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Abstract

The mechanism of lithium insertion and depletion in the cathode material

lithium iron phosphate (LFP) has been research subject for over a decade. Al-

though being widely-used by now, the exact mechanism still remains unclear.

Thin film technology is a method of reducing the complexity of a system in

order to study these mechanisms. Firstly, this work presents the preparation

of LFP thin films with pulsed laser deposition (PLD). Galvanostatic cycling of

thin films prepared on metal substrates was possible for 100 cycles without

significant capacity loss. Films prepared on silicon substrates were smooth and

covering. Chemical delithiation is compared to electrochemical delithiation.

Thin films could still be cycled electrochemically after chemical delithiation.

TEM images revealed the size of the primary particles to be less than 20 nm.

The preparation process was followed by a detailed electrochemical study via

galvanostatic intermittent titration technique (GITT). The study reveals the van-

ishing of the miscibility gap in nano-sized LFP. This effect is attributed to the

small size of the primary particles in the film. Furthermore, after the application

of a current pulse a concentration gradient remains inside the film even after

long relaxation times. Diffusion coefficients of the single-phase LFP were deter-

mined. A model for the mechanism of delithiation of the thin film is proposed

supporting the model of meta-stable intermediate phases as has been suggested

for LFP nanoparticles.

An outlook toward a cell for in operando spectroscopy is shown in the last

chapter. Proof of principle studies have been conducted and a design for a cell

is proposed.



Zusammenfassung

Der Mechanismus der Lithiuminsertion und -extraktion in das Kathodenmate-

rial Lithiumeisenphosphat (LFP) wird seit über einem Jahrzehnt erforscht. Ob-

wohl dieses Material inzwischen häufig verwendet wird, sind die genauen Me-

chanismen noch immer ungeklärt.

Dünnfilmtechnik ist eine Methode zur Reduktion der Komplexität eines Sys-

tems, um solche Mechanismen zu untersuchen. Zunächst wird in dieser Arbeit

die Herstellung von LFP Dünnschichten mittels gepulster Laserdeposition (PLD)

beschrieben. Galvanostatisches Zyklisieren von Dünnfilmen auf Metallsubstra-

ten über 100 Zyklen war ohne signifikanten Kapazitätsverlust möglich. Dünn-

filme auf Siliciumsubstraten waren glatt und deckend. Chemische Delithiierung

wird mit elektrochemischer Zyklisierung verglichen. Dünnfilme konnten auch

nach chemischer Delithiierung noch elektrochemisch zyklisiert werden. TEM-

Aufnahmen zeigen eine Primärpartikelgröße von weniger als 20 nm.

Nach der Präparation der Schichten wurden detaillierte elektrochemische Un-

tersuchungen mittels galvanostatisch intermittierender Titrationstechnik (GITT)

durchgeführt. Diese Untersuchungen zeigen ein Verschwinden der Mischungs-

lücke in LFP-Dünnfilmen aufgrund der kleinen Partikelgröße. Außerdem bleibt

ein Gradient der Lithiumkonzentration auch nach langen Relaxationszeiten.

Diffusionskoeffizienten des einphasigen Materials wurden bestimmt und ein

Modell der Delithiierung des Dünnfilms wird vorgestellt, das die in der Lite-

ratur vorgeschlagene Theorie der metastabilen Zwischenphase unterstützt.

Im Sinne eines proof of principle für in operando Spektroskopie werden im

letzten Kapitel erste Experimente vorgestellt und ein Zelldesign hierfür wird

vorgeschlagen.
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1 Introduction and Motivation

1.1 Lithium Ion Batteries

Batteries are a vital part of the technological world we live in today. Countless

mobile applications require energy storage systems that are light and small.

The major challenge is to build a device, that has a high energy density and is

yet safe to be carried around. The first rechargeable lithium battery has been

introduced by SONY in 1991 and has since been the key technology for the ad-

vancement in mobile applications.[1] Most lithium ion batteries used today still

utilize the same cell chemistry that was used in those first cells, a lithium cobalt

oxide cathode and a carbon anode. A major issue in this system is the oxide on

the cathodic side. Only half the lithium can be safely extracted from the mate-

rial before the structure becomes unstable and decomposes. The decomposition

leads to the liberation of oxygen reacting with the organic electrolyte. This issue

is tolerable to some degree on the small scale of personal mobile applications

but can become dangerous on the scale of applications for electric vehicles or

in aviation. In January 2013 two fires broke out in the then newly delivered

Dreamliner airplanes by Boeing.[2] Luckily, no one was severely harmed in those

incidents, however, they resulted in a big economical damage for the company.

While LiCoO2 still is the material used in most applications, a number of other

materials have been developed with each having its own advantages and dis-

advantages over the other materials. One of the main reasons for new develop-

ments is of course the price, with cobalt being an expensive material. However,

there are some technological reasons as well. Some materials are being devel-

oped reaching for a higher energy density, e.g. by increasing the cell voltage.

1



1 Introduction and Motivation

Other materials are being developed in order to introduce a safer chemistry.

Materials belonging to the latter group are the olivine materials LiMXO4, with

M = Fe, Mn, Ni, Co and X = P, S, Si. The most advanced and thus most widely

used material of this group is LiFePO4, of which a detailed introduction will

follow in chapter 2.

1.2 Strategy of this Work / Why Utilize Thin Films?

Batteries are very complex systems with many components and a lot of still un-

known effects. Those systems are far from being well understood. Any effect

observed in battery materials may thus be attributed to a multitude of pro-

cesses. In order to understand subtle effects, the complexity of the system has

to be reduced. Thin films have two major advantages in this regard. Firstly, with

the short diffusion and conduction paths in a thin film of active material, con-

ducting additives may not be necessary. Secondly, the material has a relatively

well defined surface area contrasting the undefined, sometimes even porous

surface area of a particle sample. The first advantage leads to the reduction

of side effects overlapping the effects to be observed. The well defined surface

area reduces morphological effects that sometimes make proper measurements

impossible.

However, the utilization of thin films does not only bring advantages to the ex-

perimentalist. The first challenge in the task of utilizing thin films is producing

films with the desired structural properties. Those films have to be deposited

on suitable substrates. The required properties of the substrates depend on

the design of the experiment. For electrochemical studies, the most important

property is the electronic conductivity. Additionally, with the high temperatures

used for the deposition of crystalline thin films, side reactions may become

an issue and have to be considered in the choice of the substrate. Thirdly, the

mechanical boundary conditions of thin films are completely different from par-

ticle structures. Thin films may experience severe stress during charging and

discharging.

2



1 Introduction and Motivation

The strategy for this work was to produce thin films with a smooth surface in or-

der to make the material accessible for spectroscopic techniques. Furthermore,

the films had to be optimized for their electrochemical activity, as in operando

measurements are only possible on electrochemically active material. A brief

definition of the terms in situ and in operando will be given in the next section.

The objective of this work is to gain a better understanding of the mechanisms

of lithium addition and depletion in the battery material LiFePO4. Detailed

electrochemical studies on thin films will be presented in chapter 6. As an

outlook for a long-term objective, a path toward spatially resolved in operando

studies will be shown in chapter 8.

1.3 Terminology of Time Resolved Studies

A time resolved study of any system is generally referred to as in situ experi-

ment. The term in situ translates to in position meaning a variation is studied

in the position it takes place in. Depending on the scientific discipline the term

can describe considerably different experimental set-ups.a In material sciences

in situ usually refers to a time resolved measurement while a manipulation of

any kind is imposed onto the observed sample (e.g. heating, applied voltage,

chemical reactions). Sometimes in situ is also used to describe the measure-

ment of a still transforming sample well after the manipulation took place.

Contrasting the term in situ the term ex situ describes the examination of a

sample after the manipulation took place while there is no further change of

the measured properties. Accordingly, there is no need for temporal resolution

in ex situ studies, as nothing of interest should be changing in the sample during

measurement.

As it does not clarify the nature of the manipulation imposed onto the sample

in situ is a somewhat general term. To be more specific regarding the nature of
aVarious definitions for the term in situ are being used, sometimes not even including the

element of temporal resolution. In physics the term may also describe a sample being
prepared and studied without breaking the vacuum of the machine being used in between.

3



1 Introduction and Motivation

the manipulation the term in operando is frequently used. In operando refers

to a time resolved measurement of a sample under operating conditions. For

an electrolyte this would mean drawing a current and for a hydrogen storage

material in operando would refer to a measurement during the insertion or

extraction process.

According to the definitions given above in operando experiments may also be

named in situ experiments, however, the reverse is not necessarily true. Any

measurement with temporal resolution may be named an in situ study regard-

less of the imposed manipulation. The conditions for the usage of the term in

operando are more restrictive, as the manipulation has to be the same as in the

actual practical usage of the examined material. However, neither term gives

any information about the spatial resolution of the measurement. In order for

those terms to be used only a temporal resolution sufficient for the examined

process is required.

Regarding the subject of this study, any electrochemical cycling experiment on

a battery material is an in operando experiment. However, a simple experiment

like that would usually not be termed in operando. Additional information has

to be gained to justify the use of a supplementary descriptive term. Having

an additional observation technique, e.g. x-ray diffraction, would justify that

usage. One objective of the work at hand is to develop strategies toward in

operando measurements with a good spatial resolution on battery materials.

1.4 All-Solid-State Cells

Vacuum conditions are vital for most spectroscopic techniques. In order to per-

form in operando studies on electrochemical cells all parts of the cell have to

be compatible with these conditions, i.e. organic electrolytes cannot be used.

One way to overcome this issue is to use solid electrolytes. As all other parts of

a cell are usually solid, this leads to a cell concept were all parts are solids: an

all-solid-state cell. Another option is the usage of ionic liquid electrolytes. This

4



1 Introduction and Motivation

approach has its own challenges that could be discussed extensively. However,

this work will focus on the all-solid-state approach.

Since there is no liquid electrolyte, producing a good contact between the dif-

ferent components is crucial. For that reason, simply pressing the components

together will not suffice. Furthermore, the kinetics of solid electrolytes is usu-

ally slower than of liquid electrolytes. Thus, the diffusion length has to be

reduced by reducing the electrolyte thickness. Therefore, thin film deposition

techniques are commonly used in all-solid-state approaches.

A first report of a working all-solid-state cell was published in 1993 by Bates et

al.[3,4] The cell consisted of a V2O5 cathode, a lithium anode, and LiPON elec-

trolyte. The LiPON electrolyte had been published by Bates et al. one year ear-

lier.[5]. All cell components were suitable for vacuum conditions, however, the

cell design did not allow for in operando studies as the cathode was enclosed

in the other components. It should be mentioned that spectroscopic studies

were by far not the only motivation for all-solid-state cells. The main focus of

research has been producing small and safe batteries for special applications.

An all-solid-state cell for spectroscopic in operando analysis has been presented

by Thißen et al.[6] The cathode used in that setup was LiCoO2. In order to have

access to the cathode material, it was deposited on top of the other materials.

This approach is suitable if the material to be observed can be deposited at

low temperatures. A big challenge in the construction of all-solid-state cells is

finding an order of depositing the components where a follow-up process does

not destroy a previously deposited material. This order can be easily found

for components that can be deposited at low temperatures. For components

that can only be deposited at high temperatures, this can become quite a chal-

lenge. Another challenge is finding structuring techniques compatible with the

deposited materials. An approach for the construction of an all-solid-state cell

using lithium iron phosphate will be presented in chapter 8.

5



2 Lithium Iron Phosphate

The most commonly used cathode material for lithium ion batteries still is

lithium cobalt oxide or derivatives hereof. Due to the toxicity, the high price,

and limited resources of cobalt, usage of electrode materials based on cobalt

is undesired. Accordingly, extensive research has been conducted toward al-

ternative materials. Lithium iron phosphate (LFP) is a promising alternative

to the widely-used cobalt oxide cathodes. Being already widely-used itself, it

solves some of the safety issues of oxide materials, while still possessing a de-

cent energy density. Furthermore, it is environmentally benign and utilizes the

abundant element iron. The use of LFP as cathode material has first been pro-

posed by Padhi et al. in 1997[7] and has since been a major topic in battery

research. The basic reaction scheme in an LFP electrode is as follows.

FePO4 +x ·Li++x ·e−
 LixFePO4 (2.1)

This chapter will give a brief introduction into the structural and electrochemi-

cal properties and the proposed models for the lithiation and delithiation mech-

anism.

2.1 Crystal Structure and Defects

LFP has an olivine structure which consists of hexagonally close-packed oxygen

atoms with phosphorous atoms in one-eighth of the tetrahedral sites and metal

6



2 Lithium Iron Phosphate

Figure 2.1: Crystal structure of LFP viewed along the lithium ion diffusion path (b-
direction). blue: iron, orange: phosphorous, gray: oxygen, pink: lithium.
The octahedral FeO6 and the tetrahedral PO4 coordination spheres are
shown as well.

Table 2.1: Lattice parameters of LiFePO4 & FePO4. Values from Padhi et al. [7]

LiFePO4 FePO4
Space Group Pnma Pnma

a / Å 10.334 (4) 9.821 (1)
b / Å 6.008 (3) 5.792 (1)
c / Å 4.693 (1) 4.788 (1)

Volume / Å3 291.392 (3) 272.357 (1)

7



2 Lithium Iron Phosphate

atoms in half of the octahedral sites. In contrast to the cubic analog, the spinel

structure, the olivine structure has two crystallographically distinct octahedral

sites with different sizes. Thus, two differently sized metal atoms will lead to

an ordered olivine structure with each element occupying one of those distinct

sites.[7]

Olivine materials are one dimensional ion conductors, as the diffusion path

goes along the edge-shared lithium coordination spheres. Those channels are

aligned along the crystallographic b-axis. Lithium iron phosphate and iron

phosphate both crystallize in the Pnma space group. The volume change upon

delithiation is about 7 %. However, the cell parameters shrink along the a and

b-directions by 4 to 5 %, but expand along the c-direction by 2 %. The structure

of LFP is shown in figure 2.1. As both compounds are also found as minerals,

although with manganese content, they have mineralogical names. LiFePO4 is

named triphylite and FePO4 heterosite.

The most common defect in LFP is the Li/Fe anti-site defect.[8,9] The forma-

tion reaction of this defect in Kröger-Vink notation is shown in equation 2.2.

This kind of defect reaction is also called intersite exchange. With LFP being

a one-dimensional ion conductor, anti-site defects lead to blocking of diffusion

channels. Thus, the number of anti-site defects is a critical parameter in the

synthesis for the performance of the obtained material.[10,11] However, the anti-

site defects tend to cluster in the iron phosphate, thus reducing the number of

blocked channels. Defect clustering does not appear in manganese phosphate,

which might explain the poor performance of the latter despite the identical

structure.[12]

Fe×Fe +Li×Li 
 Li′Fe +Fe•Li (2.2)

8



2 Lithium Iron Phosphate

Figure 2.2: Phase diagrams of Lix FePO4 measured by in situ XRD. Diagram on the
left from Dodd et al. [13] Diagram on the right from Delacourt et al. [14] The
diagram by Delacourt et al. does not exhibit a triple point. This is probably
due to inaccuracies of the method with short heating times in the XRD
stage. Dodd et al. heated the samples in glass tubes and measured the
material after quenching to room temperature. This allowed for a longer
heat treatment to attain equilibrium.

2.2 Phase Diagram

LixFePO4 (0≤x≤1) is a two phase system with the phase width of the end-

phases being just a few percent. Therefore, the material exhibits a phase sep-

aration upon lithiation/delithiation. The resulting two-phase system yields a

constant voltage, as predicted by Gibbs’ phase rule. The phase width of the end-

phases is temperature and particle size dependent. With rising temperature the

phase width of the end phases becomes broader, as one would expect. However

between 150 ◦C and 200 ◦C a disordered phase appears that diminishes the mis-

cibility gap. Between 300 ◦C and 400 ◦C the miscibility gap disappears entirely

in favor of a solid solution phase.[13–15] LFP melts at around 950 ◦C without

decomposing before.[16,17] The phase diagrams measured by Dodd et al. and

Delacourt et al. are shown in figure 2.2. Reducing the particle size broadens the

phase width of the end-phases as well.[18,19] Extrapolating the measured phase

widths, the room temperature miscibility gap should disappear at a particle size

of 15 nm.

9



2 Lithium Iron Phosphate

2.3 Electrochemical Properties

As stated in the section above, LFP is a two-phase electrode material and has

a constant voltage plateau. This plateau is at 3.4 V. The theoretical capacity

is 170 mA h g−1. The electronic conductivity is very low at a value of about

10−9 S cm−1.[20,21] In order to overcome the poor electronic conductivity, car-

bon coating was proposed by Ravet et al.[22] Another approach to optimize the

electronic transport is nanosizing of the particles to obtain short conduction

paths. The advantage of nanosizing is the combined effect on the electronic

and ionic transport. The employment of carbon coating also provides a reduc-

ing agent to avoid oxidation of iron during synthesis.[23] Both methods, carbon

coating and nanosizing, are being widely used, often in combination.[24,25]

2.4 Proposed Mechanisms of Lithiation and

Delithiation

Several models for the mechanism of lithium insertion and depletion have been

proposed. Some of those models have been derived from electrochemical data

and others from spectroscopic data. Since the beginning of this project even

new models have been proposed. However, it remains unclear which of these

models describes the correct mechanism.

2.4.1 Shrinking Core Model

In the initial paper Padhi et al. proposed a mechanism with a phase-transition

in the shell of a particle and subsequent shrinking of the remaining core.[7]

This model was refined by Andersson et al.[26] The electrochemical implica-

tions were studied by Srinivasan and Newman, who also proposed the name

shrinking-core model.[27] As the shrinking-core model postulates a phase bound-

ary moving from the surface toward the core of a particle, different particle

10



2 Lithium Iron Phosphate

structures should be obtained by partial cycling. This could be verified in a

later study by Srinivasan and Newman.[28] The observed cycling behavior sug-

gested a tree-ring like structure of the particles after several partial cycles. So

far, the model did not account for the one-dimensional lithium conduction of

LFP. This anisotropy was incorporated into the shrinking-core model by Roscher

et al.[29] A later study by Sasaki et al. confirmed the measurements by Roscher

et al. However, they inappropriately named the observation memory effect.[30]

The observed features are not a real memory effect, as they disappear after

some hours of relaxation and the effect does not feature a capacity loss, but

merely a shift of the charging voltage. The particle structures proposed by the

presented models are shown in figure 2.3.

2.4.2 Domino Cascade Model

The shrinking-core model was challenged in 2006 by TEM measurements by

Chen et al. and an EELS study by Laffont et al.[31,32] The studies showed a

FePO4 core and a LiFePO4 shell in delithiated particles. These findings contra-

dicted the core-shell model, as the latter predicts a LiFePO4-core in delithiated

particles. As Delmas et al. could show, fully lithiated and fully delithiated

particles coexisted in a partially charged electrode.[33] This led to the interpre-

tation, that the delithiation reaction is significantly faster than the nucleation

of the delithiated phase. Using the analogy of a domino being jolted and start-

ing a cascade of all the dominoes in line falling one after another, the proposed

mechanism was called domino-cascade model. This finding of Delmas et al. has

been validated by an even more precise TEM study by Brunetti et al.[34]

2.4.3 Mosaic Model

The mosaic model is similar to the shrinking-core model. In fact, it was not

possible for Andersson et al. to distinguish between two possible explanations

for their data, thus both models were proposed in the same publication.[26]

11



2 Lithium Iron Phosphate

Figure 2.3: Particle structure according to the shrinking-core model as proposed by
Srinivasan and Newman [28] (top). Refined model accounting for one-
dimensional lithium conduction by Roscher et al. [29] (bottom).

12
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According to the mosaic model the particles are not lithiated or delithiated

isotropically from the surface toward the core. Rather there are numerous nu-

cleation points in each particle with independent phase boundaries moving into

the particle. This leads to a mosaic-like structure, hence the name of the model.

This theory was validated by a Raman study by Ramana et al. as they found

the same ratio of LiFePO4 to FePO4 in the shell and the core of particles with

various overall lithium contents.[35]

2.4.4 Non-Equilibrium Models

The models presented above assume a situation where local equilibrium is at-

tained in the electrode material during charge and discharge. This does not ac-

count for any polarization or metastable intermediate phases. Accordingly, the

different findings leading to the shrinking-core or the domino-cascade model

could be attributed to relaxation processes after the end of the charging pro-

cess. Calculations by Malik et al. showed a minimal energy configuration over

the entire composition range of lithium in LFP.[36] This minimum had a low for-

mation energy, thus making a non-equilibrium path without phase separation

possible. The phase separation would then follow after stopping the electrical

current and thereby ending the externally imposed overpotential. This had pre-

viously been proposed by Meethong et al. in order to explain the electrochem-

ical relaxation process in nano-sized LFP.[37] The structural changes during the

relaxation were studied in situ by means of x-ray diffraction by Park et al.[38]

The x-ray study showed a reorganization of the electrode particles as the phase

ratio shifted toward more FePO4 upon equilibration.

2.4.5 Reviewing the Proposed Models

Different models have been proposed for the phase change in LFP electrodes. In

reviewing the studies leading to those models, there is a distinct difference be-

tween the two models subject to most of the discussion in literature. The studies

13



2 Lithium Iron Phosphate

promoting the shrinking-core model utilize the interpretation of electrochem-

ical data.[7,26–30] The domino-cascade model is promoted by studies utilizing

microscopic techniques.[31–34] Electrochemical data give real in situ informa-

tion, while electron microscopy techniques are usually performed ex situ. Thus,

the different findings might be attributed to the relaxation process taking place

in the electrode. Some in situ relaxation studies have been performed, accord-

ingly leading to a model with metastable intermediate phases.[37,38] Addition-

ally, Lee et al. could show that an intercrystallite lithium transport takes place

when small particles of FePO4 are mixed with bigger particles of LiFePO4.[39]

The Lithium is transferred from the bigger particles to the smaller particles

leading to a mixture of small particles of LiFePO4 and big particles of FePO4.

2.5 PLD of LiFePO4

Thin film deposition of LFP by pulsed laser deposition (PLD) was first reported

by Sauvage et al. and Iriyama et al. in 2004.[40,41] Those first thin films were

very rough and not textured. The following years, a lot of work went into the

optimization of the thin films and studying the influence of the structure on the

performance.[42–47,49–53] A major motivation for the research on LFP thin films

has been (and still is) the pursuit of a micro-battery that would open many

opportunities for special applications. However, the first demonstration of an

application of LFP thin films was given by Sauvage et al. in 2008.[48] They

showed that the potential of an LFP/aqueous electrolyte half-cell is dependent

on the lithium concentration in the aqueous electrolyte, making the material

feasible for sensor applications. A first thorough study of the kinetic properties

of PLD thin films was presented by Tang et al. in 2011.[54]

The gravimetric charge density usually presented for particle based samples

is not practical for thin films, as the mass of the film is negligible compared

to the substrate mass, making a measurement of the film mass very difficult.

Therefore, the volumetric capacity is usually presented. The unit commonly

14
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Table 2.2: Overview of publications with PLD preparation of LFP thin films. Substrate
materials separated by a comma indicate several materials being tested,
separation by a backslash indicates a substrate with an inter-layer. RT:
room temperature, PA: post annealing step following the deposition, CV:
cyclic voltammetry, n.a.: data not available. An overview of the film thick-
nesses and the film morphologies is shown in table 5.3.

Authors Year Substrates
Laser

Fluence
Substrate

Temperature
Capacity

Iriyama et al.[40] 2004 Pt, HOPG 1.4 J
cm2 RT (PA@500 ◦C) CV

Sauvage et al.[41] 2004 Si/Pt 180 mJ 600 ◦C CV

Sauvage et al.[42] 2005 Si/Pt 2 J
cm2 600 ◦C 2.8 µAh

cm2µm

Yada et al.[43] 2005 Pt, HOPG n.a.
RT

(PA@400-700 ◦C)
9 µAh

cm2µm

Song et al.[44] 2006 Stainless
Steel, Pt

1.4 J
cm2 700 ◦C 40 µAh

cm2µm

Sauvage et al.[45] 2007 Al2O3/Pt 2 J
cm2

600 ◦C, RT
(PA@500 ◦C)

25 µAh
cm2µm

Lu et al.[46] 2008 Si/SiO2/
Ti/Pt

2 J
cm2

600 ◦C
(PA@600 ◦C)

20 µAh
cm2µm

Matsumura et al.[47] 2008 Au 1 J
cm2 600 ◦C 4 µAh

Sauvage et al.[48] 2008 Si/Pt 2 J
cm2 600 ◦C CV

Sun et al.[49] 2009 Ti, Si 2 J
cm2

RT, 500 ◦C and
700 ◦C

11 µAh
cm2µm

Tang et al.[50] 2009 Ti 120 mJ 400-700 ◦C 50 µAh
cm2µm

Legrand et al.[51] 2010 Si
120 mJ-
160 mJ

600 ◦C n.a.

Palomares et al.[52] 2010
Stainless
Steel, Al,

Si
130 mJ RT, 500 ◦C n.a.

Legrand et al.[53] 2011 MgO
90 mJ-
180 mJ

600 ◦C n.a.

Tang et al.[54] 2011 Ti 120 mJ 500 ◦C 35 µAh
cm2µm
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Table 2.3: Stability of conducting salts on various substrates (from Sauvage et al. [55]).

LiPF6 LiAsF6 LiBF4 LiTFSI LiClO4
n-Si(001)/Pt corroded stable corroded stable stable

Stainless Steel corroded corroded corroded corroded stable
Ti stable stable stable stable stable
Al stable stable stable corroded stable

used is µAh·cm−2 ·µm−1, with the area of the sample often being in the range

of 1 cm2 and film thicknesses mostly ranging from 0.1µm to 1µm. The the-

oretical capacity of LFP is 170 mAh/g. This is equal to a volumetric capac-

ity of 56.8µAh·cm−2 ·µm−1. Some of the studies cited above only measured

the response behavior in cyclic voltammetry without giving a capacity.[40,41,48]

Some studies did not even measure the electrochemical properties, but fo-

cused solely on structural analysis.[51–53] Then there is one study giving ca-

pacities of the produced thin films, however, without giving a film thickness or

normalizing the capacity to the film thickness.[47] Eight of the studies cited

give volumetric capacities (or those capacities can be calculated out of the

data provided).[42–46,49,50,54] Achieved capacities of PLD thin films range from

11µAh·cm−2 ·µm−1 [49] to 50µAh·cm−2 ·µm−1 [50], corresponding to 20 to 90 %

of the theoretical capacity. An overview of those publications is presented in

table 2.2.

Measuring the electrochemical properties of a sample the interaction not only

of the thin film and the electrolyte has to be considered, but the substrate elec-

trolyte interaction as well. Thin films often exhibit cracks, and no full coverage

of the substrate can be assured. The interaction of several conducting salts with

four different substrates has been tested by Sauvage et al.[55] The electrolyte

used was EC/DMC in all cases. Corrosion was observed with LiPF6 and LiBF6

salts on steel substrates and silicon substrates with platinum interlayer. Tita-

nium and Aluminum substrates where stable with these salts. The complete

results on electrolyte stability from Sauvage et al. are shown in table 2.3
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3 Experimental Methods

3.1 Pulsed Laser Deposition

Physical vapor deposition techniques can be divided into two groups: equi-

librium and non-equilibrium techniques. Equilibrium techniques, like thermal

evaporation, are dominated by the thermodynamics of the solid-gas interface

and usually do not allow for a stoichiometric transference of the target struc-

ture onto the substrate. Non-equilibrium techniques, like sputtering or pulsed

laser deposition, rely on processes faster than the relaxation toward equilib-

rium. Thus, thermodynamics do play a role in these techniques, but they are

not the dominant effect. Laser deposition techniques have been explored since

the invention of lasers. However, being a purely academic subject at first, pulsed

laser deposition (PLD) became a widely used technique, when high tempera-

ture superconducting oxides were reported to be deposited by this method.[56]

Since then all kinds of materials have been deposited by PLD, including insula-

tors, polymers, and biological materials.[57]

3.1.1 Principles of Pulsed Laser Deposition

In the pulsed laser deposition (PLD) process a target material is vaporized by

a focused laser beam. The material plume produced hereby is transferred onto

a substrate. The first step of the process is the ablation of the target material.

The forming plume is often referred to as plasma, although less than 5 % of the
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Figure 3.1: Schematic setup of a PLD chamber (left). Steps of the ablation process
(right). In the first 10 ns of the laser pulse, the substrate absorbs the laser
energy and the plume forms. After 10 ns and before the end of the laser
pulse the plume absorbs the energy of the laser and is heated further. In
the last step, the plume expands and traverses perpendicularly away from
the target surface.

plume consists of ions.[58] The forming plume is then heated by the laser during

the later phase of the pulse. As the material is ejected from a solid surface, the

initial direction is perpendicular to that surface. In the next phase, the plume

expands with the direction still being predominantly directed away from the

target. Interactions of the atoms, ions or clusters with one another or with

the background gas lead to a non-directed expansion. The plume eventually

reaches the substrate surface and part of the material will adsorb onto that

surface. The final step is the surface diffusion that can be aided by heating the

substrate. Different conditions lead to different film growth mechanisms that

influence the roughness, crystallinity, and the composition of the yielded film.

A basic setup of a PLD chamber and the single steps of the ablation process are

shown in figure 3.1.[59]

With the ability to deposit materials with complex stoichiometry PLD is a power-
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ful technique. However, some drawbacks should be mentioned. The main issue

of the PLD process is the formation of droplets. These are big particles around

1 µm in diameter that form either by splattering of molten target material car-

ried by the expansion of the plume or by precipitation out of the supersaturated

gas phase inside the plume. With film thicknesses of a few hundred nanometers,

micrometer-sized particles can be a severe issue. The area that can be coated is

also limited. As the plume originates from a small area and looses energy with

expansion, the film in the edge regions of the substrate usually becomes thin-

ner. Methods for reducing those issues are available, but they generally have

the penalty of a much lower deposition rate.[58]

3.1.2 Target Preparation

Carbon-free LFP powder was obtained from Phostech Lithium. The material was

identical to the Life Power® P2 material, however, it was taken from the pro-

duction process prior to the carbon coating step. The powder was first pressed

uniaxially with a 25 mm compacting tool and a force of 20 kN. The obtained

pellet was then covered with plastic wrap and put into a latex sheath. The plas-

tic wrap had the purpose of protecting the LFP from the starch on the surface

of the latex sheath, as this starch would carbonize in the sintering step. The

protected pellet was then pressed isostatically at room temperature with a pres-

sure of 3000 bar for 12 hours. Following the compacting steps, the pellet was

sintered in a tube furnace under argon atmosphere at 800 ◦C for 24 hours. The

diameter of the obtained target was about 18 mm.

3.1.3 PLD System

The PLD system was built by SURFACE systems+technology. The laser source

was an KrF excimer laser model Compex Pro 201 F by Coherent with a wave-

length of 248 nm. The size of the laser spot has been measured for several
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Figure 3.2: Setup of the PLD chamber.

positions of the focusing lens. The beam energy was calibrated prior to each

deposition process with an energy meter on the far side of the chamber. Di-

viding the beam energy by the spot size yields the laser fluence on the target

surface. Substrates could be fixed onto a stainless steel carrier by gluing them

with silver paste, clamping them with a mask or putting them into holders with

custom-fit holes. Heating of the substrate was achieved by a laser back heater

or a platinum wire AC-heater. The substrate temperature was measured by a

pyrometer when using the laser back heater and with a thermocouple inside

a hole in the substrate holder when using the AC-heater. The gas pressure

was regulated by mass flow controllers and a feedback loop of the measured

pressure and the flow. Pressure measurement was done with two detectors by

Pfeiffer Vacuum, a PKR full range gauge and a CCR gauge for an exact mea-

surement in the pressure range commonly used in PLD processes. Targets could

be placed on five positions in a target carousel. The targets could be rotated

and toggled under the laser beam for a uniform ablation. The vacuum chamber

was directly connected to an argon filled glovebox. The targets and the sub-

strate holder could both be transferred into the inert gas atmosphere without

exposure to air. A schematic image of the chamber is shown on figure 3.2.
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3.1.4 Thin Film Preparation

The first thin films were deposited onto nickel substrates. Nickel was chosen al-

though aluminum is usually used as current collector in commercial cells. This

was due to the elevated temperatures necessary for the PLD process conflicting

with the low melting point of aluminum. The metal substrates had the advan-

tage of being good current collectors. Furthermore, they were available in a

size suitable for the commonly used electrochemical testing cells, built out of

12 mm Swagelok T-connectors. Determining the film thickness was not feasible

with these substrates, as the initial roughness was already bigger than the sup-

posed film thickness. The substrates were glued onto a stainless steel carrier by

use of silver paste.

Following those first depositions, the substrate was changed to boron doped

silicon wafers since they are smooth substrates with a sufficient electric con-

ductivity.a The substrate temperatures were set between 600 ◦C and 800 ◦C.

The laser fluence on the target was set between 2 J cm−2 and 3 J cm−2 with a

frequency of 10 Hz. Argon was used as the background gas and the pressure

was set to 8×10−3 mbar. The distance between the target and the substrate

was 40 mm. A thorough study of the influence of various parameters on the film

properties has been carried out by Patrick Schichtel in his bachelor thesis.[60]

The [001]-Si substrates were clamped onto the substrate carrier for deposition

with the AC-heater or glued onto a carrier for depositions with the laser heater.

The [111]-Si substrates were pre-cut in 1 cm × 1 cm pieces and could thus be

placed in a carrier with a matching hole. Given that the laser heater utilized

light in the IR-range and silicon is transparent in that range, a stainless steel

plate was put on the backside of the substrate in order to absorb the laser en-

ergy for heating.
aElectrode materials are usually n-type conductors. Therefore using p-type substrates might

lead to a p-n junction. However, due to high temperatures during PLD depositions interdif-
fusion will take place. This effect broadens the interface area of the p-n junction. Therefore
the effect was assumed to be small and no significant influence could be observed in the
experiments conducted in this study. However, the effect may become significant utiliz-
ing larger currents or impedance spectroscopy. The choice for p-doped silicon was made
because of the availability of pre-cut pieces for the experimental setup.
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3.2 Structural Characterization

X-Ray Diffraction

In order to examine the crystallinity and the phase purity of the obtained thin

films, x-ray diffraction (XRD) was conducted. A Siemens-D500 XRD was used.

The radiation utilized was Cu-Kα.

Scanning Electron Microscopy

For analysis of the surface morphology scanning electron microscopy (SEM)

was used. The available machine was the model Merlin from Zeiss. An ac-

celeration voltage of 2 kV was chosen, since the material showed a significant

radiation burn at higher voltages.

Raman Spectroscopy

Raman spectra were recorded using a spectrometer model Senterra by Bruker
Optik. The wavelength of the laser was 532 nm. As Burba et al. showed, laser

radiation can induce a phase change in LFP that may lead to an erroneous in-

terpretation of the spectra.[61] Accordingly, the lowest laser energy still yielding

a decent spectrum was used for the measurements. This energy was 2 mW with

a diameter of the laser spot of 10µm.

Determination of the Film Thickness

Film thicknesses could only be determined on single crystal substrates, as the

roughness of metal foils was higher than the thickness of the deposited mate-

rial. The measurement of the thicknesses was achieved by use of a profilometer
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model Alpha Step IQ by KLA Tencor. The measurement was conducted on the

edge of the film, where the substrate was covered by a mask or clamps holding

it to the carrier. Thicknesses on metal substrates were estimated by the deposi-

tion rates on single crystals at the same parameters. The film thickness in the

middle of the sample is probably thicker than on the edges. Thus, the values

determined by this method probably underestimate the actual film thickness.

However, the data should suffice for qualitative arguments.

Transmission Electron Microscopy

TEM measurements were carried out by Dr. Frank Berkemeier at the University

of Münster. The machine used was a LIBRA 200FE by Zeiss. The acceleration

voltage was 200 kV. The cross section of the measured sample was prepared by

cutting, grinding, and ion beam milling.

X-Ray Absorption Microscopy

Chemically delithiated samples were measured at the beamline TwinMic of the

synchrotron Elettra in Trieste, Italy. The energy range of that beamline is 400 eV

to 2200 eV. Accordingly, the K-edges may be measured with this technique. The

spatial resolution in scanning microscopy mode is about 1µm. The microscope

has a full filed imaging mode with a spatial resolution of 100 nm, this mode

was not utilized however, because of the very small field of view. A detailed

description of the beamline has been published by Kaulich et al.[62]

3.3 Electrochemical Characterization

All electrochemical experiments were carried out on a VMP3 potentiostat from

Bio-Logic. Films on metal substrates were measured in cells made out of Swage-
lok T-connectors. These cells have a three electrode setup. Films on single

23



3 Experimental Methods

Steel Container

Brass Cover

Insulating Container

Plastic Ring
Steel Stamp O-Rings

Te�on Ring

Steel Spring

Steel Plate

Lithium Foil

Separator

Substrate

Figure 3.3: The electrochemical cell used for single crystal substrates. Schematic
picture (top left), assembled cell (top right) and single parts (bottom).

crystal substrates were measured in specially designed cells with a two elec-

trode setup. The cell for single crystal substrates is shown in figure 3.3. The

electrolyte used was 1 M LiPF6 in a 3:7 mixture of EC and DEC. If traces of wa-

ter are present, the conducting salt LiPF6 decomposes under liberation of HF.

The latter dissolves LiFePO4. Therefore, LiBOB was used as conducting salt in

the later part of this work. The electrolyte mixture was 0.1 M LiBOB in a 1:1

mixture of EC and DMC. As a separator 3 layers of separator from Whatman
where used. The separator was drenched with 60µL electrolyte.

The standard measurement performed with these cells was galvanostatic cy-

cling, also referred to as chrono-potentiometry. The commonly used technique

of cyclic voltammetry was not used, as the potential sweep often leads to large

currents. While this is not an issue for kinetically optimized particles, thin films

usually exhibit significantly slower kinetics. Thus, large current peaks as com-

monly seen in potential sweep measurements may destroy the thin film. In

contrast, in galvanostatic cycling experiments the potential is risen until the
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desired current is reached. This has the advantage of a more accurate measure-

ment of the electrochemically active region of the potential window observed,

because the inactive parts are swept through quickly while the active parts are

observed with a limited current drawn through the system. Furthermore, the

current was not altered with the film thickness. In particle samples, the cur-

rent is often given as multiples of the current needed for a complete charge or

discharge in one hour. This unit is referred to as C-rate. The capacity of an

electrode is proportional to the mass of active material. In particle samples,

this mass is proportional to the number of particles and thus the surface area

is proportional to the capacity. In thin film samples, the surface area is about

the same, regardless of the film thickness. Thus, cycling at the same C-rate for

different capacities would lead to different current densities. Accordingly, the

current for all galvanostatic tests was always set to a fixed value. This value

was 300 nA.
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Kinetic Studies

The determination of kinetic parameters is possible by a number of electro-

chemical techniques. The data evaluations of those techniques are based on

specific approximations, which one has to be aware of. The most common meth-

ods include electrochemical impedance spectroscopy (EIS) and cyclic voltam-

metry (CV). Determining the diffusion coefficient by CV is possible by use of the

Randle-Sevcik equation.[63] However, this is an integral method and it only de-

livers an average diffusion coefficient without information about the variation

with changing composition. Calculating a diffusion coefficient from EIS data

can be accomplished with an equation presented by Ho et al.[64] As with all

impedance measurements, care has to be taken with the selection of the equiv-

alent circuit for fitting the data. However, the equation mentioned is only valid

for thin film electrodes, that can be fitted by the Randles equivalent circuit. In

the following section a less common, but very powerful technique will be pre-

sented, the galvanostatic intermittent titration technique (GITT) as proposed

and used first by Weppner and Huggins in 1977.[65]

4.1 Galvanostatic Intermittent Titration Technique

(GITT)

Titration techniques are important tools to determine composition dependent

parameters. With current and time being the quantities that can be measured
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most accurately, electrochemical titration is an extremely precise method.[66]

The GITT method utilizes galvanostatic steps each followed by an open circuit

step. The change of composition ∆δ during a titration step can be determined

by the integral of the current over the time of the step.

∆δ =
MB

zmBF

t∫
0

Idt (4.1)

MB is the molecular mass of compound B, z the charge of the mobile species,

mB the mass of the compound, F the Faraday constant, I the current, and t the

time.

As the name of the GITT technique indicates, the current pulse is galvanostatic

(i.e. a constant current is applied). Therefore, the integral can be written as

the product of the current and the step time.

∆δ =
MB

zmBF
I0τ (4.2)

with τ being the duration of the current pulse.

The measured potential of the electrode material depends on the concentration

of the active species in the surface. Calculating that potential is only possible,

if a solution of Fick’s second law can be found.a

∂ci(x, t)
∂ t

= D̃
∂ 2ci(x, t)

∂x2 (4.3)

Equation 4.3 is the one-dimensional version of Fick’s second law with ci being

the concentration of species i, which is a function of time t and space x. D̃ is the

chemical diffusion coefficient, that can be dependent on the concentration.
aActually, Fick’s laws are only valid for chemical diffusion of neutral species. However, as

Weppner and Huggins showed, the motion of charged species in a potential gradient can be
described by equations similar to Fick’s laws. [65] As the basic equations are the same (i.e.
they are mathematically identical), the known solutions for Fick’s laws may be used.
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The current driven through the cell corresponds to the number of charge carri-

ers moving through the electrode-electrolyte interface. The flux through a unit

area is described by Fick’s first law.

ji =−D̃
∂ci

∂x
(4.4)

The flux j is a normalized quantity that corresponds to the overall current I

via the electrode area S, the charge number of the mobile species z, and the

Faraday constant F .

ji =
I

SziF
(4.5)

Applying Eq. 4.5 to Eq. 4.4 yields an expression for the surface concentration of

the mobile species in the electrode.

I =−SziFD̃
∂ci

∂x
(x = 0) (4.6)

Another known condition is the impermeability for ions at the interface between

the electrode and the electronic current collector. Together with the assumption

of a homogeneous distribution of the mobile ions this leads to the following

boundary conditions for the system.

ci(x, t = 0) = c0 (0≤ x≤ L) (4.7)

−D̃
∂ci

∂x

∣∣∣∣
x=0

=
I

SziF
(t ≥ 0) (4.8)

∂ci

∂x

∣∣∣∣
x=L

= 0 (t ≥ 0) (4.9)

L is the material thickness, thus x = L refers to the position at the interface

between the electrode and the current collector. An illustration of the given

boundary conditions is shown in figure 4.1.

The solution of equation 4.3 under the given boundary conditions is known.[67]
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Figure 4.1: Illustration of the boundary conditions for the GITT experiment as pre-
sented in equations 4.7 through 4.9

For x = 0 the solution yields the following expression.

ci(x = 0, t) = c0 +
2I0
√

t

SziF
√

D̃

∞

∑
n=0

(
ierfc

[
nL√

D̃t

]
+ ierfc

[
(n+1)L√

D̃t

])
(4.10)

ierfc is the integrated complementary error function defined as

ierfc(λ ) = π
−1/2exp(−λ

2)−λ +λerf(λ ) (4.11)

The infinite sum in equation 4.10 converges toward −π1/2 for big values of

L/
√

D̃t. Therefore, the equation can be simplified for times t << L2/D̃.

∂ci(x = 0, t)
∂
√

t
=− 2I0

SziF
√

D̃π

(t << L2/D̃) (4.12)

The change of the composition and the concentration are related through the

molar volume VM. Neglecting the change of the molar volume with the compo-

sition, the change of the concentration is given by

dci =
1

VM
dδ (4.13)
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Substituting equation 4.13 into equation 4.12 and expanding by dE yields an

expression for the time dependency of the cell voltage E.

dE
d
√

t
=− 2I0VM

SziF
√

D̃π

dE
dδ

(t << L2/D̃) (4.14)

The product of elementary charge q and the Avogadro number NA gives the

Faraday constant F . Rearranging this equation yields an expression for the

diffusion coefficient, where all quantities are known or measured in the GITT

experiment.

D̃ =
4
π

(
VM

SziF

)2[
I0

(
dE
dδ

)
/

dE
d
√

t

]2

(t << L2/D̃) (4.15)

dE/dδ is the slope of the equilibrium voltages in the titration curve. If the titra-

tion step dδ is sufficiently small, that titration step can be approximated lin-

early and the differential term can be replaced by the finite quantities ∆Es/∆δ .

dE/d
√

t is the potential curve during the current pulse versus the square root

of the step time. If that plot runs linearly, the differential term may be replaced

by the ratio of the voltage change during the current pulse ∆Et and the square

root of the time step of that pulse
√

τ.

D̃ =
4
π

(
VM

SziF

)2[
I0

(
∆Es

∆δ

)
/

∆Et√
τ

]2

(t << L2/D̃) (4.16)

Substituting equation 4.2 for ∆δ yields the following expression.

D̃ =
4

πτ

(
mBVM

MBS

)2[
∆Es

∆Et

]2

(t << L2/D̃) (4.17)

One last step in the process is correcting the potential values for the ohmic

resistance. The IR drop can be determined by the nearly vertical part in the

E/d
√

t plot. The GITT procedure and the steps showing how the values are

extracted from the plots are shown in figure 4.2.
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τ

IR drop

dE/dt1/2

ΔEt

Figure 4.2: Steps of the GITT process and the extraction of data from the measure-
ment. The externally imposed current pulse over the time step τ (left), the
temporal response of the Voltage (middle) and the voltage plotted versus
the square root of the step time (right).

4.2 Critical Approximations of the GITT Equation

The first approximation is the use of Fick’s laws (or more precisely the equiv-

alent equations for charged species). The known solutions of those equations

are only valid for single phase systems, because a phase boundary results in a

discontinuity in the concentration profile. Furthermore, the change of concen-

tration is approximated by the measured voltage change. This approximation is

also only valid for single phase systems. In two-phase systems thermodynamics

causes a constant voltage as predicted by Gibbs’ phase rule. Thus, the term

∆Es in equation 4.17 is expected to become 0. This would lead to a physically

meaningless diffusion coefficient of 0.

Another approximation is the short time interval in equation 4.10. However,

one should note, that this is not the time of the current step but the time of the

differential term in equation 4.10. As this term is approximated by the finite

quantities measured, the condition holds true, as long as the plot of dE/d
√

t is

linear over the entire current step.

The boundary conditions and the solution of Fick’s law being used require an-

other approximation. The equations are derived for a one-dimensional diffusion

geometry. Therefore, the obtained correlation is only strictly true for thin films.

Furthermore, determining the surface area which is necessary for the calcula-

tion is not trivial for particle-based samples.
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4.3 Further Quantities Measurable by GITT

The chemical diffusion coefficient depends on the charge carrier concentrations

in the material. It is connected to the concentration independent component

diffusion coefficient by the enhancement factor W . The letter W was chosen as

symbol in honor of Carl Wagner. If only one ionic species is mobile and all other

species can be neglected, the Wagner factor is described by equation 4.19.

D̃ =W ·DKi (4.18)

W = te
∂ lna∗i
∂ lnc∗i

(4.19)

The asterisks denote that the activity and concentration of the neutral species

is described (i.e. describing the combined motion of ions and electrons).

If the conductivity of the material is predominantly electronic, the transference

number of the electrons te will be about one. In this case, the enhancement

factor can be determined by the slope of the steady-state titration curve.

∂ lna∗i
∂ lnc∗i

=−zAFciVM

kT NA

dE
dδ

=−ziF(y+δ )

kT
dE
dδ

(4.20)

Determining the enhancement factor also allows to calculate the component

diffusion coefficient DKi with the relation in equation 4.18. Furthermore the

geometric mean of the conductivity σi · te can be determined.

σi · te =−
4
π

mBVMI0∆Es

MBS2(∆Et)2 (t << L2/D̃) (4.21)

For a complete deduction of these equations see the original publication by

Weppner and Huggins.[65]
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4.4 GITT on LiFePO4

As noted above, the GITT equation is only valid for single phase materials. As

the titration of “LixFePO4” easily involves two phases, the diffusion coefficient

may not be determined by use of this method. Regardless thereof, diffusion

coefficients of lithium in LFP using GITT measurements have been published

and should be considered with caution, as they are probably incorrect.[54,68]

Although the chemical diffusion coefficient of LiFePO4 may not be determined

by GITT, the method can still yield valuable kinetic and thermodynamic infor-

mation. The equilibrium voltage is determined as a function of the overall com-

position. Furthermore, the overpotential during and the relaxation behavior

after a current pulse can be studied, leading to information about a rearrange-

ment of the material after that pulse. Finally, the thin films prepared in this

study did not exhibit a miscibility gap. Therefore the diffusion coefficients of

this unusual single-phase material could be determined.
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5 Structural and Electrochemical

Properties of LFP Thin Films

5.1 Thin Films on Metal Substrates

At first, thin films were deposited on nickel substrates, as described in the ex-

perimental part. The deposition parameters for the thin film preparation on

nickel substrates are shown in table 5.1. The thin films were characterized

structurally and some electrochemical tests were carried out.

Films deposited at 500 ◦C had a porous structure and showed significant phase

impurities in the Raman spectrum, with the impurity probably being iron oxide.

All films had some lithium phosphate content as can be seen in the XRD pat-

terns. The Raman spectra and the XRD patterns are shown in figure 5.1. The

films deposited at high temperatures and with many pulses show a textured

structure with a high intensity of the [210] reflection. The other films show

no preferential orientation. Furthermore, the films deposited at low substrate

temperatures had a porous structure, the films deposited at 700 ◦C were cover-

ing. This can be seen in the SEM images in figure 5.2. However, the number

of films deposited on nickel substrates was too low in order to draw general

conclusions. A thorough study on the influence of deposition parameters on

the film properties was done by Patrick Schichtel in his bachelor thesis.[60] The

main conclusion of his thesis was that dense films can be obtained at substrate

temperatures of about 700 ◦C.
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Figure 5.1: XRD patterns (top) and Raman spectra (bottom) of the thin films prepared
on nickel substrates. The sample P2S3 deposited at a substrate temper-
ature of 500 ◦C shows a significant amount of impurities.
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Table 5.1: Deposition Parameters for thin film preparation on nickel substrates. The
background gas was 8×10−3 mbar argon in all cases. The frequency of
the laser was set to 10 Hz. The substrate heater was the platinum wire
AC-heater.

Sample Name
Substrate

Temperature /
◦C

Laser
Fluence /

J cm−2
Number of pulses

P2S3 500 3 18,000
P2S4 700 3 30,000
P2S5 500 3 18,000
P2S7 700 4 30,000
P2S9a 700 4 5,000

1 µm 1 µm

Figure 5.2: SEM images of thin films on nickel substrates. Sample P2S4 (left) was
deposited at a substrate temperature of 700 ◦C. Sample P2S5 (right) was
deposited at a substrate temperature of 500 ◦C
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3 µA

12 µA

Figure 5.3: 100 galvanostatic cycles of LFP on a nickel substrate (sample P2S3).
Upper and lower potential limits were set to 3.9 V and 2.9 V. Electrolyte:
1 M LiPF6 in 3:7 EC/DEC.

Although the films presented here were not yet optimized, galvanostatic cycling

over 100 cycles was possible with sample P2S3. The electrode was assembled in

a 3-electrode cell with the counter and reference electrodes both being lithium

metal. The charge and discharge capacities are shown in figure 5.3. The ca-

pacity can only be given in absolute values, as the film thickness could not be

measured. The diameter of the substrate was 12 mm. Accordingly, the electrode

area was 1.1 cm2. The capacity of the cell was around 12µAh. The first 30 cy-

cles were charged and discharged with a current of 3 µA which corresponds to

a rate of 1/4 C. In cycles 31 through 100 the current was increased to 12 µA,

corresponding to 1 C. The active capacity dropped to around 10 µAh upon this

increased current, however, no capacity fading was observed. The upper and

lower potential limits were set to 3.9 V and 2.9 V respectively. The charge capac-

ity jumped after each rest, however, the discharge capacity remained unaltered.

This indicates a decomposition of an inter-phase and a rebuilding of that phase

upon charging of the cell. It can not be determined from the data, whether that

film forms on the positive or the negative electrode of the cell.

The metal substrates used in this part were easy to handle, had an excellent
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Table 5.2: Deposition Parameters for thin film preparation on silicon substrates. The
background gas was 8×10−3 mbar argon in all cases. The frequency of
the laser was set to 10 Hz.

Sample Name Substrate
Substrate

Heater

Substrate
Temp. /
◦C

Laser
Fluence
/ J cm−2

Number
of pulses

Inter-
layer

E_AC_Si06a [001]-Si AC 700 2 5000
E_AC_Si06b [001]-Si AC 700 2 5000
E_LH_Si03 [001]-Si laser 700 3 5000 Ti/Pt

E_LH_111Si59 [111]-Si laser 700 2 3000
E_LH_111Si79 [111]-Si laser 800 2 5000
E_LH_111Si90 [111]-Si laser 800 2 3000
E_LH_111Si91 [111]-Si laser 800 2 5000
E_LH_111Si92 [111]-Si laser 800 2 1000
E_LH_111Si93 [111]-Si laser 800 2 7000

E_LH_111Si119 [111]-Si laser 700 2 5000
E_AC_111Si129 [111]-Si AC 700 2 3000

electronic conductivity, and were available in any size desired. A big drawback

of these substrates was the rough surface that made the measurement of film

thicknesses impossible. Furthermore, rough substrate surfaces will never lead

to the smooth and well defined interface necessary for the investigation of that

interface. Thus, the next step was the deposition on very smooth substrate

surfaces essentially only available on single crystal substrates.

5.2 Thin Films on Single Crystal Substrates

Silicon wafers were chosen as substrates for most depositions, as they have two

major advantages. Standard wafers are already very well polished and doped

wafers have an electronic conductivity sufficient for the low currents in thin

film batteries. First samples were prepared on wafers with [001]-orientation

(n-type). Later in this work [111]-oriented wafers (p-type) were used, as the

latter were available in pre-cut pieces in the right size for the electrochemical

testing cells.
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Figure 5.4: The difference between electrochemical and chemical delithiation.

5.2.1 Preparation

The films were deposited at a substrate temperature of 700 ◦C or 800 ◦C. The

substrates were clamped onto the carrier with a mask that had a hole with a

diameter of 12 mm. The laser fluence was set to 2 J cm−2. An overview of all

samples discussed in this section and the respective deposition parameters is

shown in table 5.2.

5.2.2 Chemical Delithiation versus Electrochemical Delithiation

In order to examine the delithiated material, chemical delithiation was used.

This method had the advantage of being independent of the preparation of

functioning electrochemical cells. From a thermodynamic standpoint, it should

make no difference how the potential difference for the delithiation is achieved.

There are, however, some differences in the kinetics of electrochemical and

chemical delithiation. Using electrochemical delithiation (e.g. chrono-potenti-

ometry) the potential is slowly increased until a current flows. The potential is

only increased so much, as to maintain a constant current. Furthermore, the
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pathways of the lithium ions and the electrons are different. The lithium ions

cross into the electrolyte while the electrons move toward the current collec-

tor on the other side of the particle. In chemical delithiation, the electrode is

drenched in an oxidizing agent with a potential above the electrode potential.

The lithium ions as well as the electrons cross the boundary toward the oxidiz-

ing agent. In addition, there is no slow increase of the potential, but a steep

potential step between the electrode and the liquid. This situation is equivalent

to a short circuit in an electrochemical cell. The two processes are depicted in

figure 5.4.

As the differences are only of kinetic nature, thermodynamics will still drive to-

ward the same product of the reaction. Yet, the microstructure of those products

may be distinctly different. Nonetheless it is a useful method to prepare model

systems for the study of the phase boundary between lithiated and delithiated

materials. Electrochemical delithiation can only be performed on a conducting

substrate, because the electrons have to pass through a current collector. This

constraint does not apply to chemical processes, as the latter extract lithium

ions and the corresponding electrons through the same pathway. In addition,

chemical delithiation is a useful tool to determine, whether the material can be

delithiated in the first place. If the surface is blocked for whatever reason, nei-

ther chemical nor electrochemical delithiation will be successful. Electrochem-

ical delithiation may fail for several more reasons. Thus, chemical delithiation

is an initial screening method for newly prepared materials.

5.2.3 Chemical Delithiation of LiFePO4 Thin Films

LFP thin films were deposited onto [001]-silicon wafers. The laser fluence was

2 J cm−2 and the substrate temperature was 700 ◦C. 5000 pulses were shot on

the target. All other parameters are given in section 3.1.4. The given sample

names were E_AC_Si06a and E_AC_Si06b. Both samples were deposited with

identical parameters.

Chemical delithiation was achieved by the use of a saturated solution of K2S2O8.
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Figure 5.5: XRD patterns of as-deposited and delithiated samples. The silicon ox-
ide reflection disappeared after the delithiation process. Delithiation was
achieved with a saturated solution of K2S2O8.

The substrate was removed from the solution after 24 hours and rinsed with

demineralized water. X-ray diffraction was measured before and after the de-

lithiation, shown in figure 5.5. The as-deposited films had the triphylite struc-

ture. The delithiated film had the heterosite structure. Prior to the delithiation,

a silicon oxide film could be seen in the XRD. After the delithiation process,

this oxide film had vanished. The peroxide solution should be sufficient to dis-

solve small amounts of silicon oxide, which would explain the disappearing

reflection. However, as the SiOx film was probably beneath the LiFePO4 film, a

dissolution is only possible, if the deposited film is not completely covering (i.e.

protecting) the oxide film.

Despite the rather harsh conditions during chemical delithiation processes, the

thin film could still be cycled in electrochemical cells after the K2S2O8 treat-

ment. The initial potential is at 2.8 V which is due to a thin surface film formed

because of the air exposure of the sample after delithiation. However, the po-

tential rose quickly during galvanostatic cycling with only little residual capac-
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Figure 5.6: Cycling of a chemically delithiated thin film (sample E_LH_111Si119).
Delithiation was achieved with a saturated solution of K2S2O8. The cur-
rent for galvanostatic cycling was set to 300 nA. The first cycle is shown
on the left, beginning with the charging step. On the right the subsequent
cycles 2 through 5 are shown.

ity charged in the process. The subsequent discharging step yielded a capacity

of about 2µAh. Charging and discharging of the film is possible reversibly as

shown in figure 5.6.

5.2.4 Morphology of As-Deposited Thin Films

The films deposited directly on silicon substrates were not as smooth as desired

and exhibited cracks. Thus, a platinum inter-layer with a titanium adhesive

layer was deposited onto the substrates for some depositions. The resulting

thin films were smoother and exhibited less cracks than without the inter-layer.

However, at the elevated temperatures necessary for the deposition of LFP, the

platinum formed an alloy with silicon. Furthermore, electrochemical cells build

with thin films with platinum inter-layer were significantly less stable than cells

without this inter-layer. This is probably due to the catalytic activity of platinum
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Figure 5.7: SEM images of thin film cross sections (left) and top view (right). LFP
film with platinum inter-layer (top, Sample E_LH_Si03), thin film without
inter-layer deposition with 3,000 pulses (middle, Sample E_LH_111Si59),
thin film without inter-layer deposition with 5,000 pulses (bottom, Sample
E_LH_111Si79). For deposition parameters see table 5.2 on page 38.
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that lowers the electrochemical stability window of the electrolytea. SEM im-

ages of cross sections of films with and without platinum inter-layer are shown

in figure 5.7. The cross sections were prepared by pre-cutting an edge of the

silicon substrate with a glass cutter and subsequently breaking the silicon. Sili-

con wafers break along a straight line resulting in a well defined cross section

of the film deposited thereon.

The thickness of the deposited film depends primarily on the number of laser

pulses. Other factors affecting the film thickness are the morphology of the tar-

get, the laser fluence, the spot size of the laser, the pressure of the background

gas, and the distance between the target and the substrate. The dependence

of the film thickness on the number of pulses is shown figure 5.8. All other

parameters were tried to be kept equal for all depositions. The scattering of

the thicknesses especially for a large number of pulses is probably due to the

fact, that the morphology of the target is changing upon ablation. Accordingly,

it is not possible to keep the same surface morphology over many depositions.

Using many pulses, the surface morphology of the target will also change over

the course of the deposition process, thereby changing the deposition rate.

The films already showed significant texturing on the metal substrates. This

effect is even stronger on the smooth single crystal substrates. The orientation

is along the <210>-direction of the crystal, regardless of the substrate used.

This implies a decoupling of the lattice parameters of the substrate and the

thin film. This is probably due to an amorphous layer of LFP forming during

the first deposition pulses. The XRD measurements are shown in figure 5.8.

Films deposited with 3,000 to 5,000 pulses only showed the [210]-reflection.

This corresponds to 213 nm and 324 nm respectively. At about 100 nm film

thickness, the XRD shows only very weak reflections. A film with a thickness

of 584 nm shows only little preferential orientation. Therefore, there seem to

be three phases of the film growth. An amorphous inter-phase forming at the

aThe stability of the electrolyte against oxidation is over 4 V versus Li/Li+. However, this
value stems from cyclic voltammetry measurements and the onset point is usually defined
at a current density of several µA/cm2. Since the current density used here is only several
hundred nA cm−2, the tolerable decomposition rate is much lower.
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Figure 5.8: Film thickness versus number of pulses used for the deposition (top).
XRDs of thin films with various thicknesses (bottom). At 100 nm the film
shows only very weak reflections. At 200 nm to 350 nm the film is highly
oriented. The film with a thickness of about 600 nm shows only little pref-
erential orientation. As the thicknesses were measured at the edge of the
sample, the obtained values probably underestimate the thicknesses in
the middle of the sample.
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substrate surface, followed by a preferentially oriented layer. This preferential

orientation can only be upheld until a critical film thickness is reached, after

which the film continues to grow with statistically oriented crystallites.

TEM images of sample E_AC_111Si129 show a homogeneous morphology of

the film. The deposited material consists of nanocrystalline particles separated

by amorphous material. The crystallite size is between 10 nm to 20 nm. The

TEM images are shown in figure 5.9.

5.2.5 Electrochemical Characterization

Cells on silicon substrates were tested using a specially designed cell. For a

description of the testing cell see figure 3.3 on page 24. As an electrolyte 0.1 M

LiBOB dissolved in a 1:1 mixture of EC and DMC was used. Since thin films

exhibit slow kinetics, the current for galvanostatic cycling was chosen at 300 nA.

The capacities of the films ranged from 1.3µAh to 5.0µAh. A side reaction

appears in the first cycles. This leads to large irreversible capacities, however, it

is unclear whether the side reaction appears on the cathode or the anode. The

subsequent cycles have a decent reversibility. All films show a plateau at about

3.5 V which is characteristic for LFP. The volumetric capacity does not vary

significantly depending on the deposited film thickness. The first five cycles

of three samples with different film thicknesses are shown in figure 5.10. The

additional discharge capacity at low potentials results from the phase width of

the ordered olivine phase in nano-sized LFP. The transition from the ordered to

the disordered phase could also be observed during the first charging steps of

the GITT experiment presented in the next chapter.
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Figure 5.9: TEM images of sample E_AC_111Si129. The film consists of nanocrys-
talline particles with a size of 10 nm to 20 nm separated by amorphous
regions. The thickness of the film is about 290 nm. a) Cross section pre-
pared by cutting, grinding, and ion beam milling, b) higher magnification
of the cross section, c) surface area of the thin film.
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Figure 5.10: Galvanostatic cycling of thin films on silicon substrates. A side reaction
occurs during the first cycle, leading to a large irreversible capacity.
Top: Sample E_LH_111Si92, prepared with 1,000 pulses, the thickness
is 106 nm.
Middle: Sample E_LH_111Si90, prepared with 3,000 pulses, the thick-
ness is 213 nm.
Bottom: Sample E_LH_111Si93, prepared with 7,000 pulses, the thick-
ness is 584 nm.
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5.3 Comparison with Thin Films Reported in

Literature

In order to yield a better understanding of the mechanisms of lithium insertion

and depletion, spectroscopic studies are necessary. The details of those studies

will be introduced in chapters 7 and 8. Thin films for the x-ray absorption stud-

ies presented in these chapters need to be covering and the thickness should be

several hundred nm. Thin films presented in literature were either to thin or

to rough for those studies or the electrochemical performance was not tested.

An overview of the film thicknesses and morphologies is shown in table 5.3.

Only one study in literature meets the criteria necessary for in situ studies.[46]

However, that study utilized composite films of LFP with carbon. Furthermore,

the preparation of a smooth film was only possible with a Pt film under the

LFP. Metallic inter-layers are helpful to produce smooth films, but they are pro-

hibitive in absorption experiments like XAS presented in chapter 7. The films

presented in the current work are several hundred nm thick, relatively smooth

and a good electrochemical performance could be demonstrated. These prop-

erties were achieved on silicon substrates without metallic inter-layers.

Amorphous LFP has been reported in literaure at the surface of uncoated LFP

particles.[69] As the amorphous material in the surface layer is electrochem-

ically inactive, particles are usually coated (e.g. with carbon) to avoid this

disordered layer. However, the amorphous layer is an electronic and ionic con-

ductor. Thus, the amorphous matrix in the thin film is acting as a coating itself,

albeit being a coating with a relatively high mass.
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Table 5.3: Film thicknesses and morphologies of PLD thin films in literature. An
overview of the deposition parameters and volumetric capacities is shown
in table 2.2.

Authors Thickness / nm Morphology

Iriyama et al.[40] 50 rod-like

Sauvage et al.[41] 300-900 many particles

Sauvage et al.[42] 21-600 many particles

Yada et al.[43] 50 roughness 20 nm

Song et al.[44] 75-335 very rough

Sauvage et al.[45] 160 rough

Lu et al.[46] 200 smooth, LFP-C composite material

Matsumura et al.[47] n.A. very rough

Sauvage et al.[48] 20-900 rough (films oriented up to
400 nm)

Sun et al.[49] 60 needle-like

Tang et al.[50] 300 very rough

Legrand et al.[51] 450 big particles; no electrochemical
testing

Palomares et al.[52] 300
smooth on Si, rough on other
substrates; no electrochemical

testing

Legrand et al.[53] 150 very rough; no electrochemical
testing

Tang et al.[54] 300

smooth on silicon,
electrochemical testing only on Ti

substrates
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Films

Galvanostatic cycling of electrochemical systems only yields information about

the respective system under polarizing conditions. Regardless of the use of a

two or three electrode setup, the potentials will always be shifted under current

flow. Although this effect may be small, high precision measurements of electro-

chemical potentials are not possible under a steady current flow. Accordingly,

coulometric titration techniques are used to measure composition dependent

properties. The details of the GITT technique used in this study are described

in chapter 4.

6.1 Experimental Procedure

Samples for the GITT experiment were prepared on [111]-oriented p-type sil-

icon substrates. The preparation parameters of the thin films are shown in

table 6.1. The layout of the cell used for the GITT measurement is shown in

figure 3.3 on page 24. The electrolyte was a 0.1 M solution of LiBOB in a 1:1

mixture of EC and DMC. For the GITT pulses a current of 300 nA was drawn

through the cell. The pulse duration was 30 minutes. Each current pulse was

followed by a relaxation for 10 hours. The process started with pulses charg-

ing the electrode (i.e. delithiating the LFP). Further charging pulses followed, if

the electrode potential was below 3.5 V after the relaxation step. Upon reaching
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Table 6.1: Deposition Parameters for thin films used for GITT measurements. The
background gas was 8×10−3 mbar argon in all cases. The frequency of
the laser was set to 10 Hz.

Sample Name Substrate
Substrate

Heater

Substrate
Temp. /
◦C

Laser
Fluence /

J cm−2

Number
of

pulses
E_LH_111Si47 [111]-Si laser 700 2 3000
E_LH_111Si75 [111]-Si laser 800 2 5000
E_LH_111Si76 [111]-Si laser 800 2 5000

E_LH_111Si113 [111]-Si laser 800 2 3000

the limiting potential after relaxation, the process was reversed. The limiting

potential for the discharging was 3.2 V after relaxation.

The capacity of the films was between 8µAh and 10µAh. The charging capacity

per pulse was 0.15µAh and the duration of one pulse plus the ensuing relax-

ation step was 10.5 hours. The time for one GITT experiment, including a com-

plete charge and a complete discharge, accumulates from 46 days to 58 days

depending on the total capacity of the film. The long time necessary for each

experiment led to some issues with measurements being aborted for various

technical reasons. Thus, not all measurements presented here were completed

until the end of the discharge cycle.

6.2 Results

At a first glance, the plot of the potential versus time looks as expected with a

plateau at about 3.45 V and a steep incline of the voltage near the full charge

and the full discharge of the electrode. However, a detailed analysis of the data

reveals some unexpected features. The GITT plot of sample E_LH_111Si113 is

shown in figure 6.1.

Even after the long relaxation time of 10 hours equilibrium is apparently not

reached in the electrode. The potential of the cell is not solely composition
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Figure 6.1: Potential versus time of sample E_LH_111Si113 during the GITT experi-
ment. The electrolyte was 0.1 M LiBOB dissolved in a 1:1 mixture of
EC:DMC. The experiment was conducted at room temperature.

dependent, but also history dependent. At the same composition, the potential

differs by as much as 20 mV to 25 mV between the charging and the discharging

cycle. This hysteresis occurred in all of the measured samples. Additionally, the

plateau expected for a two-phase system was not a strict plateau, but exhibited

a slope. This shows that the system is not in equilibrium even after a long relax-

ation time. The time necessary for reaching full equilibrium is probably much

longer than the time of this experiment. The slope of the potential at the end of

the relaxation step was less than 0.2 mV h−1. The potential after the relaxation

step will be referred to as near-equilibrium potential hereafter. Figure 6.2 shows

the plots of near-equilibrium potentials and the potentials at the end of each

charging pulse against the composition. As the composition cannot be deter-

mined directly, it was approximated by the capacity, with the assumption of a

full delithiation after the charging cycle. The discharge capacity is about 90 %

of the charging capacity. The charging capacity of sample E_LH_111Si75 was

11.0 µAh corresponding to a volumetric capacity of about 37 µAh · cm−2 ·µm−1.

The capacity of sample E_LH_111Si113 was 8.3 µAh corresponding to a volu-

metric capacity of about 42 µAh · cm−2 ·µm−1.
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6 GITT Measurements on LFP Thin Films

Figure 6.2: The near-equilibrium potentials and the potentials at the end of each
charging pulse against the composition. Sample E_LH_111Si113 pre-
pared with 3000 pulses (top) and sample E_LH_111Si75 prepared with
5000 pulses (bottom). The composition was approximated by the total ca-
pacity. The top branches of the plots show the potential during charging
and the lower branches show the potentials during the discharge cycle.
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6 GITT Measurements on LFP Thin Films

Figure 6.3: Plateau in the relaxation curves after the first few pulses. This feature
only appeared in the electrodes deposited at lower temperatures or in
relatively thick electrodes. Sample E_LH_111Si47 (left) was deposited
at a substrate temperature of 700 ◦C and with 3000 pulses. Sample
E_LH_111Si76 (right) was deposited at a substrate temperature of 800 ◦C
and with 5000 pulses.

The features described above appeared in every measurement, regardless of the

electrode thickness. The effect only scaled with the thickness. Another feature

occurred only in the thicker electrodes or in electrodes deposited at lower tem-

peratures. During the first steps the potential seems to reach a plateau during

relaxation. However, after some time, the potential drops again. This behav-

ior indicates a phase transition. Some of those relaxation curves are shown in

figure 6.3.

In order to compare the obtained data with the particle electrodes used in in-

dustrial batteries a GITT measurement was conducted on such a sample. The

carbon coated LFP-P2 by Phostech Lithium was cast onto an aluminum foil with

a continuous coating machine by the Institute for Particle Technology at the

Technical University Braunschweig. As a binder, PVDF was used and carbon

was added for a better electronic conduction. The film thickness was 80µm.

The electrode used in the cell had a diameter of 12 mm. The electrolyte with

LiPF6 in EC/DEC was used for the electrochemical measurement in a three-
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6 GITT Measurements on LFP Thin Films

Figure 6.4: GITT measurement of a particle sample. The electrode thickness was
80µm. The equilibrium potentials exhibit a hysteresis between the charg-
ing and the discharging branch of 5 mV. The plateau of the potentials
exhibits no slope.

electrode setup. The pulse current was set to 300µA for a duration of 30 min

and a subsequent rest time of 10 h. The plot of the potential versus the compo-

sition is shown in figure 6.4. The plateau of the equilibrium voltages exhibits no

slope, as predicted by Gibbs’ phase rule. The potentials of the charging branch

and of the discharging branch exhibit a small hysteresis of about 5 mV, which

is probably due to a concentration gradient in the amorphous surface layer of

the particles.

6.3 Discussion

A constant voltage plateau would be expected for a two-phase system like LFP.

However, this plateau does exhibit a slope for the thin films prepared in this

study. As described in section 2.2, it could be shown that the miscibility gap

of LFP shrinks with smaller particle size.[18] An extrapolation of that reduced

miscibility gap by Meethong et al. yielded a vanishing gap for a particle size

of about 15 nm.[19] The particle size in the thin films was determined to be
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6 GITT Measurements on LFP Thin Films

between 10 nm and 20 nm in TEM measurements. This particle size matches

the projected size for a vanishing miscibility gap. Thus, the thin film does not

show the characteristics of a two-phase systems, but has a lithium miscibility

over the entire composition range.

The hysteresis of the near-equilibrium voltage indicates the existence of a con-

centration gradient inside the electrode. The potential difference between the

charging and the discharging cycle is 20 mV to 25 mV. The gradient of the po-

tential at the end of the relaxation step is less than 0.2 mV h−1. Even if one

would assume the gradient to stay constant at this low rate, the time to reach

the midpoint between both hysteresis over-potentials is more than 50 hours. Re-

organization inside of LFP electrodes has been observed before.[38,39] However,

those observations have focused on structural properties, as the studies utilized

x-ray diffraction. The present study shows an impact of the structural reorga-

nization onto the electrochemical potential of the electrode. Furthermore, the

plateau in the relaxation curve during the first steps indicates a phase transition

at that stage. This is particularly noteworthy as, due to the absence of a mis-

cibility gap, a phase transition is not expected. If a phase transition occurs, an

intermediate phase must be stable under these conditions with the entire active

material transitioning into that structure.

6.4 Explaining the Observed Data

With the application of a current across the system, the delithiation begins in

the surface area of the electrode. The lithium ions located deeper inside the

electrode must then migrate to the surface. At the end of the current pulse,

the surface area will be completely depleted of lithium with a concentration

gradient into the material. At a certain position in the electrode, the concen-

tration of the electrode will not have changed during the current pulse. During

the subsequent relaxation, the concentration gradient will be reduced in accor-

dance with Fick’s laws. The local chemical potential gradient of lithium drives
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Figure 6.5: Schematic model of the delithiation and the subsequent relaxation pro-
cess. Initially, the material at the surface is delithiated. The LFP at the
surface transitions from the olivine phase to the disordered phase. The
concentration gradient is reduced in the subsequent relaxation step. If the
lithium content in the remaining olivine material is sufficient, the surface
material transitions back from the disordered phase to the olivine phase.
After several steps, the overall lithium content is not sufficient to keep the
olivine phase stable in the whole electrode and the disordered phase is
present at the surface. Even after a long relaxation time, the concen-
tration gradient does not vanish. This is due to the small local potential
gradient which is not sufficient to drive the migration toward equilibrium.
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6 GITT Measurements on LFP Thin Films

this diffusion process. A finite potential gradient will remain even after long

relaxation times due to slow diffusion kinetics.

The plateau observed in the first steps only occurred in thick films or in films

deposited at lower temperatures. Films with these parameters have an impor-

tant trait in common. The kinetics are usually slower, either due to the thicker

material or due to the larger number of defects. The observed effect may be

present in the other electrodes as well, however, can not be observed because

of the faster kinetics. The phase transition responsible for this plateau is from

a disordered phase with no miscibility gap regarding the lithium content to the

ordered olivine phase. After the current pulse led to the phase transition in

the surface of the electrode, the concentration gradient is reduced during the

relaxation process. During this process, the concentration surpasses the regime

in which the disordered phase is stable and the ordered phase forms again in

the surface. After some pulses the lithium reservoir is reduced far enough to

stay in the concentration regime of the disordered phase. The plateau is not

observed in the reverse direction in the discharge cycle, as the reservoir can

never be filled completely, because of the permanent concentration gradient af-

ter relaxation. Thus, the plateau does also not appear in the second charging

cycle.

6.5 Diffusion Coefficient of the Disordered Phase

It has been noted in section 4.4 that the GITT equations are only valid for single-

phase systems and are thus not valid for the two-phase lithium iron phosphate.

However, the model for the charging and discharging of LFP thin films proposed

in the previous section suggests a disordered phase over a large composition

range. The disordered phase being a single-phase system allows for an analysis

by the GITT method.

Equation 4.16 was used for the analysis. However, the utilized pulse was very

long, thus only few pulses showed a linear behavior of the plot of the voltage
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6 GITT Measurements on LFP Thin Films

Figure 6.6: Measured potential versus square root of the pulse time. The data were
fitted linearly between 20 s and 330 s. The fitted line is shown in gray. The
slope of the fitted line gives the value of the term dE/d

√
t in equation 6.1.

The shown pulse is from sample E_LH_111Si113. The composition x in
LiFe1-x PO4 at the beginning of the pulse was 0.73 during the charging
cycle. The polarization of the cell at the beginning of the pulse is about
20 mV.

versus the square root of the time. Accordingly, not the finite quantities of the

plot were used for analysis but only the early parts of the pulse. Furthermore,

the polarization at the beginning of the pulse had to be eliminated. In order to

comply with both conditions a linear fit was applied to the data in the range of

20 s and 330 s. The slope of that fit is the value of the differential term dE/d
√

t.

Therefore, equation 6.1 was applied for the data analysis. A plot of the voltage

versus the square root of the pulse time is shown in figure 6.6.

D̃ =
4
π

(
VM

SziF

)2[
I0

(
∆Es

∆δ

)
/

dE
d
√

t

]2

(6.1)

D̃ is the diffusion coefficient, VM is the molar Volume, S the surface area, z the

charge of the mobile species, and F is the Faraday constant. I0 is the current

applied during the pulse, ∆Es the slope of the near-equilibrium potential, and

∆δ is the change of the composition. dE/d
√

t is the slope of the plot shown in

figure 6.6.
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6 GITT Measurements on LFP Thin Films

Figure 6.7: Diffusion coefficients of samples E_LH_111Si75 (left) and
E_LH_111Si113 (right) calculated by GITT (equation 4.16). The
average coefficient for the middle part of the charging branch is
2.8×10−12 cm2 s−1 for sample E_LH_111Si75 and 5.3×10−12 cm2 s−1

for sample E_LH_111Si113. The mean coefficient of the middle part of
the discharging branch is 7.7×10−12 cm2 s−1 for sample E_LH_111Si75
and 4.0×10−12 cm2 s−1 for sample E_LH_111Si113. The data was
averaged for the composition range x from 0.2 to 0.7.

The calculated diffusion coefficients of samples E_LH_111Si75 and

E_LH_111Si113 are shown in figure 6.7. The values calculated from the

charging branch and the discharging branch of the GITT experiment are both

shown in the graphs. At low and high lithium concentrations, a phase transi-

tion from the ordered to the disordered phase occurs making that two-phase

area not utilizable for GITT. The middle parts of the plots show a constant

diffusion coefficient. The data scatters a lot in this part due to the small

values of the potential changes. The average diffusion coefficient is between

3×10−12 cm2 s−1 and 8×10−12 cm2 s−1 The values reported before were

between 10−15 cm2 s−1 and 10−19 cm2 s−1.[54,68] These very low values were

obtained, because the system was still in the two-phase regime. Thus, the term

∆Es describing the voltage change of the equilibrium potential tends toward

zero during the voltage plateau yielding a very low value for the diffusion

coefficient.
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7 Imaging of the LiFePO4/FePO4

Phase Boundary

The previous chapter focused on the electrochemical properties of LFP thin

films. However, a detailed analysis of the mechanisms of lithium insertion and

extraction requires imaging techniques for the phase boundaries and concen-

tration gradients. In order to image the phase boundary between lithium iron

phosphate and iron phosphate, LFP was deposited onto substrates for x-ray ab-

sorption spectroscopy (XAS). A proof-of-principle study has been performed to

demonstrate the feasibility of in operando measurements. The beamline speci-

fications are described in section 3.2.

7.1 Deposition of LFP onto X-Ray Transparent

Windows

XAS requires an x-ray transparent substrate. Si3N4 windows on silicon frames

have been obtained from Silson. The windows used for the first depositions had

a size of 0.5 mm by 0.5 mm and were 200 nm thick. The silicon frames had a

size of 5 mm by 5 mm. The films were deposited with a fluence of 3 J cm−2 and

1,000 pulses. The substrate temperature was 700 ◦C.
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7 Imaging of the LiFePO4/FePO4 Phase Boundary

Figure 7.1: Measured XANES spectra of an as-deposited LiFePO4 sample and a
chemically delithiated FePO4 sample (left). The shift of the Fe-L edge
is about 1 eV. Difference of the two spectra (right).

7.2 Image Acquisition

A contrast between the phases is vital in order to image the phase boundary be-

tween LiFePO4 and FePO4. Although the results shown in chapter 6 suggest the

absence of a phase boundary in thin films, imaging of a concentration gradient

may still be possible. Accordingly, lithiated and delithiated samples were pre-

pared. X-ray absorption spectroscopy (XAS) measurements were conducted on

these samples at the beamline TwinMic at synchrotron Elettra in Trieste, Italy.

The lithiated samples were as-prepared PLD thin films. Delithiated samples

were prepared by chemical delithiation of thin films. The chemical delithia-

tion was achieved by the method described in section 5.2.3. Furthermore, one

sample was dipped into the K2S2O8-solution so far as to cover only half the

window with the oxidizing solution. The lithium content of the latter sample

was imaged using x-ray absorption scanning microscopy.

The delithiated sample had a shift of the Fe-L edge of 1 eV relative to the as-

deposited sample. This is just enough to distinguish between the lithiated and

the delithiated material. The measured spectra are shown in figure 7.1. The
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7 Imaging of the LiFePO4/FePO4 Phase Boundary

peaks of the absorption edges are at about 708 eV and 709 eV. However, the

maximum difference between the two spectra is at 706 eV and 709 eV. In order

to find the boundary between the lithium rich and the delithiated material, the

half delithiated thin film was imaged using the different energies. The images

at 706 eV and 709 eV were subtracted from each other in order to maximize the

contrast of the image and to reduce morphological effects. Since the field of

view was much smaller than the window, several image stacks were recorded

over the diagonal along the concentration gradient. The obtained images are

shown in figure 7.2. The red parts are FePO4 and the black parts are LiFePO4.

The black lines present on the entire image are probably due to structural inho-

mogeneities in the thin film.

The half delithiated sample exhibits a sufficient contrast between the phase con-

taining lithium and the lithium depleted phase. This contrast can be enhanced

by combining the images acquired at two different energies. The resolution of

the imaging mode utilized was only 1µm, hence the coarse grained images.

A resolution of 100 nm is possible with another microscope mode of the same

beamline. However, this mode has a very small field of view of only 20µm by

20µm. Therefore, a cell with similar dimensions has to be structured, in order

to confine the process of interest to the area being observed. A concept for such

a cell will be presented in the next chapter.
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100 µm

LiFePO4

FePO4

10 µm 10 µm

Figure 7.2: Imaging of the phase boundary between FePO4 and LiFePO4. Prepa-
ration of the sample with saturated K2S2O8-solution (top left). Images
taken at 706 eV along the diagonal crossing the concentration gradient
(top right). Image of the concentration gradient at 706 eV (bottom left).
Image with optimized contrast by subtracting the image at 709 eV from the
image at 706 eV (bottom right). The bottom images are coarse grained
due to the low spatial resolution of 1µm of the acquired data.
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8 Outlook - Toward In Operando

Microscopy

The results shown in this thesis clearly show that the mechanism of lithiation

and delithiation of LFP cannot be revealed by ex situ experiments. Anytime a

current is drawn through an electrode, the charging or discharging is followed

by a complex and slow relaxation step. Simple electrochemical testing will not

suffice to understand those processes. In operando experiments with a good

spatial resolution are necessary.

8.1 Requirements for In Operando Studies

In order to conduct in operando studies with a sufficient spatial resolution,

some basic requirements have to be met. Firstly, the measurement has to be

possible under the working conditions of the cell, e.g. organic electrolytes can-

not be used in vacuum chambers. In this example, an ionic liquid or a solid

electrolyte has to be used, for a technique requiring vacuum. In some cases

cells with special windows can be constructed, making it possible to still use

the desired technique. However, this is not possible for any kind of electron

spectroscopy as there are no electron transparent windows. Furthermore, the

material to be studied has to be stable under the experimental conditions, e.g.

the energy input by the laser in Raman spectroscopy can induce a phase transi-

tion in LFP.[61] If care is not taken in this regard, the obtained data may become

useless. In addition, the system to be observed must have a sufficient contrast
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upon chemical changes being measured. This contrast may be the shift of a

peak or an intensity change. Further important requirements are the auxiliary

units on the machine being used. If an electrochemical experiment is to be con-

ducted, the machine must have feed throughs for the cables. If the constructed

cell is air sensitive, the machine needs to have a transfer mechanism to avoid

air contact when introducing the cell.

Since this list is about requirements for in operando studies, an important part

is of course the spatial and temporal resolution. The spatial resolution has to

be better than the characteristic length of the event being observed. Likewise,

the temporal resolution has to be shorter than the time of the process. A big

challenge in this regard is that usually neither the size of the spatial domain nor

the process time are known.

8.2 In Operando Cells in Literature

Many spectroscopic in operando studies have been conducted on LFP, how-

ever, most of those studies did not yield any spatial information. Hard x-ray

XAS studies on LixFeyMn1-yPO4 and LFP have been reported by Nedoseykina et

al.[70] and Leriche et al.[71]. A soft x-ray XAS study has been published by Liu

et al.[72]. Mößbauer and XRD studies were demonstrated by Perea et al.[73]

General cell concepts for IR and Raman spectroscopy have been introduced by

Novák et al.[74]

A spatially resolved in operando study on a pouch cell has been conducted by

Siegel et al. utilizing neutron diffraction. However, the spatial resolution was

only enough to distinguish between the anode and the cathode and could not be

utilized to investigate processes inside the electrodes.[75] A cell for in operando

SEM studies on SnO2 electrodes was demonstrated by Chen et al. using an ionic

liquid as the electrolyte.[76]

A study on a thin film TiO2 cathode using AFM was conducted by Zhu et al.[77]
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Photoelectron spectroscopy on a LiCoO2 thin film cathode was demonstrated

by Thißen et al.[6]

8.3 Lithography for an In Operando Micro Cell

As noted above, in operando microscopy requires a good spatial resolution.

However, methods with a good spatial resolution usually only have a small field

of view. Thus, it is advantageous if the cell being observed is small itself. This

way, the area where the process of interest can take place is reduced. Preparing

small structures is possible by means of lithography. Lithographic structuring is

possible in two ways. Either the structuring is done by depositing material onto

a substrate with a resist that has been previously structured. This step is then

followed by a lift-off in the areas with the resist. The other way is to deposit a

film onto a substrate and cover the desired structure with a resist. This step is

then followed by etching of the non-protected areas. Since the temperatures re-

quired for the deposition of LFP are higher than the decomposition temperature

of the resists available, only the latter technique can be used for structuring LFP.

Another challenge in the construction of in operando cells is the access of active

material for the spectroscopic method being used. If the technique uses trans-

mission of electrons or radiation, stacking of the components is not possible. If

the technique utilizes reflection or emission from the surface that surface must

not be covered by any other material. Nevertheless, all the other components

of an electrochemical cell have to be structured into the cell.

First attempts to structure an LFP micro cell onto a Si3N4 window were made.

LFP was deposited at a substrate temperature of 700 ◦C with a laser fluence

of 2 J cm−2 and 3,000 pulses. In a clean room 60µL of Ma-P1215 resist were

applied to the substrate and the thickness of the resist was adjusted by spinning

at 3.000 rpm for 30 s. This was followed by a soft bake at 100 ◦C for 3 min. The

light exposure time for the photoresist was 13 s. The resist was developed for

25 s followed by a hard bake step at 100 ◦C for 45 min. Etching of the LFP thin
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Figure 8.1: Lithographic structuring of an LFP micro cell. Structured LFP thin film (top
left). Four current collectors structured toward the LFP with large patches
at the edges for contacting (top right). Two of the current collectors are
structured onto the LFP and two current collectors leave a gap of about
5 µm which is later filled with solid electrolyte (bottom).

film was done with 10−3 M HCl solution in which the substrate was immersed

for 3 min. The resulting LFP structure with a size of about 40µm by 40µm is

shown in figure 8.1.

Structuring of the LFP was followed by structuring of current collectors. Chrome

was deposited onto a previously structured photoresist followed by a lift-off

step. An electrochemical cell needs two current collectors, one for the anode

and one for the cathode. However, four current collectors were structured in

order to have a redundant structure in case of a failure. Two of those current

collectors were structured onto the edge of the LFP structure. The other two

current collectors were structured with a gap of about 5µm toward the LFP

structure. This gap was later filled with a solid electrolyte deposited on top of

the current collector closing the gap toward the LFP.
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Due to the other materials structured before the deposition of the electrolyte

thin film, structuring by etching was not possible. Structuring has thus to be ac-

complished by lift-off. Accordingly, the solid electrolyte used must be deposited

at temperatures below the decomposition temperature of the photoresist. This

reduces the available options to amorphous electrolytes deposited at room tem-

perature like LIPON.[5] After the electrolyte is structured onto the cell, the last

missing part is the anode. Lithium metal is not compatible with the resists con-

taining water and the organic developing solutions. Furthermore, the restric-

tions for the deposition temperature still exist. These conditions do not leave

many options. For the first attempts, the anode was omitted completely, as

charging of LFP should still be possible with an overpotential for the formation

of metallic lithium.

Several micro cells were structured onto Si3N4 windows as described above and

shown in figure 8.1. Unfortunately, the Si3N4 film seems to have cracked during

the preparation process. With the current collectors in direct contact with the

silicon wafer beneath the Si3N4 film, all the cells had a short circuit and could

not be charged.

While structuring of a micro cell did not work on a Si3N4 window, a more robust

substrate may be suitable for this process. While this may exclude many tech-

niques working with transmission through the sample, even XAS measurements

are possible on other substrates when using the fluorescence mode.

8.4 Concluding Remarks

The herein presented work shows the vanishing of the miscibility gap in thin

films of the two-phase system FePO4/LiFePO4. This effect is expected in parti-

cles with a size of less than about 15 nm. TEM images of a thin film showed

a particle size of 10 nm to 20 nm which matches the predicted particle size

for a vanishing miscibility gap.[19] Vanishing of the miscibility gap of LFP has
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been reported before in particle samples[78], however, the therein reported po-

tential curves lay well below the equilibrium voltage of LFP. Additionally, only

few studies exist reporting the electrochemical relaxation behavior. A report

by Meethong et al. showed a significant fraction of the material being present

in the disordered phase. However, the particles were still big enough to en-

counter a partial phase separation.[37] The data presented here supports the

theory of a metastable disordered phase forming as an intermediate phase. If

the particle size is small enough, the disordered phase is stable and will not

separate into the end-phases. However, in bigger particles there is a miscibility

gap and the particles will separate into two phases. The presence of the disor-

dered phase leads to a slope of the potential plateau, as the nano-sized LFP is a

single-phase system. The diffusion coefficient of the disordered phase could be

determined by GITT measurements to be about 5×10−12 cm2 s−1. A hysteresis

in the near-equilibrium voltages indicates a stable concentration gradient inside

the electrode due to the slow diffusion kinetics.

In addition to the electrochemical experiments, a setup for an in operando

micro-cell has been presented. First experiments failed due to cracks in the sub-

strate surface, but further work on this system should lead to a feasible method

for spatially resolved in operando spectroscopy on lithium ion batteries.
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τ [s] pulse duration

D̃
[
m2/s

]
chemical diffusion coefficient

c
[
mol/m3] concentration

∆Et [V ] voltage difference before and after a pulse

∆Es [V ] difference of the equilibrium voltages between GITT steps

F [C/mol] Faraday constant

I [A] electrical current

j
[
mol/m2 · s

]
molar flux through a unit area

L [m] electrode thickness

M [g/mol] molecular mass or mass of a formular unit

m [g] mass

NA [1/mol] Avogadro constant

q [C] elementary charge

S
[
m2] electrode area

t [s] time

VM
[
m3/mol

]
molar volume

x [m] position in the film measured from the surface

z charge number
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AFM atomic force microscopy

CV cyclic voltammetry

DMC dimethyl carbonate

DEC diethyl carbonate

EC ethylene carbonate

GITT galvanostatic intermittent titration technique

LiBOB lithium bis(oxalato)borate

LFP lithium iron phosphate

PA post anneal

PLD pulsed laser deposition

PVDF polyvinylidene fluoride

RT room temperature

SEM scanning electron microscopy

TEM transmission electron microscopy

XAS x-ray absorption spectroscopy

XRD x-ray diffraction
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