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Abstract:
Inability to clearly defend against the criticisms of frequentist methods has turned many
a frequentist away from venturing into foundational battlegrounds. Conceding the dis-
torted perspectives drawn from overly literal and radical expositions of what Fisher, Ney-
man, and Pearson ‘really thought’, some deny they matter to current practice. The goal
of this paper is not merely to call attention to the howlers that pass as legitimate crit-
icisms of frequentist error statistics, but also to sketch the main lines of an alternative
statistical philosophy within which to better articulate the roles and value of frequentist
tools.

1. Comedy Hour at the Bayesian Retreat

Overheard at the comedy hour at the Bayesian retreat: Did you hear the one
about the frequentist. . .

“who defended the reliability of his radiation reading, despite using
a broken radiometer, on the grounds that most of the time he uses
one that works, so on average he’s pretty reliable?”

or

“who claimed that observing ‘heads’ on a biased coin that lands heads
with probability .05 is evidence of a statistically significant improve-
ment over the standard treatment of diabetes, on the grounds that
such an event occurs with low probability (.05)?”

Such jests may work for an after-dinner laugh, but if it turns out that, despite
being retreads of ‘straw-men’ fallacies, they form the basis of why some statis-
ticians and philosophers reject frequentist methods, then they are not such a
laughing matter. But surely the drubbing of frequentist methods could not be
based on a collection of howlers, could it? I invite the reader to stay and find out.

If we are to take the criticisms seriously, and put to one side the possibility
that they are deliberate distortions of frequentist statistical methods, we need
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to identify their sources. To this end I consider two interrelated areas around
which to organize foundational issues in statistics: (1) the roles of probability in
induction and inference, and (2) the nature and goals of statistical inference in
science or learning. Frequentist sampling statistics, which I prefer to call ‘error
statistics’, continues to be raked over the coals in the foundational literature,
but with little scrutiny of the presuppositions about goals and methods, without
which the criticisms lose all force.

First, there is the supposition that an adequate account must assign degrees
of probability to hypotheses, an assumption often called probabilism. Second,
there is the assumption that the main, if not the only, goal of error-statistical
methods is to evaluate long-run error rates. Given the wide latitude with which
some critics define ‘controlling long-run error’, it is not surprising to find them
arguing that (i) error statisticians approve of silly methods, and/or (ii) rival (e.g.,
Bayesian) accounts also satisfy error statistical demands. Absent this sleight
of hand, Bayesian celebrants would have to go straight to the finale of their
entertainment hour: a rousing rendition of ‘There’s No Theorem Like Bayes’s
Theorem’.

Never mind that frequentists have responded to these criticisms, they keep
popping up (verbatim) in every Bayesian and some non-Bayesian textbooks and
articles on philosophical foundations. No wonder that statistician Stephen Senn
is inclined to “describe a Bayesian as one who has a reverential awe for all opin-
ions except those of a frequentist statistician” (Senn 2011, 59, this special topic
of RMM). Never mind that a correct understanding of the error-statistical de-
mands belies the assumption that any method (with good performance proper-
ties in the asymptotic long-run) succeeds in satisfying error-statistical demands.

The difficulty of articulating a statistical philosophy that fully explains the
basis for both (i) insisting on error-statistical guarantees, while (ii) avoiding
pathological examples in practice, has turned many a frequentist away from
venturing into foundational battlegrounds. Some even concede the distorted
perspectives drawn from overly literal and radical expositions of what Fisher,
Neyman, and Pearson ‘really thought’. I regard this as a shallow way to do
foundations.

Here is where I view my contribution—as a philosopher of science—to the
long-standing debate: not merely to call attention to the howlers that pass as
legitimate criticisms of frequentist error statistics, but also to sketch the main
lines of an alternative statistical philosophy within which to better articulate the
roles and value of frequentist tools. Let me be clear that I do not consider this the
only philosophical framework for frequentist statistics—different terminology
could do as well. I will consider myself successful if I can provide one way of
building, or one standpoint from which to build, a frequentist, error-statistical
philosophy. Here I mostly sketch key ingredients and report on updates in a
larger, ongoing project.
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2. Popperians Are to Frequentists as Carnapians Are
to Bayesians

Statisticians do, from time to time, allude to better-known philosophers of sci-
ence (e.g., Popper). The familiar philosophy/statistics analogy—that Popper is
to frequentists as Carnap is to Bayesians—is worth exploring more deeply, most
notably the contrast between the popular conception of Popperian falsification
and inductive probabilism. Popper himself remarked:

“In opposition to [the] inductivist attitude, I assert that C(H,x) must
not be interpreted as the degree of corroboration of H by x, unless
x reports the results of our sincere efforts to overthrow H. The re-
quirement of sincerity cannot be formalized—no more than the in-
ductivist requirement that x must represent our total observational
knowledge.” (Popper 1959, 418, I replace ‘e’ with ‘x’)

In contrast with the more familiar reference to Popperian falsification, and its
apparent similarity to statistical significance testing, here we see Popper allud-
ing to failing to reject, or what he called the “corroboration” of hypothesis H.
Popper chides the inductivist for making it too easy for agreements between
data x and H to count as giving H a degree of confirmation.

“Observations or experiments can be accepted as supporting a theory
(or a hypothesis, or a scientific assertion) only if these observations
or experiments are severe tests of the theory—or in other words, only
if they result from serious attempts to refute the theory.” (Popper
1994, 89)

(Note the similarity to Peirce in Mayo 2011, 87, this special topic of RMM.)

2.1 Severe Tests
Popper did not mean to cash out ‘sincerity’ psychologically of course, but in some
objective manner. Further, high corroboration must be ascertainable: ‘sincerely
trying’ to find flaws will not suffice. Although Popper never adequately cashed
out his intuition, there is clearly something right in this requirement. It is the
gist of an experimental principle presumably accepted by Bayesians and fre-
quentists alike, thereby supplying a minimal basis to philosophically scrutinize
different methods. (Mayo 2011, section 2.5, this special topic of RMM)

Error-statistical tests lend themselves to the philosophical standpoint re-
flected in the severity demand. Pretty clearly, evidence is not being taken se-
riously in appraising hypothesis H if it is predetermined that, even if H is false,
a way would be found to either obtain, or interpret, data as agreeing with (or
‘passing’) hypothesis H. Here is one of many ways to state this:

Severity Requirement (weakest): An agreement between data x and
H fails to count as evidence for a hypothesis or claim H if the test
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would yield (with high probability) so good an agreement even if H
is false.

Because such a test procedure had little or no ability to find flaws in H, finding
none would scarcely count in H’s favor.

2.1.1 Example: Negative Pressure Tests on the Deep Horizon Rig
Did the negative pressure readings provide ample evidence that:

H0: leaking gases, if any, were within the bounds of safety (e.g., less
than θ0)?

Not if the rig workers kept decreasing the pressure until H passed, rather than
performing a more stringent test (e.g., a so-called ‘cement bond log’ using acous-
tics). Such a lowering of the hurdle for passing H0 made it too easy to pass H0
even if it was false, i.e., even if in fact:

H1: the pressure build-up was in excess of θ0.

That ‘the negative pressure readings were misinterpreted’, meant that it was
incorrect to construe them as indicating H0. If such negative readings would be
expected, say, 80 percent of the time, even if H1 is true, then H0 might be said
to have passed a test with only .2 severity. Using Popper’s nifty abbreviation,
it could be said to have low corroboration, .2. So the error probability associ-
ated with the inference to H1 would be .8—clearly high. This is not a posterior
probability, but it does just what we want it to do.

2.2 Another Egregious Violation of the Severity Requirement
Too readily interpreting data as agreeing with or fitting hypothesis H is not
the only way to violate the severity requirement. Using utterly irrelevant evi-
dence, such as the result of a coin flip to appraise a diabetes treatment, would
be another way. In order for data x to succeed in corroborating H with severity,
two things are required: (i) x must fit H, for an adequate notion of fit, and (ii)
the test must have a reasonable probability of finding worse agreement with H,
were H false. I have been focusing on (ii) but requirement (i) also falls directly
out from error statistical demands. In general, for H to fit x, H would have
to make x more probable than its denial. Coin tossing hypotheses say nothing
about hypotheses on diabetes and so they fail the fit requirement. Note how this
immediately scotches the second howler in the second opening example.

But note that we can appraise the severity credentials of other accounts by
using whatever notion of ‘fit’ they permit. For example, if a Bayesian method
assigns high posterior probability to H given data x, we can appraise how often
it would do so even if H is false. That is a main reason I do not want to limit
what can count as a purported measure of fit: we may wish to entertain different
measures for purposes of criticism.
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2.3 The Rationale for Severity is to Find Things Out Reliably
Although the severity requirement reflects a central intuition about evidence, I
do not regard it as a primitive: it can be substantiated in terms of the goals of
learning. To flout it would not merely permit being wrong with high probabili-
ty—a long-run behavior rationale. In any particular case, little if anything will
have been done to rule out the ways in which data and hypothesis can ‘agree’,
even where the hypothesis is false. The burden of proof on anyone claiming to
have evidence for H is to show that the claim is not guilty of at least an egregious
lack of severity.

Although one can get considerable mileage even with the weak severity re-
quirement, I would also accept the corresponding positive conception of evi-
dence, which will comprise the full severity principle:

Severity Principle (full): Data x provide a good indication of or ev-
idence for hypothesis H (only) to the extent that test T severely
passes H with x.

Degree of corroboration is a useful shorthand for the degree of severity with
which a claim passes, and may be used as long as the meaning remains clear.

2.4 What Can Be Learned from Popper; What Can Popperians Be
Taught?

Interestingly, Popper often crops up as a philosopher to emulate—both by Bayes-
ian and frequentist statisticians. As a philosopher, I am glad to have one of
our own taken as useful, but feel I should point out that, despite having the
right idea, Popperian logical computations never gave him an adequate way to
implement his severity requirement, and I think I know why: Popper once wrote
to me that he regretted never having learned mathematical statistics. Were
he to have made the ‘error probability’ turn, today’s meeting ground between
philosophy of science and statistics would likely look very different, at least for
followers of Popper, the ‘critical rationalists’.

Consider, for example, Alan Musgrave (1999; 2006). Although he declares
that “the critical rationalist owes us a theory of criticism” (2006, 323) this has yet
to materialize. Instead, it seems that current-day critical rationalists retain the
limitations that emasculated Popper. Notably, they deny that the method they
recommend—either to accept or to prefer the hypothesis best-tested so far—is
reliable. They are right: the best-tested so far may have been poorly probed.
But critical rationalists maintain nevertheless that their account is ‘rational’.
If asked why, their response is the same as Popper’s: ‘I know of nothing more
rational’ than to accept the best-tested hypotheses. It sounds rational enough,
but only if the best-tested hypothesis so far is itself well tested (see Mayo 2006;
2010b). So here we see one way in which a philosopher, using methods from
statistics, could go back to philosophy and implement an incomplete idea.

On the other hand, statisticians who align themselves with Popper need to
show that the methods they favor uphold falsificationist demands: that they are
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capable of finding claims false, to the extent that they are false; and retaining
claims, just to the extent that they have passed severe scrutiny (of ways they
can be false). Error probabilistic methods can serve these ends; but it is less
clear that Bayesian methods are well-suited for such goals (or if they are, it is
not clear they are properly ‘Bayesian’).

3. Frequentist Error-Statistical Tests

Philosophers often overlook lessons from statistical tests because they seek very
general accounts of evidence, not limited to formal statistical contexts. I seek a
general account as well. However, the elements of statistical tests offer crucial
insights for general aspects of inductive inference in science. Most notably, the
entire severity assessment fails to be definable without a context in which the
error probabilities can be assessed. We will be in a better position to extrapo-
late to informal settings by recognizing the crucial role of statistical models in
providing such a context.

3.1 Probability in Statistical Models of Experiments
Sir David Cox rightly notes that my focus on the use of probability in statistical
inference may slight the fundamental role of frequentist probability in model-
ing phenomena (informal remarks). My excuse is that the main foundational
controversy in statistics has revolved around the use of probability in statisti-
cal inference. But I agree that the role of frequentist probability in modelling
deserves its own focus (see Mayo 1996, chapter 5).

Neyman (1952) emphasizes that the empirical basis for the use of statistical
models of experiments is that there are real experiments that “even if carried
out repeatedly with the utmost care to keep conditions constant, yield varying
results” (25). He gives as examples: an electrically regulated roulette wheel; a
coin-tossing machine in which a coin’s initial velocity is constant; the number of
disintegrations per minute in a quantity of radioactive matter; the tendency for
an organism’s properties to vary despite homogeneous breeding; measurements
of the concentration of an ingredient in a patient’s blood. While we cannot pre-
dict the outcome of such experiments, a certain pattern of regularity emerges
when applied in even a moderately long series of trials. The pattern of reg-
ularity is the relative frequency with which specified results occur. Neyman
emphasizes that these regularities are just as ‘permanent’ as any other law-like
phenomena.

One can draw out the testable implications of a conjectured model of a phe-
nomenon in science using statistical models that are distinct from substantive
scientific ones. We may call the former the experimental, or testable, statistical
model, in relation to some substantive model. Often, even without a substantive
model or theory—as in the particular case of a so-called exploratory analysis—
much can be learned via lower level statistical models of experiment. One strat-
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egy is to deliberately introduce probabilistic elements into the data generation
so that experimental observations might be framed within statistical models.

For example, if measurements on a patient’s blood, when appropriately taken,
may be regarded as observing n random variables from a normal distribution
with mean equal to µ, f(x;µ), then we may use experimental results to estimate
µ and/or probe various hypotheses about µ’s value. Although we construct the
model and the experiment, given we have done so, the distribution objectively
follows. Capitalizing on knowing how to run real random experiments that cor-
respond appropriately to a mathematically defined probability model, we can
deliberately alter the experiment in order to hone our skills at unearthing flaws
should we fail to adequately satisfy the statistical model.

Although these models are regarded only as an approximate or idealized rep-
resentation of the underlying data-generating process, they work because (i)
their adequacy for the experiment at hand may be checked by distinct tests,
and (ii) they need only capture rather coarse properties of the phenomena being
probed (e.g., the relative frequencies of events need to be close to those computed
under the statistical models).

3.2 Statistical Test Ingredients
(A) Hypotheses. A statistical hypothesis H, generally couched in terms of an un-
known parameter θ, is a claim about some aspect of the process that generated
the data, x = (x1,. . . ,xn) given in some model of the process. Statistical hypothe-
ses assign probabilities to various outcomes ‘computed under the supposition
that Hi is correct (about the generating mechanism)’. That is how one should
read f(x; Hi).

Note that this is not a conditional probability, since that would assume that
there is a prior probability for Hi. For simplicity I retain this notation where a
Bayesian calculation is being considered.

(B) Distance function. A function of the data d(X), the test statistic, reflects
how well or poorly the data x = (x1,. . . ,xn) fit the hypothesis H—the larger the
value of d(x) the farther the outcome is from what is expected under H in the di-
rection of alternatives to H, with respect to the particular question being asked.
In standard null hypothesis tests, the key is being able to ascertain the proba-
bility of different values of d(X) under a test or null hypothesis H0, and under
alternatives. By calculating the probability of outcomes under hypotheses about
parameter µ, we can calculate the probabilities of values of statistic d under
hypotheses about µ.

(C) Test rule T. One type of test procedure might be to infer that x is evidence
of a discrepancy γ from a null hypothesis H0 just in case {d(X) > c}. Thanks to
(B), we can calculate the probability of {d(X) > c} under the assumption that
H0 is adequate, as well as under various discrepancies from H0 contained in
the compound alternative H1. Therefore we can calculate the probability of
inferring evidence for discrepancies from H0 erroneously. Note that such an
error probability is given by the probability distribution of d(X)—called its sam-
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pling distribution—computed under one or another hypothesis. I have stated
elements (A)–(C) in a generic form, to link with formulations of statistical tests
as they typically arise in discussions of foundations. However, to develop an ac-
count adequate for solving foundational problems, special stipulations and even
reinterpretations of standard notions may be required. The next two elements,
(D) and (E), reflect some of these.

(D) The sampling distribution may be used to characterize the capability of
the inferential rule to unearth flaws and distinguish hypotheses. At any rate,
that is the thesis of the account I aim to develop. What makes an account ‘error
statistical’ is its consideration of these error probabilities. But these computa-
tions must be directed by the goal of assessing severity in relation to the partic-
ular inference of interest. Not just any use of a sampling distribution makes the
account properly ‘error statistical’.

(E) Empirical assumptions. Quite a lot of empirical background knowledge
goes into implementing these computations. We can place them into two groups
of questions:

1. How probative would the test be in regard to a particular question if its
assumptions were approximately satisfied?

2. Are its assumptions approximately satisfied?
The task of checking assumptions calls for its own discussion (see especially
Spanos 2011, this special topic of RMM). To claim that frequentist methods deny
the use of background knowledge is absurd. While critics repeatedly warn that
this is the consequence of signing up for frequentist statistics, what they mean is
that, except for very special cases, we do not use prior probability distributions of
unknown parameters (be they degrees of belief or default priors). But Bayesians
have not shown that the general kind of background needed is well captured by
trying to construct a prior probability distribution of statistical hypothesis Hi.

3.3 Hypotheses and Events
In a typical statistical context the hypotheses Hi range over different values of
a statistical parameter θ. In the normal distribution example above, θ would
be two-dimensional, comprising both the mean and the standard deviation (µ,
δ). Since θ ‘governs’ the distribution, hypothesized values of θ yield probability
assignments to the different outcomes x.

A confusion, often lurking in the background of some foundational discus-
sions, stems from mistaking the goal of assigning probabilities to the occurrence
of events for that of assigning probabilities to the hypotheses themselves. In
inferring a statistical hypothesis H, one is inferring a claim that assigns prob-
abilities to the various experimental outcomes and to the events described in
terms of them. This is very different from assigning a probability to H itself
(which would speak of the probability of the probabilistic assignment in H).
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3.4 Hypotheses Inferred Need Not Be Predesignated
I find it useful to retain the testing language to emphasize the necessary require-
ment for having evidence, but one need not. Even so, it must not be supposed
that we are limited to a rather hackneyed notion of hypotheses tests wherein the
hypotheses to be appraised are predesignated as if one were required to know in
advance all the possibly interesting inferences that could result from an inquiry.
Even where the focus is on statistical tests with prespecified null hypotheses
and perhaps directional alternatives, it is a mistake to suppose that this lim-
its the hypotheses whose well-testedness will be of interest. Granted, there is
a cluster of canonical null hypotheses, with corresponding methods of analysis.
Their chief value, from the current perspective, is to evaluate various discrepan-
cies that are or are not well indicated once the data are in hand. For an excellent
taxonomy of types of nulls and corresponding questions see Cox (1977).

This relates to a central contrast between error-statistical and Bayesian
methods in the category of ‘ascertainability’: while the former lets us get started
with a battery of simple questions posed by one or more null hypotheses in our
repertoire (and corresponding sampling distributions of d(X)), the latter requires
setting out all of the alternative hypotheses that are to be considered. “Full-
dress Bayesians”, as I. J. Good called them, require, in addition to priors in
an exhaustive set of hypotheses, an assignment of utilities or loss functions for
decision making. I once invoked a fashion analogy: “Much like ready-to-wear
[versus designer] clothes, these ‘off the shelf ’ methods do not require collecting
vast resources before you can get going with them.” (1996, 100)

Moreover, we wish to distinguish statistical inference from making decisions
based on what is warranted to infer. Yet some critics assert, without argument,
that frequentist methods and the error-statistical notions based on them are
discredited because everyone knows that what we really want are methods for
action. “A notion of a severe test without a notion of a loss function is a diver-
sion from the main job of science.” (Ziliak and McCloskey 2008, 147) But if one
does not first obtain a warranted scientific inference, any subsequent appraisal
of expected loss will lack grounding. The politicization of science in the arena
of risk assessment is well known, as is the tendency of some policy proponents
to regard evidence in support of rival policies ‘junk science’. However, if pol-
icymaking is inextricably bound up with policy preferences and loss, as Ziliac
and McCloskey allege, then appealing to evidence is in danger of becoming just
so much window dressing—it is all policy, and evidence-based controversies are
merely value-laden disagreements about policy preferences.1

Of course, this is a very old view, whether it is called social relativism, post-
modernism, or something else (see Mayo 1991; Mayo and Spanos 2006).

1 Ironically they also fall into misinterpretations of concepts of significance tests that re-
sult in supporting the erroneous inferences and fallacies they wish to curtail. See
http://www.errorstatistics.com.
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4. Neyman’s Inferential Side: Neyman on Carnap

Jerzy Neyman, with his penchant for ‘inductive behavior’ rather than inductive
inference, is often seen as a villain in philosophy of statistics disputes. So let me
mention a paper of his I came across in a dusty attic not too many years ago with
the tantalizing title of “The Problem of Inductive Inference” (Neyman 1955). It
is of interest for two reasons: First it reports on the (literal) meeting of a found-
ing frequentist statistician and the philosopher Carnap, in conversation about
frequentist inference. In particular, Neyman brings up an erroneous construal
of frequentist statistics still common among philosophers. Second, it reveals a
use of statistical tests which is strikingly different from the long-run behavior
construal most associated with Neyman:

“When Professor Carnap criticizes some attitudes which he repre-
sents as consistent with my (‘frequentist’) point of view, I readily
join him in his criticism without, however, accepting the responsibil-
ity for the criticized paragraphs.” (13)

4.1 Frequentist Statistics Is Not the Frequentist ‘Straight Rule’
Carnap’s depiction of ‘Neyman’s frequentist’ is unfortunately still with us. It
views frequentists as following a version of the ‘inductive straight rule’. Having
observed 150 aces out of 1,000 throws with this die, with “no other results of
throws with this die [being] known to me” (14), the frequentist infers that “there
is a high probability, with respect to the evidence, for the prediction that the
relative frequency of aces in a long series of future throws with this die will lie
in an interval around 0.15” (ibid.).

Neyman stresses that this overlooks the fact that an “application of any
theory of inductive inference can be made only on the ground of a theoretical
model of some phenomena, not on the ground of the phenomena themselves”
(16). Given the adequacy of a statistical model of experiment—here, the Bino-
mial model—it is possible to use observed relative frequencies to estimate and
test claims about the population probability, but it is impossible to do so within
Carnap’s model-free depiction. What is more, appeals to ignorance, “principles
of indifference”, are anathema to the solid grounds demanded to vouch for the
use of a statistical model. It is still common, however, to hear philosophers de-
pict frequentist statistics as little more than a version of the Carnapian straight
rule. No wonder problems of ‘the reference class’ are pointed to as grounds for
criticizing the frequentist approach (e.g., Howson and Urbach 1993; Sober 2008).
Within a statistical model, by contrast, the modeler is constrained to an appro-
priate statistic, here, the sample mean.
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4.2 Post-Data Uses of Power
Most interestingly, Neyman continues,

“I am concerned with the term ‘degree of confirmation’ introduced by
Carnap. [. . . ] We have seen that the application of the locally best
one-sided test to the data [. . . ] failed to reject the hypothesis [that
the n observations come from a source in which the null hypothesis
is true]. The question is: does this result ‘confirm’ the hypothesis
that H0 is true of the particular data set?” (40–41)

Neyman continues:

“The answer [. . . ] depends very much on the exact meaning given to
the words ‘confirmation’, ‘confidence’, etc. If one uses these words to
describe one’s intuitive feeling of confidence in the hypothesis tested
H0, then [. . . ] the attitude described is dangerous. [. . . ] [T]he chance
of detecting the presence [of discrepancy from the null], when only
[n] observations are available, is extremely slim, even if [the dis-
crepancy is present]. Therefore, the failure of the test to reject H0
cannot be reasonably considered as anything like a confirmation of
H0. The situation would have been radically different if the power
function [corresponding to a discrepancy of interest] were, for exam-
ple, greater than 0.95.” (42)

The general conclusion is that it is a little rash to base one’s intuitive confidence
in a given hypothesis on the fact that a test failed to reject this hypothesis.
A more cautious attitude would be to form one’s intuitive opinion only after
studying the power function of the test applied.

4.3 One-sided Test T+
Alluding to our drilling-rig example, the parameter value µ0 could be the mean
pressure beyond which it is considered dangerously high. This is an example of
what Cox calls an “embedded null hypothesis” (Cox 1977).

Our measurements X = (X1,. . . ,Xn) are such that each Xi is Normal, N(µ,σ2),
(NIID), σ assumed known; and there is a one-sided test T+:

H0: µ ≤ µ0 against H1: µ > µ0.

Test statistic d(X) is the sample standardized mean, i.e. d(X) = (X̄ – µ)/σx, where
X̄ is the sample mean with standard deviation σx = (σ/

p
n).

The test rule is:

Infer data x indicates a (positive) discrepancy from µ0 iff {d(x) > cα}.

where cα is the cutoff corresponding to a difference statistically significant at
the α level.
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In Neyman’s example, the test could not reject the null hypothesis, i.e., d(x0)
≤ cα, but (to paraphrase him) the problem is that the chance of detecting the
presence of discrepancy γ from the null, with so few observations, is extremely
slim, even if γ is present. “One may be confident in the absence of that discrep-
ancy only if the power to detect it were high.”

The power of the test T+ to detect γ refers to

(1) P(d(X) > cα; µ = µ0 + γ)

It is very interesting to hear Neyman talk this way since it is at odds with the
more behavioristic construal he usually championed. Still, power is calculated
relative to an outcome just missing the cutoff cα. This is, in effect, the worst case
of a negative (non-significant) result, and if the actual outcome corresponds to
an even smaller p-value, that should be taken into account in interpreting the
results. It is more informative, therefore, to look at the probability of getting a
worse fit (with the null hypothesis) than you did:

(2) P(d(X) > d(x0); µ =µ0 + γ)

This gives a measure of the severity (or degree of corroboration) for the inference
µ < µ0 + γ.

Although (1) may be low, (2) may be high.

4.4 Frequentist Principle of Evidence: FEV
The claim in (2) could also be made out viewing the p-value as a random variable,
calculating its distribution for various alternatives (Cox 2006, 25). The above
reasoning yields a core requirement for frequentist evidence, set out as (FEV) in
Mayo and Cox 2010, 256:

FEV: A moderate p-value is evidence of the absence of a discrepancy
γ from H0 only if there is a high probability the test would have
given a worse fit with H0 (i.e., smaller p-value) were a discrepancy γ
to exist.

One must not identify this with what some have called ‘post-data power analy-
sis’. (It is beyond the scope of the present discussion.)

It is important to see that it is only in the case of a negative result that
severity for various inferences is in the same direction as power. In the case
of significant results, where d(x) is in excess of the cutoff, the opposite concern
arises—namely, the test is too sensitive. So severity is always relative to the
particular inference being entertained: speaking of the ‘severity of a test’ sim-
pliciter is an incomplete statement in this account. These assessments enable
sidestepping classic fallacies of tests that are either too sensitive or not sensitive
enough. I return to the related ‘large n problem’ in section 6.1.3.
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4.5 Pragmatism without Subjectivism
Neyman disparaged “the common element of all writings on the inductive rea-
soning [that] appears to indicate the conviction of the authors that it is possible
to devise a formula of universal validity which can serve as a normative regu-
lator of our beliefs” (Neyman 1957, 15). Instead he offers rules with different
performance characteristics and the user is free to choose the one that fits her
case best. While this latitude is often the basis of criticisms of error-statistical
methods, to Neyman and Pearson this was a central advantage. Still, it must be
admitted, that aside from hints and examples, neither he nor Pearson spelled
out an overarching logic for using these methods in drawing inferences. That
is what my analysis is intended to provide, be it in terms of FEV (for formal
statistical contexts) or SEV (for formal and informal assessments).

5. The Error-Statistical Philosophy

I recommend moving away, once and for all, from the idea that frequentists
must ‘sign up’ for either Neyman and Pearson, or Fisherian paradigms. As a
philosopher of statistics I am prepared to admit to supplying the tools with an
interpretation and an associated philosophy of inference. I am not concerned to
prove this is what any of the founders ‘really meant’.

Fisherian simple-significance tests, with their single null hypothesis and at
most an idea of the a directional alternative (and a corresponding notion of the
‘sensitivity’ of a test), are commonly distinguished from Neyman and Pearson
tests, where the null and alternative exhaust the parameter space, and the cor-
responding notion of power is explicit. On the interpretation of tests that I am
proposing, these are just two of the various types of testing contexts appropriate
for different questions of interest. My use of a distinct term, ‘error statistics’,
frees us from the bogeymen and bogeywomen often associated with ‘classical’
statistics, and it is to be hoped that that term is shelved. (Even ‘sampling the-
ory’, technically correct, does not seem to represent the key point: the sampling
distribution matters in order to evaluate error probabilities, and thereby as-
sess corroboration or severity associated with claims of interest.) Nor do I see
that my comments turn on whether one replaces frequencies with ‘propensities’
(whatever they are).

5.1 Error (Probability) Statistics
What is key on the statistics side is that the probabilities refer to the distribu-
tion of a statistic d(X)—the so-called sampling distribution. This alone is at
odds with Bayesian methods where consideration of outcomes other than the
one observed is disallowed (likelihood principle [LP]), at least once the data are
available.
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“Neyman-Pearson hypothesis testing violates the likelihood princi-
ple, because the event either happens or does not; and hence has
probability one or zero.” (Kadane 2011, 439)

The idea of considering, hypothetically, what other outcomes could have occurred
in reasoning from the one that did occur seems so obvious in ordinary reason-
ing that it will strike many, at least those outside of this specialized debate, as
bizarre for an account of statistical inference to banish such considerations. And
yet, banish them the Bayesian must—at least if she is being coherent. I come
back to the likelihood principle in section 7.

What is key on the philosophical side is that error probabilities may be used to
quantify the probativeness or severity of tests (in relation to a given inference).

The twin goals of probative tests and informative inferences constrain the
selection of tests. But however tests are specified, they are open to an after-data
scrutiny based on the severity achieved. Tests do not always or automatically
give us relevant severity assessments, and I do not claim one will find just this
construal in the literature. Because any such severity assessment is relative
to the particular ‘mistake’ being ruled out, it must be qualified in relation to a
given inference, and a given testing context. We may write:

SEV(T, x, H) to abbreviate ‘the severity with which test T passes
hypothesis H with data x’.

When the test and data are clear, I may just write SEV(H).
The standpoint of the severe prober, or the severity principle, directs us to

obtain error probabilities that are relevant to determining well testedness, and
this is the key, I maintain, to avoiding counterintuitive inferences which are at
the heart of often-repeated comic criticisms. This makes explicit what Neyman
and Pearson implicitly hinted at:

“If properly interpreted we should not describe one [test] as more
accurate than another, but according to the problem in hand should
recommend this one or that as providing information which is more
relevant to the purpose.” (Neyman and Pearson 1967, 56–57)

For the vast majority of cases we deal with, satisfying the N-P long-run desider-
ata leads to a uniquely appropriate test that simultaneously satisfies Cox’s (Fish-
erian) focus on minimally sufficient statistics, and also the severe testing desider-
ata (Mayo and Cox 2010).

5.2 Philosophy-Laden Criticisms of Frequentist Statistical Methods
What is rarely noticed in foundational discussions is that appraising statistical
accounts at the foundational level is ‘theory-laden’, and in this case the theory
is philosophical. A deep as opposed to a shallow critique of such appraisals
must therefore unearth the philosophical presuppositions underlying both the
criticisms and the plaudits of methods. To avoid question-begging criticisms, the
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standpoint from which the appraisal is launched must itself be independently
defended.

But for many philosophers, in particular, Bayesians, the presumption that
inference demands a posterior probability for hypotheses is thought to be so ob-
vious as not to require support. At any rate, the only way to give a generous
interpretation of the critics (rather than assume a deliberate misreading of fre-
quentist goals) is to allow that critics are implicitly making assumptions that are
at odds with the frequentist statistical philosophy. In particular, the criticisms
of frequentist statistical methods assume a certain philosophy about statistical
inference (probabilism), often coupled with the allegation that error-statistical
methods can only achieve radical behavioristic goals, wherein long-run error
rates alone matter.

Criticisms then follow readily, in the form of one or both:
• Error probabilities do not supply posterior probabilities in hypotheses.
• Methods can satisfy long-run error probability demands while giving rise

to counterintuitive inferences in particular cases.
I have proposed an alternative philosophy that replaces these tenets with differ-
ent ones:

• The role of probability in inference is to quantify how reliably or severely
claims have been tested.

• The severity principle directs us to the relevant error probabilities; control
of long-run error probabilities, while necessary, is not sufficient for good
tests.

The following examples will substantiate and flesh out these claims.

5.3 Severity as a ‘Metastatistical’ Assessment
In calling severity ‘metastatistical’, I am deliberately calling attention to the fact
that the reasoned deliberation it involves cannot simply be equated to formal-
quantitative measures, particularly those that arise in recipe-like uses of meth-
ods such as significance tests. In applying it, we consider several possible infer-
ences that might be considered of interest. In the example of test T+, the data-
specific severity evaluation quantifies the extent of the discrepancy (γ) from the
null that is (or is not) indicated by data x rather than quantifying a ‘degree of
confirmation’ accorded a given hypothesis. Still, if one wants to emphasize a
post-data measure one can write:

SEV(µ < X̄0 + γσx) to abbreviate: The severity with which a test T+
with a result x passes the hypothesis:

(µ < X̄0 + γσx) with σx abbreviating σ
p

n.

One might consider a series of benchmarks or upper severity bounds:

SEV(µ < x̄0 + 0σx) = .5
SEV(µ < x̄0 + .5σx) = .7
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SEV(µ < x̄0 + 1σx) = .84
SEV(µ < x̄0 + 1.5σx) = .93
SEV(µ < x̄0 + 1.98σx) = .975

More generally, one might interpret nonstatistically significant results (i.e., d(x)
≤ cα) in test T+ above in severity terms:

µ ≤ X̄0 + γε(σ/
p

n) passes the test T+ with severity (1 – ε),

for any P(d(X) > γε) = ε.
It is true that I am here limiting myself to a case where γ is known and we

do not worry about other possible ‘nuisance parameters’. Here I am doing phi-
losophy of statistics; only once the logic is grasped will the technical extensions
be forthcoming.

5.3.1 Severity and Confidence Bounds in the Case of Test T+
It will be noticed that these bounds are identical to the corresponding upper
confidence interval bounds for estimating µ. There is a duality relationship be-
tween confidence intervals and tests: the confidence interval contains the pa-
rameter values that would not be rejected by the given test at the specified level
of significance. It follows that the (1 – α) one-sided confidence interval (CI) that
corresponds to test T+ is of form:

µ > X̄ – cα(σ/
p

n).

The corresponding CI, in other words, would not be the assertion of the upper
bound, as in our interpretation of statistically insignificant results. In particu-
lar, the 97.5 percent CI estimator corresponding to test T+ is:

µ > X̄ – 1.96(σ/
p

n).

We were only led to the upper bounds in the midst of a severity interpretation
of negative results (see Mayo and Spanos 2006).

Still, applying the severity construal to the application of confidence interval
estimation is in sync with the recommendation to consider a series of lower and
upper confidence limits, as in Cox (2006). But are not the degrees of severity
just another way to say how probable each claim is? No. This would lead to
well-known inconsistencies, and gives the wrong logic for ‘how well-tested’ (or
‘corroborated’) a claim is.

A classic misinterpretation of an upper confidence interval estimate is based
on the following fallacious instantiation of a random variable by its fixed value:

P(µ < (X̄ + 2(σ/
p

n)); µ) = .975,

observe mean x̄,

therefore, P (µ < (x̄ + 2(σ/
p

n)); µ) = .975.
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While this instantiation is fallacious, critics often argue that we just cannot help
it. Hacking (1980) attributes this assumption to our tendency toward ‘logicism’,
wherein we assume a logical relationship exists between any data and hypothe-
sis. More specifically, it grows out of the first tenet of the statistical philosophy
that is assumed by critics of error statistics, that of probabilism.

5.3.2 Severity versus Rubbing Off
The severity construal is different from what I call the ‘rubbing off construal’
which says: infer from the fact that the procedure is rarely wrong to the assign-
ment of a low probability to its being wrong in the case at hand. This is still
dangerously equivocal, since the probability properly attaches to the method
not the inference. Nor will it do to merely replace an error probability associ-
ated with an inference to H with the phrase ‘degree of severity’ with which H
has passed. The long-run reliability of the rule is a necessary but not a sufficient
condition to infer H (with severity).

The reasoning instead is the counterfactual reasoning behind what we agreed
was at the heart of an entirely general principle of evidence. Although I chose
to couch it within the severity principle, the general frequentist principle of evi-
dence (FEV) or something else could be chosen.

To emphasize another feature of the severity construal, suppose one wishes
to entertain the severity associated with the inference:

H: µ < (x̄0 + 0σx)

on the basis of mean x̄0 from test T+. H passes with low (.5) severity because it
is easy, i.e., probable, to have obtained a result that agrees with H as well as this
one, even if this claim is false about the underlying data generation procedure.
Equivalently, if one were calculating the confidence level associated with the
one-sided upper confidence limit µ < x̄, it would have level .5. Without setting a
fixed level, one may apply the severity assessment at a number of benchmarks,
to infer which discrepancies are, and which are not, warranted by the particular
data set. Knowing what fails to be warranted with severity becomes at least as
important as knowing what is: it points in the direction of what may be tried
next and of how to improve inquiries.

5.3.3 What’s Belief Got to Do with It?
Some philosophers profess not to understand what I could be saying if I am pre-
pared to allow that a hypothesis H has passed a severe test T with x without
also advocating (strong) belief in H. When SEV(H) is high there is no problem
in saying that x warrants H, or if one likes, that x warrants believing H, even
though that would not be the direct outcome of a statistical inference. The rea-
son it is unproblematic in the case where SEV(H) is high is:

If SEV(H) is high, its denial is low, i.e., SEV(∼H) is low.

But it does not follow that a severity assessment should obey the probability
calculus, or be a posterior probability—it should not, and is not.
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After all, a test may poorly warrant both a hypothesis H and its denial, vi-
olating the probability calculus. That is, SEV(H) may be low because its denial
was ruled out with severity, i.e., because SEV(∼H) is high. But Sev(H) may also
be low because the test is too imprecise to allow us to take the result as good
evidence for H.

Even if one wished to retain the idea that degrees of belief correspond to
(or are revealed by?) bets an agent is willing to take, that degrees of belief are
comparable across different contexts, and all the rest of the classic subjective
Bayesian picture, this would still not have shown the relevance of a measure of
belief to the objective appraisal of what has been learned from data. Even if I
strongly believe a hypothesis, I will need a concept that allows me to express
whether or not the test with outcome x warrants H. That is what a severity as-
sessment would provide. In this respect, a dyed-in-the wool subjective Bayesian
could accept the severity construal for science, and still find a home for his per-
sonalistic conception.

Critics should also welcome this move because it underscores the basis for
many complaints: the strict frequentist formalism alone does not prevent cer-
tain counterintuitive inferences. That is why I allowed that a severity assess-
ment is on the metalevel in scrutinizing an inference. Granting that, the error-
statistical account based on the severity principle does prevent the counterintu-
itive inferences that have earned so much fame not only at Bayesian retreats,
but throughout the literature.

5.3.4 Tacking Paradox Scotched
In addition to avoiding fallacies within statistics, the severity logic avoids classic
problems facing both Bayesian and hypothetical-deductive accounts in philoso-
phy. For example, tacking on an irrelevant conjunct to a well-confirmed hypoth-
esis H seems magically to allow confirmation for some irrelevant conjuncts. Not
so in a severity analysis. Suppose the severity for claim H (given test T and
data x) is high: i.e., SEV(T, x, H) is high, whereas a claim J is not probed in the
least by test T. Then the severity for the conjunction (H & J) is very low, if not
minimal.

If SEV(Test T, data x, claim H) is high, but J is not probed in the
least by the experimental test T, then SEV (T, x, (H & J)) = very low
or minimal.

For example, consider:

H: GTR and J: Kuru is transmitted through funerary cannibalism,

and let data x0 be a value of the observed deflection of light in accordance with
the general theory of relativity, GTR. The two hypotheses do not refer to the
same data models or experimental outcomes, so it would be odd to conjoin them;
but if one did, the conjunction gets minimal severity from this particular data
set. Note that we distinguish x severely passing H, and H being severely passed
on all evidence in science at a time.
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A severity assessment also allows a clear way to distinguish the well-tested-
ness of a portion or variant of a larger theory, as opposed to the full theory.
To apply a severity assessment requires exhausting the space of alternatives to
any claim to be inferred (i.e., ‘H is false’ is a specific denial of H). These must
be relevant rivals to H—they must be at ‘the same level’ as H. For example,
if H is asking about whether drug Z causes some effect, then a claim at a dif-
ferent (‘higher’) level might a theory purporting to explain the causal effect. A
test that severely passes the former does not allow us to regard the latter as
having passed severely. So severity directs us to identify the portion or aspect
of a larger theory that passes. We may often need to refine the hypothesis of
stated interest so that it is sufficiently local to enable a severity assessment.
Background knowledge will clearly play a key role. Nevertheless we learn a lot
from determining that we are not allowed to regard given claims or theories as
passing with severity. I come back to this in the next section (and much more
elsewhere, e.g., Mayo 2010a,b).

6. Some Knock-Down Criticisms of Frequentist Error
Statistics

With the error-statistical philosophy of inference under our belts, it is easy to
run through the classic and allegedly damning criticisms of frequentist error-
statistical methods. Open up Bayesian textbooks and you will find, endlessly
reprised, the handful of ‘counterexamples’ and ‘paradoxes’ that make up the
charges leveled against frequentist statistics, after which the Bayesian account
is proferred as coming to the rescue. There is nothing about how frequentists
have responded to these charges; nor evidence that frequentist theory endorses
the applications or interpretations around which these ‘chestnuts’ revolve.

If frequentist and Bayesian philosophies are to find common ground, this
should stop. The value of a generous interpretation of rival views should cut
both ways. A key purpose of the forum out of which this paper arises is to
encourage reciprocity.

6.1 Fallacies of Rejection
A frequentist error statistical account, based on the notion of severity, accords
well with the idea of scientific inquiry as a series of small-scale inquiries into
local experimental questions. Many fallacious uses of statistical methods result
from supposing that the statistical inference licenses a jump to a substantive
claim that is ‘on a different level’ from the one well probed. Given the familiar
refrain that statistical significance is not substantive significance, it may seem
surprising how often criticisms of significance tests depend on running the two
together!

6.1.1 Statistical Significance is Not Substantive Significance: Different Levels
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Consider one of the strongest types of examples that Bayesians adduce. In a
coin-tossing experiment, for example, the result of n trials may occur in test-
ing a null hypothesis that the results are merely due to chance. A statistically
significant proportion of heads (greater than .5) may be taken as grounds for
inferring a real effect. But could not the same set of outcomes also have re-
sulted from testing a null hypothesis that denies ESP? And so, would not the
same data set warrant inferring the existence of ESP? If in both cases the data
are statistically significant to the same degree, the criticism goes, the error-
statistical tester is forced to infer that there is as good a warrant for inferring
the existence of ESP as there is to merely inferring a non-chance effect.2 But
this is false. Any subsequent question about the explanation of a non-chance
effect, plausible or not, is at a different level from the space of hypotheses about
the probability of heads in Bernouilli trials, and thus would demand a distinct
analysis. The nature and threats of error in the hypothesis about Harry’s ESP
differs from those in merely inferring a real effect. The first significance test did
not discriminate between different explanations of the effect, even if the effect
is real. The severity analysis makes this explicit.

6.1.2 Error-‘fixing’ Gambits in Model Validation
That a severity analysis always directs us to the relevant alternative (the denial
of whatever is to be inferred) also points up fallacies that may occur in testing
statistical assumptions.

In a widely used test for independence in a linear regression model, a sta-
tistically significant difference from a null hypothesis that asserts the trials are
independent may be taken as warranting one of many alternatives that could
explain non-independence. For instance, the alternative H1 might assert that
the errors are correlated with their past, expressed as a lag between trials. H1
now ‘fits’ the data all right, but since this is just one of many ways to account for
the lack of independence, alternative H1 passes with low severity. This method
has no chance of discerning other hypotheses that could also ‘explain’ the viola-
tion of independence. It is one thing to arrive at such an alternative based on
the observed discrepancy with the requirement that it be subjected to further
tests; it is another to say that this alternative is itself well tested, merely by
dint of ‘correcting’ the misfit. It is noteworthy that Gelman’s Bayesian account
advocates model checking. I am not familiar enough with its workings to say if it
sufficiently highlights this distinction (Gelman 2011, this special topic of RMM;
see also Mayo 2013).

2 Goldstein (2006) alludes to such an example, but his students, who were supposed to give credence
to support his construal, did not. He decided his students were at fault.
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6.1.3 Significant Results with Overly Sensitive Tests: Large n Problem
A second familiar fallacy of rejection takes evidence of a statistically significant
effect as evidence of a greater effect size than is warranted. It is known that with
a large enough sample size any discrepancy from a null hypothesis will probably
be detected. Some critics take this to show a rejection is no more informative
than information on sample size (e.g., Kadane 2011, 438). Fortunately, it is easy
to use the observed difference plus the sample size to distinguish discrepancies
that are and are not warranted with severity. It is easy to illustrate by reference
to our test T+.

With statistically significant results, we evaluate inferences of the form:

µ > µ1 where µ1 = (µ0 + γ).

Throwing out a few numbers may give sufficient warning to those inclined to
misinterpret statistically significant differences. Suppose test T+ has hypothe-
ses

H0: µ ≤ 0 vs. H1: µ > 0.

Let σ = 1, n = 25, so σx = (σ/
p

n) = .2.
In general:

SEV(µ > X̄ – δε(σ
p

n)) = 1 – ε.

Let X̄ = .4, so it is statistically significant at the .03 level. But look what happens
to severity assessments attached to various hypotheses about discrepancies from
0:

SEV(µ > 0) = .97
SEV(µ > .2) = .84
SEV(µ > .3) = .7
SEV(µ > .4) = .5

SEV(µ > .5) = .3
SEV(µ > .6) = .16

I have underlined the inference to µ > .4 since it is an especially useful bench-
mark.

So, clearly a statistically significant result cannot be taken as evidence for
just any discrepancy in the alternative region. The severity becomes as low as .5
for an alternative equal to the observed sample mean, and any greater discrep-
ancies are even more poorly tested! Thus, the severity assessment immediately
scotches this well-worn fallacy. Keep in mind that the hypotheses entertained
here are in the form, not of point values, but of discrepancies as large or larger
than µ (for µ, greater than 0).

Oddly, some Bayesian critics (e.g., Howson and Urbach 1993) declare that
significance tests instruct us to regard a statistically significant result at a given
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level as more evidence against the null, the larger the sample size; they then
turn around and blame the tests for yielding counterintuitive results! Others
have followed suit, without acknowledging this correction from long ago (e.g.,
Sprenger 2012, this special topic of RMM). In fact, it is indicative of less of a
discrepancy from the null than if it resulted from a smaller sample size. The
same point can equivalently be made for a fixed discrepancy from a null value
µ0, still alluding to our one-sided test T+. Suppose µ1 = µ0 + γ. An α-significant
difference with sample size n1 passes µ > µ1 less severely than with n2 where
n2 > n1 (see Mayo 1981; 1996).

6.2 P-values Conflict with Posterior Probabilities: The Criticism in
Statistics

Now we get to criticisms based on presupposing probabilism (in the form of
Bayesian posterior probabilities). Assuming that significance tests really se-
cretly aim to supply posterior probabilities to null hypotheses, the well-known
fact that a frequentist p-value can differ from a Bayesian posterior in H0 is
presumed to pose a problem for significance testers, if not prove their out and
out “unsoundness” (Howson 1997a,b). This becomes the launching-off point for
‘conciliatory’ methods that escape the problem while inheriting an improved
(Bayesian) foundation. What’s not to like?

Plenty, it turns out. Consider Jim Berger’s valiant attempt to get Fisher,
Jeffreys, and Neyman to all agree on testing (Berger 2003). Taking a conflict
between p-values and Bayesian posteriors as demonstrating the flaw with p-
values, he offers a revision of tests thought to do a better job from both Bayesian
and frequentist perspectives. He has us consider the two-sided version of our
Normal distribution test H0: µ = µ0 vs. H1: µ 6= µ0. (The difference between p-
values and posteriors is far less marked with one-sided tests.) Referring to our
example where the parameter measures mean pressure in the drill rig on that
fateful day in April 2010, the alternative hypothesis asserts that there is some
genuine discrepancy either positive or negative from some value µ0.

Berger warns that “at least 22%—and typically over 50%—of the correspond-
ing null hypotheses will be true” if we assume that “half of the null hypotheses
are initially true”, conditional on a 0.05 statistically significant d(x). Berger
takes this to show that it is dangerous to “interpret the p-values as error prob-
abilities”, but the meaning of ‘error probability’ has shifted. The danger follows
only by assuming that the correct error probability is given by the proportion of
true null hypotheses (in a chosen population of nulls), conditional on reaching
an outcome significant at or near 0.05 (e.g., .22%, or over 50%). The discrepancy
between p-values and posteriors increases with sample size. If n = 1000, a re-
sult statistically significant at the .05 level yields a posterior of .82 to the null
hypothesis! (A statistically significant result has therefore increased the proba-
bility in the null!) But why should a frequentist use such a prior? Why should
they prefer to report Berger’s ‘conditional error probabilities’ (of 22%, 50%, or
82%)?
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6.2.1 Fallaciously Derived Frequentist Priors
Berger’s first reply attempts to give the prior a frequentist flavor: It is assumed
that there is random sampling from a population of hypotheses, 50% of which are
assumed to be true. This serves as the prior probability for H0. We are then to
imagine repeating the current significance test over all of the hypotheses in the
pool we have chosen. Using a computer program, Berger describes simulating
a long series of tests and records how often H0 is true given a small p-value.
What can it mean to ask how often H0 is true? It is generally agreed that it
is either true or not true about this one universe. But, to quote C. S. Peirce,
we are to imagine that “universes are as plentiful as blackberries”, and that we
can randomly select one from a bag or urn. Then the posterior probability of H0
(conditional on the observed result) will tell us whether the original assessment
is misleading. But which pool of hypotheses should we use? The ‘initially true’
percentages will vary considerably. Moreover, it is hard to see that we would ever
know the proportion of true nulls rather than merely the proportion that thus far
has not been rejected by other statistical tests! But the most serious flaw is this:
even if we agreed that there was a 50% chance of randomly selecting a true null
hypothesis from a given pool of nulls, .5 would still not give the error statistician
a frequentist prior probability of the truth of this hypothesis. It would at most
give the probability of the event of selecting a hypothesis with property ‘true’.
(We are back to Carnap’s frequentist.) An event is not a statistical hypothesis
that assigns probabilities to outcomes.

Nevertheless, this gambit is ubiquitous across the philosophy of statistics
literature. It commits the same fallacious instantiation of probabilities:

50% of the null hypotheses in a given pool of nulls are true.
This particular null hypothesis H0 was randomly selected from this
pool.
Therefore P(H0 is true) = .5.

I have called this the fallacy of probabilistic instantiation.

6.2.2 The Assumption of ‘Objective’ Bayesian Priors
When pressed, surprisingly, Berger readily disowns the idea of obtaining fre-
quentist priors by sampling from urns of nulls (though he continues to repeat it).
He mounts a second reply: error statisticians should use the ‘objective’ Bayesian
prior of 0.5 to the null, the remaining 0.5 probability being spread out over the
alternative parameter space. Many take this to be an ‘impartial’ or ‘uninforma-
tive’ Bayesian prior probability, as recommended by Jeffreys (1939). Far from
impartial, the ‘spiked concentration of belief in the null’ gives high weight to
the null and is starkly at odds with the role of null hypotheses in testing. Some
claim that ‘all nulls are false’, the job being to unearth discrepancies from it.

It also leads to a conflict with Bayesian ‘credibility interval’ reasoning, since
0 is outside the corresponding interval (I come back to this). Far from consider-
ing the Bayesian posterior as satisfying its principles, the error-statistical tester
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would balk at the fact that use of the recommended priors can result in highly
significant results often being construed as no evidence against the null—or
even evidence for it!

The reason the Bayesian significance tester wishes to start with a fairly high
prior to the null is that otherwise its rejection would be merely to claim that a
fairly improbable hypothesis has become more improbable (Berger and Sellke
1987, 115). By contrast, it is informative for an error-statistical tester to reject
a null hypothesis, even assuming it is not precisely true, because we can learn
how false it is.

Other reference Bayesians seem to reject the ‘spiked’ prior that is at the
heart of Berger’s recommended frequentist-Bayesian reconciliation, at least of
Berger (2003). This includes Jose Bernardo, who began his contribution to our
forum with a disavowal of just those reference priors that his fellow default
Bayesians have advanced (2010). I continue to seek a clear epistemic warrant
for the priors he does recommend. It will not do to bury the entire issue under
a decision-theoretic framework that calls for its own epistemic justification. The
default Bayesian position on tests seems to be in flux.

6.3 Severity Values Conflict with Posteriors: The Criticism
in Philosophy

Philosophers of science have precisely analogous versions of this criticism: error
probabilities (associated with inferences to hypotheses) are not posterior proba-
bilities in hypotheses, so they cannot serve in an adequate account of inference.
They are exported to launch the analogous indictment of the severity account
(e.g., Howson 1997a,b; Achinstein 2001; 2010; 2011). However severely I might
wish to say that a hypothesis H has passed a test, the Bayesian critic assigns
a sufficiently low prior probability to H so as to yield a low posterior probabil-
ity in H. But this is still no argument about why this counts in favor of, rather
than against, their Bayesian computation as an appropriate assessment of the
warrant to be accorded to hypothesis H. In every example, I argue, the case is
rather the reverse. Here I want to identify the general flaw in their gambit.

To begin with, in order to use techniques for assigning frequentist proba-
bilities to events, their examples invariably involve ‘hypotheses’ that consist of
asserting that a sample possesses a characteristic, such as ‘having a disease’ or
‘being college ready’ or, for that matter, ‘being true’. This would not necessarily
be problematic if it were not for the fact that their criticism requires shifting the
probability to the particular sample selected—for example, Isaac is ready, or this
null hypothesis is true. This was, recall, the fallacious probability assignment
that we saw in Berger’s attempt in 6.2.1.

6.3.1 Achinstein’s Epistemic Probabilist
Achinstein (2010, 187) has most recently granted the fallacy . . . for frequentists:

“My response to the probabilistic fallacy charge is to say that it
would be true if the probabilities in question were construed as rela-
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tive frequencies. However, [. . . ] I am concerned with epistemic prob-
ability.”

He is prepared to grant the following instantiations:

P% of the hypotheses in a given pool of hypotheses are true (or a
character holds for p%).
The particular hypothesis Hi was randomly selected from this pool.
Therefore, the objective epistemic probability P(Hi is true) = p.

Of course, epistemic probabilists are free to endorse this road to posteriors—this
just being a matter of analytic definition. But the consequences speak loudly
against the desirability of doing so.

6.3.2 Isaac and College Readiness
An example Achinstein and I have debated (precisely analogous to several that
are advanced by Howson, e.g., Howson 1997a,b) concerns a student, Isaac, who
has taken a battery of tests and achieved very high scores, s, something given
to be highly improbable for those who are not college ready. We can write the
hypothesis:

H(I): Isaac is college ready.

And let the denial be H’:

H’(I): Isaac is not college ready (i.e., he is deficient).

The probability for such good results, given a student is college ready, is ex-
tremely high:

P(s|H(I)) is practically 1,

while very low assuming he is not college ready. In one computation, the prob-
ability that Isaac would get such high test results, given that he is not college
ready, is .05:

P(s|H’(I)) = .05.

But imagine, continues our critic, that Isaac was randomly selected from the
population of students in, let us say, Fewready Town—where college readiness
is extremely rare, say one out of one thousand. The critic infers that the prior
probability of Isaac’s college-readiness is therefore .001:

(*) P(H(I)) = .001.

If so, then the posterior probability that Isaac is college ready, given his high
test results, would be very low:
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P(H(I)|s) is very low,

even though the posterior probability has increased from the prior in (*).
The fallacy here is that although the probability of a randomly selected stu-

dent taken from high schoolers in Fewready Town is .001, it does not follow that
Isaac, the one we happened to select, has a probability of .001 of being college
ready (Mayo 1997; 2005, 117). That Achinstein’s epistemic probabilist denies
this fallacy scarcely speaks in favor of that account.

The example considers only two outcomes: reaching the high scores s, or
reaching lower scores, ∼s. Clearly a lower grade ∼s gives even less evidence of
readiness; that is, P(H’(I)|∼s) > P(H’(I)|s). Therefore, whether Isaac scored as
high as s or lower, ∼s, Achinstein’s epistemic probabilist is justified in having
high belief that Isaac is not ready. Even if he claims he is merely blocking evi-
dence for Isaac’s readiness, the analysis is open to problems: the probability of
Achinstein finding evidence of Isaac’s readiness even if in fact he is ready (H(I)
is true) is low if not zero. Other Bayesians might interpret things differently,
noting that since the posterior for readiness has increased, the test scores pro-
vide at least some evidence for H(I)—but then the invocation of the example to
demonstrate a conflict between a frequentist and Bayesian assessment would
seem to largely evaporate.

To push the problem further, suppose that the epistemic probabilist receives
a report that Isaac was in fact selected randomly, not from Fewready Town, but
from a population where college readiness is common, Fewdeficient Town. The
same scores s now warrant the assignment of a strong objective epistemic be-
lief in Isaac’s readiness (i.e., H(I)). A high-school student from Fewready Town
would need to have scored quite a bit higher on these same tests than a student
selected from Fewdeficient Town for his scores to be considered evidence of his
readiness. When we move from hypotheses like ‘Isaac is college ready’ to scien-
tific generalizations, the difficulty for obtaining epistemic probabilities via his
frequentist rule becomes overwhelming.

We need not preclude that H(I) has a legitimate frequentist prior; the fre-
quentist probability that Isaac is college ready might refer to genetic and envi-
ronmental factors that determine the chance of his deficiency—although I do not
have a clue how one might compute it. The main thing is that this probability is
not given by the probabilistic instantiation above.

These examples, repeatedly used in criticisms, invariably shift the meaning
from one kind of experimental outcome—a randomly selected student has the
property ‘college ready’—to another—a genetic and environmental ‘experiment’
concerning Isaac in which the outcomes are ready or not ready.

This also points out the flaw in trying to glean reasons for epistemic belief
with just any conception of ‘low frequency of error’. If we declared each student
from Fewready to be ‘unready’, we would rarely be wrong, but in each case the
‘test’ has failed to discriminate the particular student’s readiness from his un-
readiness. Moreover, were we really interested in the probability that a student
randomly selected from a town is college ready, and had the requisite probability
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model (e.g., Bernouilli), then there would be nothing to stop the frequentist error
statistician from inferring the conditional probability. However, there seems to
be nothing ‘Bayesian’ in this relative frequency calculation. Bayesians scarcely
have a monopoly on the use of conditional probability!

6.4 Trivial Intervals and Allegations of Unsoundness
Perhaps the most famous, or infamous, criticism of all—based again on the in-
sistence that frequentist error probabilities be interpreted as degrees of belief—
concerns interval estimation methods. The allegation does not merely assert
that probability should enter to provide posterior probabilities—the assump-
tion I called probabilism. It assumes that the frequentist error statistician also
shares this goal. Thus, whenever error probabilities, be they p-values or confi-
dence levels, disagree with a favored Bayesian posterior, this is alleged to show
that frequentist methods are unsound!

The ‘trivial interval’ example is developed by supplementing a special case of
confidence interval estimation with additional, generally artificial, constraints
so that it can happen that a particular 95% confidence interval is known to be
correct—a trivial interval. If we know it is true, or so the criticism goes, then to
report a .95 rather than a 100% confidence-level is inconsistent! Non-Bayesians,
Bernardo warns, “should be subject to some re-education using well known,
standard counter-examples such as the fact that conventional 0.95-confidence
regions may actually consist of the whole real line” (2008, 453).

I discussed this years ago, using an example from Teddy Seidenfeld (Mayo
1981); Cox addressed it long before: “Viewed as a single statement [the trivial
interval] is trivially true, but, on the other hand, viewed as a statement that all
parameter values are consistent with the data at a particular level is a strong
statement about the limitations of the data.” (Cox and Hinkley 1974, 226) With
this reading, the criticism evaporates.

Nevertheless, it is still repeated as a knock-down criticism of frequentist con-
fidence intervals. But the criticism assumes, invalidly, that an error probability
is to be assigned as a degree of belief in the particular interval that results. In
our construal, the trivial interval amounts to saying that no parameter values
are ruled out with severity, scarcely a sign that confidence intervals are incon-
sistent. Even then, specific hypotheses within the interval would be associated
with different severity values. Note: by the hypothesis within the confidence
interval, I mean that for any parameter value in the interval µ1, there is an as-
sociated claim of the form µ ≤ µ1 or µ > µ1, and one can entertain the severity for
each. Alternatively, in some contexts, it can happen that all parameter values
are ruled out at a chosen level of severity.

Even though examples adduced to condemn confidence intervals are artifi-
cial, moving outside statistics, the situation in which none of the possible values
for a parameter can be discriminated is fairly common in science. Then the ‘triv-
ial interval’ is precisely what we would want to infer, at least viewing the goal
as reporting what has passed at a given severity level. The famous red shift
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experiments on the General Theory of Relativity (GTR) for instance, were deter-
mined to be incapable of discriminating between different relativistic theories
of gravity—an exceedingly informative result determined only decades after the
1919 experiments.

6.5 Getting Credit (or Blamed) for Something You Didn’t Do
Another famous criticism invariably taken as evidence of the frequentist’s need
for re-education—and readily pulled from the bag of Bayesian jokes carried to
Valencia—accuses the frequentist (error-statistical) account of licensing the fol-
lowing:

Oil Exec: Our inference to H: the pressure is at normal levels is
highly reliable!
Senator: But you conceded that whenever you were faced with am-
biguous readings, you continually lowered the pressure, and that the
stringent ‘cement bond log’ test was entirely skipped.
Oil Exec: We omitted reliable checks on April 20, 2010, but usually
we do a better job—I am giving the average!

He might give further details:

Oil Exec: We use a randomizer that most of the time directs us to run
the gold-standard check on pressure. But, April 20 just happened to
be one of those times we did the non-stringent test; but on average
we do ok.

Overall, this ‘test’ rarely errs, but that is irrelevant to appraising the inference
from the actual data on April 20, 2010. To report the average over tests whose
outcomes, had they been performed, are unknown, violates the severity crite-
rion. The data easily could have been generated when the pressure level was
unacceptably high, therefore it misinterprets the actual data. The question is
why anyone would saddle the frequentist with such shenanigans on averages?
Lest anyone think I am inventing a criticism, here is the most famous statistical
instantiation (Cox 1958).

6.6 Two Measuring Instruments with Different Precisions
A single observation X is to be made on a normally distributed random variable
with unknown mean µ, but the measurement instrument is chosen by a coin
flip: with heads we use instrument E’ with a known small variance, say 10-4,
while with tails, we use E”, with a known large variance, say 104. The full data
indicate whether E’ or E” was performed, and the particular value observed,
which we can write as x’ and x”, respectively.

In applying our test T+ to a null hypothesis, say, µ = 0, the ‘same’ value of
X would correspond to a much smaller p-value were it to have come from E’
than if it had come from E”. Denote the two p-values as p’ and p”, respectively.
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However, or so the criticism proceeds, the error statistician would report the
average p-value: .5(p’ + p”).

But this would give a misleading assessment of the precision and correspond-
ing severity with either measurement! In fact, any time an experiment E is
performed, the critic could insist we consider whether we could have done some
other test, perhaps a highly imprecise test or a much more precise test or any-
thing in between, and demand that we report whatever average properties they
come up with. The error statistician can only shake her head in wonder that this
gambit is at the heart of criticisms of frequentist tests. This makes no sense. Yet
it is a staple of Bayesian textbooks, and a main reason given for why we must
renounce frequentist methods.

But what could lead the critic to suppose the error statistician must average
over experiments not even performed? Here is the most generous construal I
can think of. Perhaps the critic supposes what is actually a distortion of even
the most radical behavioristic construal:

• If you consider outcomes that could have occurred in hypothetical repeti-
tions of this experiment, you must also consider other experiments that
were not (but could have been?) run in reasoning from the data observed,
and report some kind of frequentist average.

So if you are not prepared to average over any of the imaginary tests the critic
wishes to make up, then you cannot consider any data set other than the one
observed. This, however, would entail no use of error probabilities. This alone
should be a sign to the critic that he has misinterpreted the frequentist, but that
is not what has happened.

Instead Bayesians argue that if one tries to block the critics’ insistence that
I average the properties of imaginary experiments, then “unfortunately there is
a catch” (Ghosh, Delampady and Semanta 2006, 38): I am forced to embrace the
strong likelihood principle, which entails that frequentist sampling distributions
are irrelevant to inference, once the data are obtained. This is a false dilemma:
evaluating error probabilities must always be associated with the model of the
experiment I have performed. Thus we conclude that “the ‘dilemma’ argument
is therefore an illusion” (Cox and Mayo 2010). Nevertheless, the critics are right
about one thing: if we were led to embrace the LP, all error-statistical principles
would have to be renounced. If so, the very idea of reconciling Bayesian and
error-statistical inference would appear misguided.

7. Can/Should Bayesian and Error Statistical Philosophies
Be Reconciled?

Stephen Senn makes a rather startling but doubtlessly true remark:

“The late and great George Barnard, through his promotion of the
likelihood principle, probably did as much as any statistician in the
second half of the last century to undermine the foundations of the
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then dominant Neyman-Pearson framework and hence prepare the
way for the complete acceptance of Bayesian ideas that has been
predicted will be achieved by the De Finetti-Lindley limit of 2020.”
(Senn 2008, 459)

Many do view Barnard as having that effect, even though he himself rejected
the likelihood principle (LP). One can only imagine Savage’s shock at hearing
that contemporary Bayesians (save true subjectivists) are lukewarm about the
LP! The 2020 prediction could come to pass, only to find Bayesians practicing in
bad faith. Kadane, one of the last of the true Savage Bayesians, is left to wonder
at what can only be seen as a Pyrrhic victory for Bayesians.

7.1 The (Strong) Likelihood Principle (LP)
Savage defines the LP as follows:

“According to Bayes’s theorem, P(x|µ) [. . . ] constitutes the entire ev-
idence of the experiment, that is, it tells all that the experiment has
to tell. More fully and more precisely, if y is the datum of some other
experiment, and if it happens that P(x| µ) and P(y| µ) are propor-
tional functions of µ (that is, constant multiples of each other), then
each of the two data x and y have exactly the same thing to say about
the values of µ.” (Savage 1962, 17)

Berger and Wolpert, in their monograph The Likelihood Principle (1988), put
their finger on the core issue:

“The philosophical incompatibility of the LP and the frequentist
viewpoint is clear, since the LP deals only with the observed x, while
frequentist analyses involve averages over possible observations.
[. . . ] Enough direct conflicts have been [. . . ] seen to justify viewing
the LP as revolutionary from a frequentist perspective.” (Berger and
Wolpert 1988, 65–66)

The reason I argued in 1996 that “you cannot be a little bit Bayesian”, is that
if one is Bayesian enough to accept the LP, one is Bayesian enough to renounce
error probabilities.

7.2 Optional Stopping Effect
That error statistics violates the LP is often illustrated by means of the optional
stopping effect. We can allude to our two-sided test from a Normal distribution
with mean µ and standard deviation σ, i.e.,

Xi∼N(µ,σ) and we wish to test H0: µ = 0, vs. H1: µ 6= 0.

Rather than fix the sample size ahead of time, the rule instructs us:
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Keep sampling until H is rejected at the .05 level (i.e., keep sampling
until |X̄| ≥ 1.96 σ/

p
n).

With n fixed the type 1 error probability is .05, but with this stopping rule the
actual significance level differs from, and will be greater than, .05. In the Like-
lihood Principle, Berger and Wolpert claim that “the need here for involvement
of the stopping rule clearly calls the basic frequentist premise into question”
(74.2–75). But they are arguing from a statistical philosophy incompatible with
the error-statistical philosophy which requires taking into account the relevant
error probabilities.

Therefore, to ignore aspects of the data generation that alter error proba-
bilities, leads to erroneous assessments of the well testedness, or severity, of
the inferences. Ignoring the stopping rule allows a high or maximal probabil-
ity of error, thereby violating what Cox and Hinkley call “the weak repeated
sampling rule”. As Birnbaum (1969, 128) puts it, “the likelihood concept can-
not be construed so as to allow useful appraisal, and thereby possible control,
of probabilities of erroneous interpretations”. From the error statistical stand-
point, ignoring the stopping rule allows inferring that there is evidence for a
null hypothesis even though it has passed with a low or even 0 severity.

7.3 The Optional Stopping Effect with (Two-sided) Confidence
Intervals

The equivalent stopping rule can be framed in terms of the corresponding 95%
confidence interval method:

Keep sampling until the 95% confidence interval excludes 0.

Berger and Wolpert concede that using this stopping rule “has thus succeeded
in getting the [Bayesian] conditionalist to perceive that µ 6= 0, and has done so
honestly” (80–81). This is a striking admission—especially as the Bayesian cred-
ibility interval assigns a probability of .95 to the truth of the interval estimate:

µ = x̄ ± 1.96(σ/
p

n).

Does this lead the authors to renounce the LP? It does not. At least not then.
To do so would be to renounce Bayesian coherence. From the perspective of the
Bayesian (or likelihoodist), to take the stopping rule into account is tantamount
to considering the experimenter’s intentions (when to stop), which have no place
in appraising data. This overlooks the fact that the error statistician has an
entirely objective way to pick up on the stopping rule effect, or anything else that
influences error probabilities—namely, in the error-statistical report. Although
the choice of stopping rule (as with other test specifications) is determined by
the intentions of the experimenter, it does not follow that taking account of its
influence is to take account of subjective intentions. The allegation is a non
sequitur.
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One need not allude to optional stopping examples to see that error-statistical
methods violate the LP. The analogous problem occurs if one has the null hypoth-
esis and is allowed to search for maximally likely hypotheses (Mayo 1996, chap.
9; Mayo and Kruse 2001; Cox and Hinkley 1974)

7.4 Savage’s Sleight of Hand in Defense of the LP
While Savage touts the ‘simplicity and freedom’ enjoyed by the Bayesian, who
may ignore the stopping rule, he clearly is bothered by the untoward implica-
tions of doing so. (Armitage notes that “thou shalt be misled” if one is unable to
take account of the stopping rule.) In dismissing Armitage’s result (as no more
possible than a perpetual motion machine), however, Savage switches to a very
different case—one where the null and the alternative are both (point) hypothe-
ses that have been fixed before the data, and where the test is restricted to these
two preselected values. In this case, it is true, the high probability of error is
averted, but it is irrelevant to the context in which the optional stopping problem
appears—the two-sided test or corresponding confidence interval. Defenders of
the LP often make the identical move to the point against point example (Roy-
all 1997). Shouldn’t we trust our intuition in the simple case of point against
point, some ask, where upholding the LP does not lead to problems (Berger and
Wolpert, 83)? No. In fact, as Barnard (1962, 75) explained (to Savage’s sur-
prise, at the ‘Savage Forum’), the fact that the alternative hypothesis need not
be explicit is what led him to deny the LP in general.

7.5 The Counterrevolution?
But all this happened before the sands began to shift some ten years ago. Nowa-
days leading default Bayesians have conceded that desirable reference priors
force them to consider the statistical model, “leading to violations of basic prin-
ciples, such as the likelihood principle and the stopping rule principle” (Berger
2006, 394). But it is not enough to describe a certain decision context and loss
function in which a Bayesian could take account of the stopping rule. Following
our requirement for assessing statistical methods philosophically, we require a
principled ground (see Mayo 2011). Similarly Bernardo (2005; 2010) leaves us
with a concession (to renounce the LP) but without a philosophical foundation.
By contrast, a justification that rests on having numbers agree (with those of
the error statistician) lacks a philosophical core.

8. Concluding Remarks: Deep versus Shallow
Statistical Philosophy

As I argued in part 1 (2011, this special topic of RMM), the Bayesians have
ripped open their foundations for approaches that scarcely work from any stand-
point. While many Bayesians regard the default Bayesian paradigm as more
promising than any of its contenders, we cannot ignore its being at odds with
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two fundamental goals of the Bayesian philosophical standpoint: incorporat-
ing information via priors, and adhering to the likelihood principle. Berger
(2003) rightly points out that arriving at subjective priors, especially in com-
plex cases, also produces coherency violations. But the fact that human limi-
tations may prevent attaining a formal ideal is importantly different from re-
quiring its violation in order to obtain the recommended priors (Cox and Mayo
2010). In their attempt to secure default priors, and different schools have their
very own favorites, it appears the default Bayesians have made a mess out of
their philosophical foundations (Cox 2006; Kadane 2011). The priors they rec-
ommend are not even supposed to be interpreted as measuring beliefs, or even
probabilities—they are often improper. Were default prior probabilities to rep-
resent background information, then, as subjective Bayesians rightly ask, why
do they differ according to the experimental model? Default Bayesians do not
agree with each other even with respect to standard methods.

For instance, Bernardo, but not Berger, rejects the spiked prior that leads
to pronounced conflicts between frequentist p-values and posteriors. While this
enables an agreement on numbers (with frequentists) there is no evidence that
the result is either an objective or rational degree of belief (as he intends) or
an objective assessment of well-testedness (as our error statistician achieves).
Embedding the analysis into a decision-theoretic context with certain recom-
mended loss functions can hide all manner of sins, especially once one moves to
cases with multiple parameters (where outputs depend on a choice of ordering
of importance of nuisance parameters). The additional latitude for discretionary
choices in decision-contexts tends to go against the purported goal of maximiz-
ing the contribution of the data in order to unearth ‘what can be said’ about
phenomena under investigation. I invite leading reference Bayesians to step up
to the plate and give voice to the philosophy behind the program into which they
have led a generation of statisticians: it appears the emperor has no clothes.

While leading Bayesians embrace default Bayesianism, even they largely
seem to do so in bad faith. Consider Jim Berger:

“Too often I see people pretending to be subjectivists, and then using
weakly informative priors that the objective Bayesian community
knows are terrible and will give ridiculous answers; subjectivism
is then being used as a shield to hide ignorance. In my own more
provocative moments, I claim that the only true subjectivists are
the objective Bayesians, because they refuse to use subjectivism as a
shield against criticism of sloppy pseudo-Bayesian practice.” (Berger
2006, 463)

This hardly seems a recommendation for either type of Bayesian, yet this is
what the discussion of foundations tends to look like these days. Note too that
the ability to use Bayesian methods to obtain ‘ridiculous answers’ is not taken
as grounds to give up on all of it; whereas, the possibility of ridiculous uses of
frequentist methods is invariably taken as a final refutation of the account—
even though we are given no evidence that anyone actually commits them!
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To echo Stephen Senn (2011, this special topic of RMM) perhaps the only
thing these Bayesian disputants agree on, without question, is that frequen-
tist error statistical methods are wrong, even as they continue to be used and
developed in new arenas. The basis for this dismissal? If you do not already
know you will have guessed: the handful of well-worn, and thoroughly refuted,
howlers from 50 years ago, delineated in section 5.

Still, having found the Bayesian foundations in shambles, even having dis-
carded the Bayesian’s favorite whipping boys, scarcely frees frequentist statisti-
cians from getting beyond the classic caricatures of Fisherian and N-P methods.
The truth is that even aside from the distortions due to personality frictions,
these caricatures differ greatly from the ways these methods were actually used.
Moreover, as stands to reason, the focus was nearly always on theoretical prin-
ciple and application—not providing an overarching statistical philosophy. They
simply did not have a clearly framed statistical philosophy. Indeed, one finds
both Neyman and Pearson emphasizing repeatedly that these were tools that
could be used in a variety of ways, and what really irked Neyman was the ten-
dency toward a dogmatic adherence to a presumed a priori rationale standpoint.
How at odds with the subjective Bayesians who tend to advance their account
as the only rational way to proceed. Now that Bayesians have stepped off their
a priori pedestal, it may be hoped that a genuinely deep scrutiny of the frequen-
tist and Bayesian accounts will occur. In some corners of practice it appears that
frequentist error statistical foundations are being discovered anew. Perhaps fre-
quentist foundations, never made fully explicit, but at most lying deep below the
ocean floor, are being disinterred. While some of the issues have trickled down
to the philosophers, by and large we see ‘formal epistemology’ assuming the tra-
ditional justifications for probabilism that have long been questioned or thrown
overboard by Bayesian statisticians. The obligation is theirs to either restore or
give up on their model of ‘rationality’.
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