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Abstract

Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress
responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium
Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive
mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper
understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of
regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome
fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify
protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term
effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct
expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible
operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed
significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and
assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the
stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly
validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered
expression maps on the system level (‘‘expressome’’). Finally, intense mass spectrometry combined with RNA-seq might be
the future tool of choice to re-annotate genomes in various organisms and will help to understand how they adapt to
alternating conditions.
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Introduction

All living organisms constantly remodel mRNA and protein

abundances as a response to environmental factors or in the course

of development and differentiation. In order to realize adequate

responses, gene expression has to be controlled by sophisticated

regulation networks. Besides transcriptional regulation, it is now

broadly appreciated that post-transcriptional and post-translation-

al events have a non-negligible importance and help to explain the

discrepancy between mRNA and protein levels regularly observed

in biological systems [1].

Interestingly, mRNA-protein correlations might be fairly high,

with Pearson coefficients ranging between 0.66 and 0.76 as

measured for the budding yeast Saccharomyces cerevisiae [2,3].

Weaker correlations are assumed to be partly biased by

methodological constraints, and technical improvements therefore

tend to increase the measured correlations [4]. However, a

significant portion of all genes are obviously subject to post-

transcriptional regulation, as demonstrated for one-third of all

genes in Saccharomyces cerevisiae, exhibiting an altered translational

efficiency upon starvation [5]. In the genome-reduced bacterium

Mycoplasma pneumoniae it was recently shown that translational

control has a stronger regulatory influence on protein levels than

protein turnover [6], which clearly underlines the importance of

assessing the translatome for gene regulation studies. The

translatome is defined as the sum of mRNAs captured in

ribosomes for translation. Several studies employed ribosome

profiling combined with microarray-based methods to calculate

changes in actively translated mRNAs. For example, in the

haloarchaeal model species Halobacterium salinarum and Haloferax

volcanii translational efficiency was monitored at different growth

stages [7], while in the gram-positive bacterium Lactococcus lactis

and in the fission yeast Schizosaccharomyces pombe ribosome

occupancy and ribosome density were assigned [8,9]. Other
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attempts included ribosome footprinting together with deep

sequencing of RNA or purification of affinity-tagged ribosomes

followed by microarray analysis in Saccharomyces cerevisiae [5,10].

However, none of these studies directly compared translatomic

data to both transcriptomic and proteomic data.

Quantitative proteomics is still the bottleneck of comparative

approaches, since the numbers of identified proteins regularly drag

behind expected numbers. In yeast extensive mass spectrometry

(MS)-based proteomics was applied to overcome this problem and

coverage of the entire proteome was finally claimed by identifi-

cation of ,4.400 proteins [11], and recently, a stunning number of

nearly 12.000 proteins were identified in human cell lines [12].

However, these might be outstanding cases, even though advances

in MS-based proteomics are steadily increasing. One of the main

tasks is the accurate quantification of changes in protein

abundance between different cellular states. The SILAC method

(stable isotope labeling of amino acids in cell culture) addresses this

problem by the use of heavy amino acids [13]. Peptides either

contain the heavy or the light form of amino acids – usually

arginine and lysine – and therefore give a distinct mass difference

which enables quantification by direct comparison of peptide peak

intensities. SILAC is the method of choice for mammalian systems,

but has also been applied to newts, nematodes, yeast, and bacteria

like Escherichia coli and Bacillus subtilis [11,14–19]. However, in

bacteria SILAC-based proteomics and the use of translatomics as

described above are highly under-represented when compared to

transcriptome experiments.

In order to gain a comprehensive picture of bacterial regulation,

several ‘‘omics’’ should be applied simultaneously in an integrative

approach. To follow up such a strategy, Rhodobacter sphaeroides was

chosen as model for the investigation of bacterial stress responses.

Rhodobacter species are well investigated with regard to regulation of

photosynthesis genes [20–22], and in particular R. sphaeroides has

been established for studying the photo-oxidative stress response in

anoxygenic phototrophs [23,24]. Photo-oxidative stress occurs

whenever singlet oxygen is generated, which mainly happens

during photosynthesis [25]. We systematically investigated the

transcriptome at early and late time-points of the stress response

by microarray analysis, which revealed expression dynamics for

stress-dependent mRNAs but also small regulatory RNAs

(sRNAs). In addition, stress-specific sigma factor regulons were

analyzed. The proteome was assessed by SILAC-based MS, using

an indirect quantification approach by applying a heavy standard

consisting of different culture conditions. Finally, changes of

mRNAs in polysome fractions (translatome) were measured by

microarray analysis to investigate translational regulation, which

closed the gap between mRNA and protein levels. This is one of

the most comprehensive studies on bacterial stress responses

reported so far, combining several ‘‘omics’’ for genome-wide

applications, and will serve as an example for future perspectives in

bacterial system biology.

Results

The ‘‘omics’’-approach presented in this study compared

relative changes in total mRNA and protein abundances. In

addition, polysome fractions were collected to measure transla-

tional changes. The photo-oxidative stress response of the

facultatively phototrophic bacterium R. sphaeroides was chosen as

a model for bacterial stress responses. Exponentially growing

cultures were treated with the artificial photosensitizer methylene

blue in the presence of oxygen and high light intensities for the

generation of singlet oxygen. The workflow of the three global

approaches is illustrated in Figure 1 and will be explained in detail

in the corresponding result sections. A comprehensive analysis

allowed us to overlap all datasets (see Dataset S1) and this

workflow will serve as proof-of-principle for the general suitability

of the approach for bacterial stress responses.

Dynamic features of biologically significant RNAs
It is regularly assumed that most of regulation is accomplished

on transcript level. Up to now, no global transcriptome analysis of

the photo-oxidative stress response in R. sphaeroides was conducted

and there are only two studies referring to this topic indirectly

[24,26]. Here, total RNA, isolated before stress (reference) and at

several time-points thereafter, was applied to microarray analysis

to calculate relative changes in mRNA abundance (Figure 1,

transcriptome). Data were collected for the short-term response

(7 min) and for two later time-points (45 and 90 min) in biological

duplicates. Reproducibility of experiments was high, as reflected

by Pearson correlation r ranging between 0.80 and 0.98, and ratios

showed a typical Gaussian distribution (Figure S1). A number of

65 mRNAs (1.5%) was significantly induced in expression after

7 min of stress (log2 ratio $0.8 and p-value ,0.05; Table 1). At

45 min a higher portion of mRNAs was up-regulated (158

mRNAs (3.7%)), which was followed by a slight drop at 90 min

(115 mRNAs (2.7%)). The photo-oxidative stress response

obviously exhibited a peak of induction at time-point 45 min.

Moreover, up-regulated mRNAs of the two late time-points

showed a bigger overlap to each other than to mRNAs of the

7 min time-point (Figure S2), which was further confirmed by

hierarchical clustering (data not shown). Therefore, mRNAs

belonging to the short-term and/or the late stress response could

be distinguished. However, the existence of a core set, comprising

51 mRNAs up-regulated at all time-points, was emerging (Figure

S2). This applied to, e.g., the master regulators RpoE and RpoH2,

photolyase PhrA, and the detoxifying glyoxalase II (GloB,

RSP_0799). Numbers of down-regulated mRNAs (log2 ratio

#20.8) showed a similar trend as observed for up-regulated

mRNAs, that is, most changes occurring at 45 min (Table 1).

Author Summary

Bacteria are frequently exposed to disadvantageous
conditions, like elevated temperatures or nutrient deple-
tion. The ability to maintain viable populations is based on
cellular stress responses, which are regulated in a complex
manner with different outputs on different regulatory
levels. For example, mRNA levels do not ultimately
determine protein amounts since translation of mRNAs
can be influenced irrespective of mRNA levels. To
appreciate nature and frequency of these regulatory
events, multi-layered experimental approaches are re-
quired on a global scale. The photo-oxidative stress
response of the purple bacterium Rhodobacter sphaeroides
was chosen as a model. Changes of total mRNAs
(transcriptome) and ribosomal-bound mRNAs (transla-
tome) were monitored by microarrays. The proteome
was assessed by mass spectrometry, applying a ‘‘bacterial
SILAC standard’’ for indirect quantification, an approach
which additionally identified new open reading frames.
Integration of the three expression levels provided a
comprehensive insight into regulatory events and identi-
fied new stress-responsive genes, including genes for
transcriptional regulators and for quorum sensing. We
found that translational control exceeds simple regulation
on the transcriptional level. Furthermore, polar expression
patterns within inducible operons point at the possibility
of expression fine-tuning by gene positioning.

Integrative ‘‘Omics’’ for Bacterial Stress Responses
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In a former study, expression kinetics of selected genes, measured

by qRT-PCR, indicated that levels of individual mRNAs may peak

at different time-points of the stress response [27]. In our study, we

identified 173 mRNAs, showing significant induction at one of the

three time-points, which could be grouped into three dynamic

expression clusters according to k-means using the TM4 Microarray

Software Suite (Figure 2A and Table S1). The biggest cluster was

further divided into three sub-clusters (2a–2c). mRNAs within

clusters 1, 2a, and 2b had an increased induction throughout the

time-course, albeit induction was most pronounced at the two later

time-points in several cases. This trend was even more obvious in

cluster 2c. In contrast, the smaller cluster 3 comprises mRNAs

which had a peak expression at 7 min. Functional groups were

formed according to published data on the R. sphaeroides singlet

oxygen stress response [27–31], combined with KEGG database

searches (http://www.genome.jp/kegg/). Cluster 1 contains several

genes with a function in stress defense or iron metabolism, like phrA,

gloB, or bacterioferritin encoding bfr (Figure 2B). Interestingly,

several genes for regulatory factors with a known or hypothesized

role in the photo-oxidative stress response (namely rpoE-chrR, rpoH2,

rpoH1, ompR) are found in cluster 1, which differs from cluster 2 in a

stronger induction of corresponding mRNAs (several log2 ratios

Figure 1. Design of a comparative ‘‘omics’’-approach for bacterial stress responses. Bacterial cultures are subjected to stress (e.g., singlet
oxygen, 1O2) and relative changes monitored for mRNAs in total RNA isolates (transcriptome), mRNAs in polysomes (translatome), and for proteins
(proteome). For the proteome approach, a culture has to be fully labeled with the heavy amino acid 13C6-lysine (Lys6; heavy standard). Protein
samples from a reference (no stress) or stressed cells are separately mixed in a 1:1 ratio with heavy standard protein and subsequently applied to
protein digest followed by MS analysis. SILAC ratios are calculated by comparing intensities of heavy (red) to light (green) peaks of individual peptides
(m, mass and z, charge). Direct ratios, reflecting relative changes, are determined thereof. The translatome is assessed by microarray analysis of RNA
from polysome fractions. Polysomes are enriched by sucrose density gradient centrifugation of cells that have been treated with chloramphenicol.
For transcriptome data, total RNA is isolated and applied to microarray analysis.
doi:10.1371/journal.pgen.1003576.g001

Table 1. Number of quantified and regulated genes in individual approaches.

Experiment Quantified mRNAs/proteins1 Up-regulated2 Down-regulated2

# % # %

Total RNA 7 min 4289 65 1.5 23 0.5

Total RNA 45 min 4282 158 3.7 73 1.7

Total RNA 90 min 4282 115 2.7 57 1.3

Poly RNA 90 min 4258 129 3.0 24 0.6

SILAC 90 min 1214 68 5.6 45 3.7

1The annotated R. sphaeroides 2.4.1 genome (http://img.jgi.doe.gov/cgi-bin/w/main.cgi) contains 4304 open reading frames. Numbers of mRNAs/proteins that were
unambiguously quantified are depicted.
2Numbers (#) and percentages (%) for regulated genes are given. Percentages were calculated relative to quantified mRNAs/proteins. Genes were considered to be
regulated when log2 ratios (stress versus reference) were $0.8 (up-regulated) or #20.8 (down-regulated) with p-values ,0.05.
doi:10.1371/journal.pgen.1003576.t001
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.1.5). Functional groups in cluster 2 relate to stress defense,

chaperones, proteases, redox reaction, transport process, porphyrin

and carbohydrate metabolism (Figures 2C–E). Several genes in

cluster 2 are described for the first time to be part of the singlet

oxygen response. They encode, e.g., the chaperones MoxR

(RSP_1024), ClpA (RSP_2293), and GroES (RSP_2310), a

thioredoxin (RSP_0725), and DNA ligase Lig2 (RSP_2413). In

addition, genes for the transcriptional regulator Lrp (RSP_2719)

and a TetR family regulator (RSP_2853) were newly identified as

stress-responsive (see Table S5). In contrast to cluster 1 and 2, genes

of cluster 3 clearly belong to the short-term response and their

products mainly have a function in amino acid and sulfur

metabolism, like phosphoglycerate dehydrogenase SerA

(RSP_1352) and sulfite reductase CysI (RSP_1942). In addition,

several chaperones can be found in cluster 3 (Figure 2F).

Many genes of the photo-oxidative stress response are

transcriptionally regulated by the two alternative sigma factors

RpoE and RpoH2. Upon stress, RpoE is ultimately activated by

release from its anti-sigma factor ChrR, while RpoH2 is produced

downstream of RpoE [27,29,32–34]. We therefore assumed that

members of the two sigma factor regulons exhibit different

kinetics. Indeed, genes within the RpoE regulon were strongly up-

regulated already after 7 min of stress, while RpoH2-dependent

genes showed a delayed induction and full expression was not

observed before 45 min (Figure 2H). Assignment of the RpoH2

regulon was based on genome-wide predictions for conserved

promoter sequences [28,29]. Very recently, an alternative RpoH2

regulon was defined according to expression profiles and ChIP-

chip experiments [35], which we used to compile expression

kinetics from our data sets. Intriguingly, results for both RpoH2

regulons were nearly congruent with each other (Figure S2).

We were also interested in expression patterns of sRNAs, which

are important post-transcriptional regulators in bacteria. Micro-

arrays designed for this study included probes for 144 verified and

potential sRNAs that have been identified in our group [36,37].

sRNA expression kinetics resembled those described above for

mRNAs and similar dynamic clusters could have been formed

(Figure S2). Northern blot validation clearly demonstrated, that

the RpoE-dependent RSs0019 sRNA is highly expressed during

the whole time-course of the experiment, while expression of the

RpoH2-dependent RSs0680a sRNA exhibited a peak at 7 min

(Figure 2G). Investigation of late time-points revealed that

RSs0827 is strongly induced only after prolonged singlet oxygen

stress (Figure 2G). RSs0827 was recently shown to respond to iron

limitation [38] and can now be placed on the growing list of

(photo-) oxidative stress inducible sRNAs in bacteria.

SILAC-based proteomics reveal changes in protein
abundance

The SILAC method was invented to enable quantitative

proteomics of complex protein samples by MS [13]. For the

photo-oxidative stress response of R. sphaeroides, we made use of an

indirect quantification approach by applying a heavy standard

generated by SILAC-labeling. R. sphaeroides cultures were supple-

mented with the heavy amino acid 13C6-lysine (Lys6), allowed to

grow, and subsequently diluted several times into fresh Lys6-

containing medium to achieve complete labeling of proteins

(incorporation rate of 96%, Figure S3 and Dataset S2). The heavy

standard represents a protein mixture obtained from fully labeled

cultures grown under semi-aerobic, aerobic, and singlet oxygen

stress conditions to cover a broad protein pattern from various

physiological states. Therefore the heavy standard was referred to

as ‘‘bacterial SILAC standard’’ according to the super-SILAC mix

of human breast cancer cells [39]. The bacterial SILAC standard

was mixed in a 1:1 ratio with protein samples from unstressed

(reference) and stressed cultures, which were grown in presence of

the light amino acid 12C6-lysine (Lys0). Based on intensity

differences between heavy and light peptide peaks derived from

LC-MS/MS analysis, SILAC protein ratios were calculated. To

verify SILAC protein quantification, two protein digestions (insol

and ingel digestion) were performed in biological duplicates

(n = 4). Pearson correlation r between replicates ranged between

0.86 and 0.94, which reflects the high reproducibility of the

SILAC approach (Figure S4). Next, mean SILAC ratios of the

quadruplicates were divided to calculate direct protein ratios

between stressed and unstressed cultures ((heavy standard/

reference)/(heavy standard/90 min 1O2)), which were statistically

verified by determining p-values (Figure 1, proteome).

The SILAC approach identified 1538 proteins with at least two

peptides, from which 1214 proteins were quantified (Figure 3 and

Dataset S2). The distribution of the log2 protein ratios exhibited a

Gaussian-like curve, which underlines the reliability of the

approach. At time-point 90 min of the photo-oxidative stress

response, 68 proteins (5.6%) were significantly up-regulated (log2

ratio $0.8, p,0.05; Table 1 and S3), while 45 proteins (3.7%)

were significantly down-regulated (log2 ratio #20.8, p,0.05;

Table 1 and S3). Several of the up-regulated proteins have a

function in stress defense, redox reactions, carbohydrate metab-

olism, and transport processes or are acting as proteases (Figure 3),

which corresponds to observations made for mRNAs changed

during the photo-oxidative stress response (Figure 2). Among the

down-regulated proteins, two major groups relate to photosynthe-

sis as well as motility/chemotaxis (Figure 3). Altogether, these data

demonstrate that the SILAC approach highlights proteins with

altered abundances upon stress with high confidence.

The SILAC approach identifies new open reading frames
In contrast to microarrays, which are designed according to the

available information of the annotated genome, the SILAC

approach presented here is annotation-independent. Consequent-

ly, several peptides were identified which potentially represent new

open reading frames (ORFs) (Table S4). In order to validate these

Figure 2. Expression kinetics of stress-related mRNAs and sRNAs. Relative changes of mRNAs upon singlet oxygen (1O2) stress were
monitored by microarray analysis of total RNA at time-points 7, 45, and 90 min and depicted as log2 ratios. (A) All mRNAs with significant induction
(log2 ratio $0.8 and p-value ,0.05) at one of the three time-points were applied to clustering using MeV (Multi Experiment Viewer version 4.7.4) from
the TM4 Microarray Software Suite [67,68]. Clustering was based on k-means (KMC method) according to Euclidean distance with a maximum of 50
iterations. Changes were illustrated as heat-maps with a color code ranging from 20.5 (green) to 1.5 (red) log2 ratio. Columns represent time-points
of the stress response and rows represent individual genes. (B–F) Up-regulated mRNAs shown in (A) were grouped together according to their
function. Expression kinetics, representing the mean of log2 ratios, were calculated for functional groups of cluster 1 (B), cluster 2a (C), cluster 2b (D),
cluster 2c (E), and cluster 3 (F). (G) Analysis of stress-induced sRNAs. Total RNA was isolated at the indicated time-points and applied to Northern blot
analysis. RSs0019, RSs0680a, and RSs0827 were hybridized to radioactively labeled oligonucleotides and visualized by phosphoimaging. 5S rRNA was
probed as a control for equal loading of samples (not shown). (H) Genes with described RpoE- and RpoH2-dependent promoters [28,29,72] were
analyzed when they exhibited log2 ratios $0.8. The curves represent the mean of log2 ratios based on 12 mRNAs (RpoE, black line) and 42 mRNAs
(RpoH2, red line). See supplementary Tables S1 and S2 for further information on regulated genes and their particular functions.
doi:10.1371/journal.pgen.1003576.g002
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putative ORFs on RNA level, we inspected RNA-sequencing

(RNA-seq) data available in our group (these data are based on

deep-sequencing of RNA from exponentially growing wild-type

cultures under semi-aerobic conditions and will be published

elsewhere). First, RNA-seq data were screened for the presence of

cDNA reads at the particular position of a new ORF. When

cDNA reads gave reliable coverage for the gene locus, apparent

transcriptional start sites were related to potential translational

starts. In 13 out of 19 cases, RNA-seq strongly supports the SILAC

data, while for the remaining examples sequencing coverage was

not sufficient (Table S4). For some new ORFs it is very likely that

they represent stand-alone genes (Figure 4A–D), while others are

located between or in front of genes and might therefore be part of

operons (Figure 4E–F). BLAST searches suggested functions in,

e.g., transcription regulation (ID-19ORF-14558 and ID-29ORF-

1154) or translation (ID-24ORF-1183). Intriguingly, two proteins

derived from potentially new ORFs were up-regulated under

singlet oxygen stress. This applies to gene ID-41ORF-21 (log2

protein ratio 0.85), which shows homology to uridylate kinases and

might therefore have a role in cell division [40]. RNA-seq data

suggested ID-41ORF-21 to be transcribed from its own promoter

internal to RSP_4289 (Figure 4G). The new ORF ID-30ORF-

1184 (log2 protein ratio 0.78) is located downstream of a groEL

gene and might be functionally related to chaperone functions.

Unfortunately, cDNA read coverage is too low to assume co-

regulation of ID-30ORF-1184 with groEL (Figure 4H).

As a conclusion, our SILAC approach is a powerful tool for

both the identification of unknown ORFs and simultaneous

quantification of corresponding protein levels. Its application to

any stress response in bacteria will give valuable and new insights.

Are changes in the transcriptome transferred to the
proteome level?

One of the main issues to be addressed in this study is the

question of how and to which extent changes at transcriptome

level impact protein abundances. In this context, the translatome

was of major interest since it represents the mRNA-protein

interface. The translatome was assessed by microarray analysis of

mRNAs in polysome fractions with high reproducibility between

biological duplicates (Pearson correlation r = 0.91, Figure S1).

Polysomes were enriched by sucrose density gradient centrifuga-

tion of crude extracts after chloramphenicol treatment of cells

(Figure 1 and S5). As for total RNA and proteins, changes of

polysomal mRNAs after 90 min of stress were calculated relative

to the reference (no stress). Transcriptomic, translatomic, and

proteomic data sets at time-point 90 min were correlated to each

other and visualized as scatter-plots (Figure 5). The transcriptome

and translatome showed a fairly high correlation (r = 0.64;

n = 4251) with a major distribution of data-points in the middle

of the plot, representing genes that exhibited no or only minor

changes. However, 98 genes were up-regulated on both transcrip-

tional and translational level. Besides well-known genes, several

candidates were newly identified for the photo-oxidative stress

response, which is exemplified by moxR and clpA, encoding

chaperones, and thioredoxin RSP_0725 (Figure 5A). In contrast,

51 genes were translationally triggered without showing a

comparable increase on transcriptome level (log2 ratio difference

of at least 0.4; Figure 5A). In this group several genes could be

linked to the photo-oxidative stress response for the first time, as

shown for regulators (lexA and the sigma factor/anti-sigma factor

operon RSP_3095-94), chaperones (groES and groEL), as well as

quorum sensing (cerI and cerA).

A different picture emerged when correlating the proteome

data; overall correlation to the transcriptome was fairly high

(r = 0.63; n = 1199), as indicated by genes that were up-regulated

in both approaches. However, a group of 43 genes was decreased

in protein abundance (log2 ratio #20.8), while not changed on

transcriptome level to the same extent. A major portion of this

group has a function in photosynthesis (12 genes; Figure 5B). A

similar observation was made when comparing the proteome and

translatome (r = 0.55; n = 1194); 13 photosynthesis genes with

decreased protein levels were not depleted in polysomes.

Interestingly, 31 genes showed an increased emergence in the

polysome fraction after stress without changing protein abun-

dance, as observed for the regulator LexA, the autoinducer

synthesis protein CerI, and the chaperone GroES (Figure 5C).

In general, it emerged that ,41% of mRNA variance within

polysomes (translational effects) can be explained by changes in the

transcriptome (r2 = 0.41, Figure 5A). However, only ,31% of

variance in protein levels could be assigned to changes in

translation (r2 = 0.31, Figure 5C), although ,39% of this variance

could be explained by mRNA levels (r2 = 0.39, Figure 5B). It

appeared that, beside unidirectional effects, substantial regulation

occurred separately on all levels. This can be exemplified by

Figure 3. Accurate quantification of protein changes by SILAC.
Relative changes in protein abundance after 90 min of singlet oxygen
stress were determined by an indirect quantification approach using a
heavy standard labeled with 13C6-lysine (Lys6). Protein mixtures were
digested and used for MS analysis (see Materials and Methods). In the
central volcano plot the direct ratios (log2) of 1214 quantified proteins
of quadruplicates were plotted against negative logarithmized p-values
(log10). The histogram on the top shows log2 protein ratio distributions
(Gaussian distribution). Up- and down-regulated proteins were grouped
according to their functions which relate to stress defense (red
triangles), proteases (black triangles), redox reactions (dark blue
triangles), carbohydrate metabolism (grey triangles), transport process-
es (light blue triangles), photosynthesis (green triangles), and motility/
chemotaxis (purple triangles). See supplementary Table S3 for further
information on regulated proteins and their particular functions.
doi:10.1371/journal.pgen.1003576.g003
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expression changes of lig2, encoding a newly identified stress-

related DNA ligase. Protein and mRNA levels are both induced,

although polysome association is rarely changed. A possible

explanation would point to parallel regulation on both transcrip-

tional and post-translational level without influencing translation

itself. Since technical limitations cannot be excluded, these

examples need further validation and present interesting subjects

for future studies.

Genes within operons exhibit polar expression patterns
In the genome-reduced bacterium Mycoplasma pneumoniae almost

half of the polycistronic operons show a staircase-like expression

[41]. Furthermore, operons can be divided into suboperons with

dynamics depending on environmental conditions. It was assumed

that this phenomenon is widespread in bacteria, which motivated

us to inspect expression patterns of stress-induced operons of R.

sphaeroides carefully. Notably, relative changes between time-points

rather than relative expression levels at one time-point were

matched. When comparing changes of total RNA levels after

90 min of singlet oxygen stress (transcriptome), a staircase-like

pattern emerged as a common feature. In most cases, log2 ratios

decreased from the first to the last gene in an operon (Figure 6A–

F), from now on referred to as 59 polarity. Other operons exhibited

no polarity (Figure 6G) or featured a 39 polarity (Figure 6H). At

translatome level orientation of polarity and even particular ratios

were quite similar to transcriptomic data, indicating that

transcriptional polarity impacts translation. There was one

exception: genes within the RSP_3164-62 operon were equally

regulated at transcriptome level, but exhibited a 59 polarity at

translatome level (Figure 6G). Furthermore, in some cases it was

indicated that both 59 and 39 polarity are transmitted to protein

levels (Figure 6B, E, F, H), for the remaining operons proteome

data were not complete enough to give a reliable picture. When

comparing expression levels at time-points 0 min and 90 min

separately, it emerged that polarity is more pronounced after stress

(Figure S6), which indicates that operon polarity might be

inducible.

Discussion

The simple concept of transcriptional regulation being the key

determinant of gene expression fails to explain the observed

flexibility of bacterial adaptation. Steadily increasing numbers of

investigations reveal that complexity of bacterial regulation nearly

resembles that of eukaryotic cells [42]. To fully understand how

bacteria explore complex gene expression control in response to

stress, changes have to be measured on the system level, and in

order to appreciate post-transcriptional and post-translational

events, system biology studies need to consider multiple layers of

regulation. The ‘‘omics’’ approach presented here compared

Figure 4. RNA-seq validation for ORFs newly identified by SILAC. ORFs detected by SILAC-based MS were compared to deep sequencing
data (RNA-seq). (A–H) Integrated Genome Browser (Affymetrix) screenshots depict gene loci with nucleotide positions referring to the plus-strand.
RNA-seq data are visualized as numbers of cDNA reads per nucleotide (red plots). Grey and blue arrows represent annotated and new ORFs,
respectively. For further details on new ORFs see Table S4.
doi:10.1371/journal.pgen.1003576.g004
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relative changes in abundance of total mRNAs, mRNAs captured

in polysomes for translation, and proteins after sub-lethal stress.

The singlet oxygen stress response of R. sphaeroides served as an

example to validate our approach. While mRNA levels can be

easily quantified by microarray analysis on an almost-global scale,

comprehensive proteomics relies on state-of-the-art MS combined

with accurate quantification methods. Here we used an indirect

quantification approach by applying a heavy standard generated

by SILAC. The bacterial SILAC standard represents several

physiological states and is therefore similar to the super-SILAC

approach applied to mammalian systems [12,39]. We successfully

identified 1538 proteins, from which 1214 could be accurately

quantified with high reproducibility (Figure 3). In Bacillus subtilis,

which has a genome size comparable to R. sphaeroides, 1928

proteins were identified by MS during logarithmic growth,

representing more than 75% of genes expected to be expressed

[19]. In R. sphaeroides the number of expressed genes under aerobic

and singlet oxygen stress conditions is not known, and therefore,

Figure 5. Correlation between global approaches. Scatter-plots represent pairwise comparisons of log2 ratios between (A) transcriptome (Total
90/0 min) and translatome (Poly 90/0 min), (B) proteome (SILAC 90/0 min) and transcriptome, (C) proteome and translatome. Number (n), Pearson
correlation (r), and squared correlation (r2) of shared features are given for every comparison. It is indicated for up-regulated (log2 ratio $0.8) and
down-regulated (log2 ratio #20.8) features whether changes are unidirectional (log2 ratio difference between approaches ,0.4, green spots) or
biased (log2 ratio difference $0.4, red spots). (D) Functional grouping of genes that were newly identified to be stress-responsive by the integrative
approach. For a complete list of genes and information on their function see Table S5.
doi:10.1371/journal.pgen.1003576.g005
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estimations of protein coverage are difficult. However, our

approach seems to be as comprehensive as comparable studies.

Several new open reading frames were identified, which were

partly validated by RNA-seq (Figure 4). Two of the newly

identified genes showed stress-dependent expression and thus

extend the list of singlet oxygen responsive genes. During the last

years several studies applied differential RNA-seq to identify

sRNAs and to globally map transcriptional start sites in bacteria

[43,44]. In the near future, MS-based protein identification/

quantification together with RNA-seq in a combinatory approach

may be the experimental tool of choice to re-annotate genomes

and to generate expression maps in various organisms.

Bacterial stress responses are highly dynamic in many ways. Up

to date no studies comparing the transcriptome of R. sphaeroides in

presence of singlet oxygen to non-stress conditions were presented

and kinetics for mRNA levels or protein synthesis rates after onset

of singlet oxygen stress were available only for few examples [25].

With the data provided here, stress-related genes could be globally

identified and grouped according to their expression patterns,

which also allowed us to distinguish short-term responses from late

adaptation processes. For example, some genes involved in sulfur

metabolism exhibit a pulse expression during the first minutes of

the singlet oxygen stress response in R. sphaeroides (Figure 2F). This

pulse expression might be explained by an incoherent feed-

forward loop [45], which either consists of protein regulators or

also includes sRNAs, as recently described for regulation of

photosynthesis genes in R. sphaeroides [46]. Vice versa, regulators

may not only cause pulse-expression but are subject to pulse-

expression themselves, as monitored for the RSs0680a sRNA

(Figure 2G). Quantification of transcripts from alternative sigma

factor regulons revealed that individual activation characteristics

of the sigma factors under stress will ultimately determine

expression dynamics of downstream genes (Figure 2H). While

RpoE-dependent genes are constantly induced, RpoH2-depen-

dent genes show a delayed induction and are most likely important

for late adaptation processes.

Furthermore, our study revealed transcripts/proteins with

singlet oxygen-dependent abundance, which were not recognized

as stress-dependent before (Figure 5D and Table S5). Interestingly,

the new members of singlet oxygen-dependent genes comprise

several transcriptional regulators including a sigma factor/anti-

sigma factor system and the cerI and cerA genes [47] suggesting that

singlet oxygen affects quorum sensing. Our study also extends the

list of genes for chaperons, iron metabolism, and sulfur metabolism

which respond to singlet oxygen stress.

Another dynamic expression feature in bacteria applies to

operon polarity, which was described for Mycoplasma pneumoniae

[41]. The observation of a staircase-like expression pattern, with

the first gene in an operon showing the highest expression, might

be explained by transcriptional-translational coupling and

Figure 6. Polarity of stress-induced operons. Graphs representing relative changes for selected operons after 90 min of singlet oxygen stress.
Log2 ratios were derived from transcriptomic (Total 90 min, black bars), translatomic (Poly 90 min, red bars), and proteomic (SILAC 90 min, blue bars)
data sets. Orientation of genes within operons is depicted from the left to the right, irrespective of their location in the genome, with the leftmost
gene representing the first gene in the operon. Gene numbers refer to corresponding RSP-numbers. Operons were selected according to following
categories: transport process and iron metabolism (A), RpoE-dependent (B, C, D), stress defense (C), transport process (D), chaperone (E), RpoH2-
dependent (F, G), carbohydrate metabolism (F), redox reaction (G), protease (H).
doi:10.1371/journal.pgen.1003576.g006
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cross-talk between the responsible machineries in such a way, that

transcription is interrupted whenever ribosomes hit a stop codon

[42]. Our results reveal that the particular position of a gene

within a stress-inducible operon not only impacts expression but

also the degree of induction, with the first gene mainly be induced

to the highest degree, what we refer to as 59 polarity (Figure 6).

Several of the stress-inducible operons in R. sphaeroides exhibit a

clear 59 polarity on both transcriptome and translatome level.

Interestingly, polarity of transcript levels is clearly more pro-

nounced after stress indicating that polar expression is stress-

induced (Figure S6). Unidirectional behavior of transcriptional

and translational effects was regularly observed for large sets of

genes, as e.g. under severe stress in yeast or in halophilic archaea

[7,10]. However, 59 polarity may only be achieved by post-

transcriptional mechanisms, including sRNAs or RNA secondary

structures, leading to non-correlated induction (Figure 6G). It was

assumed that expression polarity is compensated for on protein

level [6]. For the stress-inducible operons presented here it appears

that polarity on transcriptome/translatome level also entails polar

changes of protein abundance, which argues against compensation

in these particular examples. Finally, the occurrence of 39 polarity

(Figure 6H) implies that several distinct mechanisms underlie the

polarity phenomenon. Differential stability of polycistronic

mRNAs and other post-transcriptional regulation events might

explain the observed diversity. However, bacteria obviously exploit

the order of genes within operons to fine-tune gene expression.

We systematically investigated the transcriptome, translatome,

and proteome to explore global correlations and estimate the

importance of particular modes of regulation upon stress in

bacteria. Direct dependence between transcript levels and

translation is observed for ,41% of all mRNAs (r2 = 0.41,

Figure 5A), while ,59% may be subject to post-transcriptional

events which alter translation irrespective of mRNA levels. A

predominant class of regulators that act on the post-transcriptional

level are trans encoded sRNAs [48]. Regulons controlled by sRNAs

may be as large as described for GcvB that impacts on ,1% of all

transcripts through a conserved binding domain [49]. In addition

to sRNAs, mRNA stability, mRNA structure, and RNA-binding

proteins play important roles for translation. Here we show that

translational control is a fundamental way to globally induce genes

upon stress in bacteria, which is similar to observations in yeast

[10]. In R. sphaeroides this is reflected by the fact that after 90 min

of singlet oxygen stress 3.0% of genes are up-regulated on

translatome level compared to only 2.7% on transcriptome level

(Table 1). Assessing the translatome should therefore be regularly

considered when investigating cellular stress responses, either in

addition to or as an alternative to transcriptome studies. The

SILAC approach delivers further valuable insights into global

regulatory events. The observation that only ,31% of protein

changes can be matched to translational changes (r2 = 0.31,

Figure 5C) is unexpected, but can be explained by altered turn-

over and degradation of proteins upon stress. Proteins are a major

target for singlet oxygen in cells and damaged or fragmented

proteins need to be removed [50–52]. The stress-dependent

induction of several proteases is consistent with increased protein

turn-over in presence of singlet oxygen but their particular roles in

stress-dependent protein turn-over need experimental verification.

The decline of photosynthetic proteins points to post-translational

regulation by degradation, which may be achieved by the above-

mentioned stress-induced proteases. Since reactions of singlet

oxygen with amino acids can lead to depletion of the amino acid

pool [53], selective degradation of photosynthetic proteins would

both replenish the amino acid pool and avoid additional singlet

oxygen generation in photosynthetic complexes. However, various

post-translational events might cause that the ribosome coverage is

only poorly correlated to protein abundance and we assume that

comparing translation to protein synthesis, e.g. by using pulsed

SILAC [54], would be a valuable experiment to achieve higher

correlations.

Despite all the challenging open questions, our integrative

approach delivered a comprehensive list of genes that are relevant

to the singlet oxygen response and provided conclusive evidence

for their regulation. For example, for quorum sensing genes (cerI,

cerA) as well as for several genes encoding regulators (lexA,

RSP_3095-94) substantial regulation seems to occur only on the

translational level. This might be the reason why these genes have

been overseen in former studies. The current data set will

encourage detailed studies on newly identified players of the

bacterial response to singlet oxygen.

Materials and Methods

Growth conditions and stress experiments
For all experiments conducted in this study Rhodobacter sphaeroides

wild-type 2.4.1 [55] was cultivated at 32uC in minimal salt

medium with malate as carbon source [56]. Pre-cultures were

grown in Erlenmeyer flasks with continuous shaking at 140 rpm,

resulting in a dissolved oxygen concentration of approximately

25 mM (semi-aerobic conditions). The amino acid 12C6-lysine

(Lys0; Sigma-Aldrich) or its stable isotope counterpart 13C6-lysine

(Lys6; Silantes) were added to the cultures in a final concentration

of 50 mg ml21. Pre-cultures were grown until an optical density at

660 nm (OD660) of ,0.8–1.0 was reached and subsequently

diluted into fresh Lys0/Lys6-containing medium in a concentra-

tion of 0.5% (v/v), which was repeated two times. Cultivation of R.

sphaeroides in the presence of Lys6 over several generations enabled

full labeling of proteins with stable isotopes (Figure S3). Lys0-

treated cultures were used for regular stress experiments, while

Lys6-labeled cultures were applied to generate a heavy standard

for SILAC-based mass spectrometry. For stress experiments, semi-

aerobic pre-cultures were diluted with Lys0/Lys6-containing

medium to an OD660 of 0.2 and methylene blue was added in a

final concentration of 0.2 mM. Cultures were gassed with air in flat

glass bottles, resulting in a dissolved oxygen concentration of

approximately 180 mM (aerobic conditions), and grown in the

dark to an OD660 of 0.4. Singlet oxygen was generated by applying

high light (800 W m22) with a white light halogen bulb as

described [23]. Samples, collected at the indicated time-points,

were rapidly cooled on ice and centrifuged at 10,000g for 10 min

at 4uC. For polysome preparation, cells were treated with

chloramphenicol in a final concentration of 0.1 mg ml21 for

5 min at 32uC before harvesting.

SILAC-based mass spectrometry
Heavy labeled and non-labeled cells were completely lysed in

SDS-Buffer (4% SDS in 100 mM Tris/HCl pH 7.6) and shortly

heated at 95uC. Sonication was performed for DNA sharing prior

to sample centrifugation at 16,000g for 5 min. Protein concentra-

tion of the clear supernatant was measured by DC protein assay

(Biorad) to mix labeled and non-labeled protein samples in the

same amount. To reduce sample complexity for MS-analysis,

proteins were separated by SDS-PAGE (NuPAGE 4%–12% Bis-

Tris gel, Invitrogen) and stained with Colloidal Blue Staining Kit

(Invitrogen). Each lane was cut into 14 gel pieces for in-gel

digestion as described [57]. In brief, proteins were reduced by

50 mM dithiothreitol (DTT), alkylated with 550 mM iodoaceta-

mide and digested with the endopeptidase Lys-C (enzyme to

protein ratio 1:100, Wako). After digestion and elution, peptides
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were desalted by stop and go extraction (STAGE) tips [58]. Next

to in-gel digestion, samples were also digested in solution as

described [59].

For LC-MS/MS, a nano liquid chromatography (LC) system

(Thermo Fisher Scientific) was coupled to a LTQ-Orbitrap Velos

or a Q-Exactive mass spectrometer (Thermo Fisher Scientific) via

a nanoelectrospray source (Proxeon). Fused silica emitter were

packed in-house with C18-AQ RepoSil-Pur (3 mm, Dr. Maisch

GmbH) and used as columns for reverse-phase chromatography to

separate peptides by a linear gradient of 5–30% acetonitril with

0.5% acetic acid for 150 or 240 min at a flow rate of

200 nl min21. After elution, peptides were ionized and transferred

to gas-phase by electrospray ionization (ESI) to enter the mass

spectrometer. For measurements with the LTQ-Orbitrap Velos

mass spectrometer, full MS scan spectra (m/z = 300–1650) were

acquired in the Orbitrap with a resolution of R = 60,000 after

accumulation of 1,000,000 ions. The 15 most intense peaks from

full MS scan were isolated and fragmented in the linear ion trap

after accumulation of 5,000 ions. Fragmentation of precursor ions

was performed using CID (35% normalized collision energy) prior

to acquisition of MS/MS scan spectra. Q-Exactive measurements

were performed as described [60]. The 10 most intense peaks were

selected and fragmented by higher energy collisional dissociation.

Analysis of raw data was performed by the MaxQuant software

package (version 1.2.2.9) as described [61]. Database searches

were performed with the Andromeda search engine against a

house-made R. sphaeroides 2.4.1 database. The two chromosomes

and five plasmids of R. sphaeroides 2.4.1 were translated into protein

sequences using EMBOSS Transeq [62]. Translation was

performed for all six reading frames. A unique identifier indicating

the sequence position and frame was generated and assigned to

each resulting open reading frame (ORF) longer than six amino

acids. The generated ORF database was combined with all public

available protein sequences for R. sphaeroides 2.4.1 and then used

for the peptide identification step. By applying a decoy approach

we determined the false discovery rate (FDR) to be smaller than

1%. After peptide identification, database entries belonging either

to the de novo generated ORF set or to the public available

annotated proteins were clustered into protein groups (Max-

Quant). Groups lacking an annotated member were assumed to be

potentially new coding sequences and were selected for further

investigation.

Detection and quantification of SILAC pairs was performed by

MaxQuant using following parameters: Lys-C as digesting enzyme

with a maximum of two missed cleavages, carbamidomethylation

of cysteins as fixed modification, oxidation of methionine and

acetylation of the protein N-terminus as variable modifications,

SILAC amino acid labeling: Lys6. Maximum mass deviation was

set to 7 ppm for the peptide mass and 0.5 Da for MS/MS ions.

For identification of peptides and proteins a FDR of 1% were used

and only peptides with minimum of six amino acids length were

considered for identification. For SILAC analysis, two ratio counts

were set as a minimum for quantification. Bioinformatic analysis

was performed with Perseus (version 1.3.0.4) to calculate p-values

with a Benjamini-Hochberg multiple testing correction based on a

FDR threshold of 0.05.

Preparation of polysomes
Polysomes were prepared basically as described elsewhere [63].

Cell pellets derived from 200 ml chloramphenicol-treated cultures

were resuspended in 4 ml cold polysome buffer (P buffer: 10 mM

Tris pH 7.6, 60 mM NH4Cl, 3 mM Mg(CH3COO)2) and used for

lysis by gentle sonication in an ice bath. The cell debris was

removed by centrifugation at 15,000g for 10 min at 4uC. Three ml

supernatant were applied to sucrose density gradients, which were

prepared by layering 3 ml 0.9 M sucrose on 3 ml 1.8 M sucrose (as

solutions in P buffer) in 13.2 ml polyallomer thinwall tubes

(Herolab). Ultracentrifugation (200,000g, 16 hours, 4uC) was

carried out using a SW41-Ti rotor (Beckman Coulter) in a

Discovery 90 ultracentrifuge (Sorvall). The gradient was divided

into nine fractions and used for downstream validation (Figure S5).

The pellet representing the polysome fraction was layered with

100 ml P buffer and incubated on ice for up to 3 hours to enable

complete resuspension of polysomes. Polysome fractions were used

for RNA isolation.

RNA isolation and quality assignment
RNA from both crude extracts and polysome fractions was

isolated using the hot phenol method [64], followed by one

(Northern) or two (microarray) chloroform-isoamylalcohol treat-

ments and precipitation with sodium acetate and ethanol. RNA

was resolved in RNase-free water (Roth) and concentrations were

determined at a NanoDrop 1000 Spectrophotometer (Peqlab).

RNA for Northern blot detection was directly used after isolation,

while RNA for microarray analysis was further processed. Total

RNA for microarrays was treated with DNaseI (Invitrogen) to

remove contaminating DNA, followed by purification using the

RNeasy MinElute Cleanup Kit (Qiagen). RNA from polysome

fractions was purified accordingly. Absence of DNA was

monitored by PCR using Taq DNA Polymerase (Qiagen) and

primers RSP0799-A (59-GAA CAA TTA CGC CTT CTC) and

RSP0799-B (59-CAT CAG CTG GTA GCT CTC) [23].

Polyacrylamide-gels (10%, v/v) containing 7 M urea were

prepared to assess RNA quality.

Microarray analysis
For gene expression studies, isolated RNA was hybridized to

Custom Gene Expression Microarrays from Agilent Technologies

(8x15K; ID: 027061) designed for R. sphaeroides wild-type 2.4.1

[65]. The arrays contain oligodeoxynucleotide probes (60-mers)

for 4304 open reading frames, according to genome annotations

available on the IMG server (Integrated Microbial Genomes;

img.jgi.doe.gov/cgi-bin/w/main.cgi), and for 144 putative

sRNAs identified in our group [36,37]. Two mg RNA from

reference (no stress) and stress samples were chemically labeled

with Cy5 and Cy3, respectively, using the ULS Fluorescent

Labeling Kit for Agilent arrays (Kreatech) and competitively

hybridized to arrays (two-color microarrays). Fragmentation of

labeled RNA, hybridization to arrays, and washing was

performed using the Gene Expression Hybridization and Wash

Buffer Kits according to the specifications of Agilent. Hybridiza-

tion was performed at 65uC for 17 hours. Read-out files for

arrays were generated with the Agilent DNA microarray scanner,

followed by compilation of raw median fluorescence values using

the Feature Extraction Software (Agilent). Within-array normal-

ization according to LOESS was accomplished with the

Bioconductor package Limma for R [66]. Those values were

retained that exhibited an average signal intensity (A-value: 1/2

log2 (Cy36Cy5)) above background, as specified by Agilent

control probes present on each array (Poly 90 min A$10.44;

Total 7 min A$10.27; Total 45 min A$10.61, Total 90 min

A$10.45). Fold changes were calculated from remaining values

as log2 ratios (Cy3/Cy5). Data shown in this study represent the

results from two individual microarrays (biological replicates),

each containing a pool of three independent experiments for each

sample. Statistical analysis was performed by Perl Statistics

modules. Targets having p-values ,0.05 and log2 ratios $0.8 or

#20.8 were assumed to represent deregulated candidates. For
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expression cluster analysis, log2 ratios were imported to MeV

(Multi Experiment Viewer version 4.7.4) from the TM4

Microarray Software Suite [67,68] and visualized as heat-maps.

Clustering was based on k-means (KMC method) according to

Euclidean distance with a maximum of 50 iterations.

The data discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus [69] and are accessible

through GEO Series accession number GSE42244 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE42244).

Northern blot detection
For detection of sRNAs, 10 mg of total RNA were separated on

10% (v/v) polyacrylamide-gels containing 7 M urea and 16TBE.

Gel runs were performed at 300 V for approximately 3 hours in

16 TBE. RNA was transferred to SensiBlot Plus Nylon

Membranes (Fermentas) by semi-dry electroblotting in 16 TBE

(250 mA, 3 hours), followed by cross-linking with UV light. 59

end-labeling of oligodeoxynucleotides with [c-32P]-ATP as well as

hybridization, washing, and documentation of membranes was

performed as described elsewhere [36]. Oligodeoxynucleotides for

probe generation were: p-0019 (59-GAG ATA GCT CAT CGG

TCA GGT CC), p-0680a (59-CGT CGC CGC TGC TGC TAC

AGG TC) [36], and p-0827 (59-GGA CAG TGA AGG TAG

AAC GG) [38].

RNA-sequencing
RNA for sequencing was isolated as described for microarray

analysis. R. sphaeroides 2.4.1 cultures were grown under semi-

aerobic conditions to a final OD660 of 0.4. The cDNA libraries

were prepared at Vertis Biotechnology AG (Germany). For this,

the RNA samples were poly(A)-tailed by poly(A) polymerase. After

that, the 59-PPP residues were removed using tobacco acid

pyrophosphatase (TAP) followed by the ligation of the RNA

adapter to the 59-phosphate of the RNA. First-strand cDNA

synthesis was performed using an oligo(dT)-adapter primer and

the M-MLV reverse transcriptase. The resulting cDNAs were

PCR-amplified to about 20–30 ng ml21 using a high fidelity DNA

polymerase. The primers used for PCR amplification were

designed for TruSeq sequencing according to the instructions of

Illumina. The following adapters sequences flank the cDNA inserts

(the NNNNNN indicates the barcode sequence used for multi-

plexing): 59-end: 59-AAT GAT ACG GCG ACC ACC GAG

ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG

ATC T-39 and 39-end: 59-CAA GCA GAA GAC GGC ATA

CGA GAT-NNN NNN-GTG ACT GGA GTT CAG ACG TGT

GCT CTT CCG ATC TTT TTT TTT TTT TTT TTT TTT

TTT T-39. The cDNA libraries were purified using the Agencourt

AMPure XP kit (Beckman Coulter Genomics), analyzed by

capillary electrophoresis and finally sequenced by an Illumina

GAIIx machine.

The sequences of the obtained sequencing reads were quality

trimmed by the program fastq_quality_trimmer from the FASTX

program suite with a cut-off phred score of 20. Poly(A) tail

sequences were clipped from the 39 end of the sequences, the

resulting sequences were filtered by length and sequences short

than 12 nt were discarded. The remaining reads were aligned to

the reference genome sequences (accession numbers: CP000143.1,

CP000144.1, CP000145.1, CP000146.1, CP000147.1,

DQ232586.1, DQ232587.1) using the short read mapper segemehl

[70]. Based on these read mapping, coverage plots which represent

the number of mapped reads per nucleotide were created. Those

were visualized and examined in the Integrated Genome Browser

[71].

Supporting Information

Dataset S1 Microarray and SILAC data for the singlet oxygen

stress response. Relative changes (log2 ratios) after singlet oxygen

stress were calculated for the transcriptome (Total), translatome

(Poly), and proteome (SILAC). The dataset contains columns with

following information from left to right: Gene Annotation (RSP),

Gene Name, Description, Total 7 min log2, Total 7 min p-value,

Total 45 min log2, Total 45 min p-value, Total 90 min log2, Total

90 min p-value, Poly 90 min log2, Poly 90 min p-value, SILAC

90 min log2, SILAC 90 min p-value, RpoE regulon, 1O2 affected,

RpoH2 promoter, 2D RpoH2, 2D RpoH1-2, ChIP RpoH1-2,

IMG Systematic, Probe Identifier.

(XLSX)

Dataset S2 Results of SILAC experiments. The first sheet

contains SILAC H/L-ratios of identified proteins from the heavy

standard. The second sheet shows the SILAC results of the stressed

and unstressed R. sphaeroides samples.

(XLSX)

Figure S1 Scatter-plots for biological replicates of microarray

experiments. Correlations between biological replicates 1 and 2 of

microarray experiments were calculated as Pearson’s r for log2

ratios and visualized as scatter-plots. ‘‘Total RNA’’ refers to

transcriptome and ‘‘Poly RNA’’ to translatome experiments. (A)

7 min versus 0 min transcriptome, (B) 45 min versus 0 min

transcriptome, (C) 90 min versus 0 min transcriptome, and (D)

90 min versus 0 min translatome. Histograms at the top and right-

hand side display log2 ratio distributions of individual replicates.

(PDF)

Figure S2 Supporting data for transcriptionally up-regulated

genes. Changes in the transcriptome after singlet oxygen stress

were calculated as log2 ratios relative to control conditions (Cy3/

Cy5). (A) Overlap (number of shared features) between two

alternative RpoH2 regulons. Regulon predictions of Nuss et al.

(2009, 2010) were based on genome-wide promoter searches

[28,29], while Dufour et al. (2012) used expression profiles and

ChIP-chip experiments for predictions [35]. All corresponding

mRNAs, exhibiting log2 ratios $0.8 at one of the experimental

time-points (7, 45, 90 min) in this study, were considered and

depicted in a Venn diagram. (B) Expression kinetics of the two

alternative RpoH2 regulons, as described in (B). (C) Venn diagram

depicting the overlap (number of shared features) of up-regulated

mRNAs (log2 ratio $0.8) between 7, 45, and 90 min samples. (D)

Heat-map for sRNAs that were up-regulated (log2 ratio/FC $0.8)

during singlet oxygen stress. Hierarchical clustering was performed

using MeV (Multi Experiment Viewer version 4.7.4) from the

TM4 Microarray Software Suite.

(PDF)

Figure S3 Evaluation of the bacterial SILAC standard. The

bacterial SILAC standard was prepared from heavy labeled R.

sphaeroides cells which were grown under semi-aerobic, aerobic,

and singlet oxygen stress conditions. An average Lys6-incorpora-

tion of 96% was detected for the heavy standard as shown in the

histogram. Incorporation rates are plotted against relative

numbers of identified proteins.

(PDF)

Figure S4 Scatter-plots for biological replicates of SILAC

experiments. Pairwise comparison between biological replicates

of SILAC experiments (insol and ingel digest) reveals high Pearson

correlation r ranging between 0.86 and 0.94. Scatter-plots

represent SILAC ratios (log2) of each experiment.

(PDF)
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Figure S5 Enrichment of polysomes by sucrose gradients.

Polysomes were enriched by sucrose density gradient centrifugation

of crude R. sphaeroides extracts. (A) Picture of a sucrose gradient (0.9–

1.8 M) after ultra-centrifugation (200.000g) of crude extracts. The

gradient was divided into nine fractions, which were collected for

further analysis. The pellet was enriched for polysomes (polysome

fraction) and subsequently used for translatome analysis in this

study. Membrane fractions were visible as two colored rings. The

nine sucrose gradient fractions were analyzed on ethidium-

bromide-stained urea-polyacrylamide-gels (B) and corresponding

RNA concentrations were determined by spectroscopy at 260 nm

(C). tRNAs were found in fractions 3–5, while ribosomal RNAs

(5.8S and 5S rRNAs) were present in fractions 7–9. (D) Urea-

polyacrylamide-gel loaded with RNA from polysome fractions and

total RNA was stained with ethidium bromide. RNA samples from

polysome fractions before and after singlet oxygen stress (Poly 0 min

and 90 min 1O2) were enriched for ribosomal RNAs (16S, 14S,

5.8S, and 5S rRNA) and depleted for tRNAs when compared to

total RNA. Please note that in Rhodobacter species and related alpha-

proteobacteria 23S rRNA is fragmented into an additional 16S-like

rRNA (1.5 kb), 14S rRNA (1.1 kb), and 5.8S-like rRNA.

(PDF)

Figure S6 Expression patterns within stress-inducible operons.

Normalized fluorescence values, reflecting RNA expression levels,

are depicted for ‘‘Total RNA’’ at 0 min (light grey bars) and

90 min (black bars) as well as for ‘‘Poly RNA’’ at 0 min (orange

bars) and 90 min (red bars). Orientation of genes within operons is

depicted from the left to the right, irrespective of their location in

the genome, with the leftmost gene representing the first gene in

the operon. Gene numbers refer to corresponding RSP-numbers.

Compare (A–H) to Figure 6 for further details.

(PDF)

Table S1 Biological function of genes within transcriptional

expression clusters.

(PDF)

Table S2 Biological function of genes within RpoE and RpoH2

regulons.

(PDF)

Table S3 Biological function of regulated proteins identified by

SILAC-based MS.

(PDF)

Table S4 Putative new open reading frames (ORFs) identified

by SILAC-based MS.

(PDF)

Table S5 New singlet oxygen-responsive genes found in this

study.

(PDF)

Acknowledgments

We are grateful to Nils Schürgers (University of Freiburg) for help with

microarray data normalization. Cynthia Sharma and Jörg Vogel

(University of Würzburg) as well as Richard Reinhardt (Max Planck

Genome Centre Cologne) are greatly acknowledged for continuous

sequencing support. We further thank Karl-Heinz Kogel (University of

Giessen) and members of his group for providing microarray equipment.

Author Contributions

Conceived and designed the experiments: BAB AK GK. Performed the

experiments: BAB AK NNM TR. Analyzed the data: BAB AK ML KUF

MK. Wrote the paper: BAB AK GK. Compiled the database used for

peptide identification: ML.

References

1. Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in

complex biological samples. FEBS Lett 583: 3966–3973.

2. Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling
of the yeast proteome. Mol Cell Biol 19: 7357–7368.

3. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein

abundance and mRNA expression levels on a genomic scale. Genome Biol 4:

117.

4. Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein
expression profiling estimates the relative contributions of transcriptional and

translational regulation. Nat Biotechnol 25: 117–124.

5. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-
wide analysis in vivo of translation with nucleotide resolution using ribosome

profiling. Science 324: 218–223.

6. Maier T, Schmidt A, Guell M, Kuhner S, Gavin AC, et al. (2011) Quantification

of mRNA and protein and integration with protein turnover in a bacterium. Mol
Syst Biol 7: 511.

7. Lange C, Zaigler A, Hammelmann M, Twellmeyer J, Raddatz G, et al. (2007)

Genome-wide analysis of growth phase-dependent translational and transcrip-
tional regulation in halophilic archaea. BMC Genomics 8: 415.

8. Picard F, Milhem H, Loubiere P, Laurent B, Cocaign-Bousquet M, et al. (2012)

Bacterial translational regulations: high diversity between all mRNAs and major

role in gene expression. BMC Genomics 13: 528.

9. Lackner DH, Beilharz TH, Marguerat S, Mata J, Watt S, et al. (2007) A network
of multiple regulatory layers shapes gene expression in fission yeast. Mol Cell 26:

145–155.

10. Halbeisen RE, Gerber AP (2009) Stress-dependent coordination of transcrip-
tome and translatome in yeast. PLoS Biol 7: e1000105.

11. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, et al. (2008)

Comprehensive mass-spectrometry-based proteome quantification of haploid

versus diploid yeast. Nature 455: 1251–1254.

12. Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic
analysis of eleven common cell lines reveals ubiquitous but varying expression of

most proteins. Mol Cell Proteomics 11: M111 014050.

13. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, et al. (2002)
Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and

accurate approach to expression proteomics. Mol Cell Proteomics 1: 376–386.

14. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven

systems biology. Annu Rev Biochem 80: 273–299.

15. Looso M, Michel CS, Konzer A, Bruckskotten M, Borchardt T, et al. (2012)
Spiked-in pulsed in vivo labeling identifies a new member of the CCN family in

regenerating newt hearts. J Proteome Res 11: 4693–4704.

16. Looso M, Borchardt T, Kruger M, Braun T (2010) Advanced identification of

proteins in uncharacterized proteomes by pulsed in vivo stable isotope labeling-
based mass spectrometry. Mol Cell Proteomics 9: 1157–1166.

17. Studencka M, Konzer A, Moneron G, Wenzel D, Opitz L, et al. (2012) Novel

roles of Caenorhabditis elegans heterochromatin protein HP1 and linker histone in
the regulation of innate immune gene expression. Mol Cell Biol 32: 251–265.

18. Sommer U, Petersen J, Pfeiffer M, Schrotz-King P, Morsczeck C (2010)

Comparison of surface proteomes of enterotoxigenic (ETEC) and commensal

Escherichia coli strains. J Microbiol Methods 83: 13–19.

19. Soufi B, Kumar C, Gnad F, Mann M, Mijakovic I, et al. (2010) Stable isotope
labeling by amino acids in cell culture (SILAC) applied to quantitative

proteomics of Bacillus subtilis. J Proteome Res 9: 3638–3646.

20. Gregor J, Klug G (1999) Regulation of bacterial photosynthesis genes by oxygen
and light. FEMS Microbiol Lett 179: 1–9.

21. Bauer C, Elsen S, Swem LR, Swem DL, Masuda S (2003) Redox and light

regulation of gene expression in photosynthetic prokaryotes. Philos Trans R Soc

Lond B Biol Sci 358: 147–153; discussion 153-144.

22. Zeilstra-Ryalls JH, Kaplan S (2004) Oxygen intervention in the regulation of
gene expression: the photosynthetic bacterial paradigm. Cell Mol Life Sci 61:

417–436.

23. Glaeser J, Klug G (2005) Photo-oxidative stress in Rhodobacter sphaeroides:
protective role of carotenoids and expression of selected genes. Microbiology

151: 1927–1938.

24. Anthony JR, Warczak KL, Donohue TJ (2005) A transcriptional response to

singlet oxygen, a toxic byproduct of photosynthesis. Proceedings of the National
Academy of Sciences of the United States of America 102: 6502–6507.

25. Glaeser J, Nuss AM, Berghoff BA, Klug G (2011) Singlet oxygen stress in

microorganisms. Adv Microb Physiol 58: 141–173.

26. Braatsch S, Moskvin OV, Klug G, Gomelsky M (2004) Responses of the
Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions.

Journal of Bacteriology 186: 7726–7735.

Integrative ‘‘Omics’’ for Bacterial Stress Responses

PLOS Genetics | www.plosgenetics.org 13 June 2013 | Volume 9 | Issue 6 | e1003576



27. Glaeser J, Zobawa M, Lottspeich F, Klug G (2007) Protein synthesis patterns

reveal a complex regulatory response to singlet oxygen in Rhodobacter. Journal of
Proteome Research 6: 2460–2471.

28. Nuss AM, Glaeser J, Berghoff BA, Klug G (2010) Overlapping alternative sigma

factor regulons in the response to singlet oxygen in Rhodobacter sphaeroides.
J Bacteriol 192: 2613–2623.

29. Nuss AM, Glaeser J, Klug G (2009) RpoHII Activates Oxidative-Stress Defense
Systems and Is Controlled by RpoE in the Singlet Oxygen-Dependent Response

in Rhodobacter sphaeroides. Journal of Bacteriology 191: 220–230.

30. Hendrischk A-K, Braatsch S, Glaeser J, Klug G (2007) The phrA gene of
Rhodobacter sphaeroides encodes a photolyase and is regulated by singlet oxygen and

peroxide in a sE-dependent manner. Microbiology 153: 1842–1851.
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