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Motivation and Research Objectives 

Nature’s biosynthetic machinery undeniably is a paragon in terms of efficiency, reactivity as 

well as selectivity and consequently has fascinated and challenged alike generations of chemists. 

This extraordinary effectiveness often relies on the direct coupling of concurrent reaction steps, 

thus allowing the assembly of complex molecules from readily available starting materials. 

Mammalian fatty acid synthase as a representative model is an outstanding example for this 

assembly line approach (Figure 1). This multienzyme complex catalyzes all necessary reaction 

steps of fatty acid biosynthesis consisting of a transesterification and a number of consecutive 

reduction, elimination, and condensation steps (Figure 1; see: T. Maier, S. Jenni, N. Ban, Science 

2006, 311, 1258–1262 and M. Leibundgut, T. Maier, S. Jenni, N. Ban, Curr. Opin. Struct. Biol. 

2008, 18, 714–725). 

The development and application of novel, efficacious catalysts to achieve the performance of 

enzymes is an unambiguously important issue at the forefront of synthetic organic chemistry. 

Consequently, the application of small organic molecules for the acceleration of chemical 

reactions, i.e., organocatalysis, was a milestone in the field of catalysis. In the early days of 

asymmetric organocatalysis, chemists delved into the chiral pool making use of, e.g., simple 

amino acids as chiral catalysts. Various different catalyst types were subsequently developed and 

laid the foundation for this nowadays vibrant area of research. Later, the abovementioned 

principles of biosynthesis were also applied to catalysis, enabling the synthesis of complex 

molecular frameworks from simple starting materials (see Chapter I). However, the possibilities 

of using distinct organocatalysts for one-pot reactions still are limited, due to compatibility 

issues, the proper reaction sequence, or regio- and chemoselectivity, amongst other difficulties, 

that become apparent with an increasing number of catalyzed steps. Therefore, most examples 

rely on the combination of only two catalysts.   

The application of oligopeptides as catalysts in order to mimic the performance of enzymes is a 

particularly elegant approach to asymmetric chemical synthesis. Arguably, such catalysts can be 

seen as “minimal” artificial enzymes as they often rely on comparable activation modes, reaction 

types as well as catalyst–substrate interactions (e.g., hydrogen bonding, electrostatic or 

dispersion interactions). The diversity of available amino acids (natural and synthetic), well-

established coupling techniques, and the ease of modification makes peptides ideally suited for 

the design of potent catalysts. Moreover, the possible incorporation of orthogonal (i.e., 

independent) catalytic moieties into a single peptide backbone may not only overcome some of 

the potential problems discussed above, but even lead to enhanced reactivities and selectivities. 

Indeed, such multicatalysts have now been realized.   
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Figure 1. Top: Crystal structure of mammalian fatty acid synthase as ribbon representation; the structure was 

obtained from the RCSB Protein Data Bank (PDB code: 2CF2) and was generated with JSmol. Bottom: Complete 

catalytic cycle for fatty acid biosynthesis. CoA = coenzyme A; ACP = acyl carrier protein; NADPH = nicotinamide 

adenine dinucleotide phosphate; TE = thioesterase. 

The research presented in this doctoral thesis is dedicated to the development of synthetic 

oligopeptides and their application in enantioselective concurrent “assembly line” approaches 

and as catalysts for demanding reactions. 
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Summary 

Chapter I 

Published as: R. C. Wende and P. R. Schreiner, Green Chem. 2012, 14, 1821–1849 

The first part of this thesis is a Critical Review on multicatalysis that is used as a general 

introduction to this rapidly growing field of research. We define the different types of one-pot 

reactions employing multiple catalysts, introduce the concept of retrocatalysis and discuss the 

significant advantages and potential problems associated with multicatalysis. Reactions using 

combinations of secondary amines, N-heterocyclic carbenes and thiourea catalysts, amongst 

others, are presented. Finally, we introduce our previous achievements in multicatalysis and 

disclose the development of the first peptidic multicatalyst.      

 

Chapter II 

Published as: C. E. Müller, D. Zell, R. Hrdina, R. C. Wende, L. Wanka, S. M. M. Schuler, P. R. 

Schreiner, J. Org. Chem. 2013, 78, 8465–8484 

This chapter serves as an introduction to peptide catalysis in general and gives detailed insights 

into our catalyst design concept. The oligopeptide presented herein, was previously developed in 

our group but recently provided the basis for further developments, such as multicatalytic 

reactions and the expansion to the first organic multicatalysts (also see Chapter I).  

From a library of various peptides Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe was identified as an 

remarkably efficient catalyst for the kinetic resolution of trans-cycloalkane-1,2-diols. The ee 

values are typically >99% (for the remaining diols) corresponding to S-values >50. Whereas the 

catalyst is also highly selective for the desymmetrization of meso-alkane-1,2-diols other 

substrates, e.g., 1,3-diols, provide only low selectivities. The extraordinary chemoselectivity of 

the peptide is also revealed by competition experiments. Thus, this small tetrapeptide already 

shows a behavior that may be compared with enzymes. Moreover, computational investigations 

on complexes of the acylium ion of the catalyst with the fast reacting enantiomer of trans-

cyclohexan-1,2-diol were performed. The exceptionally high selectivities are made possible by 

the interplay of the aminoadamantane carboxylic acid that froms a dynamic binding pocket as 

well as by attractive dispersion interactions of the cyclohexyl residue with the substrate.  
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Chapter III 

Published as: C. Hofmann, S. M. M. Schuler, R. C. Wende, P. R. Schreiner, Chem. Commun. 

2014, 50, 1221–1223 

A multicatalytic enantioselective oxidative esterification is reported. The combination of 

TEMPO as oxidation catalyst and p-nitrobenzoic acid as additive allows the oxidation of a 

variety of aldehydes to their mixed anhydrides. These are enantioselectively transferred by the 

peptide catalyst described in Chapter II onto trans‐cycloalkane‐1,2‐diols with up to 94% ee for 

the recovered diol and 93% ee for the corresponding acylated derivative. The reaction progress 

and the formation of the mixed as well as symmetric anhydrides was followed by NMR 

spectroscopy. The reaction could also be performed with our previously developed multicatalyst 

(see Chapter I) instead of the two individual catalysts. 

 

Chapter IV 

Published as: M. W. Alachraf, R. C. Wende, S. M. M. Schuler, P. R. Schreiner, W. Schrader, 

Chem.–Eur. J. 2015, 21, 16203–16208 

In cooperation with Prof. Dr. Wolfgang Schrader a multicatalyst incorporating π-methyl histidine 

and a diacid as catalytic moieties was studied by high-resolution mass spectrometry. The peptide 

was previously used for a one-pot epoxidation/hydrolysis/kinetic resolution sequence starting 

from simple alkenes and affording enantiomerically enriched trans-cycloalkane-1,2-diols (see 

Chapter I). Although the selectivities are synthetically useful (64 – 99% ee for the remaining 

diol) they can not compete with the selectivities achieved with the corresponding tetrapeptide 

alone. All important intermediates have been identified and characterized. It was found that the 

epoxidation step also leads to a partial oxidation of the imidazole moiety and consequently to a 

reduced catalytic performance of the multicatalyst. 
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Chapter V 

Unpublished results 

We envisaged the development of a multicatalytic reaction sequence for the synthesis of 2-de-

oxygalactosides. Our approach is based on the partial protection of carbohydrates that may 

subsequently act as glycosyl donors. We identified Boc-D-Pmh-
A
Gly-L-Val-L-Phe-OMe to be a 

highly regioselective catalyst in the acetylation of methyl 4,6-O-benzylidene-α-D-gluco-

pyranoside. In comparison to simple N-methylimidazole, which mostly leads to the acetylation 

of the 3-hydroxy group on the substrate (2-OAc/3-OAc/diacetylated: 22:70:8; 93% conversion), 

the peptide preferentially gives the 2-acetylated product (2-OAc/3-OAc/diacetylated: 85:9:6; 

>95% conversion). Thus, this catalyst is not simply enhancing but completely overriding the 

inherent reactivity of the substrate. 

 

Chapter VI 

Published as: R. C. Wende, A. Seitz, D. Niedek, S. M. M. Schuler, C. Hofmann, J. Becker, P. R. 

Schreiner, Angew. Chem. Int. Ed. 2016, 55, 2719–2723; Angew. Chem. 2016, 128, 2769–2773 

The Dakin–West reaction is one of the most viable methods for the preparation of α-acylamido 

ketones directly from the corresponding primary α-amino acids. Although this reaction was 

known for decades no enantioselective variant has been reported previously. We found that the 

complexity of the mechanism of the reaction requires the separation of the two crucial steps: the 

acetylation of the azlactone intermediate and the final decarboxylation step. Under optimized 

reaction conditions the Pmh-containing peptide catalysts act as a Lewis base in the first step and 

as a Brønsted base in a final enantioselective decarboxylative protonation. With the best-working 

catalyst selectivities with up to 58% ee were achieved with good yields. Two of the obtained 

products were recrystallized once to achieve up to 84% ee. Importantly, computational 

investigations further proved the importance of dispersion interactions in the enantioselectivity 

determining reaction step. 
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Chapter VII 

Unpublished results 

The last chapter describes further experiments regarding the enantioselective Dakin–West 

reaction. Computational and experimental investigations were performed to provide further 

evidence for attractive dispersion interactions and to give insights how the selectivities could be 

enhanced. Leucine derivatives with diverse protecting groups and different anhydrides were 

explored. Although the previously observed selectivities could not be increased, the performed 

experiments support our proposal for substrate-binding by the catalyst in the stereochemistry 

determining reaction step. Moreover, a potential synthesis of protease inhibitors applying the 

Dakin–West reaction is reported. Both important reaction steps, the enantioselective 

decarboxylative protonation and the acetylation of the azlactone, are studied individually and 

may lead to additional developments. 
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Zusammenfassung 

Kapitel I 

Veröffentlicht als: R. C. Wende and P. R. Schreiner, Green Chem. 2012, 14, 1821–1849 

Der erste Teil der vorliegenden Doktorarbeit ist eine kritische Übersicht zur Multikatalyse und 

dient als Einleitung in dieses sich schnell entwickelnde Forschungsfeld. Wir definieren die 

verschiedenen Typen von Eintopfreaktionen mit mehreren Katalysatoren, stellen das Konzept 

der Retrokatalyse vor, und diskutieren die signifikanten Vorteile und potentiellen Probleme, 

welche mit der Multikatalyse assoziiert werden. Kombinationen von sekundären Aminen,  

N-heterocyclischen Carbenen und Thioharnstoffkatalysatoren, neben weiteren anderen, werden 

präsentiert. Schließlich stellen wir unsere bisherigen Erfolge in der Multikatalyse und die 

Entwicklung des ersten peptidbasierten Multikatalysators vor. 

 

Kapitel II 

Veröffentlicht als: C. E. Müller, D. Zell, R. Hrdina, R. C. Wende, L. Wanka, S. M. M. Schuler, 

P. R. Schreiner, J. Org. Chem. 2013, 78, 8465–8484 

Dieses Kapitel dient als generelle Einleitung in die Peptidkatalyse und gewährt einen 

detaillierten Einblick in unser Konzept des Katalysatordesigns. Das hier präsentierte Oligopeptid 

wurde zuvor in unserer Arbeitsgruppe entwickelt und bildete jüngst die Basis für weitere 

Entwicklungen, wie multikatalytische Reaktionen und die Weiterentwicklung des ersten 

peptidischen Multikatalysators (siehe auch Kapitel I). 

Aus einer Bibliothek unterschiedlicher Peptide wurde Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe als 

bemerkenswert effizienter Katalysator für die kinetische Racematspaltung von trans-Cycloalkan-

1,2-diolen identifiziert. Die Enantiomerenüberschüsse liegen typischerweise bei >99% (für das 

verbliebene Diol), was sich in S-Werten >50 äußert. Obwohl der Katalysator auch hochselektiv 

für die Desymmetrisierung von meso-Alkan-1,2-diolen ist, werden für andere Substrate, z.B.  

1,3-Diole, nur geringe Selektivitäten erhalten. Die außergewöhnliche Chemoselektivität dieses 

Peptides wird zudem durch Konkurrenzexperimente offenbart. Dieses kleine Tetrapeptid zeigt 

somit bereits ein Verhalten, welches mit dem von Enzymen vergleichbar ist. Zudem wurden 

computerchemische Untersuchungen der Komplexe des Katalysator Acyliumions mit dem 

schnell reagierenden Enantiomer von trans-Cyclohexan-1,2-diol durchgeführt. Die außer-

ordentlich hohen Selektivitäten werden durch das Zusammenspiel der Aminoadamantan-
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carbonsäure, welche eine dynamische Bindungstasche ausbildet, und attraktive Dispersions-

wechselwirkungen des Cyclohexylrestes mit dem Substrat ermöglicht. 

  

Kapitel III 

Veröffentlicht als: C. Hofmann, S. M. M. Schuler, R. C. Wende, P. R. Schreiner, Chem. 

Commun. 2014, 50, 1221–1223 

Eine multikatalytische enantioselektive oxidative Veresterung wird beschrieben. Die 

Kombination von TEMPO als Oxidationskatalysator und p-Nitrobenzoesäure als Additiv 

erlauben die Oxidation einer Reihe von Aldehyden zu den entsprechenden gemischten 

Anhydriden. Diese werden enantioselektiv durch den in Kapitel II beschriebenen Katalysator auf 

trans-Cycloalkan-1,2-diole mit bis zu 94% ee für das zurückgewonnene Diol und 93% ee für das 

entsprechende acylierte Derivat übertragen. Der Reaktionsverlauf und die Bildung des 

gemischten und symmetrischen Anhydrides wurden NMR-spektroskopisch verfolgt. Zudem 

konnte die Reaktion auch mit unserem zuvor entwickelten Multikatalysator (siehe Kapitel I), 

anstelle der beiden individuellen Katalysatoren, durchgeführt werden. 

 

Kapitel IV 

Veröffentlicht als: M. W. Alachraf, R. C. Wende, S. M. M. Schuler, P. R. Schreiner, W. 

Schrader, Chem.–Eur. J. 2015, 21, 16203–16208 

In Kooperation mit Prof. Dr. Wolfgang Schrader wurde ein mit π-Methylhistidin  und einer 

Disäure bestückter Multikatalysator mithilfe von hochauflösender Massenspektrometrie 

untersucht. Das Peptid wurde zuvor für eine Reaktionssequenz bestehend aus Epoxidierung, 

Hydrolyse und kinetischer Racematspaltung verwendet, welche es erlaubt enantiomeren-

angereichterte trans-Cycloalkan-1,2-diole ausgehend von einfachen Alkenen zu erhalten (siehe 

Kapitel I). Obwohl synthetisch akzeptable Selektivitäten (64 – 99% ee für das verbleibende Diol) 

beobachtet werden, reichen diese nicht an die Werte heran, die bei Verwendung des 

entsprechenden Tetrapeptides alleine erhalten werden. Alle wichtigen Intermediate wurden 

identifiziert und charakterisiert. Es konnte gezeigt werden, dass der Epoxidierungsschritt 

teilweise auch zu einer Oxidation des Imidazols und folglich zu einer herabgesetzten 

katalytischen Aktivität des Multikatalysators führt. 
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Kapitel V 

Unveröffentlichte Ergebnisse 

Wir fassten die Entwicklung einer multikatalytischen Reaktionssequenz für die Synthese von  

2-Deoxygalaktosiden ins Auge. Unser Ansatz basiert hierbei auf der partiellen Schützung von 

Kohlenhydraten, welche anschließend als Glykosyldonor fungieren könnten. Boc-D-Pmh-
A
Gly-

L-Val-L-Phe-OMe wurde als Katalysator für die regioselektive Acetylierung von Methyl-4,6-O-

benzyliden-α-D-glucopyranosid identifiziert. Im Vergleich zu einfachem N-Methylimidazol, 

welches hauptsächlich zur Acetylierung der 3-Hydroxygruppe des Substrates führt (2-OAc/ 

3-OAc/diacetyliert: 22:70:8; 93% Umsatz), wird mit dem Peptid überwiegend das 2-acetylierte 

Produkt gebildet (2-OAc/3-OAc/diacetyliert: 85:9:6; >95% Umsatz). Somit verstärkt dieser 

Katalysator nicht einfach die inhärente Reaktivität des Substrates, sondern setzt sich vollständig 

über diese hinweg. 

 

Kapitel VI 

Veröffentlicht als: R. C. Wende, A. Seitz, D. Niedek, S. M. M. Schuler, C. Hofmann, J. Becker, 

P. R. Schreiner, Angew. Chem. Int. Ed. 2016, 55, 2719–2723; Angew. Chem. 2016, 128, 2769–

2773 

Die Dakin–West– eaktion ist eine der brauchbarsten  ethoden zur Darstellung von α-Acyl-

amidoketonen ausgehend von den entsprechenden primären α-Aminosäuren. Obwohl diese 

Reaktion seit Jahrzehnten bekannt ist, wurde zuvor keine enantioselective Variante beschrieben. 

Wir fanden, dass die Komplexität des Reaktionsmechanismus eine Trennung der beiden 

entscheidenden Schritte erfordert: der Acetylierung des intermediär gebildeten Azlactons und 

des abschließenden Decarboxylierungsschrittes. Unter optimierten Reaktionsbedingungen 

fungieren die Pmh-enthaltenden Peptidkatalysatoren als eine Lewisbase im ersten Schritt und als 

eine Brønstedbase in der finalen enantioselektiven decarboxylativen Protonierung. Mit dem 

besten Katalysator konnten Selektivitäten von bis zu 58% ee bei guten Ausbeuten erzielt werden. 

Durch einfache Umkristallisation von zwei der erhaltenen Produkte konnten die Selektivitäten 

auf bis zu 84% ee gesteigert werden. Durch computerchemische Untersuchungen konnte auch 

hier die Bedeutung von Dispersionswechselwirkungen für den enantioselektivitäts- 

bestimmenden Reaktionsschritt nachgewiesen werden. 
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Kapitel VII 

Unveröffentlichte Ergebnisse 

Im letzten Kapitel werden weitere Experimente zur Dakin–West–Reaktion vorgestellt. 

Computerchemische und experimentelle Untersuchungen wurden durchgeführt um attraktive 

Dispersionwechsel-wirkungen nachzuweisen und einen Einblick zu erhalten, wie die 

Selektivitäten verstärkt werden könnten. Leucin-Derivate mit diversen Schutzgruppen und 

unterschiedliche Anhydride wurden untersucht. Obwohl die zuvor beobachteten Selektivitäten 

nicht weiter erhöht werden konnten, stützen die durchgeführten Experimente unsere 

vorgeschlagene Bindung des Substrates durch den Katalysator im selektivitätsbestimmenden 

Reaktionsschritt. Zudem wird die Anwendung der Dakin–West–Reaktion für eine potentielle 

Synthese von Proteaseinhibitoren vorgestellt. Die beiden entscheidenden Reaktionsschritte, die 

enantioselektive decarboxylative Protonierung und die Acetylierung der Azlactone, werden 

separat untersucht und könnten zu weiteren Entwicklungen führen. 
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Abstract 

The evolution of organocatalysis led to various valuable approaches, such as multicomponent as 

well as domino and tandem reactions. Recently, organomulticatalysis, i.e., the modular 

combination of distinct organocatalysts enabling consecutive reactions to be performed in one 

pot, has become a powerful tool in organic synthesis. It allows the construction of complex 

molecules from simple and readily available starting materials, thereby maximizing reaction 

efficiency and sustainability. A logical extension of conventional multicatalysis is a multi-

catalyst, i.e., a catalyst backbone equipped with independent, orthogonally reactive catalytic 

moieties. Herein we highlight the impressive advantages of asymmetric organomulticatalysis, 

examine its development, and present detailed reactions based on the catalyst classes employed, 

ranging from the very beginnings to the latest multicatalyst systems. 
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1.  Introduction 

The development of resource-efficient and sustainable chemical methodologies and processes 

has become one of the most important goals of synthetic organic chemistry in the 21
st
 century.  

Various attempts were undertaken to minimize the adverse environmental impact and maximize 

the efficiency of chemical reactions. As one of numerous advances, multicatalysis, i.e., the 

modular combination of distinct catalysts for consecutive transformations in a single flask, 

emerged as a highly valuable tool for the construction of complex molecular frameworks from 

simple and readily available starting materials.
[1]

  

Since its fundamental “renaissance” organocatalysis became a vibrant area of research and grew 

rapidly to become a pillar in organic synthesis.
[2]

 Further developments mainly focused on novel 

catalyst classes and activation modes, and their use in iterative single step operations.
[2]

  

Simultaneously, multistep processes, such as domino/cascade and tandem reactions,
[3-5]

 as well 

as asymmetric multicomponent reactions
[6]

 gained increasing attention and have soon been 

adopted to organocatalysis.
[5,7-9]

 Multicatalysis may condense the operational simplicity and 

synthetic efficiency provided by the aforementioned concepts to allow the rapid synthesis of 

even complex molecules in one pot syntheses.
[10-12]

 However, this concept only recently started 

flourishing in the field of organocatalysis.
[1]

 An approach that is even rarer and a logical 

extension of conventional multicatalysis is a multicatalyst
[13]

 (‘assembly line’ approach), i.e., an 

arbitrary catalyst backbone equipped with independently reactive catalytic moieties, which are 

separated by an appropriate spacer (Figure 1). The design of a multicatalyst system hinges on the 

concept of retrosynthesis for assembling complex molecules. Whereas in retrosynthesis the 

target structure is disassembled into synthons (as equivalents for starting materials or 

intermediates) and steps, the development of a multicatalyst relies on the judicious choice of  

 

 
Figure 1. Schematic representation of a multicatalyst and the concept of retrocatalysis. 



Evolution of Asymmetric Organocatalysis: Multi- and Retrocatalysis 
 

18 

catalytic moieties that can be brought together in a single catalyst structure.  Such a multicatalyst 

should then be able to allow the synthesis of the target structure from simple starting materials in 

a sequence of highly chemoselective reactions in one pot. This systematic strategy toward 

reverse catalyst design is therefore complementary to retrosynthesis (a target structure oriented 

approach) and may therefore be labelled as retrocatalysis (a reaction step oriented approach)
[14]

 

to emphasize their close conceptional relationship (Figure 1). 

The main challenge in the development of multicatalytic reactions is to ensure compatibility of 

reactants, intermediates and catalysts throughout the whole reaction sequence. Many organo-

catalytic reactions are nowadays well understood. Their underlying activation modes, reaction 

pathways and intermediates have been precisely elucidated, experimentally
[15]

 as well as 

theoretically,
[16]

 for a variety of reactions, allowing reasonable predictability for the realization 

of organomulticatalysis (indicating that the reaction is purely organocatalyzed). In order to 

circumvent compatibility problems, the following strategies have been adopted: the use of 

obviously compatible catalysts, sequential addition of catalysts, and the site-isolation or phase-

separation of catalysts. Additional challenges appear in the case of a multicatalyst. The choice of 

a proper catalyst backbone should allow easy preparation, alteration as well as modification.  

Moreover, appropriate spacers may be crucial for the separation of the catalytically active 

moieties. The envisioned multicatalyst must be compatible with all required reaction conditions 

and intermediates. 

Interestingly, many examples of multicatalysis have not been recognized as such. Amongst other 

things, this may be due to the following reasons: not taking into account simple achiral Brønsted 

acids and bases as organocatalysts and inconsistent terminology (many multicatalytic reactions 

are lost amidst publications dealing with domino or tandem reactions). For this reason we will 

first define the prevalent types of one-pot organocatalysis employing multiple steps, illustrated 

with selected examples, before examining the advantages of multicatalysis and discussing 

representative examples. 
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2.  Multicatalysis – A Survey 

2.1  Taxonomy of One-Pot Reactions Using Multiple Catalysts 

There are many examples of one-pot reactions where multiple organocatalysts are 

employed,
[10,11,17]

 and these have been termed cooperative catalysis,
[18]

 multifunctional 

catalysts,
[19]

 and dual catalysis.
[20]

 For simplicity, we schematically depict the catalytic cycles for 

a general reaction of two starting materials (A and B) affording a product (P). As evident from 

this simplified picture, multicatalysis should be clearly distinguished from cooperative catalysis 

where neither catalyst one nor catalyst two are sufficient to perform a desired reaction 

individually, and only a combination of both catalysts (sharing a single catalytic cycle) leads to a 

significant increase in the reaction rate (Figure 2).
[18]

 

 

 

Figure 2. The concept of cooperative catalysis taking the co-catalyzed asymmetric Povarov reaction as an example; 

see ref. 18c and 18d. 
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Moreover, multicatalysis and especially a multicatalyst (compare Figure 1) are different from 

multifunctional catalysts
[19]

 (Figure 3), and dual catalyst systems
[20]

 (Figure 4). In the case of a 

multifunctional catalyst one catalytic functionality mutually enhances the activity of another 

catalytically active center on the same catalyst via the separate activation of multiple reaction 

partners (mostly a nucleophile and an electrophile).
[19]

 The types of catalysts which are able in 

simultaneously activating two reactants are manifold, ranging from, e.g., proline
[21]

 to cinchona 

alkaloid derivatives
[22-23]

 and bifunctional (thio)urea derivatives
[24]

 (such as Takemoto’s catalyst; 

Figure 3),
[25]

 and proved their efficiency in a variety of reactions.
[19,21-25]

   

 

 

Figure 3. The concept of a multifunctional catalyst taking proline and Takemoto’s catalyst as representative 

examples; see ref. 21 and 25. 

The third type of catalysis that should be distinguished from multicatalysis is dual catalysis 

(Figure 4).
[20]

 It should be mentioned that dual catalysis is inconsistently used and may lead to 

confusion as it is indeed used for multicatalytic reactions in some cases. Very recently, Allen and 

MacMillan defined synergistic catalysis as the simultaneous activation of an electrophile and a 

nucleophile by independent catalysts in directly coupled catalytic cycles.
[26]

 Indeed, the same is 

true for dual catalysis. From our point of view synergistic catalysis is a better terminology for 

reactions wherein two directly coupled catalytic cycles lead to the formation of a product (see 

example in Figure 4). 
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Figure 4. The concept of dual catalysis/synergistic catalysis taking the kinetic resolution of cyclic amines as an 

example; see ref. 20c. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; Mes = mesityl (2,4,6-trimethylphenyl). 
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For clarity, the term multicatalysis should be solely used for combinations of distinct catalysts to 

perform consecutive reactions, whereby the starting materials (A and B) react to form an 

intermediate (IM) in a first catalytic cycle (Figure 5). Subsequently, this intermediate is 

converted to the final product (P) by another independent catalyst (or catalytic moiety in the case 

of a multicatalyst) without intermittent work-up and purification procedures (Figure 5). Based on 

the way of their execution, multicatalytic reactions employing two (or more) catalysts can be 

further categorized. For instance, the term sequential (multi)catalysis
[4,11]

 is typically used to 

describe multicatalytic reactions that rely on the addition of another catalyst or reagent (C, 

Figure 5), or an intermittent alteration of reaction conditions (e.g., solvent, temperature) to 

initiate a subsequent catalytic cycle. Tandem catalysis
[4]

 or relay catalysis,
[11]

 respectively, refer 

to a multicatalytic reaction whereby the product formed in the first catalytic cycle is directly fed 

into a subsequent one without a change in the reaction conditions. Moreover each of the 

employed catalysts may independently allow for domino/cascade or tandem reactions. Therefore, 

we recommend using the comprehensive expression organomulticatalysis for the overall reaction 

and more specific terms only for the distinct reactions. 

 

 

Figure 5. Possible types of multicatalysis. 

 

2.2  Reaction Efficiency and Sustainability Aspects of Multicatalysis 

What are the benefits of multicatalyses relative to well-established traditional synthetic strategies 

and domino reactions, and how do they contribute to an environmentally benign chemistry? 

These questions can be answered when considering multicatalysis in the context of 

GreenChemistry
[27-30]

 and its Twelve Principles,
[27,31]

 taking into account the Environmental 

factor (E-factor),
[32]

 as well as the concepts of atom economy,
[33]

 step economy,
[34]

 and redox 
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economy
[35]

 as key parameters.
[36]

 However, the rapid increase in reaction efficiency and 

sustainability from the ‘stop-and-go’ to multicatalysis is based on some simple considerations. 

Catalysis is a key to sustainability and is superior compared to the use of stoichiometric amounts 

of reagents.
[28]

 Organocatalysis often circumvents many of the drawbacks usually associated 

with transition-metal catalysis and biocatalysis. Organocatalysts are usually non-toxic, readily 

available (either commercially or derived from natural sources), and in many cases allow 

reactions under mild conditions. They are robust catalysts, e.g., tolerate air and moisture, and are 

compatible with a large variety of functional groups. One-pot multistep reaction sequences,  may 

they be promoted by a single organocatalyst or of multicatalytic nature, avoid costly and time-

consuming, intermittent work-up and purification steps, thus preventing yield losses, saving 

energy, time and effort, and reducing waste (indeed, most waste originates from work-up and 

purification procedures in the form of solvents, drying, and separation agents). As a 

consequence, considerably lower E-factors, which is the mass ratio of generated waste to desired 

product, can be achieved. Moreover, the mentioned functional group tolerance of organocatalysts 

may permit protecting-group free syntheses
[37]

 and avoid other unnecessary functional group 

conversions (e.g., non-strategic oxidation and reduction steps), thus leading to high step
[34]

 as 

well as redox economy.
[35]

 Recently, pot economy
[38]

 has been suggested with the ultimate goal 

of performing entire multistep syntheses in a single reaction vessel. Multicatalysis also 

appreciably broadens the spectrum of applicable substrates and achievable transformations when 

employing independent catalysts with orthogonal reactivity. Hence, it may be more easily 

combined with multicomponent reactions
[6,9,6]

 leading to overall high atom economy,
[33]

 which is 

defined as the ratio of the molecular weight of desired product to the sum of molecular weights 

of the reactants. Equilibrium reactions can be driven to completeness, avoiding the use of excess 

reagents, and possible side-reactions can be circumvented by direct consumption of reactive 

intermediates in a concurrent catalytic cycle. This is especially important in cases where 

potentially toxic or unstable intermediates are formed; these can be directly converted into safer 

or lower energy species, thus lowering the risks of transportation, storage, and handling. An 

additional factor for high reaction efficiency in catalysis undoubtedly is selectivity,
[39]

 namely 

chemo-, regio- or stereoselectivity (in cases where any other than the desired isomers can be 

regarded as waste). Multicatalysis may not only improve the reactivity, but lead to an 

amplification of stereoselectivity due to synergistic effects or to an enantioenrichment in 

subsequent catalytic cycles when a set of chiral catalysts is used.
[5]

 Moreover, it provides an 

elegant approach to attain products with the desired stereochemistry depending on the 

configuration of the catalysts employed.
[5]

 

Further advantages may be offered by a multicatalyst: the close proximity of the catalytic 

moieties ensures higher local concentrations of the formed intermediates at the common catalyst 

backbone for consecutive reactions (if the reaction rates are such that each subsequent reaction 
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comes is faster). This leads to an efficient feeding of the intermediates into the next catalytic 

cycle, therefore, improving reactivity and material-balance. 

This Critical Review examines and highlights the impressive developments and advances of 

asymmetric organocatalyzed multicatalysis (at least one chiral catalyst is used) with the focus on 

different organocatalyst classes. At the beginning of each chapter we will provide a short 

introduction in the common activation modes and reaction types discussed herein. The reactions 

presented are classified depending on the different catalyst classes employed and their specific 

activation modes. In particular, these are: 

 Secondary amines – enamine/iminium activation 

 N-heterocyclic carbenes – Umpolung 

 Thiourea derivatives – hydrogen bonding 

 Non-natural oligopeptides – acyl transfer reactions 

Wherever necessary for a better understanding we will present mechanistic details for selected 

transformations.  We cover only enantioselective approaches; diastereoselective reactions are not 

included. Multicatalysis employing metal catalysts,
[1,4,11,13,40]

 multienzymatic reactions,
[41-42]

 as 

well as combinations of metal-, bio-, and organocatalysis
[1,4,11,42-43]

 are beyond the scope of this 

review and have been covered elsewhere. 
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3.  Secondary Amine Catalysts 

3.1  The Beginnings of Organomulticatalysis – Merging Iminium and Enamine 

Catalysis 

Chiral secondary amines are commonly employed as organocatalysts as these are in most cases 

readily available and show remarkable performance in a variety of carbonyl functionalizations 

via iminium ion (LUMO lowering) and enamine (HOMO raising) catalysis.
[44]

 Both activation 

modes have been elegantly combined in asymmetric domino reactions, which now constitute 

possibly one of the most applied one-pot multistep approaches in organocatalysis.
[7,44e]

  This 

strategy is outlined in Figure 6: an α,β-unsaturated aldehyde (or ketone) is activated by a 

secondary amine catalyst, reversibly forming an iminium ion that is able to undergo a conjugate 

addition of a nucleophile (Nu). The enamine intermediate formed as a result of the first reaction 

step enables a consecutive reaction with an electrophile ( ) to afford the α,β-disubstituted 

aldehyde usually containing two newly formed stereogenic centers. 

 

  

Figure 6. Simplified general mechanism for a secondary amine catalyzed domino reaction and prevalent reaction 

types. R = alkyl, aryl; Nu = nucleophile; E = electrophile. 

The way to secondary amine-catalyzed multicatalytic reactions was paved by MacMillan et al. in 

2005, as they realized that two discrete imidazolidinones, 1 and 2, respectively, can be combined 

to enforce cycle-specific selectivities (Scheme 1).
[45]

 To the best of our knowledge this was the 
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earliest example of asymmetric multicatalysis employing two chiral organocatalysts. The transfer 

hydrogenation reaction
[46]

 with Hantzsch ester 3 as organic hydride source in conjunction with 

direct α-fluorination using N-fluorodibenzenesulfonamide (NFSI; 4) as electrophile allowed the 

formal asymmetric addition of HF across β-methylcinnamaldehyde (5; Scheme 1). This 

multicatalytic reaction sequence showed for the first time one of the advantages of the 

multicatalysis approach, namely the easy modulation to provide the required diastereo- and 

enantioselectivity via the judicious choice of the enantiomeric forms of the secondary amine 

catalysts. For example, catalyst combination A, with iminium catalyst (5R)-1 and enamine 

catalyst (2S)-2, gives access to the anti-diastereomer 6 in 16:1 d.r. with 99% ee. Employing 

 

 

Scheme 1. Cycle-specific catalysis for the transfer hydrogenation/α-fluorination of β-methylcinnamaldehyde (5). 
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catalyst combination B, with enamine catalyst (2R)-2, provides a direct entry to the syn-addition 

product epi-6 in 9:1 d.r. and 99% ee, respectively (Scheme 1). When (5R)-1 was used for both 

iminium and enamine activation the syn-addition product epi-6 was obtained with a diminished 

diastereomeric ratio of 3:1 (Scheme 1).
[45]

 This result clearly demonstrates that multicatalysis 

may not only allow controlling the diastereo- and enantioselectivity of the final product it may 

also significantly enhance stereoinduction. 

Soon after  ac illan’s pioneering work
[45]

 related reactions comprising the sequential iminium-

enamine activation by distinct secondary amines have been published.  For example, a similar 

procedure for a reductive Mannich-type reaction was reported by Córdova et al. (Scheme 2).
[47] 

 

 

Scheme 2. Enantioselective reductive Mannich-type reaction reported by Córdova. 
a 

Yield of isolated product based 

on N-PMP-protected α-iminoglyoxylate (10). 

Instead of imidazolidinone (5R)-1 used by MacMillan, they applied the Jørgensen–Hayashi 

catalyst
[48]

 ((S)-7; TMS = trimethylsilyl) with benzoic acid as co-catalyst, which proved to be 

more reactive in the transfer hydrogenation step under the applied conditions. The reactions gave 

the corresponding amino acid derivatives, such as 12, in good yields and excellent stereo-

selectivities using Hantzsch ester 9, para-methoxyphenyl (PMP)-protected α-iminoglyoxylate 
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(10), α,β-unsaturated aldehyde 11, and (S)-7 as catalyst for both reaction steps (Scheme 2). By 

analogy to the reactions reported by MacMillan et al.,
[45]

 the sequential addition of D-proline 

((R)-8) and electrophile 10 in the second reaction step altered the diastereoselectivity: the  syn-

product epi-12 was obtained instead of the anti-isomer 12, albeit with significantly diminished 

selectivity (5:1 instead of 50:1 d.r.; Scheme 2).  

Later, the same group reported the cycle-specific four-component reaction of (E)-hex-2-enal 

(13), benzyl methoxycarbamate (14; Cbz = benzyloxycarbonyl), acetone (15) and p-anisidine 

(16) under multicatalysis conditions, which gives direct access to the chiral, orthogonally 

protected diamine derivatives 17 and epi-17 through an asymmetric aza-Michael/Mannich 

reaction cascade catalyzed by (S)-7, and (S)-8 or (R)-8 (Scheme 3).
[49]

 The subsequent (S)-8 

catalyzed Mannich reaction thereby kinetically resolved the β-amino aldehyde intermediate 

(96% ee) to give the diamine products 17 with 98% ee (for catalyst combination C) and epi-17 

with 99% ee (for catalyst combination D), respectively, in good yields and high diastereomeric 

ratios (> 19:1 d.r. in both cases).  

 

 

Scheme 3. Aza-Michael/Mannich reaction cascade for the synthesis of orthogonally protected diamine derivatives. 

In order to expand their cycle-specific multicatalysis approach to a variety of other trans-

formations, MacMillan and co-workers investigated imidazolidinones (5R)-1 and (2S,5S)-23 as 

iminium catalysts and either (S)-8 or (R)-8 as enamine catalyst (Scheme 4 and Scheme 5).
[50]
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Scheme 4. Cycle-specific reaction cascades employing Hantzsch ester 3 as hydride nucleophile and different 

electrophiles. (5R)-1 was used as its corresponding TCA salt. E = electrophile. 

While imidazolidinones are principally able to serve as iminium and enamine catalysts, they are 

not capable of participating in bifunctional enamine catalysis (in which activation of the 

electrophile is performed by the same amine catalyst). In contrast, bifunctional activation is a 

standard mode of activation for proline 8 (due to its acid functionality; compare Figure 3),
[21]

 but 

this catalyst is generally ineffective as iminium catalyst particularly with enals or enones. Owing 

to this orthogonal reactivity, the combination of (5R)-1 or (2S,5S)-23 with 8 enabled a broader 

spectrum of valuable transformations by using different electrophiles (Scheme 4) and nucleo-

philes (Scheme 5).
[50]

 For example, a combination of (5R)-1 and (S)-8 as catalysts (catalyst 

combination  ), β-methylcinnamaldehyde (5), Hantzsch ester 3 as nucleophile and dibenzyl-  
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Scheme 5. Cycle-specific reaction cascades employing dibenzylazodicarboxylate (21) or nitrosobenzene (22) as 

electrophiles and different nucleophiles. (2S,5S)-23 was used as its corresponding TCA or TFA salt. E = 

electrophile; Nu = nucleophile. 
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azodicarboxylate (21) as aza-Michael acceptor afforded the desired hydroamination product 18 

(6:1 anti/syn, 99% ee). As expected, the combination of (5R)-1 and (R)-8 (catalyst combination 

F) led to an inversion in diastereoselectivity furnishing epi-18 (8:1 syn/anti, 99% ee). Employing 

nitrosobenzene 22 as electrophile provided the hydro-oxidation products 19 (11:1 anti/syn, and 

99% ee with catalyst combination E) and epi-19 (10:1 syn/anti and 99% ee with catalyst 

combination F). Moreover, a reductive Mannich reaction  cascade, similar to the one reported by 

Córdova
[47]

 (compare Scheme 2) using N-PMP-protected α-iminoglyoxylate (10) as electrophile 

could be realized. The corresponding products were obtained in high yields, diastereomeric 

ratios and excellent enantiomeric excess (20: 14:1 d.r., 99% ee; epi-20: 80% yield, 12:1 d.r., 

99% ee).  

The same methodology was applicable for a variety of nucleophiles, using a combination of 

imidazolidinone (2S,5S)-23 and both enantiomeric forms of proline 8 as catalysts, croton-

aldehyde (24) as enal substrate and dibenzylazodicarboxylate (21) as electrophilic reagent 

(Scheme 5).
[50]

 With 1-methylindole (29) as π-nucleophile the corresponding arylamination 

products were obtained (25: 14:1 syn/anti, 99% ee with catalyst combination G; epi-25: 7:1 

anti/syn, 99% ee with catalyst combination H). An alkylamination reaction cascade with silyl- 

oxyoxazole 30 (TIPS = triisopropylsilyl) as nucleophile afforded the desired product 26 with 

three contiguous stereogenic centers (5:1 d.r. and 99% ee) for catalyst combination G, whereas 

catalyst combination H gave the corresponding anti-isomer epi-26 (13:1 d.r., 99% ee). The 

cycle-specific reaction was also applicable to olefin diamination and amino-oxidation reactions. 

Employing N-Boc-protected silyloxycarbamate (31; Boc = tert-butyloxycarbonyl, TBS = tert-

butyl dimethylsilyl) in conjunction with dibenzylazodicarboxylate (21) afforded the diamination 

products 27 (7:1 anti/syn, 99% ee with catalyst combination G) and epi-27 (8:1 syn/anti, 99% ee  

with catalyst combination H). A related Cbz-protected amine nucleophile 32 and nitrosobenzene 

(22) as electrophile formed the amino-oxidation products with excellent diastereo- and enantio- 

selectivities (catalyst combination G for 28: 17:1 anti/syn, 99% ee; catalyst combination H for 

epi-28: 14:1 syn/anti, 99% ee).  

In order to further demonstrate its viability, MacMillan et al. applied their multicatalysis system 

in combination with a metal-catalyzed olefin cross-metathesis to a triple cascade reaction for 

thesynthesis of an intermediate of the natural product (–)-aromadendranediol
[51]

 (37; Scheme 6). 

Thus, the use of Grubbs’ second generation catalyst 33, 5-hexene-2-one (34) and crotonaldehyde 

(24) allowed the formation of ketoenal 35 in the first step. The sequential addition of 

imidazolidinone catalyst (2S,5S)-23 and silyloxyfuranyl 36 as nucleophile led to the formation of 

intermediate 37 through an iminium-activated Mukaiyama-Michael reaction. Upon addition of 

(S)-8 as enamine-catalyst, intermediate 37 underwent a diastereoselective intramolecular aldol 

reaction furnishing the complex key intermediate 38 (64% yield, 5:1 d.r., 95% ee), which already 

contains four of the six required stereogenic centers and 12 of the 15 necessary carbon atoms. 
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The synthesis of (–)-aromadendranediol (39) could then be accomplished in eight further linear 

steps with 40% overall yield (starting from 38). For comparison, a previously reported synthesis 

starting from enantiomerically pure (+)-spathulenol afforded (–)-aromadendranediol (39) in only 

13% total yield over three steps.
[51a]

 Although we will exclusively focus on organocatalyzed 

reactions in the following, we show this example because it beautifully demonstrates the 

applicability of organomulticatalysis in the total synthesis of complex natural products.  

 

 

Scheme 6. Multicatalysis approach for the preparation of key intermediate 38 in the total synthesis of the natural 

product (–)-aromadendranediol (39). Catalyst (2S,5S)-23 was used as its corresponding 2,4-dinitrobenzoic acid salt. 

Cy = cyclohexyl; Mes = mesityl (2,4,6-trimethylphenyl). 

Note that although Hantzsch esters (as well as analogues thereof and, e.g., benzothiazolines or 

benzoimidazolines) suffer from poor atom economy they are the hydride source of choice in 

organocatalysis.
[46]

 Metal-free transfer hydrogenations with Hantzsch esters proceed under mild 

reaction conditions and are compatible with various functional groups, making them ideal for 

domino, tandem, and multicatalytic reactions.
[46]

   

In 2008, Fréchet and co-workers reported the combination of non-interpenetrating star polymers 

SP1 and SP2 with core-confined catalysts, and hydrogen bonding additive 40 (Scheme 7).
[52]

 

This site-isolation approach allowed the use of otherwise incompatible catalysts, circumventing 

undesired catalyst interactions. Indeed, small molecule reagents are able to freely diffuse to the 

core of the star polymers, allowing catalysis to take place. For example, the addition of 

imidazolidinone (2S,5S)-23 to star polymer SP1 resulted in the formation of salt (2S,5S)-23 • 

SP1, which acts as iminium catalyst, thus enabling the conjugate addition of  

1-methylindole (29) to (E)-hex-2-enal (13). Addition of SP2, methylvinyl ketone (41) and 40 
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(which was expected to activate the relatively unreactive Michael acceptor 41) afforded the 

desired indole derivative 42 with high yield and excellent stereoselectivity (89% yield, 25:2 d.r., 

> 99% ee) through the second Michael reaction. When star polymer SP1 was replaced with 

para-toluenesulfonic acid and/or SP2 with the analogues free secondary amine catalyst no 

desired product was observed. Only traces of product formed when linear polymer analogues of 

SP1 and SP2 were used.  Additionally, the use of (2R,5R)-23 as iminium catalyst afforded the 

other diastereomer epi-42 (80% yield, 2:25 d.r., > 99% ee) similar to the aforementioned 

examples.  

 

 

Scheme 7. Combination of iminium, enamine and H-bonding catalysis using non-interpenetrating starpolymer 

catalysts (2S,5S)-23 • SP1 and SP2 for the one-pot synthesis of indole derivative 42. 
a
 Values in parentheses indicate 

reaction using (2R,5R)-23 as iminium catalyst. 

Later, the same group reported a multicatalysis reaction in aqueous buffer, enabling the polarity-

directed, chemoselective formation of desired cross-cascade products.
[53]

 Employing (S)-8 and 

(S)-7 as catalysts, this biphasic reaction allowed the differentiation of two aldehydes with similar 

chemical reactivity based on their different polarity to form a major cross-cascade product 51 

(Scheme 8). Preliminary studies indicated that the success of this reaction is based on some 

special requirements. Hence, the first amine catalyst (S)-8, dissolves well in the aqueous phase, 

but poor in organic solvents. The other amine catalyst (S)-7, in conjunction with lauric acid as 

hydrophobic acid co-catalyst, shows a greater miscibility with the organic phase rather than 

water (even slightly water-miscible organic acids turned out to be problematic because they 

lower the pH of the aqueous phase and therefore slow down the condensation reaction). 

Moreover, (S)-8 is an efficient catalyst for the condensation reaction, but a poor catalyst for the 

conjugate addition under aqueous conditions. In sharp contrast, diphenylprolinol (S)-7 is 
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inefficient in the condensation reaction, but an efficient and highly enantioselective catalyst for 

the conjugate addition of aldehydes to nitroalkenes. On the basis of these requirements, Fréchet 

and co-workers succeeded in the development of a biphasic reaction facilitating the selective 

activation of the two aldehydes. In aqueous phase, the use of a large amount of (S)-8 (40 mol%, 

respectively) efficiently catalyzes the reversible condensation of the less hydrophobic aldehydes 

43 – 46 (R
1
 = Et, n-Pr, i-Pr, n-Bu) and nitromethane (50). In the organic phase, the use of only  

1 mol% of catalyst S)-7 slows down the addition reaction, so that the aldehydes 43 – 46 are 

readily consumed in the condensation step, suppressing the addition of the more hydrophobic 

aldehydes 46 – 49 (R
2
 = n-Bu, n-hexyl, n-octyl, n-decyl) to the nitroalkene intermediate 52, thus 

avoiding the formation of undesired by-products. Consequently, the aldehydes 46 – 49 survive 

the condensation step and react with the nitroalkene intermediate 52 in the organic phase to give 

exclusively 51. Indeed, only traces of by-products could be detected. This approach sheds light 

on the cycle-specific activation of reagents as well as intermediates based on physical (polarity) 

rather than chemical properties. 

 

 

Scheme 8. Biphasic polarity-directed reaction in aqueous buffer employing two aldehydes with similar reactivity 

but different polarity. 

Contrary to the above examples, Moreau and Greck envisaged a multicatalytic reaction 

comprising two consecutive enamine cycles, based on two previously developed reactions, a 

 ichael addition of aldehydes to β-nitrostyrene (55)
[48b]

 and a  ichael addition/α-amination 

cascade reaction,
[54]

 respectively (Scheme 9 and Table 1).
[55]

 Indeed, the combination of (S)-7 

and 9-amino(9-deoxy)epi-cinchonine (53; 5 mol% for both), propionaldehyde (54), nitrostyrene 
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(55), and electrophilic dibenzylazodicarboxylate (21) afforded the desired α-hydrazino aldehyde 

57a (80% yield, >95:5 d.r., 96% ee). When both reactions were performed independently,  

10 mol% of 7 and a tenfold excess of aldehyde 54 (instead of 1.2 equivalents) were necessary to  

 to afford the intermittent Michael addition product 56 (82% yield, 95:5 d.r.) in the first reaction 

(Scheme 9). The second reaction, using the previously reported conditions
[54]

 (20 mol% 53,  

30 mol% TFA, 1.5 equivalents of 21), gave the expected product 57a in 80% yield (66% yield 

overall) and in >95:5 d.r. Various other nitroalkenes 58 bearing electron-rich (57b and 57c; 

Table 1, entries 2 and 3) and electron-deficient aryl groups (57d–57h; entries 4–8) with different 

substitution pattern (i.e., para- or meta-substituted) could be used under the optimized 

conditions, affording the corresponding products 57 as a single diastereomer with good yields 

(73 – 85%) and high enantioselectivities (96 – 98% ee).  

Very recently, the combination of Jørgensen’s T S-protected diarylprolinol (S)-59
[56]

 and (S)-8 

was reported by the group of Díez to participate in the sequential Michael/Morita-Baylis-

Hillman with concomitant Knoevenagel condensation reaction cascade of Nazarov reagent 60 

with α,β-unsaturated aldehydes leading to 2-alkylidene cyclohexanones 65 (Scheme 10).
[57]

 The 

success of the reaction was based on the combination of the two amine catalysts (S)-59 and (S)-8. 

For example, using only (S)-59 gave the Michael addition product as a mixture of diastereomers 

(syn/anti 1:1), but did not afford any cyclization product. The same was observed when (S)-7 

was used as catalyst; with  ac illan’s imidazolidinone (2S,5S)-23 only starting material could 

be detected. When (S)-8 was applied for the total reaction the desired products 65 formed with 

reasonable diastereomeric ratio (E/Z = 2:1) and yields, but no enantioselectivity could be 

achieved under these conditions. In contrast, the conjugate addition reaction of 60 with α,β-

unsaturated aldehydes 13 and 61–64 catalyzed by (S)-59 and sequential addition of (S)-8 after 

consumption of the starting material afforded the cyclized products 65 (E/Z = 2:1 in all cases) 

with moderate to good yields and high enantiomeric ratios (41 – 77% yield; up to  

98:2 e.r.). However, the reaction did not proceed with aryl aldehydes.
[57]

 

As the scope of secondary amines is limited to carbonyl compounds the combination of these 

catalysts with other organocatalysts is highly desirable to provide a way to reactions otherwise 

not attainable. 
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Scheme 9. Comparison of the sequential preparation and the one-pot multicatalytic synthesis of product 57a. 
a
 No 

enantiomeric excess given. 

Table 1.  ichael addition/α-amination reaction sequence through double enamine activation. Table corresponds to 

Scheme 9. 

 

Entry R Product
 

Yield (%) ee (%) 

1 Ph 57a 90 96 

2 1-naphthyl 57b 73 96 

3 4-MePh 57c 85 96 

4 4-MeOPh 57d 85 97 

5 4-ClPh 57e 85 98 

6 4-FPh 57f 81 97 

7 3-ClPh 57g 85 98 

 8
a
 3-MeOPh 57h 76 96 

a
 10 mol% of (S)-7 were used. 
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Scheme 10. Michael/Morita-Baylis-Hillman/Knoevenagel condensation reaction sequence for the preparation of  

2-alkylidene cyclohexanones 65. MOM = methoxymethyl. 

 

3.2  Combinations of Secondary Amine Catalysts with Brønsted Acids and Bases 

During the last few years, the group of Ramachary reported a variety of multicatalytic 

approaches based on the sequential combination of multicomponent reactions and multicatalysis 

providing direct excess to a variety of valuable compounds (most of them being achiral), such as 

agrochemicals, fine chemicals, as well as pharmaceutical drugs, drug intermediates, and building 

blocks for the synthesis of natural products.
[58]

 However, as already mentioned above we focus 

on asymmetric organocatalyzed variants here. 

After the successful demonstration of the one-pot asymmetric syntheses of the Wieland-

Miescher
[59]

 and Hajos-Parrish
[60]

 ketones and their analogues via a three-component reductive 

alkylation and Robinson annulation,
[61,62]

 Ramachary et al. investigated the one-pot asymmetric 

synthesis of the corresponding hydrogenated derivatives by combining three components and 

four catalysts, triethylamine, (S)-8, perchloric acid, and (S)-1-(2-pyrrolidinyl-methyl)pyrrolidine 

(66), respectively (Scheme 11).
[63]

 Therefore, they suggested a triethylamine-catalyzed regio-

selective Michael reaction of diketones 67 and methylvinyl ketone (41) followed by a Robinson 

annulation of intermediate Michael adducts 68 through amino acid/Brønsted acid catalysis 

furnishing the chiral Wieland-Miescher and Hajos-Parrish ketones 69 (n = 1, 2). Final iminium 

activated stereoselective hydrogenation of the respective intermediates 69 with Hantzsch ester 9 

and diamine catalyst 66 would then lead to hydrogenated Hajos-Parrish ketone 70a or Wieland- 

Miescher ketone 70b. Indeed, the sequential combination of 67 and 41 with Hantzsch ester 9 and 

catalytic amounts of triethylamine, (S)-8, perchloric acid, and 66 afforded the hydrogenated 

Wieland-Miescher ketone 70b in 45% yield with >99% d.r. and 75% ee. However, the hydro-

genated Hajos-Parrish ketone 70a was obtained in 45% yield and >99% d.r., but only 20% ee 

(the corresponding (S)-8 catalyzed two-component reaction affords the intermediate Hajos-
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Parrish ketone (69, n = 1) with 86% ee).
[62]

 This was proposed to be because of the involvement 

of triethylamine in the transition state of the (S)-8 promoted intramolecular aldol reaction.
[63]

 

Another multicatalysis reaction was reported by the same group, combining amino catalysis and 

Brønsted acid catalysis for the synthesis of a chiral chromane 76 (Scheme 12).
[64]

 The trans-4- 

 

 

Scheme 11. Asymmetric synthesis of hydrogenated Hajos-Parrish ketone 70a and Wieland-Miescher ketone 70b 

through the one-pot combination of three components and four catalysts reported by Ramachary. 

 

 

Scheme 12. Multicatalytic synthesis of chromane derivatives reported by Ramachary. NMP = N-methyl-

pyrrolidinone. 
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hydroxy-L-proline (71) catalyzed reaction of acetone (15) and 2-hydroxybenzaldehyde (73) via 

Barbas-List aldol reaction gave intermediate 74 which is in a fast dynamic equilibrium with its 

lactol form 75. Subsequent treatment with para-toluenesulfonic acid (p-TSA; 72) in methanol 

selectively afforded the chiral trans-2-methoxy-2-methylchroman-4-ol (76) in 55% yield with  

>95% de and 77% ee (Scheme 12).
[64]

 

An impressive example of stereocontrol was reported by Jørgensen et al. employing (S)-7 and 

piperidine (77) as catalysts for the formation of complex chiral bicyclo[3.3.1]non-2-enes 80, 

starting from simple α,β-unsaturated aldehydes 78 and dimethyl 3-oxopentanedioate (79;  

Table 2).
[65]

 Four new carbon–carbon bonds formed, affording the desired product 80 bearing six 

stereogenic centers with excellent diastereo- and enantioselectivity (up to >99:1 d.r. and 96% ee) 

out of 64 theoretically possible stereoisomers. Jørgensen and co-workers proposed the following 

mechanism for the formation of the six stereogenic centers in 80 (Scheme 13).
[65]

 The reaction is 

initiated by standard iminium ion catalysis by diphenylprolinol silylether (S)-7 with 

  

Table 2. Asymmetric two-component reaction for the formation of bicyclo[3.3.1]non-2-enes. 

 

Entry R Product
 

Yield (%)   d.r. ee (%) 

1 Et 80a 48 >99:1 94 

2 i-Pr 80b 65 >99:1 96 

3 n-heptyl 80c 69      88:12 95 

4 EtO2C 80d 38 >99:1 89 

5 (Z)-hex-3-enyl 80e 51    94:6 94 

6 Ph 80f 70 >99:1 93 

7 4-MeOPh 80g 93    92:8 91 

8 2-furyl 80h 86    94:6 90 

9 2-BrPh 80i 86 >99:1 96 
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Scheme 13. Mechanistic proposal for the formation of bicyclo[3.3.1]non-2-enes 80. 

enals 78 generating 81, which is nucleophilically attacked at the β-carbon atom by dimethyl   

3-oxopentanedioate (79), thus leading to enamine 82. Formation of iminium ion intermediate 83 

and subsequent hydrolysis releases 84 with the first two stereogenic centers. In the second 

cyclization reaction of intermediate 84 with its second activated methylene functionality leads to 

85 which, after elimination of water, gives intermediate 86. The cyclization step is possibly 

preceded by hydrolysis of secondary amine catalyst (S)-7, however, this could not be clarified.  

Conjugate addition with a second molecule of 79 leads to 87 (the stereoinduction in this step 

arises from steric hindrance of the former created stereogenic center bearing R).
[65]

 Final ring 

closure between the last free activated methylene and the central ketone furnishes product 88. 

Due to strong intramolecular hydrogen bonding, tautomeric equilibration leads to the more stable 

aldehydes 78.  For example, aliphatic aldehydes (80a – 80c; Table 2, entries 1 – 3), esters (80d; 

entry 4), and olefins (80e; entry 5) were applicable. Superior yields were achieved employing 

aromatic compounds, e.g., para- and ortho-substituted phenyls (80g and 80i; entries 7 and 9) or 

heteroaromatic substituents, such as furyl (80h; entry 8). Importantly, the products 80 could be  

purified by crystallization after completion of the reaction, thus avoiding waste-generating 

chromatographic steps.
[65]

 

One year later, the same group reported an organocatalytic Michael/Knoevenagel domino 

reaction for the synthesis of optically active 3-diethoxyphosphoryl-2-oxocyclohex-3-ene- 

carboxylates.
[66]

 In order to demonstrate the synthetic feasibility of these products, Jørgensen et 

al. performed consecutive reactions, one of it being multicatalytic. Hence, Jørgensen and co- 

workers envisioned a hydrolysis/decarboxylation reaction as an entry to 5-substituted  
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2-diethoxyphosphorylcyclohex-2-enones, such as 90 (Scheme 14). In this example, the (S)-59 

catalyzed domino Michael/Knoevenagel condensation reaction of 4-diethoxyphosphoryl-3-oxo-

butanoate (90) and cinnamaldehyde (91) afforded tert-butyl-2-oxocyclohex-3-carboxylate (92). 

Subsequent methanesulfonic acid (MSA; 89) catalyzed hydrolysis/decarboxylation then  

gave the target compound 2-diethoxyphosphoryl-5-phenylcyclohex-2-enone (93) in 52% yield  

and 96% ee.  The stepwise synthesis yielded 93 in slightly lower yield (43% over two steps) and 

same enantiomeric excess.
[66]

 However, the one-pot synthesis avoids intermediate work-up, 

isolation, and purification of 92, thus is more time-cost-efficient. 

 

 

Scheme 14. Stepwise and multicatalytic synthesis of 2-diethoxyphosphor-yl-5-phenylcyclohex-2-enone 93. 
a 

First 

reaction was performed in dichloromethane. 

In the same year, García Ruano and Alemán reported the successful combination of amino 

catalysis and fluoride catalysis using (S)-59 and n-tetrabutylammonium fluoride (TBAF; 94) for 

the synthesis of pentasubstituted cyclohexanes 96 (Table 3).
[67]

 The reaction proceeds via a 

Michael addition of diketones 95 to α,β-unsaturated aldehydes 78 promoted by (S)-59.  

Subsequent addition of nitromethane (50) and TBAF (94) leads to the generation of a nitro-

methane anion (by fluoride) which first reacts with the Michael adduct in an intermolecular 

Henry reaction, thus affording a nitroalcohol intermediate. This subsequently undergoes a 

second, intramolecular Henry reaction catalyzed by 94 to give the densely functionalized 

cyclohexanes 96 with high stereoselectivities (>98:2 d.r., 92 to >99% ee) although in only 

moderate yields (35 – 57%). The stereochemical outcome of the reaction was proposed to be due 
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to the reversibility of the two Henry reactions, leading to the thermodynamically favoured 

(equatorial arrangement of all substituents except the hydroxyl group that is intramolecularly 

associated to the nitro group) instead of the kinetically favoured product. Therefore, the 

enantioselectivity is defined by amine catalyst (S)-59 in the first step (employing (R)-59 as amine 

catalyst afforded the enantiomer ent-96b; Table 3, entry 4). When other fluoride sources were 

used instead of 94 the corresponding product was isolated with decreased enantioselectivity, 

possibly due to a retro-Michael side-reaction.
[67]

 

Table 3. Combination of amino and fluoride catalysis for the synthesis of cyclohexane derivatives with five 

contiguous stereogenic centers. 

 

Entry R
1 

R
2 

R
3 

Product Yield (%)  d.r. ee (%) 

 1
a 

Et Ph Ph 96a 45 >98:2   99 

 2
a 

Me Ph Ph 96b 55 >98:2 >99 

   3
a,b 

Me Ph Ph 96b 47 >98:2   99 

 4
c 

Me Ph Ph ent-96b 57 >98:2 >99 

5 n-Pr Ph Ph 96c 46 >98:2   92 

6 n-pentyl Ph Ph 96d 40 >98:2 >99 

7 n-nonyl Ph Ph 96e 40 >98:2   92 

8 n-Bu Ph Ph 96f 43 >98:2   92 

9 n-hexyl Ph Ph 96g 42 >98:2 >99 

10 (Z)-hex-3-enyl Ph Ph 96h 42 >98:2   94 

11 C2H4Ph Ph Ph 96i 46 >98:2 >99 

12 Me PMP PMP 96j 35 >98:2   98 

13 Me Ph Me 96k 44 >98:2   98 

14 Et Ph Me 96l 47 >98:2   94 

 15
c 

Ph Ph Ph 96m – –   – 

a
 First step was performed at rt for 4 h; second step was performed for 18 h. 

b 
Preparative experiment on 2.0 mmol 

scale. 
c 
(R)-59 was used. 
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3.3  Miscellaneous Combinations with Secondary Amines  

In 2009, Jørgensen and coworkers reported the combination of prolinol (S)-59 and chiral Lygo-

type ammonium salt (S)-97
[68]

 as phase-transfer catalyst
[69]

 for a novel one-pot synthesis of  

4,5-substituted isoxazoline-N-oxides 101 (Scheme 15).
[70]

 The reaction is initiated by the 

asymmetric epoxidation of α,β-unsaturated aldehydes by hydrogen peroxide through iminium 

catalysis, followed by a base-mediated intermolecular Henry reaction with nitroacetate 100 

under phase-transfer conditions. Consecutive intramolecular SN2-like O-alkylation then affords 

the isoxazoline-N-oxides 101. Aromatic, aliphatic and functionalized aldehydes 91, 98, and 99 

were applicable providing the desired products 101 in good yields (65 – 71%) and diastereo-

meric ratios (up to 78:22 d.r.), and excellent enantioselectivities (99% ee). These products are 

only a few reaction steps from highly valuable synthetic targets. For instance, 101c could be 

readily converted into a β,γ,δ-trihydroxylated α-amino acid derivative.
[70]

 

 

 

Scheme 15. Merging amino and phase-transfer catalysis for the synthesis of isoxazoline N-oxides. 

The concept of photoredox catalysis was first disclosed by MacMillan through the combination 

of organometallic complexes and secondary amine catalysts.
[71]

 However, the applied ruthenium 

and iridium salts are expensive and potentially toxic, which represents a major drawback of these 

catalysts. A metal-free, organocatalytic photoredox reaction was presented recently by Zeitler et 

al. using  ac illan’s imidazolidinone 102
[71]

 in conjunction with readily available, inexpensive 

xanthene dye eosin Y (103) as photosensitizer (Table 4).
[72]

 The reaction gave the desired  

products 105 with good yield and high enantioselectivities. However, the selectivities showed to 

be temperature dependent (Table 4, entries 1, 4, and 5). For instance, at room temperature 105a  
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Table 4. Metal-free, asymmetric organophotoredox catalysis with visible light. 

 

Entry Conditions Product Yield (%)
 

ee (%) 

1 as shown above 
 

105a 

63 77 

2 
23 W fluorescent bulb was used 

instead of LED 
105a 78 80 

3 

23 W fluorescent bulb and 

[Ru(bpy)3]Cl2 were used instead of 

LED 

105a 75 76 

4 reaction was performed at 0 °C 105a 70 81 

5 reaction was performed at –5 °C 105a 85 88 

6
a sunlight; reaction performed  

at ≈ 30 °  
105a 77 76 

7
b 

reaction was performed at 5 °C 

 

105b 

82 95 

8
c 

as described above 
 

105c 

76 86 

9
d reaction was 

performed at –15 °C  

105d 

56 96 

a
 Full conversion after 4 h. 

b
 para-nitrophenacyl bromide was used instead of diethyl bromomalonate (104).  

c
 Phenylpropionaldehyde was used instead of octanal (47). 

d
 1-Iodoperfluorobutane was used instead of diethyl 

bromomalonate (104). 
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was isolated with 77% ee (Table 4, entry 1) whereas a decrease of the reaction temperature to  

–5°C led to an increase of the enantioselectivity to 88% ee (entry 5). Conducting the reaction 

under direct sunlight led to faster conversion (4 h) but again decreased enantioselectivity, 

possibly due to the higher reaction temperature (approximately 30 °C; entry 6). The 

methodology was also applicable to the stereoselective addition of nitrophenacyl (105b; entry 7) 

and polyfluorinated alkyl substituents (105d; entry 9) which showed superior selectivities up to 

96% ee. Additionally, an example was presented using phenylpropionaldehyde instead of diethyl 

bromomalonate (104). Although the mechanism of this reaction is not yet fully understood 

(initially irradiated samples which were kept in the dark showed an increase in yield), a possible 

reaction path is depicted in Scheme 16. Thus, eosin Y (103; EY) is excited with visible light to 

its singlet state (
1
EY*) which in turn converts to its more stable triplet state (

3
EY*) through 

intersystem crossing (ISC). Simultaneously, the amino catalysis cycle is initiated by the 

formation of iminium ion 106, consequently generating enamine 107. Addition of the electron- 

deficient alkyl radical to 107 gives amino radical 108, which is subsequently oxidized to 

iminium species 109 thereby providing the necessary electron for the reductive quenching of the 

dyes excited state (
3
EY*) through single-electron transfer (SET). The thus generated radical 

anion (EY
•–

) in turn acts as a reductant to furnish the alkyl radical by SET with the alkyl halide. 

   

 

Scheme 16. Proposed mechanism for the organophotoredox catalysis reported by Zeitler et al. 
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According to the proposed reaction pathway a catalytic amount of 108 has to be present as the 

initial electron reservoir.
[72]

 This type of reaction is at the border to a dual or synergistic catalysis 

reaction as the two catalytic cycles are directly coupled.
[26]

 However, the radical produced in the 

photoredox cycle independently enters the next cycle. 
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4.  N-Heterocyclic Carbene Catalysts 

N-heterocyclic carbenes (NHCs) are versatile organocatalysts
[8,73]

 due to their ability to render 

aldehydes nucleophilic, hence inverting their classical reactivity (“Umpolung”).
[74]

 The nucleo-

philic addition of a carbene to an aldehyde leads to the formation of a tetrahedral intermediate 

which undergoes proton transfer to a nucleophilic enaminol, commonly referred to as the 

Breslow intermediate.
[75]

 This can act as an acyl anion equivalent (d
1
-synthon), allowing 

reactions with electrophiles to take place. Depending on the kind of electrophilic component 

utilized, either benzoin condensation (the electrophile is an alkyl/aryl aldehyde or ketone) or 

Stetter reaction (the electrophile is an α,β-unsaturated aldehyde or ketone) takes place  

(Figure 7).
[8,73]

 In the case of aldehydes bearing a leaving group at the α-position the enaminol 

can undergo an intramolecular redox reaction (extended Umpolung).
[8,73b,e,f]

 The elimination of 

the leaving group generates an enol and after isomerization an activated carboxylate, which is 

prone to nucleophilic attack. 

 

4.1  Combinations with Secondary Amine Catalysts 

Apart from the mentioned combinations of secondary amines with other organocatalysts, 

multicatalytic reactions employing combinations of chiral secondary amine catalysts and NHCs 

have begun growing rapidly in the last years. Due to their inherently Lewis basic nature these 

two catalyst classes can be combined in one pot; both act on carbonyl compounds but show 

complementary reactivities. 

The approach of asymmetric amino and heterocyclic carbene catalysis (AHCC) was first 

demonstrated in 2007 by Córdova et al. for epoxidation–esterification, cyclopropanation– 

esterification, and aziridination–esterification reactions (Scheme 17).
[76]

 Employing diphenyl-

prolinol silylether (S)-7 and thiazolium salt 110
[77]

 (Bn = benzyl) as catalysts, and hydrogen 

peroxide, diethylbromomalonate (104), or Cbz-protected carbamate 117 enabled the enantio-

selective synthesis of β-hydroxy esters 113 (up to 82% yield, 95% ee), β-malonate esters 116 (up 

to 74% yield, 97% ee), and β-amino ester derivative 118 (41% yield, 61% ee) from various 

readily available α,β-unsaturated aldehydes through the intermediacy of the corresponding  

2,3-epoxy, cyclopropyl, and 2,3-aziridine aldehydes (Scheme 17).
[76]

 Although very useful chiral 

molecules were accessible by this approach, the reactions suffered from relatively high catalyst  

loadings of 10 – 20 mol% for amine catalyst (S)-7 and up to 40 mol% for carbene catalyst 110. 
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Figure 7. General representation of N-heterocyclic carbene catalysis and reactions important in the context of this 

publication. 

By employing (S)-59 and Rovis et al.’s N-heterocyclic carbene catalyst precursor 119
[78]

 

Jørgensen and co-workers could employ drastically lower catalyst loadings (2.5 mol% of amine 

catalyst (S)-59 and down to 1 mol% for the carbene 119) for similar transformations, thus 

significantly improving the efficiency and sustainability of these reactions (Scheme 18).
[79]

 The 

addition of 4 Å molecular sieves to remove excess water from the epoxidation step that competes 

as nucleophile with the alcohols in the final esterification step proved to be crucial to achieve 

high yields. Linear and γ-branched, as well as functionalized α,β-unsaturated aldehydes provided 

the β-hydroxylated esters in good yields and enantioselectivities (up to 84% yield, 98% ee). 

However, cinnamaldehyde (91) as the enal component required higher catalyst loading of (S)-59 

(10 mol%) for the epoxidation step (Scheme 18). Various alcohols were applicable as nucleo-
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philes (i-PrOH gave only poor yields due to increased steric bulk and reduced nucleophilicity; 

for 124 used as enal: 34% yield). Moreover, employing different enals and 125 (Tos =  

4-toluenesulfonyl (tosyl)) significantly higher yields and enantioselectivities compared to the 

previously reported procedure could be achieved for the preparation of β-amino esters 126.
[80]

 

The active carbene catalyst was generated by remaining NaOAc from the aziridination step, thus 

avoiding the addition of H nig’s base for the second reaction. Note, however, that the carbamate 

117 used by Córdova is more environmentally friendly and atom economy is better compared to 

125 due to the release of acetate instead of tosylate. Both epoxidation–esterification as well as 

aziridination–esterification were additionally tested employing the commercially available citral 

127 as enal substrate under the developed conditions (Scheme 19). Starting from a 1:1 (E/Z) 

mixture in 127 the intermediate 2,3-epoxy aldehyde 128a and aziridine aldehyde 128b formed in 

3:1 diastereomeric ratio, due to possible isomerisation during the reaction. Subsequent ring- 

 

 

Scheme 17. AHCC catalysis for the synthesis of β-substituted esters reported by Córdova. 
a 

Epoxidation was 

performed at 4 °C for 6 h; 
b 

BnOH was added after completion of the epoxidation; 
c 
30 mol% 110 were used for the 

esterification with MeOH; 
d 

Cyclopropanation was performed for 1.5 h; 
e
 Cyclopropanation was performed at 4 °C 

for 6 h. 
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opening gave the desired products 129 bearing tertiary hydroxyl or amino moieties, however, 

with moderate enantioselectivities (the significant amount of the minor diastereomers 128a and 

128b possibly leads to the formation of the wrong enantiomer; 129a: 66% yield, 48% ee; 129b: 

81% yield, 57% ee).
[79]

  

 

 
Scheme 18. AH   catalysis for the synthesis of β-substituted esters reported by Jørgensen. 

a 
10 mol% (S)-59 were 

used; 5 h for epoxidation. 
b 
2.5 mol% (R)-59, 2 mol% 119, and 4 mol% DiPEA were used. 

A generalized mechanistic picture for the mentioned combinations of amino and N-heterocyclic 

carbene catalysis is presented in Scheme 20. The reaction is initiated through the reversible 

formation of an iminium ion 130 allowing the conjugate addition of the O-, C-, or N-

nucleophiles to the β-carbon at the Re face generating the chiral enamine intermediate 131 

(similarly to the examples described above for combinations of secondary amines). In the next 

step, 131 performs an intramolecular 3-exo-tet cyclization from its Re face under release of the 

leaving group forming 132. This cyclization step is irreversible and governs the stereoselective 

outcome of the overall reaction. Hydrolysis gives the corresponding epoxide, cyclopropyl, or 

aziridine aldehydes 133. After in situ generation of the NHC 134 from its corresponding 

precatalyst, it nucleophilically attacks the carbonyl carbon of 133, thus forming the zwitterionic 

species 135. Subsequent generation of the Breslow intermediate 136, and following intra-

molecular redox reaction leads to the activated carboxylate 138 via intermediate 137. Final 

transesterification with an alcohol as nucleophile releases the carbene catalyst and gives the 

corresponding products (compare Figure 7). 
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Scheme 19. AH   reactions for the preparation of β-substituted esters bearing a quaternary carbon center. 

 

 

 

 

Scheme 20. Possible general mechanistic picture for the AHCC reactions shown in Schemes 17 and 18, and Scheme 

15 (secondary amine catalyzed epoxidation step only). 
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In 2011, Córdova et al. reported a related enantioselective AHCC three-component reaction of 

α,β-unsaturated aldehydes, tosylated hydroxycarbamates 139 and 140, and different alcohols 

yielding Cbz- or Boc-protected β-amino acid ester derivatives 141 (Scheme 21).
[81]

 Similarly to 

Jørgensen’s work, the use of (S)-7 and 119 as catalysts afforded various β-amino acid 

esterderivatives 141 in moderate to good yields (up to 80% yield) with 92 – 99% ee. When 

aromaticenals such as 91 or 115 were used the corresponding products were obtained with 

significantly lower yield (25 – 54% yield) although with excellent stereoselectivities (94 –  

99% ee) due to abase-catalyzed rearrangement side-reaction. According to the mechanistic 

picture provided in Scheme 20 the use of α-substituted enal 142 formed the intermediate 

aziridine 143 with high 95% ee (Scheme 22). Subsequent ring-opening/esterification afforded 

nearly racemic β
2
 amino acid ester 144 in 69% yield. However, employing enal 145 the 

corresponding product 146 was isolated in 59% yield with low diastereoselectivity, albeit with 

excellent enantioselectivity for both isomers (anti-isomer: 97%; syn-isomer: 99% ee) as shown 

in Scheme 22. 

 

 

Scheme 21. AHCC reactions for the enantioselective synthesis of protected β-amino acid ester derivatives. 

 

Scheme 22. AH   reactions for the preparation of α,β-substituted amino acid ester derivatives. 
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In 2009, Lathrop and Rovis demonstrated another example of AHCC for the realization of a 

Michael addition/cross-benzoin reaction (Scheme 23).
[82]

 This multicatalytic tandem reaction 

enabled the synthesis of highly functionalized cyclopentanones 147 containing three stereogenic 

centers (including a quaternary stereogenic center) from readily available starting materials. By 

using silyl-protected prolinol catalyst (S)-59, asymmetric conjugate addition of α,β-unsaturated 

aldehydes to β-dicarbonyl compounds 151 – 159 was induced via iminium activation. The 

following carbene 119 catalyzed intramolecular benzoin condensation produced the densely 

substituted cyclopentanones 147 in high yields and enantioselectivities, however, with only 

moderate diastereoselectivities (Scheme 23). The reaction showed a broad scope with respect to 

the aldehyde and the β-dicarbonyl starting materials leading to a variety of possible products, 

while branched aliphatic aldehydes (such as 98) gave considerably lower yields. For example, 

bicyclic products 147p and 147q could be obtained using β-ketoesters 158 or 159. Mechanistic 

investigations revealed that the performance of iminium catalyst (S)-59 and carbene 119 in a 

tandem reaction is crucial for the high yield and selectivity of this reaction. When the 

transformation is performed in stepwise manner the intermediate aldehydes probably undergo 

retro-Michael reaction in the presence of (S)-59 and are prone to epimerization during 

purification by column chromatography.
[82]

 As a consequence, the desired products 147 are 

obtained in lower yield and significantly lower enantioselectivity (46% yield, 58% ee for two 

sequential reactions), showing the sharp contrast to the yield and enantioselectivity of the one-

pot tandem reaction (93% yield, 86% ee). When the two steps are combined into a tandem 

reaction, the carbene catalyst 119 effectively suppresses the retro-Michael reaction by direct 

consumption of the intermediate aldehyde in the following benzoin reaction, hence achieving the 

high enantioselectivity (Scheme 23). This work further emphasizes one of the advantages of 

multiple catalysts promoted asymmetric tandem reactions: the fast consumption of intermediates  

in a concurrent catalytic cycle allows catalysts to work synergistically, thereby suppressing side 

reactions. 

The orthogonal reactivity of secondary amines and N-heterocyclic carbenes for the asymmetric 

synthesis of highly functionalized cyclopentanones was shown with another example by Ozboya 

and Rovis in 2011 (Scheme 24).
[83]

 In contrast to the previous work which relied on iminium 

catalysis as the first step, this reaction was initiated by enamine activation using secondary amine 

catalyst 7 followed by direct benzoin condensation catalyzed by chiral triazolium catalyst 

precursor 160.
[78,84]

 Aliphatic aldehydes and various α,β-unsaturated ketones  provided the 

desired products in good yield and high enantio- and diastereoselectivity. Employing 

isovaleraldehyde (45) competitively formed the corresponding Stetter product in a 1:1 ratio with 

the desired product 161c. However, the sequential addition of 160 after complete formation of 

the corresponding intermediate avoided the formation of the side-product, thus affording 161c 

(98% yield, 96:4:<1:<1 d.r., 88% ee). Aldehydes 163 and 164, and α,β-unsaturated ketones 167  

173 bearing sterically more demanding substituents were also applicable but usually required 
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Scheme 23. AHCC tandem reaction for the synthesis of cyclopentanone derivatives reported by Lathrop and Rovis. 

Diastereomeric ratios are shown for major diastereomer : sum of three possible minor diastereomers. 
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Scheme 24. AHCC tandem reaction for the synthesis of cyclopentanone derivatives reported by Ozboya and Rovis. 

Diastereomeric ratios are shown for major diastereomer : sum of three possible minor diastereomers. PMB = para-

methoxybenzyl. 
a
 Catalyst 160 was added after complete consumption of starting material. 

b
 Carbene precatalyst 119 

was used instead of 160. 
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and longer reaction times and led to lower yields. When, for example, 173 was used as enone the 

intramolecular benzoin reaction could only be accomplished using smaller achiral carbene 

catalyst 119, however with diminished enantioselectivity (51% ee). Diketones 174 and 175 gave 

the corresponding products 161p and 161q in considerably lower yields. Additional mechanistic 

investigations again showed that the one-pot tandem reaction leads to better selectivities 

compared to the single step reactions via a dynamic kinetic resolution of intermediate 176 by 

chiral NHC 160 (Schemes 25 and 26). Control experiments revealed that when prepared from 

butyraldehyde (43) and enone 165 with catalyst(S)-7 and catalytic acetic acid the corresponding 

intermediate aldehyde 176 formed in 91% yield with only 2:1 diastereomeric ratio. The 

consecutive benzoin reaction afforded 161a in comparable yield and enantioselectivity to the 

multicatalytic one-pot reaction, but in lower diastereomeric ratio (78% yield, 4:1:1:<1 d.r., 95% 

ee for two consecutive reactions; 87% yield, 19:1:<1:<1 d.r., 95% ee for the tandem reaction). 

Indeed, in the presence of (S)-7 the diastereo-selectivity of the final product could be 

significantly improved (10:1:<1:<1 d.r.; Scheme 25). Thus, the secondary amine catalyst (S)-7 

possibly epimerizes the α-position of the intermediate aldehyde 176, leading to epi-176, and the 

chiral triazolium catalyst 160 preferentially reacts with intermediate 176 instead of epi-176 to 

form the enantioenriched product 161a (Scheme 26). 

In the same year, Enders et al. employed (S)-59 and 119 for the sequential multicatalytic Michael 

addition/cross-benzoin reaction of α,β-unsaturated aldehydes and β-oxo sulfones 178 – 189 for 

the preparation of polysubstituted cyclopentanones 177 (Scheme 27).
[85]

 Hence, they first applied 

the conditions reported previously for the reaction of β-dicarbonyl compounds with enals 

by Lathrop and Rovis.
[82]

 Under these conditions (compare Scheme 23) the reaction of 

crotonaldehyde (24, 1.0 equivalents) with phenylsulfonylacetone (178, 2.0 equivalents) afforded 

mainly two of the four possible diastereomers of 177b in high yield and enantioselectivity, 

however, in an only moderate diastereomeric ratio (85% yield, 63:37 d.r., 88% ee). After re- 

optimization of reaction conditions the desired product 177b could be obtained in quantitative 

yield while stereoselectivity was retained. With these conditions at hand, Enders and co-workers 

studied the scope of the reaction. A wide range of different sulfones 179 – 189 was applicable 

using 24 as aldehyde component to generate cyclopentanones 177d – 177k in 70 – 96% yield, in 

most cases as a single diastereomer (99:1 d.r.), and with up to 97% ee. Interestingly, the benzoin 

condensation proceeded with cis-selectivity (contrary to the reactions reported by Rovis; 

compare Scheme 23)
[82]

 when sulfones bearing an aromatic moiety were employed. Using  

α-substituted α-(phenylsulfonyl)ketones as nucleophiles significantly decreased the reaction rate 

and the yield. For instance, the cyclic sulfone 187 formed product 177l in 53% yield even when 

the reaction time was prolonged to three days with moderate selectivities (67:33 d.r.), whereas 

188 gave 177m in only 20% yield, albeit with very good stereoselectivity (99:1 d.r., 91% ee). 

When acyclic 189 was used as sulfone component the desired product was not produced. 

Similarly to the reactions reported by Rovis and co-workers,
[83]

 Enders observed epimerization 
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of the corresponding Michael adduct. Hence, the achieved diastereoselectivities result from the 

preference of one of the diastereomers to react with the carbene catalyst (also compare  

Scheme 26). 

 

 

 

Scheme 25. Single step reactions for the preparation of 161a. 

 

 

 
Scheme 26. Mechanistical proposal for the observed reaction outcome in the multicatalytic synthesis of 161a. 
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Scheme 27. AHCC cascade reactions for the synthesis of cyclopentanone derivatives reported by Enders. 

Diastereomeric ratios are shown for major diastereomer : sum of three possible minor diastereomers. 
a 

First reaction 

was prolonged to 3 d. 
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Encouraged by the previous reports by Rovis (Scheme 23)
[82]

 and Enders (Scheme 27),
[85]

 

Jørgensen et al. envisioned an AHCC reaction sequence for the formation of optically active  

2,4-disubstituted cyclopent-2-enones (Scheme 28).
[86]

 Similar to the previous reports the reaction 

is initiated by an iminium activated Michael addition of sulfones 204 – 207 to α,β-unsaturated 

aldehydes emloying (S)-59. The successive NHC 119 catalyzed benzoin reaction subsequently 

leads to a Smiles rearrangement,
[87]

 thus affording the desired 2,4-disubstituted cyclopentan-2-

enones 197 (Scheme 28). Various aliphatic aldehydes (24, 61 and 120), olefinic aldehydes 

(190and 291), and the aldehyde 192 bearing a TBS-protected alcohol were used affording the 

corresponding products in 51 – 69% yield and enantioselectivities up to 98%. Nucleophiles 

bearing an aliphatic ketone substituent were found to be inapplicable, presumably because of the 

formation of a stable pyranose intermediate.
[86,88] 

 

   

Scheme 28. AHCC cascade reactions for the synthesis of cyclopentenone derivatives. 
a 

10 mol% (S)-59 and  

20 mol% o-NO2PhCOOH were used. 

 

 

4.2  Miscellaneous Combinations with N-Heterocyclic Carbenes 

In 2010, Lathrop and Rovis reported an asymmetric Michael/Stetter tandem reaction for the 

synthesis of valuable benzofuranones from readily available starting materials (Scheme 29).
[89]

  

Based on other preliminary studies which showed that 1,4-diazabicyclo[2.2.2]octane (DABCO, 

198) allows the addition of amine and oxygen nucleophiles to dimethyl acetylenedicarboxylate 

(DMAD; 201)
[90]

 the authors envisioned the combination of 160 and a tertiary amine, such as 
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DABCO (198) or quinuclidine (199), acting as both nucleophilic catalyst for the Michael 

addition and as base for the deprotonation of the carbene precatalyst. The combination of both 

catalysts should then allow performing a tandem Michael/Stetter reaction (Scheme 29). Indeed, 

the combination of 160, and 198 or 199, respectively, facilitated the reaction of salicylaldehydes 

73 or 200 with different substitution pattern, and DMAD (201) to furnish the desired products 

202. Interestingly, the tertiary amine (198 or 199) not the carbene 160 acts as nucleophilic 

catalyst for the Michael reaction although both are present from the outset of the reaction, which 

was confirmed by control experiments.
[89]

 Further investigations indicated that the enantio-

selectivity of the reaction is possibly enhanced by traces of strong hydrogen bonding donors, 

such as catechols,
[91]

 derived from Dakin-oxidation of salicylaldehydes. When the reaction was 

performed stepwisely the final products were isolated in good yields, however, in lower and 

more uniform enantioselectivities. Contrary, addition of a salicylaldehyde or a catechol slightly 

improved the selectivity of the Stetter reaction.
[91]

 Unsymmetrical alkynes 203 were tested as 

Michael acceptors as well (Scheme 30) under the developed reaction conditions. Thus, reaction 

of salicylaldehyde (73) with two different ketoalkynoates regioselectively afforded the products 

204a and 204b in moderate yields and poor enantioselectivities. The use of a less electrophilic 

alkyne resulted in higher enantioselectivity for product 204c (51% ee), but low regioselectivity 

(204c/205c: 2.8:1). Interestingly, the minor regioisomer 205c formed with appreciably higher 

enantioselectivity (89% ee). Employing a phosphonate ester as alkyne component afforded 204d 

in low yield and with better selectivity.
[89]

 

 

 
Scheme 29. Michael/Stetter tandem reaction of different salicylaldehydes with DMAD (201). 

a 
198 was used. 
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Scheme 30. Michael/Stetter tandem reaction of salicylaldehyde (73) with unsymmetrical alkynes 203. 

In order to achieve better yields and high regio- and enantioselectivities, Lathrop and Rovis 

examined the reaction of salicylaldehyde (73) with alkynes bearing a single electron-

withdrawing group
[89,92]

 (the thus-generated intermediate aldehydes have been used previously in 

the Stetter reaction affording the corresponding products in high enantioselectivity). However, an 

initial attempt resulted in the isolation of starting materials only. As the Stetter reaction is 

significantly influenced by olefin geometry (E-isomers react with higher yield and enantio-

selectivity) the authors performed the reaction sequence with allenoates 206 (Scheme 31).
[89]

 

These starting materials (as well as 201) formed the intermediate aldehydes with high E-

selectivity, whereas ketoalkynoates gave mixtures of E and Z isomers. Thus, employing 73 and 

206 in a sequential multicatalytic reaction afforded the desired products 207 in reasonable yields 

and with up to 98% ee (Scheme 31). 

 

 
Scheme 31. Michael/Stetter tandem reaction of salicylaldehyde (73) with activated allenoates 206. 
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5.  Thiourea Catalysts 

During the last decade, thiourea derivatives have received great attention and have displayed 

their efficiency as hydrogen-bonding organocatalysts
[22,24,93]

 and anion-receptors.
[94]

 In hydrogen 

bonding catalysis the interaction between the catalyst and an electrophilic substrate generally 

results in the LUMO activation of the latter, thus allowing nucleophilic attack (Figure 8). 

Therefore, the combination of thioureas with other catalysts allows additional valuable 

transformations. 

 

 

Figure 8. Hydrogen bonding catalysis. R
1
, R

2
 = H, alkyl, aryl; X = O, NR. 

 

 

5.1  Combinations of Thioureas with Secondary Amine Catalysts 

In 2009, Dixon et al. combined bifunctional thiourea (S)-208 and either secondary amine  

(S)-209 (catalyst combination I) or (R)-209 (catalyst combination J) for a three-component 

tandem reaction comprising malonate esters, nitroolefins and α,β-unsaturated aldehydes to form 

polysubstituted cyclohexanes 219 (Scheme 32).
[95]

 The reaction was applicable for a wide range 

of starting materials, leading to a broad product scope. Thus, the products 219 were formed with 

catalyst combination I (45 – 87% yield, 9.3:1.8:1 d.r., up to >99% ee). Four additional examples  

were reported using catalyst combination J (with (R)-209) and dimethylmalonate ester 151 under 

variation of the nitroalkene and enal component affording epi-219 (47 – 69% yield, 7.1:1.8:1 

d.r., up to >99% ee). The reaction has been suggested to proceed via bifunctional activation of 

malonate esters and nitroalkene through base and Brønsted acid catalysis by (S)-208 leading to 

stereoselective Michael addition (Scheme 33). The thus formed Michael adduct 221 sub-

sequently undergoes a regioselective nitro-Michael reaction to the enal under iminium activation 

with secondary amine (S)-209 producing 222. This intermediate undergoes a base-promoted 
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aldol cyclization to generate the desired product 219. Control experiments suggested that the 

iminium catalyzed nitro-Michael addition is also base-promoted, and therefore that both catalysts 

work cooperatively. Moreover, there are putative matched and mismatched combinations of 

catalysts and reaction intermediates and an amplification of enantioselectivity for the matching 

cases.  

 

 

Scheme 32. Combination of bifunctional thiourea and amino catalysis reported by Dixon. TES = triethylsilyl.  
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Scheme 33. Pathway for the reaction shown in Scheme 32. 

One year later, Dixon and Xu reported a similar bifunctional thiourea (S)-223/secondary amine 

(S)-209 catalyzed tandem reaction (Scheme 34).  Different aldehydes, nitroolefins, and tosyl-

protected imines 226 – 230 were employed producing the fully substituted piperidines 231 or 

epi-231 in moderate to good yields (47 – 71%) and excellent enantioselectivities, usually  

>99% ee.
[96]

  The reaction is initiated by the Michael addition of enamine activated aldehydes 

with with cooperatively hydrogen-bonding activated nitroalkenes. Following thiourea (S)-223 

catalyzed nitro-Michael reaction of the corresponding Michael adducts and the imines through 

bifunctional base/Brønsted acid catalysis gives the substituted aminoaldehyde, and final 

cyclization leads to the N-tosyl protected hemiaminals 231 and epi-231. 

   

 

Scheme 34. Synthesis of fully substituted piperidines via the merger of enamine and bifunctional base/Brønsted acid 

catalysis. TES = triethylsilyl. 
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5.2  Combination of Thiourea Catalysts with Brønsted Acids and Bases 

In 2010, Barbas et al. reported the organocatalytic synthesis of carbohydrate derivatives through 

sequential Michael/Henry reactions employing thiourea (1R,2R)-232 and either triethylamine or 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 237; Schemes 35 and 36).
[97,98]

 The (1R,2R)-232 with 

remaining aldehyde 233 affording 3,4-dideoxy-D-talose derivative 235a in 68% yield with 98% 

ee, which is in equilibrium with its open form 236a in solution due to a 1,3-diaxial interaction 

between the nitro group and the alkoxy substituent. Indeed, only small amounts of the  

D-manno-isomer epi-235a formed (Scheme 35). Other nitrostyrenes with both electron- 

withdrawing and electron-donating groups on the aromatic ring were used affording the desired 

products 235b – 235d in good yields and high enantioselectivities (62 – 67% yield, up to 98% 

ee). Heteroaromatic substituents could be introduced as shown for 235f. However, 236e was 

present only in the open form and required an equimolar amount of triethylamine for the Henry 

reaction to proceed. Nitroalkenes bearing smaller substituents afforded products 235g and 235h 

exclusively as their cyclized form. The use of DBU (237) as base catalyst under otherwise 

identical conditions led to a complete epimerization at the stereogenic center bearing the nitro 

group thus afforded the corresponding 3,4-dideoxy-D-mannose derivatives epi-235 (Scheme 36; 

only the cyclized form was observed).
[97]

 Except for 2,6-dichloronitrostyrene all previously 

tested nitroolefins were applicable affording products epi-235 via the anti-Michael/syn-

Henry/epimerization reaction sequence. To increase the utility of the reaction other aldehydes 

were tested as acceptors for the Henry reaction. For example, the use of glyoxylate 244 gave 

carbohydrate derivatives 245 and epi-245 in moderate yield but high enantioselectivity (98% ee) 

under the developed conditions (Scheme 37). Moreover, the group disclosed an example for an 

intermolecular syn-Michael/Henry reaction sequence (Scheme 38). The syn-Michael reaction 

was accomplished using isovaleraldehyde (99), β-nitrostyrene (55), and diphenylprolinol silyl 

ether (S)-7 as first catalyst. The sequential addition of para-nitrobenzaldehyde (246) and 

triethylamine produced 247 in 77% yield and excellent 99% ee as a 4:1 mixture of the 

corresponding α/β-isomers. The reactions presented in Schemes 35 – 37 are good examples 

testifying that even simple catalysts such as triethylamine and DBU (237) may provide a direct 

entry to different diastereomeric forms of a desired product. 

In 2011, Enders et al. reported the one-pot combination of thiourea catalyst (1S,2S)-248 and  

p-TSA (72) for a Michael/hemiacetalization/dehydration reaction sequence assembling 4-nitro- 

methyl-4H-chromenes 258 (Scheme 39).
[99]

 Different nitroalkene phenols 249 – 254 wereapplied 

with various β-keto esters affording the desired products 258 in high yield and enantio-

selectivity. When ortho-substituted nitroalkene phenols 253 and 254 were used a change in the 

configuration was observed. However, the corresponding 4H-chromenes were formed with 

excellent enantiomeric excess (99% ee in both cases).
[99,100]
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Scheme 35. Sequential Michael/Henry reaction for the synthesis of 3,4-dideoxy-D-talose derivatives 235.  
a 
Reaction performed with 50 mol% (1R,2R)-232. 

b 
100 mol% triethylamine used. 

c 
30 mol% triethylamine used. 

Very recently, the combination of thiourea (1S,2S)-259 with N-Boc-protected glycine (260) as 

acid additive, and chiral phosphoric acid 261 was reported to promote the α-alkylation and two 

consecutive Friedel-Crafts alkylations of aldehydes and indol derivatives affording enantio- 

merically enriched cyclopenta[b]-indoles 263 (Scheme 40).
[101]

 The reaction showed a very 
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Scheme 36. Sequential Michael/Henry reaction for the synthesis of 3,4-dideoxy-D-mannose derivatives epi-235.  
a 
Reaction was performed with 50 mol% (1R,2R)-232. 

 

 
Scheme 37. Sequential Michael/Henry reaction for the synthesis of carbohydrate derivatives 245 and epi-245. 

 

 

 

Scheme 38. Sequential syn-Michael/Henry reaction for the synthesis of carbohydrate derivative 247. 
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Scheme 39. Michael/hemiacetalization/dehydration reaction sequence for the synthesis of 4-nitromethyl-4H-

chromenes. 

 

 
Scheme 40. Synthesis of cyclopenta[b]indoles 263 via α-alkylation and two consecutive Friedel-Crafts alkylations. 
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broad scope with respect to the 3-indolylmethanol compounds 262, the indole derivatives, and 

the aldehydes. The corresponding products were usually formed as a single diastereomer, with 

moderate to good yields and high enantioselectivities. Importantly, the multicatalytic reaction 

afforded the desired product in higher yield compared to two separate reactions (70% instead of 

58% overall yield for 263a; Ar = Ph, R
1
 = R

4
 = H, R

2
 = R

3
 = Me). 
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6.  Non-Natural Oligopeptides for Acyl Transfer Reactions 

Synthetic oligopeptides proved to be versatile and efficient catalysts in a variety of chemical 

transformations.
[102-103]

 Well-established solution-phase and (automated) solid-phase peptide 

synthesis (SPPS) protocols, and the commercial availability of most natural as well as non-

natural amino acids allow the easy and efficient assembly of these types of catalysts. The 

modular build-up of the oligopeptide catalysts ensures their rapid variation and modification.  

Moreover, oligopeptides are particularly attractive from an environmental point of view as they 

should be biodegradable. 

Oligopeptides bearing nucleophilic catalytic moieties, such as N-alkylimidazoles, showed to be 

highly efficient catalysts in the kinetic resolution of racemic substrates as well as the de-

symmetrization of meso compounds through acyl group transfer.
[104]

 Thus, the nucleophilic 

catalyst forms an acylium cation salt with the corresponding counterion
[105]

 with an acyl donor 

(e.g., acetic anhydride or acetyl chloride; Figure 9).
[104]

 This acylium ion allows transferring the 

acetyl group onto a nucleophile (e.g., alcohol, amine, thiol) affording the product.  Depending on 

the pKa-values of the protonated imidazole and the counterion (X in Figure 9) the addition of 

base may be necessary to prevent catalyst protonation and deactivation.
[104]

 

 

 

Figure 9. General representation for acyl transfer reactions with N-methylimidazole derivatives. 

In 2008, Müller et al. introduced tetrapeptide 273 (Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe)

[106]
 

equipped with π-methyl histidine (Pmh) as catalytic moiety. The incorporation of a rigid non-

natural γ-amino adamantane carboxylic acid (
A
Gly)

[107]
 into the backbone led to a more 

lipophilic and structurally less flexible oligopeptide.
[106]

 Hence, this approach did not follow 

conventional design principles for oligopeptide catalysts which usually emphasize the 

importance of secondary structures (stabilized by intramolecular hydrogen bonding) for activity 

and selectivity.
[102]

 Catalyst 273 was first applied for the acylative kinetic resolution
[104]

 of 
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racemic trans-cycloalkane-1,2-diols, a substance class previously challenging to resolve, 

achieving >99% ee for the remaining diol enantiomers and S-values
[108]

 of typically >50.
[106,109]

  

Later, oligopeptide 273 was applied for the desymmetrization
[104]

 of meso-alkane-1,2-diols 

275.
[110]

 Owing to racemization of the monoacetylated products 276 through intramolecular 

transesterification during work-up, Müller et al. envisioned the direct one-pot oxidation
[111]

 of 

intermediate 276 using TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl; 274) which then would 

lead to the valuable enantiomerically enriched α-acetoxy ketones 277 (Scheme 41). Under 

optimized conditions, the desymmetrization was performed using only 1 mol% 272, acetic 

anhydride and H nig’s base (5.3 equivalents each).  The sequential addition of TEMPO (274;  

60 mol%), tetrabutylammonium bromide (30 mol%) and meta-chloroperbenzoic acid (m-CPBA, 

6.0 or 8.0 equivalents) as co-oxidant then initiated the second catalytic cycle. Thus, the corres-

ponding α-acetoxy ketones 277 were afforded with moderate to excellent yields and high 

enantiomeric ratios (up to 97% yield and 97:3 d.r. for 277c). 

 

 

Scheme 41. Oligopeptide 273 catalyzed desymmetrization of meso-alkane-1,2-diols and one-pot TEMPO (274) 

oxidation. 
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7. Multicatalyst Approaches 

Inspired by their sequential multicatalysis approach (Scheme 41),
[110]

 Müller et al. envisioned a 

multicatalyst system to perform the entire reaction sequence (Scheme 42). Indeed, by replacing 

the C-terminal methyl ester group of peptide 273 with a TEMPO-amide functionality they 

obtained the first member of organic multicatalysts 278 (Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-NH-

TEMPO), bearing two orthogonal catalytic moieties (Scheme 42).
[13,112]

  Remarkably, this proof- 

of-principle study revealed that the multicatalyst 278 shows an increased oxidation activity 

compared to TEMPO itself. As a result, the amounts of m-CPBA (3.0 instead of up to  

8.0 equivalents) and tetrabutylammonium bromide (5 mol% instead of 30 mol%) could be 

significantly reduced. Moreover, 5 mol% of multicatalyst 278 and, therefore, only 5 mol% of 

TEMPO-analogue (instead of 60 mol% TEMPO), were sufficient to perform the second reaction 

at 0 °C without affecting the reaction time. The desymmetrization step showed only a slight 

decrease in selectivity compared to the two-catalyst approach. Indeed, a molecular force-field 

analysis revealed that the conformation of peptide 278 is not affected upon introduction of the 

TEMPO moiety, therefore maintaining selectivity. 

 

 

Scheme 42. Oligopeptide based multicatalyst 278 for the one-pot desymmetrization and subsequent oxidation of 

meso-alkane-1,2-diols. 
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Scheme 43. Performance of multicatalyst 279 in conjunction with catalyst 280 for the three-step one-pot synthesis 

of enantiomerically enriched trans-1,2-alkanediols (S,S)-283 and monoacylated trans-1,2-diols (R,R)-284. 

Applying the concept of retrocatalysis, the same group developed a new peptide-based multi-

catalyst (Scheme 43) bearing β-aspartate and π-methyl histidine (Pmh) as catalytic moieties (step 

oriented approach; see introduction).
[113]

 Multicatalyst 279 in conjunction with hydrazinium 

sulfate (280) enabled the synthesis of enantiomerically enriched trans-1,2-alkanediols (S,S)-283 

and monoacetylated diols (R,R)-284 employing simple symmetrical alkenes 281, hydrogen 

peroxide, water, and acetic anhydride.  Hence, the epoxidation of alkenes 281 catalyzed by the 

aspartate moiety
[114]

 proceeds via intramolecular anhydride formation using N,N’-diisopropyl 

carbodiimide (DIC) as dehydrating agent. Anhydride cleavage by hydrogen peroxide generates 

the catalytically active monoperacid that enables the epoxidation to 282. Addition of 280 

asadditional Brønsted acid catalyst, water, and toluene (the epoxide opening proceeds slower in 

polar solvents) for the subsequent epoxide hydrolysis produces racemic trans-1,2-alkanediol  

(±)-283. Final kinetic resolution through acylation by multicatalyst 279 completes the reaction 

sequence and affords the corresponding enantiomerically enriched diols (S,S)-283 and mono-

acetylated diols (R,R)-284 with moderate to good yields (the maximum would be 50%) and S-

values up to 26 (corresponding to 99% ee for (S,S)-283c and 68% ee for (R,R)-284c). Due to 

protonation of the basic histidine residue by the bisulfate the addition of H nig’s base is 

necessary for the acetylation step. 
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7.1  Miscellaneous Examples of Oligopeptide Catalyzed Reactions 

Two related reaction sequences were reported in the same publication.
[113]

 Preparing the bisulfate 

salt 285 as an analogue of oligopeptide 280 (due to its acid lability the Boc-protecting group was 

exchanged by an acetyl group) allowed for the epoxide opening (Scheme 44). Addition of 

H nig’s base in the next step releases the acylation catalyst, thus enables the subsequent 

kineticresolution of (±)-283. The corresponding trans-1,2-alkanediols (S,S)-283 were produced 

with excellent enantioselectivities (usually >99% ee, except for (S,S)-283b). Thereby, the mono-

acetylated products (R,R)-284 formed with good enantioselectivities (up to 74% ee for (R,R)-

284a) leading to S-values of up to 48 (at 57% conversion). Indeed, 285 is not a multicatalyst in 

that sense. Referring to the terminology of Fogg and dos Santos
[4]

 this example can be labelled as 

assisted tandem reaction. However, this reaction sequence was further expanded using phthalic 

acid (286) as additional epoxidation catalyst and peptide salt 285 as catalyst for the subsequent  

 

 

 

Scheme 44. Performance of peptide salt 285 in an epoxide hydrolysis/kinetic resolution reaction sequence.  
a 
Values in parentheses indicate a preparative experiment on 1.0 mmol scale. 
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Scheme 45. Performance of peptide salt 285 in conjunction with phthalic acid (286) in the epoxidation/epoxide 

hydrolysis/kinetic resolution reaction sequence. 
a 

Values in parentheses indicate a preparative experiment on  

1.0 mmol scale. 

reaction steps (Scheme 45). Starting from cyclohexene (281a) this three-step reaction sequence 

furnished (S,S)-283a and (R,R)-284a with >99% ee and 73% ee, respectively, corresponding to 

an excellent S-value of 45 (an experiment at preparative scale gave a S-value of 26; Scheme 45). 
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8. Conclusions  

In only one decade, the field of organocatalysis, an area ideally suited for green chemistry 

approaches, has seen tremendous progress. The development of new catalyst classes with 

orthogonal reactivities and their implementation in one-pot multistep processes led to 

considerable increase of reaction efficiency, selectivity, and sustainability. 

From the beginning organomulticatalysis provided a powerful tool for the synthesis of complex 

molecules with increased efficiency and diminished effort. The prevalent organocatalyst classes 

and their specific activation modes, secondary amine catalysts, N-heterocyclic carbenes, thiourea 

derivatives, as well as synthetic oligopeptides equipped with nucleophilic π-methyl imidazole, 

respectively, have been applied in conjunction with other catalysts. As for any other rapidly 

developing discipline it is difficult to forecast what the future of multicatalysis will look like but 

it is clear that this concept is likely to meet many of the demands that will become increasingly 

important in the future, e.g., reaction and resource-efficiency as well as sustainability.  

Organomulticatalysis is therefore likely to become one of the prevailing methodologies in 

organic synthesis. As there are so many different organocatalysts, the number of theoretically 

possible combinations seems to be limitless, and we have only begun recently to explore its 

potential. Most reactions discussed herein utilize only a very limited number of catalytically 

active moieties (mainly two) so that the main developments are in expanding the number of 

catalyzed reaction steps that can be carried out in one pot.  

Oligopeptides offer an excellent platform for the development of novel multicatalysts. Applying 

the complementary strategies of retrosynthesis and retrocatalysis, a reasonable but yet elusive 

goal would be to enable entire syntheses of highly complex molecules (e.g., natural products) by 

one-pot multicatalyst systems. A clear testament to the potential and importance of this approach 

has recently been made by Anastas and  ghbali: “If the same catalyst could be used for various 

independent reactions or achieve an entire synthesis in one pot, it will bring chemistry to a new 

level as more complex molecules could be made with higher material and energy efficiency”.
[29]
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Abstract 

Inspired by the extraordinary selectivities of acylases, we envisioned the use of lipophilic 

oligopeptidic organocatalysts for the acylative kinetic resolution/desymmetrization of rac- and 

meso-cycloalkane-1,2-diols. Here we describe in a full account the discovery and development 

process from the theoretical concept to the final catalyst, including scope and limitations. 

Competition experiments with various alcohols and electrophiles show the full potential of the 

employed oligopeptides. Additionally, we utilized NMR and IR-spectroscopic methods as well 

as computations to shed light on the factors responsible for the selectivity. The catalyst system 

can be readily modified to a multicatalyst by adding other catalytically active amino acids to the 

peptide backbone, enabling the stereoselective one-pot synthesis of complex molecules from 

simple starting materials. 
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1. Introduction 

Stereoselective acylations of chiral or prochiral alcohols are common reactions both in nature 

and in chemistry. Enzymes can be used for the acylative resolution and desymmetrization of a 

broad range of secondary alcohols (e.g., cyclic meso-1,2- and 1,3-diols, 2,5-hexanediols,  

1,4-cyclooctanediols, and acylation of natural products like vitamin C, alkaloids, and 

hydrocortisone).
[1-5]

 Though enzymatic acylations are highly chemo- and enantioselective, these 

approaches are often expensive and require stringent reaction conditions and long reaction times, 

and typically just one enantiomer of the product can be obtained. Also, there is a variety of 

substrates that cannot be resolved effectively by enzymes (e.g., trans-cyclohexane-1,2-diol and 

primary alcohols).
[6]

 Hence, in the past 20 years, various organic and organometallic catalysts 

(e.g., amidines,
[7]

 vicinal diamines,
[8,9]

 N-alkylimidazoles,
[10-14]

 phosphines,
[15,16]

 phos-

phinites,
[17,18]

 Cu-complexes
[19-21]

 and 4-aminopyridine derivatives
[22,23]

)
[24,25]

 were successfully 

applied in kinetic resolutions (KRs),
[26,27]

 desymmetrizations,
[28]

 and dynamic kinetic resolutions 

(DKR)
[29,30]

 of alcohols, amines, and thiols (Figure 1). 

 

 

Figure 1. Nonpeptidic organocatalysts capable of selective acyl transfer. 

The application of oligopeptides as catalysts for enantioselective transformations has been 

neglected for a surprisingly long time, though many approaches were inspired by nature.
[31,32]

 

Only at the end of the last century did chemists realize the capacity of oligopeptides as active 

catalysts due to their high diversity and their well-established syntheses based on the coupling of 

readily available enantiopure amino acids.
[31-33]

 Early prominent examples are the cyclic 

dipeptides (diketopiperazines) introduced by Inoue in 1981 for the enantioselective 
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hydrocyanation of benzaldehydes
[34-38]

 and the homooligomers of Juliá and Colonna that proved 

to be highly efficient in epoxidation reactions.
[39-42]

 Wennemers et al. discovered that short 

proline containing oligopeptides display significantly higher reactivity at comparable 

enantioselectivities in aldol reactions compared to proline itself, which emphasizes the 

importance of the peptide backbone (Figure 2).
[43-45]

 

 

 

Figure 2. Peptide-based catalysts for enantioselective reactions. 

Acyl transfer as part of nature’s reaction portfolio is one of the most prominent examples for the 

use of short non-natural peptide catalysts for enantioselective transformations.
[24,25,31]

 In 1998, 

Miller and co-workers introduced N-alkylimidazole containing peptides (π-methyl histidine 

derivatives performed best) as acylation catalysts, which proved to be highly selective in various 

KRs and desymmetrizations.
[31,46-49]

 Especially the KR of racemic trans-2-N-

acetamidocyclohexanol using such peptides was intensively studied and led to the conclusion 

that a stable yet slightly flexible secondary structure based on intramolecular H-bonding is 

responsible for the high enantioselectivities (Figure 2).
[31,46,49-51]

 Several attempts were made to 

improve the selectivities of these peptides by modifying the motifs that are responsible for the 

formation of a secondary structure (see the peptides of Toniolo
[52]

 and Qu
[53]

 in Figure 2). 

Though nonpeptidic catalysts were successfully utilized in natural product synthesis of, e.g., 

epothilone, (−)-baclofen (with Fu’s planar chiral ferrocenyl-DMAP derivative),
[54]

 lobeline (with 

Birman’s amidine-based catalysts),
[55]

 and biotin (with Deng’s modified cinchona alkaloid 

catalyst),
[56]

 peptidic approaches may offer chemoselective acylations of complex polyols 

bearing compounds (e.g., vancomycin
[57]

 and erythromycin A
[58]

) and even carbohydrates.
[59]

 

HN

NH

O

O

N

N

H

H
N

O

NH-n-BuH

Me n

(n = 10, 30)

Inoue (1981) Juliá-Colonna (1984)

N

N

Me

N

N

O

N

N

Boc
H

OMe
O

H

O
H

PhO

Miller (1998)

N

N

Me

N

N

O

N

N

Boc
H

OMe
O

H

OH
H

PhO

Toniolo (modified Miller 
peptide) (2004)

Qu (modified Miller peptide)
(2011)

N

N

Me

N

N

S

N

N

Ts
H

OMe
O

H

O
H

Ph

Wennemers (2005)

Schreiner (2008)

N

O

Me

O

H O

N
N

H

O

O

H

NN

O

N

HO

Me

NH2

H
N

O

N

O
NH

CO2H
O

H-Pro-Pro-Asp-NH2

O



Lipophilic Oligopeptides for Chemo- and Enantioselective Acyl Transfer Reactions 
 

88 

In 2008 our group introduced a highly efficient tetrapeptide catalyst for the KR of trans-

cycloalkane-1,2-diols via acyl transfer (Figure 2).
[25,60]

 In contrast to the established peptide 

design concepts focusing on secondary structure formation, our approach utilizes a highly 

lipophilic, structurally less flexible, non-natural adamantane γ-amino acid (
A
Gly in our shorthand 

notation) in the center of the peptide. We envisioned that the more flexible amino acids at the  

N- and the C-terminus of the peptide would form a “dynamic pocket” like an active site in an 

enzyme and enable selective acyl transfer. The incorporation of additional lipophilic amino acids 

would allow the use of nonpolar organic solvents. 

The KR of cyclic chiral trans-cycloalkane-1,2-diols via acyl transfer was chosen as the test 

reaction, because no synthetically useful approach for this class of substrates was reported. 

Additionally, natural products bearing vicinal diols are frequently found (e.g., in steroids, 

flavonoids, carbohydrates, and pharmaceuticals), and therefore a highly chemoselective peptide 

would be quite useful.
[61]

 Monoacetylation of trans-cycloalkane-1,2-diols utilizing enzymes 

(Pseudomonas lipases) displayed low activities as well as selectivities.
[6]

 In the case of metal 

catalytic approaches for the KR of trans-cycloalkane-1,2-diols, only selective benzoyl transfers 

utilizing 0.5 equiv of benzoyl chloride with lower selectivities (S = 14 to 22) compared to our 

approach (S >50) were reported by Onomura (2003),
[19]

 Reiser (2005),
[20]

 and Pfaltz (2006).
[21,62]

 

This is one of the rare cases where a chemical method is significantly more efficient than an 

enzymatic approach. Later the same peptide or similar peptidic catalysts were successfully 

applied to selective single- and multicatalytic transformations.
[25,63-68]

 

The identification of such highly enantioselective catalysts is still a formidable challenge and 

mostly relies on trial and error or extensive screening experiments, because the chemical 

recognition processes of catalyst and substrate are usually hardly predictable.
[32]

 Here we report a 

full investigation of our oligopeptide catalyst platform, including catalyst screenings, substrate 

scope, and chemoselectivity, and present a structural mechanistic model for enantioselective 

acylations. Additionally, the peptide-catalyzed transfer of various other electrophiles will be 

described. 
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2. Results and Discussion 

2.1 Catalyst Screening Using the Acylative KR of trans-Cyclohexane-1,2-diol as 

Test Reaction  

A large variety of peptide catalysts was synthesized via automated solid phase peptide synthesis 

(SPPS) using a Fmoc-strategy; additionally, the chosen peptides were prepared in solution in 

larger quantities utilizing Boc-strategy. The crude peptides were initially characterized using 

ESI-MS; purified peptides were characterized by NMR, IR, ESI-MS, and ESI-HRMS (for 

detailed experimental procedures and analytical data, see Experimental Section and Supporting 

Information). All peptide catalysts were tested in the KR of racemic trans-cyclohexane-1,2-diol 

1 (Scheme 1) with acetic anhydride. Addition of a base is not required, because the generated 

acetic acid (pKa = 4.74) is comparably weak and in equilibrium with the methylimidazolium ion 

(pKa = 7.3);
[69]

 always a small amount of unprotonated catalyst is available. 

 

 

Scheme 1. KR of trans-cyclohexane-1,2-diol 1 as test reaction. 

We started our search for a new highly lipophilic peptide by using Boc-π-methyl histidine 

methylester 3 (Figure 3) as a catalyst to determine whether the acyl transfer onto 1 under our 

chosen reaction conditions (in toluene; no auxiliary base) is generally possible.
[70]

 The ability to 

perform the KR in a nonpolar solvent in the absence of base simplifies the purification of the 

product. The ee values and yields for our test reaction (Table 1) with 3 were low. Additionally, 

we tested 4 introduced by Snapper and Hoveyda in 2006 (4 showed excellent selectivities in the 

silylation of racemic and meso-1,2-diols) in the acylative KR of rac-1, but only low selectivity 

was observed.
[71]

 Our design concept focused on the 
A
Gly moiety as a sterically demanding and 

structure-determining spacer that should lead to lipophilic peptides soluble in organic solvents. 

At first we synthesized various tri-, tetra-, and pentapeptides and placed the rigid 
A
Gly in the 

center of the molecule (Figure 3). We hoped separating the more flexible amino acids on the C- 

and N-terminus of the peptide would enable the formation of a chiral environment (e.g., “a 

pocket”, vide infra). Several different catalytically active histidine moieties were tested: Boc-L-

histidine for peptide 5; Boc-L-(τ-Bzl)-histidine for 7, 8, and 9; and Boc-L-(π-Me)-histidine for 6, 

10, 11, and 12a. 

Ac2O

 Peptide Catalyst

(±)-1 (R,R)-2

OH

OH

(S,S)-1

OAc

OH

OH

OH
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Figure 3. Starting sequences for the search of a selective acyl transfer catalyst. 

The results for 3–12a as applied to the KR of rac-1 are summarized in Table 1. A comparison of 

the tripeptides 5–7 having the same peptidic backbone bearing a histidine (5), π-methyl histidine 

(6) and a τ-benzyl-histidine moiety (7) shows that Boc-L-(π-Me)-histidine is the catalytically 

most active histidine derivative. Tripeptidic and tetrapeptidic structures produced high yields but 

moderate selectivities; pentapeptides showed only low selectivities and activities and were not 

investigated further. Tetrapeptide 12a was the most selective catalyst and was used as the 

reference structure for further modifications. 

In contrast to enzymes, whose catalytically active sites often only exist in one stereoisomeric 

form, we readily synthesized ent-12b (all amino acids D-configured), and as expected, were able 

to acetylate S,S-1 with the opposite selectivity. Switching the positions of L-Val and π-Me-His 
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(13) or L-Val and 
A
Gly (17) lowered the selectivities for the KR of rac-1 compared to 12a. 

Hence, it is important that 
A
Gly is in direct neighborhood to the catalytically active His-moiety. 

 
Table 1. KR of trans-Diol (±)-1 with Peptide Catalysts 3–12a 

Entry
a 

Cat. t (h) Yield (%)
c
 of (R,R)-2 er

c
 of (R,R)-2 

 1
b 

3 15 2 46:54 

 2
d 

4 4 11 44:56
 

3 5 42 4 76:24 

4 6 18 48 69:31 

5 7 210 10 54:46 

6 8 210 10 58:42 

 7
b
 9 210 5 53:47 

 8
b 

10 15 1 75:25 

9 11 15 7 50:50 

10 12a 18 43 73:27 

a 
All reactions were performed at 0 °C in a mixture of 2.25 mL of toluene and 0.85 mL of CHCl3 with 1 equiv  

(43.6 mg, 0.375 mmol) of racemic substrate 1, 0.5 equiv of acetic anhydride, and 1 mol% of catalyst. 
b 

Reaction was 

performed at −20 °  with 0.1 equiv of acetic anhydride. Without catalyst, no conversions could be observed. 
c 
Yields and enantiomeric ratios were determined by chiral GC analysis using an internal calibration. 

d
 Reaction was 

performed at 0 °C in 4.5 mL of toluene with 1 equiv of racemic substrate 1 (0.025 mmol, 2.9 mg), 5.3 equiv of 

acetic anhydride, and 2 mol% of catalyst in toluene. 

Next we focused on changing the configuration of Val, Boc-(π-Me)-His (14 and 15) and of both 

amino acids (16). The best er values were obtained for peptides containing homoconfigured Val 

and His (matched situation for 12a,b, ent-12b, and 16). The mismatched configuration of either 

Val or π-Me-His (14 and 15) decreases the selectivity for the KR of rac-1 dramatically  

(Figure 4). 

The catalytic efficiency of 12a and the results presented in Table 2 encouraged further variations. 

The use of Boc-L-(π-Me)-His-
A
Gly-L-Cha-L-Phe-OMe (12b) as catalyst gave the highest ee in 

the KR of rac-1. Indeed, 12b is the most efficient catalyst for the KR of trans-cycloalkane-1,2-

diols to date.
[25,60]

 Though having identified a capable catalyst for the selective acylation of rac-1 

the role of the C-terminal amino acid was investigated by using the Boc-L-(π-Me)-His-
A

Gly-L-

Leu-L-R motif (Table 3) in order to obtain mechanistic insights into the substrate recognition 

process by the catalyst. 
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Figure 4. Variation of peptide catalysts. Structural changes of the peptides compared to 12a and 12b are drawn in 

red. 

Peptide catalyst 21 with C-terminal L-Cha proved to be the most selective, but generally all 

tested peptides showed high selectivities. This finding implies that the C-terminal amino acid in 

the tetrapeptide does not strongly affect the selectivity of the peptide, and other catalytically 

active amino acids may be attached and therefore offer their application in multicatalytic 

approaches.
[65,67,68]
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Table 2. Screening of the KR of (±)-1 with peptide catalysts 12–17. 

Entry
a 

Cat. R Yield (%)
c
 of (R,R)-2 er

c
 of (R,R)-2 

1 12a
d
 Val 9.9 85:15 

 2
b
 12a-resin

[72] 
Val 10.2 63:37 

 3
d 

ent-12b
 

Cha 57 12:88 

4 12b Cha 8.3 88:12 

 5
d 

13
 – 35 57:43

 

6 14 – 9.8 60:40 

7 15 – 8.1 46:54 

8 16 – 10.5 21:79 

9 17 – 5.4 67:33 

 a
All reactions were performed at −20 °  for 15 h in a mixture of toluene and CHCl3 with 1 equiv of racemic 

substrate 1, 0.1 equiv of acetic anhydride, and 1 mol% of catalyst (raw product, after resin cleavage and evaporating 

of the solvents; without further purification). Without catalyst, no conversions were observed. 
b 

Reaction was 

performed for 24 h. 
c 
Yields and er values were determined by chiral GC analysis using an internal calibration. 

d 
All 

reactions were performed at 0 °C in 4.5 mL of toluene with 1 equiv of racemic substrate 1 (0.025 mmol, 2.9 mg), 

5.3 equiv of acetic anhydride, and 2 mol% of catalyst. 

 

Table 3. Screening of the KR of (±)-1 with peptide catalysts 18–21 and 12c. Investigation of the role of the C-

terminal amino acid. 

 

Entry
a 

Cat. R- Yield (%)
b
 of  (R,R)-2 er

b
 of (R,R)-2 

1 18 L-Ala-OMe 2.0 86:14 

2 19 L-Val-OMe 1.6 84:16 

3 20 L-Leu-OMe 4.9 87:13 

4 21 L-Cha-OMe 5.1 89:11 

5 12c L-Phe-OMe 12.7 86:14 

a
All reactions were performed at −20 °  for 15 h in a mixture of toluene and  H l3 with 1 equiv of racemic 

substrate 1, 0.1 equiv of acetic anhydride, and 1 mol% of catalyst (raw product, after resin cleavage and evaporating 

of the solvents; without further purification) 18–21 and 12c. Without catalyst, no conversions were observed. 
b 
Yields and enantiomer ratios were determined by chiral GC analysis using an internal calibration. 
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2.2 Substrate Scope for Peptide 12b-Catalyzed Acylations  

In contrast to the selective esterification of 1,2-diols such as 1 (the second OH-group is 

important as an internal H-bond donor), other biomimetic approaches mostly require 

monoacetylated 1,2-diols or monoacetylated 1,2-aminoalcohols to achieve high  

selectivities.
[10-12,14,46]

 In these cases the additional H-bond acceptor of the acyl group serves as a 

docking position. Therefore acylation catalyst 12b was tested in the KR of racemic 2, 22, and 23 

(Figure 5). The latter substrate was successfully used by Miller et al.;
[31,46,48,50]

 in our hands, 

 iller’s catalyst also led to excellent selectivities in the K  of rac-23 (90% ee for 23, 86% ee for 

the diacetylated aminoalcohol, S = 41 at C = 51%, 24 h at 0 °C).
[60]

 As expected, 12b proved to 

be unselective in these three cases showing the complementarity to  iller’s catalyst (Figure 2); 

this emphasizes the importance of the second hydrogen bond donor in the enantiodifferentiating 

step with 12b. 

 

 

Figure 5. KR of the racemic monoacetylated substrates 2, 22, and 23. 

The enantioseparation of racemic secondary monoalcohols is another challenging field for 

acylative KRs. The KR of racemic 1-phenylethanol (24) via organocatalytic acyl transfer is one 

of the most common test reactions in this area (efficient methods often take advantage of 

selective π–π interactions between substrate and catalyst)
[24,25,73]

 and was therefore chosen as a 

test reaction for 12b as well. Catalyst 12b promoted this reaction but showed no 

enantioselectivity (Figure 6).
[74]

 The KR of other racemic secondary alcohols like exo-norborneol 

(25) and rac-26 via acylative KR with catalyst 12b also led to low selectivities (Figure 6). 

 

 

Figure 6. Testing the KR of the racemic monoalcohols 24–27 with catalyst 12b. 
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Table 4. Testing the KR and Desymmetrization of Diols 28–36 with 12b. 

Entry
a 

Diol t (h) T (°C) C (%)
b ee (%)

c
 

remaining diol 

ee (%)
c 

monoacetylated diol 
S

b 

1 
 

meso-28 

24 0 88 – 74 – 

2 
 

meso-28 

48 –40 99 – 88 – 

3 
 

(±)-29 

8 0 61 95 65 16 

4 

 
(±)-30 

24 0 6 – 11 1 

5
e 

 
(±)-31 

24 0 60 50 33 3 

6 
 

(±)-32 

24 0 5 – 1 1 

7
d 

 
meso-33 

6 0 90  5 – 

8
d 

 
meso-34 

5 0 2 – 11 – 

9 

 
meso-35 

24 –20 63 – 4 – 

10
d 

 
meso-36 

5 0 99 – 39 – 

a 
Reaction conditions: 1 equiv of diol in toluene, 5.3 equiv of Ac2O, and 2 mol% of catalyst 12b (purified via 

HPLC). Without catalyst, no conversions were observed. 
b 

S-values and conversions determined using the procedure 

of Kagan and Fiaud.
[77]

 
c 
ee values were determined by chiral GC analysis or chiral HPLC. 

d 
Reaction conditions: 1 

equiv of diol in toluene, 5.3 equiv of Ac2O, 2 mol% of catalyst 12b and 5.3 equiv of DiPEA. 
e 
Reaction conditions: 1 

equiv of diol in toluene, 0.6 equiv of Ac2O, and 2 mol% of catalyst (purified via HPLC) 12b. 
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Nonenzymatic examples of KR or desymmetrizations of primary alcohols are rare, because no 

second functional group, which is usually required to achieve chemical recognition by the  

catalyst, is close to the hydroxyl group.
[75,76]

 As expected the selectivity of 12b in the KR of 

racemic 27 was low (Figure 6), despite significant activity. This finding again implies that the 

second vicinal OH-group is key for the acylation selectivity. 

As the mechanism of action (vide infra) for 12b in acylative KRs requires a second hydrogen 

bond donor, a broader range of meso- and rac-1,2-diols 28–37 (Table 4/Scheme 2) was 

investigated. 

The desymmetrization of meso-cyclohexane-1,2-diol (28) (Table 4) utilizing 12b was tested 

under standard conditions (5.3 equiv of Ac2O, toluene), and an ee of 74% was observed. 

However, the reaction was slightly more selective with base (5.3 equiv of DIPEA; ee = 88%). 

Noncyclic analogues like 29 can also be resolved with an S-value of 16; apparently 12b is not 

only efficient for cyclic vicinal diols. 1,3-, 1,4- and 1,5-diols are also synthetically useful 

substrates and were therefore tested in the acylative KR with 12b. Racemic 1,3-diol rac-30 was 

only poorly resolved, and after 24 h, only 6% of the monoacetylated product was observed. To 

our delight, moderate selectivities were achieved in the 12b-catalyzed KR of non-vicinal  

1,1′-binaphthyl-2,2′-diol rac-31 (S = 3). Enzymatic
[78]

 and chemical approaches
[79]

 were reported 

for the resolution of rac-31; the nonenzymatic methods are based on inclusion complexes
[80]

 or 

salt formation.
[81]

 Both enantiomers can be obtained in high yields and excellent ee values  

(>99%).
[80, 82]

 To the best of our knowledge, no catalytic, nonenzymatic approaches for the 

acylative KR of rac-31 are known to date. This is the first example for catalyst 12b displaying 

moderate selectivity for a substrate class different from 1,2-diols (Table 4). It is also worth 

mentioning that the KR of 31 with catalyst 12b and acetic anhydride proceeded rapidly (4 h) 

under optimal conditions (5.3 equiv of Ac2O, 0 °C), and the diol was completely converted to the 

corresponding monoacetylated (64%) and diacetylated (36%) products. Therefore the amount of 

acetic anhydride was reduced to 0.6 equiv of Ac2O, which led to a conversion of 43% after 4 h 

(stirring overnight yielded 60% of monoacetylated product with 33% ee), and no diacetylated 

product was observed. This indicates that the KR of rac-31 is even faster than for our reference 

diol 1. In contrast, 12b proved to be inactive and unselective for 32 and 34 and only moderately 

active but rather unselective in the desymmetrization experiments with the meso-diol 33  

(Table 4). An explanation might be the rather rigid structure of 32, 33, and 34 and the steric 

demand of the substrates, as well as the absence of intramolecular hydrogen bonds. Peptide 12b 

showed higher activity for the desymmetrization of meso-1,3-diol 35 but provided no selectivity. 

Surprisingly, high activity and moderate selectivity was observed for the desymmetrization of 

1,5-diol 36.
[83] 
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Scheme 2. KR of rac-37 utilizing 12b. 

Landais et al. reported an efficient 10-step synthesis of aminocycloheptitols via de-

symmetrization/functionalization of 7-silylcycloheptatrienes.
[84]

 Further functionalization of the 

7-silylcycloheptatrienes gave racemic products. Hence, we investigated the selective acetylation 

of rac-37 by 12b because it appeared as an excellent stereochemical test case. 

The KR of diol rac-37 is rather challenging because of the complex structure (five stereogenic 

centers) and the potential formation of two product regioisomers 38 and 39. In principle catalyst 

12b is capable of differentiating between both enantiomeric forms by preferring the acylation of 

the R,R-enantiomer (configuration of the hydroxyl-groups). The highest ee, but rather low yield 

(yield = 15%), was observed for the monoacetylated regioisomer 39. The selectivity for 38 was 

lower, but the yield was good (yield = 41%) (Scheme 2). We suggest that the high selectivity but 

lower reactivity of 39 is due to the high steric demand of the dimethylphenylsilyl group in the 

proximity to the acetylated hydroxyl group. In contrast to all other KR experiments, we found a 

large amount of diacetylated product 40. 

 

2.3 Chemoselectivity of 12b  

The outstanding performance of catalyst 12b for vicinal diols implies high chemoselectivity, 

which underlines the close relationship to natural catalysts, e.g., enzymes. Of course, high 

chemoselectivity is often undesirable in synthetic chemistry, which normally strives for broad 

substrate scope. However, highly chemoselective catalytic processes are a stringent requirement 

for one-pot reactions, wherein various chemicals are present in the reaction mixture. This is 

typically the case for domino,
[85]

 tandem,
[85-87]

 or cascade
[86,87]

 reactions and becomes even more 

important for multicatalytic reactions.
[63,64,67,68,88]

 Additionally, this approach could be a useful 

tool for the site-selective acylation of, e.g., polyols. 
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We performed competition experiments for the acetylation of chemically different alcohols with 

12b to investigate the chemoselectivity of our best catalyst. For comparison we performed the 

same experiments with 4-dimethylaminopyridine (DMAP) in parallel. Initial studies showed that 

12b is capable of transferring acyl groups selectively to the (R,R)-enantiomer of trans-

cycloalkane-1,2-diol 1 out of a mixture of alcohols 41–43 (Table 5). We used the optimized 

standard reaction conditions for the KR. The reaction was quenched after 1 h and was analyzed 

by GC. In the presence of 12b only esters 2 and 44 were observed. Ester 2 proved to be the main 

product; the e.r. of the remaining diol (94% (S,S)-1 and 6% (R,R)-1) indicates that indeed (R,R)-1 

is by far the most reactive compound in the mixture. In contrast, DMAP led to the formation of 

the esters 2, 44, and 45 with 44 being the main product. After 2 h all of the (R,R)-1 enantiomer 

had been acetylated by 12b, and the catalyst showed higher activity toward 41 than to (S,S)-1. 

The reactivities for the acetylation of (S,S)-1 and 43 by 12b were comparable. 

 
Table 5. Yields (via GC/MS) of 2, 44, 45, and 46 obtained in the competitive acetylation reaction. 

 

Entry Cat. t (h) Yield (%) of 2 Yield (%) of 44 Yield (%) of 45 Yield (%) of 46 

1 12b 1 59 traces - - 

2 DMAP 1 traces 22 traces - 

3 12b 2 65 15 traces - 

4 DMAP 2 31 36 13 - 

5 12b 5 72 32 traces - 

6 DMAP 5 59 68 20 - 

 

Catalyst 12b can also differentiate between cis- and trans-cyclohexane-1,2-diol; the acetylation 

of a 1:1 mixture of 1 and 28 resulted in a ratio of 84:16 (2/28) after 3 h. In contrast, DMAP 

proved to be less active and showed only a marginal preference for the trans-diol. The results for 

12b (Table 6) are remarkable because both diols should have comparable nucleophilicities and 
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differ only in the configuration of one OH group. We conclude that stronger hydrogen-bond 

interactions between (R,R)-1 and 12b compared to (S,S)-, (R,S)-, and (S,R)-1 and 12b are 

responsible for (R,R)-1 preferential acetylation. The structure of (R,R)-1 seems to fit perfectly 

into the “pocket” formed by 12b. This extraordinary high chemo- and enantioselectivity is an 

astonishing feature for a small molecule. 

 
Table 6. Concurrent and competitive acetylation of trans-diol (±)-1 and meso-diol 28 with catalyst 12b and DMAP. 

 

Entry
a
 Cat. t (h) Yield (%) 2

b
 er

b 
2

 
Yield (%) 28

b
 Ratio 2:28

b
 

1 12b 1.5 23 94:6 3 87:13 

2 DMAP 1.5 5 50:50 4 56:44 

3 12b 3 31 91:9 6 84:16 

4 DMAP 3 9 50:50 7 56:44 

 5
b
 12b 4.5 36 85:15 11 77:23 

6 DMAP 4.5 15 50:50 12 55:44 

6
 

12b 7.5 38 80:20 15 72:28 

 7
b
 DMAP 22 20 50:50 16 55:44 

a 
 eactions performed at −20 °  in 4.5 mL of toluene with 1 equiv of racemic substrate 1 (0.025 mmol, 2.9 mg) and 

meso substrate 28 (0.025 mmol, 2.9 mg), 5.3 equiv of acetic anhydride, and 2 mol% 12b or DMAP. Without 

catalyst, no conversions were observed. 
b 

Yield, e.r. values, and the 2:28 ratios were determined by chiral GC 

analysis. 

 

2.4 Mechanistic Model for the Enantioselective Acylation with 12b  

For a better understanding of the chemical recognition process of the substrate by the catalyst 

responsible for the selectivity, we attempted NMR polarization transfer
[89]

 and IR studies
[90]

 at 

variable temperatures with 12b, but we found no evidence for a secondary structure at rt (see 

Supporting Information for spectroscopic data). We also investigated the possibility of a 

structure-forming element at the stage of the acylium ion, and therefore NMR spectra of the 

acylium ion were measured at rt in CDCl3, but again no unusual NOEs indicating a secondary 

structure were observed. 

 12b or DMAP (2 mol%),

 5.3 eq Ac2O

(±)-1
1 eq

OH

OH -20 °C, PhCH3

2

O

OH

O

meso-28
1 eq

22

OH

OH

O

OH

O
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In 2009 Sunoj et al. performed ONIOM computations at the B3LYP/6-31G(d):PM3 level that 

yielded transition structures for the 12b-catalyzed acyl transfer onto (R,R)- and (S,S)-1.
[91]

 These 

computations nicely explain the observed high enantioselectivities by an energy difference of  

4.5 kcal mol
–1

 between the two transition states. Nevertheless, Sunoj’s computations could not 

properly estimate the influence of hydrophobic R-groups in the i + 2 position on the selectivity, 

because the B3LYP/6-31G(d):PM3 level of theory does not include dispersion interactions. 

Hence, we applied a molecular dynamics search for low-lying conformations of the 

catalyst/acylium ion adduct and (R,R)-1 using the Merck molecular force field (MMFF)
[92]

 and 

reoptimized the lowest-lying conformation at M06–2X/6-31+G(d,p), which was parametrized to 

take into account dispersion interactions.
[93,94]

 The acetylated catalyst 12b generates a chiral 

environment around the substrate (Figure 7, right and left). Irrespective of the starting geometry, 

the most favorable conformer always placed the cyclohexyl group in 12b in close proximity to 1 

(Figure 7). This arrangement helps rationalize why more hydrophobic R-groups provide higher 

ee values, as they enhance the London dispersion interactions with the substrate (Figure 7, 

right).
[95,96] 

The two geometrically nearest  ═O groups apparently provide hydrogen bonding acceptors 

(Figure 7) needed for chiral recognition of the diols. The model also emphasizes that the 
A
Gly 

building block provides a scaffold that separates both ends of the peptide and also holds the 

centers governing recognition and stereochemistry in place. It seems that rac-1, as well as the 

acylium ion adduct have to be present to structure the “active site” of the peptide by dispersion 

(Figure 7, right) and hydrogen-bonding interactions in a rather dynamic binding event. 

 

 
 

Figure 7. Left: M06–2X/6-31+G(d,p)
[93,94]

 optimized structure for the enantioselective acetylation of trans-cyclo-

hexane-1,2-diol 1 in the “pocket” of the acetylated catalyst. Hydrogen atoms on the catalyst are omitted for clarity. 

C = gray, N = blue, O = red.
[97]

 Right: dispersion interactions of substrate and catalyst as judged by the typical van 

der Waals contacts. 

Acyl transfer

= centers determining stereochemistry; only the completely homo 

configured peptide leads to the extraordinary enantioselectivities 

Hydrogen

bonding

2.65 Å1.93 Å

1.80 Å

2.50 Å 2.42 Å
2.52 Å

2.55 Å

Dispersion interactions
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2.5 Alternative Electrophiles in Group Transfer Reactions Catalyzed via Peptide 

12b  

In addition to acetic anhydride, we tested a range of electrophiles in KRs and desymmetrization 

experiments. First of all, we investigated the role of the electrophile by determining the activity 

and selectivity of 12b in the KR of rac-1 using various acyl donors (Table 7). All anhydrides 

reacted with 1 to give the corresponding monoesters in good yields. In contrast, vinyl acetate as 

electrophile, which is often used in combination with enzymes, provided no conversion. Acetyl 

chloride gave only 5% of the monoacetylated product after 4 h and resulted in no 

enantioselectivity, neither for the starting material nor for the product (the background reaction 

led to similar conversions in the same time). Even addition of base to avoid the protonation of 

the catalysts only slightly increased the selectivity and reactivity. The finding that acyl chlorides, 

though they generally have higher carbonyl reactivities than anhydrides, are less reactive in 

acetyl transfer reactions catalyzed by the nucleophilic catalysts (DMAP) is common.
[98-103]

 The 

importance of the counterion for the deprotonation of the alcohol was computationally confirmed 

by Zipse et al.
[102-104]

 The counterion effects were experimentally analyzed by Lutz et al. in their 

X-ray, NMR- and IR-spectroscopic investigation of N-acetyl-DMAP salts.
[104]

 Surprisingly no 

evidence for the formation of a “tight” ion pair for the N-acetylpyridinium chloride was found, 

but in the case of N-acetylpyridinium acetate the analysis of the X-ray data, as well as the 

computations, confirmed the existence of a “tight” ion pair. Under our reaction conditions with 

no additional base the proton transfer has to be accomplished by the counterion, and therefore 

acetic anhydride reacts faster. The reaction with acetic or isobutyric anhydride proved to be fast 

compared to the sterically more hindered benzoic and pivalic anhydrides (Table 7). The use of 

acetic anhydride and isobutyric anhydride led to high selectivities (S > 50 for acetic anhydride,  

S = 41 for isobutyric anhydride), whereas for benzoic anhydride (S = 8) and pivalic anhydride  

(S = 5), only moderate selectivities were observed. 

The direct use of acids as electrophiles in acylation reactions was realized by using peptide 12b 

and carbodiimides (DI) for the activation and in situ formation of the anhydrides from carboxylic 

acid precursor; this constitutes the first enantioselective Steglich esterification.
[66]

 

Other electrophiles such as di-tert-butyl dicarbonate (Boc2O), diphenylchlorophosphate, and 

various benzenesulfonyl chlorides were also used as electrophiles in the KR of (±)-1 with 12b. 

Miller et al. reported the selective sulfonylation (benzenesulfonyl chlorides)
[105]

 and phosphory-

lation (diphenylchlorophosphate)
[31, 106, 107]

 mediated by π-(Me)-histidine containing peptides and 

achieved an ee of 98% in 65% yield for the phosphorylation of a meso-inositol derivative. The 

selective sulfonylation of various functionalized meso-1,3-diols was accomplished in high yields 

and good selectivities (yield up to 76%; er up to 97:3).
[105]

 The reactivity of Boc2O toward 

alcohols and diols in the presence of 4-(dimethylamino)pyridine (DMAP) and N-methyl-
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imidazole (MeIm) has been reported by Hassner et al.
[108]

 The transfer of the Boc-group onto 

rac-1 was tested utilizing 30 mol% DMAP (30 mol% N-methylimidazole) and 1.2 equiv of 

Boc2O (Scheme 3). 

 
Table 7. KR of trans-diol (±)-1 with peptide catalyst 12b using various acyl donors. 

 

Entry
a
 Electrophile      Ester C (%)

b
 ee (%)

c  
(R,R)-2

 
ee (%)

c 
(S,S)-1 S

 b
 

1 
 

2 57 75 >99 >50 

2 

 

2b 59 71 >99 41 

3 
 

 

2c 

 

2 

 

64 

 

2 

 

5 

4 

 

2d 5 76 4 8 

5 
 

2 5 – – 1 

 6
d  

2 27 12 32 2.2 

7 
 

2 – – – – 

a 
All reactions were performed at 0 °C in 4.5 mL of toluene, 1 equiv of racemic substrate 1 (0.025 mmol, 2.9 mg), 

5.3 equiv of the electrophile, and 2 mol% of catalyst 12b (purified via HPLC). Without catalyst, no conversions 

were observed. 
b 

S-values and conversions determined using the procedure of Kagan and Fiaud.
[77]

 
c 
ee values were 

determined by chiral GC analysis. 
d 

The reactions were performed at 0 °C in 4.5 mL of toluene, 1 equiv of racemic 

substrate 1 (0.025 mmol, 2.9 mg), 5.3 equiv of the electrophile, 2 mol% of catalyst 12b and 5.3 equiv of DIPEA. 

While the monoacetylated diol (R,R)-2 is the only product of the acetylation reaction, the 

reaction with Boc2O is more complex, and three products were obtained by the DMAP- and 

MeIm-catalyzed reaction (Scheme 3). Therefore the KR of rac-1 with Boc2O required 

optimization (Table 8). 

12b (2 mol%)

(±)-1

OH

OH 0 °C, PhCH3, 4 h

(R,R)-2, 2b-d

O

OH

R1

O

R1 O

O

R25.3 eq

(S,S)-1

OH

OH
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Scheme 3. Reaction of DMAP and MeIm with Boc2O and Diol rac-1 Leading to O-Boc-2e, O,O-di-Boc-product 48 

and the cyclic carbonate 47. Yields were determined via GC–MS; yields of isolated products are given in 

parentheses. 

 

Table 8. KR of trans-cyclohexane-1,2-diol 1 with Boc2O using various reaction conditions. 

 

Entry
a Cat. 12b 

(mol%) 
t (h) C (%) 

Boc2O 

(eq) 

er 

(S,S)-1
c 

er 

(R,R)-2e
c 

er 

(R,R)-47
e S

d 

1 2 58 30 1 80:20 15:85 17:83 10.3 

2 2 58 30 2 64:36 18:82 17:83 6.3 

3 2 36 60 5.3 95:5 18:82 22:78 11.7 

4 2 16 58 10 83:17 24:76 28:72 6.2 

5 5 16 50 5 80:20 20:80 20:80 7.2 

6 10 21 54 2 87:13 18:82 – 9.6 

7 5 102 50 2 86:14 14:86 – 12.8 

 8
b 

10 192 50 2 76:24 24:76 traces 5.2 

a 
All reactions were performed in 4.5 mL of dry toluene at rt.

 b 
This reaction was carried out at 0 °C in 4.5 mL of dry 

toluene. 
c 

Yields and enantiomer ratios were determined by chiral GC analysis. 
d 

S-values (selectivity factors) 

determined by the method of Kagan and Fiaud.
[77]

 

In principle, the enantioselective transfer of the Boc-group with 12b is possible, but the reaction 

requires conditions different from those of the acylation reaction. While the acetylation reactions 

are most efficient using a large excess of Ac2O (5.3 equiv) at low temperature (0 °C), the transfer 

of the Boc-group works best at rt, with 2 equiv of Boc2O and 5 mol% of 12b. 

OH

OH

1.2 eq Boc2O

PhCH3, r.t.

O

OH

O

Ot-Bu

+

O

O

O

Ot-Bu

O

Ot-Bu

+

O

O
O

DMAP (30 mol%)

MeIm  (30 mol%)

yield: 84% (78%)

yield: 83% (76%)

4%

7%

12% (8%)

10% (6%)

(±)-1 (±)-2e (±)-47 (±)-48

OH

OH

12i

Boc2O
OH

OH

+

OBoc

OH

+

O

O
O

r.t., PhCH3

(±)-1 (S,S)-1 (R,R)-2e (R,R)-47



Lipophilic Oligopeptides for Chemo- and Enantioselective Acyl Transfer Reactions 
 

104 

The generation of the O-Boc protected diol 2e is catalyzed by 12b, whereas the formation of the 

cyclic carbonate 47 only occurs in the presence of a strong base. The reaction mechanism 

implies that the formation of the tert-butoxide during the catalytic cycle probably removes the 

proton from the second alcohol functionality and therefore promotes cyclization to the cyclic 

carbonate 47 (Figure 8).
[108]

 Evidence for this proposal comes from the finding that 2e does not 

cyclize to 47 in solution even in the presence of catalyst 12b. In contrast, addition of Boc2O to 

the solution gives only the cyclic carbonate 47. 

Using less Boc2O minimized the formation of tert-butoxide, and the rate of cyclization of 2e 

decreased. A catalyst loading of 5 mol% and higher temperature accelerates the reaction and 

avoids the generation of 47. 

 

 

 

Figure 8. Proposed mechanism of the KR of trans-cyclohexane-1,2-diol with Boc2O and the reoptimized (M06–

2X/6-31+G(d,p)) structure of the catalyst/tert-butoxycarbonylium adduct. 

Although sulfonylation reactions are widely used in organic synthesis, catalytic asymmetric 

sulfonyl transfer reactions are rare.
[105,109]

 The KR of trans-cyclohexane-1,2-diol with various 

benzenesulfonyl chlorides were therefore examined. Much to our dismay, p-Cl- and p-CH3-

benzenesulfonyl chlorides gave no reaction, while p-nitrobenzenesulfonyl chloride unselectively 
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provided 14% of the monosulfonylated-trans-1,2-cylohexanediol and 8% of the disulfonylated-

trans-1,2-cylohexanediol after 24 h at rt. 

Phosphoryl group transfer plays an important role in natural processes like cell signaling 

pathways. Histidine containing kinases transfer the phosphoryl group to other nucleophiles. 

Miller et al. successfully applied a histidine-containing peptide catalyst in the asymmetric 

phosphorylation of myoinositol.
[31,106,107]

 The phosphorylation of trans-cyclohexane-1,2-diol 

mediated by 12b utilizing POCl(OPh)2 under optimized reaction conditions (10 mol % 12b,  

1 equiv of POCl(OPh)2, 1 equiv of Et3N, rt, PhCH3), unfortunately, yielded only 40% of the 

monophosphorylated product. 

 
Table 9. Competitive functionalization of rac-1 with 12b and DMAP. 

 

Entry Cat. t (h) C (%) er (%) of 1
c 

er (%) of 2
c 

S
 

1
a 

12b 1 48 85:15 13:87 14 

2
b 

DMAP 1 16 50:50 50:50 - 

3
a 

12b 2 50 86:14 14:86 13 

4
b 

DMAP 2 18 50:50 50:50 - 

5
a 

12b 3 53 90:10 15:85 14 

6
b 

DMAP 3 20 50:50 50:50 - 

7
d 

12b 1 51 93:7 8:92 32 

a 
S-values and conversions C determined using the procedure of Kagan and Fiaud.

[77]
 
b 
Conversions were determined 

by GC–MS analysis. 
c 
e.r. values were determined by chiral GC analysis. 

d 
Reaction was performed with 5.3 equiv of 

Ac2O in absence of other electrophiles. 

12b or DMAP (2 mol%),
 
1 eq

(±)-1

OH

OH

 0 °C, PhCH3,

K2CO3

2

O

OH

O

main product 
with 12i and 

DMAP

not observed with 12b 
or DMAP

O

O O

5.3 eq
49

O2N S

O

O

Cl

5.3 eq
50

P

OEt

O

ClEtOP

OPh

O

ClPhO

5.3 eq
51

5.3 eq
52

or

O

OH

S

O

O

NO2

53

O

OH

P

O
OR

OR
R = Et, Ph

54



Lipophilic Oligopeptides for Chemo- and Enantioselective Acyl Transfer Reactions 
 

106 

To test again the chemoselectivity (this time for the electrophile), we performed a competition 

experiment using different electrophiles (Ac2O, POCl(OPh)2 or POCl(OEt)2 and p-NO2–SO2Cl) 

for the functionalization of rac-1. The progress of the reaction was monitored via GC–MS and 

TLC. For reasons of comparability, 12b and DMAP were used as catalysts in parallel runs  

(Table 9). 

After 1 h, 12b converted nearly consumed all of (R,R)-1 (C = 48%). The DMAP-catalyzed 

reaction is slower and only provided 16% yield after 1 h. Under optimized reaction conditions, 

only 2 was observed with both catalysts. K2CO3 was used as base to avoid protonation of the 

catalyst. The selectivity of the competitive functionalization experiment (S = 14) is lower 

compared to the acylation experiment (S = 32) but still good. These results show the capability of 

12b to chemoselectively acylate rac-1 even in the presence of other good electrophiles. 
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3. Conclusion and Outlook 

We identified the highly chemo- and enantioselective peptide catalyst 12b for acyl transfer onto 

racemic alkane-1,2-diols. In contrast to common peptide design approaches, 12b does not 

display a preferred secondary structure but instead recognizes the diols in a dynamic binding 

event of the acylium cation complex involving hydrogen bonding and dispersion interactions. 

Anhydrides proved to be the most efficient acyl source. Competitive experiments for substrates 

and electrophiles show extraordinary chemoselectivity for cyclic trans-alkane-1,2-diols as the 

substrate and acetic anhydride as the electrophile. Such a narrow substrate scope is usually only 

observed for enzymes or generally much larger molecules utilized as catalysts. It is therefore a 

rather surprising finding that a short oligopeptide such as 12b mimics the behavior of structures 

that are typically by orders of magnitude more complex, but with the advantage that both 

substrate enantiomers can selectively be acetylated. 

Such exquisite chemoselectivity is the basis for multicatalytic approaches that are now being 

realized. These provide high potential for rapidly reaching molecular complexity from simple 

starting materials in one pot, not requiring protective group chemistry. 
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4. Experimental Section 

General Methods. Unless otherwise noted, all chemicals were purchased commercially at the 

highest purity grade available. Acetic anhydride, acetyl chloride, diphenylchlorophosphate and 

diethylchloro-phosphate were distilled prior use and stored under argon. Potassium tert-butylate 

and K2CO3 were dried at 200 °C under a vacuum and stored under argon. DBU, Et3N, and 

DIPEA were distilled and dried prior use. All catalytic reactions were carried out under argon 

atmosphere employing oven- and flame-dried glassware. All solvents were distilled prior use and 

dried by standard laboratory protocols. 
1
H and 

13
C NMR spectra were recorded on 600, 400, and 

200 MHz spectrometers using TMS as an internal standard with chemical shifts given in ppm 

relative to TMS (δ = 0.00 ppm) or the respective solvent peaks. Two-dimensional NMR 

experiments were recorded on 600 or 400 MHz spectrometers using apparatus standard pulse 

sequences and parameters. ESI mass spectra were recorded using methanol solutions of the 

respective compounds. High resolution ESI mass spectrometry (ESI-TOF) was performed using 

methanol/water solution of the respective compounds, and MS/HRMS were recorded on a sector 

field spectrometer (EI-sector field). Analytical thin-layer chromatography (TLC) was performed 

using precoated polyester sheets Polygram SIL G/UV254 Machery-Nagel, 0.2 mm silica gel with 

fluorescent indicator. Visualization was accomplished by irradiation with UV lamp and/or 

molybdophosphoric acid solution (5% H3[P(Mo3O10)4] in ethanol). Flash column 

chromatography and filtration was performed using Merck silica gel 60 Å (0.040–0.063 mm). 

 

4.1 Availability and Characterization of the Catalysts  

General Procedure I: HBTU/HOBt-Mediated Peptide Coupling on Solid Support. All 

peptides were prepared employing standard solid phase peptide synthesis techniques (SPPS), 

utilizing Fmoc-protected amino acids. 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HBTU) was used as the coupling agent and 1-hydroxybenzotriazole 

(HOBt) as a racemization suppressant. Couplings: 1 equiv of the amino acid on solid support 

was shaken twice with 2 equiv of amino acid, 2 equiv of HOBt, 2 equiv of HBTU, and 4 equiv of 

DIPEA in DMF for 30 min. Fmoc-l-Phe-Wang resin was used as solid support and swollen in 

DMF for 30 min prior to first Fmoc-cleavage. 

 

General Procedure II: Fmoc-Cleavage on Solid Support. Cleavage of N-terminal Fmoc-

protective groups was accomplished by shaking the solid phase supported peptide twice in 25% 

piperidine in DMF (25 min). Prior to the next coupling step, the resin was washed 5 times with 
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DMF, DCM and DMF. For storing, the resin should be washed 5 times with DMF, DCM and 

diethyl ether and kept in a refrigerator until use. 

 

General Procedure III: Peptide Cleavage from the Resin. Peptides were cleaved from their 

resins as methyl esters by shaking the functionalized resin twice for 2 days with 

methanol/Et3N/THF (9:1:1). The resin was filtered off and washed several times with 

chloroform. The collected solutions were concentrated under reduced pressure and purified via 

flash silica gel chromatography eluting with chloroform/methanol (95:5). 

 

General Procedure IV: EDC/HOBt-Mediated Peptide Coupling in Solution. The same 

equivalents of N-protected amino acids or peptide fragments, 1.1 equiv of 1-(3-dimethyl-

aminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), 1.1 equiv of HOBt and 1.1 equiv of 

Et3N were dissolved in DCM and stirred for 12 h at rt. The reaction mixture was diluted with 

EtOAc and extracted with 0.5 M citric acid (4×) and saturated NaHCO3 solution. The solvent 

was removed under reduced pressure, and the crude product was dried in a desiccator over 

paraffin wax and P2O5. 

 

General Procedure V: Cleavage of the −O
t
Bu-Protecting Group (Boc). The Boc-protected 

peptide was dissolved in a solution of HCl in 1,4-dioxane (4.0 M) and stirred for 1 h. The excess 

of HCl was removed by bubbling argon through the solution. After evaporation of the solvent 

under reduced pressure, the deprotected peptide was coupled without further purification. 

The peptides were characterized via electrospray mass spectrometry and used in the screening 

experiments without further purification. Peptides of interest were purified via HPLC or silica 

flash gel chromatography. Standard procedures for the solid phase Fmoc-based peptide synthesis 

as well as the Boc-based solution phase peptide chemistry can also be found in previous 

publications.
[61,68,69,71]

 The general procedure for the catalytic reactions can be found in the 

literature.
[61,68,69]

 S-values and conversions were calculated according to Kagan’s equations.
[77]

 

The enantiomeric excess values for the esters and recovered unreacted alcohols were determined 

by chiral stationary phase HPLC or chiral GC. 
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Boc-L-(π-Me)-His-OMe (3). Amino acid 3 is a byproduct occurring during the Wang resin 

cleavage of the N-terminal Boc-L-(π-Me)-histidine peptides. The methyl esters can be purified 

and isolated via HPLC. The crude product was purified by preparative HPLC (eluent: 

TBME/CH3OH 93:7) UV-detector λ = 254 nm, Emax = 2.56; refractometer; Column 1 = 250 mm, 

d = 8 mm, LiChrosorb Diol (7 μm, Merck); retention time (3) = 6.50 min. 
1
H NMR (400 MHz, 

CDCl3): δ/ppm = 7.32 [s, 1 H, HAr, CH (His)]; 6.71 [s, 1 H, HAr, CH (His)]; 5.19 [d, 1 H, J = 7.3 

Hz, NH], 4.52–4.40 [m, 1 H, Hα]; 3.67 (s, 3 H, OCH3); 3.51 (s, 3 H, NCH3); 3.11–2.91 [m, 2 H, 

Hβ]; 1.35 [s, 9 H, C(CH3)3]. 
13

C NMR (100 MHz, CDCl3): δ/ppm = 171.6 ( ═O); 155.0 ( ═O); 

138.3; 128.2; 126.4; 80.2; 53.0; 52.5; 31.3; 28.2; 26.8. IR (KBr):   /cm
–1

 = 2978; 1746; 1709; 

1507; 1438; 1367; 1290; 1253; 1217; 1200; 1167. HRMS (ESI-TOF) m/z: [M + H]
+
 calcd for 

C13H22N3O4
+
 284.1605, found 284.1610. 

 

Hoveyda’s Catalyst: (−)-(S)-N-((R)-3,3-Dimethylbutan-2-yl)-3,3-dimethyl-2-((1-methyl-1H-

imidazol-2-yl)methylamino)butanamide (4). Catalyst 4 was purchased and used without 

further purification. 

 

Boc-L-His-
A
Gly-L-Phe-OMe (5). For preparation and analytics, see Ph.D. thesis of Lukas 

Wanka.
[110] 

 

Boc-L-(π-Me)-His-
A
Gly-L-Phe-OMe (6) and Boc-L-(τ-Bzl)-His-

A
Gly-L-Phe-OMe (7). Ana-

lytical data of peptide 6 and 7 were identical to those reported in literature.
[111]

 

 

Boc-L-(τ-Bzl)-His-Gly-
A
Gly-L-Phe-OMe (8). Peptide 8 was synthesized using standard Fmoc-

coupling procedures. ESI-MS: m/z = 741.4 [M + H]
+
 (calcd m/z = 741.4); m/z = 763.4 [M + Na]

+
 

(calcd m/z = 763.4); m/z = 1481.2 [2M + H]
+
 (calcd m/z = 1481.8); m/z = 1503.2 [2M + Na]

+
 

(calcd m/z = 1503.8). 

 

Boc-L-(τ-Bzl)-His-
A
Gly-Gly-L-Phe-OMe (9). Peptide 9 was synthesized using standard Fmoc-

coupling procedures. ESI-MS: m/z = 741.5 [M + H]
+
 (calcd m/z = 741.4); m/z = 763.4 [M + Na]

+
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(calcd m/z = 763.4); m/z = 1481.3 [2M + H]
+
 (calcd m/z = 1481.8); m/z = 1503.3 [2M + Na]

+
 

(calcd m/z = 1503.8). 

 

Boc-L-(π-Me)-His-
A
Gly-L-Val-OMe (10). Peptide 10 was synthesized using standard Fmoc-

coupling procedures. ESI-MS: m/z = 560.3 [M + H]
+
 (calcd m/z = 560.3); m/z = 582.3 [M + Na]

+
 

(calcd m/z = 582.3); m/z = 1141.1 [2M + Na]
+
 (calcd m/z = 1141.7). 

 

Boc-L-(π-Me)-His-L-Val-
A
Gly-L-Val-L-Phe-OMe (11). Peptide 11 was synthesized using 

standard Fmoc-coupling procedures. ESI-MS: m/z = 806.5 [M + H]
+
 (calcd m/z = 806.5); m/z = 

828.4 [M + Na]
+
 (calcd m/z = 828.5); m/z = 1633.3 [2M + Na]

+
 (calcd m/z = 1633.9). 

 

Boc-L-(π-Me)-His-
A
Gly-L-Val-L-Phe-OMe (12a) and Boc-L-(π-Me)-His-

A
Gly-L-Cha-L-Phe-

OMe (12b). Synthesis and analytical data can be found in the literature.
[60] 

 

Boc-L-(π-Me)-His-
A
Gly-L-Val-L-Phe-WangResin (12a-resin). No characterization possible; 

12a-resin was characterized by cleaving the peptide from the peptide loaded resin. A small 

amount of loaded resin 12a was used for the catalytic experiments. 

 

Boc-D-(π-Me)-His-
A
Gly-D-Cha-D-Phe-OMe (ent-12b). The crude product was purified by 

preparative HPLC (eluent: TBME/CH3OH 90:10) UV-detector λ = 254 nm, Emax = 2.56; 

refractometer; column l = 250 mm, d = 8 mm, LiChrosorb Diol (7 μm, Merck); retention time 

(ent-12b) = 6.60 min. 176 mg (0.23 mmol; 77%) of ent-12b were isolated as colorless solid. 
1
H 

NMR (400 MHz, CDCl3): δ/ppm = 7.34 [s, 1 H, HAr, CH (His)]; 7.25–7.14 [m, 3 H, HAr (Phe)]; 

7.09–7.01 [m, 2 H, HAr (Phe)]; 6.78 [s, 1 H, HAr, CH (His)]; 6.45 [d, J = 7.8 Hz, 1 H, NH]; 5.92 

[d, J = 7.9 Hz, 1 H, NH]; 5.69 [s, 1 H, NH]; 5.09 [d, J = 8.2 Hz, 1 H, NH]; 4.78 −4.69 [m, 1 H, 

Hα]; 4.43–4.31 [m, 1 H, Hα]; 4.16–3.99 [m, 1 H, Hα]; 3.64 (s, 3 H, OCH3); 3.53 (s, 3 H, NCH3); 

3.09–2.96 [m, 2 H, Hβ]; 2.96–2.89 [m, 2 H, Hβ]; 2.13 [s, 2 H, adamantane]; 1.95–1.77 [m, 6 H, 

adamantane + Cha]; 1.71–1.49 [m, 12 H, adamantane + Cha]; 1.44–1.38 [m, 1 H, Cha]; 1.37 [s, 

9 H, C(CH3)3]; 1.23–0.98 [m, 4 H, Cha]; 0.92–0.71 [m, 2 H, Cha]. 
13

C NMR (100 MHz, CDCl3): 
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δ/ppm = 176.3 ( ═O); 171.8 ( ═O); 171.6 ( ═O); 169.7 ( ═O), 155.4 ( ═O); 138.3; 135.7; 

129.2; 128.6; 128.3; 127.2; 80.5; 54.4; 53.2; 52.3; 50.7; 42.5; 42.1; 40.3; 40.3; 39.5; 38.2; 38.0; 

37.8; 35.1; 34.2; 33.5; 32.7; 31.5; 29.1; 29.1; 28.3; 26.8; 26.3; 26.1; 26.1. ESI-MS: m/z = 761.6 

[M + H]
+
 (calcd m/z = 761.5); m/z = 783.5 [M + Na]

+
 (calcd m/z = 783.4); m/z = 1543.3 [2M + 

Na]
+
 (calcd m/z = 1543.9). HRMS (ESI-TOF) m/z: [M + H]

+
 calcd for C42H61N6O7

+
 761.4596, 

found 761.4610. IR (KBr):   /cm
–1

 = 3313; 2922; 2853; 1747; 1665; 1509; 1450; 1366; 1248; 

1169. 

 

Boc-L-Cha-
A
Gly-L-(π-Me)-His-L-Phe-OMe (13). Peptide 13 was synthesized using standard 

Fmoc-coupling strategy. 184 mg (0.24 mmol; 80%) of 13 were isolated as colorless solid. 
1
H 

NMR (400 MHz, CDCl3): δ/ppm = 7.58 [s, 1 H, HAr, CH (His)], 7.25–7.13 [m, 3 H, HAr (Phe)], 

7.00 [d, 2 H, J= 8 Hz, HAr (Phe)], 6.82 [s, 1 H, HAr, CH (His)], 6.39 [d, 1 H, J= 8 Hz, NH (Phe)], 

5.89 [s, 1 H, NH (Cha)], 4.88 [s, 1 H, NH (
A
Gly)], 4.65 [q, 1 H, J= 7.2 Hz, Hα (Phe)], 4.51 [q, 1 

H, J= 7.2 Hz, Hα (Cha)], 3.98–3.89 [m, 2 H, Hα (His) + NH (His)], 3.64 [s, 3 H, OCH3], 3.60 [s, 

3 H, NCH3], 3.10–3.01 [m, 1 H, Hβ (Phe)], 3.00–2.91 [m, 3 H, Hβ (His) + Hβ (Phe)], 2.17–2.09 

[m, 2 H, adamantane], 2.03–1.78 [m, 7 H, adamantane + Cha], 1.75–1.50 [m, 12 H, adamantane 

+ Cha], 1.38 [s, 9 H, C(CH3)], 1.27–1.01 [m, 4 H, Cha], 0.97–0.74 [m, 2 H, Cha]. 
13

C NMR (100 

MHz, CDCl3): δ/ppm = 176.7 ( ═O); 171.9 ( ═O); 171.5 ( ═O); 170.2 ( ═O); 155.8 ( ═O); 

137.9, 135.8, 129.1, 128.6, 127.6, 127.1, 77.2, 53.8, 52.5, 52.0, 51.7, 42.6, 42.4, 40.5, 40.3, 39.9, 

38.1, 37.9, 37.5, 35.2, 34.1, 33.7, 32.7, 32.0, 39.1, 28.3, 26.6, 26.4, 26.3, 26.1. ESI-MS: m/z = 

761.3 [M + H]
+
 (calcd m/z = 761.5). HRMS (ESI-TOF) m/z: [M + H]

+
 calcd for C42H61N6O7

+
 

761.4596, found 761.4575. 

 

Boc-L-(π-Me)-His-
A
Gly-D-Val-L-Phe-OMe (14). Peptide 14 was synthesized using standard 

Fmoc-coupling strategy. The crude product was purified by preparative HPLC (eluent: 

TBME/CH3OH 90:10) UV-detector λ = 254 nm, Emax = 2.56; refractometer; column l = 250 mm, 

d = 8 mm, LiChrosorb Diol (7 μm, Merck); retention time (14) = 4.20 min. 193 mg (0.27 mmol; 

91%) of 14 were isolated as colorless solid. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 7.38 [s, 1 H, 

HAr, CH (His)]; 7.31–7.20 [m, 3 H, HAr (Phe)]; 7.17–7.11 [m, 2 H, HAr (Phe)]; 7.00 [bs, 1 H, 

NH]; 6.83 [s, 1 H, HAr, CH (His)]; 6.35 [bs, 1 H, NH]; 6.27 [d, 1 H, J = 8.4 Hz, NH]; 5.31 [d, 1 

H, J = 6.4 Hz, NH]; 4.91–4.84 [m, 1 H, Hα]; 4.35 [dd, J1 = 8.0 Hz, J2 = 5.7 Hz, 1 H, Hα]; 4.32–

4.24 [m, 1 H, Hα]; 3.70 (s, 3 H, OCH3); 3.56 (s, 3 H, NCH3); 3.22–3.14 [m, 1 H, Hβ]; 3.05–2.95 

[m, 3 H, Hβ]; 2.23–1.55 (m, 14 H, adamantane); 2.16–2.08 [m, 1 H, Hβ]; 1.42 (s, 9 H, C(CH3)3); 

0.77 [d, 3 H, J = 6.8 Hz, Hγ (Val)]; 0.69 [d, 3 H, J = 6.8 Hz, Hγ (Val)]. 
13

C NMR (100 MHz, 

CDCl3): δ/ppm = 176.4 ( ═O); 171.7 ( ═O); 171.0 ( ═O); 169.7 ( ═O), 155.4 ( ═O); 138.2; 
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136.0; 129.1; 128.6; 128.4; 127.1; 80.2; 57.3; 54.2; 53.2; 52.4; 52.3; 42.7; 42.7; 40.0; 38.5; 38.1; 

38.1; 35.0; 31.5; 31.4; 29.1; 29.1; 28.3; 27.2; 19.3; 17.5. ESI-MS: m/z = 707.4 [M + H]
+
 (calcd 

m/z = 707.4); m/z = 729.3 [M + Na]
+
 (calcd m/z = 729.4); m/z = 1413.1 [2M + H]

+
 (calcd m/z = 

1413.8). HRMS (ESI-TOF) m/z: [M + H]
+
 calcd for C38H55N6O7

+
 707.4127, found 707.4140. IR 

(KBr):   /cm
–1

 = 3312; 2912; 1745; 1661; 1509; 1455; 1367; 1248; 1169. 

 

Boc-D-(π-Me)-His-
A
Gly-L-Val-L-Phe-OMe (15). Peptide 15 was synthesized using standard 

Fmoc-based SPPS strategy. ESI-MS: m/z = 707.4 [M + H]
+
 (calcd m/z = 707.4); m/z = 729.4 [M 

+ Na]
+
 (calcd m/z = 729.4); m/z = 1435.0 [2M + Na]

+
 (calcd m/z = 1435.8). 

 

Boc-D-(π-Me)-His-
A
Gly-D-Val-L-Phe-OMe (16). Peptide 16 was synthesized using standard 

Fmoc-based SPPS strategy. ESI-MS: m/z = 707.5 [M + H]
+
 (calcdm/z = 707.4); m/z = 729.4 [M 

+ Na]
+
 (calcd m/z = 729.4); m/z = 745.3 [M + K]

+
 (calcd m/z = 745.4); m/z = 1435.1 [2M + Na]

+
 

(calcd m/z = 1435.8). 

 

Boc-L-(π-Me)-His-L-Val-
A
Gly-L-Phe-OMe (17). Peptide 17 was synthesized using standard 

Fmoc-based SPPS strategy. ESI-MS: m/z = 707.4 [M + H]
+
 (calcd m/z = 707.4); m/z = 729.3 [M 

+ Na]
+
 (calcd m/z = 729.4); m/z = 1435.1 [2M + Na]

+
 (calcd m/z = 1435.8). 

 

Boc-L-(π-Me)-His-
A
Gly-L-Leu-L-Ala-OMe (18). Peptide 18 was synthesized using standard 

Fmoc-based SPPS strategy. ESI-MS: m/z = 645.4 [M + H]
+
 (calcd m/z = 645.4); m/z = 667.4 [M 

+ Na]
+
 (calcd m/z = 667.4). 

 

Boc-L-(π-Me)-His-
A
Gly-L-Leu-L-Val-OMe (19). Peptide 19 was synthesized using standard 

Fmoc-based SPPS strategy. ESI-MS: m/z = 673.4 [M + H]
+
 (calcd m/z = 673.4); m/z = 695.4 [M 

+ Na]
+
 (calcd m/z = 695.4). 
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Boc-L-(π-Me)-His-
A
Gly-L-Leu-L-Leu-OMe (20). Peptide 20 was synthesized using standard 

Fmoc-based SPPS strategy. ESI-MS: m/z = 687.4 [M + H]
+
 (calcd m/z = 687.4); m/z = 709.3 [M 

+ Na]
+
 (calcd m/z = 709.4); m/z = 1395.1 [2M + Na]

+
 (calcd m/z = 1395.9). 

 

Boc-L-(π-Me)-His-
A
Gly-L-Leu-L-Cha-OMe (21). Peptide 21 was synthesized using standard 

Fmoc-based SPPS strategy. ESI-MS: m/z = 727.5 [M + H]
+
 (calcd m/z = 727.5); m/z = 749.4 [M 

+ Na]
+
 (calcd m/z = 749.5); m/z = 1475.3 [2M + Na]

+
 (calcd m/z = 1475.9). 

 

4.2 Chiral-GC Properties and Characterization Data of the Alcohols  

trans-Cyclohexane-1,2-diol (1). Alcohol 1 is commercially available. The GC retention times 

and characterization of 1 can be found in the literature.
[60] 

 

trans-1-Acetoxycyclohexan-2-ol (2). The GC retention times, the availability, as well as the 

characterization of 2a can be found in the literature.
[60] 

 

trans-1,2-Diacetoxycyclohexane. Enantiomers of trans-1,2-diacetoxycyclohexane were 

separated by chiral GC employing a 30 m FS-Hydrodex β-6TBDM column (Macherey Nagel).  

T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. 

Conditions: 140 °C isothermal. Retention times: tR,1 = 8.2 min; tR,2 = 8.5 min. The analytical data 

were in accordance with the literature.
[112] 

 

2-Hydroxycyclohexyl isobutyrate (2b), 2-Hydroxycyclohexyl pivalate (2c), and 2-Hydroxy-

cyclohexyl benzoate (2d). The GC retention times, the proof of the GC retention time, as well as 

the characterization of 2b, 2c, and 2d can be found in the literature.
[66]
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tert-Butyl-2-hydroxycyclohexyl carbonate (2e). Enantiomers of the mono-tert-

butoxycarbonylated product 2e were separated by chiral GC employing a 30 m FS-Hydrodex β-

6TBDM column (Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. 

Precolumn pressure = 0.8 bar. Conditions: 100–250 °C, 2 °C/min. Retention times: tR,1 =  

27.6 min; tR,2 = 27.4 min. NMR data are in accordance with the literature.
[119]

 

 

cis-1-Acetoxycyclohexane-2-ol (22). The GC retention times, the availability, as well as the 

characterization of 22 can be found in the literature.
[65,67]

 

 

cis-1,2-Diacetoxycyclohexane. The GC retention time, the availability, as well as the 

characterization of diacetylated 22 can be found in the literature.
[65,67]

 

 

trans-2-Acetamidocyclohexane-1-ol (23). Enantiomers of alcohol 23 were separated by chiral 

GC employing a 30 m Chiraldex G-TA column (Astech). T (Injector + Detector) = 250 °C. 

Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 130–180 °C, 2 °C/min. 

Retention times: tR,1 = 25.0 min; tR,2 = 25.8 min. 

Racemic trans-2-amino-cyclohexan-1-ol hydrochloride (purchased and used without further 

purification) (0.904 g, 6.0 mmol) was treated with 0.3 M NaOH in ethanol (0.24 g in 20 mL) and 

stirred for 1 h at rt. Then the precipitate (NaCl) was filtered off. The ethanol was removed in 

vacuo, and the remaining solid was treated with 30 mL of CHCl3 for 10 min. The precipitate was 

again filtered off, and the removal of the solvent in vacuo gave 0.586 g (5.1 mmol) of trans-2-

amino-cyclohexan-1-ol as colorless powder. Analytical data of the trans-2-amino-cyclohexan-1-

ol were essentially identical to those reported in the literature.
[113]

 

Racemic trans-2-amino-cyclohexan-1-ol (0.691 g, 6.0 mmol) was treated with acetic anhydride 

(742 μL, 8 mmol) in the presence of DMAP (0.147 g, 1.2 mmol) in 25 mL of CHCl3, and the 

resulting solution was stirred for 8 h at rt (25 °C). CHCl3 was then removed in vacuo, and the 

monoacetylated product ((±)-23) was purified by silica flash gel chromatography (EtOAc/MeOH 

75:25, Rf (23) = 0.44). Isolated racemic (±)-23 (0.359 g, 2.3 mmol) was characterized and then 

subjected to the GC assay described above to prove the origin of the GC signals. Analytical data 

of the monoacetylated amino alcohol 23 were essentially identical to those reported in the 

literature.
[47,114]

 



Lipophilic Oligopeptides for Chemo- and Enantioselective Acyl Transfer Reactions 
 

116 

trans-1-Acetoxy-2-acetamidocyclohexane. Retention times: tR,1 = 19.5 min; tR,2 = 19.8 min. 

Analytical data of the diacetylated amino alcohol were essentially identical to those reported in 

literature.
[47,114]

 

 

1-Phenylethanol (24). Racemic 1-phenylethanol 24 was purchased and used without further 

purification. Enantiomers of alcohol 24 were separated by chiral GC employing a 30 m FS-

Hydrodex β-6TBDM column (Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow = 

80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 100–135 °C, 1 °C/min. Retention times: 

tR,1 = 18.6 min; tR,2 = 19.5 min. 

 

1-Phenyl-1-acetoxyethane. Retention times: tR,1 = 13.1 min; tR,2 = 14.7 min. The racemic 

acylated compound was purchased and used to prove the GC retention times. 

 

exo-Bicyclo[2.2.1]heptan-2-ol (exo-norborneol) (25). Racemic bicyclo[2.2.1]heptan-2-ol 25 

was purchased and used without further purification. Enantiomers of alcohol 25 were separated 

by chiral GC employing a 30 m FS-Hydrodex β-6TBDM column (Macherey Nagel). T (Injector 

+ Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 80–160 

°C, 2 °C/min. Retention times: tR,1 = 20.9 min; tR,2 = 21.3 min. 

 

exo-2-Acetoxybicyclo[2.2.1]heptanes. Enantiomers of the acetate of 25 were not separated by 

chiral GC under these conditions. Retention time: tR = 16.8. The product was not isolated; a 

mixture of monoacylated and diacylated product were synthesized via DMAP catalysis. The 

products were not separated because the GC signals could clearly be allocated. 

 

2-Hydroxycyclohexanone (26). 2-Hydroxycyclohexanone 26 was purchased as dimer (in 

solution the racemic monomer is formed) and used without further purification. Enantiomers of 

alcohol 26 were separated by chiral GC employing a 30 m FS-Hydrodex β-6TBDM column 

(Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure 

= 0.8 bar. Conditions: 80–160 °C, 2 °C/min. Retention times: tR,1 = 8.1 min; tR,2 = 8.4 min. 
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2-Acetoxycyclohexanone. The GC retention times as well as the characterization can be found 

in the literature.
[65]

 

2-Oxiranylmethanol (27). Racemic 2-oxiranylmethanol 27 was purchased and used without 

further purification. Enantiomers of alcohol 27 were separated by chiral GC employing a 30 m 

FS-Hydrodex γ-TBDAc column (Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow = 

80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 60 °C isothermal for 3 min; then  

60–100 °C, 2 °C/min. Retention times: tR,1 = 10.8 min; tR,2 = 10.9 min. 

 

2-Oxiranylmethyl acetate. Retention times: tR,1 = 17.1 min; tR,2 = 17.5 min. Analytical data and 

synthesis of the acetate were identical to those reported in the literature.
[115]

 

 

cis-Cyclohexane-1,2-diol (28). Alcohol 28 is commercially available. The GC retention time 

and characterization of 28 can be found in the literature.
[65,67]

 

 

trans-Octane-4,5-diol (29). Enantiomers of 29 were separated by chiral GC employing a 30 m 

FS-Hydrodex β-TBDAc column (Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow 

= 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 100 °C–160 °C, 2 °C/min. Retention 

times: tR,1 = 21.1 min; tR,2 = 21.4 min. Synthesis of the alcohol: To a mixture of 4-octene oxide 

(1 mmol, 126 mg) in toluene (100 μL), trifluoroacetic acid (1 mmol, 77 μL) was added. After 

stirring for 24 h at rt, water (2 mmol, 36 μL, 2.0 equiv) and DIPEA (5.3 mmol, 0.9 mL,  

5.3 equiv) were added, and the reaction mixture was stirred for additional 24 h. Chromatography 

on silica gel in EtOAc as mobile phase afforded diol (±)-29. Analytical data of the diol ((±)-29) 

were identical to those reported in the literature.
[116]

 

 

trans-4-Acetoxyoctane-5-ol. Retention times: tR,1 = 15.6 min; tR,2 = 16.2 min. Racemic trans-

octane-3,4-diol ((±)-29) (0.3 mmol) was treated with acetic anhydride (37 μL, 0.4 mmol) in the 

presence of DMAP (7.3 mg, 0.06 mmol) in 2 mL of dichloromethane, and the resulting solution 

was stirred for 3 h at rt (25 °C). Dichloromethane was then removed in vacuo, and the 

monoacylated product was purified by silica flash gel chromatography (EtOAc). Isolated 

racemic acetylated 29 was analytically characterized and then subjected to the GC assay 
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described above to prove the origin of the GC signals. Analytical data of the monoacylated 

product were identical to those reported in the literature.
[117]

 

 

trans-Cyclohexane-1,3-diol (30). Racemic trans-cyclohexane-1,3-diol 30 was purchased and 

used without further purification. Enantiomers of diol 30 were separated by chiral GC employing 

a 30 m FS-Hydrodex β-6TBDM column (Macherey Nagel). T (Injector + Detector) = 250 °C. 

Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 60 °C isothermal for 2 min; 

then 60–140 °C, 1 °C/min. Retention times: tR,1 = 53.5 min; tR,2 = 54.3 min. 

 

trans-3-Cyclohexane-1-ol. Retention times: tR,1 = 51.1 min; tR,2 = 51.9 min. trans-Diol 30  

(0.118 g, 1.0 mmol) was treated with acetic anhydride (95 μL, 1.0 mmol) in the presence of 

DMAP (0.019 g, 0.15 mmol) in 10 mL of DCM, and the resulting solution was stirred overnight 

at rt (25 °C). DCM was then removed in vacuo, and the monoacetylated product was purified by 

silica flash gel chromatography (EtOAc, Rf = 0.46). Isolated racemic monoacetylated 30  

(0.082 g, 0.7 mmol; 70%) was characterized and then subjected to the GC assay described above 

to prove the origin of the GC signals.
[118]

 Additionally 0.035 g of the diacylated diol (EtOAc, Rf 

= 0.63; 18 mmol; 18%) were obtained. The NMR data are in accordance with the literature.
[118]

 

 

[1,1′-Binaphthalene]-2,2'-diol (Binaphtol) (31).  acemic [1,1′-binaphthalene]-2,2′-diol 

(Binaphtol) (31) was purchased and used without further purification. Enantiomers of diol 31 

were separated by using HPLC employing a 25 cm, d = 0.46 cm Chiralpak IB column (Daicel). 

Eluent: Hexane/Isopropanol 95:5; flow = 1 mL/min; UV-detector λ = 254 nm. Retention times: 

tR,1 = 32.7 min; tR,2 = 35.0 min. 

 

2′-Hydroxy-[1,1′-binaphthalen]-2-yl acetate. Retention times: tR,1 = 14.1 min; tR,2 = 16.0 min. 

Monoacetylated 31 was not isolated; a mixture of monoacylated and diacylated product was 

synthesized via DMAP catalysis. The products were not separated because the HPLC-signals 

could clearly be allocated. 
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Octahydro-1,5,4-(epipropane[1,1,3]triyl)pentalene-2,8-diol (32). Racemic 32 was purchased 

from the University Lodz and used without further purification. Enantiomers of diol 32 were 

separated by chiral GC employing a 30 m FS-Hydrodex β-6TBDM column (Macherey Nagel). T 

(Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. 

Conditions: 180 °C isothermal. Retention times: tR,1 = 35.8 min; tR,2 = 37.9 min. 

8-Hydroxyoctahydro-1,5,4-(epipropane[1,1,3]triyl)pentalen-2-yl acetate. Retention times: 

tR,1 = 20.7 min; tR,2 = 21.4 min. Racemic diol 32 (0.089 g, 0.5 mmol) was treated with acetic 

anhydride (66 μL, 0.7 mmol) in the presence of DMAP (0.012 g, 0.1 mmol) in 20 mL of Et2O, 

and the resulting solution was stirred overnight at rt (25 °C). Et2O was then removed in vacuo, 

and the monoacetylated product was purified by silica flash gel chromatography (EtOAc, Rf = 

0.49). Isolated racemic monoacetylated product (0.051 g, 0.23 mmol; 46%) was characterized 

and then subjected to the GC assay described above to prove the origin of the GC signals. 
1
H 

NMR (600 MHz, CDCl3): δ/ppm = 4.71–4.68 [m, 1 H]; 4.68–4.65 [m, 1 H]; 2.81–2.76 [m, 1 H]; 

2.76–2.71 [m, 2 H]; 2.60–2.46 [m, 3 H]; 2.38–2.33 [m, 2 H]; 2.04 [s, 3 H, CH3]; 1.73 [d, 1 H, J = 

10.6 Hz]; 1.37 [bs, 1 H, OH]; 1.34 [d, 1 H, J = 11.0 Hz]. 
13

C NMR (150 MHz, CDCl3): δ/ppm = 

170.3 ( ═O); 74.5; 73.1; 48.9; 44.5; 44.1; 43.0; 42.1; 40.6; 38.8; 36.2; 34.9; 21.4. H  S ( I-

sector field) m/z: [M]
+
 calcd for C13H16O3

•+
 220.109, found 220.109. IR (KBr):   /cm

–1
 = 3320; 

2974; 2954; 2864; 1740; 1730; 1370; 1276; 1249; 1238; 1095; 1043. 

 

Octahydro-1H-2,4,1-(epiethane[1,1,2]triyl)cyclobuta[cd]pentalene-5,7-diyl diacetate. Re-

tention times: tR,1 = 17.0 min; tR,2 = 17.3 min. Racemic diol 32 (0.089 g, 0.5 mmol) was treated 

with acetic anhydride (66 μL, 0.7 mmol) in the presence of DMAP (0.012 g, 0.1 mmol) in 20 mL 

of Et2O, and the resulting solution was stirred overnight at rt (25 °C). Et2O was then removed in 

vacuo, and the diacetylated product was purified by silica flash gel chromatography (EtOAc, Rf  

= 0.58). Isolated racemic diacetylated 32 (0.020 g, 0.08 mmol; 16%) was characterized and then 

subjected to the GC assay described above to prove the origin of the GC signals. 
1
H NMR (600 

MHz, CDCl3): δ/ppm = 5.52 [s, 1 H]; 4.64 [t, 1 H, J = 3.9 Hz]; 2.79–2.74 [m, 1 H]; 2.68–2.64 

[m, 1 H]; 2.62–2.57 [m, 2 H]; 2.50–2.43 [m, 2 H]; 2.41–2.36 [m, 1 H]; 2.33–2.88 [m, 1 H]; 2.01 

[s, 3 H, CH3]; 1.92 [s, 3 H, CH3]; 1.65 [d, 1 H, J = 10.8 Hz]; 1.26 [d, 1 H, J = 10.7 Hz]. 
13

C 

NMR (150 MHz, CDCl3): δ/ppm = 170.8 ( ═O); 170.8 ( ═O); 77.3; 74.1; 46.3; 45.1; 44.3; 

43.0; 40.9; 39.5; 38.9; 36.4; 35.0; 21.5; 21.5. HRMS (EI-sector field) m/z: [M]
+
 calcd for 

C15H18O4
•+

 262.121, found 262.122. IR (KBr):   /cm
–1

 = 2973; 2867; 1740; 1377; 1363; 1275; 

1238; 1100; 1047; 1016. 
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Octahydro-1H-2,4,1-(epiethane[1,1,2]triyl)cyclobuta[cd]pentalene-5,7-diol (33). meso-33 

was purchased from the University Lodz and used without further purification. Achiral diol 33 

was separated from the other compounds of the reaction mixture using chiral GC employing a  

30 m FS-Hydrodex β-6TBDM column (Macherey Nagel). T (Injector + Detector) = 250 °C. 

Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 100–250 °C, 5 °C/min. 

Retention time: tR = 28.4 min. 

7-Hydroxyoctahydro-1H-2,4,1-(epiethane[1,1,2]triyl)cyclobuta[cd]pentalen-5-yl acetate. 

Enantiomers of the monoacetate of 33 were separated by chiral GC employing a 30 m FS-

Hydrodex β-6TBDM column (Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow = 

80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 140 °C isothermal for 55 min; then 140–

250 °C, 20 °C/min and then 250 °C for 5 min. Retention times: tR,1 = 58.9 min; tR,2 = 59.1 min. 

Preparation: meso-Diol 33 (0.089 g, 0.5 mmol) was treated with acetic anhydride (66 μL,  

0.7 mmol) in the presence of DMAP (0.012 g, 0.1 mmol) in 20 mL of Et2O, and the resulting 

solution was stirred overnight at rt (25 °C). Et2O was then removed in vacuo, and the 

monoacetylated product was purified by silica flash gel chromatography (EtOAc/hexane 1:1,  

Rf = 0.30). Isolated racemic monoacetylated 33 (0.099 g, 0.45 mmol; 90%) was characterized 

and then subjected to the GC assay described above to prove the origin of the GC signals. 
1
H 

NMR (400 MHz, CDCl3): δ/ppm = 4.89 [t, 1 H, J = 3.8 Hz]; 4.18 [d, 1 H, J = 12.4 Hz]; 3.76 [td, 

1 H, J1 = 12.4 Hz, J2 = 3.4 Hz]; 2.84–2.76 [m, 1 H]; 2.72–2.58 [m, 3 H]; 2.53–2.47 [m, 1 H]; 

2.45–2.33 [m, 3 H]; 2.11 [s, 3 H, CH3]; 1.69 [d, 1 H, J = 10.7 Hz]; 1.11 [d, 1 H, J = 10.8 Hz]. 
13

C 

NMR (100 MHz, CDCl3): δ/ppm = 169.3 ( ═O); 73.0; 72.0; 45.4; 43.0; 43.0; 42.5; 39.7; 39.2; 

38.1; 35.6; 34.3; 21.4. HRMS (EI-sector field) m/z: [M]
+
 calcd for C13H16O3

•+
 220.110, found 

220.110. IR (KBr):   /cm
–1

 = 3545; 2964; 2864; 1744; 1436; 1368; 1311; 1268; 1224; 1150; 

1098; 1077; 1038. 

 

7-Hydroxyoctahydro-1H-2,4,1-(epiethane[1,1,2]triyl)cyclobuta[cd]pentalen-5-yl diacetate. 

The achiral diacetate of 33 was separated from the other compounds of the reaction mixture 

using chiral GC employing a 30 m FS-Hydrodex β-6TBDM column (Macherey Nagel).  

T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. 

Conditions: 100–250 °C, 5 °C/min. Retention time: tR = 25.7 min. Preparation: meso-Diol 33 

(0.089 g, 0.5 mmol) was treated with acetic anhydride (66 μL, 0.7 mmol) in the presence of 

DMAP (0.012 g, 0.1 mmol) in 20 mL of Et2O, and the resulting solution was stirred overnight at 

rt (25 °C). Et2O was then removed in vacuo, and the diacetylated product was purified by silica 

flash gel chromatography (EtOAc/hexane 1:1, Rf = 0.41). Isolated diacetylated 33 (0.010 g,  

(0.04 mmol; 8%) was characterized and then subjected to the GC assay described above to prove 

the origin of the GC signals. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 4.58–4.53 [m, 2 H]; 2.82–



New Frontiers in Peptide Catalysis 
 

  121 

2.71 [m, 2 H]; 2.62–2.51 [m, 2 H]; 2.45 [s, 2 H]; 2.39–2.30 [m, 2 H]; 2.00 [s, 6 H, CH3]; 1.62 [d, 

1 H, J = 10.8 Hz]; 1.06 [d, 1 H, J = 10.8 Hz]. 
13

C NMR (100 MHz, CDCl3): δ/ppm = 171.1 

( ═O); 72.2; 43.0; 42.2; 39.2; 35.3; 34.1; 21.6. H  S ( I-sector field) m/z: [M]
+
 calcd for 

C15H18O4
•+

 262.121, found 262.124. IR (KBr):   /cm
–1

 = 2969; 2942; 2927; 2858; 1728; 1449; 

1438; 1374; 1366; 1305; 1269; 1245; 1165; 1095; 1076; 1067; 1053; 1017. 

 

1,4,4a,5,8,8a-Hexahydro-1,4-methanonaphthalene-5,8-diol (34). meso-34 was purchased from 

the University Lodz and used without further purification. Achiral diol 34 was separated from 

the other compounds of the reaction mixture using chiral GC employing a 30 m FS-Hydrodex β-

6TBDM column (Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. 

Precolumn pressure = 0.8 bar. Conditions: 100–250 °C, 5 °C/min. Retention time: tR = 23.1 min. 

 

8-Hydroxy-1,4,4a,5,8,8a-hexahydro-1,4-methanonaphthalen-5-yl acetate. Retention times: 

tR,1 = 22.5 min; tR,2 = 22.7 min. Preparation: meso-Diol 34 (0.089 g, 0.5 mmol) was treated with 

acetic anhydride (66 μL, 0.7 mmol) in the presence of DMAP (0.012 g, 0.1 mmol) in 20 mL of 

Et2O, and the resulting solution was stirred overnight at rt (25 °C). Et2O was then removed in 

vacuo, and the monoacetylated product was purified by silica flash gel chromatography 

(EtOAc/hexane 1:1, Rf = 0.29). Isolated racemic monoacetylated 34 (0.037 g, 0.18 mmol; 36%) 

was characterized and then subjected to the GC assay described above to prove the origin of the 

GC signals. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 5.88 [dd, 1 H, J1 = 5.5 Hz, J2 = 2.8 Hz]; 5.81 

[dd, 1 H, J1 = 5.5 Hz, J2 = 2.8 Hz]; 5.49–5.43 [m, 1 H]; 5.40–5.34 [m, 1 H]; 5.32–5.26 [m, 1 H]; 

4.52–4.43 [m, 1 H]; 3.09–2.98 [m, 2 H]; 2.89–2.80 [m, 2 H]; 2.12 [s, 3 H, CH3]; 1.90 [s, 1 H]; 

1.39–1.27 [m, 2 H]. 
13

C NMR (100 MHz, CDCl3): δ/ppm = 170.8 ( ═O); 135.6; 135.5; 132.1; 

126.9; 69.8; 66.5; 48.9; 45.7; 45.0; 41.8; 38.5; 21.1. HRMS (ESI-TOF) m/z: [M + Na]
+
 calcd for 

C13H16O3Na
+
 243.0992, found 243.0992. IR (KBr):   /cm

–1
 = 3451; 2972; 1739; 1669; 1373; 

1243; 1033. 

 

1,4,4a,5,8,8a-Hexahydro-1,4-methanonaphthalene-5,8-diyl diacetate. Retention time: tR = 

22.4 min. Preparation: meso-Diol 34 (0.089 g, 0.5 mmol) was treated with acetic anhydride  

(66 μL, 0.7 mmol) in the presence of DMAP (0.012 g, 0.1 mmol) in 20 mL of Et2O, and the 

resulting solution was stirred overnight at rt (25 °C). Et2O was then removed in vacuo, and the 

diacetylated product was purified by silica flash gel chromatography (EtOAc/hexane 1:1, Rf = 

0.49). Isolated diacetylated 34 (0.055 g, 0.21 mmol; 42%) was characterized and then subjected 
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to the GC assay described above to prove the origin of the GC signals. 
1
H NMR (400 MHz, 

CDCl3): δ/ppm = 5.86–5.82 [m, 2 H]; 5.44–5.34 [m, 4 H]; 3.11–3.02 [m, 2 H]; 2.88–2.82 [m, 2 

H]; 2.14 [s, 6 H, CH3]; 1.31 [q, 2 H, J = 8.7 Hz]. 
13

C NMR (100 MHz, CDCl3): δ/ppm = 170.6 

( ═O); 135.5; 128.0; 69.4; 48.4; 45.8; 38.0; 21.1. H  S ( I-sector field) m/z: [M]
+
 calcd for 

C15H18O4
•+

 262.121, found 262.122. IR (KBr):   /cm
–1

 = 2979; 2967; 2934; 2882; 1743; 1371; 

1304; 1244; 1227; 1366; 1248; 1169. 

 

Cyclopent-4-ene-1,3-diol (35). meso-Cyclopent-4-ene-1,3-diol 35 was purchased and used 

without further purification. Achiral diol 35 was separated from the other compounds of the 

reaction mixture using chiral GC employing a 30 m Chiraldex G-TA column (Astech).  

T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. 

Conditions: 100–180 °C, 2 °C/min. Retention times: tR = 13.0. 

 

4-Hydroxycyclopent-2-en-1-yl acetate. Retention times: tR,1 = 13.7 min; tR,2 = 14.2 min. 

Preparation: meso-Cyclopent-4-ene-1,3-diol 35 (0.150 g, 1.5 mmol) was treated with acetic 

anhydride (186 μL, 2 mmol) in the presence of DMAP (0.018 g, 0.15 mmol) in 20 mL of 

dichloromethane, and the resulting solution was stirred overnight at rt (25 °C). Dichloromethane 

was then removed in vacuo, and the monoacetylated product was purified by silica flash gel 

chromatography (EtOAc, Rf = 0.47). Isolated racemic monoacetylated 35 (0.160 g, 1.1 mmol) 

was characterized and then subjected to the GC assay described above to prove the origin of the 

GC signals. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 6.13–6.10 [m, 1 H]; 6.00–5.97 [m, 1 H]; 

5.52–5.47 [m, 1 H]; 4.75–4.70 [m, 1 H]; 2.81 [td, 1 H, J1 = 14.6 Hz, J2 = 7.3 Hz]; 2.20 [bs, 1 H, 

OH]; 2.06 [s, 3 H, CH3]; 1.66 [td, 1 H, J1 = 14.6 Hz, J2 = 3.9 Hz]. 
13

C NMR (100 MHz, CDCl3): 

δ/ppm = 170.8 ( ═O); 138.5; 132.5; 77.1; 74.8; 40.5; 21.2. I  (KBr):   /cm
–1

 = 3434; 3084; 

2941; 1723; 1403; 1375; 1244; 1189; 1103; 1034. Analytical data of monoacetylated 35 differ 

slightly from those reported in the literature.
[119]

 

 

Cyclopent-4-ene-1,3-diyl diacetate. Retention time: tR = 14.8. Preparation: meso-Cyclopent-4-

ene-1,3-diol 35 (0.150 g, 1.5 mmol) was treated with acetic anhydride (186 μL, 2 mmol) in the 

presence of DMAP (0.018 g, 0.15 mmol) in 20 mL of dichloromethane, and the resulting 

solution was stirred overnight at rt (25 °C). DCM was then removed in vacuo, and the 

diacetylated product was purified by silica flash gel chromatography (EtOAc, Rf = 0.58). The 

isolated diacetate of 35 (0.063 g, 0.3 mmol; 20%) was characterized and then subjected to the 
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GC assay described above to prove the origin of the GC signals. 
1
H NMR (400 MHz, CDCl3): 

δ/ppm = 6.09 [d, 2 H, J = 0.5 Hz]; 5.55 [ddd, 2 H, J1 = 7.4 Hz, J2 = 3.9 Hz, J3 = 0.7 Hz]; 2.88 

[td, 1 H, J1 = 15.0 Hz, J2 = 7.5 Hz], 2.06 [s, 6 H, CH3]; 1.74 [td, 1 H, J1 = 15.0 Hz, J2 = 3.8 Hz]. 
13

C NMR (100 MHz, CDCl3): δ/ppm = 170.6 ( ═O); 134.6; 76.6; 37.1; 21.1. H  S ( SI-TOF) 

m/z: [M + Na]
+
 calcd for C9H12O4Na

+
 207.0628, found 207.0624. IR (KBr):   /cm

–1
 = 2951; 

1737; 1435; 1366; 1329; 1233; 1194; 1076; 1020. 

 

(Tetrahydrofuran-2,5-diyl)dimethanol (36).
[83] 

meso-36 was prepared by the group of 

Christian Stark (University of Leipzig, now at the University of Hamburg, Germany) and used 

without further purification. Achiral diol 36 was separated from the other compounds of the 

reaction mixture using chiral GC employing a 30 m Chiraldex G-TA column (Astech).  

T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. 

Conditions: 100–180 °C, 2 °C/min. Retention time: tR = 23.9 min. 

 

(5-(Hydroxymethyl)tetrahydrofuran-2-yl)methyl acetate. Retention times: tR,1 = 22.3 min;  

tR,2 = 23.0 min. Preparation: meso-Diol 36 (0.066 g, 0.5 mmol) was treated with acetic 

anhydride (71 μL, 0.75 mmol) in the presence of DMAP (0.005 g, 0.0375 mmol) in 5 mL of 

DCM, and the resulting solution was stirred overnight at rt (25 °C). DCM was then removed in 

vacuo, and the monoacetylated product was purified by silica flash gel chromatography (EtOAc, 

Rf = 0.26). Isolated racemic monoacetylated 36 (0.053 g, 0.31 mmol; 62%) was characterized 

and then subjected to the GC assay described above to prove the origin of the GC signals. 
1
H 

NMR (400 MHz, CDCl3): δ/ppm = 4.20–4.00 [m, 4 H]; 3.72–3.63 [m, 1 H]; 3.49–3.39 [m, 1 H]; 

2.44 [bs, 1 H]; 2.04 [s, 3 H, CH3]; 2.01–1.73 [m, 3 H]; 1.71–1.60 [m, 1 H]. 
13

C NMR (100 MHz, 

CDCl3): δ/ppm = 171.2 ( ═O); 80.5; 77.3; 66.6; 64.5; 28.0; 26.7; 20.9. I  (KBr):   /cm
–1

 = 3461; 

2948; 1774; 1741; 1420; 1372; 1237; 1187; 1050. HRMS (ESI-TOF) m/z: [M + Na]
+
 calcd for 

C8H14O4Na
+
 197.0784, found 197.0784. 

 

(Tetrahydrofuran-2,5-diyl)bis(methylene) diacetate. Retention time: tR = 28.0 min. 

Preparation: meso-Diol 36 (0.066 g, 0.5 mmol) was treated with acetic anhydride (71 μL,  

0.75 mmol) in the presence of DMAP (0.005 g, 0.0375 mmol) in 5 mL of DCM, and the 

resulting solution was stirred overnight at rt (25 °C). DCM was then removed in vacuo, and the 

diacetylated product was purified by silica flash gel chromatography (EtOAc, Rf = 0.51). Isolated 

diacetylated 36 (0.012 g, 0.06 mmol; 12%) was characterized and then subjected to the GC assay 
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described above to prove the origin of the GC signals. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 

4.18–4.07 [m, 4 H]; 3.98–3.90 [m, 2 H]; 2.03 [s, 6 H, CH3]; 2.00–1.90 [m, 2 H]; 1.72–1.59 [m, 2 

H]. 
13

C NMR (100 MHz, CDCl3): δ/ppm = 171.0 ( ═O); 77.5; 66.5; 27.7; 20.9. H  S ( SI-

TOF) m/z: [M + Na]
+
 calcd for C10H16O5Na

+
 239.0890, found 239.0885. IR (KBr):   /cm

–1
 = 

2953; 2884; 1742; 1452; 1371; 1238; 1098; 1042. 

 

Substrate (37). The diol 37 was synthesized by Y. Landais.
[84]

 Enantiomers of diol 37 were 

separated by HPLC employing a 25 cm, d = 0.46 cm Chiralpak IC column (Daicel). Eluent: 

Hexane/Isopropanol 93:7; flow = 1 mL/min; UV-detector λ = 254 nm. Retention times: tR,1 = 

15.87 min; tR,2 = 17.48 min. 

 

Substrate (38). Retention times: tR,1 = 12.72 min; tR,2 = 21.29 min. 

 

Substrate (39). Retention times: tR,1 = 23.44 min; tR,2 = 37.84 min. 

 

Substrate (40). Retention times: tR,1 = 19.43 min; tR,2 = 29.25 min. 

The analytical data for 37 and 40 were in accordance with the literature.
[84]

 Preparation: 

Racemic diol 37 (0.043 g, 0.11 mmol) was treated with acetic anhydride (11.5 μL, 0.12 mmol) in 

the presence of DMAP (2.7 mg, 0.02 mmol) in 7 mL of DCM, and the resulting solution was 

stirred for 2 h at rt (25 °C). DCM was then removed in vacuo, and the monoacetylated products 

(±)-38, (±)-39 and the diacylated product 40 were purified by silica flash gel chromatography 

(EtOAc/hexane (1:1), Rf (38) and (39) = 0.2; Rf (40) = 0.3. Isolated racemic (±)-38 and (±)-39 

(0.026 mg, 0.06 mmol; 54%; colorless solid) and 40 (0.014 g, 0.03 mmol; 27%; colorless solid) 

were characterized and then subjected to the HPLC assay described above to prove the origin of 

the signals. NMR data for 38 and 39 are as follows. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 7.56–

7.50 [m, 2 H]; 7.33–7.26 [m, 3 H]; 6.38–6.25 [m, 2 H]; 5.50 [t, 1 H, J3 = 4.0 Hz]; 4.88–4.82 [m, 

1 H]; 4.64–4.56 [m, 1 H]; 4.23 [bs, 1 H]; 2.04 [s, 3 H]; 1.99 [s, 1 H]; 1.62 [q, 1 H, J3 =2.5 Hz]; 

1.41 [s, 9 H]; 0.42 [s, 3 H]; 0.40 [s, 3 H]. 
13

C NMR (50 MHz, CDCl3): δ/ppm = 169.6 ( ═O); 

155.1 ( ═O); 137.1; 134.2; 134.0; 129.3: 127.4; 82.1; 75.0; 73.6; 68.6; 54.8; 38.6; 28.2; 21.0; 

−2.9; −3.7. 
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4.3 Procedure for the Competitive Catalytic Run with Alcohols 1, 41, 42, and 43  

The conditions for the kinetic resolutions for the competitive catalytic runs are given exemplary 

by the following experimental protocol. Catalyst 12b (1.9 mg, 0.0025 mmol) was dissolved in 

500 μL of dry toluene. 100 μL of this catalyst solution (0.0005 mmol, 2 mol%) were added to a 

clear solution of the alcohols 1, 41, 42, and 43 (0.025 mmol of each alcohol) in 4.65 mL of dry 

toluene. The reaction mixture was cooled to 0 °C, and 25 μL (0.1325 mmol, 5.3 equiv of acetic 

anhydride) of a solution of 100 μL of acetic anhydride in 100 μL of toluene (cooled to 0 °C) 

were then added with an Eppendorf pipette and allowed to stir at 0 °C. After the reaction, the 

reaction mixture was quenched with methanol and directly analyzed by GC and/or chiral GC 

analysis. The same conditions were used for the competitive catalytic run with DMAP  

(0.0025 mmol) as catalyst (for the chromatograms, see the Supporting Information). All signals 

were detected by GC-FID employing a 30 m 5890_V UP5 (Machery Nagel). T (Injector + 

Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 60 °C–

250 °C, 15 °C/min. Retention times: 1 tR = 6.69 min; 41 R= 6.33 min; 42 tR = 1.44 min; 43 tR = 

4.09 min; 2 tR = 8.57 min; 44 tR = 8.02 min; 45 tR = 2.21 min; 46 tR = 2.37 (chromatograms for 

the 12b-catalyzed run can be found in the Supporting Information). 

 

(3a,7a)-Hexahydrobenzo-1,3-dioxo-2-one (47).
[108]

 Enantiomers of the cyclic carbonate 47 

were separated by chiral GC employing a 30 m FS-Hydrodex β-6TBDM column (Macherey 

Nagel). T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. 

Conditions: 100–250 °C, 2 °C/min. Retention times: tR,1 = 29.5 min; tR,2 = 29.7 min. 

Preparation: trans-Diol 1 (0.50 g, 4.3 mmol) was treated with Boc2O (2.94 mL, 12.9 mmol) in 

the presence of DMAP (0.52 g, 4.3 mmol) in 10 mL of dry acetonitrile, and the resulting solution 

was stirred overnight at rt (25 °C). Acetonitrile was then removed in vacuo, and the O,O-di-tert-

butoxylated product ((±)-48) and the cyclic carbonate ((±)-47) were purified by silica flash gel 

chromatography (hexane/EtOAc (3:1), Rf (48) = 0.52; Rf (47) = 0.26). Isolated racemic (±)-47 

(0.421 g, 3.0 mmol) and (±)-48 (0.145 mg, 0.46 mmol) were characterized and then subjected to 

the GC assay to prove the origin of the GC signals. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 3.96 

[m, 2 H], 2.19 [m, 2 H], 1.92–1.80 [m, 2 H], 1.69–1.55 [m, 2 H], 1.42–1.29 [m, 2 H]. 
13

C NMR 

(100 MHz, CDCl3): δ/ppm = 155.1 ( ═O), 83.5, 28.2, 23.2 

 

tert-Butylcyclohexane-1,2-diyl dicarbonate (48). Enantiomers of the di-tert-butoxy-

carbonylated product 48 were not separated by chiral GC employing a 30 m FS-Hydrodex β-

6TBDM column (Macherey Nagel). T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. 
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Precolumn pressure = 0.8 bar. Conditions: 100–250 °C, 2 °C/min. Retention time: tR,1 =  

39.6 min. Preparation using DMAP as catalyst: trans-Diol 1 (0.58 g, 5.0 mmol) was treated with 

Boc2O (1.26 mL, 5.5 mmol) in the presence of DMAP (0.182 g, 1.5 mmol) in 100 mL of dry 

toluene, and the resulting solution was stirred overnight at rt (25 °C). Toluene was then removed 

in vacuo, and the O-tert-butoxylated product ((±)-2e), the O,O-di-tert-butoxylated product  

((±)-48) and the cyclic carbonate ((±)-47) were purified by silica flash gel chromatography 

(DCM/MeOH (19:1), Rf (48) = 0.81; Rf (47) = 0.71; Rf (2e) = 0.62). Isolated racemic (±)-2e 

(0.842 g, 3.9 mmol, 78%) and (±)-48 (0.126 mg, 0.4 mmol, 8%) were characterized and then 

subjected to the GC assay described to prove the origin of the GC signals. (±)-87 could just be 

isolated in traces and was therefore synthesized using different reaction conditions. The NMR 

data for (±)-2e and (±)-48 are in accordance with the literature.
[108]

 Preparation using  

N-methylimidazole as catalyst: trans-Diol 1 (0.58 g, 5.0 mmol) was treated with Boc2O  

(1.26 mL, 5.5 mmol) in the presence of N-methylimidazole (123.2 μL, 1.5 mmol) in 100 mL of 

dry toluene, and the resulting solution was stirred overnight at rt (25 °C). Toluene was then 

removed in vacuo, and the O-tert-butoxylated product ((±)-2e), the O,O-di-tert-butoxylated 

product ((±)-48) and the cyclic carbonate ((±)-3) were purified by silica flash gel 

chromatography (DCM/MeOH (19:1), Rf (48) = 0.81; Rf (47) = 0.71; Rf (2e) = 0.62). Isolated 

racemic (±)-2e (0.821 g, 3.8 mmol, 76%) and (±)-48 (0.94 g, 0.3 mmol, 6%) were characterized 

and then subjected to the GC assay described to prove the origin of the GC signals. (±)-47 could 

just be isolated in traces and was therefore synthesized using different reaction conditions. The 

NMR data for (±)-2e and (±)-48 are in accordance to the literature.
[108]

 

 

4.4 Description of the Preparative Kinetic Resolution Experiment of (±)-1 with 

Boc2O  

Catalyst 12b (38 mg, 0.05 mmol, 5 mol %) and diol (±)-1 (116.2 mg, 1 mmol) were dissolved in 

160 mL of dry toluene. 0.46 mL (2.0 mmol, 2.0 equiv) of Boc2O was added and then allowed to 

stir for 48 h at rt. The reaction mixture was quenched with 10 mL of methanol and then filtered 

using 40 g silica gel suspended with DCM to remove the catalyst. The solvent was removed 

under reduced pressure. The crude product was directly purified via silica gel column 

chromatography (DCM/methanol (19:1)). 104.2 mg (0.48 mmol, 48.1%) of 2e (Rf = 0.62) and 

52.1 mg (0.45 mmol, 44%) of 1 (Rf = 0.71) were isolated and directly characterized by chiral GC 

and NMR. 
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General Procedure: Enantioselective Boc-Protection of rac-1. 2.9 mg (0,025 mmol) of rac-1 

were dissolved in 4.45 mL of dry toluene. 1, 2, 5, or 10 mol % (0.38 mg, 0.76 mg, 1.9 mg or  

3.8 mg) of 12b and 5.74, 11.49, 28.88, or 54.7 μL (0.025 mmol, 0.05 mmol, 0.1325 or  

0.25 mmol) of Boc2O were added, and the mixture was stirred at rt. The conversion and ee were 

determined by chiral GC. A stock solution was prepared: 4 mg 12b in 800 μL of dry toluene. 

trans-2-Hydroxycyclohexyl-4-nitrobenzenesulfonate (53). Enantiomers of the sulfonylated 

diol 53 were separated by using HPLC employing a 25 cm, d = 0.46 cm Chiralpak IB column 

(Daicel). Eluent: Hexane/Isopropanol 90:10; flow = 0.7 mL/min; UV-detector λ = 254 nm. 

Retention times: tR,1 = 27.8 min; tR,2 = 31.9 min. 

 

4.5 Sulfonylation of rac-1 Using 12b as Catalyst  

116.2 mg (1.0 mmol) of rac-1, 2 mol % (15.2 mg) of 12b, and 288 mg of 4-nitrobenzenesufonyl 

chloride were dissolved in 5 mL of dry DCM, and 2 mL of a saturated NaHCO3 solution was 

added. The two-phase system was stirred for 24 h. The products were purified via flash 

chromatography eluting with ethyl acetate/pentane (3: 1). 42 mg (0.13 mmol, 14%) of 53 (Rf = 

0.52) and 39 mg (0.08 mmol, 8%) of disulfonylated diol (Rf = 0.61) were isolated as yellowish 

solids. The enantiomeric excess of 1 was determined by chiral GC. 
1
H NMR (400 MHz, CDCl3): 

δ/ppm = 8.33 [d, J = 12 Hz, 2 H], 8.08 [d, J = 12 Hz, 2 H], 4.36 [m, 1 H], 3.52 [m, 1 H], 1.99 [t, 

J = 12 Hz, 2 H], 1.85 [s, 2 H], 1.65 [ m, 2 H], 1.43 [m, 1 H], 1.31–1.11 [m, 3 H]. 
13

C NMR (100 

MHz, CDCl3): δ/ppm = 150.3, 142.9, 129.1, 124.4, 87.9, 72.0, 32.6, 31.2, 24.0, 23.3. IR (KBr): 

 /cm
–1

 = 3538, 2939,1609, 1534, 1351, 1185, 1095, 1076, 981, 926. HRMS (ESI-TOF) m/z: [M 

+ Na]
+
 calcd for C12H15NO6SNa

+
 324.0512, found 324.0513. 

 

trans-Cyclohexane-1,2-diyl bis(4-nitrobenzenesulfonate). 
1
H NMR (400 MHz, CDCl3): δ/ppm 

= 8.29 [d, J = 8 Hz, 4 H], 7.98 [d, J = 8 Hz, 4 H], 4.48 [m, 2 H], 2.04–1.94 [m, 2 H], 1.62–1.55 

[m, 2 H], 1.52–1.38 [m, 2 H], 1.28–1.12 [m, 2 H]
. 13

C NMR (100 MHz, CDCl3): δ/ppm = 150.8, 

142.4, 129.1, 124.5, 81.3, 31.0, 22.6. IR (KBr):  /cm
–1

 = 2950, 1610, 1538, 1351, 1186, 1094, 

977, 919. HRMS (ESI-TOF) m/z: [M + Na]
+
 calcd for C18H18N2O10S2Na

+
 509.0295, found 

509.0300. 
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4.6 Sulfonylation Test Reactions  

11.6 mg (0,1 mmol) of rac-1 was dissolved in 4.5 mL of dry toluene. 5 mol% (3.8 mg) of 12b, 

12.8 μL (0.11 mmol) of 2,6-lutidine and 20.96 mg (0.11 mmol) of tosyl-chloride/21.1 mg  

(0.11 mmol) of 4-chlorobenzenesulfonyl chloride/18.2 μL (0.11 mmol) of trifluoromethane-

sulfonic anhydride were added and allowed to stir for 24 h. The conversion was determined by 

TLC using EtOAc/hexane as eluent. 

trans-2-Hydroxycyclohexyl diphenyl phosphate (54-Ph). Enantiomers of 54-Ph were 

separated by chiral GC employing a 30 m FS-Hydrodex β-6TBDM column (Macherey Nagel).  

T (Injector + Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. 

Conditions: 140 °C isotherm 13 min; 140–250 °C, 2 °C/min; 250 °C isotherm 15 min. Retention 

times: tR,1 = 37.5 min; tR,2 = 37.9 min (54-Ph); tR,1 = 10.4 min; tR,2 = 10.9 min (1). Preparation 

using DMAP as catalyst: 580 mg (5 mmol) of rac-1, 0.826 mL (5 mmol) of Et3N and 183 mg 

(1.5 mmol) of DMAP were dissolved in dry toluene. 1.035 mL (5 mmol) of 

diphenylchlorophosphate were added, and the mixture was stirred for 12 h at rt. The solvent was 

removed under reduced pressure, and the crude mixture was purified via silica gel 

chromatography utilizing ethylacetate/hexane (3:2) as eluent. 578 mg (1.6 mmol, 33.2%; Rf = 

0.35) of a colorless solid were isolated. Preparation using 12b as catalyst: The same reaction 

was accomplished with 3 mmol of rac-1 using 22 mg (0.03 mmol) of 12b as catalyst. The 

reaction was stopped at a conversion of 50%. The crude product was purified by preparative 

HPLC (eluent: TBME/Hexane 60:40) UV-detector λ = 254 nm, Emax = 2.56; refractometer; 

column l = 250 mm, d = 8 mm, LiChrosorb Diol (7 μm, Merck); 417 mg (1.2 mmol) of a 

colorless solid were isolated. The product seems to be sensitive toward acids. 
1
H NMR (400 

MHz, CDCl3): δ/ppm = 7.41–7.31 [m, 4 H, HAr (Phe], 7.29–7.17 [m, 6 H, HAr (Phe], 4.34 [m, 1 

H, Hα (OP(OPh)2) ], 3.61 [m, 1 H, Hα (OH)], 2.95 [s, 1 H, OH], 2.17–2.09 [m, 1 H], 2.08–2.00 

[m, 1 H], 1.77–1.64 [s, 2 H], 1.49–1.40 [m, 1 H], 1.36–1.19 [m, 3 H]. 
13

C NMR (100 MHz, 

CDCl3): δ/ppm = 150.6, 129.8, 125.5, 120.1, 85.3, 73.3, 32.4, 31.2, 23.9, 23.5. IR (KBr):  /cm
–1

 

= 3471.6, 2936.6, 1589.0, 1489.5, 1265.4, 1186.9, 1086.4, 1018.2, 955.4, 774.0. HRMS (ESI-

TOF) m/z: [M + Na]
+
 calcd for C18H21O5PNa

+
 371.1025, found 371.1019. 

 

trans-2-Hydroxycyclohexyl diethyl phosphate (54-Et). Enantiomers of 54-Et were separated 

by chiral GC employing a 30 m FS-Hydrodex β-6TBDM column (Macherey Nagel). T (Injector 

+ Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 140 °C 

isotherm 13 min; 140–250 ° , 2 ° /min → 250 °  isotherm 15 min. Retention times: tR,1 =  

28.4 min; tR,2 = 28.9 min (54-Ph); tR,1 = 10.4 min; tR,2 = 10.9 min (1). Preparation using DMAP 

as catalyst: 290 mg (2.5 mmol) of rac-1, 0.35 mL (2.5 mmol) of DIPEA and 91.6 mg  
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(0.75 mmol) of DMAP were dissolved in dry toluene. 0.36 mL (2.55 mmol) of 

diethylchlorophosphate were added, and the mixture was stirred for 12 h at rt. The solvent was 

removed under reduced pressure, and the crude mixture was purified via Al2O3 gel 

chromatography utilizing acetonitrile as eluent. 425 mg (1.6 mmol, 67%; Rf = 0.49) of a 

colorless liquid were isolated. 
1
H NMR (400 MHz, CDCl3): δ/ppm = 4.13–4.01 [q, 4 H, J = 6.8 

Hz, O–CH2–R], 4.00–3.96 [m, 1 H, Hα (OP(OEt)2)], 3.63 [s, 1 H, OH], 3.53–3.47 [m, 1 H, Hα 

(OH)], 2.14–1.91 [m, 2 H], 1.70–1.58 [m, 2 H], 1.40–1.12 [m, 4 H], 1.32–1.27 [t, 6 H, J = 7.0 

Hz, CH3]. 
13

C NMR (100 MHz, CDCl3): δ/ppm = 83.2, 73.5, 64.1, 32.9 31.7, 24.0, 23.6, 16.1. IR 

(Film):  /cm
–1

 = 3404.3, 2938.6, 1453.1, 1258.4, 1028.0. HRMS (ESI-TOF) m/z: [M + Na]
+
 

calcd for C10H21O5PNa
+
 275.1022, found 275.1019. 

 

4.7 Competition Experiment with Different Electrophiles  

2.9 mg (0.025 mmol) of trans-cyclohexane-1,2-diol 1, 13.5 μL (0.1325 mmol) of Ac2O, 27 mg 

(0.1325 mmol) of 4-nitrobenzenesulfonyl chloride, 19 μL (0.1325 mmol) of POCl(OEt)2, and  

80 mg (0.58 mmol) of K2CO3 were dissolved in 4.5 mL of abs. toluene, and the mixture was 

cooled to 0 °C. 2 mol % of peptide 1 was added, and the reaction was monitored via GC and 

TLC (the sulfonylated product cannot be detected via GC) and chiral GC. For reasons of 

comparability, the same reaction was performed with 2 mol% of DMAP as catalyst. All signals 

were detected by GC-FID employing a 30 m 5890_V UP5 (Machery Nagel). T (Injector + 

Detector) = 250 °C. Splitflow = 80 mL/min. Precolumn pressure = 0.8 bar. Conditions: 100 °C–

250 °C, 15 °C/min. Retention times: 54-Ph and 54-Et were not detected; trans-cyclohexane-1,2-

diol 1 tR = 6.9 min; Acylated product 2 tR = 8.8 min; POCl(OEt)2 tR = 6.7 min; POCl(OPh)2  

tR = 15.2 min; DMAP tR = 9.5 min. TLC: EtOAc = eluent (Rac-1 Rf = 0.15 n.f.; 53 Rf = 0.6 f.; 

54-Ph Rf = 0.5 f.; 54-Et Rf = 0.3 n.f.; 2 Rf = 0.6 n.f.; POCl(OPh)2 Rf = 0.7 f.; SO2ClPh-p-NO2  

Rf = 0.65 f.) f. = shows fluorescence; n.f. = shows no fluorescence. The spots were first detected 

under UV light and then by phosphomolybdic acid. The GC retention times and characterization 

of 1 can be found in the literature.
[60]
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En Route to Multicatalysis: Kinetic Resolution of trans-

Cycloalkane-1,2-diols via Oxidative Esterification 
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Abstract 

We demonstrate the application of a multicatalyst to the oxidation of a broad variety of 

aldehydes and subsequent enantioselective esterification of the incipient acids with (±)-trans-

cycloalkane-1,2-diols. This reaction operates well with a multicatalyst bearing two independent 

catalytic moieties that provide monoprotected 1,2-diols in one pot. 

 

 

 

 

 

 

"Reproduced from Chemical Communications 2014, 50, 1221–1223 with permission from The 

Royal Society of Chemistry." 
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Multicatalysts carry distinct catalytic moieties on a backbone that allows modular synthesis, for 

instance, an oligopeptide. The combination of several catalytic moieties provides reactivity and 

operational simplicity not attainable with multiple single catalysts, and complex molecules can 

be prepared from simple starting materials with high efficiency.
[1]

 The obvious challenges with 

this concept are the mutual compatibility of the catalytic moieties and the versatility as well as 

generality of a multicatalyst, for instance, in changing a particular reaction order. Based on the 

concept of retrocatalysis
[1]

 we designed peptide catalyst A (Scheme 1) as a multicatalyst, and it 

has previously been applied as an efficient multicatalyst for the one-pot desymmetrization of cis-

cycloalkane-1,2-diols (e.g., meso-1b) and oxidation of the configurationally unstable mono-

acetate (R,S)-2.
[2]

 Therefore, we envisioned A also to be a promising catalyst for a reverse 

reaction sequence, for instance, the oxidation of aldehydes followed by an enantioselective 

esterification (Scheme 1). 

 

 

Scheme 1. Versatility of multicatalyst A.  

One-pot oxidative esterifications of aldehydes have become a conceptually and economically 

attractive alternative to traditional ester synthesis.
[3]

 Thus, there are several examples for 

oxidative esterifications of aldehydes activated by transition-metal catalysts
[4]

 or N-heterocyclic 

carbenes.
[5]

 Recently, Szpilman et al. reported an efficient TEMPO
[6]

 (B) catalyzed oxidation of 

aldehydes activated with carboxylic acid 7e (Table 1) to yield mixed anhydrides that can be 

converted to esters in situ.
[7]

 We envisaged redesigning this oxidative esterification protocol as 

an application for multicatalyst A. Before using A we first elaborated the single-step reactions 

with B and oligopeptide C
[8]

 to determine the feasibility of the individual reactions and for 

optimization as well as comparison with existing procedures. 
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Recently, we have shown that oligopeptide catalysts
[9]

 bearing an N-π-methyl histidine moiety 

(e.g., C) very efficiently transfer acyl groups enantioselectively onto trans- and cis-cycloalkane-

1,2-diols.
[10]

 Peptide catalyst C also led to the first realization of an enantioselective Steglich 

esterification.
[11]

 Using an aldehyde instead of the acid is advantageous because aldehydes are 

typically more soluble in organic solvents, easier to purify, more reactive and therefore a more 

practical intermediate in multistep syntheses. 

We optimized the reaction conditions for the enantioselective oxidative esterification with 

propanal (4a) and tested various acids (7a–f) as activators for 4a (Table 1). Toluene has proven 

to be the best solvent for the kinetic resolution of diols with C and therefore we also used it for 

the oxidation step.
[8]

 Complete conversion of 4 was achieved using a stoichiometric amount of 

pyridine, 1.1 equiv. of 4-nitrobenzoic acid 7a, 5 mol% B and 1.05 equiv. of the oxidant,  

t-BuOCl, at a concentration of 1 M in toluene after 1 h. An excess of pyridine or catalytic 

 

Table 1. Screening of various acids (7a–f) under optimized reaction conditions. 

 

   ee (%)  

R  C
a
 (%) 1 6 S

b 

7a p-NO2C6H4 49 81 86 33 

7b 2-CH3-6-NO2C6H3 38 48 78 13 

7c 2,4,6-(Cl)3C6H2 28 29 73 9 

7d 2,4,6-(CH3)3C6H2 27 28 78 11 

7e C(CH3)3 23 27 90 25 

7f 1-Adamantyl 12 12 92 27 
a
 Conversion of rac-1b determined by chiral GC after 24 h reaction time for esterification, 0.1 mmol 4a. 

b
 S = 

selectivity factor.
[15]
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amounts of the acid accelerated the background reaction and resulted in lower enantio-

selectivities. The esterification requires relatively high dilution
[8,12]

 (0.005 M) to achieve high 

enantioselectivities for 1b and 6b. 

Under optimized reaction conditions 7a and 7b provided the highest conversions of rac-1b 

within 24 h. The best enantioselectivities were achieved with acid 7a. Acids 7e and 7f with 

higher pKa values
[13]

 showed lower conversion. To identify the ratios of the mixed and 

symmetric anhydrides of 4a and 7a formed during the reaction, NMR studies were 

undertaken.
[14]

 The anhydrides formed in a ratio of approximately 3 : 1 : 1 of mixed anhydride 

relative to the symmetric anhydrides of 4a and 7a. Further investigations are necessary to 

determine which of the formed anhydrides is transferred faster onto the acylation moiety. 

 

Table 2. Kinetic resolution of trans-cycloalkane-1,2-diols 1a–1d. 

 

   ee (%)  

R n C
a
 (yield 1, 6) (%) 1 6 S

b 

1a 1 70 (n.d., n.d.) 76 31 4 

1b 2 47 (46, 43) 81 88 39 

1c 3 49 (48, 43) 86 88 43 

1d 4 50 (39, 47) 94 93 >50 

a
 Conversion determined by chiral GC and HPLC, 1.0 mmol 4a. 

b
 S = selectivity factors,

[15]
 n.d. = not 

determined. 

 

To expand the substrate scope we tested various trans-cycloalkane-1,2-diols 1 in the kinetic 

resolution with 1 equiv. of acyl source affording the corresponding hydroxy ester with high 

enantioselectivities and good yields (Table 2). The selectivities depend on the ring size of the 

substrate, with trans-cyclooctane-1,2-diol (1d) showing the highest and trans-cyclopentane-1,2-

diol (1a) the lowest selectivities.
[8]
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Various aldehydes were employed to probe the generality and utility of this oxidative 

esterification protocol. To determine the time for full conversion of the aldehyde, we followed 

the conversion by N   (see  SI† for details). Owing to the low solubility of 7a in the reaction 

mixture, we used 7c for the NMR investigations, assuming that the time for full conversion of 4 

with 7c and 7a are similar (Table 1). Sterically hindered aldehydes require longer reaction times: 

for 4a the oxidation was completed in 1 h, while isopentanal (4c) required 9 h and isobutanal 

(4d) 18 h. Aromatic aldehydes proved to be more reactive than aliphatic ones. However, 

benzaldehyde showed insufficient conversion under these conditions; this is due to the increased 

stability of the anhydride intermediate that we had prepared separately and which does not react 

under our standard conditions. 

 
Table 3. Enantioselective oxidative esterification of rac-1b using various aldehydes 4b–i. 

 

    ee (%)  

Aldehyde  t
a
 (h) C

b
 (yield 1b, 9) (%) 1b 9 S

c 

4b Decanal 1/24 47 (48, 42) 79 88 38 

4c Isopentanal 9/24 48 (43, 46) 76 82 24 

4d Isobutanal 18/6
d 

44 (43, 40) 72 90 40 

4e Cyclohexanal 18/18
d 

46 (37, 35) 52 62 7 

4f Pivaldehyde 24/48
d
 4 (n.d., n.d.) 4 92 25 

4g Ph(CH2)2CHO 0.5/6
d,e

 50 (44, 44) 85 82 27 

4h PhCH2CHO 0.5/6
d,e

 35 (58, 27) 50 93 47 

4i PhCHO 18/48
d,e

 7 (n.d., n.d.) 6 78 9 

a
 Reaction time for oxidation and esterification. 

b
 Conversion determined by chiral GC and HPLC, 1.0 mmol 4. 

c
 S 

= selectivity factors.
[15]

 
d
 2 equiv. of generated anhydride. 

e
 Concentration for oxidation was 0.1 M. n.d. = not 

determined. 

 

After having determined the time for full conversion, aromatic and aliphatic aldehydes were 

oxidized to their corresponding mixed anhydrides and tested in the kinetic resolution of rac-1b. 
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Aldehydes 4b–d, g, and h afforded high enantioselectivities and good yields. Cyclohexanal 4e 

gave lower selectivities while pivaldehyde (4f) showed insufficient conversion due to the 

increased steric hindrance (Table 3). 

With these promising results in hand, our attention turned to the multicatalyst approach. We used 

5 mol% of multicatalyst A instead of individual catalysts B and C and applied it to the 

enantioselective oxidative esterification of 4a (Scheme 2). To keep the catalyst deprotonated at 

all times it is necessary to use an excess (4 equiv.) of DiPEA in the esterification step. We 

obtained 43% of 1b and 41% of 6b with good enantioselectivities (73% ee, for both 1b and 6b, 

respectively; S = 14) with A. Thus, the enantioselectivities as compared to the individual 

catalysts B and C are only slightly lower, and we consider this a proof-of-principle for our 

multicatalyst concept. 

 

 

Scheme 2. Kinetic resolution of rac-1b with multicatalyst A. 

We have shown that a variety of aldehydes can be activated by 4-nitrobenzoic acid and oxidized 

with TEMPO to furnish mixed anhydrides that can be enantioselectively transferred onto trans-

cycloalkane-1,2-diols with good yields and enantioselectivities with catalyst C. The protocol 

with individual catalysts can be unified with multicatalyst A
[2]

 that was designed utilizing the 

retrocatalysis concept,
[1]

 with only slightly reduced enantioselectivities. A natural extension of 

this work would be the use of alcohols as the starting materials as this would constitute direct 

alcohol cross-coupling. 

 

We thank Dr. H. Hausmann for NMR investigations, Dr. E. Röcker for competent analytical 

support and Dr. G. Jakab for helpful discussions. 
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Abstract 

A multicatalytic three-step reaction consisting of epoxidation, hydrolysis, and enantioselective 

monoacylation of cyclohexene was studied by using mass spectrometry (MS). The reaction 

sequence was carried out in a one-pot reaction using a multicatalyst. All reaction steps were 

thoroughly analyzed by electrospray ionization (ESI) MS (and MS/MS), as well as high-

resolution MS for structure elucidation. These studies allow us to shed light on the individual 

mode of action of each catalytic moiety. Thus, we find that under the epoxidation conditions, the 

catalytically active N-methyl imidazole for the terminal acylation step is partially deactivated 

through oxidation. This observation helps to explain the lower efficiency of the catalyst in the 

last step compared to the monoacylation performed separately. All reactive intermediates and 

products of the reaction sequence, as well as of the side-reactions, were monitored, and we 

present a working mechanism of the reaction. 

 

 

 

"Reproduced with permission from Chemistry – A European Journal 2015, 21, 16203–16208. 

Copyright 2015 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim." 
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1. Introduction 

Various synthetic methods have been developed utilizing small organic molecules as 

organocatalysts.
[1]

 One especially intriguing development has been the use of cascade or tandem 

reactions,
[2]

 in which several reactions are subsequently carried out in one pot. These types of 

reactions promise higher efficiency while minimizing resource and energy requirements. Typical 

cascade or tandem reactions combine the reactants from the beginning,
[2]

 often giving rise to a 

broad variety of side-reactions. An alternative concept for cascade reactions is a catalyst bearing 

multiple catalytic moieties, separated by a spacer molecule, a so-called multicatalyst.
[2l,3]

 This 

methodology is reminiscent of an assembly line, in which a complex molecule is consecutively 

assembled from simple starting materials in a manner that at the correct time each catalytic 

moiety is selectively activated.
[3]

 

The elucidation of reaction mechanisms of such complex reactions is rather challenging, because 

many intermediates are short-lived and occur often only in minor quantities. Indeed, one 

advantage of such reactions is that isolation of short-lived intermediates can be neglected, 

because they are generated in situ and consumed rapidly. Methods allowing the characterization 

of structural changes typically are NMR
[4]

 and, to a minor extend, IR spectroscopy.
[4e,5]

 A 

powerful tool for the investigation of complex organocatalytic reactions is mass spectrometry 

(MS) due to its advantages to detect components at low concentrations within short lifetimes. 

Even structural data can be derived with MS/MS experiments.
[6]

 The fragmentation of individual 

intermediates can be utilized for the characterization of catalytic reactions.
[7]

 

Due to the novelty of the multicatalyst approach, no mechanistic studies have been carried out 

yet. Herein, we report a detailed mechanistic investigation concerning the catalytic epoxidation 

of olefins followed by hydrolysis and enantioselective kinetic resolution through acylation.
[8]

 

Each individual step can be defined by reaction intermediates as reaction markers that can be 

detected by ESI-MS. The multicatalyst A0B0 used in this study consists of a chiral peptide 

backbone
[9]

 including an adamantane spacer
[3,10]

 separating two catalytic moieties. Dicarboxylic 

acid A0 is responsible for the first reaction step, an epoxidation,
[11]

 and N-methyl imidazole 

moiety B0 catalyzes the terminal acylation.
[3b]

 The individual catalytic moieties are activated by 

adding the corresponding reagent after a particular time interval, and this is the key difference to 

cascade reactions. Various catalysts have been developed, in which the catalytically active 

moieties were placed in different positions of the peptide backbone; herein, we employed the 

most effective catalyst A0B0 (Scheme 1).
[3b]
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Scheme 1. Reaction sequence using multicatalyst A0B0. 

 

 

 

2. Results and Discussion 

The first step in the mechanistic evaluation of a catalytic reaction with ESI-MS is the 

determination and characterization of reaction markers that allow an unequivocal assignment of 

the reaction intermediates. The first step of the reaction under consideration is the epoxidation of 

cyclohexene (1) to cyclohexene oxide (2). Although the reaction itself is straightforward, the 

identification of catalytically active moieties is more challenging. For the activation of catalytic 

moiety A0, diisopropylcarbodiimid (DIC) was added forming the O-acylisourea (A1), which, 

after cleavage, removes a molecule of water providing the corresponding anhydride A2. This 

further reacts with hydrogen peroxide to give the catalytically active peracid moiety A3. After 

formation of peracid A3, the catalyst reacts with 1 to give 2 (Scheme 2). The ESI MS/MS spectra 

of 2 and the appearing catalytic species are shown in Figures 1 and 2, respectively. One potential 

side reaction of O-acylisourea A1 attached to the peptide is the formation of N-acylurea A1′, 

which was reported by Montalbetti and co-workers.
[12]

 We also observed this rearrangement, but 

the molecular ion is present in such low intensity that it is under standard conditions almost not 

detectable, implying that it is relatively unimportant for the catalytic step (Scheme 2; Figure 2). 

Due to the short lifetime of those and other intermediates, it was not possible to determine them 

from the reaction mixture alone. Therefore, some additional studies were carried out using an 

online microflow reactor as shown in Figure 6 in the Experimental Section. In these experiments, 

two different syringes were filled with different reaction solutions. The reaction takes place after 
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Scheme 2. Reaction cycle for the epoxidation reaction. 

 

 

Figure 1. ESI MS/MS spectrum of epoxide intermediate 2 obtained with a triple quadrupole MS. 

the two flows are combined in a mixing T-piece. The reaction time depends on the length of the 

capillary after the mixing T-piece and can be adjusted to the time frame of interest. This allows 

studying very reactive and short-lived intermediates. Due to the continuous formation of the 

same components, it is possible to study them in detail by MS and MS/MS methods. 

Catalyst A0B0 converts 57% (±3) into the final product 4 in the separately performed acylation 

reaction (2 mol% catalyst loading, 3 h). However, only 35% of the monoacetylated product 4 

were obtained when the reaction was performed under multicatalysis conditions, even at 5 mol% 

catalyst loading and after longer reaction time (17 h), indicating a somewhat lower activity of the 

multicatalyst.
[3b]

 When studying the formation of the moiety A3, we found that another reaction 

occurs that could have a direct impact on the effectiveness of the methyl imidazole group B0 that 

is responsible for the subsequent catalytic acylation. During formation of peracid A3, an  
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Figure 2. ESI MS/MS spectra of a) A0B0; b) A1B0 and A1′B0; c) A2B0; and d) A3B0; and the associated 

fragmentation. The spectrum of intermediate A1 B0 was obtained by using a microflow reactor set-up by high-

resolution MS. 

additional signal was found at m/z 908 (Figure 3 a and b); the difference of 16 Da indicates 

oxidation of the catalyst. The position of the oxygenation was studied thoroughly with highly 

accurate MS/MS and MS
n
 experiments, in which the molecule was fragmented and the structural 

differences were analyzed (Figure 3 c, d). We determined the oxidation to occur at the imidazole 

group: activation of moiety A also leads to oxidation of moiety B, resulting in the formation of a 

hydantoin derivative B1 (Scheme 2 and Figure 3). The oxidation of the imidazole moiety leads 

to reduced effectiveness of the catalyst due to the resulting lower amount of active catalytic 

moiety utilizing the multicatalyst. 

For the epoxide opening forming diol hydrazine bisulfate and water have to be added to the 

reaction mixture.
[7b]

 The hydrolysis of 2 was not investigated mechanistically, because the 

peptide catalyst is not involved in this step. 
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Figure 3. Characterization of completely oxidized catalyst A3B1: a) and b) MS spectra of the activation of catalytic 

moiety A [a) after adding DIC; b) after adding DIC and H2O2]; c) and d) ESI MS/MS spectra and the associated 

fragmentation
(1)

 of A3B1.
(1)

 Red numbers indicate the fragments of the oxidized imidazole functionality. Measuring 

was achieved by HRMS. 

 

 

 

Figure 4. Activation of the catalytic moiety B0 and MS/MS spectrum of the monoacetylated product by triple 

quadrupole MS/MS. 

The second catalytic step investigated in this reaction sequence is the kinetic resolution of 

racemic diol. At the beginning, both catalytic sites of multicatalyst A0B0 are inactive. After 

completion of the preceding reactions, the activation of catalytic moiety B0 is accomplished by 

adding acetic anhydride to the reaction mixture providing acylium ion B2 (Figure 4). 

After activation of the catalyst, monoacylation of diol takes place. The corresponding MS/MS 

spectrum is depicted in Figure 4. 



New Frontiers in Peptide Catalysis 
 

  153 

Our results also indicate that during the last step of the reaction, not only moiety B was activated 

by acetic anhydride, but also moiety A was directly converted to the intramolecular anhydride 

A2 (Figure 4). In a subsequent step, A2B2 was oxidized to A3B2 by hydrogen peroxide, which 

is still present due to the one-pot conditions. Figure 5 shows the MS, the MS/MS, as well as the 

MS
3
 spectra of the detected catalytic species. The observed side-reactions may also have a direct 

influence on the enantioselectivity due to potential conformational changes in the peptide 

backbone. Indeed, the multicatalyst provides somewhat lower selectivities compared to the 

originally developed acylation catalyst.
[3b,10a]

  

 

 

 

Figure 5. MS
n
 spectra of the catalytic species of the last reaction step by HRMS: a) MS spectrum of the activation 

sequence using acetic anhydride and hydrogen peroxide; b) MS/MS spectrum of catalyst A3B2 after activation with 

acetic anhydride; c) MS
3
 spectra of catalyst A3B2 detailing the structural characterization of both catalytic moieties. 
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3. Conclusion 

A triple-cascade sequence consisting of an epoxidation, an epoxide opening, and an 

enantioselective acylation reaction catalyzed by an oligopeptide multicatalyst was studied 

thoroughly by using ESI-MS. The key reaction intermediates were successfully characterized. In 

addition to the activation of the catalytic moieties A0 to A3 in the first reaction step by reagents 

DIC and H2O2, a side-reaction takes place on the catalytic moiety for the second reaction step B0 

into B1 leading to a partially oxidized methyl imidazole moiety that causes reduction of the 

activity of catalytic moiety B0 for the acetylation in the terminal step. 

Our detailed mass spectrometric study of the present multicatalyst allows the individual 

characterization of both catalytic reactions. This is a prime example how detailed mechanistic 

studies using highly accurate MS and MS
n
 data can help in understanding complex 

organocatalytic reactions. 

 

 

 

4. Experimental Section 

Reaction procedure. Catalyst (0.05 mmol, 21.9 mg, 5 mol%), cyclohexene (1 mmol, 101 μL,  

1 equiv), and DIC (1.2 mmol, 185 μL, 1.2 equiv) were dissolved in dichloromethane (DCM;  

2 mL). To this mixture, hydrogen peroxide (30%; 130 μL, 1.2 equiv) was added, and the 

resulting reaction mixture was stirred at room temperature for 24 h. After this time, the addition 

of DIC (1.2 mmol, 185 μL, 1.2 equiv) and 30% hydrogen peroxide (130 μL, 1.2 equiv) was 

repeated, and the reaction mixture was stirred under the same conditions for additional 24 h. 

Then toluene (6 mL) was added, followed by the addition of H2O (10 mmol, 180 μL, 10 equiv) 

and hydrazine bisulfate (0.1 mmol, 13 mg, 0.1 equiv), and the mixture was stirred at room 

temperature for 18 h. In the next step, toluene (180 mL) and iPr2EtN (5.3 mmol, 901 μL,  

5.3 equiv) were added, and the reaction mixture was cooled to 0 ° . Finally, Ac2O (5.3 mmol, 

501 μL, 5.3 equiv) was added, and the kinetic resolution was monitored by chiral GC. After 17 h, 

the reaction mixture was quenched by adding methanol (10 mL), the solvents were evaporated 

under reduced pressure, and the column chromatography on silica gel in hexane/EtOAc (1:1) 

gave 56 mg (35 %) of 1-acetoxy-2-cyclohexane alcohol (60% yield). 
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Microreactor procedure. One example that could only be investigated by the microreactor 

experiment is the intermediate A2B0. For this experiment, syringe I was filled with catalyst 

(0.005 mmol, 4.5 mg) in DCM (1 mL), syringe II with reagent diisopropyl carbodiimide (DIC; 

0.12 mmol, 15 mg, 18.7 μL) in DCM (1 mL; Figure 6). The reaction took place in polyether 

ether ketone (PEEK) capillary after combining reactants from syringes I and II in the mixing 

chamber. Syringe pumps for I and II were adjusted to flow rates of 5 μL min
−1

 and connected 

directly to the ion source. It was not just possible to determine the intermediate itself, but also the 

rearrangement product of this intermediate as fragments at m/z 917.54, 861.48, and 817.49, 

respectively, using tandem MS. 

 

 

Figure 6. Experimental set-up of the microflow reactor. 

 

Mass spectrometry. MS and MS/MS experiments were carried out using a Thermo TSQ 

Quantum Ultra AM triple quadrupole mass spectrometer (Thermo Scientific, Dreieich, 

Germany) equipped with an ESI source, which was controlled by Xcalibur software. The ESI 

spray voltages were set to 4000 and 3000 V for positive and negative ions, respectively. The 

heated capillary temperature was adjusted to 270 ° . For  S/ S analysis, the collision energy 

was increased from 10 to 50 eV. The mass spectrometer was operated in the Q1 scan and product 

ion scan modes, with the mass width for Q1 set at 0.5 Da and for Q3 set at 0.7 Da. The collision 

cell, Q2, contained argon and was adjusted to a pressure of 1.5 mTorr to induce collision-

induced dissociation (CID). Spectra were collected by averaging ten scans with a scan time of  

1 s. The mass range was adjusted between 50 and 1500 Da. HRMS data were acquired by using 

an LTQ-Orbitrap Elite mass spectrometer (Thermo Scientific, Bremen, Germany). All 

experimental parameters were the same as for the triple quadrupole experiments, except that 

MS/MS measurements were carried out with an isolation window of 1 Da and different collision 

energies. 
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1. Introduction 

Oligosaccharides and glycoconjugates play a crucial role in manifold biological processes.
[1]

 

Consequently, a lot of effort has been devoted to the development of efficient strategies for the 

synthesis of these important biomolecules and their use, e.g., as components of drugs or 

vaccines.
[2]

 Although numerous advances have been made in the field of carbohydrate chemistry 

over the last years, the preparation of well-defined oligosaccharides is still a formidable 

challenge that often requires demanding protecting group manipulations. An intriguing approach 

for the synthesis of carbohydrates relies on the catalytic, regioselective protection of particular 

hydroxyl groups on the monosaccharide building blocks whereas the others remain 

untouched.
[2m,q]

 The partially protected compounds are synthetically highly useful for subsequent 

steps, for example glycosidic bond formations.
[2]

  

The reactivity trends observed for the different hydroxyl groups in monosaccharides generally 

result from electronic effects that are governed by intramolecular hydrogen bonding networks 

and sterics, also depending on the protecting groups present, as well as reactants and solvents 

used.
[3]

 Hence, various methods were developed to overcome the inherent reactivity and to 

address the desired hydroxyl groups.
[2m,q]

 Recently, organocatalytic variants were reported to 

provide superior regioselectivities in the acylation of carbohydrates and related polyols.
[4]

  

As part of our research on multicatalysis
[5]

 we envisioned to develop a synthetic strategy 

combining two of our privileged catalysts, an oligopeptide such as 1 and thiourea catalyst 2, for 

the regioselective acetylation of carbohydrate derivatives and a concomitant glycosylation 

(Scheme 1). Indeed, both catalysts already showcased their extraordinary performance  

individually in similar reactions. Peptide catalyst 1 was previously used by our group in the 

  

 

 

Scheme 1. Envisaged multicatalytic reaction sequence towards carbohydrate derivatives; PG = protecting group. 
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Scheme 2. Previously reported reactions catalyzed by thiourea 2. 

kinetic resolution as well as the desymmetrization of, e.g., trans- and cis-cycloalkane-1,2-diols, 

providing high enantioselectivities and exhibiting extraordinary chemoselectivities.
[6]

 

Furthermore, the same catalyst and derivatives thereof were already successfully applied in 

multicatalytic reactions, e.g., in combination with TEMPO as oxidation catalyst, and as 

multicatalysts, bearing two independent catalytic moieties (cf. previous chapters).
[7]

  

Since its development by Wittkopp and Schreiner,
[8]

 thiourea catalyst 2 has proven its efficiency 

in a plethora of reactions,
[9]

 one of the earliest examples being the tetrahydro-pyranylation of 

alcohols (Scheme 2).
[10]

 This concept was later extended by the McGarrigle group for the 

glycosylation of galactals with a variety of glycosyl acceptors with 2 as catalyst to afford the 

corresponding 2-deoxygalactosides in high yields exclusively as the α-epimer (Scheme 2).
[9d]

 

Importantly, the reaction could be performed also with substrates comparable to 4 and 5 (benzyl 

instead of acetyl). More recently, the cooperative combination of 2 with Brønsted acids
[11]

 was 

reported by Schmidt et al. for glycosidation reactions of O-glycosyl trichloroacetimidates.
[9g]

 

Furthermore, the same group applied 2 for the regioselective 4,6-O-arylidenation of methyl 

glucopyranosides,
[9f]

 highlighting the versatility of this organocatalyst in carbohydrate chemistry. 

An extension of the aforementioned reactions, such as the addition of a regioselective acylation 

step, may meet the demands for an efficient multicatalytic synthesis of distinct carbohydrate 

derivatives (Scheme 1). 
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2. Results and Discussion 

A publication by Miller et al. was of special interest in the context of peptide catalyzed 

regioselective acylation of carbohydrate diols (Figure 1).
[4a]

 The authors screened a library of 

150 peptides for the acylation of aminosugar derivative 11 and compared the results to a reaction 

performed with N-methylimidazole (NMI). Importantly, most of the catalysts led to an 

amplification of the acetylation of the 3-hydroxyl group with the best working catalyst being 8, 

affording 97% of 11 of total diacetylated products. However, only very few peptides were able to 

overcome the inherent reactivity of the substrate, thus to shift the product distribution towards 

12. Catalyst 9 provided a near 1:1 ratio of the monoacetylated products. 

 

 

 

Figure 1. Peptide catalyzed regioselective acetylation of carbohydrate diols reported by Miller et al.; see: Ref. 4a. 

Trt = trityl; TBS = tert-butyldimethylsilyl; NMI = N-methylimidazole; DiAc = diacetylated product (not shown). 

We started our own work on the acetylation of carbohydrates using methyl 4,6-O-benzylidene-α-

D-glucopyranoside (3) (glucose is one of the most abundant mono-saccharides) as starting 

material, which was synthesized in the McGarrigle group. Thus, we first prepared the possible 

products to establish an appropriate analytical method for determining the outcome of the 

catalytic experiments. Using 4-dimethylaminopyridine (DMAP) as catalyst and acetic anhydride, 

the monoacetylated derivatives 4 and 5 (12% and 40%, respectively) as well as the diacetylate 13 

(40%) were obtained (Figure 2). As the acetyl-CH3 and benzylidene-H singlets separated well 

enough to allow an unambiguous determination we chose to perform 
1
H NMR measure-ments on 

the crude reaction mixture to determine product ratios and conversion (Figure 2). 
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Figure 2. Top: DMAP catalyzed acetylation of 3 and selected 
1
H NMR chemical shifts for the determination of 

conversion and selectivity. Yields are given for isolated products after column chromatography. Bottom: 

Superimposed 
1
H NMR spectra of the isolated acetylated products 4 (green), 5 (blue), and 13 (dark red). 

We then employed our peptide catalysts under reaction conditions comparable to those reported 

by Miller and coworkers.
[4a]

 According to the literature procedure NMI was used as reference 

catalyst to establish the intrinsic reactivity of the substrate under Lewis base catalysis. Thus, 

subjecting 3 to acetylation with NMI, the corresponding products were formed in a ratio of 23:71 

(4/5) with good overall conversion (87%) and only a little diacetylation (Table 1, entry 1). 

Performing the reaction with peptide 1 (5 mol%; 1.3 equiv acetic anhydride), the ratio of the 
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products shifted to 4 being the major product although total conversion was low (64:36, 30% 

conversion; Table 1, entry 2). However, the low conversion is not surprising in this case as the 

configuration of the hydroxyl groups is that of the slow reacting enantiomer of the previously 

used cycloalkane-1,2-diols.
[6a,d]

 Thus, using the corresponding all-D-configured peptide ent-1 led 

to overall good conversion with comparable selectivity (entry 3). Interestingly, catalysts 14 and 

15 as well as 16–18 with the catalytically active π-methyl histidine (Pmh) located at the  

C-terminal end all showed a comparable preference to acetylate the 2-hydroxyl group and only 

differed in their reactivity (entries 4–8). This somehow indicates that the selectivities towards 4 

may result from steric hindrance of the 3-hydroxyl group by the adjacent benzylidene protecting 

group. When 19, bearing D-valine, was used as catalyst overall conversion increased to 82%, 

whereby regioselectivity was again comparable to the previous experiments (entry 9). Catalyst 

20 bearing tryptophan that may allow for additional hydrogen bonding and CH-π interactions 

with the carbohydrate was studied next. Indeed, this amino acid is frequently used in highly 

selective carbohydrate acylation catalysts.
[4c,d,f]

 Moreover, two tryptophan units are part of the 

substrate-recognition site of a family of β-glucosidases.
[12]

 However, no beneficial effects were 

observed upon incorporation of tryptophan in our catalyst design (entry 10). With peptide-

thiourea hybrid 21 conversion was high, but a 1:1 ratio of the monoacetylated products formed, 

indicating the possibility of the thiourea moiety to activate the anhydride and as a result to 

enhance 3-hydroxyl acetylation and consecutive diacetylation (entry 11). As the carbohydrate 

starting material already is a chiral substrate, we next investigated the possibility of stereo-

chemical match-mismatch cases of catalyst and substrate. To study this effect, we used peptides 

22 (all amino acids L-configured), 23 (D-valine), 24 (D-Pmh) and 25 (D-Pmh and D-valine). 

Although the first three catalysts only gave low conversion, the selectivity towards 4 could be 

significantly improved with peptide 24 (Table 1, entry 14), leading to high regioselectivity (4/5 

86:14, 18% conversion). An extraordinary preference for the 2-hydroxyl group was also 

observed with catalyst 25 (73%) with full conversion of the starting material. 

Remarkably, nearly all of our tested catalysts showed a significant deviation from the reaction 

with NMI, preferentially leading to acetylation of the 2-hydroxyl group in 3. This is in sharp 

contrast to the results reported by Miller et al. (Scheme 2) where the best catalyst mutually 

enhanced the selectivity observed with NMI.
[4a]

 Additionally, this is a prime example wherein 

one of our hetero-configured catalysts performed better compared to the homo-configured 

analogue. 

As a result of the low reactivity with most of the catalysts our attention then turned to an 

optimization of the reaction conditions with regard to increase conversion. Due to the small 

amounts of 24 available at that stage, 1 was mainly used as catalyst in the following experiments 

(Table 2). Increasing the amount of acetic anhydride (Table 2, entry 1) the conversion  

 



New Frontiers in Peptide Catalysis 
 

  167 

 

 
T

a
b

le
 1

. 
P

re
li

m
in

ar
y
 c

at
al

y
st

 s
cr

ee
n
in

g
 e

x
p
er

im
en

ts
. 

 

C
 (

%
) 

8
7

 

3
0

 

9
5

 

7
2

 

5
4

 

1
3
 (

%
) 

5
 

–
 

4
 

4
 

3
 

5
 (

%
) 

7
1
 

3
6
 

3
5
 

3
5
 

3
2
 

4
 (

%
) 

2
3
 

6
4
 

6
1
 

6
1
 

6
5
 

C
a
ta

ly
st

 

N
M

Ia
 

 

en
t-

1
 

 

 

E
n

tr
y

 

1
 

2
 

3
 

4
 

5
 

 

 

 



Peptide-Catalyzed Regioselective Acetylation of Carbohydrates 
 

168 

 

 

T
a
b
le

 1
. 
P

re
li

m
in

a
ry

 c
a
ta

ly
st

 s
cr

ee
n
in

g
 e

xp
er

im
en

ts
 (

co
n
ti

n
u
ed

).
 

6
3

 

4
5

 

3
3

 

8
2

 

3
 

3
 

3
 

3
 

2
9
 

3
3
 

3
5
 

3
2
 

6
8
 

6
4
 

6
2
 

6
5
 

 

   

6
 

7
 

8
 

9
 

 

 



New Frontiers in Peptide Catalysis 
 

  169 

 

 
T

a
b
le

 1
. 
P

re
li

m
in

a
ry

 c
a
ta

ly
st

 s
cr

ee
n
in

g
 e

xp
er

im
en

ts
 (

co
n
ti

n
u
ed

).
 

5
4

 

9
4

 

1
3

 

2
3

 

3
 

6
 

–
 

–
 

4
4
 

4
7
 

4
2
 

4
4
 

5
3
 

4
7
 

5
8
 

5
6
 

  

  

1
0
 

1
1
 

1
2
 

1
3
 

 

 



Peptide-Catalyzed Regioselective Acetylation of Carbohydrates 
 

170 

 

 

T
a
b
le

 1
. 
P

re
li

m
in

a
ry

 c
a
ta

ly
st

 s
cr

ee
n
in

g
 e

xp
er

im
en

ts
 (

co
n
ti

n
u
ed

).
 

1
8

 

>
9
5

 

R
ea

ct
io

n
s 

w
er

e 
p
er

fo
rm

ed
 o

n
 0

.1
 m

m
o
l 

sc
al

e 
w

it
h
 5

 m
o
l%

 o
f 

ca
ta

ly
st

 a
n
d
 1

.3
 e

q
u
iv

 a
ce

ti
c 

an
h
y
d
ri

d
e 

in
 1

0
 m

L
 o

f 
d
ry

 t
o
lu

en
e 

at
 r

o
o
m

 t
em

p
er

at
u
re

 

u
n
d
er

 N
2
 f

o
r 

1
8
 h

 u
n
le

ss
 n

o
te

d
 o

th
er

w
is

e.
 P

ro
d
u
ct

 d
is

tr
ib

u
ti

o
n
 a

n
d
 c

o
n
v
er

si
o
n
 w

as
 d

et
er

m
in

ed
 b

y
 1

H
 N

M
R

 a
ft

er
 q

u
en

ch
in

g
 t

h
e 

re
ac

ti
o
n
 w

it
h
 M

eO
H

 a
n
d
 

ev
ap

o
ra

ti
o
n
 o

f 
th

e 
so

lv
en

t.
 a

 1
0
 m

o
l%

 o
f 

ca
ta

ly
st

 w
er

e 
u
se

d
; 

b
 C

o
m

m
er

ci
al

ly
 a

v
ai

la
b
le

 m
et

h
y
l 

4
,6

-O
-b

en
zy

li
d
en

e-
α

-D
-g

lu
co

p
y
ra

n
o
si

d
e 

(3
) 

w
as

 u
se

d
 a

s 

st
ar

ti
n
g
 m

at
er

ia
l.

 

 

–
 

1
1
 

1
4
 

1
6
 

8
6
 

7
3
 

  

1
4
 

 1
5

b
 

 



New Frontiers in Peptide Catalysis 
 

  171 

to 63% was improved thereby maintaining the previously observed regioselectivity (cf. Table 1, 

entry 2). The addition of a base (such as DiPEA) further enhanced reactivity and led to complete 

conversion, but had a deleterious effect on selectivity (entry 2). As a result of the low solubility 

of 3 in nonpolar solvents such as toluene, the substrate usually only completely dissolved upon 

acetylation. However, using a solution of substrate and catalyst in dichloromethane (entry 3) and 

dilution with toluene only slightly improved the previously observed conversion (30% vs. 38%; 

cf. Table 1, entry 2). As expected, more polar solvents, such as dichloromethane, acetonitrile 

(ACN), or tetrahydrofuran led to inferior selectivities, possibly due to perturbation of crucial 

hydrogen bonding-interactions of catalyst with substrate, and to variable conversions (entries 4–

6). A similar effect on differing reactivity of carbohydrates in dichloromethane and 

tetrahydrofuran has also been observed previously.
[13]

 As the only encouraging modification of 

the standard conditions was the use of higher amounts of acetic anhydride, the same reaction was 

performed using the best working catalyst 24. To our delight, under these conditions overall 

conversion increased to 88%, with a product ratio of 86:9:5 for 4/5/13 (entry 7). 

 
  Table 2. Screening experiments to improve conversion. 

 

 
 

Entry Catalyst Variation 4 (%) 5 (%) 13 (%) C (%) 

1 1 5.3 equiv Ac2O 60 37 3 63 

2 1 
5.3 equiv Ac2O + 

2.9 equiv DiPEA 
49 37 14 >95 

 3
a 

1 
DCM/PhCH3 

(9:1) 
60 37 3 38 

 4
a
 1 DCM 41 42 16 79 

 5
a
 1 ACN 48 34 18 38 

 6
a
 1 THF 54 46 – 10 

7 24 5.3 equiv Ac2O 86 9 5 88 

 8
b 

24 
5.3 equiv Ac2O, 

0 °C 
32 9 59 >95 

 9
b
 24 

1.3 equiv Ac2O, 

0 °C 
85 9 6 >95 

Reactions were performed on a 0.1 mmol scale with 5 mol% of catalyst in 10 mL of dry solvent at room temperature 

under N2 for 18 h. Product distribution and conversion was determined by 
1
H NMR after quenching the reaction 

with MeOH and evaporation of the solvent. 
a 

Reaction was performed with 1.3 equiv acetic anhydride. 
b 
Commercially available methyl 4,6-O-benzylidene-α-D-glucopyranoside (3) was used as starting material. 



Peptide-Catalyzed Regioselective Acetylation of Carbohydrates 
 

172 

In an attempt to further improve regioselectivity the reaction temperature was lowered to  

0 °C. Unexpectedly, a reaction using commercially available 3 and 5.3 equivalents of anhydride 

led to excellent conversion, but diacetyl derivative 13 was the major product (entry 8). Lowering 

the amount of anhydride provided both complete conversion of the starting material and high 

regioselectivity (85:9:6 for 4/5/13; entry 9 and Figure 3). This effect can be seen in Table 1 as 

well (entry 15) although a conclusive interpretation was not possible before. It appeared that the 

previously used starting material was contaminated with small amounts of benzaldehyde (or 

consequently benzoic acid) from the protection step that somehow hampered efficient catalysis. 

However, the selectivities observed with the different catalysts (Table 1) are indeed reliable and 

only the conversion was affected (vide supra). 

 

 

 

Figure 3. Selected sections of the 
1
H NMR spectrum for the determination of the regioselectivity achieved with 

peptide 24; cf. Table 2, entry 9. No starting material (δ (benzylidene-H) = 5.52 ppm) could be detected. 

Another important feature becomes obvious from the aforementioned results. The major product 

4 is consumed to form 13 whereas the amount of 5 stays constant, although kinetic studies 

previously revealed that over-acylation of 5 occurs approximately six times faster compared to 4 

(Scheme 3).
[3b]
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Scheme 3. Relative reaction rates for the acetylation of methyl 4,6-O-benzylidene-α-D-glucopyranoside (3) with 

pyridine and acetic anhydride. 

We also envisioned using the corresponding glucopyranoside bearing a cyclohexylidene moiety 

for additional dispersion interactions that may further enhance selectivity. However, this 

protecting group was rather unstable (see the Experimental Part) and, therefore, this substrate 

was not investigated in catalytic experiments. 

In comparison to other reported procedures for the regioselective acetylation of methyl 4,6-O-

benzylidene-α-D-glucopyranoside (3) our catalyst performs remarkably well (Table 3). Thus, 

under typical acylation conditions with pyridine the ratio of the possible products significantly 

differs depending on the reaction conditions employed. Notably, no high regioselectivity was 

achieved and considerable quantities of 13 form (Table 3, entry 2)
[14]

 akin to the intrinsic 

reactivity of the substrate (cf. Scheme 3). The same holds true for the DMAP-catalyzed 

acetylation of 3 (entry 3).
[13]

 Another simple procedure for the acylation of various  

D-glucopyranosides was reported by Hung and co-workers.
[15]

 An excess of triethylamine and 

anhydride regioselectively provided the 2-acylated products, such as 4 (80%; entry 4), though the 

reaction conditions may not be negotiable to other monosaccharides. No regioselectivity (48:52, 

4/5) could be achieved using a trans-esterification protocol with sodium tert-butoxide and ethyl 

acetate as acyl-equivalent (entry 5), despite no diacetylated 13 did form.
[16]

  

The formation of metal-chelates with carbohydrates represents another common means for 

selective hydroxyl functionalization. Thus, zinc, mercury, and copper, as representative 

examples, were previously used to push the reaction towards a desired mono-acetylated product 

with divergent regioselectivities (entries 6–8).
[14b,17] 

Recently, Allen and Miller reported a catalyst-controlled regioselective functionalization of 

carbohydrate derivatives (Table 3, entries 9–12).
[18]

 Employing copper–bis(oxazoline) catalysts 

afforded the products with moderate to good ratios. Importantly, the outcome of the reaction was 

highly dependent on the electrophile used (acetic anhydride vs. acetyl chloride).
[3e]

 A silver(I) 

oxide promoted acetylation of 3 gave mainly 5 (entry 13).
[19]
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Table 3. Comparison of the performance of peptide 24 with selected literature procedures for the regioselective 

acetylation of 3. 

 

Entry Reagents or Catalysts 4 (%) 5 (%) 13 (%) C (%) 

1 24 85 9 6 >95 

2 pyridine
[14]

  3–29 32–42 6–26  77–93 

3 cat. DMAP
[13]

 45–49 55–51 – 40–65 

4 Et3N
[15]

 80 5
b
 15

b
 – 

5 NaOtBu, EtOAc
[16]

 48 52 – 76 

6 ZnCl2, pyridine
[14b]

 53 13 23 90 

7 HgCl2
[17]

 82 – 18 – 

8 CuCl2
[17]

 15 80 5 – 

9 CuCl2, (R)–PhBOX
[18]

  1.8
a 

1.0
a
 – 69 

10 CuCl2, (S)–PhBOX
[18]

 1.6
a
 1.0

a
 – 75 

11 CuCl2, (R)–PhBOX, AcCl
[18]

 74 (7.0) (1.0)
a
 – 91 

12 CuCl2, (S)–PhBOX, AcCl
[18]

 (1.0)
a
 41 (4.5) – 79 

13 Ag2O, KI, AcCl
[19]

 15 81 – – 

14 cat. TBAOAc, Me2Si(OMe)2
[20]

 65 – – – 

15 cat. TBAOAc
[21]

 88 – – – 

16 lipase, vinyl acetate
[22]

 up to 100 – – up to 94 

Unless otherwise noted acetic anhydride was used as electrophile. BOX = bis(oxazoline); TBAOAc = tetra-

butylammonium acetate. For entries with a dash either no compound formed or no data was available.  
a
 Only the ratio of the products was reported. 

b
 Values were obtained from reproducing the reaction under the 

conditions described in ref. 15. 

An alternative procedure was described that proceeds through the formation of cyclic 

dioxasilolane intermediates and subsequent tetrabutylammonium acetate catalyzed acylation 

(Table 3, entry 14), but the observed regioselectivities were under substrate-control depending 

on the carbohydrate used.
[20]

 However, the same group later reported that tetrabutylammonium 

acetate alone may act as hydrogen-bonding catalyst to provide high regio-selectivities (88% for 

4; entry 15).
[21]

 

Unsurprisingly, enzymes, e.g., various lipases, were used to catalyze the parent reaction 

affording 4 with perfect selectivity (entry 16).
[22]

 The choice of the enzyme also allowed to 

reverse the regioselectivity to give 5 (not shown). Careful investigation of the data in Table 3 
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reveals the astonishing performance of catalyst 24 (entry 1) that competes with the reported 

procedures to selectively obtain 4. Although the aforementioned enzymes achieve higher 

selectivities the conversion is not complete in these cases (up to 85%),
[22]

 resulting in the same 

yield of desired product as with 24. Furthermore, a judicious modification of the peptide-

catalysts in principle may allow addressing every desired hydroxyl group in a given carbo-

hydrate. Besides acetylation reactions, alternative procedures were reported that also afford 4, 

such as the acetyl-migration employing 5
[23]

 or the regioselective deacetylation of 13,
[24]

 

however, the selectivities do not compete with the values obtained with 24. 

To gain a deeper insight why the change in the configuration of the catalytically active Pmh has 

this significant influence on selectivity, we performed a molecular dynamics search for low-lying 

conformations for adducts of the acylium ions of 22–24 with 3 (Figure 4) utilizing the Merck 

Molecular Force Field (MMFF).
[25]

 Although this can be only considered as a first computational  

 

 

Figure 4. Lowest-lying conformations for hydrogen-bonded adducts of the acylium ions of oligopeptides 22 (A), 23 

(B), 24 (C), and 25 (D) with carbohydrate 3. All C–H have been omitted for clarity; C = gray, O = red, N = blue, H 

= white. Distances are given in Å. 
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approximation the results should be qualitatively valid as the reaction is performed in a nonpolar 

solvent. From the ensemble of obtained conformers the energetically lowest-lying adduct was 

chosen for each catalyst wherein 3 is suitably arranged for acetylation to take place. Apparently, 

some important features become obvious. Firstly, the rigid γ-amino adamantane carboxylic 

acid
[26]

 leads to a structurally less flexible oligopeptide and enables the formation of a 

catalytically active “dynamic pocket” for all four catalysts, as was already shown in our previous 

studies.
[6a,d]

 Secondly, hydrogen bonding (among other possible interactions) plays an important 

role for substrate recognition and fixation. Most importantly, the determined interatomic 

distances between the acylium ions and the distinct hydroxyl groups remarkably well correlate 

with the experimentally observed selectivities. Both the 2- and 3-hydroxyl groups in 3 show 

comparable distances, 4.4 vs. 4.3 Å and 4.2 vs. 4.3 Å, respectively, to the acylium ions of 22 and 

23, resulting in low selectivities (Figure 4, A and B). Contrary, the 2-hydroxyl group is in close 

proximity to the acylium ions of 24 (3.1 Å) and 25 (3.4 Å; Figure 4 C and D), whereas the  

3-hydroxyl group is placed much further away (4.5 Å and 5.0 Å; also see Experimental Part). 

However, more accurate computations are still necessary to provide a more detailed picture of 

the substrate recognition process and enhanced selectivity of oligopeptide 24.
[6d]
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3. Conclusions and Outlook 

In conclusion, we identified 24 as a potential catalyst for the first part of our proposed 

multicatalytic one-pot reaction (Scheme 5). In comparison to NMI, which preferentially leads to 

the acetylation of the 3-hydroxyl group on 3 (4/5/13: 23:71:5; 87% conversion), 24 mostly gives 

the 2-acetylated product (4/5/13: 85:9:6; >95% conversion), thus not only overcomes, but 

reverses the intrinsic reactivity of the substrate. These promising results will provide the basis for 

further developments. 

 

 

Scheme 5. Proposed multicatalytic one-pot reaction sequence and results obtained so far. 

Our future work aims at the application of other (partially protected) carbohydrate diols (e.g., 

mannose and galactose derivatives or isosorbide) to develop a broadly applicable reaction. This 

will necessitate the synthesis of additional catalysts that may also provide information on the 

influence of the other amino acids, valine and phenylalanine, in 24. As the factors determining 

the selectivity are yet not fully understood, these questions will be tackled by computational 

investigations of catalyst–substrate interactions and the corresponding transition states for the 

acylation process. The ultimate goal of our investigation is to merge the regioselective protection 

of the carbohydrate derivatives with a concurrent glycosylation step to give well-defined  

2-deoxygalactosides 6. 
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4. Experimental Part 

Materials and methods. Unless otherwise specified, reagents were purchased from commercial 

suppliers at the highest purity grade available and were used as received. All solvents were 

distilled prior to use. Dry and absolute solvents were prepared using standard laboratory 

procedures and were stored over appropriate drying agents under argon or nitrogen atmosphere. 

Acetic anhydride was distilled and stored under argon or nitrogen with 4 Å molecular sieves. 

Flash column chromatography was performed using MN silica gel 60 M (Macherey-Nagel; 

0.040 – 0.063 mm, 230 – 400 mesh ASTM). Analytical thin-layer chromatography (TLC) was 

performed using precoated polyester sheets Polygram
®
 SIL G/UV254 (Macherey-Nagel; 0.2 mm 

silica gel layer with fluorescent indicator). Visualization of the developed chromatograms was 

accomplished by irradiation with a UV lamp at 254 nm and/or phosphomolybdic acid solution, 

2,4-dinitrophenylhydrazine solution or potassium permanganate solution, respectively. TLC Rf 

values are reported. 

 

Instrumentation. NMR spectra were recorded on Bruker Avance II 200 MHz „ icrobay“, 

Avance II 400 MHz, Varian 300 MHz and Varian 400 MHz, Avance III HD 400 MHz, or 

Avance III HD 600 MHz spectrometers, respectively, at 298 K. Chemical shifts (δ) are given in 

ppm relative to tetramethylsilane (TMS, δ = 0.00 ppm) as the internal standard or to the 

respective solvent residual peaks (CDCl3: δ = 7.26 and 77.16 ppm; DMSO-d6: δ = 2.50 and 

39.52 ppm; D2O: δ = 4.79 ppm; MeOH-d4: δ = 3.31 and 49.00 ppm).
[27]

 Data are reported as 

follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad, or combinations thereof), coupling constants (Hz), integration. Infrared 

spectra were acquired on a Bruker IFS25 spectrometer. ESI mass spectrometry was performed 

employing a Finnigan LCQDuo spectrometer using methanol solutions of the respective 

compounds. High resolution mass spectrometry (HRMS) was performed employing a Thermo 

Scientific LTQ FT Ultra spectrometer (ESI) using methanol solutions of the respective 

compounds or a Finnigan MAT95 sectorfield spectrometer (EI). Elemental analysis was 

performed on a Thermo Flash EA 1112.  
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4.1 Synthesis of Mono- and Diacetylated Carbohydrate Derivatives for 

Elucidation of Product Distribution and Conversion 

The synthesis is exemplarily given by the following experimental protocol: To a solution of 

methyl 4,6-O-benzylidene-α-D-glucopyranoside (3; 298.2 mg, 1.06 mmol) in dry CH2Cl2  

(10 mL) was added DMAP (8.5 mg, 7 mol%) and acetic anhydride (130.6 µL, 140.7 mg,  

1.38 mmol) and the resulting solution was stirred at rt for 20 h. The reaction was quenched by 

addition of MeOH (2 mL) and stirring was continued for further 30 min. All volatiles were 

removed in vacuo and the reaction products were separated and purified by column 

chromatography eluting with EtOAc/cyclohexane (1:1). 

 

Methyl 2,3-di-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside (13). 

Yield: 166.4 mg (0.45 mmol, 43%) as colorless solid. TLC 

(EtOAc/cyclohexane 1:1): Rf = 0.50. 

1
H NMR (400 MHz, CDCl3): δ = 7.46 – 7.42 (m, 2H), 7.37 – 7.32 (m, 3H), 5.58 (t, J = 9.7 Hz, 

1H), 5.50 (s, 1H), 4.93 (t, J = 4.0 Hz, 1H), 4.91 (dd, J = 9.7, 3.8 Hz, 1H), 4.30 (dd, J = 10.2, 4.8 

Hz, 1H), 3.93 (td, J = 9.9, 4.8 Hz, 1H), 3.77 (t, J = 10.3 Hz, 1H), 3.65 (t, J = 9.6 Hz, 1H), 3.41 (s, 

3H), 2.09 (s, 3H), 2.05 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 170.5, 169.9, 137.1, 129.2, 128.4, 126.3, 101.7, 97.8, 79.4, 

71.7, 69.1, 69.0, 62.5, 55.5, 21.0, 20.9 ppm. 

The NMR data are in accordance with those reported previously.
[28]

 

 

Methyl 2-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside (4).  

Yield: 42.3 mg (0.13 mmol, 12%) as colorless solid. TLC (EtOAc/ 

cyclohexane 1:1): Rf = 0.39. 

1
H NMR (400 MHz, CDCl3): δ = 7.52 – 7.47 (m, 2H), 7.40 – 7.35 (m, 3H), 5.55 (s, 1H), 4.95 (d, 

J = 3.8 Hz, 1H), 4.80 (dd, J = 9.7, 3.8 Hz, 1H), 4.30 (dd, J = 9.9, 4.5 Hz, 1H), 4.18 (t, J = 9.5 Hz, 

1H), 3.85 (td, J = 9.6, 4.5 Hz, 1H), 3.76 (t, J = 10.2 Hz, 1H), 3.56 (t, J = 9.3 Hz, 1H), 3.40 (s, 

3H), 2.52 (br s, 1H), 2.16 (s, 3H) ppm. 
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13
C NMR (100 MHz, CDCl3): δ = 170.8, 137.1, 129.5, 128.5, 126.4, 102.2, 97.7, 81.5, 73.7, 

69.0, 68.8, 62.1, 55.6, 21.1 ppm. 

The NMR data are in accordance with those reported previously.
[18,20,29]

  

 

Methyl 3-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside (5).  

Yield: 137.4 mg (0.42 mmol, 40%) as colorless solid. TLC 

(EtOAc/cyclohexane 1:1): Rf = 0.28. 

1
H NMR (400 MHz, CDCl3): δ = 7.47 – 7.42 (m, 2H), 7.38 – 7.33 (m, 3H), 5.49 (s, 1H), 5.32 (t, 

J = 9.7 Hz, 1H) 4.80 (d, J = 3.8 Hz, 1H), 4.30 (dd, J = 10.1, 4.7 Hz, 1H), 3.87 (td, J = 9.9, 4.7 

Hz, 1H), 3.75 (t, J = 10.3 Hz, 1H), 3.70 – 3.63 (m, 1H), 3.58 (t, J = 9.6 Hz, 1H), 3.47 (s, 3H), 

2.25 (br d, J = 11.1 Hz, 1H), 2.12 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 171.2, 137.2, 129.2, 128.4, 126.3, 101.7, 100.3, 78.8, 72.4, 

72.0, 69.1, 62.9, 55.7, 21.2 ppm. 

The NMR data are in accordance with those reported previously.
[18,29]

  

 

Methyl 4,6-O-cyclohexylidene-α-D-glucopyranoside (26). The substrate 

was provided by the group of E. M. McGarrigle and was used as received. 

 
1
H NMR (400 MHz, CDCl3): δ = 4.74 (d, J = 3.9 Hz, 1H), 3.84 (dd, J = 10.4, 5.2 Hz, 1H), 3.77 

(t, J = 9.0 Hz, 1H), 3.73 (t, J = 10.3 Hz, 1H), 3.62 (dt, J = 10.2, 5.1 Hz, 1H), 3.59 – 3.50 (m, 2H), 

3.41 (s, 3H), 2.55 (br s, 2H), 2.04 – 1.94 (m, 1H), 1.90 – 1.81 (m, 1H), 1.66 – 1.34 (m, 8H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 100.0, 99.9, 73.1, 72.7, 72.3, 63.5, 61.7, 55.5, 38.0, 27.9, 25.7, 

22.9, 22.6 ppm. 

The 
1
H NMR data are in accordance with those reported previously.

[30]
 

The products obtained from acetylation of 26 were always contaminated with the corresponding 

4,6-O-cyclohexylidene deprotected derivatives that formed upon removal of the solvent. Thus, 

an unequivocal assignment of NMR chemical shifts for the determination of conversion as well 
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as selectivity was not possible. As a consequence, this substrate was not used for catalytic 

experiments. 

 

Methyl 2,3-di-O-acetyl-4,6-O-cyclohexylidene-α-D-glucopyranoside (27). 

The compound was prepared using 26 on 1.0 mmol scale as described for 3. 

Yield: 116.1 mg (0.32 mmol, 32%) as colorless oil. TLC (EtOAc/hexanes 

1:1): Rf = 0.63.  

The obtained product was contaminated with the corresponding 4,6-O-cyclohexylidene 

deprotected derivative (~15% as judged by NMR). Multiplicities could not be assigned in some 

cases due to overlapping signals. 

1
H NMR (400 MHz, CDCl3): δ = 5.42 – 5.35 (m, 1H), 4.91 – 4.80 (m, 2H), 3.89 – 3.84 (m, 1H), 

3.81– 3.69 (m, 2H), 3.68– 3.62 (m, 1H), 3.37 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.74 – 1.29 (m, 

10H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 170.6, 170.0, 100.0, 97.8, 71.7, 71.5, 69.7, 63.5, 61.9, 55.4, 

37.9, 27.7, 25.7, 22.9, 22.7, 20.9 ppm. 

HRMS (ESI): m/z = 381.1522 [M+Na]
+
 (calcd m/z = 381.1525) 

 

Methyl 2-O-acetyl-4,6-O-cyclohexylidene-α-D-glucopyranoside (28). The 

compound was prepared using 26 on 1.0 mmol scale as described for 3. 

Yield: 63.2 mg (0.25 mmol, 25%) as colorless crystalline solid. TLC 

(EtOAc/hexanes 1:1): Rf = 0.39.  

The obtained product was contaminated with the corresponding 4,6-O-cyclohexylidene 

deprotected derivative (~50% as judged by NMR). Multiplicities could not be assigned in some 

cases due to overlapping signals. 

1
H NMR (400 MHz, CDCl3): δ = 4.89 (d, J = 3.7 Hz, 1H), 4.76 (dd, J = 9.7, 3.8 Hz, 1H), 4.04 – 

3.99 (m, 1H), 3.88 – 3.84 (m, 1H), 3.76 (t, J = 10.1 Hz, 1H), 3.66 – 3.57 (m, 3H), 3.36 (s, 3H), 

2.64 (br s, 1H), 2.15 (s, 3H), 1.92 – 1.82 (m, 1H), 1.75 – 1.38 (m, 9H) ppm. 
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13
C NMR (100 MHz, CDCl3): δ = 170.9, 100.2, 97.7, 73.8, 73.3, 69.3, 63.2, 61.7, 55.4, 38.1, 

27.9, 25.7, 22.9, 22.7, 21.1 ppm. 

HRMS (ESI): m/z = 339.1420 [M+Na]
+
 (calcd m/z = 339.1420) 

 

Methyl 3-O-acetyl-4,6-O-cyclohexylidene-α-D-glucopyranoside (29). The 

compound was prepared using 26 on 1.0 mmol scale as described for 3. 

Yield: 79.1 mg (0.25 mmol, 25%) as colorless solid. TLC (EtOAc/hexanes 

1:1): Rf = 0.31. 

The obtained product was contaminated with the corresponding 4,6-O-cyclohexylidene 

deprotected derivative (~13% as judged by NMR). Multiplicities could not be assigned in some 

cases due to overlapping signals. 

1
H NMR (400 MHz, CDCl3): δ = 5.12 (t, J = 9.5 Hz, 1H), 4.75 (d, J = 3.8 Hz, 1H), 3.89 – 3.83 

(m, 1H), 3.79 (t, J = 10.2 Hz, 1H), 3.71 – 3.63 (m, 1H), 3.62 – 3.57 (m, 2H), 3.42 (s, 3H), 2.35 

(br s, 1H), 2.10 (s, 3H), 1.74 – 1.29 (m, 10H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 171.2, 100.2, 99.8, 73.0, 71.9, 70.8, 63.9, 61.9, 55.5, 38.0, 

27.7, 25.7, 22.9, 22.6, 21.1 ppm. 

HRMS (ESI): m/z = 339.1421 [M+Na]
+
 (calcd m/z = 339.1420) 

 

4.2 Availability of catalysts 

Unless stated otherwise, the peptides were synthesized by standard HBTU/HOBt-mediated solid 

phase peptide synthesis (SPPS) employing fluorenylmethyloxycarbonyl (Fmoc) protected amino 

acids (see Chapter II for details) or by EDC/HOBt mediated peptide coupling in solution using 

the N-tert-butoxycarbonyl (Boc) protecting group strategy. A general procedure is given below 

for the synthesis of 1. The partially protected aminoadamantanecarboxylic acid derivatives
[26]

 

and the catalytically active Pmh
[31]

 were afforded by literature procedures. 

 



New Frontiers in Peptide Catalysis 
 

  183 

Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe (1). Coupling 1: 

H-L-Phe-O e • H l (1.078 g, 5.00 mmol) and Boc-L-

Cha-OH • D HA (2.264 g, 5.00 mmol) were added to a 

round-bottom flask, along with 1-ethyl-3-(3-dimethyl-

aminopropyl)carbodiimide hydrochloride ( D  • H l; 

1.054 g, 5.50 mmol) and 1-hydroxybenzotriazole 

hydrate (HOBt • H2O; 0.842 g, 5.5 mmol). CH2Cl2 (25 mL) was added, followed by Et3N  

(0.77 mL, 0.559 g, 5.52 mmol), and the resulting suspension was stirred at rt for 24 h. The 

reaction mixture was diluted with EtOAc and subsequently washed with 0.5 M citric acid 

solution (3 × 50 mL), sat. aq. NaHCO3 (3 × 50 mL) and brine (50 mL). The organic layer was 

dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the crude peptide 

(2.124 g, 4.91 mmol, 98%) as colorless foam.  

The peptides obtained using this procedure were usually sufficiently pure (as judged by NMR 

and/or ESI-MS) and were used for subsequent coupling steps without any purification. 

Deprotection 1: The peptide fragment was treated with 4 M HCl in 1,4-dioxane (2 mL/mmol) 

and the resulting solution was stirred at rt for 45 min. The reaction flask was flushed with argon 

for 30 min to remove residual HCl and the solvent was removed under reduced pressure. After 

drying in vacuo, the resulting peptide hydrochloride was directly used for the next coupling step. 

Coupling 2: The coupling of H-L-Cha-L-Phe-O e • H l and Boc-
A
Gly-OH was performed on 

4.74 mmol scale according to the procedure described for coupling 1 (vide supra). Boc-
A

Gly-L-

Cha-L-Phe-OMe was obtained as colorless foam (2.876 g, 4.72 mmol, 99%). 

Deprotection 2: The deprotection was performed as described above for deprotection 1. 

Coupling 3: The coupling of H-
A
Gly-L-Cha-L-Phe-O e • H l with Boc-L-Pmh-OH was 

performed on 2.10 mmol scale according to the previous couplings with the modification that  

2.2 equiv of coupling reagents and base were used. The slightly yellow solution was diluted with 

EtOAc and washed with sat. aq. NaHCO3 (3 × 50 mL) and brine (3 × 50 mL). The organic layer 

was dried over Na2SO4, filtered, and concentrated under reduced pressure to give a yellow foam. 

Purification by column chromatography eluting with CHCl3/MeOH (10:1) afforded oligopeptide 

1 (1.272 g, 1.67 mmol, 80%) as colorless foam. TLC (CHCl3/MeOH 10:1): Rf = 0.41. 

1
H NMR (400 MHz, CDCl3): δ = 7.54 (s, 1H), 7.29 – 7.19 (m, 3H), 7.12 – 7.07 (m, 2H), 6.86 (s, 

1H), 6.69 (d, J = 7.7 Hz, 1H), 6.16 (s, 1H), 6.09 (d, J = 7.9 Hz, 1H), 5.35 (br s, 1H) 4.82 – 4.75 

(m, 1H), 4.48 – 4.40 (m, 1H), 4.28 – 4.16 (m, 1H), 3.68 (s, 3H), 3.61 (s, 3H), 3.11 (dd, J = 13.9, 

5.9 Hz, 1H), 3.05 (dd, J = 13.9, 6.5 Hz, 1H), 2.98 (d, J = 6.9 Hz, 2H), 2.17 (m, 2H), 2.03 – 1.94 
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(m, 2H), 1.95 – 1.85 (m, 4H), 1.76 – 1.55 (m, 12H), 1.51 – 1.43 (m, 1H), 1.41 (s, 9H), 1.28 – 

1.05 (m, 4H), 0.97 – 0.76 (m, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 176.5, 172.1, 171.8, 169.8, 155.5, 138.0, 135.9, 129.3, 128.7, 

127.8, 127.7, 80.5, 54.5, 53.4, 52.5, 52.4, 50.8, 42.6, 42.3, 40.4, 40.4, 39.6, 38.3, 38.1, 37.9, 

35.3, 34.3, 33.6, 32.8, 31.8, 29.2, 29.2, 28.4, 27.1, 26.5, 26.3, 26.2 ppm. 

Spectrosopic data match those reported in the literature
[6a]

 and in Chapter II.  

 

Boc-D-Pmh-
A
Gly-D-Cha-D-Phe-OMe (ent-1). For syn-

thesis and complete characterization see Chapter II. 

 

 

Boc-L-Pmh-
A
Gly-L-Phe-OMe (14). For synthesis and com-

plete characterization see Chapter II. 

 

 

Boc-L-Pmh-
A
Gly-

A
Gly-L-Phe-OMe (15).  

For synthesis and complete characterization see 

Chapter II. 

 

 

Boc-
A
Gly-L-Pmh-OMe (16). H-L-Pmh-OMe • 2 HCl: In 

accordance with a reported procedure,
[32]

 trimethylsilyl chloride 

(3.80 mL, 3.26 g, 30.0 mmol) was added dropwise to Boc-L-Pmh-

OH (2.64 g, 9.8 mmol) with cooling. Dry MeOH (100 mL) was 

added slowly and the resulting solution was allowed to stir at rt for 
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24 h. All volatiles were removed in vacuo to afford H-L-Pmh-O e • 2 H l (quant.) as colorless 

solid. 

1
H NMR (400 MHz, D2O): δ = 8.75 (s, 1H), 7.48 (s, 1H), 4.55 (t, J = 7.3 Hz, 1H), 3.89 (s, 3H), 

3.86 (s, 3H), 3.55 (dd, J = 16.3, 6.9 Hz, 1H), 3.42 (dd, J = 16.1, 7.3 Hz, 1H) ppm. 

13
C NMR (100 MHz, D2O): δ = 168.8, 136.1, 128.1, 118.9, 54.0, 51.0, 33.4, 23.7 ppm. 

1
H NMR data are in accordance with those reported.

[33]
 

 

According to a literature procedure,
[34]

 Boc-
A
Gly-OH (886.1 mg, 3.0 mmol), H-L-Pmh-O e • 2 

HCl (768.4 mg, 3.0 mmol) and O-(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium 

hexafluorophosphate (HBTU; 1.138 g, 3.0 mmol) were dissolved in dry acetonitrile/methanol 

(10:1, 44 mL) and cooled to 0 °C with an ice bath. DiPEA (1.53 mL, 1.163 g, 9.0 mmol) was 

added and the mixture was stirred for 3.5 h upon warming to rt. The reaction was quenched with 

brine (60 mL) and extracted with CHCl3 (4 × 40 mL). The combined organic layers were 

successively washed with H2O (2 × 50 mL), sat. aq. NaHCO3 (2 × 50 mL) and brine (2 × 50 mL) 

and dried over Na2SO4. After filtration and removal of the solvent under reduced pressure the 

crude product was purified by column chromatography eluting with CHCl3/MeOH (9:1) to yield 

16 (952.2 mg, 2.07 mmol, 69%) as colorless solid. TLC (CHCl3/MeOH 9:1): Rf = 0.33.  

1
H NMR (600 MHz, CDCl3): δ = 7.53 (s, 1H), 6.80 (s, 1H), 6.28 (d, J = 7.4 Hz, 1H), 4.79 – 4.75 

(m, 1H), 4.43 (br s, 1H), 3.74 (s, 3H), 3.62 (s, 3H), 3.14 (dd, J = 15.4, 6.2 Hz, 1H), 3.06 (dd, J = 

15.4, 6.4 Hz, 1H), 2.22 – 2.17 (m, 2H), 2.03 – 1.95 (m, 2H), 1.95 – 1.82 (m, 4H), 1.78 – 1.68 (m, 

4H), 1.66 – 1.57 (m, 2H), 1.42 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.7, 171.8, 154.2, 138.2, 127.5, 126.9, 79.1, 52.8, 51.4, 

50.9, 43.0, 42.8, 41.1, 41.0, 38.3, 38.3, 35.4, 31.8, 29.3, 29.3, 28.6, 26.8 ppm. 

For complete characterization see Chapter VI. 
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Boc-L-Cha-
A
Gly-L-Pmh-OMe (17). Coupling 1: The 

coupling of Boc-
A
Gly-OH (1.188 g, 4.0 mmol) and H-L-Pmh-

O e • 2 H l (1.027 g, 4.0 mmol) was performed as described 

for catalyst 16. The crude product obtained after work-up was 

used for the subsequent steps without further purification. 

Deprotection: The deprotection was performed as described for the synthesis of peptide 1. 

Coupling 2: The coupling of H-
A
Gly-L-Pmh-O e • 2 H l and Boc-L-Cha-OH • D HA was 

performed according to coupling 3 described for the synthesis of 1 with the modification that  

3 equiv. of Et3N were used. Column chromatography eluting with CH2Cl2/MeOH (95:5) gave 

Boc-L-Cha-
A
Gly-L-Pmh-OMe (17; 1.645 g, 2.68 mmol, 67% based on H-L-Pmh-O e • 2 H l) 

as colorless solid. TLC (CH2Cl2/MeOH, 95:5): Rf = 0.32. 

1
H NMR (600 MHz, CDCl3): δ = 7.44 (s, 1H), 6.76 (s, 1H), 6.27 (d, J = 7.5 Hz, 1H), 5.90 (br s, 

1H), 4.89 (br s, 1H), 4.79 – 4.75 (m, 1H), 3.97 (br s, 1H), 3.74 (s, 3H), 3.60 (s, 3H), 3.13 (dd, J = 

15.5, 6.1 Hz, 1H), 3.05 (dd, J = 15.4, 6.5 Hz, 1H), 2.07 (d, J = 11.8 Hz, 1H), 2.03 – 1.96 (m, 

2H), 1.96 – 1.90 (m, 3H), 1.79 – 1.58 (m, 12H), 1.44 (s, 9H), 1.43 – 1.36 (m, 1H), 1.34 – 1.09 

(m, 5H), 0.99 – 0.91 (m, 1H), 0.91 – 0.83 (m, 1H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 172.0, 171.8, 155.9, 138.4, 127.9, 126.7, 80.2, 53.1, 

52.8, 52.2, 51.3, 42.7, 42.5, 40.7, 40.6, 40.0, 38.2, 38.2, 35.3, 34.3, 33.8, 32.8, 31.6, 29.2, 29.2, 

28.5, 26.8, 26.6, 26.4, 26.2, 24.9, 23.1, 22.3 ppm. 

For complete characterization see Chapter VI. 

 

Boc-L-Phe-
A
Gly-L-Pmh-OMe (18). The deprotection of 

Boc-
A
Gly-L-Pmh-OMe (16; 230.5 mg, 0.50 mmol) was 

performed with 4 M HCl in 1,4-dioxane (2.0 mL) as described 

in the synthesis of 1. Coupling of Boc-L-Phe-OH (132.8 mg, 

0.50 mmol) with H-
A
Gly-L-Pmh-O e • 2 H l was performed 

in the presence of HBTU (208.5 mg, 0.55 mmol), HOBt • H2O (84.9 mg, 0.55 mmol), and Et3N 

(0.23 mL, 167.0 mg, 1.65 mmol) in CH2Cl2 (5 mL) at rt for 24 h according to the procedure 

described for 16. A sample of the crude peptide was purified by preparative HPLC for complete 

characterization and catalysis. LiChrosorb Diol column (Merck), 250 mm × 8 mm; eluent: 10% 

MeOH/TBME, 5.0 mL/min; UV-detector λ = 220 nm. Retention time: tR = 7.5 min. 
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1
H NMR (600 MHz, CDCl3): δ = 7.54 (s, 1H), 7.32 – 7.19 (m, 5H), 6.81 (s, 1H), 6.28 (d, J = 7.4 

Hz), 5.42 (s, 1H), 5.14 (br s, 1H), 4.80 – 4.72 (m, 1H), 4.17 (br s, 1H), 3.75 (s, 3H), 3.61 (s, 3H), 

3.14 (dd, J = 15.5, 6.1 Hz, 1H), 3.09 – 3.02 (m, 2H), 2.96 – 2.90 (m, 1H), 2.15 (s, 2H), 1.97 – 

1.86 (m, 2H), 1.85 – 1.66 (m, 8H), 1.63 – 1.54 (m, 2H), 1.41 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 171.8, 170.2, 155.5, 138.2, 137.2, 129.6, 128.8, 127.5, 

127.1, 126.8, 80.2, 56.5, 52.8, 52.2, 51.3, 42.7, 42.4, 40.5, 40.4, 39.2, 38.2, 38.1, 35.2, 31.8, 

29.2, 28.5, 26.8 ppm. 

For complete characterization see Chapter VI. 

 

Boc-D-Val-
A
Gly-L-Pmh-OMe (19). The deprotection of Boc-

A
Gly-L-Pmh-OMe (16; 0.461 g, 1.00 mmol) was performed 

with 4 M HCl in 1,4-dioxane (2.0 mL) as described in the 

synthesis of 1. Coupling of Boc-D-Val-OH (217.3 mg,  

1.0 mmol) with H-
A
Gly-L-Pmh-O e • 2 H l was performed 

in the presence of HBTU (379.3 mg, 1.0 mmol), HOBt • 2 H2O (153.1 mg, 1.0 mmol), and 

DiPEA (0.52 mL, 387.7 mg, 3.0 mmol) in CH2Cl2 (5 mL) at rt for 24 h according to the 

procedure described for 16. Purification by column chromatography eluting with CHCl3/MeOH 

(9:1) afforded 19 (288.6 mg, 0.52 mmol, 52%) as colorless solid. TLC (CHCl3/MeOH 9:1): Rf = 

0.39. 

1
H NMR (600 MHz, CDCl3): δ = 7.40 (s, 1H), 6.75 (s, 1H), 6.25 (d, J = 7.5 Hz, 1H), 5.69 (s, 

1H), 5.06 (d, J = 8.3 Hz, 1H), 4.80 – 4.75 (m, 1H), 3.74 (s, 3H), 3.74 – 3.70 (m, 1H), 3.59 (s, 

3H), 3.13 (dd, J = 15.4, 6.1 Hz, 1H), 3.04 (dd, J = 15.4, 6.5 Hz, 1H), 2.21 (m, 2H), 2.07 – 2.01 

(m, 3H), 2.00 – 1.93 (m, 4H), 1.80 – 1.69 (m, 4H), 1.68 – 1.58 (m, 2H), 1.44 (s, 9H), 0.93 (d, J = 

6.7 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.4, 171.9, 156.0, 138.5, 128.4, 126.5, 79.9, 60.5, 52.8, 

52.4, 51.3, 42.7, 42.6, 40.6, 40.5, 38.2, 35.3, 31.6, 31.1, 29.2, 28.5, 26.8, 19.4, 18.0 ppm. 

For complete characterization see Chapter VI. 
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Boc-L-Trp-
A
Gly-L-Pmh-OMe (20). The tripeptide was 

synthesized on 0.3 mmol scale employing the procedure 

described for 17. A sample of the crude peptide was purified 

by preparative HPLC for complete characterization and 

catalysis. LiChrosorb Diol column (Merck), 250 mm × 8 mm; 

eluent: 12% MeOH/TBME, 5.0 mL/min; UV-detector λ = 220 nm. Retention time: tR = 7.4 min. 

1
H NMR (600 MHz, CDCl3): δ = 9.98 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.60 (s, 1H), 7.38 (d, J = 

8.1 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.12 – 7.08 (m, 1H), 7.02 (s, 1H), 6.85 (s, 1H), 6.33 (d, J = 7.5 

Hz, 1H), 5.29 (br s, 1H), 5.25 (s, 1H), 4.81 – 4.76 (m, 1H), 4.36 (br s, 1H), 3.78 (s, 3H), 3.61 (s, 

3H), 3.36 – 3.29 (m, 1H), 3.19 (dd, J = 15.6, 5.3 Hz, 1H), 3.06 – 2.97 (m, 2H), 2.08 (d, J = 22.5 

Hz, 2H), 1.85 (d, J = 12.1 Hz, 1H), 1.76 (d, J = 11.6 Hz, 1H), 1.73 – 1.47 (m, 10H), 1.44 (s, 9H) 

ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 171.9, 170.7, 155.6, 138.0, 136.5, 127.6, 127.2, 126.8, 

124.0, 122.0, 119.5, 118.8, 111.7, 110.3, 79.9, 55.6, 52.9, 52.0, 50.9, 42.6, 42.1, 40.5, 40.2, 38.0, 

38.0, 35.2, 31.8, 29.1, 29.1, 29.0, 28.5, 26.6 ppm. 

For complete characterization see Chapter VI. 

 

3,5-bis(trifluoromethyl)phenyl)thiourea-
A
Gly-L-Pmh-OMe 

(21). The synthesis and characterization data for 21 can be 

found in the literature.
[34]

 

 

Boc-L-Pmh-
A
Gly-L-Val-L-Phe-OMe (22). For syn-

thesis and complete characterization see Chapter II. 

 

 

Boc-L-Pmh-
A
Gly-D-Val-L-Phe-OMe (23). For syn-

thesis and complete characterization see Chapter II. 
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Boc-D-Pmh-
A
Gly-L-Val-L-Phe-OMe (24). For syn-

thesis and complete characterization see Chapter II. 

 

 

Boc-D-Pmh-
A
Gly-D-Val-L-Phe-OMe (25). For syn-

thesis and complete characterization see Chapter II. 

 

 

 

4.3 Description of Catalytic Experiments 

General procedure for catalytic runs. Methyl 4,6-O-benzylidene-α-D-gluco-pyranoside (3;  

28.2 mg, 0.1 mmol) and catalyst (5 mol%; 10 mol% for NMI) were suspended in dry toluene (10 

mL) under nitrogen. Acetic anhydride (12 µL, 13.0 mg, 1.3 mmol) was added and the mixture 

was stirred at rt for 18 h. The reaction was quenched by addition of MeOH  

(1 mL) and was allowed to stir for further 30 min. All volatiles were removed in vacuo, the 

obtained residue was redissolved in CDCl3 and analyzed by 
1
H NMR in order to determine 

conversion and product distribution. 

The reactions described in Table 2 were performed with 3 (28 mg, 0.1 mmol) and peptide 

catalysts 1 (3.8 mg, 5 mol%) or 24 (3.1 mg, 5 mol%) according to the general procedure given 

above, with the exception that different solvents (10 mL), varying amounts of anhydride  

(1.3 equiv or 5.3 equiv) and different temperatures (rt or 0°C) were employed, or DiPEA (50 µL, 

37.1 mg, 0.29 mmol) was used as auxiliary base. 

 

Acetylation of 3 in the presence of Et3N. The reaction was reproduced according the reaction 

conditions described in the literature
[15]

 with the purpose to determine the amounts of 5 and 13 

formed upon acetylation. Methyl 4,6-O-benzylidene-α-D-glucopyranoside (3; 28.3 mg,  

0.1 mmol) was dissolved in CH2Cl2 (0.7 mL), acetic anhydride (13.2 µL, 14.3 mg, 0.14 mmol) 

was added and the solution was stirred at rt for 10 min. After addition of Et3N (125 µL, 91.3 mg, 
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0.9 mmol) the reaction mixture was allowed to stir at rt overnight, quenched with MeOH, and 

concentrated under reduced pressure. The obtained residue was redissolved in CDCl3 and 

analyzed by 
1
H NMR in order to determine conversion and product distribution. In accordance 

with the reported values, 4 was the major product (80%). The by-products 5 and 13 formed in 

5% and 15%, respectively (Table 3). 

 

4.4 Computational Details 

The distance of the acylium ion C=O of peptides 22–25 to the 2-OH group of substrate 3 was 

initially set to 2.5 Å and a search for low-lying conformers was performed using the Merck 

Molecular Force Field without constraining the distance. From the obtained conformers of each 

catalyst some conformers were found where the carbohydrate was placed outside the catalytic 

pocket. However, for each catalyst the lowest-lying adduct was chosen that would allow 

acetylation of the substrate to take place. 

 

 

 

 
Table 4. Cartesian coordinates for complex 22Ac_3.  Table 5. Cartesian coordinates for complex 23Ac_3. 

     Atom            X                 Y                   Z 
 

     Atom            X                 Y                   Z 

C       -0.773772      1.171579     -4.028518 

C        1.449341      2.390656     -3.768394 

C        0.912386      1.172612     -5.929939 

C        2.019559      1.548071     -4.937961 

C       -0.156558      0.356051     -5.194137 

C        0.362639      1.554375     -3.046302 

H        2.493585      0.634981     -4.553424 

H        0.285021     -0.574099     -4.811518 
 

 
C       -0.473383      1.429681     -3.536894 

C        1.823566      2.355418     -2.911773 

C        1.478776      1.209201     -5.148226 

C        2.461552      1.450467     -3.993901 

C        0.211300      0.535766     -4.602285 

C        0.542819      1.656245     -2.388997 

H        2.759847      0.488888     -3.557978 

H        0.464851     -0.441260     -4.169269 
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H        0.809644      0.648892     -2.612748 

H        1.334621      0.577431     -6.747359 

H        2.807267      2.107015     -5.460683 

H       -0.941194      0.053257     -5.900628 

H       -0.045913      2.114973     -2.197232 

C        0.796537      3.662627     -4.360641 

H        0.371647      4.289806     -3.566739 

H        1.555266      4.277222     -4.862752 

C       -1.387427      2.463543     -4.623029 

H       -1.837140      3.080723     -3.836154 

H       -2.200258      2.210771     -5.316609 

C       -0.314943      3.287443     -5.354334 

H       -0.766139      4.198620     -5.763047 

C        0.279759      2.451069     -6.495307 

H       -0.502911      2.193981     -7.219586 

H        1.033920      3.036069     -7.035912 

C        2.591858      2.766875     -2.814340 

O        3.736515      2.336464     -2.941713 

N        2.257865      3.607562     -1.775527 

C        3.269970      4.030120     -0.802602 

C        3.496200      2.844423      0.166558 

O        2.782326      2.615619      1.142888 

H        1.282295      3.709058     -1.529346 

H        4.205126      4.194324     -1.355411 

C        2.893998      5.367986     -0.126623 

H        2.750382      6.100730     -0.933317 

C        4.046582      5.878583      0.743968 

C        1.596244      5.361418      0.686281 

H        0.754905      4.962880      0.113070 

H        1.331837      6.384847      0.976624 

H        1.691456      4.785568      1.610871 

H        4.232223      5.215711      1.595534 

H        3.821654      6.875596      1.137891 

H        4.971628      5.953029      0.162575 

N        4.481818      1.975906     -0.248620 

C        4.703154      0.670069      0.379206 

C        6.132173      0.224490      0.068417 

O        6.701113      0.428774     -0.997701 

H        4.797659      2.063198     -1.220402 

H        4.593639      0.810594      1.460350 

C        3.710442     -0.364365     -0.174567 

C        3.681881     -1.676359      0.574460 

H        3.934048     -0.549360     -1.234460 

H        2.692354      0.043178     -0.167147 

C        3.629463     -4.126230      1.943487 

C        3.964475     -2.874173     -0.096259 

C        3.365857     -1.725092      1.939492 

C        3.342073     -2.943377      2.620020 

C        3.941133     -4.091542      0.586186 

H        4.217068     -2.870744     -1.155195 

H        3.152016     -0.815285      2.494564 

H        3.115438     -2.967798      3.683091 

H        4.174536     -5.013694      0.059116 

H        3.623188     -5.074494      2.475342 

O        6.668717     -0.439168      1.130020 

C        7.993680     -0.922826      0.905731 

H        8.005793     -1.634427      0.074209 

H        8.322268     -1.441914      1.810288 

H        8.678120     -0.090342      0.715241 
 

H        0.802041      0.698661     -1.916872 

H        1.944899      0.562945     -5.900424 

H        3.379971      1.909432     -4.383344 

H       -0.482815      0.332699     -5.428878 

H        0.082208      2.255651     -1.597357 

C        1.431079      3.698767     -3.573297 

H        0.970449      4.374839     -2.841954 

H        2.328641      4.213469     -3.940859 

C       -0.817010      2.788298     -4.193501 

H       -1.303170      3.457265     -3.473041 

H       -1.537366      2.641270     -5.009078 

C        0.451576      3.465613     -4.734665 

H        0.189105      4.425728     -5.193074 

C        1.106286      2.556011     -5.783725 

H        0.419375      2.397304     -6.624092 

H        2.002380      3.039175     -6.192170 

C        2.831985      2.611538     -1.778300 

O        3.995692      2.217775     -1.816500 

N        2.345159      3.339736     -0.718757 

C        3.146329      3.771287      0.426517 

C        3.487747      2.545949      1.311248 

O        2.865277      2.311092      2.349986 

H        1.376934      3.630848     -0.723151 

N        4.452554      1.701638      0.827863 

C        5.070007      0.644779      1.634229 

C        6.337253      1.125176      2.358171 

O        6.910249      0.466794      3.219434 

H        4.842557      1.907327     -0.093354 

H        4.362240      0.358885      2.421041 

C        5.462898     -0.565244      0.775339 

C        4.280062     -1.403036      0.350000 

H        6.157012     -1.219336      1.320300 

H        6.019378     -0.236787     -0.113181 

C        2.140501     -3.016426     -0.463345 

C        3.771458     -2.391738      1.203481 

C        3.692486     -1.220349     -0.907495 

C        2.627234     -2.024603     -1.312401 

C        2.708574     -3.197772      0.795619 

H        4.217931     -2.558849      2.182232 

H        4.078815     -0.464504     -1.588563 

H        2.193895     -1.890278     -2.299918 

H        2.340220     -3.978893      1.455672 

H        1.331545     -3.660534     -0.791504 

O        6.778074      2.325107      1.885109 

C        7.978366      2.793610      2.502671 

H        8.802776      2.099719      2.311562 

H        7.827243      2.932694      3.577664 

H        8.229995      3.761540      2.060500 

N       -1.689216      0.753200     -3.072256 

H       -2.036039     -0.010015     -3.655002 

N       -3.464128     -0.988102     -1.507092 

C       -3.828803      0.360907     -1.935767 

C       -2.557876      1.225307     -2.107965 

O       -2.360403      2.241197     -1.444956 

H       -2.949778     -1.083298     -0.629020 

C       -4.876819      1.025496     -1.032439 

C       -4.559933      1.028800      0.421858 

H       -5.036766      2.065386     -1.343967 

H       -5.837234      0.515510     -1.169047 
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N       -1.799767      0.342374     -3.390106 

H       -1.874474     -0.625550     -3.711348 

N       -2.990648     -1.427492     -1.218382 

C       -3.660356     -0.375371     -1.975532 

C       -2.634257      0.717097     -2.359169 

O       -2.560535      1.792694     -1.769922 

H       -2.560787     -1.172101     -0.325760 

C       -4.890745      0.210088     -1.269125 

C       -4.696215      0.601158      0.153829 

H       -5.251424      1.091741     -1.813844 

H       -5.702721     -0.525065     -1.308246 

C       -4.202787      1.764408      0.709835 

H       -3.819642      2.669383      0.266541 

C       -2.235601     -2.362629     -1.865440 

O       -2.229579     -2.505568     -3.078654 

O       -1.466122     -3.015157     -0.968921 

C       -0.446409     -3.947510     -1.415801 

C        0.622719     -3.228102     -2.247116 

H        0.983266     -2.333722     -1.726085 

H        0.231159     -2.890485     -3.211555 

H        1.477388     -3.882153     -2.450346 

C        0.204824     -4.468677     -0.126785 

H        0.609709     -3.641673      0.466655 

H        1.014556     -5.174827     -0.337643 

H       -0.532629     -4.973098      0.507177 

C       -1.059815     -5.134180     -2.166269 

H       -1.468140     -4.838931     -3.137286 

H       -1.888210     -5.568460     -1.595268 

H       -0.315409     -5.916371     -2.350372 

N       -5.060956     -0.200896      1.247483 

C       -5.652920     -1.535178      1.198040 

H       -6.629187     -1.472653      0.710109 

H       -5.791244     -1.914805      2.211970 

H       -4.996835     -2.200690      0.635696 

C       -4.728466      0.410268      2.398109 

H       -4.846073     -0.009106      3.393241 

N       -4.240670      1.608655      2.074704 

C       -3.814333      2.460663      3.005767 

O       -3.999313      2.093778      4.157976 

C       -3.165774      3.762526      2.638641 

H       -2.856538      4.282784      3.549683 

H       -2.278734      3.578512      2.027712 

H       -3.876462      4.393236      2.099174 

H        1.685866      1.476000      3.493420 

C        0.697271      1.007347      3.424245 

C       -1.016763      0.141696      1.805817 

C       -0.479239     -0.988830      3.949076 

C       -0.924387     -1.212141      2.500409 

C        0.313256      0.877384      1.934635 

H       -1.821735      0.733588      2.240867 

H       -1.253143     -0.417614      4.480964 

H       -0.197177     -1.825116      1.950255 

H        1.078061      0.304616      1.401746 

O       -0.262933      1.841137      4.084458 

C        0.192486      2.249952      5.369953 

H        1.108179      2.842320      5.281434 

H        0.362143      1.383776      6.016228 

H       -0.582469      2.874310      5.822706 

O        0.766888     -0.295415      4.025240 
 

C       -3.805607      1.905394      1.175919 

H       -3.246602      2.788005      0.909931 

C       -3.095568     -1.929549     -2.423143 

O       -3.191661     -1.766808     -3.629917 

O       -2.565695     -3.000607     -1.793269 

C       -2.025296     -4.105011     -2.568876 

C       -0.845827     -3.645552     -3.434829 

H       -0.137347     -3.056056     -2.843771 

H       -1.168648     -3.006658     -4.262388 

H       -0.314187     -4.497946     -3.871148 

C       -1.505918     -5.107834     -1.527569 

H       -0.803465     -4.627890     -0.838395 

H       -1.006274     -5.961179     -1.998039 

H       -2.324855     -5.493039     -0.911111 

C       -3.115773     -4.789180     -3.400799 

H       -3.474500     -4.149296     -4.212486 

H       -3.986993     -5.025820     -2.779544 

H       -2.748040     -5.716397     -3.853397 

N       -5.059844      0.091842      1.340880 

C       -5.943599     -1.034551      1.054949 

H       -6.882570     -0.655361      0.643166 

H       -6.160040     -1.576200      1.977598 

H       -5.461922     -1.698546      0.336152 

C       -4.557695      0.335153      2.564520 

H       -4.728509     -0.271111      3.449610 

N       -3.836693      1.453380      2.473108 

C       -3.217306      1.969644      3.533301 

O       -3.436526      1.388245      4.586959 

C       -2.337612      3.178810      3.415730 

H       -1.895008      3.401139      4.390886 

H       -1.530086      2.987051      2.705805 

H       -2.930039      4.039152      3.095063 

H        2.065103     -0.203553      3.216272 

C        0.996275     -0.441161      3.179444 

C       -0.995253     -0.517969      1.635852 

C       -0.527797     -2.250282      3.347563 

C       -1.135855     -1.997581      1.967665 

C        0.451757     -0.047648      1.787935 

H       -1.643934      0.067382      2.289380 

H       -1.108382     -1.707126      4.106540 

H       -0.622234     -2.575863      1.187466 

H        1.063966     -0.502078      1.003266 

O        0.310451      0.330916      4.172802 

C        0.991630      0.297232      5.422700 

H        1.987835      0.739894      5.327691 

H        1.066169     -0.727963      5.797169 

H        0.416210      0.888394      6.140124 

O        0.838662     -1.849349      3.406351 

C       -0.698861     -3.734633      3.645819 

H       -0.343043     -3.962166      4.656239 

H       -0.114024     -4.358774      2.958944 

O       -2.519559     -2.377780      1.980051 

O        0.448571      1.372999      1.547043 

H        1.235212      1.726638      2.023875 

O       -1.451595     -0.247679      0.299582 

H       -1.001694      0.591489      0.054954 

O       -2.081170     -4.080647      3.565418 

C       -2.634615     -3.773917      2.284931 

H       -2.123343     -4.374368      1.520798 
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C       -0.409358     -2.357678      4.618000 

H       -0.184522     -2.247314      5.684121 

H        0.388339     -2.978344      4.192161 

O       -2.189271     -1.885692      2.488334 

O        0.185304      2.137348      1.258064 

H        1.082312      2.540806      1.322155 

O       -1.348297     -0.003170      0.417231 

H       -1.073044      0.847448      0.006567 

O       -1.667157     -3.021859      4.488094 

C       -2.042864     -3.166818      3.117485 

H       -1.281329     -3.765494      2.599661 

C       -3.374949     -3.876462      3.001690 

C       -5.838312     -5.205495      2.725067 

C       -4.314504     -3.870722      4.044805 

C       -3.700124     -4.550366      1.811603 

C       -4.921674     -5.213282      1.676142 

C       -5.535924     -4.534474      3.908319 

H       -4.088703     -3.366781      4.983151 

H       -2.995314     -4.568419      0.982403 

H       -5.151345     -5.749223      0.757932 

H       -6.243432     -4.544281      4.734507 

H       -6.781604     -5.738338      2.628268 

H       -4.020486     -0.806792     -2.919878 

C       -4.112869     -4.104550      2.271058 

C       -6.857699     -4.720365      2.200803 

C       -4.891543     -4.054229      3.438960 

C       -4.742973     -4.449700      1.063772 

C       -6.104185     -4.761228      1.029951 

C       -6.252873     -4.364843      3.404518 

H       -4.431793     -3.797204      4.392043 

H       -4.173031     -4.485419      0.138537 

H       -6.573329     -5.051235      0.092430 

H       -6.836228     -4.349900      4.322523 

H       -7.913088     -4.982637      2.179502 

H       -4.279823      0.297045     -2.935706 

C        4.363298      4.661001      0.077206 

H        5.149125      4.065083     -0.400418 

C        3.985977      5.792638     -0.886947 

H        4.843433      6.450006     -1.067917 

H        3.171899      6.403739     -0.482422 

H        3.668682      5.402299     -1.858469 

C        4.957996      5.280268      1.349204 

H        5.849144      5.871078      1.111216 

H        5.254046      4.514384      2.070816 

H        4.237208      5.942454      1.841415 

H        2.455422      4.380617      1.026289 

 

   
   
Table 6. Cartesian coordinates for complex 24Ac_3.  Table 7. Cartesian coordinates for complex 25Ac_3. 

     Atom            X                 Y                   Z 
 

     Atom            X                 Y                   Z 

C        0.189277      0.710169     -3.162060 

C        1.271493     -1.593240     -3.395719 

C       -0.543636     -0.868027     -5.011729 

C        0.064881     -2.056432     -4.246658 

C       -1.003928      0.209866     -4.013580 

C        0.764186     -0.514994     -2.415569 

H       -0.700302     -2.513228     -3.604940 

H       -1.788288     -0.200111     -3.364314 

H       -0.002557     -0.944565     -1.756375 

H       -1.399813     -1.210955     -5.603389 

H        0.375242     -2.834070     -4.956925 

H       -1.460980      1.048670     -4.555153 

H        1.573678     -0.196852     -1.754766 
 

 C        0.552750      0.956904     -3.201412 

C       -1.759135      0.053752     -3.787335 

C       -0.929741      2.187334     -4.868160 

C       -2.162121      1.447708     -4.321304 

C        0.107513      2.339267     -3.744448 

C       -0.701549      0.227464     -2.671581 

H       -2.620667      2.056742     -3.532467 

H       -0.323229      2.935714     -2.932541 

H       -1.116466      0.791102     -1.825310 

H       -1.226753      3.177286     -5.232297 

H       -2.920563      1.345603     -5.108368 

H        0.977092      2.900346     -4.111579 

H       -0.435666     -0.755669     -2.264817 
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C        2.326624     -0.969642     -4.337703 

H        3.199194     -0.622167     -3.769839 

H        2.700268     -1.728178     -5.038016 

C        1.257550      1.285262     -4.123278 

H        2.127426      1.658015     -3.570211 

H        0.848995      2.147553     -4.666624 

C        1.724419      0.211064     -5.118629 

H        2.482296      0.634123     -5.787590 

C        0.523219     -0.274000     -5.942664 

H        0.099222      0.560304     -6.514878 

H        0.847764     -1.027090     -6.671185 

C        1.881201     -2.775600     -2.624535 

O        1.480260     -3.933300     -2.736100 

N        2.916946     -2.454232     -1.772847 

C        3.556759     -3.456381     -0.919355 

C        2.544242     -3.758739      0.216212 

O        2.456539     -3.082248      1.239430 

H        3.040916     -1.486010     -1.506222 

H        3.720806     -4.365544     -1.511707 

C        4.901279     -2.939164     -0.362475 

H        4.724583     -2.048193      0.254475 

C        5.858898     -2.542284     -1.492725 

C        5.578788     -3.997223      0.516085 

H        4.964526     -4.251084      1.385428 

H        6.539684     -3.630392      0.893004 

H        5.766551     -4.917948     -0.046873 

H        6.049595     -3.385963     -2.164789 

H        6.820443     -2.208959     -1.087419 

H        5.454539     -1.717559     -2.088252 

N        1.687183     -4.794479     -0.104618 

C        0.513794     -5.190932      0.681501 

C       -0.632705     -4.201033      0.438030 

O       -0.533839     -2.977824      0.481722 

H        1.601967     -4.956365     -1.112567 

H        0.220195     -6.153037      0.242024 

C        0.787995     -5.373651      2.180901 

C       -0.353373     -6.040420      2.913962 

H        0.998242     -4.414020      2.664371 

H        1.692894     -5.979214      2.323268 

C       -2.496421     -7.273002      4.235850 

C       -1.222856     -5.287111      3.715989 

C       -0.569247     -7.419101      2.785502 

C       -1.636738     -8.031010      3.443574 

C       -2.289058     -5.902180      4.373418 

H       -1.076620     -4.217650      3.842063 

H        0.093417     -8.030112      2.175889 

H       -1.796424     -9.101848      3.341514 

H       -2.956835     -5.315204      4.998873 

H       -3.324713     -7.753549      4.750813 

O       -1.786327     -4.871119      0.161102 

C       -2.917297     -4.038487     -0.091566 

H       -3.155686     -3.440724      0.793796 

H       -3.771279     -4.683322     -0.315756 

H       -2.732463     -3.392537     -0.955688 

N       -0.273774      1.721574     -2.207928 

H       -1.201876      2.111461     -2.329003 

N       -1.260821      4.018805     -1.003930 

C       -0.203133      3.290343     -0.310660 

C        0.540979      2.347510     -1.282039 
 

C       -1.118102     -0.742558     -4.950641 

H       -0.820961     -1.742772     -4.612256 

H       -1.852197     -0.895931     -5.752736 

C        1.150923      0.158152     -4.385216 

H        1.479509     -0.837672     -4.068422 

H        2.043119      0.667804     -4.771802 

C        0.110952     -0.005078     -5.506552 

H        0.546070     -0.582697     -6.329898 

C       -0.314595      1.377786     -6.016501 

H        0.551978      1.909015     -6.428870 

H       -1.040330      1.270971     -6.832016 

C       -2.966477     -0.710595     -3.225033 

O       -3.237987     -1.868831     -3.532177 

N       -3.698341     -0.030734     -2.275474 

C       -4.727213     -0.719169     -1.497305 

C       -3.927999     -1.432126     -0.386088 

O       -3.388396     -0.820413      0.539021 

H       -3.286599      0.791366     -1.853263 

N       -3.742962     -2.783826     -0.588497 

C       -2.843124     -3.558227      0.280827 

C       -1.419258     -3.602938     -0.294994 

O       -0.402772     -3.671171      0.391919 

H       -3.771958     -3.073379     -1.568885 

H       -2.785158     -3.050597      1.249715 

C       -3.376195     -4.989700      0.448498 

C       -2.532576     -5.877764      1.334390 

H       -3.480214     -5.453400     -0.542033 

H       -4.390701     -4.957861      0.867636 

C       -0.958283     -7.543190      2.954929 

C       -2.032797     -7.091118      0.839254 

C       -2.245373     -5.518855      2.658774 

C       -1.454824     -6.344004      3.460306 

C       -1.250690     -7.919012      1.646230 

H       -2.254788     -7.409198     -0.177590 

H       -2.632899     -4.596863      3.086004 

H       -1.230719     -6.054013      4.484138 

H       -0.876771     -8.862661      1.256402 

H       -0.352640     -8.188905      3.585926 

O       -1.450742     -3.666097     -1.655457 

C       -0.178595     -3.831724     -2.278995 

H       -0.316817     -3.762866     -3.360752 

H        0.226734     -4.820433     -2.044369 

H        0.514477     -3.048767     -1.964318 

N        1.523818      1.172961     -2.120987 

H        1.422086      2.040346     -1.598234 

N        3.640653      1.922425     -0.534097 

C        2.998587      0.645983     -0.235248 

C        2.195119      0.162354     -1.457822 

O        2.110505     -1.029121     -1.744615 

H        3.792927      2.218030     -1.491780 

H        2.279598      0.838496      0.568913 

C        4.016401     -0.421506      0.195823 

C        3.410464     -1.475526      1.054851 

H        4.475121     -0.901226     -0.678128 

H        4.847098      0.020784      0.756174 

C        2.953290     -2.738482      0.736947 

H        2.892515     -3.266575     -0.200431 

C        4.171189      2.706354      0.443693 

O        4.130405      2.427748      1.631991 
 



New Frontiers in Peptide Catalysis 
 

  195 

O        1.734629      2.085823     -1.140366 

H       -2.227850      3.726745     -0.915417 

H       -0.725769      2.647162      0.404175 

C        0.777176      4.196609      0.451611 

C        1.439616      3.495479      1.590014 

H        1.565294      4.578848     -0.208347 

H        0.253026      5.072453      0.850627 

C        2.550201      2.674097      1.612839 

H        3.206699      2.324649      0.832581 

C       -1.013778      5.024015     -1.887112 

O        0.097746      5.459544     -2.133625 

O       -2.180322      5.426376     -2.429790 

C       -2.208606      6.477425     -3.431153 

C       -1.436059      6.065297     -4.689214 

H       -1.749573      5.071947     -5.029776 

H       -0.358623      6.008354     -4.507222 

H       -1.593003      6.779311     -5.504865 

C       -3.692978      6.631124     -3.794917 

H       -4.096762      5.691081     -4.188484 

H       -3.849419      7.413956     -4.544476 

H       -4.288555      6.876255     -2.907745 

C       -1.704005      7.805304     -2.856394 

H       -0.632129      7.775597     -2.638703 

H       -2.209751      8.037217     -1.912328 

H       -1.873572      8.631876     -3.554810 

N        1.009895      3.572865      2.927965 

C       -0.154290      4.292018      3.431520 

H        0.019562      5.366457      3.332518 

H       -0.316282      4.046098      4.484514 

H       -1.037038      3.997314      2.857594 

C        1.840100      2.859305      3.713890 

H        1.757106      2.754926      4.790526 

N        2.749715      2.302795      2.917995 

C        3.675355      1.475109      3.400093 

O        3.758055      1.454634      4.621422 

C        4.590119      0.709687      2.488643 

H        5.138811     -0.036736      3.069932 

H        4.013144      0.187615      1.721264 

H        5.303081      1.394268      2.022875 

H        0.370461     -1.597244      5.301383 

C        0.020744     -0.837301      4.591682 

C        0.052715     -0.222468      2.143453 

C       -1.948581      0.040889      3.602769 

C       -1.476502     -0.265776      2.180610 

C        0.612808     -1.175095      3.203576 

H        0.397575      0.796791      2.325089 

H       -1.644648      1.061568      3.874728 

H       -1.803162     -1.267533      1.873644 

H        0.317077     -2.199438      2.951176 

O        0.455060      0.457972      5.035347 

C        0.308705      0.581571      6.448695 

H        0.957258     -0.133279      6.964112 

H       -0.733782      0.433721      6.746050 

H        0.610968      1.592056      6.736150 

O       -1.416045     -0.891792      4.543152 

C       -3.475063      0.029391      3.591293 

H       -3.862628      0.340275      4.567289 

H       -3.872368     -0.975545      3.402037 

O       -2.036395      0.686961      1.276243 
 

O        4.745085      3.788583     -0.117705 

C        5.454991      4.761058      0.695925 

C        6.669962      4.121576      1.377694 

H        7.280600      3.574487      0.650598 

H        6.373761      3.399160      2.144464 

H        7.298353      4.876408      1.862536 

C        5.949616      5.819202     -0.301406 

H        6.592647      5.365204     -1.064449 

H        6.512652      6.615782      0.196174 

H        5.107916      6.273128     -0.837365 

C        4.526023      5.438255      1.709479 

H        4.176055      4.740615      2.475998 

H        3.633450      5.836464      1.216135 

H        5.032637      6.262384      2.223397 

N        3.224712     -1.352301      2.440896 

C        3.562291     -0.201901      3.277516 

H        4.579543      0.127658      3.054585 

H        3.518887     -0.490413      4.330785 

H        2.847284      0.601042      3.087952 

C        2.626715     -2.460431      2.920844 

H        2.303049     -2.612028      3.946648 

N        2.559118     -3.329256      1.911606 

C        2.134510     -4.578117      2.101563 

O        1.895166     -4.869199      3.266719 

C        2.102953     -5.576876      0.981060 

H        1.597838     -6.485037      1.319473 

H        1.562046     -5.187131      0.118896 

H        3.126427     -5.829100      0.691867 

H       -1.184278     -0.923968      5.193901 

C       -0.678921     -0.319235      4.430945 

C       -0.399249     -0.101567      1.924847 

C       -0.698190      1.841085      3.437612 

C       -1.011529      1.293033      2.046451 

C       -0.909410     -0.996860      3.058367 

H        0.691905     -0.045965      1.946556 

H        0.390306      1.923047      3.564321 

H       -2.096923      1.207600      1.897480 

H       -1.984894     -1.163935      2.923304 

O        0.724006     -0.277567      4.738520 

C        0.934949      0.043843      6.112119 

H        2.012281      0.063540      6.296295 

H        0.487979     -0.718235      6.757661 

H        0.526317      1.030578      6.348879 

O       -1.248005      0.999079      4.451768 

C       -1.261453      3.257426      3.513012 

H       -0.969785      3.729724      4.457138 

H       -2.358266      3.259120      3.488856 

O       -0.490344      2.160024      1.038258 

O       -0.278197     -2.282974      2.976965 

H       -0.334565     -2.556921      2.034306 

O       -0.722698     -0.699098      0.661925 

H       -1.697751     -0.630491      0.561464 

O       -0.748368      4.044166      2.437342 

C       -1.065562      3.464989      1.173483 

H       -2.156233      3.399530      1.059541 

C       -0.490325      4.326834      0.074201 

C        0.586107      5.906723     -1.984355 

C        0.895570      4.527934     -0.026737 

C       -1.329324      4.942350     -0.867515 
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O        2.045377     -1.136611      3.188380 

H        2.300082     -1.712373      2.427854 

O        0.560246     -0.561004      0.847269 

H        0.237501     -1.465767      0.633060 

O       -3.958827      0.941996      2.602572 

C       -3.463578      0.607640      1.305215 

H       -3.800659     -0.404622      1.040407 

C       -3.969555      1.566705      0.247846 

C       -4.885415      3.289356     -1.776561 

C       -4.564626      2.795625      0.569072 

C       -3.828672      1.224927     -1.109725 

C       -4.286283      2.078594     -2.114718 

C       -5.021703      3.649718     -0.437223 

H       -4.694960      3.088947      1.609102 

H       -3.367007      0.278550     -1.386530 

H       -4.190832      1.794476     -3.160222 

H       -5.498775      4.591752     -0.175612 

H       -5.255449      3.951051     -2.556463 

C       -0.792881      5.729107     -1.889346 

C        1.430861      5.307271     -1.053146 

H        1.556129      4.084447      0.715138 

H       -2.408969      4.823953     -0.808629 

H       -1.451429      6.210477     -2.608659 

H        2.504421      5.463982     -1.116621 

H        1.000502      6.526465     -2.775975 

C       -5.743370      0.279568     -0.907356 

H       -5.222369      0.996308     -0.258671 

C       -6.445096      1.075072     -2.014027 

H       -7.184660      1.762115     -1.588740 

H       -6.964228      0.409516     -2.712154 

H       -5.731501      1.677523     -2.585325 

C       -6.797033     -0.443229     -0.061184 

H       -7.527404      0.268084      0.339372 

H       -6.341068     -0.956852      0.791070 

H       -7.340200     -1.186563     -0.654740 

H       -5.236090     -1.456818     -2.129058 
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4.5 NMR Spectra 

Methyl 2,3-di-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside (13) 
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Methyl 2-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside (4) 
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Methyl 3-O-acetyl-4,6-O-benzylidene-α-D-glucopyranoside (5) 
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Methyl 4,6-O-cyclohexylidene-α-D-glucopyranoside (26) 
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Methyl 2,3-di-O-acetyl-4,6-O-cyclohexylidene-α-D-glucopyranoside (27) 
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Methyl 2-O-acetyl-4,6-O-cyclohexylidene-α-D-glucopyranoside (28)  
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Methyl 3-O-acetyl-4,6-O-cyclohexylidene-α-D-glucopyranoside (29) 
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The Enantioselective Dakin–West Reaction 
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Abstract 

Here we report the development of the first enantioselective Dakin–West reaction, yielding  

α-acetamido methylketones with up to 58 % ee with good yields. Two of the obtained products 

were recrystallized once to achieve up to 84 % ee. The employed methylimidazole-containing 

oligopeptides catalyze both the acetylation of the azlactone intermediate and the terminal 

enantioselective decarboxylative protonation. We propose a dispersion-controlled reaction path 

that determines the asymmetric reprotonation of the intermediate enolate after the decarboxy-

lation. 
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1. The Enantioselective Dakin–West Reaction 

Even though the Dakin–West (DW) reaction dates back to 1928,
[1]

 it is still one of the most 

effective synthetic procedures to prepare α-acylamido ketones from primary α-amino acids.
[2]

 

Generally, the treatment of an amino acid with an acid anhydride and base, typically pyridine, at 

elevated temperature provides the desired product upon liberation of CO2 (Scheme 1). Numerous 

modifications of the original reaction conditions were developed,
[2]

 including catalytic 

variants,
[3]

 broadening its scope and applicability. Unsurprisingly, the DW reaction found 

application in the preparation of α-acylamido ketones as valuable precursors for various 

biologically active compounds,
[4]

 and even in Woodward's fundamental total synthesis of 

strychnine.
[5]

 Remarkably, no asymmetric variant has been developed to date, thus restricting the 

use of this important reaction in modern synthetic chemistry. 

 

 

Scheme 1. The Dakin–West reaction of α-amino acids. 

According to the currently accepted mechanism,
[6]

 the reaction of an amino acid with the 

anhydride leads to the N-acetyl derivative 1 and subsequently to the mixed anhydride 2 (Scheme 

2). Cyclization of 2 provides the oxazol-5(4H)-one (azlactone) 3. Such azlactones are acidic 

owing to the formation of resonance stabilized enolate 4 upon deprotonation. Subsequent 

acetylation may occur at the enolate oxygen atom (affording 5) or directly at the carbon atom to 

give 6.
[7]

 However, 6 is exclusively produced under the typical DW reaction conditions because  

 

 

Scheme 2. Proposed mechanism for the Dakin–West reaction. 
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of concomitant O→  acyl transfer (Steglich rearrangement).
[8]

 Opening of 6 with acetic acid, 

formed in previous steps, to the mixed anhydride 7 and transacylation gives the β-keto acid 8,
[6f]

 

which is prone to decarboxylation upon deprotonation. This final reaction step affords the 

desired α-acetamido methylketone 10, likely via enolate 9. Other pathways, for example, the 

acylation of 2 to directly give 7,
[9]

 were discussed as well but have been shown to be rather 

improbable. It is evident from this mechanistic picture that the intermediacy of 4 and 9 (Scheme 

2) leads to the observed complete racemization, making an asymmetric reaction a difficult 

endeavor. We surmized, however, that an enantioselective decarboxylative protonation
[10]

 of 8 

(via 9) would afford enantioenriched products. Herein we show that this is indeed possible with a 

tailor-made catalytic system. 

We chose synthetic oligopeptides as catalysts
[11]

 as these should be well-suited for binding the 

amino acid derived intermediates, as demonstrated for such platforms in acyl transfer 

reactions.
[12]

 Incorporation of catalytically active π-methylhistidine (Pmh) in a dual role as Lewis 

base for the acetyl transfer (Scheme 2) and as Brønsted base in the decarboxylative protonation 

(Scheme 2) may allow performing the entire reaction by employing a single catalyst. 

Our investigation commenced with an evaluation of appropriate reaction conditions for the 

proposed reaction sequence starting from DL-phenylalanine and our previously successfully 

employed acylation catalyst 11
[12]

 (Scheme 3; see the Supporting Information for details). We 

found that the methylimidazole moiety itself is not sufficiently basic to deprotonate the azlactone 

3 a (pKa ≈ 9
[13]

 vs. pKa = 7.3 for protonated N-methylimidazole)
[14]

 and acetic acid is 

continuously formed during the reaction. Addition of a base significantly increases the reaction 

rate but has a deleterious effect on enantioselectivity. Thus, we concluded that the mechanistic 

complexity of the reaction necessitates well-balanced reaction conditions to separate the 

acetylation of 3 and the decarboxylation. The use of a carbodiimide helps overcome these 

challenges: it enables fast cyclization of 1 to 3, acts as auxiliary base in the deprotonation step, 

and converts the acetic acid produced back into the anhydride. Most importantly, the only side-

product formed is the corresponding urea derivative, which cannot participate as a base in the 

final decarboxylation step and therefore does not erode enantioselectivity. Indeed, 3 a 

immediately forms when N,N′-diisopropylcarbodiimide (DIC) is used as an additive. Addition of 

acetic anhydride then furnishes the key intermediate 6a with full conversion of 3a. Further 

addition of acetic acid initiates the decarboxylation step, thus leading to the formation of the  

α-acetamido methylketone 10a with 33% ee, enriched in the S-configured enantiomer  

(Scheme 3). We were able to monitor the reaction by GC-MS and observed some of the 

intermediates (see the Supporting Information, Figure S2). 

The feasibility of our catalyst design concept was next evaluated using different turns instead of 

the adamantane amino acid (Scheme 3).
[15]

 Incorporation of a d-Pro-Aib-turn (12), frequently 
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used by Miller et al.,
[11a,16]

 or an 2-Abz-D-Pro pseudo-β-hairpin (13),
[17]

 resulted in 5% and  

8% ee, respectively. We also studied (S)-tetramisol (14) and the chiral (S)-PPY* 15,
[18]

 reported 

by Fu and co-workers, as both catalysts were previously employed in an asymmetric Steglich 

rearrangement.
[8,19]

 With 14 only traces of enantioenriched 6 a (25% ee) formed, and 10a could 

not be detected. Remarkably, 15 gave 22% ee for the desired product and may be considered a 

potential catalyst for further optimization. To gain further insight into the factors determining 

enantioselectivity and to improve catalyst performance, we modularly built the catalyst from the 

C-terminal Pmh. Thus, Boc-L-Pmh-OMe (16) and dipeptide 17 did not provide enantioenriched 

product as neither catalyst is able to form a dynamic binding pocket
[12]

 for the enolate 9a, and 

they also lack the necessary hydrogen bonding contacts. However, when tripeptides were used 

the selectivities substantially increased (see the Supporting Information for complete catalyst 

library), with 18, bearing cyclohexylalanine, being the best catalyst. The strikingly better 

performance of the shorter tripeptide 18 compared to that of the tetrapeptide 11 is probably a 

result of the C-terminal Pmh (interchange of the amide NH and C=O groups), which leads to 

more efficient substrate binding. 

 

 

Scheme 3. Testing and optimizing reaction conditions for selected catalysts. Reactions were performed on an 

analytical scale (0.1 mmol). The absolute configuration of 10a was determined to be S by comparison of the 

retention times of an authentic sample on chiral-phase HPLC. Enantiomeric excesses (a negative sign indicates the 

formation of the opposite enantiomer) for 6a and 10a were determined by chiral-phase GC. Conversion was >95% 

for the individual reaction steps as judged by GC-MS unless noted otherwise. For complete catalyst library see the 

Supporting Information. 
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Note that most of the catalysts employed were also able to enantioselectively acetylate the 

azlactone intermediate. However, no correlation is apparent from the selectivity obtained for 6a 

and the final product 10a, and no amplification of stereoselectivity was observed. That is, the 

enantioenrichment of 10a does not ensue from kinetic resolution of 6a. As we anticipated by the 

proposed mechanism, the selectivity for 6a is not preserved in the product and only results from 

the final decarboxylation and enantioselective enolate reprotonation. To further prove this 

observation, DMAP was used as an achiral catalyst for the in situ formation of 6a, and 18 was 

only added for the decarboxylation step. However, the selectivities differed only marginally (see 

the Supporting Information, Table S5).  

From this point on, we used 18 for substrate screening and N,N′-dicyclohexylcarbodiimide 

(DCC) instead of DIC because it is easier to remove the corresponding urea derivative in the 

purification of the final products (Scheme 4). Thus, 10a was isolated in 69% yield with 36% ee. 

Substrates with sterically less demanding side chains, such as alanine and methionine 

derivatives, afforded the desired products with low selectivities but with high yields (10b and 

10e). The product 10c, derived from leucine, was isolated with appreciable higher 

enantioselectivity (54%) and 63% yield. The tyrosine-derived 1d gave 31% ee with 77% yield, 

whereas polar functional groups led to low selectivities (10f: 17%). We next employed sterically 

more demanding amino acids bearing aromatic side chains, namely, naphthyl- and 

anthranylalanine derivatives, 1g and 1h, respectively. Lower enantioselectivity (31% ee, 78% 

yield) resulted for 10g, whereas 10h was obtained in racemic form in a moderate 52% yield. 

Strongly electron-withdrawing side-chains, such as that in 1 i, afforded the product with 

excellent yield but lower selectivity (10i: 18% ee, 96% yield), and probably resulting from 

racemization (see the Supporting Information). To our delight, as seen for 1c, the selectivity was 

further enhanced to 58% ee (67% yield) when the aliphatic cyclohexylalanine 1j was used as a 

substrate. Importantly, 10a and 10d could be obtained, with up to 84% ee (for 10a), after one 

recrystallization. 

The observed selectivities can effectively compete with previously reported organocatalytic 

enantioselective decarboxylative protonation reactions which are typically in the range of 30–

60% ee.
[10a,c,d]

 Organocatalytic variants that achieve higher enantioselectivities (above 70% ee) 

are rare.
[20]

 Higher selectivities (>90% ee) have, so far, only been achieved either in the presence 

of stoichiometric amounts of base
[21]

 or by employing transition metals, for example, palladium 

complexes
[22]

 or enzymes.
[10a,23]

 Unlike the former examples, as well as decarboxylative addition 

reactions,
[10c,d,24]

 the DW reaction described herein is particularly challenging as it presupposes 

the stereoselective transfer of the smallest electrophile, a proton, in the presence of significant 

amounts of acid in a complex multistep reaction (Scheme 2). 
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Scheme 4. Substrate scope and limitations. Stereochemistry for the products was assigned as S by analogy to 10a. 

Enantiomeric excesses were determined by chiral-phase GC or HPLC. Yields refer to those of isolated products. 

Values within parentheses correspond to recrystallized products. 

Although the exact nature of the decarboxylation step is not yet clear, the stereoinduction 

probably arises from the deprotonation of β-keto acid 8 (Scheme 2) by the catalyst, release of 

CO2, and subsequent enantioselective reprotonation as reported for related organocatalytic 

decarboxylative protonation reactions.
[10a,c,d,25]

 Thus, we computationally identified possible 

adducts of the protonated catalyst 18 and enolate 9 j as minima wherein the transferred proton is 

in close proximity to the α-carbon atom of the intermediate (1.94 Å for both structures), thus 

supporting our mechanistic proposal (Figure 1). These data also emphasized the importance of 

the amino acid at the i−2 position for binding. Indeed, the computed structure that would afford 

the observed S selectivity (Figure 1 A) is favored by 2.1 kcal mol
−1

 compared to the complex 

leading to (R)-10 j (Figure 1  B). The observed selectivities mainly result from shielding of one 

face of the enolate by its side-chain and by the catalysts cyclohexyl residue, thus precluding 

unselective reprotonation, for example, by acetic acid. However, the higher selectivities observed 

with 1 c and 1 j are likely to originate from attractive dispersion interactions between the 

catalysts cyclohexyl moiety and the isopropyl and cyclohexyl residue, respectively. Whereas the 

competing structure does not allow efficient stacking of the cyclohexyl rings, this interaction is 

enhanced for the favorably bound enolate (see noncovalent interactions (NCI)
[26]

 plot in Figure 

1, C), leading to a more compact transition-state structure. Remarkably, the same effects were 

recently confirmed experimentally by NMR studies for the performance of 11 in enantioselective 

acylation reactions.
[12,27]

 The present example provides further evidence for the importance of 

attractive dispersion interactions in catalysis, even in the presence of hydrogen bonds or ion 

pairs.
[28]
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Figure 1. B3LYP-D3(BJ)/6-31+G(d,p) optimized structures representing the association of the protonated 18 with 

enolate 9 j and key catalyst–substrate interactions. A) Adduct leading to (S)-10j. B) Adduct leading to (R)-10j. All 

 −H bonds were omitted for clarity. C) NCI plot; green isosurfaces indicate attractive interactions. 

The development of the first enantioselective Dakin–West reaction opens a new avenue to 

further develop related reactions. We now focus on the detailed investigation and elucidation of 

the decarboxylation step with the goal to rationally design novel and highly selective catalysts. 

Moreover, we will investigate the applicability of functionalized anhydrides, for example, 

towards the synthesis of enantiomerically enriched halo- and acyloxymethyl ketones that are 

frequently found chemical warheads in serine, cysteine, and threonine protease inhibitors.
[29]
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2. Supporting Information 

2.1 General remarks 

Materials and methods. Unless otherwise specified, reagents were purchased from commercial 

suppliers at the highest purity grade available and were used as received. All solvents were 

distilled prior to use. Dry and absolute solvents were prepared using standard laboratory 

procedures and were stored over appropriate drying agents under argon atmosphere. Acetic 

anhydride was distilled and stored under argon with 4 Å molecular sieves. 

Flash column chromatography was performed using MN silica gel 60 M (Macherey-Nagel; 

0.040 – 0.063 mm, 230 – 400 mesh ASTM). Analytical thin-layer chromatography (TLC) was 

performed using precoated polyester sheets Polygram
®
 SIL G/UV254 (Macherey-Nagel; 0.2 mm 

silica gel layer with fluorescent indicator). Visualization of the developed chromatograms was 

accomplished by irradiation with a UV lamp at 254 nm and/or phosphomolybdic acid solution, 

2,4-dinitrophenylhydrazine solution or potassium permanganate solution, respectively. TLC Rf 

values are reported. 

Instrumentation. NMR spectra were recorded on Bruker AV600, AV400 or AV200 

spectrometers, respectively, at 298 K. Chemical shifts (δ) are given in ppm relative to 

tetramethylsilane (TMS, δ = 0.00 ppm) as the internal standard or to the respective solvent 

residual peaks (CDCl3: δ = 7.26 and 77.16 ppm; DMSO-d6: δ = 2.50 and 39.52 ppm; D2O: δ = 

4.79 ppm; MeOH-d4: δ = 3.31 and 49.00 ppm).
[1]

 Data are reported as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, or 

combinations thereof), coupling constants (Hz), integration.  Infrared spectra were acquired on a 

Bruker IFS25 spectrometer. ESI mass spectrometry was performed employing a Finnigan 

LCQDuo spectrometer using methanol solutions of the respective compounds. High resolution 

mass spectrometry (HRMS) was performed employing a Thermo Scientific LTQ FT Ultra 

spectrometer (ESI) using methanol solutions of the respective compounds or a Finnigan MAT95 

sectorfield spectrometer (EI). Elemental analysis was perform on a Thermo Flash EA 1112. 

Melting points were measured using a Krüss KSP1N capillary melting point apparatus and are 

uncorrected. GC-MS was carried out on a Hewlett Packard 5890 gas chromatograph with flame-

ionization detector (FID) and Hewlett Packard 5971 mass selective detector (EI, 70 eV) 

equipped with J & W Scientific fused silica DB–5MS column  (30 m × 0.25 mm). 

Enantioselectivities were determined by chiral stationary phase GC analyses on Hewlett Packard 

5890 or 6890 gas chromatographs, respectively, or by chiral stationary phase HPLC with a 

Dionex P680 pump in conjunction with a Shodex RI-101 detector. Preparative HPLC was 

performed employing a Gynkotek M480 pump with Knauer WellChrom K-2501 spectro-
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photometer and a Dionex UltiMate 3000 equipped with a Shodex RI-101 detector for analytical 

runs. 

 

2.2 Starting Materials and Reaction Intermediates 

N-acetyl derivatives of DL-leucine and DL-methionine were purchased from commercial 

suppliers and were used as received. N-acetyl-DL-phenylalanine (1a), N-acetyl DL-alanine (1b), 

O,N-diacetyl-L-tyrosine (1d) and N-acetyl-L-aspartic acid 4-benzyl ester (1f) were obtained 

through acetylation of the corresponding amino acids. 

  

 

 

Starting materials 1g – 1j were synthesized from commercially available diethyl 

acetamidomalonate employing the procedure reported by Snyder et al.
[2]

 through the alkylation–

saponification–decarboxylation
[3]

 reaction sequence shown above. 

 

2.2.1 Synthesis of starting materials 

N-acetyl-DL-phenylalanine (1a). A suspension of DL-phenylalanine (3.35 g, 

20.3 mmol) and acetic anhydride (5.0 mL, 5.40 g, 52.9 mmol) in methanol  

(9.0 mL) was stirred under reflux for 6 h. After cooling to rt all volatiles were 

removed under reduced pressure and the residue was triturated with ethyl acetate. 

The resulting colorless solid was collected by filtration and dried in vacuo. Yield: 3.03 g  

(14.6 mmol, 72%), colorless solid. Mp 143 – 144 °C (lit.
[4]

 mp 142 °C). 

1
H NMR (400 MHz, DMSO-d6): δ = 12.57 (br s, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.31 – 7.17 (m, 

5H), 4.40 (ddd, J = 9.5, 8.0, 4.9 Hz, 1H), 3.04 (dd, J = 13.8, 4.9 Hz, 1H), 2.83 (dd,  

J = 13.8, 9.6 Hz, 1H), 1.78 (s, 3H) ppm. 
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13
C NMR (100 MHz, DMSO-d6): δ = 173.2, 169.2, 137.8, 129.1, 128.2, 126.4, 53.5, 36.8, 22.4 

ppm. 

IR (KBr):  = 3359, 3031, 2933, 2737, 2500, 1711, 1618, 1548, 1495, 1445, 1428, 1343, 1253, 

1220, 1199, 1188, 1120, 802, 739, 702, 671, 623, 606 cm
-1

. 

The spectroscopic data are in accordance with those reported.
[5]

 

 

N-acetyl-DL-alanine (1b). The title compound was synthesized following the 

procedure described for 1a using DL-alanine (1.81 g, 20.3 mmol), acetic 

anhydride (5.0 mL, 5.40 g, 52.9 mmol) and methanol (9.0 mL). Yield: 1.69 g 

(12.9 mmol, 64%), colorless solid. Mp 136–136.5 °C (lit.
[6]

 mp 136 – 137 °C).  

1
H NMR (400 MHz, D2O): δ = 4.29 (q, J = 7.3 Hz, 1H), 1.98 (s, 3H), 1.37 (d, J = 7.3 Hz, 3H) 

ppm. 

13
C NMR (100 MHz, D2O): δ = 176.7, 173.9, 48.6, 21.4, 16.0 ppm. 

IR (KBr):  = 3346, 3265, 2986, 2943, 1937, 1720, 1593, 1550, 1447, 1379, 1346, 1300, 1272, 

1225, 1152, 1091, 1045, 1016, 978, 914, 847, 750, 704, 609, 557, 536 cm
-1

. 

The NMR data are in accordance with those reported.
[5b]

 

 

O,N-diacetyl-L-tyrosine (1d). According to a reported procedure,
[7]

 a 

suspension of L-tyrosine (3.70 g, 20.4 mmol) in H2O (30 mL) was cooled 

with an ice-bath and 1 N NaOH (21 mL) was slowly added. Acetic anhydride 

(4.3 mL, 4.64 g, 45.5 mmol) and 1 N NaOH (~ 40 mL) were slowly added 

simultaneously to maintain the pH at 6 – 8. The ice-bath was removed and the clear solution 

stirred at rt for 45 min. The reaction mixture was acidified with conc. HCl to pH ~ 2 upon 

cooling with an ice-bath and the resulting solid was filtered off, washed with H2O, and dried in a 

vacuum desiccator over CaCl2 and paraffin to afford 1d (2.61 g, 9.8 mmol, 48%) as a colorless 

solid. Mp 174 °C (lit.
[8]

 mp 168.5 – 171 °C).  

1
H NMR (400 MHz, DMSO-d6): δ = 12.70 (br s, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.28 – 7.22 (m, 

2H), 7.06 – 7.00 (m, 2H), 4.40 (ddd, J = 9.5, 8.0, 4.8 Hz, 1H), 3.04 (dd, J = 13.9, 4.9 Hz, 1H), 

2.84 (dd, J = 13.9, 9.6 Hz, 1H), 2.24 (s, 3H), 1.79 (s, 3H) ppm. 

ν~

ν~
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13
C NMR (100 MHz, DMSO-d6): δ = 173.1, 169.3, 169.2, 149.1, 135.2, 130.0, 121.5, 53.5, 36.1, 

22.4, 20.9 ppm. 

IR (KBr):  = 3338, 2893, 2613, 2468, 1769, 1702, 1624, 1556, 1508, 1444, 1369, 1270, 1240, 

1215, 1195, 1172, 1117, 910, 851, 835, 680, 598, 560, 524 cm
-1

. 

 

N-acetyl-L-aspartic acid 4-benzyl ester (1f). Boc-L-aspartic acid 4-benzyl ester 

(3.23 g, 10.0 mmol) was treated with 4 M HCl in 1,4-dioxane (20.0 mL,  

80.0 mmol) and the resulting solution was stirred at rt for 45 min. The reaction 

flask was flushed with argon for 30 min to remove residual HCl. After removal of 

the solvent under reduced pressure, the obtained hydrochloride was suspended in H2O/ 

1,4-dioxane (1:1; 100 mL). Et3N (4.2 mL, 3.07 g, 30.3 mmol) and acetic anhydride (0.95 mL, 

1.03 g, 10.0 mmol) were subsequently added and the reaction mixture was allowed to stir at rt 

for 18 h. Dioxane was removed under reduced pressure, the remaining solution acidified with  

1 N HCl to pH ~ 1, and extracted with EtOAc (3 x 50 mL). The combined organic layers were 

dried over Na2SO4, filtered, and concentrated in vacuo to afford 1f (1.77 g, 6.67 mmol, 67%) as a 

colorless waxy solid. 

1
H NMR (400 MHz, DMSO-d6): δ = 12.81 (s, 1H), 8.28 (d, J = 8.1 Hz, 1H), 7.39 – 7.30 (m, 

5H), 5.11 (s, 2H), 4.64 – 4.57 (m, 1H), 2.84 (dd, J = 16.2, 5.8 Hz, 1H), 2.71 (dd, J = 16.3, 7.5 

Hz, 1H), 1.83 (s, 3H) ppm. 

13
C NMR (100 MHz, DMSO-d6): δ = 172.3, 170.1, 169.2, 136.0, 128.4, 128.0, 127.9, 65.8, 48.6, 

36.1, 22.4 ppm. 

IR (KBr):  = 3347, 3063, 3033, 2988, 2958, 2888, 2737, 2528, 1716, 1613, 1535, 1457, 1428, 

1376, 1351, 1297, 1265, 1232, 1206, 1141, 1040, 1026, 989, 968, 908, 804, 755, 696, 671, 625, 

596, 535, 490 cm
-1

. 

The 
1
H NMR data are in accordance with those reported.

[9]
 

 

N-acetyl-DL-2-naphthylalanine (1g).
[10]

 A solution of NaOEt (1.64 g,  

24.0 mmol) and diethyl acetamidomalonate (4.35 g, 20.0 mmol) in abs. EtOH 

(20 mL) was stirred at reflux for 30 min under argon. 2-(bromo-

methyl)naphthalene (4.43 g, 20.0 mmol) was added and the solution was 

refluxed for additional 20 h. The reaction mixture was concentrated under 

ν~
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reduced pressure and extracted with Et2O (3 × 50 mL). The combined organic layers were 

successively washed with H2O (3 × 50 mL), sat. aq. NaHCO3 (3 x 50 mL), and brine (50 mL). 

Drying over Na2SO4, filtration, and removal of the solvent gave a yellow solid. The crude 

alkylation product was treated with 10% NaOH (15 mL) and the resulting suspension was stirred 

at rt for 24 h. The mixture was carefully acidified to pH ~ 4 with conc. HCl. The obtained solid 

was filtered off, resuspended in H2O (100 mL) and refluxed for 5 h. Filtration, washing with 

hexane (to remove traces of 2-(ethoxymethyl)naphthalene), and drying in a vacuum desiccator 

over CaCl2 and paraffin afforded 1g (2.15 g, 8.36 mmol, 42% over three steps) as light yellow 

solid. Mp 171 – 172 °C. 

1
H NMR (400 MHz, DMSO-d6): δ = 12.72 (br s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.89 – 7.81 (m, 

3H), 7.73 (br s, 1H), 7.52 – 7.43 (m, 2H), 7.41 (dd, J = 8.4, 1.7 Hz, 1H), 4.53 (ddd, J = 9.3, 8.0, 

5.1 Hz, 1H), 3.22 (dd, J = 13.8, 5.1 Hz, 1H), 3.02 (dd, J = 13.8, 9.4 Hz, 1H), 1.78 (s, 3H) ppm. 

13
C NMR (100 MHz, DMSO-d6): δ = 173.2, 169.3, 135.4, 133.0, 131.9, 127.6, 127.6, 127.5, 

127.5, 127.4, 126.0, 125.5, 53.5, 37.0, 22.4 ppm. 

IR (KBr):  = 3338, 3053, 2932, 2623, 2571, 2487, 1709, 1626, 1554, 1416, 1385, 1370, 1329, 

1252, 1172, 1120, 1048, 979, 898, 864, 820, 735 cm
-1

. 

 

N-acetyl-DL-9-anthranylalanine (1h). 9-(bromomethyl)anthracene: Accor-

ding to a reported procedure,
[11]

 a suspension of anthracen-9-ylmethanol  

(1.50 g, 7.20 mmol) in abs. toluene (40 mL) was cooled to 0 °C with an ice-

bath under argon. PBr3 (0.80 mL, 2.30 g, 8.51 mmol) was added dropwise and 

the reaction mixture was stirred at 0 °C for 1 h. The resulting solution was 

allowed to warm to rt and sat. aq. Na2CO3 (15 mL) was slowly added. The phases were separated 

and the organic layer was successively washed with H2O (10 mL) and brine (10 mL), dried over 

MgSO4, filtered, and the solvent was removed under reduced pressure yielding 9-(bromo-

methyl)anthracene (1.797 g, 6.63 mmol, 92%) as yellow solid. 

1
H NMR (400 MHz, CDCl3): δ = 8.48 (s, 1H), 8.30 (dd, J = 8.9, 1.0 Hz, 2H), 8.05 – 8.02 (m, 

2H), 7.65 (ddd, J = 8.9, 6.5, 1.3 Hz, 2H), 7.51 (ddd, J = 7.8, 6.6, 1.0 Hz, 2H), 5.53 (s, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 131.7, 129.8, 129.4, 129.3, 128.0, 126.9, 125.5, 123.6, 27.1 

ppm. 

The NMR data are in accordance with those reported.
[12]
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A solution of NaOEt (0.408 g, 6.00 mmol) and diethyl acetamidomalonate (1.09 g, 5.02 mmol) 

in abs. EtOH (10 mL) was stirred at reflux for 30 min under argon. 9-(bromomethyl)-anthracene 

(1.36 g, 5.0 mmol) in abs. toluene (5 mL) was added dropwise with stirring and the solution was 

refluxed for additional 21 h. The reaction mixture was concentrated under reduced pressure, H2O 

(50 mL) was added, and extracted with CHCl3 (3 × 20 mL). The combined organic layers were 

washed with H2O (2 × 30 mL) and brine (30 mL), dried over Na2SO4 and filtered. The solvent 

was removed under reduced pressure yielding a yellow solid. The crude alkylation product was 

dissolved in EtOH (10 mL), treated with 10% NaOH (15 mL) and the resulting suspension was 

stirred at rt for 24 h. The mixture was carefully acidified to pH ~ 4 with conc. HCl. The obtained 

solid was filtered off, resuspended in H2O (50 mL) and refluxed for 4 h. Filtration, washing with 

H2O and EtOAc and drying in vacuo afforded 1h (505.7 mg, 1.65 mmol, 33%) as yellow solid. 

Mp 262 – 263 °C (lit.
[13]

 mp 265 – 267 °C). 

1
H NMR (400 MHz, DMSO-d6): δ = 12.77 (br s, 1H), 8.52 (br s, 1H), 8.46 (d, J = 8.4 Hz, 1H), 

8.40 (d, J = 8.7 Hz, 2H), 8.08 (d, J = 8.1 Hz, 2H), 7.60 – 7.48 (m, 4H), 4.65 – 4.57 (m, 1H), 4.07 

(dd, J = 14.4, 5.9 Hz, 1H), 3.93 (dd, J = 14.4, 8.6 Hz, 1H), 1.68 (s, 3H) ppm. 

13
C NMR (100 MHz, DMSO-d6): δ = 173.1, 169.2, 131.1, 130.3, 130.0, 129.0 126.5, 125.9, 

125.0, 124.4, 53.7, 29.6, 22.4 ppm. 

IR (KBr):  = 3318, 3054, 2892, 2465, 1713, 1620, 1551, 1446, 1323, 1269, 1251, 1160, 1119, 

986, 954, 895, 849, 790, 734 cm
-1

. 

 

N-acetyl-DL-pentafluorophenylalanine (1i). According to a reported 

procedure,
[14]

 NaOEt (0.944 g, 13.87 mmol) and diethyl acetamidomalonate 

(2.26 g, 10.40 mmol) were dissolved in abs. DMF (20 mL) under argon. 

Pentafluorobenzyl bromide (1.72 mL, 2.97 g, 11.38 mmol) was added and the 

resulting solution was heated to 55 °C for 24 h. The reaction mixture was 

poured into iced water (200 mL), the resulting cream colored solid was filtered off, washed with 

H2O and dried in vacuo. The crude alkylation product was treated with 10% NaOH (7.5 mL) and 

the resulting suspension was stirred at rt for 24 h. The mixture was carefully acidified to pH ~ 4 

with conc. HCl, the obtained solid was filtered off, resuspended in H2O (50 mL) and refluxed for 

4 h. Filtration, washing with H2O and drying in vacuo afforded 1i (1.264 g, 4.25 mmol, 41% 

over three steps) as colorless solid. Mp 169 – 170 °C (lit.
[15]

 mp 171 – 173 °C). 

1
H NMR (400 MHz, DMSO-d6): δ = 12.99 (s, 1H), 8.30 (d, J = 8.5 Hz, 1H), 4.53 – 4.46 (m, 

1H), 3.16 (dd, J = 14.1, 6.2 Hz, 1H), 3.02 (dd, J = 14.1, 8.3 Hz, 1H), 1.78 (s, 3H) ppm. 
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13
C NMR (100 MHz, DMSO-d6): δ = 171.9, 169.3, 146.3 (m), 143.9 (m), 137.9 (m), 111.6 (m), 

50.7, 24.8, 22.2 ppm. 

19
F NMR (376 MHz, DMSO-d6): δ = –142.4 (m), –157.2 (t, J = 22.1 Hz), –163.6 (m) ppm. 

IR (KBr):  = 3258, 3080, 1719, 1648, 1566, 1523, 1503, 1420, 1378, 1338, 1309, 1282, 1246, 

1199, 1124, 1062, 968, 736, 686, 651, 625, 572, 528, 458 cm
-1

. 

The 
1
H NMR data are in accordance with those reported.

[16]
 

 

N-acetyl-DL-cyclohexylalanine (1j). Diethyl 2-acetamido-2-(cyclohexylmethyl)-

malonate: A solution of NaOEt (0.750 g, 11.02 mmol) and diethyl 

acetamidomalonate (2.00g, 9.21 mmol) in 10 mL abs. EtOH was stirred at reflux 

for 30 min under argon. Bromomethylcyclohexane (1.30 mL, 1.65 g, 9.32 mmol) 

was added dropwise and the resulting solution was refluxed for additional 24 h. The reaction 

mixture was concentrated under reduced pressure and extracted with Et2O (5 × 25 mL). The 

combined organic extracts were successively washed with H2O (2 × 20 mL), sat. aq. NaHCO3  

(2 × 20 mL), and H2O (20 mL), dried over Na2SO4, filtered, and the solvent was removed under 

reduced pressure. The residual oil was triturated with hexane and left standing at –20 °C 

overnight to afford the desired alkylation product (1.343 g, 4.28 mmol, 46%) as colorless 

crystals.  

1
H NMR (400 MHz, CDCl3): δ = 6.83 (br s, 1H), 4.21 (q, J = 7.1 Hz, 4H), 2.27 (d, J = 6.0 Hz, 

2H), 2.02 (s, 3H), 1.65 – 1.50 (m, 5H), 1.23 (t, J = 7.1 Hz, 6H), 1.20 – 1.06 (m, 4H), 0.98 – 0.88 

(m, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 169.0, 168.8, 66.0, 62.6, 38.9, 33.9, 33.5, 26.3, 26.2, 23.2, 

14.1 ppm. 

IR (KBr):  = 3281, 2976, 2921, 2851, 1747, 1647, 1510, 1445, 1373, 1298, 1274, 1231, 1190, 

1136, 1098, 1052, 1019, 953, 900, 862, 841, 805, 769, 693, 608 cm
-1

. 

The spectroscopic data are in accordance with those reported.
[17]
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The malonate (1.167 g, 3.72 mmol) was suspended in 10% NaOH (5.8 mL) and stirred at rt for 

42 h. The resulting solution was acidified (pH ~ 2) with conc. HCl and the colorless solid thus 

obtained was extracted with EtOAc (3 × 20 mL). The combined organic extracts were 

concentrated under reduced pressure and the resulting solid was refluxed in H2O (30 mL) for 5 h. 

Filtration and washing with H2O afforded 1j (0.643 g, 3.01 mmol, 81%) as silky flakes. Mp 175 

– 176 °C. 

1
H NMR (400 MHz, MeOH-d4): δ = 4.43 (dd, J = 10.3, 4.8 Hz, 1H), 1.98 (s, 3H), 1.84 – 1.52 

(m, 7H), 1.45 – 1.12 (m, 4H), 1.05 – 0.84 (m, 2H) ppm. 

13
C NMR (100 MHz, MeOH-d4): δ =176.3, 173.4, 51.4, 40.2, 35.5, 34.8, 33.2, 27.6, 27.4, 27.2, 

22.3 ppm. 

IR (KBr):  = 3334, 2924, 2850, 2500, 1700, 1626, 1557, 1448, 1254, 1154, 964, 678, 599  

cm
-1

. 

The spectroscopic data are in accordance with those reported.
[18] 

 

2.2.2 Synthesis of possible reaction intermediates  

The following stepwise reactions were performed for the synthesis of probably occurring 

intermediates of the Dakin-West reaction with 1a. The products obtained were purified if 

possible, characterized and subjected to GC-MS and chiral GC analyses for the elucidation of 

retention times. 

 

 

 

4-benzyl-2-methyloxazol-5(4H)-one (3a). According to a literature pro-

cedure,
[19]

 N-acetyl-DL-phenylalanine (1a; 414.5 mg, 2.0 mmol) was suspended 

in dry CH2Cl2 (20 mL) under argon. After cooling to 0 ° ,  D  • H l  

(421.7 mg, 2.2 mmol) was added and the reaction mixture was stirred for 1 h at 0 °C. The 
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solution was diluted with CH2Cl2 (20 mL) and washed with H2O (20 mL), sat. aq. NaHCO3 (2 × 

20 mL), and H2O (20 mL). The organic layer was dried over MgSO4, filtered, and the solvent 

was removed under reduced pressure to afford azlactone 3a (365.3 mg, 1.87 mmol, 96%) as 

colorless oil. 

1
H NMR (400 MHz, CDCl3): δ = 7.32 – 7.24 (m, 3H), 7.23 – 7.19 (m, 2H), 4.46 – 4.41 (m, 1H), 

3.25 (dd, J = 14.0, 4.8 Hz, 1H), 3.06 (dd, J = 14.0, 6.8 Hz, 1H), 2.08 (d, J = 2.0 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 178.0, 163.0, 135.3, 129.6, 128.5, 127.3, 66.1, 37.0, 15.1 

ppm. 

IR (film):  = 3063, 3031, 2931, 1821, 1730, 1684, 1497, 1455, 1434, 1385, 1285, 1242, 1134, 

1084, 1062, 1011, 901, 742, 701, 628, 528 cm
-1

. 

NMR data are in accordance with those reported.
[20]

 

GC-MS: Conditions: 60 °C isothermal, 5 min; 60 – 250 °C, 10 °C/min; 250 °C isothermal,  

10 min. Retention time: tR = 17.9 min; m/z (%) = 189 (16), 103 (1), 91 (100), 77 (2), 65 (3), 51 

(2).  

Chiral stationary phase GC: FS-Hydrodex γ-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 220 °C, 2 °C/min. Retention time: tR = 25.8 min. 

The enantiomers of 3a could not be separated under the conditions applied and only a single 

broad peak was observed. 

 

4-benzyl-2-methyloxazol-5-yl acetate (5a). 4-benzyl-2-methyloxazol-5(4H)-

one (3a; 105.3 mg, 0.56 mmol) was dissolved in dry CH2Cl2 (3 mL) under argon 

and Et3N (116.0 µL, 85.0 mg, 0.84 mmol) was added upon cooling to 0 °C with 

an ice-bath. Acetyl chloride (60.0 µL, 65.9 mg, 0.84 mmol) was slowly added 

and the reaction mixture was stirred at 0 °C for 1 h. The precipitated ammonium salt was filtered 

off, washed with CH2Cl2 and the solvent was removed under reduced pressure. The residue was 

redissolved in Et2O (20 mL) and washed with H2O (2 × 20 mL). The organic layer was dried 

over Na2SO4, filtered and the solvent was removed under reduced pressure without heating. The 

crude product was purified by column chromatography eluting with TBME to afford 5a  

(69.7 mg, 0.30 mmol, 54%) as colorless oil. TLC (TBME): Rf = 0.49. 
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1
H NMR (600 MHz, CDCl3): δ = 7.29 – 7.25 (m, 2H), 7.22 – 7.18 (m, 3H), 3.71 (s, 2H), 2.36 (s, 

3H), 2.08 (s, 3H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 167.5, 155.5, 145.7, 137.7, 129.1, 128.6, 126.6, 121.7, 31.6, 

20.0, 14.3 ppm. 

IR (film):  = 3063, 3030, 2930, 1797, 1757, 1725, 1669, 1584, 1496, 1454, 1433, 1371, 1266, 

1161, 1104, 1044, 1009, 952, 908, 875, 826, 729, 702, 581, 504 cm
-1

. 

HRMS (ESI): m/z = 254.0790 [M+Na]
+
 (calcd m/z = 254.0793). 

GC-MS: Conditions: 60 °C isothermal, 5 min; 60 – 250 °C, 10 °C/min; 250 °C isothermal,  

10 min. Retention time: tR = 20.5 min; m/z (%) = 231 (1), 189 (100), 147 (22), 130 (4), 118 (44), 

103 (6), 91 (50), 78 (18), 65 (7), 51 (5). 

Chiral stationary phase GC: FS-Hydrodex γ-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 220 °C, 2 °C/min. Retention time: tR = 34.8 min. 

 

4-acetyl-4-benzyl-2-methyloxazol-5(4H)-one (6a). DMAP (2.0 mg, 7.9 mol%) was 

added to a solution of 5a (48.1 mg, 0.21 mmol) in dry CH2Cl2 (1 mL) under argon 

and the solution was stirred at rt for 2 h. The reaction mixture was concentrated 

under reduced pressure and the crude rearrangement product was directly analyzed 

by NMR. 

The obtained product was contaminated with 3a, 5a, and 10a. It was, however, not possible to 

purify 6a, e.g., by column chromatography because of decomposition.  

1
H NMR (400 MHz, CDCl3): δ = 7.28 – 7.22 (m, 3H), 7.16 – 7.11 (m, 2H), 3.35 (d, J = 13.5 Hz, 

1H), 3.29 (d, J = 13.5 Hz, 1H), 2.26 (s, 3H), 2.05 (s, 3H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 198.4, 173.4, 164.0, 132.9, 130.3, 128.4, 127.8, 82.4, 40.8, 

26.9, 15.0 ppm. 

GC-MS: Conditions: 60 °C isothermal, 5 min; 60 – 250 °C, 10 °C/min; 250 °C isothermal,  

10 min. Retention time:  tR = 19.9 min; m/z (%) = 231 (1), 189 (100), 147 (23), 130 (5), 118 (43), 

103 (6), 91 (93), 78 (14), 65 (13), 51 (7).  
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Chiral stationary phase GC: FS-Hydrodex γ-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 220 °C, 2 °C/min. Retention time: tR(R)= 35.8 min, tR(S)= 36.1 min. 

 

2.3 Synthesis of Racemic Products 

The N-protected amino acids were converted to the corresponding racemic α-acetamido 

methylketones employing the DMAP-catalyzed procedure reported by Steglich and Höfle.
[21]

 

 

N-(3-oxo-1-phenylbutan-2-yl)acetamide (10a). A mixture of 1a (414.5 mg,  

2.0 mmol), DMAP (12.2 mg, 0.1 mmol, 5 mol%), Et3N (0.4 mL, 292.0 mg,  

2.9 mmol), and acetic anhydride (0.4 mL, 432.0 mg, 4.2 mmol) was stirred at rt 

for 30 min. Glacial acetic acid (3 mL) was then added and stirring was continued 

for further 30 min. After concentration of the solution under reduced pressure, the residual 

yellow oil was treated with sat. aq. NaHCO3 (50 mL), followed by extraction with CHCl3 (4 ×  

10 mL). The combined organic layers were washed with 1 N HCl (3 × 10 mL) and brine  

(10 mL), dried over Na2SO4, filtered, and the solvent was removed in vacuo. Recrystallization 

from hexane/EtOAc (4:1) afforded 10a (279.7 mg, 1.36 mmol, 68%) as colorless crystalline 

solid. TLC (EtOAc): Rf = 0.34. Mp 94.5 – 95 °C (lit.
[22]

 95 – 95.5 °C). 

1
H NMR (400 MHz, CDCl3): δ = 7.29 – 7.18 (m, 3H), 7.11 – 7.06 (m, 2H), 6.10 (d, J = 6.6 Hz, 

1H), 4.87 – 4.80 (m, 1H), 3.10 (dd, J = 14.0, 6.7 Hz, 1H), 3.02 (dd, J = 14.1, 5.6 Hz, 1H), 2.12 

(s, 3H), 1.95 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 206.4, 169.8, 135.9, 129.3, 128.8, 127.3, 59.6, 37.3, 28.2, 23.3 

ppm. 

IR (KBr):  = 3331, 3030, 2921, 1711, 1634, 1536, 1495, 1439, 1354, 1327, 1270, 1203, 1166, 

1121, 1032, 955, 740, 698, 615, 600 cm
-1

. 

The spectroscopic data are in accordance with those reported.
[23]

 

GC-MS: Conditions: 60 °C isothermal, 5 min; 60 – 250 °C, 10 °C/min; 250 °C isothermal,  

10 min. Retention time: tR = 20.7 min; m/z (%) = 205 (3), 162 (38), 146 (7), 131 (4), 120 (100), 

103 (7), 91 (18), 77 (4), 72 (16), 65 (4). 
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Chiral stationary phase GC: FS-Hydrodex γ-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 220 °C, 1 °C/min. Retention times: tR (R) = 44.7 min, tR (S) = 44.9 min. 

Chiral stationary phase HPLC: Chiralpak IC column (Daicel), 250 mm × 4.6 mm; eluent: 15% 

i-PrOH/hexanes, 1.0 mL/min; UV-detector λ = 254 nm. Retention times: tR (S) = 15.4 min,  

tR (R) = 18.6 min. 

 

 

 

(S)-N-(3-oxo-1-phenylbutan-2-yl)acetamide ((S)-10a). The title compound was synthesized 

from Boc-L-Phe-OH through the multistep reaction sequence shown above in order to determine 

the absolute configuration of the products obtained from the enantioselective Dakin–West 

reaction. 

(S)-tert-butyl (1-(methoxy(methyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate (S1): Boc-L-

Phe-OH (1.329 g, 5.00 mmol), N,O-dimethylhydroxylamine hydrochloride (0.490 g, 5.02 mmol), 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ( D  • H l; 1.056 g,  

5.50 mmol) and 1-hydroxybenzotriazole hydrate (HOBt • H2O; 0.842 g, 5.50 mmol) were 

suspended in CH2Cl2 (50 mL). Et3N (0.76 mL, 0.555 g, 5.50 mmol) was added and the resulting 

suspension was stirred at rt for 24 h. The reaction mixture was diluted with EtOAc and 

subsequently washed with sat. aq. NaHCO3 (3 × 20 mL), 0.5 M citric acid solution (3 × 20 mL), 

and brine (3 × 20 mL). The organic layer was dried over Na2SO4, filtered, and concentrated 

under reduced pressure to afford a yellow oil. The crude product was purified by column 

chromatography eluting with hexane/EtOAc (1:1) to obtain the desired intermediate S1 (0.798 g, 

2.59 mmol, 52%) as colorless oil. TLC (hexane/EtOAc 1:1): Rf = 0.46. 
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1
H NMR (600 MHz, CDCl3): δ = 7.30 – 7.25 (m, 2H), 7.23 – 7.19 (m, 1H), 7.18 – 7.15 (m, 2H), 

5.15 (br s, 1H), 4.95 (br s, 1H), 3.65 (s, 3H), 3.16 (s, 3H), 3.05 (dd, J = 13.6, 6.1 Hz, 1H), 2.91 – 

2.84 (m, 1H), 1.39 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 172.5, 155.3, 136.8, 129.6, 128.5, 126.9, 79.7, 61.7, 51.7, 

39.0, 32.2, 28.5 ppm. 

The NMR data are in accordance with those reported.
[24]

 

 

(S)-tert-butyl (3-oxo-1-phenylbutan-2-yl)carbamate (S2): Following a reported procedure,
[25]

 S1 

(0.280 g, 0.92 mmol) was suspended in abs. THF (2 mL) and cooled to –20 °C under argon. 

Methylmagnesium bromide (3 M in Et2O; 1.0 mL, 3.0 mmol) was added slowly and the resulting 

solution was stirred at –20 
o
C for 2 h. The reaction mixture was quenched with sat. aq. NH4Cl 

and extracted with EtOAc (3 × 2 mL). The combined organic layers were washed with brine, 

dried over Na2SO4, filtered, and the solvent was removed under reduced pressure. Column 

chromatography eluting with hexane/EtOAc (2:1) afforded methyl ketone S2 (94.7 mg,  

0.36 mmol, 39%) as colorless solid. TLC (hexane/EtOAc 2:1): Rf = 0.49. 

1
H NMR (600 MHz, CDCl3): δ = 7.31 – 7.27 (m, 2H), 7.26 – 7.22 (m, 1H), 7.17 – 7.14 (m, 2H), 

5.12 (m, 1H), 4.53 (m, 1H), 3.09 (dd, J = 14.0, 6.5 Hz, 1H), 2.98 (dd, J = 13.9, 6.5 Hz, 1H), 2.12 

(s, 3H), 1.41 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 207.0, 155.3, 136.3, 129.4, 128.8, 127.2, 80.0, 60.9, 37.7, 

28.5, 28.1 ppm. 

The NMR data are in accordance with those reported.
[26]

 

 

(S)-N-(3-oxo-1-phenylbutan-2-yl)acetamide ((S)-10a): A solution of S2 (94.7 mg, 0.36 mmol) in 

CH2Cl2 (1.5 mL) was cooled to 0 °C with an ice-bath. Upon addition of TFA (0.36 mL) the 

reaction mixture was allowed to warm to rt and stirred for 1 h. After removal of the solvent, 

residual TFA was co-evaporated with CH2Cl2 in vacuo. Acetic acid (0.5 mL) and acetic 

anhydride (40.8 µL, 44.1 mg, 0.43 mmol) were added and the resulting solution was stirred at rt 

for 24 h. All volatiles were then removed under reduced and the residue was purified by column 

chromatography eluting with EtOAc to afford (S)-10a (87% ee determined by chiral stationary 

phase HPLC). 
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The NMR data were identical with those obtained from the Dakin-West reaction of 1a (vide 

supra). 

 

N-(3-oxobutan-2-yl)acetamide (10b). The title compound was synthesized on 

10.0 mmol scale employing the reaction conditions and work-up procedure 

described for 10a. Fractional distillation in vacuo afforded 10b (250.8 mg,  

1.94 mmol, 19%) as colorless oil. TLC (EtOAc): Rf = 0.15. 

1
H NMR (200 MHz, CDCl3): δ = 6.43 (br s, 1H), 4.57 (m, 1H), 2.19 (s, 3H), 1.98 (s, 3H), 1.34 

(d, J = 7.2 Hz, 3H) ppm. 

13
C NMR (50 MHz, CDCl3): δ = 207.1, 169.7, 54.7, 26.7, 23.2, 17.6 ppm. 

IR (KBr):  = 3288, 3067, 2985, 2938, 1720, 1657, 1543, 1454, 1375, 1303, 1234, 1201, 1146, 

1109, 1064, 1043, 1016, 986, 954, 727, 610, 544, 515 cm
-1

. 

The spectroscopic data are in accordance with those reported.
[23]

 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 180 °C, 2 °C/min. Retention times: tR (R) = 27.0 min, tR (S) = 27.9 min. 

 

N-(5-methyl-2-oxohexan-3-yl)acetamide (10c). The title compound was 

synthesized on 3.0 mmol scale employing the reaction conditions and work-up 

procedure described for 10a with the exception that the reaction time was 1 h. 

Fractional distillation in vacuo afforded 10c (246.7 mg, 1.44 mmol, 48%) as 

colorless oil. TLC (EtOAc): Rf = 0.29. 

1
H NMR (400 MHz, CDCl3): δ = 6.12 (d, J = 7.5 Hz, 1H), 4.66 (ddd, J = 9.5, 7.9, 3.8 Hz, 1H), 

2.21 (s, 3H), 2.01 (s, 3H), 1.71 – 1.55 (m, 2H), 1.42 – 1.33 (m, 1H), 0.96 (d, J = 6.3 Hz, 3H), 

0.91 (d, J = 6.5 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 207.6, 170.2, 57.4, 40.6, 27.5, 25.1, 23.4, 23.2, 22.0 ppm. 

ν~
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IR (film):  = 3291, 3064, 2959, 2872, 1720, 1657, 1543, 1437, 1372, 1293, 1228, 1146, 1031, 

610 cm
-1

. 

Spectroscopic data are in accordance with those reported.
[27]

 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 180 °C, 2 °C/min. Retention times: tR (R) = 25.8 min, tR (S) = 26.6 min. 

 

4-(2-acetamido-3-oxobutyl)phenyl acetate (10d). The title compound was 

synthesized on 2.0 mmol scale employing the reaction conditions and work-

up procedure described for 10a. The crude yellow solid obtained after 

removal of the solvent was digested with Et2O, filtered off, and washed with 

Et2O yielding 10d (387.1 mg, 1.47 mmol, 74%) as colorless solid. TLC (EtOAc): Rf = 0.25.  

Mp 123 – 123.5 °C (lit.
[22]

 121 – 122.5 °C). 

1
H NMR (400 MHz, CDCl3): δ = 7.14 – 7.09 (m, 2H), 7.03 – 6.99 (m, 2H), 6.14 (d, J = 7.3 Hz, 

1H), 4.87 – 4.80 (m, 1H), 3.13 (dd, J = 14.2, 6.7 Hz, 1H), 3.02 (dd, J = 14.2, 5.7 Hz, 1H),   2.28 

(s, 3H), 2.16 (s, 3H), 1.97 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 206.2, 169.8, 169.5, 149.9, 133.5, 130.3, 121.9, 59.5, 36.5, 

28.2, 23.2, 21.3 ppm. 

IR (KBr):  = 3312, 3072, 2961, 2924, 1746, 1721, 1649, 1547, 1511, 1436, 1367, 1238, 1204, 

1165, 1122, 1045, 1023, 920, 850, 695 cm
-1

. 

HRMS (ESI): m/z = 264.1229 [M+H]
+
 (calcd m/z = 264.1236); m/z = 286.1054 [M+Na]

+
 (calcd 

m/z = 286.1055). 

Elem. Anal.: calcd for C14H17NO4: C 63.87, H 6.51, N 5.32; found: C 63.72, H 6.45, N 5.13. 

Chiral stationary phase HPLC: Chiralpak IC column (Daicel), 250 mm × 4.6 mm; eluent: 25% 

i-PrOH/hexanes, 1.0 mL/min; UV-detector λ = 254 nm. Retention times: tR (S) = 17.1 min,  

tR (R) = 24.4 min. 

Crystals of 10d suitable for X-ray diffraction (Figure S1) were grown from i-PrOH/hexane (1:1). 

ν~

ν~
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Figure S1.   ORTEP plot of 10d. Ellipsoids are drawn at the 50% probability level. 

The data for 10d were obtained using a BRUKER D8 Venture system with dual IμS microfocus 

sources, a PHOTON100 detector and an OXFORD CRYOSYSTEMS 700 low temperature 

system. Data collection was performed using Moα radiation with wavelength 0.71073 Å and a 

collimating Quazar multilayer mirror. Semi-empirical absorption correction from equivalents 

was applied using SADABS-2014/4 and the structure was solved by intrinsic phasing using 

SHELXT2014.
[28]

 Refinement was performed against F² using SHELXL-2014/7.
[29]

 All non-

hydrogen atoms were refined anisotropically, all hydrogen atoms were located in difference map 

and refined isotropically. Crystallographic data for the structure have been deposited within the 

Cambridge Crystallographic Data Centre as CCDC No. 1429040. 

 
     Table S1.   Crystal data and structure refinement for 10d. 

Identification code  CCDC No. 1429040 

Empirical formula  C14 H17 N O4 

Formula weight  263.28 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 6.9769(3) Å α = 79.182(2)°. 

 b = 7.3634(4) Å β = 82.684(2)°. 

 c = 13.9340(7) Å γ = 70.563(2)°. 
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Volume 661.42(6) Å
3

 

Z 2 

Density (calculated) 1.322 Mg/m
3
 

Absorption coefficient 0.097 mm
-1

 

F(000) 280 

Crystal size 0.332 × 0.284 × 0.149 mm
3
 

Theta range for data collection 2.970 to 25.050°. 

Index ranges -7<=h<=8, -8<=k<=8, -16<=l<=16 

Reflections collected 20268 

Independent reflections 2341 [R(int) = 0.0473] 

Completeness to theta = 25.050° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7452 and 0.6764 

Refinement method Full-matrix least-squares on F
2 

Data / restraints / parameters 2341 / 0 / 240 

Goodness-of-fit on F
2
 1.142 

Final R indices [I>2sigma(I)] R1 = 0.0412, wR2 = 0.0904 

R indices (all data) R1 = 0.0492, wR2 = 0.0944 

Extinction coefficient n/a 

Largest diff. peak and hole 0.225 and -0.234 e.Å
3 

 

Table S2.   Bond lengths [Å] and angles [°] for 10d. 

O(1)-C(2)    1.229(2) 

N(1)-C(2)  1.347(2) 

N(1)-C(3)  1.443(2) 

N(1)-H(1)  0.86(2) 

C(1)-C(2)  1.500(2) 

C(1)-H(1C)  0.92(3) 

C(1)-H(1B)  0.98(2) 

C(1)-H(1A)  0.98(3) 

O(2)-C(4)  1.217(2) 

C(3)-C(4)  1.529(2) 

C(3)-C(6)  1.535(2) 

 C(3)-H(3)  0.976(18) 

O(3)-C(13)  1.365(2) 
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 O(3)-C(12)  1.4110(19) 

C(4)-C(5)  1.499(2) 

O(4)-C(13)  1.200(2) 

C(5)-H(5C)  0.92(2) 

C(5)-H(5B)  1.00(2) 

C(5)-H(5A)  0.95(2) 

C(6)-C(7)  1.510(2) 

C(6)-H(6B)  1.00(2) 

C(6)-H(6A)  0.98(2) 

C(7)-C(10)  1.392(2) 

C(7)-C(8)  1.393(2) 

C(8)-C(9)  1.390(2) 

 C(8)-H(8)  0.972(19) 

C(9)-C(12)  1.384(2) 

C(9)-H(9)  0.98(2) 

C(10)-C(11)  1.386(2) 

C(10)-H(10)  0.99(2) 

C(11)-C(12)  1.378(2) 

 C(11)-H(11)  0.967(19) 

C(13)-C(14)  1.490(2) 

C(14)-H(14C)  0.96(2) 

C(14)-H(14B)  0.93(3) 

C(14)-H(14A)  0.94(3) 

 

 C(2)-N(1)-C(3) 120.75(14) 

 C(2)-N(1)-H(1) 120.6(13) 

 C(3)-N(1)-H(1) 116.2(13) 

 C(2)-C(1)-H(1C) 108.9(15) 

 C(2)-C(1)-H(1B) 112.9(13) 

H(1C)-C(1)-H(1B) 108(2) 

 C(2)-C(1)-H(1A) 107.8(14) 

H(1C)-C(1)-H(1A) 110(2) 

 H(1B)-C(1)-H(1A) 108.5(19) 

 O(1)-C(2)-N(1) 122.13(15) 

 O(1)-C(2)-C(1) 121.78(16) 

 N(1)-C(2)-C(1) 116.09(15) 

 N(1)-C(3)-C(4) 111.48(13) 

 N(1)-C(3)-C(6) 111.10(14) 

 C(4)-C(3)-C(6) 110.87(14) 

 N(1)-C(3)-H(3) 109.8(10) 

 C(4)-C(3)-H(3) 105.6(10) 

 C(6)-C(3)-H(3) 107.8(10) 

 C(13)-O(3)-C(12) 117.89(12) 

 O(2)-C(4)-C(5) 121.71(15) 

 O(2)-C(4)-C(3) 120.84(15) 

 C(5)-C(4)-C(3) 117.45(14) 

 C(4)-C(5)-H(5C) 110.3(12) 

 C(4)-C(5)-H(5B) 107.9(13) 

 H(5C)-C(5)-H(5B) 107.5(18) 

 C(4)-C(5)-H(5A) 111.3(12) 

 H(5C)-C(5)-H(5A) 113.0(17) 

 H(5B)-C(5)-H(5A) 106.5(18) 

 C(7)-C(6)-C(3) 112.04(14) 
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 C(7)-C(6)-H(6B) 111.4(12) 

 C(3)-C(6)-H(6B) 106.3(12) 

 C(7)-C(6)-H(6A) 109.8(11) 

 C(3)-C(6)-H(6A) 107.8(11) 

 H(6B)-C(6)-H(6A) 109.3(16) 

 C(10)-C(7)-C(8) 118.34(15) 

 C(10)-C(7)-C(6) 120.69(15) 

 C(8)-C(7)-C(6) 120.97(15) 

 C(9)-C(8)-C(7) 121.38(16) 

 C(9)-C(8)-H(8) 119.3(11) 

 C(7)-C(8)-H(8) 119.3(11) 

 C(12)-C(9)-C(8) 118.49(16) 

 C(12)-C(9)-H(9) 118.9(11) 

 C(8)-C(9)-H(9) 122.6(11) 

 C(11)-C(10)-C(7) 121.09(16) 

 C(11)-C(10)-H(10) 120.8(12) 

 C(7)-C(10)-H(10) 118.1(12) 

 C(12)-C(11)-C(10) 119.13(16) 

 C(12)-C(11)-H(11) 118.9(11) 

 C(10)-C(11)-H(11) 121.9(11) 

 C(11)-C(12)-C(9) 121.55(15) 

 C(11)-C(12)-O(3) 119.86(14) 

 C(9)-C(12)-O(3) 118.35(14) 

 O(4)-C(13)-O(3) 123.03(15) 

 O(4)-C(13)-C(14) 126.23(16) 

 O(3)-C(13)-C(14) 110.74(14) 

 C(13)-C(14)-H(14C) 110.1(14) 

 C(13)-C(14)-H(14B) 107.5(17) 

H(14C)-C(14)-H(14B) 109(2) 

 C(13)-C(14)-H(14A) 111.3(15) 

H(14C)-C(14)-H(14A) 110(2) 

H(14B)-C(14)-H(14A) 109(2) 

 

N-(1-(methylthio)-4-oxopentan-3-yl)acetamide (10e).
[30]

 The title compound was 

synthesized on 2.0 mmol scale employing the reaction conditions and work-up 

procedure described for 10a. Purification by column chromatography eluting with 

EtOAc afforded 10e (269.9 mg, 1.43 mmol, 71%) as colorless oil. TLC (EtOAc):  

Rf = 0.22. 

1
H NMR (400 MHz, CDCl3): δ = 6.53 – 6.38 (br s, 1H), 4.74 – 4.66 (m, 1H), 2.54 – 2.36 (m, 

2H), 2.22 (s, 3H), 2.22 – 2.13 (m, 1H), 2.06 (s, 3H), 2.00 (s, 3H), 1.87 – 1.75 (m, 1H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 206.3, 170.1, 58.2, 30.9, 30.0, 27.4, 23.3, 15.7 ppm. 

IR (KBr):  = 3289, 3061, 2918, 1720, 1655, 1542, 1438, 1373, 1299, 1159, 1121, 1040, 608 

cm
-1

. 

ν~
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Chiral stationary phase GC: FS-Hydrodex β-6-TBDM column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 210 °C, 2 °C/min. Retention times: tR (R) = 40.7 min, tR (S) = 41.8 min. 

 

Benzyl 3-acetamido-4-oxopentanoate (10f). The title compound was synthesized 

on 2.0 mmol scale employing the reaction conditions and work-up procedure 

described for 10a. Purification by column chromatography eluting with EtOAc 

afforded 10f (220.5 mg, 0.84 mmol, 42%) as a colorless oil which solidified upon 

standing at rt overnight. TLC (EtOAc): Rf = 0.32. Mp 71 °C. 

1
H NMR (400 MHz, CDCl3): δ = 7.39 – 7.29 (m, 5H), 6.67 (d, J = 8.0 Hz, 1H), 5.10 (s, 2H),  

4.78 – 4.72 (m, 1H), 3.01 (dd, J = 17.0, 4.5 Hz, 1H), 2.85 (dd, J = 17.0, 4.9 Hz, 1H), 2.21 (s, 

3H), 2.00 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 205.3, 171.3, 170.0, 135.4, 128.7, 128.6, 128.4, 67.0, 55.2, 

35.4, 26.8, 23.2 ppm. 

IR (KBr):  = 3357, 3040, 2947, 1719, 1644, 1512, 1459, 1430, 1352, 1249, 1197, 1165, 1129, 

1025, 939, 914, 841, 752, 700, 668, 604 cm
-1

. 

HRMS (ESI): m/z = 286.1057 [M+Na]
+
 (calcd m/z = 286.1055); m/z = 549.2222 [2M+Na]

+
 

(calcd m/z = 549.2213) 

Elem. Anal.: calcd for C14H17NO4: C 63.87, H 6.51, N 5.32; found: C 63.98, H 6.51, N 5.38. 

Chiral stationary phase HPLC: Chiralpak IC column (Daicel), 250 mm × 4.6 mm; eluent: 25% 

i-PrOH/hexanes, 1.0 mL/min; UV-detector λ = 220 nm. Retention times: tR (R) = 16.8 min,  

tR (S) = 22.4 min. 

 

N-(1-(naphthalen-2-yl)-3-oxobutan-2-yl)acetamide (10g). The title com-

pound was synthesized on 2.0 mmol scale employing the reaction conditions 

and work-up procedure described for 10a with the exception that the reaction 

time was 45 min. Purification by column chromatography eluting with EtOAc 

afforded 10g (366.8 mg, 1.44 mmol, 72%) as colorless solid. TLC (EtOAc):  

Rf = 0.32. Mp 110 – 112 °C. 

ν~
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1
H NMR (400 MHz, CDCl3): δ = 7.84 – 7.75 (m, 3H), 7.57 (s, 1H), 7.50 – 7.43 (m, 2H), 7.29 – 

7.25 (m, 1H), 6.19 (d, J = 7.1 Hz, 1H), 4.98 – 4.91 (m, 1H), 3.29 (dd, J = 14.1, 6.9 Hz, 1H), 3.20 

(dd, J = 14.1, 5.8 Hz, 1H), 2.16 (s, 3H), 1.97 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 206.5, 169.8, 133.5, 133.5, 132.6, 128.5, 128.0, 127.8, 127.7, 

127.2, 126.4, 126.0, 59.6, 37.5, 28.3, 23.2 ppm. 

IR (KBr):  = 3315, 3057, 2971, 2923, 2829, 1914, 1715, 1638, 1544, 1437, 1372, 1354, 1329, 

1293, 1275, 1265, 1202, 1166, 1153, 1126, 1031, 946, 890, 855, 827, 799, 739, 611, 529, 478 

cm
-1

. 

HRMS (EI): m/z = 255.1266 [M]
•+

 (calcd m/z = 255.1259). 

Elem. Anal.: calcd for C16H17NO2: C 75.27, H 6.71, N 5.49; found: C 75.24, H 6.73, N 5.26. 

Chiral stationary phase HPLC: Chiralpak IC column (Daicel), 250 mm × 4.6 mm; eluent: 15% 

i-PrOH/hexanes, 1.0 mL/min; UV-detector λ = 254 nm. Retention times: tR (S) = 21.4 min,  

tR (R) = 23.9 min. 

 

N-(1-(anthracen-9-yl)-3-oxobutan-2-yl)acetamide (10h). The title compound 

was synthesized on 0.5 mmol scale as described for 10a with the exception that 

200 µL (216 mg, 2.10 mmol) Ac2O and 200 µL (146 mg, 1.44 mmol) Et3N 

were used. After removal of all volatiles in vacuo the crude product was 

directly subjected to column chromatography eluting with TBME to afford 10h 

(87.8 mg, 0.29 mmol, 58%) as yellow solid. TLC (TBME): Rf = 0.22. Mp 187 °C. 

1
H NMR (400 MHz, CDCl3): δ = 8.40 (s, 1H), 8.37 (d, J = 9.1 Hz, 2H), 8.01 (d, J = 8.4 Hz, 2H), 

7.57 (ddd, J = 8.9, 6.5, 1.4 Hz, 2H), 7.48 (ddd, J = 7.9, 6.6, 1.1 Hz, 2H), 6.47 (d, J = 6.9 Hz, 1H), 

5.09 – 5.02 (m, 1H), 4.17 (dd, J = 14.3, 6.7 Hz, 1H), 3.88 (dd, J = 14.3, 9.2 Hz, 1H),  1.96 (s, 

3H), 1.48 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 207.9, 170.0, 131.5, 130.5, 129.5, 128.2, 127.5, 126.7, 125.3, 

124.1, 59.8, 30.8, 29.4, 23.2 ppm. 

IR (KBr):  = 3318, 3052, 2919, 1713, 1640, 1542, 1445, 1369, 1353, 1325, 1288, 1255, 1213, 

1186, 1167, 1120, 1027, 954, 884, 843, 774, 731, 607, 562, 525, 481 cm
-1

. 

ν~
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HRMS (EI): m/z = 305.1418 [M]
•+

 (calcd m/z = 305.1416). 

Elem. Anal.: calcd for C20H19NO2: C 78.66, H 6.27, N 4.59; found: C 77.80, H 6.18, N 4.01. 

Chiral stationary phase HPLC: Chiralpak IC column (Daicel), 250 mm × 4.6 mm; eluent: 25% 

i-PrOH/hexanes, 1.0 mL/min; UV-detector λ = 254 nm. Retention times: tR (S) = 14.2 min, tR (R) 

= 22.3 min. 

 

N-(3-oxo-1-(perfluorophenyl)butan-2-yl)acetamide (10i). The title com-

pound was synthesized on 0.5 mmol scale employing the reaction conditions 

and work-up procedure described for 10a with the exception that DCM  

(100 µL) was used as solvent. Purification by column chromatography eluting 

with EtOAc/hexanes (1:1) afforded 10i (134.6 mg, 0.46 mmol, 91%) as 

colorless solid. TLC (EtOAc/hexanes 1:1): Rf = 0.26. Mp 155 – 156 °C. 

1
H NMR (400 MHz, CDCl3): δ = 6.13 (d, J = 7.7 Hz, 1H), 4.98 – 4.91 (m, 1H), 3.45 – 3.38 (m, 

1H), 3.00 – 2.92 (m, 1H), 2.34 (s, 3H), 1.96 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 204.6, 170.0, 109.8 (m), 57.7, 27.4, 24.7, 23.1 ppm. 

19
F NMR (376 MHz, CDCl3): δ = –142.2 (m), –154.6 (t, J = 20.8 Hz), –161.7 (m) ppm. 

IR (KBr):  = 3307, 3065, 2931, 1722, 1644, 1544, 1524, 1504, 1441, 1426, 1375, 1335, 1294, 

1268, 1220, 1176, 1167, 1122, 1167, 1033, 974, 921, 893, 716, 680, 610, 563, 532, 498, 466, 

432 cm
-1

. 

HRMS (ESI): m/z = 296.0728 [M+H]
+
 (calcd m/z = 296.0710); m/z = 318.0529 [M+Na]

+
 (calcd 

m/z = 318.0529); m/z = 613.1180 [2M+Na]
+
 (calcd m/z = 613.1161). 

Elem. Anal.: calcd for C12H10F5NO2: C 48.82, H 3.41, N 4.74; found: C 48.62, H 3.32, N 4.67. 

Chiral stationary phase GC: FS-Hydrodex β-6-TBDM column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 210 °C, 2 °C/min. Retention times: tR (S) = 38.3 min, tR (R) = 38.7 min. 

 

ν~
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N-(1-cyclohexyl-3-oxobutan-2-yl)acetamide (10j). The title compound was 

synthesized on 1.0 mmol scale employing the reaction conditions and work-up 

procedure described for 10a with the exception that the reaction time was 2 h. 

Purification by column chromatography eluting with EtOAc afforded 10j  

(132.4 mg, 0.63 mmol, 63%) as colorless oil which crystallized upon standing at rt over night. 

TLC (EtOAc): Rf = 0.32. 

1
H NMR (400 MHz, CDCl3): δ = 6.12 (d, J = 7.9 Hz, 1H), 4.66 (ddd, J = 9.2, 7.9, 4.1 Hz, 1H), 

2.19 (s, 3H), 2.00 (s, 3H), 1.89 – 1.81 (m, 1H), 1.72 – 1.54 (m, 5H), 1.38 – 1.04 (m, 5H), 0.98 – 

0.80 (m, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 207.9, 170.1, 56.7, 39.0, 34.3, 34.1, 32.7, 27.4, 26.4, 26.3, 

26.1, 23.3 ppm. 

IR (KBr):  = 3319, 3043, 2922, 2850, 2666, 1714, 1645, 1538, 1447, 1379, 1360, 1304, 1264, 

1236, 1195, 1131, 1110, 1046, 1012, 937, 922, 890, 674, 595, 531, 512 cm
-1

. 

HRMS (EI): m/z = 211.1564 [M]
•+

 (calcd m/z = 211.1572). 

Elem. Anal.: calcd for C12H21NO2: C 68.21, H 10.02, N 6.63; found: C 68.21, H 10.03, N 6.68. 

Chiral stationary phase HPLC: Chiralpak IC column (Daicel), 250 mm × 4.6 mm; eluent: 15% 

i-PrOH/hexanes, 1.0 mL/min; UV-detector λ = 220 nm. Retention times: tR (S) = 16.0 min,  

tR (R) = 22.4 min. 

 

2.4 Availability of Catalysts 

Unless otherwise noted, peptides were synthesized by EDC/HOBt mediated peptide coupling in 

solution using the N-tert-butoxycarbonyl (Boc) protecting group strategy. Boc-4-

aminoadamantanecarboxylic acid (Boc-
A
Gly-OH),

[31]
 Boc-anthranilic acid (Boc-2-Abz-OH),

[32]
 

Boc-D-Pro-OH,
[33]

 and Boc-L-Pmh-OH,
[34]

 were prepared according to literature procedures.  

H-L-Pmh-O e • 2 H l and Boc-L-Pmh-OMe were synthesized as described below. All other 

amino acids and coupling reagents were purchased from commercial suppliers and were used as 

received. 

 

ν~
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Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe (11). Coupling 

1: H-L-Phe-O e • H l (1.078 g, 5.00 mmol) and Boc-

L-Cha-OH • D HA (2.264 g, 5.00 mmol) were added to 

a round-bottom flask, along with 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC 

• H l; 1.054 g, 5.50 mmol) and 1-hydroxybenzotriazole 

hydrate (HOBt • H2O; 0.842 g, 5.5 mmol). CH2Cl2 (25 mL) was added, followed by Et3N  

(0.77 mL, 0.559 g, 5.52 mmol), and the resulting suspension was stirred at rt for 24 h. The 

reaction mixture was diluted with EtOAc and subsequently washed with 0.5 M citric acid 

solution (3 × 50 mL), sat. aq. NaHCO3 (3 × 50 mL) and brine (50 mL). The organic layer was 

dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the crude peptide 

(2.124 g, 4.91 mmol, 98%) as colorless foam.  

The peptides obtained using this procedure were usually sufficiently pure (as judged by NMR 

and/or ESI-MS) and were used for subsequent coupling steps without any purification. 

Deprotection 1: The peptide fragment was treated with 4 M HCl in 1,4-dioxane (2 mL/mmol) 

and the resulting solution was stirred at rt for 45 min. The reaction flask was flushed with argon 

for 30 min to remove residual HCl and the solvent was removed under reduced pressure. After 

drying in vacuo, the resulting peptide hydrochloride was directly used for the next coupling step. 

Coupling 2: The coupling of H-L-Cha-L-Phe-O e • H l and Boc-
A
Gly-OH was performed on 

4.74 mmol scale according to the procedure described for coupling 1 (vide supra). Boc-
A

Gly-L-

Cha-L-Phe-OMe was obtained as colorless foam (2.876 g, 4.72 mmol, 99%). 

Deprotection 2: The deprotection was performed as described above for deprotection 1. 

Coupling 3: The coupling of H-
A
Gly-L-Cha-L-Phe-O e • H l with Boc-L-Pmh-OH was 

performed on 2.10 mmol scale according to the previous couplings with the modification that  

2.2 equiv of coupling reagents and base were used. The slightly yellow solution was diluted with 

EtOAc and washed with sat. aq. NaHCO3 (3 × 50 mL) and brine (3 × 50 mL). The organic layer 

was dried over Na2SO4, filtered, and concentrated under reduced pressure to give a yellow foam. 

Purification by column chromatography eluting with CHCl3/MeOH (10:1) afforded oligopeptide 

11 (1.272 g, 1.67 mmol, 80%) as colorless foam. TLC: Rf = 0.41 (CHCl3/MeOH 10:1) 

1
H NMR (400 MHz, CDCl3): δ = 7.54 (s, 1H), 7.29 – 7.19 (m, 3H), 7.12 – 7.07 (m, 2H), 6.86 (s, 

1H), 6.69 (d, J = 7.7 Hz, 1H), 6.16 (s, 1H), 6.09 (d, J = 7.9 Hz, 1H), 5.35 (br s, 1H) 4.82 – 4.75 

(m, 1H), 4.48 – 4.40 (m, 1H), 4.28 – 4.16 (m, 1H), 3.68 (s, 3H), 3.61 (s, 3H), 3.11 (dd, J = 13.9, 

5.9 Hz, 1H), 3.05 (dd, J = 13.9, 6.5 Hz, 1H), 2.98 (d, J = 6.9 Hz, 2H), 2.17 (m, 2H), 2.03 – 1.94 
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(m, 2H), 1.95 – 1.85 (m, 4H), 1.76 – 1.55 (m, 12H), 1.51 – 1.43 (m, 1H), 1.41 (s, 9H), 1.28 – 

1.05 (m, 4H), 0.97 – 0.76 (m, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 176.5, 172.1, 171.8, 169.8, 155.5, 138.0, 135.9, 129.3, 128.7, 

127.8, 127.7, 80.5, 54.5, 53.4, 52.5, 52.4, 50.8, 42.6, 42.3, 40.4, 40.4, 39.6, 38.3, 38.1, 37.9, 

35.3, 34.3, 33.6, 32.8, 31.8, 29.2, 29.2, 28.4, 27.1, 26.5, 26.3, 26.2 ppm. 

IR (KBr):  = 3308, 3062, 3030, 2922, 2853, 1748, 1664, 1509, 1450, 1391, 1366, 1279, 1248, 

1215, 1169, 1110, 1052, 1022, 929, 889, 816, 747, 701, 662, 616 cm
-1

. 

Spectrosopic data match those reported in the literature.
[35]

 

 

Boc-L-Pmh-D-Pro-Aib-L-Cha-L-Phe-OMe (12). The penta-

peptide was synthesized employ-ing the procedure described 

for 11. Purification by column chromatography eluting with 

CH2Cl2/MeOH (9:1) afforded 12 in 42% overall yield as 

colorless solid. TLC (CHCl3/MeOH 9:1): Rf = 0.44. 

1
H NMR (600 MHz, CDCl3): δ = 7.37 (s, 1H), 7.28 – 7.24 (m, 

3H), 7.22 – 7.18 (m, 3H), 6.92 (d, J = 8.3 Hz, 1H), 6.81 (s, 

1H), 6.54 (s, 1H), 6.47 (d, J = 9.2 Hz, 1H), 4.81 – 4.75 (m, 1H), 4.65 – 4.58 (m, 1H), 4.48 – 4.42 

(m, 1H), 4.07 (m, 1H), 3.64 (s, 3H), 3.61 (s, 3H), 3.60 – 3.55 (m, 1H), 3.35 (ddd, J = 10.3, 7.1, 

5.3 Hz, 1H), 3.21 – 3.14 (m, 2H), 3.07 (dd, J = 13.7, 6.7 Hz, 1H), 2.92 (dd, J = 15.0, 5.7 Hz, 

1H), 2.12 – 2.06 (m, 1H), 2.06 – 1.96 (m, 2H), 1.84 – 1.74 (m, 2H), 1.73 – 1.64 (m, 5H), 1.59 (s, 

3H), 1.46 (s, 3H), 1.42 (s, 9H), 1.37 – 1.31 (m, 1H), 1.27 – 1.08 (m, 4H), 1.00 – 0.92 (m, 1H), 

0.90 – 0.82 (m, 1H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 174.4, 171.9, 171.8, 171.7, 170.2, 155.9, 137.9, 136.4, 129.7, 

128.6, 128.0, 127.0, 80.1, 61.4, 57.4, 53.6, 52.0, 51.9, 50.7, 47.7, 37.8, 37.8, 34.4, 33.9, 32.6, 

31.6, 28.9, 28.5, 27.8, 26.9, 26.6, 26.4, 26.3, 25.4, 23.9 ppm. 

IR (KBr):  = 3317, 2978, 2926, 2852, 1747, 1710, 1673, 1637, 1509, 1448, 1366, 1322, 1246, 

1168, 1111, 1049, 1027, 933, 816, 746, 702, 665 cm
-1

. 

HRMS (ESI): m/z = 766.4506 [M+H]
+
 (calcd m/z = 766.4503). 

Elem. Anal.: calcd for C40H59N7O8: C 62.72, H 7.76, N 12.80; found: C 61.65, H 7.84, N 12.11. 

ν~

ν~



New Frontiers in Peptide Catalysis 
 

  243 

Boc-L-Pmh-2-Abz-D-Pro-L-Cha-L-Phe-OMe (13). 

The pentapeptide was synthesized employing the 

procedure described for 11. A sample of the peptide 

was purified by preparative HPLC for complete 

characterization and catalysis. LiChrosorb Si-100-phase 

column (Merck), 250 mm × 8 mm; eluent: 55%  

i-PrOH/hexanes, 4.0 mL/min; UV-detector λ = 210 nm. Retention time: tR = 5.4 min. 

1
H NMR (600 MHz, CDCl3): δ = 9.07 (s, 1H), 8.18 (d, J = 6.2 Hz, 1H), 7.88 (d, J = 6.8 Hz, 1H), 

7.44 – 7.38 (m, 2H), 7.30 (d, J = 7.7 Hz, 1H), 7.24 – 7.20 (m, 2H), 7.18 – 7.12 (m, 4H), 6.90 (s, 

1H), 6.83 (br s, 1H), 5.99 (d, J = 8.8 Hz, 1H), 4.82 – 4.71 (m, 2H), 4.52 – 4.44 (m, 2H), 3.66 – 

3.58 (m, 4H), 3.55 (s, 3H), 3.37 – 3.29 (m, 2H), 3.26 – 3.20 (m, 1H), 3.15 – 3.00 (m, 4H), 2.30 – 

2.23 (m, 1H), 2.11 – 1.96 (m, 2H), 1.88 – 1.81 (m, 1H),  1.73 – 1.59 (m, 6H), 1.38 (s, 9H), 1. 37 

– 1.31 (m, 1H), 1.22 – 1.08 (m, 4H), 0.97 – 0.84 (m, 2H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 174.4, 171.9, 171.8, 171.7, 170.2, 155.9, 138.0, 136.8, 134.4, 

130.6, 129.4, 128.6, 127.6, 127.1, 126.9, 126.8, 124.7, 123.3, 80.0, 60.5, 54.2, 53.8, 52.4, 51.8, 

49.7, 39.8, 37.5, 34.4, 33.5, 32.8, 31.9, 29.6, 28.5, 27.4, 26.5, 26.3, 26.2, 25.5 ppm. 

IR (KBr):  = 3341, 2977, 2925, 2851, 1746, 1658, 1588, 1512, 1453, 1422, 1392, 1367, 1276, 

1248, 1212, 1166, 1110, 1050, 1027, 930, 758, 701, 662 cm
-1

. 

HRMS (ESI): m/z = 800.4347 [M+H]
+
 (calcd m/z = 800.4346); m/z = 822.4160 [M+H]

+
 (calcd 

m/z = 822.4166). 

Elem. Anal.: calcd for C43H57N7O8: C 64.56, H 7.18, N 12.26; found: C 63.06, H 7.32, N 11.22. 

 

(S)-Tetramisol (14). Levamisol hydrochloride (240.8 mg, 1.0 mmol) was 

dissolved in H2O (10 mL) and 33% NaOH (20 mL) was added. The reaction 

mixture was stirred for at rt for 1 h and extracted with CH2Cl2 (4 × 15 mL). The combined 

organic layers were dried over Na2SO4, filtered and the solvent was removed in vacuo yielding 

14 (204.0 mg, 1.0 mmol, quant.) as colorless solid. 

1
H NMR (400 MHz, CDCl3): δ = 7.37 – 7.31 (m, 4H), 7.28 – 7.22 (m, 1H), 5.45 (t, J = 8.9 Hz, 

1H), 3.70 – 3.60 (m, 2H), 3.52 (ddd, J = 10.8, 6.4, 4.4 Hz, 1H), 3.36 (ddd, J = 8.6, 6.5, 4.4 Hz, 

1H), 3.12 (dt, J = 8.6, 6.4 Hz, 1H), 2.98 (dd, J = 9.2, 8.3 Hz, 1H) ppm. 

ν~
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13
C NMR (100 MHz, CDCl3): δ = 174.4, 142.9, 128.5, 127.3, 126.6, 77.0, 58.5, 49.2, 34.2 ppm. 

IR (KBr):  = 3054, 3030, 2988, 2964, 2943, 2919, 2881, 2838, 1944, 1870, 1805, 1746, 1594, 

1580, 1494, 1471, 1452, 1368, 1349, 1326, 1299, 1289, 1276, 1258, 1202, 1159, 1079, 1052, 

1037, 1012, 976, 956, 925, 905, 873, 836, 757, 698, 672, 639, 620, 587, 544, 530, 493 cm
-1

. 

The NMR data are in accordance with those reported.
[36]

 

 

(S)-(–)-4-Pyrrolidinopyrindinyl(pentamethylcyclopentadienyl)iron (15). 

Catalyst was purchased from ABCR and was used without further 

purification. 

 

 

Boc-L-Pmh-OMe (16). The title compound was synthesized from Boc-L-

Pmh-OH (0.673 g, 2.50 mmol) and MeOH (0.41 mL, 0.321 g, 10.00 mmol) 

employing the procedure described for coupling 3 in the synthesis of 11. 

Yield: 0.691 g (2.44 mmol, 98%). TLC (CHCl3/MeOH 9:1): Rf = 0.38.  

1
H NMR (400 MHz, CDCl3): δ = 7.37 (s, 1H), 6.76 (s, 1H), 5.21 (d, J = 7.8 Hz, 1H), 4.56 – 4.48 

(m, 1H), 3.73 (s, 3H), 3.56 (s, 3H), 3.11 (dd, J = 15.4, 5.8 Hz, 1H), 3.04 (dd, J = 15.4, 6.0 Hz, 

1H), 1.40 (s, 9H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 171.8, 155.2, 138.5, 128.4, 126.6, 80.3, 53.1, 52.7, 31.4, 28.4, 

27.0 ppm. 

IR (KBr):  = 2980, 1736, 1697, 1537, 1510, 1437, 1367, 1324, 1291, 1245, 1219, 1201, 1166, 

1110, 1054, 1039, 991, 935, 854, 815, 786, 753, 699, 664 cm
-1

. 

The spectroscopic data are in accordance with those reported.
[37] 

 

 

 

ν~
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Boc-
A
Gly-L-Pmh-OMe (17). H-L-Pmh-OMe • 2 HCl: Method A: 

Dry MeOH (45 mL) was cooled to 0 °C with an ice-bath and 

freshly distilled SOCl2 (3.9 mL, 6.40 g, 53.8 mmol) was added 

dropwise. After stirring for 30 min at 0 °C, H-L-Pmh-OH • 2 H l 

(3.64 g, 15.0 mmol) was added and the reaction mixture was stirred 

at 0 °C for 1 h, and additional 24 h at rt. All volatiles were removed in vacuo to afford H-L-Pmh-

O e • 2 H l (quant.) as colorless to brownish solid. 

H-L-Pmh-OMe • 2 HCl: Method B: In accordance with a reported procedure,
[38]

 trimethylsilyl 

chloride (3.80 mL, 3.26 g, 30.0 mmol) was added dropwise to Boc-L-Pmh-OH (2.64 g,  

9.8 mmol) with cooling. Dry MeOH (100 mL) was added slowly and the resulting solution was 

allowed to stir at rt for 24 h. All volatiles were removed in vacuo to afford H-L-Pmh-O e •  

2 HCl (quant.) as colorless solid. 

1
H NMR (400 MHz, D2O): δ = 8.75 (s, 1H), 7.48 (s, 1H), 4.55 (t, J = 7.3 Hz, 1H), 3.89 (s, 3H), 

3.86 (s, 3H), 3.55 (dd, J = 16.3, 6.9 Hz, 1H), 3.42 (dd, J = 16.1, 7.3 Hz, 1H) ppm. 

13
C NMR (100 MHz, D2O): δ = 168.8, 136.1, 128.1, 118.9, 54.0, 51.0, 33.4, 23.7 ppm. 

1
H NMR data are in accordance with those reported.

[39]
 

 

According to a literature procedure,
[40]

 Boc-
A
Gly-OH (886.1 mg, 3.0 mmol), H-L-Pmh-O e •  

2 HCl (768.4 mg, 3.0 mmol) and O-(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexa-

fluorophosphate (HBTU; 1.138 g, 3.0 mmol) were dissolved in dry acetonitrile/methanol (10:1, 

44 mL) and cooled to 0 °C with an ice bath. DiPEA (1.53 mL, 1.163 g, 9.0 mmol) was added and 

the mixture was stirred for 3.5 h upon warming to rt. The reaction was quenched with brine  

(60 mL) and extracted with CHCl3 (4 × 40 mL). The combined organic layers were successively 

washed with H2O (2 × 50 mL), sat. aq. NaHCO3 (2 × 50 mL) and brine (2 × 50 mL) and dried 

over Na2SO4. After filtration and removal of the solvent under reduced pressure the crude 

product was purified by column chromatography eluting with CHCl3/MeOH (9:1) to yield 17 

(952.2 mg, 2.07 mmol, 69%) as colorless solid. TLC (CHCl3/MeOH 9:1): Rf = 0.33.  

1
H NMR (600 MHz, CDCl3): δ = 7.53 (s, 1H), 6.80 (s, 1H), 6.28 (d, J = 7.4 Hz, 1H), 4.79 – 4.75 

(m, 1H), 4.43 (br s, 1H), 3.74 (s, 3H), 3.62 (s, 3H), 3.14 (dd, J = 15.4, 6.2 Hz, 1H), 3.06 (dd, J = 

15.4, 6.4 Hz, 1H), 2.22 – 2.17 (m, 2H), 2.03 – 1.95 (m, 2H), 1.95 – 1.82 (m, 4H), 1.78 – 1.68 (m, 

4H), 1.66 – 1.57 (m, 2H), 1.42 (s, 9H) ppm. 
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13
C NMR (150 MHz, CDCl3): δ = 176.7, 171.8, 154.2, 138.2, 127.5, 126.9, 79.1, 52.8, 51.4, 

50.9, 43.0, 42.8, 41.1, 41.0, 38.3, 38.3, 35.4, 31.8, 29.3, 29.3, 28.6, 26.8 ppm. 

IR (KBr):  = 3332, 2977, 2931, 2909, 2855, 1750, 1710, 1686, 1637, 1529, 1453, 1364, 1341, 

1303, 1277, 1247, 1220, 1175, 1072, 1021, 938, 878, 665 cm
-1

. 

HRMS (EI): m/z = 460.2681 [M]
•+

 (calcd m/z = 460. 2680). 

Elem. Anal.: calcd for C24H36N4O5: C 62.59, H 7.88, N 12.16; found: C 60.98, H 7.86, N 10.90. 

 

Boc-L-Cha-
A
Gly-L-Pmh-OMe (18). Coupling 1: The 

coupling of Boc-
A
Gly-OH (1.188 g, 4.0 mmol) and H-L-Pmh-

O e • 2 H l (1.027 g, 4.0 mmol) was performed as described 

for catalyst 17. The crude product obtained after work-up was 

used for the subsequent steps without further purification. 

Deprotection: The deprotection was performed as described for the synthesis of 11. 

Coupling 2: The coupling of H-
A
Gly-L-Pmh-O e • 2 H l and Boc-L-Cha-OH • D HA was 

performed according to coupling 3 described for the synthesis of 11 with the modification that  

3 equiv of Et3N were used. Column chromatography eluting with CH2Cl2/MeOH (95:5) gave 

Boc-L-Cha-
A
Gly-L-Pmh-OMe (18; 1.645 g, 2.68 mmol, 67% based on H-L-Pmh-O e • 2 H l) 

as colorless solid. TLC (CH2Cl2/MeOH, 95:5): Rf = 0.32. 

1
H NMR (600 MHz, CDCl3): δ = 7.44 (s, 1H), 6.76 (s, 1H), 6.27 (d, J = 7.5 Hz, 1H), 5.90 (br s, 

1H), 4.89 (br s, 1H), 4.79 – 4.75 (m, 1H), 3.97 (br s, 1H), 3.74 (s, 3H), 3.60 (s, 3H), 3.13 (dd, J = 

15.5, 6.1 Hz, 1H), 3.05 (dd, J = 15.4, 6.5 Hz, 1H), 2.07 (d, J = 11.8 Hz, 1H), 2.03 – 1.96 (m, 

2H), 1.96 – 1.90 (m, 3H), 1.79 – 1.58 (m, 12H), 1.44 (s, 9H), 1.43 – 1.36 (m, 1H), 1.34 – 1.09 

(m, 5H), 0.99 – 0.91 (m, 1H), 0.91 – 0.83 (m, 1H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 172.0, 171.8, 155.9, 138.4, 127.9, 126.7, 80.2, 53.1, 

52.8, 52.2, 51.3, 42.7, 42.5, 40.7, 40.6, 40.0, 38.2, 38.2, 35.3, 34.3, 33.8, 32.8, 31.6, 29.2, 29.2, 

28.5, 26.8, 26.6, 26.4, 26.2, 24.9, 23.1, 22.3 ppm. 

IR (KBr):  = 3337, 2923, 2854, 1745, 1701, 1660, 1509, 1450, 1366, 1281, 1246, 1170, 1110, 

1046, 1022, 926, 847, 754, 664 cm
-1

. 

ν~
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HRMS (ESI): m/z = 614.3916 [M+H]
+
 (calcd m/z = 614.3918). 

Elem. Anal.: calcd for C33H51N5O6: C 64.57, H 8.38, N 11.41; found: C 59.91, H 7.89, N 0.15. 

 

Boc-L-Pmh-
A
Gly-L-Val-L-Phe-OMe (S3). The syn-

thesis and characterization data for S3 can be found in 

the literature.
[37]

 

 

 

Boc-D-Pmh-
A
Gly-L-Val-L-Phe-OMe (S4). The syn-

thesis and characterization data for S4 can be found in 

the literature.
[37]

 

 

 

Boc-L-Pmh-
A
Gly-D-Val-L-Phe-OMe (S5). The syn-

thesis and characterization data for S5 can be found in 

the literature.
[37]

 

 

 

Boc-D-Pmh-
A
Gly-D-Val-L-Phe-OMe (S6). The syn-

thesis and characterization data for S6 can be found in 

the literature.
[37]
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Boc-L-Ala-
A
Gly-L-Pmh-OMe (S7). The tripeptide was 

prepared on 0.3 mmol scale employing the procedure 

described for 18. Purification by column chromatography 

eluting with CH2Cl2/MeOH (10:1) afforded S7 (90.0 mg,  

0.17 mmol, 61%) as colorless solid. TLC (CH2Cl2/MeOH, 

10:1): Rf = 0.43. 

1
H NMR (600 MHz, CDCl3): δ = 7.40 (s, 1H), 6.75 (s, 1H), 6.24 (d, J = 7.5 Hz, 1H), 5.96 (br s, 

1H), 5.01 (br s, 1H), 4.80 – 4.75 (m, 1H), 4.02 (br s, 1H), 3.74 (s, 3H), 3.59 (s, 3H), 3.13 (dd, J = 

15.4, 6.2 Hz, 1H), 3.04 (dd, J = 15.4, 6.4 Hz, 1H), 2.03 (m, 2H), 2.09 – 2.05 (m, 1H), 2.03 – 1.89 

(m, 5H), 1.78 – 1.70 (m, 4H), 1.68 – 1.58 (m, 2H), 1.44 (s, 9H), 1.29 (d, J = 7.0 Hz, 3H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 171.9, 155.8, 138.6, 128.4, 126.4, 80.2, 52.8, 52.1, 

51.3, 42.7, 42.5, 40.7, 40.6, 38.2, 38.2, 35.3, 31.6, 29.2, 29.2, 28.5, 26.8 ppm. 

IR (KBr):  = 3340, 2913, 2857, 1744, 1660, 1510, 1452, 1366, 1249, 1168, 1108, 1069, 1052, 

1022, 926, 803, 754, 664 cm
-1

. 

HRMS (ESI): m/z = 532.3130 [M+H]
+
 (calcd m/z = 532.3135). 

Elem. Anal.: calcd for C27H41N5O6: C 61.00, H 7.77, N 13.17; found: C 57.03, H 7.68, N 11.54. 

 

Boc-L-Val-
A
Gly-L-Pmh-OMe (S8). The tripeptide was 

prepared from purified dipeptide 17 (139.4 mg, 0.30 mmol) 

and Boc-L-Val-OH (56.8 mg, 0.31 mmol) according to the 

procedure described for 18. Purification by column 

chromatography eluting with CH2Cl2/MeOH (10:1) afforded 

S7 (71.0 mg, 0.13 mmol, 43%) as colorless solid. TLC (CH2Cl2/MeOH, 10:1): Rf = 0.45. 

1
H NMR (600 MHz, CDCl3): δ = 7.39 (s, 1H), 6.74 (s, 1H), 6.28 (d, J = 7.5 Hz, 1H), 5.76 (s, 

1H), 5.08 (d, J = 8.9 Hz, 1H), 4.78 – 4.73 (m, 1H), 3.75 – 3.70 (m, 1H), 3.73 (s, 3H), 3.58 (s, 

3H), 3.11 (dd, J = 15.4, 6.1 Hz, 1H), 3.04 (dd, J = 15.4, 6.5 Hz, 1H), 2.19 (m, 2H), 2.08 – 2.00 

(m, 3H), 1.98 – 1.92 (m, 4H), 1.78 – 1.68 (m, 4H), 1.67 – 1.56 (m, 2H), 1.42 (s, 9H), 0.92 (d, J = 

6.7 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.4, 171.9, 156.0, 138.5, 128.3, 126.5, 79.9, 60.5, 52.8, 

52.3, 51.3, 42.7, 42.5, 40.6, 40.5, 38.2, 38.1, 35.2, 31.6, 31.2, 29.2, 28.4, 26.8, 19.4, 18.0 ppm. 

ν~
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IR (KBr):  = 3433, 2963, 2916, 2857, 1742, 1699, 1655, 1511, 1454, 1366, 1246, 1167, 1110, 

1043, 1018, 928, 873, 699, 663 cm
-1

. 

HRMS (ESI): m/z = 560.3448 [M+H]
+
 (calcd m/z = 560.3448). 

Elem. Anal.: calcd for C29H45N5O6: C 62.23, H 8.10, N 12.51; found: C 59.97, H 8.05, N 10.44. 

 

Boc-D-Val-
A
Gly-L-Pmh-OMe (S9). The deprotection of Boc-

A
Gly-L-Pmh-OMe (17; 0.461 g, 1.00 mmol) was performed 

with 4 M HCl in 1,4-dioxane (2.0 mL) as described in the 

synthesis of 11. Coupling of Boc-D-Val-OH (217.3 mg,  

1.0 mmol) with H-
A
Gly-L-Pmh-O e • 2 H l was performed 

in the presence of HBTU (379.3 mg, 1.0 mmol), HOBt • 2 H2O (153.1 mg, 1.0 mmol), and 

DiPEA (0.52 mL, 387.7 mg, 3.0 mmol) in CH2Cl2 (5 mL) at rt for 24 h according to the 

procedure described for 17. Purification by column chromatography eluting with CHCl3/MeOH 

(9:1) afforded S9 (288.6 mg, 0.52 mmol, 52%) as colorless solid. TLC (CHCl3/MeOH 9:1):  

Rf = 0.39. 

1
H NMR (600 MHz, CDCl3): δ = 7.40 (s, 1H), 6.75 (s, 1H), 6.25 (d, J = 7.5 Hz, 1H), 5.69 (s, 

1H), 5.06 (d, J = 8.3 Hz, 1H), 4.80 – 4.75 (m, 1H), 3.74 (s, 3H), 3.74 – 3.70 (m, 1H), 3.59 (s, 

3H), 3.13 (dd, J = 15.4, 6.1 Hz, 1H), 3.04 (dd, J = 15.4, 6.5 Hz, 1H), 2.21 (m, 2H), 2.07 – 2.01 

(m, 3H), 2.00 – 1.93 (m, 4H), 1.80 – 1.69 (m, 4H), 1.68 – 1.58 (m, 2H), 1.44 (s, 9H), 0.93 (d, J = 

6.7 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.4, 171.9, 156.0, 138.5, 128.4, 126.5, 79.9, 60.5, 52.8, 

52.4, 51.3, 42.7, 42.6, 40.6, 40.5, 38.2, 35.3, 31.6, 31.1, 29.2, 28.5, 26.8, 19.4, 18.0 ppm. 

IR (KBr):  = 3339, 2913, 2858, 1744, 1658, 1508, 1454, 1390, 1366, 1291, 1245, 1168, 1110, 

1043, 1016, 926, 873, 845, 754, 663 cm
-1

. 

HRMS (ESI): m/z = 560.3448 [M+H]
+
 (calcd m/z = 560.3448). 

Elem. Anal.: calcd for C29H45N5O6: C 62.23, H 8.10, N 12.51; found: C 60.73, H 8.30, N 11.76. 

 

 

ν~

ν~
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Boc-L-Leu-
A
Gly-L-Pmh-OMe (S10). The tripeptide was 

prepared from purified dipeptide 17 (461.3 mg, 1.00 mmol) 

and Boc-L-Leu-OH • H2O (250.7 mg, 1.00 mmol) according 

to the procedure described for 18. Purification by column 

chromatography eluting with CH2Cl2/MeOH (10:1) afforded 

S10 (316.0 mg, 0.55 mmol, 55%) as colorless solid. 

1
H NMR (600 MHz, CDCl3): δ = 7.38 (s, 1H), 6.74 (s, 1H), 6.25 (d, J = 7.5 Hz, 1H), 5.91 (br s, 

1H), 4.91 (m, 1H), 4.79 – 4.74 (m, 1H), 3.99 – 3.90 (m, 1H), 3.73 (s, 3H), 3.58 (s, 3H), 3.12 (dd, 

J = 15.4, 6.2 Hz, 1H), 3.04 (dd, J = 15.4, 6.4 Hz, 1H), 2.20 (m, 2H), 2.09 – 1.91 (m, 6H), 1.78 – 

1.69 (m, 4H), 1.67 – 1.57 (m, 4H), 1.43 (s, 9H), 1.43 – 1.38 (m, 1H), 0.92 (t, J = 5.9 Hz, 6H) 

ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 171.9, 171.8, 155.9, 138.6, 128.5, 126.4, 80.1, 53.6, 

52.8, 52.2, 51.4, 42.7, 42.4, 41.4, 40.6, 40.5, 38.2, 38.2, 35.3, 31.5, 29.2, 29.2, 28.5, 26.8, 24.9, 

23.1, 22.3 ppm. 

IR (KBr):  = 3346, 2913, 2860, 1745, 1660, 1508, 1453, 1366, 1248, 1168, 1110, 1046, 1022, 

926, 663 cm
-1

. 

HRMS (ESI): m/z = 574.3603 [M+H]
+
 (calcd m/z = 574.3605). 

Elem. Anal.: calcd for C30H47N5O6: C 62.80, H 8.26, N 12.21; found: C 62.46, H 8.54, N 12.04. 

 

Boc-L-Phe-
A
Gly-L-Pmh-OMe (S11). The deprotection of 

Boc-
A
Gly-L-Pmh-OMe (17; 230.5 mg, 0.50 mmol) was 

performed with 4 M HCl in 1,4-dioxane (2.0 mL) as described 

in the synthesis of 11. Coupling of Boc-L-Phe-OH (132.8 mg, 

0.50 mmol) with H-
A
Gly-L-Pmh-O e • 2 H l was performed 

in the presence of HBTU (208.5 mg, 0.55 mmol), HOBt • H2O (84.9 mg, 0.55 mmol), and Et3N 

(0.23 mL, 167.0 mg, 1.65 mmol) in CH2Cl2 (5 mL) at rt for 24 h according to the procedure 

described for 17. A sample of the crude peptide was purified by preparative HPLC for complete 

characterization and catalysis. LiChrosorb Diol column (Merck), 250 mm × 8 mm; eluent: 10% 

MeOH/TBME, 5.0 mL/min; UV-detector λ = 220 nm. Retention time: tR = 7.5 min. 

1
H NMR (600 MHz, CDCl3): δ = 7.54 (s, 1H), 7.32 – 7.19 (m, 5H), 6.81 (s, 1H), 6.28 (d, J = 7.4 

Hz), 5.42 (s, 1H), 5.14 (br s, 1H), 4.80 – 4.72 (m, 1H), 4.17 (br s, 1H), 3.75 (s, 3H), 3.61 (s, 3H), 

ν~
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3.14 (dd, J = 15.5, 6.1 Hz, 1H), 3.09 – 3.02 (m, 2H), 2.96 – 2.90 (m, 1H), 2.15 (s, 2H), 1.97 – 

1.86 (m, 2H), 1.85 – 1.66 (m, 8H), 1.63 – 1.54 (m, 2H), 1.41 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 171.8, 170.2, 155.5, 138.2, 137.2, 129.6, 128.8, 127.5, 

127.1, 126.8, 80.2, 56.5, 52.8, 52.2, 51.3, 42.7, 42.4, 40.5, 40.4, 39.2, 38.2, 38.1, 35.2, 31.8, 

29.2, 28.5, 26.8 ppm. 

IR (KBr): = 3331, 2913, 2856, 1743, 1662, 1508, 1454, 1391, 1365, 1287, 1248, 1218, 1169, 

1110, 753 cm
-1

. 

HRMS (ESI): m/z = 608.3446 [M+H]
+
 (calcd m/z = 608.3448). 

Elem. Anal.: calcd for C33H45N5O6: C 65.22, H 7.46, N 11.52; found: C 63.91, H 7.30, N 10.49. 

 

Boc-L-Trp-
A
Gly-L-Pmh-OMe (S12). The tripeptide was 

synthesized on 0.3 mmol scale employing the procedure 

described for 18. A sample of the crude peptide was purified 

by preparative HPLC for complete characterization and 

catalysis. LiChrosorb Diol column (Merck), 250 mm × 8 mm; 

eluent: 12% MeOH/TBME, 5.0 mL/min; UV-detector λ =  

220 nm. Retention time: tR = 7.4 min. 

1
H NMR (600 MHz, CDCl3): δ = 9.98 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.60 (s, 1H), 7.38 (d, J = 

8.1 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.12 – 7.08 (m, 1H), 7.02 (s, 1H), 6.85 (s, 1H), 6.33 (d, J = 7.5 

Hz, 1H), 5.29 (br s, 1H), 5.25 (s, 1H), 4.81 – 4.76 (m, 1H), 4.36 (br s, 1H), 3.78 (s, 3H), 3.61 (s, 

3H), 3.36 – 3.29 (m, 1H), 3.19 (dd, J = 15.6, 5.3 Hz, 1H), 3.06 – 2.97 (m, 2H), 2.08 (d, J = 22.5 

Hz, 2H), 1.85 (d, J = 12.1 Hz, 1H), 1.76 (d, J = 11.6 Hz, 1H), 1.73 – 1.47 (m, 10H), 1.44 (s, 9H) 

ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 171.9, 170.7, 155.6, 138.0, 136.5, 127.6, 127.2, 126.8, 

124.0, 122.0, 119.5, 118.8, 111.7, 110.3, 79.9, 55.6, 52.9, 52.0, 50.9, 42.6, 42.1, 40.5, 40.2, 38.0, 

38.0, 35.2, 31.8, 29.1, 29.1, 29.0, 28.5, 26.6 ppm. 

IR (KBr):  = 3418, 2914, 2856, 1660, 1509, 1456, 1365, 1248, 1168, 744, 663 cm
-1

.  

HRMS (ESI): m/z = 647.3555 [M+H]
+
 (calcd m/z = 647.3557). 

ν~
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Elem. Anal.: calcd for C35H46N6O6: C 65.00, H 7.17, N 12.99; found: C 62.57, H 7.07, N 12.30. 

 

Boc-(Trt)-L-His-
A
Gly-L-Pmh-OMe (S13). The tripeptide 

was synthesized on 0.3 mmol scale employing the procedure 

described for 18. A sample of the crude peptide was purified 

by preparative HPLC for complete characterization and 

catalysis. LiChrosorb Diol column (Merck), 250 mm × 8 mm; 

eluent: 10% MeOH/TBME, 5.0 mL/min; UV-detector λ = 220 nm. Retention time: tR = 13.5 min. 

1
H NMR (600 MHz, CDCl3): δ = 7.45 (s, 1H), 7.39 (s, 1H), 7.34 – 7.29 (m, 9H), 7.11 – 7.07 (m, 

6H), 6.78 (s, 1H), 6.70 (br s, 1H), 6.66 (s, 1H), 6.29 (d, J = 7.4 Hz, 1H), 6.17 (br s, 1H), 4.78 – 

4.73 (m, 1H), 4.29 (br s, 1H), 3.72 (s, 3H), 3.59 (s, 3H), 3.11 (dd, J = 15.4, 6.3 Hz, 1H), 3.05 

(dd, J = 15.4, 6.4 Hz, 1H), 3.01 – 2.94 (m, 1H), 3.89 (dd, J = 14.7, 6.1 Hz, 1H), 2.18 – 2.13 (m, 

2H), 2.06 (d, J = 11.8 Hz, 1H), 2.00 – 1.78 (m, 5H), 1.77 – 1.68 (m, 4H), 1.64 – 1.55 (m, 2H), 

1.42 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.6, 171.8, 170.9, 155.8, 142.4, 138.5, 136.8, 129.9, 128.4, 

128.3, 128.2, 128.0, 126.7, 119.6, 79.8, 75.7, 54.9, 52.8, 52.0, 51.4, 42.7, 42.5, 40.6, 40.3, 38.3, 

38.2, 35.3, 31.7, 30.8, 29.2, 29.2, 28.5, 26.8 ppm. 

IR (KBr):  = 3423, 2912, 2855, 1663, 1498, 1448, 1365, 1244, 1168, 750, 703, 661 cm
-1

. 

HRMS (ESI): m/z = 840.4448 [M+H]
+
 (calcd m/z = 840.4449), m/z = 862.4266 [M+Na]

+
 (calcd 

m/z = 862.4268). 

Elem. Anal.: calcd for C49H57N7O6: C 70.06, H 6.84, N 11.67; found: C 67.22, H 6.70, N 10.22. 

 

Boc-L-(OBn)-Asp-
A
Gly-L-Pmh-OMe (S14). The tripeptide 

was synthesized on 0.3 mmol scale employing the procedure 

described for 18. A sample of the crude peptide was purified 

by preparative HPLC for complete characterization and 

catalysis. LiChrosorb Diol column (Merck), 250 mm × 8 mm; 

eluent: 10% MeOH/TBME, 5.0 mL/min; UV-detector λ = 220 nm. Retention time: tR = 17.7 min. 

ν~
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1
H NMR (600 MHz, CDCl3): δ = 7.47 (s, 1H), 7.36 – 7.29 (m, 5H), 6.78 (s, 1H), 6.31 – 6.24 (m, 

2H), 5.66 (br s, 1H) 5.17 – 5.08 (m, 2H), 4.79 – 4.73 (m, 1H), 4.39 (br s, 1H), 3.73 (s, 3H), 3.59 

(s, 3H), 3.12 (dd, J = 15.4, 6.3 Hz, 1H), 3.05 (dd, J = 15.4, 6.3 Hz, 1H), 2.95 (dd,  

J = 17.0, 4.5 Hz, 1H), 2.67 (dd, J = 17.1, 6.6 Hz, 1H), 2.18 (br s, 2H), 2.06 – 1.98 (m, 2H), 1.95 

– 1.83 (m, 4H), 1.78 – 1.68 (m, 4H), 1.65 – 1.56 (m, 2H), 1.44 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.5, 171.9, 171.8, 169.8, 155.7, 138.4, 135.6, 128.7, 128.5, 

128.4, 127.8, 126.7, 80.6, 66.9, 52.8, 52.2, 51.4, 51.2, 42.7, 42.3, 40.5, 40.4, 38.2, 38.1, 36.6, 

35.3, 31.7, 29.2, 29.2, 28.4, 26.8 ppm. 

IR (KBr):  = 3409, 2913, 2856, 1739, 1664, 1508, 1455, 1365, 1248, 1167, 1050, 750, 699, 

663 cm
-1

. 

HRMS (ESI): m/z = 666.3501 [M+H]
+
 (calcd m/z = 666.3503), m/z = 688.3322 [M+Na]

+
 (calcd 

m/z = 688.3322). 

Elem. Anal.: calcd for C35H47N5O8: C 63.14, H 7.12, N 10.52; found: C 62.12, H 6.87, N 8.90. 

 

Boc-L-Asn-
A
Gly-L-Pmh-OMe (S15). The tripeptide was 

synthesized on 0.3 mmol scale employing the procedure 

described for 18. A sample of the crude peptide was purified 

by preparative HPLC for complete characterization and 

catalysis. LiChrosorb Diol column (Merck), 250 mm × 8 mm; 

eluent: 75% i-PrOH/hexanes, 3.0 mL/min; UV-detector λ = 230 nm. Retention time: tR =  

5.0 min. 

1
H NMR (600 MHz, CDCl3): δ = 7.68 (s, 1H), 6.87 (s, 1H), 6.56 – 6.35 (m, 2H), 6.31 – 6.24 (m, 

2H), 5.74 (br s, 1H), 4.82 – 4.75 (m, 1H), 4.39 (br s, 1H), 3.76 (s, 3H), 3.65 (s, 3H), 3.17 (dd, J = 

15.5, 5.6 Hz, 1H), 3.05 (dd, J = 15.2, 7.5 Hz, 1H), 2.91 – 2.77 (m, 2H), 2.21 (m, 2H), 2.07 – 1.96 

(m, 4H), 1.93 – 1.84 (m, 2H), 1.80 – 1.57 (m, 6H), 1.46 (s, 9H) ppm. 

13
C NMR (150 MHz, CDCl3): δ = 176.6, 176.6, 171.7, 167.9, 155.5, 138.0, 127.2, 126.6, 81.1, 

52.9, 52.8, 52.8, 51.3, 50.9, 50.8, 42.7, 40.5, 40.2, 38.1, 38.0, 37.9, 35.2, 32.0, 29.3, 29.2, 29.2, 

28.4, 26.7 ppm. 

IR (KBr):  = 3420, 2922, 2857, 1669, 1525, 1454, 1367, 1279, 1249, 1165, 1109, 1064, 663, 

625 cm
-1

. 

ν~
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HRMS (ESI): m/z = 557.3092 [M–H2O+H]
+
 (calcd m/z = 557.3088), m/z = 579.2912 [M–

H2O+Na]
+
 (calcd m/z = 579.2907). 

Elem. Anal.: calcd for C28H42N6O7: C 58.52, H 7.37, N 14.62; found: C 56.69, H 7.42, N 13.16. 

 

3,5-bis(trifluoromethyl)phenyl)thiourea-
A
Gly-L-Pmh-OMe 

(S16). The synthesis and characterization data for S16 can be 

found in the literature.
[40]

 

 

 

2.5 Catalytic Experiments 

2.5.1 Reaction optimization 

General procedure for preliminary reaction investigation. Phenylalanine (0.1 mmol) or  

N-acetyl phenylalanine (to prevent peptide coupling of starting material for reactions performed 

at higher concentration or with DIC) and 11 (10 mol%) were suspended in dry toluene. Acetic 

anhydride was added followed by base and the reaction mixture was allowed to stir at rt for  

72 h. The reaction progress was monitored by GC-MS and chiral stationary phase GC. The 

corresponding results are summarized in Table S3. Except the entries 8, 9 and 10 in Table 3 only 

traces of 10a (< 10%) formed after 72 h as judged by GC-MS. 

We started our investigation using peptide catalyst 11 and DL-phenylalanine as starting material. 

Upon treatment of the amino acid with 10 eq acetic anhydride in the presence of catalyst 11 

azlactone 3a was the main product and only traces of desired product 10a formed, although with 

31% ee (Table S3, entry 1). The conversion could not be considerably enhanced when higher 

amounts of anhydride or higher concentrations were used (entries 2 – 6) and little lower 

selectivities were observed for 10a. However, the reaction could be greatly accelerated by the 

addition of base (entries 7 – 9) even in the presence of lower amounts of anhydride. Although 

conversion significantly improved, diminished selectivities were determined with increasing 

base strength. When DIC was used as an additive (entry 10) the azlactone intermediate 3a was 

fully converted to enantiomerically enriched acetyl derivative 6a overnight. The decarboxylation 

step was then initiated by addition of acetic acid, affording desired product 10a. 
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Table S3. Preliminary evaluation of concentration, amount of acetic anhydride and base. 

 

Entry R Ac2O Base Concentration Major product
a 

ee 10a (%)
b 

1 H 10 eq – 0.04 M 3a 31 

2 H 20 eq – 0.04 M 3a 30 

3 H 50 eq – 0.04 M 3a 30 

4 H 50 eq – 0.02 M 3a 27 

5 H 10 eq – 0.1 M 3a 29 

6 H 10 eq – 0.2 M 3a 24 

7 Ac 2.2 eq 2,6-lutidine (2.2 eq) 0.2 M 3a 31 

8 Ac 2.2 eq Et3N (2.2 eq) 0.2 M 10a 11 

9 Ac 2.2 eq DBU (2.2 eq) 0.2 M 10a 9 

10
c 

Ac 1.1 eq DIC (2.2 eq) 0.2 M 

 
6a 

23
d
 

a 
Major product was determined by GC-MS;

  b 
Enantiomeric excess for 10a was determined by chiral stationary 

phase GC; 
c 

Conversion of 3a was complete after 22 h;
 d 

Complete conversion of 6a to 10a after addition of 

AcOH (10 eq) after 24 h. Stereochemistry for 10a was determined as (S) by comparison of the retention times of 

an authentic sample ((S)-10a; vide supra) on chiral stationary phase HPLC.
 

 

General procedure for reaction optimization. DIC (or DCC in Table S4, entry 5) was added to 

3a (0.1 mmol) and 11 (10 mol%) in the solvent given in Table S4 (0.5 mL) and the resulting 

suspension was stirred at rt for 30 min. After addition of acetic anhydride the reaction mixture 

was stirred at rt for 24 h. Acetic acid was added to initiate decarboxylation and stirring was 

continued for further 72 h. The results are summarized in Table S4. Except entries 3, 8 and 9 the 

conversion was > 95% for each individual step. 

We found that a ~ 0.2 M concentration of acetic acid in general afforded the best enantio-

selectivities. H2O could be applied to promote the decarboxylation step as well (entry 3), 

however, the reaction was slow and sometimes accompanied by the formation of by-products. 

Although other common solvents gave somehow lower enantioselectivities compared to toluene, 
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the effect was not as pronounced as in our previous investigations.
[35,37]

 By monitoring the 

reaction progress with GC-MS as well as chiral stationary phase GC we observed that the 

reaction indeed follows the currently accept mechanism (Figure S2).
[41]

 

 

Table S4. Reaction optimization. 

 

Entry DIC Ac2O AcOH Solvent ee 10a (%)
a 

1 2.2 eq 1.1 eq 10 eq PhMe 23 

2 1.7 eq 1.5 eq 10 eq PhMe 19 

3 1.7 eq 1.5 eq H2O; 10 eq PhMe   29
b
 

4 1.7 eq 1.5 eq 1.3 eq PhMe 33 

5 DCC, 1.7 eq 1.5 eq 1.3 eq PhMe 31 

6 1.7 eq 1.5 eq 1.3 eq acetonitril 11 

7 1.7 eq 1.5 eq 1.3 eq CHCl3 22
 

8 1.7 eq 1.5 eq 1.3 eq 1,4-dioxane   26
b
 

9 1.7 eq 1.5 eq 1.3 eq EtOAc   26
b
 

10 1.7 eq 1.5 eq 1.3 eq THF 26 

a 
Enantiomeric excess for 10a was determined by chiral stationary phase GC; 

b 
Conversion was not complete. 

Other transient intermediates, e.g., the mixed anhydride or the β-keto acid formed before 

decarboxylation could not be detected by GC-MS. The O-acetyl derivative 5a (tR = 20.5 min) 

was not observed as well, thus C-acetylation to 6a is preferred under the reaction conditions 

and/or 5a is immediately rearranged to 6a by the catalyst after formation. 

Importantly, there was no change of selectivity over time. Thus, there is no higher selectivity for 

the asymmetric protonation followed by gradual racemization. 
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Figure S2.   Reaction progress of the Dakin-West reaction under optimized reaction conditions. with catalyst 11; 

highest peak has been set to 100%. 

 

2.5.2 Catalyst screening 

General procedure. DIC (26.5 µL, 21.5 mg, 0.17 mmol) was added to 1a (20.7 mg, 0.1 mmol) 

and catalyst (10 mol%) in dry toluene (0.5 mL) and the resulting suspension was stirred for  

30 min at rt. After addition of acetic anhydride (14.2 µL, 15.3 mg, 0.15 mmol) the reaction 

mixture was stirred for 24 h (unless indicated otherwise). An aliquot was injected on chiral 

stationary GC to determine the enantioselectivity for 6a. Acetic acid (7.44 µL, 7.81 mg,  

0.13 mmol) was added to initiate decarboxylation and stirring was continued for further 72 h. 

The reaction progress was monitored by GC-MS and chiral stationary phase GC. The corres-

ponding results are summarized in Table S5. 
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Table S5.   Catalyst screening under optimized reaction conditions. 

 

Entry Cat. ee 6a (%)
a
 ee 10a (%)

a 

1 Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe (11) –22 33 

2 Boc-L-Pmh-
A
Gly-L-Val-L-Phe-OMe (S3) –13 (48 h) 29 

3 Boc-D-Pmh-
A
Gly-L-Val-L-Phe-OMe (S4) 10 (48 h) 7 

4 Boc-L-Pmh-
A
Gly-D-Val-L-Phe-OMe (S5) 0 (48 h)  0 

5 Boc-D-Pmh-
A
Gly-D-Val-L-Phe-OMe (S6) 18 (48 h) –18 

6 Boc-L-Pmh-D-Pro-Aib-L-Cha-L-Phe-OMe (12) 20 (48 h) –5 

7 
Boc-L-Pmh-2-Abz-D-Pro-L-Cha-L-Phe-OMe 

(13) 
16 8 

8 (S)-Tetramisol (14) 25 (traces) not detected 

9 (S)-PPY* (15) 16 22 (24 h) 

10 Boc-L-Pmh-OMe (16) 8 (conv. not complete) 4 

11 Boc-
A
Gly-L-Pmh-OMe (17) 16 5 

12 Boc-L-Ala-
A
Gly-L-Pmh-OMe (S7) 25 27 

13 Boc-L-Val-
A
Gly-L-Pmh-OMe (S8) 17 22 

14 Boc-D-Val-
A
Gly-L-Pmh-OMe (S9) not determined 27 

15 Boc-L-Leu-
A
Gly-L-Pmh-OMe (S10) 24 29 

16 Boc-L-Cha-
A
Gly-L-Pmh-OMe (18) 25 37 

 17
b 

DMAP + Boc-L-Cha-
A
Gly-L-Pmh-OMe (18) – 33 (24 h) 

18 Boc-L-Phe-
A
Gly-L-Pmh-OMe (S11) 25 31 

19 Boc-L-Trp-
A
Gly-L-Pmh-OMe (S12) 14 20 

20 Boc-L-(Trt)-His-
A
Gly-L-Pmh-OMe (S13) 23 (46 h) 5 

21 Boc-L-(OBn)-Asp-
A
Gly-L-Pmh-OMe (S14) 22 (46 h) 20 

22 Boc-L-Asn-
A
Gly-L-Pmh-OMe (S15) 18 (42 h) 17 

23 TU-
A
Gly-L-Pmh-OMe (S16) 23 (42 h) 0 

a
 Selectivity was determined by chiral stationary phase GC; absolute configuration for 6a was determined by 

comparison of retention times of the corresponding product obtained with catalyst 14.
[42]

 
b
 First part of the reaction 

was performed with DMAP (5 mol%) in the absence of 18. Negative values indicate formation of the (R)-

enantiomer. Unless otherwise noted, conversion was > 95% for the individual steps. 
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2.5.3 Preparative enantioselective Dakin-West Reaction 

The reactions were usually performed with racemic amino acids, except with 1d and 1f were the 

L-amino acids were applied. However, we found that this has no effect on the selectivity of the 

reaction; L-, D- and DL-phenylalanine derivatives provided the same stereoselectivities. This 

outcome is in accordance with the accepted reaction mechanism. 

 

N-(3-oxo-1-phenylbutan-2-yl)acetamide (10a). To a suspension of  

N-acetyl-DL-phenyl-alanine (1a; 207.2 mg, 1.0 mmol) and catalyst 18 

(61.4 mg, 10 mol%) in dry toluene (5.0 mL) was added DCC (60 wt% in 

xylenes; 651 µL, 1.7 mmol) and the reaction mixture was stirred at rt for 

30 min. After addition of acetic anhydride (142 µL, 153.4 mg, 1.5 mmol) 

stirring was continued for 44 h. Acetic acid (74.4 µL, 78.1 mg, 1.3 mmol) 

was then added to initiate decarboxylation and stirring was continued for additional 72 h. The 

formed N,N’-dicyclohexyl urea was filtered off, washed with CH2Cl2 and the obtained clear 

solution was directly subjected to column chromatography to afford 10a (141.3 mg, 0.69 mmol, 

69%) as colorless solid with 36% ee. The NMR data were identical with those reported for the 

racemic samples. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 

Upon recrystallization of the obtained enantiomerically enriched 10a from xylenes crystals with 

84% ee (25% yield) were collected. 

 

N-(3-oxobutan-2-yl)acetamide (10b). The reaction was performed following the 

general procedure described above with 1b (131.2 mg, 1.0 mmol) affording 10b 

(105.7 mg, 0.82 mmol, 82%) as colorless oil with 11% ee. Reaction time for 

acetylation was 24 h and for decarboxylation 72 h. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 
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N-(5-methyl-2-oxohexan-3-yl)acetamide (10c). The reaction was performed 

following the general procedure described above with 1c (173.2 mg, 1.0 mmol) 

affording 10c (110.2 mg, 0.64 mmol, 64%) as colorless oil with 54% ee. Reaction 

time for acetylation was 64 h and for decarboxylation 92 h. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 

 

4-(2-acetamido-3-oxobutyl)phenyl acetate (10d). The reaction was per-

formed following the general procedure described above with 1d  

(265.3 mg, 1.0 mmol) affording 10d (202.7 mg, 0.77 mmol, 77%) as 

colorless solid with 31% ee. The product was contaminated with traces of 

N,N’-di-cyclohexyl urea that could not be sufficiently removed by column 

chromatography. Reaction time for acetylation was 24 h and for 

decarboxylation 84 h. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 

Upon recrystallization of the obtained enantiomerically enriched 10d from Et2O crystals with 

54% ee (42% yield) were collected. 

 

N-(1-(methylthio)-4-oxopentan-3-yl)acetamide (10e). The reaction was per-

formed following the general procedure described above with 1e (191.3 mg,  

1.0 mmol) affording 10e (153.2 mg, 0.81 mmol, 81%) as colorless oil with 25% ee. 

Reaction time for acetylation was 24 h and for decarboxylation 72 h. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 

 

 

 



New Frontiers in Peptide Catalysis 
 

  261 

N-(1-(methylthio)-4-oxopentan-3-yl)acetamide (10f). The reaction was per-

formed following the general procedure described above with 1f (265.4 mg,  

1.0 mmol) affording 10f (162.4 mg, 0.62 mmol, 62%) as colorless solid with  

17% ee. Reaction time for acetylation was 48 h and for decarboxylation 74 h. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 

 

N-(1-(naphthalen-2-yl)-3-oxobutan-2-yl)acetamide (10g). The reaction was 

performed following the general procedure described above with 1g (128.6 mg, 

0.5 mmol) affording 10g (99.5 mg, 0.39 mmol, 78%) as colorless solid with 

31% ee. Reaction time for acetylation was 48 h and for decarboxylation 72 h. 

The eluent for column chromatography and the corresponding Rf value as well 

as the conditions for determination of the enantioselectivity are provided in chapter 5.3. 

 

N-(1-(anthracen-9-yl)-3-oxobutan-2-yl)acetamide (10h). The reaction was 

performed following the general procedure described above with 1h (153.7 mg, 

0.5 mmol) affording racemic 10h (78.4 mg, 0.26 mmol, 52%) as yellow solid. 

Reaction time for acetylation was 24 h and for decarboxylation 84 h. 

The eluent for column chromatography and the corresponding Rf value as well 

as the conditions for determination of the enantioselectivity are provided in chapter 5.3. 

 

N-(3-oxo-1-(perfluorophenyl)butan-2-yl)acetamide (10i). The reaction was 

performed following the general procedure described above with 1i (148.6 mg, 

0.5 mmol) affording 10i (141.7 mg, 0.48 mmol, 96%) as colorless solid with 

18% ee. The product was contaminated with traces of N,N’-dicyclohexyl urea 

that could not be sufficiently removed by column chromatography. Reaction 

time for acetylation was 24 h and for decarboxylation 48 h. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 
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We observed significant racemization of 10i during column chromatography. A sample that was 

injected on chiral stationary phase GC prior to work-up showed 31% ee. 

 

N-(1-(anthracen-9-yl)-3-oxobutan-2-yl)acetamide (10j). The reaction was per-

formed following the general procedure described above with 1j (106.7 mg,  

0.5 mmol) affording 10j (70.9 mg, 0.34 mmol, 67%) as colorless solid with 58% 

ee. Reaction time for acetylation was 72 h and for decarboxylation 96 h. 

The eluent for column chromatography and the corresponding Rf value as well as the conditions 

for determination of the enantioselectivity are provided in chapter 5.3. 

 

2.6 Mechanistic Investigations 

2.6.1 Computational details 

We performed a molecular dynamics search for low-lying conformations of the adduct of 

protonated peptide 18 and enolate 9j employing the Merck molecular force field (MMFF).
[43]

 For 

preliminary energy minimization 9j was arranged in the ‘binding-pocket’ of the peptide in a way 

to give the stereoselectively preferred product (S)-10j (18-9j-S) or the potential enantiomer  

(R)-10j (18-9j-R), respectively. The lowest-lying conformations found were reoptimized at the 

B3LYP level of theory with the D3(BJ) correction,
[44]

 accounting for dispersion interactions, in 

conjunction with a 6-31+G(d,p) basis set. The self-consistent reaction field (SCRF)
[45]

 with the 

polarizable continuum model (PCM) was employed to incorporate toluene as solvent and the 

United Atom topological model applied on radii optimized for the HF/6-31G(d) level of theory 

(UAHF)
[46]

 was used to describe the bulk solvent. The Gaussian09 program package
[47]

 was used 

to compute the complexes. The found minimum displayed only real frequencies. Visualization of 

the computed structures was performed with CYLview
[48]

 and with ‘Visual  olecular 

Dynamics’ (V D)
[49]

 for non-covalent interaction surfaces.  
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            18-9j-S          18-9j-R 

Figure S3. B3LYP-D3(BJ)/6-31+G(d,p) optimized structures of enolate 9j in the binding pocket of protonated 

peptide catalyst 18. Left: Complex leading to (S)-10j; Right: Complex leading to (R)-10j. 

 

 

Table S6.   

Complex Energy (–au) ZPVE (au) E+ZPVE (–au) G298 (–au) ΔG298 (kcal mol
-1

) 

18-9j-S 2689.0993488 1.1524363 2687.9469125 2688,0441180 0.0 

18-9j-R 2689.0898497 1.1504966 2686,8936214 2688,0407120 2.1 

 

 

Table S7. xyz-coordinates for 18-9j-S.   Table S8. xyz-coordinates for 18-9j-R. 

Atom      X      Y    Z  Atom      X      Y     Z 

1      -1.630991000     -0.048619000      1.380730000 

6      -2.191786000     -0.970854000      1.559820000 

6      -2.257285000     -3.115364000      2.856693000 

6      -4.404553000     -2.001747000      2.165287000 

6      -3.711931000     -2.825594000      3.264880000 

6      -3.649637000     -0.659910000      1.959675000 

6      -1.490894000     -1.792958000      2.666830000 

1      -2.232815000     -3.690222000      1.921868000 

1      -5.443549000     -1.794037000      2.443038000 

1      -2.148289000     -1.571911000      0.643172000 

1      -1.756137000     -3.716345000      3.624949000 

1      -4.419059000     -2.563426000      1.222710000 

1      -4.246473000     -3.774332000      3.391542000 

6      -3.728810000     -2.033438000      4.584498000 

1      -3.265598000     -2.624946000      5.383937000 

1      -4.763813000     -1.829939000      4.886296000 

6      -3.640274000      0.122124000      3.293296000 

1      -4.668403000      0.366710000      3.573312000 

1      -3.104955000      1.069747000      3.154785000 

 

1       1.024273000     -1.668868000     -1.177765000 

6       1.706872000     -2.113504000     -0.450135000 

6       2.171514000     -4.106332000      1.008484000 

6       4.079077000     -2.790311000      0.031912000 

6       3.593975000     -4.198181000      0.430044000 

6       3.138798000     -2.192109000     -1.037815000 

6       1.212171000     -3.521489000     -0.044084000 

1       2.168117000     -3.470661000      1.902976000 

1       4.088892000     -2.161790000      0.931873000 

1       1.702912000     -1.463575000      0.431908000 

1       1.817385000     -5.099285000      1.310386000 

1       5.105994000     -2.847045000     -0.350912000 

1       4.268771000     -4.602835000      1.193452000 

6       3.588823000     -5.114450000     -0.805299000 

1       3.269593000     -6.124569000     -0.520139000 

1       4.602794000     -5.196804000     -1.217393000 

6       3.113231000     -3.128601000     -2.269954000 

1       4.118816000     -3.188787000     -2.705908000 

1       2.452364000     -2.699693000     -3.027479000 
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6      -1.505018000     -1.010679000      3.992832000 

1      -1.006310000     -1.609694000      4.764348000 

1      -0.939112000     -0.084823000      3.876070000 

6      -2.961324000     -0.713701000      4.392472000 

1      -2.967016000     -0.142876000      5.328404000 

6      -4.418694000      0.143401000      0.908182000 

8      -5.434953000      0.791053000      1.187537000 

7      -0.128725000     -2.131434000      2.228075000 

1      -0.038451000     -3.024834000      1.745226000 

7       1.286040000     -1.896435000     -0.384173000 

6       1.896031000     -1.783765000      0.939924000 

6       0.818056000     -1.220578000      1.886675000 

8       0.795797000     -0.034704000      2.237767000 

1       1.096835000     -1.000149000     -0.881451000 

1       2.144968000     -2.795203000      1.270167000 

6       3.147974000     -0.908126000      0.914381000 

1       3.394031000     -0.662666000      1.953918000 

1       2.902665000      0.041089000      0.429768000 

7      -3.960407000      0.076544000     -0.368555000 

6      -4.632371000      0.737539000     -1.465355000 

6      -4.060420000      0.184947000     -2.765622000 

8      -3.186432000     -0.658715000     -2.818559000 

1      -3.142661000     -0.470886000     -0.598839000 

1      -5.699281000      0.484807000     -1.443400000 

6      -4.552305000      2.277582000     -1.384720000 

6      -3.157448000      2.807398000     -1.304893000 

1      -5.106876000      2.566867000     -0.487923000 

1      -5.078956000      2.697326000     -2.248641000 

6      -1.929103000      2.233785000     -1.509188000 

1      -1.615622000      1.235717000     -1.768177000 

6      -1.576478000      4.328026000     -0.882619000 

1      -1.066452000      5.217543000     -0.550770000 

7      -2.904203000      4.126737000     -0.914712000 

6      -3.915025000      5.120689000     -0.561092000 

1      -4.583973000      5.289679000     -1.407105000 

1      -4.491426000      4.775198000      0.299369000 

1      -3.411653000      6.052504000     -0.306320000 

8      -4.638449000      0.741433000     -3.833825000 

6      -4.154952000      0.291749000     -5.123038000 

1      -4.726316000      0.858083000     -5.855755000 

1      -3.087479000      0.500384000     -5.212566000 

1      -4.332025000     -0.779367000     -5.233888000 

6       0.579371000     -2.995642000     -0.721230000 

8       0.427348000     -3.987312000      0.007550000 

8       0.074539000     -2.873743000     -1.968814000 

6      -0.846295000     -3.875105000     -2.526545000 

6      -2.116823000     -3.943080000     -1.674469000 

1      -1.900813000     -4.327132000     -0.676528000 

1      -2.566823000     -2.949467000     -1.597122000 

1      -2.841706000     -4.608106000     -2.155363000 

6      -1.157511000     -3.304124000     -3.910523000 

1      -0.240759000     -3.220607000     -4.501987000 

6       1.205683000     -4.441096000     -1.278114000 

1       0.847600000     -5.434697000     -0.981659000 

1       0.509164000     -4.046486000     -2.019369000 

6       2.630847000     -4.530662000     -1.857350000 

1       2.616431000     -5.175506000     -2.743873000 

6       3.512976000     -0.782091000     -1.496456000 

8       3.021311000     -0.278674000     -2.508667000 

7      -0.114647000     -3.398920000      0.586877000 

1      -0.066330000     -3.203588000      1.584097000 

7      -1.252538000     -0.812137000      1.343385000 

6      -2.058521000     -1.969044000      0.934206000 

6      -1.184916000     -2.803519000     -0.032211000 

8      -1.397087000     -2.848355000     -1.240366000 

1      -0.945870000     -0.188704000      0.542206000 

1      -2.267380000     -2.555838000      1.832366000 

6      -3.350148000     -1.483519000      0.279459000 

1      -3.080478000     -0.943207000     -0.633342000 

1      -3.818896000     -0.761809000      0.961822000 

7       4.362081000     -0.063490000     -0.692733000 

6       4.921428000      1.197799000     -1.129505000 

6       6.438055000      1.056765000     -1.261134000 

8       7.087701000      0.163193000     -0.753707000 

1       4.900624000     -0.566131000     -0.000714000 

1       4.502793000      1.416829000     -2.115090000 

6       4.614089000      2.367703000     -0.169513000 

6       3.170647000      2.753581000     -0.132788000 

1       5.212355000      3.230083000     -0.483652000 

1       4.954872000      2.096789000      0.839252000 

6       2.045932000      2.217155000     -0.703251000 

1       1.909538000      1.357607000     -1.340008000 

6       1.405684000      3.973645000      0.485626000 

1       0.759443000      4.691937000      0.967482000 

7       2.738889000      3.859084000      0.608894000 

6       3.585496000      4.728883000      1.419255000 

1       2.960509000      5.494790000      1.876883000 

1       4.340569000      5.207530000      0.792289000 

1       4.074798000      4.147448000      2.203621000 

8       6.959268000      2.060579000     -1.977027000 

6       8.396906000      2.051006000     -2.146144000 

1       8.888781000      2.109403000     -1.173348000 

1       8.620038000      2.929506000     -2.748468000 

1       8.704507000      1.139022000     -2.660525000 

6      -0.430748000     -0.894988000      2.416209000 

8      -0.362198000     -1.849703000      3.197724000 

8       0.311435000      0.236461000      2.522684000 

6       1.328952000      0.390800000      3.567517000 

6       1.901985000      1.774368000      3.260052000 

1       1.120195000      2.536530000      3.312527000 

1       2.328266000      1.781793000      2.254357000 

1       2.685738000      2.024462000      3.981538000 

6       0.682880000      0.365843000      4.954144000 

1      -0.118396000      1.108262000      5.011363000 
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1      -1.851118000     -3.968632000     -4.435581000 

6      -0.149896000     -5.232656000     -2.648544000 

1       0.067033000     -5.656320000     -1.668094000 

1      -0.797350000     -5.921785000     -3.201031000 

1       0.787098000     -5.125476000     -3.204256000 

7       1.258995000      2.477474000      0.708240000 

1       1.163931000      1.539757000      1.100654000 

6       2.880203000      3.657907000     -0.807503000 

1       2.992966000      3.851540000     -1.879191000 

1       2.509470000      4.589305000     -0.367058000 

6       4.288669000      3.384465000     -0.221061000 

6       5.707524000      3.055394000      1.861214000 

6       6.399226000      1.955828000     -0.315772000 

6       6.403262000      1.849670000      1.215987000 

6       4.986571000      2.182416000     -0.873434000 

6       4.286666000      3.227991000      1.309103000 

1       6.291754000      3.964577000      1.656312000 

1       7.042884000      2.795722000     -0.615226000 

1       5.875031000      0.934966000      1.518377000 

1       4.376969000      1.288591000     -0.702153000 

1       3.687624000      2.350613000      1.580389000 

1       4.890004000      4.279862000     -0.452205000 

1       5.679978000      2.937872000      2.951709000 

1       6.837311000      1.052542000     -0.759115000 

1       7.431876000      1.754223000      1.585692000 

1       5.033886000      2.321012000     -1.960951000 

1       3.797228000      4.095135000      1.769901000 

6       2.139802000      1.450515000     -2.861508000 

1       1.331462000      1.424812000     -3.601615000 

1       2.679192000      0.501456000     -2.951422000 

1       2.826981000      2.259546000     -3.111387000 

6       0.729835000      3.493994000      1.418832000 

8       0.615561000      4.659429000      0.979384000 

6       0.286269000      3.157121000      2.828911000 

1       0.269261000      2.084094000      3.022744000 

1       0.975573000      3.634469000      3.534441000 

1      -1.614043000     -2.316153000     -3.821546000 

1      -0.704978000      3.586603000      3.000581000 

7      -0.980659000      3.198500000     -1.245640000 

1       0.057775000      3.043811000     -1.234284000 

6       1.528305000      1.542401000     -1.473896000 

6       1.835904000      2.582316000     -0.605389000 

8       0.659906000      0.623322000     -1.181124000 

6       4.395693000     -1.517387000      0.250946000 

6       4.284046000     -1.711246000     -1.270811000 

6       5.621356000     -2.168307000     -1.868253000 

6       6.118812000     -3.456319000     -1.197040000 

6       6.206080000     -3.293238000      0.327015000 

6       4.868719000     -2.821853000      0.915971000 

1       5.195837000     -0.780054000      0.409883000 

1       3.958465000     -0.776516000     -1.739413000 

1       3.509976000     -2.454150000     -1.492953000 

1       1.434885000      0.614779000      5.710049000 

1       0.270151000     -0.618367000      5.175815000 

6       2.415699000     -0.676050000      3.412464000 

1       2.824796000     -0.649265000      2.397972000 

1       2.020960000     -1.672509000      3.611106000 

1       3.229077000     -0.473205000      4.116763000 

6      -4.363844000     -2.582744000     -0.063393000 

6      -5.979006000     -4.343912000      0.821751000 

6      -6.564375000     -3.045379000     -1.269186000 

6      -7.114450000     -3.745028000     -0.019075000 

6      -5.510682000     -1.993645000     -0.901419000 

6      -4.927565000     -3.285347000      1.184217000 

1      -5.494151000     -5.148284000      0.250175000 

1      -6.107705000     -3.795517000     -1.930471000 

1      -7.665497000     -3.013283000      0.589795000 

1      -5.989770000     -1.185344000     -0.329435000 

1      -5.385137000     -2.528610000      1.840107000 

1      -3.853812000     -3.334601000     -0.679730000 

1      -6.380391000     -4.803925000      1.733114000 

1      -7.379923000     -2.580372000     -1.836734000 

1      -7.832306000     -4.525010000     -0.301240000 

1      -5.101327000     -1.532087000     -1.807824000 

1      -4.121262000     -3.752906000      1.761584000 

7       0.980318000      2.993341000     -0.301422000 

1      -0.028377000      2.848777000     -0.567289000 

6      -1.753363000      3.157700000      1.687125000 

8      -1.353952000      4.312375000      1.434406000 

7      -1.989765000      2.229056000      0.738539000 

1      -2.175925000      1.289461000      1.068980000 

6      -1.921109000      2.432831000     -0.685437000 

6      -1.292635000      1.427561000     -1.411499000 

6      -2.849851000      3.499592000     -1.212177000 

1      -2.644875000      4.443942000     -0.692475000 

1      -2.648523000      3.680989000     -2.272617000 

6      -2.046216000      2.729071000      3.111700000 

1      -2.996576000      3.172850000      3.427523000 

1      -1.265170000      3.115985000      3.769599000 

1      -2.110633000      1.644427000      3.222572000 

6      -1.322200000      1.400751000     -2.928683000 

1      -1.739033000      2.296552000     -3.391245000 

1      -1.916962000      0.537543000     -3.248999000 

1      -0.304742000      1.239359000     -3.298817000 

8      -0.598842000      0.484550000     -0.861054000 

6      -4.349088000      3.173039000     -1.040613000 

6      -6.722222000      4.073700000     -1.275938000 

6      -6.264230000      1.611620000     -1.651529000 

6      -7.132461000      2.812851000     -2.049471000 

6      -4.770370000      1.917689000     -1.819163000 

6      -5.225187000      4.369387000     -1.442584000 

1      -6.942134000      3.927329000     -0.208346000 

1      -6.462467000      1.356568000     -0.600348000 

1      -7.015393000      2.998664000     -3.127192000 
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1       5.520878000     -2.318006000     -2.950249000 

1       6.370030000     -1.374923000     -1.727713000 

1       7.094336000     -3.748926000     -1.604486000 

1       5.420363000     -4.273155000     -1.429654000 

1       6.514039000     -4.236839000      0.793660000 

1       6.983599000     -2.553583000      0.566611000 

1       4.960797000     -2.677785000      2.000635000 

1       4.118103000     -3.609589000      0.762727000 

1      -4.549413000      2.073047000     -2.886099000 

1      -5.021695000      4.619085000     -2.495490000 

1      -4.525393000      2.976587000      0.028742000 

1      -7.318853000      4.933976000     -1.604204000 

1      -6.538866000      0.729261000     -2.241456000 

1      -8.193630000      2.590431000     -1.881761000 

1      -4.168340000      1.061112000     -1.499175000 

1      -4.943011000      5.250493000     -0.851882000 

 

 

 

 

Figure S4. Non-covalent interaction (NCI) plots for 18-9j-S in the binding pocket of protonated peptide catalyst 18. 

Green isosurfaces provide evidence for attractive interactions. Blue spots indicate stronger interactions, e.g., 

hydrogen bonds, and small red spots indicate steric repulsion. Left: front view on protonated imidazole; Right: side 

view on enolate 9j. 

 

 

2.6.2 Additionally performed reactions towards the investigation of the enantio-

selective decarboxylative protonation 

To gain more insight into the factors determining the asymmetric induction we envisaged to 

study the decarboxylation step independently. As N-acetyl leucine (1c) afforded high 

selectivities when employed in the DWR (see preparative experiments above) we accordingly 

chose this derivative for the synthesis of its corresponding β-ketoacid (8c) and for further studies. 
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Although nucleophilic opening of acetylated azlactone intermediates, e.g., by alcohols, was 

described previously
[42,50]

 this strategy leads to the esters that are probably decarboxylated upon 

saponification. Therefore, we chose the benzyl protecting group, because it can be easily 

removed by hydrogenation under neutral conditions. However, when benzylalcohol was added to 

in situ formed 6c this intermediate readily underwent deacylation affording benzyl acetate and 

the benzylester of 1c and no product could be isolated. A similar observation was earlier made 

also by Steglich and Höfle.
[50]

 The authors reported that the use of N-hydroxysucciniimide as 

nucleophile affords the corresponding hydroxysuccinimide ester, which can indeed be converted 

to the desired product S17. 

 

Benzyl 2-acetamido-2-acetyl-4-methylpentanoate (S17). N-acetyl leucine 

(346.4 mg, 2.0 mmol) and DMAP (24.4 mg, 10 mol%) were suspended in 

dry CH2Cl2 (5 mL) and DIC (631 µL, 504.8 mg, 4.0 mmol) followed by 

Ac2O (227 µL, 245.0 mg, 2.4 mmol) and the reaction mixture was stirred at 

rt for 24 h. N-hydroxysuccinimide (345.3 mg, 3.0 mmol) was then added and stirring was 

continued for 6 h. After subsequent addition of benzyl alcohol (310 µL, 324.4 mg, 3.0 mmol) the 

reaction was allowed to stir for further 70 h. The formed diisopropyl urea was filtered off, the 

obtained solution diluted with EtOAc (50 mL), and subsequently washed with 0.5 M citric acid 

solution (3 × 20 mL) and brine (3 × 20 mL). The organic layer was dried over Na2SO4, filtered, 

and concentrated under reduced pressure. The crude product was purified by column 

chromatography eluting with hexane/EtOAc (1:1) to obtain the desired intermediate S17  

(95.0 mg, 0.31 mmol, 16%) as colorless oil. TLC (hexane/EtOAc 1:1): Rf = 0.51. 
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1
H NMR (400 MHz, CDCl3): δ = 7.31 – 7.21 (m, 5H), 6.94 (br s, 1H), 5.11 (m, 2H), 2.36 (dd,  

J = 14.9, 6.9 Hz, 1H), 2.19 (dd, J = 14.9, 6.2 Hz, 1H), 1.98 (s, 3H), 1.96 (s, 3H), 1.35 (m, 1H), 

0.76 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.7 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 200.4, 169.2, 169.0, 134.8, 128.8, 128.7, 128.6, 127.1, 72.2, 

68.3, 39.5, 24.5, 24.3, 23.7, 23.4, 23.1 ppm. 

IR (film):  = 3388, 2960, 2873, 1723, 1661, 1498, 1455, 1369, 1299, 1223, 1173, 1025, 959, 

752, 699 cm
-1

. 

HRMS (ESI): m/z = 328.1525 [M+Na]
+
 (calcd m/z = 328.1525), m/z = 633.3127 [2M+Na]

+
 

(calcd m/z = 633.3152). 

 

We subjected S17 to hydrogenation with Pd/C in order to obtain β-keto acid 8c. Unfortunately, 

this attempt also led to decarboxylation and we only isolated the DW reaction product 10c. 

Two additional experiments were performed using 1c (0.1 mmol) and either 20 mol% 18 or 

AcOH-d4 (1.3 eq) under otherwise identical reaction (see 2.5.2 for reaction conditions). In both 

cases, no significant change in enantioselectivity was observed (56% and 57% ee vs. 54% ee 

under the standard conditions). Therefore, we can exclude a significant background reaction but 

it is not possible to discuss kinetic isotope effects on the basis of this experiment. 

 

 

 

 

 

 

 

 

ν~
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2.7 NMR Spectra 

N-acetyl-DL-phenylalanine (1a)  
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N-acetyl-DL-alanine (1b) 
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O,N-diacetyl-L-tyrosine (1d)  
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N-acetyl-L-aspartic acid 4-benzyl ester (1f)  
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N-acetyl-DL-2-naphthylalanine (1g)  
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N-acetyl-DL-9-anthranylalanine (1h)  
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N-acetyl-DL-pentafluorophenylalanine (1i) 
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N-acetyl-DL-cyclohexylalanine (1j) 
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4-benzyl-2-methyloxazol-5(4H)-one (3a) 
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4-benzyl-2-methyloxazol-5-yl acetate (5a) 
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4-acetyl-4-benzyl-2-methyloxazol-5(4H)-one (6a)  
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N-(3-oxo-1-phenylbutan-2-yl)acetamide (10a) 
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N-(3-oxobutan-2-yl)acetamide (10b) 
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N-(5-methyl-2-oxohexan-3-yl)acetamide (10c) 
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4-(2-acetamido-3-oxobutyl)phenyl acetate (10d) 
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N-(1-(methylthio)-4-oxopentan-3-yl)acetamide (10e)  
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Benzyl 3-acetamido-4-oxopentanoate (10f) 
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N-(1-(naphthalen-2-yl)-3-oxobutan-2-yl)acetamide (10g)  
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N-(1-(anthracen-9-yl)-3-oxobutan-2-yl)acetamide (10h) 
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N-(3-oxo-1-(perfluorophenyl)butan-2-yl)acetamide (10i) 
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N-(1-cyclohexyl-3-oxobutan-2-yl)acetamide (10j) 
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Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe (11) 
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Boc-L-Pmh-D-Pro-Aib-L-Cha-L-Phe-OMe (12)  
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Boc-L-Pmh-2-Abz-D-Pro-L-Cha-L-Phe-OMe (13) 
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(S)-Tetramisol (14) 
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Boc-L-Pmh-OMe (16)  

 

 

 



New Frontiers in Peptide Catalysis 
 

  295 

Boc-
A
Gly-L-Pmh-OMe (17)  
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Boc-L-Cha-
A
Gly-L-Pmh-OMe (18)  
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Boc-L-Ala-
A
Gly-Pmh-OMe (S7) 
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Boc-L-Val-
A
Gly-L-Pmh-OMe (S8) 
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Boc-D-Val-
A
Gly-L-Pmh-OMe (S9) 
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Boc-L-Leu-
A
Gly-L-Pmh-OMe (S10) 
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Boc-L-Phe-
A
Gly-L-Pmh-OMe (S11) 
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Boc-L-Trp-
A
Gly-L-Pmh-OMe (S12) 
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Boc-L-(Trt)-His-
A
Gly-L-Pmh-OMe (S13) 

 

 

 



The Enantioselective Dakin–West Reaction 
 

304 

Boc-L-(OBn)-Asp-
A
Gly-L-Pmh-OMe (S14) 
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Boc-L-Asn-
A
Gly-L-Pmh-OMe (S15) 
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Benzyl 2-acetamido-2-acetyl-4-methylpentanoate (S17) 
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After our development of the first asymmetric Dakin–West reaction
[1]

 the main focus was to 

mutually increase the previously achieved enantioselectivities. As we were able to show that 

binding of the intermittently formed enolates through hydrogen bonding and attractive 

interactions with the catalysts side-chain play a crucial role (cf. Chapter VI),
[1]

 these effects were 

studied in more detail. Both computational and experimental investigations were performed and 

are discussed in this chapter. Moreover, additional reactions were envisioned that are directly 

based on our previous investigations and findings, such as an enantioselective decarboxylative 

protonation of malonic acid half esters or an asymmetric Steglich rearrangement of acetyl 

groups.  

 

 

 

1. The Importance of Side-Chain Interactions 

First, complexes of the formerly identified best-working protonated catalyst 1 with enolates of 

methyl ketones of alanine (2b), phenylalanine (2c), leucine (2d) and cyclohexylalanine (2e) were 

computed to determine the strength of (dispersion) interactions of both side-chains. 

Unfortunately, the protonated peptide catalyst 1 did not completely converge to a minimum. 

Therefore, we determined the interaction energy of enolates 2b–2e side-chains with the 

cyclohexyl residue of 1 with respect to the glycine-derived intermediate 2a using the following 

equations. Subtraction of the energy of the enolate (E2a) from the energy of the corresponding 

complex with the catalyst (E(1_2a)) affords the energy of the catalyst itself and also takes into 

account charge separation as well as the hydrogen bonding (ΔE(1_HB); Eq 1).  

Accordingly, subtracting the energy of an arbitrary enolate (EEnol, 2b–2e in this case; see Figure 

1) from the catalyst complex (E(1_Enol)) will give the energy of the catalyst, the hydrogen bonding 

energy and the contribution of the side-chain (Eq 2; ΔE(1_HB_SI)). Assuming that the hydrogen 

bonding interactions are comparably strong for all investigated complexes the difference of both 

energies (Eq 3) will deliver only the side-chain interaction energies (ΔΔESI) resulting from, e.g., 

dispersion interactions.
[2]
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                         (Eq 1) 

                               (Eq 2) 

                               (Eq 3) 

Previously computed 1_2e (see Chapter VI) was used as starting geometry and the side-chains 

were replaced by the desired residue. The structures were then reoptimized using the popular 

hybrid density functional B3LYP
[3]

 using Grimme’s D3-dispersion correction
[4]

 with the Becke–

Johnson damping function
[5]

 in conjunction with a 6-31+G(d,p) double-ζ basis set. The self-

consistent reaction field (SCRF)
[6]

 with the polarizable continuum model (PCM) was employed 

to incorporate toluene as solvent and the United Atom topological model applied on radii 

optimized for the HF/6-31G(d) level of theory (UAHF)
[7]

 was used to describe the bulk solvent. 

All computations were performed with the Gaussian 09 program package.
[8]

 The corresponding 

ΔΔG and ΔΔH values (Figure 1) were then calculated using the above given equations.  

 

 

 

 

 

 

 

1_2a    

 ΔΔG298   0.0       

 ΔΔH298   0.0  

 

           
1_2b 1_2c 1_2d 1_2e 

 ΔΔG298                –2.82   –4.67   –3.56   –4.25 

 ΔΔH298            –3.02   –4.82   –4.05   –5.33 

Figure 1. Interaction energies between the catalysts and substrates side-chains. B3LYP-D3(BJ)/6-31+G(d,p) 

optimized structures. Visualization was performed using CYLview.
[9]

 Values are in kcal mol
-1

. C = gray, N = blue, 

O = red. 



New Frontiers in Peptide Catalysis 
 

  313 

Compared to 1_2a the other structures are lower in energy. Interestingly, a single methyl group 

already contributes around 3 kcal mol
-1

 (1_2b). The trends that were observed for the 

asymmetric induction are generally reproduced by the determined side-chain interaction 

energies. Surprisingly, the determined values for 1_2c did not correlate with the previously 

observed enantioselectivities and shows a stronger interaction than 1_2d (ΔΔH298 = –4.82 vs  

–4.05 kcal mol
-1

). This may be due to efficient CH–π-interactions whereas the attractive 

dispersion in 1_2d is comparably weak. 

To further study the importance of side-chain interactions, peptide 3 was employed for the 

Dakin–West reaction of pentafluorophenylalanine 4 under the previously optimized conditions 

(Figure 2). Of special note, the Dakin–West reaction of N-acetyl phenylalanine with 3 did 

provide lower selectivities compared to catalyst 1 in our previous experiments (Chapter VI, 

Supporting Information), although π-π-interactions may operate in this case. However, the 

inverse electronic structure of the perfluorated aromatic ring in 4 should lead to stronger 

interactions with the phenylalanine of 3. As for the above examples, a complex of the 

methylketone enolate of 4 with protonated 3 was computed. Indeed, the aromatic rings adapt a 

favorable “slipped parallel” orientation that was previously reported for benzene-

hexafluorobenzene dimers (Figure 2).
[10]

 

 

 

 

 

 

 

Figure 2. Top: Enantioselective Dakin-West reaction of N-acetyl pentafluorophenylalanine (4) with catalyst 3. 

Reaction was performed on an analytical scale (0.1 mmol). Bottom: B3LYP-D3(BJ)/6-31+G(d,p) optimized 

structure of an adduct of protonated 3 with methylketone enolate of 4. Left: side-view; right: top-view. Visualization 

was performed using CYLview.
[9]

 C = gray, N = blue, O = red, F = green.  
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Although this catalyst-substrate combination seemed to be well-suited for enhancing the 

previously determined enantioselectivity using 1 (up to 31% ee; Chapter VI, Supporting 

Information) the desired product formed with comparable selectivity 28% ee (Figure 2). 

Apparently, the described results indicate that other aspects are decisive to achieve high 

asymmetric induction and that transition state stabilization is probably the most important factor. 

Thus, the protonation of the enolate in the former two examples may necessitate a reorientation 

of the perfectly aligned side-chains and would therefore weaken the interactions. This might then 

allow reprotonation, e.g., by acetic acid, to occur from the otherwise unfavored side. On the 

other hand, dispersion interactions are directionally less dependent and consequently will still 

play operate. This may explain the significantly higher enantio-selectivities for the reaction with 

1 and N-acetyl cyclohexylalanine as well as N-acetyl leucine (58% ee and 54% ee, respectively; 

cf. Chapter VI).
[1]

 A computational investigation of the corresponding transition states is 

necessary to confirm these assumptions. However, this is highly demanding and could yet not be 

performed. 

 

 

 

2. Binding of the Transient Enolate 

The binding of the enolate is another important aspect for further improvements of the 

enantioselective Dakin–West reaction. Therefore, we also studied various leucine derivatives 

(leucine previously gave high enantioselectivities) with different N-protecting groups and a 

sterically demanding anhydride (Table 1).  

Compared to N-acetyl leucine (6a) that afforded desired methylketone 7a with 54% ee in 64% 

yield (Table 1, entry 1 and Chapter VI) the other derivatives gave lower conversion and/or 

selectivity, whereby formyl-protected 6b was the only exception. Thus, desired product 7b 

formed with comparable enantioselectivity (52% ee). Furthermore, essentially complete 

conversion was observed after much shorter reaction times (Table 1, entry 2). Contrary, 

isobutyryl-protected leucine 6c gave 44% ee and low conversion (entry 3). Little conversion to 

the methyl ketone was also observed with 6d although the selectivity was not affected (entry 4). 

The deacetylation to form the azlactone was a pronounced side reaction in this case.  
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Note that some of the starting materials were not used as the racemate. However, according to 

the proposed mechanism and our previous studies this does not affect the stereochemical 

outcome of the reaction (cf. Chapter VI).   

 

Table 1. Variation of protecting group and anhydride. 

 

Entry Starting material 
 

Product t1 / t2 (h) C 
a
 (%) ee

b
 (%) 

1 

  

64 / 92 64
c 

54 

2 

  

18 / 48 >95 52 

 3
 

  

72 / 72 <30 44 

 4 

  

72 / 72 <20 52 

 5
d 

  

– / – n.d. – 

 6 

  

72 / 72 traces 22 

Reactions were performed on analytical scale (0.1 mmol). The absolute configuration of the products was 

determined as (S) according to the previous results (Chapter VI). 
a
 Conversion to product was estimated by  

GC-MS based on the possible intermediates. 
b
 Enantiomeric excesses were determined by chiral stationary phase 

GC. 
c
 Yield of isolated product.

 d
 Reaction was performed with DMAP as catalyst under the conditions reported by 

Steglich and Höfle (see Scheme 2 and Experimental Section).
[11]
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Attempts to prepare racemic trifluoroacetyl-protected methyl ketones always failed using the 

DMAP-catalyzed standard procedure (Table 1, entry 5).
[11]

 Importantly, depending on the 

reagents used and the substitution on the azlactones, these compounds can react either at the C-2, 

C-4, or at the exocyclic oxygen after deprotonation (Scheme 1).
[12]

 Strongly electron-

withdrawing groups, such as trifluoromethyl, predominantly give the C-2 addition product with 

activated electrophiles.
[13]

  

 

 

Scheme 1. Diverse reaction paths of azlactones.  

In the present case, 6e would first cyclize to azlactone 9e under the reaction conditions applied 

(cat. DMAP, Ac2O, Et3N)
[11]

 and subsequently may be acetylated affording 10e (Scheme 2). As a 

consequence, work-up would lead to the opening of the oxazolone ring of 10e liberating the acid 

that will be removed during aqueous work-up. We followed the reaction with GC-MS and chiral 

GC applying N-acetyl phenylalanine as starting material and DMAP as catalyst in DCM under 

otherwise identical reaction conditions. Two major products with m/z = 285 (one probably being 

10e) formed upon acetylation that corresponds to acetylated azlactone intermediates. 

Interestingly, no significant change was observed upon addition of acetic acid after three days. 

 

 

Scheme 2. Proposed formation of C-2 acetylated azlactone intermediates during the Dakin–West reaction of  

N-trifluoroacetyl amino acids. 

The influence of the anhydride was studied next (Table 1, entry 6). Using N-acetyl leucine (6a) 

and isobutyric anhydride only traces of 7f formed with considerably decreased enantioselectivity 

(22% ee). 
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The results summarized above provide evidence that the transient enolate will bind as previously 

proposed. For simplicity this is further exemplified with complex 1_2b (Figure 3). Owing to the 

relatively ‘open’ side, variation of the protecting group is indeed possible, whereas appropriate 

binding of enolates derived from hindered anhydrides is prevented due to steric reasons. Hence, 

this explains the high enantioselectivities that are preserved for 7a – 7d while the asymmetric 

reprotonation to afford 7f shows diminished selectivity. However, the protecting group has a 

significant influence on the conversion to the desired product (Table 1; compare, e.g., entry 2 

and entry 4) that may result from stereoelectronic effects. 

 

 

Figure 3. Binding of the enolate intermediate taking 1_2a as representative example and explanation for the 

observed influence of protecting groups and anhydride used. B3LYP-D3(BJ)/6-31+G(d,p) optimized structure (vide 

supra). Visualization was performed using CYLview.
[9]

 All C–H hydrogens were omitted for clarity. C = gray, N = 

blue, O = red. 

Finally, tripeptide 1 was modified with phenylalanine at its C–terminus affording Boc-L-Phe-L-

Cha-
A
Gly-L-Pmh-OMe (11), the retropeptide of our highly efficient acylation catalyst. 

Performing the Dakin–West reaction of 6a with 11 as catalyst again did not lead to a significant 

change in selectivity (51% ee, Scheme 3). It appears that the additional amino acid plays a minor 

role in enolate binding. 

 

 

Scheme 3. Dakin–West reaction of N-acetyl leucine (6a) with oligopeptide 11. 

In 2003, Brunner et al. reported an enantioselective decarboxylative protonation
[14]

 of  

2-aminomalonic acid derivatives mediated by cinchona alkaloid derived catalysts affording the 
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corresponding α-amino acid derivatives with up to 70% ee.
[15]

 Importantly, slightly higher 

enantioselectivities were obtained at elevated temperature (70 °C).
[15]

  

Intrigued by these results, the enantioselective decarboxylation step was performed at 50 °C 

(Scheme 4). Reasonably, the enolate can adapt either a Z or E configuration. The higher 

temperature may influence the E/Z-ratio on the enolate and consequently binding to the catalyst. 

Moreover, dispersion interactions are temperature independent and will still play a decisive 

role.
[2]

 Although the reaction time for the decarboxylation could be reduced to 24 h, the 

selectivity dropped to 44% ee (Scheme 4). 

 

 

Scheme 4. Dakin–West reaction of N-acetyl leucine (6a) with oligopeptide 1 at elevated temperature. 

 

 

 

3. Synthesis of Protease Inhibitor Warheads 

Peptidyl halomethyl and acyloxymethyl ketones have been reported to be potent inhibitors of 

serine, cysteine and threonine proteases.
[16]

 Consequently, the enantioselective Dakin–West 

reaction was envisaged to provide an entry towrds the synthesis of amino acid derived, 

enantioenriched trifluoromethyl, chloromethyl, and acetoxymethyl ketones (7g–7i) as chemical 

warheads (Scheme 5). Again, 6a was used as starting material. 

The preparation of racemic 7g did not yield the desired product under standard conditions. As a 

result, our previously developed Dakin–West reaction conditions were applied using DMAP as 

catalyst and trifluoroacetic anhydride and the reaction progress was followed via GC-MS. 

Although clean formation of two intermediates was observed during the acylation step, the 

reaction did not progress further after addition of acetic acid. The structures of the two products 
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Scheme 5. Application of the enantioselective Dakin–West reaction for the synthesis of protease inhibitor warheads 

7g–7i. 

could not be unambiguously determined based on the GC-MS measurements. However, the 

fragmentation patterns suggest that both derive from the reaction of the in situ formed azlactone 

with the anhydride. Of special note, the general Dakin–West reaction has been shown to be 

unsuitable for the synthesis of trifluoromethyl ketones of amino acids. Typically the 

corresponding azlactones are first reacted with, e.g., trifluoroacetic anhydride and decarboxy-

lation is initiated by addition of anhydrous oxalic acid.
[17]

  

Next, 6a was reacted with chloroacetic anhydride in the presence of peptide 1. Again the desired 

product 7a could not be obtained. Apparently, the nucleophilic peptide is not compatible with the 

highly reactive chloromethyl ketone and catalyst inhibition by the product might be the major 

problem. This is also in agreement with the proposed inhibition mechanism, for instance, of 

serine proteases by these compounds whereby a histidine residue is irreversibly binding to the 

inhibitor (Scheme 6).
[16]

 

 

 

Scheme 6. Proposed mechanism for the inhibition of serine proteases. 

As a last attempt, 6a was treated with 2-acetoxyacetic anhydride under standard conditions using 

oligopeptide 1 as catalyst to afford acetoxymethyl ketone 7i (Scheme 7). Indeed, in this case 

traces of the desired product formed, albeit with lower selectivity and conversion. The decrease 

of selectivity may be explained by the sterically more demanding anhydride used (vide supra). 
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Scheme 7. Synthesis of acetoxymethyl ketone 7i. 

 

 

 

4. Enantioselective Decarboxylative Protonation and the 
Acetylation of In Situ Formed Azlactones 

The development of the enantioselective Dakin–West reaction led to interesting findings that 

may be further pursued. Firstly, the Pmh-containing oligopeptides were capable of 

stereoselectively acetylating the in situ formed azlactone, a reaction that is closely related to the 

Steglich rearrangement. Secondly, the same peptides also efficiently catalyzed the enantio-

selective decarboxylative protonation for which only few organocatalytic variants exist.
[18,14b,c]

 

Cyclohexylalanine afforded the highest selectivities in the Dakin–West reaction. As a con-

sequence malonic acid half ester 12, a precursor for the synthesis of cyclohexylalanine, was 

envisioned as the substrate of choice for an enantioselective decarboxylative protonation with 

peptide 1 (Scheme 8). Although some selectivity was observed for the formed cyclohexylalanine 

derivative 13 (16% ee), the conversion was unexpectedly low. Reasonably, a more basic catalyst 

is necessary to achieve high conversion for this transformation. Moreover, the comparably low 

enantiomeric induction may be a result of a somehow different binding of the ester enolate to the 

catalyst. 

  

 

Scheme 8. Enantioselective decarboxylative protonation of malonic acid half ester. 
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The Steglich rearrangement
[13a,19]

 represents a viable reaction for the preparation of synthetically 

useful compounds, such as quaternary amino acid derivatives. Although a variety of 

organocatalytic enantioselective versions exist, the carbonates are mainly used as starting 

materials
[20]

 (rearrangement of alkoxycarbonyl or benzyloxycarbonyl groups) and only few 

examples for the asymmetric rearrangement of acetyl groups have been reported to date.
[21]

 

However, C-acetylated azlactones may give rise to α-amino β-hydroxy acid derivatives 

(threonine and serine, for instance) and to structural motifs that are preserved in complex natural 

products, such as the antibiotics vancomycin and chloramphenicol.
[22]

  

In 2008, Dietz and Gröger reported the organocatalytic enantioselective Steglich rearrangement 

of acetyl groups making use of, e.g., (S)-tetramisole (14) or Fu’s chiral (S)-PPY* (15)
[20a]

 as 

catalysts as a key step towards the synthesis of all stereoisomers of α-methylthreonine 19 

(Scheme 9).
[21]

  

 

 

Scheme 9. Enantioselective Steglich rearrangement for the synthesis of α-methylthreonine derivatives reported by 

Dietz and Gröger. 

During the development and optimization of the Dakin–West reaction we found that the in situ 

formed C-acetylated azlactone 21 was enantioenriched. Intrigued by this observation selected 

catalysts were also applied for the enantioselective Steglich rearrangement-type reaction using 

N-benzoyl alanine (22) as starting material under similar conditions as before (Table 2). After 

complete consumption of the intermediate azlactone methanol was added (instead of acetic acid) 

to afford desired product 23. Compared to the enantioselectivities previously determined for the 

reaction with N-acetyl phenylalanine (20) most catalysts provided appreciably higher ee values 

for 23. This profound effect is a consequence of the N-protecting group and has been also 

observed previously.
[20a,k]
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Table 2. Catalyst screening for the enantioselective acetylation of azlactones. 

 

Entry Catalyst ee 21 (%)
a
 ee 23 (%)

a 

1 (S)-Tetramisol (14) 25 (traces) 63
b 

2 (S)-PPY* (15) 16 37 

3 Boc-L-Pmh-
A
Gly-L-Cha-L-Phe-OMe (24) –22 –9 

4 Boc-L-Pmh-
A
Gly-L-Val-L-Phe-OMe (25) –13 –14 

5 Boc-L-Pmh-
A
Gly-L-Phe-OMe (26) n.d. –12 

6 Boc-L-Pmh-
A
Gly-

 A
Gly-L-Phe-OMe (27) n.d. –11 

7 Boc-
A
Gly-L-Pmh-OMe (29) 16 28 

8 Boc-L-Val-
A
Gly-L-Pmh-OMe (30) 17 39 

9 Boc-L-Cha-
A
Gly-L-Pmh-OMe (1) 25 40 

10 Boc-L-Phe-
A
Gly-L-Pmh-OMe (3) 25 43 

11 Boc-L-Trp-
A
Gly-L-Pmh-OMe (31) 14 29 

12 Boc-L-Asn-
A
Gly-L-Pmh-OMe (33) 18 44 

13 TU-
A
Gly-L-Pmh-OMe (34) 23 29 

Reactions were performed on analytical scale (0.1 mmol). For the reaction 20→21, see Chapter VI. The absolute 

configuration of the products was determined as (S) by comparison of the retention times with the reaction using 14; 

negative values indicate formation of the opposite enantiomer. 
a
 Enantiomeric excesses were determined by chiral 

stationary phase GC. 
b
 Reported value; reaction was performed in CDCl3 with 32 mol% 14 and i-PrOH was used as 

nucleophile (cf Scheme 9).
[21]

 n.d. = not determined. 

In comparison to 14 that was reported to afford the highest selectivity (63% ee; Table 2, entry 1 

and Scheme 9) and 15 (entry 2) some of the tested peptide catalysts perform considerably well 

with enantioselectivities ranging from 39–44% (entries 8–10 and entry 12). Thus, peptides 1, 3, 

30 and 33 may be considered as appropriate candidates for further modification and 

optimization. Moreover, our approach allows the direct use of the amino acid derivatives instead 
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of the O-acetylated azlactones (such as 16) making this reaction particular attractive. 

Importantly, catalyst 14 usually gave only traces of 17 under these reaction conditions.  

Of special note, N-benzoylalanine methylester always formed as a major side-product along with 

the azlactone upon opening with methanol, although 17 was the only product after the 

acetylation step. Reasonably, 17 is prone to deacetylation affording the azlactone and 

subsequently the methylester, a side-reaction that was also described by Steglich and Höfle.
[13a]

 

Therefore, the influence of the nucleophile was investigated using DMAP as catalyst and 

different alcohols, amines and thiols (Table 3). 

 
Table 3. Influence of the nucleophile on the yield of isolated 23. 

 

Entry Nucleophile Product Yield (%) 

1 MeOH (1.0 equiv) 23a 12 

2 MeOH (2.5 equiv) 23a 30 

3 MeOH (10 equiv) 23a 31 

4 MeOH/DCM 1:1 23a 31 

5 EtOH (10 equiv) 23b 16 

6 i-PrOH (10 equiv) 23c 10 

7 i-PrOH
b 

23c 44 

8 BnNH2 23d 14 

9 n-PrNH2 23e 25 

10 i-PrNH2 23f 13 

11 EtSH 23g 62 

12 i-PrSH 23h 45 

 a
 O-acetylated azlactone 16 was used as starting material employing a literature procedure.

[21]
 

First, the appropriate amount of the nucleophile was determined using methanol (Table 3, entries 

1–4). We found that 2.5 equiv afford 30% of desired product 23a and the yield did not increase 

with higher amounts of methanol. Consequently, the products 23a–23h were prepared employing 

2.5 equiv or 10 equiv of the nucleophile. The yield decreased when ethanol or isopropanol where 
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used for the opening of 17 (entries 5 and 6). This is in contrast to the results reported by Dietz 

and Gröger where isopropanol afforded significantly higher yields.
[21]

 Indeed, when the reaction 

was performed with 16 as starting material without addition of acetic anhydride or carbodiimide 

product 23c was isolated with 44% yield (entry 7). Although the difference in yield is not yet 

understood it probably results from the addition of the carbodiimide or its corresponding urea 

that is formed. Note that benzylalcohol was previously tested as well for the opening of a related 

derivative, but no product could be isolated (see Chapter VI, Supporting Information).  Next, 

different amines were investigated, but also afforded low yields (entries 8–10). However, 

according to a reported procedure the corresponding amides are accessible through the opening 

of 17 with N-hydroxysucciniimide and subsequent treatment with, e.g., benzylamine.
[13a]

 An 

important observation was made with thiols that gave the thioesters 23g and 23h with 62% and 

45% yield, respectively. According to Pearson’s concept of hard and soft acids and bases 

(HSAB),
[23]

 thiols are softer nucleophiles compared to alcohols and amines. Obviously, former 

preferentially react with the C-5 carbonyl on 17. This result may not only lead to a high yielding 

enantioselective Steglich rearrangement-type reaction, but also allows the preparation of 

synthetically useful thioster derivatives.    

 

 

 

5. Conclusions and Outlook 

The results described herein build the basis for future investigations. The additionally performed 

computational and experimental investigations reveal the importance of proper enolate-binding 

that also derives from attractive side-chain interactions for the enantioselective Dakin–West 

reaction. It was found that the anhydride has a major influence on selectivity and conversion, 

whereas the N-protecting group may be modified. As discussed above, computing the transition 

states is indispensable to draw a complete picture. Although the previously reported 

enantioselectivities could not be enhanced so far, this may be possible by a judicious 

modification of the peptide catalyst. Apparently, the Boc-protecting group could be exchanged 

by phenylalanine without significant influence on conversion and selectivity. Thus, replacing the 

Boc-group by, e.g., electron-deficient CF3SO2–, 3,5-(CF3)PhSO2–, or the corresponding thiourea 

would lead to the acidification of the amine an presumably to stronger enolate binding  

(Scheme 10). The enhanced binding may also allow the use of different (sterically demanding) 

anhydrides. 
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Scheme 10. Possible modification of oligopeptide 1 to achieve stronger enolate binding. 

The development of a peptide that is capable of catalyzing the demanding enantioselective 

decarboxylative protonation of malonic acid derivatives or related substrates with high 

selectivities is another important issue. So far, only one experiment has been performed that 

afforded the product with low conversion and selectivity (16% ee). Obviously, the synthesis and 

screening of novel peptides is inevitable to increase the observed enantioselectivity. On the other 

hand, catalytic moieties with increased basicity are required and may be potentially used for 

further Brønsted base mediated reactions. An example for such a basic site is offered by  

2-aminoimidazole that can be readily synthesized and introduced into peptide catalysts  

(Scheme 11). 

 

 

Scheme 11. Example for a novel catalytic moiety. 

The possibility to obtain enantiomerically enriched C-acetylated azlactones directly from the 

corresponding amino acid derivatives is another important finding. As the selectivities are yet 

moderate (up to 44% ee), extensive catalyst screening and modification is also necessary in this 

case. Moreover, the previously reported and reproduced finding that deacetylation occurs as a 

major side-reaction during opening of the intermediate products can be largely avoided by using 

soft nucleophiles, such as thiols. Other nucleophiles, e.g., hydride, or a direct reduction after 

azlactone opening can also be envisaged and may allow the one-pot synthesis of synthetically 

useful α-amino β-hydroxy acid derivatives (vide supra). This is now a part of our ongoing 

research. 
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6. Experimental Section 

6.1 General Remarks 

Materials and methods. Unless otherwise specified, reagents were purchased from commercial 

suppliers at the highest purity grade available and were used as received. All solvents were 

distilled prior to use. Dry and absolute solvents were prepared using standard laboratory 

procedures and were stored over appropriate drying agents under argon or nitrogen atmosphere. 

Acetic anhydride was distilled and stored under nitrogen. 

Flash column chromatography was performed using MN silica gel 60 M (Macherey-Nagel; 

0.040 – 0.063 mm, 230 – 400 mesh ASTM). Analytical thin-layer chromatography (TLC) was 

performed using precoated polyester sheets Polygram
®
 SIL G/UV254 (Macherey-Nagel; 0.2 mm 

silica gel layer with fluorescent indicator). Visualization of the developed chromatograms was 

accomplished by irradiation with a UV lamp at 254 nm and/or phosphomolybdic acid solution or 

potassium permanganate solution, respectively. TLC Rf values are reported. 

Instrumentation. NMR spectra were recorded on Bruker AV600, AV400 or AV200 

spectrometers, respectively, at 298 K. Chemical shifts (δ) are given in ppm relative to 

tetramethylsilane (TMS, δ = 0.00 ppm) as the internal standard or to the respective solvent 

residual peaks (CDCl3: δ = 7.26 and 77.16 ppm; DMSO-d6: δ = 2.50 and 39.52 ppm; D2O: δ = 

4.79 ppm; MeOH-d4: δ = 3.31 and 49.00 ppm).
[24]

 Data are reported as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = heptet, m = 

multiplet, br = broad, or combinations thereof), coupling constants (Hz), integration.  Infrared 

spectra were acquired on Bruker IFS25 or ALPHA spectrometers. ESI mass spectrometry was 

performed employing a Finnigan LCQDuo spectrometer using methanol solutions of the 

respective compounds. High resolution mass spectrometry (HRMS) was performed employing a 

Thermo Scientific LTQ FT Ultra spectrometer (ESI) using methanol solutions of the respective 

compounds or a Finnigan MAT95 sectorfield spectrometer (EI). Elemental analysis was 

performed on a Thermo Flash EA 1112. Melting points were measured using a Krüss KSP1N 

capillary melting point apparatus and are uncorrected. GC-MS was carried out on a Hewlett 

Packard 5890 gas chromatograph with flame-ionization detector (FID) and Hewlett Packard 

5971 mass selective detector (EI, 70 eV) equipped with J & W Scientific fused silica DB–5MS 

column  (30 m × 0.25 mm). Enantioselectivities were determined by chiral stationary phase GC 

analyses on Hewlett Packard 5890 or 6890 gas chromatographs, respectively, or by chiral 

stationary phase HPLC with a Dionex P680 pump in conjunction with a Shodex RI-101 detector. 

Preparative HPLC was performed employing a Gynkotek M480 pump with Knauer WellChrom 

K-2501 spectrophotometer and a Dionex UltiMate 3000 equipped with a Shodex RI-101 detector 

for analytical runs. 
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6.2 Availability of Starting Materials 

N-acetyl DL-leucine (6a) and N-benzoyl DL-leucine (6d) were purchased from commercial 

suppliers and were used as received. 

 

2-Acetamido-3-(perfluorophenyl)propanoic acid (4). For the synthesis and 

characterization see Chapter VI, Supporting Information. 

 

 

(S)-2-formamido-4-methylpentanoic acid (6b). According to a literature 

procedure,
[25]

 L-leucine (1.313 g, 10.0 mmol) was dissolved in formic acid  

(50 mL). After cooling to 0 °C with an ice-bath acetic anhydride (28 mL) was 

slowly added with stirring. The reaction mixture was allowed to warm to ambient temperature 

and stirred over night. H2O (50 mL) was then added and all volatiles were removed under 

reduced pressure. After addition of aceton, flash evaporation, and drying in vacuo the desired 

product (1.425 g, 8.95 mmol, 90%) was obtained as a colorless solid.  

1
H NMR (400 MHz, DMSO-d6): δ = 12.54 (br s, 1H), 8.33 (d, J = 8.0 Hz, 1H), 4.32 – 4.25 (m, 

1H), 1.67 – 1.56 (m, 1H), 1.53 – 1.49 (m, 2H), 0.89 (d, J = 6.5 Hz, 3H), 0.85 (d, J = 6.5 Hz, 3H) 

ppm. 

13
C NMR (100 MHz, DMSO-d6): δ = 173.7, 160.9, 48.8, 24.3, 22.8, 21.3 ppm. 

The NMR spectra are in accordance with those reported in the literature.
[25]

 

 

(S)-2-isobutyramido-4-methylpentanoic acid (6c). To a suspension of L-

leucine (393.5 mg, 3.0 mmol) in EtOAc (3 mL) were added Et3N (1.25 mL, 

912.5 mg, 9.0 mmol) and isobutyric anhydride (1.0 mL, 954.0 mg, 6.0 mmol). 

After stirring at rt over night 1 N HCl (20 mL) was added, the phases were separated, and the 

aqueous phase was extracted with EtOAc (3 × 20 mL). The combined organic phases were 

subsequently washed with 1 N HCl (2 × 20 mL) and brine (20 mL), and dried (Na2SO4). After 
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filtration the solvent was removed under reduced pressure. The obtained colorless oil was 

lyophilized to remove residual isobutyric acid. Crystallization from H2O, filtration, and drying in 

vacuo afforded 6c (459.2 mg, 2.3 mmol, 76%) as a colorless waxy solid. 

1
H NMR (400 MHz, MeOH-d4): δ = 4.42 (dd, J = 8.0, 6.9 Hz, 1H), 2.52 (hept, J = 6.5 Hz, 1H), 

1.76 – 1.66 (m, 1H), 1.66 – 1.60 (m, 2H), 1.12 (d, J = 2.2 Hz, 3H), 1.11 (d, J = 2.2 Hz, 3H), 0.97 

(d, J = 6.4 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H) ppm. 

13
C NMR (100 MHz, MeOH-d4): δ = 180.2, 176.2, 51.8, 41.6, 35.9, 26.1, 23.4, 21.8, 19.9, 19.7 

ppm. 

IR (ATR):  = 3336, 2963, 2934, 2875, 1711, 1628, 1544, 1469, 1388, 1370, 1328, 1266, 1229, 

1210, 1154, 1098, 975, 940, 860, 688, 581 cm
-1

. 

HRMS (ESI): m/z = 224.1268 [M+Na]
+
 (calcd m/z = 224.1263); m/z = 425.2634 [2M+Na]

+
 

(calcd m/z = 425.2628). 

Elem. Anal.: calcd for C10H19NO3: C 59.68, H 9.52, N 6.96; found: C 59.43, H 9.73, N 7.08. 

 

(S)-4-methyl-2-(2,2,2-trifluoroacetamido)pentanoic acid (6e). According to 

a literature procedure,
[26]

 Et3N (750 µL, 514.6 mg, 5.1 mmol) was added to a 

stirred solution of L-leucine (708.0 mg, 5.4 mmol) in methanol (2.5 mL). After 

5 min ethyl trifluoroacetate (805 µL, 958 mg, 6.74 mmol) was added and the reaction mixture 

was stirred over-night. All volatiles were removed under reduced pressure, the residue was 

dissolved with H2O (15 mL), acidified with conc. HCl (2.3 mL), and extracted with EtOAc (3 × 

15 mL). The combined organic extracts were washed with brine (20 mL) and dried (MgSO4). 

The drying agent was filtered-off and the solvent was removed in vacuo affording 6e (224.5 mg, 

0.99 mmol, 18%) as a colorless crystalline solid. 

1
H NMR (400 MHz, CDCl3): δ = 9.60 (br s, 1H), 6.72 (d, J = 8.3 Hz, 1H), 4.73 – 4.65 (m, 1H), 

1.86 – 1.77 (m, 1H), 1.76 – 1.65 (m, 2H), 0.99 (d, J = 6.4 Hz, 3H), 0.98 (d, J = 6.4 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 176.7, 157.2 (q, J = 37.9 Hz), 115.7 (q, J = 287.6 Hz) 51.2, 

41.1, 25.0, 22.8, 21.9 ppm. 

ν~
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19
F NMR (376 MHz, CDCl3): δ = –75.9 ppm. 

IR (KBr):  = 3295, 3109, 2964, 2875, 2742, 1709, 1560, 1469, 1427, 1391, 1373, 1322, 1276, 

1188, 1161, 966, 934, 873, 776, 731, 699, 606, 547, 520, 467, 430 cm
-1

. 

HRMS (ESI): m/z = 250.0669 [M+Na]
+
 (calcd m/z = 250.0667). 

Elem. Anal.: calcd for C8H12F3NO3: C 42.29, H 5.32, N 6.17; found: C 42.00, H 5.14, N 5.68. 

 

2-Acetamido-2-(cyclohexylmethyl)-3-ethoxy-3-oxopropanoic acid (12). Di-

ethyl 2-acetamido-2-(cyclohexylmethyl)malonate: A solution of NaOEt (0.750 g, 

11.02 mmol) and diethyl acetamidomalonate (2.00g, 9.21 mmol) in 10 mL abs. 

EtOH was stirred at reflux for 30 min under argon. Bromomethylcyclohexane 

(1.30 mL, 1.65 g, 9.32 mmol) was added dropwise and the resulting solution was refluxed for 

additional 24 h. The reaction mixture was concentrated under reduced pressure and extracted 

with Et2O (5 × 25 mL). The combined organic extracts were successively washed with H2O (2 × 

20 mL), sat. aq. NaHCO3 (2 × 20 mL), and H2O (20 mL), dried over Na2SO4, filtered, and the 

solvent was removed under reduced pressure. The residual oil was triturated with hexane and left 

standing at –20 °C overnight to afford the desired alkylation product (1.343 g, 4.28 mmol, 46%) 

as colorless crystals.  

1
H NMR (400 MHz, CDCl3): δ = 6.83 (br s, 1H), 4.21 (q, J = 7.1 Hz, 4H), 2.27 (d, J = 6.0 Hz, 

2H), 2.02 (s, 3H), 1.65 – 1.50 (m, 5H), 1.23 (t, J = 7.1 Hz, 6H), 1.20 – 1.06 (m, 4H), 0.98 – 0.88 

(m, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 169.0, 168.8, 66.0, 62.6, 38.9, 33.9, 33.5, 26.3, 26.2, 23.2, 

14.1 ppm. 

IR (KBr):  = 3281, 2976, 2921, 2851, 1747, 1647, 1510, 1445, 1373, 1298, 1274, 1231, 1190, 

1136, 1098, 1052, 1019, 953, 900, 862, 841, 805, 769, 693, 608 cm
-1

. 

The spectroscopic data are in accordance with those reported.
[27]

 

The malonate (51.5 mg, 0.16 mmol) was dissolved in 1,4-dioxane (1.6 mL). LiOH (4.8 mg, 0.20 

mmol) and H2O (0.8 mL) were added and the reaction mixture was stirred at rt for 42 h. After 

ν~

ν~
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dilution with H2O (15 mL) the solution was acidified with 1 N HCl. Extraction with EtOAc (3 × 

10 mL), drying over Na2SO4, and removal of the solvent under reduced pressure without 

warming afforded 12 (46.6 mg, 0.16 mmol, quant.) as a colorless solid. The obtained product 

was contaminated with the corresponding decarboxylation product. 

1
H NMR (400 MHz, DMSO-d6): δ = 13.44 (br s, 1H), 8.11 (s, 1H), 4.07 (q, J = 7.1 Hz, 2H), 

2.14 – 1.98 (m, 2H), 1.89 (s, 3H), 1.63 – 1.50 (m, 5H), 1.20 – 1.08 (m, 4H), 1.13 (t, J = 7.0 Hz, 

3H), 0.94 – 0.82 (m, 2H) ppm. 

13
C NMR (100 MHz, DMSO-d6): δ = 169.6, 168.7, 168.3, 65.4, 61.1, 38.8, 33.6, 33.3, 32.8, 

25.7, 25.7, 25.7, 22.2, 13.8 ppm. 

IR (KBr):  = 3321, 2923, 2852, 1724, 1656, 1605, 1523, 1446, 1370, 1301, 1268, 1253, 1203, 

1171, 1098, 1046, 1017, 953, 894, 867, 752, 705, 651, 619, 539, 466, 434 cm
-1

. 

HRMS (ESI): m/z = 308.1470 [M+Na]
+
 (calcd m/z = 308.1474). 

Elem. Anal.: calcd for C14H23NO5: C 58.93, H 8.12, N 4.91; found: C 59.16, H 8.17, N 4.85. 

 

N-Benzoyl D,L-alanine (22). Following a literature procedure,
[28]

 D,L-alanine 

(3.56 g, 40.0 mmol) and NaOH (6.40 g, 160.0 mmol) were dissolved in 

H2O/acetonitrile (3:1, 130 mL). After cooling to 0 °C with an ice-bath, 

benzoyl chloride (4.84 mL, 5.90 g, 42.0 mmol) was added dropwise. The reaction mixture was 

stirred at 0 °C for 2 h and for 1 h at rt. All volatiles were removed under reduced pressure and 

the residue was acidified with conc. HCl (60 mL) to precipitate the desired product. The obtained 

colorless solid was filtered off, washed with cold Et2O, and dried over paraffin wax and CaCl2 in 

a vacuum desiccator over night. Yield: 5.58 g (28.9 mmol, 72%) as colorless solid. 

1
H NMR (400 MHz, DMSO-d6): δ = 12.57 (br s, 1H), 8.69 (d, J = 7.3 Hz, 1H), 7.91 – 7.87 (m, 

2H), 7.56 – 7.51 (m, 1H), 7.50 – 7.44 (m, 2H), 4.42 (p, J = 7.3 Hz, 1H), 1.40 (d, J = 7.3 Hz, 3H) 

ppm. 

13
C NMR (100 MHz, DMSO-d6): δ = 174.2, 166.2, 133.9, 131.4, 128.3, 127.5, 48.2, 16.9 ppm. 

The NMR data are in accordance with the literature.
[29]

  

ν~
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4-Methyl-2-phenyloxazol-5(4H)-one (24). Following a literature procedure,
[30]

  

N-Benzoyl D,L-alanine (22; 1.937 g, 10.0 mmol) was suspended in dry CH2Cl2  

(80 mL). After cooling to 0 °C with an ice-bath, 1-ethyl-3-(3-dimethylamino-

propyl)carbodiimide hydrochloride ( D  • H l; 2.182 g, 11.4 mmol) was added 

and the reaction mixture was stirred at this temperature for 2 h. The resulting clear solution was 

diluted with CH2Cl2 (80 mL) and successively washed with ice-cold H2O (30 mL), cold sat. aq. 

NaHCO3 (2 × 30 mL), and ice-cold H2O (30 mL). After drying of the organic phase over 

Na2SO4, filtration and removal of the solvent in vacuo azlactone 24 (1.554, 8.87 mmol, 89%) 

was obtained as colorless solid. 

1
H NMR (400 MHz, CDCl3): δ = 8.01 – 7.97 (m, 2H), 7.60 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 

4.45 (q, J = 7.6 Hz, 1H), 1.59 (d, J = 7.6 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 179.0, 161.8, 132.9, 128.9, 128.0, 125.9, 61.1, 17.0 ppm. 

The NMR data are in accordance with the literature.
[30]

 

 

4-Methyl-2-phenyloxazol-5-yl acetate (16). According to a reported pro-

cedure,
[21b]

 4-Methyl-2-phenyloxazol-5(4H)-one (24; 174.5 mg, 1.0 mmol) and 

acetyl chloride (106 µL, 116.6 mg, 1.49 mmol) were dissolved in abs. THF. After 

cooling to 0 °C with an ice-bath, Et3N (207 µL, 151.1 mg, 1.49 mmol) was added 

dropwise and the reaction mixture was stirred at 0 °C for 1 h. The precipitated 

colorless solid was filtered off. The solvent was removed under reduced pressure, the residue 

redissolved in TBME and washed with 1 N HCl (2 × 5 mL). The organic layer was dried over 

Na2SO4 and the solvent was removed in vacuo yielding 16 (185.5 mg, 0.85 mmol, 85%) as 

colorless solid. 

1
H NMR (400 MHz, CDCl3): δ = 7.96 – 7.91 (m, 2H), 7.45 – 7.39 (m, 3H), 2.36 (s, 3H), 2.11 (s, 

3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 167.3, 155.1, 145.8, 130.4, 128.8, 127.2, 125.9, 120.6, 20.3, 

10.4 ppm. 

The NMR data are in accordance with the literature.
[13a]
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6.3 Synthesis of Racemic Products 

The N-protected amino acids were converted to the corresponding racemic methylketones 

employing the DMAP-catalyzed procedure reported by Steglich and Höfle.
[11]

 Yields are not 

optimized for the individual substrates. 

 

N-(3-oxo-1-(perfluorophenyl)butan-2-yl)acetamide (5). For the synthesis and 

characterization see Chapter VI, Supporting Information. 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-

Nagel), l = 30 m; splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector 

+ detector) = 250 °C; conditions: 100 – 180 °C, 2 °C/min. Retention times: tR (R) = 25.8 min,  

tR (S) = 26.6 min. 

 

N-(5-methyl-2-oxohexan-3-yl)acetamide (7a). For the synthesis and 

characterization see Chapter VI, Supporting Information. 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), 

l = 30 m; splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; 

conditions: 100 – 180 °C, 2 °C/min. Retention times: tR (R) = 25.8 min, tR (S) = 26.6 min. 

 

N-(5-methyl-2-oxohexan-3-yl)formamide (7b). General procedure: A mixture of 

6b (159.2 mg, 1.0 mmol), DMAP (6.1 mg, 0.05 mmol, 5 mol%), Et3N (0.2 mL, 

146.0 mg, 1.4 mmol), and acetic anhydride (0.2 mL, 216.0 mg, 2.1 mmol) was 

stirred at rt for 1 h. Glacial acetic acid (1.5 mL) was then added and stirring was 

continued for 1 h. After concentration of the solution under reduced pressure, the residual yellow 

oil was treated with sat. aq. NaHCO3 (25 mL), followed by extraction with CHCl3 (3 × 10 mL). 

The combined organic layers were washed with 1 N HCl (2 × 5 mL) and brine (10 mL), dried 

over Na2SO4, filtered, and the solvent was removed in vacuo. The crude product was purified by 

column chromatography eluting with EtOAc to obtain 7b (47.2 mg, 0.3 mmol, 30%) as a 

colorless oil. TLC (EtOAc): Rf = 0.50. 
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1
H NMR (400 MHz, CDCl3): δ = 8.22 (s, 1H), 6.17 (br s, 1H), 4.80 – 4.74 (m, 1H), 2.24 (s, 3H), 

1.72 – 1.61 (m, 2H), 1.46 – 1.38 (m, 1H), 0.99 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.4 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 206.7, 160.9, 56.0, 40.7, 27.4, 25.1, 23.4, 21.9 ppm. 

IR (film):  = 2959, 1722, 1665, 1530, 1384, 1262, 1022, 573, 517, 462, 426, 412 cm
-1

. 

HRMS (ESI): m/z = 180.1000 [M+Na]
+
 (calcd m/z = 180.1001). 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 180 °C, 2 °C/min. Retention times: tR (R) = 30.5 min, tR (S) = 32.0 min. 

 

N-(5-methyl-2-oxohexan-3-yl)isobutyramide (7c). The title compound was 

synthesized on 0.854 mmol scale employing the reaction conditions and work-up 

procedure described for 7b. Reaction time was 2 h for each step. Purification by 

column chromatography eluting with EtOAc afforded 7c (114.5 mg, 0.575 mmol, 

67%) as colorless oil. TLC (EtOAc): Rf = 0.73. 

1
H NMR (400 MHz, CDCl3): δ = 6.02 (d, J = 7.7 Hz, 1H), 4.65 (ddd, J = 9.1, 7.8, 3.5 Hz, 1H), 

2.40 (hept, J = 6.9 Hz, 1H), 2.20 (s, 3H), 1.68 – 1.57 (m, 2H), 1.43 – 1.34 (m, 1H), 1.15 (d, J = 

6.9 Hz, 3H), 1.14 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.1 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 213.9, 170.0, 54.9, 41.1, 38.3, 25.2, 23.6, 23.3, 22.0, 19.9, 

19.1, 17.8 ppm. 

IR (ATR):  = 3293, 2960, 2873, 1716, 1646, 1530, 1469, 1385, 1368, 1209, 1176, 1132, 1097, 

1019, 928, 599, 549 cm
-1

. 

HRMS (ESI): m/z = 222.1472 [M+Na]
+
 (calcd m/z = 222.1470). 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 180 °C, 2 °C/min. Retention times: tR (R) = 26.9 min, tR (S) = 27.3 min. 

 

ν~

ν~
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N-(5-methyl-2-oxohexan-3-yl)benzamide (7d). The title compound was 

synthesized on 2.0 mmol scale employing the reaction conditions and work-up 

procedure described for 7b. Reaction time was 2 h for each step. Purification 

by column chromatography eluting with EtOAc afforded 7d (391.6 mg,  

1.68 mmol, 84%) as colorless oil. TLC (EtOAc): Rf = 0.81. 

1
H NMR (400 MHz, CDCl3): δ = 7.82 – 7.78 (m, 2H), 7.53 – 7.48 (m, 1H), 7.46 – 7.41 (m, 2H), 

6.76 (d, J = 7.7 Hz, 1H), 4.89 (ddd, J = 9.1, 7.7, 3.5 Hz, 1H), 2.28 (s, 3H), 1.79 – 1.70 (m, 2H), 

1.58 – 1.49 (m, 1H), 1.03 (d, J = 6.1 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 207.5, 167.3, 134.1, 131.9, 128.7, 127.2, 57.8, 40.9, 27.5, 

25.3, 23.5, 22.1 ppm. 

IR (ATR):  = 3307, 3064, 2957, 2871, 1716, 1637, 1603, 1580, 1525, 1488, 1469, 1367, 1292, 

1210, 1178, 1156, 1133, 1074, 1027, 927, 801, 711, 693 cm
-1

. 

HRMS (ESI): m/z = 256.1304 [M+Na]
+
 (calcd m/z = 256.1314). 

Chiral stationary phase GC: FS-Hydrodex β-6-TBDM column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 160 °C, 1 °C/min; 160 – 220 °C, 1.5 °C/min. Retention times: tR (R) = 80.6 min, tR (S) = 

80.9 min (no complete baseline separation). 

 

N-(2,6-dimethyl-3-oxoheptan-4-yl)acetamide (7f). The title compound was 

prepared on 1.0 mmol scale employing the reaction conditions for the synthesis 

of 7b. After stirring for 24 h the reaction mixture was diluted with Et2O and 

successively washed with sat. aq. NaHCO3 (3 × 10 mL), 1 N HCl (3 × 10 mL), 

and brine (10 mL). The organic phase was dried over Na2SO4, filtered, and the solvent was 

removed under reduced pressure. Purification by column chromatography eluting with EtOAc 

afforded 7f (17.2 mg, 0.086 mmol, 9%) as a slightly yellow oil. TLC (EtOAc): Rf = 0.63. 

1
H NMR (400 MHz, CDCl3): δ = 6.10 (d, J = 8.4 Hz, 1H), 4.85 (ddd, J = 9.8, 8.4, 3.7 Hz, 1H), 

2.80 (hept, J = 6.8 Hz, 1H), 2.00 (s, 3H), 1.73 – 1.60 (m, 2H), 1.55 – 1.47 (m, 1H), 1.13 (d, J = 

7.0 Hz, 3H), 1.10 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 213.9, 170.0, 54.9, 41.1, 38.3, 25.2, 23.6, 23.3, 22.0, 19.9, 

19.1, 17.8 ppm. 

ν~
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IR (ATR):  = 3272, 2960, 2935, 2873, 1783, 1715, 1650, 1535, 1468, 1370, 1265, 1137, 1097, 

1041, 991, 923, 658, 595, 467 cm
-1

. 

HRMS (ESI): m/z = 222.1477 [M+Na]
+
 (calcd m/z = 222.1470). 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 180 °C, 2 °C/min. Retention times: tR (R) = 26.9 min, tR (S) = 27.6 min. 

 

3-Acetamido-5-methyl-2-oxohexyl acetate (7i). 2-acetoxyacetic anhydride: 

To 2-acetoxyacetic acid (1.049 g, 8.88 mmol) in dry CH2Cl2 (50 mL) was 

added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ( D  • 

HCl; 0.955 g, 4.98 mmol) and the reaction mixture was stirred at rt for 1 h. The 

resulting solution was washed with cold H2O (2 × 10 mL), cold sat. aq. NaHCO3 (10 mL), and 

cold H2O (20 mL). The organic phase was dried over Na2SO4, filtered, and the solvent was 

removed under reduced pressure affording the anhydride as a colorless liquid that was used 

without further purification. 

1
H NMR (400 MHz, CDCl3): δ = 4.73 (s, 4H), 2.18 (s, 6H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 170.1, 162.8, 60.7, 20.4 ppm. 

DMAP (6.11 mg, 0.05 mmol, 5 mol%) and 6a (173.2 mg, 1.0 mmol) were suspended in CH2Cl2 

(0.2 mL). 2-Acetoxyacetic anhydride (0.35 mL, 457.6 mg, 2.1 mmol) and Et3N (0.2 mL,  

146.0 mg, 1.44 mmol) were added and the reaction mixture was allowed to stir at rt for 2.5 h. 

Glacial acetic acid (1.5 mL) was then added and stirring was continued for 1 h. The work-up was 

performed as described for 7b. The crude product was purified by column chromatography 

eluting with EtOAc to obtain 7i (57.1 mg, 0.25 mmol, 25%) as a colorless oil. TLC (EtOAc):  

Rf = 0.54. 

1
H NMR (400 MHz, CDCl3): δ = 6.42 (d, J = 7.9 Hz, 1H), 4.78 (d, J = 2.9 Hz, 2H), 4.67 (ddd, J 

= 9.8, 7.9, 4.2 Hz, 1H), 2.12 (s, 3H), 1.98 (s, 3H), 1.69 – 1.52 (m, 2H), 1.44 – 1.35 (m, 1H), 0.91 

(d, J = 6.4 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 203.5, 170.7, 170.3, 66.7, 53.8, 40.0, 24.9, 23.2, 22.9, 21.7, 

20.5 ppm. 

ν~
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IR (ATR):  = 3272, 2959, 2873, 1734, 1651, 1535, 1469, 1417, 1371, 1227, 1145, 1042, 921, 

842, 732, 599, 438 cm
-1

. 

HRMS (ESI): m/z = 252.1215 [M+Na]
+
 (calcd m/z = 252.1212); m/z = 481.2536 [2M+Na]

+
 

(calcd m/z = 481.2526). 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 200 °C, 2 °C/min. Retention times: tR (R) = 44.7 min, tR (S) = 45.2 min. 

 

Ethyl 2-acetamido-3-cyclohexylpropanoate (13). Cyclohexylalanine hydro-

chloride: diethyl 2-acetamido-2-(cyclohexylmethyl)malonate (626.8 mg,  

2.0 mmol; vide supra) was heated to reflux with 6 N HCl (15 mL) overnight. 

After cooling to rt and filtration the desired product (282.5 mg, 1.36 mmol, 68%) 

was obtained as a colorless solid. 

1
H NMR (600 MHz, DMSO-d6): δ = 13.67 (br s, 1H), 8.45 (s, 3H), 3.83 – 3.79 (m, 1H), 1.74 – 

1.57 (m, 7H), 1.53 – 1.45 (m, 1H), 1.26 – 1.08 (m, 3H), 0.93 – 0.81 (m, 2H) ppm. 

13
C NMR (150 MHz, DMSO-d6): δ = 171.4, 49.8, 37.6, 32.6, 32.4, 32.1, 25.8, 25.5, 25.4 ppm. 

The NMR data are in accordance with those reported in the literature.
[27]

 

Ethyl 2-amino-3-cyclohexylpropanoate hydrochloride: Following a literature procedure,
[31]

 

trimethylsilyl chloride (134 µL, 115.2 mg, 1.06 mmol) was added dropwise to cyclohexylalanine 

hydrochloride (110.0 mg, 0.53 mmol). EtOH (1.5 mL) was then slowly added and the resulting 

suspension was stirred at rt for 49 h. After removal of all volatiles in vacuo the desired product 

was obtained as a colorless solid. 

The ethylester (117.8 mg, 0.50 mmol) was suspended in CH2Cl2 (5 mL). After cooling to 0 °C 

with an ice-bath, Et3N (155 µL, 113.2 mg, 1.12 mmol) was added and stirred for 15 min. Acetic 

anhydride (150 µL, 162.0 mg, 1.59 mmol) was added, the reaction mixture was allowed to warm 

to rt and stirred for 24 h. The resulting solution was diluted with EtOAc (25 mL), washed with  

1 N HCl (3 × 10 mL), sat. aq. NaHCO3 (3 × 10 mL) and brine (10 mL), and dried over Na2SO4. 

After removal of the solvent in vacuo ethyl 2-acetamido-3-cyclohexylpropanoate 13 (106.3 mg, 

0.44 mmol, 88%) was obtained as colorless oil. 

ν~
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1
H NMR (400 MHz, CDCl3): δ = 5.91 (d, J = 8.4 Hz, 1H), 4.66 – 4.59 (m, 1H), 4.17 (dq, J = 

7.1, 1.0 Hz, 2H), 2.02 (s, 3H), 1.82 – 1.75 (m, 1H), 1.72 – 1.60 (m, 5H), 1.50 (ddd, J = 14.1, 8.8, 

5.9 Hz, 1H), 1.32 – 1.12 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H), 1.00 – 0.83 (m, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 173.5, 170.0, 61.4, 50.4, 40.5, 34.3, 33.6, 32.8, 26.5, 26.3, 

26.2, 23.3, 14.3 ppm. 

IR (film):  = 3283, 3069, 2981, 2925, 2852, 1745, 1656, 1547, 1449, 1374, 1229, 1278, 1255, 

1195, 1154, 1116, 1097, 1030, 957, 889, 863, 596, 523, 462 cm
-1

. 

HRMS (ESI): m/z = 264.1576 [M+Na]
+
 (calcd m/z = 264.1576); m/z = 505.3259 [2M+Na]

+
 

(calcd m/z = 505.3254). 

Chiral stationary phase HPLC: Chiralpak IC column (Daicel), 250 mm × 4.6 mm; eluent: 15% 

i-PrOH/hexanes, 1.0 mL/min; UV-detector λ = 220 nm. Retention times: tR (S) = 10.4 min, tR (R) 

= 14.7 min. 

 

6.4 Opening of C-Acetylated Azlactones with Different Nucleophiles 

Methyl 2-benzamido-2-methyl-3-oxobutanoate (23a). N-benzoyl D,L-

alanine (22; 0.975 g, 5.0 mmol) was suspended in CH2Cl2 (40 mL).  D  • 

HCl (2.109 g, 11.0 mmol) was added and the reaction mixture was stirred at 

rt for 1 h. Acetic anhydride (0.57 mL, 0.613 g, 6.0 mmol) and DMAP  

(61.1 mg, 0.5 mmol) were subsequently added and the solution was stirred for 24 h. Then 

methanol (0.51 mL, 0.401 g, 12.5 mmol) was added and stirring was continued for further 24 h 

(the reaction progress was monitored by TLC and/or GC-MS). Upon complete consumption of 

the in situ formed C-acetylated azlactone the reaction mixture was diluted with EtOAc (150 mL) 

and successively washed with sat. aq. NaHCO3 (2 × 50 mL), 2 N HCl (2 × 50 mL) and brine (2 × 

50 mL). The organic layer was dried over Na2SO4, filtered, and the solvent was removed under 

reduced pressure yielding the crude product. Purification by column chromatography eluting 

with hexanes/EtOAc (2:1) afforded 23a (0.358 g, 1.44 mmol, 29%) as colorless oil. TLC 

(hexanes/EtOAc, 2:1): Rf = 0.26. 

1
H NMR (400 MHz, CDCl3): δ = 7.85 ‒ 7,82 (m, 2H), 7.76 (br s, 1H), 7.55 ‒ 7.50 (m, 1H), 

7.47 ‒ 7.43 (m, 2H), 3.79 (s, 3H), 2.25 (s, 3H), 1.84 (s, 3H) ppm. 

ν~
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13
C NMR (100 MHz, CDCl3): δ = 200.3, 169.7, 165.9, 133.3, 132.0, 128.7, 127.2, 68.6, 53.6, 

24.1, 20.3 ppm. 

The NMR data are in accordance with those reported in the literature.
[32]

 

Chiral stationary phase GC: FS-Hydrodex β-TBDAc column (Macherey-Nagel), l = 30 m; 

splitflow: 80 mL/min; precolumn pressure: 0.8 bar; T (injector + detector) = 250 °C; conditions: 

100 – 220 °C, 2 °C/min. Retention times: tR,1 = 52.7 min, tR,2 = 53.0 min. 

 

Ethyl 2-benzamido-2-methyl-3-oxobutanoate (23b). The title compound 

was synthesized on 0.5 mmol scale employing the reaction conditions and 

work-up procedure described for 23a using EtOH (296µL, 233.8 mg,  

5.07 mmol) as nucleophile. Yield: 20.5 mg (0.08 mmol, 16%) as colorless 

oil. TLC (hexanes/EtOAc, 2:1): Rf = 0.48. 

1
H NMR (400 MHz, CDCl3): δ = 7.85 ‒ 7.81 (m, 2H), 7.75 (br s, 1H), 7.55 ‒ 7.50 (m, 1H), 

7.48 ‒ 7.42 (m, 2H), 4.33 ‒ 4.19 (m, 2H), 2.25 (s, 3H), 1.83 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H) 

ppm. 

13
C NMR (100 MHz, CDCl3): δ = 200.4, 169.2, 166.0, 133.5, 132.1, 128.8, 127.2, 68.7, 62.8, 

24.2, 20.3, 14.1 ppm. 

IR (ATR):  = 3405, 2984, 2940, 1721, 1661, 1602, 1581, 1508, 1478, 1440, 1371, 1289, 1260, 

1190, 1118, 1099, 1074, 1018, 917, 858, 803, 713, 692, 630, 606, 535 cm
-1

. 

HRMS (ESI): m/z = 286.1058 [M+Na]
+
 (calcd m/z = 286.1055); m/z = 549.2206 [2M+Na]

+
 

(calcd m/z = 549.2213). 

 

Isopropyl 2-benzamido-2-methyl-3-oxobutanoate (23c). The title 

compound was synthesized on 0.5 mmol scale employing the reaction 

conditions and work-up procedure described for 23a using i-PrOH  

(385 µL, 300.3 mg, 5.0 mmol) as nucleophile. Yield: 14.1 mg (0.05 mmol, 

10%) as colorless oil. TLC (hexanes/EtOAc, 2:1): Rf = 0.54. 
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1
H NMR (400 MHz, CDCl3): δ = 7.85 ‒ 7.80 (m, 2H), 7.74 (br s, 1H), 7.55 ‒ 7.50 (m, 1H), 

7.48 ‒ 7.43 (m, 2H), 5.12 (hept, J = 6.3 Hz, 1H), 2.24 (s, 3H), 1.82 (s, 3H), 1.25 (d, J = 6.3 Hz, 

3H), 1.21 (d, J = 6.3 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 200.4, 168.8, 166.0, 133.7, 132.0, 128.8, 127.2, 70.7, 68.8, 

24.2, 21.6, 21.6, 20.2 ppm. 

The NMR data are in accordance with those reported in the literature.
[21]

 

 

N-(1-(benzylamino)-2-methyl-1,3-dioxobutan-2-yl)benzamide (23d).  

The title compound was synthesized on 0.5 mmol scale employing the 

reaction conditions described for 23a using BnNH2 (136 µL, 133.2 mg, 

1.24 mmol) as nucleophile. Washing was performed with 0.5 M citric acid solution and brine. 

Yield: 23.0 mg (0.07 mmol, 14%) as colorless oil. TLC (hexanes/EtOAc, 1:1): Rf = 0.48. 

1
H NMR (400 MHz, CDCl3): δ = 8.10 (br s, 1H), 7.80 (d, J = 7.3 Hz, 2H), 7.48 (t, J = 7.3 

Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 7.28 ‒ 7.18 (m, 3H), 7.14 (d, J = 7.3 Hz, 2H), 6.51 (m, 1H), 

4.45 – 4.33 (m, 2H), 2.16 (s, 3H), 1.77 (s, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 205.6, 167.9, 166.3, 137.4, 133.4, 132.3, 129.0, 128.9, 127.9, 

127.5, 127.3, 69.1, 44.3, 25.0, 20.9 ppm. 

The NMR data are in accordance with those reported in the literature.
[13a]

 

 

N-(2-methyl-1,3-dioxo-1-(propylamino)butan-2-yl)benzamide (23e). 

The title compound was synthesized on 0.5 mmol scale employing the 

reaction conditions described for 23a using PrNH2 (105 µL, 75.6 mg,  

1.28 mmol) as nucleophile. Washing was performed with 0.5 M citric acid solution and brine. 

Yield: 34.6 mg (0.13 mmol, 25%) as colorless oil. TLC (hexanes/EtOAc, 1:1): Rf = 0.43. 

1
H NMR (400 MHz, CDCl3): δ = 8.21 (br s, 1H), 7.89 ‒ 7.85 (m, 2H), 7.56 ‒ 7.51 (m, 1H), 

7.49 ‒ 7.43 (m, 2H), 6.25 (m, 1H), 3.28 – 3.20 (m, 2H), 2.21 (s, 3H), 1.80 (s, 3H), 1.51 (h, 

J = 7.3 Hz, 2H), 0.88 (t, J = 7.4 Hz, 3H) ppm. 
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13
C NMR (100 MHz, CDCl3): δ = 205.9, 167.8, 166.2, 133.5, 132.2, 128.8, 127.3, 69.0, 42.1, 

24.9, 22.7, 21.0, 11.3 ppm. 

IR (ATR):  = 3368, 3066, 2965, 2936, 2876, 1721, 1648, 1603, 1580, 1506, 1474, 1437, 1374, 

1355, 1286, 1215, 1194, 1147, 1099, 1074, 909, 912, 804, 714, 691, 646, 629, 603, 539, 507  

cm
-1

. 

HRMS (ESI): m/z = 299.1370 [M+Na]
+
 (calcd m/z = 299.1372); m/z = 575.2844 [2M+Na]

+
 

(calcd m/z = 575.2846). 

 

N-(1-(isopropylamino)-2-methyl-1,3-dioxobutan-2-yl)benzamide (23f).  

The title compound was synthesized on 0.5 mmol scale employing the 

reaction conditions described for 23a using i-PrNH2 (107 µL, 77.0 mg,  

1.30 mmol) as nucleophile. Washing was performed with 0.5 M citric acid 

solution and brine. Yield: 18.3 mg (0.07 mmol, 13%) as colorless oil. TLC (hexanes/EtOAc, 

1:1): Rf = 0.48. 

1
H NMR (400 MHz, CDCl3): δ = 8.20 (br s, 1H), 7.87 (d, J = 7.2 Hz, 2H), 7.57 ‒ 7.51 (m, 1H), 

7.50 ‒ 7.43 (m, 2H), 5.87 (d, J = 7.9 Hz, 1H), 4.12 – 3.99 (m, 1H), 2.21 (s, 3H), 1.78 (s, 3H), 

1.16 (d, J = 6.6 Hz, 3H), 1.13 (d, J = 6.6 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 205.9, 166.9, 166.1, 133.5, 132.2, 128.8, 127.2, 69.0, 42.7, 

24.9, 22.4, 22.4, 20.9 ppm. 

IR (ATR):  = 3359, 3064, 2975, 2937, 1724, 1672, 1653, 1602, 1580, 1538, 1504, 1471, 1435, 

1368, 1355, 1323, 1277, 1216, 1171, 1154, 1130, 1096, 1074, 1024, 960, 915, 842, 804, 715, 

691, 627, 604, 569, 526, 506, 431 cm
-1

. 

HRMS (ESI): m/z = 299.1363 [M+Na]
+
 (calcd m/z = 299.1372); m/z = 575.2825 [2M+Na]

+
 

(calcd m/z = 575.2846). 

 

S-Ethyl 2-benzamido-2-methyl-3-oxobutanethioate (23g). The title 

compound was synthesized on 0.5 mmol scale employing the reaction 

conditions described for 23a using EtSH (96.1 µL, 80.7 mg, 1.30 mmol) as 

ν~
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nucleophile with the exception that washing was performed solely with brine. Yield: 87.1 mg 

(0.31 mmol, 62%) as colorless oil. TLC (hexanes/EtOAc, 2:1): Rf = 0.53. 

1
H NMR (400 MHz, CDCl3): δ = 8.00 (br s, 1H), 7.87 ‒ 7.84 (m, 2H), 7.56 ‒ 7.52 (m, 1H), 

7.50 ‒ 7.44 (m, 2H), 3.00 – 2.81 (m, 2H), 2.24 (s, 3H), 1.90 (s, 3H), 1.22 (t, J = 7.4 Hz, 3H) 

ppm. 

13
C NMR (100 MHz, CDCl3): δ = 200.5, 197.0, 166.1, 133.8, 132.2, 128.8, 127.3, 75.6, 24.1, 

23.4, 19.7, 14.3 ppm. 

IR (ATR):  = 3395, 2972, 2933, 1723, 1665, 1602, 1581, 1504, 1473, 1436, 1367, 1279, 1232, 

1185, 1143, 1099, 1074, 1001, 963, 912, 885, 802, 784, 710, 691, 660, 639, 540 cm
-1

.  

HRMS (ESI): m/z = 302.0826 [M+Na]
+
 (calcd m/z = 302.0827); m/z = 581.1752 [2M+Na]

+
 

(calcd m/z = 581.1756). 

 

S-Isopropyl 2-benzamido-2-methyl-3-oxobutanethioate (23h). The title 

compound was synthesized on 0.5 mmol scale employing the reaction 

conditions described for 23a using i-PrSH (119µL, 97.6 mg, 1.28 mmol) as 

nucleophile with the exception that washing was performed solely with brine. Yield: 65.8 mg 

(0.22 mmol, 45%) as colorless oil. TLC (hexanes/EtOAc, 2:1): Rf = 0.56. 

1
H NMR (400 MHz, CDCl3): δ = 7.97 (br s, 1H), 7.87 ‒ 7.83 (m, 2H), 7.56 ‒ 7.51 (m, 1H), 

7.49 ‒ 7.44 (m, 2H), 3.65 (hept, J = 6.9 Hz, 1H), 2.24 (s, 3H), 1.88 (s, 3H), 1.28 (d, J = 6.9 Hz, 

3H), 1.27 (d, J = 6.9 Hz, 3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 200.6, 196.9, 166.0, 133.9, 132.1, 128.8, 127.3, 75.6, 35.7, 

23.5, 22.8, 22.6, 19.7 ppm. 

IR (ATR):  = 3396, 2967, 2930, 2869, 1723, 1667, 1602, 1581, 1504, 1473, 1437, 1367, 1280, 

1246, 1185, 1142, 1099, 1073, 1059, 1001, 963, 912, 881, 802, 785, 711, 691, 661, 637, 527  

cm
-1

. 

HRMS (ESI): m/z = 316.0988 [M+Na]
+
 (calcd m/z = 316.0983); m/z = 609.2064 [2M+Na]

+
 

(calcd m/z = 609.2069). 
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6.5 Availability of Catalysts 

For the synthesis and availability as well as characterization data for the employed catalysts, see 

Chapter VI. The preparation and characterization data for peptide 11 are provided below. 

 

Boc-L-Phe-L-Cha-
A
Gly-L-Pmh-OMe (11). Peptide 1 

(306.9 mg, 0.5 mmol) was treated with 4 M HCl in 1,4-

dioxane (1 mL) and the resulting solution was stirred at 

rt for 30 min. The reaction flask was flushed with argon 

for 30 min to remove residual HCl and the solvent was 

removed under reduced pressure. After drying in vacuo, 

the resulting H-L-Cha-
A
Gly-L-Pmh-O e • 2 H l was directly used for the next coupling step. 

Boc-L-Phe-OH (132.7 mg, 0.5 mmol), H-L-Cha-
A
Gly-L-Pmh-O e • 2 H l, 1-hydroxy-

benzotriazole (HOBt; 84.2 mg, 0.55 mmol) and O-(benzotriazol-1-yl)-N,N,N’,N’-tetramethyl-

uronium hexafluorophosphate (HBTU; 208.6 mg, 0.55 mmol) were dissolved in dry CH2Cl2 (5 

mL). Et3N (229 µL, 167.0 mg, 1.65 mmol) was added and the resulting solution was stirred at rt 

for 24 h. The reaction mixture was diluted with EtOAc (30 mL) and successively washed with 

sat. aq. NaHCO3 (4 × 10 mL) and brine (4 × 10 mL) and dried over Na2SO4. After filtration and 

removal of the solvent under reduced pressure the crude product was purified by column 

chromatography eluting with CHCl3/MeOH (9:1) to yield 11 (282.1 mg, 0.37 mmol, 74%) as 

colorless solid. TLC (CHCl3/MeOH 9:1): Rf = 0.46. 

1
H NMR (400 MHz, CDCl3): δ = 7.37 (s, 1H), 7.31 – 7.20 (m, 3H), 7.19 – 7.15 (m, 2H), 6.74 (s, 

1H), 6.45 (d, J = 8.0 Hz, 1H), 6.25 (d, J = 7.5 Hz, 1H), 5.99 (br s, 1H), 5.08 (d, J = 6.8 Hz, 1H) 

4.80 – 4.72 (m, 1H), 4.38 – 4.42 (m, 2H), 3.71 (s, 3H), 3.57 (s, 3H), 3.15 – 2.97 (m, 4H), 2.18 

(m, 2H), 2.07 – 1.97 (m, 2H), 1.96 – 1.85 (m, 4H), 1.79 – 1.54 (m, 12H), 1.43 – 1.34 (m, 1H), 

1.39 (s, 9H), 1.26 – 1.07 (m, 4H), 0.96 – 0.78 (m, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ = 176.4, 171.9, 171.3, 170.8, 155.6, 138.6, 136.5, 129.4, 128.8, 

128.5, 127.1, 126.4, 80.5, 55.9, 52.7, 52.2, 51.8, 51.4, 42.7, 42.4, 40.4, 39.5, 38.1, 38.1, 37.8, 

35.3, 34.1, 33.7, 32.7, 31.5, 29.2, 28.4, 26.8, 26.5, 26.2, 26.1 ppm. 

IR (KBr):  = 3317, 3063, 3030, 2922, 2853, 1743, 1652, 1509, 1451, 1390, 1366, 1343, 1275, 

1248, 1169, 1110, 1081, 1048, 1021, 925, 891, 817, 750, 700, 663 cm
-1

. 

HRMS (ESI): m/z = 761.4602 [M+H]
+
 (calcd m/z = 761.4602). 
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6.6 Procedures for Catalytic Experiments 

Enantioselective Dakin–West reaction. To a suspension of N-protected amino acid (1.0 equiv) 

and catalyst (10 mol%) in dry toluene (5 mL/mmol) was added carbodiimide (1.7 equiv) and the 

mixture was stirred at rt for 30 min. Anhydride (1.5 equiv) was added and the reaction progress 

was monitored by GC-MS and chiral stationary phase GC. After consumption of the azlactone 

acetic acid (1.3 equiv) was added and stirring was continued. Conversion and enantioselectivity 

were determined by GC-MS and chiral stationary phase GC. 

Enantioselective decarboxylative protonation. Malonic acid half ester 12 (14.3 mg,  

0.05 mmol) and catalyst 1 (3.07 mg, 10 mol%) were suspended in dry toluene (250 µL) and 

stirred at rt for 4 d. After quenching with 0.1 N HCl the desired product was extracted with 

EtOAc. The solvent was removed under reduced pressure and the enantioselectivity was 

determined by chiral stationary phase HPLC. 

Enantioselective acetylation of azlactones. To a suspension of N-benzoyl-D,L-alanine (22;  

19.3 mg, 0.1 mmol) and catalyst (10 mol%) in dry toluene (1 mL) was added DIC (34.7 µL,  

27.8 mg, 0.22 mmol) and the mixture was stirred at rt for 1 h. Acetic anhydride (10.4 µL,  

11.2 mg, 0.11 mmol) was subsequently added and stirring was continued for 18 h. Then MeOH 

(1 mL) was added and stirring was continued for additional 18 h. The reaction progress was 

followed by GC-MS and the enantioselectivity for 23a was determined by chiral stationary phase 

GC. The formation of the N-benzoyl alanine methylester was unambiguously assigned by 

comparison of the retention times with an authentic sample. 

Preparation of 23c by Steglich rearrangement (Table 3, entry 6). According to a literature 

procedure,
[21]

 C-acetylated azlactone 16 (269.3 mg, 1.24 mmol) and DMAP (12.2 mg, 8 mol%) 

were dissolved in CH2Cl2 (7 mL). After stirring at rt for 3 h the solvent was removed in vacuo to 

afford 17 as yellow oil. To 1.01 mmol of the crude product was added DMAP (10.1 mg,  

7.5 mol%) and i-PrOH (7 mL) and the reaction mixture was stirred for 3 d. The excess of i-PrOH 

was removed under reduced pressure and the obtained crude product was purified by column 

chromatography. Yield: 133.0 mg, 0.48 mmol, 44%. Analytical data for 23c are provided above.  
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Table 5. Cartesian coordinates for enolate 2a. 

 Atom          X                        Y                        Z 

7       -0.557173000      0.232584000      0.000013000 

1       -0.352559000      1.227373000      0.000084000 

6        3.112149000     -0.653982000      0.000030000 

1        3.711037000     -0.392944000      0.881803000 

1        3.711194000     -0.392720000     -0.881567000 

1        2.939059000     -1.736565000     -0.000113000 

6       -1.826917000     -0.200664000      0.000008000 

8       -2.145082000     -1.412361000     -0.000053000 

6       -2.898337000      0.878496000      0.000032000 

1       -2.488359000      1.893212000      0.000279000 

1       -3.534894000      0.754375000     -0.882742000 

1       -3.535186000      0.754043000      0.882547000 

6        1.815508000      0.142753000     -0.000015000 

6        0.620454000     -0.547511000      0.000009000 

8        1.896447000      1.433673000     -0.000052000 

1        0.501858000     -1.619913000      0.000074000 

 

Table 6. Cartesian coordinates for enolate 2b. 

 Atom          X                        Y                        Z 

7        0.605945000     -0.344158000     -0.118353000 

1        0.384456000     -1.335943000     -0.202771000 

6       -0.568140000      1.879725000     -0.210654000 

1       -1.578966000      2.294152000     -0.228602000 

1       -0.001981000      2.391489000      0.575461000 

1       -0.082855000      2.157398000     -1.159702000 

6       -3.134898000      0.094756000      0.089669000 

1       -3.631544000     -0.290511000      0.989468000 

1       -3.702742000     -0.284244000     -0.770529000 

1       -3.205855000      1.185924000      0.099215000 

6        1.887663000      0.019296000      0.054867000 

8        2.287935000      1.175555000      0.320632000 

6        2.900764000     -1.107824000     -0.114313000 

1        2.440103000     -2.085238000     -0.286670000 

1        3.559171000     -0.875696000     -0.958798000 

1        3.526323000     -1.160187000      0.782878000 

6       -1.714195000     -0.448174000      0.037880000 

6       -0.613571000      0.390448000     -0.027508000 

8       -1.599617000     -1.745229000      0.055477000 

 
 
Table 7. Cartesian coordinates for enolate 2c. 

 Atom          X                        Y                        Z 

7       -1.694346000     -0.385450000     -0.286131000 

1       -2.131272000     -0.077463000     -1.153296000 

6        0.008771000      0.481041000      1.351165000 

1        0.198932000      1.388552000      1.929647000 

1       -0.267351000     -0.310147000      2.053539000 

6       -0.861635000      3.257634000      0.236939000 

1       -1.672509000      3.983847000      0.368733000 

1       -0.198973000      3.654982000     -0.543468000 

1       -0.293995000      3.195695000      1.169484000 

6       -1.903686000     -1.648636000      0.121798000 

8       -1.574162000     -2.108188000      1.239216000 

6       -2.564456000     -2.557035000     -0.905748000 

1       -2.879460000     -2.029846000     -1.811122000 

1       -1.862818000     -3.349675000     -1.188756000 

1       -3.434966000     -3.037456000     -0.447950000 

6       -1.458627000      1.935821000     -0.225743000 

6       -1.122445000      0.733474000      0.384786000 

8       -2.280870000      1.996516000     -1.223356000 

6        1.287853000      0.074098000      0.637046000 

6        1.546060000     -1.273291000      0.341753000 

6        2.214985000      1.036877000      0.210250000 

1        0.832985000     -2.023665000      0.671914000 

1        2.022822000      2.085625000      0.422260000 

6        2.694830000     -1.644707000     -0.363518000 

6        3.367891000      0.670220000     -0.487359000 

1        2.874419000     -2.693866000     -0.585635000 

1        4.074389000      1.433507000     -0.803864000 

6        3.612499000     -0.676150000     -0.781007000 

1        4.506239000     -0.964647000     -1.327639000 
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Table 8. Cartesian coordinates for enolate 2d. 

 Atom          X                        Y                        Z 

7        1.050610000     -0.671467000     -0.130210000 

1        1.077081000     -1.465154000     -0.769749000 

6       -0.691796000      0.730797000      1.065238000 

1       -1.533708000      0.525433000      1.737268000 

1        0.131846000      1.090766000      1.688731000 

6       -1.114967000      1.900946000      0.129248000 

6       -2.412569000      1.593915000     -0.627031000 

6       -0.000542000      2.291685000     -0.850159000 

1       -2.284115000      0.702533000     -1.250895000 

1        0.178976000      1.481899000     -1.565993000 

1       -1.303401000      2.767254000      0.785034000 

1       -3.242304000      1.400702000      0.063214000 

1        0.938946000      2.480344000     -0.321612000 

6       -2.533231000     -1.709161000      0.416628000 

1       -2.704314000     -2.676258000      0.905618000 

1       -3.169742000     -1.686636000     -0.478040000 

1       -2.861999000     -0.912779000      1.089052000 

6        2.214475000     -0.098900000      0.217916000 

8        2.363266000      0.764108000      1.113627000 

6        3.417773000     -0.540987000     -0.606731000 

1        3.195882000     -1.363189000     -1.293710000 

1        3.786133000      0.311490000     -1.188996000 

1        4.221718000     -0.846386000      0.070438000 

6       -1.069635000     -1.620630000      0.009983000 

6       -0.274858000     -0.547080000      0.388784000 

8       -0.615713000     -2.605814000     -0.704493000 

1       -2.699560000      2.429599000     -1.277837000 

1       -0.274039000      3.190780000     -1.417385000 

 

 

 

 

 
 
Table 9. Cartesian coordinates for enolate 2e. 

 Atom          X                        Y                        Z 

7       -1.889779000     -0.194521000     -0.266081000 

1       -2.303262000      0.199954000     -1.110902000 

6       -0.112759000      0.425698000      1.436158000 

1        0.086826000      1.295723000      2.073335000 

1       -0.560463000     -0.339885000      2.076469000 

6        1.259346000     -0.117517000      0.950616000 

6        2.492104000     -1.921763000     -0.356045000 

6        3.465534000      0.410329000     -0.215698000 

6        3.323593000     -0.851928000     -1.077859000 

6        2.096486000      0.947390000      0.225759000 

6        1.124873000     -1.370103000      0.070005000 

1        3.041808000     -2.262403000      0.534608000 

1        4.063732000      0.167505000      0.675695000 

1        2.822210000     -0.586471000     -2.019956000 

1        1.535131000      1.292827000     -0.652122000 

1        0.548664000     -1.105540000     -0.826150000 

1        1.817127000     -0.412635000      1.857551000 

1        2.364346000     -2.801654000     -1.000494000 

1        4.019689000      1.184117000     -0.763512000 

1        4.313023000     -1.246173000     -1.345667000 

1        2.229065000      1.822690000      0.875173000 

1        0.541202000     -2.130933000      0.599478000 

6       -0.482609000      3.270267000      0.210144000 

1       -1.190931000      4.095135000      0.351396000 

1        0.222722000      3.584955000     -0.570394000 

1        0.079134000      3.125091000      1.136373000 

6       -2.299161000     -1.409512000      0.133816000 

8       -2.008543000     -1.955031000      1.223443000 

6       -3.154905000     -2.161438000     -0.878947000 

1       -3.419318000     -1.561699000     -1.755178000 

1       -2.611708000     -3.052346000     -1.214895000 

1       -4.071491000     -2.503557000     -0.387903000 

6       -1.252512000      2.043680000     -0.254900000 

6       -1.099367000      0.812470000      0.367460000 

8       -2.049306000      2.221469000     -1.265116000 
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Table 10. Cartesian coordinates for complex 1_2a. 

 Atom          X                        Y                        Z 

1       -1.110687000      0.628210000     -1.300593000 

6       -1.188958000      1.680560000     -1.014836000 

6       -0.303065000      3.989866000     -1.418432000 

6       -2.700564000      3.670375000     -0.729338000 

6       -1.738396000      4.514357000     -1.584372000 

6       -2.638101000      2.185949000     -1.181658000 

6       -0.220774000      2.522091000     -1.877638000 

1        0.008256000      4.061718000     -0.368854000 

1       -3.726596000      4.039772000     -0.833829000 

1       -0.849371000      1.771616000      0.023825000 

1        0.395813000      4.593432000     -2.010142000 

1       -2.427731000      3.743847000      0.330977000 

1       -1.782555000      5.556899000     -1.248244000 

6       -2.148382000      4.422588000     -3.064797000 

1       -1.484552000      5.045790000     -3.676792000 

1       -3.168557000      4.803785000     -3.197421000 

6       -3.024608000      2.099347000     -2.675761000 

1       -4.057166000      2.436649000     -2.799134000 

1       -2.983362000      1.052532000     -3.001392000 

6       -0.626944000      2.434181000     -3.359759000 

1        0.071358000      3.032911000     -3.956676000 

1       -0.547737000      1.397770000     -3.696346000 

6       -2.066810000      2.955061000     -3.522637000 

1       -2.359150000      2.879687000     -4.576530000 

6       -3.655193000      1.397870000     -0.352681000 

8       -4.854759000      1.349450000     -0.650588000 

7        1.160945000      2.076064000     -1.645428000 

1        1.684267000      2.624317000     -0.963635000 

7        2.455195000      0.382079000      0.438120000 

6        2.869789000      0.505837000     -0.958533000 

6        1.598828000      0.800297000     -1.781617000 

8        1.008976000     -0.065034000     -2.442450000 

1        1.943434000     -0.488035000      0.695387000 

1        3.521042000      1.380470000     -1.026394000 

6        3.607615000     -0.739273000     -1.453173000 

1        3.647208000     -0.674281000     -2.546635000 

1        3.013557000     -1.628178000     -1.220876000 

7       -3.186717000      0.778695000      0.762021000 

6       -4.053389000      0.041309000      1.653719000 

6       -3.294606000     -0.199482000      2.953526000 

8       -2.149774000      0.161104000      3.148683000 

1       -2.210895000      0.835448000      1.018452000 

1       -4.931097000      0.652594000      1.894432000 

 

6       -4.596155000     -1.261702000      1.025208000 

6       -3.531848000     -2.192910000      0.541540000 

1       -5.227218000     -0.956451000      0.186235000 

1       -5.241366000     -1.758176000      1.758277000 

6       -2.184107000     -2.273391000      0.782468000 

1       -1.506839000     -1.673134000      1.367633000 

6       -2.690129000     -3.888157000     -0.645512000 

1       -2.568279000     -4.690215000     -1.357486000 

7       -3.821449000     -3.221267000     -0.361265000 

6       -5.133363000     -3.507327000     -0.938319000 

1       -5.850190000     -3.727248000     -0.145108000 

1       -5.478816000     -2.649231000     -1.518229000 

1       -5.042748000     -4.372388000     -1.594240000 

8       -4.043863000     -0.853652000      3.845177000 

6       -3.411841000     -1.144514000      5.115841000 

1       -4.165364000     -1.675044000      5.694453000 

1       -2.529427000     -1.766933000      4.958041000 

1       -3.124034000     -0.214754000      5.609329000 

6        2.299360000      1.478697000      1.209577000 

8        2.566155000      2.636555000      0.854133000 

8        1.823306000      1.139602000      2.427905000 

6        1.411202000      2.157842000      3.404863000 

6        0.279426000      3.008819000      2.821961000 

1        0.631352000      3.610802000      1.983346000 

1       -0.540058000      2.364256000      2.491201000 

1       -0.107645000      3.679111000      3.596321000 

6        0.898745000      1.309996000      4.569655000 

1        1.697468000      0.666707000      4.950623000 

1        0.560141000      1.962635000      5.380596000 

6        2.613287000      3.000874000      3.835364000 

1        2.988557000      3.602805000      3.007826000 

1        2.315380000      3.664223000      4.654275000 

1        3.417489000      2.352051000      4.196575000 

7        0.603491000     -2.923327000     -1.886113000 

1        0.848776000     -1.934235000     -1.965085000 

6        1.930315000     -3.840018000      1.571999000 

1        1.262813000     -3.855980000      2.441733000 

1        2.854459000     -3.343607000      1.889089000 

1        2.166134000     -4.868085000      1.279984000 

6       -0.226742000     -3.445858000     -2.811762000 

8       -0.680923000     -4.607989000     -2.734002000 

6       -0.593396000     -2.541852000     -3.971512000 

1       -0.194540000     -1.532253000     -3.863463000 

1       -0.214281000     -2.984134000     -4.898709000 

1        0.063265000      0.684343000      4.248114000 

1       -1.684200000     -2.501467000     -4.054745000 

7       -1.701044000     -3.329461000      0.041765000 

1       -0.691974000     -3.605694000     -0.047604000 

6        1.288440000     -3.040675000      0.451127000 

6        1.091318000     -3.658008000     -0.769621000 

8        0.910735000     -1.832697000      0.717463000 

6        5.041228000     -0.935917000     -0.925150000 

6        5.121431000     -1.314802000      0.564380000 

6        6.566153000     -1.617503000      0.984997000 

6        7.497530000     -0.436936000      0.674506000 

6        7.414629000     -0.036199000     -0.805288000 

6        5.966056000      0.257849000     -1.219626000 

1        5.441870000     -1.793816000     -1.488255000 

1        4.476876000     -2.179794000      0.758742000 

1        4.728689000     -0.492737000      1.173311000 
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1        6.604912000     -1.860460000      2.053996000 

1        6.922055000     -2.507931000      0.446319000 

1        8.531662000     -0.684029000      0.944458000 

1        7.205307000      0.422682000      1.294774000 

1        8.048624000      0.837561000     -0.999448000 

1        7.807964000     -0.855717000     -1.424014000 

1        5.918346000      0.515236000     -2.286121000 

1        5.617092000      1.139614000     -0.664926000 

1        1.392601000     -4.679103000     -0.963916000 

 

 
Table 11. Cartesian coordinates for complex 1_2b. 

 Atom          X                        Y                        Z 

1        1.198472000     -0.624217000     -1.215301000 

6        1.383079000     -1.684962000     -1.022006000 

6        0.768688000     -4.026782000     -1.668812000 

6        3.087355000     -3.522855000     -0.828345000 

6        2.259748000     -4.382266000     -1.800424000 

6        2.884312000     -2.017764000     -1.154152000 

6        0.550649000     -2.539755000     -2.006174000 

1        0.420308000     -4.225316000     -0.646935000 

1        4.150800000     -3.771872000     -0.911105000 

1        1.013951000     -1.911514000     -0.014160000 

1        0.166720000     -4.643857000     -2.346688000 

1        2.780186000     -3.718900000      0.206771000 

1        2.400935000     -5.440433000     -1.550977000 

6        2.726535000     -4.116096000     -3.242828000 

1        2.164552000     -4.747452000     -3.942300000 

1        3.787229000     -4.376155000     -3.347992000 

6        3.324684000     -1.755840000     -2.613173000 

1        4.392964000     -1.967982000     -2.708927000 

1        3.179467000     -0.694685000     -2.851520000 

6        1.012976000     -2.281623000     -3.452186000 

1        0.412038000     -2.897496000     -4.132136000 

1        0.836440000     -1.235517000     -3.709090000 

6        2.506248000     -2.630594000     -3.578804000 

1        2.835466000     -2.430976000     -4.605335000 

6        3.778083000     -1.213003000     -0.207931000 

8        4.991405000     -1.075302000     -0.406822000 

7       -0.877679000     -2.247387000     -1.816781000 

1       -1.367229000     -2.860887000     -1.166581000 

7       -2.434579000     -0.721576000      0.233538000 
 

6       -2.765701000     -0.864645000     -1.183557000 

6       -1.436671000     -1.017513000     -1.948521000 

8       -0.910659000     -0.082239000     -2.564526000 

1       -1.931725000      0.152936000      0.505932000 

1       -3.323900000     -1.797631000     -1.287863000 

6       -3.600655000      0.298283000     -1.719635000 

1       -3.727221000      0.115493000     -2.793483000 

1       -3.031468000      1.228086000     -1.634100000 

7        3.186146000     -0.684458000      0.894128000 

6        3.931679000      0.057190000      1.886432000 

6        3.061478000      0.181095000      3.131826000 

8        1.937044000     -0.272437000      3.223243000 

1        2.198507000     -0.812084000      1.065976000 

1        4.825868000     -0.511716000      2.167307000 

6        4.434509000      1.422527000      1.366119000 

6        3.349265000      2.299557000      0.831245000 

1        5.153840000      1.201510000      0.573034000 

1        4.978264000      1.924146000      2.174177000 

6        1.983584000      2.259236000      0.942339000 

1        1.301600000      1.574721000      1.419857000 

6        2.482849000      3.980703000     -0.358261000 

1        2.363266000      4.807507000     -1.040203000 

7        3.634856000      3.393577000      0.007608000 

6        4.966111000      3.806435000     -0.431005000 

1        5.594176000      4.021518000      0.435236000 

1        5.423014000      3.014493000     -1.027942000 

1        4.868232000      4.704602000     -1.039448000 

8        3.689084000      0.846630000      4.105715000 

6        2.942750000      1.028014000      5.333722000 

1        3.603447000      1.592482000      5.988651000 

1        2.024390000      1.582020000      5.131993000 

1        2.699683000      0.056877000      5.768173000 

6       -2.247074000     -1.821889000      0.996653000 

8       -2.400011000     -2.988340000      0.606589000 

8       -1.886277000     -1.472736000      2.251271000 

6       -1.446399000     -2.476102000      3.231638000 

6       -0.200635000     -3.197879000      2.710430000 

1       -0.430685000     -3.788160000      1.822238000 

1        0.581019000     -2.469714000      2.476769000 

1        0.181605000     -3.869314000      3.486305000 

6       -1.099416000     -1.619059000      4.449585000 

1       -1.982232000     -1.070856000      4.792030000 

1       -0.750309000     -2.260981000      5.264638000 

6       -2.588766000     -3.440990000      3.557498000 

1       -2.835481000     -4.065522000      2.699061000 

1       -2.292609000     -4.082341000      4.394294000 

1       -3.480112000     -2.879960000      3.855893000 

7       -0.755482000      2.803854000     -1.849665000 

1       -0.912692000      1.801478000     -1.967312000 

6       -2.049032000      4.745448000     -0.982545000 

1       -2.381341000      5.230258000     -0.063203000 

1       -1.389675000      5.440561000     -1.510289000 

1       -2.935119000      4.591974000     -1.617859000 

6       -2.142479000      3.164487000      1.695041000 

1       -1.401484000      3.264687000      2.497876000 

1       -2.861508000      2.407606000      2.023174000 

1       -2.665031000      4.115668000      1.580954000 

6        0.136561000      3.384415000     -2.680838000 

8        0.587120000      4.537778000     -2.508965000 

6        0.578777000      2.554038000     -3.870054000 
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1        0.202695000      1.530970000     -3.836863000 

1        0.227062000      3.039114000     -4.786801000 

1       -0.311562000     -0.904667000      4.201131000 

1        1.672578000      2.546329000     -3.906367000 

7        1.484101000      3.309111000      0.202856000 

1        0.466724000      3.505159000      0.042204000 

6       -1.447412000      2.663374000      0.439870000 

6       -1.346397000      3.440530000     -0.703941000 

8       -0.898511000      1.489151000      0.534827000 

6       -4.989205000      0.497998000     -1.078514000 

6       -4.943460000      1.288179000      0.241288000 

6       -6.352373000      1.559605000      0.784170000 

6       -7.145180000      0.256294000      0.955957000 

6       -7.191104000     -0.542349000     -0.354552000 

6       -5.778259000     -0.808899000     -0.892719000 

1       -5.558383000      1.116950000     -1.790133000 

1       -4.407534000      2.230764000      0.081595000 

1       -4.369436000      0.721210000      0.982536000 

1       -6.291725000      2.096985000      1.738669000 

1       -6.890348000      2.217910000      0.086077000 

1       -8.162202000      0.469836000      1.307395000 

1       -6.663847000     -0.356561000      1.731744000 

1       -7.722679000     -1.489985000     -0.204521000 

1       -7.762782000      0.025493000     -1.102960000 

1       -5.830581000     -1.357185000     -1.842857000 

1       -5.247893000     -1.456543000     -0.181907000 

 

 
Table 12. Cartesian coordinates for complex 1_2c. 

 Atom          X                        Y                        Z 

1        1.621038000     -0.139334000     -1.325213000 

6        2.133684000     -1.093302000     -1.479655000 

6        2.099872000     -3.262739000     -2.734644000 

6        4.295193000     -2.251874000     -2.030107000 

6        3.574857000     -3.059336000     -3.124382000 

6        3.610979000     -0.867907000     -1.862397000 

6        1.404614000     -1.896891000     -2.582094000 

1        2.030455000     -3.817318000     -1.789852000 

1        5.347989000     -2.106654000     -2.294951000 

1        2.047844000     -1.675033000     -0.553453000 

1        1.579188000     -3.851120000     -3.499687000 

1        4.264118000     -2.793609000     -1.076287000 
 

1        4.058606000     -4.038158000     -3.223263000 

6        3.656738000     -2.295965000     -4.459076000 

1        3.175423000     -2.877504000     -5.255182000 

1        4.706267000     -2.155123000     -4.746086000 

6        3.662660000     -0.113011000     -3.211268000 

1        4.706282000      0.072758000     -3.479037000 

1        3.174190000      0.863233000     -3.099495000 

6        1.482758000     -1.145721000     -3.924487000 

1        0.965736000     -1.735425000     -4.691182000 

1        0.965000000     -0.189250000     -3.838070000 

6        2.957947000     -0.934246000     -4.305082000 

1        3.008670000     -0.383441000     -5.251655000 

6        4.404557000     -0.080918000     -0.817338000 

8        5.476647000      0.474419000     -1.087601000 

7        0.016771000     -2.142064000     -2.161973000 

1       -0.146112000     -3.019237000     -1.668891000 

7       -1.483989000     -1.745856000      0.393898000 

6       -2.028105000     -1.620807000     -0.958003000 

6       -0.875954000     -1.162216000     -1.871032000 

8       -0.753648000      0.010794000     -2.246436000 

1       -1.220339000     -0.859553000      0.870657000 

1       -2.331198000     -2.620849000     -1.275818000 

6       -3.220025000     -0.664455000     -1.018050000 

1       -3.409619000     -0.459819000     -2.077819000 

1       -2.944195000      0.294794000     -0.571879000 

7        3.899543000     -0.049323000      0.442885000 

6        4.583092000      0.619947000      1.527254000 

6        3.956004000      0.155414000      2.836706000 

8        3.037095000     -0.637642000      2.907012000 

1        3.034812000     -0.520764000      0.669758000 

1        5.633920000      0.307284000      1.539654000 

6        4.594450000      2.158128000      1.377094000 

6        3.235258000      2.759857000      1.222652000 

1        5.195847000      2.373610000      0.490032000 

1        5.115045000      2.586924000      2.240348000 

6        1.974901000      2.280243000      1.469082000 

1        1.604624000      1.328968000      1.815339000 

6        1.746594000      4.318161000      0.633809000 

1        1.289043000      5.200603000      0.215929000 

7        3.060436000      4.044866000      0.698054000 

6        4.126498000      4.934614000      0.241985000 

1        4.823229000      5.132093000      1.058559000 

1        4.659936000      4.477508000     -0.593892000 

1        3.679093000      5.871970000     -0.086486000 

8        4.543738000      0.726188000      3.892430000 

6        4.017361000      0.354914000      5.189672000 

1        4.604837000      0.921749000      5.909155000 

1        2.960467000      0.619751000      5.251776000 

1        4.138357000     -0.718223000      5.346727000 

6       -0.860247000     -2.881461000      0.777328000 

8       -0.752675000     -3.899496000      0.078735000 

8       -0.384052000     -2.757390000      2.035764000 

6        0.491799000     -3.776851000      2.631263000 

6        1.767717000     -3.916884000      1.796354000 

1        1.548251000     -4.319085000      0.806346000 

1        2.257440000     -2.943954000      1.698162000 

1        2.460695000     -4.596420000      2.303284000 

6        0.811617000     -3.178208000      4.001566000 

1       -0.107120000     -3.039556000      4.579440000 

1        1.471690000     -3.854386000      4.554137000 
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6       -0.258118000     -5.102323000      2.781520000 

1       -0.480845000     -5.542895000      1.809721000 

1        0.355604000     -5.801332000      3.359518000 

1       -1.196223000     -4.943421000      3.322708000 

7       -1.193641000      2.512483000     -0.802469000 

1       -1.118137000      1.566748000     -1.182264000 

6       -2.878936000      3.681212000      0.615933000 

1       -3.049502000      3.947412000      1.661197000 

1       -2.577996000      4.598587000      0.101039000 

6       -2.115178000      1.629918000      2.799108000 

1       -1.323007000      1.564327000      3.553242000 

1       -2.716827000      0.719477000      2.892092000 

1       -2.750578000      2.487555000      3.025610000 

6       -0.671227000      3.515940000     -1.536583000 

8       -0.563453000      4.688015000     -1.114156000 

6       -0.228370000      3.157928000     -2.940997000 

1       -0.221443000      2.082524000     -3.120709000 

1       -0.908557000      3.634827000     -3.655477000 

1        1.309756000     -2.212786000      3.888632000 

1        0.767972000      3.575152000     -3.113999000 

7        1.084556000      3.265884000      1.100770000 

1        0.039325000      3.169057000      1.096392000 

6       -1.472251000      1.660565000      1.422783000 

6       -1.752325000      2.670019000      0.510099000 

8       -0.612653000      0.723313000      1.181981000 

6       -4.530355000     -1.159443000     -0.377347000 

6       -4.530605000     -1.128159000      1.160525000 

6       -5.904287000     -1.515265000      1.725592000 

6       -6.359823000     -2.886003000      1.206774000 

6       -6.349743000     -2.929257000     -0.327770000 

6       -4.971489000     -2.542828000     -0.882522000 

1       -5.295114000     -0.439104000     -0.699621000 

1       -4.253950000     -0.124350000      1.498725000 

1       -3.767660000     -1.814482000      1.545920000 

1       -5.875985000     -1.513941000      2.822479000 

1       -6.641775000     -0.756605000      1.427670000 

1       -7.360122000     -3.126126000      1.588105000 

1       -5.680202000     -3.660228000      1.591317000 

1       -6.635854000     -3.926992000     -0.682705000 

1       -7.103320000     -2.227431000     -0.713379000 

1       -4.985233000     -2.555207000     -1.980675000 

1       -4.243595000     -3.302502000     -0.565833000 

6       -4.168072000      3.158741000      0.010170000 

6       -4.359267000      3.170253000     -1.379916000 

6       -5.178735000      2.611648000      0.813576000 

6       -5.518916000      2.640668000     -1.950375000 

6       -6.345942000      2.092567000      0.249441000 

6       -6.519277000      2.100255000     -1.137124000 

1       -3.590299000      3.596262000     -2.016984000 

1       -5.047920000      2.590050000      1.892146000 

1       -5.643860000      2.654537000     -3.029543000 

1       -7.116372000      1.676072000      0.891773000 

1       -7.422911000      1.690307000     -1.578441000 

 

 

 
 
Table 13. Cartesian coordinates for complex 1_2d. 

 Atom          X                        Y                        Z 

1        1.365143000     -0.396495000     -1.317036000 

6        1.735514000     -1.425375000     -1.350097000 

6        1.394547000     -3.699292000     -2.344786000 

6        3.710918000     -2.937500000     -1.717045000 

6        2.884711000     -3.756268000     -2.724487000 

6        3.232528000     -1.459918000     -1.724596000 

6        0.902805000     -2.239660000     -2.367937000 

1        1.240738000     -4.121320000     -1.343175000 

1        4.774363000     -2.976227000     -1.976626000 

1        1.561519000     -1.875091000     -0.364597000 

1        0.798114000     -4.293746000     -3.047257000 

1        3.600857000     -3.354996000     -0.708203000 

1        3.222170000     -4.799042000     -2.699293000 

6        3.079431000     -3.176295000     -4.136782000 

1        2.519372000     -3.772187000     -4.868125000 

1        4.138668000     -3.224099000     -4.418723000 

6        3.399646000     -0.885010000     -3.150350000 

1        4.460309000     -0.884519000     -3.415478000 

1        3.059186000      0.157949000     -3.163344000 

6        1.094965000     -1.668585000     -3.784762000 

1        0.499839000     -2.261463000     -4.489752000 

1        0.722894000     -0.643402000     -3.817706000 

6        2.586912000     -1.718658000     -4.156510000 

1        2.721318000     -1.296129000     -5.159169000 

6        4.124468000     -0.676567000     -0.758669000 

8        5.258860000     -0.294787000     -1.071466000 

7       -0.507803000     -2.236326000     -1.952710000 

1       -0.791771000     -3.016486000     -1.360954000 

7       -1.914594000     -1.344433000      0.518143000 

6       -2.453960000     -1.300359000     -0.840732000 

6       -1.256456000     -1.115436000     -1.793086000 

8       -0.980482000     -0.021809000     -2.301717000 

1       -1.545070000     -0.444164000      0.894479000 

1       -2.908968000     -2.273329000     -1.042440000 

6       -3.481312000     -0.178687000     -1.001275000 

1       -3.562816000      0.044242000     -2.070630000 

1       -3.082491000      0.725872000     -0.533627000 

7        3.628002000     -0.448395000      0.484952000 

6        4.390343000      0.239948000      1.503075000 

6        3.702406000      0.008016000      2.843280000 

8        2.684440000     -0.642497000      2.980846000 
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1        2.711509000     -0.783241000      0.747779000 

1        5.391461000     -0.202631000      1.566840000 

6        4.600091000      1.738130000      1.190264000 

6        3.329674000      2.495851000      0.978992000 

1        5.207987000      1.778581000      0.282231000 

1        5.187968000      2.182939000      2.000605000 

6        2.014750000      2.196547000      1.225270000 

1        1.519696000      1.325778000      1.622344000 

6        2.063118000      4.195035000      0.272505000 

1        1.728365000      5.099343000     -0.209056000 

7        3.329424000      3.760242000      0.380256000 

6        4.508772000      4.479259000     -0.096215000 

1        5.206301000      4.639438000      0.727955000 

1        4.999171000      3.906554000     -0.885962000 

1        4.190756000      5.442146000     -0.494276000 

8        4.356513000      0.607604000      3.842093000 

6        3.774247000      0.461274000      5.160339000 

1        4.431036000      1.017754000      5.825953000 

1        2.765161000      0.876856000      5.168515000 

1        3.740963000     -0.593639000      5.437692000 

6       -1.453840000     -2.502195000      1.035991000 

8       -1.498218000     -3.600561000      0.461978000 

8       -0.949622000     -2.301178000      2.273873000 

6       -0.254821000     -3.370670000      3.004590000 

6        0.986673000     -3.808300000      2.222155000 

1        0.709523000     -4.279662000      1.278058000 

1        1.627592000     -2.943951000      2.027161000 

1        1.558090000     -4.527896000      2.817661000 

6        0.146615000     -2.676028000      4.306312000 

1       -0.742650000     -2.328117000      4.840425000 

1        0.685445000     -3.379694000      4.948797000 

6       -1.209566000     -4.533331000      3.285667000 

1       -1.496256000     -5.040396000      2.364625000 

1       -0.719622000     -5.250498000      3.952679000 

1       -2.112200000     -4.165502000      3.783893000 

7       -1.070556000      2.723837000     -1.130995000 

1       -1.132236000      1.740107000     -1.397345000 

6       -2.491015000      4.346489000      0.157304000 

1       -2.543026000      4.734556000      1.180178000 

1       -1.986205000      5.116921000     -0.433886000 

6       -3.942316000      4.210067000     -0.377998000 

6       -4.814291000      3.319846000      0.514572000 

6       -3.989384000      3.734728000     -1.836481000 

1       -4.408210000      2.306156000      0.568414000 

1       -3.629783000      2.705983000     -1.928290000 

1       -4.366346000      5.225622000     -0.349806000 

1       -4.870487000      3.710075000      1.536894000 

1       -3.363924000      4.363926000     -2.479435000 

6       -2.160651000      2.343158000      2.507636000 

1       -1.395381000      2.217163000      3.281807000 

1       -2.901743000      1.550809000      2.664584000 

1       -2.656665000      3.304888000      2.644379000 

6       -0.354321000      3.530508000     -1.939856000 

8       -0.043869000      4.705779000     -1.644892000 

6        0.059435000      2.939190000     -3.273196000 

1       -0.146953000      1.870968000     -3.346466000 

1       -0.478256000      3.464056000     -4.070396000 

1        0.793319000     -1.820860000      4.098899000 

1        1.127105000      3.124867000     -3.424622000 

7        1.264793000      3.264789000      0.783118000 
 

1        0.218656000      3.305809000      0.763670000 

6       -1.512534000      2.153254000      1.147300000 

6       -1.637271000      3.098133000      0.137506000 

8       -0.801831000      1.074845000      1.009894000 

6       -4.891332000     -0.460033000     -0.455100000 

6       -4.947127000     -0.699284000      1.063225000 

6       -6.394510000     -0.846376000      1.550829000 

6       -7.120659000     -1.972939000      0.802410000 

6       -7.055809000     -1.765010000     -0.717159000 

6       -5.606891000     -1.601492000     -1.198506000 

1       -5.468309000      0.456163000     -0.654442000 

1       -4.447208000      0.122012000      1.589499000 

1       -4.386305000     -1.608055000      1.311729000 

1       -6.411808000     -1.035496000      2.631151000 

1       -6.929763000      0.100401000      1.387673000 

1       -8.164643000     -2.041255000      1.132162000 

1       -6.646264000     -2.932749000      1.053395000 

1       -7.535462000     -2.603300000     -1.237075000 

1       -7.625226000     -0.862294000     -0.981683000 

1       -5.584927000     -1.412617000     -2.279724000 

1       -5.070557000     -2.546213000     -1.031453000 

1       -5.835768000      3.250368000      0.123299000 

1       -5.015477000      3.768332000     -2.221178000 

 

 

 
Table 14. Cartesian coordinates for complex 1_2e. 

Atom          X                        Y                        Z 

1       -1.630991000     -0.048619000      1.380730000 

6       -2.191786000     -0.970854000      1.559820000 

6       -2.257285000     -3.115364000      2.856693000 

6       -4.404553000     -2.001747000      2.165287000 

6       -3.711931000     -2.825594000      3.264880000 

6       -3.649637000     -0.659910000      1.959675000 

6       -1.490894000     -1.792958000      2.666830000 

1       -2.232815000     -3.690222000      1.921868000 

1       -5.443549000     -1.794037000      2.443038000 

1       -2.148289000     -1.571911000      0.643172000 

1       -1.756137000     -3.716345000      3.624949000 

1       -4.419059000     -2.563426000      1.222710000 

1       -4.246473000     -3.774332000      3.391542000 
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6       -3.728810000     -2.033438000      4.584498000 

1       -3.265598000     -2.624946000      5.383937000 

1       -4.763813000     -1.829939000      4.886296000 

6       -3.640274000      0.122124000      3.293296000 

1       -4.668403000      0.366710000      3.573312000 

1       -3.104955000      1.069747000      3.154785000 

6       -1.505018000     -1.010679000      3.992832000 

1       -1.006310000     -1.609694000      4.764348000 

1       -0.939112000     -0.084823000      3.876070000 

6       -2.961324000     -0.713701000      4.392472000 

1       -2.967016000     -0.142876000      5.328404000 

6       -4.418694000      0.143401000      0.908182000 

8       -5.434953000      0.791053000      1.187537000 

7       -0.128725000     -2.131434000      2.228075000 

1       -0.038451000     -3.024834000      1.745226000 

7        1.286040000     -1.896435000     -0.384173000 

6        1.896031000     -1.783765000      0.939924000 

6        0.818056000     -1.220578000      1.886675000 

8        0.795797000     -0.034704000      2.237767000 

1        1.096835000     -1.000149000     -0.881451000 

1        2.144968000     -2.795203000      1.270167000 

6        3.147974000     -0.908126000      0.914381000 

1        3.394031000     -0.662666000      1.953918000 

1        2.902665000      0.041089000      0.429768000 

7       -3.960407000      0.076544000     -0.368555000 

6       -4.632371000      0.737539000     -1.465355000 

6       -4.060420000      0.184947000     -2.765622000 

8       -3.186432000     -0.658715000     -2.818559000 

1       -3.142661000     -0.470886000     -0.598839000 

1       -5.699281000      0.484807000     -1.443400000 

6       -4.552305000      2.277582000     -1.384720000 

6       -3.157448000      2.807398000     -1.304893000 

1       -5.106876000      2.566867000     -0.487923000 

1       -5.078956000      2.697326000     -2.248641000 

6       -1.929103000      2.233785000     -1.509188000 

1       -1.615622000      1.235717000     -1.768177000 

6       -1.576478000      4.328026000     -0.882619000 

1       -1.066452000      5.217543000     -0.550770000 

7       -2.904203000      4.126737000     -0.914712000 

6       -3.915025000      5.120689000     -0.561092000 

1       -4.583973000      5.289679000     -1.407105000 

1       -4.491426000      4.775198000      0.299369000 

1       -3.411653000      6.052504000     -0.306320000 

8       -4.638449000      0.741433000     -3.833825000 

6       -4.154952000      0.291749000     -5.123038000 

1       -4.726316000      0.858083000     -5.855755000 

1       -3.087479000      0.500384000     -5.212566000 

1       -4.332025000     -0.779367000     -5.233888000 

6        0.579371000     -2.995642000     -0.721230000 

8        0.427348000     -3.987312000      0.007550000 

8        0.074539000     -2.873743000     -1.968814000 

6       -0.846295000     -3.875105000     -2.526545000 

6       -2.116823000     -3.943080000     -1.674469000 

1       -1.900813000     -4.327132000     -0.676528000 

1       -2.566823000     -2.949467000     -1.597122000 

1       -2.841706000     -4.608106000     -2.155363000 

6       -1.157511000     -3.304124000     -3.910523000 

1       -0.240759000     -3.220607000     -4.501987000 

1       -1.851118000     -3.968632000     -4.435581000 

6       -0.149896000     -5.232656000     -2.648544000 
 

1        0.067033000     -5.656320000     -1.668094000 

1       -0.797350000     -5.921785000     -3.201031000 

1        0.787098000     -5.125476000     -3.204256000 

7        1.258995000      2.477474000      0.708240000 

1        1.163931000      1.539757000      1.100654000 

6        2.880203000      3.657907000     -0.807503000 

1        2.992966000      3.851540000     -1.879191000 

1        2.509470000      4.589305000     -0.367058000 

6        4.288669000      3.384465000     -0.221061000 

6        5.707524000      3.055394000      1.861214000 

6        6.399226000      1.955828000     -0.315772000 

6        6.403262000      1.849670000      1.215987000 

6        4.986571000      2.182416000     -0.873434000 

6        4.286666000      3.227991000      1.309103000 

1        6.291754000      3.964577000      1.656312000 

1        7.042884000      2.795722000     -0.615226000 

1        5.875031000      0.934966000      1.518377000 

1        4.376969000      1.288591000     -0.702153000 

1        3.687624000      2.350613000      1.580389000 

1        4.890004000      4.279862000     -0.452205000 

1        5.679978000      2.937872000      2.951709000 

1        6.837311000      1.052542000     -0.759115000 

1        7.431876000      1.754223000      1.585692000 

1        5.033886000      2.321012000     -1.960951000 

1        3.797228000      4.095135000      1.769901000 

6        2.139802000      1.450515000     -2.861508000 

1        1.331462000      1.424812000     -3.601615000 

1        2.679192000      0.501456000     -2.951422000 

1        2.826981000      2.259546000     -3.111387000 

6        0.729835000      3.493994000      1.418832000 

8        0.615561000      4.659429000      0.979384000 

6        0.286269000      3.157121000      2.828911000 

1        0.269261000      2.084094000      3.022744000 

1        0.975573000      3.634469000      3.534441000 

1       -1.614043000     -2.316153000     -3.821546000 

1       -0.704978000      3.586603000      3.000581000 

7       -0.980659000      3.198500000     -1.245640000 

1        0.057775000      3.043811000     -1.234284000 

6        1.528305000      1.542401000     -1.473896000 

6        1.835904000      2.582316000     -0.605389000 

8        0.659906000      0.623322000     -1.181124000 

6        4.395693000     -1.517387000      0.250946000 

6        4.284046000     -1.711246000     -1.270811000 

6        5.621356000     -2.168307000     -1.868253000 

6        6.118812000     -3.456319000     -1.197040000 

6        6.206080000     -3.293238000      0.327015000 

6        4.868719000     -2.821853000      0.915971000 

1        5.195837000     -0.780054000      0.409883000 

1        3.958465000     -0.776516000     -1.739413000 

1        3.509976000     -2.454150000     -1.492953000 

1        5.520878000     -2.318006000     -2.950249000 

1        6.370030000     -1.374923000     -1.727713000 

1        7.094336000     -3.748926000     -1.604486000 

1        5.420363000     -4.273155000     -1.429654000 

1        6.514039000     -4.236839000      0.793660000 

1        6.983599000     -2.553583000      0.566611000 

1        4.960797000     -2.677785000      2.000635000 

1        4.118103000     -3.609589000      0.762727000 

 



New Frontiers in Peptide Catalysis 
 

  353 

 
Table 15. Cartesian coordinates for the complex of 

protonated 3 with the enolate of 5. 

Atom          X                        Y                        Z 

1        2.205275000     -0.258728000     -1.327402000 

6        2.833441000     -1.152611000     -1.282474000 

6        3.120153000     -3.504484000     -2.096212000 

6        5.141793000     -2.112056000     -1.533189000 

6        4.579778000     -3.195072000     -2.471723000 

6        4.292043000     -0.818547000     -1.657482000 

6        2.263664000     -2.232028000     -2.232025000 

1        3.064520000     -3.876123000     -1.065158000 

1        6.182943000     -1.889164000     -1.790031000 

1        2.768362000     -1.558561000     -0.265608000 

1        2.714994000     -4.286633000     -2.749474000 

1        5.124322000     -2.464940000     -0.494181000 

1        5.179353000     -4.106464000     -2.364499000 

6        4.641236000     -2.694879000     -3.926023000 

1        4.273131000     -3.472375000     -4.606829000 

1        5.680341000     -2.481001000     -4.205474000 

6        4.328422000     -0.332073000     -3.125477000 

1        5.356821000     -0.073395000     -3.391444000 

1        3.726010000      0.580067000     -3.220731000 

6        2.322281000     -1.739648000     -3.689331000 

1        1.914649000     -2.518717000     -4.344633000 

1        1.694498000     -0.852972000     -3.797922000 

6        3.782254000     -1.425031000     -4.060593000 

1        3.819425000     -1.060742000     -5.093892000 

6        4.924389000      0.250355000     -0.763409000 

8        5.932634000      0.880403000     -1.105045000 

7        0.894527000     -2.571789000     -1.813441000 

1        0.809998000     -3.380494000     -1.198484000 

7       -0.717813000     -1.983880000      0.629059000 

6       -1.230453000     -2.117522000     -0.731639000 

6       -0.112842000     -1.673746000     -1.695175000 

8       -0.120011000     -0.563961000     -2.244229000 

1       -0.549056000     -1.013531000      0.962878000 

1       -1.451102000     -3.175487000     -0.899006000 

6       -2.504604000     -1.283795000     -0.925167000 

1       -2.730113000     -1.253744000     -1.994733000 

1       -2.304145000     -0.256625000     -0.616499000 

7        4.345844000      0.462704000      0.447469000 

6        4.883631000      1.412252000      1.396180000 

6        4.277045000      1.107991000      2.761635000 

8        3.497639000      0.198619000      2.971102000 

1        3.549286000     -0.081782000      0.748402000 

1        5.966873000      1.264172000      1.479541000 

6        4.682743000      2.879437000      0.955868000 

6        3.253656000      3.246374000      0.718627000 
 

1        5.255123000      3.002876000      0.032153000 

1        5.130957000      3.534620000      1.710747000 

6        2.075649000      2.621406000      1.033361000 

1        1.841542000      1.684430000      1.512217000 

6        1.560605000      4.469431000     -0.075759000 

1        0.983304000      5.211822000     -0.603101000 

7        2.899179000      4.406993000      0.022859000 

6        3.832077000      5.381572000     -0.539745000 

1        4.465535000      5.788776000      0.250291000 

1        4.454319000      4.904689000     -1.299502000 

1        3.259857000      6.188367000     -0.995941000 

8        4.712236000      1.960864000      3.693473000 

6        4.193019000      1.760078000      5.030808000 

1        4.645605000      2.544933000      5.633497000 

1        3.105366000      1.849141000      5.024632000 

1        4.479919000      0.772928000      5.396981000 

6        0.029399000     -2.969430000      1.181349000 

8        0.274182000     -4.055710000      0.640890000 

8        0.462835000     -2.599006000      2.404011000 

6        1.462084000     -3.389617000      3.140087000 

6        2.756428000     -3.471101000      2.326656000 

1        2.607394000     -4.033651000      1.403968000 

1        3.112698000     -2.464357000      2.089843000 

1        3.527477000     -3.973156000      2.919930000 

6        1.675994000     -2.557355000      4.404644000 

1        0.737117000     -2.458151000      4.957620000 

1        2.409272000     -3.051054000      5.050200000 

6        0.899067000     -4.769294000      3.487457000 

1        0.755317000     -5.375554000      2.593140000 

1        1.593282000     -5.283191000      4.160623000 

1       -0.061205000     -4.664024000      4.001826000 

7       -1.075316000      1.989433000     -1.138920000 

1       -0.809309000      1.039735000     -1.404795000 

6       -2.976132000      2.984837000      0.143050000 

1       -3.121997000      3.503752000      1.090213000 

1       -2.925654000      3.754376000     -0.630800000 

6       -1.772672000      1.562100000      2.599885000 

1       -0.956098000      1.775519000      3.298385000 

1       -2.193014000      0.596083000      2.900663000 

1       -2.547172000      2.319953000      2.711136000 

6       -0.765218000      2.979729000     -2.001477000 

8       -0.891391000      4.190112000     -1.716832000 

6       -0.264036000      2.546890000     -3.362797000 

1       -0.015925000      1.485484000     -3.402907000 

1       -1.044696000      2.755206000     -4.102407000 

1        2.044728000     -1.561226000      4.149162000 

1        0.609039000      3.149635000     -3.628349000 

7        1.055665000      3.403232000      0.535082000 

1        0.043798000      3.156850000      0.564365000 

6       -1.182511000      1.453409000      1.205106000 

6       -1.671511000      2.209200000      0.146641000 

8       -0.167209000      0.662082000      1.080148000 

6       -4.197736000      2.108564000     -0.109280000 

6       -4.492376000      1.582260000     -1.370026000 

6       -5.091675000      1.766628000      0.906712000 

9       -3.714679000      1.891572000     -2.430468000 

9       -4.913526000      2.253771000      2.157748000 

6       -5.580642000      0.749112000     -1.603862000 

6       -6.197478000      0.946307000      0.703804000 

9       -5.810174000      0.255398000     -2.834392000 
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9       -7.028421000      0.658563000      1.720979000 

6       -6.444390000      0.429862000     -0.561325000 

9       -7.507839000     -0.357997000     -0.780207000 

6       -3.689582000     -1.818681000     -0.161634000 

6       -4.660435000     -2.599954000     -0.802059000 

6       -3.849162000     -1.540009000      1.202328000 

1       -4.558652000     -2.811362000     -1.863547000 

1       -3.108966000     -0.932040000      1.708414000 

6       -5.765020000     -3.088987000     -0.100690000 

6       -4.950081000     -2.026735000      1.908323000 

1       -6.515398000     -3.678488000     -0.618824000 

1       -5.062263000     -1.788049000      2.961789000 

6       -5.913832000     -2.802560000      1.258495000 

1       -6.778635000     -3.168963000      1.803043000 
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6.8 NMR Spectra 

(S)-2-formamido-4-methylpentanoic acid (6b) 

 

 



Unpublished Results 
 

356 

(S)-2-isobutyramido-4-methylpentanoic acid (6c) 
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(S)-4-methyl-2-(2,2,2-trifluoroacetamido)pentanoic acid (6e) 
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2-Acetamido-2-(cyclohexylmethyl)-3-ethoxy-3-oxopropanoic acid (12) 
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N-(5-methyl-2-oxohexan-3-yl)formamide (7b) 
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N-(5-methyl-2-oxohexan-3-yl)isobutyramide (7c) 
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N-(5-methyl-2-oxohexan-3-yl)benzamide (7d) 
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N-(2,6-dimethyl-3-oxoheptan-4-yl)acetamide (7f) 
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3-Acetamido-5-methyl-2-oxohexyl acetate (7i) 
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Ethyl 2-acetamido-3-cyclohexylpropanoate (13) 

 

 

 



New Frontiers in Peptide Catalysis 
 

  365 

Ethyl 2-benzamido-2-methyl-3-oxobutanoate (23b) 
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N-(2-methyl-1,3-dioxo-1-(propylamino)butan-2-yl)benzamide (23e) 
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N-(1-(isopropylamino)-2-methyl-1,3-dioxobutan-2-yl)benzamide (23f) 
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S-Ethyl 2-benzamido-2-methyl-3-oxobutanethioate (23g) 
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S-Isopropyl 2-benzamido-2-methyl-3-oxobutanethioate (23h) 

 

 

 



Unpublished Results 
 

370 

Boc-L-Phe-L-Cha-
A
Gly-L-Pmh-OMe (11) 
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