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Abstract. Systems of the form

x′(t) = g(r(t), xt)

0 = ∆(r(t), xt)

generalize differential equations with delays r(t) < 0 which are given implic-
itly by the history xt of the state. We show that the associated initial value
problem generates a semiflow with differentiable solution operators on a Ba-
nach manifold. The theory covers reaction delays, signal transmission delays,
threshold delays, and delays depending on the present state x(t) only. As
an application we consider a model for the regulation of the density of white
blood cells and study monotonicity properties of the delayed argument func-
tion τ : t 7→ t + r(t). There are solutions (r, x) with τ ′(t) > 0 and others
with τ ′(t) < 0. These other solutions correspond to feedback which reverses
temporal order; they are short-lived and less abundant. Transient behaviour
with a sign change of τ ′ is impossible.
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1. Introduction

Consider an autonomous feedback system which reacts to its present state x(t) ∈ R
after a delay which depends on the present state: The differential equation for this
reads

(1.1) x′(t + d(x(t))) = f(x(t)),

with given functions d : R → (0,∞) and f : R → R. It can be rewritten in the
more familiar form

x′(s) = f(x(s + r(s)))

with s = t + d(x(t)) and r(s) = t− s < 0, which implies

r(s) = t− s = −d(x(t)) = −d(x(s + r(s))),

hence
0 = d(x(t + r(t)) + r(t).

In case of bounded delay d(R) ⊂ (0, h) for some h > 0 we use the segment notation
xt for the function [−h, 0] 3 a 7→ x(t+a) ∈ R, define g = f ◦ ev and ∆ = d◦ ev+pr1

with the evaluation map

ev : (−h, 0)× R[−h,0] 3 (s, φ) 7→ φ(s) ∈ R
and the projection pr1 onto the first component, and obtain the algebraic delay
differential system

x′(t) = g(r(t), xt)(1.2)
0 = ∆(r(t), xt).(1.3)

The last equation defines the delay r(t) implicitly by the segment xt of the state.
As an example we shall discuss a model for the regulation of the density of white
blood cells [4, 12]. In the model the equation corresponding to (1.1) is

x′(t + d(x(t))) = −µx(t + d(x(t))) + f(x(t)),

with µ > 0, d : R → (0, h) increasing and f : R → R decreasing. The associated
system of the form (1.2)-(1.3) has ∆ as before while g = gµ,f is defined by

gµ,f (s, φ) = −µφ(0) + f(φ(s))) = −µ ev(0, φ) + f ◦ ev(s, φ).

Several other differential equations with state-dependent delay can also be written
in the form (1.2)-(1.3). We indicate how to define ∆ in Eq. (1.3) for some of these
cases.
(i) For delays r(t) = −R(xt) which are explicitly given by the state via a functional
R : R[−h,0] → (0, h), let

∆(s, φ) = s + R(φ).

This includes delays r(t) = ρ(x(t)) which depend only on the present value of the
state, via a function ρ : R→ (0, h), as in [20, 14, 15, 16, 17, 18, 19, 9, 22].
(ii) For threshold delays [1, 10, 11] (see also section 2.5 of the survey [6]) with a
given continuous integral kernel K : R2 → R and a given threshold θ ∈ R define ∆
by

∆(s, φ) =
∫ 0

s

K(φ(0), φ(u))du− θ,
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for −h < s < 0 and φ ∈ R[−h,0] continuous.
(iii) For transmission delay as in [25, 26], with a given signal speed c > 0 and a
given lower bound −w ≤ 0 for positions, consider

∆(s, φ) = c s + φ(s) + φ(0) + 2w.

In the aforementioned work on threshold and transmission delays and also in [27],
where the prototype system given by Eq. (1.1) is studied, hypotheses guarantee
that Eq. (1.3) uniquely determines the delay r(t) as a function of the state xt.
This reduces the algebraic delay differential system to a single delay differential
equation. - Such hypotheses appear natural in cases of threshold and transmission
delay but seem unrelated to modeling considerations for a reaction delay as in Eq.
(1.1). Here a more general theory of the system (1.2)-(1.3) is desirable.

Before stating the main results of the present paper some notation is needed. For
h > 0, n ∈ N, and k ∈ N we consider the Banach spaces C = C([−h, 0],Rn) with
the norm given by

‖φ‖C = max
−h≤t≤0

|φ(t)|,

C1 = C1([−h, 0],Rn) with the norm given by

‖φ‖C1 = ‖φ‖C + ‖φ′‖C ,

B = Rk × C1 with the norm given by

‖(s, φ)‖B = |s|+ ‖φ‖C1 ,

and R×B with the norm given by

‖(t, s, φ)‖R×B = |t|+ ‖(s, φ)‖B .

The space of continuous linear maps from a Banach space X into a Banach space
Y is denoted by Lc(X,Y ).

For an open subset U ⊂ B with pr1U ⊂ (−h, 0)k we consider maps

g : U → Rn and ∆ : U → Rk.

A solution of the associated system (1.2)-(1.3) is a pair of functions x : [t0−h, te) →
Rn, r : [t0, te) → Rk, t0 < te ≤ ∞, where x is continuously differentiable, r is con-
tinuous, (r(t), xt) ∈ U for all t ∈ [t0, te), Eq. (1.2) holds for all t ∈ (t0, te), and Eq.
(1.3) holds for all t ∈ [t0, te). It is convenient to call the interval [t0, te) the domain
of the solution. Solutions on intervals (−∞, te) with te ≤ ∞ are defined with the
appropriate modifications.

In the subsequent sections 1-7 the standing hypothesis (H) is that

(H1) g and ∆ are continuously differentiable,

(H2) all derivatives Dg(s, φ) ∈ Lc(B,Rn) and D2∆(s, φ) ∈ Lc(C1,Rk), (s, φ) ∈
U , have linear extensions Deg(s, φ) : Rk × C → Rn and D2,e∆(s, φ) : C →
Rk,
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(H3) both maps

Λ : U × Rk × C 3 (s, φ, p, χ) 7→ Deg(s, φ)(p, χ) ∈ Rn

and
U × C 3 (s, φ, χ) 7→ D2,e∆(s, φ)χ ∈ Rk

are continuous.
We prove that the set

M = {(s, φ) ∈ U : φ′(0) = g(s, φ), 0 = ∆(s, φ), det D1∆(s, φ) 6= 0}
is a continuously differentiable submanifold of codimension k+n in B, and that the
maximal solutions (rs,φ, xs,φ) of the initial value problem given by the equations
(1.2)-(1.3) for t > 0 and

(1.4) (r(0), x0) = (s, φ)

with (s, φ) ∈ M constitute a continuous semiflow F : (t, s, φ) 7→ (rs,φ(t), xs,φ
t ) on

M . All solution operators Ft = F (t, ·), t ≥ 0, are continuously differentiable. Their
derivatives

DFt(s, φ) : T(s,φ)M → TF (t,s,φ)M

are given by linear variational equations. Moreover, F is continuously differentiable
for t > h.

The precise statements are contained in Propositions 3.1, 3.6, 4.3 and in Theorem
7.6 below. Hypothesis (H) is a generalization of the hypotheses for the analogous
results in [23, 24, 6], for initial value problems of the form

x′(t) = f̂(xt)(1.5)

x0 = φ ∈ Xf̂ = {φ ∈ Û : φ′(0) = f̂(φ)},(1.6)

with f̂ : C1 ⊃ Û → Rn.

Let us mention here that further delay differential systems, where a bounded delay
is defined implicitly by the state via a differential equation, like e. g. in [2, 13], are
covered by the theory in [23, 24, 6], under appropriate hypotheses on smoothness.

In section 8 we verify the properties (H) for the white blood cell model in case
d : R → (0, h) and f : R → R are continuously differentiable. It is also easy
to see that the functions ∆ from the examples (i)-(iii) fulfill the relevant parts of
hypothesis (H) when restricted appropriately: In (i), consider the restriction of R
to C1, assume that the latter is continuously differentiable, that derivatives have
linear extensions De(R|C1)(φ) : C → R, and that the map

C1 × C 3 (χ, φ) 7→ De(R|C1)(φ)χ ∈ R
is continuous. Consider ∆|(0, h)×C1. If ρ : R→ (0, h) is continuously differentiable
then R given by R(φ) = ρ(φ(0)) fulfills the hypotheses just described. In (ii),
assume that K is continuously differentiable and consider ∆|(0, h) × C1. In (iii),
let

h >
2w

c
and U = (−h, 0)× {φ ∈ C1 : −w < φ(a) <

ch

2
− w for − h ≤ a ≤ 0},
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and consider ∆|U .

In order to find local solutions of the initial value problem (1.2)-(1.4) we employ the
results from [23, 24, 6], and avoid a new construction especially for the algebraic-
delay differential system. In section 2 below the equation 0 = ∆(s, φ) is solved by
the Implicit Function Theorem for s = σ0(φ) in a neighbourhood of an initial datum
(s0, φ0) which satisfies ∆(s0, φ0) = 0, det D1∆(s0, φ0) 6= 0, and (φ0)′(0) = g(s0, φ0).
Upon that the theory of [23, 24, 6] is applied to the initial value problem

x′(t) = g(σ0(xt), xt),
x0 = φ

with φ′(0) = g(σ0(φ), φ). Section 3 begins with the proof that the set M is a contin-
uously differentiable submanifold of the space B. For initial data in M the result of
section 2 yields local solutions (r, x) of the problem (1.2)-(1.4), with r(t) = σ0(xt)
(Proposition 3.3). Then we proceed to maximal solutions, obtain the semiflow F
on M and prove that F is continuous. Also, we find a differential equation (∗) for
the r-component of solutions (Proposition 3.4). - This may suggest to replace Eq.
(1.3) with Eq. (∗) and to study the new system in the framework of [23, 24, 6]. It
should however be noticed that the map on the right hand side of Eq. (∗) in general
fails to satisfy the hypotheses needed in [23, 24, 6]. - Having the semiflow F we
formulate its relation to the semiflows from section 2 in terms of flow equivalence
(Proposition 3.7). This should be convenient for the transfer of results, notably on
local invariant manifolds, which have been obtained for initial value problems of
the form (1.5)-(1.6) [6, 8, 21].

The remaining smoothness properties of the semiflow F are proved in sections 4-7.
We follow the approach in [23, 24] as closely as possible. Proposition 3.4 is used in
section 5 on the derivative D1F (t, s, φ), which exists for t > h.

In the final section 8 of this paper we discuss the white blood cell model as an
example for feedback with a reaction delay, in the sense explained at the beginning
in the context of Eq. (1.1). Now the r-components of solutions are scalar, and
one may ask whether for a given solution (r, x) the associated delayed argument
function

τ : t 7→ t + r(t)

(which in the example appears on the right hand side of Eq. (1.2)) is increasing or
not.

In many contributions on differential equations with state-dependent delay the de-
layed argument functions are increasing, see the survey paper [6]. This property
may be felt natural and seems to facilitate the analysis.

A decrease of τ , on the other hand, means that the system reacts to states ξ1 =
x(τ(t1)), ξ2 = x(τ(t2)) in the past, with τ(t1) < τ(t2), in reverse temporal order,
namely by reactions x′(t1) to ξ1 and x′(t2) to ξ2 at t2 < t1.

In the experiment by Libet et al. [7] on unconscious brain activity before the
moment of awareness and voluntary action it was found that awareness of certain
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external stimuli in short time intervals arises in reverse temporal order. This may
be taken as an indication that decreasing delayed argument functions have a coun-
terpart in biological reality.

Recall that a flowline of the semiflow F is a map I 3 t 7→ (r(t), X(t)) ∈ M , with I ⊂
R an interval, so that for all t < u in I we have (r(u), X(u)) = F (u− t, r(t), X(t)).

In our example the manifold M decomposes into an open subset M+ 6= ∅ formed
by flowlines with strictly increasing delayed argument function, and into another
open subset M− 6= ∅ formed by flowlines with strictly decreasing delayed argument
function (Proposition 8.2). The flowlines in M− are short-lived, for the trivial rea-
son that τ(t) ≥ t− h (Corollary 8.3).

In case f is bounded each flowline F (·, s, φ) with bounded domain [0, ts,φ), ts,φ < ∞,
converges to a limit point in the manifold boundary M \M as t ↗ ts,φ (Proposition
8.5). Unless d is constant there exist points in M \M from which pairs of flowlines
bifurcate, one into the component M+ and the other one into M− (Proposition
8.7). Also, certain flowlines in M+ and in M− terminate at limit points with the
same first (delay) component (Proposition 8.8).

One may ask whether there exists continuous transient behaviour in the sense that
a flowline in M+ terminates at a point in the manifold boundary and can be con-
tinued from there by a flowline in M−, or vice versa. Proposition 8.6 says that such
behaviour is impossible.

Notation, preliminaries. For derivatives of functions x : J → E, J ⊂ R and E
a Banach space over R, we have Dx(t) ∈ Lc(R, E) and x′(t) = Dx(t)1 ∈ E.

The evaluation map ev0 = ev|(−h, 0)×C (with values in Rn) is continuous but not
locally Lipschitz continuous. The restriction ev1 = ev|(−h, 0) × C1 (values in Rn)
is continuously differentiable with

D ev1(s, φ)(ŝ, φ̂) = D1ev1(s, φ)ŝ + D2ev1(s, φ)φ̂ = ŝφ′(s) + φ̂(s).

We also need the linear continuous maps

ev0,s : C 3 χ 7→ χ(s) ∈ Rn and ev1,s : C1 3 φ 7→ φ(s) ∈ Rn,

for s ∈ [−h, 0], and
∂ : C1 3 φ 7→ φ′ ∈ C.

For a given Cartesian product of sets the projection onto the j-th component is
always denoted by prj .
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2. Restricted initial value problems

We begin with a local solution of the equation

0 = ∆(s, φ).

Let (s0, φ0) ∈ U with
0 = ∆(s0, φ0)

be given and assume det D1∆(s0, φ0) 6= 0. We apply the Implicit Function Theorem
and obtain open neighbourhoods V0 ⊂ (−h, 0)k of s0, N0 ⊂ C1 of φ0 with V0×N0 ⊂
U and

0 6= det D1∆(s, φ) on V0 ×N0,

and a continuously differentiable map σ0 : N0 → V0 with

σ0(φ0) = s0,(2.1)
0 = ∆(σ0(φ), φ) on N0,(2.2)

(V0 ×N0) ∩∆−1(0) = (σ0 × idN0)(N0).(2.3)

We look for solutions of the restricted initial value problem

x′(t) = gσ0(xt),(2.4)
x0 = φ,(2.5)

with the functional gσ0 : N0 → Rn given by

gσ0(φ) = g(σ0(φ), φ).

A solution is a continuously differentiable function x : [−h, te) → Rn, 0 < te ≤ ∞,
with xt ∈ N0 on [0, te) and x0 = φ which satisfies Eq. (2.4) for 0 < t < te.

In order to apply the results from [23, 24, 6] on existence, uniqueness and smooth-
ness we have to verify the hypothesis (H,σ0) that

(H1,σ0) gσ0 is continuously differentiable,

(H2,σ0) each derivative Dgσ0(φ) ∈ Lc(C1,Rn) has an extension Degσ0(φ) in Lc(C,Rn),

(H3,σ0) the map N0 × C 3 (φ, χ) 7→ Degσ0(φ)χ ∈ Rn is continuous.

We begin with the derivatives of σ0. From

0 = D(∆ ◦ (σ0 × id))(φ)χ
= D1∆(σ0(φ), φ)Dσ0(φ)χ + D2∆(σ0(φ), φ)χ

for φ ∈ N0 and χ ∈ C1 we get

Dσ0(φ)χ = −(D1∆(σ0(φ), φ))−1(D2∆(σ0(φ), φ)χ)

and see that each derivative Dσ0(φ) ∈ Lc(C1,Rk), φ ∈ N0, has a continuous linear
extension Deσ0(φ) : C → Rk, which is given by the same formula as Dσ0(φ),
namely,

Deσ0(φ)χ = −(D1∆(σ0(φ), φ))−1(D2,e∆(σ0(φ), φ)χ).

Hence the map
N0 × C 3 (φ, χ) 7→ Deσ0(φ)χ ∈ Rk
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is continuous (with respect to the product topology given by the norms on C1 and
on C). For φ ∈ N0 and χ ∈ C1 we have

Dgσ0(φ)χ = Dg(σ0(φ), φ)(Dσ0(φ)χ, χ).

Using the continuous linear extensions Deg(σ0(φ), φ) : Rk×C → Rn and Deσ0(φ) :
C → Rk we infer that also each map Dgσ0(φ), φ ∈ N0, has a continuous linear
extension Degσ0(φ) : C → Rn given by

Degσ0(φ)χ = Deg(σ0(φ), φ)(Deσ0(φ)χ, χ),

and that (H3,σ0) holds.

Let
Xσ0 = {φ ∈ N0 : φ′(0) = gσ0(φ)}.

From [23, 24, 6] we now have the following result.

Proposition 2.1. Let (s0, φ0) ∈ U be given with

(2.6) 0 = ∆(s0, φ0) and 0 6= det D1∆(s0, φ0).

Then there exist open neighbourhoods V0 ⊂ (−h, 0)k of s0 and N0 ⊂ C1 of φ0 with
V0 ×N0 ⊂ U so that

(2.7) det D1∆(s, φ) 6= 0 on V0 ×N0,

and there is a continuously differentiable map σ0 : N0 → V0 with properties (2.1)-
(2.3) so that the following holds.
(i) The set Xσ0 ⊂ N0 is a continuously differentiable submanifold of C1 with codi-
mension n, and for each φ ∈ Xσ0 we have

TφXσ0 = {χ ∈ C1 : χ′(0) = Dgσ0(φ)χ}.
(ii) Each φ ∈ Xσ0 defines a unique maximal solution xσ0,φ : [−h, tσ0,φ) → Rn,
0 < tσ0,φ ≤ ∞, of the initial value problem (2.4)-(2.5). We have xσ0,φ

t ∈ Xσ0 for
all t ∈ [0, tσ0,φ), and the equation

Fσ0(t, φ) = xσ0,φ
t

defines a continuous semiflow

Fσ0 : Ωσ0 → Xσ0 , Ωσ0 = {(t, φ) ∈ [0,∞)×Xσ0 : 0 ≤ t < tσ0,φ}.
(iii) Each map

Fσ0,t : Ωσ0,t 3 φ 7→ Fσ0(t, φ) ∈ Xσ0

with t ≥ 0 and Ωσ0,t = {φ ∈ Xσ0 : t < tσ0,φ} 6= ∅ is continuously differentiable. For
φ ∈ Ωσ0,t, x = xσ0,φ, and r : [0, tσ0,φ) → Rk given by r(t) = σ0(xt) we have

0 6= det D1∆(r(u), xu) for 0 ≤ u < tσ0,φ

and
DFσ0,t(φ)χ = vt

with v : [−h, tσ0,φ) → Rn continuously differentiable,

v′(u) = Dgσ0(xu)vu for 0 < u < tσ0,φ,(2.8)
v0 = χ.(2.9)
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(iv) The restriction of Fσ0 to the open subset

{(t, φ) ∈ Ωσ0 : t > h}
of the submanifold R×Xσ0 of the Banach space R×C1 is continuously differentiable,
with

(2.10) D1Fσ0(t, φ)1 = (xσ0,φ)′t.
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3. The semiflow on a manifold in B

Now we address the initial value problem (1.2)-(1.4). We assume that hypothe-
sis (H) holds, and look for maximal solutions with initial data in (s, φ) ∈ M ⊂
Rk × C1 = B. The idea is to continue local solutions by means of the Implicit
Function Theorem and Proposition 2.1 as long as 0 6= det D1∆(r(t), xt).

Proposition 3.1. The set

M = {(s, φ) ∈ U : φ′(0) = g(s, φ), ∆(s, φ) = 0, det D1∆(s, φ) 6= 0}
is a continuously differentiable submanifold of B, with codimension k + n.

Proof. Let O = {(s, φ) ∈ U : det D1∆(s, φ) 6= 0}. M is the zeroset of the con-
tinuously differentiable map Z : O → Rk × Rn with the components Z1 = ∆|O
and

Z2 = ev0,0 ◦ ∂ ◦ pr2|O − g|O.

It is enough to show that for every (s, φ) ∈ M the derivative DZ(s, φ) is sur-
jective. (Then B has a direct sum decomposition into the closed nullspace Y =
DZ(s, φ)−1(0) and a complementary subspace Q of dimension k + n, and the Im-
plicit Function Theorem shows that locally the translate M − (s, φ) is given by a
continuously differentiable map γ : V → Q, V an open neighbourhood of 0, with
γ(0) = 0 and Dγ(0) = 0.) Let (s, φ) ∈ M . Then

DZ1(s, φ)(p, χ) = D1∆(s, φ)p + D2∆(s, φ)χ = D1∆(s, φ)p + D2,e∆(s, φ)χ

and
DZ2(s, φ)(p, χ) = χ′(0)−Dg(s, φ)(p, χ) = χ′(0)−Deg(s, φ)(p, χ)

for all (p, χ) ∈ B. We look for a basis of Rk × Rn in DZ(s, φ)B. Let e1, . . . , ek

denote the canonical basis of Rk, and let ek+1, . . . , ek+n denote the canonical basis
of Rn. As D1∆(s, φ) : Rk → Rk is an isomorphism there exist p1, . . . , pk in Rk and
a1, . . . , ak ∈ Rn so that

DZ(s, φ)(pj , 0) =
(

DZ1(s, φ)(pj , 0)
DZ2(s, φ)(pj , 0)

)

=
(

D1∆(s, φ)pj

DZ2(s, φ)(pj , 0)

)
=

(
ej

aj

)
∈ Rk × Rn

for j = 1, . . . , k. Choose n sequences (χ(ν
j )∞ν=1 in C1, j ∈ {k +1, . . . , k +n}, so that

(χ(ν)
j )′(0) = ej for all j ∈ {k + 1, . . . , k + n} and ν ∈ N,

0 = lim
ν→∞

‖χ(ν)
j ‖C for all j ∈ {k + 1, . . . , k + n}.

By continuity of D2,e∆(s, φ) and Deg(s, φ),

DZ(s, φ)(0, χ
(ν)
j ) =

(
D2,e∆(s, φ)χ(ν)

j

(χ(ν)
j )′(0)−Deg(s, φ)(0, χ

(ν)
j )

)
→

(
0
ej

)
as ν →∞,

for each j ∈ {k + 1, . . . , k + n}. It follows that for ν →∞ the determinants of the
matrices

(DZ(s, φ)(p1, 0), . . . , DZ(s, φ)(pk, 0), DZ(s, φ)(0, χ(ν)
k+1), . . . , DZ(s, φ)(0, χ

(ν)
k+n))

converge to 1, which implies that DZ(s, φ)B contains a basis of Rk × Rn. ¤
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For (s, φ) ∈ M the tangent space T(s,φ)M coincides with the nullspace DZ(s, φ)−1(0)
from the preceding proof. Hence

T(s,φ)M = {(p, χ) ∈ B : 0 = D∆(s, φ)(p, χ), χ′(0) = Dg(s, φ)(p, χ)}.
It is convenient to introduce another description of the tangent space, in terms of
the map

A1 : M 3 (s, φ) 7→ −(D1∆(s, φ))−1 ◦D2∆(s, φ) ∈ Lc(C1,Rk).

Corollary 3.2. For (s, φ) ∈ M ,

T(s,φ)M = {(p, χ) ∈ B : p = A1(s, φ)χ, χ′(0) = Dg(s, φ)(A1(s, φ)χ, χ)}.
Proof. Use that the equation 0 = D∆(s, φ)(p, χ) = D1∆(s, φ)p + D2∆(s, φ)χ is
equivalent to p = −(D1∆(s, φ)−1(D2∆(s, φ)χ), as D1∆(s, φ) is an isomorphism.

¤

Notice that the map A1 is continuous. Later we shall also use the continuous map

A : M × C 3 (s, φ, χ) 7→ −(D1∆(s, φ))−1(D2,e∆(s, φ)χ) ∈ Rk.

For (s, φ) ∈ M and χ ∈ C1 we have

A(s, φ, χ) = A1(s, φ)χ.

Proposition 3.3. (Existence of solutions to the initial value problem) Let (s0, φ0) ∈
M be given. Then (2.7) holds, and there are V0, N0, σ0, Xσ0 as in Proposition 2.1.
There exist a further open neighbourhood N01 ⊂ N0 of φ0 in C1 and t0 > 0 so
that for every (s, φ) ∈ M ∩ (V0 × N01) we have s = σ0(φ), φ ∈ Xσ0 , t0 < tσ0,φ,
xσ0,φ

t ∈ N0 for 0 ≤ t ≤ t0, and the equations r(t) = σ0(x
σ0,φ
t ) and x(t) = xσ0,φ(t)

define a solution (r, x) of the initial value problem (1.2)-(1.4) with domain [0, t0),
and with (r(t), xt) ∈ M on [0, t0).

Proof. The domain Ωσ0 is open in [0,∞) ×Xσ0 . Using this and continuity of the
semiflow Fσ0 at (0, φ0) ∈ Ωσ0 ⊂ [0,∞)×Xσ0 we obtain an open neighbourhood N01

of φ0 in N0 and t0 > 0 with [0, t0]× (Xσ0 ∩N01) ⊂ Ωσ0 and Fσ0([0, t0]×N01) ⊂ N0.
Let (s, φ) ∈ M ∩ (V0×N01) be given. Then ∆(s, φ) = 0 and (s, φ) ∈ V0×N0, hence
s = σ0(φ). Also,

φ′(0) = g(s, φ) = g(σ0(φ), φ) = gσ0(φ),

or φ ∈ Xσ0 . Let ξ = xσ0,φ. We infer ξt = xσ0,φ
t ∈ N0 for 0 ≤ t ≤ t0. Consider the

continuous function r : [0, t0] 3 t 7→ σ0(ξt) ∈ Rk and the continuously differentiable
function x : [−h, t0) 3 t 7→ ξ(t) ∈ Rn. We obtain ∆(r(t), xt) = ∆(σ0(ξt), ξt) = 0 for
0 ≤ t ≤ t0 and

x′(t) = ξ′(t) = gσ0(ξt) = g(σ0(ξt), ξt) = g(r(t), xt)

for 0 < t < t0. Also, r(0) = σ0(ξ0) = σ0(φ) = s, x0 = ξ0 = φ. In particular,

x′(0) = φ′(0) = g(s, φ) = g(r(0), x0).

Finally, for 0 ≤ t ≤ t0 we have det D1∆(r(t), xt) = det D1∆(σ0(ξt), ξt) 6= 0, due
to (2.7) and (σ0(ξt), ξt) ∈ V0 × N0. Altogether it follows that (r(t), xt) ∈ M on
[0, t0]. ¤
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Proposition 3.4. For any solution (r, x) of the initial value problem (1.2)-(1.4)
with (s, φ) ∈ M we have

0 6= det D1∆(r(t), xt) for 0 ≤ t < te

and the map r is continuously differentiable with

r′(t) = A(r(t), xt, ∂ xt)

for all t ∈ [0, te).

Proof. 1. The inequality holds as (r(t), xt) ∈ M for 0 ≤ t < te.
2. The set

Sx = {(s, t) ∈ (−h, 0)k × (0, te) : (s, xt) ∈ U}
is open since the map [0, te) 3 t 7→ xt ∈ C1 is continuous and U is open. For all
t ∈ (0, te), (r(t), xt) ∈ Sx. The map

∆x : Sx 3 (s, t) 7→ ∆(s, xt) ∈ Rk

has partial derivatives D1∆x(s, t) = D1∆(s, xt) at each (s, t) ∈ Sx, and D1∆x :
Sx → Lc(Rk,Rk) is continuous.
3. We show that at each (s, t) ∈ Sx the partial derivative D2∆x(s, t) ∈ Lc(R,Rk)
exists and is given by

(3.1) D2∆x(s, t)1 = D2,e∆(s, xt)∂ xt.

Let (s, t) ∈ Sx be given. There exists ε > 0 with 0 < t − ε, t + ε < te such that
for all τ ∈ (−ε, ε) and for all θ ∈ [0, 1] we have (s, xt + θ(xt+τ − xt)) ∈ U . In case
τ 6= 0 we get

∆x(s, t+τ)−∆x(s, t)−τD2,e∆(s, xt)∂ xt = ∆(s, xt+τ )−∆(s, xt)−τD2,e∆(s, xt)∂ xt

= τ

∫ 1

0

(D2∆(s, xt + θ(xt+τ − xt))
1
τ

(xt+τ − xt)−D2,e∆(s, xt)∂ xt)dθ

= τ

∫ 1

0

(D2,e∆(s, xt + θ(xt+τ − xt))
1
τ

(xt+τ − xt)−D2,e∆(s, xt)∂ xt)dθ.

For 0 6= τ → 0 we have ∥∥∥∥
1
τ

(xt+τ − xt)− ∂ xt

∥∥∥∥
C

→ 0.

Using this and hypothesis (H) we infer that for 0 6= τ → 0 the last integrand
converges to 0 ∈ Rk, uniformly with respect to θ ∈ [0, 1]. This yields the assertion.
4. From Eq. (3.1) we also infer that the map D2∆x is continuous. It follows that
∆x is continuously differentiable. For 0 < t < te we have

0 = ∆(r(t), xt) = ∆x(r(t), t) and 0 6= det D1∆x(r(t), t).

Using the Implicit Function Theorem in a neighbourhood of (r(t0), t0), for any
t0 ∈ (0, te), we find that r|(0, te) is continuously differentiable, with

r′(t) = −(D1∆x(r(t), t))−1(D2∆x(r(t), t)1)
= −(D1∆(r(t), xt))−1(D2,e∆(r(t), xt)∂ xt)
= A(r(t), xt, ∂ xt)

for every t ∈ (0, te). Finally, the preceding formula and a continuity argument yield
that r has a right derivative at t = 0, and that r′ is continuous also at t = 0. ¤
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In general the map

AM : M 3 (s, φ) 7→ A(s, φ, ∂ φ) ∈ Rk

which appears on the right hand side of the differential equation in the Proposition
3.4 is not continuously differentiable. See, for example, the expression of the map
A in terms of the function d in section 8 below. - In general lack of smoothness of
AM precludes the possibility to study the modification of the initial value problem
(1.2)-(1.4) where the algebraic equation (1.3) is replaced by r′(t) = AM (r(t), xt),
in the framework of [23, 24, 6].

Proposition 3.5. Any two solutions of the initial value problem (1.2)-(1.4) with
(s, φ) ∈ M coincide on the intersection of their domains.

Proof. Consider two solutions (r, x), (r̂, x̂) with common domain [0, T ). Suppose
(r(t), x(t)) 6= (r̂(t), x̂(t)) for some t ∈ (0, T ). Then

ti = inf {t ∈ (0, T ) : (r(t), x(t)) 6= (r̂(t), x̂(t))}
belongs to [0, T ), and r(ti) = r̂(ti), xti

= x̂ti
. Let s0 = r(ti), φ0 = xti

. Then
(s0, φ0) ∈ M ⊂ U , and ∆(s0, φ0) = 0, det D1∆(s0, φ0) 6= 0. There exist open
neighbourhoods N0 ⊂ C1 of φ0 and V0 ⊂ (−h, 0)k of s0 with V0 × N0 ⊂ U , and
a continuously differentiable map σ0 : N0 → V0 so that (2.1)-(2.3) hold. We have
φ0 ∈ Xσ0 since

φ′0(0) = g(s0, φ0) = g(σ0(φ0), φ0) = gσ0(φ0).

The initial value problem (2.4)-(2.5) with φ = φ0 ∈ Xσ0 has a continuously dif-
ferentiable solution y : [−h, ty) → Rn, 0 < ty ≤ ∞. By continuity there exists
ε ∈ (0, ty) so that for 0 ≤ t < ε,

(r(ti + t), xti+t) ∈ V0 ×N0 3 (r̂(ti + t), x̂ti+t).

Consider ρ : [0, ε) 3 t 7→ r(ti + t) ∈ (−h, 0)k and ξ : [−h, ε) 3 t 7→ x(ti + t) ∈ Rn.
We have (ρ(t), ξt) ∈ V0 ×N0 and ∆(ρ(t), ξt) = 0 on [0, ε). Hence ρ(t) = σ0(ξt) on
[0, ε). Also,

ξ′(t) = x′(ti + t) = g(r(ti + t), xti+t) = g(ρ(t), ξt) = g(σ0(ξt), ξt) = gσ0(ξt)

for 0 < t < ε, and ξ0 = xti = φ0. By uniqueness of solutions of the initial
value problem (2.4)-(2.5), y(t) = ξ(t) = x(ti + t) for −h ≤ t < ε. Moreover,
r(ti + t) = ρ(t) = σ0(ξt) = σ0(yt) on [0, ε). For x̂ and r̂ we get the same result.
So r(t) = r̂(t) on [0, ti + ε) and x(t) = x̂(t) on [−h, ti + ε), in contradiction to the
properties of the infimum ti. ¤
For (s, φ) ∈ M set

ts,φ = t(s,φ) = sup {te ∈ (0,∞) ∪ {∞} : [0, te) is the domain of a
solution of the initial value problem (1.2)− (1.4)}
≤ ∞.

For every (s, φ) ∈ M there exists a maximal solution (rs,φ, xs,φ) of the initial
value problem (1.2)-(1.4) with domain [0, ts,φ), which has the property that for
any other solution (r, x) of the same initial value problem, with domain [0, te), we
have te ≤ ts,φ, and r and x are restrictions of rs,φ and xs,φ, respectively. Let

Ω = {(t, s, φ) ∈ [0,∞)×M : t < ts,φ}
13



and define F : Ω → M by

F (t, s, φ) = (rs,φ(t), xs,φ
t ).

For t ≥ 0 set

Ωt = {(s, φ) ∈ M : (t, s, φ) ∈ Ω} = {(s, φ) ∈ M : t < ts,φ}.
In case Ωt 6= ∅ the map Ft : Ωt → M is given by

Ft(s, φ) = F (t, s, φ).

Obviously, Ω0 = M and F0 = idM .

Notice that for every (s, φ) ∈ M the flowline [0, ts,φ) 3 t 7→ F (t, s, φ) ∈ M is con-
tinuous (with the continuity of the map [0, ts,φ) 3 t 7→ xs,φ

t ∈ C1).

Proposition 3.6. (i) For 0 ≤ t < ts,φ and 0 ≤ u < tF (t,s,φ), t + u < ts,φ and

F (t + u, s, φ) = F (u, F (t, s, φ)).

(ii) For every t ≥ 0 the set Ωt is an open subset of M . Ω is an open subset of
[0,∞)×M (with the topology given by the norm on R×B), and F is continuous.

Proof. 1. Proof of (i). Let (r, x) = (rs,φ, xs,φ), t1 = ts,φ, (u, ψ) = F (t, s, φ), (v, y) =
(ru,ψ, xu,ψ), t2 = tu,ψ. So, v(0) = u = r(t) and y(a) = x(t + a) on [−h, 0]. Define
w : [0, t + t2) → Rk and z : [−h, t + t2) → Rn by w(a) = r(a) on [0, t] and
w(a) = v(a − t) on [t, t + t2), z(a) = x(a) on [−h, t], z(a) = y(a − t) on [t, t + t2).
Then w is continuous and z is continuously differentiable. On (t, t + t2) we have
za = ya−t. It follows that

∆(w(a), za) = ∆(r(a), xa) = 0 on [0, t],
∆(w(a), za) = ∆(v(a− t), ya−t) = 0 on [t, t + t2),

and

z′(a) = x′(a) = g(r(a), xa) = g(w(a), za) on (0, t],
z′(a) = y′(a− t) = g(v(a− t), ya−t) = g(w(a), za) on ([t, t + t2).

Therefore, t + t2 < ts,φ, t + u ∈ [0, ts,φ), and

F (t + u, s, φ) = (w(t + u), zt+u)
= (v(t + u− t), yt+u−t) = (v(u), yu)
= F (u, v(0), y0) = F (u, r(t), xt) = F (u, F (t, s, φ)).

2. Proof of (ii).
2.1. Proof that for every (s0, φ0) ∈ M there exist t0 > 0 and an open neighbourhood
W of (s0, φ0) in M so that [0, t0] ×W ⊂ Ω and F |([0, t0] ×W ) is continuous: Let
(s0, φ0) ∈ M be given. Then (2.7) holds, and there exist V0, N0, σ0, Xσ0 , Fσ0 and
N01, t0 > 0 as in Propositions 2.1 and 3.3. It follows that

[0, t0]× ((V0 ×N01) ∩M) ⊂ Ω,(3.2)
F (t, s, φ) = (σ0(Fσ0(t, φ)), Fσ0(t, φ))(3.3)

on [0, t0]× ((V0 ×N01) ∩M),

and the restriction of F to [0, t0]× ((V0 ×N01) ∩M) is continuous.
2.2. We show that Ωt ⊂ M is open and that Ft is continuous, for t ≥ 0 and Ωt 6= ∅.
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In case t = 0 we have Ωt = M and Ft = idM . Consider the case t > 0. Let
(r0, φ0) ∈ Ωt be given. Then t < tr0,φ0 . Due to the continuity of flowlines the
set K = F ([0, t] × {(r0, φ0)}) ⊂ M is compact. Using this and part 2.1 we find
u > 0 and an open neighbourhood N of K in M so that [0, u] × N ⊂ Ω and F is
continuous on [0, u]×N . Choose J ∈ N with t

J < u. Then N ⊂ Ωt/J , and Ft/J is
continuous on N . Define (rj , φj) ∈ K for j = 1, . . . , J by

(rj , φj) = Ft/J(rj−1, φj−1).

By assertion (i) and induction, (rJ , φJ) = Ft(r0, φ0). Let an open neighbourhood
NJ ⊂ M of (rJ , φJ) be given. Recursively we find open neighbourhoods Nj ⊂ N ⊂
M of (rj , φj), j = J − 1, . . . , 0 so that Ft/J(Nj) ⊂ Nj+1 for these j. Using (i) and
induction once again we infer N0 ⊂ Ωt and Ft(N0) ⊂ NJ .
2.3. Proof that Ω ⊂ [0,∞) × M is open. Let (t, s, φ) ∈ Ω be given. Choose
u ∈ (t, ts,φ). Then (s, φ) ∈ Ωu. As Ωu ⊂ M is open there is a neighbourhood
N ⊂ M of (s, φ) with N ⊂ Ωu. Then [0, u] × N is a neighbourhood of (t, s, φ) in
[0,∞)×M which is contained in Ω.
2.4. Proof that F is continuous. Let (t0, s0, φ0) ∈ Ω be given. Part 2.1 yields
continuity at (t0, s0, φ0) in case t0 = 0. Assume t0 > 0. By part 2.1 there exists
u ∈ (0, t0) so that F is continuous at (u, s0, φ0). Let a neighbourhood N0 ⊂ M
of F (t0, s0, φ0) be given. As Ωt0−u ⊂ M is open and Ft0−u is continuous there
exists a neighbourhood N1 ⊂ M of F (u, s0, φ0) with Ft0−u(N1) ⊂ N0. Moreover,
F maps a neighbourhood (u − δ, u + δ) × N2, δ ∈ (0, u) and N2 ⊂ M open with
(s0, φ0) ∈ N2, of (u, s0, φ0) in Ω into N1. For each (t, s, φ) in the neighbourhood
(t0 − δ, t0 + δ)×N2 of (t0, s0, φ0) in [0,∞)×M we have t = (t0 − u) + (u + t− t0).
Using (i) we infer (t, s, φ) ∈ Ω and

F (t, s, φ) = F (t0 − u, F (u + t− t0, s, φ)) ⊂ Ft0−u(N1) ⊂ N0.

¤

It may be convenient for later use to state the relation between the semiflow F
for the algebraic-delay differential system and the semiflows for delay differential
equations given by Proposition 2.1 in terms of flow equivalence. So let (s0, φ0) ∈ M
be given and consider V0, N0, σ0, Xσ0 , Fσ0 as in Proposition 2.1. The set

M0 = M ∩ (V0 ×N0)

is open in M . For the projection p2 : B → C1 we easily obtain

p2M0 = Xσ0 ,

and the continuously differentiable map

P : M0
p2→ Xσ0

is a diffeomorphism whose inverse is the restricted graph map

G : Xσ0 3 φ 7→ (σ0(φ), φ) ∈ M0.

We define the restricted semiflow F0 : Ω0 → M0 on M0 by the relations

t0,s,φ = sup{t ∈ (0, ts,φ) : F (u, s, φ) ∈ V0 ×N0 for 0 ≤ u ≤ t}
≤ ts,φ ≤ ∞, for (s, φ) ∈ M0,

Ω0 = {(t, s, φ) ∈ [0,∞)×M0 : t < t0,s,φ},
F0(t, s, φ) = F (t, s, φ).
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Recall the notation tσ0,φ for the upper bound of the domain of the maximal solution
xσ0,φ, φ ∈ Xσ0 , from Proposition 2.1. A comparison of maximal solutions of the
relevant initial value problems yields the following result on continuously differen-
tiable (semi-) flow equivalence.

Proposition 3.7. For each (s, φ) ∈ M0,

t0,s,φ = tσ0,P (s,φ),

and for 0 ≤ t < t0,s,φ,
PF0(t, s, φ) = Fσ0(t, P (s, φ)).
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4. Smoothness of solution operators

We begin the proof that all maps Ft, t ≥ 0 and Ωt 6= ∅, are continuously differen-
tiable with results about the variational equation

v′(t) = L(F (t, s, φ), vt)

along flowlines where the continuous map

L : M × C → Rn

is defined by the equation

L(s, φ, χ) = Λ(s, φ, A(s, φ, χ), χ) (= Deg(s, φ)(−(D1∆(s, φ))−1(D2,e∆(s, φ)χ), χ)).

For each (s, φ) ∈ M the linear map

L1(s, φ) : C1 3 χ 7→ L(s, φ, χ) ∈ Rn

satisfies
L1(s, φ)χ = Dg(s, φ)(A1(s, φ)χ, χ)

for all χ ∈ C1, and is continuous.

Proposition 4.1. (i) Every compact set K ⊂ M has a neighbourhood N in M
with

sup
(s,φ)∈N

‖L(s, φ, ·)‖Lc(C,Rn) < ∞.

(ii) The map L1 : M → Lc(C1,Rn) is continuous.

Proof. 1. Proof of (i): Each (s, φ, 0) ∈ K × {0} ⊂ M × C has a neighbourhood
in M × C on which the continuous map L is bounded. Due to compactness of
K ×{0} ⊂ M ×C a finite collection of these neighbourhoods covers K ×{0}. This
yields a neighbourhood N of K in M and a neighbourhood V of 0 in C so that L
is bounded on N × V , and the assertion follows.
2. Proof of (ii): For (s, φ) and (s0, φ0) in M and for every χ ∈ C1 with ‖χ‖C1 ≤ 1,
set p = A1(s, φ)χ and p0 = A1(s0, φ0)χ). Then we have

|L1(s, φ)χ− L1(s0, φ0)χ| = |Dg(s, φ)(p, χ)−Dg(s0, φ0)(p0, χ)|
≤ |Dg(s, φ)(p, χ)−Dg(s0, φ0)(p, χ)|+ |Dg(s0, φ0)(p, χ)−Dg(s0, φ0)(p0, χ)|

≤ ‖Dg(s, φ)−Dg(s0, φ0)‖Lc(B,R)(|p|+ 1) + |Dg(s0, φ0)(p− p0, 0)|
≤ ‖Dg(s, φ)−Dg(s0, φ0)‖Lc(B,Rn)(|A1(s, φ)χ|+ 1)

+‖Dg(s0, φ0)‖Lc(B,Rn)|A1(s, φ)χ−A1(s0, φ0)χ|
≤ ‖Dg(s, φ)−Dg(s0, φ0)‖Lc(B,Rn)(‖A1(s, φ)‖Lc(C1,Rk) + 1)

+‖Dg(s0, φ0)‖Lc(B,Rn)‖A1(s, φ)−A1(s0, φ0‖Lc(C1,Rk).

This estimate and the continuity of A1 combined yield the assertion. ¤

Proposition 4.2. Let (s, φ) ∈ M , r = rs,φ, x = xs,φ, and χ ∈ C. There exists a
unique continuous function v : [−h, ts,φ) → Rn which is differentiable for 0 < t <
ts,φ and satisfies

v′(t) = L(F (t, s, φ), vt)(4.1)
for 0 < t < ts,φ and

v0 = χ.(4.2)

In case (p, χ) ∈ T(s,φ)M the function v = vs,φ,χ is continuously differentiable.
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Proof. Using Proposition 4.1 (i) and the continuity of flowlines we can proceed as
in the proofs of Propositions 1-3 and Corollary 1 in section 2 of [24] and obtain
that for every χ ∈ C there is a unique continuous function v : [−h, ts,φ) → Rn with
v0 = χ which is differentiable for 0 < t < ts,φ and satisfies v′(t) = L(F (t, s, φ), vt)
for such t. Continuity of flowlines and continuity of the curve [0, ts,φ) 3 t 7→ vt ∈ C
combined yield

lim
t↘0

v′(t) = lim
t↘0

L(F (t, s, φ), vt) = L(s, φ, χ).

In case (p, χ) ∈ T(s,φ)M we have χ ∈ C1 and χ′(0) = Dg(s, φ)(A1(s, φ)χ, χ) =
L(s, φ, χ), by Corollary 3.2. We obtain limt↗0 v′(t) = limt↘0 v′(t), which implies
that v is differentiable at 0, and that v′ is continuous. ¤

Proposition 4.3. Each map Ft, 0 ≤ t < ∞ and Ωt 6= ∅, is continuously differen-
tiable. For every (t, s, φ) ∈ Ω and (p, χ) ∈ T(s,φ)M we have

(4.3) DFt(s, φ)(p, χ) = (qs,φ,χ(t), vs,φ,χ
t )

where qs,φ,χ : [0, ts,φ) → Rk is given by

(4.4) qs,φ,χ(u) = A1(rs,φ(u), xs,φ
u )vs,φ,χ

u .

Proof. 1. We begin with a local result and show that for every (s0, φ0) ∈ M there
exist t0 > 0 and an open neighbourhood N of (s0, φ0) in M so that [0, t0]×N ⊂ Ω,
for every t ∈ [0, t0] the map Ft|N is continuously differentiable, and (4.3) and (4.4)
hold for all (s, φ) ∈ N , (p, χ) ∈ T(s,φ)M . Proof: Let (s0, φ0) ∈ M be given. Then we
have (2.7), and there are V0, N0, σ0, Xσ0 , Fσ0 and N01, t0 > 0 as in Propositions 2.1
and 3.3. As in part 2.1 of the proof of Proposition 3.6 we get (3.2) and (3.3). Using
Proposition 2.1 we infer that for t ∈ [0, t0] the restriction of Ft to (V0×N01)∩M is
continuously differentiable, and that for (s, φ) ∈ (V0 ×N01) ∩M , (p, χ) ∈ T(s,φ)M ,
and r = rs,φ, x = xs,φ we have

DFt(s, φ)(p, χ) = (D(σ0 ◦ Fσ0,t)(φ)χ,DFσ0,t(φ)χ)
= (Dσ0(xt)vt, vt)
= (−(D1∆(σ0(xt), xt))−1(D2∆(σ0(xt), xt)vt), vt)
= (A1(σ0(xt), xt)vt, vt)
= (A1(r(t), xt)vt, vt)

with a continuously differentiable solution v : [−h, tσ0,φ) → Rn of the IVP (2.8)-
(2.9). The inequality tσ0,φ ≤ ts,φ holds, and for 0 < u < tσ0,φ we get

v′(u) = Dgσ0(xu)vu

= Dg(σ0(xu), xu)(Dσ0(xu)vu, vu)
= Dg(σ0(xu), xu)(−(D1∆(σ0(xu), xu))−1(D2∆(σ0(xu), xu)vu), vu)
= L(σ0(xu), xu, vu)
= L(r(u), xu, vu) = L(F (u, s, φ), vu),

which is (4.1). Proposition 4.2 guarantees v(u) = vs,φ,χ(u) on [−h, tσ0,φ), and we
infer that (4.3) and (4.4) hold for t ∈ [0, t0].
2. For t = 0, Ft = idM . Let t > 0 and (s0, φ0) ∈ Ωt be given. Set (r, x) =
(rs0,φ0 , xs0,φ0). Consider the compact set K = {F (u, s0, φ0) : 0 ≤ u ≤ t} ⊂ M .
Part 1 says that for every u ∈ [0, t] there exist tu > 0 and an open neighbourhood
Nu of F (u, s0, φ0) in M with [0, tu] × Nu ⊂ Ω such that for every w ∈ [0, tu] the
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restriction Fw|Nu is continuously differentiable. Recall Corollary 3.2, for (s, φ) ∈
Nu. The compact set K is covered by a finite collection of the neighbourhoods
Nu, say, by the union of Nuν

, ν = 1, . . . , ν∗, with uν ∈ [0, t]. Choose J ∈ N
with t/J ≤ minν=1,...,ν∗ tuν and set (sj , φj) = F

(
jt
J , s0, φ0

)
for j = 1, . . . , J . For

every j ∈ {0, . . . , J − 1} there exists νj ∈ {1, . . . , ν∗} with (sj , φj) ∈ Nuνj
. Set

Nj = Nuνj
. Nj is an open neighbourhood of (sj , φj) in M with Nj ⊂ Ωt/J ,

Ft/J |Nj is continuously differentiable, and we have

(4.5) DFt/J(sj , φj)(p, χ) = (qsj ,φj ,χ(t/J), vsj ,φj ,χ

t/J )

for all (p, χ) ∈ T(sj ,φj)M , with qsj ,φj ,χ defined by Eq. (4.4), with (sj , φj) in place
of (s, φ).
3. We proceed as in part 2.2 of the proof of Proposition 3.6 and obtain open
neighbourhoods N̂j ⊂ Ωt/J of (sj , φj) for j = 0, . . . , J − 1 so that Ft/J |N̂j is
continuously differentiable and Ft/J(N̂j) ⊂ N̂j+1 for these j. It follows that Ft|N̂0 =
(Ft/J)J |N̂0 is continuously differentiable.
4. Let (p, χ) ∈ T(s0,φ0)M and set v = vs0,φ0,χ. Define q = qs0,φ0,χ by Eq. (4.4)
(with (s0, φ0) in place of (s, φ)). For j = 1, . . . , J set (pj , χj) = (q(jt/J), vjt/J ). In
order to prove Eq. (4.3) we show by induction that for j = 1, . . . , J we have

(4.6) DFjt/J (s0, φ0)(p, χ) = (pj , χj).

For j = 1, this is Eq. (4.5). Suppose Eq. (4.6) holds for some j ∈ {1, . . . , J − 1}.
Then (pj , χj) ∈ T(sj ,φj)M . By Proposition 3.6 (i),

rsj ,φj (u) = r

(
u +

jt

J

)
for 0 ≤ u ≤ t

J
,

and

xsj ,φj (u) = x

(
u +

jt

J

)
for − h ≤ u ≤ t

J
.

The continuously differentiable function

w :
[
−h,

t

J

]
3 u 7→ v

(
u +

jt

J

)
∈ R

satisfies w0 = vjt/J = χj , and for 0 < u ≤ t
J ,

w′(u) = v′
(

u +
jt

J

)

= L(r
(

u +
jt

J

)
, xu+ jt

J
, vu+ jt

J
)

= L(rsj ,φj (u), xsj ,φj
u , wu).

By uniqueness (Proposition 4.2), w(u) = vsj ,φj ,χj (u) on
[−h, t

J

]
. Consequently,

v
(
u + jt

J

)
= vsj ,φj ,χj (u) on

[−h, t
J

]
. In particular, v(j+1)t/J = v

sj ,φj ,χj

t/J . Using this
and the definitions of q and qsj ,φj ,χj we also get

q((j + 1)t/J) = qsj ,φj ,χj (t/J).
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It follows that

DF(j+1)t/J(s0, φ0)(p, χ) = DFt/J(sj , φj)(DFjt/J(s0, φ0)(p, χ) (chain rule)
= DFt/J(sj , φj)(pj , χj) (by assumption)

= (qsj ,φj ,χj (t/J), vsj ,φj ,χj

t/J ) (by (4.5))

= (q((j + 1)t/J), v(j+1)t/J) = (pj+1, χj+1).

¤
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5. The time derivative

In this section we show that flowlines have derivatives for t > h, and that the
corresponding partial derivative of the semiflow is continuous. We consider the
modified map

F̂ : Ω 3 (u, y, ψ) 7→ F (u, y, ψ) ∈ B

and flowlines
F̂y,ψ : [0, ty,ψ) 3 u 7→ F̂ (u, y, ψ) ∈ B.

Proposition 5.1. (i) Let (y, ψ) ∈ M and r = ry,ψ, x = xy,ψ, te = ty,ψ. The
restriction x′|(0, te) is continuously differentiable, with

(5.1) x′′(u) = L(F (u, y, ψ), ∂xu)

for 0 < u < te.
(ii) For (y, ψ) ∈ M with h < ty,ψ the curve F̂y,ψ is differentiable in (h, ty,ψ), with

DF̂y,ψ(u)1 = (r′(u), ∂xu) ∈ B

for h < u < ty,ψ, r = ry,ψ, x = xy,ψ.
(iii) The map

{(u, y, ψ) ∈ Ω : h < u < ty,ψ} 3 (u, y, ψ) 7→ DF̂y,ψ(u) ∈ Lc(R, B)

is continuous.

Proof. 1. Proof of (i).
1.1. Proof that x′ is differentiable at u ∈ (0, te) and that Eq. (5.1) holds: For all
real w 6= 0 with u + w ∈ [−h, te) we have

1
w

(x′(u + w)− x′(u))− L(F (u, y, ψ), ∂xu)

=
1
w

(g(F (u + w, y, ψ))− g(F (u, y, ψ)))− Λ(F (u, y, ψ), A(F (u, y, ψ), ∂xu), ∂xu)

=
1
w

∫ 1

0

Dg(F (u, y, ψ) + θ(F (u + w, y, ψ)− F (u, y, ψ)))

[F (u + w, y, ψ)− (F (u, y, ψ)]dθ − Λ(F (u, y, ψ), A(F (u, y, ψ), ∂xu), ∂xu)

=
∫ 1

0

[Dg(F (u, y, ψ)+θ(F (u+w, y, ψ)−F (u, y, ψ)))
1
w

[F (u+w, y, ψ)− (F (u, y, ψ)]

−Λ(F (u, y, ψ), A(F (u, y, ψ), ∂xu), ∂xu)]dθ.

=
∫ 1

0

[Deg(F (u, y, ψ)+θ(F (u+w, y, ψ)−F (u, y, ψ)))
1
w

[F (u+w, y, ψ)−(F (u, y, ψ)]

−Λ(F (u, y, ψ), A(F (u, y, ψ), ∂xu), ∂xu)]dθ

=
∫ 1

0

[Λ(F (u, y, ψ)+θ(F (u+w, y, ψ)−F (u, y, ψ))),
1
w

[F (u+w, y, ψ)−(F (u, y, ψ)])

−Λ(F (u, y, ψ), A(F (u, y, ψ), ∂xu), ∂xu)]dθ.

Let ε > 0. By the continuity of Λ there exist a convex neighbourhood U1 of
F (u, y, ψ) in U and a neighbourhood V of (A(F (u, y, ψ), ∂xu), ∂xu) in Rk × C so
that for all (s, φ, p, χ) ∈ U1 × V we have

|Λ(s, φ, p, χ)− Λ(F (u, y, ψ), A(F (u, y, ψ), ∂xu), ∂xu))| < ε.
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By the continuity of flowlines there exist u− < u+ with 0 ≤ u− < u < u+ < te so
that for all w ∈ R with u + w ∈ (u−, u+) we have F (u + w, y, ψ) ∈ U1. As U1 is
convex we get

F (u, y, ψ) + θ(F (u + w, y, ψ)− F (u, y, ψ)) ∈ U1

for such w and for 0 ≤ θ ≤ 1. Using the uniform continuity of r′ on [0, u+] and the
uniform continuity of x′ on [−h, u+] and the equations

1
w

(r(u + w)− r(u))− r′(u) =
1
w

∫ w

0

(r′(u + θ)− r′(u))dθ,

1
w

(x(u + w + a)− x(u + a))− x′(u + a) =
1
w

∫ w

0

(x′(u + θ + a)− x′(u + a))dθ

for real w 6= 0 with u + w ∈ [0, te) and for a ∈ [−h, 0], and the equation for r′(u) in
Proposition 3.4, we find an open interval J ⊂ (u−, u+) with u ∈ J so that for all
real w 6= 0 with u + w ∈ J we have

1
w

[F (u + w, y, ψ)− F (u, y, ψ)] =
(

1
w

(r(u + w)− r(u)),
1
w

(xu+w − xu)
)
∈ V.

For such w we obtain∣∣∣∣
1
w

(x′(u + w)− x′(u))− L(F (u, y, ψ), ∂xu)
∣∣∣∣

≤
∫ 1

0

|Λ(F (u, y, ψ)+θ(F (u+w, y, ψ)−F (u, y, ψ))),
1
w

[F (u+w, y, ψ)−(F (u, y, ψ)])

−Λ(F (u, y, ψ), A(F (u, y, ψ), ∂xu), ∂xu)|dθ < ε,

which yields the assertion.
1.2. The continuity of x′′ : (0, te) → Rn follows from Eq. (5.1) since L, the flowline
[0, te) 3 u 7→ F (u, y, ψ) ∈ M , and the map [0, te) 3 u 7→ ∂xu ∈ C are all continuous.
2. Proof of (ii). Let (y, ψ) ∈ M with h < ty,ψ be given. Set r = ry,ψ, x = xy,ψ, te =
ty,ψ. Due to Proposition 3.4 the component p1 ◦Fy,ψ = r is differentiable. Consider
the component p2 ◦ Fy,ψ and h < u < te. For w ∈ R with u + w ∈ (h, te) we have

‖p2 ◦ Fy,ψ(u + w)− p2 ◦ Fy,ψ(u)− w ∂xu‖C1

= ‖xu+w − xu −w ∂xu‖C1 = ‖xu+w − xu −w ∂xu‖C + ‖∂xu+w − ∂xu −w ∂∂xu‖C ,

and for all a ∈ [−h, 0],

xu+w(a)− xu(a)− w (∂xu)(a) =
∫ w

0

(x′(u + θ + a)− x′(u + a))dθ

and

(∂xu+w)(a)− (∂xu)(a)− w (∂∂xu)(a) =
∫ w

0

(x′′(u + θ + a)− x′′(u + a))dθ.

Using the preceding equations and the uniform continuity of x′ and of x′′ on [u −
h− δ, u+ δ] ⊂ (0, te), for δ > 0 sufficiently small, one verifies that D(p2 ◦Fy,ψ)(u) ∈
Lc(R, C1) exists and is given by D(p2 ◦ Fy,ψ)(u)1 = ∂xu ∈ C1.
3. Proof of (iii).
3.1. Let Ωh< = {(t, s, φ) ∈ Ω : h < t < ts,φ}. It is enough to show that the maps

ρ : Ω 3 (t, y, ψ) 7→ (ry,ψ)′(t) ∈ Rk,

ξ : Ω 3 (t, y, ψ) 7→ ∂xy,ψ
t ∈ C,
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and
ξ′ : Ωh< 3 (t, y, ψ) 7→ ∂∂xy,ψ

t ∈ C

are continuous. Continuity of ξ is obvious from the continuity of F̂ . Proposition
3.4 gives ρ(t, y, ψ) = A(F (t, y, ψ), ξ(t, y, ψ)) on Ω, which yields the continuity of ρ.
3.2. Proof that ξ′ is continuous: By Eq. (5.1),

ξ′(u, y, ψ)(a) = (xy,ψ)′′(u + a) = L(F (u + a, y, ψ), ξ(u + a, y, ψ))

for (u, y, ψ) ∈ Ωh< and −h ≤ a ≤ 0. The continuity of L,F and ξ combined show
that the map

ξ̂ : Ω 3 (w, y, ψ) 7→ L(F (w, y, ψ), ξ(w, y, ψ)) ∈ Rn

is continuous. Let (u0, y0, ψ0) ∈ Ωh< be given, and let ε > 0. Choose δ0 > 0 with
h < u0−δ0 and u0 +δ0 < ty0,ψ0 . Choose a neighbourhood N of (y0, ψ0) in the open
subset Ωu0+δ0 of M . Then [0, u0 + δ0] × N ⊂ Ω. The uniform continuity of ξ̂ on
the compact set [u0− δ0− h, u0 + δ0]×{(y0, ψ0)} implies that there exists δ > 0 so
that for all u ∈ (u0− δ, u0 + δ) and for all (y, ψ) ∈ N with ‖(y, ψ)− (y0, ψ0)‖B < δ,
and for all a ∈ [−h, 0], we have

ε > |ξ̂(u + a, y, ψ)− ξ̂(u0 + a, y0, ψ0)| = |ξ′(u, y, ψ)(a)− ξ′(u0, y0, ψ0)(a)|.
This yields the continuity of ξ′ at (u0, y0, ψ0). ¤
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6. The variational equation

This section contains preparations for the proof that the semiflow F is continuously
differentiable on the subset of Ω given by t > h. Notice that because of this last
restriction the proof can not be replaced by a simple reduction to a local version of
the desired result (which would follow from section 2).

In section 7 we shall consider the modified map

F̂ : Ω 3 (t, s, φ) 7→ F (t, s, φ) ∈ B

and compositions F̂ ◦ K with local parametrizations (inverted manifold charts)
K : I × V → I × N of the C1-submanifold R × M of the Banach space R × B,
with I ⊂ R an open interval, V an open subset of a tangent space Y of M , and N
an open subset of M . Below we derive estimates which will be used in the proof
that the partial derivatives DY (F̂ ◦K)(t, p, χ) with t > h depend continuously on
(t, p, χ) ∈ I×V ⊂ R×Y ⊂ R×B. We study solutions vs,φ,χ of the initial value prob-
lem (4.1)-(4.2). The proofs are adaptations of the proofs of Propositions 4-7 in [24].

Proposition 6.1. Let (s, φ) ∈ M and 0 ≤ t < ts,φ. There exists c1 = c1(t, s, φ) ≥ 0
so that for each χ ∈ C the solution v = vs,φ,χ satisfies

‖vu‖C ≤ ec1u‖χ‖C for all u ∈ [0, t].

In case h < t < ts,φ we have

|vu‖C1 ≤ c1e
c1u‖χ‖C for all u ∈ (h, t].

Proof. Proposition 4.1 (i) yields

c = sup
0≤u≤t

‖L(F (u, s, φ), ·)‖Lc(C,Rn) < ∞.

Let v = vs,φ,χ. Using (4.1) and the continuity of the curve [0, t] 3 w 7→ vw ∈ C we
infer |v(u)| ≤ |v(0)| + c

∫ u

0
‖vw‖Cdw for 0 ≤ u ≤ t. Moreover, for such u and for

−h ≤ a ≤ 0,

|v(u + a)| ≤ ‖v0‖C + c

∫ max{u+a,0}

0

‖vw‖Cdw ≤ ‖v0‖C + c

∫ u

0

‖vw‖Cdw.

Consequently,

‖vu‖C ≤ ‖v0‖C + c

∫ u

0

‖vw‖Cdw on [0, t],

and by Gronwall’s lemma,

‖vu‖C ≤ ecu‖v0‖C = ecu‖χ‖C on [0, t].

In case h < t and h < u ≤ t we obtain

‖∂vu‖C = max
−h≤a≤0

|v′(u + a)| = max
−h≤a≤0

|L(F (u + a, s, φ), vu+a)| ≤ c ecu‖χ‖C .

Now the assertion becomes obvious. ¤
Proposition 6.2. Let (s, φ) ∈ M and 0 ≤ t < ts,φ. There exist c2 = c2(t, s, φ) ≥ 0
and a neighbourhood N of (s, φ) in M so that for every (s, φ) ∈ N we have t < ts,φ,
and for all (p, χ) ∈ T(s,φ)M and u ∈ [0, t],

‖vs,φ,χ
u ‖C1 ≤ c2e

c2u‖χ‖C1 .
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Proof. Proposition 4.1 (i) yields a neighbourhood V ⊂ M of the compact set K =
{F (u, s, φ) : 0 ≤ u ≤ t} in M with

c = sup
(s,φ)∈V

‖L(s, φ, ·))‖Lc(C,R) < ∞.

A standard compactness argument, which employs the openness of Ω and the con-
tinuity of F , shows that there is a neighbourhood N of (s, φ) in M so that for each
(s, φ) ∈ N we have t < ts,φ and F (u, s, φ) ∈ V for 0 ≤ u ≤ t. Let (s, φ) ∈ N and
(p, χ) ∈ T(s,φ)M , u ∈ [0, t]. As in the proof of Proposition 6.1,

‖vs,φ,χ
u ‖C ≤ ecu‖χ‖C .

For a ∈ [−h, 0] with 0 < u + a, Eq. (4.1) gives

|(vs,φ,χ)′(u + a)| ≤ c‖vs,φ,χ
u+a ‖C ≤ c ecu‖χ‖C .

As (p, χ) ∈ T(s,φ)M we know from Proposition 4.2 that vs,φ,χ is continuously dif-
ferentiable. For a ∈ [−h, 0] with u + a ≤ 0 this yields

|(vs,φ,χ)′(u + a)| ≤ ‖∂χ‖C .

Combining the previous estimates we find

‖vs,φ,χ
u ‖C1 ≤ (c + 2)ecu‖χ‖C1 .

¤

Proposition 6.3. Let (s, φ) ∈ M and h < t < ts,φ. Then there exists c3 =
c3(t, s, φ) ≥ 0 so that for every (p, χ) ∈ T(s,φ)M and for h < u < w ≤ t,

‖vs,φ,χ
w − vs,φ,χ

u ‖C1 ≤ c3‖χ‖C1(|w − u|+
max

−h≤a≤0
‖L1(F (w + a, s, φ))− L1(F (u + a, s, φ))‖Lc(C1,Rn)).

Proof. 1. Let (p, χ) ∈ T(s,φ)M , v = vs,φ,χ, h < t < ts,φ. Estimate of ‖vw − vu‖C

for 0 ≤ u < w ≤ t: Proposition 4.2 shows that v is continuously differentiable. By
Proposition 4.1 (i),

c = sup
0≤u≤t

‖L(F (u, s, φ), ·)‖Lc(C,Rn) < ∞.

Proposition 6.1 yields c1 = c1(t, s, φ) ≥ 0 with

‖vu‖C ≤ ec1t‖χ‖C for 0 ≤ u ≤ t.

For 0 ≤ u < w ≤ t and for −h ≤ a ≤ 0,

|vw(a)− vu(a)| = |v(w + a)− v(u + a)| = |
∫ w+a

u+a

v′(y)dy|.

In case −h ≤ y ≤ 0, |v′(y)| = |χ′(y)| ≤ ‖χ‖C1 . In case 0 < y ≤ t,

|v′(y)| = |L(F (y, s, φ), vy)| ≤ c‖vy‖C ≤ c ec1t‖χ‖C .

It follows that for 0 ≤ u < w ≤ t,

‖vw − vu‖C ≤ ‖χ‖C1 |w − u|(1 + c ec1t).
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2. Next, consider ‖∂vw − ∂vu‖C for h < u < w ≤ t. For every a ∈ [−h, 0],

|∂vw(a)− ∂vu(a)| = |v′(w + a)− v′(u + a)|
= |L(F (w + a, s, φ), vw+a)− L(F (u + a, s, φ), vu+a)|
≤ |L(F (w + a, s, φ), vw+a)− L(F (u + a, s, φ), vw+a)|

+|L(F (u + a, s, φ), vw+a − vu+a)|.
Recall the map L1 and Proposition 4.1 (ii). As vw+a ∈ C1, the last sum equals

|(L1(F (w + a, s, φ))− L1(F (u + a, s, φ)))vw+a|+ |L(F (u + a, s, φ), vw+a − vu+a)|
≤ ‖L1(F (w + a, s, φ))− L1(F (u + a, s, φ))‖Lc(C1,Rn)‖vw+a‖C1 + c‖vw+a − vu+a‖C .

Proposition 6.2 yields c2 = c2(t, s, φ) ≥ 0 with

‖vw+a‖C1 ≤ c2e
c2t‖χ‖C1 .

Using this estimate and the result of part 1 we see that the last sum is majorized
by

‖L1(F (w+a, s, φ))−L1(F (u+a, s, φ))‖Lc(C1,Rn) c2e
c2t‖χ‖C1+c‖χ‖C1 |w−u|(1+c ec1t).

It follows that for h < u < w ≤ t,

‖vw − vu‖C1 = ‖vw − vu‖C + ‖∂vw − ∂vu‖C

≤ ‖χ‖C1(|s− u|(1 + c ec1t) +
max

−h≤a≤0
‖L1(F (w + a, s, φ))− L1(F (u + a, s, φ))‖Lc(C1,Rn) c2e

c2t

+c|w − u|(1 + c ec1t)).

Set c3 = c2e
c2t + (1 + c)(1 + c ec1t). ¤

Proposition 6.4. Let (s, φ) ∈ M and h < t < ts,φ. There exist c4 = c4(t, s, φ) ≥ 0
and a neighbourhood N of (s, φ) in M so that for every (s, φ) ∈ N we have t < ts,φ,
and for all (p, χ) ∈ T(s,φ)M and u ∈ (h, t],

‖vs,φ,χ
u − vs,φ,χ

u ‖C1 ≤ c4e
c4t max

0≤w≤t
‖L1(F (w, s, φ))−L1(F (w, s, φ))‖Lc(C1,Rn)‖χ‖C1 .

Proof. 1. Choose c2 = c2(t, s, φ) and N according to Proposition 6.2 and choose c
as in the proof of Proposition 6.1. Let (s, φ) ∈ N and (p, χ) ∈ T(s,φ)M . Estimate of

‖vs,φ,χ
u − vs,φ,χ

u ‖C for 0 ≤ u ≤ t: Proposition 4.2 shows that vs,φ,χ is continuously
differentiable. For u ∈ [0, t] and a ∈ [−h, 0] with u + a ≤ 0,

vs,φ,χ(u + a)− vs,φ,χ(u + a) = 0.

In case 0 < u + a,

|vs,φ,χ(u + a)− vs,φ,χ(u + a)| = |
∫ u+a

0

(vs,φ,χ)′(y)− (vs,φ,χ)′(y))dy|

= |
∫ u+a

0

(L(F (y, s, φ), vs,φ,χ
y )− L(F (y, s, φ), vs,φ,χ

y )dy|

= |
∫ u+a

0

(L(F (y, s, φ), vs,φ,χ
y )−L(F (y, s, φ), vs,φ,χ

y ))+L(F (y, s, φ), vs,φ,χ
y −vs,φ,χ

y )dy|

= |
∫ u+a

0

(L1(F (y, s, φ))− L1(F (y, s, φ))vs,φ,χ
y + L(F (y, s, φ), vs,φ,χ

y − vs,φ,χ
y )dy|
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(here we used vs,φ,χ
y ∈ C1 for 0 ≤ y ≤ u + a)

≤ t max
0≤y≤u+a

‖L1(F (y, s, φ))− L1(F (y, s, φ))‖Lc(C1,Rn) max
0≤y≤u+a

‖vs,φ,χ
y ‖C1

+c

∫ u+a

0

‖vs,φ,χ
y − vs,φ,χ

y ‖C dy

≤ t max
0≤y≤t

‖L1(F (y, s, φ))− L1(F (y, s, φ))‖Lc(C1,Rn) c2e
c2(u+a)‖χ‖C1

+c

∫ u+a

0

‖vs,φ,χ
y − vs,φ,χ

y ‖C dy

(see Proposition 6.2). It follows that for 0 ≤ u ≤ t,

‖vs,φ,χ
u − vs,φ,χ

u ‖C ≤ t max
0≤y≤t

‖L1(F (y, s, φ))− L1(F (y, s, φ))‖Lc(C1,Rn) c2e
c2t‖χ‖C1

+c

∫ u

0

‖vs,φ,χ
y − vs,φ,χ

y ‖C dy,

and Gronwall’s lemma yields

‖vs,φ,χ
u −vs,φ,χ

u ‖C ≤ t max
0≤y≤t

‖L1(F (y, s, φ))−L1(F (y, s, φ))‖Lc(C1,Rn) c2e
c2t‖χ‖C1 ecu

for 0 ≤ u ≤ t.
2. For u ∈ [0, t] and a ∈ [−h, 0] with 0 < u + a,

|(vs,φ,χ)′(u+a)−(vs,φ,χ)′(u+a)| = |L(F (u+a, s, φ), vs,φ,χ
u+a )−L(F (u+a, s, φ), vs,φ,χ

u+a |

= |L(F (u+a, s, φ), vs,φ,χ
u+a )−L(F (u+a, s, φ), vs,φ,χ

u+a )+L(F (u+a, s, φ), vs,φ,χ
u+a −vs,φ,χ

u+a )|
≤ max

0≤y≤t
‖L1(F (y, s, φ))− L1(F (y, s, φ))‖Lc(C1,Rn) ‖vs,φ,χ

u+a ‖C1 + c‖vs,φ,χ
u+a − vs,φ,χ

u+a ‖C

(compare part 1)

≤ max
0≤y≤t

‖L1(F (y, s, φ))−L1(F (y, s, φ))‖Lc(C1,Rn) c2e
c2(u+a)‖χ‖C1+c‖vs,φ,χ

u+a −vs,φ,χ
u+a ‖C

(Proposition 6.2). In case h < u ≤ t,

vs,φ,χ
u − vs,φ,χ

u ∈ C1.

Using the previous estimate and the result of part 1 we infer that for h < u ≤ t,

‖∂vs,φ,χ
u − ∂vs,φ,χ

u ‖C

≤ max
0≤y≤t

‖L1(F (y, s, φ))− L1(F (y, s, φ))‖Lc(C1,Rn)‖χ‖C1(c2e
c2t + c t c2e

(c2+c)t).

Using the result of part 1 once more we arrive at

‖vs,φ,χ
u −vs,φ,χ

u ‖C1 ≤ max
0≤y≤t

‖L1(F (y, s, φ))−L1(F (y, s, φ))‖Lc(C1,Rn)‖χ‖C1(t c2e
(c2+c)t

+c2e
c2t + c t c2e

(c2+c)t)
for h < u ≤ t, (s, φ) ∈ N , (p, χ) ∈ T(s,φ)M . ¤
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7. Derivatives with respect to initial data and smoothness of the
semiflow

In order to prove that F is continuously differentiable for t > h we need to find
charts of the C1-submanifold R×M of the Banach space R×B, at points (t, s, φ) ∈ Ω
with t > h and with their domains in Ω, so that the composition F̂ ◦K with the
inverse K of the chart is a continuously differentiable map (from an open subset of
a Banach space into R×B). The next result provides a suitable chart.

Proposition 7.1. Let (t, s, φ) ∈ Ω with t > h be given. There exist open neigh-
bourhoods N of (s, φ) in M , V of 0 in T(s,φ)M , an open interval I ⊂ (h,∞) with
t ∈ I, and a manifold chart α : N → V of M with the following properties.
(i) The continuously differentiable map

κ : V 3 (p, χ) 7→ α−1(p, χ) ∈ B

satisfies κ(0) = (s, φ) and Dκ(0)(p, χ) = (p, χ) on T(s,φ)M .
(ii) I ×N ⊂ Ω.
(iii) The inverse of the map

K : I × V 3 (u, p, χ) 7→ (u, κ(p, χ)) ∈ I ×N

is a manifold chart of the submanifold R×M of R×B.
(iv) F̂ ◦K(u, p, χ) = F (u, κ(p, χ)) on I × V .

Proof. Choose a complementary closed subspace Q of T(s,φ)M in B. There exist an
open neighbourhood N of (s, φ) in M , an open neighbourhood V of 0 in T(s,φ)M ,
and a continuously differentiable map γ : V → Q with γ(0) = 0, Dγ(0) = 0, and

N = (s, φ) + {(p, χ) + γ(p, χ) ∈ B : (p, χ) ∈ V }.
As Ω is an open subset of [0,∞)×M we may assume that for some open interval
I ⊂ (h,∞) with t ∈ I we have I ×N ⊂ Ω. Then the map

κ : V 3 (p, χ) 7→ (s, φ) + (p, χ) + γ(p, χ) ∈ B

has the properties (i)-(iii). ¤

Choose (t, s, φ) ∈ Ω with t > h and consider N, V, I, κ, K according to Proposition
7.1. In the remainder of this section we discuss partial derivatives of F̂ × K :
I × V → B with respect to

Y = T(s,φ)M (⊂ B = Rk × C1).

Corollary 7.2. For every (u, p, χ) ∈ I × V the partial derivative

DY (F̂ ◦K)(u, p, χ) : Y → B

exists, and for all (p, χ) ∈ Y we have

DY (F̂ ◦K)(u, p, χ)(p, χ) = (qκ(p,χ),χ̂(u), vκ(p,χ),χ̂
u )

= (A1(F (u, κ(p, χ)))vκ(p,χ),χ̂
u , vκ(p,χ),χ̂

u )

with

(7.1) (p̂, χ̂) = Dκ(p, χ)(p, χ).

Proof. Use Proposition 7.1 (iv), Proposition 4.3, and the chain rule. ¤
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The continuity of DY (F̂ ◦K)(u, p, χ) : Y → B, for (u, p, χ) ∈ I × V , implies that
the linear maps

p1 ◦ (DY (F̂ ◦K)(u, p, χ)) : Y 3 (p, χ) 7→ A1(F (u, κ(p, χ)))vκ(p,χ),χ̂
u ∈ Rk

and
p2 ◦ (DY (F̂ ◦K)(u, p, χ)) : Y 3 (p, χ) 7→ vκ(p,χ),χ̂

u ∈ C1

with χ̂ given by (7.1) are continuous. Hence

(7.2) DY (F̂ ◦K)(u, p, χ)(p, χ) = (m(u, p, χ)(p, χ),M(u, p, χ)(p, χ))

with the maps m : I × V → Lc(Y,Rk) and M : I × V → Lc(Y, C1) given by

m(u, p, χ) = A1(F (u, κ(p, χ))) ◦M(u, p, χ),

M(u, p, χ)(p, χ) = vκ(p,χ),χ̂
u ,

and (7.1).

The next proposition is the main step towards the continuity of the partial derivative
DY (F̂ ◦K) : I×V → Lc(Y,B). The proof follows the proof of Proposition 8 in [24].

Proposition 7.3. The map M : I × V → Lc(Y,C1) is continuous.

Proof. 1. Fix u0 ∈ I and (p0, χ0) ∈ V . Choose u1 > u0 in I and let I0 =
I ∩ (h, u1) ⊂ (h,∞). Choose a neighbourhood V0 of (p0, χ0) in V so that

sup
(p,χ)∈V0

‖Dκ(p, χ)‖Lc(Y,B) < ∞.

For u ∈ I0, (p, χ) ∈ V0, and (p, χ) ∈ Y , we get

(M(u, p, χ)−M(u0, p0, χ0))(p, χ) = G(u, p, χ, p, χ) + H(u, p, χ)

where

G(u, p, χ, p, χ) = vκ(p,χ),χ̂
u − vκ(p0,χ0),χ̂0

u

H(u, p, χ) = vκ(p0,χ0),χ̂0
u − vκ(p0,χ0),χ̂0

u0

with (7.1) and

(7.3) (p̂0, χ̂0) = Dκ(p0, χ0)(p, χ).

It remains to show that for (u, p, χ) → (u0, p0, χ0) in I0 × V0 we have

‖G(u, p, χ, p, χ)‖C1 → 0 and ‖H(u, p, χ)‖C1 → 0

uniformly with respect to (p, χ) in the closed unit ball of the Banach space Y ⊂
B = Rk × C1.
2. Proposition 6.3 guarantees the existence of c3 = c3(u1, κ(p0, χ0)) ≥ 0 so that

‖H(u, p, χ)‖C1 ≤ c3‖χ̂0‖C1(|u− u0|
+ max
−h≤a≤0

‖L1(F (u + a, κ(p0, χ0)))− L1(F (u0 + a, κ(p0, χ0)))‖Lc(C1,Rn))

for u ∈ I0 ⊂ (h,∞) and (p, χ) ∈ Y . Proposition 4.1 (ii) and the continuity of F
combined show that the map

[0, u1] 3 ũ 7→ L1(F (ũ, κ(p0, χ0))) ∈ Lc(C1,Rn)

is uniformly continuous. Using this, the previous estimate, and (7.3) one finds easily
that for (u, p, χ) → (u0, p0, χ0) in I0 × V0 we have ‖H(u, p, χ)‖C1 → 0 uniformly
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with respect to (p, χ) in the closed unit ball of the Banach space Y ⊂ B = Rk×C1.
3. Choose a neighbourhood N1 of κ(p0, χ0) in N and c4 = c4(u1, κ(p0, χ0)) ≥ 0
according to Proposition 6.4. Choose a neighbourhood V1 of (p0, χ0) in V0 so small
that κ(V1) ⊂ N1. For all u ∈ I0, (p, χ) ∈ V1, and (p, χ) ∈ Y we have

G(u, p, χ, p, χ) = vκ(p,χ),χ̂
u − vκ(p0,χ0),χ̂0

u

(with (7.1) and (7.3)
= G1(u, p, χ, p, χ) + G2(u, p, χ, p, χ)

where

G1(u, p, χ, p, χ) = vκ(p,χ),χ̂
u − vκ(p0,χ0),χ̂

u ,

G2(u, p, χ, p, χ) = vκ(p0,χ0),χ̂
u − vκ(p0,χ0),χ̂0

u = vκ(p0,χ0),χ̂−χ̂0
u .

3.1. Proposition 6.4 shows that for u ∈ I0, (p, χ) ∈ V1, and (p, χ) ∈ Y , and for χ̂
given by (7.1) we have

‖G1(u, p, χ, p, χ)‖C1

≤ c4 ec4u1 max
0≤ũ≤u1

‖L1(F (ũ, κ(p, χ)))− L1(F (ũ, κ(p0, χ0)))‖Lc(C1,Rn)‖χ̂‖C1 .

By a standard continuity and compactness argument,

max
0≤ũ≤u1

‖L1(F (ũ, κ(p, χ)))− L1(F (ũ, κ(p0, χ0)))‖Lc(C1,Rn) → 0

as (p, χ) → (p0, χ0) in V1 ⊂ Y . Using this statement, the previous estimate, and
the boundedness of ‖Dκ(p, χ)‖ on V0 we infer

‖G1(u, p, χ, p, χ)‖C1 → 0

as (u, p, χ) → (u0, p0, χ0) in I0×V1 ⊂ R×Y , uniformly for (p, χ) in the closed unit
ball of the Banach space Y ⊂ B = Rk × C1.
3.2. Finally, Proposition 6.1 yields c1 = c1(u1, κ(p0, χ0)) ≥ 0 so that for u ∈ I0,
(p, χ) ∈ V1, and (p, χ) ∈ Y , and for χ̂ given by (7.1) we have

‖G2(u, p, χ, p, χ)‖C1 ≤ c1e
c1u1‖χ̂− χ̂0‖C1

≤ c1e
c1u1‖Dκ(p, χ)−Dκ(p0, χ0)‖Lc(Y,B)‖(p, χ)‖B .

Now it is obvious how to complete the proof. ¤
Corollary 7.4. The map m : I × V → Lc(Y,Rk) is continuous.

Proof. Use the definition of m, the continuity of F , k and A1, and Proposition
7.3. ¤
Corollary 7.5. The map DY (F̂ ◦K) : I × V → Lc(Y, B) is continuous.

Proof. For (u, p, χ) and (u0, p0, χ0) in I × V and (p, χ) ∈ Y with ‖(p, χ)‖B ≤ 1 we
infer from Eq. (7.2) that

‖(DY (F̂ ◦K)(u, p, χ)−DY (F̂ ◦K)(u0, p0, χ0))(p, χ)‖B

= |(m(u, p, χ)−m(u0, p0, χ0)(p, χ)|+ ‖(M(u, p, χ)−M(u0, p0, χ0)(p, χ)‖C1

≤ |m(u, p, χ)−m(u0, p0, χ0)|Lc(Y,Rk) + ‖M(u, p, χ)−M(u0, p0, χ0)‖Lc(Y,C1).

Use this, Proposition 7.3, and Corollary 7.4. ¤
Theorem 7.6. The restriction of F to the open subset {(t, s, φ) ∈ Ω : t > h} 6= ∅
of the continuosly differentiable submanifold R×M of the Banach space R× B =
R× Rk × C1 is continuously differentiable.
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Proof. Let (t, s, φ) ∈ Ω with t > h be given. Consider N,V, I, κ,K as in Proposition
7.1, and Y = T(s,φ)M . We need to show that F̂ ◦K : I × V → B has continuously
differentiable partial derivatives with respect to the components of R×Y . Corollary
7.5 takes care of DY (F̂ ◦K). From Proposition 7.1 (iv) we infer

D1(F̂ ◦K)(u, p, χ)1 = DF̂κ(p,χ)(u)1

for all (u, p, χ) ∈ I × V . This formula, Proposition 5.1(iii), and the continuity of κ

combined yield that D1(F̂ ◦K) : I × V → Lc(R, B) is continuous. ¤
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8. A model equation and temporal order of reactions

In this section we study the equations from section 1 which model the regulation
of the density of white blood cells, but shall not make use of the monotonicity
properties of the delay function d and of the production function f in the model.
So let h > 0, µ ≥ 0 and continuously differentiable functions f : R → R and
d : R→ (0, h) be given. For n = 1 = k and U = (−h, 0)×C1 we consider the maps

g : U → R and ∆ : U → R

defined by

g(s, φ) = gµ,f (s, φ) = −µφ(0) + f(φ(s)),
∆(s, φ) = = ∆d(s, φ) = s + d(φ(s))

and verify hypothesis (H): Both maps gµ,f = −µ ev1,0 ◦ pr2 + f ◦ ev1 and ∆d =
pr1+d◦ ev1 are continuously differentiable. For (s, φ) ∈ (−h, 0)×C1 and (p, χ) ∈ B
(with k = 1) we have

Dgµ,f (s, φ)(p, χ) = −µ χ(0) + f ′(φ(s))[p φ′(s) + χ(s)].

The previous formula defines extensions Degµ,f (s, φ) ∈ Lc(R×C,R), and the map

Λµ,f : (−h, 0)× C1 × R× C 3 (s, φ, p, χ) 7→ Degµ,f (s, φ)(p, χ) ∈ R
is continuous (Here we use that ev0 and ∂ are continuous). For ∆d, (s, φ) ∈ (−h, 0)×
C1 and (p, χ) ∈ B we have

D1∆d(s, φ)1 = d′(φ(s))φ′(s) + 1,

D2∆d(s, φ)χ = d′(φ(s))χ(s).

The last formula defines a linear extension D2,e∆d(s, φ) : C → R of D2∆(s, φ) ∈
Lc(C1,R) which is continuous as it is given by d′(ev1(s, φ))ev0(s, χ). We also see
that the map

(−h, 0)× C1 × C 3 (s, φ, χ) 7→ D2,e∆d(s, φ)χ ∈ R
is continuous.

We obtain

M = {(s, φ) ∈ (−h, 0)× C1 : φ′(0) = −µφ(0) + f(φ(s)), 0 = d(φ(s)) + s,

0 6= d′(φ(s))φ′(s) + 1},
and the initial value problem (1.2)-(1.4) becomes

x′(t) = −µx(t) + f(x(t + r(t)) for t > 0,(8.1)
0 = d(x(t + r(t))) + r(t) for t > 0,(8.2)

(r(0), x0) = (s, φ).(8.3)

Also,

A(s, φ, χ) = − d′(φ(s))χ(s)
d′(φ(s))φ′(s) + 1

for (s, φ) ∈ M and χ ∈ C, and the equation in Proposition 3.4 becomes

(8.4) r′(t) = − d′(x(t + r(t)))x′(t + r(t))
d′(x(t + r(t)))x′(t + r(t)) + 1

.
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The equation in part (i) of the subsequent proposition may be convenient for later
use. Part (ii) implies that the set of all φ ∈ C1 with det D1∆(s, φ) > 0 for some
s ∈ (−h, 0) is open and dense in C1.

Proposition 8.1. (i) Suppose (r, x) is a solution of the system (8.1)-(8.2) with
domain [0, te), and t = s + r(s) for some s ∈ [0, te). Then

t + d(x(t)) ∈ [0, te) and r(t + d(x(t))) = −d(x(t)).

(ii) For every φ ∈ C1 there exists s ∈ −d(R) ⊂ (−h, 0) with

∆(s, φ) = d(φ(s)) + s = 0 and det D1∆(s, φ)1 = (d ◦ φ)′(s) + 1 ≥ 0.

Proof. Assertion (i) follows from

−d(x(t)) = −d(x(s + r(s))) = −d(xs(r(s)))
= r(s) and

s = t− r(s)) = t + d(xs(r(s))) = t + d(x(s + r(s))) = t + d(x(t)).

Assertion (ii) follows from (d ◦ φ)(−h)− h < 0 < (d ◦ φ)(0) + 0 and continuity. ¤
In the sequel we discuss the monotonicity properties of the delayed argument func-
tions

τs,φ : [0, ts,φ) 3 t 7→ t + rs,φ(t) ∈ R
for (s, φ) ∈ M . These functions are continuously differentiable and satisfy

−h < τ s,φ(t) < ts,φ for all t ∈ [0, ts,φ).

Notice that for x = xs,φ and τ = τs,φ, with (s, φ) ∈ M , Eq. (8.1) reads

x′(t) = −µx(t) + f(x(τ(t))).

The manifold M is the disjoint union of its open subsets

M± = {(s, φ) ∈ M : det D1∆(s, φ)
>
< 0}.

Proposition 8.2. For every (s, φ) ∈ M± and for all t ∈ [0, ts,φ),

F (t, s, φ) ∈ M± and (τs,φ)′(t)
>
< 0.

For any flowline (r,X) : I → M ,

either (r(t), X(t)) ∈ M+ on I or (r(t), X(t)) ∈ M− on I.

Proof. Let (s, φ) ∈ M , r = rs,φ, x = xs,φ. The first assertion follows since Propo-
sition 3.4 and Eq. (8.4) combined yield

(τs,φ)′(t) = 1 + r′(t) =
1

d′(x(t + r(t)))x′(t + r(t)) + 1
=

1
D1∆(r(t), xt)1

on [0, ts,φ). The second assertion is a consequence of the first one. ¤
In light of the preceding result Eq. (8.1) for the evolution in time of the state
x(t) of the system under consideration says the following. If a flowline F (·, s, φ)
starts from (s, φ) ∈ M+ then for x = xs,φ and τ = τs,φ we have that adjustments
x′(t1) and x′(t2) to previous states x(τ(t1)) and x(τ(t2)), with τ(t1) < τ(t2), occur
always in the same temporal order, i. e., at t1 < t2. On the other hand, initial data
in M− result in adjustments of the state always in reverse temporal order. Such
flowlines with decreasing delayed argument function are short-lived, according to
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the following observation.

Corollary 8.3. For every (s, φ) ∈ M−, ts,φ ≤ h.

Proof. From t − h < t + rs,φ(t) = τs,φ(t) ≤ τs,φ(0) = rs,φ(0) < 0 for 0 ≤ t < ts,φ,
ts,φ ≤ h. ¤

Next we show that in case f is bounded each flowline F (·, s, φ), (s, φ) ∈ M , with
ts,φ < ∞ has a limit at ts,φ. We begin with bounds for solutions. Recall first that

−h < rs,φ(t) < 0 for all (s, φ) ∈ M and t ∈ [0, ts,φ),

due to Eq. (8.2) and the hypothesis d(R) ⊂ (0, h).

Proposition 8.4. Suppose c = supξ∈R |f(ξ)| < ∞. Then each function xs,φ,
(s, φ) ∈ M , is bounded. In case |φ(0)| ≤ c

µ , |xs,φ(t)| ≤ c
µ for all t ∈ [0, ts,φ).

If φ(0) > c
µ then − c

µ ≤ xs,φ(t) ≤ φ(0) for all t ∈ [0, ts,φ). If φ(0) < − c
µ then

φ(0) ≤ xs,φ(t) ≤ c
µ for all t ∈ [0, ts,φ).

Proof. Let (s, φ) ∈ M , x = xs,φ. On (0, ts,φ) we have

−µ

(
x(t) +

c

µ

)
≤ x′(t) =

d

dt
(u 7→ x(u)± c

µ
)(t) ≤ −µ

(
x(t)− c

µ

)
.

Hence

x(t)− c

µ
≤

(
x(0)− c

µ

)
e−µt

and (
x(0) +

c

µ

)
e−µt ≤ x(t) +

c

µ

on [0, te). These inequalities yield the assertions. ¤

Proposition 8.5. Suppose c = supξ∈R |f(ξ)| < ∞ and let (s, φ) ∈ M . In case
ts,φ < ∞ there exists (w,ψ) ∈ (−h, 0)× C1 ⊂ B so that

lim
t↗ts,φ

(rs,φ(t), xs,φ
t ) = (w, ψ),

ψ′(0) = g(w,ψ) = −µψ(0) + f(ψ(w)),
0 = ∆(w, ψ) = d(ψ(w)) + w,

0 = det D1∆(w,ψ) = d′(ψ(w))ψ′(w) + 1.

In particular, (w, ψ) ∈ M \M .

Proof. Let (s, φ) ∈ M , r = rs,φ, x = xs,φ, te = ts,φ, τ = τs,φ. τ is bounded (by
h + te) and monotone (Proposition 8.2). Therefore it has a limit at te. It follows
that also r : [0, te) 3 t → τ(t) − t ∈ [−h, 0] has a limit w ∈ [−h, 0] at te. The
boundedness of x and Eq. (8.1) combined yield that x′ is bounded. It follows that
for t ↗ te we have

x(t) → x(0) +
∫

(0,te)

x′(u)du = ξ ∈ R.
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Define ψ : [−h, 0] → R by ψ(a) = x(te + a) for −h ≤ a < 0 and ψ(0) = ξ. Then
ψ ∈ C and ‖xt − ψ‖C → 0 as t ↗ te. As ev0 and f are continuous we infer that

x′(t) = −µ x(t) + (f ◦ ev0)(r(t), xt) → −µψ(0) + f(ψ(w)) as t ↗ te.

We conclude that ψ ∈ C1,

ψ′(0) = −µψ(0) + f(ψ(w)),

and ‖xt−ψ‖C1 → 0 as t ↗ te. It follows that ‖(r(t), xt)− (w, ψ)‖B → 0 as t ↗ te.
Next,

0 = lim
t↗te

(d ◦ ev0)(r(t), xt) + r(t) = (d ◦ ev0)(w, ψ) + w = d(ψ(w)) + w.

As d has range in (0, h) we infer −h < w < 0. Finally, suppose d′(ψ(w))ψ′(w)+1 6=
0. Then det D1∆(w, ψ) = D1∆(w, ψ)1 6= 0, (w, ψ) ∈ M , and we can use the
flowline F (·, w, ψ) in order to obtain a contradiction to the fact that (r, x) with
domain [0, te) is a maximal solution. ¤

The preceding proposition suggests to ask for continuation of flowlines F (·, s, φ)
beyond ts,φ < ∞, using the limiting state (w,ψ) ∈ B as a new initial condition.
Moreover, would it be possible that a flowline with, say, increasing delayed argu-
ment can be continued beyond ts,φ < ∞ by a flowline with decreasing delayed
argument, and vice versa ? The following result excludes such transient behaviour.

Proposition 8.6. Suppose (x, r) is a solution of the system (8.1)-(8.2) with domain
[0, te), 0 < te ≤ ∞, and there exists t0 ∈ (0, te) with

(8.5) (r(t), xt) ∈ M for all t ∈ [0, te) \ {t0}.
Then either (r(t), xt) ∈ M− for all t ∈ [0, te) \ {t0}, or (r(t), xt) ∈ M+ for all
t ∈ [0, te) \ {t0}.
Proof. 1. The maps [0, t0) 3 t 7→ (r(t), xt) ∈ M and (t0, te) 3 t 7→ (r(t), xt) ∈ M
are flowlines. Therefore Proposition 8.2 yields that the sign of det D1∆(r(t), xt) 6= 0
is constant on each of the intervals [0, t0) and (t0, te).
2. Set φ = xt0 ∈ C1. By continuity and −h < r(t0) < 0, there exists δ > 0 so that
0 < t0 − δ, t0 + δ < te and −h < r(t0 + u) + u < 0 on (−δ, δ). For the continuous
maps

ρ : (−δ, δ) 3 u 7→ r(t0 + u) ∈ R and τ : (−δ, δ) 3 u 7→ ρ(u) + u ∈ (−h, 0).

we have

0 = ∆(r(t0 + u), xt0+u) = d(x(t0 + u + r(t0 + u))) + r(t0 + u)
= (d ◦ φ)(ρ(u) + u) + ρ(u)
= (d ◦ φ)(τ(u)) + τ(u)− u on (−δ, δ),

and for 0 < |u| < δ,

0 6= det D1∆(r(t0 + u), xt0+u) = d′(x(t0 + u + r(t0 + u)))x′(t0 + u + r(t0 + u)) + 1
= d′(x(t0 + u + ρ(u)))x′(t0 + u + ρ(u)) + 1
= d′(x(t0 + τ(u))x′(t0 + τ(u)) + 1 = d′(xt0(τ(u))(xt0)

′(τ(u)) + 1
= d′(φ(τ(u)))φ′(τ(u)) + 1 = (d ◦ φ)′(τ(u)) + 1.
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Using the Implicit Function Theorem and continuity we infer that τ is differentiable
for 0 < |u| < δ. From the equation 0 = d ◦ φ ◦ τ(u) + τ(u)− u we obtain

(8.6) τ ′(u) =
1

(d ◦ φ)′(τ(u)) + 1
for 0 < |u| < δ.

3. Suppose now the assertion is false. It follows that there exists j ∈ {0, 1} so that
for all u ∈ (−δ, 0) and for all w ∈ (0, δ) we have

sign(det D1∆(r(t0 + u), xt0+u)) = (−1)j = − sign(det D1∆(r(t0 + w), xt0+w)),

or equivalently,

(8.7) sign((d ◦ φ)′(τ(u)) + 1) = (−1)j = − sign((d ◦ φ)′(τ(w)) + 1).

Using the equations (8.7)-(8.8) and continuity we infer that at u = 0 τ has a
strict local extremum. It follows that there exist u∗ ∈ (−δ, 0) and w∗ ∈ (0, δ)
with τ(u∗) = τ(w∗), which yields a contradiction to Eq. (8.8) with u = u∗ and
w = w∗. ¤

Next we find initial data (s, φ) ∈ M \M from which two flowlines bifurcate, one
into M+ and the other one into M−. This is, of course, a case of nonuniqueness for
the initial value problem (8.1)-(8.3).

Proposition 8.7. Suppose d is not constant. Then there exist (s, φ) ∈ M \ M ,
te > 0 and solutions (r±, x±) of the initial value problem (8.1)-(8.3) with common
domain [0, te) so that

(r±(t), x±t ) ∈ M± on (0, te),

with the delayed argument function τ+ : [0, te) 3 t 7→ t + r+(t) ∈ R strictly in-
creasing and the delayed argument function τ− : [0, te) 3 t 7→ t + r−(t) ∈ R strictly
decreasing.

Proof. Choose ξ ∈ R with d′(ξ) 6= 0. Set s = −d(ξ) ∈ −d(R) ⊂ (−h, 0). The
function d maps an open interval I 3 ξ one-to-one onto an open interval J 3 −s.
Choose an open interval Z ⊂ (−h, 0) with s ∈ Z so that for all z ∈ Z we have
(z − s)2 − z ∈ J . Then there exists φ ∈ C1 with

(d ◦ φ)(z) = (z − s)2 − z for all z ∈ Z

and
φ′(0) = −µφ(0) + f(φ(s)).

Choose te > 0 with
s±√te ∈ Z

and
−h < s−√te − te.

Define two functions τ± : [0, te) → R by τ±(t) = s±√t. The continuous functions

r± : [0, te) 3 t 7→ τ±(t)− t ∈ R.

satisfy −h < r±(t) < 0 for all t ∈ [0, te). Define x± : [−h, te) → R by x0 = φ and

x±(t) = e−µ tφ(0) +
∫ t

0

e−µ(t−u)f(φ(τ±(u)))du
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for 0 < t < te. These functions are continuously differentiable and satisfy

(x±)′(t) = −µx±(t) + f(x±(τ±(t))) = −µx±(t) + f(x±(t + r±(t)))

for 0 ≤ t < te. For such t we also have

∆(r±(t), x±t ) = d(x±t (r±(t))) + r±(t)
= d(x±(t + r±(t))) + τ±(t)− t

= d(φ(τ±(t))) + τ±(t)− t

= (τ±(t)− s)2 − τ±(t) + τ±(t)− t = 0,

and for 0 < t < te,

det D1∆(r±(t), x±t ) = d′(x±t (r±(t)))(x±t )′(r±(t)) + 1
= d′(x±(t + r±(t)))(x±)′(t + r±(t)) + 1
= d′(φ(τ±(t)))φ′(τ±(t)) + 1

= (d ◦ φ)′(τ±(t)) + 1 = 2(τ±(t)− s)− 1 + 1 = ±2
√

t 6= 0.

Altogether, the pairs (r±, x±) are solutions of the initial value problem (8.1)-(8.3)
with common domain [0, te) and satisfy

(r±(t), x±t ) ∈ M± on (0, te),
(r±(0), x±0 ) = (s, φ) ∈ (−h, 0)× C1,

(τ+)′(t) =
1

2
√

t
> 0 on (0, te),

(τ−)′(t) = − 1
2
√

t
< 0 on (0, te).

In particular, r+(t) 6= r−(t) on (0, te). The curves [0, te) 3 t 7→ (r±(t), x±t ) ∈
R × C1 = B are continuous, hence (s, φ) = limt↘0(r±(t), x±t ) ∈ M . We have
(s, φ) /∈ M because of nonuniqueness (or, because of

det D1∆(s, φ) = 2(τ±(0)− s) = 0).

¤

We turn to termination of flowlines and show that a pair of flowlines, one with
increasing delayed argument and the other one with decreasing delayed argument,
terminate at the same argument te < ∞, with the same delayed argument.

Proposition 8.8. Suppose d is not constant. Then there exist φ± ∈ C1, s+ < w <
s− in (−h, 0), te ∈ (0,∞) and ψ± ∈ C1 with the following properties: (s±, φ±) ∈
M±, ts−,φ− = te = ts+,φ+ ,

lim
t↗te

F (t, s−, φ−) = (w, ψ−),

lim
t↗te

F (t, s+, φ+) = (w, ψ+).

Proof. Choose ξ ∈ R with d′(ξ) 6= 0. Set s = −d(ξ). d maps an open interval
I 3 ξ one-to-one onto an open interval J 3 −s. Choose te > 0 and an open interval
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Z ⊂ (−h, 0) with s ∈ Z and

te − (z − s)2 − z ∈ J for all z ∈ Z,

s±√te ∈ Z,

s−√te − te > −h.

Define τ± : [0, te] → R by
τ±(t) = s∓√te − t.

Then τ±(t) ∈ Z ⊂ (−h, 0) for all t ∈ [0, te], and the continuous function

r± : [0, te] 3 t 7→ τ±(t)− t ∈ R
satisfies 0 > r±(t) ≥ s−√te − te > −h on [0, te]. There exist φ± ∈ C1 so that

(d ◦ φ±)(z) = te − (z − s)2 − z for all z ∈ Z,

(φ±)′(0) = −µφ±(0) + f(φ±(τ±(0))).

Define x± : [−h, te] → R by x±0 = φ± and

x±(t) = e−µ tφ±(0) +
∫ t

0

e−µ(t−u)f(φ±(τ±(u)))du

for 0 < t ≤ te. The functions x± are continuously differentiable. For all t ∈ [0, te]
we have

(x±)′(t) = −µx±(t) + f(φ±(τ±(t)))
= −µx±(t) + f(x±(t + r±(t))),

∆(r±(t), x±t ) = d(x±t (r±(t))) + r±(t)
= d(x±(t + r±(t))) + τ±(t)− t

= d(φ±(τ±(t))) + τ±(t)− t

= te − (τ±(t)− s)2 − τ±(t) + τ±(t)− t

= 0,

det D1∆(r±(t), x±t ) = d′(x±t (r±(t)))(x±t )′(r±(t)) + 1
= d′(φ±(τ±(t)))(x±)′(t + r±(t)) + 1
= d′(φ±(τ±(t)))(φ±)′(t + r±(t)) + 1
= (d ◦ φ±)′(τ±(t)) + 1
= −2(τ±(t)− s)− 1 + 1
= ±2

√
te − t.

The last term is nonzero for 0 ≤ t < te and vanishes at t = te. For t ↗ te,

(r±(t), x±t ) → (r±(te), x±te
) = (s− te, x

±
te

),

with respect to the norm on B. Set w = s − te and ψ± = x±te
. Then (w,ψ) /∈ M

since det D1∆(w, ψ) = 0, and the remaining assertions become obvious, with s− =
r−(0) = τ−(0) = s +

√
te and s+ = r+(0) = τ+(0) = s−√te. ¤
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