
Analysis of specific functions of Nkx5-1 and Nkx5-2 

homeobox genes during neuronal differentiation and 

apoptosis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

lnaugural-Dissertation 

zur Erlangung des Grades  

eines Doktor der Humanbiologie 

des Fachbereichs Medizin  

der Justus-Liebig-Universität Gießen 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

         vorgelegt von 

Robert Kramek 

      aus Poznań, Polen 

 

Gießen (2014) 



 

- 2 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Gutachter: Prof. Dr. Dr. Thomas Braun 
 
    Gutachter: PD Dr. Ulrich Gärtner 

 
Tag der Disputation: 27. Oktober 2015  



Contents 
 

 

 
24 

 

26 
 

26 
 

30 
 

31 
 

34 
 

34 

 
 

 

1. INTRODUCTION …………………………………………………………….. 7 

 1.1. Nkx5-1 and Nkx5-2 genes ….....................................................……………... 8 

 1.1.1. Nkx5-1 and Nkx5-2 functions in mouse development …….………… 8 

1.1.2. Nkx5-1 and Nkx5-2 protein structure…….…….……............................. 9 
 

1.2. PC12 cell line as a cell culture model to study gene interactions in neuronal 

development …………..……………………………………….............................. 10 

1.3. NGF and BMP2 play essential roles in neuronal development 
 

and differentiation…….........................................................................……..…. 11 
 

1.4. Apoptosis as a key process in neuronal differentiation and development 15 
 

1.5. p53 protein-mediated cell cycle arrest and apoptosis…………………..... 15 
 

1.6. Aims of the project …………….......................................................…......... 17 
 

2. RESULTS ……………………………………………………………………. 18 
 

2.1.  Construction  of  the  plasmids  overexpressing  Nkx5-1  and  Nkx5-2 
 

proteins ……………………………………………………………………......… 18 
 

2.2. Investigation of influence of Nkx5 genes on apoptosis in PC12 cells ….... 20 
 

2.2.1 Nkx5-1 but not Nkx5-2 induces apoptosis in PC12 cells ….…..…. 20 
 

2.2.2. NGF does not prevent Nkx5-1 induced apoptosis ………...…..…. 24 
 

2.2.3. BMP2 has no effect on Nkx5-1 induced apoptosis ………….…… 26 
 

2.2.4. PFT alpha blocks apoptosis induced by Nkx5-1 protein ….......… 28 
 

2.2.5. BMP2 is able to induce apoptosis and p53 expression 
 

independently of Nkx5-1…....……………………………………………. 31 
 

2.2.6.   NGF   does   not   interfere   with   p53   induction   by   Nkx5-1 

overexpression ………............................................................…................ 33 

2.2.7. Gene expression analysis in PC12 cells under different growing 

conditions…………………………………….……………………………. 38 

2.3. Estimation of Nkx5-1 protein domains conferring the induction of 
 

apoptosis ………………………………………………………….…...………… 40 
 

2.3.1. N-terminus of Nkx5-1 protein is sufficient to induce apoptosis 
 

but lacks p53-responsive elements…………………....………….………. 43 
 

 
 
 
 
 
 
 
 

- 3 - 



Contents 

- 4 - 

 

 

 

 

2.4. Identification of Nkx5-1 promoter region and analysis of its activity in 

neuronal cells ……........…………………………………..……………………. 47 

2.4.1. Generation of Nkx5-1 promoter construct………………...……. 47 
 

2.4.2. Nkx5-1 promoter construct is active and regulated by NGF and 
 

BMP2 in PC12 cells……...……..…………………………………………. 47 
 

2.5. Apoptosis and neuronal differentiation in Nkx5-1 knockout mouse in 

comparison to wild type ...........………………………………………………… 51 

3. REAGENTS AND CHEMICALS ………………..………………………… 54 
 

3.1. Reagents…………………………………..……………….…………...…… 
 

54 

3.2. Kits………………………………………...…………………………..……. 55 

3.3. Antibodies……………………………..……………………………...…….. 55 

3.4. Growth Factors and Inhibitors……..……………………………...…….. 55 

3.5. Vectors and Primers………………….............……………………….……. 55 

3.6. Solutions and media………………...………..………..……………………. 57 

4.   METHODS…………………………………….………....…………………….. 59 

4.1. Eukaryotic cell culture methods………………....…………………….….. 59 

4.1.1. Cell lines……………………………………....…………………….. 59 

4.1.2 General components for cell culture………....……………………. 59 

4.1.3. Passages and Cryoprotection of the cells….………………….…… 59 

4.1.4. Growing of the PC12 cells line…………….………………………. 60 

4.1.5. Treatment with the factors………………………………………… 60 

4.1.6. Transient transfection of plasmid DNA……...…………………… 60 

4.2. Prokaryotic cells methods…………………………………………………. 61 

4.2.1. Bacterial strains………………………………………………...….. 61 

4.2.2. Cryoconservation of bacteria………………………………..……. 61 

4.2.3. Preparation of competent cells and transformation…….………. 61 

4.2.4. Culture media and growth conditions………………...………….. 62 

4.2.5. Phenol- chloroform extraction of circular DNA…………….…… 63 

4.2.6. Preparation of the RNA from cell culture………..………………. 63 

4.2.7. Electrophoresis of the RNA…………………..…………………… 64 

4.2.8. Sequencing of the positives clones……………..………………….. 65 

4.2.9. Enzymatic modification of DNA……………..……………………. 66 

4.2.10. Amplification of DNA………………………..…………………… 66 



Contents 

- 5 - 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

83 
 

 
 
 
 

83 
 

 
84 

 

 
 

85 
 

87 
 

88 
 

88 
 

89 
 

90 
 

91 
 

93 

 

 

4.2.11 RT PCR…………..………………………………………………… 66 
 

4.3. Tissue sections……………...………………………………………………. 67 
 

4.3.1. Paraffin embedded tissue section…..……...……………………… 67 
 

4.3.2. Immunohistochemistry………………..............................………… 67 
 

4.3.3. Antibodies…………………………………………………......……. 68 
 

4.3.4. Immunofluorescence and fluorescence microscopy…………..….. 68 
 

4.3.5. TUNEL analysis…………………………………………………..... 69 
 

4.3.6. LacZ staining………………………………………………..……... 70 
 

5. DISCUSSION…………………………………………………………….……... 71 
 

5.1. Nkx5-1 – specific potential to induce apoptosis in PC12 cells …............... 71 
 

5.2. Nkx5-1 apoptotic activity resides within the non-conserved N-domain ... 73 
 

5.3. Apoptosis induced by Nkx5-1 and Nkx5-1/2 swapping constructs is not 

influenced by NGF and BMP-2………......….................................…….……… 74 

5.4. p53 as a potential target for Nkx5-1?………….……......………………… 75 
 

5.5.  Activation  of  Nkx5-1  promoter  in  PC12  cells  by  NGF  and  BMP2 

correlates with neuronal differentiation  ….………………...….…………..… 76 

5.6. Proposed Nkx5-1 function in neural development in connection with 
 

p53........................................................................................................................... 78 
 

6. SUMMARY…………………….…….…………..………………………..…….. 79 
 

7.  ZUSAMMENFASSUNG …………....………………..………………………… 81 
 

8.  ABBREVIATIONS ….………..…..…..…………...……………………..…...… 83 
 

9. REFERENCES ……………………….…………..………………………..…….. 84 
 

10. ERKLÄRUNG ……….………………….…………………………...…..……... 97 
 

11. ACKNOWLEDGEMENTS ………..……….…..……..………………..……... 98 



- 6 - 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank. 



- 7 - 

Introduction 
 

 

 

1. INTRODUCTION 
 

 
 

In the present work I investigated the role of two closely related proteins Nkx5-1 

and Nkx5-2 in neuronal apoptosis and differentiation. These two proteins show high 

sequence conservation in several vertebrate species. It was postulated, that they play 

overlapping roles in the inner ear and nervous system development. Nkx5-1 and 

Nkx5-2 are expressed during inner ear development as well as during adult stages in 

the mouse. In addition to the inner ear structures, they are also expressed in post- 

mitotic neurons in several central and peripheral locations (Rinkwitz-Brandt et al., 

1995). Nkx5-1 knockout leads to severe defects of the vestibular apparatus of the 

inner ear. However, singular Nkx5-1 gene knockout mice did not reveal any 

obvious neuronal phenotype (Hadrys et al., 1998; Wang et al., 2001). Based on the 

fact that double Nkx5-1/2 (also called Hmx2/3) knockout led to a severe postnatal 

lethal phenotype, redundant functions for both Nkx5 genes were postulated (Wang et 

al., 2004). In the double knockout mice defects in some hypothalamic functions were 

documented, however, no neuronal loss was observed in the functionally affected 

regions and the molecular basis of Nxk5 genes action remains unresolved (Wang et 

al., 2004). 

To investigate molecular mechanisms of Nkx5-1 and Nkx5-2 genes functions in 

neuronal cells, PC12 rat pheochromocytoma cells (Green and Tischler, 1976) were 

used as an experimental model. This cell line is a commonly used system for the 

investigation of the neurogenesis and undergoes neuronal differentiation upon 

treatment with nerve growth factor NGF (Green and Kaplan, 1995). Recently, it was 

shown  that  BMP  family  members,  BMP4  and  BMP6,  support  NGF-mediated 

neuronal differentiation of PC12 cells (Allthini et al., 2003; Lönnet et al., 2005). In 

contrast to such coordinated action of BMP and NGF signalling, another BMP- 

family member, BMP2, is able to stimulate neurite outgrowth in PC12 without NGF 

(Iwasaki et al., 1996). 

Interestingly, a multifunctional cellular regulator protein p53 was also recently 

demonstrated to be another player within the NGF-differentiation pathway: p53 

knockdown inhibited NGF-induced differentiation (Zang et al., 2006). The high 

affinity NGF receptor TrkA was revealed as a direct target for p53-mediated 

transcriptional regulation (Yhang et al., 2006). Depending on the cellular context p53 
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may regulate TrkA either to induce cell cycle arrest and differentiation or apoptosis 
 

(Zhang et al., 2006; Lavoie et al., 2005). 
 

To study the potential role of Nkx5-1 in the adult neuronal structures I used Nkx5- 
 

1 knockout mouse strain generated previously in our laboratory (Hadrys et al., 1998). 
 

 
 

1.1. Nkx5-1 and Nkx5-2 genes 
 

 
 

1.1.1. Nkx5-1 and Nkx5-2 functions in mouse development 
 

 
 

The mouse Nkx5-1 and Nkx5-2 genes were first identified as homologs of the 

Drosophila  S59/NK1  gene  (Kim  and  Nirenberg,  1989;  Dohrmann  et  al.,  1990). 

Nkx5 homologous genes were identified in several species such as SpHmx in sea 

urchin (Martinez and Davidson, 1997), GH6 and Soho in chicken (Stadler and 

Solursh, 1994; Deitcher et al., 1994), H6 in human ( Wang et al., 1990; Stadler et al., 

1992), Nkx5-1 (Hmx1), Nkx5-2 (Hmx2), and Nkx5-3 (Hmx3) in mouse (Yoshiura et 

al., 1998; Bober et al., 1994; Rinkwitz-Brandt et al.,  1995; Mennerich et al., 1999). 

Two different knockout mice were created to investigate the function of the Nkx5-1. 

The Nkx5-1 knockout mice generated in our laboratory exhibited behavioural 

abnormalities that resemble the typical hyperactivity and circling movements of the 

shaker/waltzer type mutants. That effect correlated with several malformations of the 

vestibular organ in Nkx5-1(-/-) mice. Nkx5-1(-/-) mice failed to develop the 

semicircular canals (Hadrys et al., 1998). Nkx5-1 gene transcription is first activated 

at embryonic day 8.5 (E8.5) in otic placode and exhibits dynamic changes of the 

expression  pattern  during  otic  vesicle  formationNkx5-1  is  first  expressed  in  the 

rostral part of the otic placode and relocates during otic vesicle formation from the 

originally medial domain to the dorsolateral wall (Rinkwitz-Brandt et al., 1996). This 

later region gives rise to the vestibular apparatus of the inner ear (Li et al., 1978). 

Nkx5-2 shows similar expression in the inner ear and neuronal structures. Expression 

of this closely related gene was unchanged in Nkx5-1(-/-) mutants (Hadrys et al., 

1998). Second knockout was generated by Thomas Lufkins’ group. In this mouse 

model Nkx5-1 gene has been named Hmx3. This knockout also displayed abnormal 

circling behaviours. Comparison of the dissected labyrinths from Hmx3 wild-type, 

heterozygote and null animals did not reveal any discernible differences in either the 
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formation of the vestibular labyrinth or the cochlear duct (Wang et al., 1998). All of 

the semicircular ducts were present and appeared normal in the Hmx3 null inner ears, 

with the exception of the horizontal semicircular duct, which lacked both a horizontal 

crista and the associated horizontal ampullary chamber (Wang et al., 1998). 

Knockout for Nkx5-2 (Hmx2) displayed behavioural similarity to Nkx5-1 

knockout mouse such as hyperactivity, head tilting and circling activity. No defect 

was detected in central neuronal system. Lack of all three semicircular ducts as well 

as altered expression profiles of specific developmental regulators such as Bmp-4, 

Dlx5 and Pax2 were observed (Wang et. al., 2001). The highly similar expression 

patterns and close linkage on chromosome 7 suggested that Nkx5-1 and Nkx5-2 may 

share  downstream  regulatory  targets  (Wang  et.  al.,  2001).  Nkx5-1  and  Nkx5-2 

double mutant mice showed more severe defects in the inner ear than those displayed 

by either single knockout. In addition, abnormalities in the hypothalamic- 

neuroendocrine system, never observed in either of the single mutant mouse, 

confirmed the hypothesis that Nkx5-1/Hmx3 and Nkx5-2/Hmx2 also function 

redundantly to control embryonic development of the central nervous system (Wang 

et al., 2005). 

 
 

1.1.2. Nkx5-1 and Nkx5-2 protein structure 
 

 
 

Nkx5-1 and Nkx5-2 genes display nearly 85% identity within the homeobox. Thus, 

the Nkx5-1 and Nkx5-2 genes encode proteins with very similar homeodomains. The 

amino acid similarity within homeodomain is approximately 90% (Fig.1). This 

sequence is also closely related to homeodomains previously identified for other Nkx 

proteins and contains the conserved core motive responsible for binding to DNA 

target sequences. 

It was showed that Nkx5 proteins can recognize the identical genomic DNA 

sequence CAATTAAGTG, but Nkx5-2 displayed weaker binding affinity to this 

sequence than Nkx5-1.  An additional, novel  and unrelated  high  affinity binding 

sequence could be identified for the Nkx5-2 protein (Mennerich et al., 1999). 
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Fig.  1. Similarity in homeodomain within Nkx5/Hmx protein family. 

Amino acid residues identical in all three proteins are marked in red, the conservative amino acid 

exchanges in blue. Amino acid identical between Nkx5-1 and Nkx5-3 are marked in green. 
 

 

1.2. PC12 cell line as a cell culture model to study gene interactions in neuronal 

development 

 
 

PC12 cell line was established from a spontaneous rat pheochromocytoma derived 

from chromaffin cells of the suprarenal medulla (Greene LA, Tischler, 1978). PC12 

cells have a potential to differentiate into sympathetic neurons in the presence of 

NGF and/or BMP2 and have been used extensively to study the mechanisms of 

neuronal differentiation. It was suggested that NGF and BMP signals are likely to 

interact with further downstream targets at the transcriptional level during neuronal 

differentiation of the PC12  cells (Althini et al., 2003). Below some  of the best 

investigated factors that play critical roles in neuronal differentiation of PC12 cells, 

are shortly described. 
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1.3. NGF and BMP2 play essential roles in neuronal development and 

differentiation 

 
 

During neuronal development differentiation and apoptosis are essential processes 

taking place in the neuronal cells. These processes are regulated by a complex array 

of molecular factors (Becker et al., 2003). 

Members of the family of related growth factors, called neurotrophins, are required 

for differentiation, survival, development, and death of specific populations of 

neurons and also of non-neuronal cells: leukocytes, osteoblasts or fibroblasts. The 

best known member of this family is Nerve Growth Factor (NGF), which plays 

crucial roles in the differentiation and survival of neural cells. NGF has also been 

shown to be a strong inducer of neuronal phenotype in PC12 cells. PC12 cells, 

without exposure to NGF, are dependent on serum for survival, and withdrawal of 

serum  initiates  apoptosis.  After  about  7–10  days  of NGF treatment,  PC12  cells 

terminally differentiate into a neuronal phenotype, become dependent on NGF, and 

undergo apoptosis after NGF withdrawal even in the presence of serum. The 

hallmarks of neuronal differentiation of PC12 cells include inhibition of proliferation 

and outgrowth of neurites (Greene and Tishler, 1976). 

As NGF is a secretory molecule, its effects can be exerted only after binding to 

specific receptors. Effects induced by NGF can be transmitted by high affinity TrkA, 

TrkB and TrkC thyrosine kinase receptors and  the low affinity p75 neurotropin 

receptor (p75NTR) – all members of the TNF receptor superfamily. p75NTR acts as 

a Trk co-receptor that increases neurotrophin binding affinity (Esposito et al., 2001). 

TrkB   signalling   plays   an   important   role   in   modulating   the   formation   and 

maintenance of NMDA and GABAA receptor clusters at central synapses, and thus 

coordinately modulates these receptors as part of a mechanism that promotes the 

balance between excitation and inhibition in developing circuits (Elmariah et al., 

2005). The expression of NGF and TrkA mRNA is regulated by interleukin (IL)- 
 

1beta.  NGF  uses  a  canonical  signalling cassette,  and  the  Raf  mitogen-activated 

protein  kinase  (MEK)  extracellular  signal-regulated  kinase  (ERK)  pathway  to 

promote distinct outcomes, including neuritogenesis, gene induction, and 

proliferation. Pituitary adenylate cyclase-activating polypeptide   (PACAP), a 

neurotransmitter that also causes differentiation including neuronal outgrowth, uses 
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the same canonical cassette as NGF but in a different way. The PACAP preferring 

receptor (PAC1) activates adenylate cyclase (AC), an enzyme catalysing the 

conversion of ATP to 3',5'-cyclic AMP (cAMP) and pyrophosphate. Growing level 

of cAMP  activates  protein  kinase A (PKA), which  in  turn  activates CBPCREB 

binding protein leading to activation of Trasin, TH and other genes involved in 

differentiation (Fig. 2). Neurotrophins and Trk receptors expressed in human 

periodontal  tissue  may  contribute  to  regeneration  as  well  as  innervation  of 

periodontal  tissue  through  local  autocrine  and  paracrine  pathways.  Recent  data 

suggest that some functions of neurotrophins and Trk receptors relate to periodontal 

disease and periodontal tissue regeneration (Hidemi et al., 2003). 
 

 
 
 
 

 
Fig.  2. Proposed model of NGF action in PC-12 cells (from Vaudry et al., 2002). 
AC-adenylate cyclase; 
ATF1-activating transcription factor 1; CBP- CREB binding protein; CREB; cAMP response element –binding protein; 
ERK-extracellular signal regulated kinase; MEK-mitogen-activated protein kinase kinase 
NGF-nerve growth factor; Pituitary adenylate cyclase-activating polypeptide (PACAP), 
PAC1 -type 1 PACAP-preferring receptor; PKA- protein kinase A; 

RSK-ribosomal S6 protein kinase; TH - tyrosine hydroxylase 

 
 

BMP2 is another factor involved in neuronal differentiation. Even if NGF and 

BMP2 are different in structure and mechanism of action, they play overlapping 

functions during neuronal cells life. NGF and BMP2 were found to induce neuronal 

differentiation (Iwasaki et al., 1996). Upon treatment with BMP-2 or NGF changes in 

the morphology of PC12 cells indicating neuronal differentiation were observed (Fig. 

3). The most prominent change was the formation of neurite-like processes. The 

process-inducing activity of  BMP-2  was  dose  dependent  and  was  maximal  at a 

concentration of 30 ng/ml – 50ng/ml (1 nM). Although the majority (more than 85%) 
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of PC12 cells responded to BMP2 stimulation and started to extend processes within 

the initial 1~2 days, branching and intermingling of the processes in BMP2 treated 

PC12 cells were less conspicuous compared with those observed in NGF-treated 

cells. Bone morphogenetic proteins (BMPs) were shown to potentiate NGF-induced 

neuronal differentiation in PC12 pheo-chromocytoma cells grown on collagen under 

low-serum conditions. The mechanism by which BMP induces neuronal differention 

is relatively well studied (Iwasaki, et al., 1999). Employment of its inhibitor, Noggin, 

greatly contributed to further resolvement of BMP specific functions. Noggin has 

been described to be capable of binding bone morphogenetic proteins (BMPs) and 

inhibiting BMP signalling by preventing the interactions of BMPs with their 

receptors. BMP2 protein acts by its receptor (type I or II receptor for TGF-β), which 

recruits and phosphorylates several Smad transcription factors (Smad1, Smad5 or 

Smad8),  which  then  translocate  into  the  nucleus  to  regulate  gene  expression 

(Derynck et al., 1998). In contrast to NGF, BMP2 is able to induce neuronal 

differentiation of PC12 cells by a signalling pathway that is independent of MAP 

kinase or MEK cascade (Fig. 4). Activation of the TAK1-p38 kinase pathway is 

necessary for BMP-2-induced neuronal differentiation of PC12 cells (Iwasaki, et al., 

1999) which is inhibited by Smad6 and Smad7 (Yanagisawa et al., 2001). However, 

the potential of BMP2 to induce differentiation of PC12 cells is relatively low. Much 

stronger neuronal induction could be achieved, when BMP2 treatment was combined 

with FGF even at subthreshold concentrations of FGF (Hayashi et al., 2001). 

Furthermore, bFGF and activin A were found to induce PC12 cell differentiation 

with moderate and low process formation, respectively.  In contrast TGF-β1 and 

inhibin A possess no inductor potential ( Fig. 3). 
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Fig. 3.   Induction of neurite outgrowth in PC12 cells treated with various 
factors (from Iwasaki et al., 1996). 

PC12 cells were treated with 20 ng/ml NGF, 30 ng/ml BMP-2, 10 ng/ml basic FGF, 
10 ng/ml TGFβ1, or 30 ng/ml activin A for the indicated periods of time. Bar, 50 µm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  4. Proposed model of BMP2 action in PC-12 cells (modified from Hayashi et al., 2003). 

APAF-1 apoptotic protease-activating factor-1, BMP2 – Bone Morphogenic Protein 2, BMPRs – 
BMP2 receptor,  FGFR-1 receptor, MKK3/6-p38 mitogen-activated protein kinase, Smad 
1/5/8/4/6/7 – proteins, TAB1transforming binding protein 1, TAK1 transforming activated kinase 1. 
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1.4. Apoptosis as a key process in neuronal differentiation and development 
 

 
 

Neuronal apoptosis plays an indispensable role in neurogenesis. Apoptosis is a 

form  of  programmed  cell  death  that  occurs  during  development  of  the  nervous 

system. The importance of apoptosis during neuronal embryonic development was 

demonstrated by genetic elimination of cell death. Knock outs of several apoptosis 

specific genes lead to embryonic mortality or gross anatomical malformations (Buss 

and Oppenheim, 2004). However, some of the apoptosis mutant animals develop 

normally but show excess of neurons and glia in the nervous system. Supernumerary 

neuronal  progenitors  may  differentiate  into  functional  neurons,  however,  such 

neurons show often size reduction, fail to differentiate properly, and/or lack normal 

connections with their targets. Changes in motor control and sensory processing are 

generally not observed, except for during the most complex of behaviours (Buss and 

Oppenheim,  2004).  Examination  of organisms  where  apoptotic genes  have been 

genetically eliminated revealed that programmed cell death might play an important 

role in sculpting gross brain structure during early development of the neural tube. In 

contrast   to   the  well   investigated   role  of  apoptosis   during  early  embryonic 

development of the nervous system, the consequences of preventing neuronal cell 

death at later developmental stages (e.g. during vertebrate synapse formation) are just 

beginning to be understood (Buss and Oppenheim, 2004). 

 
 

Apoptosis may also be responsible for neuronal death that occurs in neurological 

disorders  such  as  stroke,  Alzheimer's,  and  Parkinson's  diseases  (Culmsee  et  al., 

2005). Here, cell loss via apoptosis is a key element causing neuronal degeneration. 
 

 
 

1.5. P53 protein-mediated cell cycle arrest and apoptosis 
 

 
 

The tumour suppressor protein p53 is a transcription factor that regulates the 

response to cellular insults such as DNA damage and growth factor withdrawal. 

Active p53 protein can induce cell cycle arrest to allow the cell to recover from 

damage. Alternatively, p53 is also able to induce apoptosis, especially in case of 

extensive or irreparable damage (Zhang et al., 2009). Transcriptional activity of p53 

requires post-translational modification by phosphorylation and acetylation. P53 
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production is rapidly increased in neurons in response to a range of insults including 

DNA damage, oxidative stress, metabolic compromise and cellular calcium overload. 

Target genes induced by p53 in neurons include the pro-apoptotic proteins Bax and 

the BH3-only proteins PUMA and Noxa (Fig. 5). In addition, p53 may more directly 

trigger apoptosis by acting at the level of mitochondria, a process that can occur in 

synapses (synaptic apoptosis). Preclinical data suggest that agents that inhibit p53 

may be effective therapeutics for several neurodegenerative conditions (Culmsee et 

al., 2005). 
 

 
 

 
 

Fig. 5. P53 signalling – critical P53 – regulated factors leading to apoptosis or cell cycle 

arrest. (modified from Jian et al., 2003). 

 
 

The role of p53 in neuronal apoptosis is still under debate and controversial data 

exist on its function and necessity for neuronal apoptosis. 

 
 

The role of p53 in apoptosis in PC12 cells is also still discussed. It was suggested 

that p53 participates in the early phases of programmed cell death in PC12 cells 

through caspase3 activation. Consequently, absence of functional p53 resulted in a 

delay of apoptosis (Vaghefi et al., 2004). 
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Recent findings demonstrated that p53 plays a critical role in NGF-mediated 

neuronal differentiation in PC12 cells at least in part via regulation of TrkA levels 

(Zhang et al., 2006). 

 
 

1.6. Aims of the project 
 

 
 

The general purpose of this work was to investigate the role of Nkx5-1 and Nkx5-2 

genes during the neuronal differentiation and their possible involvement in regulation 

of  apoptosis  using  PC12  cells  as  an  experimental  model.  At  first  I focused  on 

examination of influence of Nkx5-1 and/or Nkx5-2 overexpression on neuronal 

differentiation and apoptosis in PC12 cells under different growing conditions. The 

next step was to identify pathway(s) involved in the induction of Nkx5-induced 

apoptosis in PC12 cells and the regions of Nkx5 protein(s) responsible for the 

apoptotic effect. For better understanding of the role of different factors in the 

regulation of Nkx5-1 gene transcription, cell culture experiments using LacZ reporter 

construct fused to the putative Nkx5-1 promoter sequences were performed. Finally, 

apoptosis and expression of neuronal differentiation markers were investigated in 

WT and Nkx5-1 knockout mouse embryos and adult animals to verify Nkx5-1 

function in vivo. 
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2. RESULTS 
 

 
 

It was shown previously that Nkx5 genes influence morphogenesis of the inner ear 

epithelium possibly by deregulation of cellular apoptosis (Merlo et al., 2002; Wang 

et al., 2004; Bober et al., 2003). In addition to the inner ear, Nkx5 genes are also 

expressed in specific neuronal structures (Rinkwitz et al., 1996). However, little is 

known about the function of Nkx5 genes during neuronal development or 

differentiation. In this work, PC12 cell culture system was used to investigate a 

potential role of Nkx5 genes during neuronal differentiation. To investigate whether 

the  influence  on  apoptosis  might  be  a  general  function  of  Nkx5  genes  also  in 

neuronal cells, Nkx5-1 and Nkx5-2 genes were overexpressed in PC12 cells and the 

cells were scored for apoptosis. Furthermore, the interrelationship between Nkx5- 

dependent   apoptosis   and   known   regulators   of   the   apoptotic   pathway   were 

investigated using immunohistochemistry and RNA expression analysis. In the last 

part of this work the activation of Nkx5-1 promoter was investigated in PC12 cells 

using a plasmid containing Nkx5-1 promoter sequences and LacZ reporter gene. 

 
 

2.1. Construction of the plasmids overexpressing Nkx5-1 and Nkx5-2 proteins 
 

 
 

Nkx5 overexpressing plasmids were constructed using pCS2MTNLS (MalphaM) 

expression vector. To overexpress Nkx5-1 protein an Nkx5-1 SmaI-EcoRI 1.7 kb 

cDNA fragment, encompassing the entire coding sequence, was cloned into BamHI 

site of the pCS2MTNLS vector using blunt end ligation. For generation of the 

Nkx5-2 overexpresing construct an Nkx5-2 XbaI-SmaI 1.5 kb cDNA fragment was 

cloned  into  the  blunt-end  filled  EcoRI  site  of  the  vector.  This  fragment  also 

contained the entire protein coding information. Both constructions were fused in 

frame to vector sequences containing sequences of 6 Myc-epitops and the nuclear 

localization signal (NLS). The AUG start codon for translation was provided by the 

vector (see Fig. 6). 
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Fig. 6. Nkx5-1 and Nkx5-2 expression constructs. 

Both constructs were based on pCS2MTNLS vector. This vector contains 6 copies of sequences 

encoding the Myc epitope (LEQKLISEEDLN SEQ ID NO:8) and the NLS (nuclear localisation signal). 
a)  Nkx5-1 SmaI-EcoRI fragment was subcloned into EcoRI –XhoI sites of pCS2NLS MT vector 

using blunt-end ligation. 

b) Nkx5-2 XbaI-SmaI fragment was cloned into blunt-ended EcoRI site of the pCS2MT NLS 

vector. 

The correct orientation was confirmed by sequencing and restriction analyses. 



- 20 - 

Results 
 

 

 
 
 
 

To develop an in vitro model for investigation of the function of Nkx5 I 

 
 

 

 
 
 

2.2. Investigation of influence of Nkx5 genes on apoptosis in PC12 cells 
 

 
 

2.2.1. Nkx5-1 but not Nkx5-2 induces apoptosis in PC12 cells 
 

 
 

It was previously demonstrated that Nkx5 genes influence apoptosis during inner 

ear  development.  To  develop  an  in  vitro  model  for  investigation  of  apoptosis 

pathway and examine the role of Nkx5-1 and Nkx5-2 in apoptosis and neuronal 

differentiation, PC12 cells were used as a culture system. First, culture conditions 

were  optimized  by testing  different  cell  density,  concentration  of  differentiation 

inducing factors, and time of the cell culture. It is well known that NGF induces the 

neuronal fate of pheochromocytoma derived PC12 cells (Green and Tischler, 1976). 

In  fact,  addition  of  NGF  induced  neuronal  differentiation  (Fig.  7B,  C).  Similar 

effects could be achieved by supplementing of the cell culture medium with BMP2 

(Fig. 7F). The most efficient neuronal differentiation was achieved by addition of 

BMP2 at a final concentration of 100ng/ml and NGF at a final concentration of 

50ng/ml (Fig. 7B and F). The neuronal differentiation was confirmed by changes in 

cell morphology (Fig. 7) and by expression of neuronal markers (not shown). These 

estimated  culture  conditions  were  used  as  standard  conditions  in  the  following 

experiments. 
 

A B C 
 

 
 
 
 
 
 
 
 

D E F 
 
 
 
 
 
 
 
 

 
Fig.  7. Supplementation of the cell culture medium with NGF or BMP-2 induces neuronal differentiation. 
PC12 cells were cultured under different growing conditions: 
A,D – without any additional factor 
B,C - with addition of NGF 
E,F - with addition of BMP2 
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To estimate the basal level of apoptosis PC12 cells were cultivated under  the 

standard conditions without DNA transfection and separately transfected with 

PCS2MT plasmid. As shown in Fig. 8 no apoptosis could be observed using the 

tunnel assay in untransfected cells (Fig. 8E-H). Similarly, transfection of PC12 cells 

with pCS2 plasmid did not induce any apoptosis (Fig. 8A-D). 

To investigate the influence of Nkx5 proteins on apoptosis Nkx5-1 and Nkx5-2 

plasmids were overexpressed in PC12 cells and the cells were scored for apoptosis 

two  days  after  transfection.  The  presence  of  Nkx5  proteins  encoded  by  the 

transfected plasmids was confirmed using anti-Myc tag antibody (Fig. 9B, F). The 

transfected cells were stained using tunnel assay to visualize apoptotic cells and the 

apoptosis induction was correlated to Nkx5-1 over-expression. In fact, almost all 

Nkx5-1 expressing cells underwent apoptosis (Fig. 9A-D). In contrast, Nkx5-2 

transfection did not induce apoptosis at all (Fig. 9E-H). Since it was postulated that 

both Nkx5 genes play an overlapping role in neuronal development (Rinkwitz et. al., 

1996), it is puzzling that we discovered a specific apoptosis inducing function only 

for Nkx5-1. Interestingly, Nkx5-1 has been reported as a potential target of BMP2 

and BMP4 (Merlo et al., 2002). Since BMP proteins were already demonstrated to 

regulate apoptosis and neuronal differentiation, we were interested whether Nkx5-1- 

dependent induction of apoptosis might be modulated during neuronal 

differentiation. In following experiments I set to estimate the involvement of Nkx5-1 

in signalling pathways known to regulate apoptosis and neuronal differentiation of 

PC12 cells. 
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Fig.  8. Cells transfected with pCS2 vector and untransfected cells cultured under standard growing 
conditions do not undergo apoptosis. 

A, E - TUNEL staining to indicate apoptotic cells. 
B, F - The presence of vector transfected cells was confirmed using anti Myc-tag antibody. 
C, G- DAPI staining was performed to visualize all nuclei. 
B, D - Myc-tag was detected in pCS2MTNLS overexpressing cells. 
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Fig.  9.  Nkx5-1 but not Nkx5-2 induces apoptosis in PC12 cells. 
A, E - TUNEL staining. 
B, F - The presence of Nkx5 proteins encoded by the transfected plasmids was confirmed using 
anti Myc-tag antibody. 
C, G - DAPI staining was performed to visualize all nuclei. 
D - White arrows indicate TUNEL and Myc-tag positive cells. 
H  - No positive cells for TUNEL and Myc-tag were found in Nkx5-2 overexpressing cells. 
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2.2.2. NGF does not prevent Nkx5-1 induced apoptosis 
 

 
 

NGF induces neuronal differentiation in PC12 cells and has been reported to act as 

a survival factor and to prevent apoptosis in these cells (Shimoke et al., 2001). To 

investigate whether NGF can prevent Nkx5-1 induced apoptosis or whether this 

apoptosis is an integral part of the differentiation program Nkx5 overexpression 

experiments in PC12 cells were repeated in the presence of NGF.  PC12 cells were 

treated with 50 ng/ml NGF and transfected with Myc-tagged Nkx5-1 (Fig. 10A-D) 

and Nkx5-2 (Fig. 10E-H) expression constructs. The cells were harvested 48h after 

transfection and analysed for the presence of transfected proteins using anti Myc 

antibody (Fig. 10B, F) and for apoptosis using TUNEL assay (Fig. 10C, G). The 

nuclei were visualized by DAPI staining (Fig. 10A, E). D and H show cells positive 

for transfection and apoptosis in merged images. The obtained results strongly 

resemble  those  without  NGF  treatment:  almost  all  Nkx5-1  transfected  cells 

underwent apoptosis (arrows in Fig. 10D) while virtually no apoptosis was present in 

Nkx5-2 transfected cells (Fig. 10G, H). Does Nkx5-1 specifically induce apoptosis in 

cells undergoing NGF- dependent neuronal differentiation? 

Results 
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Fig.  10. Nkx5-1 induces apoptosis in PC12 cells. NGF does not prevent Nkx5-1-induced 
apoptosis. 
Cells were transfected separately with each Nkx5 construct and treated with NGF in concentration of 
50ng/ml. Transfected cells were identified using anti-Myc-tag antibody. Cells were stained using 
TUNEL assay to visualize apoptotic cells. DAPI staining was performed to visualize nuclei. 
A,E – Nuclei were visualized by DAPI staining 
B,F – Transfected cells were confirmed using anti-Myc-tag antibody. 
C,G – TUNEL assay was performed to visualize apoptotic cells. 
D,H – Almost all cells overexpressing Nkx5-1 and treated with NGF undergo  apoptosis ( arrows in D) 
in contrast to Nkx5-2 transfected cells. 
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2.2.3. BMP2 has no effect on Nkx5-1 induced apoptosis 
 

 
 

In the further course of this work I wanted to investigate, whether Nkx5-1 induced 

apoptosis might be regulated by BMP2. Such regulation was already suggested in 

epithelial cells of the inner ear (Herbrand et al., man. in prep.). 

 
 

PC12 cells were treated with BMP2 at the final concentration of 50 ng/ml and 

transfected again with Nkx5-1 and Nkx5-2 constructs (Fig. 11). The transfected cells 

were detected by an anti-Myc antibody staining (Fig. 11B, F). Apoptosis was 

visualized by TUNEL staining (Fig. 11C, G). In confirmation with previous results 

the  majority of  Nkx5-1  overexpresing  cells  underwent  apoptosis  (Fig.  11C,  D). 

However, apoptotic cells were also found in PC12 cells transfected with Nkx5-2 

construct. Under a more detailed scrutiny, it became apparent, that many cells 

undergoing apoptosis did not overexpress Nkx5-2 (arrows in Fig. 11H). Interestingly, 

some  apoptotic cells  were also  found after Nkx5-1  transfection  without  Nkx5-1 

overexpression (arrows in Fig. 11D). Thus BMP2, similarly to NGF does not prevent 

Nkx5-1-induced apoptosis. In addition, BMP2 is able to induce apoptosis in PC12 

cells without Nkx5-1 or Nkx5-2 overexpression. 
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Fig.  11. Influence of BMP2 on apoptosis in Nkx5-1 and Nkx5-2 transfected PC12 cells 

A,E – Nuclei were visualized by DAPI staining. 
B,F – Transfected cells were confirmed using anti-Myc tag antibody. 
C,G – TUNEL assay was performed to visualize apoptotic cells. 
D,H – Merged pictures of anti-Myc and tunnel staing. Almost all cells overexpressing Nkx5-underwent  apoptosis. 
Some apoptotic cells did not overexpress Nkx5-1 (arrows in D). 
The majority of apoptotic cells at the Nkx5-2 transfection did not overexpress Nkx5-2 arrows in H. 
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2.2.4. PFT alpha blocks apoptosis induced by Nkx5-1 protein 
 

 
 

P53 plays an important role in cell differentiation, proliferation and apoptosis in 

PC12 cells (Zhang et al., 2006). We were interested whether Nkx5-1 induced 

apoptosis requires p53 pathway. Therefore PFT alpha has been used to block p53 

transcription. The cells were transfected as previously but in the presence of PFT 

alpha at the concentration of 250 ng/ml. As a control untransfected cells were treated 

with  PFT  alpha  (data  not  shown). TUNEL  assay  and  MycTag  staining  were 

performed to visualize apoptotic and transfected cells (Fig. 12). No apoptosis was 

observed in the control cells after PFT alpha treatment (not shown). Interestingly, no 

apoptosis was detected by TUNEL assay after PFT alpha treatment of Nkx5-1 

overexpressing cells (Fig. 12C). The successful inhibition of p53 was demonstrated 

by the lack of p53 protein in transfected cells after PFT alpha treatment (Fig. 13C, 

G). Without inhibitor, p53 could be easily detected in Nkx5-1 transfected cells using 

immunocytochemistry as detected by p53 antibody while endogenous p53 level and 

p53 expression in Nkx5-2 could not be detected (Fig. 15C, G; and results not shown). 

These findings suggested that Nkx5-1 induced p53 dependent apoptosis and that the 

induction of higher levels of p53 expression was essential for apoptosis induction in 

Nkx5-1 overexpressing cells. 
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Fig.  12. Cells overexpressing Nkx5-1 and Nkx 5-2 were treated with PFT alpha as described. 
A, E – Nuclei were visualized by DAPI staining. 
B, F – Transfected cells were confirmed using anti-Myc tag antibody. 
C, G – TUNEL assay was performed to visualize apoptotic cells. 
D, H – Cells overexpressing Nkx5-1 do not undergo apoptosis. 
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Fig.  13. PFT alpha blocks the activation of p53. 
Cells were transfected with Nkx 5-1 and Nkx 5-2 expression constructs and cultivated in a medium with addition 
of 250ng/ml PFT alpha for 2 days. After that antibody staining was performed. 
No p53 expression was detected in Nkx5-1 and Nkx5-2 overexpressing cells. 
A, E – Nuclei were visualized by DAPI staining. 
B, F – Transfected cells were confirmed using anti-Myc Tag antibody. 
C, G – Anti-p53 antibody assay was performed to visualize p53 level in the cells. 
D, H – Merged images. 
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2.2.5. BMP2 is able to induce apoptosis and p53 expression independently of 
 

Nkx5-1 
 

 
 

As already demonstrated above (par. 2.2.3., page 25) BMP2 did not grossly affect 

apoptosis induction by Nkx5-1 overexpression. However, BMP2 was able to induce 

apoptosis in PC12 cells apparently without Nkx5-1 overexpression (see Fig. 11A-D, 

page 26). The question arises to what extent the down-stream apoptotic pathways 

activated independently by BMP2 and Nkx5-1 differ from each other. First, I wanted 

to investigate whether both apoptosis inducers activate p53. To address this issue 

Nkx5-1 and Nkx5-2 transfection experiments were performed in the presence of 

BMP2 as already described in par. 2.2.3. (page 25). The cells were harvested 48h 

after transfection and analysed for the presence of transfected proteins using the anti- 

Myc-tag antibody (Fig. 14B, F) and for p53 expression using anti-p53 antibody (Fig. 

14C, G). Our data show again that Nkx5-1 overexpression strongly enhanced p53 

level, while no increase in p53 could be observed in Nkx5-2 transfected cells (Fig. 

14, compare C with G). In addition, BMP-2 lead to induction of p53 also in 

untransfected cells (white arrows in Fig. 15D pointing at cells positive only for p53 

antibody).  Such  cells  were  also  present  in  Nkx5-2  transfected  cells  (Fig.  14H, 

arrows). These cells were also undergoing apoptosis as shown already in Fig. 12. 

Therefore, BMP2 is able to induce p53 and apoptosis in PC12 cells without Nkx5-1 

overexpression. However, interrelationship between endogenous BMP2, Nkx5-1, and 

p53 proteins in PC12 cells cannot, of course, be excluded and requires further 

investigation. 
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Fig.  14.  BMP-2 induced apoptosis by p53 independent of Nkx5-1 overexpression. Cells positive both for p53 
and Nkx5-1 overexpresion were observed in the culture after treatment with BMP-2. 
A, E – Nuclei were visualised by DAPI staining. 
B, F – Transfected cells were confirmed using anti-Myc Tag antibody. 
C, G – Anti-p53 antibody assay was performed to visualize p53 level in the cells. 
D, H – Merged images (arrows point at the untransected cells positive for p53). 
Arrow heads point at cells positive for Nkx5-1 and apoptosis. 
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2.2.6. NGF does not interfere with p53 induction by Nkx5-1 overexpression 
 

 
In the further course of this work the essential role of p53 activation for the Nkx5-1 

induced  apoptosis  was  confirmed in  additional  experiments. Since NGF did  not 

prevent Nkx5-1 mediated apoptosis, I wanted to investigate whether p53 activation 

by Nkx5-1 overexpression does also take place in the presence of NGF. Fig. 15 

demonstrates that despite the presence of high NGF concentration (100ng/ml) p53 is 

still activated in Nkx5-1 transfected cells (Fig. 15D, double-stained cells for anti- 

Myc and anti p53 antibodies are marked by arrows). However, a significant amount 

of Nkx5-1 overexpressing cells did not activate p53 expression high enough to allow 

immunohistochemical detection. Interestingly, treatment of Nkx5-1 transfected cells 

with NGF and PFTalpha almost completely abolished apoptosis (Fig. 16B, C). This 

experiment strongly suggests that p53 activation is required for Nkx5-1 induced 

apoptosis,  even  if  the  level  of  p53  expression  escapes  immunohistochemical 

detection. 

 
 

To evaluate the importance of p53 activation in Nkx5-1 induced apoptosis more 

exactly, additional transfection experiments were performed and quantitatively 

analysed. The cells were transfected with Nkx5-1 overexpressing plasmid and treated 

with NGF, BMP2, PFT, or combinations as described. Further, in some experiments 

BMP2 signalling was inhibited by addition of noggin. The harvested cells were 

stained using p53 specific antibody to visualize p53 expressing cells (green) and anti- 

Myc tag antibody to detect positive cells for Nkx5-1 expression (red). Cells positive 

for either Nkx5-1 or p53 expression, as well as cells positive for both proteins has 

been counted on 5 different plates and on each plate 3 different areas were selected. 

Results are presented in histogram (Fig. 17) and summarized in Table 1. 

 
 

The quantitative data generally confirmed the previous observations: under NGF 

treatment p53 expression is found essentially only in Nkx5-1 overexpressing cells, 

although approximately only a half up to 2/3 of Nkx5-1 positive cells switch on the 

p53 expression. After BMP2 treatment the majority of Nkx5-1 positive cells also 

activate p53 expression but, in addition, almost the same number of cells activates 
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p53  without  Nkx5-1  overexpression.  These  particular  cells  are  abolished  after 

addition of noggin, thus confirming that BMP2 activates p53 independent of 

exogenous Nkx5-1. PFT alpha treatment generally leads to a substantial reduction of 

p53 positive cells. 

 
 

Similar experiments were performed using  Nkx5-2 overexpressing  plasmid for 

transfections. As documented by quantitative data in Fig. 18 and Table 2, Nkx5-2 

does not possess any potential for p53 activation. 
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Fig. 15. NGF does not interfere with p53 inducion by Nkx5-1 overexpression. 

A,E –  Nuclei were visualized by DAPI staining. 
B,F –  Transfected cells were confirmed using anti-Myc Tag antibody. 
C,G –  p53 was visualized by anti-P53 antibody apoptotic cells. 
D,H –  Merged images (arrows points at cells positive for MycTag and p53). 
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Fig.  16. Combination of NGF and PFT alpha abolishes apoptosis induction by Nkx5-1. 

A,E –  Nuclei were visualized by DAPI staining. 
B,F –  Transfected cells were confirmed using anti-Myc Tag antibody. 
C,G – TUNEL assay was performed to visualize apoptotic cells. 
D,H –  Merged images. 



- 37 - 

                                                                            Results    

 

 
 

 
 

                         Table 1. Average numbers of positive cells for Nkx5-1 (MycTag /red) and p53 (expression/green),  

                     and for double-stained cells. 
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Table 2. Average numbers of positive cells for Nkx5-2 (MycTag /red) and p53 (expression / 

green), and for double-stained cells. 
 

 
 
 

2.2.7. Gene expression analysis in PC12 cells under different growing conditions 
 

 
 

To get more insight into the molecular changes induced by overexpresion of Nkx5 

genes and to correlate our findings with endogenous apoptosis pathways, gene 

expression was analysed by RT-PCR technique. RNA was isolated from PC12 cells 

cultivated  under  different  conditions  and  RT-PCR  analysis  was  performed  to 

estimate expression of several genes involved in apoptosis (Fig. 19). 

Interestingly, we observed an increased expression of the p53 gene as well as p53- 

regulated genes (p21, APAF-1) after overexpression of Nkx5-1. No increase in p53 

expression was detectable in cells overexpressing Nkx5-2 (Fig. 18). The increased 

p53 expression was accompanied by activation of apoptosis specific genes such as 

caspase III and BAC-1. However, these genes were also expressed, albeit at the 

somewhat lower levels in cells overexpressing Nkx5-2. 

In addition to overepression of Nkx5 proteins, the PC12 cells were treated with 

BMP-2 and NGF, BMP and p53 inhibitors, noggin and PFT, respectively. The 

influence of these factors on expression of Nkx5 and apoptosis related genes were 

examined by RT-PCR. Following conclusions could be drawn: 
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Fig. 19. RT-PCR analysis of different cDNAs isolated from PC12 cultivated under different 
conditions. Cells were treated for 2 days with NGF, BMP, NOGGIN, or transfected with Nkx5 
overexpressing plasmids as indicated at the top of the figure. 25 cycles of RT-PCR were performed 
to detect expression of genes indicated on the left. 
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Nkx5-1 is activated by BMP-2 and NGF separately. However, combination of 

these two factors strongly inhibits Nkx5-1 expression. 

Inhibition of p53 activity by PFT alpha leads to Nkx5-1 down-regulation. 

Combination of NGF, BMP-2 with PFT alpha also lowers Nkx5-1 expression as 

compared to higher Nkx5-1 expression induced by NGF or BMP-2 alone. 

Nkx5-2 expression is up-regulated by NGF. In contrast, BMP-2 treatment does not 

activate Nkx5-2. Caspase III is strongly induced in cells transfected by Nkx5-1 

confirming the ongoing apoptosis in Nkx5-1 overexpressing cells. 

 
 

2.3. Estimation of Nkx5-1 protein domains conferring the induction of apoptosis 
 

 
 

In the next step, we wanted to examine which part of the Nkx5-1 protein possesses 

the apoptosis-inducing activity. At the same time, we wanted to exclude that the lack 

of such activity in the Nkx5-2 protein was simply due to any faults in the 

experimental design or construction of Nkx5-2 overexpressing vector. Therefore, 

swapping expression constructs were cloned as illustrated schematically in Fig. 20 

and  the hybrid  molecules  were tested  for their  potential  to induce  apoptosis.  A 

conserved XhoI restriction site, residing at the N-terminal part of the homeobox was 

used to generate two separate fragments of each Nkx5 cDNA. The correct orientation 

was confirmed by restriction analysis and sequencing (not shown). As shown in Fig. 

21, construct overexpressing an Nkx5-1/2 hybrid molecule consisting of the Nkx5-1 
 

N-terminus fused to the C-terminal part of Nx5-2, including the almost entire Nkx5-2 

homeodomain (Fig. 20A), faithfully induced apoptosis, as it was the case for the full- 

length wild-type Nkx5-1 protein. An analogous Nkx5-2/1 construct expressing the 

N-terminus of Nkx5-2 joined to the Nkx5-1 C-terminus (Fig. 20B) did not show any 

apoptosis induction (Fig. 21E,H). These experiments clearly demonstrate that the 

non-conserved  N-terminal  domain  of  the  Nkx5-1 protein  harbours  the  apoptosis 

inducing activity. Such domain is obviously lacking within the Nkx5-2 molecule. 
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Fig. 20. Overexpression constructs for Nkx 5-1/ Nkx 5-2 – recombinant proteins. 
Nkx5-1 specific fragments are marked by a yellow and Nkx5-2 specific sequences are indicated 
by a blue colour. 
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Fig. 21. Nkx 5-1/2 overexpression construct containing the N –terminus of Nkx5-1 protein induces 
apoptosis in contrast to Nkx5-2/1 construct containing the Nkx5-2 N-terminus. 
A,E –  Nuclei were visualized by DAPI staining. 
B,F –  Transfected cells were confirmed using anti-Myc Tag antibody. 
C,G – Tunnel assay was performed to visualize apoptotic cells. 
D,H –  Merged images. 
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2.3.1. N-terminus of Nkx5-1 protein is sufficient to induce apoptosis but lacks 

p53-responsive elements 

 
 

The  results   presented   above  (Fig.   21)  clearly  documented   that   sequences 

responsible for apoptosis induction are located in the Nkx5-1 region upstream of 

XhoI restriction site present within the homeobox (see Fig. 20A). These sequences 

were searched for potential similarity to motives known to be responsible for 

apoptotic effects in other genes using BLAST analysis. However, no similarities to 

known apoptotic sequences were found. Thus, further experiments are necessary to 

delineate the exact elements responsible for Nkx5-1-dependent apoptosis. 

 
 

To investigate whether the Nkx5-1 N-terminus of the Nkx5-1/2 swapping construct 

contains entire sequence information responsible for apoptotic activity, further 

experiments were performed. First, apoptosis induction by overexpression of the 

native Nkx5-1 protein in PC12 cells was not influenced by NGF. Similarly, addition 

of NGF to the cell culture medium did not prevent apoptosis in the case when the 

cells were transfected with Nkx5-1/2 construct (results not shown). 

 
 

Interestingly, different behaviour of cells transfected with Nkx5-1/2 construct as 

compared to wild-type Nkx5-1 transfection was observed after PFT alpha treatment. 

In contrast to previous observations, PFT alpha did not block apoptosis induced by 

Nkx5-1/2 protein. As shown in Fig.22A-D cells overexpressing Nkx5-1/2 construct 

underwent apoptosis even in the presence of PFT alpha. This observation suggested 

that apoptosis induced by Nkx5-1/2 hybrid protein was not p53-dependent. 

Alternatively, combination of PFT alpha and the Nkx5-1/2 hybrid protein might be 

toxic for the cells. 

 
 

In next experiment BMP2 was added to the Nkx5-1/2 transfected cells. In this 

experiment Nkx5-1/2 induced apoptosis was not influenced by BMP2  ( Fig. 22E-H). 

BMP2 was also able to induce apoptosis in cells, which were not transfected by the 

Nkx5-1/2 construct confirming the observation that BMP2-induced apoptosis did not 

require  overexpression  of  Nkx5-1  or  the  hybrid  Nkx5-1/2  protein  (Fig.  22  H, 

arrows). 
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Transfection of PC12 cells with the swapping domain construct containing the 

Nkx5-2 N-terminus fused to the Nkx5-1 homeodomain, Nkx5-2/1 (Fig. 20B), did not 

induce apoptosis in the presence of PFT alpha or BMP2 (Fig. 23). The only apoptotic 

cells obviously induced by BMP2 treatment did not express Nkx5-2/1 construct (Fig. 

23 E-H, see arrows in H). 
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Fig. 22. PFT alpha and BMP-2 do not block apoptosis in PC12 cells transfected with Nkx5-1/2 
vector. 

A,E –  Nuclei were visualized by DAPI staining. 
B,F –  Transfected cells were confirmed using anti-Myc Tag antibody. 
C,G – Tunnel assay was performed to visualize apoptotic cells. 
D,H –  Merged images. Arrows in H indicate apoptotic cells without Nkx5-1/2 overexpression. 
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Fig. 23. Nkx5-2/1 hybrid protein does not induce apoptosis after PFT alpha or BMP-2 
treatment. 
A,E –  Nuclei were visualized by DAPI staining. 
B,F –  Transfected cells were confirmed using anti-Myc Tag antibody. 
C,G – Tunnel assay was performed to visualize apoptotic cells. 
D,H –  Merged images. Arrows indicate apoptotic cells due to BMP-2 treatment and negative 
for Nkx5-2/1 expression. 
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2.4. Identification of Nkx5-1 promoter region and analysis of its activity in 

neuronal cells 

 
 

2.4.1 Generation of Nkx5-1 promoter construct 
 

To investigate Nkx5-1 promoter activity a construct encompassing Nkx5-1 gene 

sequences upstream of the transcription start site was generated. 10 kb BamHI-KpnI 

Nkx5-1  genomic  fragment  containing  the  first  10,5  kb  of Nkx5-1  upstream 

sequences of the protein coding region was fused in frame to the fragment encoding 

LacZ reporter gene (Fig. 24). 

To analyse whether the cloned Nkx5-1 genomic fragment contains regulatory 

sequences responsible for Nkx5-1 gene activity, the construct was transfected into 

PC12 cells and the cells stained for β-Gal activity under different conditions (see 

next chapter). 

 

 
 

Fig. 24. Promoter construct with reporter gene LacZ for investigation of Nkx5-1 gene activity. 
 

 
 

2.4.2. Nkx5-1 promoter construct is active and regulated by NGF and BMP2 in 
 

PC12 cells 
 

 
 

To investigate whether the Nkx5-1 genomic sequences cloned into the LacZ- 

reporter plasmid can activate transcription of the reporter sequences, the Nkx5-1 

promoter construct was transfected into PC12 cells under standard conditions. The 

cells were harvested 48 hours after transfection and stained for ß-gal activity to 

visualize transcriptional activity. However, only very weak ß-gal staining was 

observed in cells transfected with the Nkx5-1 promoter construct as compared with 
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cells  transfected  with  vector  without  additional  insertions  (see  Fig.  25A,  D, 

respectively). 

 
 

As was shown before, NGF and BMP2 activate expression of the endogenous 

Nkx5-1 gene, when added to PC12 cells separately. In contrast, addition of both 

factors simultaneously, led to inhibition of Nkx5-1 transcription (see chapter 2.2.7 

and Fig. 19). In fact, cells transfected with the Nkx5-1 promoter construct showed 

high intensity ß-gal staining, when NGF or BMP2 were added to the culture medium 

(Fig. 25B, C). Consistent with previous observation on endogenous Nkx5-1 activity, 

simultaneous addition of NGF and BMP2 strongly inhibited the activity of Nkx5-1 

promoter leading to a decrease of ß-gal staining to basal levels (Fig. 25E). The 

specificity of BMP2-dependent activation of Nkx5-1 promoter was confirmed by 

treatment of transfected cells with BMP2 and its inhibitor noggin. Addition of noggin 

strongly reduced ß-gal activity as demonstrated in Fig. 25F. 

 
 

Since  NGF  strongly  promotes  neuronal  differentiation  I  wanted  further  to 

investigate whether the higher Nkx5-1 promoter activity observed after 

supplementation of culture medium with NGF correlates also with neuronal 

differentiation. Thus, PC12 cells transfected with Nkx5-1 promoter construct and 

cultivated in the presence of NGF were stained for ß-gal and for ß-tubulin III 

expression using anti-tubulin antibody (Fig. 26). In fact, the highest ß-gal staining 

intensity was observed in cells also positive for the neuronal differentiation marker 

ß-tubulin III (Fig. 26B), while cells transfected with Nkx5-1 promoter construct 

without any additional treatment displayed only weak, basal-level ß-gal activity and 

no ß-tubulin III immunoreactivity (Fig. 26A). Similar results were obtained when the 

cells  were  treated  with  BMP2.  Here,  strong  ß-gal  activity  correlated  also  with 

positive ß-tubulin III signals (Fig. 26C). Simultaneously addition of NGF and BMP2 

strongly induced neuronal differentiation as evidences by positive ß-tubulin staining 

(Fig. 26D). The activity of Nkx5-1 promoter in these cells was, however, strongly 

suppressed (Fig. 26D). 
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Fig. 25. Activity of LacZ reporter gene under the control of Nkx5-1 promoter. 
PC12 cells were transfected with the Nkx5-1 promoter construct (A – C, E, F) or LacZ reporter construct 
without any promoter sequences (D). Cells were cultivated under standard conditions (A, D) or in presence of 
NGF (B), BMP2 (C), NGF and BMP2 (E) or BMP2 and noggin (F). All substances were added at a final 
concentration of 100ng/ml. 48 hours after transfection cells were stained for ß-gal activity and representative 
areas were photographed. 
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Taking together, these experiments clearly document the presence of sequences 

governing the basal Nkx5-1 promoter activity on the genomic fragment used for the 

construction of Nkx5-1-LacZ reporter plasmid. In addition, regulatory elements 

responsible for the activation of Nkx5-1 gene transcription by NGF and BMP2 are 

also  present  within  these  sequences.  Significantly,  a  higher  Nkx5-1  activity 

correlates with neuronal differentiation in NGF or BMP2 treated cells but not in 

neuronal cells treated by combination of both factors. 
 
 
 
 
 
 
 

 

A B 
 
 
 
 
 
 
 
 
 
 
 
 

C D 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 26. Nkx5-1 promoter activity correlates with neuronal differentiation. 
PC12 cells were transfected with Nkx5-1 promoter construct and cultivated under standard conditions (A) or with 
addition of NGF (B), BMP2 (C), or combination of both (D). After transfection cells were stained for ß-gal activity (blue) 
and ß-tubulin III immunoreactivity (brown). 
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2.5.  Apoptosis  and  neuronal  differentiation  in  Nkx5-1  knockout  mouse  in 

comparison to wild type 

 
 

The results achieved in in vitro PC12 cells system suggested that Nkx5-1 may be 

involved in neuronal development. Therefore, expression of essential neuronal 

markers was  investigated by PCR  analysis  in  vivo  in  Nkx5-1  knockout  and  wt 

control brains. Mice brains from three different age stages (3 months, 6 months and 1 

year) have been isolated and whole brain RNA isolated and analysed by RT-PCR. 

However, no significant differences in the neuronal marker expression have been 

detected. In each age stage the intensity of RT-PCR signal for Ng1A, Ng1B and 

THA and THB was comparable in Nkx5-1 and wt samples as exemplified in Fig. 27 

for samples at the stage of 6 months. 

 
wt  -/- wt  -/- wt  -/- wt  -/- wt    -/- 

 
GAPDH Ng1A Ng1B THA THB 

 
Fig. 27. RT-PCR analysis of different neuronal markers in brain from wt and Nkx5-1 knockout mouse at 

the age of 6 months. 

Ng1A – neurogenin 1 alpha, Ngn1B – neurogenin 1 beta, THA – tubulin alpha, THB – tubulin beta. GAPDH was 

used as a loading control. 

 
Expression of Nkx5-1 has been reported in brain during embryonic development. It 

was also reported that Nkx5-1 is expressed in rat salivary glands in postnatal ages 

(Shaw et. al., 2003).  Since no reports on Nkx5 genes expression in an adult brain are 

available, in situ hybridization using Nkx5-1 antisense sequence was performed on 

sections of adult mouse brain, however no significant hybridization signal could be 

detected (results not shown). Since in situ hybridization might not be suitable for 

detection of low level Nkx5-1 expression, RT-PCR analysis was performed using 

adult brains of 4, 8 and 18 months old mice. Three Nkx5-1 -/- knockout mice and 

three white type ICR mice at the age of 4 months of postnatal development and three 

Nkx5-1 -/- and  three white type mice at the age of 8 months and the same numbers 

for  18  months  old  mice.  Presence  of  Nkx5-1  expression  was  detected  on  all 
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investigated adult stages by RT-PCR, suggesting a potential function for Nkx5-1 
 

(Fig. 28). In contrast,  no Nkx5-2 was detected (Fig. 28). 
 

 
 

 
 

Fig. 28. RT-PCR analysis preformed on adult mouse brain – derived RNA samples (4, 8 and 18 
months). 

Nkx5-1 positive signals were detected at all analysed stages in wt samples. No Nkx5-2 expression 
was detected. 

 

 
 
 

Apoptosis was analysed on brain frozen-sections using TUNEL assay and in brain- 

derived RNA samples using RT-PCF (Fig. 29). Using TUNEL assay several positive 

areas (indicated by numbers on overview brain in Fig. 29) could be identified on 

sections from wt control brains (Fig. 29D, F, H). Apoptotic signals in corresponding 

areas of knockout brains were always weaker or beyond detection (Fig. 29C, E, G). 

Interestingly, RT-PCR analysis of apoptosis-related genes expression revealed lower 

activation of a p53 target P21 in knockout brain tissue. Although no Cas6 and APAF 

expression could be detected, expression of another apoptosis promoting gene Bax 

was  higher in  the wt  brain  (Fig.  29I).  Summing up,  the in  vivo  data generally 

confirmed pro-apoptotic Nkx5-1 activity. 
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Fig. 29. Analysis of apoptosis in Nkx5-1 knockout and wt control brains. 
Tunel stained sections from 3 brain areas indicated on the shin are shown (A-B corresponding to region 
2,  E-H correspond to region 2 and C-D corresponding to region 3. As a positive control DNAase I was 
used (A-B). Sections from Nkx5-1 knockout (C,E,G) and wt control brains are shown. RT-PCR analysis 
of genes expression( genes name as indicated) in Nkx5-1 knockout and wt. D3V - dorsal 3rd ventricle, 
Ect - ectorhinal cortex, MEnt - entorhinal cortex, medial part, MHb - medial habenular nucleus, PRh - 
perirhinal cortex, SFO - subfornical organ, sm -stria medullaris, I –RT-PCR. 
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3. REAGENTS AND CHEMICALS 
 

 
 

Chemicals were purchased from the following companies: Amersham, AppliChem, 

Biomol, Eurogentech, Invitrogene, Merck, Jena Biosciences, New England Biolabs, 

Pierce, Promega, Roche, Roth, Santa Cruz, Seromed, Serva, Sigma and Stratagene. 

Consumables came from Amersham, Beckman, Biozym, Costar, Eppendorf, Falcon, 

Gilson,   Greiner,   Kodak,   Pharmacia,   Qiagen,   Sarstedt,   Machery   Nagell   and 

Whatman. Restriction enzymes were purchased  from Jena Biosciences  and New 

England Biolabs. Oligonucleotides were purchased from Roth. 

 
 

3.1. Reagents 
 

Alkalize Phosphates  SIGMA 

NGF SIGMA 

Proteinase K 

Restriction nucleases (Jena Bioscience, New England Biolabs) 

Reverse Transcriptase Superscript  (Invitrogen) 

RNase A 

RNasin (Ribonuklease Inhibitor)    (Promega) 

SuperScript II Reverse Transcriptase  (Invitrogen) 

Taq DNA Polymerase (Eppendorf) 

TRIzol (Invitrogen) 

Tripsin 2,5% (10x) (Invitrogen) 

Tripsin (EDTA) (0,5% Tripsin with EDTA 4Na) 10x 

T4 DNA Ligase   (Promega) 

Vectabond (Vector Laboratories) 

X-Gal (5-bromo-4chloro-3-idolyl ß-D-galactopiranosyde   (Roth) 

Polyfreeze Tissue freezing medium  (Polysciences) 

RQ1 RNAase-Free-DNase   (Promega) 

Vectastatin ABC Kit (mouse IgG or rabit IgG) (Vector Laboratories) 
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3.2. Kits 
 

TUNEL Assay   (Roche) 

Qiagex II Gel Extraction Kit  (Qiagen) 

Vectasatin ABC Kit (Vector Laboratories) 

 
 

3.3. Antibodies 
 

α-c-myc tag antibody 9E10 

ß-tubulin alpha 

 
 

3.4. Growing Factors and Inhibitors 
 

BMP2  (SIGMA B 3555) (SIGMA) 

NOGGIN (SIGMA) 

PFT-alpha (pifithrin-alpha) (SIGMA) 

 
 

3.5. Vectors and Primers 
 

If not otherwise indicated, all vectors listed code for resistance to ampicillin. 
 

 
 

pGEM-T easy (Promega) 
 

System for cloning of PCR products with single 3´ thymidine overhangs  at the 

insertion site (Promega). Contains T7 and SP6 RNA polymerase initiation sites 

flanking a multiple cloning region within the coding region of β–galactosides. 

 
 

pCS2 + MT+NLS (Strategene) 
 

Contains 6 copies of myc tag epitope recognized by 9e10 monoclonal antibody; 

constructed for production of epitope –tagged fusion proteins contains nuclear 

localization signal. 

 
 

pBluscript II KS+ (Stratagene) 
 

pBluescript II phagemids (plasmids with a phage origin) are cloning vectors designed 

to simplify commonly used cloning and sequencing procedures, including the 

construction of nested deletions for DNA sequencing, generation of RNA transcripts 

in  vitro  and  site-specific  mutagenesis  and  gene  mapping.  The pBluescript  II 

phagemids have an extensive polylinker with 21 unique restriction 
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enzyme recognition sites. Flanking the polylinker are T7 and T3 RNA polymerase 

promoters that can be used to synthesize RNA in vitro. The choice of promoter used 

to  initiate  transcription  determines  which strand  of  the  insert  cloned  into  the 

polylinker will be transcribed 

 
 

pDSRED (Clontech) 
 

pDsRed-Express is a prokaryotic expression vector that encodes DsRed-Express, a 

variant of Discosoma sp. red fluorescent protein (DsRed; 1) 

 
 

Primers sequence 
 

 
Name Sequence Annealing Temperature 

GAPDH  forward 

GAPDH  reverse 

ACTGCACCCTCCCCCGATGCACCCATGTTTGT 

TGGAGGCAACCAGGGCAACCACCACAGCTACA 

control PCR 

control PCR 

 

Nkx5-1 rat forward 

Nkx5-1 rat reverse 

 

GCACTACCTGGAGCGCTCCCC 

CCGAGCTGCTCAGGTAGCGTTTC 

 

    62ºC 

  62ºC 

 
Nkx5-2 rat forward 

Nkx5-2 rat reverse 

 
CTGCGGCTCGGAGCGCACGCCTTTCC 

GGGGTAATAGAGCGGAGCCGG AAAGGCG 

 
   58ºC 

  58ºC 

 
BMP2   rat forward 

BMP2    rat reverse 

 
CCAGACTATTGGACACCAGGTTAGTGAC 

GGGTGCCTTTTGCAGCTGGACTTAAGACG 

 
 60ºC 

                              60ºC 

 
BMP3 forward 

BMP3 reverse 

 
CGAAAGCAGTGGGTCGAACCTCGGAAC 

GGTTATCTACAAGCACAGGAGTCGACTG 

 
                               60ºC 

                               60ºC 

 

BMP4  forward 

BMP4   reverse 

 

GGGACCAGTGAGAGCTCTGCTTTTC 

GGGTTGCTTTTCCCGGGTCCATCGAAGG 

 

                               60ºC 

                               60ºC 

 
BMP5 forward 

BMP5 reverse 

 
GGGAGAGATCCAACGTGAGTGGAAAACG 

CCGGAATTCAGCTGCCGTCACTGCTTC 

 
                              57ºC 

                              57ºC 

 
BMP6 forward 

BMP6 reverse 

 
GAATTCAGCTGCCGTCACTGCTTC 

CAATGACATCCACAAGCTCTCACAACC 

 
                              56ºC 

                              56ºC 

 
BMP7 forward 

BMP7 reverse 

 
GGTGGCTTTCTTCAAGGCCACGGAGGTTC 

CAGGATGACGTTGGAGCTGTCGTCGAAG 

 
                              58ºC 

                              58ºC 

 

p53 forward 

p53 reverse 

 

ATGCTGAGTATCTGGACGAC 

TTCAGCTCTCGGAACATCTC 

 

                           59,4ºC 

                           59,4ºC 
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p21 rat forward ACCTTCCAGCTCCTGTAACATACT                                                   62,4ºC 

p21   rat reverse GTCTAGGTGGAGAAACGGGAA                                                         62,4ºC 
 

 
Bax-1 rat forward GGGTGGCAGCTGACATGTTT 60ºC 

Bax-1 rat reverse TGTCCAGCCCATGTATGGTTC 60ºC 
 

 
Apaf-1 rat forward TCCTGGTCATTCGATGGAAC 58ºC 

Apaf-1 rat reverse TCCAGATCTTGGCGGTCTTAT 58ºC 
 

 
Caspase 6  forward    GACTGGCTTGTTCAAAGGAG 62ºC 

Caspase 6  reverse    CCAGCTTGTCTGTCTGATGAT 62ºC 
 

 
NGN 1 A forward CCCGGTGCCCAGGACGAAGAG 60ºC 

NGN 1 A reverse GGGCAGGCCAGGAAAGGAGAAAAG                                                    60ºC 
 

 
NGN 1 B forward    GCGACCTGTCCAGCTTCCTCAA 58ºC 

NGN 1 B reverse   AAGCCTTGCCATTGTATTGTCAGC 58ºC 
 

 
THA forward CTAAGGAGCGCCGGATGGTGTG 60ºC 

THA reverse AGTTCTGTGCGTCGGGTGTCTGA 60ºC 
 

 
THB forward    AGCGCCGGATGGTGTGAGGACT 60ºC 

THB reverse    TACTGTCTGCCCGTGATTTTCTGG 60ºC 
 

 
 
 
 

3.6. Solutions and media 
 

 
 

 Ethidiumbromid Solution (0,01%); 10 mg Ethidiumbromid in 100 bidest. H2O 
 

 LB-Agar: LB-Medium with 15g/l Agar 
 

 LB-Amp-Selective Medium (agar medium after 60ºC cooling, ampiciline where 

added in concentration 50mg/ml) 

 LB Medium: 5g/L Yeast Ekstrakt; 5g/l NaCl and 10g/l Bactotryptone – ph to 7.5 

where calibrated with NaOH 

 PBS 10x: 1,5 M NaCl; 0,03 M KCl; 0,08 M Na2HPO4 x 2H2O; 0,01 M KH2 PO4 
 

 TAE- Bufor 50x: 2 M Tris-Base; 1M CH3COOH; 0,1 M EDTH with HCl ph 8,3 
 

 TE Bufor (10/1): 10mM Tris-HCl pH 8,0; 0,1 mM EDTH, pH 8,0 
 

 PFA: PFA-40g in 1 litre of 1xPBS, pH=7.0; heated to 60ºC, 2M NaOH added to 

solubilize PFA; filter sterilized 

 Ampiciline Stocks 50 mg/ml H2O 
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 Chloropan  –  Solution:  50  ml  Tris-HCl,  pH  8.0;  250  ml  Phenol;  240  ml 
 

Chlorophorm; 10 ml isoamyloalkohol; 0,5 g 8-Hydroxychinolin, 
 

 DNA  –Laderbuffer  (10ml):  1  ml  Bromophenolblue,  2,5%ig  in  H2O;  1ml 
 

Xylencyanol, 2,5 % in H2O; 2,5g gFicoll Type 4000 
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4. METHODS 
 

 
 

All standard molecular methods were performed according to protocols described 

in “Molecular Cloning” (Sambrook et all. 1989). All cloning steps as well as RT- 

PCR products were confirmed by DNA restriction analysis and sequencing reactions. 

 
4.1. Eukaryotic cell culture methods 

 

 
 

4.1.1. Cell lines 
 

 
 

PC12 were a kind gift from Prof. T. Braun. The neural crest-derived, rat 

pheochromocytoma cell line PC12 is a widely used model of the sympathetic and 

sensory nervous system (Greene, L.A., and Tischler, A.S. 1976) that responds to 

nerve growth factor NGF and bone morphogenic protein BMP2. 

 
 

4.1.2 General components for cell culture 
 

 
 

DMEM (Gibco) +0.11 g/l Sodiumpyruvate, with Pyridoxine 
 

RPMI 1640 (Gibco) + L-Glutamine 
 

Penicillin, Streptomycin (Cytogen ) 10.000 U/ml, 10 mg/ml 
 

Trypsin/EDTA (Cytogen) 0,05/0,02% in PBS 

FCS (Gibco) heat-inactivated for 30 min at 56°C 

Horse Serum 

G418 (Sigma) 67 mg/ml stock 
 

PBS (1x) 137 mM NaCl 
 

2.7 mM KCl 
 

6.6 mM Na2HPO4x 2H2O 
 

1.5 mM KH2PO4 

 
 
 

4.1.3. Passages and Cryoprotection of the cells 
 

 
 

For conservation, cells were resuspended in 1 ml of the appropriate cell culture 

medium with 20% FCS and 10 % DMSO, transferred into a cryotube and frozen in a 

polystyrene box at -20°C. After 4 h, the cells were transferred to -80°C for 24 h and 



- 60 - 

Methods 
 

 

 

 
 
 

subsequently stored in liquid nitrogen. PC12 cell lines were frozen in FCS containing 
 

10% DMSO. For recovery, cells were thaw for 10 min at 37°C, washed with 10 ml 

medium and transferred to a tissue culture flask. 

 
 

4.1.4. Growing of the PC12 cells line 
 

 
 

PC12 adheres poorly to plastic, and tends to grow in small clusters. They were 

grown on standard tissue culture plastic dishes without addition of collagen or poly – 

L – lysine, in 10% FCS, 5% horse serum, DMEM, 100µg/ml penicillin and 

streptomycin.  The doubling time of PC12 is quite long 2,5-4 days. Cells were kept 

in humified air with 10% CO2 at 37°C. Insect cells were cultured at 37°C and were 

split at 60% confluence. 

 
 

4.1.5. Treatment with the factors 
 

 
 

PC12 was treated whit different factors. 
 

Parameters: 
 

Differentiation and treatment was achieved by placing PC12 cells in Petri dishes at 
 

20% density (about 2.5 x 10
4 

cells/cm
2
) in the presence of 50 ng/ml NGF (SIGMA), 

 

100 ng/ml BMP2  and 250ng/ml PFT alpha in normal growing medium containing 
 

1% serum. 
 

 
 

4.1.6. Transient transfection of plasmid DNA 
 

 
 

Cells were transfected with FUGENE 6 reagent (ROCHE). Different conditions 

for the transfection were tested. The best results were achieved by following 

procedure. After splitting cells were spin off and plated at 20 % confluence and were 

grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

horse serum, 5% fetal bovine serum, L-glutamine (final concentration of 4mM), 10 

IU penicillin, 10µg/ml streptomycin, PC12 cells were grown at 37ºC with the 

atmosphere of 10% CO2  and 90 % air for one day. On the next day transfection 

mixes  were  prepared.  For  effective  transfection  different  proportion  between 

FUGEN 6 reagent, DNA and  OPTIMEM Medium were tested.  Finally the best 
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results were achieved by combination of 3µl FUGEN 6 reagent and 1 µg DNA to a 

total volume of 100 µl.  To OPTIMEM medium first DNA was added then FUGENE 

and mixed delicate with pipette. Mix was incubated in the cell culture chamber up to 

one hour. For co-transfection amount of transfection reagent was increased in 

proportion to the amount of total µg DNA. Then normal medium was replaced with 

DMEM medium containing 0.1% Horse Serum and 10 IU penicillin, 10µg/ml 

streptomycin. The transfection mix was added to the cells by drop to drop as well as 

other factors (BMP2, PTF alpha, NGF). Cells were treated with the factors for 2 

days. 

 
 

4.2. Prokaryotic cell culture 
 

 
 

4.2.1. Bacterial strains 

 
Two different bacterial strains were used: 

SURE E.coli ( Stratagene) 

XL-1 Blue E.coli (Stratagene) 
 

 
 

4.2.2. Cryoconservation of bacteria 

 
500 µl of overnight culture were added to 500 µl of glycerol (87%) in a cryo tube 

and stored at -80°C. 

 
4.2.3. Preparation of competent cells and transformation 

 
Competent bacteria were prepared using the rubidium chloride method. An 

overnight culture was diluted 1:100 in LB medium and grown at 37°C and 200 rpm 

to an OD600 between 0.6 and 0.8. From now on, all steps were performed at 4°C and 

buffers were ice cold. Cells were kept on ice for 15 min, centrifuged at 1.000 x g for 

10 min and cell pellets were resuspended gently and thoroughly in 20 ml RF1 buffer 

per 50 ml of starting culture. After a 15 min incubation on ice, cells were centrifuged 

as above, resuspended in 2 ml RF2 per 50 ml of starting culture and aliquoted at 200 

µl.  After  15  min  incubation  on  ice,  cells  were  competent  and  were  used  for 
 

transformation or stored at -80°C. 
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For each transformation, 200 µl of competent bacteria were mixed with DNA (e.g. 
 

100 ng plasmid DNA) in a 1.5 ml tube, incubated on ice for 1 h and subsequently heat 

shocked for 45 sec at 42°C and put on ice for 5 min. After addition of 800 µl LB 

medium prewarmed to 42°C and an incubation period of 45 min at 37°C and 200 rpm, 

100 µl of cell suspension was plated onto LB agar plates containing the appropriate 

antibiotic for selection. Plates were incubated overnight at 37°C. 

RF1: 100 mM RbCl2 RF2: 10 mM MOPS 
 

30 mM K acetate 75 mM CaCl2 
 

10 mM CaCl2 10 mM RbCl2 
 

50 mM MnCl2 
 

15 % (v/v) glycerol 15% (v/v) glycerol 
 

pH 5.8 with acetic acid pH 6.5 with KOH 
 

 
 

4.2.4. Culture media and growth conditions 
 

LB-medium: 
 

1% (w/v) Trypton (Becton Dickinson) 
 

0.5% (w/v) Yeast extracts (Difco) 
 

1% (w/v) NaCl 
 

pH 7.0 with NaOH 

Agar-plates: 

LB-Medium with 1.5% (w/v) Bacto-Agar (Becton Dickinson) 
 

Overnight cultures were usually grown in LB medium at 37°C and 220 rpm. The 

medium was inoculated with bacteria kept on agar plates at 4°C or from cryoconserved 

cultures (2.4.3).The medium/agar plates, depending on the properties of the plasmid 

being introduced, were supplemented with a final concentration of one or several of the 

following: 

Ampicillin 100 µg/ml 

Kanamycin 25 µg/ml 

Chloramphenicol 20 µg/ml 

IPTG 0.5 mM 

X-Gal 100 mM 
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4.2.5. Phenol- chloroform extraction of circular DNA 
 

Equal volumes of phenol: chloroform: isoamylalcohol (P:C:IAA ration of 25:24:1; 

pH8.0) was added to the cell lysates and mixed. Mixtures were spun for 2 min at top 

speed in a table top centrifuge. Top aqueous layers containing plasmid DNA were 

transferred to clean tubes and mixed with equal amounts of P:C:IAA and proceeded 

as mentioned above. This was repeated until no protein precipitate was visible at the 

interphase (but at least three times). NaAcetate solution (pH 5.2) was added to the 

supernatants to a final concentration of 0.3M. 2.5 volumes of ethanol (100%) were 

added and samples were incubated at –20°C for at least 30 min to precipitate DNA. 

Samples were centrifuged at 4°C at top speed in a table top centrifuge (Eppendorf) 

for 20 min. Supernatants were removed, and the remaining precipitates were washed 

once with 500 µl of Ethanol (70%) pre-chilled to -20°C. Samples were centrifuged 

for 5 min, supernatants removed and the pellets air dried in a heating block at 50 °C. 

Pellets could then be resuspended in H2O containing RNAaseA (100 µg/ml). 

 
 

4.2.6. Preparation of the RNA from cell culture 
 

For a RNA preparation TRIZOL reagent were used. All steps were performed 

according to manufacturer’s protocol. Concentration of RNA was determined with 

Eppendorf BioPhotometer by measuring absorbance at 260 nm. 

Cells were denaturing by TRIZOL reagent then all substances were removed to a 

new tube. The first step was removing DNA from RNA. 

3 µg RNA 
 

1 µl RQ RNAase – Free DNase 10x buffer 
 

1 µl RQ RNAase – Free DNase (1U/µl) 
 

and water to 10µl 
 

Incubation was carried out at 37°C for 30 minutes followed by incubation at 65°C for 
 

10  minutes.  After  incubation  1µl  of  RNA  threated  with  DNAase  was  reversed 

transcribed in mixture containing the following elements: 

3,5µl DNase- treated RNA 
 

1µl oligo d(T) 
 

5µl dNTP’s (2mM) 
 

3µl H2O 
 

----------------------------------------- Total 
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12,5 µl 
 

 
 

The mixture was incubated at 65°C for 10 min. and then immediately replaced to ice. 

Following reagents were added to the above mix. 

 
 

4µl DNase- treated RNA 
 

2µl DTT(0.1M) 
 

0.5µl RNAasin (40U/µl) 
 

Super Script II Reverse Transcriptase (200U/µl) 
 

1µl Transcriptase 
 

----------------------------------------- Total 
 

20,0 µl 
 

 
 

RNA was reverse transcribed for 1 h. at 42°C followed by incubation at 70°C for 15 

minutes. Obtained cDNA was immediately used for RT-PCR or stored at -20°C. 

 
 

4.2.7.  Electrophoresis of the RNA 
 

 
 

To check a quality of obtained RNA electrophoresis was performed at 140V. 
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4.2.8. Sequencing of the positives clones 
 

For the sequencing analysis the following cocktail was prepared: 
 

Setting up the reaction mix (total volume 10 µl): 
 

- Ready Reaction Premix 4µl (A, C, G, T and AmpliTaq® DNA Polymerase) 
 

- 5x Big Dye Sequencing Buffer 2µl 
 

- Primer /Sp6 or T7/ 3.2pmol 
 

- Plasmid temple /200ng/ 
 

- H2O up to 10 µl 
 

Synthesis of the probe – following reaction conditions were used 
 

96ºC – 2 min 
 

------------------------------------ 
 

96ºC – 30 sec 
 

52ºC – 15 sec for T7 sequence primer for the T3 and 46ºC for Sp6 annealing 

temperature was used 

60ºC – 4 min 
 

------------------------------------- 

Program was repeated 25 times 

------------------------------------- 

Hold temperature at 4ºC 

Cleaning up the reaction by ethanol precipitation: 
 

-  add 5 µl 125 mM EDTA to reaction 
 

-  add 75 µl 96% Ethanol to the tube 
 

-  mix by inverting sever time 
 

-  incubate at room temperature for 15 min 
 

-  Spin down: 13 000rpm, 4ºC, 15 min 
 

-  Carefully remove the supernatant 
 

-  Add 70 µl 70% Ethanol 
 

-  Incubate at room temperature 5 min 
 

-  Spin down 13000 rpm, 4ºC, 5 min 
 

-  Carefully remove the ethanol 
 

-  Air dry at room temperature for 5 min 
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4.2.9. Enzymatic modification of DNA 

 
Digestion of DNA with specific restriction endonucleases, dephosphorylating with 

alkaline phosphates and ligations were performed with enzymes and the suitable 

provided buffers from PROMEGA or New England Biolabs according to the 

manufacturer’s instructions. 

 
 

4.2.10. Amplification of DNA 
 

 
 

Standard PCR reactions were carried out in a final volume of 50 µl with the 

following components: 200 ng of template DNA, two specific primers (5 pmoles 

each), 250 µM of each dNTPs, 3 mM MgCl2, 1x polymerase buffer, 5 U Taq/Pfu 

polymerase and H2O in a 0.2 ml PCR tube. DNA fragments were amplified with the 

appropriate oligonucleotide primers listed in table 2 in an Eppendorf thermocycler. 

The length of denaturation, annealing and elongation were dependent on the 

characteristics of the DNA template (e.g. genomic DNA or plasmid DNA, GC- 

content of the fragment), the primers (the optimal annealing temperature was usually 

estimated experimentally starting with a value calculated according to the formula 4x 

(G/C) + 2x (A/T) - 5) and the length of the amplified PCR product. 

 
 

4.2.11 RT PCR 
 

 
 

For each reaction RNA was isolated with TRIZOL reagent from the cells and probe 

was suspended in DEPC water. To ensure purity and to measure RNA concentration, it 

was analysed spectrometrically and an aliquot was run on a 1% agarose gel. 

1µl RNAasin was added to each probe. After that 3µg of the each were treated with 1 µl 
 

DNAaseI RNAase free (PROMEGA) in total 10µl mix for 30 min. 
 

DNAaseI were deactivated at 65ºC for 15 min. Reaction mix was prepared -3.5 µl RNA 
 

/DNA free/ + 1µl oligo dT + 5µl 2mMdNTP + 1.5µl H20. Reaction were incubated at 
 

65ºC for 5 min and immediately put on ice for annealing of the oligo dT primers. To 

each tube 4µl 5x reaction buffer, 4µl DTT, 1µl RNAasin and 1µl reverse Transcriptase 

Superscript II (Invitrogen) were added. Total 20µl reaction mixes were incubated for 

60min at 42ºC for cDNA synthesis. 
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4.3. Tissue sections 
 

 
 

4.3.1. Paraffin embedded tissue sections 
 

1. After isolation tissues were embedded in paraffin solution 
 

2. Left overnight in paraffin and 4% PFA 
 

3. After incubation washed in PBS and then 1h 25% EtOH, 1h 50% EtOH, 1h 75% 

EtOH, 1h 96% EtOH, 2x10 min in 100% EtOH and left over night. 

4. On the next day tissues were washed in Xylol 2x1h RT and then in mixture 
 

Xylol/Parafin 2h 60ºC and again 1h at 60ºC. 
 

5. Tissues were cut from paraffin blocks on Leica microtome and mounted from 

warm water (42ºC) onto Vectabond slides. Sections were allowed to dry on heating 

block (40ºC) and left for 6h and then stored at room temperature. 

 
 

4.3.2. Immunohistochemistry 
 

 
 

PC12 cells were plated for transient transfection onto 2,5cm plate dish in six well 

plates. 48 h after transfection cells were washed once with PBS and fixed for 20 min 

at RT with 3% paraformaldehyde (PFA) in PBS. Cells were washed three times with 

PBS, permeabilised with 0.2% Triton X100 in PBS for 10 min, residual PFA was 

inactivated  with  100mM  Glycin  in  H O  for  10  min.  Subsequently,  cells  were 
2 

 

incubated with 10% FCS in PBS for 10 min to block unspecific protein binding sites. 

The primary antibodies were diluted in 2% FCS in PBS and incubated with the cells 

for 1 h at 37°C in a humid chamber (100 μl per cover slip). Afterwards, cells were 

washed three times with PBS and incubated with the secondary antibodies diluted in 

2% FCS in PBS for 45 min at 37°C, subsequently washed three times with PBS. 

Finally, the DNA was stained with DAPI in PBS (1 μg/ml, 10 min, RT) and cells 

were washed three times with PBS. 
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4.3.3. Antibodies 
 

Anti Myc Tag antibody was purchased from Hybridoma Bank and used in dilution 
 

1:1000. 
 

Anti p53 antibody. 
 

Rabbit Polyclonal Antibody anti p53 was used in 1:1000 dilution and purchased from 
 

Novacastra Laboratories Ltd. 
 

Anti Tubulin alpha antibody - was used in 1:1000 dilution and purchased from 

Developmental  Studies  Hybridoma  Bank  University  of  Iowa,  Department  of 

Biology. 

 
 

4.3.4. Immunofluorescence and fluorescence microscopy 
 

 
 

Efficiency of transfection was analysed under fluorescent microscope. Cells were 

plated for transient transfection onto six well plates. After adhering overnight, cells 

were changed to differentiation medium and treated with factors for 48 hours. 

Immunofluorescent staining occurred in four steps. 48 h after transfection cells were 

washed once with PBS and fixed for 20 min at RT with 3% paraformaldehyde (PFA) 

in PBS. Cells were washed three times with PBS, permeabilised with 0.2% Triton 

X100 in PBS for 10 min, residual PFA was inactivated with 100mM Glycin in H2O 

for 10 min to block unspecific protein binding sites. Primary antibody was applied 

overnight  at  4ºC;  1:2  anti-MycTag  served  as  experimental  conditions,  whereas 

parallel experiments with 1:500 mouse IgG served as negative controls. Afterwards, 

cells were washed three times with PBS and incubated with the secondary antibodies 

diluted in 2% FCS in PBS for 45 min at 37°C in a humid chamber, subsequently 

washed three times with PBS. Finally, the DNA was stained with DAPI in PBS (1 

µg/ml, 10 min, RT) and cells were washed three times with PBS. PBS was removed 

by a short washing step in distilled water and the cover slips were mounted in 30 µl 

Mowiol containing 25 mg/ml DABCO. 
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Blocking solution: 
 

10% (v/v) FCS in PBS 
 

3% (w/v) Paraformaldehyde in PBS with 0.1 mM CaCl2 and 0.1 mM MgCl2, pH 7.4 
 

0.1-0.2% (v/v) Triton X-100 in PBS 
 

Mowiol 4-88 (Calbiochem), DABCO (Sigma) 25 mg/ml, DAPI (1 mg/ml stock) 

Secondary antibodies: Alex 594 anti-rabit mouse (1:1000) 

 
 

4.3.5. TUNEL analysis 
 

 
 

TUNEL  analysis  was  performed  on  second  day  after  transfection. For  TUNEL 
 

analysis I have used ROCHE diagnostic kit and following procedure. 
 

1. Cells were fixed with a freshly prepared Fixation solution (4% Paraformaldehyde 

in PBS, pH 7.4, freshly prepared) for 30 min at 15-25ºC. 

2. Plates were rinsed with PBS. 
 

3. Incubated with blocking solutions for 10 min at 15-25ºC. 
 

4. Rinsed twice with PBS. 
 

For a positive control: 
 

Incubated, fixed and premeabilized cells with DNAaseI I (100µg/ml in PBS) for 10 min 

at 15-25ºC to induce DNA strand breaks, prior to labelling procedures. During this time 

TUNEL reaction mix were prepared. 

Preparation of TUNEL reaction mixture 
 

Sol A: Dilute 50µl of vial I (enzyme solution) with 100µl dilution buffer 
 

Sol B: Add 550µl of PBS to vial 2 (label solution), then transfer 200µl to an extra tube 

for the negative control and finally add 50µl of Sol A to the rest of vial 2. This will yield 

950µl. 
 

The TUNEL reaction mixture should not be stored. Keep TUNEL reaction mixture on 

ice until use. 

5. Rinsed twice with PBS. 
 

6. Added TUNEL reaction mixture (as much as needed; about 100µl) on positive control 

samples and real test samples. 

For a negative control: 
 

Incubated,   fixed   and   permeabilized   cells   in   Label   Solution   (without   terminal 

transferase) instead of TUNEL reaction mixture. 
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7. Add lid and incubate for 60 min at 37ºC in a huminidfied atmosphere in the dark. 
 

8. Plates were rinsed 3 times with PBS. 
 

9. Samples were analyzed in PBS under a fluorescence microscope. 
 

 
 

4.3.6. LacZ staining 
 

 
 

Followed solutions were used: 

Solution A – PBS (100 mM, pH=7,4) 

Solution B – (0,2% gluteraldehyde (GDA) in PBS) 
 

Solution C – 0,01% Na desoxycholate and 0,02% Nonidet P-40 in PBS containing 
 

5mM EGTA and 2mM MgCl2. 
 

Solution D stain: 0,5 mg/ml X-gal, 10mM K4 (Fe(CN) 6) and 10 mM K4 (Fe(CN) 6) 
 

in solution C 

Procedure: 

1. Cells were washed 3 times in PBS. 
 

2. Cells were fixed in solution B for 5 min at RT. 
 

3. Then 5 min washed with solutions C at RT. 
 

4. Solution C were replaced with solution D and incubated at 37ºC. 
 

5. After staining for 24 hours samples were washed in solution C. 
 

6.   Samples were analyzed under light microscope. 
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5. DISCUSSION 
 

 
 

5.1. Nkx5-1–specific potential to induce apoptosis in PC12 cells 
 

 
 

In this work I demonstrated a new function for the homeodomain-containing 

transcription factor, Nkx5-1, in the neuronal PC12 cells. 

In PC12 cells Nkx5-1 displays a potential to very efficiently (almost 100% of 

Nkx5-1 overexpressing cells) induce apoptosis. It is striking that a neuronal 

differentiation and survival factor, NGF, is not able to prevent apoptosis induction 

caused by the forced Nkx5-1 expression. A role in apoptosis induction was already 

postulated for Nkx5-1 during early development of the inner ear. There, Nkx5-1 acts 

in concert with BMP4, and, possibly with another homedomain-containing 

transcription factor, Dlx5, to induce apoptosis within clearly defined regions of the 

epithelial cells forming the inner ear vesicle (Merlo et al., 2002; Bober et al., 2003; 

Herbrand et al., 2007). In addition, during inner ear development Nkx5-1 positively 

influences expression of netrin-1, a molecule involved in neuronal survival, axon 

guidance and chemotaxis (Salminen et al., 2000; Bober et al., 2003). This interaction 

appears especially interesting in connection with our demonstration, that another 

molecule, a cellular regulator p53, is necessary for the apoptotic function of Nkx5-1. 

p53 has been shown to directly activate transcription of human netrin-1 dependence 

receptor, Unc5B (Arakawa, 2005). It was postulated that p53 might create a state of 

cellular dependence on netrin-1 for survival: in the absence of netrin-1, p53 induced 

Unc5B behaves as a death receptor and leads to apoptosis, while in the presence of 

ligand (netrin-1) survival prevails (Arakawa, 2005). The exact molecular 

interrelationships between Nkx5-1, p53, and netrin-1, as well as their significance in 

neuronal cells remain to be established. 

In previous investigations the possibility of redundant functions of the two closely 

related Nkx5-1 and Nkx5-2 genes was discussed. Especially, the lack of any apparent 

neuronal phenotype in Nkx5-1/Hmx3 knockout mice seemed to indicate that both 

genes might functionally substitute for each other (Hadrys et al. 1998; Wang et al., 

2004). Unexpectedly, our results revealed that the apoptosis induction in PC12 cells 

could  be  executed  specifically  by  the  Nkx5-1.  The  region  responsible  for  this 
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function was localized to the non-conserved N-terminal part of the Nkx5-1 protein 

and logically, the Nkx5-2 protein cannot substitute for this function. 

The question remains why no neuronal defects could be detected in Nkx5-1 deficient 

mice despite the fact, that this protein fulfils specific function in neuronal cells? One 

possibility is that Nkx5-1 plays a minor role in a subpopulation of neurons and the 

defect possibly caused by Nkx5-1 deficiency is too discrete for an easy detection. In 

fact, a minor decrease in apoptosis in adult brain tissues of Nkx5-1 knockout mice 

was observed using RT-PCR gene expression analysis and TUNEL staining on brain 

sections (see Fig. 29). Another, more plausible explanation is the possibility that the 

apoptotic Nkx5-1 function gets into action first after neuronal cells are challenged 

with  neurotoxic or other kinds  of stresses.  Such  a possibility would  agree with 

known p53 function, a molecule, which is obviously necessary for Nkx5-1 to exert 

its apoptotic function. P53 can prompt PC12 cells to undergo neuronal differentiation 

under favourable conditions but under neurotoxin treatment p53 is responsible for 

removal of defected cells by apoptosis (Zhang et al., 2006). Nkx5-1 might be also 

involved in both functions. Nkx5-1 endogenous expression is detectable at low levels 

already in growing PC12 cells but its expression increases significantly during 

neuronal differentiation indicating a functional relevance of Nkx5-1 in this process. 

Such a function of Nkx5-1 protein has still to be elucidated by future experiments. 

The here demonstrated role of Nkx5-1 in apoptosis induction might have 

physiological relevance under stress conditions, since the neuronal PC12 cells 

expressing normal endogenous Nkx5-1 levels do not undergo apoptosis. Apoptosis is 

first induced by supraphysiological amounts of Nkx5-1 protein in the cell. Whether 

and under what circumstances such an induction of Nkx5-1 takes place in vivo 

remains to be demonstrated. 
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5.2. Nkx5-1 apoptotic activity resides within the non-conserved N-domain 
 

 
 

Functional analyzes using constructs expressing a combination of different parts of 

Nkx5-1 and Nkx5-2 proteins (swapping constructs) revealed that apoptosis inducing 

activity is confined to the N-terminus of the Nkx5-1 molecule. For the generation of 

the swapping constructs a conserved XhoI restriction site, residing at the N-terminal 

part of the homeobox was chosen to produce two separate fragments of each Nkx5 of 

cDNAs. The Nkx5-1/2 construct expressing a hybrid molecule consisting of the 

Nkx5-1 N-terminus fused to the C-terminal part of Nx5-2 was found  to induce 

apoptosis at the efficiency similar to the full-length wild-type Nkx5-1 protein. An 

analogous Nkx5-2/1 construct expressing the N-terminus of Nkx5-2 joined to the 

Nkx5-1  C-terminus  did  not  show  any apoptosis  induction.  These  results  clearly 

document that sequences responsible for apoptosis induction are located in the Nkx5- 

1 region upstream of XhoI restriction site present within the homeobox.  Since the 

small part of the Nkx5-1 homeobox protein, which was retained in the Nkx5-1/2 

construct was identical to Nkx5-2 it is clear that the apoptotic potential is encoded by 

the non-conserved N-terminal part of the Nkx5-1 protein. This entire region does not 

show any sequence similarity between both Nkx5 proteins. Moreover, the Nkx5-1 N- 

terminal region (132 amino acids) is much longer than that of the Nkx5-2 (78 amino 

acids: see fig. 1, introduction). To find potential domain or sequences responsible for 

an apoptotic effect computer analysis of the existed databases was performed. 

However, no sequence motives which could be potentially responsible for an 

apoptotic effect were identified. 

To investigate whether the Nkx5-1 N-terminus of the Nkx5-1/2 swapping construct 

contains entire sequence information responsible for apoptotic activity further 

experiments were   performed. As mentioned above apoptosis induction by 

overexpression of the native Nkx5-1 protein in PC12 cells was not influenced by 

NGF.  Similarly,  addition  of  NGF  to  the  cell  culture  medium  did  not  prevent 

apoptosis in the case when the cells were transfected with Nkx5-1/2 construct. 

Interestingly, different behaviour of cells transfected with Nkx5-1/2 construct as 

compared to wild-type Nkx5-1 transfection was observed after PFT alpha treatment. 

In contrast to PFT effects observed after wild-type Nkx5-1 transfection PFT alpha 
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did not block apoptosis induced by Nkx5-1/2 protein. Cells overexpressing Nkx5-1/2 

construct underwent apoptosis even in the presence of PFT alpha. This observation 

suggested that apoptosis induced by Nkx5-1/2 hybrid protein was not p53-dependent. 

Summing up, our results indicate that sequences responsible for apoptosis of Nkx5-1 

protein reside within the non-conserved N-domain, however the mechanism of action 

and additional factors involved in these processes need to be elucidated in the future. 

 
 

5.3.  Apoptosis  induced  by  Nkx5-1  and  Nkx5-1/2  swapping constructs  is  not 

influenced by NGF and BMP-2 

 
 

It is well known that NGF exerts a strong survival promoting and anti-apoptotic 

function in neuronal cells (Truong LX Nguyen et al., 2010). However, our data 

indicated that almost all Nkx5-1 transfected cells underwent apoptosis even in the 

presence of NGF. This is a surprising and unexpected finding, because NGF is 

known to possess strong anti-apoptotic and pro-surviving activities. NGF binds to at 

least two classes of receptors: p75 LNGRFR (low affinity nerve growth factor 

receptor) and TrkA (high-affinity tyrosine kinase receptor). Binding of the receptor 

leads to its phosphorylation, which in turn activates down-stream effectors such as 

PI3 kinase, ras and PLC signalling pathway (Iannone et. al., 2002). Lack of apoptosis 

inhibition by NGF in Nkx5-1 and Nkx5-1/2 overexpressing cells could be explained 

by the fact that there is no direct connection between pathways regulated by these 

two proteins. Endogenous Nkx5-1 expression in PC12 cells is increased under 

treatment with NGF, however this higher NGF-induced Nkx5-1 expression does not 

promote apoptosis (see above). This might indicate that Nkx5-1 has also functions in 

neuronal differentiation in addition to apoptosis induction. Such function has still to 

be elucidated in future experiments. 

Considering the previously discussed interrelationships between Nkx5-1 and BMPs 

in apoptosis I also investigated the influence of BMP2 on Nkx5-1 induced apoptosis 

in PC12 cells. Similarly to NGF, BMP2 does not grossly affect apoptosis induction 

by Nkx5-1 overexpression. However, BMP2 was able to induce apoptosis in PC12 

cells apparently without Nkx5-1 overexpression. The potential mutual influence 

between endogenous BMP2 and Nkx5-1 proteins in PC12 cells cannot, of course, be 

excluded and requires further investigation. Based on the current data, the possible 
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involvement of BMP-signalling in the Nkx5-1 dependent apoptosis in PC12 cells is 

still unclear. Nevertheless, BMP-signalling seems to be very important for the Nkx5- 

1  gene  activity,  since  treatment  of  PC12  cells  with  the  BMP-inhibitor,  noggin, 

reduces Nkx5-1 transcription. 

Moreover, it is known that activation of the p38 MAP kinase pathway is necessary 

for BMP-2-induced neuronal differentiation of PC12 cells. The activation of the p38 

MAP kinase pathway alone can induce the neuronal differentiation of PC12 cells 

(Iwasaki et al., 1999). Even if the new data provided by this work does not allow 

placing of Nkx5-1 within the signalling pathway controlled by NGF and BMP2 in 

PC12 cells, they provide a basis to plan future experiments investigating the exact 

molecular role of Nkx5-1 in these pathways. 

 
 

5.4. p53 as a potential target for Nkx5-1? 
 

 
 

P53 plays an important role in cell differentiation, proliferation and apoptosis in 

PC12 and other cells. In un-stressed cells p53 is inactivated by its regulator, mdm2. 

Upon DNA damage or other stress, various pathways will lead to the dissociation of 

the p53 and mdm2 complex (Brady et al., 2005). Once activated, p53 will either 

induce a cell cycle arrest to allow repair and survival of the cell or apoptosis to 

discard  the  damaged  cell  (Edward  Estli  et  al.,  2011).  P53  is  necessary  for  the 

elimination of neural cells inappropriately differentiated or in response to various 

stimuli  (Edward  Estli  et  al.,  2011).  Recent  data  showed  that  nerve  growth  factor 

(NGF)-mediated differentiation in PC12 cells is enhanced by overexpression of wild- 

type p53 but inhibited by knockdown of endogenous wild-type p53 ( Zhang et al., 

2006). Interestingly, p53 knockdown or overexpression of a dominant negative p53 

mutant attenuates NGF-mediated activation of TrkA, the high-affinity receptor for 

NGF and  consequently inhibits  of the mitogen-activated protein  kinase  pathway 

(Zhang et al., 2006). In addition, p53 knockdown reduces the constitutive levels of 

TrkA, which renders PC12 cells inert to NGF. Taken together this data demonstrate 

that p53 plays a critical role in NGF-mediated neuronal differentiation in PC12 cells 

at least in part via regulation of TrkA levels (Zhang et al., 2006). How does p53 

make a choice between activation of differentiation pathways or apoptosis induction 

is currently unknown. Without inhibitor, p53 could be easily detected in Nkx5-1 
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transfected cells using immunohistochemistry, while no p53 expression in Nkx5-2 

overexpressing  cells  could  be  detected.  These  findings  suggested  that  Nkx5-1 

induced p53-dependent  apoptosis and that the induction of higher levels of p53 

expression was essential for apoptosis induction in Nkx5-1 overexpressing cells. 

Moreover, NGF does not interfere with p53 induced by Nkx5-1 overexpression. 

Under NGF treatment p53 expression is found essentially only in Nkx5-1 

overexpressing cells, also approximately only a half up to 2/3 of Nkx5-1 positive 

cells switch on the p53 expression.  After BMP2 treatment the majority of Nkx5-1 

positive cells also activate p53 expression but, in addition, almost the same number 

of cells activates p53  without Nkx5-1 overexpression. These particular cells are 

eliminated after addition of noggin, thus confirming that BMP2 activates p53 

independently of exogenous Nkx5-1. PFT alpha treatment generally leads to a 

substantial reduction of p53 positive cells. 

Similar experiments were performed using  Nkx5-2 overexpressing  plasmid for 

transfections.  Nkx5-2  does  not  possess  any potential  for p53  activation. These 

results undermine that Nkx5-1 specific function uncovered in this  work. 

Interestingly, different target sequences were already reported for Nkx5-1 and Nkx5- 

2, what suggested that specific non-overlapping functions exist for these two closely 

related homebox genes (Mennerich et al., 1999). 

 
 

5.5. Activation of Nkx5-1 promoter in PC12 cells by NGF and BMP2 correlates 

with neuronal differentiation 

 
 

Proper tissue development and homeostasis require a balance between apoptosis 

and cell proliferation. All somatic cells proliferate via a mitotic process determined 

by progression through the cell cycle. Apoptosis (programmed cell death) occurs in a 

wide variety of physiological settings, where its role is to remove harmful, damaged 

or unwanted cells (Alenzi, 2004). Apoptosis and cell proliferation are linked by cell- 

cycle regulators and apoptotic stimuli that affect both processes. Cell proliferation, 

differentiation and death are fundamental processes in multicellular organisms, and 

several lines of evidence link apoptosis to proliferation (Alenzi, 2004). A number of 

dominant oncogenes (e.g. c-Myc) appear to induce apoptosis, which suggests that the 

cell proliferation and apoptosis pathways are closely linked (Alenzi and Faris, 2004). 
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Development of the semicircular canals in the vestibular part of the inner ear requires 

the independent control of several homeobox genes, which appear to exert their 

function via tight regulation of BPM4 expression and the regional organization of 

cell differentiation, proliferation, and apoptosis (Merlo et al., 2002). The linkage 

between proliferation and apoptosis can also be seen in PC12 cells on example of 

Nkx5-1 promoter activity. The activity of Nkx5-1 promoter construct in PC12 is 

positively regulated by NGF, a critical regulator of neuronal survival and 

differentiation.  Another  differentiation  promoting  factor,  BMP2,  is  also  able  to 

induce Nkx5-1 promoter activity in PC12 cells. In line with these findings, NGF and 

BMP2 also activate expression of the endogenous Nkx5-1 gene, when added to PC12 

cells separately. In contrast, addition of both factors simultaneously led to inhibition 

of Nkx5-1 transcription suggesting negative cross-regulatory circuits between these 

two proteins and Nkx5-1 promoter activation. The specificity of BMP2-dependent 

activation of Nkx5-1 promoter was confirmed by treatment of transfected cells with 

BMP2 inhibitor noggin. Addition of noggin strongly reduced the activity of the ß-gal 

reporter indicating inhibition of the Nkx5-1 promoter. These results clearly document 

the presence of sequences convening the basal Nkx5-1 promoter activity on the 

genomic fragment used for the construction of Nkx5-1-ß-gal reporter plasmid. In 

addition, regulatory elements responsible for the activation of Nkx5-1 gene 

transcription by NGF and BMP2 are also present within these sequences. 

In  addition  to  its  survival  promoting  function  NGF  strongly induces  neuronal 

differentiation. In fact, the highest ß-gal staining intensity was observed in cells 

positive  for  the  neuronal  differentiation  marker  ß-tubulin  III.  In  contrast, cells 

transfected with Nkx5-1 promoter construct and cultivated without NGF displayed 

only weak, basal-level of the ß-gal activity and no ß-tubulin III immunoreactivity. 

 
 

Summing up, our results indicate that NGF and Nkx5-1 play essential role during 

apoptosis and differentiation of neuronal cells. Recent data postulate a role for Nkx5- 

1  and  Nkx5-2  as  cell  autonomous,  redundant  factors  required  for  cell  fate 

specification and differentiation during inner ear and lateral line development in 

zebrafish  (Feng  and Xu,  2010).  Knockdown  of  both  Nkx5-1  and  Nkx5-2  in 

zebrafish, disrupts formation of the mechanosensory neuromasts and also leads to 

impaired  vestibular  function  in  which  utricular  maculae fail  to  develop  and  the 
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utricular otolith gradually fuses with the saccular otolith. They have also been shown 

to function redundantly to control embryonic development of the central nervous 

system (Feng and  Xu, 2010). 

 
 

5.6. Proposed Nkx5-1 function in neural development in connection with p53 
 

 
 

This  work  describes  a  novel  role  of  Nkx5-1  in  neuronal  differentiation  and 

apoptosis in addition to the already well-studied Nkx5-1 function during inner ear 

morphogenesis. Using the established PC12 cell line, which is the convenient in vitro 

model to study neuronal differentiation in dependence on various factors such as 

NGF and BMP-2, we could place the Nkx5-1 in the neurogenesis-specific signalling 

pathways as schematically summarized in Fig. 24. The main novel finding concerns 

a double role of Nkx5-1 in activation of neuronal differentiation on one side and 

activation of apoptosis on the other. I found that both Nkx5 genes transcription can 

be increased by NGF-signalling, however neurogenesis-promoting activity is specific 

only for Nkx5-1. Another Nkx5-1 specific function is induction of apoptosis, partly 

in cooperation with BMP-2 and p53. Further elucidation of the exact mechanisms of 

Nkx5-1   apoptotic   and   neurogenesis-promoting   effects   will   lead   to   a   better 

understanding of the role of other factors (BMPs, p53, p21) in neuronal development. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.24. Schematic summary of Nkx5-1 function in neuronal differentiation and 

apoptosis and cooperation with NGF, BMP-2 and p53. 

See text for further explanations. 
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6. SUMMARY 
 
 

 
Nkx5-1 and Nkx5-2 are two strongly related proteins, which play important roles in 

the inner ear and neuronal development. Expression pattern and in vivo consequences of 

elimination of Nkx5 genes in the mouse are well described. In contrast, little is known 

about their regulation and function in neuronal cells. The main aim of this work was 

investigation of Nkx5-1 and Nkx5-2 functions during differentiation of neuronal cells. 

 
 

PC12 pheochromocytoma cell line derived from rat chromaffin cells of the suprarenal 

medulla, which can be easily induced to neuronal differentiation, was used as an 

experimental system. In addition to the endogenous Nkx5 genes expression, 

overexpression of both Nkx5 tagged proteins was employed. Furthermore, an Nkx5-1 

promoter activity was monitored using promoter-LacZ-reporter construct. 

 
 

The main finding of this work was  discovery of an  Nkx5-1 specific function in 

induction of apoptosis. Overexpression of Nkx5-1 protein in PC12 cells led to apoptosis 

induction while overexpression of Nkx5-2 had no effect on apoptosis. This was the first 

description of a molecular function specific for only one of both Nkx5 proteins.  Thus 

far, functional redundancy was postulated for both proteins. 

 
 

In the further course of this work I analyzed the modalities of the Nkx5-1 apoptosis 

promoting function. Since apoptosis is regarded as an integral part of the neuronal 

differentiation program I investigated the possible cross-regulation with neuronal 

differentiation factors NGF and BMP. Surprisingly, NGF and BMP did not prevent 

apoptosis induction by Nkx5-1. My results indicate that Nkx5-1 induces apoptosis by 

utilization of the p53-dependent pathway. 

 
 

I further performed mutation analysis using different Nkx5-1 and Nkx5-2 domain 

swapping constructs to delineate the protein region responsible for the Nkx5-1 specific 

function. An N-terminus of the Nkx5-1 protein was identified as responsible for the 

apoptosis  induction.  This  part  encompasses  sequences,  which  are  not  conserved 

between the two Nkx5 proteins. In agreement with an importance of apoptosis during 
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neuronal differentiation, I observed higher Nkx5-1 expression in cells induced to 

differentiate. This observation was confirmed by a higher activity of the Nkx5-1 LacZ- 

promoter construct during neuronal differentiation. My results document that DNA 

sequences within 10.5 kb upstream of the transcription site of the Nkx5-1 gene bear 

regulatory elements responsible for the Nkx5-1 activity in neuronal cells. This construct 

contains also sequences responsive to the NGF and BMP signals. 

 
 

In the final part of this work I performed experiments on the Nkx5-1 knockout mice to 

find out, whether my in vitro results correlate with the Nkx5-1 function in vivo. In fact, 

I observed diminished apoptosis signals on the brain sections of Nkx5-1 knockout mice 

as compared with wild type controls. Moreover, a lower level of expression of neuronal 

marker genes was detected in Nkx5-1 knockout mice. These results confirm, that Nkx5- 

1 exerts regulatory role in neuronal tissues in vivo. 
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7. ZUSAMMENFASSUNG 
 
 

Nkx5-1 und Nkx5-2 sind zwei eng verwandte Proteine, die wichtige Rollen in der 

Entwicklung des Innenohrs und der neuronalen Strukturen spielen. Die Expression 

der Nkx5  Gene sowie  die Folgen  deren  Ausschaltung in  der Maus  sind  bereits 

beschrieben. Es ist jedoch wenig über die Regulation und Funktion der Nkx5 Gene in 

neuronalen  Zellen  bekannt.  Das  Hauptanliegen  dieser  Arbeit  ist  daher  eine 

funktionelle Untersuchung der Nkx5-1 und Nkx5-2 Gene während der 

Differenzierung von neuronalen Zellen. 

 
 

PC12 Pheochromocytoma Zelllinie wurde als Untersuchungssystem gewählt. Diese 

Zelllinie  wurde  ursprünglich  von  Chromaffin-Zellen  der  Suprarenal  Medulla  der 

Ratte etabliert. Neben der Untersuchung der Expression der endogenen Nkx5 Gene 

wurden Nkx5 überexprimierende Konstrukte verwendet. Des weiteren wurde ein 

LacZ-reporter Konstrukt zur Untersuchung von Nkx5-1 Genpromotors-Aktivität 

generiert. 

 
 

Den wichtigsten Befund dieser Arbeit stellt die Aufdeckung einer Nkx5-1 

spezifischen Funktion bei der Induktion der Apoptose dar. Während eine 

Überexpression des Nkx5-1 Proteins in den PC12 Zellen die Apoptose induzierte, 

löste dagegen eine Überexpression des Nkx5-2 Proteins keinen derartigen Effekt aus. 

Mit diesem Befund wurde zum ersten Mal eine molekulare Funktion, die spezifisch 

für nur eins der beiden Nkx5 Proteine ist, definiert. Bislang wurde eine funktionelle 

Redundanz der beiden Proteine postuliert. 

 
 

Im weiteren Verlauf dieser Arbeit habe ich die pro-apoptotische Wirkung des Nkx5- 
 

1 Proteins genauer untersucht. Da Apoptose als ein wesentlicher Bestandteil des 

neuronalen Differenzierungsprogramms betrachtet wird, habe ich die potentiellen 

Wechselwirkungen mit den neuronalen Differenzierungsfaktoren NGF und BMP 

untersucht. Überaschenderweise haben weder NGF noch BMP mit der Nkx5-1 

induzierten Apoptose interferiert. Meine Daten weisen darauf hin, dass die Nkx5-1 

induzierte Apoptose im p53-abhängigen Signalweg erfolgt. 
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Um die Proteinbereiche, die für die Nkx5-1 spezifische Funktion verantwortlich sind 

zu definieren, habe ich s. g. „domain swapping“ (Domänenaustausch) Konstrukte 

verwendet. In diesen Experimenten konnte der N-Terminus des Nkx5-1 Proteins als 

verantwortlich für die pro-apoptotische Wirkung identifiziert werden. Dieser 

Proteinbereich beinhaltet  Sequenzen,  die unter den  beiden Nkx5 Proteinen nicht 

konserviert sind. Die endogene Nkx5-1 Expression steigt während der neuronalen 

Induktion und spiegelt möglicherweise die wichtige Rolle des Apoptosevorgangs in 

der neuronalen Differenzierung wieder. Die erhöhte transkriptionelle Aktivität des 

Nkx5-1 Gens in differenzierten Zellen wurde zusätzlich durch die Bestimmung der 

Nkx5-1 Promoter-Aktivität mittels LacZ-Reporter Konstrukts bestätigt. Meine 

Ergebnisse  zeigen,  dass  sich  die  regulatorischen  Promotorelemente,  die  für  die 

Nkx5-1 Genaktivität in neuronalen Zellen verantwortlich sind, in einem 10,5 kb 

Bereich 5´von der Transkriptionsstartstelle befinden. Dieses Genfragment beinhaltet 

ebenso Sequenzen, die durch NGF und BMP Signale reguliert werden. 

 
 

Im letzten Teil dieser Arbeit habe ich Apoptosevorgänge sowie Expression 

verschiedener neuronaler Marker im CNS der Nkx5-1 knockout Maus durchgeführt. 

Ich habe eine verminderte Apoptose in verschiedenen Gehirnregionen der Nkx5-1 -/- 

Maus dokumentiert. Weiterhin, wurden niedrige Expressionslevel von neuronalen 

Markergenen gefunden. Diese Daten deuten auf eine regulatorische Rolle von Nkx5- 

1 im neuronalen Gewebe in vivo. 
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8. ABBREVIATIONS 
 

 
 

bp base pair 
 

BMP2 Bone Morphogenetic Protein 2 
 

BSA  Bovine Serum Albumine 

cDNA DNA complementary to RNA 

CNS  Central Neuron System 

EtOH Ethanol 
 

FCS Fetal Calf Serum 

kb  kilo base pair 

min.  minute 

mRNA messenger RNA 
 

NGF Neuron Growing Factor 

PBS Phosphate Buffer Saline 

PCR  Polymerase Chain Reaction 

PFA  Paraformaldehyde 

RT-PCR Reverse Transcriptase Polymerase Chain Reaction 
 

TUNEL Terminal deoxynucleotidyl transferase mediated UTP Nick End 
 

Wt Wild type 
 

PC12 cell line 



- 84 - 

References 
 

 

 
 
 
 
 

9. REFERENCES 
 

Agar A, Yip SS, Hill MA, Coroneo MT. 

Pressure related apoptosis in neuronal cell lines. 

J Neurosci Res. 2000 May 15;60(4):495-503. 

 
Akassoglou K. 

Nerve growth factor-independent neuronal survival: a role for NO donors. 

Mol Pharmacol. 2005 Oct;68(4):952-5. Epub 2005 Jul 26. 
 

Akin ZN, Nazarali AJ. 

Hox genes and their candidate downstream targets in the developing central 

nervous system. 

Cell Mol Neurobiol. 2005 Jun;25(3-4):697-741. 

 
Alenzi FQ. 

Links between apoptosis, proliferation and the cell cycle. 

Br J Biomed Sci. 2004;61(2):99-102. 

 
Althini S.; Usiskin D., Kylberg A. 

Bone morphogenetic protein signalling in NGF-stimulated PC12 cells 

Biochem Biophys Res Commun. 2003 Aug 1;307(3):632-9. 

 
Alves da Costa C., Mattson M.P., Ancolio K., Checler F. 

The C-terminal fragment of preselin 2 triggers p53-mediated staurosporine-induced 

apoptosis, a function independent of the presenilinase-derived N-terminal 

caunterpart, 

J.Biol.Chem. 278 (2003) 12064-12069 

 
Arthur DB, Akassoglou K, Insel PA. 

P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance 

neuronal differentiation. 

Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19138-43. Epub 2005 Dec 19. 

 
Asha L. Bhakar, Jenny L. Howell, Christine E. Paul, Amir H. Salehi, 

Esther B. E. Becker, Farid Said, Azad Bonni, and Philip A. Barker 

Apoptosis Induced by p75NTR Overexpression Requires Jun Kinase-Dependent 

Phosphorylation of Bad 

The Journal of Neuroscience, 2003, 23(36):11373-11381 

 
Bhakar AL, Howell JL, Paul CE, Salehi AH, Becker EB, Said F, Bonni A, 

Barker PA. 

Apoptosis  induced  by  p75NTR  overexpression  requires  Jun  kinase-dependent 

phosphorylation of Bad. 

J Neurosci. 2003 Dec 10;23(36):11373-81. 



- 85 - 

References 
 

 

 

 
 
 

Barde YA. 

Neurotrophins: a family of proteins supporting the survival neurons. 

Prog. Clin. Biol. Res. 1194, 390:45-56 

 
Barker PA, Shooter EM 

Disruption of NGF binding to the low affinity neurotrophin receptor p75
LNTR 

reduces 
NGF binding to trkA on PC12 cells. 

Neuron 13: 203-215 

 
Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG, 

Miller FD 

The  p75  neurotrophin  receptor  mediates  neuronal  apoptosis  and  is  essential  for 

naturally occurring sympathetic neuron death. 

J Cell Biol 140 (1998): 911-923. 

 
Beckera Esther B.E, Azad Bonnia 

Cell cycle regulation of neuronalapoptosis in development and disease . 

Progress in Neurobiology Volume 72, Issue 1, January 2004, Pages 1–25 

 
Mark Brady, Nikolina Vlatković, and Mark T. Boyd 

Regulation of p53 and MDM2 Activity by MTBP 

Mol Cell Biol. 2005 January; 25(2): 545–553. 

 
Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M 

Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is 

age-dependent and transduced through ceramide generated by neutral 

sphingomyelinase. 

J Biol Chem (2002) 277: 9812-9818 

 
Brann DW, Unda R, Mahesh VB. 

Role of the progesterone receptor in restrained glutamic acid decarboxylase gene 

expression in the hypothalamus during the preovulatory luteinizing hormone surge. 

Neuroendocrinology. 2002 Nov;76(5):283-9. 

 
Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA. 

The statistical mechanics of complex signaling networks: nerve growth factor 

signaling. 

Phys Biol. 2004 Dec;1(3-4):184-95. 

 
Bunone G, Mariotti A, Compagni A, Morandi E, Della VG 

Induction of apoptosis by p75 neurotrophin receptor in human neuroblastoma cells. 

Oncogene 14 (1997): 1463-1470. 

 
Buss RR, Oppenheim RW. 

Role of programmed cell death in normal neuronal development and function. 

Anat Sci Int. 2004 Dec;79(4):191-7. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Brown+KS%22%5BAuthor%5D


- 86 - 

References 
 

 

 

 
 
 

Culmsee C.,  Zhu  X.,  Yu Q.S.,  Chan  S.L.,  Camandola S.,  Guo  Z.,  Greig N.H., 

Mattson M.P. 

A synthetic inhibitor of p53 protects neurons against death induced by ischemic and 

excitotoxic insults and amyloid beta-peptide, J.Neurochem. 77 (2001) 220-228. 

 
Culmsee C, Mattson MP. 

p53 in neuronal apoptosis 

Biochem Biophys Res Commun. 2005 Jun 10;331(3):761-77. 
 

 
 

Chien CL, Liu TC, Ho CL, Lu KS. 

Overexpression of neuronal intermediate filament protein alpha-internexin in PC12 

cells. 

J Neurosci Res. 2005 Jun 1;80(5):693-706. 

 
Davies AM, Lee KF, Jaenisch R 

p75-deficient trigeminal sensory neurons have an altered response to NGF but not to 

other neurotrophins. 

Neuron 11 (1993): 565-574 

 
Derynck, R., Zhang, Y. and Feng, X. H. (1998). 

Smads: transcriptional activators of TGF-beta responses. 

Cell 95, 737-740. 

 
Drummond HA, Furtado MM, Myers S, Grifoni S, Parker KA, Hoover A, Stec DE. 

ENaC proteins are required for NGF-induced neurite growth. 

Am J Physiol Cell Physiol. 2006 Feb;290(2):C404-10. Epub 2005 Sep 28. 

 
Elmariah SB, Hughes EG, Oh EJ, Balice-Gordon RJ. 

Neurotrophin  signaling  among  neurons  and  glia  during  formation  of  tripartite 

synapses. 

Neuron Glia Biol. 2005;1:1-11. 
 

Epa WR, Markovska K, Barrett GL. 

The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and 

augmenting its phosphorylation. 

J Neurochem. 2004 Apr;89(2):344-53. 
 

Edward Estlin, Richard Gilbertson, Rob Wynn 

Pediatric Hematology and Oncology: Scientific Principles and Clinical Practice 

20Jun2011 

 
Erhardt JA, Legos JJ, Johanson RA, Slemmon JR, Wang X. 

Expression of PEP-19 inhibits apoptosis in PC12 cells. 

Neuroreport. 2000 Nov 27;11(17):3719-23. 



- 87 - 

References 
 

 

 

 
 
 

Frade JM, Barde YA. 

Microglia-derived nerve growth factor causes cell death in the developing retina. 

Neuron 20: (1998) 35-41. 

Frade JM, Barde YA. 

Nerve growth factor: two receptors, multiple functions. 

Bioessays. 1998 Feb;20(2):137-45. 

 
Forget C, Stewart J, Trudeau LE. 

Impact of basic FGF expression in astrocytes on dopamine neuron synaptic function 

and development. 

Eur J Neurosci. 2006 Feb;23(3):608-616. 

 
Francois F, Godinho MJ, Dragunow M, Grimes ML. 

A population of PC12 cells that is initiating apoptosis can be rescued by nerve 

growth factor. 

Mol Cell Neurosci. 2001 Oct;18(4):347-62. 

 
Gilman C.P., Chan S.L., Guo Z., Zhu X., Greig N., Mattson M.P. 

p  53  is  present  in  synapses  where  it  mediates  mitochondrial  dysfunction  and 

synaptic degeneration in response to DNA damage, and oxidative and excitotoxic 

insults, Neuromol. Med. 3 (2003) 159-172 

 
Glebova NO, Ginty DD. 

Growth and survival signals controlling sympathetic nervous system development. 

Annu Rev Neurosci. 2005;28:191-222. 

 
Goldberg JL, Klassen MP, Hua Y, Barres BA 

Amacrinesignaled loss of intrinsic axon growth ability by retinal ganglion 

cells. 

Science 296 (2002): 1860–1864 

 
Goldshmit Y, Walters CE, Scott HJ, Greenhalgh CJ, Turnley AM. 

SOCS2 induces neurite outgrowth by regulation of epidermal growth factor 

receptor activation. 

J Biol Chem. 2004 Apr 16;279(16):16349-55. Epub 2004 Feb 4. 

 
Gotz R, Karch C, Digby MR, Troppmair J, Rapp UR, Sendtner M. 

The neuronal apoptosis inhibitory protein suppresses neuronal differentiation and 

apoptosis in PC12 cells. 

Hum Mol Genet. 2000 Oct 12;9(17):2479-89 

 
Greene LA, Tischler AS 

Establishment of a noradrenergic clonal line of rat adrennal pheochromocytoma cells 

which  respond  to  nerve  growth  factor.  Proc Nat1  Acad  Sci  USA  73:2424-2428 

(1976). 



- 88 - 

References 
 

 

 
 
 

 

Tischler AS, Greene LA. 

Morphologic   and   cytochemical   properties   of a   clonal   line   of   rat   adrenal 

pheochromocytoma cells which respond to nerve growth factor. 

Lab Invest. 1978 Aug;39(2):77-89. 

 
Hadrys, T., Braun, T., Rinkwitz-Brandt, S., Arnold, H. H., and Bober, E. 

Nkx5-1 controls semicircular canal formation. 

Development 125 (1998): 33-39 

 
Harrington AW, Kim JY, Yoon SO 

Activation of Rac GTPase by p75 is necessary for c-jun N-terminal kinase-mediated 

apoptosis. 

J Neurosci 22 (2002): 156-166. 

 
Hayashi H., Ishisaki A., Suzuki M. and Imamura T. 

BMP2  augments FGF-induced differentiation of PC12 cells through upregulation of 

FGF receptor-1 expression 

Journal of Cell Science 2001 114, 1387-1395 

 
Harish C., Joshi and Don W. Cleveland 

Differential Utilization of ß-tubulin Isotypes in Differentiating Neurities 

The Journal of Cell Biology, Volume 109, 663-673 

 
Hayashi H, Ishisaki A, Imamura T. 

Smad mediates BMP2 -induced upregulation of FGF-evoked PC12 cell 

differentiation. 

FEBS Lett. 2003 

 
Vaghefi H., Allison L. Hughes, and Kenneth E. Neet 

Nerve Growth Factor Withdrawal-mediated Apoptosis in Native and Differentiated 

PC12 Cells through p53/Caspase-3-dependent and -independent Pathways 

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 15, Issue of April 

9, pp. 15604–15614, 2004 

 
Iannone F.De Bari C., Dell'Accio F., Covelli M., Patella1 V., Lo Bianco1 L. and 

Lapadula G. 

Increased expression of nerve growth factor (NGF) and high affinity NGF receptor 

(p140 TrkA) in human osteoarthritic chondrocytes 

Rheumatology (2002) 41 (12): 1413-1418. 

 
Iwasaki, S., Hattori, A., Sato, M., Tsujimoto, M. and Kohno, M. (1996). 

Characterization of the bone morphogenetic protein-2 as a neurotrophic factor. 

Induction of neuronal differentiation of PC12 cells in the absence of 

mitogenactivated protein kinase activation. 

J. Biol. Chem 1996. 271, 17360-17365. 



- 89 - 

References 
 

 

 

 
 
 

Iwasaki S. , Iguchi M.,  Watanabe K.,  Hoshino M, Tsujimoto M., Kohno M. 

Specific Activation of the p38 Mitogen-activated Protein Kinase Signaling Pathway 

and Induction of Neurite Outgrowth in PC12 Cells by Bone Morphogenetic Protein-2 

J Biol Chem. 1999 Sep 10;274(37):26503-10. 
 

 
 

Jian Yu, , Lin Zhang 

No PUMA, no death: Implications for p53-dependent apoptosis 

Cancer Cell, Volume 4, Issue 4, October 2003, Pages 248–249 

 
Leist M, Nicotera P. 

Apoptosis, excitotoxicity, and neuropathology. 

Exp Cell Res. 1998 Mar 15;239(2):183-201. Review. 

 
Liu DX, Biswas SC, Greene LA. 

B-myb and C-myb play required roles in neuronal apoptosis evoked by nerve growth 

factor deprivation and DNA damage. 

J Neurosci. 2004 Oct 6;24(40):8720-5. 

 
Liang Y, Yan C, Nylander KD, Schor NF. 

Early events in Bcl-2-enhanced apoptosis. 

Apoptosis. 2003 Dec;8(6):609-16. 

 
Liang Y, Nylander KD, Yan C, Schor NF. 

Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. 

Mol Pharmacol. 2002 Jan;61(1):142-9. 

 
Kaufmann JA, Perez M, Zhang W, Bickford PC, Holmes DB, Taglialatela G. 

Free radical-dependent nuclear localization of Bcl-2 in the central nervous system of 

aged rats is not associated with Bcl-2-mediated protection from apoptosis. 

J Neurochem. 2003 Nov;87(4):981-94. 

 
Komarov P.G., Komarova E.A., Kondratov R.V., Christov-Tselkov K., Coon J.S., 

Chernov M.V., Gutkow A.V. 

A  chemical  inhibitor  of  p53  that  protects  mice  from  the  side  effects  of  cancer 

therapy, Science 285 (1999) 1733-1737 

 
Kurihara H, Shinohara H, Yoshino H, Takeda K, Shiba H. 

Neurotrophins in cultured cells from periodontal tissues. 

J Periodontol. 2003 Jan;74(1):76-84. 

 
Lönn P., Zaia K., Israelsson C., Althini S., D. Usoskin, A. Kylberg, and Ebendal T. 

BMP Enhances Transcriptional Responses to NGF During PC12 Cell Differentiation 

Neurochemical Research Vol. 30, Nos. 6/7 (2005). 

http://www.jbc.org/search?author1=Shoji+Iwasaki&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Makoto+Iguchi&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Kazushi+Watanabe&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Kazushi+Watanabe&sortspec=date&submit=Submit


- 90 - 

References 
 

 

 

 
 
 

Li, C. W., Van De Water, T. R. and Ruben, R. J. 

The fate mapping of the eleventh and twelfth day mouse otocyst. 

J. Morph. 157, 249-268 (1978). 
 

 
 

Lee J, Kim MS, Park C, Lim YS, Lee I, Moon BS, Lee HS, Park R. 

Protective effects of Debo on serum-deprived apoptosis of PC12 cells via inhibition 

of H2O2 generation and caspase 3-like protease activity. 

Immunopharmacol Immunotoxicol. 2002 May;24(2):227-43. 

 
Mattson M.P. 

Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic 

derivatives, Physiol. Rev. 77 (1997) 1081-1132 

 
Massaad CA, Taglialatela G. 

Bcl-2 phosphorylation is not required for its effects on NFkappaB activity. 

Neuroreport. 2003 Jun 11;14(8):1167-70. 

 
Mennerich D, Hoffmann S, Hadrys T, Arnold HH, Bober E. 

Two highly related homeodomain proteins, Nkx5-1 and Nkx5-2, display different 

DNA binding specificities. 

Biol Chem. 1999 Sep;380(9):1041-8. 
 

 
 

Melissa T. Jack, Richard A. Woo, Atsushi Hirao, Alison Cheung, Tak W. Mak, and 

Patrick W. K. Lee 

Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53- 

mediated 

apoptotic response. 

Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9825-9. Epub 2002 Jul 3. 

 
Merlo GR, Paleari L, Mantero S, Zerega B, Adamska M, Rinkwitz S, Bober E, Levi 

G. 

The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse 

embryo through a BMP4-mediated pathway. 

Dev Biol. 2002 Aug 1;248(1):157-69. 

 
Mihara M., Erster S., Zaika A., Petrenko O., Chittenden T., Pancoska P., Moll U.M., 

p 53 has a direct apoptogenetic role at the mitochondria, Mol. Cell 11 (2003) 577- 

590 

 
Molina R., Sequi M.A., Climent M.A., Bellmut J., Albanelll J., Fernandez M., Fillela 

X., Jo J., Gimenez N., Iglesias E., Mirales M., Alonso C., Peiro G., Perez-Picanol E., 

Balesta A.M. 

p53 oncoprotein as a prognostic indicator in patients with breas cancer, Anticancer 

Res. 18 (1998) 507-511 



- 91 - 

  References    

 

 

 
Niederhauser O, Mangold M, Schubenel R, Kusznir EA, Schmidt D, Hertel C. 

NGF ligand alters NGF signaling via p75(NTR) and trkA. 

J Neurosci Res. 2000 Aug 1;61(3):263-72. 

 
Ohyashiki T, Satoh E, Okada M, Takadera T, Sahara M. 

Nerve growth factor protects against aluminum-mediated cell death. 

Toxicology. 2002 Jul 15;176(3):195-207. 

 
Park JG, Yuk Y, Rhim H, Yi SY, Yoo YS. 

Role of p38 MAPK in the regulation of apoptosis signaling induced by TNF-alpha in 

differentiated PC12 cells. 

J Biochem Mol Biol. 2002 May 31;35(3):267-72. 

 
Perfetini J.L., Roumier T., Castedo M., Larochette N., Boya P., Rayal B., Lazar V., 

Ciccosanti F., Nardacci R., , Penninger J., Piacentini M., Kroemer G. 

NF-kappaB  and  p53  are  the  dominant  apoptosis-inducing  transcription  factors 

elicited by the HIV-1 envelope, 

J.Exp. Med. 199 (2004) 629-640 

 
Petratos S, Butzkueven H, Shipham K, Cooper H, Bucci T, Reid K, Lopes E, Emery 

B, Cheema SS, Kilpatrick TJ 

Schwann cell apoptosis in the postnatal axotomized sciatic nerve is mediated via 

NGF through the low-affinity neurotrophin receptor. 

J Neuropathol Exp Neurol (2003) 62: 398-411. 

 
Porat S, Simantov R. 

Bcl-2 and p53: role in dopamine-induced apoptosis and differentiation. 

Ann N Y Acad Sci. 1999;893:372-5. 

 
Rinkwitz-Brandt, S., Arnold, H.-H. and Bober, E. Regionalized expression of Nkx5- 

1, Nkx5-2, Pax2 and sek genes during mouse inner ear development. Hearing 

Research 99, (1996)129-138. 

 
Rohn TT, Cusack SM, Kessinger SR, Oxford JT. 

Caspase activation independent of cell death is required for proper cell dispersal and 

correct morphology in PC12 cells. 

Exp Cell Res. 2004 Apr 15;295(1):215-25. 

 
Romagnoli A, Oliverio S, Evangelisti C, Iannicola C, Ippolito G, Piacentini M. 

Neuroleukin inhibition sensitises neuronal cells to caspase-dependent apoptosis. 

Biochem Biophys Res Commun. 2003 Mar 14;302(3):448-53. 
 

 
 

Rong P, Bennie AM, Epa WR, Barrett GL. 

Nerve growth factor determines survival and death of PC12 cells by regulation of the 

bcl-x, bax, and caspase-3 genes. 

J Neurochem. 1999 Jun;72(6):2294-300. 



- 92 - 

  References    

 

 

 
Rukenstein A., Rydel RE, and Greene LA 

Multiple agents rescue PC12 cells from serum-free cell death by transition- and 

transcription-independent mechanisms. 

J. Neurosci 11:2552-2563. 

 
Ryden M, Hempstead B, Ibanez CF 

Differential modulation of neuron survival during development by nerve growth 

factor binding to the p75 neurotrophin receptor. 

J Biol Chem 1997 272: 16322-16328. 

 
Scott CW, Sobotka-Briner C, Wilkins DE, Jacobs RT, Folmer JJ, Frazee WJ, Bhat 

RV, Ghanekar SV, Aharony D. 

Novel small molecule inhibitors of caspase-3 block cellular and biochemical features 

of apoptosis. 

J Pharmacol Exp Ther. 2003 Jan;304(1):433-40. 

 
Schimmelpfeng J, Weibezahn KF, Dertinger H. 

Quantification of NGF-dependent neuronal differentiation of PC12 cells by means of 

neurofilament-L mRNA expression and neuronal outgrowth. 

J Neurosci Methods. 2004 Oct 30;139(2):299-306. 

 
Shacka JJ, Sahawneh MA, Gonzalez JD, Ye YZ, D'alessandro TL, Estevez AG. 

Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 

cells. 

Cell Death Differ. 2006 Jan 20; 

 
Shacka JJ, Roth KA. 

Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 

family: therapeutic implications. 

Curr Drug Targets CNS Neurol Disord. 2005 Feb;4(1):25-39. 

 
Shaw PA, Zhang X., Russo AF, Ament BA, Henderson S., Wiliams V. 

Homeobox protein, HMX3, in postnatally developing rat submandibular glands 

J.Histochem Cytochem 2003, Mar;51(3): 385-96 

 
Song Q, Mehler MF, Kessler JA. 

Bone morphogenetic proteins induce apoptosis and growth factor dependence of 

cultured sympathoadrenal progenitor cells. 

Dev Biol. 1998 Apr 1;196(1):119-27. 

 
Song BJ, Soh Y, Bae M, Pie J, Wan J, Jeong K. 

Apoptosis of PC12 cells by 4-hydroxy-2-nonenal is mediated through selective 

activation of the c-Jun N-terminal protein kinase pathway. 

Chem Biol Interact. 2001 Jan 30;130-132(1-3):943-54. 

 
Stolzing A, Grune T. 

Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial 

cells. 

FASEB J. 2004 Apr;18(6):743-5. Epub 2004 Feb 6. 



- 93 - 

References 
 

 

 
 
 
 
 

Takeda K, Hatai T, Hamazaki TS, Nishitoh H, Saitoh M, Ichijo H. 

Apoptosis signal-regulating kinase 1 (ASK1) induces neuronal differentiation and 

survival of PC12 cells. 

J Biol Chem. 2000 Mar 31;275(13):9805-13. 

 
Tabakman R, Jiang H, Levine RA, Kohen R, Lazarovici P. 

Apoptotic characteristics of cell death and the neuroprotective effect of 

homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. 

J Neurosci Res. 2004 Feb 15;75(4):499-507. 

 
Tamagno E., Parola M., Guilielmotto M., Santoro G., Bardini P., Marra L., Tabaton 

M., Danni O. 

Multiple  signalling  events  in  amyloid  beta-induced,  oxidative  stress-depended 

neuronal apoptosis 

Free Radic Biol Med. 2003 Jul 1,35(1):45-58 

 
Truong LX Nguyen, Chung Kwon Kim, Jun-Hee Cho,  Kyung-Hoon Lee, and Jee- 

Yin Ahn 

Neuroprotection signaling pathway of nerve growth factor and brain-derived 

neurotrophic factor against staurosporine induced apoptosis in hippocampal H19-7 

cells. 

Exp Mol Med. 2010 August 31; 42(8): 583–595. 

 
Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML. 

Caspase-2 mediates neuronal cell death induced by beta-amyloid. 

J Neurosci. 2000 Feb 15;20(4):1386-92. 

 
Torocsik B. and Szeberenyi J. 

Anisomicin affects both pro- and antiapoptotic mechanisms in PC12 cells 

Biochem Biophys Res Commun 278: 550-556 

 
Vaudry D, Chen Y, Hsu CM, Eiden LE. 

PC12 cells as a model to study the neurotrophic activities of PACAP. 

Ann N Y Acad Sci. 2002 Oct;971:491-6. 

 
Valavanis C, Hu Y, Yang Y, Osborne BA, Chouaib S, Greene L, Ashwell JD, 

Schwartz LM. 

Model cell lines for the study of apoptosis in vitro. 

Methods Cell Biol. 2001;66:417-36. 

 
W. Wang, Edwin K. Chan, S.Baron, T.Van De Water, T.Lufkin 

Hmx2homeobox gene control of murine vestibular morphogenesis 

Development 128, 5017-5029 (2001) 

 
Wang, W., Van De Water, T., and Lufkin, T. (1998) 

Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox 

gene. Development 125: 621-34 



- 94 - 

References 
 

 

 
 
 
 
 

Wang W., Edwin K. Chan, Shira Baron, Thomas Van De Water and Thomas Lufkin 

Hmx2 homeobox gene control of murine vestibular morphogenesis 

Development 128, 5017-5029 (2001) 

 
Wang W., Lufkin T. 

Hmx homeobox gene function in inner ear and nervous system cell-type specification 

and development 

 
Wang W, Dow KE, Riopelle RJ, Ross GM. 

The common neurotrophin receptor p75NTR enhances the ability of PC12 cells to 

resist oxidative stress by a trkA-dependent mechanism. 

Neurotox Res. 2001 Oct;3(5):485-99. 

 
Weber YG, Geiger J, Kampchen K, Landwehrmeyer B, Sommer C, Lerche H. 

Immunohistochemical   analysis   of   KCNQ2   potassium   channels   in   adult   and 

developing mouse brain. 

Brain Res. 2006 Feb 23; 

 
Wright KM, Linhoff MW, Potts PR, Deshmukh M. 

Decreased apoptosome activity with neuronal differentiation sets the threshold for 

strict IAP regulation of apoptosis. 

J Cell Biol. 2004 Oct 25;167(2):303-13. 

 
West T, Atzeva M, Holtzman DM. 

Caspase-3 deficiency during development increases vulnerability to hypoxic- 

ischemic injury through caspase-3-independent pathways. 

Neurobiol Dis. 2006 Feb 8; 

 
Vaghefi H, Hughes AL, Neet KE. 

Nerve growth factor withdrawal-mediated apoptosis in naive and differentiated PC12 

cells through p53/caspase-3-dependent and -independent pathways. 

J Biol Chem. 2004 Apr 9;279(15):15604-14. 

 
Vaghefi H, Neet KE. 

Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post- 

translational modification mechanism of neurotrophin-induced tumor suppressor 

activation. 

Oncogene. 2004 Oct 21;23(49):8078-87. 

 
Vaisid T, Kosower NS, Barnoy S. 

Caspase-1 activity is required for neuronal differentiation of PC12 cells: cross-talk 

between the caspase and calpain systems. 

Biochim Biophys Acta. 2005 Apr 15;1743(3):223-30. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22West+T%22%5BAuthor%5D


- 95 - 

References 
 

 

 

 
 
 

Yanagisawa M., Nakashima K., Takeda K., Ochiai W., Takizawa T., Ueno 

M., Takizawa M., Shibuya H., Taga T. 

Inhibition of BMP2-induced, TAK1 kinase-mediated neurite outgrowth by Smad6 

and Smad7. 

Genes Cells. 2001 Dec;6(12):1091-9. 

 
D. Vaudry, P. J. S. Stork, P. Lazarovici, L. E. Eiden 

Signaling Pathways for PC12 Cell 

Differentiation: Making the Right Connections 

Science 2002, Vol. 296 

 
Vilar M, Murillo-Carretero M, Mira H, Magnusson K, Besset V, Ibanez CF 

Bex1, a novel interactor of the p75 neurotrophin receptor, links neurotrophin 

signaling 

to the cell cycle. 

EMBO J. 2006 Feb 23 

 
Vyas S, Juin P, Hancock D, Suzuki Y, Takahashi R, Triller A, Evan G. 

Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells. 

J Biol Chem. 2004 Jul 23;279(30):30983-93. 

 
Yan C, Liang Y, Nylander KD, Schor NF. 

TrkA as a life and death receptor: receptor dose as a mediator of function. 

Cancer Res. 2002 Sep 1;62(17):4867-75. 
 

 
 

Yang E, Kim H, Lee J, Shin JS, Yoon H, Kim SJ, Choi IH. 

Overexpression of LIM kinase 1 renders resistance to apoptosis in PC12 cells by 

inhibition of caspase activation. 

Cell Mol Neurobiol. 2004 Apr;24(2):181-92. 

 
Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV 

Competitive signaling between TrkA and p75 nerve growth factor receptors 

determines cell survival. 

J Neurosci 18 (1998): 3273-3281. 

 
Zhang J, Krishnamurthy PK, Johnson GV. 

Cdk5 phosphorylates p53 and regulates its activity. 

J Neurochem. 2002 Apr;81(2):307-13. 

 
Zhang HN, Zhou JG, Qiu QY, Ren JL, Guan YY. 

ClC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells. 

Apoptosis. 2006 Mar 2 

 
Zhang J, W Yan,  X Chen 

p53 is required for nerve growth factor-mediated differentiation of PC12 cells via 

regulation of TrkA levels 

Cell Death Differ. 2006 May 26 



- 96 - 

  References    

 

 

 
Zhang XP, Liu F, Cheng Z, Wang W. 

Cell fate decision mediated by p53 pulses. 

Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12245-50. Epub 2009 Jul 15. 

 
Zhu X., Yu Q.S., Cutler R.G., Cilmsee C.W., Holloway H.W., Lahrini D.K., Mattson 

M.P., Greig N.H. 

Novel p53 inactivators with neuroprotective action: syntheses and pharmacological 

evaluation of 2-imino-2,3,4,5,6,7-haxahydrobenzoxazole and 2-imino-2,3,4,5,6,7 – 

hyxahydrobenzoxazole derivatives 



- 97 - 

  Erklärung    

 

 

 
 

10. ERKLÄRUNG 
 

 
 

"Ich  erkläre:  Ich  habe  die  vorgelegte  Dissertation  selbständig,  ohne  unerlaubte 

fremde  Hilfe  und  nur  mit  den  Hilfen  angefertigt,  die  ich  in  der  Dissertation 

angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten 

oder nicht veröffentlichten Schriften entnommen sind, und alle Angaben, die auf 

mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir 

durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die 

Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus- 

Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" 

niedergelegt sind, eingehalten." 

 
 
 
 

Bad Nauheim, 07th April 2014 Robert Kramek 



- 98 - 

 

 

 

 
 
 
 

11. ACKNOWLEDGEMENTS 
 

 
 

I would like to thank my supervisor Dr. Eva Bober for initiating this project, her 

unrestricted support, her patience, academic guidance and confidence throughout 

every phase of my PhD study. 

 
Further, I would like to thank Prof. Thomas Braun at Max Planck Institute for Heart 

and Lung Research in Bad Nauheim for helpful and constructive discussions and 

providing the organisational framework. 

 
I thank Katja Kolditz for outstanding support and technical introduction. 

Furthermore, I thank Michal Mielcarek and Izabella Piotrowska for the support. 

I  am  grateful  to  Tomasz  Loch  for  spending  weekend’s  time  for  thousands  of 

minipreps with a great jazz music. 

 
Special and warm thanks to Gabriele Hoang for her work and being optimistic every 

day. 

 
I am deeply grateful to all people at the Institute of Physiological Chemistry the 

University of Halle-Wittenberg and Max Plank Institute in Bad Nauheim, for solving 

many, many problems and introducing me to techniques and equipment. 

 
….and my wife Anna for the sun even on a cloudy days. 

 

 
 
 
 
 
 
 
 
 
 
 

 


