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Abstract

In this study we propose a novel bacterial vaccine strategy where non-pathogenic bacteria are complemented with traits
desirable for the induction of protective immunity. To illustrate the proof of principle of this novel vaccination strategy, we
use the model organism of intracellular immunity Listeria. We introduced a, low copy number BAC-plasmid harbouring the
virulence gene cluster (vgc) of L. monocytogenes (Lm) into the non-pathogenic L. innocua (L.inn) strain and examined for its
ability to induce protective cellular immunity. The resulting strain (L.inn::vgc) was attenuated for virulence in vivo and
showed a strongly reduced host detrimental inflammatory response compared to Lm. Like Lm, L.inn::vgc induced the
production of Type I Interferon’s and protection was mediated by Listeria-specific CD8+ T cells. Rational vaccine design
whereby avirulent strains are equipped with the capabilities to induce protection but lack detrimental inflammatory effects
offer great promise towards future studies using non-pathogenic bacteria as vectors for vaccination.
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Introduction

Current state of the art vaccine technology focuses on three

distinct strategies 1) the creation of live attenuated pathogens

based on the deletion of virulence factors [1] 2) the use of subunit

vaccines [2] which contain one or more semi-pure antigens that

are critical in inducing an immune response and 3) the use of

metabolically active but non-viable bacteria [3].

For the first strategy, it must be considered that in today’s

medicine vaccines will often be administered to immunocompro-

mised individuals and that the use of live vaccines in such

subpopulations poses serious difficulties [4,5]. The greatest

disadvantage of subunit vaccines is their general requirement for

strong adjuvants, as these adjuvants often induce detrimental tissue

reactions. Lastly, the concept of so-called killed but metabolically

active (KBMA) bacteria involves bacteria which are unable to

form colonies on growth media but still have an intact protein

synthesis and secretion machinery. Such mutants are reportedly

capable of inducing CD4+ and CD8+ T cell responses and

protection [3]. However this requires multiple injections.

Lm is a facultative intracellular microorganism and many of the

bacterial determinants necessary for pathogenesis, including

intracellular growth and spread of Lm, have been identified and

are clustered on a 10-kb region of the chromosome termed the

virulence gene cluster (vgc) which encodes the prfA, plcA, hly, mpl,

actA and plcB genes organized in three transcriptional units [6].

Being a facultative intracellular bacterium makes Lm particu-

larly attractive as a potential live vaccine vector for the induction

of cell-mediated immunity to foreign antigens [7,8]. However,

despite its capability to induce effective CD8+ T-cell responses the

safety of recombinant Lm remains an important issue, as infections

with Lm can cause severe and life-threatening infections [9].

Moreover, infection with Lm is mainly accompanied by undesired

CD4+ T-cell mediated delayed type hypersensitivity (DTH)

responses and granulomatous inflammation [10,11]. Therefore

the use of Lm in a clinical setting is associated with major risks

limiting its potential as an effective vaccine vector.

An alternative strategy would entail the transfer of a core set of

virulence genes from pathogenic Lm to create a strain that is

attenuated for virulence but is capable of inducing an effective

immune response. To explore this approach we have transferred

the vgc locus of Lm into a non-pathogenic species of Listeria such as

L. innocua (L.inn) as a carrier strain. Here we show that a single

immunization with this recombinant strain (L.inn::vgc) fulfills the

desired requirements for a successful bacterial vaccine vector.

These include low virulence in association with induction of

protective antigen-specific CD8+ T-cell responses and reduction of

CD4+ T cell-mediated inflammation.

Results

In vivo survival of the recombinant L.inn::vgc strain
The ability of Listeria to survive in vivo at the early stage of

infection is crucial for the induction of cell-mediated immunity

[12,13]. We examined the ability of L.inn::vgc to survive in the

spleen and liver in infected mice and compared it to that of the
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wild type Lm. BALB/c mice were infected intravenously (i.v.) with

sub-lethal doses of wild type Lm EGD-e (103), L.inn::vgc (107), or the

wild type L.inn strain (107). Time points correlating with the critical

phases of host immune response to listerial infection were selected

and used to compare bacterial growth and induction of immune

effectors in wild-type Lm, L.inn and L.inn::vgc strains. Day 3 of a

Listeria infection refers to the end of the pre-immune phase before

the expansion of specific T cells in the mouse model of listeriosis

[14]. The presence of viable bacteria on this day has been shown

to be critical for the successful induction of T cell-mediated

immunity [15]. Therefore on day 3, bacterial load as well as spleen

morphology was analyzed. Day 9 corresponds to the primary

immune effector phase. At this time point, DTH to soluble antigen

was measured in vivo as an indicator of DTH reaction and CD4+ T

cell activity. Moreover, the numbers of antigen specific IFN-c
producing CD8+ cytotoxic T cells were analyzed. Day 60 post-

infection as well as day 5 post-challenge were chosen to analyze

the memory immune effector phase [16]. To this end the number

of memory effector T- cells was determined quantitatively.

In vivo survival and growth kinetics of bacteria were followed by

determining the number of bacteria in spleens and livers of

infected mice. As expected, regardless of the dose of infection, the

wild type L.inn strain was progressively cleared from both organs

(Fig. 1A) whereas the L.inn::vgc strain successfully survived in both

spleen and liver during the first two days after infection as

indicated by the bacterial numbers that increased in both spleen

and liver till day 2 and gradually decreased over days 3 and 4 post-

infection. On the other hand, the bacterial numbers of the wild

type Lm, increased from day 1 till day 4 post-infection in both

spleen and liver.

Stimulation of Type I interferon’s by the L.inn::vgc strain
A striking phenomenon for cytosolic resident microbes is the

ability to induce expression of Type I interferons. In contrast to the

wild type Lm, its isogenic mutant lacking listeriolysin remains

trapped in vacuoles and does not induce Type I interferon’s [17].

We have recently documented that the L.inn::vgc can successfully

survive inside phagocytic cells, thereby egressing from the

phagolysosome [18]. In order to confirm if cytosolic persistence

of the recombinant L.inn::vgc strain is efficient enough to stimulate

production of such cytokines, we examined the transcriptional

responses of IFN-a2 and IFN-b1 in bone marrow-derived

macrophages following infection with Lm, L.inn as well as the

recombinant L.inn::vgc strain. L.inn::vgc and the wild type Lm showed

significantly higher transcriptional induction of both IFN-a2 and

IFN-b1 than wild type L.inn at 2 hours post-infection (Fig. 1B).

This effect was more pronounced at a later time point (8 hours)

post-infection reflecting the efficient intracellular survival pattern

of the L.inn::vgc strain.

The recombinant L.inn::vgc strain exhibits a lowered
inflammatory response

At the early stages of infection, wild type Lm is engulfed by

professional phagocytes like macrophages, dendritic cells, or

neutrophils. These cells produce a variety of proinflammatory

cytokines which recruite or activate other inflammatory immune

cells. The levels of IL-1ß, IL-6, IL-12, and TNF-alpha in mice sera

were measured over the first 4 days after infection with Lm (103),

L.inn (107), and the L.inn::vgc strain (107). Like L. inn, , L.inn::vgc was

not able to produce significant amounts of these cytokines over the

first 4 days post-infection in spite of high infection doses (107) while

primary infection with Lm led to high proinflammatory cytokine

production (Fig. 2).

Both granuloma formation and delayed-type-hypersensitivity

footpad responses have previously been shown to be CD4+ T cell

dependent inflammatory responses following infection with Lm.

Morphological changes were examined in the spleens on day 3

after i.v. infection. Although the numbers of bacteria in spleens at

day 3 post-infection for both Lm and L.inn::vgc were approximately

the same (Fig. 1A), distinct differences in the morphological

appearance between spleens isolated from mice infected with Lm

and those isolated from mice infected with L.inn::vgc were observed

(Fig. 3A). Splenomegaly associated with extensive granuloma

formation was observed in spleens of Lm infected mice, as a result

of intensive leukocyte infiltration which was visualized in stained

spleen sections (Fig. 3B), whereas splenomegaly in the absence of

granuloma formation was observed in spleens of L.inn::vgc infected

mice. Infection with the wild type L.inn did not result in any

morphological changes in spleens.

These observations were confirmed by antigen-elicited skin

responses showing corresponding results (Fig. 3C). Mice were

injected into the left hind footpads with 50 ml of somatic soluble

Lm EGD-e antigen (60 ng/ml) at day 9 post-infection. Twenty-

four hours later, thickness of the left and right footpads of

individual mice were measured. Footpads of mice pre-immunized

with L.inn::vgc showed reduced thickness than those of mice pre-

immunized with the wild type Lm. The wild type L.inn strain did

not induce a DTH response in the footpads of these mice.

Moreover, antigen-induced CD4+ T cell-derived IFN-gamma

production of spleen cells was measured as an indication for a pro-

inflammatory T cell response. Spleen cells were isolated at day 9

post-infection and stimulated in vitro with the released soluble

antigen of L. monocytogenes EGD-e (100 ng). Spleen cells from mice

immunized with L.inn::vgc produced significantly lower levels of

IFN-gamma when compared to spleen cells from mice immunized

with wild type Lm. The wild type L.inn strain failed to prime T

cells for the production of IFN-gamma (Fig. S1, supplementary

information).

Induction of T cell-mediated immunity by the
recombinant L.inn::vgc strain

A number of cell types are involved in host defense against

Listeria. Antigen-specific T lymphocytes mediate recovery from

primary listerial infections and protective immunity to subsequent

infections [13,19]. Both CD4+ (helper, MHC class II restricted)

and CD8+ (cytotoxic, MHC class I restricted) T cell subpopula-

tions have been implicated [20]. Experimental evidence indicates,

however, that CD8+ T cells play the predominant role in

mediating protective immunity [21–24]. The ability of the

recombinant L.inn::vgc to induce T-cell mediated immunity as a

prerequisite for protective immunity was analyzed. Groups of

BALB/c mice were infected with Lm (103), L.inn (107), or L.inn::vgc

(107). Two months later, all mice were challenged with a lethal i.v.

dose (105), corresponding to 206LD50, of the wild type Lm, and

survival was monitored. As controls, a group of untreated BALB/c

mice that received a similar lethal dose of the wild type Lm were

included. A single pre-immunization with the L.inn::vgc strain led to

a significant protection against subsequent lethal infection with Lm.

As expected, all mice that were pre-immunized with sub-lethal

doses of Lm were also protected against a lethal listerial infection

and survived whereas all non-immunized mice as well as those pre-

immunized with L.inn died within 4 days after challenge (Fig. 4A).

Entry of Listeria into the cytosol is a critical event for CD8+ T

cell recognition and induction of immunity [22]. In order to

establish the correlation between the protection of mice pre-

infected with Lm or the L.inn::vgc strain upon lethal challenge and

the induction of CD8+ T cells in response to infection, the

Immunity to Listeria innocua Harboring VGC
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generation of antigen-specific MHC class I restricted CD8+ T cells

were quantitatively examined. The numbers of antigen-specific

MHC class I restricted effector CD8+ T cells induced in mice

spleens 9 days after primary infection and 5 days after challenge

with the wild type Lm (26103) was determined through evaluation

of the number of IFN-c producing CD8+ T cells induced showing

reactivity against the dominant H-2Kd restricted LLO91–99

epitope [25] in an in vitro ELISPOT assay. As shown in Fig. 4B,

infection with wild type Lm as well as the L.inn::vgc strain induced

significant numbers of LLO91–99 specific CD8+ T-cells. After recall

infection the numbers of LLO91–99 specific CD8+ T-cells showed a

significant increase. On the other hand, infection with L.inn failed

to induce a significant number of CD8+ T-cells either after

primary infection or after challenge.

To address the contribution of effector memory CD8+ T cells in

mediating long-lasting immunity after re-infection with the wild

type Lm, the expression level of the cell surface adhesion molecule

CD62L was quantified. Expression of CD62L is down regulated

on the surface of cytotoxic CD8+ T-cells when developed to

protective memory T cells [21]. Two months after the primary

infection, the number of CD8+CD62Llo lymphocytes was

approximately identical in all groups of primarily infected mice.

This number increased dramatically upon re-infection with the

wild type Lm (26103) in mice pre-immunized with Lm as well as

with L.inn::vgc while pre-immunization with L.inn was not able to

induce CD62L down-regulation seen in the other groups (Fig. 5).

In addition we have monitored the expression of CD44 on CD8+

T-cells. CD44 is expressed at high levels on memory but not in

naı̈ve T-cells [26]. In mice that were primarily infected with Lm

and L.inn::vgc, the expression of CD44 was upregulated on CD8+

T-cells 5 days post-challenge infection with the wild type Lm

(26103) while primary infection with L.inn did not lead to a

significant change in CD44 expression pattern (Fig. S3).

Discussion

In this study, we define a unique vaccine strategy which is based

on a rationally designed pathogen by complementation of a non-

Figure 1. Bacterial load and IFN expression during the course of primary infection. A. Course of primary infection in mice with the wild
type Lm (EGD-e) and the recombinant L. inn::vgc strain. Mice were infected i.v. with 103 cfu Lm, 107 cfu L.inn, or 107 cfu L.inn::vgc strains. At different
time intervals after the infection, mice were sacrificed and the number of viable bacteria in the organs was enumerated. B. Quantitative measurement
of IFNa2 and IFNb1 expression in bone marrow-derived macrophages using RT-PCR at 2 h and 8 h following infection with Lm , L.inn, or the L.inn::vgc
strains. *P,0.05 (L.inn vs. Lm and L.inn::vgc strains).
doi:10.1371/journal.pone.0035503.g001
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pathogenic strain with selected genes necessary to induce a

vigorous immune response. To illustrate the proof of principle of

this strategy we used the Listeria model by taking a non-pathogenic

L.inn strain and complementing it with genes from pathogenic Lm

which were previously shown to be a sine qua non requirement for

intracellular growth and survival [18]. This novel vaccine strategy

resulted in generation of a recombinant strain (L.inn::vgc) that

possesses properties needed to induce the marked protective

immunogenic properties of the wild type Lm but is attenuated in

virulence as well as in its capacity to induce host detrimental cell-

mediated inflammation. The recombinant L.inn::vgc strain showed

a significant in vivo survival rate in the first 3 days post-infection

(Fig. 1A). This observation is in accordance with our recent finding

that the L.inn::vgc strain is able to survive in phagocytic host cells

[18]. Moreover, it has the capability to induce identical Type I

interferon at levels similar to wild type Lm. As previously shown by

McAffrey et al., 2003, induction of type 1 IFN is a surrogate

marker indicating access of Listeria into the cytosol of antigen

presenting cells [17]. We have shown that the L.inn::vgc strain could

use the complemented virulence factors to escape into the cytosol

and subsequently be presented to CD8 T lymphocytes. In this

context Zwaferink et al. 2008 have shown a role for IFNb in

macrophage cell death. Treatment of macrophages with this

cytokine could enhance host-cell membrane permeabilization by

listeriolysin consequently leading to cell apoptosis [27].

Especially encouraging was the observation that, although

L.inn::vgc strain was injected at a high dose of 107 cfu, mice could

still efficiently control the infection and showed very low blood

levels of pro-inflammatory cytokines thus reducing the detrimental

inflammatory responses caused by the wild type Lm. Morpholog-

ical and histological analysis of spleen after infection with Lm have

shown the induction of splenomegaly and granuloma as a result of

monocytic infiltrations of the white pulp which were most

pronounced on day 3 post-infection while infection with L.inn::vgc

only resulted in a splenomegaly without any significant morpho-

logical changes detectable (Fig. 3A,3B). The intensity of the

morphological and histological alterations in spleens paralleled the

level of Listeria-induced DTH responses, as the in vivo induction of

DTH after L.inn::vgc infection was also significantly lower than

DTH induction following Lm infection (Fig. 3 and Fig. S1). We

therefore show that the recombinant L.inn::vgc strain shows a

significantly reduced proinflammatory and CD4+ mediated

Figure 2. Measurement of proinflammatory cytokine levels in serum. Sera was obtained from mice on days 1, 2, 3, and 4 post-infection after
inoculation with 103 cfu Lm, 107 cfu L.inn, or 107 cfu L.inn::vgc. Levels of IL-1ß, IL-6, IL-12(p70), and TNF-alpha were quantified using a multiplex
cytokine assay kit. *P,0.05 (EGD-e vs. L.inn and L.inn::vgc strains).
doi:10.1371/journal.pone.0035503.g002

Immunity to Listeria innocua Harboring VGC

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e35503



inflammatory response compared to Lm, thereby addressing one

major concern regarding the use of live Lm as a vaccine.

However the crucial question remained as to whether the

L.inn::vgc strain elicits significant adaptive immune responses

resembling those of the wild-type strain. Since Lm is located in

both phagosomes and cytosol of professional antigen-presenting

cells during infection, epitopes derived from Listeria proteins are

presented by the MHC pathway thereby priming both effector

CD4+ and CD8+ T cells [28,29] resulting in full elimination of

Listeria from the host. Previous experimental studies [30,31] have

revealed that persistence and number of viable microorganisms

are important parameters for establishing efficient T cell-mediated

immunity. Moreover, it has been shown that the presence of live

bacteria in mice organs over the first 48 hours after immunization

is critical for the induction of effector CD8+ T cell mechanisms

[32]. Indeed we were able to show that all animals immunized

with Lm or L.inn::vgc were protected against 206LD50 of virulent

Listeria (Fig. 4A). Although the L.inn::vgc strain elicits lowered CD4+

mediated inflammatory responses as compared to infection with

Lm, it is capable of mounting a successful anti-listerial protective

response, indicating that the observed in vivo survival pattern of the

L.inn::vgc strain was sufficient to induce protection.

The entry of effector T cells into a memory stage, however, is

accompanied by the ability to rapidly expand their population

during recall responses and to down regulate expression of cell

surface markers such as CD62L and CCR7 [33]. It was previously

reported that primary infection with the wild type Lm induces

down regulation of CD62L on the surface of effector CD8+ T cells

which reaches its lowest levels at day 8 post-infection [34].

However, over the following weeks, expression of CD62L is up

regulated. During recall infection, CD62L is then rapidly down

regulated on the surface of memory CD8+ T cells [32,35]. In order

to correlate protection against challenge with Listeria with antigen

specific CD8+ T cells, we examined the induction of LLO91–99

specific CD8+ T cells in response to primary infection with the

different Listeria strains. Infection with L.inn::vgc induced a

significant population of cytotoxic CD8+ T lymphocytes (Fig. 4B)

which, upon challenge with the wild type Lm, showed a CD62L

expression pattern similar to that presented in mice primarily

infected with the wild type Lm (Fig. 5). The identity of the memory

T-cells induced in response to L.inn::vgc infection was confirmed by

testing the CD44 expression on the CD8+ T-cells following recall

infection with Lm where high expression of CD44 was observed on

CD8+ T-cells derived from mice primarily infected with the

recombinant L.inn::vgc strain but not with the wild type L.inn (Fig.

S3). The inability of the Lm strain lacking listeriolysin O (LLO)

[36] as well as the L.inn strain expressing only LLO [37] to induce

a protective T cell response reflects the requirement of the entire

virulence gene cluster in conferring a long lasting immunity. We

therefore show that a non-pathogenic L.inn strain complemented

Figure 3. Examination of spleens and DTH response after infection with Lm and the recombinant L.inn::vgc strain. A. Morphological
examination of spleens from mice inoculated i.v. with the wild type Lm and the recombinant L.inn::vgc strain. Spleens of mice infected i.v. as
mentioned in Fig. 1 were isolated on day 3 after infection. Shown is a spleen from mice infected with the wild type Lm, the wild type L.inn and its
recombinant mutant strain L.inn::vgc. Infiltration of monocytic cells and granulomatous lesions are only detectable in the spleens isolated from mice
infected with the wild type Lm. B. Spleen sections were stained with HE and examined. Granulomas with massive leukocyte aggregates can only be
detected in spleens of mice infected with Lm. C. DTH response to listerial antigen 9 days after primary infection. Mice were infected with 103 CFU of
Lm, 107 CFU of L.inn, or 107 CFU of L.inn::vgc strain. 9 days after infection, DTH was triggered through injection of soluble somatic listerial antigen.
Twenty-four hours later, the specific skin response was determined. The mean value 6 S.E. of five animals of a representative experiment is
shown.*P,0.05 (EGD-e vs. L.inn::vgc strain).
doi:10.1371/journal.pone.0035503.g003
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Figure 4. Protective immunity and cellular immune response after infection with Lm and the L.inn::vgc strain. A. Induction of protective
immunity conferred after infection with the L.inn::vgc strain. Groups of 15 mice were infected i.v. as described in Fig. 1. Two months later all mice were
challenged with a lethal dose (206LD50) of the wild type Lm. As a control, a group of uninfected normal mice was included. Survival of mice after the
challenge was monitored up to 8 days. B. Number of antigen-specific IFN-gamma producing CD8+ T cells in spleens of mice infected i.v. with the wild
type Lm, L.inn and L.inn::vgc strain determined by ELISPOT. Spleen cells from infected mice were isolated either on day 9 after the primary infection or
day 5 after challenge infection and stimulated with the immunodominant MHC class I peptide LLO91–99 in triplicates in nitrocellulose based 96-well
culture plates. Number of specific IFN-gamma producing cells against the dominant H-2Kd restricted LLO91–99 epitope were determined by counting
the number of spots under the microscope. *P,0.05 (L.inn vs. Lm and L.inn::vgc strains).
doi:10.1371/journal.pone.0035503.g004

Figure 5. Expression levels of CD62L on CD8+ splenocytes following primary and recall infection with Lm, L.inn and the L.inn::vgc
strain. Flow cytometry was performed on spleen cells, isolated from mice on day 60 after the primary infection or day 5 after the challenge. Cells
were stained with FITC-labelled anti-Lyt-2 and biotinylated anti-CD62L. The binding of anti-CD62L on the cell surface was detected with PE-
conjugated streptavidin. Numbers shown are gated CD8+CD62lo T cells and analyzed with CELLQuest software.
doi:10.1371/journal.pone.0035503.g005
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with the entire vgc is capable of inducing a vigorous anti-listerial

response.

Even though we have demonstrated a vigorous immune

response following i.v. infection the immune response to Listeria

can vary considerably depending on the route of administration.

Using the intraperitoneal route of infection, we obtained a similar

result i.e. protection following pre-infection with the Lm and L.

inn::vgc strains but not with mice pre-immunized with the L. inn

strain (Fig. S2). Thus despite a different route of infection Lm::vgc is

able to induce protection in-vivo. The mouse is not a suitable and

reproducible model for evaluating oral immunization protocols

because of the specificity of the listerial InlA molecule [38].

Therefore experiments examining mucosal immunity will have to

be carried out in the guinea pig model of listerial infection.

Recently, highly attenuated mutants of Lm have been developed

as candidates for vaccine vectors [3,39], however, a single

immunization with these strains was not sufficient for the

induction of protective cellular immunity.

Here a transcomplemented strain of a non-pathogenic L. inn

strain expressing genes of the vgc cluster provides robust protection

with a single dose of 107 cfu bacteria without causing any signs of

overt illness. The LD50 of the wild type Lm is around 5000 cfu. As

shown in figure 1A, the L.inn::vgc strain does not grow in-vivo

beyond day 3 post-infection and is subsequently eliminated. These

properties, imparting protective responses and rapid elimination

from the host are considered to be desirable properties for

successful vaccine vectors. Our results, namely, the in vivo survival

pattern, the induction of interferon’s and antigen specific CD8+ T

cells, the lack of overt detrimental inflammatory reactions and

most importantly the induction of protection against challenge

with Listeria, allow the conclusion that the L.inn::vgc strain is

potentially capable of inducing protection and that further

development of this strain as a suitable live bacterial vaccine

vector in clinical settings are warranted.

Materials and Methods

Ethics Statement
Mice experiments were done according to the requirements of

Justus-Liebig University Giessen Animal Ethics Committees with

ethics approval number: 63/2007. Animals were sacrificed using

CO2 asphyxiation and the appropriate organs aseptically

harvested.

Mice
Six to eight week-old female BALB/c mice, purchased from

Harlan Winkelmann (Borchen, Germany), were kept at our

breeding facilities in specific-pathogen-free conditions and used in

all experiments.

Bacteria
Bacterial strains used in this study are wild type Listeria

monocytogenes EGDe serotype 1/2a (Lm) [40], wild type L. innocua

strain (serotype 6a NCTC 11288) [41] transformed with either the

recently characterized gram+ve/gram-ve shuttle pUvBBAC+vgc1

vector and referred to as (L.inn::vgc strain) or the pUvBBAC vector

without the inserted vgc and referred to as L.inn [18] Bacteria were

grown in brain-heart infusion (BHI) (Difco, Augsburg; Germany)

broth in presence or absence of 5 mg/ml erythromycin. For each

experiment, erythromycin was used as a selective antibiotic for

growth of L.inn::vgc and the wild type L.inn harbouring the

pUvBBAC vector. Wild type L. monocytogenes was grown in

absence of erythromycin. In all experiments, fresh cultures of

bacteria, prepared from an overnight culture, were used. Briefly,

bacteria were grown in Brain Heart Infusion (BHI) at 37uC,

harvested in the exponential growth phase and washed twice with

PBS. The pellet was resuspended in PBS and the bacterial

concentration was calibrated by optical absorption. Further

dilutions were prepared in PBS to obtain required numbers of

bacteria for infection.

In vitro infection assay
The protocols for animal handling were previously approved by

our institutional Animal Ethics Committee (protocol number 63/

2007). Bone marrow-derived macrophages were isolated from 4 to

6 week old C57Bl/6 female mice and grown and differentiated for

7 days in L929 conditioned medium to an approximate

concentration of 2,56105 cells/well in 6-well plates. On the day

of infection the medium was exchanged against MDEM medium

with 1% FCS and the cells were infected with 56106 cfu per well

with the wild type Lm and L.inn strains as well as the recombinant

L.inn::vgc strain for 2 h and 8 h. The cells were lysed and their total

RNA was isolated.

RNA isolation
For every bacterial strain and negative control the cells of at

least two wells of a six well tissue culture plaque were lysed and

total RNA was isolated. Prior to lysis culture medium was

aspirated and cells were lysed using RLT lysis buffer (Qiagen,

Germany). Total RNA was isolated using the RNeasy Mini Kit

and the RNase free DNase I set (Qiagen) following the

manufacturers protocol. The RNA was recovered in RNase free

water, heat denatured for 10 min. at 65uC; quantified with the

NanoDropH ND-1000 UV-Vis Spectrophotometer (NanoDrop

Technologies, USA) and a quality profile with the Agilent 2100

bioanalyzer (Agilent Technologies, Germany) was made.

Real time RT-PCR
First-strand cDNA was synthesized with 500 ng of purified

RNA using SuperScriptII (Invitrogen) and a mixture of T21 and

random nonamer primers (Metabion) following the instructions for

the reverse transcription reaction recommended for the Quanti-

Tect SYBR Green PCR Kit (Qiagen). Real-time quantitative PCR

was performed on an ABI Prism 7700 real time cycler. The

relative expression of the targets IFNa2 (Interferon alpha 2) and

IFNb1 (Interferon beta) were normalized to that of two reference

genes: SDHA (Succinate dehydrogenase alpha subunit) and PPIA

(peptidylprolyl isomerase A). Finally a mean of the fold change of

the target versus each of the reference genes was taken as the final

value.

Somatic bacterial antigens
Somatic soluble antigen was prepared by culturing Lm in tryptic

soy broth for 18 h, washing it in PBS, and subsequently subjecting

it to ultrasonication.1 g (wet weight) of bacterial cells were

suspended in 10 ml of PBS and sonicated five times for 1 min

(87.5%, output, degree 7 on a sonifier model S-125; Branson Sonic

Power, USA) on ice. The sonicated suspension was centrifuged at

39 000 U for 50 min, and the supernatant was filter sterilized

(pore size,0.45 mm) and stored at 220uC at a dilution of 1:100 in

PBS [42].

Experimental infection and determination of bacterial
load in infected organs

Primary in vivo infection with Lm (103), the wild type L.inn (107),

or the L.inn::vgc (107) strain was performed by an intravenous

injection of viable bacteria in a volume of 0.2 ml PBS. Bacterial
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growth in spleens and livers was determined by plating 10-fold

serial dilutions of the organ homogenates on BHI agar plates. The

detection limit of this procedure was 102 colony forming units

(CFU) per organ. Colonies were counted after 24 h of incubation

at 37uC.

Measurement of cytokines production
Cytokine production was assayed from the collected sera of

infected mice using a multiplex cytokine assay kit and Luminex

technology (Bio-Rad). Balb/C mice were infected with Lm (103),

the wild type L.inn (107), or the L.inn::vgc (107) strain. Sera were

aseptically isolated on days 1, 2, 3, and 4 post-infection. Four

cytokines were tested: TNFa, IL-1b, IL-6, and IL-12(p70) and

cytokine levels were presented as absolute concentrations in pg/

ml.

Histology
Spleens were aseptically isolated from mice previously infected

with the different Listeria strains as mentioned above and examined

for morphological alterations. Tissues were fixed in 10% neutral

buffered formalin, embedded in paraffin, sectioned, and 5 mm

sections were stained with hematoxylin and eosin (HE). Patho-

plogical foci in spleen sections were then microscopically examined

(Keyence).

Estimation of antigen specific IFN-c producing cells
Spleens were aseptically removed from mice at day 9 post-

infection with the wild type Lm, the wild type L.inn, or the L.inn::vgc

strain. Spleen cells were isolated and antigen (LLO91–99) specific

IFN-c producing CD8+T cells were determined in the spleens of

mice after i.v. infection with the same bacterial strains mentioned

above by using an ELISPOT system as previously described

[23,35].

Quantification of IFN-gamma in cell culture supernatants
IFN-gamma was measured in the supernatants of splenocytes by

using a mouse IFN-gamma ELISA kit, BD optEIATM (BD

Biosciences Pharmigen) according to the manufacturer instruc-

tions. The assay was performed in duplicates, and data represent

means 6 standard error.

Flow cytometry analysis
For flow cytometry analysis, approximately 16106 splenocytes,

isolated from infected mice (Lm, L.inn, and L.inn::vgc strains) were

stained with FITC labelled anti-CD8 and biotinylated anti-

CD62L or anti-CD44 (pharMingen, Becton Dickinson). PE-

conjugated streptavidin was used to detect the binding of anti-

CD62L or anti-CD44 on the cell surface. Flow cytometry was

performed using a FACS Calibur flow cytometer and further

analyzed with CELL Quest software (Becton Dickinson, CA).

Protection studies
All mice, pre-immunized with wild type Lm, the wild type L.inn

strain and the L.inn::vgc strain were challenged 2 months later with

a 206LD50 (105) lethal dose of wild type Lm. A group of non pre-

immunized Balb/c mice were included as controls. Survival of

mice was monitored for several days and expressed as percentage

of animals surviving challenge with Lm.

Statistical analysis
Data are representative of at least three independent experi-

ments. Significance of the represented data was calculated using

ANOVA (analysis of variance). Data are expressed as mean 6

standard errors (S.E.).

Supporting Information

Figure S1 Listeria-induced IFN-gamma production by
spleen cells 9 days after infection (i.v.). Mice were infected

with 103 CFU of Lm, 107 CFU wild type L.inn, or with 107 CFU

of L.inn::vgc strain. On day 9 after infection, mice were killed and

spleens removed. Single cell suspensions were stimulated in vitro

with secreted soluble Listeria antigen to produce IFN-gamma. After

48 hours, culture supernatants were tested for presence of IFN-

gamma by ELISA. *P,0.05 (EGD-e vs L.inn::vgc).

(TIF)

Figure S2 Intraperitoneal infection with the L.inn::vgc
strain induces protective immunity. Mice were infected

intraperitoneally with Lm, L.inn and the L.inn::vgc strain as

described in figure 4A. After 2 months all mice were challenged

i.v. with a lethal dose (206LD50) of the wild type Lm. As a control,

a group of uninfected normal mice was included. Survival was

monitored up to 8 days after challenge.

(TIF)

Figure S3 Quantification of CD44 expression on CD8+

splenocytes following primary and recall infection with
Lm, L.inn and the L.inn::vgc strain. Flow cytometry was

performed on spleen cells, isolated from mice on day 60 after the

primary infection or day 5 after the challenge. Cells were stained

with FITC-labelled anti-Lyt-2 and PE-labelled anti-CD44.

Numbers shown are gated CD8+CD44hi T cells and analyzed

with CELLQuest software.

(TIF)
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