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1 Introduction 

The term ‘Non-Hodgkin lymphoma’ (NHL) is a still widely used, but historical collective 

name for malignant diseases of the lymphoid system, including any kind of lymphoma 

except Hodgkin lymphomas. There have been different approaches to classify this group 

of heterogeneous malignancies, like the Kiel classification (Stansfeld et al., 1988), the 

Working Formulation of Non-Hodgkin’s Lymphoma for Clinical Usage (Robb-Smith, 

1982) and the current WHO classification of Malignant Lymphoma (Swerdlow et al., 

2008). The WHO classification pursues an approach in which lymphomas are 

differentiated by the cell type from which they are originating from. 

Of all malignancies listed in the annual report of the German Pediatric Cancer Registry, 

Non-Hodgkin Lymphoma (NHL) (excluding Burkitt leukemia) account for about 5-10% of 

all malignancies in children under the age of 15 in Germany (GPOH Jahresbericht, 

2013). In children and adolescents, about two thirds of all NHL belong to mature B cell 

lymphomas originating from mature B lymphocytes. Within this heterogeneous subgroup 

Burkitt lymphoma (BL), including Burkitt leukemia (B-AL), and Diffuse large B-cell 

lymphoma (DLBCL) are the most common subtypes. (GPOH Jahresbericht, 2013) 

1.1 The human Immune System 

Functionally, the immune system can be divided in two parts: the innate immune system 

and the adaptive immune system. The innate immune system comprises generic,  

non-specific functions of immune response. This includes physical and chemical 

barriers, inflammatory processes and the complement system; those are immediately 

available when a pathogen is encountered. In contrast, the adaptive immune system 

needs more time to establish. It underlies continuous modulation and is trained to 

recognize specific parts of a pathogen (antigen). Therefore, the adaptive immune 

response is stronger and more effective. Individual benefits and complex interactions 

between these two systems ensure an overall powerful immune response at any time 

point. 

Regardless of their later function, cells of the immune system derive from the same pool 

of pluripotent hematopoietic stem cells (HSC) in the bone marrow. Commitment of HSCs 

to either a myelopoietic progenitor, later differentiating into granulocytes, thrombocytes, 

monocytes or erythrocytes, or a lymphoid progenitor, giving rise to B lymphocytes, T 

lymphocytes and natural killer cells, is initiated by specific environmental signaling. 

(Murphy et al., 2008) 
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The effectors of the adaptive immune system can be further divided in cellular and 

humoral immunity-mediating components. Cellular immunity is mainly mediated by T 

lymphocytes, humoral immunity by antibodies and their producing cells, the B 

lymphocytes (Abbas et al., 2012). In mammals, B and T lymphocytes arise from the same 

lymphoid progenitor in the bone marrow (Abbas et al., 2012). Different signaling 

pathways lead the progenitor cell to migrate either to the thymus to become a T 

lymphocyte or to the generative organs (e.g. spleen, lymph nodes) to develop into a B 

lymphocyte. The latter are named after the Bursa of Fabricius, an organ in birds, which 

plays an essential role in B cell development in this species (Glick et al., 1955). 

1.2 B lymphocytes 

B lymphocytes provide their highly specific, humoral immune response by clonal 

expression of a diverse repertoire of antigen receptors, called B cell receptors (BCR). 

These BCRs are cell membrane-bound molecules which recognize and bind to specific 

antigens. If released in the blood from the lymphocytes, BCRs act independently as 

antibodies. Diversity of antigen receptors is achieved by somatic recombination, a 

process in which random compositions of genomic DNA segments of the BCR form a 

new unique antigen receptor coding sequence. The B lymphocyte maturation, starting 

from a lymphocyte progenitor in the bone marrow to a mature B cell migrating into the 

lymphoid tissue, is depended on the successful passing of certain developmental stages 

within a strictly regulated differentiation process (Figure 1). 

 HSC pro-B cell pre-B cell immature B 
cell 

mature B 
cell  

     

H-chain 
genes 

germline 
DNA 

VDJ 
rearranging 

VDJ 
rearranged 

VDJ rearranged VDJ 
rearranged 

L-chain 
genes 

germline 
DNA 

germline 
DNA 

VJ 
rearranging 

VJ rearranged VJ 
rearranged 

Surface Ig absent absent pre-BCR IgM IgD and IgM 

Figure 1: Development of the B cell lineage 

Different stages of B cell development are depicted with corresponding status of heavy-chain (H) 
and light-chain (L) gene rearrangement. In hematopoietic stem cells (HSC) the genetic 
constitution is equal to germline DNA. During pro-B cell development, H-chain genes located on 
chromosome 14 are the first to undergo individual rearrangement of variable (V), diversity (D) and 
joining (J) segments, the so called VDJ rearrangement. This is followed by rearrangement of V 
and J segments in L-chain genes on either chromosome 2 or 22 during the pre-B cell status. 
Individually rearranged H- and L-chain genes provide the broad diversity of Immunoglobulins (Ig). 
The first Igs presented on the cellular surface during the developmental stages of immature and 
mature B cells are pentameric IgM and monomeric IgD. Modified from Murphy et al. (2008) 



 

 

3 Introduction 

3
 

In
tro

d
u

c
tio

n
 

1.2.1 Commitment to the B cell lineage 

Commitment of common lymphoid progenitors to the B cell lineage depends on regular 

signaling of Interleukin 7 (IL-7) (Miller et al., 2002) in the bone marrow and expression of 

Transcription Factor 3 (TCF3) (O'Riordan and Grosschedl, 1999), Early B cell Factor 1 

(EBF1) (O'Riordan and Grosschedl, 1999) and Paired Box 5 (PAX5) (Cobaleda et al., 

2007). These transcription factors induce cell proliferation and differentiation to provide 

a large pool of progenitor cells for further maturation. At this time point, the genomic DNA 

of the progenitors is identical to the germline DNA of the individual (Figure 1) (Abbas et 

al., 2012). 

1.2.2 Somatic recombination 

The process of the somatic recombination of the BCR results in a wide repertoire of 

different antigen-recognizing lymphocytes based on a comprehensible amount of gene 

segments. On protein level BCRs show a consistent architecture, constituted of two 

identical heavy chains and two identical light chains. The amino acid sequence of every 

chain has a constant region, which determines the antigen receptors class, and a specific 

variable region, which is responsible for antigen binding. On the genomic level the chains 

are coded in the Immunoglobulin (Ig) gene loci. In human these loci are located on 

chromosome 14 for the heavy (H) chain and on chromosomes 2 and 22 for the two light 

(L) chains κ and λ,. 

The H-chain locus consists of three different clusters of genes coding for the variable 

region: starting from the 5’ end with variable (V) segments, followed by diversity (D) 

segments and ending with joining (J) segments. Further downstream, constant (C) 

segments are coding for the constant region of the receptor. The κ and λ loci show the 

same structural pattern of V and J segments, but have no D segments. V(D)J 

recombination is the process of joining different segments (called V-D-J joining), to form 

a rearranged gene, coding for the variable region. The rearrangement is catalyzed by 

lymphoid-specific endonucleases named Recombination-activating gene 1 (Rag-1) and 

Recombination-activating gene 2 (Rag-2), which are part of the V(D)J recombinases 

complex.  Furthermore, DNA repair enzymes randomly substitute, add and delete 

nucleotides at the ends of recombined segments. This process also intensifies diversity. 

Finally, the recombined ending sites are fused by ligating enzymes. (Abbas et al., 2012) 
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1.2.3 Differentiation stages of B cell maturation 

According to different recombination levels of the Ig loci and the expression of the 

respective BCRs, five developmental stages can be distinguished during B cell 

maturation. HSCs first undergo VDJ rearrangement of the H-chain locus after 

commitment to the B cell lineage and are hereinafter called progenitor B cells (pro-B). In 

the next developmental stage cells start to express the pre-antigen receptor (pre-BCR) 

requiring successful H-chain locus rearrangement. Cells expressing the pre-BCR are 

called pre B cells (pre-B). At the same time pre-B cells qualify to undergo additional 

rearrangement of one of the two L-chains. After successful rearrangement of both Ig loci 

the so called immature B cell expresses the BCR, which is membrane-bound IgM (Figure 

1). The immature B cell is able to leave the bone marrow and migrate into lymphoid 

tissues, like spleen or lymph nodes. (Abbas et al., 2012) 

Self-antigen recognizing lymphocytes represent a risk in the context of autoimmunity. To 

avoid proliferation of such cells, the affinity to self-antigens of immature B cells is 

checked in the bone marrow and peripherally in lymphoid tissue. Immature B cells 

showing a strong recognition of self-antigens are forced to undergo receptor editing, to 

remove self-reactivity. Therefore, rearrangement of the light chain locus can be repeated 

or switched to the other remaining light chain allele. Remaining self-antigen recognizing 

lymphocytes are signaled into apoptosis. Finally, expression of IgM and IgD is 

upregulated and the B cell matures to respond to antigens with proliferation and 

differentiation (Figure 1). (Abbas et al., 2012) 

1.3 Germinal center reaction 

1.3.1 Antigen-activation of B lymphocytes 

Before having actively encountered any antigens, B cells with rearranged BCR prior to 

antigen driven proliferation and further differentiation are termed ‘naïve’. Trigger 

mechanisms and sites of antigen-activation are diverse. For activation the mature B cell 

needs to physically meet the antigen directly (soluble antigens) or indirectly (by antigen-

presenting cells, e.g. macrophages, dendritic cells, B cells) (Abbas et al., 2012). Both, 

naïve and antigen-activated B cells are attracted by the chemokine CXCL13 (Legler et 

al., 1998). CXCL13 is secreted by follicular dendritic cells in follicles and recognized by 

the B cell’s CXCR5 receptor (Förster et al., 1996). After migration into the follicles, 

activated B cells establish germinal centers (GC) by proliferation (Rose et al., 1980). 

Germinal centers are subdivided in a B cell proliferative ‘dark zone’ and high level 

immunoglobulin-expressing B cell ‘light zone’ (Murphy et al., 2008). Those are 
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surrounded by resting B cells, forming the ‘mantle zone’ (Murphy et al., 2008). Within the 

germinal center reaction, antigen-activated B cells undergo the developmental 

processes of affinity maturation and class switching, which are described in the following. 

1.3.2 Affinity maturation 

Affinity maturation is a process of enhancing the antigen-binding qualities of the BCR 

and subsequently produced antibodies. The enzyme Activation-induced cytidine 

deaminase (AID) is only expressed by activated germinal center B cells 

(GCB) (Muramatsu et al., 1999). Its expression is upregulated upon CD40-ligand 

activation on the B cells surface (Fuleihan et al., 1993), which takes place in the germinal 

center reaction. AID induces random mutations in the variable region by deamination of 

cytosine bases (Abbas et al., 2012). The residue, uracil, can be substituted by any other 

base in consequence of DNA repair mechanisms. This process, called somatic 

hypermutation (SHM), originates GCBs with a diverse repertoire of slightly differing 

variable regions. GCBs with improved antigen-recognition are selected for proliferation 

and further differentiation. 

1.3.3 Class switching 

Class switching recombination (CSR) allows switching between different classes of 

expressed antibodies (e.g. IgG, IgE, IgA), each having specific effector functions. Class 

switching depends on recombination of the CH locus, in which different class-defining C 

segments are joined next to the previously formed V(D)J gene (Abbas et al., 2012). 

Again, this is achieved by cleavage of intervening DNA. AID is thought to generate 

double strand breaks in actively transcribed promoter regions (S regions) upstream of 

the primary and the designated C segment (Manis et al., 2002). This process forms DNA 

loops which locate the selected C segment next to the V(D)J region. Finally, double-

strand repair mechanisms ligate the switched regions (Murphy et al., 2008).  

After antigen-activation, affinity maturation and class switching, the GCBs differentiate 

into either antibody-producing plasma cells or resting memory cells. (Abbas et al., 2012)  

1.3.4 Malignant transformation 

The process in which a cell acquires genomic alterations that result in the phenotype of 

cancer is called malignant transformation. During the different genome-editing events in 

B cell development, lymphocytes are at risk to gain structural and punctual mutations or 

aberrations. In B lymphocytes, genomic instabilities might be fostered by either 
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accidental occasion, malfunction of DNA repair mechanisms or uncontrolled activity of 

DNA remodeling proteins like AID or Rag-1/-2. 

Lymphoid malignancies present with different characteristics according to cellular origin 

and time point of malignant transformation. For example, acute precursor B cell leukemia 

(pB-ALL) cells derive form immature progenitor cells, while BL and DLBCL derive from 

mature germinal center B cells (Figure 2). (Kuppers, 2005) 

 
Figure 2: Cellular origin of B cell malignancies 

Developmental stages of B cells are depicted starting from hematopoietic stem cells (HSC) in the 
bone marrow and ending with specialized memory or plasma cells in the blood. Progress of 
genome-editing events is shown by Ig recombination, Somatic hypermutation and Class switching 
in a timely manner. Depending on cellular origin and timepoint of malignant transformation arising 
lymphoid malignancies are listed. Precursor B-ALL, BL, B-AL and DLBCL are highlighted due to 
their role in the current study. HSC: Hematopoietic Stem Cell, GCB: Germinal Centre B cell, ACB: 
Activated B cell, B-CLL: B-cell Chronic Lymphoblastic Leukemia, DLBCL: Diffuse large B-cell 
lymphoma, PMLBL: Primary Mediastinal Large B-cell Lymphoma, Ig: Immunoglobulin. Modified 
from Kuppers (2005). 
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1.4 Mature B cell lymphoma 

1.4.1 NHL-BFM study group 

In Germany, first multicenter trials for patients with pediatric leukemia and lymphoma 

were established in the 1970s when Hansjörg Riehm (Berlin), Bernhard Kornhuber 

(Frankfurt) and Günther Schellong (Münster) founded the Berlin-Frankfurt-Münster 

(BFM) study group. Over the years more than 60 pediatric oncology departments in 

Germany joined the group. Remarkable increases in patient’s survival were achieved by 

continuous advancement of treatment approaches. In addition the validation of sufficient 

risk-stratification criteria, the reduction of acute and long-term toxicity and improved 

diagnostic criteria have been and still are essential objectives for the development of 

improved treatment strategies. (Rossig et al., 2013) 

Today, more than 95% of all pediatric patients diagnosed with mature B cell lymphoma 

in Germany are registered to the clinical trials of the NHL-BFM group (GPOH 

Jahresbericht, 2013) and treated according to standardized treatment plans. Risk-

stratification is based on the resection status, the stage of disease and the pre-treatment 

serum LDH level. Staging is assessed according to St Jude’s staging system (Murphy, 

1980). Bone marrow puncture/biopsy and lumbar puncture are obligatory to evaluate 

bone marrow and central nervous system (CNS) status. Cases with more than 25% 

blasts in the bone marrow are called Burkitt leukemia (B-AL). According to NHL-BFM 

protocols, B cell lymphoma/leukemia patients are stratified into four risk groups (R1 to 

R4). Treatment intensity is stratified according to the risk group with two to six five-day 

courses of polychemotherapy. The courses are based on dexamethasone, 

methotrexate, cyclophosphamide, ifosfamide, cytarabine, etoposid, doxorubicin, 

vincristine, vindesine and inthrathecal triple therapy. (NHL-BFM Study Group, 2012) 

1.4.2 Burkitt Lymphoma 

Burkitt lymphoma (BL) is the most common NHL subtype in pediatric patients (Burkhardt 

et al., 2005). It was first described by Denis Burkitt as a “[…] sarcoma involving the jaws 

in african children” in 1958 (Burkitt, 1958). Today, the etiology of BL is divided into an 

Epstein-Bar-Virus (EBV) related endemic group, which is mainly present in tropical 

Africa, a group related to infections with the Human immunodeficiency virus (HIV) and a 

sporadic group of cases outside of Africa. The cases investigated in this study belong to 

the latter sporadic group. In sporadic cases the median age of pediatric BL patients 

(including the diagnosis of Burkitt leukemia) at diagnosis is 8.4 years and male-female 

ratio is 4,5:1 (Burkhardt et al., 2005). 
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Typical Burkitt cells are medium-sized and show a high proliferative rate. Nucleoli 

present with clumped and dispersed chromatin, the cytoplasm is basophilic and often 

contains vacuoles. (Swerdlow et al., 2008) 

Malignant cells in pleural effusions, ascites and bone marrow typically show L3 

morphology according to the French-American-British classification (Bennett et al., 

1976). In patients with bone marrow infiltration of more than 25% Burkitt leukemia (B-

AL) is diagnosed. In this study the term BL always includes the leukemic variant, unless 

otherwise stated. 

BL cells express IgM on their surface and are usually positive for CD19, CD20, CD22, 

CD10 and BCL6. BCL2 and TdT are usually negative. (Bennett et al., 1976) 

Translocation of c-MYC to an immunoglobulin gene locus is virtually present in all cases. 

The most common translocation t(8;14)(q24;q32) localizes c-MYC under the control of 

the Ig H-chain promoter (80%), whereas translocations to the λ t(8,22)(q24;q11) or κ 

t(2;8)(p11;q24) light chain loci account for 10% of the cases each (Boxer and Dang, 

2001). As Ig loci promoters are highly activated during B cell development, c-MYC 

translocation-carrying B cells are forced to constitutive expression of c-MYC, which is 

involved in cell cycle regulation, cell growth and cellular metabolism, but also triggers 

apoptosis (Dang, 1999; Dang et al., 1999; Sanchez-Beato et al., 2003). It was shown in 

mice that c-MYC translocations alone do not necessarily result in malignant 

transformation (Nepal et al., 2008; Roschke et al., 1997). Furthermore, c-MYC 

translocations were also found in lymphocytes from healthy human individuals at a small 

number (Muller et al., 1995). This leads to the hypothesis that c-MYC positive GCBs 

require additional molecular alterations, serving as ‘second-hit’. To investigate how c-

MYC positive B cell lymphomas avoid apoptosis, oncogenes like TP53, RB1, CDKN2A, 

BAX, TP73, BCL6 and/or their pathways have been studied and were shown to be 

altered in BL at small numbers (Bhatia et al., 1992; Capello et al., 1997; Capello et al., 

2000; Cinti et al., 2000; Corn et al., 1999; Farrell et al., 1991; Gutierrez et al., 1999; 

Kalungi et al., 2011; Martinez-Delgado et al., 2002; Wilda et al., 2004; Wiman et al., 

1991). 

High initial lactate dehydrogenase (LDH) serum levels, as well as more disseminated 

disease, particularly in form of CNS positive lymphomas and bone marrow (BM) 

involvement, were shown to be poor prognostic factors (Reiter et al., 1999). However, 

currently applied combination of intensive chemotherapy regimens reach up to a total of 

90% probability of event free survival (pEFS) (Burkhardt et al., 2005; Woessmann et al., 

2005). Cases of relapse and progression remain challenging, as they often respond 
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insufficiently to therapy and present with a significantly worse prognosis (Woessmann, 

2013). 

Disruption of the ARF–MDM-2–p53 apoptotic pathway was shown for 55% of 24 pediatric 

BL cases by Wilda and colleagues (Wilda et al., 2004). Preudhomme et al. studied 48 

BL/B-AL cases for TP53 mutations, but there was no significant association with tumor 

mass or prognosis (Preudhomme et al., 1995). Nelson et al. studied a larger series of 

pediatric BL/B-AL patients registered on Children’s Cancer Group Study CCG-5961 and 

found significant inferior survival for patients with 13q deletions detected by FISH (Nelson 

et al., 2010), but no further understanding of the molecular mechanisms of these findings 

is available so far. 

1.4.3 Diffuse large B-cell lymphoma 

Diffuse large B-cell lymphoma (DLBCL) is the most common type of B-NHL in adults (The 

Non-Hodgkin's Lymphoma Classification Project, 1997) and the second most common 

subtype in children. DLBCL presents as a more heterogeneous disease on 

morphological, molecular and immunophenotypical aspects and can therefore be divided 

into several subgroups (Swerdlow et al., 2008). However, the centroblastic (CB) variant 

is the most frequent in adults as well as in pediatric DLBCL patients. The median age at 

the time point of diagnosis in pediatric DLBCL-CB cases is 11.4 years and the male to 

female ratio 1.7:1 (Burkhardt et al., 2005).  

All DLBCL are usually positive for B cell markers CD19, CD20, CD22 and CD79a, 

whereas the expression of BCL6 varies. The cells of the most common centroblastic 

variant presents with round, medium-sized, vesicular nuclei and amphophilic to 

basophilic cytoplasma. (Swerdlow et al., 2008) 

In contrast to pediatric BL, pediatric DLBCL less often show c-MYC translocations; Rates 

are about 31-38% are reported (Deffenbacher et al., 2012; Gualco et al., 2009; Lu et al., 

2011). Gene expression profiling studies established criteria to differentiate two 

molecular signatures within DLBCL. The classification of activated B cell-like (ACB) and 

germinal-center B cell-like (GCB) subgroups is especially important in adults, where the 

latter is associated with a more favorable prognosis. (Rosenwald et al., 2002) 

In pediatric DLBCL about 75% of the cases account for the GCB subgroup (Deffenbacher 

et al., 2012; Miles et al., 2008; Oschlies et al., 2006). Compared to adults, pediatric 

patients carry IRF4 translocations (Salaverria et al., 2011) more often and the GCB 

subtype is more frequent (Klapper et al., 2012).  
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Like in pediatric BL the prognosis of DLBCL is influenced by clinical characteristics, 

including stage of disease, LDH serum levels, CNS and BM involvement status. In an 

integrated analysis of patients enrolled in the NHL-BFM trials 86,90 or 95 probability of 

event free survival (pEFS) in pediatric DLBCL was 93±2%. However, there was a strong 

impact on age and gender with respect to the outcome, as the group of adolescent girls 

had a significantly higher chance to suffer from relapse (pEFS 0.50±16%) (Burkhardt et 

al., 2011; Burkhardt et al., 2005). 

1.4.4 Unclassifiable B-NHL 

In some cases discrimination between BL and DLBCL remains unclear, due to 

ambiguous histologic features. According to the current WHO classification these cases 

are classified as “B-cell lymphoma, unclassifiable, with features intermediate between 

diffuse large B-cell lymphoma and Burkitt lymphoma” (Swerdlow et al., 2008). Most 

common is a presentation of tumors with histomorphological features of BL, but e.g. too 

low expression of proliferative markers or BCL2 positivity and partial CD10 expression 

(de Jong, 2009). These cases account for a small number in pediatric B-NHL. In this 

study the abbreviation ‘B-NHL (DD)’ is used for such cases. 

1.5 Recurrently mutated genes in B-NHL 

In a recently published study BL tumor samples of four pediatric patients diagnosed and 

treated according to the NHL-BFM protocols have been analyzed in the ICGC-MMML-

seq project (International Cancer Genome Consortium, Molecular Mechanisms in 

Malignant Lymphoma by Sequencing). Whole-genome, whole-exome and whole-

transcriptome sequencing was performed on tumor and control samples to look for 

somatic alterations that might be involved in malignant transformation and 

lymphomagenesis. The list of genes that occurred to be affected in at least two out of 

four analyzed cases included DDX3X, FBXO11, MYC, RHOA, SMARCA4, TP53 and 

ID3. (Richter et al., 2012) 

Nearly contemporaneous two further NGS studies also reported ID3 and furthermore 

TCF3 and CCND3 among their lists of candidates being recurrently mutated especially 

in BL. Furthermore, they provided evidence for functional linkage between ID3, TCF3 

and CCND3 on protein level (Love et al., 2012; Schmitz et al., 2012). Hence, these genes 

represented interesting candidates for further analysis. 
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1.6 Candidate genes ID3, TCF3 and CCND3 

The gene Inhibitor of DNA 3 (ID3) is one of four helix-loop-helix (HLH) protein coding 

genes belonging to the Inhibitor of DNA (ID) family. The ID genes lack a basic DNA 

binding site, thus preventing other HLH transcription factors from activating their target 

genes by heterodimerization (Benezra et al., 1990; Benezra et al., 1990; Murre, 2005). 

ID3 is located on the long arm of chromosome 1 and consists of three exons with a 

coding region (isoform NM_002167.4) of 360 base pairs, resulting in a protein consisting 

of 120 amino acids (NCBI Gene database, 2013). ID3 is expressed at constant levels in 

immature and mature B cells (Becker-Herman et al., 2002; Xu et al., 2007).  

During B cell maturation one important role of ID3 is the interaction with Transcription 

Factor 3 (TCF3). TCF3 is located on chromosome 19, where alternative splicing results 

in two isoforms, E12 and E47, the latter showing a higher functional activity in B cell 

specific target activation (NCBI Gene database, 2013; Sigvardsson, 2000). TCF3 

regulates numerous target genes by binding to the respective promoter sites via its HLH 

domain (reviewed in Murre (2005)). The induction of Rag enzymes for somatic 

recombination and AID for somatic hypermutation were shown to be TCF3 dependent 

(Hsu et al., 2003). Sayegh and colleagues also performed retroviral overexpression of 

ID3 in activated B lymphocytes in mice and showed reduction of AID protein levels, 

whereas ectopic TCF3 expression induced AID expression (Sayegh et al., 2003). These 

findings led to the conclusion that ID3 inhibits TCF3 dependent gene expression in B 

lymphocytes (Figure 3).  

 

 

Figure 3: ID3, TCF3, CCND3 pathway  

ID3, TCF3 and CCND3 are depicted according to their functional interplay. TCF3 is a potent 
transcription factor that activates cell-cycle regulating downstream targets like PI3K and CCND3. 
ID3 is a direct target of MYC and controls TCF3 activity by direct negative feedback regulation. 

BCR: B-cell receptor. Modified from Campo (2012) and Schmitz et al. (2012). 
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Moreover TCF3 is an important regulator of BCR signaling and stimulation of 

downstream targets in the BCR pathway (Verma-Gaur et al., 2012). Activation of the 

phosphoinositide-3-kinase (PI3K) pathway can be augmented by TCF3 overexpression 

and promotes cellular growth and survival (Schmitz et al., 2012). Furthermore, TCF3 

increases cell proliferation via direct promoter-activation of CCND3 (Cato et al., 2011; 

Schmitz et al., 2012; Song et al., 2004). CCND3 encodes for the G1/S-specific cyclin-D3 

protein and is localized on chromosome 6. Cyclin D3 is a subunit that forms activating 

complexes with cyclin dependant kinases (CDK4/6). CDK4/6 interact with the cell cycle 

inhibitors p21 and p27 (Sawai et al., 2012; Sherr and Roberts, 2004) causing inactivation 

of retino blastoma protein (Rb1) by phosphorylation. This subsequently leads to cell cycle 

progression by G1/S phase transition (Sherr and Roberts, 2004). Cato et al. 

demonstrated that cyclin D3 expression is required for proliferative expansion of GCB 

cells (Cato et al., 2011). 

Mutations in ID3, TCF3 and CCND3 

Currently there are three studies available describing mutations of the ID3 gene in BL. 

Frequency of ID3 mutations varied between 34% (Love et al.), 58% (Schmitz et al.) and 

68% (Richter et al.) in the analyzed cohorts. Schmitz et al. reported TCF3 mutations in 

11% of the cases and furthermore CCND3 mutations in 38% of the cases. CCND3 

mutations were also analyzed in the study of Richter et al., also reporting 38% of the 

cases to display these aberrations. (Love et al., 2012; Richter et al., 2012; Schmitz et al., 

2012) 

All of these studies described ID3 mutations to accumulate in the HLH domain and first 

functional analyses showed ID3 mutant proteins to be less or completely ineffective in 

inhibiting TCF3, thus forcing increased cell proliferation and survival via PI3K and 

Cyclin D3 (Love et al., 2012; Richter et al., 2012; Schmitz et al., 2012). While TCF3 

mutations also affected the bHLH domain of its isoform E47, TCF3 mutant proteins did 

not lose their function on downstream targets when compared to wildtype TCF3, but 

partially reduced ID3/TCF3 interaction and turn them immune to the inhibitory effect of 

ID3 (Schmitz et al., 2012). CCND3 mutant proteins showed an increase in cell cycle 

stimulation when compared to unaffected CCND3, thereby indicating a gain of 

function (Schmitz et al., 2012). All in all, mutations in each of the candidate genes are 

thought to contribute to cellular growth, cell survival and proliferation (Campo, 2012). 

Relevance of ID3, TCF3 and CCND3 in other malignancies 

Besides the novel finding of ID3, TCF3 and CCND3 mutations in BL by the above 

mentioned studies, no data on recurrent mutations of these candidate genes is available 
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for other malignancies. Sequencing of ID1 was performed in 13 families with a history of 

malignant melanoma and ID3 was sequenced in a series of 94 ovarian tumors, but no 

mutations were found in either case (Arnold et al., 2001; Casula et al., 2003; Perk et al., 

2005). Another study investigated the role of genetic alterations in ID3 by sequencing of 

sorted T-cell DNA samples from 209 patients suffering from Sjögren's syndrome. The 

study was set up on the evidence of disease-associating factors in an ID3-deficient 

mouse model, but again no mutations were reported (Sellam et al., 2008). 

However, expression levels of the ID proteins have widely been investigated in a vast 

number of tumour entities, like prostate cancer (Asirvatham et al., 2007; Patel and 

Chaudhary, 2012; Sharma et al., 2012; Strong et al., 2013), lung cancer (Castanon et 

al., 2013; Kamalian et al., 2010; Kamalian et al., 2008; Li et al., 2012), medulloblastoma 

(Phi et al., 2013; Snyder et al., 2013), ovarian cancer (Arnold et al., 2001; Maw et al., 

2009) and breast cancer (Gupta et al., 2007; Mern et al., 2010; Noetzel et al., 2008; 

Wazir et al., 2013). Also clinical relevance was demonstrated in two recent studies, one 

associating high ID1/ ID3 expression levels with more advanced grade of prostate cancer 

(Sharma et al., 2012) and the other reporting correlation between ID1 and ID3 co-

expression and inferior clinical outcome in non-small cell lung cancer (Castanon et al., 

2013). Influence on cell migration was lately reported by Shuno and colleagues, who 

performed double-knockdown of ID1 and ID3 in pancreatic cancer cell lines and 

discovered decreased metastatic potential in migration assays (Shuno et al., 2010). 

Aptamer-based targeting of Id1/3 induced cell-cycle arrest and apoptosis in ovarian and 

breast cancer cells provided the basis for possible new disease modifying drugs (Mern 

et al., 2010; Mern et al., 2010), targeting this pathway. 

TFC3 is known to form fusion transcripts with PBX1 in acute lymphoblastic leukemia. 

Differences in overall survival of TCF3-PBX1-negative and –positive cases are 

discussed in controversy (Burmeister et al., 2010). Also, the role of TCF3 as a tumor 

promoter in gastric cancer was described previously (Patel and Chaudhary, 2012).  

Immunohistochemical expression of CCND3 was investigated in Hodgkin’s lymphoma 

and showed higher levels in older patients, but didn’t show any correlation with respect 

to patients outcome (Marnerides et al., 2011). 

In sum, ID proteins are functionally involved in a variety of highly aggressive tumor 

entities, with, in some studies, evidence for prognostic relevance and influence on tumor 

cell aggressiveness. In the functional context also TCF3 and CCND3 have previously 

shown to be involved in other malignancies.  

  



 

 

14 Introduction 

1
4
 

In
tro

d
u

c
tio

n
 

1.7 Study objectives 

Recently published NGS studies on B-NHL noted ID3 as a recurrently altered gene in 

Burkitt Lymphoma. Also, TCF3 and CCND3 were shown to be affected at a lower 

frequency, being of special interest regarding their functions on cell cycle regulation in B 

lymphocytes and ID3 interaction. Furthermore, previous studies on ID3 gene expression 

levels support a clinical relevance in some malignancies. 

However, published data on ID3 mutations in Burkitt lymphoma showed variable 

mutation rates in the analyzed cohorts, leaving an uncertain picture on its incidence. Also 

the clinical and prognostic relevance of alterations in the three candidate genes (ID3, 

TCF3 and CCND3) is unknown. 

 

The aims of this study were 

 to analyze somatic variants in the updated set of thirteen NHL-BFM patients 

analyzed within the ICGC-MMML-seq project 

 to assess the frequency of alterations in the genes ID3, TCF3 (isoform E47, exon 

16) and CCND3 (exon 5) in a representative, uniformly diagnosed and treated 

cohort of pediatric B-NHL patients. 

 to investigate mutational patterns and distribution of mutations in the analyzed 

pathway. 

 to analyze the findings regarding clinical and prognostic relevance. 

 to investigate the occurrence of ID3 mutations in cases of pediatric pB-ALL as a 

control group of a related malignancy. 
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2 Material and methods 

In the following, the materials used in this study are summarized in separate tables for 

equipment (Table 1), kits (Table 2) and reagents (Table 3). 

2.1 Materials 

2.1.1 Equipment 

 Table 1: Equipment 

 3130xl Genetic Analyzer Applied Biosystems 

 Consort E835, Power supply 
(Electrophoresis chamber) 

Consort NV, Turnhout, Netherlands 

 DOC-PRINT HOOD - DP-CF-011.C, 
imaging and documentation system 

Vilber Lourmat Deutschland GmbH,  
Eberhardzell, Germany 

 DRI-BLOCK DB-2A Bibby Scientific Limited, Staffordshire, 
United Kingdom 

 ED Heating Immersion Circulator Julabo, Seelbach, Germany 

 Electrophoresis chamber von Keutz, Reiskirchen, Germany 

 GeneAmp PCR System 9600 Perkin Elmer, Waltham, United States 

 Hettich Mikro 220R Centrifuge Hettich AG, Bäch, Suisse 

 Incubator Memmert, Schwabach, Germany 

 Incubator shaker Braun, Melsungen, Germany 

 NanoDrop™ 1000 PEQLAB Biotechnologie GmbH, 
Erlangen, Germany 

 Navigator N28110, Scale Ohaus Corporation, Parsippany, 
United States 

 Small centrifuge, Galaxy Mini VWR, Darmstadt, Germany 

 T-Gradient Thermoblock Biometra, Göttingen, Germany 

 T-personal Combi Biometra, Göttingen, Germany 

 UV-Transilluminator Ultra Violet Products, Cambridge, 
United Kingdom 

 Video Graphic Printer UP897MD Sony Europe Limited, Surrey, United 
Kingdom 

 Vortex Mixer 7-2020 NeoLab, Mannheim, Germany 
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2.1.2 Kits 

 Table 2: Kits 

 Big Dye Terminator V 3.1 Cycle 
Sequencing Kit 

Life Technologies GmbH, Darmstadt, 
Germany  

 E.Z.N.A.® Plasmid Mini Kit I VWR International GmbH, Darmstadt, 
Germany  

 High Pure PCR Template Preparation 
Kit 

Roche Diagnostics GmbH, 
Mannheim, Germany 

 High Pure Plasmid Isolation Kit Roche Diagnostics GmbH, 
Mannheim, Germany 

 Illustra™GFX™ PCR DNA and Gel 
Band Purification Kit 

GE Healthcare, Munich, Germany 

 TOPO® TA Cloning® Kit for subcloning 
with TOP10 E. coli 

Life Technologies GmbH, Darmstadt, 
Germany 

2.1.3 Reagents and Enzymes 

 Table 3: Reagents and Enzymes 

 100% Ethanol 100% Ethanol, Riedel de Haen, 
Sigma, Seelze, Germany 

 310 and 31xx Running Buffer, 10X Life Technologies GmbH, Darmstadt, 
Germany 

 Agarose PeqGOLD Universal Agarose 
(Peqlab, Erlangen, Germany) 

 dATP Roche, Mannheim, Germany 

 dNTP Roche, Mannheim, Germany 

 Fermentas 6X DNA Loading Dye Fermentas GmbH, St. Leon-Roth, 
Germany 

 GeneRuler™ DNA Ladder Mix, ready-
to-use 

Fermentas GmbH, St. Leon-Roth, 
Germany 

 H2O LiChrosolv® Water for 
chromatography, Merck KGaA, 
Darmstadt, Germany 

 Hi-Di™ Formamide Life Technologies GmbH, Darmstadt, 
Germany 

 Isopropanol 2-Propanol, Riedel de Haen, Sigma, 
Seelze, Germany 
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 Table 3: Reagents and Enzymes 

 Lysogeny Broth (LB) media Trypton/Pepton from Casein (Roth, 
Karlsruhe, Germany) 

Bacto-Yeast-Extract (Becton 
Dickinson, Heidelberg, Germany) 

NaCl (Roth, Karlsruhe, Germany) 

 Polymerase OneTaq Polymerase 2x MM with 
Standard Buffer (New England 
BioLabs GmbH, Frankfurt am Main, 
Germany) 

 Polymerase OneTaq Polymerase 2x MM with GC-
Buffer (New England BioLabs GmbH, 
Frankfurt am Main, Germany) 

 Polymerase Taq DNA Polymerase, Recombinant 
(Invitrogen Life Technologies GmbH, 
Darmstadt, Germany) 

 Polymerase AccuPrime™ Pfx DNA Polymerase 
(Invitrogen Life Technologies GmbH, 
Darmstadt, Germany) 

 POP-7™ Polymer Life Technologies GmbH, Darmstadt, 
Germany 

 Primers (see Table 7)  

 Saltfree water  

 Sodium Acetate 3M Sodium acetate, Roth, Karlsruhe, 
Germany 

 Tris-acetate-EDTA Buffer 50x TAE Tris/Acetic Acid/EDTA Buffer 
(Bio-Rad Laboratories GmbH, Munich, 
Germany) 
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2.2 Methods 

2.2.1 Recurrent mutations in 13 pediatric BL in the ICGC-
MMML-Seq project 

Whole-genome sequencing of pediatric BL tumor and corresponding germline samples 

was performed within the ICGC-MMML-Seq project (Coordinator: Prof. M. Siebert, Kiel). 

Sequencing was performed centrally in Kiel (Prof. Dr. P. Rosenstiel). For cases of the 

NHL-BFM group, the study was approved by the Ethical Advisory Board Gießen 

(A89/11). As of June 2013 thirteen pediatric BL cases from the NHL-BFM group were 

analyzed after informed consent of patients and/or guardians (approved by the Ethical 

Advisory Board of the Faculty of Medicine in Gießen, AZ89/11).  

Whole-genome sequencing raw data were analyzed with respect to single nucleotide 

variants (SNVs) and small insertions/deletions (InDels) by Dr. M. Schlesner (DKFZ, 

Heidelberg) as previously published in Richter et al. (Richter et al., 2012). Results were 

available via the internal project database and were furthermore deposited online in the 

ICGC Data Portal (ICGC Project, 2013). 

2.2.2 Validation of ID3, TCF3 and CCND3 mutations 

The validation of candidate genes from the ICGC-MMML-Seq project for patients 

enrolled in the NHL-BFM protocols was approved by the Ethical Advisory Board of the 

Faculty of Medicine in Gießen (AZ89/11 – Amendment 06/13). 

2.2.3 Patient samples 

2.2.3.1 B-NHL samples 

The NHL-BFM group collects samples of B-NHL patients in the NHL-BFM laboratory at 

the Justus-Liebig University Gießen. The inclusion criteria in this study were as follows: 

 registered into either the trial NHL-BFM 95 or B-NHL BFM 04 after given informed 

consent 

 date of diagnosis between 01/2000 and 12/2011 

 patients diagnosed with “Burkitt lymphoma” or “Burkitt leukemia” or “Diffuse large 

B-cell lymphoma” or “B-NHL (DD)” 

 protocol patient status (no relevant treatment modifications) 

 not included in the ICGC-MMML-Seq project 
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A total of 1127 patients were eligible according to inclusion criteria. Next, the availability 

of appropriate lymphoma material in the NHL-BFM biobank was reviewed according to 

the following quality criteria: 

 availability of initial frozen tumor cells (tissue, ascites, pleural effusion or bone-

marrow only in cases of B-AL)  

 for tissue:  histological review confirming the diagnosis or cytomorphological 

review of corresponding tumor touch imprints with the diagnosis of FAB L3 blasts 

 for blasts isolated from bone marrow, ascites or pleural effusions: a 

cytomorphological review confirming at least 75% of FAB L3 blasts.  

Reports of reference histology, carried out by the trial’s reference pathologists, were 

available at the NHL-BFM study center.  

Reports of reference cytomorphology for tumor touch imprints, effusion cytospins and 

bone marrow smears were available from the NHL-BFM reference laboratory for 

Cytomorphology and Genetics, Justus-Liebig University, Gießen. 

Reports of FISH examinations were available from the Oncogenetic Laboratory in the 

Department of Pediatric Hematology and Oncology, Justus-Liebig University, Gießen or 

from other associated reference centers of the respective trial. 

Eighty-four representative cases were randomly selected. In a second step another 10 

c-MYC rearrangement positive B-NHL cases were chosen in order to enrich the cohort 

for cases with relapse. Before preparation, samples were stored at -80 °C. 

2.2.3.2 pB-ALL samples 

For the second part of this study, tumor DNA samples from 96 pediatric pB-ALL patients 

were kindly provided from the ALL-BFM study center in Kiel (Prof. Dr. M. Schrappe, Dr. 

A. Möricke). All patients fulfilled the inclusion criteria of the respective ALL-BFM trial, in 

which they have been registered including reference diagnosis and informed consent. 

2.2.4 DNA extraction from B-NHL samples 

The High Pure PCR Template Preparation Kit was used to extract high-molecular weight 

genomic DNA from tumor cells according to the protocols shown in Table 4. 

The kit is based on adsorption chromatography, which allows nucleic acids to bind to a 

glass fiber-matrix, whereas other components do not bind or can be removed by washing 

and centrifugation. 
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First, cells and extracellular matrix have to be lysed to release the nucleic acids. Proteins, 

like DNA cutting nucleases, are digested by the highly proteolytic enzyme Proteinase K. 

The suspension, containing the nucleic acids, is transferred onto a glass fiber-matrix 

provided in spin columns. Remaining cellular and extracellular components are removed 

by washing and centrifugation steps. Finally, the nucleic acids can be released from the 

glass fiber-matrix by low salt elution. 

 Table 4: DNA extraction with High Pure PCR Template Preparation Kit 

 Protocol for tumor cells, malignant effusions (pleural, ascites) and bone 
marrow 

 1. Samples were thawed at room temperature and up to 200 µl of sample 
were transfered to a sterile 1.5 ml microcentrifuge tube. 

 2. 200 µl Binding buffer and 40 µl Proteinase K solution were added. The 
solution was vortexed and immediately incubated for 10-30 minutes at 
70 °C. 

 3. After incubation 100 µl Isopropanol was added; the solution was mixed. 

 4. The solution was transferred to a Spin column which was placed into a 
sterile collection tube. 

 5. Centrifugation was carried out for 1 minute at 8000 x g. Spin column was 
transferred into a new sterile collection tube. 

 6. 500 µl Inhibitor Removal Buffer were added to the spin column. 

 7. Centrifugation was carried out for 1 minute at 8000 x g. Spin column was 
transferred into a new sterile collection tube. 

 8. First washing: 500 µl Wash Buffer were added to the spin column. 

 9. Centrifugation was carried out for 1 minute at 8000 x g. Spin column was 
transferred into a new sterile collection tube. 

 10. Second washing: 500 µl Wash Buffer were added to the spin column. 

 11. Centrifugation was carried out for 1 minute at 8000 x g. Spin column was 
transferred into a new sterile collection tube. 

 12. Drying: Centrifugation was carried out for 10 seconds at 14000 x g. Spin 
column was transferred into a sterile 1.5 ml microcentrifuge tube. 

 13. 200 µl prewarmed (70 °C) Elution Buffer were added to the spin column 
and incubated for 5 minutes. 

 14. Centrifugation was carried out for 1 minute at 8000 x g. 

 15. The eluate was stored at 4 °C until further processing. 

 Protocol for tumor tissue 

 1. Samples were thawed at room temperature and 25 mg tissue was taken 
and sliced into small pieces using a sterile scalpel. 
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 Continue Table 4 

 2. The sample, 200 µl Tissue Lysis Buffer and 40 µl Proteinase K solution 
were transferred to a sterile 1.5 ml micocentrifuge tube. The solution was 
vortexed and incubated at 55 °C overnight. 

 3. 200 µl Binding Buffer were added and incubated at 70 °C for 10 minutes.  

 4. Remaining cellular components were drawn out with a pipette tip. 

 5. Protocol for tumor cells, malignant effusions and bone marrow was 
followed, starting at step 4. 

  

2.2.5 Polymerase chain reaction 

The polymerase chain reaction (PCR) is a widely used method to amplify pieces of DNA. 

Perquisites for a PCR application are: template DNA, a thermostable DNA-Polymerase, 

2`-deoxynucleoside 5`-triphosphates (dNTPs) and two different kinds of 

oligonucleotides. These specifically bind to unique sequences in the genome thus 

defining the region to be amplified. 

To allow binding of primers DNA has to be single stranded and therefore the double 

stranded DNA is melted at 94 °C (denaturation). This step is followed by binding of the 

primers (annealing). The optimal temperature for primer binding depends on the melting 

temperature of the primer itself and the salt conditions within the approach. Therefore, 

there are different temperature conditions for each primer pair (Table 7). In a third step, 

the temperature is raised to 68 °C which is the optimum for the used DNA-polymerase 

for adding the complementary bases starting at the primer sites (extension). The steps 

of denaturation, annealing and extension are repeated several times to exponentially 

amplify the target DNA. 

The PCR reaction protocols are shown in Table 5. The PCR program is depicted in Table 

6. Primer sequences including annealing temperatures are given in Table 7.  
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 Table 5: Polymerase chain reaction 

 PCR reaction for direct sequencing 

 genomic DNA 1 µl (5 ng/µl) 

 Forward Primer 1 µl (10 pmol/µl) 

 Reverse Primer 1 µl (10 pmol/µl) 

 Polymerase* 12,5 µl 

 H2O 10,5 µl 

 Total reaction volume  25 µl 

 * OneTaq Hot Start Polymerase 2x MM with GC Buffer was used for CCND3 
amplification. Otherwise OneTaq Hot Start Polymerase 2x MM with Standard 
Buffer was used. 

 PCR reaction for subcloning 

 AccuPrime™ Pfx DNA Polymerase 1 µl 

 genomic DNA 1 µl (5 ng/ µl) 

 dNTPs 1,5 µl 

 Reaction Buffer, 10x 5 µl 

 H2O 40 µl 

 Forward Primer 0,75 µl (10 pmol/ µl) 

 Reverse Primer 0,75 µl (10 pmol/ µl) 

 Total reaction volume 50 µl 

 

 Table 6: PCR program 

 1x 10 minutes 94 °C   

 35x denaturation annealing elongation 

  45 seconds 94 °C 30 seconds, see 
Table 7 

1 minute 68 °C 

 1x 10 minutes 68 °C   

  pause at 4 °C   
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Table 7: Primer sequences   

gene primer 
name 

forward primer (5’->3’) 

reverse primer (5’->3’) 

PCR 
product 
length (bp) 

annealing 
temperature 

ID3 ID3_1* GAACCAGTGTTGGGCTAAAG 

GCAAGTCACTTGTCCCTCTC 

1034 56 °C 

ID3 ID3_2* AGGAGCTTTTGCCACTGA 

CAAAATTCGGCCATGTGCG 

1113 56 °C 

ID3 ID3_K# TCCAGGCAGGCTCTATAAGTG 

CCGAGTGAGTGGCAATTTTT 

694 56 °C 

TCF3 TCF3$ GAAATACAGGAGGCCACACG 

AGGTGTGTGAGGTGTGGATG 

609 68.5 °C 

CCND3 CCND3$ CCATGTGTTGGGAGCTGTC 

CTGGAGGCAGGGAGGTG 

328 57 °C 

* self designed, # as published in Richter et al. (Richter et al., 2012), $ as published in 
Schmitz et al. (Schmitz et al., 2012) 

 

2.2.6 Purification of PCR products 

Products of polymerase chain reaction contain residual amounts of dNTPs, primers, salts 

and genomic DNA. To obtain sufficient quality for the following sequencing reaction, 

these contaminants have been removed with the Illustra™ GFX™ PCR DNA and Gel 

Band Purification Kit. The protocol used is depicted in Table 8. 

 Table 8: Purification of PCR products using the Illustra™ GFX™ PCR DNA 
and Gel Band Purification Kit 

 Protocol for purification of PCR products from enzymatic reaction 

 1. 500 µl Capture buffer type 3 was pipetted onto a MicroSpin column, 
placed into a collection tube.  

 2. The complete PCR reaction volume was pipetted to and thoroughly mixed 
with the Caputer buffer by gently pipetting up and down. 

 3. Centrifugation was performed for 30 seconds at 16000 x g. The 
MicroSpin column was transferred into a new sterile collection tube. 

 4. 500 µl Washing buffer type 1 were added to the MicroSpin column. 

 5. Centrifugation was performed for 30 seconds at 16000 x g. The 
MicroSpin column was transferred into a new sterile collection tube. 

 6. 30 µl Eluation buffer type 6 (sterile, nuclease free water) were added. 
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 Continue Table 8 

 7. The eluate was stored at 4 °C until further processing. 

 Protocol for purification of PCR products in gel bands 

 1. The PCR reaction was subjected to agarose gel electrophoresis. DNA 
fragments were visualized using UV light and the part of agarose gel 
containing the amplificate of interest was cut out using a scalpel. 

 2. The piece of agarose was transferred into a sterile 1.5 ml microcentrifuge 
tube. 

 3. 10 µl Capture buffer type 3 were added for each 10 mg of agarose 
weight. At least 300 µl Capture buffer type 3 were added. 

 4. The solution was mixed by inversion and incubation was performed at 60 
°C for 15-30 minutes, until the agarose was completely melted.  

 5. Protocol for purification of PCR products from enzymatic reaction was 
followed, starting at step 3. 

  

2.2.7 Bacterial culture, subcloning and plasmid DNA 
preparation 

Bacterial subcloning allows the separation of a single DNA fragments. This is an 

important tool for the analysis of e.g. different alleles from a diploid organism. In the 

context of heterozygous (e.g. frameshift) mutations, analysis of sequencing results is 

convenient, as there is just one sequence read. In contrast, direct sequencing of PCR 

ampflificates may produce douple peak signals. Furthermore, after subcloning the allelic 

state can be identified in cases where more than one mutation is present in an analyzed 

sequence. 

The separation of a single DNA fragment is realized by its integration into a small piece 

of linearized double strand DNA plasmid, called vector. The ends of the linearized, here 

used TOPO TA plasmid carry 3’ thymidine overhangs. This allows the insertion of one 

DNA molecule, to which a 3’ adenine has been added previously. DNA Topoisomerase 

I conjugated to the plasmid ligates the vector and the template molecule, resulting in a 

circular double stranded plasmid. Due to its molecular structure, the plasmid is replicated 

independently when brought into a convenient host organism like Escherichia coli. 

Usually, each bacterium takes up only one plasmid and therefore, selective picking of 

plate-grown colonies allows separation of different allele representing plasmids by 

chance. 

Moreover, the plasmid contains an ampicillin resistance cassette and the lacZ gene 

encoding for beta-galactosidase enzyme. These selective markers are used during clone 
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selection: Ampicillin containing media will kill non plasmid carrying bacteria, as they are 

nonresistant to the antibiotic. Bacteria, transformed with a plasmid not containing an 

insert, will express beta-galactosidase and therefore, turn blue in the presence of 5-

bromo-4-chloro-indolyl-β-D-galactopyranoside (X-gal). As the beta-galactosidase 

encoding gene on the plasmid is disrupted by a successful insertion, these bacteria form 

white colonies and are easily selected. Bacteria are proliferated in liquid cultures and 

plasmid DNA can be extracted with spin column kits. The inserted sequence can be 

analyzed using vector specific sequencing primers (M13). 

In the current study cloning was performed using the TOPO® TA Cloning® Kit for 

subcloning with TOP10 E. coli. PCR products for cloning were generated using high 

fidelity AccuPrime™ Pfx DNA Polymerase (see PCR reaction for cloning, Table 5). To 

enrich for high quality PCR templates, reaction products were separated by gel 

electrophoresis (see Table 12). Gel band purification was performed as previously 

described in Table 8. After DNA concentration measurement, purified PCR products 

were adenylated following the protocol shown in Table 9. Cloning protocol is shown in 

Table 10 and DNA isolation from Plasmids in Table 11. Further cultivation of picked 

colonies was performed, when colony PCR (see PCR reaction for direct sequencing, 

Table 5) was positive with insert specific primers.  

 Table 9: Protocol for adenylation of PCR products 

 Reaction mixture  

 purified PCR product 8 µl 

 10x PCR Puffer (BD) 1 µl 

 dATP 0,5 µl 

 Taq DNA polymerase, Recombinant 0,5 µl 

 Protocol  

 1. Mixing of the reaction mixture 

 2. Incubation at 72 °C for 10 minutes in a thermocycler. 

 

 Table 10: Protocol for ligation and cloning 

 Protocol  

 1. Preparation of the ligation reaction mix (1 µl PCR product, 1 µl Salt 
solution, 1 µl vector, ad 6 µl H2O), incubation at room temperature for 5 
minutes 

 2. Thaw E.coli TOPO 10 cells on ice 
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 Continue Table 10 

 3. Careful addition of 2,5 µl of ligation mix to the E.coli TOP 10 cells 

 4. Incubation on ice for 10 minutes 

 5. 30 seconds heat shock at 42 °C prewarmed water bath 

 6. Set back the reaction on ice 

 7. Addition of 250 µl SOC-media 

 8. Incubation with constant shaking at 37 °C for one hour 

 9. Preparation of LB-plates (10 g Trypton/Pepton from Casein, 5 g Bacto-
Yeast-Extract, 10 g NaCl, H2O ad 1000ml, adjustment of pH 7.0, 
autoclaved) containing 50µg/ml ampicillin, greasing of 40 µl X-Gal 

 10. Prewarming of the LB-plates for 30 minutes 

 11. Greasing of 100 µl of transformed cells per plate 

 12. Incubation at 37 °C of plates overnight. 

 13. Selection of white colonies by picking 

 14. Preparation of colony PCR. 

 15. In case of successful colony PCR: inoculation of 5 ml of LB medium 
containing ampicillin (50 µg/ml), incubation at 37 °C shaking overnight, 
followed by plasmid DNA preparation according to the following protocol 
(Table 11). 

 

 Table 11: Plasmid DNA preparation with High Pure Plasmid Isolation Kit 

 Protocol  

 1. The Binding Buffer was placed on ice. 

 2. Centrifugation of 5 ml previously incubated plasmid carrying E.coli-LB 
media was performed at 6000 x g for 30 seconds. The supernatant was 
discarded. 

 3. The bacterial pellet was resuspended with 250 µl Suspension Buffer 
(RNase). Addition of 250 µl Lysis Buffer. The solution was mixed by 
inversion. 

 4. The solution was incubated at room temperature for 5 minutes. 

 5. Addition of 350µl Binding Buffer. Incubation on ice for 5 minutes. 

 6. Centrifugation was performed at 13000 x g for 10 minutes. 

 7. A High Pure Filter Tube was placed into one collection tube. The entire 
supernatant was transferred to the Filter Tube. Centrifugation was 
performed at 14000 x g for 1 minute. 
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 Continue Table 11 

 8. The Filter Tube was placed in a sterile 1.5ml microcentrifuge tube. 700µl 
Wash Buffer II were added, followed by centrifugation at 14000 x g for 
60 seconds. 

 9. The Filter Tube was transferred to a new sterile 1.5 ml microcentrifuge 
tube. 100µl Elution Buffer were added, followed by centrifugation at 
14000 x g for 60 seconds. 

 10. The eluate was stored at 4 °C until further preparation. 

 

2.2.8 Agarose gel electrophoresis 

For analysis and separation of DNA fragments agarose based gel electrophoresis was 

used. All gels were prepared using 1% Agarose (w/v) in 1xTAE buffer. For analytical 

purposes wells were loaded with previously prepared mixtures of 2 µl Loading Buffer and 

3 µl of PCR product. Electrophoresis was performed as stated in Table 12. DNA 

fragments move within the applied voltage according to their size, small fragments move 

faster than larger ones. Gels were stained in Ethidium bromide solution (10mg/l) for 15 

minutes, followed by washing in ddH2O for 10 minutes. Gels were photographed and 

analyzed on an UV-transluminator (wavelength 254 nm). 

To enrich for high quality PCR templates for subsequent cloning, the total PCR reaction 

volume of 50 µl was divided in 2x 25 µl. Each was mixed with 5 µl Loading Buffer and 

loaded to the wells of the gel. Electrophoresis and stain of gels was performed as 

described described above and in Table 12. Gels were stained in Ethidium bromide 

solution (10mg/l) for 15 minutes, followed by washing in ddH20 for 10 minutes. Bands 

were visualized using an UV-transluminator (wavelength 320 nm) and bands of correct 

size were cut from the gel using a sterile scalpel. DNA extraction from the gel bands was 

performed as described in Table 8. 

 Table 12: Protocol for agarose gel electrophoresis 

 Preparation of agarose gel solutions  

 Agarose (w/v) in 1xTAE 1% 

 Electrophoresis parameters  

 Voltage 180 V 

 Duration 45-75 minutes, depending on gel size 



 

 

28 Material and methods 

2
8
 

M
a

te
ria

l a
n
d

 m
e

th
o

d
s
 

2.2.9 UV spectrometry 

After isolation of genomic DNA, purification of PCR products from PCR reactions or gel 

bands and preparation of plasmid DNA, concentration and quality of the nucleic acids 

was measured by UV spectrometry using a NanoDrop™ 1000 (PEQLAB Biotechnologie 

GmbH, Erlangen, Germany). In each case 2 µl of undiluted sample was used for the 

measurement. 

UV spectrometry allows measuring concentration and quality of nucleic acids by using a 

spectrophotometric instrument. The absorption maximum of DNA is at 260 nm and of 

RNA at 230 nm; the absorption of a test sample at these wavelengths correlates with the 

amount of these nucleic acids in the sample. The optical density (OD) of one unit 

corresponds to a concentration of 50 ng/dl of double stranded DNA (Sambrook and 

Russel, 2001). To control for protein contamination the absorption at 280 nm was 

measured. Sufficient purity for subsequent analysis was assumed if the ratio of OD260 to 

OD280 was between 1.8 and 2.0. 

2.2.10 Cycle sequencing 

Cycle sequencing is widely used to analyze the sequence of DNA templates. This 

method is based on “DNA sequencing with chain-terminating inhibtors” by Sanger et. al 

published in 1977 (Sanger et al., 1977). In comparison to a normal PCR 

dideoxynucleotides are added in addition to a taq DNA-polymerase, the 

deoxynucleotide-mix and one oligonucleotide, serving as a sequencing primer. 

First the DNA template is melted at 94 °C (denaturation) to be accessible for the 

sequencing primer to bind to the single stranded DNA (annealing). Annealing is carried 

out at 50 °C. Subsequently the temperature is raised again to the optimum of the taq 

DNA-polymerase to start synthesis along the sequencing primer site. Whenever a 

dideoxynucleotide is integrated into the new DNA strand further elongation of that 

particular DNA molecule is disrupted, because it lacks the obligatory hydroxyl group. As 

the incorporation of dideoxynucleotides and common deoxynucleotides occurs 

randomly, DNA molecules of different lengths are synthesized. Each of the four different 

dideoxynucleotides is labeled with a different dye, which can be separately detected by 

a capillary electrophoresis instrument. 

Big Dye Terminator V 3.1 Cycle Sequencing Kit was used to perform cycle sequencing 

according to the protocol shown in Table 13. Cycle sequencing was performed on a 

GeneAmp PCR System 9600 (Perkin Elmer, Waltham, USA) running the program shown 

in Table 14. Generally, each gene was sequenced in forward and reverse direction at 
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least once per patient. For validation issues either the forward or reverse primer was 

used.  

 Table 13: Cycle sequencing with Big Dye Terminator V 3.1 Cycle 
Sequencing Kit 

 Template DNA 100 ng 

 Ready Reaction Mix 2 µl 

 Sequencing Buffer (5x) 4 µl 

 Primer (Forward or Reverse) 1 µl (1 pmol/ µl) 

 H2O up to 20 µl reaction volume 

 Total reaction volume 20 µl 

 

 Table 14: Cycle sequencing program 

 1x 1 minute 96 °C   

 25x denaturation annealing elongation 

  10 seconds 96 °C 5 seconds 50 °C 4 minutes 60 °C 

  pause at 4 °C   

2.2.11 Ethanol precipitation 

To remove residual amounts of dNTPs, 2`-dideoxynucleoside 5`-triphosphates (ddNTPs) 

and primers after cycle sequencing, ethanol based precipitation was carried out. The 

protocol used is shown in Table 15. 

 Table 15: Protocol for ethanol based precipitation 

 1. The product of the sequencing reaction (volume 20 µl) is transferred 
to a sterile 1.5 ml microcentrifuge tube. 

 2. Addition of 50 µl 100% Ethanol and 2 µl sodium acetate, mixing. 

 3. Centrifugation at 4 °C for 20 minutes at 14000 x g. 

 4. Suction of the supernatant with a water-jet pump 

 5. Addition of 150 µl 70% Ethanol, mixing. 

 6. Centrifugation at 4 °C for 20 minutes at 14000 x g. 

 7. Suction of the supernatant with a water-jet pump 

 8. Drying on a heating block at 37 °C for 10-20 minutes. 

 9. Storage of the pellet at 4 °C until further processing. 
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2.2.12 Capillary electrophoresis 

Automated analysis of sequences is performed by a capillary electrophoresis instrument 

and corresponding computer software. The instrument basically consists of a capillary 

array, two buffer reservoirs and one polymer reservoir, a heating block, an optical 

detection system, a pump block and a high voltage power supply (Figure 4). A computer 

is connected via an interface to save and analyze assigned data. 

 
 

Figure 4: Charting of a capillary sequencer 

Essential components of a capillary sequencer contain an autosampler, capillary array, optical 
detection system, pump block, buffer reservoir and polymer reservoir. 

 

First the pump fills the capillary array with the polymer. In the polymer the cycle 

sequencing reaction products are separated by length, analog to the separation of DNA 

fragments in the agarose gel electrophoresis. This is followed by activation of the heating 

block to warm the polymer. Voltage is applied between the two buffer reservoirs, one 

therefore acting as anode and the other one being the cathode. The products of cycle 

sequencing reaction are injected into the capillary array. As DNA fragments are 

negatively charged, they run towards the positively charged anode. Smaller DNA 

fragments run faster so the very first fluorescently dye-labeled dideoxynucleotides 

arriving within the optical detection sytem represent the first nucleotides of the DNA 

template. The longer the fragment the later it will pass the detection system. Within the 

detection system a laser beam activates the dyes to fluoresce and the intensity is 

measured by a CCD-camera. These raw data are forwarded to a computer system which 

analyzes the digital data and visualizes those as electropherograms (Figure 5).  



 

 

31 Material and methods 

3
1
 

M
a

te
ria

l a
n
d

 m
e

th
o

d
s
 

 
 

Figure 5: Method of capillary sequencing 

In the optical system a laser beam makes dye-labeled nucleotides fluorescent which are floating 
through the capillary array towards the positively charged anode. A CCD-camera device absorbs 
light-energy and forwards raw data to a computer. Analysis software allows graphic 
representation of electropherograms. 

 

A 3130xl Genetic Analyzer (Applied Biosystems) was used to perform capillary 

electrophoresis in this work. The protocol for sample preparation is shown in Table 16. 

The settings and conditions of the capillary electrophoresis instrument are shown in 

Table 17. 

 Table 16: Sample preparation for capillary electrophoresis  

 Reagents  

 Hi-Di™ Formamide  

 Protocol  

 1. Addition of 20 µl Hi-Di™ Formamide to the 1.5 ml microcentrifuge tube 
containing the dried DNA pellet after ethanol precipitation 

 2. Mix carefully, by pipetting up and down. 

 3. Transfer of the solved DNA – HiDi mixture into a designated well onto a 
96-well plate 

 4. Transfer of the 96-well plate into the capillary electrophoresis instrument 

 5. Running of the instrument according to the manual. 
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 Table 17: Capillary electrophoresis instrument settings   

 Run Module  

 Oven Temperature 60  °C 

 Poly Fill Vol 6500 steps 

 Current Stability 5.0 µA 

 PreRun Voltage 15.0 kV 

 PreRun Time 180 s 

 Injection Voltage 1.2 kV 

 Injection Time 18 s 

 Voltage Number Of Steps 30 

 Voltage Step Interval 15 s 

 Data Delay Time 120 s 

 Run Voltage 8.5 kV 

 Run Time 2780 s 

 Analysis Protocol 3130POP7_BDTv3-KB-Denovo_v5.2 
(supplied by manufacturer) 

 Software Data Collection Software 3.1.0 

 File Output Format AB1 

   

2.2.13 Analysis of electropherograms 

The software Geneious (Geneious Software, 2012) was used to load electropherograms 

and align sequences to the reference sequences (Table 18) downloaded from NCBI 

website. Previously published short nuclear polymorphisms (SNPs) were downloaded 

from dbSNP (Build ID: 137, identifiers are also listed in appendix 10.4)  (NCBI dbSNP 

database, 2013) and annotated to the reference sequences. SNPs were excluded from 

further analysis. Functional domains were annotated according to the data deposited in 

the Universal Protein Resource (UniProt database, 2013). 

 Table 18: Reference sequences 

 Gene Accession number UniProt entry 

 ID3 NM_002167.4 Q02535 

 TCF3 (Exon 16) NM_001136139.2 P15923-2 (E47) 

 CCND3 (Exon 5) NM_001760.3 P30281 
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All sequence-disagreements within the alignments were reviewed manually. To rule out 

artificial mistakes or sequencing errors, samples showing mismatches in the alignment 

were validated separately. This validation was carried out by the criteria shown in Table 

19. 

 Table 19: Validation criteria for samples showing sequence mismatches 

 Primary finding Validation requirement 

 frameshift mutation at least 1x / by cloning 

 single nucleotide substitution at least 1x 

 wildtype no validation 

   

 Cloning at least 2 out of 10 clones had to 
show the same allele disambiguates 
in sequencing  

   

 

2.2.14 Data analysis and interpretation of sequencing results 

Disambiguate results confirmed within a validation experiment were considered to be 

genomic variants. Variants were described using the reference sequence of the 

corresponding coding DNA available from the NCBI database. Potential change on 

protein level was determined by translation using a RNA codon table. The nomenclature 

provided by the Human Genome Variety Society (den Dunnen and Antonarakis, 2000) 

(Version 2.0) was applied. 

2.2.15 Definition and terminology of mutations 

In this study the term ‘mutation’ was used when the genomic variant predicted an amino 

acid change on protein level. For description of silent changes or changes that occurred 

in introns, the term ‘genomic variant’ was used. 

Mutations were termed heterozygous or homozygous with respect to presentation of 

peak heights in electropherogram analysis: disambiguates with clearly prominent non-

reference peaks were described as ‘homozygous’. However, combination of focal loss 

of one ID3 allele and occurrence of mutation on the remaining allele must be taken into 

account in such cases. Regarding the relevance on protein level homozygous presenting 

cases were considered to feature ‘biallelic involvement’. In the following, five examples 

of certain mutation types are shown. 
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Example 1 (case 83):  

The ID3 sequence cutout (Figure 6) 

shows a nucleotide change from cytosine 

to thymine that occurred at position 

c.190. In the middle of the sequence a 

double peak is visible. The height of the 

cytosine peak (blue) almost equals the 

height of the alternate thymine peak 

(green). This change was considered to 

be a heterozygous substitution.  

Result: c.190C>T 

 

 

Figure 6: Example 1 – Heterozygous 
substitution in case 83. 

Example 2 (case 55): Figure 7 depicts a 

sequence cutout with a change at 

position c.144 resulting in a nucleotide 

substitution from cytosine to guanine. 

The cytosine reference peak (blue) was 

considerably lower compared to the 

alternate guanine peak (yellow). This 

change was rated to be a homozygous 

substitution.  

Result: c.[144C>G][(144C>G)] 

 

 

Figure 7: Example 2 – Homozygous 
substitution in case 55. 

 

Example 3 (case 15): ID3 forward 

(above) and reverse (below) sequences 

are shown as an excerpt (Figure 8) with 

double peaks starting at position c.120. 

Double peaks appeared continuous until 

the end of sequence. Manual read out of 

the alternative sequence detected a 

guanine deletion at position c.120, with 

subsequent shift of the reading frame. 

This change was rated heterozygous, 

due to a peak-to-peak ratio of averagely 

1:1. 

Result: c.120delG  

Figure 8: Example 3 – Heterozygous deletion 
in case 15. 
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Example 4 (case 91): The ID3 sequence 

cutout (Figure 9) presents with a yellow 

(guanine) extra peak at position c.94, 

which is not matching with the reference 

sequence (not shown). As the previous 

peak is also reporting for a guanine 

nucleotide at this position, this change is 

a single nucleotide duplication of position 

c.93. As shown by the clear ongoing 

sequence, this change seemed to affect 

both alleles and was therefore rated to be 

homozygous. 

Results: c.93dupG 

 

 

Figure 9: Example 4 – Homozygous 
duplication in case 91. 

Example 5 (case 81): Three different sequence cutouts are shown in Figure 10. In the 

upper line the forward sequence from direct sequencing is shown, presenting with four 

double peaks that indicate heterozygous single nucleotide substitutions (red arrows). 

The middle line presents sequence obtained after cloning (clone number 8), showing 

that mutations c.[190C>G;206T>C;229A>G] occurred on the same allele. In the third 

sequence (clone number 9), c.166C>G is present, but not the previous mentioned 

mutations. In conclusion, the mutations affected different alleles. 

Result: c.[166C>G];[190C>G;206T>C;229A>G] 

 

 

Figure 10: Example 5 – Multiple substitutions and biallelic involvement in case 81. 
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2.2.16 Statistical analysis 

Statistical analysis was performed in order to identify differences in patient 

characteristics, such as gender, age, stage of disease, BM involvement, CNS 

involvement, LDH levels, diagnosis, probability of event free survival (pEFS) and overall 

survival (pOS) according to the mutation status of the analyzed candidate genes. Clinical 

data for each calculation referred to patients with successful investigation of the 

respective criteria. 

Fisher’s exact test (Fisher, 1922) was used to calculate probabilities (p values) in 2x2 

contingency tables when less than 10 patients were analyzed in this specific setting. In 

2x3, 2x4 and 2x2 tables with total counts of at least 10, Pearson's chi-squared test 

(Pearson, 1900) was applied. 

pEFS was calculated according to Kaplan and Meier (Kaplan and Meier, 1958) under 

consideration of the time between date of diagnosis and either date of event or date of 

last follow-up. Patients with a follow-up less than two years were excluded from analysis. 

Differences in pEFS were compared by the log-rank test (Mantel, 1966). 

Significant differences were assumed when the respective p value was lower than 0.05. 

Chi-square tests, pEFS and overall survival were calculated by Dr. Martin Zimmermann, 

statistician of the NHL-BFM group (Pediatric Hematology and Oncology, Hanover 

Medical School (MHH), Germany). Calculations were conducted using SAS statistical 

program (SAS-PC, Version 9.3, Cary, NC: SAS Institute Inc.) 

Fisher’s exact tests and corresponding graphics were calculated using the software 

Prism 6 for Mac OS X (Version 6.0c Trial), GraphPad Software, San Diego California 

USA. The two-tailed option was used. 
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3 Results 

3.1 Recurrent mutations in 13 pediatric BL in the 
ICGC-MMML-Seq project 

Malignant mechanisms in mature aggressive B cell Non-Hodgkin lymphoma are under 

investigation in the ICGC-MMML-Seq project. As of June 2013, thirteen pediatric BL 

cases of the NHL-BFM study have been analyzed by whole-genome and whole-

transcriptome sequencing. Datasets on single nuclear variants (SNVs) and small InDels 

were available by the projects database platform and are furthermore published online 

in the ICGC Data Portal (ICGC Project, 2013). 

Within the 13 pediatric BL cases a total of 35,208 somatic SNVs were detected. The 

mean of somatic SNVs per case was 2,708 (range 1,635-4,923) and the median of 

potentially protein changing mutations was 28 (range 11 to 46). The distribution of SNVs 

is summarized in Table 20. 

 

 Table 20: Overview of SNV counts from 13 pediatric BL cases analyzed in 
the ICGC-MMML-Seq project 

  total of SNVs range number per patient 

 all SNVs 35,208 1,635-4,923 

 exonic  447 14-56 

  silent 103 3-13 

  non-silent 344 11-46 

 non-exonic  34,761 1,599-4,867 

 

The list of genes that were affected by exonic, non-silent mutations (either SNVs or small 

InDels) included 374 different genes. Table 21 presents recurrently affected genes that 

were altered in more than three of the thirteen cases at a time.  
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 Table 21:  Recurrently mutated genes in > 3 pediatric BL cases analyzed 
in the ICGC-MMML-Seq project 

 gene #/13 function mutations typically 
found in 

 MYC 10 cell cycle progression, 
apoptosis and cellular 
transformation 

Burkitt lymphoma 

 TP53 9 tumor suppressor protein various malignancies 

 CCND3 7 regulation of CDK kinases  

 FBXO11 6 adapter protein to p53  

 SMARCA4 6 SNF/SWI chromatin 
remodeling complex 

Medulloblastoma 

 ID3 5 inhibition of HLH proteins  

 RHOA 5 cell cycle regulation  

 DDX3X 4 cellular growth and division Medulloblastoma 

 P2RY8 4 G protein coupled receptor DLBCL, translocations in 
ALL 

 

Regarding the pathway of interest in the current study, ten out of 13 cases showed 

alterations in either ID3, CCND3 and/or TCF3 (Table 22). 

 

 Table 22:  ID3, TCF3 and CCND3 mutations in 13 pediatric BL cases 
analyzed in the ICGC-MMML-Seq project 

 ID in the ICGC database ID3 TCF3 CCND3 

 4190495 x x  

 4194218 x  x 

 4194891 x  x 

 4189998 x  x 

 4182393 x   

 4193278  x  

 4177856   x 

 4142267   x 

 4125240   x 

 4177434   x 

 4112512    

 4119027    

 4133511    

 x: Mutation in the gene indicated 
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3.2 Validation of ID3, TCF3 and CCND3 mutations in 
pediatric B-NHL 

3.2.1 Characterization of analyzed samples 

3.2.1.1 B-NHL samples of the study cohort 

Eighty-four patients were selected for tumor DNA preparation according to the inclusion 

criteria of the study (see Patients samples). Tumor cell origin of the analyzed samples is 

shown in Table 23. This set of analyzed cases is referred to as ‘study cohort’.  

 Table 23: Origin of tumor cell samples in the study cohort 

 frozen tumor tissue 60 

 frozen cells from bone-marrow aspirates (buffy 
coats) 

10 

 frozen cells from malignant pleural effusions 8 

 frozen cells from malignant ascites 6 

 total 84 

  

For each type of tumor cell origin one representative micrograph is shown in example 

indicating the typical appearance of the predominance of malignant cells: tumor tissue 

imprint (Figure 11), bone-marrow aspirate (Figure 12), pleural effusion (Figure 13) and 

malignant ascites (Figure 14). As usual for hematologic evaluation smears were stained 

with a common staining according to Pappenheim. 

 

Figure 11: Example for a tumor imprint 

Medium-sized cells (red arrow) represent 
blasts. A minor fraction of cells mostly 
represents lymphocytes (case 77, BL, 

Pappenheim staining, 60x magnification). 

 

Figure 12: Example for Bone marrow aspirate 
(smear) 

Almost only medium-sized blasts are 
represented (red arrow). Also few 

erythrocytes can be seen (case 14, B-AL, 
Pappenheim staining, 60x magnification) 
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Figure 13: Example for pleural effusion 
(cytospin) 

Almost only medium-sized blasts are 
represented (red arrow). Few smaller 

lymphocytes can be seen (case 88, BL, 
Pappenheim staining, 60x magnification) 

 

Figure 14: Example for ascites (cytospin) 

Most cells represent medium-sized blasts 
(red-arrow). Also few lymphocytes and 

erythrocytes can be differentiated (case 31, 
DLBCL, Pappenheim staining, 60x 

magnification) 

 

3.2.1.2 B-NHL samples of patients who relapsed 

In a second step the study cohort was expanded to disproportionally enrich for patients 

who suffered from relapse. Importantly the initial material of these cases was analyzed; 

not the samples at the diagnosis of relapse. These cases are referred to as ‘extended 

cohort’. Tumor cell origin of the selected samples is summarized in Table 24. 

 Table 24: Origin of tumor cell samples in the extended cohort 

 frozen tumor tissue 6 

 frozen cells from bone-marrow aspirates (buffy 
coats) 

2 

 frozen cells from malignant pleural effusions 1 

 frozen cells from malignant ascites 1 

 total 10 

 

3.2.1.3 Acute lymphoblastic leukemia samples 

To compare the results obtained on the study cohort, a total of 96 tumor DNA samples 

from pediatric precursor B-cell acute lymphoblastic leukemia (pB-ALL) patients was also 

analyzed for ID3 mutations. pB-ALL samples were kindly provided from the ALL-BFM 

study group (Prof. Schrappe, Kiel). Tumor DNA was derived from either initial bone 

marrow aspirates or peripheral blood after review of blast count by the ALL-BFM study 

center. 



 

 

41 Results 

4
1
 

R
e

s
u
lts

 

3.2.1.4 Patient characteristics of the study cohort 

Between January 2000 and December 2012, 1127 eligible patients were registered in 

the NHL-BFM data center. The patient characteristics from 84 analyzed patients and 

1043 not analyzed patients are presented in Table 25. The groups of analyzed and not 

analyzed patients were similar regarding gender, age, bone marrow (BM) involvement, 

central nervous system (CNS) involvement, stage of disease, LDH levels, histological B-

NHL subtype and outcome (Figure 15, Figure 16). Therefore, the studied cohort featured 

representative characteristics for pediatric B-NHL patients in the NHL-BFM trials. 

 

 

Figure 15: Event-free survival of analyzed and 
not analyzed patients. 

 

 

Figure 16: Overall survival of analyzed and not 
analyzed patients. 
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Data refer to patients with successful investigation of the respective criteria. n: number, y: years, 
p value: probability value, BM: bone marrow, CNS: central nervous system, LDH: lactate 
dehydrogenase, U/l: Units per liter, pEFS: probability of event-free survival, pOS: probability of 
overall survival, LR: log-rank 

 Table 25: Patient characteristics of study cohort 

 Characteristics Patients not 
analyzed (n=1043) 

Patients 
analyzed (n=84) 

p value 

 Gender male 827 80% 69 82%  

  female 216 20% 15 18% 0.53 

 Age < 10 y 525 50% 43 51%  

  10-14 y 349 34% 27 32%  

  > 14 y 169 16% 14 17% 0.97 

 Stage of disease stage I 98 10% 5 6%  

  stage II 250 25% 14 18%  

  stage III 420 42% 43 55%  

  stage IV 75 8% 3 4%  

  B-AL 163 15% 14 18% 0.17 

 BM involvement yes 199 19% 14 17% 0.59 

 CNS 
involvement 

yes 101 10% 8 10% 0.96 

 LDH < 500 U/l 608 59% 39 46%  

  500-1000 U/l 156 15% 16 19%  

  > 1000 U/l 264 26% 29 35% 0.07 

 Diagnosis BL 581 56% 49 58%  

  B-AL 163 16% 14 17%  

  DLBCL 267 25% 16 19%  

  B-NHL DD 32 3% 5 6% 0.23 

 Outcome pEFS (2y) 90 ± 1%  89 ± 3%  0.84 
(LR) 

  pOS (2y) 93 ± 1%  91 ± 3% 0.82 
(LR) 



 

 

43 Results 

4
3
 

R
e

s
u
lts

 

3.2.2 ID3, TCF3 and CCND3 sequencing in B-NHL 

3.2.2.1 Results of ID3 sequencing 

ID3 mutation status was analyzed in the validation cohort by sequencing of the full ID3 

coding region. ID3 mutations were found and verified in 56/84 B-NHL samples. The 

spatial distribution of ID3 mutations is depicted in Figure 18. A detailed description of the 

genomic variants including the predicted change on protein level is presented in 

appendix 10.1.  

Frequency of ID3 mutations according to diagnosis 

ID3 mutation frequency according to diagnosis was 73% for BL, 93% for B-AL and 25% 

for DLBCL. In the subgroup of five analyzed cases with the diagnosis B-NHL (DD) three 

cases showed mutations in ID3. Table 26 reports the absolute counts of cases with 

(ID3mut) and without (ID3wt) mutations according to the histological diagnosis. ID3 

mutations occurred at a higher frequency in BL/B-AL cases when compared to DLBCL 

(Figure 17). 

 Table 26: ID3 mutations according to diagnosis 

 Diagnosis total ID3wt ID3mut ID3mut % 

 BL 49 13 36 73% 

 B-AL 14 1 13 93% 

 DLBCL 16 12 4 25% 

 B-NHL (DD) 5 2 3 60% 

 

 

Figure 17: Correlation of ID3wt and ID3mut cases according to diagnosis. 

ID3mut cases occurred at a higher frequency in BL/B-AL when compared to DLBCL. 
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Figure 18: ID3 mutations in the study cohort. 

The ID3 coding region of exon 1 is illustrated with single base pair substitutions on the upper and more complex alterations (insertions, deletions, InDels, 
duplications) on the lower site. Substitutions resulting in a nonsense mutation are depicted in red. Hatched bars delineate deletions and InDels, dotted 
bars characterize insertions and duplications. Each mutation is labeled with correspondent description on genomic and protein level, as well as the 
absolute number of occurrence in brackets. The functional helix-loop-helix domain is mapped according to UniProt entry Q02535 (UniProt database, 
2013).
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Number and type of ID3 mutations 

Of the 56 B-NHL cases with ID3 mutations, 31 cases presented with multiple mutations 

in ID3: 

 26 cases with two ID3 mutations 

 4 with three ID3 mutations 

 one with four ID3 mutations 

In the remaining 25 cases, one ID3 mutation each was detected. 

Figure 19 depicts the distribution of ID3 mutations in the 56 B-NHL cases with identified 

alterations. 

 
Figure 19: Distribution of the number of ID3 mutations in 56 B-NHL cases 

 

Ninety-three ID3 mutations were found in the 56 B-NHL cases, including 66 substitutions, 

17 deletions, 4 duplications, 3 insertions and 3 InDels (deletion followed by an insertion) 

(Figure 20).  

 
Figure 20: Mutation types found in 56 B-NHL cases 

 

Five mutations presented with homozygous characteristics in sequence analysis: three 

substitutions and two deletions. 

Four disambiguates were genomic variants that were not predicted to result in change 

on amino acid level: c.144C>T, c.193A>T, c.300+44T>C and c.301-23C>T. However, all 

these cases also harbored at least one other ID3 mutation. 

Concerning the 66 substitutions, mutations affected the nucleotide base pairs G/C in 

74% (49/66) and A/T in 27% (18/66) of the cases. The substitutions occurred in the 

genomic region between c.135 and c.300+1, which contains a G/C-content of 64%. 

Assuming a random chance for mutations to affect nucleotides in this selected region, a 
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distribution of 44 hits in G/C base pairs and 25 in A/T base pairs would have been 

expected. There was no significant difference between these expected values and the 

findings, indicating no certain preference of the underlying mutation mechanism on 

affecting G/C or A/T base pairs. 

Biallelic involvement and homozygous mutations 

To investigate whether mutations occurred on the same or different alleles, ten out of 31 

cases with the finding of multiple mutations in ID3 where selected for cloning. Sequence 

analysis of different clones from the same sample showed different alleles to be affected 

in all analyzed cases (Table 27).  

In the group of five homozygous mutations two were also analyzed by cloning. In both 

cases, the mutation was present in at least 80% of the clones, supporting evidence of 

biallelic involvement. This finding could indicate either a mutation affecting both alleles 

or combined focal ID3 loss and occurrence of a mutation on the remaining allele. 

However, in either case this would functionally result in expression of only altered or 

impaired ID3 protein and therefore this effect was considered as biallelic involvement 

with respect to the effect on protein level.  

Table 27 summarizes sequencing results of the 10 heterozygous and 2 homozygous 

cloned cases, whose DNA has been subcloned. 

 Table 27: Results of ID3 clone sequencing of selected cases 

 case allele 1 (number of clones) allele 2 (number of clones) effect 

 35 c.[167C>T] (3) c.[181_209del]  (2) biallelic 

 11 c.[144C>G] (6) c.[300+1G>C] (4) biallelic 

 23 c.[236_251delinsC] (3) c.[300+1G>C] (4) biallelic 

 73 c.[81delC] (2) c.[247_248ins] (6) biallelic 

 80 c.[160C>G] (2) c.[165_166insG] (2) biallelic 

 1 c.[198_199insCTAAG] (3) c.[194G>A] (4) biallelic 

 81 c.[166C>G] (5) c.[190C>G;206T>C;229A>G]  
(2) 

biallelic 

 8 c.[144C>G;243G>C] (5) c.[236_243del] (4) biallelic 

 10 c.[153_164del] (3) c.[256_266del] (4) biallelic 

 53 c.[134_140dup]  (5) c.[209T>C] (2) biallelic 



 

 

47 Results 

4
7
 

R
e

s
u
lts

 

 Continue Table 27 

 case allele 1 (number of clones) allele 2 (number of clones) effect 

 54 c.[214_243del] (9) wildtype (1) biallelic 

 92 c.[122_130del] (5) wildtype (0) biallelic 

 

Focal ID3 loss in cases with homozygous ID3 mutation 

In order to investigate the likelihood of focal ID3 loss in cases that presented with 

homozygous characteristics in electropherogram analysis, the occurrence of genomic 

variants at SNP positions was assessed for all cases analyzed in the study cohort and 

the extended cohort. This analysis was based on the assumption that cases with 

heterozygous SNPs are less likely presenting allelic loss, while cases with only 

homozygous SNPs in ID3 could represent focal loss of one allele. SNPs within the ID3 

coding region that were investigated for this analysis are listed in appendix 10.4. 

In total, 56 cases showed at least one heterozygous SNP and 38 cases showed only 

homozygous SNPs. Interestingly, none of the cases with apparent homozygous ID3 

mutation presented with a heterozygous SNP simultaneously. Frequency of cases 

without any heterozygous SNPs was remarkably higher in cases without homozygous 

ID3 mutation (Table 28).  

 Table 28: Correlation of cases with heterozygous SNPs and ID3 mutations 
presenting homozygous 

 Heterozygous 
SNP 

total all other cases of 
study cohort and 
extended cohort 

homozygous 
ID3mut  

p value 
(Fisher) 

 

 yes 56 56 0  

 no 38 31 7  

 total 94 87 7 0.0012 

 

Mutational hotspots 

The dataset of ID3 mutations in the study cohort showed a number of recurrent changes 

affecting the same nucleotide position. For this analysis also deletions, insertions, 

duplications and InDels have been taken into account by counting the first nucleotide 

affected, respectively. 
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Changes of c.C190 were most often (13), followed by c.C166 (10) and c.C241 (5). Table 

29 gives an overview on genomic ID3 nucleotide positions that occurred to be affected 

in more than two cases.  

 Table 29: ID3 hotspot mutations (nucleotide positions affected in > 2 
cases) 

 nucleotide and position number of cases affected 

 c.C190 13 

 c.C166 10 

 c.C241 5 

 c.C167 4 

 c.C144 3 

 c.T209 3 

 c.A236 3 

 c.G300+1 3 

 

Mutations affecting the functional ID3 Helix-Loop-Helix domain 

The helix-loop-helix (HLH) domain of ID3 is the proteins functional site of interaction with 

other HLH proteins. On the genomic level 77 of 93 (83%) mutations directly occurred 

within the HLH coding region. The remaining 18 mutations were allocated either close to 

the splice-site of exon 1 (4 cases), upstream (8 cases) or downstream (5 cases) of the 

HLH domain or in the intronic region between exon 1 and 2 (1 case). Of notice, all cases 

with a mutation not directly affecting the HLH domain or the splice-site had at least a 

second mutation in the HLH domain (Figure 18). 

3.2.2.2 Results of TCF3 sequencing 

The coding region of exon 16 nearly covers the full HLH domain coding sequence. 

Furthermore it was shown by the index studies that mutations in TCF3 always occurred 

in this exon. Therefore, exon 16 was analyzed for TCF3 mutations in the study cohort. 

TCF3 mutations were identified in eight out of 84 cases. All changes were heterozygous 

substitutions and there was no case presenting multiple mutations in TCF3.  

Figure 21 shows the distribution of mutations in TCF3 exon 16. The detailed description 

of genomic variants including the predicted change on protein level is presented in 

appendix 10.1.  
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Figure 21: TCF3 mutations in the study cohort 

The coding region of TCF3 exon 16 is illustrated. Each substitution is labeled with correspondent 
description on genomic and protein level, as well as the absolute frequency of occurrence in 
brackets. The functional basic-Helix-Loop-Helix domain is mapped according to the description 
of the functional sites in UniProt entry P15923-2 (UniProt database, 2013). 

 

Frequency of TCF3 mutations according to diagnosis 

The overall finding of mutations in TCF3 was considerably lower compared to the high 

frequency of ID3 mutated cases. In BL/B-AL the frequency of TCF3 mutations was 13% 

(8/63). There were no mutations of the TCF3 gene in cases with the diagnosis of DLBCL 

or B-NHL (DD). Absolute counts of cases with (TCF3mut) and without (TCF3wt) mutations 

in TCF3 are presented in Table 30. 

 Table 30: TCF3 mutations according to diagnosis 

 Diagnosis total TCF3wt TCF3mut TCF3mut % 

 BL 49 43 6 12% 

 B-AL 14 12 2 14% 

 DLBCL 16 16 0 0% 

 B-NHL (DD) 5 5 0 0% 

 

Number and types of mutation, mutation hotspots 

Due to the small number of TCF3 mutations, it was not possible to gain informative 

results regarding different types of mutation and recurrently affected nucleotides. One 

mutation, G1675A, was present in two cases. 

Mutations affected the TCF3 bHLH domain in all cases 

All eight mutations occurred in or in between the coding region of the bHLH binding 

domain of TCF3 (Figure 21).  
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3.2.2.3 Results of CCND3 sequencing 

CCND3 exon 5 was sequenced to analyze for CCND3 mutations in the study cohort.  

Exon 5 was previously shown to represent a mutation hotspot in BL by the index studies. 

CCND3 mutations were present in 26/84 (31%) cases. The findings are depicted in  

Figure 22. The complete description of genomic variants including the predicted change 

on protein level is presented in appendix 10.1. 

 

Figure 22: CCND3 mutations in the study cohort. 

The coding region of CCND3 exon 5 is illustrated, with substitutions on the upper and more 
complex alterations (insertions, deletions, indels, duplications) on the lower site. Substitutions 
resulting in a nonsense mutation are depicted in red. Hatched bars delineate deletions and indels, 
dotted bars characterize insertions and duplications. Each mutation is labeled with correspondent 
description on genomic and protein level, as well as the absolute frequency of occurrence in 
brackets. A part of a functional helix domain is mapped according to the description of the 
functional sites in UniProt entry P30281. 

 

Frequency of CCND3 mutations according to diagnosis 

In the study cohort, 26 cases harbored CCND3 mutations. Twenty-three out of 63 BL/B-

AL cases (37%) presented with a mutation in CCND3. In DLBCL there were two out of 

16 cases affected. One mutation was present in a case with B-NHL (DD) diagnosis. 

Table 31 summarizes absolute counts of CCND3 mutations according to diagnosis. 

 Table 31: CCND3 mutations according to diagnosis 

 Diagnosis total CCND3wt CCND3mut CCND3mut % 

 BL 49 34 15 31% 

 B-AL 14 6 8 57% 

 DLBCL 16 14 2 13% 

 B-NHL (DD) 5 4 1 20% 
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Number and types of mutation 

In the analysis of the CCND3 gene, only heterozygous mutations were detected and no 

cases presenting with more than one mutation. 

The 26 cases with CCND3 mutation included 5 deletions, 11 duplications and 10 single 

nucleotide substitutions (Figure 23). 

Figure 23: CCND3 Mutation types found in 26 B-NHL cases 

 

Mutation hotspots 

Mutations affected nucleotide c.C811 with a cytosine duplication in 9 cases, resulting in 

a protein elongating frameshift. Four cases presented with c.T869G substitution and 

three cases had c.C580T mutation. 

3.2.2.4 Mutual relationship of mutations in different candidate genes and 
correlation with MYC rearrangement 

ID3, TCF3 and CCND3 sequencing results were integrated to analyze mutual 

relationship. The majority of cases with mutations had an exclusive mutation of ID3 

(51%). The combination of ID3mut and CCND3mut was present in 31% of the cases. There 

were two cases (case 12, case 33) that had mutations in all three genes. 

Table 32 and Figure 24 summarize and present different combinations of simultaneous 

occurrence of ID3, TCF3 and CCND3 mutations in non-wildtype cases. Table 34 gives 

an overview on mutual relationship of overall sequencing results including diagnosis and 

MYC rearrangement. 

 Table 32: Mutual relationship of mutations in different candidate genes 

  number of 
cases 

% of cases with mutation 

 exclusive ID3mut 32 51% 

 exclusive TCF3mut  2 3% 

 exclusive CCND3mut 4 6% 

    



 

 

52 Results 

5
2
 

R
e

s
u
lts

 

 Continue Table 32 

 exclusive ID3mut and 
TCF3mut 

3 5% 

 exclusive ID3mut and 
CCND3mut 

19 31% 

 exclusive TCF3mut and 
CCND3mut 

1 2% 

 ID3mut and TCF3mut and 
CCND3mut 

2 3% 

 total 63 100% 

 

 

Figure 24: Distribution of cases with certain combinations of ID3, TCF3 and CCND3 mutations. 

Each circles’ number represents the number of cases with mutations in the respective gene. 
Numbers in overlapping areas show summarize cases with mutations in multiple genes. 

This diagram was created using Venny (Oliveros, 2007). 
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Correlation with MYC rearrangement 

Results of Fluorescence-in-situ-Hybridization (FISH) for detection of MYC 

rearrangements were available for 78 cases of the studied cohort. Fifty-eight of 66 MYC 

rearrangement positive cases (88%) had at least one mutation in ID3 and/or TCF3 and/or 

CCND3. In contrast, within 12 MYC rearrangement negative patients only one harbored 

an ID3 mutation. 

Interestingly, the MYC FISH report of the case with ID3 mutation but no MYC 

rearrangement (case 68) states that 15% of the analyzed cells presented with an 

additional signal of MYC. In the report it was speculated that this observation might be 

the result of either a translocation with a proximal break-point of MYC or a result of a 

MYC duplication. As the MYC status of the respective case remained unclear, this case 

was not included in further MYC correlating analyses. 

 Table 33 shows the correlation between MYC rearrangement positive cases and cases 

with mutation in at least one of the three analyzed genes (p value < 0.0001). 

 

 Table 33: Correlation of mutation status with MYC rearrangement status 

  total ID3wt and TCF3wt 
and CCND3wt 

ID3mut and/or 
TCF3mut and/or 
CCND3mut 

p value (Fisher) 

 

 MYC 
rearrangement 
positive 

66 8 58  

 MYC 
rearrangement 
negative 

12 11 1  

 total 78 19 59 < 0.0001 
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Table 34: Overview of B-NHL patient sequencing results on ID3, TCF3 and CCND3 
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Reference diagnosis according to NHL-BFM study: Burkitt lymphoma (BL), Burkitt leukemia (B-AL), Diffuse large B-cell lymphoma (DLBCL), B-NHL 
unclassifiable (B-NHL DD), * no reference pathology review available;  ** no reference diagnosis available; MYC status: + MYC rearrangement positive, 
- MYC rearrangement negative, o MYC status unknown, +* MYC-Ig PCR positive; ID3, TCF3 (Exon 16) and CCND3 (Exon 5, coding region) mutation 
status: red block = mutated, black block = wildtype 
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3.2.3 Clinical characteristics and outcome according to ID3, 
TCF3 and CCND3 mutation status 

3.2.3.1 Correlation of ID3, TCF3 and CCND3 results with clinical characteristics 

Based on the high correlation between cases with mutation and concurrent MYC 

rearrangement clinical characteristics and outcome were analyzed within the group of 66 

MYC rearrangement positive B-NHL patients. 

However, there was no significant difference comparing the clinical features between 66 

MYC rearrangement positive B-NHL patients with and without ID3 mutation with respect 

to gender, age, stage of disease, BM involvement, CNS involvement and LDH levels. 

This was also the case for the comparison between TCF3mut and TCF3wt, as well as 

CCND3mut and CCND3wt cases. The clinical characteristics are summarized in Table 35. 

Regarding pEFS and pOS there were no significant differences between wildtype and 

mutated cases in the study cohort, as shown in the Kaplan-Meier plots for ID3 (Figure 

25, Figure 26), TCF3 (Figure 27, Figure 28) and CCND3 (Figure 29, Figure 30). 

 

Figure 25: Event-free survival (2 years) for 
ID3 mutated and non-mutated cases 

 

Figure 26: Overall survival (2 years) for ID3 
mutated and non-mutated cases 

  

 

Figure 27: Event-free survival (2 years) for 
TCF3 mutated and non-mutated cases 

 

Figure 28: Overall survival (2 years) for TCF3 
mutated and non-mutated cases 
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Figure 29: Event-free survival (2 years) for 
CCND3 mutated and non-mutated cases 

 

Figure 30: Overall survival (2 years) for 
CCND3 mutated and non-mutated cases 
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Table 35: Clinical characteristics of 66 MYC rearrangement positive patients with and without mutation in ID3, TCF3 and 
CCND3 

Characteristics ID3mut ID3wt p value TCF3mut TCF3wt p value CCND3mut CCND3wt p value 

Gender male 44 85% 13 93%  6 75% 51 88%  19 79% 38 90%  

 female 8 15% 1 7% 0.67 2 25% 7 12% 0.30 5 21% 4 10% 0.27 

Age < 10 31 60% 7 50%  7 88% 31 53%  16 67% 22 52%  

 10-14 14 27% 6 43%  1 12% 19 33%  5 21% 15 36%  

 > 14 7 7% 1 7% 0.48 0 0% 8 14% 0.18 3 12% 5 12% 0.44 

Stage of 
disease 

I 1 2% 2 14%  0 0% 3 6%  1 3% 2 5%  

disease II 8 17% 3 21%  4 50% 7 13%  5 21% 6 16%  

 III 25 52% 7 50%  2 25% 30 56%  8 34% 24 63%  

 IV 1 2% 1 7%  0 0% 2 4%  2 8% 0 0%  

 B-AL 13 27% 1 7% 0.18 2 25% 12 22% 0.12 8 34% 6 16% 0.09 

BM 
involvemen
t 

yes 13 25% 1 7% 0.27 2 25% 12 21% 0.67 8 33% 6 14% 0.12 

CNS 
involvemen
t 

yes 6 12% 1 7% 1.00 1 13% 5 7% 0.72 5 21% 2 5% 0.09 

LDH < 500 U/l 17 33% 9 64%  4 50% 22 39%  8 33% 18 43%  

 500-1000 
U/l 

11 21% 1 7%  2 25% 9 16%  5 21% 7 17%  

 > 1000 U/l 24 46% 4 29% 0.09 2 25% 26 46% 0.24 11 46% 17 40% 0.74 

Diagnosis BL 35 67% 11 79%  6 75% 40 69%  14 58% 32 14%  

 B-AL 13 25% 1 7%  2 25% 12 21%  8 33% 6 76%  

 DLBCL 3 6% 1 7%  0 0% 4 7%  1 4% 3 7%  

 B-NHL 
(DD) 

1 2% 1 7% 0.41 0 0% 2 3% 0.82 1 4% 1 2% 0.30 

Outcome pEFS (2y) 86 ± 5% 93 ± 7% 0.51 (LR) 88 ± 12% 88 ± 4% 0.92 
(LR) 

83 ± 8% 90 ± 5% 0.43 (LR) 

 pOS (2y) 88 ± 4% 93 ± 7% 0.64 (LR) 88 ± 12% 89 ± 4% 0.82 
(LR) 

87 ± 7% 90 ± 5% 0.74 (LR) 
Data refer to patients with successful investigation of the respective criteria. mut: mutated, wt: wildtype,, y: years, p value: probability value, BM: bone 
marrow, CNS: central nervous system, LDH: lactate dehydrogenase, U/l: Units per liter, pEFS: probability of event-free survival, pOS: probability of overall 
survival, LR: log-rank 
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3.2.3.2 Mutual relationship of mutations in the candidate genes and correlation 
with clinical characteristics 

To investigate differences between cases with certain combinations of ID3, TCF3 and 

CCND3 mutations, each combination that occurred in the mutual relationship analysis 

was evaluated separately with respect to clinical relevance.  

The genotypes were assessed for significant correlations with clinical relevance with 

respect to gender, age, stage of disease, CNS involvement, BM involvement, LDH levels, 

diagnosis, risk group and pEFS and survival. Results are summarized in Table 36. The 

complete data set of correlations between certain mutation patterns and clinical data is 

available in appendix 10.2. 

 Table 36: Correlation according to mutual relationship 

 Selection Number of 
cases 

Comparison of clinical characteristics 
according to mutated and wildtype status 

 ID3 52 no statistically significant results 

 TCF3 8 no statistically significant results  

 CCND3 24 no statistically significant results  

 ID3 exclusive 29 no statistically significant results  

 TCF3 exclusive 2 no statistically significant results  

 CCND3 exclusive 3 no statistically significant results  

 ID3 and/or TCF3 55 LDH, risk group 

 ID3 and/or CCND3 56 no statistically significant results  

 TCF3 and/or CCND3 29 gender, BM involvement, CNS 
involvement 

 ID3 and/or TCF3 and/or 
CCND3 

58 no statistically significant results  

 ID3 and TCF3 5 no statistically significant results  

 ID3 and CCND3 20 stage, BM involvement  

 TCF3 and CCND3 3 no statistically significant results  

 ID3 and TCF3 exclusive 3 gender 

 ID3 and CCND3 
exclusive 

18 stage, BM involvement, diagnosis 

 TCF3 and CCND3 
exclusive 

1 no statistically significant results  

 ID3 and TCF3 and 
CCND3 

2 no statistically significant results  
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Results of statistically significant differences are presented in the following: 

Selection: Cases with ID3 and/or TCF3 mutation 

 Frequency of ID3 and/or TCF3 mutations was higher in patients with LDH over 

500 U/l compared to patients with lower LDH levels (Table 37). 

 Frequency of ID3 and/or TCF3 mutations was higher in patients belonging to risk 

group R3 or R4 compared to patients with lower risk group (Table 38). 

 Table 37: Correlation of cases with ID3 and/or TCF3 mutation and LDH level 

 LDH level 
(U/l) 

total ID3wt and TCF3wt ID3mut and/or 
TCF3mut 

p value (Fisher) 

 

 LDH <500 26 8 18  

 LDH >=500 40 3 37  

 total 66 11 55 0.019 

 

 Table 38: Correlation of cases with ID3 and/or TCF3 mutation and risk group 

 Risk group total ID3wt and TCF3wt ID3mut and/or 
TCF3mut 

p value (Fisher) 

 

 R1 or R2 24 8 16  

 R3 or R4 40 3 37  

 total 64 11 53 0.014 

 

Selection: Cases with TCF3 and/or CCND3 mutation 

 Frequency of TCF3 and/or CCND3 mutations was higher in female patients 

compared to male patients (Table 39). 

 Frequency of TCF3 and/or CCND3 mutations was higher in patients with BM 

involvement compared to patients without BM involvement (Table 40). 

 Frequency of TCF3 and/or CCND3 mutations was higher in patients with CNS 

disease compared to patients without CNS disease (Table 41).  
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 Table 39: Correlation of cases with TCF3 and/or CCND3 mutation and 
gender 

 Gender total TCF3wt and 
CCND3wt 

TCF3mut and/or 
CCND3mut 

p value (Fisher) 

 

 male 57 35 22  

 female 9 2 7  

 total 66 38 28 0.036 

 

 Table 40: Correlation of cases with TCF3 and/or CCND3 mutation and BM 
involvement 

 BM 
involvement 

total TCF3wt and 
CCND3wt 

TCF3mut and/or 
CCND3mut 

p value (Fisher) 

 

 no 52 33 19  

 yes 14 4 10  

 total 66 37 29 0.032 

 

 Table 41: Correlation of cases with TCF3 and/or CCND3 mutation and CNS 
disease 

 CNS 
disease 

total TCF3wt and 
CCND3wt 

TCF3mut and/or 
CCND3mut 

p value (Fisher) 

 

 no 59 36 23  

 yes 7 1 6  

 total 66 37 29 0.038 
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Selection: Cases with exclusive combination of ID3 and TCF3 mutation 

 Frequency of exclusive combination of ID3 and TCF3 mutation was higher in 

female patients compared to male patients (Table 42). 

 Table 42: Correlation of cases with exclusive ID3 and TCF3 mutation and 
gender 

 Gender total Rest of the cohort ID3mut and 
TCF3mut only 

p value (Fisher) 

 

 male 57 56 1  

 female 9 7 2  

 total 63 63 3 0.047 

 

Selection: Cases with ID3 and CCND3 mutation 

 Frequency of cases with ID3 and CCND3 mutation was higher in patients with 

BM involvement compared to patients without BM involvement (Table 43). 

 Frequency of cases with ID3 and CCND3 mutation was higher in patients with 

stage B-AL compared to patients with other stages (Table 44). 

 Table 43: Correlation of cases with ID3 and CCND3 mutation and BM 
involvement 

 BM 
involvement 

total Rest of the cohort ID3mut and 
CCND3mut 

p value (Fisher) 

 

 no 52 40 12  

 yes 14 6 8  

 total 66 46 20 0.021 

 

 Table 44: Correlation of cases with ID3 and CCND3 mutation and stage 

 Stage total Rest of the cohort ID3mut and 
CCND3mut 

p value (Fisher) 

 

 I, II, III, IV 48 36 12  

 B-AL 14 6 8  

 total 62 42 20 0.048 
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Selection: Cases with exclusive combination of ID3 and CCND3 mutation 

 Frequency of exclusive combination of ID3 and CCND3 mutation was higher in 

patients with stage B-AL compared to patients with other stages (Table 45). 

 Frequency of exclusive combination of ID3 and CCND3 mutation was higher in 

patients with BM involvement compared to patients without BM involvement 

(Table 46). 

 Table 45: Correlation of cases with exclusive ID3 and CCND3 mutation and 
stage 

 Stage total Rest of the cohort ID3mut and 
CCND3mut only 

p value (Fisher) 

 

 I, II, III, IV 48 38 10  

 B-AL 14 6 8  

 total 62 43 18 0.017 

 

 Table 46: Correlation of exclusive ID3 and CCND3 mutation and BM 
involvement 

 BM 
involvement 

total Rest of the cohort ID3mut and 
CCND3mut only 

p value (Fisher) 

 

 no 52 42 10  

 yes 14 6 8  

 total 66 48 18 0.014 

 

 The occurrence of cases with mutation in two or more genes was higher in B-AL 

(9/14) when compared to BL (14/46) (Figure 31). This was also true when cases 

with ID3 and CCND3 mutations in combination were considered. These 

mutations were more often observed in B-AL compared to BL (BL 11/46, B-AL 

8/14; Fishers exact: p value < 0,045). 

Figure 31: Correlation between the number of affected genes and diagnosis  
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3.2.3.3 Number and location of ID3 mutations 

To investigate the impact of different ID3 mutations affecting specific functional regions 

of the ID3 protein on clinical characteristics, ID3 coding region was divided into four 

sections (Table 47). Sections were built upon the mutational distribution as presented in 

appendix 10.3, with section two and three representing mutations close to helix 1 and 

helix 2, respectively, and section one and four covering the up and downstream region 

of the functional domain. In cases with more complex alterations, like deletions, 

duplications and InDels, first affected amino acid residues were counted, respectively. 

 Table 47: ID3 mutation cluster analysis 

 Section Covered protein 
sequence (amino acid 
positions) 

Number of mutations in this section 

 1 1 to 40 3 

 2 40 to 59 28 

 3 60 to 80 36 

 4 81 and above 5 

 

There was no significant difference between mutations in different sections with respect 

to clinical characteristics and outcome (data not shown). 

Similar analysis was performed for the three most recurrently altered nucleotide 

positions, ID3 c.190, c.166 and c.241. There was no significant correlation for c.190 and 

c.166 cases.  

Cases with ID3 mutations that affected nucleotide position c.241 

 Frequency of ID3 mutations affecting nucleotide position c.241 was higher in 

patients with B-AL compared to BL stages I-IV. 

 Frequency of ID3 mutations affecting nucleotide position c.241 was higher in 

patients with bone marrow involvement compared to patients without bone 

marrow involvement (Table 49). 
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 Table 48: Correlation of ID3 mutations affecting c.241 and stage 

 Stage total Rest of the cohort c.241 ID3mut  p value (Fisher) 

 

 I, II, III, IV 48 47 1  

 B-AL 14 10 4  

 total 62 57 5 0.008 

 

 Table 49: Correlation of ID3 mutations affecting c.241 and BM involvement 

 BM 
involvement 

total Rest of the cohort c.241 ID3mut  p value (Fisher) 

 

 no 52 51 1  

 yes 14 10 4  

 total 66 61 5 0.006 

 

There was no difference between cases without, cases with one and cases with more 

than one mutation in ID3 regarding clinical relevance (data not shown). 
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3.3 ID3, TCF3 and CCND3 mutations in B-NHL 
patients who relapsed 

3.3.1 Patient characteristics 

To further investigate the prognostic role of ID3, TCF3 and CCND3 mutations, ten 

additional MYC rearrangement positive B-NHL patients were identified who suffered 

relapse. The initial sample not the relapse sample was analyzed. Cases were analyzed 

together with seven additional cases also suffering from relapse already included in the 

study cohort. 

3.3.2 Results of ID3, TCF3 and CCND3 sequencing 

In 17 relapsed/progressed MYC rearrangement positive B-NHL cases, occurrence of 

ID3, TCF3 and CCND3 mutations was 14/17, 1/17 and 6/17, respectively and therefore 

not significantly different from non-relapse cases with respect to frequency. 

Due to the sufficiently high number of ID3 mutations the pattern of ID3 mutations 

between cases with relapse/progress and cases with freedom of progression was 

investigated, to analyze for commonly affected mutation sites. However, there was no 

clear difference between the two groups, as visualized in Figure 32. 

Figure 32: Comparison of ID3 mutations between relapse and non-relapse cases. 

This figure refers to Figure 18. In addition, mutations found in relapsed cases are represented 
separately at the top of the figure. The respective case numbers are indicated. The blue dots 
delineate substitutions of relapsed cases. In the direct comparison there is no clear mapping of 
certain hotspot regions within relapse cases and no difference of mutational patterns compared 
to non-relapse cases.  



 

 

66 Results 

6
6
 

R
e

s
u
lts

 

3.4 ID3 sequencing in pB-ALL 

DNA samples from 96 pediatric pB-ALL patients were analyzed for ID3 mutations. Two 

out of 96 (2%) patients presented with genomic variants of ID3. Table 50 summarizes 

pB-ALL cases with genomic variants. 

pB-ALL-42 had one silent mutation in the coding sequence and duplication in the intronic 

region, likely without changes on protein level. Also pB-ALL-79 presented with a 

homozygous substitution in the intronic region. 

 Table 50: Genomic variants of ID3 in pB-ALL cases 

 pB-ALL-42 c.[240G>C(;)300+31_32dupACC] 

 pB-ALL-79 c.[301-49G>C] 

 

Unfortunately, corresponding germline material was not available for these cases to 

investigate the chance of germline mutations. However, remaining material from pB-ALL-

79 was available to perform MYC-FISH analysis showing an additional third MYC signal 

in the clones (Figure 33).  

 
 

Figure 33: MYC FiSH of pB-ALL case pB-ALL-79 

The image shows an interphase nucleus after hybridisation with fluorescent LSI MYC Dual Color 
Break Apart Rearrangement Probes (Abbott). Three MYC loci are represented by pairs of red and 
green labelled MYC specific probes (marked by arrows), indicating presence of an additional, 
third MYC locus (courtesy of Dr. A. Teigler-Schlegl, Oncogenetic Laboratory, University Gießen). 
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4 Discussion 

4.1 Patients, samples and methods 

Patients 

This study aimed to assess the frequency and relevance of ID3, TCF3 and CCND3 

mutations in pediatric B-NHL using a well-defined patient cohort that was uniformly 

diagnosed, treated and evaluated. Adequate material for tumor DNA extraction was 

available for 84 B-NHL patients representing the study cohort. In general the availability 

of tumor material for retrospective studies is limited and based on remaining samples 

after all diagnostic procedures. However, the number of samples analyzed in the study 

cohort corresponds approximately to the annual totals of pediatric B-NHL in Germany 

(GPOH Jahresbericht, 2013) and represents the so far largest cohort of pediatric B-NHL 

cases that has been analyzed and furthermore investigated for frequency and relevance 

of ID3, TCF3 and CCND3 mutations. 

All patients enrolled in this study were previously registered in the NHL-BFM study 

center. One of the aims of this infrastructure is to support and assure diagnosis and 

therapy on highest standard of care. In each case the final diagnosis was centrally 

assessed in the study center after careful review of histological, cytomorphological and 

genetic reports from associated reference institutions. The analyzed cohort of B-NHL 

patients featured the characteristics of the overall cohort and might therefore be seen as 

representative for pediatric B-NHL patients in Germany. 

Samples 

Tumor samples were available from the NHL-BFM biobank where the samples had been 

stored at minus 80 °C. DNA from pB-ALL cases was kindly provided from the ALL-BFM 

study center in Kiel (A. Möricke, M. Stanulla, M. Schrappe). The current study can serve 

as an informative example how the infrastructure of the clinical trials of the GPOH 

(Gesellschaft für Pädiatrische Onkologie und Hämatologie) supports research activities.  

For investigations of genomic alterations the tumor cell count in the samples used for 

DNA preparation is an important key point. In cases of very low tumor cell counts, 

mutations might be missed due to low representation of affected cells in the analyzed 

sample. For this reason the cytomorphological reviews of available liquid materials 

(effusion, ascites, bone marrow) were checked carefully and a sufficient percentage of 

blasts was confirmed before inclusion into this analysis. For the use of tumor tissue we 

checked the histology review report to confirm a sufficient tumor cell count. For a few 
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cases where no reference histology report was available, local pathology reports were 

used. 

Methods 

The experimental setup was tested and optimized before patient sample analysis. 

Capillary sequencing is a widely used and robust method for detection of genomic 

variants in respective DNA templates of interest. When samples showed disambiguates 

compared to the reference sequence they were analyzed again to confirm the finding. In 

all cases results were reproducible in validation experiments, giving evidence for robust 

functionality of the established experimental setup. 

In this study, tumor DNA from pediatric B-NHL samples was analyzed for mutations in 

different candidate genes. A certain limitation of the study approach lies in exclusive 

analysis of DNA extracted from the malignant cells missing the corresponding germline 

material. Therefore potential non-somatic mutations might be overseen by simply 

assuming somatic origin of the mutations found in tumor DNA. However, by the proof of 

somatic acquisition of mutations in ID3, TCF3 and CCND3 by the primary studies (Love 

et al., 2012; Richter et al., 2012; Schmitz et al., 2012) there is strong support to expect 

mutations of these genes to be acquired somatically. Also, in the previous investigation 

of ID3 variants in 209 cases of Sjögren’s syndrome, neither unknown variants nor 

germline mutations were reported (Sellam et al., 2008). In this context alterations 

detected in this study were generally considered to be somatic mutations. 

In the analyzed cohort of Richter et al. there were two cases presenting with focal loss 

of ID3 gene in the context of structural genomic alterations detected by single nucleotide 

polymorphism arrays (SNP-Array) (Richter et al., 2012). By the methods applied in the 

current study such genetical aberrations might not have been detected because PCR 

reactions only covered the genomic region of interest. Cases that presented with 

homozygous mutations might in fact be cases with complete loss of one allele and one 

remaining allele with mutation. And also for cases without mutations focal loss of ID3 

cannot be excluded. We performed detailed analyses to investigate whether biallelic ID3 

alterations differ from heterozygous alterations and could not support that hypothesis. 

Therefore the methodological risk to underestimate the rate of biallelic alterations seems 

acceptable assuming total disruption of ID3 gene function in either case. The uncertainty 

whether the rate of cases without any ID3 mutation might be overestimated and the 

clinical consequences from that risk must remain unsolved. 
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4.2 Frequency of ID3, TCF3 and CCND3 mutations in 
Burkitt lymphoma 

Recurrent genetic alterations in BL have recently been reported by three large scale 

next-generation-sequencing projects, in which all studies reported ID3 mutations to 

occur at high frequencies and almost exclusively in BL (Love et al., 2012; Richter et al., 

2012; Schmitz et al., 2012). While these studies were the first to describe genomic 

alterations of ID3 at all and equally evaluated these finding as hallmark in BL, there were 

striking differences regarding the ID3 mutation frequency in the studied cohorts, ranging 

between 34% (Love et al.), 58% (Schmitz et al.) and 68% (Richter et al.). This 

observation requires a more detailed insight into the studied cohorts, especially with 

respect to sample inclusion criteria and patient characteristics, to further evaluate 

potential causes for these inconsistencies. 

Schmitz and colleagues analyzed a collection of 78 sporadic BL samples obtained from 

pre-treatment patient biopsies and additional eleven EBV-negative BL cell lines. They 

performed Sanger sequencing of ID3, TCF3 exon 16 and CCND3 exon 5 and reported 

mutations in 58%, 11% and 38% of the cases, respectively. About one third of the 

analyzed samples were obtained from patients aged 18 or younger at diagnosis and the 

male:female ratio was 3:1. There were no information about assessment and 

confirmation of diagnosis (Schmitz et al., 2012). 

In the study of Richter et al. an extended collection of 100 MYC-rearrangement positive 

B cell lymphomas was analyzed by Sanger sequencing, showing 42 ID3 mutated cases. 

When using a previously established gene-expression classifier for selection of 

molecular BL (Hummel et al., 2006), 36 of 53 cases harbored ID3 mutations (68%). 

Regarding the molecular BL cases 65% of the analyzed samples were from patients 

aged 18 or younger at the time of diagnosis and the male:female ratio was 3:1. Histologic 

diagnosis was previously assessed in panel review. (Richter et al., 2012) 

In a third study, Love and colleagues reported ID3 mutations in 20 cases within a cohort 

of 59 MYC-rearrangement positive BL samples (34%), including 51 initial patient biopsies 

and eight cell lines. The analyzed cohort included 13 pediatric patients, however, 

information regarding age, gender and further characteristics was not available in the 

majority of cases. (Love et al., 2012)  

The current study presents the so far largest analysis of ID3, TCF3 and CCND3 mutation 

status in pediatric B-NHL and the analyzed cases were shown to feature representative 

characteristics for pediatric B-NHL in Germany (Table 25). ID3 mutations had an 

incidence of 77% in pediatric BL (including B-AL), most supporting the data from Richter 
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et al., but clearly diverging from the other two studies. In the following, selected aspects 

that contribute to these differences are discussed in more detail. 

1) Differences in the applied methods: While all primary studies used different next-

generation-sequencing technologies to analyze index cases of BL, validation of ID3 

mutations and mutation frequency assessment was performed in extended 

validation cohorts by Sanger sequencing. Primers used for PCR product 

amplification varied, but equivalently covered the coding region of exon 1 including 

the HLH coding region. Hence, differences in the applied methods are not sufficient 

to explain the variability of the reported ID3 mutation rates. 

2) Inclusion criteria of samples / diagnostic quality: The inclusion criteria for evaluation 

in the validation cohorts varied in between the presented studies (see above) and 

information on diagnostic quality was limited especially in the studies of Schmitz and 

Love. Attempts to determine the frequency of ID3 mutations in BL are further 

complicated by the diagnostic difficulty of BL. Despite enormous efforts to 

standardize histopathological differentiation of BL and DLBCL, this distinction is still 

vulnerable. Therefore careful histopathological review and description of the 

evaluated cases is necessary to allow the comparison of identified ID3 mutations 

rates. This is of exceptional importance in our study, as the rate of ID3 mutations in 

DLBCL is reported to be very low. Therefore a (un-)known mix of BL and DLBCL will 

not allow a robust estimate of the ID3 mutation rate in BL. Interestingly, Love et al. 

restricted their analyses to cases with proven MYC rearrangement. The rationale for 

that might be the attempt to enrich the analyzed cohort for BLs and to exclude 

DLBCLs, as the latter more infrequently harbor a MYC rearrangement. Despite 

these efforts, the rate of ID3 mutations in MYC positive lymphoma remains 

significantly different between the cohort reported by Love and colleagues and our 

cohort. Also not exactly known for the Love cohort, we expect that our cohort 

comprises much more pediatric B-NHL cases. Therefore the detected difference in 

the ID3 mutation rate might hint at a certain impact of patient age on the presence 

of absence of this mutation. In consequence, these data support the hypothesis of 

pathogenetic and biological differences between pediatric and adult BL. 

3) Biological differences according to patient characteristics: Primary studies included 

patients with varying distribution of age and there is strong evidence for differences 

in molecular presentation of BL between pediatric and adult patients. Trautmann et 

al. analyzed Ig repertoires and SHM status in molecularly classified BL and reported 

age biased differences in affected Ig heavy chain genes, with the mutation load 

being significantly higher in older BL patients (Trautmann et al., 2009). Furthermore, 
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McClure and colleagues studied morphologic and immunophenotypic features, as 

well as MYC and BCL2 status in Burkitt-like adult B-cell lymphoma and proposed a 

distinct biology for adult BL (McClure et al., 2005). 

These observations lead to the conclusion that ID3 mutation frequency might in fact be 

associated with more homogeneously presenting pediatric BL and occur less often in the 

more heterogeneous group of Burkitt-like adult B-cell lymphoma. 

The frequency of 13% TCF3 and 38% CCND3 mutations were consistent with the 

findings of Schmitz et al., who reported frequencies of 11% and 38% mutated cases, 

respectively (Schmitz et al., 2012). 

4.3 Functional background of ID3, TCF3 and CCND3 
mutations 

ID3 encodes for a small protein that functionally belongs to the family of dominant-

negative HLH transcription regulators and therefore lacks a basic functional site for DNA 

binding. The inhibitory effect on other HLH proteins is based on the formation of 

heterodimers via its HLH domain, causing subsequent interference on DNA binding 

capabilities to the partners transcription targets (Murre, 2005; Perk et al., 2005). In B-

cells isoform E47 of TCF3 is one of the partners interacting with ID3. Both, ID3 and TCF3 

are expressed at high levels in BL (Richter et al., 2012).  

The accumulation of ID3 mutations affecting the HLH domain was reported by the NGS 

studies. Furthermore, biallelic involvement and the occurrence of multiple mutations 

were indicated (Love et al., 2012; Richter et al., 2012; Schmitz et al., 2012). Several 

genomic mutants have been modeled and functionally analyzed in cell proliferation 

assays of ID3 mutant transfected BL cell lines and were shown to enhance G1 to S-

phase transition (Love et al., 2012; Schmitz et al., 2012). 

These findings are supported by the current study, showing that the majority of ID3 

mutations occurred in the crucial ID3 HLH-coding domain (Figure 18). Furthermore we 

found biallelic involvement in all tested cases with more than one mutation (Table 27). 

Besides large genomic deletions and insertions - partly resulting in new, early ending 

reading frames or complete loss of whole functional helices - more than two thirds of 

determined mutations were single nucleotide substitutions (Figure 20). Virtually all 

substitutions affected the HLH domain and resulted in either nonsense or missense 

mutations. The only three cases (case 5, case 56, case 78) harboring silent nucleotide 

changes had further concomitant non-silent mutations. In conclusion, all cases that were 
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affected by ID3 alterations had at least one mutation resulting in a change of ID3 amino-

acid sequence. 

As ID3 seems to be the most recurrently mutated gene in MYC rearrangement positive 

B-NHL and mutations have so far not been described in other malignancies, there is 

good evidence for a crucial role of ID3 in malignant transformation of these lymphomas. 

In this context the exceptional number and distribution of different mutations along the 

ID3 gene characterizes the fragility of ID3 protein structure with regard to successful 

function. 

The much lower frequency of TCF3 mutations promotes an inferior role in B-NHL 

compared to ID3 mutations. However, TCF3 mutations also affected its bHLH domain 

(Figure 21). Most mutations (N551K, E555Q, V557A, V557E, V559M) occurred in the 

coding region of the basic site, which is responsible for DNA binding on TCF3 targets. 

Other mutations affected the first helix (D561E) and the loop region (M575K). While the 

latter can easily be imagined to disrupt binding capabilities with ID3 and therefore might 

rescue TCF3 from ID3 inhibition, the effect of mutations affecting the DNA binding 

domain is less self-explanatory. Schmitz and colleagues showed that even mutations 

affecting the DNA binding site, like TCF3(V557E), resulted in failure of TCF3/ID3 

interaction while still being successful in binding to TCF3 targets. In general they reported 

isoform E47 to be higher expressed in TCF3 mutated cases, indicating a gain of function 

for TCF3 mutants (Schmitz et al., 2012). In this regard, ID3 and TCF3 mutations might 

both cause the same effect with respect to increased activation of TCF3 transcription 

targets. 

CCND3 was shown to be a direct target of transcriptional activation by TCF3 (Schmitz 

et al., 2012). Certain CCND3 mutant proteins have proliferative advantages by increased 

accumulation and activation of downstream targets in BL cell lines (Schmitz et al., 2012). 

The most common mutation in the current study was a frame-shift causing cytosine-

duplication at position c.811 (R271Pfs) that was also previously reported in other studies 

(Richter et al., 2012; Schmitz et al., 2012). Interestingly there were no cases with 

mutations affecting T283 in the cohort of Richter et al. and the current study, while 

Schmitz et al. reported recurrent mutations of this position in BL and DLBCL. This might 

indicate differences in the mutation pattern of CCND3 with respect to certain histology, 

as different rates of CCND3 mutations were reported for sporadic BL (38%), HIV-

associated BL (67%) and endemic BL (1.8%) (Schmitz et al., 2012). In conclusion these 

results for different groups of BL need further confirmation and evaluation in well-defined 

cohorts. 
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4.4 Clinical relevance of ID3, TCF3 and CCND3 
mutations in MYC rearrangement positive B-NHL 

Differential expression of ID proteins has previously been shown in a number of 

malignancies (Castanon et al., 2013; Kamalian et al., 2010; Kamalian et al., 2008; Li et 

al., 2010; Li et al., 2012; Sharma et al., 2012; Snyder et al., 2013; Strong et al., 2013) 

and lately evidence was provided for association between increased ID expression levels 

and more disseminated disease in prostate cancer, medulloblastoma and small lung cell 

cancer (Gupta et al., 2007; Maw et al., 2009; Phi et al., 2013). ID3 is also expressed at 

high levels in BL when compared to adult DLBCL (Richter et al., 2012), but due to its 

designated role as a tumor suppressor regarding TCF3 inhibition, its functional role in B-

NHL might be distinct from other malignancies. Mutations of ID3, TCF3 and CCND3 were 

shown to be potent drivers of cell proliferation and cell survival in mutant transfected cell 

lines (Love et al., 2012; Schmitz et al., 2012). 

First analysis of patient characteristics with respect to ID3 mutations was performed in 

the validation cohort of Richter et al. and tendencies towards lower age and favorable 

prognosis were stated for ID3 mutated cases (Richter et al., 2012). It is however difficult 

to compare pediatric and adult patients with respect to clinical characteristics and 

prognosis as treatment regimens are generally different and outcome is considerably 

worse in adult patients (Perkins and Friedberg, 2008). 

In the current study the clinical relevance of ID3, TCF3 and CCND3 mutations in pediatric 

B-NHL was investigated using the well-defined study cohort. As mutations in the three 

candidate genes were virtually exclusive in MYC rearranged cases 

(ID3mut±TCF3mut±CCND3mut: MYC rearranged 58/66 vs. MYC not rearranged 1/12; p 

value < 0.0001), relevance of the mutation status was tested within the group of 66 MYC 

rearrangement positive cases. While there was no obvious association between clinical 

characteristics and mutation status when investigating the candidate genes separately, 

certain mutational patterns in the pathway showed correlation with clinical criteria. 

Of particular note was the combination of ID3 and/or TCF3 mutations, which were 

discussed to be equivalent with respect to their function earlier. These cases were 

associated with higher LDH levels (ID3mut±TCF3mut: LDH <500 U/l 18/26 vs. LDH >=500 

U/l 37/40; p value 0.019), which is also reflected in an increased frequency of these 

cases in higher risk groups (ID3mut±TCF3mut: R1/R2 16/24 vs. R3/R4 37/40; p value 

0.014). Also, in patients with simultaneous ID3 and CCND3 mutations, the frequency of 

BM involvement and in consequence higher stage of disease was increased (exclusive 

ID3mut+CCND3mut: BM involvement yes 8/14 vs. no 10/52; p value 0.014).  These findings 
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may reflect advantages in proliferation and migration for respectively affected lymphoma 

cells, with the clinical correlate of advanced and more disseminated disease. However, 

biological interpretation of these results remains speculative for this time and must be 

evaluated in further functional analysis. 

Male patients are affected by BL up to five times more often compared to 

females (Burkhardt et al., 2005) and so far all experimental efforts to reveal the 

pathogenetic mechanism in this gender-specific shift failed. The number of female 

patients analyzed in this study was rather low in absolute count and therefore the 

interpretation of gender-specific analyses must be performed carefully. While TCF3 and 

CCND3 mutations did not associate to gender directly, the frequency of cases having 

either TCF3 mutation, CCND3 mutation or both were higher in female patients 

(TCF3mut±CCND3mut: female 7/9 vs. male 22/57; p value 0.036). This trend must be 

confirmed in a larger series of female patients before drawing any conclusions. The 

provoking hypothesis of such a study could be the assumption that BL in females is 

related to different pathogenic events as BL in males. 

Regarding ID3 mutation hotspots it is of notice that mutations affecting c.241, resulting 

in Q81* nonsense mutation on protein level, accumulated in cases with B-AL (ID3 

c.241mut: B-AL 4/14 vs. other diagnosis 1/52; p value 0.006) compared to stage I-IV 

disease. But after the inclusion of another non B-AL case in the extended cohort, the 

association turned under the level of statistical significance (data not shown). Further 

investigated ID3 hotspots at c.190 and c.166 did not show association to any clinical 

criteria. 

In our study cohort of only pediatric cases there was no association between ID3 

mutation status and age (Table 35). pEFS was 86±5% in  ID3mut cases compared to 

93±7% in ID3wt cases (log rank p value 0.5) and; rates for survival were ID3mut 88±4% 

vs. ID3wt 93±7%; (log rank p value 0.64). In certain sense, these findings represent a 

contrast to the data of Richter et al., where age-dependent ID3 mutation frequency and 

superior outcome for cases with ID3 mutations were reported. Again, one possible 

explanation is the more heterogeneous cohort analyzed by Richter et al. and the 

aforementioned general differences between BL in pediatric and adult patients. 

The detailed analyses of ID3 mutations, frequencies and patterns showed no significant 

difference comparing ID3 mutations in patients with or without relapse. This became 

more obvious after the addition of relapsed cases to the study cohort (Figure 32). None 

of the investigated genes seemed to have prognostic relevance with respect to pEFS 

and pOS (Table 35). These observations are quite comprehensible, as the high rate of 
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ID3 mutations did not offer much but the chance, that ID3 mutated cases are at a higher 

risk of relapse. The high number of ID3 mutations and recurrent involvement of its 

partners suggests an essential role of these alterations for BL lymphomagenesis, rather 

than a role for disease recurrence in a small subgroup of patients. 

4.5 ID3 mutations in pB-ALL and the role of MYC 
rearrangement 

Mature B cells have undergone Ig rearrangement and somatic hypermutation during B 

cell maturation. Initiation of malignant transformation caused by such mechanisms has 

been widely discussed and investigated in a number of studies: Goosens et al. provided 

evidence for the involvement of somatic hypermutation in the generation of chromosomal 

translocations including the Ig loci, like BL hallmark Ig/MYC (Goossens et al., 1998). 

However, Nepal and colleagues analyzed the contribution of somatic hypermutation-

mediating AID and Ig rearrangement-initiating RAGs to lymphomagenesis in MYC 

transgenic mice and did not find any direct effect between AID/RAG expression and 

subsequent lymphoma development (Nepal et al., 2008). In contrast, Pasqualluci et al. 

suggested somatic hypermutation to be the major contributor for aberrant translocations 

and mutations outside the intended locations in lymphomagenesis of DLBCL 

(Pasqualucci et al., 2001). Regarding ID3 mutations, Richter et al. showed enrichment 

of mutations in the RGYW-motif that is favorably affected by the AID (Richter et al., 

2012). 

While the actual roles of AID and RAG remain unclear with respect to malignant 

transformation and in particular generation of ID3 mutations, the analysis of pB-ALL 

cases in this study was thought to investigate the occurrence of ID3 mutations in a related 

malignancy, whose cells are pre-germinal centre cells and have not undergone somatic 

hypermutation. Assuming that the mutational mechanisms resulting in ID3 mutations are 

based on somatic hypermutation, any such mutations are unexpected in pB-ALL. And in 

fact, the vast majority of pB-ALL cases did not show any ID3 mutation and this finding 

therefore serves as next indication for a link between somatic hypermutation and ID3 

affection. However, in the cohort of 96 pB-ALL cases, two harbored genomic alterations 

in ID3. With regard to the effect on protein level, both cases presented with either silent 

or intronic alterations. Several assumptions and hypothesis might be derived from these 

findings: 

a) The two pB-ALL cases harboring ID3 variants showed genomic variants that are 

also present in germline. 
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b) The two cases might represent transitional malignancies between immature and 

mature B cell lymphoma. Cases of MYC rearrangement positive pB-ALL are 

reported at a small number (Greer et al., 2003; Hirzel et al., 2013; Meeker et al., 

2011). 

c) The underlying mechanism responsible for mutagenesis in B-NHL was also 

activated in these cases, but did not cause protein changing mutations and 

therefore remained phenotypically unobtrusive. 

d) Non-silent ID3 mutations require the environment of MYC activation, otherwise 

the ID3 mutated cells have no survival benefit and die. 

Interpretation of this finding is speculative and therefore demands further investigation 

of ID3 mutated pB-ALL cases. However, for one of the affected pB-ALL cases (pB-ALL-

79), it was possible to perform MYC-FISH analysis. While not observing any classical 

MYC rearrangement, the case presented with an additional signal of MYC in a lower 

number of cells. The third MYC signal indicates a third copy of the MYC locus and 

represents an interesting finding with respect to the concurrent finding of a genomic 

variant in ID3. Interestingly there was a similar case in the B-NHL cohort which had an 

ID3 mutation but was reported to have no MYC rearrangement but a third MYC signal 

copy (case 68). These findings raise the question whether additional MYC copies similar 

to MYC rearrangements support the occurrence of ID3 mutations. A future analysis of 

selected pB-ALL cases and other malignancies with additional MYC copies might shed 

light into mutual influence and dependency between ID3 mutations and MYC alterations. 

4.6 Consequence of ID3, TCF3 and CCND3 mutations 
in pediatric BL 

Burkitt lymphoma has been shown to be a homogenous malignancy in gene expression 

profiles, especially in comparison to the related group of DLBCL (Hummel et al., 2006; 

Lenze et al., 2011). Lately, results from whole-genome-sequencing of thirteen pediatric 

BL of the NHL-BFM group supported these observations on genomic level, showing a 

median of only 28 somatic mutations per tumor and a high frequency of recurrently 

affected genes even in the small number of twelve cases (Table 20, Table 21) (Rohde 

et al., 2013). 

In the current study, 88% of the analyzed MYC rearrangement positive cases had 

mutations in at least one of the three investigated candidate genes, representing 

affection of the ID3-TCF3-CCND3 pathway in the vast majority of pediatric BL cases 

(Figure 34).  



 

 

77 Discussion 

7
7
 

D
is

c
u

s
s
io

n
 

 
Figure 34: ID3, TCF3, CCND3 pathway with frequency of respective mutations in MYC 
rearrangement positive B-NHL. 

Modified from Schmitz and Campo (Campo, 2012; Schmitz et al., 2012). 

 

In conclusion with the homogenous genomic landscape in pediatric BL and the so far 

exclusive finding of ID3 mutations in BL, these finding stress the evident relevance of 

this pathway especially in pediatric cases. The absence of clear associations to clinical 

characteristics and prognosis may even imply an essential function of pathway-

disruption for BL lymphomagenesis. Cases presenting without mutations might still be 

affected by focal loss of ID3 or mutations in other functional partners that are involved 

up- or downstream within the same pathway, likely in the BCR pathway, PI3K, CDK4/6 

and all their regulating genes. However, additional candidates will less likely present at 

similar high frequencies, as NGS studies so far should have covered most of the highly 

recurrent genomic events in BL. Investigation of more BL cases by NGS will be helpful 

to also cover mutations in genes that are distributed around the candidates analyzed in 

this study - that might be as relevant for lymphomagenesis - but only occur at much lower 

frequencies. 

These results demand a further functional evaluation of this pathway in many respects. 

Functional dependency on MYC alterations has to be investigated to better understand 

the causes for malignant transformation and uncover underlying mutational 

mechanisms. Furthermore, the overall high number of affected cases asks for 

therapeutic-targeting of this pathway. There is first promising evidence for successful 

application and efficacy of orally available CDK4/6 inhibitor PD 0332991, shown for 

tumor mass reduction in a BL-mouse model by Schmitz et al. (Schmitz et al., 2012). 

CDK4/6 inhibitors have recently also been shown to be effective in renal cell carcinoma 

cell lines and breast cancer cell line  (Finn et al., 2009; Logan et al., 2013) and are in 

preparation for clinical phase-I and II studies in breast cancer patients (U.S. National 
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Institutes of Health, 2013). Further investigation of this pathway will shed more light on 

molecular processes in BL and hopefully reveal more specific therapeutic options. 

4.7 Conclusion of the study 

In the current study, frequency and relevance of ID3, TCF3 and CCND3 mutations were 

studied in a uniformly diagnosed and treated cohort of pediatric B-NHL patients. The 

analyzed cohort had representative characteristics for pediatric B-NHL patients in 

Germany with respect to diagnosis, clinical features and outcome.  ID3 mutations were 

present in 77% of BL/B-AL cases, TCF3 and CCND3 showed mutations in 13% and 37% 

of the cases, respectively. As a result, we demonstrated that the occurrence of mutations 

in any of the analyzed genes was positively correlated with MYC rearrangement and 

88% of MYC rearrangement positive cases had at least one mutation in one of the 

investigated genes. Regarding the clinical characteristics in MYC rearrangement positive 

B-NHL, there was no relevant association of the ID3, TCF3 and CCND3 mutation status, 

with gender, age, stage of disease, BM involvement, CNS involvement, and LDH levels. 

Outcome was not associated with the mutation status. However, there was a tendency 

towards advanced stages and more disseminated disease in cases with certain 

concurrent mutations that demands further investigation of the respective patient groups. 

In the context of relatively homogeneous genomic alterations in pediatric Burkitt 

lymphoma, the high number of ID3 mutations found in this study of pediatric B-NHL 

patients suggests an essential role for this pathway with respect to lymphomagenesis 

and the phenotype of Burkitt lymphoma. 
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5 Summary (English/German) 

B-cell Non-Hodgkin Lymphoma (B-NHL) is the most common type of Non-Hodgkin 

Lymphoma in childhood and adolescent cancer patients. B-NHL can be further classified 

into subtypes, with Burkitt lymphoma (BL) being the most common entity in pediatric 

patients. Recently published large-scale next-generation sequencing studies unveiled 

sets of recurrently mutated genes in tumor cells of pediatric and adult B-NHL patients 

and introduced functionally related Inhibitor of DNA 3 (ID3), Transcription Factor 3 

(TCF3) and Cyclin D3 (CCND3) as potential drivers of BL lymphomagenesis. However, 

validation of these findings showed inconsistent mutation rates and assessment of 

clinical relevance was limited. 

In the present study frequency and relevance of mutations in ID3, TCF3 and CCND3 

were analyzed within a well-defined cohort of 84 uniformly diagnosed and treated 

pediatric B-NHL patients. Mutation frequency was 77% (ID3), 13% (TCF3) and 37% 

(CCND3) in BL (including Burkitt leukemia) and mutations remained almost exclusive for 

MYC rearrangement positive cases. ID3 mutations were detected in remarkably higher 

frequency than previously published. There was no clear association between mutation 

status and outcome, but certain concurrent mutations where enriched in more advanced 

stages of the disease. 

As a control group of a related malignancy, 96 samples from precursor B-cell leukemia 

(pB-ALL) patients were also analyzed for ID3 mutations. As expected, no mutations were 

found, but two cases showed genomic variants in ID3. Interestingly, for one of these 

cases it was possible to show a genetic alteration involving MYC, which is usually a key 

feature of BL.  

We conclude, that almost 90% of MYC rearrangement positive B-NHL harbored 

mutations in at least one of the investigated genes and therefore this study promotes the 

corresponding pathway to play an essential role in BL and especially in pediatric cases. 

 

  



 

 

80 Summary (English/German) 

8
0
 

S
u

m
m

a
ry

 (E
n

g
lis

h
/G

e
rm

a
n
) 

Zusammenfassung 

B-Zell Non-Hodgkin Lymphome (B-NHL) sind der häufigste Typ von Non-Hodgkin 

Lymphomen bei Kindern und Jugendlichen mit malignen Krebserkrankungen. B-NHL 

können weiter in Subtypen klassifiziert werden, in denen das Burkitt Lymphom (BL) die 

häufigste Entität bei Kindern und Jugendlichen darstellt. In der jüngsten Zeit haben 

Ganzgenomsequenzierungen von Tumorproben eine Liste von besonders häufig 

mutierten Genen in B-NHL von pädiatrischen und erwachsenen Patienten gezeigt. Unter 

anderem wurden die funktionell zusammenhängenden Kandidaten ID3, TCF3 und 

CCND3 als mögliche Antreiber der Lymphompathogenese bei BL beschrieben. 

Allerdings zeigten sich in verschiedenen Studien inkonsistente Mutationsfrequenzen und 

die Untersuchung der klinischen Bedeutung war limitiert. 

In dieser Studie wurden die Frequenz und Relevanz von Mutationen in den drei 

Kandidatengenen ID3, TCF3 und CCND3 in einer klar definierten Kohorte von 84 

einheitlich diagnostizierten und behandelten pädiatrischen Fällen mit B-NHL untersucht. 

In BL (inklusive Burkitt Leukämie) waren die Mutationsfrequenzen 77% (ID3), 13% 

(TCF3) und 37% (CCND3) und in Bezug auf die Gesamtkohorte kamen Mutationen in 

den untersuchten Kandidatengenen fast ausschließlich in Fällen mit gleichzeitiger MYC-

Translokation vor. Die Frequenz der ID3 Mutationen war unerwartet höher als bisher 

publiziert. Es zeigte sich kein klarer Zusammenhang zwischen dem Mutationsstatus und 

der Prognose. Es ergaben sich jedoch Hinweise für einen Zusammenhang von 

bestimmten Mutationskombinationen mit höheren Krankheitsstadien.  

In einer Kontrollgruppe von 96 pädiatrischen Fällen mit einer akuten Vorläufer-B-Zell 

lymphoblastischen Leukämie ließen sich keine ID3 Mutationen feststellen, sondern 

lediglich zwei Fälle mit nichtkodierenden Varianten. Interessanterweise gelang es, für 

einen dieser Fälle eine genetische Aberration des MYC-Gens nachzuweisen, dessen 

Translokation eigentlich die typische molekulare Veränderung für BL ist. 

Zusammenfassend lässt sich festhalten, dass nahezu 90% der untersuchten MYC-

rearrangierten pädiatrischen B-NHL eine Mutation in mindestens einem der drei 

untersuchten Kandidatengene aufwiesen und damit unterstreicht diese Arbeit die 

besondere Rolle der beschriebenen Gene, insbesondere in pädiatrischen Burkitt 

Lymphomen.
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6 List of abbreviations 

A/T Adenine/Thymine 

ACB Actibated B cell 

AID Activation-Induced cytidine Deaminase (protein) 

ALL-BFM Acute lymphoblastic leukemia - Berlin Frankfurt Münster study 
group 

ARF CDKN2A gene, alternate reading frame (gene) 

B-AL Burkitt Leukemia 

BAX bcl-2-like protein 4 (gene) 

BCL2 B-cell lymphoma 2  (gene) 

BCL6 B-cell lymphoma 6  (gene) 

B-CLL B-cell chronic lymphocytic leukemia 

BCR B cell receptor 

bHLH basic-Helix-loop-helix 

BL Burkitt Lymphoma 

BM bone marrow 

B-NHL B-cell Non-Hodgkin lymhoma 

B-NHL (DD) B-cell Non-Hodgkin lymphoma, unclassifiable between DLBCL 
and BL 

bp Base-pairs 

CCD Charge coupled device 

CCG Children's cancer group 

CCND3 G1/S-specific cylin-D3 (gene) 

CD Cluster of Differentiation 

CDK4/6 Cyclin-dependent kinase 4/6 (protein) 

CDKN2A Cyclin-dependent kinase inhibitor 2A (gene) 

c-MYC cellular - myelocytomatosis viral oncogene 

CNS Central nervous system 

CSR Class Swichting Recombination 

CXCL13 B lymphocyte chemoattractant (protein) 

CXCR5 Receptor 

Cyclin D3 G1/S-specific cyclin-D3 (protein) 

dATP Deoxyadenosine triphosphate 
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dbSNP Single Nucleotide Polymorphism Database 

ddH2O double distilled Water 

ddNTPs Dideoxynucleotides 

DDX3X ATP-depentdent RNA helicase DDX3X (gene) 

DKFZ Deutsches Krebsforschungszentrum 

DLBCL Diffuse Large B cell Lymphoma 

DLBCL-CB Diffuse large B-cell lymphoma - centroblastic variant 

DNA Deoxyribonucleic acid 

dNTP 2-Desoxyribonucleosid–5-triphosphate 

dNTPs Deoxyribonucleotides 

E.coli Escherichia coli 

e.g. exempli gratia 

E12 Isoform of TCF3 

E47 Isoform of TCF3 

EBF1 Early B cell Factor 1 (gene) 

EBV Epstein-Bar-Virus 

EDTA Ethelenediaminetetraacetic acid 

FAB French-American-British classification 

FBXO11 F-box only protein 11 (gene) 

FISH Fluorescence in situ hybridization 

g Gram 

G/C Guanine/Cytosine 

GC germinal centers 

GCB Germinal Center B cell 

GPOH  Gesellschaft für Pädiatrische Onkologie und Hämatologie 

H2O Water 

H-chain Heavy chain 

HIV Human immunodeficiency virus 

HLH Helix-loop-helix 

HSC Hematopoetic stemm cell 

ICGC International Cancer Genome Consortium 

ICGC-MMML-Seq International Cancer Genome Consortium - Molecular 
Mechanisms of Malignant Lymphoma by Sequencing 

ID1 Inhibitor of DNA 1 
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ID2 Inhibitor of DNA 2 

ID3 Inhibitor of DNA 3 

Ig Immunoglobulin 

Il Interleukin 

InDel Deletion followed by an Insertion 

IRF4 Interferon regulatory factor 4 (gene) 

kb Kilo base-pairs 

L-chain Light chain 

LDH Lacate dehydrogenase 

LR Log rank test 

M13 M13 primer 

MDM-2 Mouse double minute 2 homolog (gene) 

mut mutated 

MYC see c-MYC 

NCBI National Center for Biotechnology Information 

NGS Next-generation sequencing 

NHL Non-Hodgkin Lymphoma 

NHL-BFM Non-Hodgkin lymphoma - Berlin Frankfurt Münster study group 

OD Optical density 

p value probability value 

p21 p21/WAF1 (cyclin-dependent kinase inhibitor 1) (protein) 

p27 cyclin-dependent kinase inhibitor 1B (protein) 

P2RY8 P2Y purinoceptor 8 (gene) 

p53 protein 53 (protein) 

PAX5 Paired Box 5 (gene) 

pB-ALL Precursor B-cell acute lymphoblastic leukemia 

PBX1 Pre-B-cell leukemia transcription factor 1 (gene) 

PCR Polymerase chain reaction 

pEFS probability of event free survival 

PI3K Phosphatidylinositide 3-kinases 

PMBL Primary mediastinal B-cell lymphoma 

pOS probability of overall survival 

pre-B pre-B cell 
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pre-BCR pre-B cell receptor 

pro-B pro-B cell 

R Risk group 

Rag-1/-2 Recombination-activating gene 1/2 (genes) 

RB1 retinoblastoma 1 (gene) 

Rb1 Retinoblastoma protein 

RNA Ribonucleic acid 

SHM Somatic Hypermutation 

SMARCA4 ATP-dependent helicase SMARCA4 (gene) 

SNP Single Nucleotide Polymorphism 

SNP-Array Single Nucleotide Polymorphism-Array 

SNV Single Nucleotide Variation 

TAE Tris base, acetic acid, EDTA buffer 

TCF3 Transcription Factor 3 (gene) 

TdT Terminal deoxynucleotidyl transferas 

TP53 tumor protein 53 (gene) 

TP73 tumor protein 73 (gene) 

U Units 

UV Ultraviolett (light) 

V Volt 

VDJ Variable, Diversity, Joinging segments 

WHO  World Health Organization 

wt wildtype 

X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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10.1 Overall sequencing results on B-NHL patients 

Overall ID3, TCF3 and CCND3 sequencing results on 84 B-NHL patients from the study cohort and 10 B-NHL patients from the extended cohort 

case diagnosis MYC 
rearr. 

DNA 
origin 

c.ID3 p.ID3 c.TCF3 p.TCF3 c.CCND3 p.CCND3 

1 BL yes ascites c.[198_199insCTAAG];[c.194G>A
] 

p.[V67fs*16];[S65N] wt wt c.[850C>T] p.[P284S] 

2 BL yes tissue wt wt c.[1724T>A] p.[M575K] c.[811dupC] p.[R271Pfs*53] 

3 BL yes tissue wt wt wt wt wt wt 

4 BL yes tissue wt wt wt wt wt wt 

5 BL yes tissue c.[141C>A(;)144C>T(;)166C>T] p.[C47*(;)P56S] wt wt c.[758_759dupA
G] 

p.[S254Rfs*50] 

6 DLBCL N/A tissue wt wt wt wt wt wt 

7 B-AL yes tissue c.[241C>T] p.[Q81*] wt wt c.[869T>G] p.[I290R] 

8 BL yes tissue c.[144C>G;243G>C];[236_243del
ACCTGCAG] 

p.[Y48*;Q81H];[D79GfsSPGRAS
PWTP*] 

wt wt wt wt 

9 BL yes tissue c.[180_190delAGGCACTCAGC] p.[R60Sfs*] wt wt c.[811dupC] p.[R271Pfs*53] 

10 BL yes pleura c.[153_164delGCGGGAACTGGT
];[256_266delGAGCCAGCCCC] 

p.[R52_V55del];[E86WfsTP*] wt wt wt wt 

11 BL yes ascites c.[144C>G];[300+1G>C] p.[Y48*];[V72_Q100del] wt wt wt wt 

12 BL yes tissue c.[236_247delACCTGCAGGTAG
] 

p.[L80PfsGRASPWTP*] c.[1675G>A] p.[V559M] c.[857_878delA
TGTCACAGCC
ATACACCTGT
A] 

p.[D286GfsPGE
ALWSGH*] 

13 BL yes ascites c.[142T>A] p.[Y48N] wt wt wt wt 

14 B-AL yes bm c.[241C>T] p.[Q81*] wt wt c.[778C>T] p.[Q260*] 

15 BL yes tissue c.[120delG(;)166C>T] p.[L40FfsWTT*(;)P56S] wt wt wt wt 

16 B-AL yes tissue c.[211C>T(;)241C>T] p.[Q71*(;)Q81*] wt wt wt wt 

17 DLBCL no tissue wt wt wt wt wt wt 

18 DLBCL N/A tissue wt wt wt wt wt wt 

19 B-NHL yes tissue wt wt wt wt c.[786_796dup] p.[A266Pfs*40] 

20 BL yes tissue wt wt wt wt wt wt 

21 DLBCL no tissue wt wt wt wt wt wt 
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case diagnosis MYC 
rearr. 

DNA 
origin 

c.ID3 p.ID3 c.TCF3 p.TCF3 c.CCND3 p.CCND3 

22 BL yes tissue wt wt wt wt wt wt 

23 BL yes tissue c.[236_251delinsC];[300+1G>C] p.[D79Gfs*?];[V72_Q100del] c.[1663G>C] p.[E555Q] wt wt 

24 BL yes tissue c.[190C>T] p.[L64F] wt wt c.[811dupC] p.[R271Pfs*53] 

25 BL yes tissue c.[143A>G] p.[Y48C] wt wt wt wt 

26 BL yes tissue c.[189delG] p.[Q63HfsLARWKSYSASSTTFS
TCR*] 

wt wt wt wt 

27 B-NHL yes tissue c.[152T>C(;)228C>G] p.[L51P(;)Y76*] wt wt wt wt 

28 DLBCL no tissue wt wt wt wt wt wt 

29 BL no tissue wt wt wt wt wt wt 

30 DLBCL yes tissue wt wt wt wt wt wt 

31 DLBCL yes ascites c.[166C>T(;)211C>T] p.[P56S(;)Q71*] wt wt c.[811dupC] p.[R271Pfs*53] 

32 BL yes tissue c.[190C>T] p.[L64F] c.[1653T>A] p.[N551K] wt wt 

33 BL yes tissue c.[190C>T] p.[L64F] c.[1675G>A] p.[V559M] c.[766_767delA
G] 

p.[R256Gfs*56] 

34 BL yes tissue wt wt wt wt wt wt 

35 BL yes tissue c.[167C>T];[181_209delGGCACT
CAGCTTAGCCAGGTGGAAATC
CT] 

p.[P56L];[G61WfsKSYSASSTTF
STCR*] 

wt wt wt wt 

36 BL yes pleura c.[167C>T(;)190C>T] p.[P56L(;)L64F] wt wt wt wt 

37 BL yes tissue c.[166_167delinsTT] p.[P56F] wt wt wt wt 

38 BL yes tissue wt wt wt wt c.[869T>G] p.[I290R] 

39 BL yes pleura c.[191_195delTTAGC] p.[L64PfsGGNPTARHRLHSRPA
GSPGRASPWTP*] 

wt wt wt wt 

40 B-AL yes bm c.[300+1G>T] p.[V72_Q100del] wt wt c.[782_792delC
CAGCTCCAGC
] 

p.[S263Afs*56] 

41 DLBCL no tissue wt wt wt wt wt wt 

42 B-NHL no tissue wt wt wt wt wt wt 

43 BL yes tissue c.[27_40delCTGCTACGAGGCG
G;202delG];[202delG];[27_40del
CTGCTACGAGGCGG] 

p.[C10VfsLPVGTQSGHRPGPRE
GPGS*;E68KfsSYSASSTTFSTC
R*];[E68KfsSYSASSTTFSTCR*];[
C10VfsLPVGTQSGHRPGPREG
PGS*] 

wt wt c.[811dupC] p.[R271Pfs*53] 

44 B-AL yes bm c.[137A>C(;)241C>T] p.[H45P(;)Q81*] wt wt c.[869T>A] p.[I290K] 
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case diagnosis MYC 
rearr. 

DNA 
origin 

c.ID3 p.ID3 c.TCF3 p.TCF3 c.CCND3 p.CCND3 

45 BL yes tissue c.[190C>T(;)233T>C] p.[L64F(;)L78P] wt wt wt wt 

46 DLBCL no tissue wt wt wt wt wt wt 

47 DLBCL yes tissue c.[241C>T] p.[Q81*] wt wt wt wt 

48 B-AL yes bm c.[181_270del] p.[G61_G90del] wt wt c.[850C>T] p.[P284S] 

49 BL yes tissue c.[116_delG] p.[S36Tfs*5] wt wt wt wt 

50 B-AL yes tissue c.[166C>T(;)209T>C] p.[P56F(;)L70P] wt wt c.[869T>G] p.[I290R] 

51 DLBCL no tissue wt wt wt wt wt wt 

52 B-AL yes bm wt wt c.[1670T>C] p.[V557A] wt wt 

53 BL yes tissue c.[134_140dupACCACTG];[209T
>C] 

p.[C48*];[L70P] wt wt wt wt 

54 BL yes pleura c.[214_243del;(214_243del)] p.[R72_Q81del;(R72_Q81del)] wt wt c.[811dupC] p.[R271Pfs*53] 

55 BL yes tissue c.[144C>G;(144C>G)] p.[Y48*;(Y48*)] wt wt c.[811dupC] p.[R271Pfs*53] 

56 DLBCL yes tissue c.[137A>C(;)161T>A(;)300+44T>
C(;)300+85C>T] 

p.[H45P(;)L54Q] wt wt wt wt 

57 BL N/A tissue c.[190C>T(;)230T>A] p.[L64F(;)I77N] wt wt c.[811dupC] p.[R271Pfs*53] 

58 DLBCL no tissue wt wt wt wt wt wt 

59 BL yes tissue c.[167C>G] p.[P56R] wt wt c.[850C>T] p.[P284S] 

60 DLBCL N/A tissue wt wt wt wt c.[864_873delA
GCCATACAC] 

p.[A289CfsSPG
EALWSGH*] 

61 BL yes pleura c.[141C>A(;)190C>T] p.[C47*(;)L64F] wt wt wt wt 

62 DLBCL no tissue wt wt wt wt wt wt 

63 BL yes ascites wt wt c.[1683T>G] p.[D561E] wt wt 

64 B-AL yes bm c.[167C>G] p.[P56R] wt wt c.[869T>G] p.[I290R] 

65 BL yes tissue wt wt wt wt wt wt 

66 B-AL yes bm c.[135C>G(;)166C>T(;)190C>T] p.[N45K(;)P56S(;)L64F] c.[1670T>A] p.[V557E] wt wt 

67 BL yes tissue c.[142T>G(;)166C>G(;)190C>G] p.[Y48D(;)P56A(;)L64V] wt wt wt wt 

68 B-NHL no pleura c.[20T>A(;)164T>A] p.[V7E(;)V55E] wt wt wt wt 

69 BL yes tissue c.[190C>T] p.[L64F] wt wt wt wt 

70 DLBCL N/A tissue c.[152_174dup(;)209T>G] p.[P59Cfs*32(;)L70R] wt wt wt wt 

71 BL yes ascites c.[122_140delTGGACGACATGA
ACCACTG_insC;(122_140delTG

p.[L41Pfs*73;(L41Pfs*73] wt wt c.[826C>T] p.[Q276*] 
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case diagnosis MYC 
rearr. 

DNA 
origin 

c.ID3 p.ID3 c.TCF3 p.TCF3 c.CCND3 p.CCND3 

GACGACATGAACCACTG_insC)
] 

72 BL yes ascites c.[243dupA] p.[V82Gfs*11] wt wt wt wt 

73 BL yes pleura c.[81delC];[247_248insTCTACAG
CGCGTCATCGACTACATTCTC
GACCTGCAGGTAG] 

p.[R28EfsGRARQLRSR*];[L84Yf
s*12] 

wt wt wt wt 

74 BL yes pleura wt wt wt wt c.[838C>T] p.[Q280*] 

75 BL yes tissue c.[166C>T] p.[P56S] wt wt wt wt 

76 B-AL yes bm c.[167_182dupCCGGAGTCCCG
AGAGG] 

p.[T62RfsSPERHSA*] wt wt c.[811dupC] p.[R271Pfs*53] 

77 BL yes tissue wt wt wt wt wt wt 

78 B-AL yes bm c.[189dedelG;193A>T];[190C>T] p.[Q63HfsFARWKSYSASSTTFS
TCR*];[L64F] 

wt wt wt wt 

79 B-AL yes bm c.[160C>G(;)164T>C] p.[L54V(;)V55A] wt wt wt wt 

80 B-NHL N/A tissue c.[160C>G];[165_166insG] p.[L54V];[P56AfsRSPERHSA*] wt wt wt wt 

81 B-AL yes bm c.[166C>G];[190C>G;206T>C;22
9A>G] 

p.[P56A];[L64V(;)I69T(;)I77V] wt wt wt wt 

82 BL no tissue wt wt wt wt wt wt 

83 BL yes tissue c.[166C>T(;)190C>T] p.[P56S(;)L64F] wt wt wt wt 

84 BL yes tissue c.[157delG(;)166C>G(;)209T>A] p.[P56A(;)E53NfsWYPESREALS
LARWKSYSASSTTFSTCR*(;)L7
0Q] 

wt wt wt wt 

 

extended cohort (cases 85-94) 

case 
ID 

diag. myc 
rearr. 

tumor 
origin 

ID3 (coding) ID3 (protein) TCF3 (coding) TCF3 (protein) CCND3 
(coding) 

CCND3 
(protein) 

85 BL yes ascites c.[190C>T(;)300+1G>C] p.[L64F(;)V72_Q100l] wt wt wt wt 

86 BL yes tissue wt wt wt wt wt wt 

87 BL yes tissue c.[166C>T(;)202lG] p.[P56S(;)E68KfsSYSASSTTFST
CR*] 

wt wt wt wt 

88 BL yes pleura wt wt wt wt wt wt 

89 BL yes ascites c.[167C>G;(167C>G)] p.[P56R;(P56R)] wt wt wt wt 

90 BL yes tissue c.[241C>T(;)300G>A(;)310C>T] p.[Q81*(;)Q100Q(;)L103F] c.[1675G>A] p.[V559M] wt wt 
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case diagnosis MYC 
rearr. 

DNA 
origin 

c.ID3 p.ID3 c.TCF3 p.TCF3 c.CCND3 p.CCND3 

91 BL yes tissue c.[93_dupG;(93_dupG)] p.[G31fsPGS*;(G31fsPGS*)] wt wt c.[856_866dup
GA] 

p.[D286Efs*18] 

92 B-NHL yes tissue c.[122_130lTGGACGACinsA;(12
2_130lTGGACGACinsA)] 

p.[L41Hfs*21;(L41Hfs*21)] wt wt wt wt 

93 B-AL yes bm c.[45C>A(;)202G>T] p.[C15*(;)E68*] wt wt wt wt 

94 B-AL yes tissue c.[190C>T(;)298C>T] p.[L64F(;)Q100*] wt wt c.[811dupC] p.[R271Pfs*53] 

 

wt: wildtype, bm: bone marrow, MYC rearr.: MYC-rearrangment, N/A: not available   
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10.2 Correlation between certain mutational patterns and clinical data 

Correlation between certain mutational patterns within 66 MYC rearrangement positive cases and clinical data. 

 ID3 ± CCND3 ID3 ± TCF3 TCF3 ± CCND3 ID3 ± TCF3 ± CCND3 

  mutated wildtype p value mutated wildtype p value mutated wildtype p value mutated wildtype p value 

Gender male 48 9  47 10  22 35  50 7  

 female 8 1 1.00 8 1 1.00 7 2 0.04 8 1 1.00 

Age < 10 34 4  34 4  21 17  36 2  

 10-14 15 5  14 6  5 15  15 5  

 > 14 7 1 0.34 7 1 0.16 3 5 0.81 7 1 0.09 

Stage of 
disease 

I 2   1 2  1 2  2 1  

II 10 1  9 2  7 4  10 1  

III 25 1  26 6  9 23  26 6  

IV 2 7  1 1  2 0  2 0  

B-AL 13 1 0.55 14 0 0.05 10 4 0.02 14 0 0.33 

BM 
involvement 

yes 13 1 0.68 14 0 0.10 10 4 0.03 14 0 0.19 

CNS 
involvement 

yes 7 0 0.58 6 1 1.00 6 1 0.04 7 0 0.58 

LDH level 
(U/l) 

< 500 20 6  18 8  10 16  20 6  

500-1000 11 1  11 1  6 6  11 1  

> 1000 25 3 0.34 26 2 0.05 13 15 0.75 27 1 0.08 

Diagnosis BL 38 8  37 9  17 29  39 7  

 B-AL 13 1  14 0  10 4  14 0  

 DLBCL 3 1  3 1  1 3  3 1  

 B-NHL (DD) 2 0 0.67 1 1 0.18 1 1 0.12 2 0 0.36 

Outcome  pEFS (2y) 87 ± 4% 90 ± 9% 0.8 (LR) 87 ± 5% 91 ± 9% 0.71 (LR) 83 ± 7% 92 ± 4% 0.27 (LR) 88 ± 4% 88 ±12% 0.99 (LR) 

 pOS (2y) 89 ± 4% 90 ± 9% 0.95 (LR) 89 ± 4% 91 ± 9% 0.86 (LR) 86 ± 7% 92 ± 4% 0.47 (LR) 90 ± 4% 88 ±12% 0.84 (LR) 
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 ID3 exclusive TCF3 exclusive CCND3 exclusive ID3 + TCF3 

  mutated wildtype p value mutated wildtype p value mutated wildtype p value mutated wildtype p value 

Gender male 28 29  2 55  3 54  3 54  

 female 1 8 0.07 0 9 1.00 0 9 1.00 2 7 0.13 

Age < 10 15 23  2 36  2 36  4 34  

 10-14 10 10  0 20  1 19  1 19  

 > 14 4 4 0.7 0 8 0.47 0 8 0.8 0 8 0.52 

Stage of 
disease 

I 1 2  0 3  1 2  0 3  

II 3 8  0 11  1 10  3 8  

III 17 15  1 31  0 32  1 31  

IV 0 2  0 2  1 1  0 2  

B-AL 4 10 0.27 1 13 0.87 0 14 0.002 1 13 0.14 

BM 
involvement 

yes 4 10 0.24 1 13 0.38 0 14 1.00 1 13 11.00 

CNS 
involvement 

yes 1 6 0.12 0 7 1 1 6 0.29 1 6 0.44 

LDH level 
(U/l) 

< 500 10 16  0 26  2 24  3 23  

500-1000 5 7  0 12  0 12  2 10  

> 1000 14 14 0.68 2 26 0.25 1 27 0.54 0 28 0.12 

Diagnosis BL 22 24  1 45  2 44  4 42  

 B-AL 4 10  1 13  0 14  1 13  

 DLBCL 2 2  0 4  0 4  0 4  

 B-NHL (DD) 1 1 0.63 0 2 0.78 1 1 0.16 0 2 0.9 

Outcome  pEFS (2y) 93 ± 5% 84 ± 6 % 0.27 (LR) no 
events 

87 ± 4% 0.61 (LR) no 
events 

87 ± 4% 0.52 (LR) 80 ± 
18% 

88 ± 4% 0.50 (LR) 

 pOS (2y) 93 ± 5% 86 ± 6% 0.4 (LR) no 
events 

89 ± 4% 0.63 (LR) no 
events 

89 ± 4% 0.55 (LR) 80 ± 
18% 

90 ± 4% 0.42 (LR) 
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 ID3 + CCND3 TCF3 + CCND3 ID3 + TCF3 + CCND3 ID3 + TCF3 exclusive 

  mutated wildtype p value mutated wildtype p value mutated wildtype p value mutated wildtype p value 

Gender male 15 42  3 54  2 55  1 56  

 female 5 4 0.11 0 9 1.00 0 9 1.00 2 7 0.05 

Age < 10 13 25  2 36  1 37  3 35  

 10-14 4 16  1 19  1 19  0 20  

 > 14 3 5 0.48 0 8 0.8 0 8 0.77 0 8 0.31 

Stage of 
disease 

I 0 3  0 3  0 3  0 3  

II 3 8  2 9  1 10  2 9  

III 8 24  1 31  1 31  0 32  

IV 1 1  0 2  0 2  0 2  

B-AL 8 6 0.16 0 14 0.25 0 14 0.76 1 13 0.18 

BM 
involvement 

yes 8 6 0.02 0 14 1.00 0 14 1.00 1 13 0.52 

CNS 
involvement 

yes 4 3 0.19 0 7 1.00 0 7 1.00 1 6 0.29 

LDH level 
(U/l) 

< 500 5 21  2 24  1 25  2 24  

500-1000 5 7  1 11  1 11  1 11  

> 1000 10 18 0.27 0 28 0.31 0 28 0.35 0 28 0.31 

Diagnosis BL 11 35  3 43  2 44  2 44  

 B-AL 8 6  0 14  0 14  1 13  

 DLBCL 1 3  0 4  0 4  0 4  

 B-NHL (DD) 0 2 0.09 0 2 0.71 0 2 0.82 0 2 0.92 

Outcome  pEFS (2y) 80 ± 9% 91 ± 4% 0.22 (LR) no 
events 

87 ± 4% 0.52 (LR) no 
events 

87 ± 4% 0.61 (LR) 67 ± 
27% 

89 ± 4% 0.16 (LR) 

 pOS (2y) 84 ± 8% 91 ± 4% 0.48 (LR) no 
events 

89 ± 4% 0.55 (LR) no 
events 

89 ± 4% 0.63 (LR) 67 ± 
27% 

90 ± 4% 0.11 (LR) 
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 ID3 + CCND3 exclusive TCF3 + CCND3 exclusive 

  mutated wildtype p value mutated wildtype p value 

Gender male 13 44  1 56  

 female 5 4 0.05 0 9 1.00 

Age < 10 12 26  1 37  

 10-14 3 17  0 20  

 > 14 3 5 0.31 0 8 0.69 

Stage of 
disease 

I 0 3  0 3  

II 2 9  1 10  

III 7 25  0 32  

IV 1 1  0 2  

B-AL 8 6 0.77 0 14 0.32 

BM 
involvement 

yes 8 6 0.01 0 14 1.00 

CNS 
involvement 

yes 4 3 0.08 0 7 1.00 

LDH level 
(U/l) 

< 500 4 22  1 25  

500-1000 4 8  0 12  

> 1000 10 18 0.21 0 28 0.46 

Diagnosis BL 9 37  1 45  

 B-AL 8 6  0 13  

 DLBCL 1 3  0 4  

 B-NHL (DD) 0 2 0.04 0 2 0.93 

Outcome  pEFS (2y) 77 ± 
10% 

92 ± 4% 0.14 (LR) no 
events 

88 ± 4% 0.72 (LR) 

 pOS (2y) 83 ± 9% 92 ± 4% 0.35 (LR) no 
events 

89 ± 4% 0.74 (LR) 

 

All data refer to patients with successful investigation of the respective criteria. mut: mutated, wt: wildtype,, y: years, p value: probability value, BM: bone marrow, 
CNS: central nervous system, LDH: lactate dehydrogenase, U/l: Units per liter, pEFS: probability of event-free survival, pOS: probability of overall survival, LR: 
log-rank 
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10.3 ID3 gene segmented into sections 

The ID3 gene plot was segmented to four sections that were separately analyzed for relevance with respect to clinical characteristics. 
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115 Appendix 

10.4 List of SNP identifiers 

This list presents identifiers of Single nucleotide polymorphisms (SNPs) according to the dbSNP 
database (NCBI dbSNP database, 2013) that were taken into account in sequence analysis and  
data interpretation.  

 

 dbSNP identifier (ID3) 

 rs201368186 

 rs81216731 

 rs184371695 

 rs146711026 

 rs41268121 

 rs150987910 

 rs11574 

 rs202157091 

 rs139428797 

 rs201697476 

 rs201313484 

 rs147380623 

 rs26739388 

 rs147934602 

 rs74062742 

 rs201701997 

 rs190449947 

 rs11542315 

 rs146163818 

 rs199661785 

 rs142720912 

 rs61749352 

 rs138633497 

 rs201168120 

 rs146156581 

 rs2067053 

 rs200199499 

 rs34462407 

 rs142466418 

 rs146830460 

 rs140027264 

 rs148870313 

 rs148996867 

 rs138679775 

 rs11542319 

 rs180772482 

 rs141280661 

 dbSNP identifier (ID3) 

 rs147689987 

 rs11542317 

 rs201488898 

 rs81216730 
 

 dbSNP identifier (TCF3) 

 rs187316941 

 rs200962332 

 rs201939465 

 rs200433738 

 rs182233043 
 

 dbSNP identifier (CCND3) 

 rs1051130 

 rs201507759 

 rs200046302 

 rs147958536 

 rs202197675 

 rs142862109 

 rs3218101 

 rs3218103 

 rs3218102 

 rs33966734 
 

 



 

 

1
1
6
 

L
is

t o
f p

u
b

lic
a

tio
n

s
 

116 List of publications 

11 List of publications 

Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated 

genome, exome and transcriptome sequencing. 

Nature Genetics, 2012 (Richter J, Schlesner M, Hoffmann S, Kreuz M, Leich E, Burkhardt B, 

Rosolowski M, Ammerpohl O, Wagener R, Bernhart SH, Lenze D, Szczepanowski M, Paulsen 

M, Lipinski S, Russell RB, Adam-Klages S, Apic G, Claviez A, Hasenclever D, Hovestadt V, 

Hornig N, Korbel JO, Kube D, Langenberger D, Lawerenz C, Lisfeld J, Meyer K, Picelli S, 

Pischimarov J, Radlwimmer B, Rausch T, Rohde M, Schilhabel M, Scholtysik R, Spang R, 

Trautmann H, Zenz T, Borkhardt A, Drexler HG, Möller P, MacLeod RA, Pott C, Schreiber S, 
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12 Declaration (in German) 

„Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne unzulässige 

Hilfe oder Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle 

Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nichtveröffentlichten 

Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, 

sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der 

Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter 
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ethische, datenschutzrechtliche und tierschutzrechtliche Grundsätze befolgt. Ich 

versichere, dass Dritte von mir weder unmittelbar noch mittelbar geldwerte Leistungen 

für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten 

Dissertation stehen, oder habe diese nachstehend spezifiziert. Die vorgelegte Arbeit 

wurde weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen 

Prüfungsbehörde zum Zweck einer Promotion oder eines anderen Prüfungsverfahrens 

vorgelegt. Alles aus anderen Quellen und von anderen Personen übernommene 

Material, das in der Arbeit verwendet wurde oder auf das direkt Bezug genommen wird, 

wurde als solches kenntlich gemacht. Insbesondere wurden alle Personen genannt, die 

direkt und indirekt an der Entstehung der vorliegenden Arbeit beteiligt waren. Mit der 

Überprüfung meiner Arbeit durch eine Plagiatserkennungssoftware bzw. ein 

internetbasiertes Softwareprogramm erkläre ich mich einverstanden.“ 

 

 

 ______________________   ______________________  
  Datum, Ort Unterschrift 

 



 

 

1
1
8
 

A
c
k
n

o
w

le
d
g

m
e

n
t (in

 G
e

rm
a

n
) 

118 Acknowledgment (in German) 

13 Acknowledgment (in German) 

 

This page is not available in the online version of this document. 

  



 

 

1
1
9
 

C
u

rric
u

lu
m

 v
ita

e
 

119 Curriculum vitae 

14 Curriculum vitae 

 

This page is not available in the online version of this document. 

 

 

 

 

 

 


