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Abstract

Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all
isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals,
causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings
describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein
(Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus
replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et
al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3
in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of
the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase
subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447Dc),
virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior
in cell culture did not reveal major differences between wildtype (Vp447) and Vp447Dc. Upon infection of the natural host,
Vp447Dc was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding
member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the
role of NS3 in particle assembly and the function of core protein in general.
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Introduction

The genus pestivirus, together with the genera hepacivirus,

flavivirus and the newly proposed genus pegivirus [1], constitutes

the family Flaviviridae. Cloven-hoofed animals are affected by

pestiviruses, which cause severe diseases like classical swine fever

(CSF) and bovine viral diarrhea (BVD). Pestiviruses possess a

single stranded RNA genome of positive polarity with one open

reading frame (orf) encoding approximately 4000 amino acids (aa).

The resulting polyprotein is processed co- and posttranslationally

into at least 12 viral proteins by three viral and two cellular

proteases [2].

Pestiviral particles are enveloped and contain three virus-

encoded glycoproteins, Erns, E1 and E2. Erns is unique for

pestiviruses and is the only known viral structural protein with an

uridinylate specific RNase domain belonging to the T2 RNase

family [3,4]. E1 and E2 or analogous proteins (prM, E) are

encoded by all members of the Flaviviridae. Inside the virus particle,

the viral genome is accompanied by a core protein. However,

members of the proposed genus pegivirus, GBV- A and GBV- C

[reviewed by 1], do not appear to encode a core protein.

Pestiviruses encode a small, basic core protein, which, in contrast

to hepaci- and flaviviruses, does not possess any predicted regular

secondary structure and is intrinsically disordered [5,6]. The

pestiviral core protein has RNA chaperone activity [6] and its

implicated functions are condensation of the viral RNA genome

and subsequent packaging into virions. Its ability to bind RNA

relies on the overall protein charge, which results in an unspecific

affinity for nucleic acids [5]. The pestiviral core protein is

processed at its N-terminus by the autoprotease Npro [7], whereas

the C-terminus is generated by signal peptide peptidase (SPP)

cleavage [8]. Recent findings revealed that deletion of basic areas

of classical swine fever virus (CSFV) core protein (aa 213–231 of

the viral polyprotein) results in a ten-fold reduction of virus output,

whereas deletion of small, less charged stretches (aa 194–198 and

aa 208–212) leads to a more than 1000-fold drop in virus output

[9]. This implicates a more complex mechanism of core function

in particle morphogenesis, which is not solely relying on overall

protein charge. Duplication and triplication of the CSFV core

protein gene as well as integration of up to 3 yellow fluorescent

protein (YFP) genes between 2 core coding regions yielded

replication competent viruses whose virus output was approxi-

mately 100-fold reduced in comparison to wildtype, revealing a

high tolerance of core protein to size increase. We also reported
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the rescue of a CSFV encoding an YFP-core fusion protein by a

single amino acid substitution in the NS3 helicase domain

(N2256Y) [9]. This finding points to an ability of NS3 to substitute

core functions.

For all members of the Flaviviridae, there is increasing evidence

that nonstructural proteins are required for virus morphogenesis

[reviewed by 10]. Single amino acid residues in the NS3 helicase

domain of yellow fever virus (YFV) and hepatitis C virus (HCV)

have been described as important for particle formation [11,12].

Apart from NS3, p7, NS2 and NS5A have been reported as factors

involved in HCV particle generation [13–17].

The pestiviral NS3 is a multifunctional molecule possessing

protease, NTPase and helicase activity [18–22] and shares

similarity with the analogous protein of hepaci- and flaviviruses.

Its uncleaved precursor, NS2–3, has been reported to be essential

for particle formation [23,24].

In the present study, we describe the ability of CSFV NS3 to

compensate for functionally compromised core proteins and even

the deletion of nearly 90% of the core gene by acquisition of single

codon rescue mutations in its helicase subdomain 3. These findings

provide strong evidence for a major role of the NS3 helicase

domain in pestiviral particle assembly and implicate questions

about the function of core protein. As members of the newly

proposed genus pegivirus [1] – namely GBV- A and GBV- C - do

not encode an obvious core protein, we provide experimental

evidence that loss of the core coding region is tolerated by another

member of the Flaviviridae.

Results

Single amino acid substitutions in the NS3 helicase
domain rescue CSFVs encoding modified Core proteins

Recently, we reported that a single amino acid substitution

(SAAS) (N2256Y) in the helicase domain of NS3 rescued a poorly

growing CSFV construct (Vp447Yc) that encoded a core protein of

which the N-terminus was fused to YFP [9]. This unexpected

result prompted us to investigate spontaneously occurring

revertants of a CSFV mutant in detail that initially was designed

to determine requirements for core processing by signal peptide

peptidase (SPP). Replacement of most of the signal peptide (aa

250–261) by a stretch of 8 leucine residues (Figure 1B) led to a

poorly growing virus (4.56103 ffu/ml) (Vp4478leu) that showed a

more than 200-fold rise in titer upon passaging in SK6 cells. To

identify the genomic change(s) leading to virus rescue, virus

progeny was repeatedly plaque-selected. Interestingly, sequence

analysis of these selected viruses did not reveal changes in the

genomic sequence of the mutated core. Rescue mutations were

identified by reintroducing genomic fragments (nt31–1580;

nt1480–3970; nt 3900–5570; nt 5500–8590; nt8330–10510; nt

10420–12290) of the rescued viruses into the parental plasmid

p4478leu. Only introduction of a genomic fragment nt 5500–8590

encoding parts of NS3-NS4B (aa 1730–2656 of the polyprotein)

into the parental plasmid resulted in rescue after transfection of the

respective viral genomes. Upon sequencing of this fragment one

SAAS was found in each clone tested in NS3 helicase subdomain 3

(namely E2160G, N2177Y, Q2189K, P2200T and N2256D) (Figure 1B).

To prove that these SAAS were indeed responsible for the rescue,

the respective mutations were each engineered into the full-length

cDNA construct of Vp4478leu (p4478leuE2160G, p4478leuN2177Y,

p4478leuQ2189K, p4478leuP2200T, p4478leuN2256D). After transfec-

tion, the resulting viruses grew to titers exceeding 105 ffu/ml

without the need for passaging (Table 1). Growth characteristics

are shown for the virus growing to highest titers (Vp4478leuN2177Y)

(Figure 2A). The overall titer of Vp4478leuN2177Y was about one

log10 below the one of Vp447. In the background of the parental

Vp447, the N2117Y substitution led to a more than 20- fold

decrease of virus output (Vp447N2177Y) in comparison to Vp447

(Table 1).

To assess whether acquisition of SAAS in NS3 helicase

subdomain 3 might be a general mechanism of CSFV to

overcome defects in the core gene, rescue experiments with a

different loss of core function mutant were attempted. An initially

poorly growing CSFV (7.16102 ffu/ml 24 h after transfection)

encoding an internal deletion (aa 208–212) in the core gene

(Vp447D208–212) (Figure 1C) was passaged in SK6 cells until an

increase in virus growth was observed. Using the same approach

as described above, a SAAS at position N2177H was identified.

After introducing this SAAS N2177H into parental plasmid, virus

titer (Vp447D208–212N2177H) rose to 7.96105 ffu/ml 24 h after

transfection of the respective virus genome in SK6 cells (Table 1).

Apparently single amino acid substitutions in the C-terminal

subdomain of the NS3 helicase compensate for functionally

compromised core mutants that are compromised by N-terminal

fusion to YFP (Vp447Yc), defective C-terminal processing

(Vp4478leu) or an internal deletion (Vp447D208–212), respectively.

Core protein can be detected in lysates of cells transfected with

genome of Vp447 and in pelleted virions of Vp447 (Figure 2B).

Surprisingly, Western blot analysis of cell lysate and pelleted virus

particles revealed that neither Vp447N2177Y nor Vp4478LeuN2177Y

contained detectable levels of core protein in concentrated virus

preparations. Core protein could be detected in lysates of SK6 cells

transfected with genome of Vp447N2177Y, but not after transfection

of genomes of Vp4478leu and Vp4478leuN2177Y.

Rescue of a core deletion mutant (Vp447Dc)
Mutations within the NS3 helicase subdomain 3 allowed the rescue

of viruses with compromised core function. To examine whether the

core-coding region is dispensable altogether, almost the entire core

gene (aa170–246; 77 of the 86 codons) was deleted in p447, yielding

p447Dc (Figure 1D). Nine C-terminal amino acids (247–255:

LEKALLAWA) were preserved as part of the signal sequence (aa

247–269) to ensure translocation of Erns into the ER lumen. While

this construct lacking the core-coding region was not viable,

Author Summary

Virus particles of members of the Flaviviridae consist of an
inner complex of viral RNA genome and core protein that
together form the nucleocapsid, and an outer lipid layer
containing the viral glycoproteins. Functional analyses of
core protein of the classical swine fever virus (CSFV), a
pestivirus related to hepatitis C virus (HCV), led to the
observation that crippling mutations or even complete
deletion of the core gene were compensated by single
amino acid substitutions in the helicase domain of non-
structural protein 3 (NS3). NS3 is well conserved among
the Flaviviridae and acts as protease and helicase. In
addition to its essential role in RNA replication, NS3
apparently organizes the incorporation of RNA into
budding virus particles. Characterization of core deficient
CSFV particles (Vp447Dc) revealed that the lack of core had
no effect with regard to thermostability, size, density, and
morphology. Vp447Dc was fully attenuated in the natural
host. Our results provide evidence that core protein is not
essential for virus assembly. Hence, Vp447Dc might help to
explain the enigmatic existence of GB viruses -A and -C,
close relatives of HCV that do not encode an apparent core
protein.

Pestivirus without Core
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introduction of above described SAAS in NS3 into p447Dc

(p447DcE2160G, p447DcN2177H, p447DcN2177Y, p447DcQ2189K,

p447DcP2200T, p447DcN2256D) led to the release of infectious virus

with titers of at least 16104 ffu/ml 24 h after electroporation of the

respective transcripts (Table 1). Highest titers were observed for

Vp447DcN2177Y and Vp447DcP2200T (4.06105 and 2.36105 ffu/ml

24 h after transfection in SK6 cells), thus being 30–50 -fold below

Vp447 titer (Figure 2A). Hence, SAAS in the helicase domain of NS3

can not only compensate for functionally compromised, but even

completely absent core protein. No upstream open reading frame

longer than 15 codons that might provide the virus with an alternative

core protein could be identified. As expected, no core protein could

be detected in either cell lysate or supernatant of RNA cells

transfected with Vp447DcN2177Y or Vp447DcP2200T (Figure 2B). To

exclude a possible function of the C-terminal core aa 247–269

in Vp447DcN2177Y, they were replaced by the signal peptide of

bovine CD46, a cell surface glycoprotein (Vp447DcN2177YCD46SP).

Progeny virus production of Vp447DcN2177YCD46SP was slightly

reduced (16105 ffu/ml 24 h after transfection) in comparison to

Vp447DcN2177Y. Analysis of cell lysate of Vp447DcN2177Y 72 h after

transfection of SK6 cells did not reveal differences in the relative

presence and processing of NS2–3, NS5B, Erns and E2 in comparison

to wildtype (Figure S1). This suggests that cellular protein expression

and polyprotein processing is neither affected by the lack of core

protein nor by the presence of a SAAS in the NS3 helicase. The

relative reduction of protein expression in Vp447Dc genome

Figure 1. Illustration of modifications introduced into the core protein of CSFV and spontaneous occurence of rescue mutations in
NS3 helicase domain 3. Depicted are the core regions of CSFV constructs (A) p447, (B) p4478leu, (C) p447D208–212, (D) p447Dc starting with Serine
169 at the N-terminus of core protein, and ending with Alanine 267 at the signal-peptidase cleavage site. Deleted amino acids are represented by a
black line. The signal peptide and its constituting amino acids are indicated. Gray background represents expressed protein. The putative NS3
helicase subdomain 3 is indicated as bar starting with amino acid 2116 of the polyprotein and ending with amino acid 2272. Spontaneously occurring
rescue mutations are indicated for the respective core modifications, where the amino acid before the number of the residue represents the original
residue and the amino acid after the number the acquired residue. SPP = signal peptide peptidase; SP = signal peptidase; wt = Vp447;
8leu = Vp4478leu; Dc = Vp447Dc; D208–212 = Vp447D208–212.
doi:10.1371/journal.ppat.1002598.g001
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transfected cells results from its inability to spread. No changes in the

regions surrounding the deletion of the core gene and NS3 were

detected after ten passages of Vp447DcN2177Y in SK6 cells (data not

shown). Introduction of combinations of the described amino acid

exchanges in NS3 helicase of Vp447Dc showed no additive effect but

rather resulted in a 10–100 fold drop in virus titer (data not shown).

Phenotypic characterization of Vp447DcN2177Y
The lack of a structural component of the virus particle may

result in altered phenotypic properties of the virus. We therefore

assessed virus infectivity, morphology, and physical stability of

Vp447DcN2177Y compared to wildtype Vp447. The presence of

viral genome in cells transfected with genomic RNA of Vp447 or

Vp447DcN2177Y or infected with Vp447 or Vp447DcN2177Y was

assessed by Northern blot analysis. Genomes could be detected for

Vp447DcN2177Y (12059 nt) and Vp447 (12293 nt) (Figure 3A), but

the size difference of 234 nt could not be resolved. To verify that

Table 1. Virus output of different viruses with modified core
proteins depending on the amino acid exchange present in
the NS3 helicase subdomain 3.

wt 8leu D208–212 Dc

- 1.16107 4.56103 7.16102 36101

E2160G 2.26105 ND 4.56104

N2177H ND 7.96105 2.86104

N2177Y 3.36105 1.36106 ND 4.06105

Q2189K 3.46105 ND 1.36104

P2200T 8.06105 ND 2.36105

N2256D 4.96105 ND 7.16104

Virus content in the supernatant in ffu/ml 24 h after transfection of the
respective viral genomes in SK6-cells. wt = Vp447; 8leu = Vp4478leu;
Dc = Vp447Dc; D208–212 = Vp447D208–212; ND = not done.
doi:10.1371/journal.ppat.1002598.t001

Figure 2. Growth of viruses encoding modifications of core or NS3 and detection of core protein and E2 glycoprotein in cell lysate and
pelleted supernatant. (A) Virus titer (ffu/ml) was determined 24, 48 and 72 h after transfection of the respective viral genomes in SK6-cells. Depicted
are mean and standard deviation of n = 3 experiments. (B) 72 h after transfection, SK6-cells and pelleted cell culture supernatant were lysed and
subjected to Western Blot analysis. Amounts of E2 were quantified relative to Vp447 signal (set to 100%) and are indicated above the respective blots.
wt = Vp447; wtN2177Y = Vp447N2177Y; 8leuN2177Y = Vp4478leuN2177Y; 8leu = Vp4478leu; DcN2177Y = Vp447DcN2177Y; DcP2200T = Vp447DcN2200T.
Detection of b-actin served as loading control.
doi:10.1371/journal.ppat.1002598.g002
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the infectivity of Vp447DcN2177Y is due to proper virus particles,

not secreted replication complexes, neutralization assays were

performed. Incubation of Vp447DcN2177Y with either a monoclo-

nal antibody against E2 (A18) or sera of one vaccinated animal

(S98) and one vaccinated and subsequently CSFV infected animal

(S05) neutralized infectivity in the same fashion as observed for the

parental Vp447 (Figure 3B). Next, specific infectivity in the

supernatant was assessed. To allow for strict discrimination

between both viruses on the level of RNA, a modified

Vp447DcN2177Y, encoding for 5 alanine residues between the

Npro C-terminus and core residue 247 (Vp447Dc+5AlaN2177Y) was

generated. The resulting PCR assay specifically amplified either

Vp447 or Vp447Dc+5AlaN2177Y genomes (Figure S2). In cell

culture, growth of Vp447Dc+5AlaN2177Y was slightly improved in

comparison to Vp447DcN2177Y. With this approach, we deter-

mined a specific infectivity (ratio of virus genomes versus infectivity

in cell culture supernatant) of 23 genomes/ffu (SD614; n = 3) for

Vp447 and 131 genomes/ffu (SD661; n = 3) for Vp447Dc+5Ala

N2177Y.

To determine density and size of Vp447 in comparison to

Vp447DcN2177Y, equilibrium density centrifugation and size

exclusion chromatography was performed. The densities of

Vp447 and Vp447Dc+5AlaN2177Y were compared by separation

in individual, continuous sucrose gradients (10–60%) and

equilibrium centrifugation. 30 fractions of 360 ml each were

harvested by bottom puncture. In repetitive experiments,

infectivity peaked at a density of 1.104–1.111 g/ml for Vp447

and of 1.099–1.112 g/ml for Vp447Dc+5AlaN2177Y (Figure 4A).

RNA levels, determined by virus specific real-time RT-PCR,

peaked at a density of 1.10 g/ml for Vp447 and at 1.09–1.11 for

Vp447Dc+5AlaN2177Y (Figure 4A). Peak E2 levels were detected

from 1.10–1.14 g/ml for both viruses, but E2 was present in all

fractions (Figure 4B). To avoid variations between two gradients,

106 ffu of both viruses were mixed and layered on top of the same

sucrose gradient. As described above, 30 fractions of 360 ml each

were harvested by bottom puncture. Again, E2 was detectable

over a wide range of the gradient (1.04–1.18 g/ml sucrose)

(Figure 4C) and infectivity peaked at a density of 1.105–1.113 g/

ml (Figure 4D). Highest levels of Core protein were detectable at a

density of 1.09–1.10 g/ml. RNA levels of either virus matched

with infectivity and peaked in the same fraction (1.105 g/ml)

(Figure 4D).

To address the effect of the SAAS N2177Y in Vp447Dc on

particle formation, Vp447Dc+5AlaN2177 was created. 75 ml of

supernatant of SK6-cells 48 h after transfection with genomes of

either Vp447Dc+5AlaN2177 or Vp447Dc+5AlaN2177Y were subjected

to equilibrium centrifugation (Figure S3). Highest levels of

infectivity were recorded at a density of 1.117 g/ml for

Vp447Dc+5AlaN2177Y and at 1.102 g/ml for Vp447Dc+5AlaN2177.

Both infectivity and RNA-levels were reduced more than 400-fold

in Vp447Dc+5AlaN2177 in comparison to Vp447Dc+5AlaN2177Y in all

fractions tested. Overall, E2 levels were comparable between both

viruses and peaked at 1.12–1.14 g/ml. However, the ratio of E2

homo- to heterodimer seemed to differ between the two viruses, as

did the E2 levels at a density of 1.10 g/ml.

The nucleocapsid of Vp447 is likely composed of core protein

and the viral genome but so far has not been characterized. To

gain at least preliminary information about the nucleocapsid of

Vp447 and whether an analogous structure exists in Vp447Dc+5Ala

N2177Y, either virus was treated with a nonionic detergent (0.5%

NP40) to remove the envelope prior to equilibrium centrifugation

as described above. The treatment completely abrogated infectiv-

ity in the fractions recovered and viral RNA levels were reduced

more than 100-fold for either virus in comparison to untreated

virus. RNA levels were just above background and peak levels

occurred at densities of 1.05 g/ml and 1.2 g/ml for Vp447Dc+5A-

laN2177Y whereas a broad peak of genomic RNA could be detected

at densities of 1.11–1.2 g/ml for Vp447 (Figure 4A). To increase

precision of the analysis, both viruses were mixed, treated with

0.5% NP40 and analyzed in the same gradient. The E2 signal was

shifted towards the top of the gradient (1.04–1.14 g/ml), whereas

weak core signals could be detected at higher densities (1.13–

1.18 g/ml) (Figure 4C). Viral genome of Vp447 was detected in

highest amounts at densities of 1.14–1.2 g/ml, whereas highest

levels of Vp447Dc+5AlaN2177Y genome were now observed at

densities of 1.17–1.19 g/ml and 1.22 g/ml (Figure 4D). These

results indicate that detergent treatment of Vp447 in fact releases

nucleocapsids of higher density. This assay is complicated by the

RNase activity of the structural protein Erns, which might result in

degradation of the viral genome after lysis of the lipid envelope.

Figure 3. Genome detection and neutralization of Vp447DcN2177Y. (A) Whole cellular RNA of SK6-cells either transfected with the genome of
Vp447 or Vp447DcN2177Y or infected with Vp447 or Vp447DcN2177Y was subjected to Northern blot analysis. The size of the viral genomic RNA is
indicated above the arrows. (B) Reduction of infectivity in ND50/1000 TCID50 upon incubation with Vp447 or Vp447DcN2177Y with a monoclonal
antibody against E2 or sera of vaccinated/infected animals. EP = RNA of cells transfected with viral genomes; Inf = RNA of cells infected with either
Vp447 or Vp447DcN2177Y; wt = Vp447; DcN2177Y = Vp447DcN2177Y.
doi:10.1371/journal.ppat.1002598.g003
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Hence, both Vp447 (Vp447_H30K) and Vp447Dc+5AlaN2177Y

(Vp447Dc+5AlaN2177Y_H30K) with an exchange of Erns residue

histidine 30 to arginine, destroying the active centre of its RNase,

were generated [25]. This aa exchange did not affect the amount

of progeny virus produced (Figure S4, Figure S5). Both viruses

were subjected to equilibrium density centrifugation to compare

them with the respective parental virus. No differences were

present regarding the amount and distribution of E2 (Figure S4;

data for Vp447Dc+5AlaN2177Y_H30K not shown). After detergent

treatment, RNA levels of Vp447 and Vp447_H30K as well as of

Vp447Dc+5AlaN2177Y and Vp447Dc+5AlaN2177Y_H30K remained

at low levels (Figure S4, Figure S5).

Size exclusion chromatography was performed to directly

compare the Stokes diameter of Vp447 and Vp447Dc+5AlaN2177Y.

For this purpose, a mixture of 108 ffu of each Vp447 and

Vp447Dc+5AlaN2177Y was subjected to gel filtration using Superose

6. Infectivity was detectable in fractions 40–78. Real-time RT-PCR

(as described above) differentiating Vp447 from Vp447Dc+5Ala

N2177Y allowed detection of viral genomes in fractions 43–78. Peak

levels of genomes of either virus were observed in fractions 59–61

and coincided with peak infectivity (Figure 5).

For electron microscopic inspection, virus was produced in SK6

cells in serum free medium, concentrated by ultracentrifugation

and inspected by TEM. The identity of the virions was confirmed

by immunogold (10 nm) staining with a monospecific rabbit serum

against Erns (for specificity of this serum, see Figure S6). In both

preparations, pleomorphic particles of about 50 nm were

detectable. No morphological changes were apparent between

Vp447 and Vp447DcN2177Y particles (Figure 6). Mean size of

Vp447 particles was 51.9 nm (standard deviation 8.9 nm; n = 43)

and of Vp1017 particles 50.1 nm (standard deviation 9.3 nm;

n = 34). However, no exact size comparison or tomographic

particle analysis was possible since required particle quantity,

quality and purity was not achieved.

To address whether the absence of core protein in the virus

particle affects physical stability of Vp447DcN2177Y, the kinetics of

inactivation of Vp447 and Vp447DcN2177Y at 37uC and 39.5uC
were determined. No major differences in thermal stability were

observed between the two viruses (Figure S7). Physical stability was

also assessed by freezing and thawing of defined virus prepara-

tions. After thawing, 19% of the initial virus input could be

recovered for Vp447 and 13% for Vp447DcN2177Y (Figure S7).

Vp447DcN2177Y is avirulent
CSF is a disease of pigs with strain dependent virulence. Vp447

represents a moderately virulent strain [26], causing mortality

rates .50%. To assess virulence of Vp447DcN2177Y, a small-scale

animal experiment was conducted. Two groups of two pigs each

were injected intramuscularly with 56106 TCID50 of Vp447 or

Vp447DcN2177Y. Two days later, a sentinel pig was added to each

group. Animals were evaluated according to a standard clinical

scoring system [27], rectal temperature and leukocyte counts.

Figure 4. Determination of density and behaviour upon detergent treatment of Vp447 and Vp447DcN2177Y. (A) Viral RNA content and
infectivity was determined according to density for Vp447 (wt) and Vp447DcN2177Y (Dc) on separate gradients with or without previous treatment
with 0.5% NP40. (B) Additionally, the distribution of E2 was analyzed according to density in Western Blot for both viruses. Subsequently, both viruses
were separated on the same gradient with and without treatment with 0.5% NP40. (C) Subsequently, the distribution of E2 and core was determined
according to density, (D) as was infectivity and RNA content.
doi:10.1371/journal.ppat.1002598.g004

Figure 5. Distribution of infectivity and genomes of Vp447 and Vp447DcN2177Y upon size exclusion chromatography. 108 ffu/ml of
Vp447 and Vp447DcN2177Y each were simultaneously applied to a size exclusion chromatography column and virus titer was determined for all
fractions. Genomes of both viruses were quantified in the different fractions by virus specific real-time RT-PCRs. The column was calibrated employing
IgM as a size marker. wt = Vp447; Dc = Vp447DcN2177Y.
doi:10.1371/journal.ppat.1002598.g005
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Vp447 infected animals exhibited febrile temperatures (.40uC) on

day 7–10 after infection and from day 13 after infection until the

end of the experiment (Figure 7A). One Vp447 infected pig (wt2)

had to be euthanized on day 21 after infection, with a clinical score

of 10. The other Vp447 infected pig (wt1) had a clinical score

between 2.5 and 4.5 on days 17, 18 and 21–27. Severe leukopenia

(leukocyte count below 10 Giga/l), a typical symptom of CSF

[reviewed with other clinical symptoms by 28], was present in wt1

and wt2 from day 4 after infection, with further declining

leukocyte counts until the end of the experiment (Figure 7B).

The sentinel animal (wtS) housed together with the Vp447 infected

pigs developed febrile temperatures from day 14 after infection

until the end of the experiment and leukopenia was present on day

21 and 28 of the experiment. Virus could be isolated from Vp447

infected animals on days 4, 7, 10 and 14 after infection (Table 2).

Virus isolation was not possible from the sentinel animal on days 4,

7, 10 and 14 after infection of the other pigs. Neutralizing

antibodies could not be detected in Vp447 infected animals and

their sentinel on days 10, 14 and 21 after infection (Table 3). No

apparent signs of disease (clinical score = 0) were observed for

Vp447DcN2177Y infected animals (Dc1 and Dc2) and their sentinel

(DcS) throughout the experiment. With the exception of one day of

slightly elevated body temperature (Dc2 on day 8) and mild

leukopenia of animal Dc1 on day 21, no fever or leukopenia were

present in Vp447DcN2177Y infected animals (Dc1 and Dc2) and

their sentinel (DcS). We were unable to reisolate Vp447DcN2177Y

from sera (Table 2) and leukocytes (not shown) of infected animals

on days 2, 4, 7, 10 and 14 after infection. However, viral genomes

could be amplified from leukocytes until day 7 and neutralizing

antibodies could be detected beginning with day 14 after infection

(Table 3).

Discussion

Key findings of this study are that (1) a pestivirus lacking almost

the entire core coding region is viable and that (2) viability depends

on single point mutations in the helicase domain of NS3. This

finding questions the general assumption that a core protein is a

specific and essential structural element of enveloped RNA viruses

and is supported by the existence of GBV- A and GBV- C, which

do not encode an obvious core protein [reviewed by 1]. Further to

this, the data support a central role of the multifunctional NS3

protein in virus particle assembly.

During the characterization of different loss - of - function

manipulations of the core gene of CSFV, we observed that some

replicative but initially poorly growing viruses generated increased

Figure 6. Morphology of Vp447 (wt) and Vp447DcN2177Y (Dc) particles. Serum free virus preparations were subjected to negative stain
electron microscopy after concentration by ultracentrifugation. To confirm the observed virus like particles, they were immunogold labeled against
the viral glycoprotein Erns. Numbers indicate particles magnified from the original image. Bar in the magnified images represents 50 nm.
doi:10.1371/journal.ppat.1002598.g006
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amounts of progeny virus after extended incubation periods of the

transfected cells. The responsible gain-of-function mutations could

not be mapped to the locus of the manipulated nucleotide

sequence. Instead, single nucleotide exchanges clustered within a

stretch of approximately 300 nucleotides of NS3 helicase

subdomain 3, about 6000 nucleotides downstream of the core

gene. The occurrence of second site mutations in NS3 upon loss of

core protein function differs from results described for tick-borne

encephalitis virus. In this model, the deletion of parts of the

internal hydrophobic domain led to the acquisition of hydrophobic

residues in the core gene itself [29].

To confirm that the observed infectivity of core deficient viruses

was due to proper virus particles, Vp447 and Vp447DcN2177Y

were compared with regard to sensitivity towards neutralizing

antibodies. In both cases, infectivity was blocked by hyperimmune

sera from pigs or a monoclonal antibody directed against viral E2.

Figure 7. Temperature and blood leukocyte counts of pigs infected with 56106 TCID50 Vp447 or Vp447DcN2177Y. After infection, rectal
temperature (A) was recorded daily and EDTA blood was collected on days 2, 4, 7, 10, 14, 21 and 28 and the number of leukocytes (B) was determined
in Giga/l. wt = Vp447 infected; Dc = Vp447DcN2177Y infected; wtS = sentinel animal in Vp447 infected group; DcS = sentinel in Vp447DcN2177Y infected
group.
doi:10.1371/journal.ppat.1002598.g007

Table 2. Recovery of virus from sera on SK6/Rie 5-1 cells at
day (d) 2, 4, 7, 10 and 14 after infection.

Dc1 Dc2 DcS wt1 wt2 wtS

d2 neg/neg neg/neg neg/neg neg/neg neg/neg neg/NR

d4 neg/neg neg/neg neg/neg pos/pos neg/NR neg/neg

d7 neg/neg neg/neg neg/NR pos/pos pos/pos neg/neg

d10 neg/neg neg/NR neg/NR pos/NR pos/NR neg/neg

d14 neg/neg neg/neg neg/neg pos/pos pos/pos neg/neg

wt = Vp447 infected; Dc = Vp447DcN2177Y infected; wtS = sentinel animal in
Vp447 infected group; DcS = sentinel in Vp447DcN2177Y infected group.
Neg = no virus isolated; pos = virus isolated; NR = not readable.
doi:10.1371/journal.ppat.1002598.t002

Table 3. Titer of neutralizing antibodies in swine sera on day
(d) 0, 10, 14 and 21 after infection in ND50/ml.

Dc1 Dc2 DcS wt1 wt2 wtS

d0 ,5 ,5 ,5 ,5 ,5 ,5

d10 ,5 ,5 ,5 ,5 ,5 ,5

d14 7.5 ,5 ,5 ,5 ,5 ,5

d21 316.23 158.49 ,5 ,5 ,5 ,5

wt = Vp447 infected; Dc = Vp447DcN2177Y infected; wtS = sentinel animal in
Vp447 infected group; DcS = sentinel in Vp447DcN2177Y infected group.
doi:10.1371/journal.ppat.1002598.t003
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Differences in the stability of particles of Vp447 and

Vp447DcN2177Y with regard to infectivity were not observed upon

freezing - thawing and heat exposure. Electron micrographs of

Vp447 and Vp447DcN2177Y were obtained from concentrated

serum-free cell culture supernatants and the structures observed

were immunogold labelled with a monospecific rabbit serum

against Erns. This was necessary because pestivirions in general

lack a characteristic morphology. No morphological differences

between Vp447 and Vp447DcN2177Y particles were apparent.

Precise determination of structure and size would require cryo EM

to avoid preparation dependent artifacts and also larger numbers

of particles.

With regard to particle sizes no apparent differences in Stokes

diameter could be detected between Vp447 and Vp447DcN2177Y

particles in gel filtration experiments. Both viruses eluted from the

column in the same fractions. Due to difficulties in comparing

different gel filtration runs, it was mandatory to separate Vp447

and Vp447DcN2177Y side by side. To distinguish between both

viruses by real time RT-PCR, a modified Vp447DcN2177Y was

constructed, which encodes an additional sequence of five alanines

between Npro C-terminus and signal peptide (Vp447Dc+5Ala

N2177Y). This construct was also employed for determination of

virus density in linear sucrose gradients. After it was evident from

individual gradient experiments that infectivity and genomic RNA

comigrated at densities from 1.10–1.11 g/ml (Figure 4), both

viruses were mixed and analyzed in the same gradient. Again

RNA, E2 and infectivity accumulated at the same densities. A

surprising finding was that core protein showed highest concen-

tration at slightly lower densities than peak RNA and infectivity

levels. As E2 can be detected in the supernatant of cells transfected

with the genome of Vp447Dc, it was of interest to compare the

suspected pseudoparticles with regard to density and genome

integration to Vp447DcN2177Y. Hence, equal volumes of super-

natant of cells either transfected with Vp447Dc+5AlaN2177 or

Vp447Dc+5AlaN2177Y genomes were subjected to density gradient

centrifugation. The reduction of infectivity of Vp447Dc+5AlaN2177

in comparison to Vp447Dc+5AlaN2177Y correlated with the

reduction of genome levels at the densities tested, suggesting that

the SAAS N2177Y is critical for the integration of the virus genome

into the particles during assembly if core protein is not present.

Overall, E2 levels between the two viruses were comparable both

with regard to total amount in the supernatant and distribution

according to density. However, the ratio of E2 homo- to

heterodimer, as well as the amounts of E2 at a density of 1.1 g/

ml and the density of peak infectivity differed between the two

viruses, which might indicate differences in particle composition.

To determine whether core protein actually is a component of a

nucleocapsid structure, the envelope of the virus particles was

removed by treatment with a non-ionic detergent (Nonidet P40).

NP40 treated viruses were layered on top of sucrose gradients as

before and the position of infectivity, E2, core and RNA were

recorded after equilibrium centrifugation. Infectivity could be

abolished completely by NP40 treatment. The signal of E2 shifted

towards the top of the gradient (1.04–1.14) whereas the core

protein signal shifted to higher densities (1.13–1.18). Peak values of

viral genomes coincided with core signal in Vp447, which might

implicate the presence of a nucleocapsid like structure of higher

density. For Vp447Dc+5AlaN2177Y, signals for viral genome were

low, with a slight elevation at the tube bottom if the virus was

separately run on a gradient. Hence, we were unable to assign the

genome to a discrete density. In contrast, a slight peak of viral

RNA, comparable in density to Vp447, was observed if both

viruses were separated in the same gradient. One could speculate

that this effect is due to a redistribution of core protein between

viral genomes after detergent treatment. Overall, the amounts of

RNA determined by real time RT-PCR were 102–104 lower than

with intact viruses, which can be taken as evidence for RNA

degradation. A comparable experiment for HCV determined only

a six-fold reduction of genomic RNA after NP40 treatment [30]. A

major difference between HCV and CSFV is the presence of the

potent ribonuclease Erns in the virus envelope [31]. However, after

mutational disruption of the RNase active centre of Erns [25], we

did not observe changes in the levels of viral genome detectable in

comparison to virus with intact RNase. This suggests that the

analytic system itself, by employing sucrose, contains RNases,

which together with the long centrifugation time (24 h), are

sufficient to degrade most of the viral genomes present in the

sample. To address this technical problem, improved separation

methods have to be established to minimize RNA degradation.

However, the relatively higher amount of viral genome detectable

for Vp447 in comparison to Vp447DcN2177Y suggests a protective

function of core protein against RNase.

The absence of core protein and thus a known proteinaceous

component of the nucleocapsid questions the way how a linear

viral RNA molecule of approximately 3 mm is condensed in order

to fit into the virus particle of less than 50 nm diameter. Further to

this, the genome has a negative charge that is partially neutralized

by a usually positively charged (nucleo-) protein. Strikingly,

introduction of the single amino acid substitution N2177Y into

the parental Vp447 (Vp447N2177Y) reduced virus growth and

abrogated the detectable incorporation of core protein into the

virus particles, while at the same time the core protein

accumulated intracellularly. This points to an ability of modified

NS3 to counteract core particle integration, probably by

modulation of core-RNA-interaction. This finding also raises the

question whether NS3 might replace core in the virus particle. So

far, we were unable to detect any NS3 in purified virus

preparations, but we cannot exclude that a small number of

molecules is packaged.

As we have no evidence for other virally encoded proteins for

replacement of the missing core protein, it is conceivable that host

cellular proteins, for example cytoplasmic RNA chaperones or

nuclear RNA binding proteins, compensate for the lack of core

protein. The association of cellular proteins with virus particles has

been described for RNA and DNA viruses, like hepadnaviruses

[32], rabies virus [33], filoviruses [34], respiratory syncytial virus

[35] and HCV [36]. Interestingly, HSP70 or HSP90 were most

often found associated with virus particles. An important task will

therefore be a proteome analysis of highly purified virus particles

of Vp447 and Vp447DcN2177Y. Epitope tagged viruses - as

described for HCV [37,38] and BVDV [39] - may be useful for

such an investigation.

NS3 is functionally well conserved among members of the

Flaviviridae and significant sequence conservation is apparent. It is a

multifunctional protein that contains several enzymatic activities,

such as serine protease, NTPase and RNA helicase [18–22]. Its

involvement in particle assembly has been suggested for HCV

[11,13] and YFV [12,40,41]. The conserved helicase motifs are

located in subdomains 1 and 2 of the NS3 helicase [42]. NS3

helicase subdomain 3 is the least conserved stretch in NS3 of

Flaviviridae, both with regard to amino acid sequence and structure

[43]. Although it is not present in all superfamily 2 helicases [44],

it is essential for NS3 helicase activity. Analysis of all single aa

substitutions in the putative CSFV NS3 helicase subdomain 3,

which were able to rescue Vp447DcN2177Y, did not reveal an

obvious pattern with regard to amino acid identity, charge or

polarity, hence we are not able to draw conclusions about the

mode of action by analysis of the sequence identities. So far, the
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3D-structure of pestiviral NS3 helicase is not known and the

sequence homology to HCV NS3 is too low to draw conclusions.

All rescue mutations were located in regions aligning with alpha

helices both in dengue virus [45] and HCV [46,47] (Figure S8). All

but one aa substitution identified were located in stretches

reported to be important for NS3 helicase protein-protein-

interaction and optimal replication of HCV [48]. So far, there is

no mechanistic explanation how the described mutations in NS3

helicase domain 3 allow for the rescue of Vp447Dc. Structural and

functional analysis of the modified NS3 proteins are needed to

elucidate the gain of function in particle assembly.

Finally, the virulence of Vp447DcN2177Y in comparison to

Vp447 was assessed in a small scale animal experiment. The

parental CSFV strain used for this study causes disease in pigs with

a case fatality rate of .50% [26]. While the two pigs infected with

Vp447 and the sentinel housed together with these two pigs

developed typical signs of CSF, the pigs infected with

Vp447DcN2177Y and the respective sentinel animal stayed

completely healthy although they were injected with the same

dose of virus. Neither fever nor leukopenia was observed in pigs

infected with Vp447DcN2177Y. Detection of genomic RNA in

leukocytes up to day 7 p.i. and the appearance of CSFV

neutralizing antibodies in both Vp447DcN2177Y infected animals

beginning at day 14 suggest that a limited replication took place in

the animals, despite our inability to reisolate Vp447DcN2177Y from

serum or blood cells. This indicates that the lack of core protein

leads to a strong attenuation of the virus. The sentinel pig

developed no neutralizing antibodies, which can be taken as

evidence that Vp447DcN2177Y is not or inefficiently transmitted.

All this points to an important role of pestiviral core protein in

vivo. Further effort will be put in the characterization of

Vp447DcN2177Y in primary cells of its natural host to elucidate

the mechanisms underlying its attenuation.

Materials and Methods

Ethics statement
All animal work was conducted according to the legal

regulations of the German Animal Welfare jurisdiction

(Tierschutzgesetz). The animal experiment was subject to

authorization and was recorded after approval under reference

number AZ 06/1105 at the Lower Saxony State Office for

consumer protection and food safety. The internal reference was

V2006-6.

Generation of recombinant CSFVs
Sequence modifications were introduced into the core or NS3

protein of CSFV Alfort/Tübingen recombinant full length cDNA

clone (p447) by site directed mutagenesis or end to end ligation,

utilizing Pfu-DNA polymerase (Promega, Mannheim, Germany)

(Primers are available upon request). Sequence analysis was

employed to confirm the generated constructs (Quiagen, Hilden,

Germany).

Cell culture and virus rescue
SK6-cells were grown in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal calf serum at 37uC under 5% CO2.

Virus cDNA was transcribed into RNA using SP6-polymerase

(NEB, Frankfurt am Main, Germany) and, typically, 2.5 mg RNA

were electroporated into 56106 SK6-cells (Bio-Rad Gene Pulser).

Replication was assessed 14 h after electroporation via immuno-

histochemistry using monoclonal antibody A18, directed against

the CSFV E2 protein. Virus titer was determined in focus-forming

units/ml (ffu/ml) 24 h after electroporation. For this purpose,

supernatant was harvested, clarified (5 min at 3,0006g), and

seeded on SK6-cells, employing 10-fold dilution steps. After 14 h,

cells were fixed and stained for E2 as mentioned above. Antigen-

positive foci of infected cells were counted using a Nikon Eclipse

TS100 microscope and the titer was calculated. All virus titers

were confirmed by multiple experiments (more than two).

For virus passaging, cell culture supernatant was harvested 72 h

after electroporation of genomic RNA and clarified by centrifu-

gation (5 min at 3,0006g). Consecutively, 26105 SK6-cells were

infected with 1 ml of supernatant of the previous passage. This

procedure was repeated every 3 to 4 days along with the

determination of virus titers.

Neutralization experiments
Virus neutralization was tested according to [49]. Briefly, serum

samples from a CSFV vaccinated (S05) and a vaccinated and

infected (S98) animal, as well as cell culture supernatant containing

an anti-E2 antibody (A18) and a serum of an animal neither

infected nor vaccinated against CSFV were diluted 2-fold in

duplicates on a 96well plate (sera were kindly provided by the

Community Reference Laboratory for CSF, Hannover). Thereaf-

ter, a defined virus suspension of Vp447 was added to each well

and the plate was incubated for 1 h at 37uC. Subsequently, the

employed virus suspension was back titrated on the plate, a

suspension of SK6-cells (36105 cells/ml) was added to each well

and the plates were incubated at 37uC for 72 h. Virus infection

was detected by immunohistochemistry as described above.

TCID50/ml of the employed virus suspension and ND50/ml were

calculated according to [49].

Immunoblotting
Western blotting was done essentially as described by (8).

Briefly, 24 h–72 h after electroporation, cells were lysed in Tris-

EDTA buffer containing 2% SDS, subjected to SDS-PAGE on

7.5, 10 or 12% polyacrylamide gels using Tris-tricine buffers, and

blotted to nitrocellulose. As primary antibody, mouse monoclonal

antibody A18 (anti-E2), 5H4 (anti-Core), 24/16 (anti-Erns), code 4

(anti-NS3), 6B2 (anti-NS5B) or anti-b-actin antibody (A5441;

Sigma-Aldrich) was utilized. Horseradish peroxidase-coupled goat

anti-mouse antibody served as secondary antibody (Dianova,

Hamburg, Germany). Signals were revealed using chemilumines-

cence (ThermoFisher, Bonn, Germany) and exposure to Kodak

BioMax film.

Virus-containing supernatants were concentrated for immuno-

blotting by clarification for 5 min at 3,0006g, followed by

pelleting of 1.2 ml in a TL100 Beckmann ultracentrifuge at

45,000 rpm for 1 h. After removal of the supernatant, the pellet

was resuspended in 10 ml Tris-EDTA buffer containing 2% SDS

and further processed as described for the cell lysate. Signals were

quantified employing ImageJ (http://rsbweb.nih.gov/ij/index.

html).

Sequence analysis
All constructs were confirmed by sequencing (Quiagen, Hilden,

Germany). Revertant viruses were analyzed by sequencing after

reverse transcriptase (RT)-PCR and cloning into the pGEM-T

vector (Promega, Mannheim, Germany) using standard primers

(oligonucleotide sequences are available upon request).

Density gradient centrifugation
Continuous sucrose gradients (10%–60% w/v sucrose in

50 mM Tris, pH 7.4) of 11 ml were generated with a GP250

gradient programmer in conjunction with two Pharmacia P500
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pumps at a flow rate of 1 ml/min. In a volume of 400 ml, 106 ffu

of each Vp447 and a Vp447 with a deletion of core protein (aa

170–246 of the polyprotein) and a five alanine linker between Npro

C-terminus and signal peptide (Vp447Dc+5AlaN2177Y) were layered

on top of the gradient and centrifuged in a Beckman SW41 rotor

at 180.000 g (32.00 rpm) for 24 h. 30 fractions of 360 ml each

were collected by bottom puncture and the refractive index was

determined. 30 ml of each fraction were used for titration on SK6-

cells and 20 ml of two fractions pooled were subjected to Western

blot analysis.

Viral RNA was purified utilizing the QuiaAmp Viral RNA kit

(Quiagen, Hilden, Germany) according to the manufacturer,

reverse transcribed employing the Quanti Tect Reverse Transcrip-

tion kit (Quiagen, Hilden Germany) with the same reverse primer

(rev: CATCCCGCGTATCTCTT) and subjected to qPCR

(Quanti Tect SYBR Green PCR kit, Quiagen, Hilden, Germany)

in a StepOnePlus real-time PCR system (Applied Biosystems,

Darmstadt, Germany), using forward primer specific for either

Vp447 (for_wt: CAAGCCACCAGAGTCCAG; fragment size

258 nt) or Vp447Dc+5AlaN2177Y (for_Dc: TGCGGCCGCAGCTC-

TAGA; fragment size 246 nt) and the reverse primer already

employed in the reverse transcription reaction.

Size exclusion chromatography
16108 ffu of each Vp447 and Vp447Dc+5AlaN2177Y were

pelleted at 100,0006g for 1 h in a 45Ti rotor in a Beckman L8–

70 ultracentrifuge. The pellet was resuspended in 550 ml 1xTNE

buffer overnight at 4uC on a shaker. The complete volume was

loaded onto a Pharmacia XK16 gel chromatography column,

packed with Superose 6 (prep grade, GE Healthcare, Munich,

Germany) with a total volume of 138 ml (determined by dextran-

blue) including the void volume of 41.5 ml (determined by 10%

acetone in H2O and subsequent measurement of optical density at

280 nm). The column was calibrated employing IgM (size 21 nm),

which was subsequently measured in the elution fractions by agar

gel diffusion (Novartis, Marburg, Germany). The chromatography

was performed at a flow rate of 6 ml/h generated by a LKB P-1

pump with 1xTNE buffer. 80 fractions of 2 ml each were collected

by a LKB superfrac collector. Collector tubes were blocked with

1xTNE containing 1% BSA fraction 5 for 10 min at room

temperature. RNA was prepared from the resulting fractions by

QuiaAmp Viral RNA kit (Quiagen, Hilden, Germany) and

analyzed for the presence of viral genome by above described

real-time RT PCR for the presence of either Vp447 or

Vp447Dc+5AlaN2177Y genome.

Transmission electron microscopy
SK6 cells transfected with either Vp447 or Vp447DcN2177Y

genome were seeded on 10 143 cm2 cell culture plates each in

medium containing FCS. 18 h after transfection, the cells were

washed twice with PBS and the medium was replaced by a serum

free medium for MDBK cells (Sigma-Aldrich, Munich, Germany).

48 h after transfection, the supernatant was harvested and cellular

debris was removed by centrifugation (5 min at 3,0006g).

Subsequently, virus was pelleted at 25.000 rpm in a TI45 rotor

for 8 h. Thereafter, the pellet was resuspended in PBS for 12 h at

4uC. Virus preparations were mounted on glow discharged,

pioloform and carbon coated copper-rhodium grids. After

saturation using 1% (w/v) bovine serum albumin (BSA) in PBS

grids were transferred to droplets of the first antibody: monospe-

cific rabbit serum anti Erns, 1:200 in PBS, 0.5% (w/v) BSA for 1 h

in a humid chamber. After 5 washing steps on droplets of PBS

immune labeling was completed using goat anti-rabbit IgG

conjugated to 10 nm colloidal gold (Plano, Wetzlar, Germany)

1:25 in PBS, 0.5% (w/v) BSA. The preparation was finished by 5

washing steps on PBS followed by short incubation on distilled

water and negative staining using 2% methylamine tungstate

(Plano, Wetzlar, Germany). Air dried grids were examined in a

Zeiss EM910 transmission electron microscope at 80 kV at an

instrumental magnification of 31.500 and 50.000 and micrographs

taken on Kodak SO-163 negative film.

Animal experiment
Six weaner pigs were purchased from a commercial piggery

and tested negative for infection with Pestiviruses by RT-PCR

and serum neutralization test. The pigs were kept in two

separately housed groups under high containment conditions.

Two pigs of each group were either infected intramuscularly with

56106 TCID50 Vp447 or Vp447 with a deletion of core amino

acids 170–246 (position in the polyprotein) (Vp447DcN2177Y).

Two days after infection, the previously separated sentinel animal

was returned to each group. The animals were monitored daily

for clinical signs of CSFV according to a modified clinical score

developed by [27] and body temperature was recorded. The

clinical score is calculated by scoring each parameter (liveliness/

body tension/body shape/breathing/walking/skin/eyes+con-

junctiva/appetite/defecation) from 0–3 (no signs of disease –

severe signs of disease), followed by addition of all values

obtained. As the animals were housed in groups in this

experiment, the parameter ‘‘leftovers in feeding trough’’ could

not be evaluated for an individual animal. EDTA blood samples

were taken on days 2, 4, 7, 14, 21 and 28 after infection. The

leukocyte fraction was isolated from EDTA blood by addition of

6.25% (v/v) 5% EDTA-Dextran solution, followed by sedimen-

tation and several wash steps with PBS [49] and the leukocyte

count was determined in a Neubauer chamber. Animals were

euthanized because of animal welfare reasons (clinical score .20

or severe disease) during the experiment or at the end of the

experiment.

Supporting Information

Figure S1 Western blot analysis employing antibodies
directed against CSFV Erns, E2, NS3 and NS5B of SK6-
cells transfected with genomes of Vp447Dc,
Vp447DcN2177Y and Vp447. Cells were lysed 72 h after

transfection and the lysate was separated on 7.5% tricine gels.

Mock transfected cells serve as negative control ( = neg). Erns was

detected by mouse mab 24/16, E2 by A18, NS3 by code 4 and

NS5B by 6D2. Detection of b-actin was performed to compare the

amount of cell lysate loaded onto the gel.

(TIF)

Figure S2 Specificity of qPCRs amplifying either Vp447
(wt) or Vp447Dc+5AlaN2177Y (Dc) genomes. Specificity of virus

specific real-time RT-PCRs depicted as Ct-value per given

amount of cDNA plasmid. wt = Vp447; Dc = Vp447DcN2177Y.

(TIF)

Figure S3 Comparison of E2-, RNA- and infectivity
distribution according to density in the supernatant of
Vp447Dc+5AlaN2177Y and Vp447Dc+5AlaN2177 genome trans-
fected cells. 75 ml each of supernatant of Vp447Dc+5AlaN2177Y

and Vp447Dc+5AlaN2177 genome transfected SK6 cells was

harvested 48 h after transfection. The supernatant was concen-

trated by ultracentrifugation and subsequently subjected to

equilibrium density centrifugation. (A) Infectivity and RNA-

content, as well as (B) E2-levels were determined according to

density. The relative E2 signal in percent compared to the total E2
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signal is indicated below the blots. DcN2177Y = Vp447Dc+5A-

laN2177Y; DcN2177 = Vp447Dc+5AlaN2177.

(TIF)

Figure S4 Comparison of E2, infectivity and RNA
distribution of Vp447 (wt) versus Vp447_H30K (H30K).
Both viruses were subjected to equilibrium centrifugation, with or

without prior treatment with 0.5% NP40. Thereafter, (A)

infectivity and RNA levels were determined according to density,

as was (B) the distribution of E2.

(TIF)

Figure S5 Comparison of E2, infectivity and RNA
distribution of Vp447Dc+5AlaN2177Y (Dc) versus
Vp447Dc+5AlaN2177Y_H30K (DcH30K). Both viruses were

subjected to equilibrium centrifugation, with or without prior

treatment with 0.5% NP40. Thereafter, infectivity and RNA levels

were determined according to density.

(TIF)

Figure S6 Specificity of serum used in EM. Pictures show

negative control (cell culture supernatant treated like virus

preparation) {neg} and preparation of Vp447 {wt} at a

magnification of 631,500 which were stained as described in

Materials & Methods.

(TIF)

Figure S7 Thermostability of Vp447 and
Vp447DcN2177Y. Defined virus preparations of Vp447 and

Vp447DcN2177Y were incubated for 2, 4, 12, 36 and 48 h at 37uC
(A) and 39.5uC (B) and virus titer was determined in ffu/ml. (C)

Virus particles were subjected to one cycle of freezing thawing and

virus titer was determined in ffu/ml before and afterwards.

Depicted are mean and standard deviation of n = 3 experiments.

wt = Vp447; Dc = Vp447DcN2177Y.

(TIF)

Figure S8 Subdomain organization of NS3 and localiza-
tion of single amino acid substitutions within NS3
helicase. CSFV NS3 helicase subdomain 3 is presented as

multiple sequence alignment (ClustalW) with HCV, GBV-A,

GBV-C and dengue virus 4 (DV4). Residues of single amino acid

substitutions are underlined, substituted amino acids and position

in the polyprotein are written above the respective residues. Grey

background represents a-helices with reference to structures by

Luo et al. (2008) and Appleby et al. (2011). Accession: HCV: gi:

316983284; GBV-A: gi: 9629719; GBV-C: gi: 9628706; DV4: gi:

159795581.

(TIF)
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Tortorici, Thomas Krey and Felix Rey (all at Institute Pasteur, Paris,

France) for fruitful discussions.

Author Contributions

Conceived and designed the experiments: CR BL MH MK SB VM HJT

CS TR. Performed the experiments: CR BL MH MK SB CS TR.

Analyzed the data: CR BL MH MK SB CS TR. Contributed reagents/

materials/analysis tools: CR BL MH VM MK SB CS TR. Wrote the

paper: CR BL HJT SB MK TR.

References

1. Stapleton JT, Foung S, Muerhoff AS, Bukh J, Simmonds P (2011) The GB viruses:

a review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in

genus Pegivirus within the family Flaviviridae. J Gen Virol 92: 233–246.
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