
I F I G

R e s e a r c h

R e p o r t

Institut für Informatik

JLU Gießen

Arndtstraße 2

35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut für Informatik

Self-Verifying Cellular Automata

Martin Kutrib Thomas Worsch

IFIG Research Report 1803

April 2018

IFIG Research Report

IFIG Research Report 1803, April 2018

Self-Verifying Cellular Automata

Martin Kutrib1

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

and

Thomas Worsch2

Karlsruhe Institute of Technology

Abstract.We study the computational capacity of self-verifying cellular automata with an em-
phasis on one-way information flow (SVOCA). A self-verifying device is a nondeterministic device
whose nondeterminism is symmetric in the following sense. Each computation path can give one
of the answers yes, no, or do not know. For every input word, at least one computation path must
give either the answer yes or no, and the answers given must not be contradictory. We show that
realtime SVOCA are strictly more powerful than realtime deterministic one-way cellular automata,
since they can accept non-semilinear unary languages. It turns out that SVOCA can strongly be
sped-up from lineartime to realtime. They are even capable to simulate any lineartime computa-
tion of deterministic two-way cellular automata. Closure properties and decidability problems are
considered as well.

Categories and Subject Descriptors according to ACM Computing Classification System:
F.1.1 [Computation by Abstract Devices]: Models of Computation – Cellular Automata;
F.1.2 [Computation by Abstract Devices]: Models of Computation – Parallelism and concur-
rency;
F.1.3 [Computation by Abstract Devices]: Models of Computation – Complexity Measures and
Classes – Complexity hierarchies;
F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages – Classes Defined by
Grammars or Automata;
F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages – Decision problems

MSC Classification: 68Q45 Formal languages and automata

Additional Key Words and Phrases: One-Way Cellular Automata, Self-Verification, Computational
Capacity, Closure Properties, Decidability Problems;

1 Email: kutrib@informatik.uni-giessen.de
2 Email: worsch@kit.edu

Copyright c© 2018 by the authors

1 Introduction

One of the central questions in complexity and language theory asks for the power of nonde-
terminism in bounded-resource computations. Traditionally, nondeterministic devices have been
viewed as having as many nondeterministic guesses as time steps. The studies of this concept of
unlimited nondeterminism led, for example, to the famous open LBA-problem or the unsolved
question whether or not P equals NP. In order to gain further understanding of the nature of
nondeterminism, in [9, 19] it has been viewed as an additional limited resource at the disposal
of time or space bounded computations.

Here we study the computational capacity of self-verifying cellular automata (SVCA). A
self-verifying device is a nondeterministic device whose nondeterminism is symmetric in the
following sense. Each computation path can give one of the answers yes, no, or do not know.
For every input word, at least one computation path must give either the answer yes or no, and
the answers given must not be contradictory. So, if a computation path gives the answer yes or
no, in both cases the answer is definitely correct. This justifies the notion self-verifying and is
in contrast to general nondeterministic computations, where an answer that is not yes does not
allow to conclude whether or not the input belongs to the language.

Self-verifying finite automata have been introduced and studied in [6, 11, 12] mainly in
connection with randomized Las Vegas computations. Descriptional complexity issues for self-
verifying finite automata have been studied in [17]. In particular the conversion of self-verifying
finite automata to deterministic finite automata from a state complexity point of view is solved
there. The main results are matching upper and lower bounds growing like 3n/3 for the costs, in
terms of the number of states, of such simulations.

Another question that motivates the concept of self-verification is as follows. Given a language
such that also its complement belongs to the same family, the description of which of both is
more economic [15]? For example, in [16] it is shown that a nondeterministic finite automaton can
require 2n states to accept the complement of a language accepted by an n-state nondeterministic
finite automaton. So, a representation of the complement by the n-state automaton together with
a bit that says that actually the complement of the language accepted is meant is much more
economic.

Recently, the computational and descriptional complexity of self-verifying pushdown au-
tomata has been studied in [8].

The paper is organized as follows. In Section 2 we present the basic notation and the definition
of self-verifying (one-way) cellular automata as well as an introductory example. In Section 3
a strong speed-up result is shown that allows to speed-up any lineartime computation of an
SVOCA to realtime. Section 4 is devoted to explore the computational capacity of realtime
SVOCA. It turns out that they are even capable to simulate any lineartime computation of a
two-way cellular automaton. Moreover, the closure properties of the family of languages accepted
by realtime SVOCA are studied. It is shown that the family is closed under the set-theoretic op-
erations, reversal, concatenation, and inverse homomorphisms. Finally, decidability problems are
considered. In particular, the property of being self-verifying turns out to be non-semidecidable.

2 Preliminaries

We denote the positive integers {1, 2, . . . } by N, the set N ∪ {0} by N0, and the powerset of a
set S by 2S . We write |S| for the cardinality of S. Let Σ denote a finite set of letters. Then we
write Σ∗ for the set of all finite words (strings) consisting of letters from Σ. The empty word is
denoted by λ, and we set Σ+ = Σ∗ \ {λ}. For the reversal of a word w we write wR and for its

2

length we write |w|. A subset of Σ+ is called a language over Σ. Note that the devices we will
consider cannot accept the empty word. So, in order to avoid technical overloading in writing,
two languages L and L′ are considered to be equal, if they differ at most by the empty word,
that is, if L \ {λ} = L′ \ {λ}. Set inclusion is denoted by ⊆ and strict set inclusion by ⊂.

A two-way cellular automaton is a linear array of identical finite automata, called cells.
Except for the outermost cells, each cell is connected to its both nearest neighbors. For our
convenience we identify the cells by positive integers. The state transition depends on the current
state of a cell itself and the current state of its neighbors, where the outermost cells receive a
boundary symbol on their free input lines. The state changes take place simultaneously at
discrete time steps.

Here we first define nondeterministic cellular automata whose nondeterminism is restricted
to the first state transition. All further transitions are deterministic [2, 21]. Although this is a
very restricted case, for easier writing we call such devices nondeterministic.

A nondeterministic two-way cellular automaton (NCA) is a system M = 〈S,Σ, F, #, δnd, δd〉,
where

1. S is the finite, nonempty set of cell states,
2. Σ ⊆ S is the nonempty set of input symbols,
3. F ⊆ S is the set of accepting states,
4. # /∈ S is the boundary symbol,
5. δnd : (S ∪ {#}) × S × (S ∪ {#}) → (2S \ ∅) is the nondeterministic local transition function

applied in the first state transition,
6. δd : (S ∪ {#}) × S × (S ∪ {#}) → S is the deterministic local transition function applied in

all further state transitions.

If the flow of information is restricted to one-way, the resulting device is a one-way cellular
automaton (NOCA). In such devices the next state of each cell depends on the state of the
cell itself and the state of its immediate neighbor to the right. So the domain of the transition
functions is S × (S ∪ {#}).

A configuration ct of M at time t ≥ 0 is a description of its global state, which is formally
a mapping ct : {1, 2, . . . , n} → S, for n ≥ 1. The configuration at time 0, the so-called ini-
tial configuration, is defined by the given input w = a1a2 · · · an ∈ Σ+. We set c0(i) = ai, for
1 ≤ i ≤ n. Configurations may be represented as words over the set of cell states in their natural
ordering. For example, the initial configuration of an NOCA for w is represented by a1a2 · · · an.
Successor configurations are computed according to the global transition function ∆ mapping
each configuration to a set of successor configurations.

Let ct, t ≥ 0, be a configuration with n ≥ 1. Then the set of its possible successor configu-
rations ct+1 is defined as follows:

ct+1 ∈ ∆(ct) ⇐⇒


ct+1(1) ∈ σ(#, ct(1), ct(2))
ct+1(i) ∈ σ(ct(i− 1), ct(i), ct(i+ 1)), for i ∈ {2, . . . , n− 1}
ct+1(n) ∈ σ(ct(n− 1), ct(n), #)

for CA, and

ct+1 ∈ ∆(ct) ⇐⇒
{
ct+1(i) ∈ σ(ct(i), ct(i+ 1)), for i ∈ {1, . . . , n− 1}
ct+1(n) ∈ σ(ct(n), #)

for OCA, where σ = δnd if t = 0, and σ = δd if t ≥ 1. Thus, ∆ is induced by δnd and δd.
An NCA (NOCA) is deterministic if δnd(s1, s2, s3) (δnd(s1, s2)) is a singleton for all states

s1, s2, s3 ∈ S ∪ {#}. Deterministic cellular automata are denoted by CA and OCA.

3

· · ·a1 a2 a3 an #

Fig. 1. A one-way cellular automaton.

An input w is accepted by a cellular automaton if at some time step during the course
of a computation the leftmost cell enters an accepting state, that is, the leftmost symbol of
some reachable configuration is an accepting state. The language accepted by M is denoted by
L(M) = {w ∈ Σ+ | w is accepted by M }. Let t : N → N be a mapping. If all w ∈ L(M) are
accepted with at most t(|w|) time steps, then M is said to be of time complexity t (cf. [20] for
a discussion of this general treatment of time complexity functions). Since in general NOCA do
not halt, this implies also that all w /∈ L(M) are not accepted, that is, rejected at time t(|w|).

If t(n) = n acceptance is said to be in realtime. If t(n) is equal to k · n for an arbitrary
rational number k ≥ 1, then acceptance is in lineartime.

In general, a family of all languages that are accepted by a device X with time complex-
ity t is denoted by Lt(X). The index is omitted for arbitrary time. Actually, arbitrary time is
exponential time due to the space bound. We write Lrt(X) for real time and Llt(X) for linear
time.

Now we turn to self-verifying (one-way) cellular automata (denoted SVCA and SVOCA).
These are nondeterministic CA insofar as during the first step cells may choose between several
new states. But the definition of acceptance is different from nondeterministic CA.

There are now three disjoint sets of states representing answers yes, no, and do not know.
Moreover, for every input word, at least one computation path must give either the answer yes
or no, and the answers given must not be contradictory, that is, for no input there are two
computation paths giving the answers yes and no respectively.

In order to implement the three possible answers the state set is partitioned into three disjoint
subsets S = F+∪̇F−∪̇F0, where F+ is the set of accepting states, F− is the set of rejecting states,
and F0 = Sr (F+∪F−) is referred to as the set of neutral states. We specify F+ and F− in place
of the set F in the definition of an SVCA and SVOCA. So, let M = 〈S,Σ, F+, F−, #, δnd, δd〉 be
an SVOCA and, for each input word w ∈ Σ+, the set Sw of states reachable by the leftmost cell
be defined as Sw = { s ∈ S | s ∈

(
∆[t](w#)

)
(1) for some t ≥ 0 }, where ∆[t] denotes the t-fold

composition of ∆, that is, the set of configurations reachable in t time steps. Formally, for the
“self-verifying property” it is required that for each w ∈ Σ+, Sw ∩ F+ is empty if and only if
Sw ∩ F− is nonempty.

If all w ∈ L(M) are accepted and all w /∈ L(M) are rejected with at most t(|w|) time steps,
then the self-verifying cellular automaton M is said to be of time complexity t.

In order to illustrate the definitions we continue with an example.

4

Example 1. The non-semilinear unary language { a2n | n ≥ 0 } is accepted by the SVOCA
M = 〈{a,−, 1, X,∼, <1, <2,	,⊗,⊕, 0}, {a}, F+, F−, #, δnd, δd〉 in realtime, where F+ = {⊕},
F− = {	,⊗}, and the transition functions δnd and δd are defined as follows.

(1) δnd(a, a) = {1,−}
(2) δnd(a, #) = {⊕}
(3) δd(1,−) = X
(4) δd(−,−) = −
(5) δd(−, 1) = <1

(6) δd(−, <1) = −
(7) δd(−, <2) = <1

(8) δd(X,−) = X
(9) δd(X,<1) = X

(10) δd(<1, X) = <2

(11) δd(<1,∼) = <2

(12) δd(<2, X) = ∼
(13) δd(<2,∼) = ∼
(14) δd(∼,∼) = ∼
(15) δd(1,⊕) = ⊕
(16) δd(X,⊗) = ⊕
(17) δd(<1,⊕) = ⊗
(18) δd(<1,) = ⊗
(19) δd(<2,) = 	
(20) δd(∼,⊕) = 	
(21) δd(∼,) = 	

In addition to these transitions, δd maps any state from {	,⊗,⊕, 0} to itself, regardless of its
neighbor. Furthermore, all still undefined transitions map to the state 0.

The idea of the construction is as follows (see Figure 2 for an example). Assume that the
cells are numbered from 1 to n from right to left. In the first step, each cell guesses whether its
position is 2i, for some i ≥ 1 (Transition 1). Accordingly they enter state 1 or −. The rightmost
cell can identify itself and always enters state ⊕ (Transition 2). Next, each cell in state 1 sends
a signal with speed 1/2 to the left. The signal is realized by states <1 and <2 (Transitions 5–7
and 10–13). Moreover, cells in state 1 change to state X (Transition 3) and each cell passed
through by such a signal changes to state ∼ (Transitions 12–14).

In addition to these signals, initially a signal s is sent by the rightmost cell to the left with
speed 1. This signal is realized by the states {	,⊗,⊕} and possibly by state 0 if an initial guess
is wrong. The states {	,⊗,⊕} represent accepting and rejecting decisions of the cells. Once such
state is entered it is never left again. Therefore the decisions are not contradictory. Now the idea
is that the initial guess is verified if and only if signal s meets a 1/2-speed signal in a cell that
initially guessed to be at some position 2i and, thus, is now in state X (Transitions16–21).

In order to evidence the correctness of the construction, let us first assume the initial guesses
are correct. Then cells 1 and 2 behave as required by Transitions 2 and 15. Now let some cell 2i

enter the accepting state ⊕ at time 2i (which is true for cells 1 and 2). Then the 1/2-speed signal
sent by that cell has reached cell 2i + 2i−1. This implies that the fast and slow signal will meet
in cell 2i+1, as required. Altogether, for the case of initially correct guesses, the decisions are
never contradictory, the decisions are correct, and the guesses are verified to be true.

For the cases where one of the initial guesses is wrong, the neutral state 0 is used. Whenever
a slow and the fast signal do not meet in a cell being in state X, state 0 is entered. Moreover, it
is entered whenever two neighboring cells are in state 1. In particular, since the state 0 is never
left, the fast signal checks the correctness of the initial guesses from right to left. It is stopped
by any cell in the neutral state 0. This means that, again, no contradictory decisions are made
and, in particular, no decision is made by the leftmost cell in case of wrong guesses.

So, this realtime one-way cellular automaton accepts language { a2n | n ≥ 0 } and it is self
verifying. �

5

t

n

a a a a a a a a a a a a a a a a #

1 − − − − − − − 1 − − − 1 − 1 ⊕
X − − − − − − <1 X − − <1 X <1 ⊕
X − − − − − − <2 X − − <2 X ⊗
X − − − − − <1 ∼ X − <1 ∼ ⊕
X − − − − − <2 ∼ X − <2 	
X − − − − <1 ∼ ∼ X <1 	
X − − − − <2 ∼ ∼ X ⊗
X − − − <1 ∼ ∼ ∼ ⊕
X − − − <2 ∼ ∼ 	
X − − <1 ∼ ∼ 	
X − − <2 ∼ 	
X − <1 ∼ 	
X − <2 	
X <1 	
X ⊗
⊕

Fig. 2. Example computation of a realtime self-verifying one-way cellular automaton accepting the language
{ a2

n

| n ≥ 0 }. The slow signals moving with speed 1/2 are depicted in yellow, the fast signal is depicted in
lightblue.

3 Structural Properties and Speed-Up

First we give evidence that self-verifying (one-way) cellular automata are in fact a generalization
of deterministic (one-way) cellular automata. However, to this end, it is reasonable to consider
only such time complexities t that allow the leftmost cell to recognize the time step t(n). Such
functions are said to be time computable. For example, the identity t(n) = n is a time-computable
time complexity for (O)CA. A signal which is initially emitted by the rightmost cell and moves
with maximal speed, arrives at the leftmost cell exactly at time step n. By slowing down the
signal to speed x

y (that is, the signal moves x cells to the left and then stays in a cell for y − x
time steps), it is seen that the time complexities b yx ·nc, for any positive integers x < y, are also
time computable. Other examples are exponential time complexities t(n) = kn, for any integer
k ≥ 2. Further details on time-computable functions can be found in [3].

Lemma 2. Any (one-way) deterministic cellular automaton with a time-computable time com-
plexity t can effectively be converted into an equivalent (one-way) self-verifying cellular automa-
ton with the same time complexity t.

Proof. Since the time complexity t is computable, we may safely assume that its computation
is performed on an extra track in parallel to the actual computation of a given deterministic
cellular automaton M . Let S be the state set and F be the set of accepting states of M . An
equivalent self-verifying cellular automaton M ′ basically simulates M . However, its state set is
S ∪ S+ ∪ S−, where S+ and S− are disjoint copies of S. The simulation is extended such that
the leftmost cell enters the corresponding state from S+ instead of entering an accepting state.
Subsequent steps are simulated just by staying in states from S+. If the leftmost cell is still in
a state from S when it recognizes the time step t(n) from the time computation of t, then it
enters the corresponding state from S− in its next step and remains in states from S−. Now it is

6

sufficient to define S to be the set of neutral states, S+ to be the set of accepting, and S− to be
the set of rejecting states of M ′. Since in one-way cellular automata the leftmost cell does not
know that it is the leftmost one, the aforementioned behavior simply applies to all cells. In this
way, clearly, M ′ is a self-verifying cellular automaton that accepts L(M) with time complexity t.
Moreover, M ′ is one-way if M is. ut

It is known that several types of cellular automata can be sped-up by a constant amount
of time as long as the remaining time complexity does not fall below realtime. A proof in
terms of trellis automata can be found in [4]. In [14, 13] the speed-up results are shown for
deterministic and nondeterministic cellular and iterative automata. The proofs are based on
sequential machine characterizations of the parallel devices. In particular, deterministic CA and
OCA can be sped-up from (n+ t(n))-time to (n+ t(n)

k)-time [1, 14, 13]. Thus, lineartime is close
to realtime. The question whether every lineartime CA can be sped-up to realtime is an open
problem. The problem is solved for OCA. The realtime OCA languages are a proper subfamily
of the lineartime OCA languages [4, 26].

Next we are going to show a stronger result for SVOCA from which follows that realtime
is as powerful as lineartime. In order to prove the theorem we apply the packing-and-checking
technique introduced in [2]. The basic principle is to guess the input in a packed form on the
left of the array. The verification of the guess can be done by a deterministic OCA in realtime
as shown by the next two lemmata.

Let Σ be an arbitrary alphabet that does neither contain the blank symbol nor the border
symbol #. Following the idea, each cell of the OCA has k registers for the packed part of the
input and one input register for its original input. The next two mappings extract the packed
and the original input from a cell.

hk,1 : (Σ ∪ { })k ×Σ → (Σ ∪ { })k
(x1, x2, . . . , xk+1) 7→ x1x2 · · ·xk

and

hk,2 : (Σ ∪ { })k ×Σ → Σ

(x1, x2, . . . , xk+1) 7→ xk+1

The following lemma is used to verify whether (after a guess) the concatenation of the first k
registers of all cells yields a word beginning with n symbols from Σ followed by (k− 1) ·n blank
symbols , that is, whether the packed input has the correct length and is contained in the
leftmost dnk e cells.

Lemma 3. Let k > 1. Then

Lk,1 = {x1x2 · · ·xn | x1, x2, . . . , xn ∈ (Σ ∪ { })k ×Σ and

hk,1(x1)hk,1(x2) · · ·hk,1(xn) ∈ Σn (k−1)·n }

is a realtime OCA language.

Proof. A corresponding OCA has to perform two checking tasks (see Figure 3). The first is to
verify that hk,1(x1)hk,1(x2) · · ·hk,1(xn) is of the form Σ∗ ∗. To this end, the cell which contains
the last symbol of the packed input generates a signal • in the corresponding register. The
signal passes through the registers and cells in descending order and must not meet a symbol .

7

t

n

1

2

3

1

4

5

6

2

7

8

9

3

10

4

5 6 7 8 9

10

#

1

2

3

1

4

5

6

2

7

8

9

3

•10

4

5 6 7 8 9

◦
#

1

2

3

1

4

5

6

2

7

8

•9
3

10

4

5 6 7 8 ◦

◦
#

1

2

3

1

4

5

6

2

7

•8
9

3

10

4

5 6 7 ◦ ◦

◦
#

1

2

3

1

4

5

6

2

•7
8

9

3

10

4

5 6 ◦ ◦ ◦

◦
#

1

2

3

1

4

5

•6
2

7

8

9

3

10

4

5 ◦ ◦ ◦ ◦

◦
#

1

2

3

1

4

•5
6

2

7

8

9

3

10

4

◦ ◦ ◦ ◦ ◦

◦
#

1

2

3

1

•4
5

6

2

7

8

9

3

10

◦

◦ ◦ ◦ ◦ ◦

◦
#

1

2

•3
1

4

5

6

2

7

8

9
◦

10

◦

◦ ◦ ◦ ◦ ◦

◦
#

1

•2
3

1

4

5

6
◦

7

8

9
◦

10

◦

◦ ◦ ◦ ◦ ◦

◦
#

•1
2

3
+

4

5

6
◦

7

8

9
◦

10

◦

◦ ◦ ◦ ◦ ◦

◦
#

Fig. 3. Example for the proof of Lemma 3 (k = 3).

Otherwise an error signal is generated that prohibits the leftmost cell to accept. Additionally,
error signals are generated if a register of a cell contains the blank symbol followed by a nonblank
symbol.

The second task is to verify that the length of the packed input meets the length of the
array. In order to implement this task, a left moving signal ◦ is initially emitted in the input

8

register of the rightmost cell. The lengths are identical if and only if the ◦ signal arrives at the
left border exactly when the signal • arrives in the first register of the leftmost cell. ut

To verify the guess it remains to be shown that the packed input is identical to the original
input on the (k + 1)-th track.

Lemma 4. Let k > 1. Then

Lk,2 = {x1x2 · · ·xn | x1, x2, . . . , xn ∈ (Σ ∪ { })k ×Σ and

hk,1(x1)hk,1(x2) · · ·hk,1(xn) = hk,2(x1)hk,2(x2) · · ·hk,2(xn) (k−1)·n }
is a realtime OCA language.

Proof. Since the family Lrt(OCA) is closed under intersection [18] we may assume that the
input belongs to the language Lk,1 of Lemma 3.

The dnk e cells containing the packed input are able to identify themselves by the contents of
their first k registers. Let every cell have another k registers which work like a first-in-first-out
(FIFO) queue of fixed length k (see Figure 4). Whenever a symbol is stored in the input register,
it is always fed to the queue (from the bottom in Figure 4). Whenever (because of the fixed
length) a symbol has to be removed from the queue at the other end, it will be stored in the
input register of the left neighboring cell. That way the short FIFO queues are “glued together”.

In particular, each cell that has guessed a compressed part of the input initializes its FIFO
queue in the first step by storing the current input symbol into its queue.

The rightmost n− dnk e cells shift the content on the track of input registers successively to
the left. Thus, they are implementing the input stream to the long FIFO queue. At the end of
the input stream – marked by a ◦ – each of the leftmost dnk e cells compares its FIFO contents
to its packed input. If the comparisons of all cells are successful the input is accepted by a
signal + in the input registers. Since the + is generated one time step after the arrival of the
end-of-input-stream marker ◦, the OCA works in n + 1 time, but can be sped-up by one time
step to realtime. ut

Next we turn to prove the strong speed-up result for SVOCA:

Theorem 5. Let k ≥ 1. Then Lk·t(SVOCA) = Lt(SVOCA), for all time complexities t : N→ N,
t(n) ≥ n.

Proof. The inclusion Lt(SVOCA) ⊆ Lk·t(SVOCA) follows immediately from the definition. So,
let L be a language belonging to Lk·t(SVOCA) and let M be an SVOCA that accepts L with
time complexity k ·t. We construct an SVOCA M ′ that simulates M in time t(n). The underlying
technique is packing-and-checking.

The idea is as follows: On an input of length n, each cell i with 1 ≤ i ≤ dnk e guesses the
initial states of the cells k(i− 1) + 1, k(i− 1) + 2, . . . , ki in its first k registers and remembers its
original input in its (k + 1)-th register. Based on this compressed representation, in each time
step, M ′ can simulate k steps of M , which yields the required speed-up.

In parallel, M ′ has to check whether the guesses were correct, which can be done by the
simulation of the acceptor of Lemma 4. For the verification n time steps are needed. So, M ′

accepts L(M) with time complexity t(n). ut
Although the simulation on the compressed representation may be faster than realtime a

speed-up below realtime is, of course, not possible due to the time needed for packing-and-
checking.

Corollary 6. The families Lrt(SVOCA) and Llt(SVOCA) coincide.

9

t

n

1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3

4

5

 6 7 8 9 10 11 12 13 14 ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3

4

5
6

 7 8 9 10 11 12 13 14 ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3

4

6
7

 5 8 9 10 11 12 13 14 ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3

4
5

7
8

 6 9 10 11 12 13 14 ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3

4
5
6

8
9

 7 10 11 12 13 14 ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3

5
6
7

9
10

 4 8 11 12 13 14 ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3
4

6
7
8

10
11

 5 9 12 13 14 ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

3
4
5

7
8
9

11
12

 6 10 13 14 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2

4
5
6

8
9
10

12
13

 3 7 11 14 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2
3

5
6
7

9
10
11

13
14

 4 8 12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

2
3
4

6
7
8

10
11
12

13
14

 5 9 ◦ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1

3
4
5

7
8
9

10
11
12

13
14

2 6 ◦ + + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1
2

4
5
6

7
8
9

10
11
12

13
14

3 ◦ + + + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1
2
3

4
5
6

7
8
9

10
11
12

13
14

◦ + + + + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
2
3

4
5
6

7
8
9

10
11
12

13
14

 #

1
2
3

4
5
6

7
8
9

10
11
12

13
14

+ + + + + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 4. Example for the proof of Lemma 4 (k = 3).

4 Self-Verifying One-Way Cellular Automata

4.1 Computational Capacity

At first we show that the computing power of realtime SVOCA is, in fact, strictly stronger than
that of realtime OCA.

10

Theorem 7. The family Lrt(OCA) is properly included in Lrt(SVOCA).

Proof. The inclusion between the families follows from Lemma 2. Example 1 shows that there
is a unary non-semilinear language accepted by some realtime SVOCA. On the other hand, the
language does not belong to Lrt(OCA) since it is not a regular language and in [24] it has been
shown that realtime OCA cannot accept non-regular unary languages. Thus, the inclusion is
proper. ut

The inclusion of the previous result can be pushed higher in the hierarchy of language families.
However, the strictness of the inclusion gets lost. The question of the strictness is strongly related
to the famous open problem whether or not the realtime CA languages are a proper subfamily
of the CA languages.

Theorem 8. The family Llt(CA) is included in Lrt(SVOCA).

Proof. Let L ∈ Llt(CA). Since the family Llt(CA) is closed under reversal [25], there exists a
lineartime CA that accepts LR. This CA, in turn, can be sped-up by a multiplicative and additive
constant [13]. Hence there is a CA M = 〈S,Σ, F, #, δ〉 that accepts LR with time complexity
2n− 1.

Now, in a first step a deterministic OCA M ′ = 〈S′, Σ′, F, #, δ′〉 is constructed such that M ′

accepts the language { |w|wR | w ∈ L(M) } with time complexity 2n− 2, where we tacitly
assume /∈ S and n > 1:

S′ = (S ∪ { }) ∪ (S ∪ { })2, A′ = A ∪ { },

∀s1, s2 ∈ S ∪ { } :

δ′(s1, #) = (s1,),
δ′(s1, s2) = (s1, s2),

∀(s1, s2), (s2, s3) ∈ (S ∪ { })2 :

δ′((s1, s2), (s2, s3)) =


δ(s3, s2, s1) if (s1 6= ∧ s2 6= ∧ s3 6=)

δ(#, s2, s1) if (s1 6= ∧ s2 6= ∧ s3 =)

δ(s3, s2, #) if (s1 = ∧ s2 6= ∧ s3 6=)

 otherwise

.

The basic idea is that during an intermediate step the cells of M ′ are collecting the informa-
tion needed to simulate one step of the CA (see Figure 5). Due to the one-way information flow
a cell i thereby can collect information from the cells i+ 1 and i+ 2 and, thus, simulate one step
of the CA cell i+ 1. Therefore, the relevant part of the configuration shifts in space to the left.

Since Lrt(OCA) is closed under reversal, Lemma 4 applies to LR
k,2 as well, and LR

k,2 is a
realtime OCA language.

The cells of an SVOCA M ′′ that accepts the language {wR | w ∈ L(M) } are constructed
such that they can store two input symbols. Under input wR the SVOCA M ′′ guesses in its first
step the configuration |w|wR whereby two adjacent symbols are stored in one cell, respectively.
The verification of the guess corresponds to the acceptance of the language LR

k,2, for k = 2.
In parallel to the verification M ′′ simulates the OCA M ′ with double speed on the compressed

input. Therefore, M ′′ has time complexity 1 + 2n−2
2 = n. Since

L(M ′′) = {wR | w ∈ L(M) } = LR(M) = (LR)R = L

the theorem follows.

11

t

n

 40 30 20 10 #

 , , , ,40 40,30 30,20 20,10 10, #

 41 31 21 11 #

 , , ,41 41,31 31,21 21,11 11, , #

 42 32 22 12 #

 , ,42 42,32 32,22 22,12 12, , , #

 43 33 23 13 #

 ,43 43,33 33,23 23,13 13, , , , #

44 34 24 14 #

44,34 34,24 24,14 14, , , , , #

35 25 15 #

35,25 25,15 15, , , , , , #

26 16 #

26,16 16, , , , , , , #

17 #

OCA

10 20 30 40

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

15 25 35 45

16 26 36 46

17 27 37 47

CA

Fig. 5. Example for the proof of Theorem 8.

In order to make M ′′ self-verifying it enters accepting states if the guesses are correct and
the simulation ends accepting, and enters rejecting states when the guesses are correct and the
simulation does not end in an accepting state. All other states, in particular the states entered
in case of wrong guesses, are neutral. ut

4.2 Closure Properties

This section is devoted to the closure properties of the family of realtime SVOCA languages.
They are summarized in Table 1. We start with the Boolean operations.

Proposition 9. The family of languages accepted by realtime SVOCA is closed under comple-
mentation, union, and intersection.

Proof. In order to construct an SVOCA that accepts the complement of the language accepted
by a given SVOCA, it is sufficient to interchange the accepting and rejecting states while the
neutral states remain as they are.

For the union and intersection, it is sufficient to simulate two given realtime SVOCA in
parallel on different tracks, that is, to use the same two channel technique of [7] and [25]. Then
it remains to adapt the sets of accepting, rejecting and neutral states accordingly. Let F+, F−, F0

and F ′+, F ′−, F ′0 be the partitions of the states sets of the given realtime SVOCA. For the union,
the set of accepting states is defined to be { (s, s′) | s ∈ F+ or s′ ∈ F ′+ }, the set of rejecting
states is F− × F ′−, and all remaining states are neutral.

Similarly, for the intersection, we define the set of accepting states as F+ × F ′+, the set of
rejecting states as { (s, s′) | s ∈ F− or s′ ∈ F ′− }, and all remaining states are neutral. ut

12

It is known that Lrt(OCA) is closed under reversal [4], which is a long-standing open problem
for Lrt(CA).

Proposition 10. The family of languages accepted by realtime SVOCA is closed under reversal.

Proof. Let Σ be an arbitrary alphabet. In [7] it is shown that the language

LR = {w ∈ Σ+ | w = wR }

belongs to the family Lrt(OCA).
Let M be an SVOCA that accepts a language L ⊆ Σ∗ in realtime. An SVOCA M ′ that

accepts LR in n+ 1 time steps works as follows. On input w = x1x2 · · ·xn every cell 1 ≤ i ≤ n
of M ′ guesses the symbol xn−i+1 and stores it in an additional register. If the guesses are correct
then M ′ has the symbols xnxn−1 · · ·x2x1 = wR on its additional track. Furthermore, the cell in
the center of the array is nondeterministically marked (if n is even the two cells in the center).
Altogether, after the first time step M ′ performs three tasks in parallel.

Task 1 is to simulate M on wR because w ∈ LR if and only if wR ∈ L = L(M).
The second task is to verify that the cell(s) in the center is (are) marked. It is realized by a

signal which moves with speed 1
2 from the marked cell(s) to the left. Additionally, a left moving

signal is initially emitted in the rightmost cell. The marking is correct if and only if both signal
meet in the leftmost cell.

The last task is to check that the guessed word wR was correct. Since the input as well as its
(guessed) reversal are stored on different tracks and the center is marked, M ′ can simulate two
realtime OCA for the language LR where the input is the left half of one track and the right
half of the other track, respectively.

Finally, M ′ accepts if the guesses and the marking are correct, and the simulation of the
first task is accepting. Automaton M ′ rejects if the guesses and the marking are correct, and the
simulation is rejecting. In all other cases, M ′ remains in neutral states. We conclude that M ′ is
an SVOCA that can be sped-up to realtime by Theorem 5. ut

Proposition 11. The family of languages accepted by realtime SVOCA is closed under concate-
nation.

Proof. Let L1, L2 ∈ Lrt(SVOCA). If the empty word belongs to L1 then language L2 belongs
to the concatenation and vice versa. Since the family of languages accepted by realtime SVOCA
is closed under union by Proposition 9, it remains to consider languages L1, L2 ∈ Lrt(SVOCA)
that do not contain the empty word. Let M1, M2 be acceptors for L1 and L2. As an intermediate
step, we construct a self-verifying cellular automaton M with two-way information flow, that is,
each cell is connected to its both nearest neighbors and the leftmost cell receives a boundary
symbol on its free input line.

Since the family Lrt(SVOCA) is closed under reversal, there is a realtime SVOCA MR
1

that accepts the reversal LR
1 of L1. Now M has two tracks with identical inputs. On one track it

simulates M2, whereby each cell that enters an accepting or rejecting state is marked accordingly.
On the second track, M simulates MR

1 from left to right. That is, the simulation is such that
each cell receives the state from its left neighbor. So, the information flow is from left to right.
Again, each cell that enters an accepting or rejecting state is marked accordingly.

Let the input be x1x2 · · ·xn. If a cell at position i is marked accepting by the simulation
of M2, the word xixi+1 · · ·xn belongs to the language L2. If a cell at position i is marked
accepting by the simulation of MR

1 , the word xixi−1 · · ·x1 belongs to the language LR
1 and, thus,

13

x1x2 · · ·xi belongs to the language L1. So, the input x1x2 · · ·xn belongs to the concatenation
L1L2 if and only if MR

1 may mark a cell at position i and M2 a cell at position i+ 1 accepting,
for 1 ≤ i < n.

In order to check this condition, M uses a signal that is emitted from the rightmost cell
when the simulation of MR

1 reaches that cell at time step n. The signal moves to the left and
informs the leftmost cell at time step 2n.

When the signal arrives, the leftmost cell enters an accepting state if and only if the signal has
found two adjacent cells marked accepting. So, M accepts any input from L1L2 and only inputs
from the concatenation L1L2. If the signal found neither two adjacent cells marked accepting,
nor two adjacent cells that are marked accepting and unmarked, nor two adjacent cells unmarked
the leftmost cell enters a rejecting state. In this case, no matter between which two adjacent
symbols one assumes the cut between first and second factor, M has explicitly rejected at least
one of them. Clearly, in this case the input cannot belong to the concatenation. On the other
hand, if some input does not belong to the concatenation, then there is always a computation
of M that results in such a marking. So, M rejects any input that does not belong to L1L2 and
only inputs that do not belong to L1L2. In any other case, the leftmost cell remains in a neutral
state.

So far, we have constructed a two-way self-verifying cellular automaton with time complex-
ity 2n. The proof of Theorem 8 can almost literally be used to show that also a lineartime
two-way self-verifying cellular automaton can be simulated by a realtime SVOCA. ut

Next, we turn to the operations homomorphism and inverse homomorphism.

Proposition 12. The family of languages accepted by realtime SVOCA is not closed under
homomorphisms.

Proof. It is well known that every recursively enumerable language is the homomorphic image
of the intersection of two context-free languages [10]. Moreover, every context-free language is
the homomorphic image of the intersection of a regular language and a Dyck language [5].

The Dyck languages as well as the regular languages are realtime OCA languages [7] and
therefore realtime SVOCA languages. Additionally, the family of realtime SVOCA languages
is closed under intersection by Proposition 9. So, if the family Lrt(SVOCA) would be closed
under homomorphisms, it would contain every recursively enumerable language. Due to the time
bound to realtime this is a contradiction. ut

Proposition 13. The family of languages accepted by realtime SVOCA is closed under inverse
homomorphisms.

Proof. Let M be a realtime SVOCA that accepts a language L ⊆ Σ∗, and h : Γ ∗ → Σ∗ be a
homomorphism. The maximal length of an image of some letter from Γ ism = max{ |x| | x ∈ Γ }.

The basic idea for a realtime SVOCA M ′ with input alphabet Γ that accepts h−1(L) is as
follows. In its first transition, each cell ofM ′ applies the homomorphism h to its input symbol. So,
each cell of M ′ has to store up to m states of M . In the subsequent computation M ′ simulates M
step by step.

There are two technical problems with this approach. One is caused by the fact that the
homomorphism may be erasing symbols, leading to non-adjacent cells of M ′ having to simulate
adjacent cells of M . The other problem is that M ′ (like M) is only allowed to make nondeter-
ministic choices during the very first step. We first describe a solution taking care of the first
but ignoring the second problem; the latter will be fixed afterwards.

14

t

n

•

10, 20, 30
•

•

40, 50 60
•

70 #

10, 20, 30 10, 20, 30
•

•

40, 50 41, 51 60
•

70 71 #

10, 20, 30
•

10, 20, 30
•

40, 50 41, 51 41, 51
•

61 71 72 #

10, 20, 30
•

11, 21, 31 41, 51 41, 51
•

42, 52 62 72 73 #

11, 21, 31 12, 22, 32 41, 51
•

42, 52 43, 53 63 73 74 #

12, 22, 32 12, 22, 32
•

42, 52 43, 53 44, 54 64 74 75 #

12, 22, 32
•

13, 23, 33 43, 53 44, 54 45, 55 65 75 76 #

13, 23, 33 14, 24, 34 44, 54 45, 55 46, 56 66 76 77 #

14, 24, 34 15, 25, 35 45, 55 46, 56 47, 57 67 77 #

15, 25, 35 16, 26, 36 46, 56 47, 57 #

16, 26, 36 17, 27, 37 47, 57 #

17, 27, 37 #

Fig. 6. Example for the proof of Proposition 13. The (blue) diagonal lines indicate the delay signals. The (green)
shaded cells are initially empty and shift the neighboring states only. The guessed transitions are not depicted.

Each cell of M ′ is able to store the states of up to m cells of M . In its first transition, each
cell of M ′ applies the homomorphism h to its input symbol. A cell of M ′ stores a if h(x) = λ or
y1, y2, . . . , yk if h(x) = y1y2 · · · yk. In addition, each cell memorizes whether it stores a now or
not. In the subsequent computation -cells only take over the state of its right neighbor (without
changing it). A cell storing y1, y2, . . . , yk, for 1 ≤ k ≤ m, simulates the state transitions for all k
states at once if possible. However, a cell with blank right neighbor cannot do that. In order
to cope with this problem, initially all -cells send a delay signal • to the left with speed 1.
Whenever such a signal arrives in a cell, the cell does not change its state. It continues to
simulate the behavior of M if its neighbor does not carry a delay signal any more (see Figure 6).

In this way, all but the very first step of M can be simulated. In its first step, the cells of M
may perform guesses dependent on their states and the states of their neighbors. But a cell
with a neighboring -cell cannot simulate the guess directly. So, the first step of M ′ is organized
such that each cell (in addition to applying the homomorphism) guesses the transition that the
corresponding cell of M would apply during its first transition. The simulation continues with
the state resulting from the guessed transition. These guesses can be verified immediately when
a cell receives the first non-blank state from its neighbor. In this way, all steps of a realtime
computation of M are simulated unless all input symbols are erased by the homomorphism. In

15

this case, a state corresponding to the boundary symbol is sent from the rightmost cell through
the entire array. If this signal arrives at some -cell, the cell accepts if the empty word belongs
to L, otherwise it rejects. In order to make M ′ self-verifying it is sufficient to recall that M is
self-verifying, to define a state consisting of several states of M to be accepting, rejecting, or
neutral dependent on the leftmost state, to define the state neutral, and to send a neutral signal
to the left whenever a cell detects that its initial guessed transition of M is wrong. Together,
the leftmost cell of M ′ accepts (rejects) if and only if the leftmost cell of M accepts (rejects).

Finally, M ′ runs at most twice as long as M since there are no more than n delay signals.
So, M ′ runs in lineartime and can be sped-up to realtime again. ut

The closure properties of Lrt(SVOCA) with respect to iteration (Kleene star) and non-
erasing homomorphisms are open problems. They are settled for nondeterministic devices since,
basically, for iteration it is sufficient to guess the the positions in the array at which words are
concatenated, and for non-erasing homomorphism it is sufficient to guess the pre-image of the
input. However, self-verifying devices have to reject explicitly if the input does not belong to
the language. Intuitively, this means that they have to ‘know’ that all possible guesses either do
not lead to accepting computations or are ‘wrong.’

Family ∪ ∩ R · ∗ hλ h h−1

Lrt(SVOCA) 3 3 3 3 3 ? ? 7 3

Lrt(OCA) 3 3 3 3 7 7 7 7 3

Table 1. Closure properties of the language family Lrt(SVOCA) in comparison with the family Lrt(OCA),
where hλ denotes λ-free homomorphisms.

4.3 Decidability Questions

Now we turn to decidability questions. Clearly, the membership problem is decidable for realtime
SVOCA languages since the family is effectively included in the deterministic context-sensitive
languages. However, even realtime OCA can accept the so-called valid computations of Turing
machines. Roughly speaking, these are languages of encodings of accepting Turing machine
computations (see [22, 23] for the details or [20] for a survey and discussion). This means that
many of the not even semi-decidable problems for Turing machines can be reduced to realtime
OCA. The following theorem is from [20].

Theorem 14. For any language family that effectively contains Lrt(OCA) the problems empti-
ness, universality, finiteness, infiniteness, context-freeness, and regularity are not semidecidable.

So, we have the following consequences.

Corollary 15. The problems emptiness, universality, finiteness, infiniteness, inclusion, equiv-
alence, regularity, and context-freeness are not semidecidable for realtime SVOCA.

Finally, we turn to the problem to decide whether a given realtime nondeterministic one-way
cellular automaton is self-verifying or not.

Theorem 16. Given a realtime deterministic one-way cellular automaton M , it is not semide-
cidable whether or not M is an SVOCA.

16

Proof. Let M be a realtime OCA and F its set of accepting states. From M an equivalent
realtime SVOCA M ′ is constructed according to Lemma 2. Next, M ′ is modified in such a way
that first a new input symbol (and neutral state) � and new states 	 and ⊕ are added. State 	
is a rejecting state and ⊕ is accepting. The transition functions are modified such that a cell in
state � in the first step nondeterministically can either change to 	 and remain in that state
forever or to stay in � unless its right neighbor is in an accepting state. In the latter case, the
cell changes from state � to ⊕ and stays in that state from then on.

We claim that M ′ is self-verifying if and only if L(M ′) is empty. If L(M ′) is empty, none
of its cells will ever enter an accepting state. So, any cell that is initially in state 	 remains
in 	 and, thus, will not give a contradictory answer. On the other hand, if there is some word w
in L(M ′), then on input �w there obviously is a rejecting computation, but an accepting one
as well. After at most |w| time steps the second cell enters an accepting state. In the case that
the leftmost cell still is in state �, one time step later it will change to the accepting state ⊕.
Therefore, in this case, M ′ is not self-verifying.

Finally, assume that it is semidecidable whether a realtime OCA is self-verifying. This implies
that we can semidecide its emptiness which is a contradiction to Corollary 15. ut

Interestingly, by Lemma 2 any (one-way) deterministic cellular automaton with a time-
computable time complexity can effectively be made self-verifying. On the other hand, it is
non-semidecidable whether it already is self-verifying. The non-semidecidability generalizes im-
mediately to nondeterministic cellular automata. However, Lemma 2 does not since an input
may induce accepting as well as non-accepting computations. By the construction of Lemma 2
the latter would become rejecting. In fact, it is an open problem whether the family of realtime
one-way nondeterministic cellular automata is closed under complementation or not.

References

1. Bucher, W., Čulik II, K.: On real time and linear time cellular automata. RAIRO Inform. Théor. 18, 307–325
(1984)

2. Buchholz, Th., Klein, A., Kutrib, M.: On interacting automata with limited nondeterminism. Fund. Inform.
52, 15–38 (2002)

3. Buchholz, Th., Kutrib, M.: On time computability of functions in one-way cellular automata. Acta Inform.
35, 329–352 (1998)

4. Choffrut, C., Čulik II, K.: On real-time cellular automata and trellis automata. Acta Inform. 21, 393–407
(1984)

5. Chomsky, N.: Context-free grammars and pushdown storage. Tech. Rep. QPR 65, Massachusetts Institute of
Technology (1962)

6. Duris, P., Hromkovic, J., Rolim, J.D.P., Schnitger, G.: Las vegas versus determinism for one-way communi-
cation complexity, finite automata, and polynomial-time computations. In: Reischuk, R., Morvan, M. (eds.)
Theoretical Aspects of Computer Science (STACS 1997). LNCS, vol. 1200, pp. 117–128. Springer (1997)

7. Dyer, C.R.: One-way bounded cellular automata. Inform. Control 44, 261–281 (1980)
8. Fernau, H., Kutrib, M., Wendlandt, M.: Self-verifying pushdown automata. In: Freund, R., Mráz, F., Pr̊uša,

D. (eds.) Non-Classical Models of Automata and Applications (NCMA 2017). books@ocg.at, vol. 329, pp.
103–117. Austrian Computer Society, Vienna (2017)

9. Fischer, P.C., Kintala, C.M.R.: Real-time computations with restricted nondeterminism. Math. Systems The-
ory 12, 219–231 (1979)

10. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14, 389–418 (1967)
11. Hromkovic, J., Schnitger, G.: On the power of las vegas for one-way communication complexity, obdds, and

finite automata. Inform. Comput. 169, 284–296 (2001)
12. Hromkovic, J., Schnitger, G.: Nondeterministic communication with a limited number of advice bits. SIAM

J. Comput. 33, 43–68 (2003)
13. Ibarra, O.H., Kim, S.M., Moran, S.: Sequential machine characterizations of trellis and cellular automata and

applications. SIAM J. Comput. 14, 426–447 (1985)

17

14. Ibarra, O.H., Palis, M.A.: Some results concerning linear iterative (systolic) arrays. J. Parallel Distributed
Comput. 2, 182–218 (1985)

15. Ilie, L., Păun, G., Rozenberg, G., Salomaa, A.: On strongly context-free languages. Discrete Appl. Math. 103,
158–165 (2000)

16. Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330(2),
287–298 (2005)

17. Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by deterministic automata. Inform.
Comput. 209, 528–535 (2011)

18. Kasami, T., Fuji, M.: Some results on capabilities of one-dimensional iterative logical networks. Electronics
and Communications in Japan 51-C, 167–176 (1968)

19. Kintala, C.M.R.: Computations with a Restricted Number of Nondeterministic Steps. Ph.D. thesis, Pennsyl-
vania State University (1977)

20. Kutrib, M.: Cellular automata and language theory. In: Meyers, R. (ed.) Encyclopedia of Complexity and
System Science, pp. 800–823. Springer (2009)

21. Kutrib, M.: Non-deterministic cellular automata and languages. Int. J. General Systems 41, 555–568 (2012)
22. Malcher, A.: Descriptional complexity of cellular automata and decidability questions. J. Autom. Lang. Comb.

7, 549–560 (2002)
23. Malcher, A.: On the descriptional complexity of iterative arrays. IEICE Trans. Inf. Syst. E87-D(3), 721–725

(2004)
24. Seidel, S.R.: Language recognition and the synchronization of cellular automata. Tech. Rep. 79-02, Department

of Computer Science, University of Iowa, Iowa City (1979)
25. Smith III, A.R.: Real-time language recognition by one-dimensional cellular automata. J. Comput. System

Sci. 6, 233–253 (1972)
26. Umeo, H., Morita, K., Sugata, K.: Deterministic one-way simulation of two-way real-time cellular automata

and its related problems. Inform. Process. Lett. 14, 158–161 (1982)

18

Institut für Informatik
Justus-Liebig-Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

Recent Reports

(Further reports are available at www.informatik.uni-giessen.de.)

S. Beier, M. Holzer, Properties of Right One-Way Jumping Finite Automata, Report 1802, March 2018.

B. Truthe, Hierarchy of Subregular Language Families, Report 1801, February 2018.

M. Holzer, M. Hospodár, On the Magic Number Problem of the Cut Operation, Report 1703, October 2017.

M. Holzer, S. Jakobi, A Note on the Computational Complexity of Some Problems for Self-Verifying Finite Au-
tomata, Report 1702, April 2017.

S. Beier, M. Holzer, M. Kutrib, On the Descriptional Complexity of Operations on Semilinear Sets, Report 1701,
April 2017.

M. Holzer, S. Jakobi, M. Wendlandt, On the Computational Complexity of Partial Word Automata Problems,
Report 1404, May 2014.

H. Gruber, M. Holzer, Regular Expressions From Deterministic Finite Automata, Revisited, Report 1403, May
2014.

M. Kutrib, A. Malcher, M. Wendlandt, Deterministic Set Automata, Report 1402, April 2014.

M. Holzer, S. Jakobi, Minimal and Hyper-Minimal Biautomata, Report 1401, March 2014.

J. Kari, M. Kutrib, A. Malcher (Eds.), 19th International Workshop on Cellular Automata and Discrete Complex
Systems AUTOMATA 2013 Exploratory Papers, Report 1302, September 2013.

M. Holzer, S. Jakobi, Minimization, Characterizations, and Nondeterminism for Biautomata, Report 1301, April
2013.

A. Malcher, K. Meckel, C. Mereghetti, B. Palano, Descriptional Complexity of Pushdown Store Languages, Re-
port 1203, May 2012.

M. Holzer, S. Jakobi, On the Complexity of Rolling Block and Alice Mazes, Report 1202, March 2012.

M. Holzer, S. Jakobi, Grid Graphs with Diagonal Edges and the Complexity of Xmas Mazes, Report 1201, January
2012.

H. Gruber, S. Gulan, Simplifying Regular Expressions: A Quantitative Perspective, Report 0904, August 2009.

M. Kutrib, A. Malcher, Cellular Automata with Sparse Communication, Report 0903, May 2009.

M. Holzer, A. Maletti, An n logn Algorithm for Hyper-Minimizing States in a (Minimized) Deterministic Au-
tomaton, Report 0902, April 2009.

H. Gruber, M. Holzer, Tight Bounds on the Descriptional Complexity of Regular Expressions, Report 0901, Febru-
ary 2009.

M. Holzer, M. Kutrib, and A. Malcher (Eds.), 18. Theorietag Automaten und Formale Sprachen, Report 0801,
September 2008.

M. Holzer, M. Kutrib, Flip-Pushdown Automata: Nondeterminism is Better than Determinism, Report 0301,
February 2003

M. Holzer, M. Kutrib, Flip-Pushdown Automata: k + 1 Pushdown Reversals are Better Than k, Report 0206,
November 2002

M. Holzer, M. Kutrib, Nondeterministic Descriptional Complexity of Regular Languages, Report 0205, September
2002

H. Bordihn, M. Holzer, M. Kutrib, Economy of Description for Basic Constructions on Rational Transductions,
Report 0204, July 2002

M. Kutrib, J.-T. Löwe, String Transformation for n-dimensional Image Compression, Report 0203, May 2002

A. Klein, M. Kutrib, Grammars with Scattered Nonterminals, Report 0202, February 2002

A. Klein, M. Kutrib, Self-Assembling Finite Automata, Report 0201, January 2002

M. Holzer, M. Kutrib, Unary Language Operations and its Nondeterministic State Complexity, Report 0107,
November 2001

A. Klein, M. Kutrib, Fast One-Way Cellular Automata, Report 0106, September 2001

M. Holzer, M. Kutrib, Improving Raster Image Run-Length Encoding Using Data Order, Report 0105, July 2001

M. Kutrib, Refining Nondeterminism Below Linear-Time, Report 0104, June 2001

