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1 Introduction

Motivated by several applications and implementations of finite automata in
software engineering, programming languages and other practical areas in com-
puter science, the state complexity of deterministic finite automata has been
studied in recent years. For example, the state complexity of the intersection
of DFAs has been studied in [15]. A tight bound of 2" states for the reversal
has been shown in [8], whereas catenations and other operations are the main
topic of [16]. For the important case of finite languages results have been ob-
tained in [1]. A state-of-the-art survey can be found in [14]. Related to the
problem of finding upper bounds for the state complexity is the problem of
efficiently simulating nondeterministic automata by deterministic ones. For ex-
ample, transforming a certain type of NFA to a DFA gives an upper bound for
the corresponding NFA state complexity of complementation. Results concern-
ing the simulation problems have been shown in [3, 9, 10, 12].

As pointed out in [14] there are several good reasons why the size of DFAs
is a natural and objective measure for regular languages. On the other hand,
the influence of the degree of nondeterminism on the power and limitations
of certain devices is an important question in descriptional complexity theory.
Finite automata with limited nondeterminism have been considered in [7] where
an infinite nondeterministic hierarchy of regular languages has been proved. In
[4] it is dealt with the quantification of inherent nondeterminism in regular
languages, and in [5] with the relation between ambiguity and the amount of
nondeterminism.

We expect that examining the state complexity of basic operations on NFAs will
enhance the understanding of the relations between nondeterminism, ambiguity
and the power of finite automata. In particular, we consider Boolean operations,
catenation operations and the reversal on NFAs that accept finite and infinite
languages over arbitrary alphabets. Most of the shown bounds are tight in the
exact number of states, i.e. the number is sufficient and necessary in the worst
case. For the intersection of finite languages and the complementation tight
bounds in the order of magnitude are proved.

It turns out that the state complexity of operations on NFAs and deterministic
finite automata are quite different. For example, the reversal and concatenation
have exponential state complexity on DFAs but linear complexity on NFAs.
Conversely, the complementation can be done with linear complexity on DFAs
but needs exponentially many states on NFAs.

In the next section we define the basic notions and present preliminary results.
Section 3 is devoted to the study of Boolean operations. Finally, in Section 4
we prove the tight bounds for catenation operations, and in Section 5 for the
reversal. At the end of Section 5 a table is given that summarizes the presented
results and compares them to the corresponding results for DFAs.



2 Preliminaries

We denote the the integers by Z, the positive integers {1,2,...} by N, the
set N U {0} by No and the powerset of a set S by 2°. The empty word is
denoted by A and the reversal of a word w by wf. For the length of w we
write |w|. The number of occurrences of a symbol a in the word w is denoted
by #4(w). We use C for inclusions and C if the inclusion is strict. For a
function f : Ng — N we denote its i-fold composition by f[I for i € N. As
usual we define the set of functions that grow strictly less than f by o(f) =

{g:Ng = N | lim,, 00 % = 0}. In terms of orders of magnitude f is an upper

bound of the set O(f) ={g:Nog = N |Ing,c e N:Vn>np:g(n) <c-f(n)}
Conversely, f is a lower bound of the set Q(f) ={g:Ng = N| f € O(g)}-

Definition 1 A nondeterministic finite automaton (NFA) is a system A =
(S, A,9,sq, F), where

. S is the finite set of internal states,

. A is the finite set of input symbols,

so € S is the initial state,

. F C S is the set of accepting (or final) states, and

. 6:8 x A— 25 is the transition function.

G o N

The set of rejecting states is implicitly given by the partitioning, i.e. S\ F.

In some sense the transition function is complete. W.l.o.g. we may require ¢
to be a total function, since whenever the operation of an NFA is supposed
not to be defined, then § can map to the empty set which, trivially, belongs
to 25. Thus, in some sense the NFA need not be complete. However, if not
otherwise stated throughout the paper we assume that the NFAs are always
reduced. This means that there are no unreachable states and that from any
state a final state can be reached. An NFA is said to be minimal if its number
of states is minimal with respect to the accepted language. Since every n-state
NFA with A-transitions can be transformed to an equivalent n-state NFA with-
out A-transitions [6] for state complexity issues there is no difference between
the absence and presence of A-transitions. For convenience, we consider NFAs
without A-transitions only.

As usual the transition function ¢ is extended to a function A : S x A* — 2°
reflecting sequences of inputs as follows:

A(s,\) = {s}
A(s,wa) = U 5(s',a)
s'eA(s,w)

for s € S, a € A, and w € A*. In the sequel we always denote the extension of
a given ¢ by A.

Definition 2 Let A= (S, A,J, sy, F) be an NFA, then
1. a word w € A* is accepted by A if A(sg,w) N F # (), and
2. L(A) = {w € A* | w is accepted by A} is the language accepted by A.



The next two preliminary results involve NFAs directly. They are key tools in
the following sections, and can be proved by a simple pumping argument.

Lemma 3 Let p > 1 be an arbitrary integer. Any NFA that accepts the
language {aP}* needs at least p + 1 states.

Proof. Assume the NFA A = (S, {a},d, so, F) with |S| < p accepts {aP}*.
Then given the input a? an accepting computation of A runs through a sequence
of states sg - sy - F sp—1 I 8p, where s; € S for 0 <7 < p.

Since the input a” belongs to the language, s, must be an accepting state, and
there are at most p — 1 non-accepting states in S. Since the empty word must
not be accepted we have a contradiction for p = 1. For p > 1 we conclude
that sg to sp—1 must not be accepting. Thus, at least one of the states in
the sequence sg,...,s,_1 appears at least twice. This implies that there exists
a cycle whose length ¢+ > 1 does not exceed p — 1. Therefore, there exists
an accepting computation that runs through the cycle once more. But the
corresponding input aP*? does not belong to the language {a?}™. O

The (p+ 1)th state is necessary since the initial state has to be a non-accepting
one. If we modify the language to {a?}* then the initial state could be equal
to the accepting state.

Corollary 4 Let p > 1 be an arbitrary integer. Any NFA that accepts the
language {aP}* needs at least p states.

Figure 1: Minimal NFAs accepting {a?}* and {a?}*.

3 Boolean Operations

We start our investigations with Boolean operations on NFAs that accept lan-
guages over arbitrary alphabets. In the case when the finite automaton is
deterministic it is well-known that in the worst case the Boolean operations
union, intersection and complementation have a state complexity of m-n, m-n
and m, respectively. (m and n denote the number of states of the automata on
which the operations are performed.) However, the state complexity of NFA
operations is essentially different. At first we consider the union.

4



Theorem 5 For any integers m,n > 1 let A be an m-state and B be an n-state
NFA. Then m + n + 1 states are sufficient and necessary in the worst case for
an NFA C to accept the language L(A) U L(B).

Proof. In order to construct an (m + n + 1)-state NFA for the language
L(A) U L(B) we simply use a new initial state and connect it to the states of A
and B that are reached after the first state transition.

Let A = <SA,AA,(5A,S(),A,FA> and B = <SB,AB,5B,S()7B,FB> with S4NSp = (D,
then C = (S, A, 9, s, F') is defined as follows:

S =S8S4USpU{so} where so ¢ S4USp
A=A,UApR

_{FAUFB if A ¢ L(A) U L(B)

B F4UFpU{sp} otherwise
r(5,4(30,A,0L) ifa€ Ay anda ¢ Ap and s = s
d(s,a) = da(s0,4,a) Udp(so,p,a)ifa€ AsN Ap and s = s
s,a) ifa € Ay and s € Sy

\

for s € S and a € A.

During the first transition C nondeterministically guesses whether the input
may belong to L(A) or L(B). Subsequently, A or B is simulated. Obviously,
L(C) = L(A)U L(B) and |Sc| = |Sa|l +|SB| +1=m+n+1.

Now we are going to show that m +n+ 1 states are necessary in the worst case.
Let A be an m-state NFA that accepts the language {a™}* (cf. Figure 1) and
B an n-state NFA that accepts {b" }*.

Let C be an NFA for the language L(A) U L(B). Due to the proof of Lemma 3
we observe: In order to reject the inputs a?, 1 < i < m — 1, but to accept the

input a™ the NFA C needs at least m — 1 non-accepting states si,...,8m, 1
from each of which a final state is reachable. Accordingly, C needs at least n —1
states s},...,s! _; for processing the inputs o', 1 <i <n — 1.

Denote by P, resp. P, the set of states that are reachable by inputs of the form
a’ resp. b* for i > 1. None of the final states may be reachable from the states
in P, N Py. Otherwise words of the form a’b’ or b'a’ would be accepted.

It follows that neither the s; nor the s; may belong to the intersection P, N P.
But, trivially, they do belong to P, resp. to P,. Now consider all words {a™}T.
There must exist a final state s,, that accepts infinitely many of them. Thus,
$m 1s reachable from s, itself. The same holds for a state s/, for the words in
{b"}*. It follows s,, € P, and s}, € B, but s, ¢ P, N P, and s, ¢ P, N B,
Finally, the initial state sy must be a final state since A € L(A) U L(B), but
50 # 8m and s # s!, since otherwise {a™}'b" or {b"}*a™ would be accepted for
some ¢ € N. Altogether, P, U P, must contain at least m + n different states
that are not equal to the initial state. a



When we are concerned with finite languages the state complexity of the union
can be reduced by three states. For these upper bounds in the deterministic
case see [2]. We may assume w.l.o.g. that minimal NFAs for finite languages
not containing the empty word have only one final state. Since such NFAs do
not contain any cycles they do contain at least one final (sink) state for which
the transition function is not defined (otherwise they would not be reduced or
would have a cycle). Now a given minimal NFA with more than one final state
is modified such that a sink state becomes the only final state. Therefore simply
the transition function has to be extended. Alternativ to changing to a former
final state now the NFA nondeterministically may change to the sink state. If
the finite language contains the empty word, then in addition the initial state
is a second final one.

Corollary 6 For any integers m,n > 2 let A be an m-state NFA and B be an
n-state NFA. If L(A) and L(B) are finite, then m-+n—2 states are sufficient and
necessary in the worst case for an NFA C to accept the language L(.A) U L(B).

Proof. We can adapt the proof of the previous theorem as follows. Since
NFAs for finite languages do not contain any cycles, for the construction of the
NFA C we do not need a new initial state (this saves one state). Moreover, we
can merge both initial states (this saves the second one) and both final sink
states (this saves the third one). Now the construction of C is straightforward.

The finite languages a™ and b" are witnesses for the necessity of the number
of states for the union in the worst case. An NFA that accepts the language
a™ needs at least m + 1 states. Otherwise it would run through cycles. By the
same argumentation as in the proof of Theorem 5 and merged initial and sink
states we obtain at least (m + 1) + (n + 1) — 2 states for an NFA that accepts
{a™} U {b"} (cf. Figure 2). O

Figure 2: Minimal NFA accepting {a™} U {b"}.

The complementation on nondeterministic devices is often a difficult problem.
In case of regular languages it is an expensive task at any rate. It is well
known [11] that 2™ is the tight upper bound on the number of states necessary
for a deterministic finite automaton to accept an (infinite) n-state NFA lan-
guage. Since the complementation operation on deterministic finite automata
neither increases nor decreases the number of states (simply exchange final and



non-final states) we obtain an upper bound for the state complexity of the
complementation on NFAs.

Corollary 7 For any integer n > 1 the complement of an n-state NFA language
is accepted by a 2"-state NFA.

Unfortunately, this expensive upper bound is tight in the order of magnitude.
Basically, the idea is to construct an efficiently acceptable language such that
nondeterminism cannot do anything for a cheap and efficient acceptance of its
complement.

Theorem 8 For any integer n > 2 there exists an n-state NFA A such that
any NFA that accepts the complement of L(A) needs at least 2" 2 states.

Proof. Fork > 0let Ly = {a,b}*a{a,b}*b{a,b}*. It is clear that Ly is accepted
by the following (k + 3)-state NFA A = (S, {a, b}, d, so, F') (cf. Figure 3).

S ={s0,81, ", Sk+2}
F = {sp42}

0(s0,a) = {so0,s1}
0,0) = {so}

v

a,b a,b

)
SOROSOEEE TR

Figure 3: A (k + 3)-state NFA accepting {a,b}*a{a,b}*b{a,b}*.

Intuitively, A has to guess the position of an input symbol a which is followed by
k arbitrary input symbols and a symbol b. In order to accept the complement of
Ly, a corresponding NFA B = (S5, {a, b}, 0, s(, F') has to verify that the input
has no substring a{a, b}*b. Therefore, after reading a symbol a in the input B
has to remember the next k input symbols in addition what results in at least
2k+1 states (cf. Figure 4).

More formally, we consider the input words of length k£ + 1. Observe that for
each of these words w the concatenation ww belongs to the complement of L.
Let S(w) be

{se€ 8 |seA(sh,w) NA'(s,w) NF" # 0}

and v, v’ be two arbitrary different words from {a,b}**1. Assume S(v)NS(v') #
0. It follows A'(sp,vv') N F' # O and A'(sp,v'v) N F' # () and, therefore, vv'
and v'v are accepted by B.



start

Figure 4: A minimal NFA accepting Lo of Theorem 8.

But this is a contradiction since there exists a position 1 < p < k41 at which v
has a symbol @ and v’ a symbol b or vice versa. Thus either vv’ or v'v is of the
form 1 -+ Tp_1a%p41 - Thy1¥Y1 - Yp—1bYp+1 - - - Yr+1 and, therefore, belongs to
L. From the contradiction follows S(v) N S(v') = 0. Since there exist 2F+1
words in {a,b}**! the state set S’ has to contain at least 251 states. O

The situation for finite languages over an f-letter alphabet, £ > 2, is quite
different, since the upper bound of the transformation to a deterministic finite
automaton is different. In [12] it has been shown that O(€‘°€2++1) states are an
upper bound for deterministic finite automata accepting a finite n-state NFA
language.

Corollary 9 For any integers £,n > 1 the complement of a finite n-state NFA
language over an {-letter alphabet is accepted by an O(£ls2+1)-state NFA.

Note, that for £ = 2 the upper bound is O(2%). A slight modification of the
proof of the previous theorem yields:

Theorem 10 For any integers £ > 1 and n > 2 there exists a finite n-state
NFA language L over an {-letter alphabet such that any NFA that accepts the

complement of L needs at least Q(E“‘Zﬂ t) states.

Proof. For ¢ >1let A= {ay,...,a;} be an alphabet. Let £ > 0 be an integer.
A finite language Ly, is defined by AJa; A*y, where 0 < j < kandy € A\ {a1}.
The NFA depicted in Figure 5 accepts Ly with 2k + 3 states. (Trivially Ly, is
also accepted by an NFA with 2k + 4 states.)

An NFA B for the complement works similar to the corresponding NFA in the
previous proof. It need not remember k£ + 1 input symbols exactly, but whether
a symbol has been ay or not. Since previously we argued with words of finite
lengths it follows immediately that B needs at least 2¥*! states. Additionally
the length of the prefix A7 has to be tracked. For this purpose the state set has
to be doubled such that we have a lower bound of 2¥*2 states. Transforming

_1 k42 n
2 = (1982 — flog2? we obtain the lower bound £%g2? € Q(£210g27), O
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Figure 5: A (2k + 3)-state NFA accepting L, of Theorem 10.

Next we are going to prove a tight bound for the remaining Boolean operation,
the intersection. The upper bound is obtained by the somehow old-fashioned
cross-product construction.

Theorem 11 For any integers n,m > 1 let A be an m-state and B be an n-
state NFA. Then m - n states are sufficient and necessary in the worst case for
an NFA to accept the language L(A) N L(B).

Proof. Clearly, the NFA C = (S, A, J, so, F') defined by the cross-product of
A = (Sa,A,04,50,4,Fa) and B = (S, A,dB,s0,B, F'B) accepts the language
L(A) N L(B) with m - n states, i.e.,

S=84x%xS8B
S0 = (SO,A,SO,B)
F=F4xFp

6((s1,82),a) = (0a(s1,a),0B(s2,a)), for s; € Sa,s2 € Sp,a € A

As witness languages for the fact that the bound is reached in the worst case
define Ly, = {w € {a,b}* | #4(w) =0 (mod k)} for all ¥ € N. An NFA that
accepts Ly with k states is depicted in Figure 6.

Figure 6: A k-state NFA accepting Ly of Theorem 11.

Identically, L}, is defined to be {w € {a,b}* | #4(w) =0 (mod k)}. It remains
to show that an NFA C that accepts L, N L, for m,n > 1, needs at least m - n
states.

Consider the input words a’b’ and o’ ¥ with 0 < 4,9 <m —1and 0 < j,j' <
n — 1, and assume C = (S, A, J, so, F') has less than m - n states. Since there



are m - n such words, for at least two of them the intersection {s € S | s €
A(sg, ') A A(s,a™ 0" I)NF # 0} N A(sg,a” b') is not empty. This implies
a'b'am™ "I € L,, N L,. Contrarily, either i # i’ or j # j'. It follows
i'+m—1%Z0 (modm)orj +n—5#0 (modn), acontradiction. a

4 Catenation Operations

Now we turn to the catenation operations. In particular, tight bounds for
concatenation, iteration and A-free iteration will be shown. Roughly speaking,
in terms of state complexity these are cheap operations for NFAs. Again, this
is essentially different when deterministic finite automata come to play. For
example, in [16] a bound of (2m — 1) - 2”1 states has been shown for the
DFA-concatenation, and in [13] a bound of 2"~! 4 2"~2 states for the iteration.

Theorem 12 For any integers m,n > 1 let A be an m-state NFA and B be an
n-state NFA. Then m + n states are sufficient and necessary in the worst case
for an NFA C to accept the language L(A)L(B).

Proof. The upper bound is due to the observation that in C one has simply to
connect the final states in A with the states in B that follow the initial state. Let
A= <SA,AA,(5A,SO’A,FA> and B = <SB7A375B730,37FB> with S4 N Sp # (b,
then C = (S, A, 6, sg, F) is defined according to

S=5,4US8p
A=A 4UAp
S0 = 80,4
F =Fg

da(s,a) if s€ Sy \ Faanda € Ay
d(s,a) =< 6p(s,a) if s € Spand a € Ap
da(s,a)Udp(so,B,a)if s € Fy and a € Ap

for s € S and a € A.

The upper bound is reached for the concatenation of the languages L(A) =
{a™}* and L(B) = {b"}*. Let C be an NFA for the language L(A)L(B). Fol-
lowing the idea of the proof of Theorem 5 we argue that C needs at least m — 1

non-accepting states si,...,s,—1 to reject the inputs a’ for 1 < i < m —1, and
to accept the input a™. For the processing of the inputs ' with 1 < <n—1
and b™ the automaton C needs n — 1 non-accepting states si,..., s, _; in addi-

tion. From all these states a final state must be reachable, from which follows
that they have to be pairwise different. Otherwise a word a'b’ with i # 0
(mod m) or a word b’a’ would be accepted. The necessarily final initial state
must not be reached by any of the inputs {b"}1 since otherwise words of the
form b’a’ would be accepted. Thus, C needs at least two final states. Together
with the necessary number (m—1)+(n—1) of non-accepting states the assertion
follows. O

10



In case of finite languages the concatenation is one state cheaper.

Lemma 13 For any integers m,n > 1 let A be an m-state NFA and B be an
n-state NFA. If L(A) and L(B) are finite, then m + n — 1 states are sufficient
and necessary in the worst case for an NFA C to accept the language L(A)L(B).

Proof. Since for finite languages A and B must not contain any cycles the
initial state of B is not reachable after the construction of the previous theorem.
Thus, it can be deleted what yields an upper bound of m + n — 1 states.

As witnesses for the tightness consider the languages {a™ '} and {b" '}. They
are accepted by m-state resp. n-state NFAs. Clearly, any NFA for the concate-
nation needs at least m + n — 1 states (cf. Figure 7). O

start@a@a a@b@b b@

Figure 7: An (m+n—1)-state NFA accepting the concatenation {a™ 1}{p" '}
of Lemma 13.

The constructions yielding the upper bounds for the iteration and A-free it-
eration are similarly. The trivial difference between both operations concerns
the empty word only. Moreover, the difference does not appear for languages
containing the empty word. Nevertheless, in the worst case the difference costs
one state.

Theorem 14 For any integer n > 2 let A be an n-state NFA. Then n+1 resp.
n states are sufficient and necessary in the worst case for an NFA to accept the
language L(A)* resp. L(A)™.

Proof. Let A= (S4,Ax,04,50,4,Fa) be an n-state NFA. Then the transition
function of an n-state NFA C = (S, A, §, sg, F') that accepts the language L(A)™T
is for s € S and a € A defined as follows:

5(s.0) = da(s,a) if s ¢ Fu
54 = da(s,a)Uda(so,a,0a)ifs € Fy

The other components remain unchanged, i.e., S = S4, so = 50,4, and F' = Fjy.

If the empty word belongs to L(.A) then the construction works fine for L(.A)*
also. Otherwise an additional state has to be added: Let sy ¢ S4 and define

S =SaU{sp}
S0 = 8
F:FAU{SB}

da(s,a) if s ¢ FaU{sy}
d(s,a) = ¢ 6a(s,a) Uda(so,4,a) if s € Fu
d4(s0,4,a) if s = s

11



for s € S and a € A.
In order to prove the tightness of the bounds for any n > 2 let

L, ={w € {a,b}" | #4(w) =n—-1 (modn)}

The language L, is accepted by an n-state NFA. At first we show that n + 1
states are necessary for C = (S, {a, b}, d, s0, F') to accept L(A)*.

Contrarily, assume C has at most n states. We consider words of the form a’
with 0 < 4. The shortest four words belonging to L(A)* are A, ™!, a®*2,
and a?" 1. It follows sg € F. Moreover, for a® ! there must exist a path
soFsi1 - F 8,92+ s, where s, € F and s1,...,s,_2 are different non-
accepting states. Thus, C has at least n — 2 non-accepting states.

Assume for a moment F' to be a singleton. Then sy = s, and for 1 <7 <n—3
the state so must not belong to 6(s;,a). Processing the input a®"~! the NFA
cannot enter sq after 2n — 2 time steps. Since a! ¢ L(A)* the state so must not
belong to §(so, a)-

On the other hand, C cannot enter one of the states si,...,s,_3 since there
is no transition to sg. We conclude that C is either in state s,_o or in an
additional non-accepting state s, 1. Since there is no transition such that
Sp—2 € §(Sp—2,a) in both cases there exists a path of length n from sy to sp.
But a™ does not belong to L(A)* and we have a contradiction to the assumption
|F| = 1.

Due to our assumption |S| < n we now have |F| = 2 and |S| — |F| =n — 2.
Let us recall the accepting sequence of states for the input a™ !: so  s1
-+ 8p_92 F sy. Both sy and s, must be accepting states. Assume s, # sp.
Since a®® 2 belongs to L(A)* there must be a possible transition sy - s; or
sp F s1. Thus, a2 is accepted by s,. In order to accept ¢! there must
be a corresponding transition from s, to s, or from s, to sg. In both cases the
input a”™ would be accepted. Therefore s,, = sg.

By the same argumentation the necessity of a transition for the input symbol a
from sq to sg or from sg to s, follows. This implies that a! is accepted. From
the contradiction follows |S| > n.

As an immediate consequence we obtain the tightness of the bound for L(A)*.
In this case sy € F' is not required. Thus, just one final state is necessary. O

The state complexity for the iterations in the finite language case is n resp.
n — 1.

Lemma 15 For any integer n > 1 let A be an n-state NFA. If L(A) is finite,
then n — 1 resp. n states are sufficient and necessary in the worst case for an
NFA to accept the language L(A)* resp. L(A)™".

Proof. For the upper bounds we can adapt the construction of Theorem 14.

The accepting states are connected to the states following the initial state. That
is all for A-free iterations.

12



For iterations we have to provide acceptance of the empty word. The following
two observations let us save two states compared with infinite languages. First,
the initial state is never reached again after initial time. Second, since the
basing language is finite and the accepting automaton is reduced there must
exist a final state sy for which the state transition is not defined. We can take
sy as new initial state and delete the old initial state what altogether leads to
an (n — 1)-state NFA for the iteration.

The bound for the A-free iteration is reached for the language L, = {w €
{a,b}* | lw| = n — 1} which requires n states. L} = {{a,b}""1}T is acceptable
with at least n states (cf. Lemma 3).

The bound for the iteration is reached for the simple one-word language L,, =

{ab" 1} that requires n+1 states. Clearly, {ab” !}* is acceptable with n states.
O

5 Reversal

The last operation under consideration is the reversal. For deterministic au-
tomata one may expect that the state complexity is linear. But it is not. In
[16] for infinite languages a tight bound of 2" has been shown. A proof of a
tight bound for finite languages can be found in [1]. Tt is of order O(2%) for a
two-letter alphabet. From the following cheap bounds for NFAs it follows once
more that nondeterminism is a powerful concept.

Theorem 16 For any integer n > 3 let A be an n-state NFA. Then n + 1
states are sufficient and necessary in the worst case for an NFA C to accept the
language L(A)®.

Proof. Basically, the idea is to reverse the directions of the transitions. This
works fine for NFAs whose set of final states is a singleton or whose initial state
is not within a loop. In general we are concerned with more than one accepting
state and have to add a new initial state as shown below. If, in addition, the
old initial state is part of a loop, then its role cannot be played by the new one
and we obtain an (n + 1)-state NFA.

Let A = (Sa,A,04,50,4,Fa) be an n-state NFA. Define C = (S, 4,0, 5o, F)
according to

S =854U{sp}, where so ¢ Sa

P { {s0.4} if A ¢ L(A)

{s0,4, S0} otherwise
{s"€Sa|s€da(sa)}if s€ Sy
5('3’0’) = ! ! . _
{' € Sa|da(s;a)NFy#0}if s =5

fors e S, a€ A
Clearly, the (n + 1)-state NFA C accepts the reversal of L(.A).

13



The language Ly, = a*{a*T1}*({b}* U{c}*) for k > 1, may serve as an example
for the fact that the bound is reached. The (k + 3)-state NFA A that accepts
Ly, and the (k + 4)-state NFA C that accepts L are depicted in Figure 8.

Figure 8: A (k + 3)-state and a (k + 4)-state NFA accepting Ly and L of
Theorem 16.

The necessity of k4 4 states can be seen as follows. Since accepted inputs may
begin with an arbitrary number of b’s or ¢’s we need two states s, and s, to
process them. This cannot be done by the initial state because the loops would
lead to acceptance of words with prefixes of the form b*c* or ¢*b*.

Obviously, a loop of k+1 states is needed in order to verify the suffix {a*T1}*a*.
If one in this sequence would be equal to s (s.), then it would have a loop for
b’s (¢’s) and, hence, inputs of the form ¢*a*b*a* (b*a*c*a¥) would be accepted.
For similar reasons the new initial state cannot be within a loop. Altogether
it follows that C needs at least k + 4 states what proves the tightness of the

bound. O

The fact that NFAs for finite languages do not have any cycle leads once more
to the possibility of saving one state compared with the infinite case.

Lemma 17 For any integer n > 1 let A be an n-state NFA. If L(A) is finite,
then n states are sufficient and necessary in the worst case for an NFA to accept
the language L(A)E.

Proof. Recall from the proof of Corollary 6 that for every minimal n-state
NFA that accepts a non-empty finite language there exists an equivalent n-state
NFA that has only one final state. By the construction of the previous proof
we obtain an (n + 1)-state NFA that has an unreachable state. It is the unique
former final state. The bound follows if the state is deleted.

Let for n > 1 the language L,, defined to be {a,b}" L. Trivially, L,, is accepted
by an n-state NFA. Since L,, = L the assertion follows. O

The bound for the reversal of finite NFA languages is in some sense strong. It
is sufficient and reached for all finite languages. It holds also for the empty
language.

Finally, Table 1 summarizes the shown state complexity bounds for NFAs.
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NFA DFA
finite infinite finite infinite

Ul m+n—2|m+n+1 O(mn) mn
~ || OFBET) | 0(2r-2) n n
N O(mn) mn O(mn) mn
R n n+1 0(22) 2"

m+n-—1 m+n O(mntt +nt) | (2m —1)27 1
* n—1 n+1 2n=3 yon—4 | gn-l 4 gn=2
+ n n

Table 1: Comparison of the NFA and DFA state complexities (£ is the number
of states, ¢ is the number of final states of the ‘left’ automaton.
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