to trigger and clock components via slow control.

Th FPGA-based Online Selection Node (ONSEN) is responsible for online data re-

duction in a two-step procedure [243]. First, the HLT decision is taken into account by

discarding all data from events unassociated to a HLT trigger. While this filter reduces

data by a factor of three, the second stage is based on Regions of Interest (ROIs). Parti-

cle tracks reconstructed by the HLT event building are extrapolated to the PXD layers,

where ROIs are defined in a specified area around the intersection point between PXD

layer and extrapolated track. The size of the ROI is determined by the track resolution.

Pixel hits located outside of ROIs are discarded leading to a reduction by a factor of 10.

It is foreseen that ROI generation is also allowed by a second system using only

SVD data. The FPGA-based Data Acquisition Tracking and Concentrator Online Node

(DATCON) [224] performs track building using hits from the four SVD layers and IP.

The intersection of these tracks with the PXD layers define additional ROIs. However,

the DATCON is unable to override the trigger decision i.e. if pixel hits are not associated

to a HLT trigger, they are discarded regardless of the DATCON decision.

12.7 Background at the Belle II PXD

The operation characteristics and the high luminosity of the SuperKEKB collider give

rise to significant contributions of background events. Especially the PXD is subject to

high background levels due to its close proximity to the interaction region. The main

background contributions can be differentiated by their source of origin into beam-induced

and luminosity-dependent background [245]. Whereas the former is related to the beams

circulating in the storage ring, the luminosity-dependent background arises from the

collisions themselves. In the following, the main background production mechanisms are

outlined.

12.7.1 Beam-Induced Background

Particle beams circulating in the HER and LER storage rings are constantly subject to

interactions with residual gas, the beam pipe or with other particles in a bunch. As a

result, individual beam particles are eventually lost leading to a limited lifetime of the

beam. If beam particles leave their nominal trajectory in the vicinity of the Belle II

detector, primary or secondary particles can scatter into the sensitive volume of the

detector, which manifests itself as beam-induced background.
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Touschek effect The Touschek effect [246] is a prominent background source at Belle II,

owing to the operation conditions at the SuperKEKB collider. The nano-beam scheme

demands a small bunch size, which results in a a high particle density in each bunch. As

a consequence, intra-bunch scattering is increased, whereby individual particles in the

bunch interact with each other, which can lead to their diversion from the bunch. If the

Touschek process occurs close to the detector, the diverted beam particles collide with

the beam pipe and can thus create a particle shower that enters the detector, which gives

rise to background hits.

Touschek scattering scales with the number of particles per bunch squared and is

inversely proportional to the square of the beam size. The scattering rate decreases with

E−3 due to relativistic effects, where E denotes the beam energy [247]. Compared to

KEKB, the scattering rate is 20 - 30 times higher in SuperKEKB due to the higher

particle density in the bunches. Movable beam masks are available to collimate the beam

and reduce the impact of the Touschek background.

Beam-gas scattering Beam-gas scattering occurs when particles interact with residual

gas in the beam pipe [248]. For SuperKEKB, the main contributions are expected to

originate from hydrogen and carbon monoxide gas molecules. As a result of the scattering

events, beam particles can leave their nominal orbit and give rise to particle showers,

which can enter the detector.

Beam-gas scattering is proportional to the beam current and to the partial pressure

of the residual gas. The rate is expected to be approximately 50 % smaller than the rate

associated with the Touschek effect [245].

Synchrotron radiation A third prominent background source for lepton colliders is

related to synchrotron radiation generated by the passage of electrons and positrons

through the bending and focusing magnets along the storage rings [249, 250]. In par-

ticular, the final-focusing magnets before the interaction point are a principle source of

synchrotron radiation that increases background levels in the detectors.

Synchrotron radiation is proportional to the beam current and to the fourth power

of the beam energy [251]. Dedicated shielding components and a gold layer covering the

beam pipe at the interaction region are employed to reduce to impact of synchrotron

radiation.

12.7.2 Luminosity-Dependent Background

Luminosity-dependent background is generated by the electron-positron collisions and

thus emerges directly from the interaction region. Unlike the beam-induced background,
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luminosity-dependent background scales with the luminosity of SuperKEKB and cannot

be mitigated by e.g. shielding.

Radiative Bhabha scattering Radiative Bhabha scattering describes the interaction

of an electron with a positron in the following scattering process [252]

e+e− → e+e−γ.

The process is classified depending on the opening angle between the two leptons. For a

wide opening angle, the leptons can enter the detector directly resulting in background

hits. However, the cross section of the process favours small scattering angle, where both

leptons continue along the storage ring. Depending on the angle, they can collide with

the beam pipe or magnets and create particle showers, that can backscatter into the

detector.

Two-photon effect The dominant background source for the PXD is based on the

two-photon process, given by the QED interaction [253,254]

e+e− → e+e−γγ → e+e−e+e−.

As the leptons are generated with a low transverse momentum pt, they typically follow a

curled trajectory in the magnetic field and therefore affect mainly the inner layers of the

tracking detectors. At Belle II, the impact of the two-photon effect is higher compared

to Belle, due to the small radius of the PXD layers making it sensitive to low-pt tracks.

12.7.3 Conclusion

At the target luminosity, the two-photon background is expected to dominate over all

other background components. It is approximately five times larger than radiative

Bhabha scattering and synchrotron radiation and at least three orders of magnitude

higher than the Beam-Gas and Touschek background.

Detailed information about the origin, distributions and occupancies of the above

mentioned background components in the PXD can be found elsewhere [245].

12.8 The Belle II Analysis Software Framework

The Belle II Analysis Software Framework (basf2) is a versatile software framework for

numerous tasks such as data reconstruction and analysis as well as full-detector simula-

tions [255]. It is also employed for online tasks related to data acquisition and data-quality

monitoring and is an essential part of the HLT.
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The software is composed of Belle II-specific code written in C++, external depen-

dencies such as ROOT and tools for e.g. software installation. Python scripts steer the

execution of the code. The architecture of the framework adheres to a modular design.

The user builds a processing chain from an assembly of modules, which have dedicated

functionalities such as reading/writing of data or track reconstruction.

12.8.1 Full-Detector Simulation

A full-detector simulation involves the generation of particles as well as their propa-

gation through and interaction with the simulated Belle II detector. basf2 employs a

Monte-Carlo-based simulation approach, whereby a simulation chain is set up using the

aforementioned modules. First, event generators are used to simulate the primary physics

process based on theoretical models such as EvtGen for the decay of B and D mesons or

PYTHIA for the continuum production of light quark pairs.

The detector simulation is based on the Geant4 framework. The software transports

each particle through the detector in discretized simulation steps and takes statistical

fluctuation and production of secondary particles into account. Detailed information

about the physics lists used in Geant4 are given elsewhere [26]. The hit information with

sensitive detector material are handled in dedicated basf2 modules. For instance, the

creation of electron-hole pairs, their drift and diffusion and signal induction is simulated

for the PXD [256]. In subsequent steps, the simulation is reconstructed and analysed just

like real data.

12.8.2 Background Simulation

The simulation of background is handled by different third-party software frameworks.

The following list provides an overview of the simulation tools that are relevant for this

thesis:

• For the Touschek background and the beam-gas scattering, the Strategic Ac-

celerator Design (SAD) software [257] is employed to model the beam loss along

the storage ring.

• The simulation of synchrotron radiation is handled by Geant4.

• Radiative Bhabha scattering is divided into two classes depending on the polar

scattering angle θe± . Scattering angles larger than 0.5◦ for both leptons are consid-

ered to be wide and the generator BHWIDE [258] is used to simulate the events.

For small scattering angles, the Monte Carlo software BBBREM [259] is employed.
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• The luminosity-dependent two-photon background is handled by another Monte

Carlo tool referred to as AAFH [260].



Chapter 13

Highly-Ionising Particles

Unlike MIPs, Highly-Ionising Particles (HIPs) are characterised by a strikingly high en-

ergy loss in matter. Exotic candidates for HIPs include magnetic monopoles [261], parti-

cles carrying electric and magnetic charge (dyons) [262] or particles with a high electric

charge such as Q-balls [263].

If the lifetime of HIPs is sufficiently high to interact with detector components, a

prominent event signature involving high energy depositions would be detectable. How-

ever, despite the unique signature, the reconstruction of these particles remains challeng-

ing for numerous reasons. First of all, detectors are typically not designed for particles

with massive energy depositions. Saturation of the readout electronics or a limited dy-

namic energy range can inhibit direct detection. If the particles are trapped in the

innermost detection layers, additional challenges arise owing to an incomplete event sig-

nature. In this thesis, the identification of HIPs in Belle II is studied using an example

HIP candidate: hypothetical magnetic monopoles. While the results are obtained for this

particle species, the general concepts are expected to apply to other HIP candidates as

well.

To be consistent with contemporary literature about HIPs, the speed of light c is set

equal to 1.

13.1 Magnetic Monopoles

The existence of magnetically charged particles is a burning question that has triggered

remarkable theoretical and experimental efforts. Presently, no experimental evidence

confirming or completely disproving their existence is available. From a theoretical per-

spective, there are numerous approaches that would permit or even actively predict the

existence of particles carrying magnetic charge. In the following, a brief introduction in

selected theoretical concepts of magnetic monopoles is presented. More detailed reviews

211
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are for instance given in [264,265].

Most prominently, Dirac was preoccupied with the existence of magnetic monopoles as

early as 1931 [266], when he related the quantization of the electric charge to the existence

of magnetic monopoles and predicted the fundamental magnetic charge to be gM = 68.5 e.

Although Dirac provided no prediction about the monopole mass range, rough estimations

based on the equivalence of the classical electron radius and the classical monopole radius

yield a mass of approximately 2.4 GeV for a singly-charged monopole [267].

Subsequently, Polyakov [268] and ’t Hooft [269] showed that magnetic monopoles arise

from the unification of fundamental interactions. Depending on the unification scale, the

monopole mass is of the order of 1017−1018 GeV [270], which is out of the energetic reach

of modern collider experiments. However, other theoretical approaches predict lower

masses such as the electroweak Cho-Maison monopole, which can be considered a hybrid

between Dirac and the ’t Hooft-Polyakov monopole [271].

The aim of this dissertation is to develop a model-agnostic search for highly-ionising

particles, which is independent of a specific monopole model. However, for the evalua-

tion of the search strategy, the simulation of magnetic monopoles is required. Minimal

assumption arising from the Dirac theory are therefore adopted such as the quantization

of magnetic charge. In addition, some cross-model concepts about monopole production

mechanisms, energy loss in matter or trajectories in a magnetic field are used for the

simulation setup, which are presented in the following.

13.1.1 Production Mechanism

A simple model of monopole pair production assumes a Drell-Yan production process

involving one virtual photon γ∗ [272,273]

e+e− → γ∗ →M+M−,

where M+M− represents the monopole pair. This model is based on a monopole-photon

coupling, which scales with the monopole velocity according to gMβ, where β = v/c and

gM = 68.5 e [270, 274]. The large charge results in a strong monopole-photon coupling,

that also has important implications for the monopole energy loss, as discussed below.

Detailed derivations of the Drell-Yan production mechanism for monopoles are beyond

the scope of this thesis and can be found elsewhere [275, 276]. Since a pair-production

process is considered, both monopoles and anti-monopoles are studied in this thesis.

For the sake of brevity, the generic term monopole implies both the particle and anti-

particle. In studies, where they are considered separately, the change in phrasing is

explicitly mentioned.
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13.1.2 Energy Loss in Matter

Unlike electrically charged particles, the interaction of magnetic monopoles with matter

involves the magnetic dipole moment of the medium [277]. Different interaction mecha-

nisms can be differentiated depending on the monopole energy.

For fast magnetic monopoles with β & 10−1, a modification of the original Bethe

formula can be derived [278]:

−dE

dx
= C

Z

A
g2

[
ln(

2mec
2β2γ2

I
)− 1

2
+
k

2
− δ

2
−Bm

]
MeVg−1cm2 (13.1)

with

C =
e4

4πε20mume

. (13.2)

The unified atomic mass units is denoted by mu, the mean ionization potential by I and

the other parameters as presented in Section 2.3.1. The last terms are correction factors,

where δ accounts for density effects [279], k applies QED corrections and Bm is the Bloch

correction [280].

At βγ ∼ 3, where the energy loss for electrically charged particles is minimal (cf.

Section 2.3.1), the energy loss of magnetic monopoles is approximately three orders of

magnitude higher. However, in contrast to electrically charged particles, the energy loss

decreases with decreasing velocity.

For slow monopoles with velocities 10−4 . β, the energy transfer becomes compa-

rable to the binding energy of electrons to nuclei and different energy loss models are

required [281]. For instance, a semi-classical approach, where the material is treated

as a degenerate Fermi gas of non-interacting electrons was put forward by Ahlen and

Kinoshita [282].

13.1.3 Trajectory in a Magnetic Field

The duality of electric and magnetic charge implies a Lorentz-like force law, where par-

ticles carrying magnetic charge are accelerated along the magnetic field lines [283]:

~Fm = gM( ~B − ~β × ~E). (13.3)

In contrast to particles with an electric charge, the motion of a magnetically-charged

particle remains unperturbed in the direction perpendicular to the magnetic field, which

corresponds to the rφ-plane in the Belle II detector. In the rz-plane on the other hand, a

magnetically-charged particle is accelerated along the field lines and the trajectory there-

fore resembles a parabola as presented in Fig. 13.1. The trajectories are simulated using
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Figure 13.1. Trajectories of magnetically-charged particles with initial momenta perpendicular

to the magnetic field lines for (a) different monopole masses and (b) different magnetic charge

values. The 1.5 T magnetic field is parallel to the z-axis. Based on [284].

an analytical solution of Eq. 13.3 for particles with an initial momentum perpendicular

to a 1.5 T magnetic field, whose field lines are parallel to the z-axis.

On the left-hand side, the monopole mass is varied from 3 GeV to 5 GeV, while the

magnetic charge is fixed to the Dirac charge gD = 68.5 e. The magnitude of the initial

momentum is determined by energy conservation given the centre-of-mass energy in the

collision 10.58 GeV and the monopole mass. A large monopole mass therefore results in

a low initial momentum and consequently in a strong curvature of its trajectory.

On the right-hand side of Fig. 13.1, the monopole mass is fixed to 4 GeV and the

magnetic charge is varied from unit Dirac charge gD up to 3gD. Due to the force law

Eq. 13.3, the curvature of the trajectory increases with increasing magnetic charge.

For this thesis, the definition is adopted that anti-monopoles are accelerated anti-

parallel and monopoles parallel to the field lines. This property has important conse-

quences for the motion in the Belle II detector, where a 1.5 T magnetic solenoid field is

present in the inner parts of the detector (cf. Section 16.3.6).

13.1.4 Detection Sensitivity in the Belle II Detector

A diverse search campaign for magnetic monopoles has yielded no positive results so

far [7]. Search strategies included monopoles trapped in matter [285], in cosmic radia-

tion [286,287] and various direct and indirect analyses in collider experiments [288,289],

with several of them performed in electron-positron collisions [282].

The Belle II experiment operating at the high-intensity frontier has a unique sensi-
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tivity to magnetic monopoles, due to its high-precision, low-mass detector setup. Nev-

ertheless, the trigger and data reduction scheme hinder direct detection for two reasons

(cf. Section 12.6): First, the L1 and HLT trigger conditions are unsuitable for monopole

signatures in the detector. In particular, magnetic monopoles with a mass above 1 GeV

have a prohibitively low detection efficiency for the current trigger menus. However, these

challenges could be partially mitigated by adaptation of the trigger conditions to achieve

a better match. A detailed review about the trigger efficiency of magnetic monopoles is

given elsewhere [290].

Second, magnetic monopoles are discarded by the ROI selection owing to the lack of

a reconstructable track. Current tracking algorithms are unable to recognize monopole

trajectories, which are distinctly different from electrically charged particles (cf. Sec-

tion 13.1.3). However, first steps towards tracking algorithms appropriate for particles

with magnetic charge were successfully tested [291]. The high energy loss in the detector

material weighs even more heavily, since it restricts the monopole range to the innermost

tracking detectors [284]. Without hits in the CDC, no track is reconstructed and the

monopole hits in the PXD and SVD are discarded. This challenge is not unique to mag-

netic monopoles but also affects other particles with low transverse momenta that can

escape tracking.

To anyway guarantee a high signal efficiency, a machine-learning-based veto system is

proposed. A proof-of-principal for an online veto system dedicated to the identification

of slow pions has already been presented in the past [292] and offline studies for slow-

pion identification using solely PXD observables are conducted with various machine-

learning techniques [294, 295]. Complementary to these studies, this thesis focuses on

a veto system for exotic or anomalous particle signatures. The selected algorithms and

techniques for this system are presented in the subsequent chapter and its evaluation is

shown in Chapter 16 using hypothetical magnetic monopoles as example signal.





Chapter 14

Machine Learning Techniques

Machine learning has proven to be a valuable tool in reconstruction and analysis tasks for

High-Energy Physics (HEP) [5]. In particular, the classification of signal and background

using machine learning algorithms has sparked significant interest in recent times. In

particular, the search for dark matter candidates has benefited from a machine-learning

approach, since it enables the processing of large datasets and is therefore suitable to

operate directly on minimally-processed data coming from the detector instead of recon-

structed objects.

The following chapter lays the methodological basis for the evaluation of different

machine-learning techniques in Chapter 16. The algorithms are introduced with a focus

on binary classification problems of signal against background in order to relate advan-

tages and disadvantages of the methods directly to the task at hand. While the same

principles hold true for other applications as well such as multi-class classification or

regression, they are not explicitly mentioned.

14.1 Supervised and Unsupervised Training

Before a machine learning classifier is put to use, it is trained to accomplish a specific

task. There are two main training principles: supervised training, where the training

relies on a prior definition of signal provided by a theoretical framework and simulations

and unsupervised training aiming at the identification of signal features while minimizing

assumptions about signal or background 1.

Supervised training benefits from a precise signal definition, which improves control

over the training process and makes training results less ambiguous. However, detector

signatures corresponding to elusive beyond the Standard Model Physics (BSM) processes

1There are also training principles operating in-between these two extremes, which are commonly

referred to as semi-supervised training [293].
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Figure 14.1. Schematic of a Multilayer Perceptron (MLP) with one hidden layer between the

input and output layers.

might be missed owing to a narrow signal definition or a mis-modelling of either signal

or background.

Unsupervised and semi-supervised methods aim at the identification of signal features

with little to no need for assumptions about signal or background. A data-driven ap-

proach is adopted allowing for a model-agnostic analysis that has the advantage of being

independent from theoretical assumptions and therefore not confined to specific signal

hypotheses and background modelling.

14.2 Artificial Neural Networks

An Artificial Neural Network is a collection of interconnected simple processing units,

which are commonly referred to as neurons. In Feedforward Neural Networks (FNN)

the neurons are arranged in layers, where each layer is connected to the next without a

formation of loops [296]. A schematic representation of a shallow FNN with three layers

is displayed in Fig 14.1. While the first layer (input layer) is activated by external data,

the inner layers (hidden layers) respond to stimuli provided by the preceding layer. Due

to the existence of several processing layers, this architecture is referred to as Multilayer

Perceptron (MLP) [297].

The response of a neuron is described by an activation function [298]. Given an input

from a preceding neuron or an external stimuli, the activation function determines the

output of the neuron, which is sent to the next unit or to the output layer. Typically, non-

linear, real-valued functions such as tanh or a sigmoid function are selected as activation

function. Another popular choice is a Rectified Linear Unit (ReLu) which filters the
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Figure 14.2. Schematic representation of a Self-Organising Map (SOM).

positive part of an argument xi [299]:

r(xi) = max(0, xi).

In a supervised MLP, the weights between neurons are adapted during the training phase

in order to optimise the output of the network. To this end, the disagreement between

the current output and the desired result is calculated using a loss function [300] such as

the Euclidean distance between the two (mean squared error). Different techniques have

emerged to adjust the weights in an effort to minimise the loss function. The Stochastic

Gradient Descent (SGD) method estimates the gradient of the loss function ∇wE by

uniform sampling of the input vectors using a small sample size to speed up computation

times. The weights are then adjusted according to [301]

w(i+1) = wi − ν∇wE, (14.1)

where wi are the set of weights in the i-th iteration and ν is the learning rate. An

extension to the SGD method called Adaptive Moment Estimation (Adam) computes an

adaptive learning rate by estimating first and second moments of gradients [302].

14.3 Self-Organising Maps

Self-Organising Maps (SOMs) apply competitive learning [303] in order to provide a low-

dimensional discretised representation of high-dimensional input vectors [304]. Despite

the reduction in dimensionality, SOMs preserve the topology of the input to the best

degree possible [305].

During training a topologically correct map of the high-dimensional input signal is

formed by the lower-dimensional processing units, which are often referred to as nodes.

A schematic of a SOM with k input vectors is presented in Fig. 14.2. A local feed-

back is responsible for the self-organised mapping process. A SOM is categorized as an

unsupervised learning algorithm, since no comparison with a desired output is required.
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SOMs consist of two mathematical spaces: a node space of dimension n and a feature

space of dimension m. The feature space consists of the high-dimensional input vectors

and the node space is represented by low-dimensional (here: one-dimensional) vectors.

For the following motivation of the learning algorithm, it is assumed that N nodes are

present in node space, which are located at fixed positions r(n) ∈ Rn. Each node is

associated with a feature vector with position r(m) ∈ Rm that can be modified during

learning.

14.3.1 The Learning Algorithm

A SOM is trained by adapting the feature vectors based on their distance to the input

vector. The smallest distance of the i-th input vector v
(m)
i to the feature vectors is

determined using a chosen metric. The closest feature vector is referred to as winner

vector and the associated node as winner node r
(n)
w . A local feedback around the winner

node induces the adaptation of the feature vectors associated with nodes in the vicinity

of the winner node:

r
(m)
j (t+ 1) = r

(m)
j (t) + hw,j(t) · (v(m)

i − r(m)
j (t)), (14.2)

where the subscript j denotes the j-th feature vector. The parameter t labels each

step with an integer number. The neighbourhood function hw,j(t) determines the local

relaxation process of the nodes. It is calculated from the distance between the winner

node r
(n)
w to all other nodes r

(n)
j , where j runs from 1 to N . For this thesis, a Gaussian

kernel is used, which reads

hw,j(t) = α(t) exp

(
−
‖r(n)

w (t)− r(n)
j (t)‖2

2σ2(t)

)
(14.3)

for the node r
(n)
j . The timestep-dependent parameter α(t) is considered to be the cur-

rent learning rate and te width of the Gaussian kernel σ(t) determines the range of the

relaxation process. For this thesis, they were chosen as follows:

α(t) = α0(1− t

tmax

) (14.4)

σ(t) = σ0(1− t

tmax

) (14.5)

14.4 Autoencoder

An Autoencoder (AE) used for anomaly detection is a feed-forward multi-layer neural

network that aims at reproducing the input vector without using an identity mapping.
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Bottleneck

Figure 14.3. Schematic of an Autoencoder consisting of an encoder, a bottleneck layer and a

decoder.

It consists of two parts: an encoder E and decoder D, as depicted schematically in

Fig. 14.3. While the encoder compresses the input to a lower-dimensional vector, the

decoder reconstructs the original input from the reduced representation. The latent

space in the centre of the AE is an information bottleneck that enforces the selection of

relevant patterns from the input data.

The AE solves the following optimization problem [306]:

ER = min
D,E
|X −D(E(X))|, (14.6)

where ER denotes the reconstruction error and X the input data. For this thesis, the

Euclidean distance is used to evaluate the expression.

Autencoder-based anomaly detection uses the reconstruction error as an anomaly

score to identify anomalous data that was not used in the training process i.e. large

reconstruction errors are associated with anomalous events. This method exploits the

optimised reconstruction of normal data to filter out anomalies in an unsupervised man-

ner. The anomaly detection is performed such that it can be considered a sophisticated

filter mechanism that defines a potential signal region for further statistical analysis.

14.5 Performance Metrics

The following section introduces selected performance metrics to assess the classification

performance. First, the general concept of the Receiver Operating Characteristics is

outlined and subsequently the specific application to anomaly detection is described.
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Figure 14.4. Schematic of a Receiver Operating Characteristic (ROC) curve. While the box-

function represents a perfect classifier, the diagonal is the worst-case scenario in case of random

guessing.

14.5.1 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) diagram allows for an assessment of the

diagnostic abilities of a classifier [307]. While there are various manifestations of ROC

curves, in this thesis the sensitivity is evaluated against the background rejection, as

schematically depicted in Fig. 14.4. The sensitivity corresponds to the signal efficiency

and is given by the number of correctly identified signal events divided by the total number

of signal events. The background rejection is given by (1 - background efficiency).

An ideal classifier would exhibit a box function, since perfect background rejection is

achieved simultaneously with optimal signal sensitivity [308]. Random guessing on the

other hand, would result in the diagonal line in Fig. 14.4. In all other cases, the ROC

curves are between the two extremes. The Area Under Curve (AUC) is a measure for the

classification performance, with perfect classifiers achieving a maximum area of one [309].

14.5.2 Performance Evaluation

The machine learning algorithms presented in this thesis operate on an event-by-event

basis and label each event as anomalous or normal based on an anomaly score. While the

scope of the anomaly score depends on the selected algorithm, the definition is adopted

that low anomaly values represent normal and high values anomalous events.

The different methods are evaluated by means of ROC curves. To this end, the signal

efficiency εS is scanned and the background rejection εB is recorded, which allows for

an assessment of the prevalence of target anomalies at a given background level. The
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Area-Under-Curve (AUC) is computed and compared between the algorithms.

For anomaly detection, a high background rejection is particularly desirable. There-

fore, the signal efficiency at three different operation points featuring a high background

rejection level are studied as well, i.e. the signal efficiencies εS(εB = 10−2), εS(εB = 10−3)

and εS(εB = 10−4) are extracted, where εB denotes the background efficiency.

Uncertainties The uncertainty is extracted by repeating the training and evaluation

five times with random shuffling of input vectors i.e. a vector in the training set in the

first iteration can be assigned to the evaluation set in the second one. In each iteration,

the performance metrics are determined. Their mean represents the nominal value and

the quadratic sum of deviations from it is used as uncertainty.





Chapter 15

Reconstruction Strategy and

Pre-Processing

Before the application of machine learning algorithms, a pre-processing is advisable to

guarantee a high data quality. Although this study aims at developing a classification

strategy that is closely tied to the underlying hardware and the raw data objects, which

implies a minimal pre-processing procedure, an appropriate event selection and a proper

preparation of the input vectors is required. Therefore, this chapter presents the recon-

struction steps to select suitable events for training, testing and evaluating the algorithms.

In addition, the construction of input vectors is described such that they are suitable for

all machine learning algorithms. In all steps, the long-term goal of developing an online

application is taken into account and all pre-processing steps are kept minimal.

15.1 Event Simulation and Selection

A monopole pair production is simulated (cf. Section 13.1.1). The monopole masses were

varied in a range from 500 MeV to 5 GeV in steps of 500 MeV. The simulated monopoles

are propagated through the Belle II detector using a Geant 4-based simulation approach

and the energy loss formulae described in Section 13.1.2.

The event selection requires monopole hits in at least one of the PXD layers. The

interaction of secondary particles with the PXD is not sufficient, since a direct detection

of the monopoles is foreseen. The Monte Carlo truth information is exploited to filter

the magnetic monopoles from secondary particles. In addition, the information is used

to create simulation sets containing only monopoles and only anti-monopoles to evaluate

their detection probability separately.

As a consequence of the event selection, the training, testing and evaluation sets do

not contain monopoles with masses higher than 4 GeV, as they decay before reaching
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the PXD layers. The number of simulated events is chosen such that 1000 k monopole

events are collected, except for the 4 GeV monopoles, where only 200 k events are used.

The smaller event set is caused by the poor efficiency of reaching the PXD, which leads

to prohibitively long simulation times. Examples of PXD hits associated with magnetic

monopoles are shown in Fig. 15.1a. The clusters are marked by high charge values in

the individual pixel hits.

PXD background data was recorded in dedicated beam-background runs taken in

2020 [310]. For these runs, only a single particle beam circulated in the SuperKEKB

storage ring and the generation mechanisms described in Section 12.7 are responsible for

background particles impinging on the PXD. All PXD hits are assumed to originate from

beam background and are therefore selected for the training, testing and evaluation set.

The possibility of having signal in the background set is addressed in Section 16.3.1. In

Fig 15.1b, example clusters generated by background particles are displayed. The PXD

hits are characterised by a small charge signal in each pixel and typically a long-stretched

shape owing to the shallow entry angle into the PXD.

Typically, the raw pixel hits are pre-processed by applying an energy calibration and

by filtering out noise hot spots. In particular the calibration is needed for a uniform

pixel response and to iron out pixel-by-pixel variations in the energy measurement (cf.

Section 6.3). However, in order to stick to a detector-near treatment in view of possible

online applications, these steps are omitted and no pre-processing is performed. Nev-

ertheless, to avoid the introduction of unaccountable systematic effects, a simulation of

beam background is performed as well and the results from data are compared to sim-

ulation, where challenges such as noise hot spots can be controlled. It should be noted,

that this study does not include a comparison between real and simulated background,

as this can be found elsewhere [251,310].

The simulated background also enables the selection of specific background processes.

Therefore, simulation sets for different background mechanisms are investigated in Sec-

tion 16.3.4. After the events are selected, the input vectors are created in a processing

step denoted as object reconstruction.

15.2 Object Reconstruction

For each simulated event and for the background events, the charge values of a pixel

matrix are considered around the PXD hit with the highest charge value (seed pixel). The

size of the matrix should capture the majority of pixels responding to a given particle,

while being as small as reasonably possible to reduce computation times. The cluster
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Figure 15.1. 9× 9 pixel matrices for (a) real background data and (b) simulated magnetic

monopoles. The pixel charge is given in ADC values.
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Figure 15.2. PXD cluster size in (a) u- and (b) v-direction for beam background and simulated

magnetic monopoles with a mass of 3 GeV.
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size distributions in u-and v-direction for beam background and magnetic monopoles

with a mass of 3 GeV are considered to estimate the optimal size of the pixel matrix. The

distributions are displayed in Fig. 15.2. Cluster sizes larger than 10 are suppressed by

more than three orders of magnitude in both directions and for both particle categories.

Therefore, the default size of the pixel matrix is set to 9× 9. Larger matrices of 15× 15

and 25× 25 are explored in Section 16.3.2 to ensure that the smaller 9× 9 matrix captures

all relevant information.

In addition to the pixel matrix, the global three-dimensional position of the seed

pixel within the PXD is extracted. In total, 84 features are considered when the default

matrix is used. The values are normalized to the range [0, 1] to avoid dominance of a

single parameter. Dimensionality reduction using e.g. a Principle Component Analysis

has exhibited adverse effects on the performance of the considered algorithms and is

therefore not employed [311].



Chapter 16

Comparison of Supervised and

Unsupervised Anomaly Detection

The performance of unsupervised anomaly detection is compared to an established su-

pervised machine learning technique to assess its performance for the aforementioned

classification problem.

First, a default training, testing and evaluation set is used, which consists of real

data for the background events and simulated magnetic monopoles with a mass of 3 GeV

for the signal events. No division between monopole and anti-monopole is made in the

default sets. Other input sets for example for simulated background events or monopoles

with different masses are studied in dedicated sections after the three algorithms are

compared to each other.

16.1 Supervised Multi-Layer Perceptron

First, a supervised machine learning technique is considered, to which the unsupervised

learning approaches are compared. A convolutional Multilayer Perceptron (MLP) is

selected, since it is considered an established technique for binary classification problems.

The network is trained on real background data and simulated hypothetical monopoles

with a mass of 3 GeV. Therefore, assumptions about the signal enter the training process,

as described in Section 14.1.

The network was implemented in the PyTorch framework [312,313]. Details about the

network architecture can be found in the Appendix F and the hyperparamters are listed

in Table 16.1. The network is optimised for a high background rejection. In the following,

the training procedure of the MLP is outlined and an evaluation of its performance is

shown.
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Table 16.1. Hyperparameters for the Multilayer Perceptron.

Parameter Value

Activation function Rectified Linear Unit (ReLu)

Loss function Cross Entropy

Optimizer Stochastic Gradient Descent (SGD)

Learning Rate 1e-4

Momentum 0.9
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Figure 16.1. MLP loss as a function of train-

ing epoch for training and testing set.
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Figure 16.2. MLP classification distribution

for signal and background.

Training The training is performed using 350 k background and signal events each.

After very tenth training epoch, a dedicated testing set is presented to the MLP containing

additional 150 k events for both classes. The training is stopped automatically once the

reduction of the predicted error (loss) from the testing set is only marginal. The loss as a

function of the training epoch is shown in Fig. 16.1. While conversion is achieved within

the first 20 epochs of training, a shallow improvement of the MLP is still observable for

high epoch numbers. The loss values for training and testing set agree reasonably well,

which indicates that no overtraining has taken place.

Evaluation After training, an evaluation set comprising 500 k events for each class is

considered to assess the performance of the algorithm. The one-dimensional classification

distribution for both classes is presented in Fig. 16.2. For low/high classification values

the signal/background is suppressed by approximately three orders of magnitude.

The corresponding ROC is shown in Fig. 16.3a. In Fig. 16.3b, a close-up is displayed

of the parameter region, where simultaneously high background rejection and high sen-
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Table 16.2. Performance metrics of the investigated machine learning techniques for the

default evaluation set.

Algorithm AUC [%] εS(10−1) [%] εS(10−2) [%] εS(10−3) [%] εS(10−4) [%]

MLP 99.86+0.01
−0.02 100* 97.3+0.2

−0.2 82.4+1.2
−1.6 30.0+4.3

−3.8

SOM 98.15+0.04
−0.04 97.3+0.2

−0.2 94.0+0.8
−1.6 88.7+3.8

−5.4 56.8+7.1
−8.8

AE 98.86+0.05
−0.02 98.2+0.1

−0.3 95.9+1.2
−0.4 87.4+1.4

−1.2 60.1+3.3
−2.7
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(b) Close-up of the upper part of the ROC.

Figure 16.3. ROC for the Multilayer Perceptron (MLP), Self-Organizing Map (SOM) and

Autoencoder (AE).

sitivity is achieved. The performance indicators are listed in Table 16.2. The AUC

evaluates to 99.86+0.01
−0.02 % , which indicates an overall good classification performance. At

high background rejection levels of εS(εB = 10−4), the signal efficiency deteriorates to

30.0+4.3
−3.8 %.

16.2 Self-Organising Maps

A Self-Organizing Map (SOM) is an unsupervised machine learning technique, enabling

the transformation of a high-dimensional dataset to a low-dimensional discrete grid, while

keeping the topological structure. After training, inputs that are close in the high-

dimensional input space are represented by adjacent grid points in the low-dimensional

space (cf. Section 14.3). It is therefore well-suited to tag anomalous input structures,

since they visually separate from normal data.

Typically, the low-dimensional space is represented by a two-dimensional map, where
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Table 16.3. Hyperparameters used for the Self-Organizing Map

Parameter Value

Nodes 70

Neighbourhood function Gaussian

Gaussian width 7

Learning rate 0.01

Number of epochs 70 k - 100 k

accumulations of grid points mark similarities between input vectors. However in this

study, the dimension of the low-dimensional grid space is set to one to allow for a com-

parable performance evaluation as for the other two machine learning techniques. The

calculations of a ROC for a two-dimensional SOM would either require assumptions about

the signal/background distribution or complex geometrical cuts in the map, that could

introduce systematic uncertainties. It should be noted, that this is not a disadvantage

of the SOM itself but only affects its comparability to other algorithms when a ROC

is considered. The low-dimensional representation will therefore span only a single line,

with the aim to have grid points responding to background cluster on the one end and

signal on the other end.

The SOM was implemented in the python-based MiniSom software [314]. The hyper-

parameters of the SOM are listed in Tab 16.3. The 70 nodes were found to be sufficiently

large to separate the two classes, while keeping reasonable training durations of about

two hours.

Training The same training and testing set as for the MLP is used, except that the

SOM is not presented with the target values. The lack of a loss function renders it

challenging to monitor the training process. Therefore, a fixed number of training epochs

is chosen and the result for the training and testing set is evaluated afterwards. It has

been verified that an increase in the number of training epochs does not alter the results,

which implies that stable convergence is achieved and no overtraining takes place.

Evaluation The trained one-dimensional grid serves as classification axis and is dis-

played in Fig. 16.4 for the evaluation set. The ROC displays a similar performance as

the MLP, as shown in Fig. 16.3. While the AUC is 98.15+0.04
−0.04 % and therefore lower than

for the MLP, the signal efficiency at εS(εB = 10−4) background rejection evaluates to

56.8+7.1
−8.8 %, which is superior to the MLP.
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Figure 16.4. SOM classification distribution for signal and background.

Table 16.4. Hyperparameters used for the Autoencoder.

Parameter Value

Activation function Rectified Linear Unit (ReLu)

Loss function Mean squared error

Optimizer Adaptive Moment Estimation (Adam)

Learning rate 1e-4

16.3 Autoencoder

During training, only background events are presented to the AE and their reconstruc-

tion error is minimised, making the AE specialized in the reproduction of background

events. In the evaluation phase, the AE is able to recognize background events by a low

reconstruction error. Signal events appear anomalous to the AE and are characterised

by a high error, that can therefore serve as an anomaly score [315].

Like the Multilayer Perceptron, the PyTorch framework was used to implement the

AE. The architecture of the AE is shown in the Appendix F and the hyperparameters

are listed in Tab 16.4.

Training The same amount of background events for training and testing as for the

MLP are used. No signal events are presented to the AE during training. The recon-

struction loss as a function of training epoch is depicted in Fig. 16.6 for the training and

testing set. Convergence is achieved already after 10 – 20 epochs. The testing set exhibits

similar reconstruction loss values as the training set, which indicates that no overtraining

has taken place and the AE can generalize to unseen input sets.
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Figure 16.5. (a) Input and (b) reconstructed pixel matrices associated with background

particles.

Example clusters before and after reconstruction are depicted in Fig. 16.5. The upper

row shows the input matrices of background events. In the lower row, the output of the

AE is displayed with matrices in the same column belonging to the same event. While the

overall shape is faithfully reproduced, the AE has a tendency to add more pixel hits to the

matrix, which is related to the sparsity of the input matrix. Extensions of the traditional

AE are proposed in the literature to mitigate this challenge [316,317]. It should be noted,

that the AE does not aim for a perfect reconstruction but only for capturing the shape

of the distribution. For this study, the reproduction is considered to be sufficient and

therefore no extensions to account for sparse input matrices is needed.

Evaluation The classification distribution for the default evaluation set is displayed in

Fig. 16.7. While there is a considerable overlap region for low reconstruction errors, a

high signal purity is observable at high values. Example matrices of signal before and

after reconstruction are depicted in Fig. 16.8. The unfamiliar shape and in particular the

high ADC values pose a problem for the AE. While some shape characteristics are still

preserved, the AE distorts the matrices in a way that they appear to be more background-

like, i.e. instead of the concentrated pixel hit distribution, the distributions become long-

stretched and the high ADC values are transformed to low ones. It is instructive to

observe this behaviour, as it gives to some extent insight into the features learnt by the

AE.

The resulting ROC of the AE is presented in Fig. 16.3 and the results are summarised

in Table 16.2. The AUC evaluates to 98.86+0.05
−0.02 % and is therefore worse compared to
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for signal and background.
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Figure 16.8. (a) Input and (b) reconstructed pixel matrices associated with simulated mag-

netic monopoles.
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the MLP but superior to the SOM. The signal efficiency at high background rejection

levels still reaches 60.1+3.3
−2.7 % showing that the AE outperforms the other two algorithms.

Therefore, the performance of the AE is considered in more detail by addressing potential

challenges such as an impure training set, technical details such as the size of the pixel

matrix and the effect of specific signal and background properties. All studies are based

on the comparison of ROCs or the performance matrices, since they allow for a direct

assessment of the impact on the final results (cf. Section 14.5.2).

16.3.1 Signal in Training Data

No harsh selection filters on the pixel matrices in the background training set are applied.

Therefore, the question arises if a hypothetical contamination of the background set with

signal events affects the results. As a consequence of an impure training set, the AE is

already exposed to signal during training and will consequently adapt to it, potentially

resulting in a lower reconstruction error for signal and therefore a weaker classification

performance. To evaluate the impact of a contaminated data set, 0.01 % / 0.1 % / 1 % of

the training events are replaced by signal and the analysis is repeated. It should be noted

that this study only aims at assessing the robustness of the AE, since the production of

hypothetical magnetic monopoles in a single circulating beam without electron-positron

collisions would not match with prevalent theories about monopole production.

The resulting ROCs are presented in Fig. 16.9. The performance of the AE deterio-

rates slightly at 1 % signal in the data but is not affected for the lower contamination val-

ues. It can be concluded that a signal component in the training set has to be sufficiently

rare to guarantee the optimal performance of the AE. In the case of magnetic monopoles,

a signal contamination of more than 1 % is considered highly improbable, assuming the

production mechanisms and the theoretical approaches outlined in Section 13.1.

16.3.2 Size of Pixel Matrix

Based on the cluster size distribution shown in Section 15.2, the default size of the pixel

matrix was fixed to 9× 9. However, there are events, for which the pixel matrix does

not capture the full extent of the cluster. With pixel hits being cut off, the classification

performance is potentially compromised, since information of outer pixel hits is missing.

To investigate the impact of larger pixel matrices, the simulation and data events per-

taining to the default matrix sets are considered and larger pixel matrices are extracted.

The training, testing and evaluation steps are repeated and three ROCs belonging to

matrix sizes of 9× 9, 15× 15 and 25× 25 are computed, as illustrated in Fig. 16.10. An

improvement for larger matrix sizes at low background rejection levels is observable. As



16.3. Autoencoder 237

0.85 0.9 0.95 1
Background Rejection

0.85

0.9

0.95

1

 S
en

si
tiv

ity

1% signal
0.1% signal
0.01% signal
No signal

Figure 16.9. ROC for different signal levels
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Figure 16.10. ROC for different sizes of the

pixel matrix.

the improvement is comparably small, the concrete application of the AE decides about

trading computation time for a slightly better performance. For this study, the improve-

ment is considered too small to justify an increase in the matrix size and therefore the

9× 9 is kept.

16.3.3 Simulated Background

Data from the PXD is subject to various effects that were not explicitly accounted for

in this study such as particularly noisy pixels or pixel-by-pixel variations resulting in

a slightly different AUC value for the same energy deposition. In online applications,

correcting for these effects is not easily feasible. It is therefore beneficial to examine

their impact on the classification performance. To this end, dedicated beam-background

simulations are performed, involving all beam background mechanisms described in Sec-

tion 12.7. The extraction of pixel matrices is conducted in the same manner as for data

and an AE is trained and evaluated on the simulation.

The resulting ROC is compared to the one from data in Fig. 16.11. Good agreement

between the two curves is achieved, which implies an excellent background modelling in

simulation. In addition, remaining differences between data and simulation related to

noisy pixels or pixel-by-pixel variations do not affect the results. Although noisy pixels

have the potential to disturb the training, the results from the previous section imply

that a disturbance of about 1 % of the considered matrices is necessary to affect the AE.

While the pixel-by-pixel variations introduce uncertainties in the ADC values, the large

difference in energy deposition between background and signal are not sensitive to these

comparably small variations.
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Table 16.5. Performance metrics for the AE trained on different simulated background sources.

Background AUC [%] εS(10−1) [%] εS(10−2) [%] εS(10−3) [%] εS(10−4) [%]

Two photon 99.52+0.06
−0.07 98.6+0.3

−0.5 94.4+0.6
−0.2 87.9+0.8

−0.8 60.4+0.8
−0.9

Bhabha (wide) 98.97+0.05
−0.04 97.0+0.2

−0.5 93.1+0.2
−0.6 87.3+0.9

−0.8 59.8+1.3
−0.8

Bhabha (small) 99.2+0.02
−0.04 97.9+0.3

−0.2 95.0+0.9
−0.7 87.2+1.0

−0.9 60.2+1.8
−2.6

Beam Gas 98.2+0.1
−0.07 96.0+0.2

−0.3 93.9+1.0
−0.8 86.2+1.1

−1.0 58.1+1.3
−1.4

Touschek 98.0+0.03
−0.07 95.8+0.5

−0.4 93.2+0.4
−0.6 85.6+0.9

−1.1 57.2+1.8
−2.4
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Figure 16.11. ROC for two Autoencoders

trained on clusters from real background data

and from simulated background.
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Figure 16.12. ROC for Autoencoders trained

on simulated clusters from different back-

ground processes.

16.3.4 Different Background Sources

After the technical integrity of the AE was addressed, the effect of specific background and

signal properties is studied in the following. For this purpose, the simulated background

is considered, as it can be divided into the different background components introduced

in Section 12.7.

A separate AE is trained for the principle background sources arising from the Tou-

schek effect, beam-gas scattering, the two-photon process and radiative Bhabha scat-

tering. The last process is split into events with a wide opening angles between the

final-state leptons and a small angle. Even though the two-photon and the radiative

Bhabha scattering are luminosity-dependent background sources, they are nevertheless

tested in view of future applications, where a wider range of background sources is used to

train the AE. Most importantly, the two-photon process is expected to become the dom-

inant background source once the SuperKEKB accelerator runs at full luminosity [245].
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Figure 16.13. Cluster charge distribution from two-photon and Touschek background parti-

cles.

It is therefore essential to study the implications for future anomaly detection campaigns.

The ROC for the different background mechanisms are displayed in Fig. 16.12 and

the performance metrics are listed in Table 16.5. While there is no significant difference

between the background types, there is a tendency towards better identification results

for luminosity-dependent background. Beam-background typically enters the PXD at a

shallow angle, since the background particles are produced along the beam pipe and not

directly at the interaction point. The shallow angle with respect to the PXD modules

leads to larger clusters with a higher cluster charge (cf. Section 9.6), as can be seen

for example in the cluster charge distributions for the luminosity-dependent two-photon

process and the Touschek beam background depicted in Fig. 16.13. In particular the

higher cluster charge is a property that is attributed to monopole clusters and therefore

degrades the separation power.

16.3.5 Monopole Mass

The mass of the magnetic monopole determines the maximum initial momentum they

can carry, since the centre-of-mass energy is fixed to 10.58 GeV. Therefore, high-mass

monopoles have a smaller initial momentum, which can affect the cluster shape and

consequently the AE performance. To investigate this effect, the AE is evaluated using

five different monopole masses in the range from 0.5 GeV to 4 GeV. The ROCs are shown

in Fig. 16.14 and the performance metrics are summarised in Table 16.6. Although the

results are similar, there is a trend towards improved signal sensitivity at low/intermediate

background rejection levels for low-mass monopoles. The difference is related to long-

stretched clusters in v-direction, which are characteristic signature for beam-background
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Table 16.6. Performance metrics for the AE evaluated with pixel matrices from magnetic

monopoles with different masses.

Mass [GeV] AUC [%] εS(10−1) [%] εS(10−2) [%] εS(10−3) [%] εS(10−4) [%]

0.5 99.29+0.09
−0.07 98.0+0.1

−0.1 95.0+0.3
−0.4 88.4+1.0

−0.9 62.0+1.3
−0.8

1 99.24+0.04
−0.06 97.9+0.3

−0.4 94.6+0.9
−0.9 88.8+1.3

−0.7 60.8+2.1
−0.8

2 98.94+0.02
−0.04 98.1+0.2

−0.3 96.2+0.9
−0.7 85.4+1.2

−1.1 61.1+2.8
−3.1

3 98.86+0.05
−0.02 98.2+0.1

−0.3 95.9+1.2
−0.4 87.4+1.4

−1.2 60.1+3.3
−2.7

4 96.5+0.1
−0.0.6 94.2+0.8

−0.3 91.2+0.8
−0.4 88.2+1.0

−1.1 61.1+2.2
−3.7
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Figure 16.14. ROC for Autoencoders trained

on clusters from magnetic monopoles with dif-

ferent masses.
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Figure 16.15. ROC for Autoencoders trained

on simulated clusters from monopoles and anti-

monopoles.

particles. The low initial momentum of high-mass monopoles leads to trajectories with

a shallow angle between beam pipe and track due to the dominant acceleration along

the magnetic field lines. As a result, the particles can enter the PXD in a shallow angle

similar to beam-background particles created along the beam pipe. The similarity leads

to a small deterioration in identification power for increasing mass.

16.3.6 Monopoles and Anti-Monopoles

So far, all simulated samples contained both monopoles and anti-monopoles. However,

the difference in magnetic charge has important implications for their trajectories in the

detector, since monopoles are accelerated in the direction of the electron beam and anti-

monopoles in the opposite direction. As the collision is boosted in the electron beam

direction, the maximum momentum of magnetic monopoles is higher compared to anti-
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different monopole masses.
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Figure 16.17. Cluster size in v-direction for

monopoles and anti-monopoles.

Table 16.7. Performance metrics for the Autoencoder evaluated separately with monopoles

and anti-monopoles.

Particle AUC [%] εS(10−1) [%] εS(10−2) [%] εS(10−3) [%] εS(10−4) [%]

Monopoles 97.82+0.06
−0.09 97.8+0.3

−0.2 94.1+0.2
−0.3 82.4+0.8

−0.9 51.3+1.3
−0.9

Anti-Monopoles 99.34+0.04
−0.05 98.0+0.1

−0.1 95.6+0.9
−0.7 89.0+9.8

−0.9 62.1+1.8
−1.2

monopoles, for which acceleration and boost direction are anti-parallel. The different

kinematics affect the AE results, as illustrated in the respective ROCs in Fig. 16.15 and

the performance metrics in Table 16.7. The identification of anti-monopoles is more

efficient, even at higher background rejection levels. The worse results for monopoles is

related to their shallow entry angle into the PXD resulting in longer clusters as displayed

in Fig. 16.17, similar to the results from the previous section. The long-stretched cluster

shape is reminiscent of background clusters and therefore worsens the identification power.

16.3.7 Extensions to the Autoencoder

Further attempts to improve the AE or to find alternative but similar anomaly detection

techniques have been made with no notable improvements. The most important ones are

outlined in the following:

• The architecture of the AE was altered by e.g. including convolutional layers or

adding more neurons to the latent space. No significant improvement in the perfor-

mance was found, even though the reproduction of background matrices generally

improves with a larger number of neurons in the latent space.
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• Alternative hyper-parameters such as different loss functions were tested. The re-

sults either deteriorated or remained invariant. Likewise, a prolongation of the

training duration also leaves the results unaltered, which confirms that stable con-

vergence is achieved.

• Extensions to the AE and alternative algorithms were tested. For instance, a Vari-

ational Autoencoder (VAE) was implemented, which differs from a normal AE in

the structure of the latent space. For a VAE, each neuron in the latent space is

represented by the mean and standard deviation of a normal distribution. The

decoder reconstructs the input vector by drawing from the set of distributions. The

loss function is extended by a term enforcing a normal distribution of the latent

space.

The concepts behind anomaly detection with a VAE are identical to the normal

AE. However, another layer of abstraction is added by sampling from normal dis-

tributions instead of the one-dimensional output of neurons in the latent space. In

this way, the network is expected to achieve a better generalisation and capture

the relevant features of the input vectors in well-defined distributions. Since the

VAE has shown inferior results than the normal AE, it is not considered further.

Adaptations to the VAE architecture might improve their results but are beyond

the scope of this thesis.

Alternatively, Generative Adversarial Networks [318] were tested as well. Although

they have exhibited promising results in other studies [319, 320], where the re-

construction of input vectors was demanded, their comparably complex training

procedure has proven to be unsuited for this work.

16.3.8 Conclusion

The AE has shown to keep up with the supervised MLP in terms of overall classifica-

tion power and even outperform it for high background-rejection levels. Moreover, the

AE has exhibited robustness against technical uncertainties related to the purity of the

training set. Although this study only used data from beam background for training, the

encouraging results for simulated luminosity-dependent background imply that future

background campaigns involving other background sources will also yield satisfactory re-

sults. The positive validation of the approach enables a first test on collision data, that

is presented in the following.
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Figure 16.18. Classification distribution for data pertaining to randomly triggered events.

16.4 Search for Anomalies in Data

After the Autoencoder is trained and evaluated using simulations, it is applied to a data

set recorded during Phase 3. The HLT was configured in pass-through mode to guarantee

that no potentially relevant events are deleted. As the ROI selection was switched off,

all PXD hits were recorded and written to permanent storage. In total, 0.67 fb−1 are

considered.

Only randomly triggered events are selected, since the L1 trigger is largely insensitive

to monopoles with masses exceeding 1 GeV (cf. Section 13.1.4). Two random trigger bits

are available in the investigated data: the Bhabha trigger, that is issued 50 µs after the

detection of a Bhabha event, and the pseudo-random trigger based on an independent

local clock [245].

The same object reconstruction as for the simulations is applied, yielding the 9× 9

pixel matrices plus the three-dimensional position in the PXD. The matrices are then

presented to the trained Autoencoder and the resulting classification curve is displayed in

Fig. 16.18. As expected, the distribution peaks at low classification values that indicate a

low reconstruction loss and therefore background-like clusters. A few anomaly candidates

are observable at higher classification values. To investigate them in more detail, a cut at

classification value 1800 is applied. In total, 18 clusters pass the cut. They are shown in

Fig. 16.19 and their cluster seed charge distribution is displayed in Fig. 16.20. Although

the distribution is very sparse due to the low number of anomalous events, a trend

towards exceptionally high seed charge values is observable. It can be concluded that

the Autoencoder is indeed filtering events associated with very high energy depositions,

without explicitly training it for this task.
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Figure 16.19. Pixel matrices with classification loss exceeding 1800.
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Figure 16.20. Cluster seed charge distribution for the clusters with classification loss exceeding

1800.



Chapter 17

Summary and Prospects

Present and future HEP experiments push the boundaries of current knowledge to ex-

tend our understanding of the fundamental properties of nature. For this purpose, par-

ticle colliders and multi-purpose detectors operate at the energy and intensity frontier

using advanced technologies and data analysis methods. This dissertation has demon-

strated the development of novel instruments and methods for present and future experi-

ments by characterising and assessing a monolithic silicon sensor technology demonstrator

and investigating advanced anomaly detection techniques for minimally-processed pixel-

detector data.

A list of publications summarising the findings of this thesis is given in the Appendix G

and an overview of the contributions to larger projects is presented in Appendix H.

Characterisation of a Small Collection-Electrode Monolithic CMOS Sensor

Future experiments at particle colliders focusing on precision measurements of Higgs bo-

son properties require an excellent secondary vertex and momentum resolution. This

demand combined with the challenging operation environment at next-generation collid-

ers, pose stringent requirements on the inner vertex and tracker detectors. Monolithic

CMOS pixel sensors with a small collection electrode are attractive candidates for these

detectors, since they offer a low material content and a high signal-to-noise ratio. The

CLICTD technology demonstrator is designed in a 180 nm CMOS process and allows

for the assessment of the monolithic small collection-electrode design. It targets the re-

quirements of the CLIC tracker and was fabricated with different design characteristics

regarding the pixel flavour, wafer material and sensor thickness. Investigating the advan-

tages and disadvantages of the individual designs is an essential endeavour, which has

important implications for future sensor designs.

In this thesis, CLICTD was first characterised in laboratory studies. For a successful

operation of the sensor, the front-end settings were tuned and different CLICTD sensor

245
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designs and operation settings were investigated. It was shown that designs and settings

that achieve a low input capacitance perform best with low noise levels of < 15 e and

equally low noise-free detection thresholds of < 150 e. The innovative front-end design of

CLICTD involves segmented detection channels consisting of sub-pixels with their own

analogue front-end that share a common digital logic. In this way, the digital footprint

is minimised and a small sub-pixel pitch is achieved. The laboratory studies allowed for

a detailed investigation of the front-end design and confirmed its functionality.

The sensors were exposed to charged particle beams to asses their performance in

a realistic operation environment. To this end, six test-beam measurement campaigns

at the DESY II Test-Beam Facility were performed and the analysis of about 80 × 106

events of the available data was shown in this thesis. The charge-sharing properties,

the hit-detection efficiency as well as the spatial and time resolution were investigated

for a wide range of operation parameters by varying the detection threshold and bias

voltages. It was found that the pixel flavours optimised for accelerated charge collection

reduce the charge sharing and consequently improve the hit-detection efficiency and the

time resolution. The best performance was achieved with sensors fabricated on high-

resistivity Czochralski wafers, since they profit from a large active sensor volume, which

leads to a higher signal.

All requirements for the CLIC tracker were found to be fulfilled for the optimised pixel

flavours. A position resolution down to (3.9 ± 0.2) µm combined with a time resolution

of (4.8 ± 0.1) ns was measured for perpendicular incidence of the particle beam despite

limitations in the front-end. The hit-detection efficiency is higher than 99.7 % for a

threshold range of several hundred electrons.

The sensors were also characterised using inclined particle tracks and a significant

improvement in hit-detection efficiency at high thresholds was found owing to the longer

particle path through the active sensor material. The spatial resolution is optimal around

an inclination angle of 40◦, where it evaluates to (3.6 ± 0.2) µm. In addition, the active

sensor depth was determined using grazing angle measurements. For sensors with a

high-resistivity epitaxial layer, the active depth was found to correspond to the nominal

thickness of 30 µm of the epitaxial layer. For high-resistivity Czochralski sensors, the

active depth scales with the substrate bias voltage and is about 60 µm at a voltage of

-16 V.

As the pixel layout of high-performance silicon sensors becomes increasingly complex,

advanced simulation frameworks are required to optimise design choices and predict the

sensor performance. In this thesis, combined electrostatic finite-element and Monte Carlo

simulations were presented that enable a high-precision sensor modelling as well as high
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simulation rates. The simulations were validated against transient finite-element sim-

ulations and test-beam measurements and excellent agreement was found over a wide

parameter range. For instance, the maximum deviation of the cluster size is of the order

of 5% and covered by the systematic uncertainties. The limiting factors in the simulation

precision were found to pertain to the available information on the doping profiles and

not to the simulation approach itself.

Once validated, example applications were shown, that complemented the laboratory

and test-beam measurements and illustrated the versatility of the simulation approach.

For instance, the sensor time resolution was investigated and determined to be of the

order of a few ns, which confirmed that the front-end time resolution of CLICTD domi-

nates the resolution of the device.

Prospects: Before a large-scale production of CLICTD could be initiated, a new sub-

mission of the sensor with a larger pixel matrix and an improved front-end design is

necessary. In subsequent steps, the development and testing of a demonstrator detector

module would be required, including e.g. chip-to-chip powering and communication.

The characterisation results of CLICTD sensors contribute to the development and

validation of design choices in the small collection-electrode pixel layout, which is the

basis for future developments using 65 nm CMOS technology. The smaller transistor size

allows for a higher transistor density, which is beneficial for a reduced pixel size. As these

devices have a thin active layer, which limits the measured signal, the optimised pixel

flavours are crucial to achieve a high hit-detection efficiency [183].

The results from sensors with high-resistivity Czochralski substrate are important as

well, especially for sensors where a significant amount of charge sharing is needed to op-

timise the spatial resolution for e.g. sensors in test-beam telescopes [321].

The simulation approach of combining three-dimensional finite-element simulations with

the Monte Carlo method is a powerful instrument to optimise and evaluate silicon detec-

tors regardless of their sensor design and applications. The results in this thesis illustrate

the success of this method and the established simulation chain lays the foundation for

a wide variety of applications. The pixel design of the novel 65 nm CMOS sensors is

optimised using this simulation approach as well.

Comparison of Supervised and Unsupervised Anomaly Detection in Belle II

Pixel Detector Data In the second part of this thesis, the identification of anomalous

pixel-detector data at Belle II was investigated. Belle II profits from the high luminosity

provided by the SuperKEKB collider as well as well-defined initial conditions of the col-
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liding electron-positron beams. The Belle II detector is designed to deliver high-precision

measurements to enable a rich physics programme that also involves the search for new

physics scenarios. Despite the sophisticated design of the detector, the sensitivity to

anomalous Highly-Ionising Particles (HIPs) is reduced due to the readout scheme of the

detector. Particles with a sufficiently high energy loss or low momentum do not reach

the outer sub-detectors and only generate hits in the inner tracking layers. However,

pixel hits in the innermost sub-detector - the pixel detector (PXD) - are only considered

if they are associated with a reconstructed particle track. The lack of data in the outer

detectors prohibits the reconstruction of such a track and the relevant PXD data is thus

filtered out making these particles undetectable. In this thesis, the feasibility of adding a

veto system to the current readout design, relying solely on PXD data, is investigated to

rescue potentially relevant PXD data. In particular, anomalous event signatures are tar-

geted, as they could pertain to unaccounted physics scenarios. To validate the approach,

hypothetical magnetic monopoles were simulated and identified against beam background

data.

A machine-learning-based veto system was selected and the importance of unsuper-

vised learning stressed, to avoid possible errors due to mis-modelling of background or

signal. As an example, Self-Organising Maps and Autoencoders were considered and

evaluated against a supervised convolutional Multilayer Perceptron. All three algorithms

exhibited superb performance with AUCs well above 97 %.

To evaluate the suitability for anomaly detection purposes, the signal sensitivity at

high background-rejection levels was extracted. While the Multilayer Perceptron is lim-

ited to signal efficiencies of approximately 30 %, the Self-Organizing Maps and the Au-

toencoder outperform the Multilayer Perceptron with 56 % and 60 %, respectively,

Using the Autoencoder, technical matters related to the size of the investigated pixel

matrix or potentially impure datasets were addressed. Additionally, the impact of various

background and signal properties on the performance of the classifier were studied. While

results typically varied by less than 5 % to the nominal value, important features about

the pixel-hit signatures of background and signal were discovered.

In conclusion, the feasibility of an unsupervised anomaly detection was successfully

shown, which strengthens the case for data analyses using unsupervised machine learning.

Prospects: This thesis motivated the importance of alternative search strategies for

undiscovered physics and showed the possibility of employing unsupervised anomaly de-

tection. The offline analysis of the recorded data is an important milestone in this en-

deavour and paves the way towards potential online applications. In particular, the

integration of a veto system into the PXD readout chain (e.g. on the ONSEN) would
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mark an important step to increase sensitivity to highly-ionising particles or particles

with low momentum.





Appendix A

Mobility Parametrisation

For the MC simulations presented in this thesis, the Masetti-Canali charge carrier mobility

was used:

µMasettiCanali =
µm(N)(

1 + (µm(N) · E/vm)β
)1/β

. (A.1)

The phenomenological parameters vm and β are taken from [322] as:

vm,e = 1.53× 109 · T−0.87cm s−1

βe = 2.57× 10−2 · T 0.66

vm,h = 1.62× 108 · T−0.52cm s−1

βh = 0.46× 10−2 · T 0.17,

with e denoting electrons and h holes. The temperature dependence requires T to be

given in Kelvin without including the unit in the calculation . The doping-dependent

Masetti mobility µm,e/h(N) is given by [323]:

µm,e(N) = µ0,e +
µmax,e − µ0,e

1 + (N/Cr,e)αe
− µ1,e

1 + (Cs,e/N)βe
(A.2)

for electrons and

µm,h(N) = µ0,h +
µmax,h − µ0,h

1 + (N/Cr,h)αh
− µ1,h

1 + (Cs,h/N)βh
+ ePc/N (A.3)

for holes. The phenomenological constants are obtained by numerical fitting to data. For

this thesis, they are adopted from [323] as :

µ0,e = 52.2 cm2 V−1 s−1

µmax,e = 1417 cm2 V−1 s−1 · (T/300 K)−2.5

Cr,e = 9.68× 1016 cm3

αe = 0.68

µ1,e = 43.4 cm2 V−1 s−1

Cs,e = 3.43× 1020 cm3

βe = 2.0

µ0,h = 44.9 cm2 V−1 s−1

µmax,h = 470.5 cm2 V−1 s−1 · (T/300 K)−2.2

Cr,h = 2.23× 1017 cm3

αh = 0.719

µ1,h = 29.0 cm2 V−1 s−1

Cs,h = 6.1× 1020 cm3

βh = 2.0

Pc = 9.23× 1016 cm3.
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Appendix B

Default CLICTD Configuration

Table B.1. Default configuration of the slow control registers of the CLICTD sensor. Devia-

tions from the default values are mentioned explicitly in the text.

DAC Value

VBIASResetTransistor 3

VRESET 104

VBIASLevelShift 9

VANALOG1 scanned

VANALOG2 scanned

VBIASPREAMPN 5

VNCASC 91

VPCASC 130

VFBK 71

VBIASIKRUM 4

VBIASDISCN 8

DAC Value

VBIASDISCP 9

VBIASDAC 7

VNCASCCOMP 118

VBIASLevelShiftstby 1

VBIASPREAMPNstby 1

VBIASDISCNstby 1

VBIASDISCPstby 1

VBIASDACstby 1

VBIASSlowBuffer 15

AdjustDACRange 3

VLVDSD 15
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Appendix C

Simulation Parameters of TCAD

The following Sentaurus TCAD tools from version 2019.12 are used:

• SDE as a structure editor to create the geometry

• SDevice for the device simulation to simulate the electrical characteristics of the

sensor

• SVisual to visualise and analyse the simulation results.

In the the SDevice tool, the following physics models and parameters are selected:

Physics{

Temperature = 300K

Mobility (

DopingDependence

eHighFieldSaturation

hHighFieldSaturation

Enormal

CarrierCarrierScattering

)

Recombination (

SRH (DopingDependence)

Band2Band (Hurkx)

Auger (withGeneration)

)

EffectiveIntrinsicDensity (OldSlotboom)

}
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Listing 1: Physics models and parameters used in the 3D TCAD simulations using the SDevice

tool.

To obtain the electrostatic properties of the sensor, Quasistationary simulations

are used, whereby voltages applied to all contacts are ramped up gradually until the

target voltages are reached. In each step, the uncertainty on the electrostatic solution is

required to be below a certain threshold, which ensures convergence of the final results.

The capacitance is extracted from ACCoupled simulations, which allows for a small-signal

AC analysis. The transient response to charge injection is calculated using a Transient

simulation and the HeavyIon model is used to simulate charge injection.



Appendix D

Allpix Squared Configuration Files

[AllPix]

log_level = "INFO"

number_of_events = 500000

detectors_file = "detector.conf"

model_paths = "./"

root_file = "file_name.root"

[GeometryBuilderGeant4]

world_material = "air"

[DepositionGeant4]

physics_list = FTFP_BERT_EMZ

enable_pai = true

particle_type = "e-"

number_of_particles = 1

source_energy = 5.4GeV

source_position = 0um 0um -50mm

source_type = "beam"

beam_size = 0.3mm

beam_direction = 0 0 1

max_step_length = 1.0um

[DopingProfileReader]

model = "mesh"

file_name = "file_name.init"

field_offset = 0.5 0.5

[WeightingPotentialReader]

model = "mesh"

file_name = "file_name.init"
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[ElectricFieldReader]

model = "mesh"

file_name = "file_name.init"

field_offset = 0.5 0.5

[TransientPropagation]

temperature = 293K

charge_per_step = 10

timestep = 0.0005ns

recombination_model = "srh"

mobility_model = "masetti_canali"

integration_time = 50ns

induction_matrix = 1,1

[PulseTransfer]

[DefaultDigitizer]

threshold = 150e

threshold_smearing = 30e

adc_resolution = 0

electronics_noise = 12e

[DetectorHistogrammer]

name = "dut"

[ROOTObjectWriter]

file_name = "file_name.root"

exclude = DepositedCharge, PropagatedCharge

Listing 2: Exemplary configuration file for the Allpix Squared simulations to replicate the

test-beam measurements using version 2.0.



Appendix E

Corryvreckan Configuration Files

[Corryvreckan]

detectors_file = /path/to/detector_file

detectors_file_updated = /path/to/detector_file_updated

[EventLoaderEUDAQ2]

type = "CLICTD"

file_name = /path/to/CLICTD/data

get_time_residuals = true

pixel_value_toa = 0

countingmode = 0

longcnt = 0

inclusive = false

[EventLoaderEUDAQ2]

type="Timepix3"

file_name = /path/to/Timepix3/data

inclusive = false

[EventLoaderEUDAQ2]

type="TLU"

file_name = /path/to/TLU/data

inclusive = false

[EventLoaderEUDAQ2]

type="MIMOSA26"

file_name = /path/to/Mimosa26/data

inclusive = false

shift_triggers = 1

[Clustering4D]

time_cut_abs = 1ms
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[Correlations]

do_time_cut = true

time_cut_abs = 10us

[Tracking4D]

min_hits_on_track = 7

spatial_cut_rel = 60 # M26: 4um,4um / TPX3: 10um,10um

exclude_dut = true

require_detectors = "Timepix3_0"

timestamp_from = "Timepix3_0"

momentum = 5.4GeV

track_model = "gbl"

[DUTAssociation]

spatial_cut_abs = 45um,56um

time_cut_abs = 2s

use_cluster_center = false

[EtaCorrection]

# Example values

eta_constants_x_CLICTD_0 = -0.00010162 1.35417 12.8879 -11341.2 -54473.3

3.09228e+07↪→

eta_constants_y_CLICTD_0 = -0.00122155 0.560778 1.14387 -1202.72 2766.75

7.27664e+06↪→

[AnalysisDUT]

chi2ndof_cut = 3

[AnalysisEfficiency]

chi2ndof_cut = 3

inpixel_bin_size = 1um

Listing 3: Example configuration file for the test-beam analysis with the Corryvreckan frame-

work using version 2.0.

[TLU_0]

orientation = 0,0,0

orientation_mode = "xyz"

position = 0,0,0

role = "auxiliary"

type = "tlu"
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[MIMOSA26_0]

mask_file = "path/to/mask/file/MIMOSA0"

material_budget = 0.00075

number_of_pixels = 1152, 576

orientation = -0.712759deg,-6.07713deg,-0.379642deg

orientation_mode = "xyz"

pixel_pitch = 18.4um,18.4um

position = -424.885um,1.81242mm,0

spatial_resolution = 4um,4um

time_resolution = 230us

type = "mimosa26"

[MIMOSA26_1]

mask_file = "path/to/mask/file/MIMOSA1"

material_budget = 0.00075

number_of_pixels = 1152, 576

orientation = 2.43805deg,2.9175deg,-0.152292deg

orientation_mode = "xyz"

pixel_pitch = 18.4um,18.4um

position = -1.21342mm,2.06874mm,277mm

spatial_resolution = 4um,4um

time_resolution = 230us

type = "mimosa26"

[MIMOSA26_2]

mask_file = "path/to/mask/file/MIMOSA2"

material_budget = 0.00075

number_of_pixels = 1152, 576

orientation = 2.69995deg,2.45913deg,0.0328878deg

orientation_mode = "xyz"

pixel_pitch = 18.4um,18.4um

position = -1.22653mm,1.85388mm,305mm

spatial_resolution = 4um,4um

time_resolution = 230us

type = "mimosa26"

[CLICTD_0]

mask_file = "path/to/mask/file/CLICTD"

material_budget = 0.00043

number_of_pixels = 128, 128

orientation = 176.953deg,2.70029deg,89.6465deg

orientation_mode = "xyz"

pixel_pitch = 37.5um,30um

position = 403.006um,2.86996mm,329mm

role = "dut"
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spatial_resolution = 10.8um,8.7um

time_resolution = 6ns

type = "clictd"

[MIMOSA26_3]

mask_file = "path/to/mask/file/MIMOSA3"

material_budget = 0.00075

number_of_pixels = 1152, 576

orientation = 2.97543deg,2.08035deg,0.0261842deg

orientation_mode = "xyz"

pixel_pitch = 18.4um,18.4um

position = -551.174um,2.1176mm,348mm

spatial_resolution = 4um,4um

time_resolution = 230us

role = "reference"

type = "mimosa26"

[MIMOSA26_4]

mask_file = "path/to/mask/file/MIMOSA4"

material_budget = 0.00075

number_of_pixels = 1152, 576

orientation = -3.02058deg,-2.1573deg,-0.348244deg

orientation_mode = "xyz"

pixel_pitch = 18.4um,18.4um

position = -607.802um,2.01054mm,375mm

spatial_resolution = 4um,4um

time_resolution = 230us

type = "mimosa26"

[MIMOSA26_5]

mask_file = "path/to/mask/file/MIMOSA5"

material_budget = 0.00075

number_of_pixels = 1152, 576

orientation = -3.71855deg,-1.48155deg,0.147078deg

orientation_mode = "xyz"

pixel_pitch = 18.4um,18.4um

position = -656.691um,2.01103mm,623mm

spatial_resolution = 4um,4um

time_resolution = 230us

type = "mimosa26"

[Timepix3_0]

material_budget = 0.01068

number_of_pixels = 256, 256

orientation = 176.059deg,-0.634379deg,0.115394deg
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orientation_mode = "xyz"

pixel_pitch = 55um,55um

position = -1.04743mm,955.904um,668mm

spatial_resolution = 10um,10um

time_resolution = 1ns

type = "timepix3"

Listing 4: Example geometry configuration file for the test-beam analysis with the Cor-

ryvreckan framework.





Appendix F

Architecture of Machine Learning

Algorithms for Anomaly Detection

Table F.1. Network architecture of the MLP.

Layer Kernel Padding Nodes Activation

Convolutional 2D 3× 3 1× 1 84 Leaky ReLU

Convolutional 2D 3× 3 1× 1 128 Leaky ReLU

Convolutional 2D 3× 3 1× 1 256 Leaky ReLU

Linear - - 128 Leaky ReLU

Linear - - 32 Leaky ReLU

Linear - - 1 -

Table F.2. Network architecture of the AE.

Layer Nodes Activation

Linear 84 ReLU

Linear 64 ReLU

Linear 16 ReLU

Linear 8 ReLU

Linear 16 ReLU

Linear 64 ReLU

Linear 84 ReLU
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Appendix G

List of Publications

Results presented in this thesis are published in the following journal articles and confer-

ence proceedings:

03/2022 Comparison of Different Sensor Thicknesses and Substrate Materials

for the Monolithic Small Collection-Electrode Technology Demonstra-

tor CLICTD

In CLICdp collaboration review, to be submitted to Nucl. Instr. Meth. A

Corresponding author

02/2022 Comparison of Supervised and Unsupervised Anomaly Detection in Belle II

Pixel Detector Data

Submitted to Eur. Phys. J. C, arXiv:2202.07935

Corresponding author

12/2021 Transient Monte Carlo Simulations for the Optimisation and Character-

isation of Monolithic Silicon Sensors

Nucl. Instrum. Meth. A 1031 (2022) 166491

Corresponding author

12/2021 Performance of the FASTPIX sub-nanosecond CMOS Pixel Sensor Demon-

strator

Instruments 6 (2022) 13

Co-author
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08/2021 Test-beam characterisation of the CLICTD technology demonstrator-

a small collection electrode High-Resistivity CMOS pixel sensor with

simultaneous time and energy measurement

Nucl. Instr. Meth. A 1006 (2021) 165396

Corresponding author

06/2021 Test-beam and simulation studies for the CLICTD technology demon-

strator - a monolithic CMOS pixel sensor with a small collection diode

Submitted to JPS Conf. Proc., arXiv:2106.12925

Corresponding author

03/2021 Corryvreckan: a modular 4D track reconstruction and analysis software

for test beam data

JINST 16 (03) (2021) P03008

Co-author

11/2020 The CLICTD monolithic CMOS sensor

Proceedings of the 29th International Workshop on Vertex Detectors (VERTEX2020)

Corresponding author

10/2020 Silicon Vertex and Tracking Detector R&D for CLIC

Proceedings of 40th International Conference on High Energy physics - PoS(ICHEP2020)

Corresponding author

10/2020 Design and Characterization of the CLICTD Pixelated Monolithic Sen-

sor Chip

IEEE Trans. Nucl. Sci. 67 (10) (2020) 2263–2272

Co-author

06/2020 Combining TCAD and Monte Carlo methods to simulate CMOS pixel

sensors with a small collection electrode using the Allpix2 framework

Nucl. Instr. Meth. Phys. A 964 (2020) 163784

Co-author

04/2020 Strategic R&D Programme on Technologies for Future Experiments -

Annual Report 2020

Annual Report CERN-EP-RDET-2021-001

Co-author



Appendix H

Contributions From the Author

The author contributed to the following overarching projects and software frameworks

while working on this thesis. The project concerning anomaly detection in Belle II pixel-

detector data was entirely planned and conducted by the author.

Test-Beam Campaigns and Laboratory Measurements of Various Silicon De-

tectors

The author contributed to all of the five one-week and one two-week test-beam campaigns

for the CLICTD sensor, which were conducted at the DESY II Test-Beam Facility. The

author compiled the measurement programme in consultation with the various experts

in the group and prepared all of the sensors for the test-beam measurements, which in-

cluded preparatory activities such as the organisation of the wire bonding of the sensor

to the chipboard and laboratory measurements (IV characteristics, pixel-matrix equali-

sations, X-ray measurements, determination of the minimum threshold etc.). During the

test beam, the author was involved in all activities such as assembling the measurement

setup, monitoring and data-quality checks in collaboration with other team members.

The reconstruction and analysis of the data was performed by the author.

The author was also involved in test-beam measurements of other silicon detectors

and prototypes, namely the CLICpix2 ASIC bump bonded to planar silicon sensors, the

Timepix3 ASIC interconnected with anisotropic conductive films to planar silicon sen-

sors, the ATLASPix HV-CMOS sensor and the FASTPIX sensor. Besides the test-beam

campaigns at DESY, the measurements were performed in four additional campaigns at

the SPS at CERN. The author was mainly involved in monitoring activities and data-

quality checks as well as in laboratory preparations for the CLICpix2 ASIC.

The Corryvreckan Reconstruction and Analysis Framework

The contribution of the author included code extensions and improvements to the frame-
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work, which involved the implementation of new features as well as testing and debugging

of code from other developers. The author also presented a tutorial of the framework in

an international detector school to master and PhD students.

The Allpix Squared Simulation Framework

The author contributed to new features within the framework, most importantly to the

integration of different charge carrier mobility and recombination models. Contributions

to the implementation of the Shockley-Ramo theorem for calculating the transient cur-

rent were made as well, especially in the testing and debugging phase. Furthermore, the

author supervised a student that initiated the integration of hexagonal pixel cells into

the framework.

The author tested and optimised the combination of 3D TCAD simulations with

the Allpix2 framework and presented the results in several conferences and workshops.

In particular, the author co-organised an Allpix2 User Workshop to bring together the

community, share results and discuss new developments.

All simulations shown in this thesis were performed by the author.

Simulation Studies for 65 nm CMOS Monolithic Silicon Sensors

The author contributed to the optimisation of the sensor layout for novel monolithic

65 nm CMOS sensors fabricated in the small collection-electrode design. The sensors are

developed and characterised in an collaborative effort of various groups and institutes

inside and outside of CERN. The contributions of the author focused mainly on transient

Monte Carlo simulations.
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[85] O. Klein and Y. Nishina, “Über die Streuung von Strahlung durch freie Elektronen

nach der neuen relativistischen Quantendynamik von Dirac,” Zeitschrift für Physik,

vol. 52, no. 11, pp. 853–868, 1929.

[86] “Atlas user’s manual,” tech. rep., Silvaco Int. Santa Clara, CA, 2011. https:

//www.eng.buffalo.edu/~wie/silvaco/atlas_user_manual.pdf.

[87] G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against car-

rier concentration in arsenic-, phosphorus-, and boron-doped silicon,” IEEE Trans.

Elec. Dev., vol. 30, no. 7, pp. 764–769, 1983.

[88] C. Canali, G. Majni, R. Minder, and G. Ottaviani, “Electron and hole drift velocity

measurements in silicon and their empirical relation to electric field and tempera-

ture,” IEEE Trans. Elec. Dev., vol. 22, no. 11, pp. 1045–1047, 1975.
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[237] I. Perić, P. Fischer, J. Knopf, and T. H. H. Nguyen, “DCDB and SWITCHERB,

the readout ASICS for Belle II DEPFET pixel detector,” in 2018 IEEE Nucl. Sci.

Symp. Med. Imaging Conf. NSS/MIC 2018 - Proc., pp. 1536–1539, 2011.

[238] J. Knopf, P. Fischer, C. Kreidl, and I. Peric, “A 256 channel 8-Bit current digitizer

ASIC for the Belle-II PXD,” JINST, vol. 6, no. 01, p. C01085, 2011.
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