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1 Introduction  

1.1 Plant-microbe interactions 

The interactions between plants and microbial organisms play a crucial role in the 

evolution and development of land plant (Chisholm et al. 2006). The microbes 

associated with a plant host can be categorized as mutualists, parasites and pathogens 

(Newton et al. 2010) (Fig. 1.1). The dynamics detection of plant-microbe interaction 

is revealing that many microbes change their relationships with plant as the switches 

of life cycle stages and the change of environmental conditions (Kogel et al. 2006; 

Huang et al. 2009).  

 

 

Figure 1.1 Trophic space of microbe with plant (taken from Newton et al. 2010). This triangle 

pattern represents the trophic relationships of plant-microbe interaction, in which there are three key 

trophic states: mutualism, parasitism and pathogenicity. The mutualism gradient axis is represented in 

the vertical axis from mutualism to parasitism for symbiotic relationships. The pathogenesis gradient 

axis is represented in the vertical axis from necrotroph to biotroph. Individual microbes can 

predominantly occupy specific trophic spaces in these ranges, but frequently change among different 

trophic states during different stages of their life cycles in response to environmental, host 

developmental or microbe-specific. Examples of trophic interactions in the corners of the triangle: 
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Botrytis cinerea Sclerotinia sclerotiorum (pathogenesis); Rhizobium, Legume symbiosis (Mutualism); 

Cereal rusts Powery mildews (Parasitism).  

 

Microbes behave as pathogens on plant in different mechanisms with various 

symptoms and damages at certain stages of the life cycle and environmental condition. 

At one extreme, necrotrophic pathogens such as fungi Botrytis cinerea (grey mould), 

Monilinia fructicola and Sclerotinia sclerotiorum (stem rot) or the bacterium Ercinia 

carotovora penetrate plant, kill host cells and decompose the plant tissue to provide 

themselves with enough food (Jan et al. 2006; Rojo et al. 2003). Necrotrophs 

normally secrete lytic enzymes and toxins resulting in the death of tissue, 

subsequently decompose the tissue and use the nutrition released from the dead tissue. 

Biotrophic pathogens are relying on living plant tissue for their own propagation, they 

feed on host resources without casing necrotic lesions or other damage, such as 

powdery mildew (Blumeria graminis f. sp. hordei) and rust (Puccinia triticina) 

(Panstruga 2003). Hemi-biotrophic pathogens, such as barley ramularia leaf spot 

(Ramularia collo-cygni) and potato late-blight (Phytophthora infestans), are 

symptomless pathogens between necrotrophic and biotrophic pathogens. At the 

initially biotrophic infection phase, hemibiotrophy cause no or very less symptom 

while there are necrotic lesions formed by the haustoria in the later growth phase 

(Sowley et al. 2010).  

In the symbiotic plant-microbe association, the plant host obtains advantages from the 

microbial colonization instead of suffering from any “pain”. The benefits here are 

based on a well-balanced status between both partners (Kogel et al. 2006). In the 

mutualism relationship, promoted growth of the host normally induced by mineral 

nutrients support, abiotic stress tolerance and increased resistance against pathogens 

(Redman et al. 2002; Colditz et al. 2005; Arnold et al. 2003). The microbes in this 

relationship get nutrient supply without disturbing the development of the host. 

Mycorrhizal fungi and endophytes are typical examples who are involved as 

mutualistic microbes. Basidiomycete Piriformospora indica is the representative 
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mutualistic fungus in the microbe-plant root interaction, it provides various benefits to 

the host plants, such as barley, Arobidopsis, tomato and wheat (Waller F. et al. 2006; 

Deshmukh et al. 2006; Sharma et al. 2008; Qiang et al. 2012). 

1.1.1 Plant innate immunity 

In order to ensure plant development and proliferation, plants built a series of defense 

strategies, which is related to the innate immune system of animals (Ausubel 2005), to 

against most of the microbial attackers. During the evolution, there are two branches 

of innate immune system of plant developed to resistant against the majority of the 

microbes (Chisholm et al. 2006; Jones and Dangl 2006). Microbes enter the inner part 

of plant through the wounds on the stem, stomata on the leaves or other natural 

openings. After penetrating plant cell walls, the plasma is exposed in front of the 

microbes, where the microbes meet with the transmembrane pattern recognition 

receptors (PRRs), which recognize the pathogen- or microbial-associated molecular 

patterns (PAMPs or MAMPs), such as bacterial flagellin, EF-Tu (elongation factor Tu) 

and fungal chitin (Chisholm et al. 2006; Zipfel and Felix 2005; Zipfel et al. 2006). 

The perception of a microorganism on the plasma membrane triggers primary 

immune response pattern-triggered immunity (PTI). This first layer immune system 

halts the microbial colonization by inducing oxidative burst (ROS), mitogen-activated 

protein kinase signaling cascade (MAP3K) or callose deposition (Schwessinger and 

Zipfel 2008).    

Once microbes acquired the capacity to restrain the primary immune defense, 

effector-triggered immunity (ETI) as the second layer immune system is motivated in 

plant and functioned in a more specialized mechanism (Dodds and Rathijen 2010; 

Pieterse et al. 2009). Microbial pathogens secret effector protein into the cytosol of 

plant host cell and interfere with PTI in the intracellular space.The effectors from 

diverse kingdoms can be recognized directly or indirectly by NB-LRR (nucleotide 

binding and leucine rich repeat) protein encoded by R-genes (Dangl and Jones 2001), 

thereby trigger the ETI, which results in the disease resistance and hypersensitive cell 
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death response (HR) in plant host (Fig. 1.2). PTI is weak, while ETI is stronger, faster 

and can be triggered again and again. A ‘zigzag’ model containing four phases 

illustrates the immune system in plant host (Jones and Dangl 2006). 

Effectors’ strategies and mechanisms were studied mainly in bacterial phytopathogens. 

Individual pathogenic bacteria strain can encode 20-30 effectors, and delivers into 

host cytoplasm using the type III secretion systems TTSS (Staskawicz et al. 2001; 

Chang et al. 2005; Cunnac et al. 2009). P. syringae AvrPto effector suppresses 

papillae formation on the cell wall, AvrE and HopPtoM effectors inhibit the callose 

deposition to against the defense based on cell wall (DebRoy et al. 2004; Hauck et al. 

2003), AvrPtoB effector behaves as a mimic of ubiquitin ligases and transfers the 

ubiquitin to suppress ETI-associated PCD (programmed cell death) in tomato 

(Abramovitch et al. 2003; Janjusevic et al. 2005; Rosebrock et al. 2007).  

Xanthomonas effectors XopD, AvrXv4 and AvrBsT interfere with SUMO protein 

conjugation pathway in plant (Roden et al. 2004), AvrBs3 effector family alerts gene 

transcriptions in plant nucleus to downregulate host defense (Yang et al. 2000), TAL 

(transcription activator-like) effectors induce the expression of symptom development 

associated host genes (Boch et al. 2009). Compared with the data on effectors in 

bacteria, the function and mechanism of eukaryotic effectors are rarely known.  The 

effectors from fungal- and oomycete-pathogen are secreted through the 

endomembrane system and delivered by unknown mechanism into plant cells 

(Kamoun 2007; Panstruga and Dodds 2009). 
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Fig. 1.2 Schematic representation of plant innate immunity (taken from Dodds and Rathjen 2010). 

Bacterial pathogens multiply in the extracellular space of plant cells, while fungal and oomycete 

pathogens mostly form hyphae in the extracellular space or feeding structure haustoria and invasive 

hyphae in the intercellular space.  Molecules known as PAMPs were released from varied pathogens 

in the extracellular space, recognized by PRRs on the plant cell surface and triggered the PTI response. 

PRR normally contains one extracellular domain LRR (leucine-rich repeat) and one intercellular kinase 

domain, interacts with BAK1 (brassinosteroid insensitive 1-associated kinase 1) protein to elicit PTI 

pathway. Effectors from bacterial pathogens were delivered through a type-III secretion pilus into plant 

cells, whereas the effectors from fungal and oomycete pathogens were delivered by unknown 

mechanism through haustoria or other structures into the host cell. Most of these effector proteins are 

recognized by NB-LRR receptors and initiate ETI pathway, and suppress PTI on the other hand.  

NB-LRR consist a LRR domain, a NB domain and an amino-erminal toll or coiled-coil domain.  

 

1.1.2 Plant systemic immunity 

Once there is plant defense response triggered on the infection site, plant systemic 

defense response is normally activated in the distal parts. The activated systemic 

immunity can protect undamaged plant tissue from subsequent pathogen invasions. 

Systemic acquired resistance (SAR) provides long-lasting disease resistance in 
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healthy plant tissue against the secondary infection mainly with biotrophic pathogens 

(Durrant and Dong 2004). SAR needs the accumulation of salicylic acid (SA) and the 

expression of pathogenesis-related (PR) genes (Vernooij et al. 1994; Bostock 2005). 

The conserved NON-EXPRESSOR OF PATHOGENESIS-RELATED1 (NPR1) gene is 

considered to be a positive regulator in SAR signaling pathway, and also functions at 

the downstream of SA (Fig. 1.3) (Pieterse et al. 2010; Fobert and Despres 2005; Dong 

2004). 

Induced systemic resistance (ISR) is associated with beneficial soil-borne 

microorganisms, for instance rhizobacterial strains and mycorrhizal fungi that 

promote the plant growth and increase plant resistance to bacterial and fungal 

pathogens (Pieterse et al. 1998; Van Loon et al. 1998; Pozo and Azcon-Aguilar 2007). 

Microbe-associated molecular patterns (MAMPs) from the beneficial microbes 

colonized on roots are recognized by the plant host, which results in effective 

systemic resistance on the shoot part of the host (Bakker et al. 2007; Van Wees et al. 

2008). In contrast to the ‘broad spectrum’ of SAR, ISR is less and predominantly 

effective against necrotrophic pathogens and chaw insects. Jasmonic acid and 

ethylene (JA-ET) dependent signaling and the associated genes, such as PDF1.2, 

MYC2 and ERF1, play essential role in the ISR pathway (Ton et al. 2002; Van Oosten 

et al. 2008).  
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Fig. 1.3 A model of systemic immune responses in plant (taken from Pieterse et al. 2010). Systemic 

acquired resistance (SAR) is induced by a mobile signal from locally pathogen infected tissue, the 

signal is transported through plant vascular system to distal tissues and actives the defense responses in 

healthy systemic tissues in the plant host. Salicylic acid (SA) plays a crucial role in the SAR pathway, 

since it can regulate the expression of genes encoded pathogenesis-related proteins (PRs). Induced 

systemic resistance (ISR) is activated by the beneficial microorganisms colonized on plant roots. The 

mobile signals created from plant root travel to the above-ground plant parts, activate systemic 

immunity against pathogen attack in shoot part. JA-ET (jasmonic acid-ethylene) signaling pathways are 

essential in ISR. The expression of JA- and ET-associated genes is evident after pathogen attack in 

ISR-expressing plant.  

 

1.2 Beneficial soil-borne microorganisms 

Some soil-borne microorganisms can improve plant nutrition and assistant plant host 

to deal with the biotic and abiotic stresses. Such beneficial belowground microbes are 

known as plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting 

fungi (PGPF) (Van Wees et al. 2008). The beneficial effects on plant not only results 

in a higher yield, but also have a high relevance in natural and agricultural ecosystems 

because of the reduced industrial fertilizer pollution in agricultural soils and water 

(Yang et al. 2009; Weyens et al. 2009).  
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1.2.1 Plant growth-promoting rhizobacteria (PGPR) 

Plant growth-promoting rhizobacteria (PGPR) are a small portion of rhizosphere 

microbes (2-5%) that promote plant growth directly or protect plant from soil-borne 

diseases indirectly (Lugtenberg and Kamilova 2009). Rhizosphere, one layer of soil 

influenced by plant root, is a hot spot for microbes in the underground. Plant roots 

secrete metabolite via root exudate that can be utilized by the PGPR as nutrients. The 

root exudates released by plant include many organic compounds, such as amino 

acids, organic acids, sugars, vitamins, nucleotides, phenolics, putresccine and carbon 

(Uren 2007). PGPR promotes plant growth through increasing the supply of nutrients 

to the host plant. For instance, the biological N2 fixer rhizobia is a well studied PGPR 

for the ability to fix N2 in the legume family through nitrogenase activity. The 

increased nutrients in plant rhizosphere also involve the solubilized phosphates and 

facilitated absorption of iron (Nautiyal et al. 2000; Kim et al. 1998; Von Wiren et al. 

2000). The positive effects on root growth and morphology change increase root 

surface area, which can help the plant host to take up more nutrients from the 

surrounding environment (Bashan and Dubrovsky 1996; Vessey and Buss 2002; 

Galleguillos et al. 2000; German et al. 2000; Holguin and Glick 2001). Plant growth 

promotion can be measured by the yield or the weight and length of shoots and roots.   

Endophytic bacteria represent a small subgroup of PGPR, they attach on the root 

surface and subsequently enter the root interior and colonize in the intercellular spaces 

(Hallmann and Berg 2007; Gray and Smith 2005; Hardoim et al. 2008; Rosenblueth 

and Martinez-romero 2006). The colonization of PGPR on root is changing as plant 

changes the chemical and physical composition at rhizosphere via exudations, water 

potential, soil pH and O2 pressure (Griffiths et al. 1999; Tavaria and Zuberer 1998; Xu 

2000). The penetration mostly rake place at the cracks on root, for instance the lateral 

root base, root hairs and root tips (Fig. 1.4). In addition, the cell-wall degrading 

enzyme (CWDE) secreted by bacteria plays crucial role in the invasion process 

(Compant et al. 2010; Lodewycks et al. 2002). The relationships between PGPR and 

plant hosts can be categorized into rhizospheric and endophytic relying on the 
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microbial localization (McCulley 2001). For instance, Kluyvera ascorbate colonizes 

on the upper two-thirds on the root surface of canola plant (Ma et al. 2001). Root 

junctions among epidermal cells and lateral root protrusion sides are the most popular 

colonization position for PGPR, which are also thought to be the entry point for 

PGPR (O’Callaghan et al. 2001; Spencer et al. 1994).  

 

 

Fig. 1.4 Plant root colonization sites by endophytic bacteria (taken from Compant et al. 2010). 

The use of PGPR as biological control is an environment-friendly approach against pathogenic 

microorganisms including fungi, bacteria, viruses, insects and nematodes. The mechanisms for 

rhizobacteria to exhibit biological control are varied. Antibiotics produced by gram-negative bacteria 

function via antagonism mechanism, such as the implication of lipopeptide biosurdactants from B. 

subtilis and pseudomonads in biological control (De Bruijn et al. 2007; Ongena et al. 2007). Signal 

interference mechanism is based on the degradation of AHL, which is required in the biofilm formation 

and the cell-wall-degrading enzymes synthesis (Lin et al. 2003; Shephard et al. 2008). Predation and 

parasitism based on enzymatic destruction of fungal cell wall are the main biocontrol mechanism in 

fungi, like Trichoderma species (Harman et al. 2004). ISR mechanism, which was discovered in the 

resistance to Fusarium wilt of carnation from rhizobacterium Pseudomonas sp. Stain WCS417, can be 
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triggered by variety of beneficial microbes (Van Peer et al. 1991; Van Wees et al. 2008; Van der Ent et 

al. 2009; Segarra et al. 2009). The successful biocontrol bacterium need also compete on nutrients and 

niches on the root with other organisms (Chin-A-Woeng et al. 2000). 

 

1.2.2 Rhizobium-Legume symbiosis  

Rhizobium spp. is Gram-negative bacteria that fix N2 for the leguminous family, such 

as soybean, peanut, pea and alfalfa. Rhizobium spp. forms nodules on the roots, 

differentiates into nitrogen-fixing bacteriods, and converts stable nitrogen gas in the 

soil into biologically useful form ammonia, which can be used as nitrogen source and 

taken up by the plant host (Van Rhijin et al. 1995; Spaink et al. 1998;). The 

establishment of this symbiosis between these two partners is based on a complicated 

molecular dialogue, starting even when rhizobia getting closer to root hairs in the soil 

(Kijne et al. 1992). The association stimulates the deformation and curling of root hair, 

and the secretion of flavonoids from plant roots activates the expression of nodD 

genes in rhizobia (Long et al. 1989; Long et al. 1996). Bacteria are released from the 

infection threads, which are originated from root hair and controlled by the Nod 

factors, into the developing nodule cells coming from the reprogramming of the root 

cortical cells (Oldroyd et al. 2011). During the release of bacteria, an un-walled 

infection droplet is formed from the invagination of infection thread membrane 

(Brewin 2004; Rae et al. 1992). Bacteria are surrounded by the symbiosome 

membrane through the symbiotic interface - infection droplet (Parniske 2000; Roth 

and Stacey 1989). Thereafter bacteria differentiate into bacteroids with the expression 

of enzyme nitrogenase and are able to fix the nitrogen (Vasse et al. 1990). The 

symbiosome membrane makes the exchange of carbohydrates and fixed nitrogen 

happened between plant host and bacteria (Oldroyd et al. 2011). In addition to 

Rhizobium, Azospirillum is also a N2-fixer for wheat, sorghum and maize (Okon et al. 

1998). 
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1.2.3 Plant growth promoting mycorrhizal fungi 

Some plant species form symbiotic alliance on the root system with certain 

mycorrhizal fungi, in this mutualistic association plant benefits with more accessible 

minerals from the soil while fungi take advantage of carbohydrates from plant root 

exudates (Bonfante and Anca 2009).  

Arbuscular mycorrhizal fungi (AMF) form a symbiosis through improving the 

supplement of phosphate, nitrogen and water to plant host and obtaining carbohydrate 

from plant in return (Finlay 2008; Solaiman and Saito 1997; Bago et al. 2003). AMF 

as the most widespread symbiosis belongs to a monophyletic phylum Glomeromycota, 

and as one number of endomycorrhiza part of the fungal hyphae of AMF is inside of 

plant cells (Fitter 2005; Schübler et al. 2001; Hibbett et al. 2007). The symbiotic 

development between arbuscular mycorrhiza and plant host results in the formation of 

the tree-shaped structure arbuscules (Parniske 2008). The exchange of nutrients and 

signals among plant host and fungus partners is supposed to occur in these symbiotic 

interface arbuscules. The structure of arbuscule in plant cell comprises three parts, 

fungal plasma membrane, periarbuscular space (PAS) and plant-derived 

periarbuscular membrane (PAM). The hyphe branches of fungus are surrounded by a 

plant-derived PAM at the outside layer of the subcellular structure arbuscule. The 

apoplastic interface PAS is formed between the PAM and fungal plasma membrane 

(Harrison 2005). As the change of nutrients distribution in the soil over time, 

Arbuscules have a short lifetime and are normally degraded about 8.5 days 

(Alexander et al. 1989; Javot et al. 2007).  

The development of AM fungal hyphae changes dramatically with the existence of 

plant-derived signals (Fig. 1.4). Strigolactones were discovered as endogenous plant 

hormones in various plants, such as pea, Arabidopsis thaliana and rice 

(Gomez-Roldan et al. 2008; Umehara et al. 2008). It was also discovered that 

strigolactones can stimulate the spore germination of AMF, induce the hyphae 

branching, alter the mitochondrial activity and the fungal physiology as well 

(Akiyama et al. 2005; Besserer et al. 2006). So strigolectones act as signals in the 
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communication systems between plant host and symbiotic fungi at the presymbiotic 

phase (Parniske 2005). Fungal signalling molecules Myc factors and plant receptors 

are getting more attention currently in the induction of symbiosis-specific 

fungus-plant responses. One example of Myc factor ENOD11- was illustrated to be 

able to induce the transcriptional activation of some symbiosis-related genes (Kosuta 

et al. 2003). LysM domain plays important role in the plant receptors, such as Nod 

factor and chitin receptors (Smit et al. 2007; Radutoiu 2007). Plant cells prepare the 

intracellular environment for the infection of biotrophic fungi, which is called 

prepenetration apparatus (PPA) (Genre et al. 2005; Siciliano et al. 2007). The 

subcellular structure PPA is formed a few hours after the hyphopodium formation, the 

formation of PPA is relying on the migration of nucleus in the plant cell, the 

movement of nucleus determine the fungal growth path in the cells (Genre et al. 

2008).  

 

 

Fig. 1.4 The development of arbuscular mycorrhiza in plant root (taken from Parniske 2008). 

Strigolactones coming from root exude induce the hyphal branching, spore germination, physiological 

activity of fungal hyphae and spore, and seeds germination for some plants, for instance parasitic plant 

Striga. Mycorrhiza factors (Myc) produced by fungi have the ability to induce calcium spiking in the 

outer layer of plant root epidermal cells and the expression of some symbiosis-related genes in plant. 

AMF form hyphopodium that originated from mature hyphae instead of germination tubes. 

Subsequently, a prepenetration apparatus (PPA) is formed in plant cell. Thereafter, the fungal hypha 

goes through the hyphopodium into PPA in plant cell, and enters cortex layer under the guide of PPA. 
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There, fungi leave plant cell, branch laterally along root axis in apoplast. These hyphae induce the 

PPA-like structure in cortical cells, then branch and form arbuscules in these cells. Fresh spores are 

synthesized normally at the tip of individual hyphae outside of plant root.  

 

Seven genes in plant are identified to be required in the AM symbiosis and rhizobia 

symbiosis (Kistner et al. 2005). These genes are involved in signal transduction 

network, which plays an important role in the intracellular accommodation for AMF 

symbiosis and rhizobia symbiosis in plant host cells. SYMRK gene encodes a 

receptor-like kinase that is portrayed as a key to open the symbiotic signalling 

pathway, this receptor-like kinase can perceive the extracellular signal coming from 

microbial symbiosis and transduce the signal through its intracellular kinase domain 

(Markmann et al. 2008; Gherbi et al. 2008). Proteins encoded by CASTOR gene and 

POLLUX gene have similar domain structures and identified sequence similarity, 

those proteins are seen as counter-ion channels, such as potassium-permeable cation 

channel, induce calcium spiking, but is not calcium release channel (Peiter et al. 2007; 

Oldroyd and Downie 2008; Imanizumi-Anraku et al. 2005).  NUP85 and NUP133 

genes encode nucleoporins proteins these are required in the temperature-dependent 

initiation of symbiosis and act in the upstream of the calcium spiking (Kanamori et al. 

2006; Saito et al. 2007; Alber et al. 2007; Lusk et al. 2007). CCaMK gene encodes a 

calcium-calmodulin-dependent protein kinase, which can perceive the calcium 

induced by AMF in plant host cell (Mitra et al. 2004; Kistner et al. 2005). The protein 

encoded by CYCLOPS contains a functional signal from nuclear localization, induces 

the arbuscule development during the symbiosis, and was illustrated to interact with 

CCaMK in both planta and yeast (Lévy et al. 2004). The analysis of these genes in 

infected plant starts uncovering the signalling networks in symbiotic AMF.  

1.3 Rhizobium radiobacter F4 

1.3.1 The genus Agrobacterium 

The genus Agrobacterium was originally established by Conn in 1942 (Approve Lists 
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1980) in tumor-inducing Agrobacterium tumefaciens, hairy root organism 

Agrobacterium rhizogenes and the nonphytopathogenic strains Agrobacterium 

radiobacter, later this genus was supplemented with biovar I, biovar II and biovar II 

(Sawada et al. 1993). The genus Rhizobium is well-known nitrogen-fixing bacteria 

that form nodule on legumes.  Agrobacterium tumefaciens is one of the serious plant 

pathogens in the world with a broad plant host in dicotyledon. The crown gall disease 

is caused by A. tumefaciens and results in a severe agronomic loss. The genome of A. 

tumefaciens C58 is about 5.67 megabase, contains one circular chromosome, one 

linear chromosome, one tumor-inducing plasmid pTiC58, and another plasmid 

pAtC58 (Wood et al. 2001; Goodner et al. 2001; Slater et al. 2013). The gall tumor is 

caused by the discrete T-DNA gene on the tumor-inducing (Ti) plasmid. The T-DNA 

is transferred into plant cell and integrated randomly into the plant genome. The 

expression of T-DNA gene alters the synthesis of plant hormones leading the cell 

proliferation into tumor, and the synthesis of enzyme leading to the bacterial nutrient 

source opines (Zupan et al. 2000; Binns and Thomashow 1998). Tumor-inducing 

genes can be replaced by exogenous DNA fragment, the reconstructed Ti-plasmid is 

introduced back into A. tumefaciens and transfers the desired gene into plant host. 

Because of this characteristics, A. tumefaciens as an ideal tool for gene transfer plays 

essential role in transgenic plant research (Topping et al. 1995; Newell 2000). The 

similar transport, metabolic and regulatory systems between A. tumefaciens and 

nitrogen-fixing Rhizobiaceae indicate a close evolutionary relationship in the 

divergence of pathogenic and symbiotic lifestyles (Young et al. 2001; Oke and Long 

1999).  

1.3.2 Endofungal bacteria 

Endofungal bacterial are symbionts of fungi residing within the fungal mycelium and 

spores, were original defined as bacterium-like objects (BLOs) in endomycorrhizal 

fungi in 1970 (Mosse 1970; Macdonald and Chandler 1981; Scannerini and Bonfante 

1991; Bonfante and Anca 2009). The lifecycle of those endobacteria in the fungal host 
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has two hypothetical mechanisms vertical transmission and horizontal transmission. 

In the vertical transmission, endobacteria replicate inside the host mycelium and 

transferred to the next generation by the vegetative spores. During the horizontal 

transmission, the fungal host could release the endobacteria from the cell and be 

infected by other competitive bacteria (Lackner et al. 2009; Partida-Martinez et al. 

2007). Normally the mutualistic symbionts tend to be the vertical transmission 

whereas the pathogenic symbionts prefer the horizontal transmission, but in some 

cases mutualisms choose the horizontal transmission as well under the help of a type 

III secretion system (Yamamura 1997; Dale et al. 2002).  

Some of the arbuscular mycorrhizal fungi harbor endosymbiotic bacteria including 

Gram-positive and Gram-negative bacteria in the fungal cytosol (Parniske 2008; 

Naumann et al. 2010). For example, one Glomeromycotan fungus Geosiphon 

pyriformis forms a symbiosis in the bladders with Nostoc cyanobacteria that has the 

ability of photosynthesis and nitrogen fixation (Schluesser et al. 2002). The 

rod-shaped endobacterium Candidatus Glomeribacter gigasporarum was identified in 

the AM fungus Gigaspora margarita, and vertically transmitted through the 

vegetative spore generations (Bianciotto et al. 2003; Bianciotto et al. 2004). Several 

studies showed that the ectomycorrhizal fungi harbor intracellular bacteria, such as 

the existence of Alphaproteobacteria inside the mycelium of Laccaria bicolor S238N 

(Bertaux et al. 2003; Bertaux et al. 2005). The endofungal bacterium Burkholderia 

rhizoxininca was detected as mycotoxins producer in the rice pathogenic fungus 

Rhizopus microspores (Partida-Martinez and Hertweck 2005; Lackner et al. 2009; 

Moebius et al. 2014). Diverse endohyphal bacteria were detected to dwell in the 

hyphae of phylogenetically diverse foliar fungal endophytes (Hoffman and Arnold 

2010). The endobacteria associated with zygomycete fungus Mortierella alpine 

produce the quorum-sensing molecule N-acylhomoserine lactones (AHL) (Kai et al. 

2012a and 2012b). One of the oldest plant-associated fungi endogone host unique 

mollicutes-related endobacteria (Desirò et al. 2015). Endobacteria associated with the 

genera of Sebacina and Piriformospora belong to the Gram-negative bacteria 
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Rhizobium and Acinetobacter, as well as the Gram-positive bacteria Rhodococcus and 

Paenibacillus as detected by cultivation in independent analysis based on 16S rRNA 

gene sequence analysis (Scharma et al., 2008). The most comprehensively studied 

example of a tripartite Sebacinalean symbiosis is that of Piriformospora indica 

because it was possible to isolate the endobacterium and to grow independent of the 

fungal host. This enobacterium was identified by 16S rRNA gene sequencing as the 

Alphaproteobacterium Rhizobium radiobacter (syn. Agrobacterium radiobacter; syn. 

Agrobacterium tumefaciens) strain F4 (RrF4) (Sharma et al. 2008).  

The successful isolation of endobacteria from fungal hosts is a big progress on the 

way to explore the endobacterial lifestyle and the evolution procedure. The full 

genome sequencing of the isolated bacteria gives a glance into the mutualistic 

relationships. Bioinformatic analysis suggested that the endobacteria probably help to 

keep the fitness of the fungus through the synthesis of some antibiotic- or 

toxin-resistance molecules and vitamin B12 (Ghignone et al. 2012). Many of the 

obligate endofungal bacteria showed a reduced genome size compared with the free 

living bacteria species in the same genera such as the endobacteria Burkholderia 

rhizoxinica (Lackner et al. 2011; Naito et al. 2015; Fujimura et al. 2014; Torres- 

Cortés et al. 2015). The fungus-bacterial interaction has preceded the development of 

fungus symbiosis with plant. 

1.3.3 Endofungal Rhizobium radiobacter F4 

Sharma and coworker reported an endofungal bacterium Rhizobium radiobacter F4, 

which was detected in the cytoplasm of the endophytic sebacinalean fungus 

Piriformospora indica and subsequently isolated from the fungus host and 

successfully pure cultured on agar plate (Sharma et al. 2008). This bacterium is a 

rod-shaped bacterium 1-1.5 µm in length, it is described as Alphaproteobacterium 

Rhizobium radiobacter (syn. Agrobacterium radiobacter; syn. Agrobacterium 

tumefaciens) strain F4 (RrF4).. After the successful isolation of RrF4 bacteria, Sharma 

did the biological activity assay on model crop plant barley. Intriguingly, the plant 
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infected by bacteria RrF4 showed certain growth promotion and pathogen resistance 

against barley powdery mildew, which are quite similar to the biological activity 

induced by fungus P. indica.  

These endobacteria were detected by Fluorescence in situ hybridization (FISH) with a 

16S rRNA targeting universal bacterial probe and a respective Rhizobium-specific 

probe, amplified by PCR with universal 16S rRNA primers and specific RrF4’s ITS 

primers. All these results showed the existence of one specific endobacteria 

endobacterium, Rhizobium radiobacter in the fungus P. indica, however the very few 

hybridization dots in FISH indicate the very few number of endobacteria exciting in 

the fungus host. The genomic DNA ratio between the endofungal R. radiobacter and P. 

indica was 0.035: 100, which further confirmed the low number of endobacteria in P. 

indica (Sharma et al. 2008). The same case was found in the mycelium of 

ectomycorrhizal Laccaria bicolor, which was reported by Bertaux that there were 

1-20 bacteria per fungal cell (Bertaux et al. 2003; Bertaux et al. 2005).   

1.4 The mutualistic fungus Piriformospora indica   

The root endophytic fungus Piriformospora indica belongs to the order Sebacinales in 

the phylum Basidomycota, and was originally isolated from two shrubs’ rhizosphere 

in 1996 in Indian Thar Desert, north-western Rajasthan (Weiß et al. 2004; Verma et al. 

1998; Varma et al. 1999). P. indica produces pear-shaped chlamydospores with 8-25 

nuclei in each spore, establishes biotrophic relationship with its plant host through the 

mycorrhizal hyphae (Verma et al. 1998; Waller et al. 2005). Molecular phylogenetic 

analyses revealed that P. indica has a close relationship with the species in the 

heterogeneous Sebacina vermifera complex, which shows similar biological benefits 

to plant host (Weiß et al. 2004; Deshmukh et al. 2006; Sharma and Kogel 2009). As a 

mutualistic endophyte, P. indica is the most studied model fungus in Sebacinales. The 

discovery of endofungal bacteria harbored by P. indica constitutes an intricate 

tripartite relationship among plant, fungus and bacteria.    

1.4.1 Biological beneficial activity mediated by P. indica 
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P. indica colonizes a broad spectrum of monocotyledonous and dicotyledonous plants 

without any preference, induces resistance to leaf and root pathogens, promotes 

biological biomass and yield, and increases tolerance to abiotic stress such as salt 

stress (Peškan-Berghöfer et al. 2004; Waller et al. 2005; Deshmukh et al. 2006; 

Schäfer and Kogel 2009; Varma et al. 2012; Oberwinkler et al. 2014; Ye et al. 2014). 

The mechanism of P. indica functioning as disease control agent was mediated 

through induced systemic resistance (ISR) and depended on the jasmonic acid 

signaling pathway (Stein et al. 2008; Jacobs et al. 2011). Pathogenic assessments 

were performed in dico- and monocotyledonous with variety of pathogens, such as 

crop plant barley infected by powdery mildew fungal pathogen, wheat infected with 

Xanthomonas translucens pv. translucens DSM 18974
T 

, model plant Arabisopsis 

thaliana against Golovinomyces orontii and tomato against Fusarium oxysporum 

(Serfling et al. 2007; Waller et al. 2005; Stein et al. 2008). The strong growth 

promotion mediated by P. indica was revealed to rely on phospholipid signaling 

pathway and improved nitrate supply in cereals and Arabidopsis thaliana. The 

synthesis of phosphatidic acid (PA) is involved in the induced growth, in which 

phospholipases D (PLDα1 and PLDδ) are required in the upstream of the synthesis 

and PDKs 1.1 and 1.2 are involved in the downstream, there after the MPKs 3, 6 and 

Ca
+
  are activated (Camehl et al. 2011). In addition, some signaling components like 

LRR proteins and MATH protein and phytohormones such as gibberellin, cytokinins 

and ethylene are revealed to contribute to the growth promotion (Oelmüller et al. 

2005; Chandler et al. 2002; Shahollari et al. 2007; Camehl et al. 2010; Jacobs et al. 

2011; Vadassery et al. 2008; Schäfer et al. 2009; Sun 2008; Yadav et al. 2010). 

Several independent studies illustrated that the salt stress tolerance induced by P. 

indica is associated with changed antioxidative capacities in plant host (Baltruschat et 

al. 2008; Waller et al. 2005; Kumar et al. 2009; Vadassery et al. 2009).  

1.4.2 Colonization pattern of P. indica 

Root penetration and colonization strategies of P. indica on broad plant hosts were 
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revealed by cell biological studies and cytological analysis. The effective colonization 

starts from the germination of chlamydospores, fungal hyphae forms extracellular 

network in one day on the root surface (Deshmukh et al. 2006; Schäfer et al. 2009). 

Subsequently, biotrophic colonization phase starts, hyphae enter into the epidermal 

layer and branch through the intercellular space, intercellular hyphae in signal 

rhizodermal and cortical cells were visible at three days. Cell death-dependent 

colonization phase following after the biotrophic colonization was occurred after three 

days, cell death was proved by the disintegration of cytoplasm and endomembrane, 

and the incomplete endoplasmic reticulum (ER) and nucleus in the cell (Jacobs et al. 

2011; Qiang et al. 2012). Fungus penetrates and colonizes adjacent cells after the 

completely filling in single cells, and there are necks formed on hyphae at the traverse 

site through cell walls (Deshmukh et al. 2006). Gradual increase of P. indica 

proliferation was detected on the maturation zone, abundant mycelium colonization 

on root surface and net-like inter- and intra-cellular hyphae were observed in the 

rhizodermal and cortical layers at seven days. Sporulation was mostly occurred at 14 

days, single spores developed at the hyphal tips and a stack of spores were formed in 

root hair cells starting from the basal parts of root hair. The continuous research on 

barley, Arabisopsis and tomato has revealed that the maturation zone is the hot spot 

for P. indica while the elongation and meristematic zones are normal free from 

colonization (Deshmukh et al. 2006; Schäfer et al. 2009; Jacobs et al. 2011; Zuccaro 

et al. 2011; Qiang et al. 2012).  

Phytohormones are involved in the innate immune suppression that is prerequisite for 

the successful colonization and the board host rang of P. indica. Plant host recognizes 

the mutualist P. indica through its MAMPs, which trigger the MTI in plant root and 

restrict the colonization and penetration of P. indica through different interaction 

stages (Jacobs et al. 2011). P. indica recruits JA to achieve the suppression of MTI 

through the oxidative burst in the early stage, SA- and indole glucosinolate-mediated 

defense play the dominant role through manipulating gene expression in the later 

stages. The root response to mutualistic P. indica is similar to the perception system 
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and immune response in leaves with pathogen (Jacobs et al. 2011; Qiang et al. 2012). 

1.4.3 Genome and transcriptome analyses of P. indica 

Zuccaro and colleagues did the genome sequencing and transcriptome analyses of P. 

indica, which provide a chance to look deeper insight the fungal lifestyle on the 

genome level (Zuccaro et al. 2011). Genome sequencing data showed that this fungus 

possesses a 24.97 Mb genome, and as a heterokaryon fungus contains two genetically 

distinct nuclei (Zuccaro et al. 2009; Zuccaro et al. 2011). Through the comparison of 

corresponding domains and protein binding motifs, it was shown that P. indica owns 

complex intracellular signaling pathways that sense and receive the signals from 

external environment and plant host. Three carbohydrate binding motifs are 

dominantly found, LysM functions on fungal cell wall as chitin-binding protein, WSC 

was described as sensor in yeast for the cell wall integrity, and CBM1 acts on plant 

cell wall as fungal hydrolytic enzyme (De Jonge et al. 2010; Varna et al. 1997; 

Boraston et al. 2004; Gaulin et al. 2004). About 10% of genes induced in P. indica 

during the colonization on root encoded small secreted proteins SSPs, which may 

function as effectors involved in the suppression of plant immunity, penetration and 

growth in plant cells (Qiang et al. 2012; Rafiqi et al. 2013). One candidate effector 

(PIIN_08944) was suggested to play a role during the root colonization of P. indica 

through suppression iof SA-mediated immune responses in plant host (Akum et al. 

2015). 

1.4.4 Comparison of arbuscular mycorrhiza and P. indica 

Arbuscular mycorrhiza (AM) in the phylum Glomeromycota form peri-fungal 

membrane surrounding the AMF hyphae during the infection with plant (Bonfante 

and Genre 2010). The similar structure, which was called plant-derived membrane 

and used to separate the hyphae from plant cytoplasm, was sometimes found with P. 

indica during the fungal interaction with plant host (Lahrmann et al. 2013; Lahrmann 

and Zurrcaro 2012; Jacob et al. 2011). It was reported that the successful invasion of 

AMF into plant root cells requires a set of plant common symbiosis genes (CSGs) 
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involving in the signal transduction pathway, such as synthesis of SYMRK, CCaMK 

and CYCLOPS (Singh et al. 2014; Antolin-Llovera et al. 2014; Singh and Parniske 

2012). However, the colonization and growth promotion mediated by P. indica in 

plant are independent from the classical CSGs, since there were intracellular hyphae 

and spores of P. indica formed in CSG mutants of L. japonicus (Banhara et al. 2015). 

A. thaliana as a number in the Brassicaceae family does not have one specific set of 

CSGs which results in the failure to interact with AMF. These research illustrated 

different pathways are exploited by P. indica and AMF during the infection with plant 

host.   

1.5 Tripartite bacteria-fungi-plant interactions 

Microbes ubiquitously colonize on the terrestrial plants in a high abundance in the 

ecosystem, in consequence an intricate and finely tuned tripartite interaction is 

established among bacteria, fungi and plant partner (Fig. 1.5) (Bonfante and Anca 

2009). Soil fungi colonize on roots and form a bridge between soil and plant through 

hyphae, which increase the root surface area and promote the nutrient flow in the 

system. This bridge connection is even established among different plants boosting 

the horizontal nutrient movement. In this bipartite relationship, there is quite often 

additional bacterium partner who may colonize on the surface of mycorrhizal 

roots/extraradical hyphae, or live as endofungal bacteria in fungal cytoplasm, which 

make the relationship complicated and change the bipartite relationship into tripartite 

interaction.  

There is spatially and physiologically specificity about microbial biodiversity in the 

rhizosphere. Investigations showed that bacterial assemblage on roots are mainly 

determined by fungi and influenced by soil pH. However, fungus themselves are 

mostly influenced by plant community composition, such as the ectomycorrhizal 

fungi Paxillus involutus (Kisa et al. 2007; Roesti 2005; Singh et al. 2008; Vesterg˚ard 

et al. 2008). Streptomycetes have been identified as modulators of plant symbiosis, 

and facilitate the root colonization of pathogenic fungi through repressing plant 

responses (Schrey and Tarkka 2008). The fungus Glomus intraradices could grow and 
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sporulate independently of its plant host in the presence of bacterium Paenibacillus 

validus that might release raffinose, which indicate an interesting argument that 

bacteria may give out some compounds mimicking plant molecules (Bouwmeester et 

al. 2007; Hildebrandt et al. 2002; Hildebrandt et al. 2006). The effect of bacteria on 

plant-fungus microhabitat is multifaceted, ranging through the production of 

phytohormones to alleviating pathogens or other abiotic stress (Artursson et al. 2006; 

Bonfante and Anca 2009). Bacteria produce extracellular polymers assisting the 

attachment to ensure a physical contract with fungi, excrete organic acids as carbon 

source for associated fungi (Bianciotto et al. 2001; Frey-Klett et al. 2007). Bharadwaj 

et al. found that high number of spore-associated bacteria could inhibit the plant 

pathogen Rhizoctonia solani (Bharadwaj et al. 2008). 

 

 

Fig. 1.5 Illustration of interactions established among plants, micorrhizal fungi and bacteria in 

the root rhizosphere (taken from Bonfante and Anca 2009). Ectomycorrhiza and arbuscular 

mycrorrhiza were illustrated on the left side and right side of plant root respectively. Endobacteria 

(white color) are presenting in spores and intraradical mycelium of AM fungi; Rhizosphere bacteria 

(red color) are beneficial or detrimental to other partners through the release of some diffusible factors; 

Other bacteria (green color) may play positive effects through physical contact with fungus-root 

surface. Arrows illustrate the release of some diffusible factors, for instance strigolactones, auxin-like 

molecules volatiles and some Myc factors, that are further perceived by reciprocal partners.   
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From loosely or tightly associated bacteria to endobacteria resided in the fungal 

cytosol, a more intriguing tripartite relationship is exemplified in the context of 

toxinogenic Burhholderia-Rhizopus symbiosis. Rhizopus microspores is a zygomycete 

fungus and causes rice seedling blight disease, which results in severe loss in 

agriculture for famers (Iwasaki et al. 1984; Iwasaki et al. 1986). The endosymbionts 

Burkholderia rhizoxinica living in Rhizopus microspores act as a producer of rhizoxin, 

which is further processed by the fungal host into phytotoxin rhizoxin. This 

phytotoxin rhizoxin blocks mitosis in the plant cells by binding to the β-tublin, kills 

the rice plant and causes rice seedling blight (Partida-Martinez and Hertweck 2005; 

Partida-Martinez et al. 2007a; Scherlach et al. 2006; Lackner et al. 2009). During this 

process, the endofungal bacteria help host fungi producing phytotoxin to kill rice 

plant, while the host fungi provides a protective shelter for its bacteria partner, then 

both of them benefit from the nutrients released from dead rice plant (Scherlach et al. 

2012). Fungal self-resistance to the antimitotic toxin was correlated with the rhizoxin 

sensitivity to β-tublin sequences (Schmitt et al. 2008). Burkholderia rhizoxinica is 

vertically transmitted in the fungal vegetative reproduction, controls fungal 

sporulation since the cured fungi doesn’t have spores anymore, has the capability to 

infect the fungus host again (Partida-Martinez et al. 2007b; Nadine et al. 2014). 

Genome sequencing of this culturable microbe gave detailed insight into the evolution 

and metabolic connection of this symbiont relationship (Lackner et al. 2011a and 

2011b).   
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1.6 Objectives 

The root endophyte Piriformospora indica establishes a biotrophic relationship with a 

broad spectrum plants, promotes biomass and crop yield, induces resistance to leaf 

and root pathogens, and increases tolerance to abiotic stress. The discovery of the 

endofungal bacterium Rhizobium radiobacter F4 living in P. indica’s cytoplasm 

suggested that P. indica forms an intricate tripartite-relationship with the plant host 

and the bacterium.  

In my thesis, I addressed the question who is the partner responsible for growth 

promotion and biotic/abiotic resistance induced in the plant host, the endophyte P. 

indica, the endobacterium Rr, or both the fungus and the bacterium when functioning 

together? For this aim, I explored the colonization pattern of GUS/GFP-labeled RrF4 

on barley and Arabidopsis roots with fluorescence/light microscope, confocal laser 

scanning microscopy, scanning and transmission electron microscopy. In order to 

reveal what is happening to the bacteria during the colonization of P. indica with the 

plant, the number and release situation of the endobacteria was analyzed. To compare 

the biological activity mediated by P. indica with and without endobacteria, I 

developed several strategies to cure P. indica from its endobacterium. 
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2 Materials and Methods 

2.1 Bacterial and fungal materials  

2.1.1 Piriformospora indica 

Piriformospora indica-DSM11827 was obtained from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen, Braunschweig, Germany. This isolate came from 

one original sample collected in the Thar desert, India in 1997 (Varma et al. 1998). P. 

indica was propagated on modified Aspergillus complex medium (CM medium) at 

room temperature (Pham et al. 2004). Chlamydospores were harvested from the 3-4 

weeks old culture on agar plate, and sub-cultivated in Erlenmeyer flask filled with 

liquid CM medium shaking 130 rpm at room temperature.  

 

CM medium ( 1L)  

20×salt solution  50 mL 

Glucose 20 g 

Peptone 2 g 

Yeast extract 1 g 

Casamino-acid 1 g 

1000×Microelements 1 mL 

Agar-agar 15 g 

A. dist. H2O  950 mL 

  20×salt solution (1L) 

NaNO3 120 g 

KH2PO4 30.4 g 

KCl 10.4 g 

MgSO4∙7H2O 10.4 g 

  1000×Microelement (1L) 

ZnSO4∙7H2O 2.65 g 

H3BO3 1.5 g 

MnCl2∙4H2O 6.0 g 

KI 0.75 g 

CuSO4∙5H2O 0.13 g 

Na2Mo7O4∙2H2O 0.0024 g  
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2.1.2 Rhizobium radiobacter F4 

Rhizobium radiobacter F4 is a subculture of strain PABac-DSM, which was isolated 

from P. indica DSM 11827 by Sharma in 2008 (Sharma et al., 2008). RrF4 was 

cultured on solid YEP medium at room temperature for one and a half days or in 

liquid YEP medium in Erlenmeyer flask on shaker 130 rpm at room temperature. For 

long time preservation, RrF4 was cultured in liquid YEP medium till OD600=0.6, then 

supplemented with 20% (v/v) glycerol and stored at -80 ºC.  

 

YEB medium (1L) 

Beaf extract                     5 g 

Yeast extract               1 g 

Caseinhydrolysate             5 g 

Sucrose                        5 g 

MgSO4∙7H2O              0.49 g 

Agar-agar                       15 g 

Adjust the pH to 7.2 

  

2.1.3 Generation of β-glucuronidase (GUS) - and GFP-RrF4 

For histochemical localization of RrF4 in roots, GUS (ß-glucuronidase) and GFP 

(green fluorescent protein) tagged RrF4 were generated with the plasmid pLH6000 

(DNA cloning service, Germany).  

2.1.3.1 Generation of electro-competent RrF4 cells  

The electro-competent RrF4 cells were made first. A single colony of RrF4 was 

inoculated in 5 mL LB medium with 100 μg/mL gentamycin, and cultured overnight 

at 28℃ with vigorous shaking 220 rpm; Sub-cultured in 15 mL LB medium for 4-6 h 

until OD600=1.0-1.5; Transfer the bacteria on ice for 10 min, and centrifuge 10 min by 

4 500 rpm at 4 ℃; Afterwards re-suspend the pellet into sterile ice-cold 10% glycerol, 

centrifuge 10 min by 4500 rpm at 4℃ (two times); Finally re-suspend the cells in 

ice-cold 10% glycerol, aliquot into 50 μL and freeze in liquid nitrogen. 
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2.1.3.2 Electroporation 

The GUS-containing plasmid was generated by introducing GUS gene into the 

plasmid pPCV812 under the control of a mannopine synthase (mas) promoter (Imani 

et al., 2002). 0.5 mL plasmid DNA (10-100 ng) was mixed with 50 μL competent 

cells, applied the pulse by Gene Pulser Xcell
TM

 (Bio-RAD, UAS). The cells were 

re-suspended in 1 mL SOC medium after 5 min on ice and incubated at 28 ℃ for 1 h, 

spread the cells on LB medium with 100 μg/mL gentamycin. The X-Gluc (Duchefa, 

Netherland) was used in this research as GUS substrate (Jefferson, 1987). 

The GUS-containing plasmidFor GFP-RrF4, a codon optimized GFP (Cormack et al., 

1996) was cloned into a pGEM-T Easy vector (Promega, Germany), cut by EcoR1 

restriction enzyme and inserted into plasmid Plh6000 under the constitutive control of 

the E. coli ribosomal protein promoter (Post et al., 1980), re-cut by restriction enzyme 

EcoR1 and inserted into pLH6000. GFP-RrF4 was confirmed by fluorescence 

microscopy with GFP-specific filter sets. 

 

LB medium (1 L) 

Tryptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

Agar-agar 15 g 

Adjust pH to 7.0, sterilize by 

autoclaving  

 

SOC medium (100 mL) 

Trytone 2 g 

Yeast extract 0.5 g 

5 M NaCl 
0.2 

mL 

1 M KCl 
0.25 

mL 

1 M MgCl2 1 mL 

1 M Glucose 2 mL 

Sterilize by autoclaving 
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X-Gluc (50 mL) 

X-Gluc    50 mg 

0.1 M Phosphate buffer (pH 7.0)                                                     49 mL 

5 mM Potassium ferricyanide (MW 329.2)                                    500 μL 

5 mM Potassium ferrocyanide (MW 422.4)                                     500 μL 

Triton x-100                                                                                               50 μL 

Sterilize with a 0.2 μm filter, store at -18℃ at dark. 

 

0.1 M Phosphate buffer (418 mL)  

0.2 M KH2PO4 (2.7g/100ml)                                                         87 mL 

0.2 M K2HPO4 (6.96g/200ml)                                                       122 mL 

A. dist. H2O 209 mL 

Adjust pH 7.0, autoclave.  

 

2.2 Plant materials and growth conditions 

Barley (Hordeum vulgara L.) cultivar Golden Promise and Arabidopsis thaliana 

ecotype Colombia-0 (Col-0, N1092) were used in this research.  

2.2.1 Germination of seeds 

For aseptically grown barley seedlings, the seeds were firstly surface sterilized in 70% 

(v/v) ethanol for 5 min, followed by a subsequent exposure to NaClO (6% active 

chlorine) solution with two drops of Tween 20 for 1.5 h. Thereafter, seeds were rinsed 

in pH 3.0 distilled water once and normal distilled water three times in clean bench. 

After peeling off the glumes, seeds were placed on sterilized filter paper in aseptic jar 

and germinated three days in the culture room (24 ℃,16/8 h photoperiod).  

For aseptically grown Arabidopsis thaliana, the seeds were sterilized in 70% ethanol 

for 1 min and NaClO (3% active chlorine) solution for 10 min, rinsed in distilled 

water as above and dried on sterilized filter paper in clean bench. The dried seeds 

were placed on solid 1/2 MS medium with sucrose at 4 ℃ for two days and then 

germinated in the culture room for one week.    

2.2.2 Root inoculation 

Three-week-old P. indica cultures were used in root inoculation experiment. The 
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chlamydospores were collected with autoclaved 0.002% tween-20 water by gently 

scratching the surface of P. indica culture on petri dishes with spatula. The spores 

were filtered with miracloth to remove the mycelium and centrifuged at 3500 rpm for 

7 min to pellet the spores. Subsequently, the pellet was suspended in tween-20 water 

after washing three times. The spore concentration was detected with microscopy and 

adjusted to 100000 spores per mL. Three days old barley seedlings were 

dip-inoculated in P. indica spores solution for 2 h, while the tween-20 water was used 

as mock.  

GUS/GFP-RrF4 and wild type RrF4 were cultured in YEB medium at 28 ℃ overnight, 

centrifuged and re-suspended in 10 mM MgSO4.7H2O solution with OD600=1.4. 

Subsequently, three days old barley seedlings or one week old Arabidopsis thaliana 

seedlings were dip-inoculated in the bacteria solution for 30 min, while 10 mM 

MgSO4.7H2O solution was used as mock.   

2.2.3 Seedling growth conditions 

After root inoculation, barley seedlings were grown on 1/2 MS medium in culture 

room or in pot in a climate chamber. The pot was containing 3:1 mixture of expanded 

clay (Seramis®, Masterfoods) and Oil Dri® (Damolin). The growth condition in the 

climate chamber was 16 h photoperiod, 22/18 ℃ day/night and a photon flux density 

of 160 µmol m
-2 

s
-1

. The seedlings in per pot were fertilized once every week with 30 

mL Wuxal N solution (Schering, N/P/K: 12/4/6).  

Arabidopsis thaliana seedlings were grown vertically on 1/2 MS medium in squared 

petri dishes (Greiner Bio-One). The controlled growth condition for Arabidopsis 

thaliana was 8/16 h light/dark, 22/18 ℃ and 60% rel. humidity. The roots were 

harvested at 0 day post-inoculation (dpi), 5, 7, 14 and 21dpi, used for q-RT-PCR or 

staining.  
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1/2 Murashige-Skoog (MS) medium 

(1L) 

MS 2.20 g 

Sucrose 5 g 

Adjust PH 5.8 
 

Gelrite 4 g 

 

2.3 Basic molecular biological methods 

2.3.1 Genomic DNA extraction 

The genomic DNA from bacteria, fungi and plant were extracted with different 

approaches during this study.  

The DNA of pure RrF4 was extracted with the Freeze-thaw method: the overnight 

cultured RrF4 was centrifuge at 8000 rpm for 5 min, the pellet was washed with 500 

µL 1×PBS and stored at -20 ºC. For freeze-thaw DNA extraction, 500 µL distilled 

water was added to re-suspend the sample, then the sample was heated for 1 min at 

110 ºC and frozen at -20 ºC (repeated for three times), finally the genomic DNA from 

RrF4 was ready to use.  

The biomass of fungal mycelium was collected from liquid culture or agar-plate, then 

immediately frozen in liquid nitrogen and ground into fine powder with mortar and 

pestle. The plant root was harvested from jar, pot or square petri dish, then frozen and 

ground into fine powder as above. 100-200 mg powder was used for DNA extraction 

by Plant DNeasy kit (QIAGEN, GmbH, Hilden, Germany), or 400-500 mg power 

used for DNA isolation with the NucleoSpin® Soil Kit (Macherey-Nagel, Germany) 

with lysis buffer SL1 according to manufactures’ instructions. DNA was eluted in 30 

µL Milli-Q water, the concentration was measured using NanoDrop ND-1000 (Peqlab 

Biotechnology GmbH, Erlangen, Germany). DNA samples with concentration 200 

ng/μL were used for PCR or stored at -20 ºC. 

2.3.2 Polymerase chain reaction (PCR) 

The conventional amplification was performed in a PCR Thermo cycler (Biometra, 
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GmbH, Germany). Two types of DNA polymerase (GoTag®DNA Polymerase, 

Promega, Germany; DCS Pol, Germany) were used to amplify genes of interest from 

different DNA templates. The standard PCR mixture and thermal cycle program are 

given below. The elongation time normally depends on the size of the PCR product 

(1kb/min), while the annealing temperature is adjusted to the primers.  

 

GoTag DNA Polymerase    PCR mixture 

(25 µL)     

5×Buffer 2 μL 
    

dNTPs 2 mM 0.5 μL 
    

MgCl2 25 mM 1.5 μL 
    

Fwd primer 10 μΜ 0.3-1.0 μL 
    

Rev primer 10 μΜ 0.3-1.0 μL 
    

DNA Polymerase 5 u/μL 0.25 μL 
    

Template 1 μL 
    

A. dist. H2O Up to 25 μL 
    

      

     

DCS Pol PCR mixture 
 

Thermal cycle 

program  

10× BD Buffer 2.5 μL 
 

95 °C 3 min 
 

dNTPs 2 mM 2.5 μL 
 

95 °C 30 sec 
 

MgCl2 25 mM 2.5 μL 
 

X °C 30 sec 30-35 cycles 

Fwd primer 10 μΜ 0.3-1.0 μL 
 

72 °C 1 min/kb 
 

Rev primer 10 μΜ 0.3-1.0 μL 
 

72 °C 10 min 
 

DCS-Polymerase 0.3 μL 
    

Template 1 μL 
    

A. dist. H2O Up to 25 μL 
    

 

2.3.3 Total RNA extraction 

Plants root were harvested at different time points, quickly frozen in liquid nitrogen, 

ground into fine powder and stored at -80 ºC. Total RNA was extracted using TRIzol 

(Invitrogen, Karlsruhe, Germany). 1 mL TRIzol reagent was added into 100-150 mg 

tissue powder, vortexed for 15 sec and incubated 5 min at room temperature (RT). 200 

µL chloroform was added, mixed well by vortexing and centrifuged at 15000 rpm and 



                                                  Materials and Methods 
 

32 
 

4 ºC for 20 min after 3 min of incubation at RT. Subsequently, the supernatant was 

transferred to a 1.5 mL eppendorf tube containing 500 µL isopropanol and incubated 

for 10 min at RT. Then the sample was centrifuged at 15000 rpm and 4 ºC for 30 min 

for RNA precipitation. The pellet was washed with 1 mL 75% (v/v) ethanol 

(centrifugation 13 000 rpm at 4 ºC for 5 min) and dried in a clean bench for 10-15 min. 

The RNA was resuspendend in 30 µL DEPC by incubatation at 65 ºC for 5 min. The 

concentration of total RNA was measured using a NanoDrop ND-1000 (Peqlab 

Biotechnology GmbH, Erlangen, Germany) with wavelength of 260 nm and 280 nm. 

RNA extracts were stored at -80 ºC.    

2.3.4 Reverse transcriptional polymerase chain reaction (RT-PCR) 

The total RNA was transcribed into cDNA using the Quantitect® Reverse 

Transcription kit (QIAGEN, GmbH, Hilden, Germany). According to the protocol, 

1000 ng RNA was mixed with 2 µL 7×gDNA Wipeout buffer with DEPC water to the 

volume of 17 µL, and incubated at 42 ºC for 2 min. Then 1 µL RT-primer mix, 4 µL 

5×Quantiscript RT buffer and 1 μL Quantiscript reverse transscriptase were added to 

the final volume of 23 µL. Subsequently, the reaction was performed in a Thermo 

cycler (Biometra, GmbH, Germany) with the program below. The cDNA was diluted 

to 10 ng/µL with DEPC water, used for quantitative Real-Time PCR analysis 

immediately or stored at -80 ºC for later analysis.  

Reverse transcription program 

22 ºC 3 min 

42 ºC 30 min 

85 ºC 3 min 

4 ºC 10 min 

 

2.3.5 Quantitative Real-Time PCR (qPCR)  

The quantitative real-time PCR was performed on a 7500 Fast Real-Time PCR 

System (Applied Biosystems, CA, USA) to quantify the relative/absolute amount of 
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RrF4/P. indica to see the number of RrF4 cells in P. indica or the relative expression 

of some transcripts. The standard curve approach is often used for the absolute 

quantification. It is prepared from samples with known template concentration, and 

the concentration of unknown target gene is calculated by the interpolation of its PCR 

signal into the standard curve. In this research the internal transcribed spacer (ITS) 

region was used to quantify the amount of RrF4. The standard curve was generated 

through two steps of amplifications. First, the genome of RrF4 was amplified with 

universal bacterial primer pair E786 (5’-GATTAGATACCCTGGTAG-3’) and 23Sr 

(5’-GGGTTBCCCCATTCRG-3’), the 2182 bp PCR product containing partially 16S 

rRNA, the ITS regions and partially 23S rRNA was subsequently amplified with RrF4 

specific primer pair ITS-Rh-F (5’-TCAGCACATAACCACACCAATCGCG-3’) and 

ITS-Rh-R (5’TGCTTTGTACGCTCGGTAAGAAGGG-3’) and generated a 266 bp 

PCR product. The quantification of P. indica was relying on the Tef (transcriptional 

enhancer factor-1) gene. The standard curve for the quantification of P. indica was 

generated through the universal fungal primer pair tefO 

(5’-GGGTGCTCGACAAGCTCAA-3’) and tefJ 

(5’-ACACATCCTGGAGTGGGAGA-3’) with 800 bp PCR product and nest PCR 

with P. indica specific primers PiTef-For (5’-TGCGTCGCTGTCAACAAGATG-3’) 

and PiTef-Rev (5’-ACCGTCTTGGGGTTGTATCC-3’) with 162 bp PCR product. 

the standard curves were generated by the dilution of nest PCR products with the 

serial number of target genes from 10
2
 to 10

9
. The amplification plot, melt curve and 

standard curve were shown below. All the samples were coming from three 

independent biological experiments and measured with three technological replicates. 

There are two phases in a qRT-PCR program. The first phase is standard PCR 

amplification and fluorescence determination, the second phase is the production of 

melting curve, which is an assessment of the dissociation of double-stranded DNA 

fragments during raising temperature and indicates the specific amplification of 

primers. The melting peak shows 50% of PCR products are denatured. The cycle 

threshold (Ct) value was recorded and the relative expression 2
-ΔCt

 value was 
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calculated with the method from Livak & Schmittgen (Livak and Schmittgen 2001).  

 

 

 

PCR mixture (1x)  

Green JumpStart Taq ReadyMix (SigmaAldrich)  10 μL 
 

Primer fwd 10 μM  0.3-1.0 μL 
 

Primer rev 10 μM  0.3-1.0 μL 
 

Template  variable 
 

A. dist. H2O Up to 20 μL 
 

   
   
Thermal cycle program 

 
95 °C  4 min 

 
95 °C  30 sec 

 
60 °C  30 sec  

 
72 °C  30 sec 

 
83 °C (optional)  30 sec 

 
95 °C  15 sec  

 
68 °C  60 sec 

 
95 °C  30 sec 

 
24 °C  15 sec 

 
 

2.3.6 Agarose gel electrophoresis 

DNA and RNA samples were visualized and detected with agarose gel electrophoresis. 

2 µL DNA samples or 20 ng PCR products were mixed with 10×DNA loading buffer 

and loaded on 0.8-2% (w/v) agarose gel containing about 1 mg/ml ethidium bromide. 

The gel was running in 1×TBE buffer at 70-150 V for 45-60 min. The 1 kb plus DNA 

ladder (Invitrogen, Darmstadt, Germany) was used on the agarose gel as standard 

marker. RNA samples were mixed with 2×RNA loading dye (Fermentas, St. 

40 x 

Melting curve 
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Leon-Roth, Germany), denatured at 95 °C for 5 min, and loaded on 1% agarose gel 

containing 1×MOPS buffer and 5% (v/v) formaldehyde. Subsequently, a 

UV-Transluminator (Fröber Larbortechnik, Lindau, Germany) was used to detect all 

the signals on the gel, a camera (digitStore, INTAS, Göttingen, Germany) was used to 

document the gels.  

 

 

 

2.3.7 Denaturing gradient gel electrophoresis (DGGE) 

DGGE is a technique to separate DNA fragments with the same length but different 

G+C content and nucleotides according to the mobilities under the increasing gradient 

of formamide and urea based denaturing gel conditions. DGGE as community 

fingerprint pattern can be used to characterize microbial populations in the 

environment (Muyzer and Smalla 1998). The DNA used for DGGE analysis was 

extracted by NucleoSpin® Soil Kit (Macherey-Nagel, Germany) with adjusted 

protocol as described in 2.3.1. The bacterial 16S rRNA gene was used as target gene, 

amplified by primers 799f/1492r (799f: 5’-AACMGGATTAGATACCCKG-3’; 1492r: 

5’-TACGGYTACCTTGTTACGACTT-3’) (Chelius et al. 2001) and followed by a 

nest PCR with 42 bp GC clamp on the 5’end of the GC primer GC968f/1378r 

(GC968f:5’-AACGCAAGAACCTTAC-3’;1378r:5’-CGGTGTGTACAAGGCCCGG

GAACG-3’) (Heuer et al. 1997). PCR products 25 µl mix with 5 µl loading dye were 

loaded on a pre-warmed polyacrylamide gradient gel, DGGE standard containing 16S 

rRNA genes from six bacteria strains was added on the gel (Novosphingobium 

fuchskuhlense FNE08-7
T
, Massilia timonae CCUG 45783

T
, Novosphingobium 

acidiphilum FSW06-204d
T
, Achromobacter denitrificans DSM 30026

T
, Acidovorax 

10 x TBE 

(Tris-Borate-EDTA)  
10 x MOPS buffer pH 7.0 

0.9 M Tris 
 

200 mM MOPS 

0.9 M Boric acid 
 

50 mM sodiumacetate 

0.025 M EDTA 
 

10 mM EDTA 

Adjust pH 8 
 

adjust pH 7.0 

A. dist. H2O up to 1 L   A. dist. H2O up to 1 L 
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delafieldii LMG 5943
T
 and Nocardia jiangxiensis DSM 17684

T
). 

Polyacrylamid gels containing formamide and urea (40-70%) were used for the 

DGGE analysis. The solution A, solution B and stacking gel were prepared from 0% 

and 80% stock solutions supplemented with TEMED and APS. Then solutions were 

poured in the front chamber through a pipe connected with a pump (Minipuls 2, 

Gilson. Inc). The casting was stopped before the gel reaching the comb. Stacking gel 

was pipetted on the top of the gel to generate slots on the DGGE gel. The comb was 

taken out after one h, the gel was stored over night at 4 ºC. The electrophoresis was 

performed in a tank containing 17 L pH 7.4 1×TAE buffer. The samples were loaded 

after the gradient gel was pre-warmed up to 60 ºC under 100 V. The electrophoresis 

was performed with the parameters 100 V, 60 ºC and 22 h. The bottom glass plate 

attached with gel was stained in ethidium bromide (30 µL ethidium bromide mixed 

with 500 mL pure water) for 20 min and washed in pure water for 10 min. The gel 

images were taken with imaging system software (Fluor-STM Multilmageer, BioRad) 

by exposure under UV 10-40 seconds. 

 

Loading dye   
 

50×TAE buffer (pH 7.4)    

Glycerol 7 mL 
 

Tris base 242 g 

Bromphenol blue 250 µL 
 

Glacial acetic acid 57.1 mL 

Xylene cyanol 250 µL 
 

EDTA (0.5M, pH 8.0) 100 mL 

DNase and RNase free water 2.5 mL 
 

Pure water Up to 1000 mL 

 

Stock solution 80% (150 mL)   
 

Stock solution 0% (150 mL)   

Urea 50.4 g 
 

50 TAE 3 mL 

Formamide 48 mL 
 

40% Acrylamid/bisacrylamid 
26.25 

mL 

50 TAE 3 mL 
   

40% Acrylamid/bisacrylamid 26.25 mL 
   

 

Stacking gel   
   

Stock solution 0% 9 mL 
   

Stock solution 80% 0 
   

TEMED 8 µL 
   

APS (10%) 100 µL 
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Solution A (40%)   
 

Solution B (70%)   

Stock solution 0% 12 mL 
 

Stock solution 0% 3 mL 

Stock solution 80% 12 mL 
 

Stock solution 80% 21 mL 

TEMED 17 µL 
 

TEMED 17 µL 

APS (10%) 86 µL 
 

APS (10%) 86 µL 

 

2.4 In situ detection of bacteria and fungi 

2.4.1 Fluorescence in situ hybridization (FISH)  

FISH is a widely used technique for the in situ analysis of microbial communities. 

The fluorescently labelled oligonucleotide probes are targeted to the ribosomal RNA 

(rRNA) and give out fluorescence signals under the fluorescence microscopy (Amann 

and Fuchs 2008). In this research FISH method was used to detect the endobacterium 

in the fungal materials. The applied FISH protocol used in this research was based on 

the description from Manz et al. (1996) with some modifications. The procedure was 

carried out as the flowing:    

Fixation: All the samples were fixed to stabilize the cells and permeabilize the cell 

membranes. Overnight culture of bacteria or three weeks old fungal culture from agar 

plates were fixed in 50% ethanol (NaCl : ethanol 1 : 1) for 3-4 h at 4 °C or 4% 

ice-cold 1×PFA for 3-12 h at 4 °C. The solution was removed by centrifuge at 6000 

rpm and 5 min at 4 °C. Thereafter, the samples were washed in 1×PBS for three times. 

Finally they were re-suspended in 1×PBS : 99.9% ethonal 1 : 1 and stored at -20 °C.   

Lysozyme treatment: The fixed samples were pre-treated with lysozyme to enhance 

the permeabilization before hybridization step. Samples were pipetted and dried on 

the 6 recesses-microscope slide coated with gelatin (0.1% gelatin and 0.01% 

chromium potassium sulfate). 20 µL 1 mg/mL lysozyme was added to each samples 

on the slide and incubated in root temperature for 20 min. Remove the lysozyme from 

the slide carefully with 1 mL ice-cold 1×PBS, subsequently dip the slide into ice-cold 

1×PBS for 15 sec and dry the slide at 46 °C.   

10 µg/mL Proteinase K was used to treat the samples at 37 °C for 30 min, then 

inactive the proteinase K by incubating in 0.01 M HCl at room temperature for 10 min. 
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Wash the samples with ice-cold 1×PBS and dry the slide at 46 °C. 

Dehydration: The dried samples were dehydrated in an increasing ethanol series 50%, 

80% and 96% (v/v) three min for each.  

Hybridization: 9 µL hybridization buffer containing corresponding concentration of 

formamide were mixed with 1 µL of each probe (50 ng/µL) and added into the each 

sample. The slide was put into a 50 mL tube with moistened tissue and incubated for 

1.5 h at 46 °C in a dark hybridization oven.  

Washing: The hybridization buffer on the slide was washed away with washing buffer, 

which was pre-warmed at 48 °C. The samples were incubated in the 50 mL washing 

buffer at 48 °C for 15 min. Afterwards the slide was washed by pure H2O and dried at 

RT in the dark.  

Microscopy: 10 µL DAPI was applied to each sample on the slide, incubate at RT for 

3 min and remove the DAPI solution by rinsing with distilled water. The air-dried 

samples were mounted in AF1 anti-fading reagent (Citifluor Ltd., London, UK) and 

covered the samples with a cover slide, then observed with epi-fluorescence 

microscope (Leica DM 5000B, Germany). The excitation and emission wavelength 

were 488 nm and 530 nm for FITC labeled EUB-338, 358 nm and 461 nm for DAPI 

staining.  

 

Hybridization buffer for FISH 

Formamid 

%  

5M NaCl 

µL 

1M Tris-HCl 

µL 

10%SDS 

µL 

Formamid 

µL 

A. dist. H2O 

µL 

Total 

volume 

mL 

0% 360 40 2 0 1600 2 

20% 360 40 2 400 1200 2 

25% 360 40 2 500 1100 2 

30% 360 40 2 600 1000 2 

35% 360 40 2 700 900 2 
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Washing buffer for FISH 

Formamid 

 % 

0.5M 

EDTA 

µL 

1M Tris-HCl 

(pH 8.0) mL 

10% SDS 

µL 

5 M 

NaCl µL 

A. dist. H2O 

mL 

Total 

volume 

mL 

0 500 1 50 9000 39.45 50 

5 500 1 50 6300 42.15 50 

10 500 1 50 4500 43.95 50 

15 500 1 50 3180 45.27 50 

20 500 1 50 2250 46.2 50 

25 500 1 50 1590 46.86 50 

30 500 1 50 1120 47.33 50 

35 500 1 50 800 47.65 50 

40 500 1 50 560 47.89 50 

45 500 1 50 400 48.05 50 

50 500 1 50 280 48.17 50 

55 500 1 50 200 48.25 50 

 

Phylogenetic oligonucleotide Probes and % Formamide   

Probe Target Specificity % Formamide 

EUB-338 I, II, III 16S rRNA All bacteria 0-35 

Rh-1247 16S rRNA Rhizobium  (Rhizobium, Agrobacterium, Ochrobactrum) 35 

ALF-968 16S rRNA 
Alphaproteobacteria (Sphingomonas, Agrobacterium, 

Rhodobacter) 
20-35 

BET-42a 16S rRNA 
Betaproteobacteria (Nitrosomonas, Acidovorax, 

Sphaerotilus, Comamonas) 
35 

GAM-42a 16S rRNA Gammaproteobacteria (Enterobacteria, Pseudomonas) 35 

ALF-1b 16S rRNA Alphaproteobacteria  20 

HGC-69a 16S rRNA Actinomaycetes (Streptomyces, Nocardia, Corhnebacteria) 25 

EUK-516 18S rRNA Eukaryotes 0 

Univ1392 
 

All organism (Bacteria, Archea, Eukaryotes) 0 

CF-319a+b 
 

Cytophaga-Flavobacterium-Flexibacter 

groups 
35 

PLA-46 
 

Planktomycetes 25 

PLA-886   Planktomycetes 25 

 

10 X PBS 
  

5M NaCl 

NaH2PO4  12 g 
  

NaCl  292.0 g 

Na2HPO4  14.2 g 
  

A. dist. H2O  1000 mL 

NaCl  75.70 g 
    

A. dist. H2O  1000 mL 
    

pH 7.2 - 7.4 
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0.5M EDTA 
 

10 % SDS (sodium dodecyl sulphate) 

EDTA (C10H16N2O8) 146.10 g 
 

SDS  10 g 

A. dist.H2O  900 mL 
 

A. dist. H2O 100 mL 

Adjust pH 8.0 (NaCl) 
 

Filter sterilization 

A. dist. H2O Up to 1000 mL 
  

 

1M Tris-HCl 

Tris (NH2C(CH2OH)3) 121.14 g 

A. dist.H2O 900 mL 

Adjust pH 8.0 (HCl) 

A. dist.H2O Up to 1000 mL 

 

The oligonucleotide probes used in this research were EUB-338-mix (EUB-338, 

EUB-338-Ⅱ, an EUB-338-Ⅲ) (sequence 5’ GCTGCCTCCCGTAGGAGT3’) for 

bacteria (Daims et al. 1999), EUK-516 (sequence 5’ ACCAGACTTGCCCTCC3’) for 

fungus (Amann et al. 1990) and Rh-1247 (sequence 5’ TCGCTGCCCACTGTG3’) for 

Rhizobium (Ludwig et al. 1998). The probes were labeled with fluorescence FITC or 

Cy3.   

2.4.2 Sybr green I (SG-1) staining 

Sybr green I is a double stranded DNA staining dye, it stains DNA of fungi and 

bacteria. The P. indica material was fixed in 99.9% ethonal : 1×PBS (1 : 1) overnight 

at 4 ℃, then filtered onto black 0.22 µL GTBP brown Isopore
TM

 membrane filter 

using a vacuum pump. Subsequently, the filter was placed onto one glass slide, 5 µL 

Syber Green I moviol staining solution (Lunau et al. 2005) was dropped on the filter 

and followed by covering with cover slide. Thereafter, the slide was observed with 

epi-fluorescence microscopy.  

2.4.3 GUS-staining 

Sampled barley or Arabidopsis thaliana roots were washed in 70% ethanol for 1 min 

and distilled water for 1 min. Subsequently, the roots were treated with water 

sonication (Sonorex RK106, Berlin, Germany) for 30 sec and three times. Thereafter 

Lysozyme solution 1mg/mL 

Lysozyme  10 mg 

0.5 M EDTA (pH 8.0) 100 µL 

1 M Tris-HCl (pH 8.0) 100  µL 

Pure water 800  µL 
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X-Gluc was added and inoculated with the samples in 15 mL tube at 37 ℃ for 

overnight. X-Gluc was converted into a blue colored product by the β-glucuronidase 

expressed by the transformed tissue cells (GUS assay; Jefferson, 1987). 

2.4.4 WGA-staining and Congo red staining 

Root samples were washed in distilled water three times and then fixed in fixation 

solution for 24 h. The fixation solution contained chloroform: ethanol : trichloroacetic 

aci (20% : 80% : 0.15%). Subsequently, the materials were treated with 10% KOH 

solution for 30 sec and washed in 1×PBS buffer (pH 7.4) for three times (5 min for 

each time). Thereafter, the root materials were embedded in staining solution 

containing 10 μg/mL WGA Alexa Fluor® 488 (Molecular Probes, Karlsruhe, 

Germany) and 0.02% Silwet L-77 in 1×PBS buffer. Root material was stained for 10 

min in the staining solution. During this time, the vacuum infiltration was applied to 

the root staining for three times (each time 25 mm Hg for 1 min). Finally, the roots 

were put on a glass slide for microscopy after washing in 1×PBS buffer. The 

florescence from WGA-AF 488 was detected with epi-fluorescence microscopy 

(Axioplan 2, Zeiss, Oberkochen, Germany). The emission and absorption wave length 

were 470/20 nm and 505-530 nm, respectively. The same method was used for Congo 

red (Merck, Darmstadt, Germany) staining, which was detected by microscopy with 

emission at 546/12 nm and absorption at 590 nm.      

2.5 Microscopy analysis 

Different kinds of microscope were used in this research for different samples and 

purposes. FISH samples were detected with epi-fluorescence microscope and confocal 

laser scanning microscopy (CLAM). GUS-RrF4 bacteria and related root samples 

were observed with light microscope, transmission electron microscopy (TEM) and 

scanning electron microscopy (SEM). GFP-RrF4 and related root samples were 

analyzed with epi-fluorescence microscope and CLSM.  

Light microscopically analysis of cross section with GUS-stained barley roots 

GUS-stained root samples were fixed for cross section analysis (Grieb 1992). The 
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roots were fixed in ethanol : eisessig : formaldehyde 9 : 0.5 : 0.5 solution for 48 h, 

dehydrated in 70% (v/v) ethanol for 4 h, and H2O : ethanol : tert-butanol 15 : 50 : 35 

for 2 h. Afterwards, treated with ethanol : tert-butanol 25 : 75 for 2 h, sopropand : 

tert-butanol 25 : 25 for 2 h, and tert-butanol for 12 h. Thereafter, embedded in 

tert-butanol : paraffin 1 : 1 for 48 h at 60 ℃. Then the samples were cut by microtome 

(Reichert, Vienna, Austria) into 30 µm thick sections and mounted on the 

microscopical slide.  

Partial function of paraffin here is making the sample cutting easier, but there will be 

negative impact from the paraffin when observe the sample under microscopy. So the 

de-parafinization step was followed to remove paraffin from the slide. The slides were 

imbedded in xylol solution twice with each time 5 min. Subsequently, the slides were 

dehydrated in graded ethanol series (96-, 70-, 50%; 5 min each step), and again in the 

ethanol series (50-, 70-, 96%, 5 min each step). Thereafter, the slides were imbedded 

in xylol solution for 15 min, covered the sample with a cover slide when the cross 

section samples were dry. Finally, the slides were investigated by a Leica DM IL 

microscope (Leica, Wetzlar, Germany). 

2.5.1 Confocal laser scanning microscopy (CLSM) 

The confocal laser scanning microscopy (CLSM) was used to analyze the 

colonization pattern of GFP-tagged RrF4 on barley and Arabidopsis seedlings. The 

seedlings were carefully separated from the ½ MS medium and washed in water. 

Roots were imaged directly with CLSM for the intact image or cross sectioned in a 

cryo-microtome after fixation in 3% formaldehyde with 0.05 M cacodylat buffer, 

freezed protection with sucrose, embedding in Tissue-Tek and freezing in 

isopropanol. Sections (30 µm thick) were embedded in Mowiol or RotiMount 

FluorCare (Carl Roth, Germany). Specimens were placed on glass slides and covered 

with cover slides (no.: 1.5; thickness: 0.17 µm) and imaged using a Leica TCS SP5 

VIS confocal laser scanning microscope and a 63 x 1.30 GLYC objective providing 

an increased working distance. The 488 nm excitation laser line and 496-550 nm 
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emission filter were used to detect the GFP fluorescence. Images were scanned at 400 

Hz using 512x512 or 1024x1024 pixel resolutions. The pinhole was set to max 1 airy 

unit providing a min voxel depth of 504 nm. Z-stacks were recorded using a step size 

below the calculated thickness of the optical sections. Fluorescence and bright field 

images were processed using the LAS-AF package (Leica, Germany). 

2.5.2 Transmission electron microscopy (TEM) 

Selected root areas were subsequently dissected, embedded in gelatine (Fluka, 

Germany), post fixed in 1% osmium tetroxide, washed and incubated in 1% aqueous 

uranyl acetate (Polysciences) overnight at 4 °C. Specimens were dehydrated in an 

ethanol series and embedded in LR White (Agar Scientific, UK). From the blocks 

cured by heat ultrathin sections were cut and finally contrasted in uranyl acetate and 

lead citrate. Ultrathin sections were inspected in the TEM (EM912a/b – ZEISS, 

Germany) at 120kV under zero-loss conditions and images were recorded at slight 

under focus using a 1k x 1k slow-scan proscan ccd camera. 

2.5.3 Scanning electron microscope (SEM) 

The colonization pattern of RrF4 on root surface was analyzed with SEM. Roots with 

branches were fixed in 1% osmium tetroxide, washed in buffer and dehydrated in an 

ethanol series. Finally they were critical point dried, mounted on SEM-holders and 

gold sputtered. Samples were observed in a FEG scanning electron microscope 

(DSM982 and MERLIN, ZEISS Germany) at 3-5kV. Images were recorded using a 

secondary electron (SE)-detector with the voltage of the collector grid biased to + 300 

V to improve the signal-to-noise ratio and reveal optimal topographical contrast.  

2.6 Re-isolation of P. indica  

Barley seedlings were inoculated with the spores of P. indica as described in 2.2, and 

cultured with ½ MS medium under axenic condition in the culture room. After two 

weeks of incubation, roots were harvested under sterile conditions (clean bench) and 

cut into small segments. The root fragments were washed with 70% (v/v) ethanol for 

1 min, followed by 3% (x/v) NaClO for 1, 3, 5 and 10 min. The root fragments of 
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different treatments were put on CM agar plates or liquid CM flaskes and cultured at 

RT. P. indica formed colonies around the root segments after 5 days, then sub-cultured 

on new CM agar plates for further analysis such as the endobacteria quantification 

and detection.  

 

2.7 Curing P. indica from endobacterium  

In order to cure P. indica from the endobacterium, P. indica protoplasts were treated 

with antibiotics.  

2.7.1 Fungal protoplast formation 

The chlamydospores of P. indica were collected from three weeks old culture with 

0.002% tween 20-water, cultured in 200 mL liquid CM medium shaking with 130 rpm 

at 28 ℃. After 7 days of incubation, the culture was filtered through miracloth and 

washed with 0.9% NaCl solution. Subsequently, the mycelium was crashed in liquid 

CM medium in blender with 7 sec at high level and 7 sec at low level. The crashed 

mycelium was cultured in liquid CM medium for 3 days before using for protoplast 

isolation.  

0.2 g lysing enzymes from Trichoerma harzianum (Sigma-Aldrich, USA) was 

dissolved in 10 mL SMC buffer (1.33 M sorbitol, 50 mM CaCl2, 20 mM MES buffer 

pH 5.8), sterilized with 0.2 μm filter and kept in 4 ℃ before using. Three days old P. 

indica culture was filtered through miracloth. In order to have mycelium, 50 mL 0.9% 

NaCl solution was used to wash away the spores or other contaminants from the 

miracloth. Thereafter the mycelium was dissolved in lysing enzyme solution and 

incubated in 37 ℃ hybridization oven for 1 h by slightly shaking. The protoplast 

formation was checked with microscope. To stop the enzymes activity, 10 mL ice cold 

STC buffer (1.33 M sorbitol, 50 mM CaCl2, 10 mM TrisHCl; pH 7.5) was added to 

each 10 mL protoplasts sample through miracloth filter. Protoplasts were collected by 

centrifuge at 4 000 rpm 4℃ for 10 min, and gently suspended in 1 mL STC buffer in 

a 1.5 mL eppendorf tube by pipetting. Finally, the protoplasts were dissolved in 100 
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μL cold STC buffer after washing with STC buffer for two times (the best 

concentration is 10
7
-10

9
 protoplasts per mL).   

2.7.2 Treatment with antibiotics 

The fungal protoplasts were plated on CM medium plates containing 300 

μg/mLspectinomycin and 300 μg/mL ciprofloxacin, while protoplasts plated on CM 

medium without antibiotics as control. This was termed as protoplast generation 1 

(G1). The germination of single protoplast was clearly viewed on the plate after one 

week, ten colonies formed from ten protoplasts were picked up and transferred to ten 

fresh CM medium plates containing both spectinomycin and ciprofloxacin as above. 

After culturing for three weeks, fungal samples were taken from each plates and 

endobacteria were detected by real-time PCR with specific ITS primer. The 

chlamydospores were collected from the plates depending on the endobacteria 

detection result, protoplast formation was performed as before and cultured on CM 

medium with spectinomycin and ciprofloxacin, which was termed as protoplast G2. 

Ten colonies were picked up from each plate and transferred to fresh plates again. The 

endobacteria were detected in the same way. Protoplasts treatment with antibiotics 

went till G3 generation.  

2.8 Infection of P. indica with GFP-/GUS-RrF4  

In order to see if RrF4 can infect P. indica and go back to its fungal host again, the 

GFP- and GUS- tagged RrF4 were used here.  

2.8.1 Protoplasts formation from P. indica and RrF4 

GFP-/GUS-RrF4 were cultured in 10 mL LB medium with 50 µg/mL spectionomycin 

at 37 °C, 190 rpm overnight. 250 µL overnight culture was transferred and cultured in 

25 mL same medium until OD600=0.7. The bacteria were pelleted by centrifugation at 

5 000 rpm for 10 min, washed with 25 mL distilled water for three times, and 

re-suspended in 2.5 mL 1×SMMP buffer. Subsequently, lysozyme was added into the 

bacteria suspension with the concentration 10 mg/mL and incubated at 37 °C for 

12-16 h without shaking. The bacteria protoplasts were pelleted by centrifugation 5 
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000 rpm for 6 min after observing with microscope, washed with 1×SMMP twice and 

dissolved into 2.5 mL 1×SMMP buffer by pipetting up and down to mix well. Small 

aliquots were generated with 300 µL volume, used it directly or stored at -80 °C 

(maximum 6 months). The protoplasts of P. indica were formed as above, while the 

protoplasts from RrF4 were isolated as flowing.  

2.8.2 Fusion 

300 µL protoplasts of P. indica were mixed with 300 µL protoplast of bacteria in 2 mL 

fusogen. The mixture was vortexed gently for 30 sec followed by standing for 30 sec, 

then added 7 mL 1×SMMP immediately and centrifuged at 5 000 rpm for 20 min at 

RT. The pellet was dissolved into 1 mL 1×SMMP and incubated for 3-4 h at 30-37 °C. 

Finally, 200 µL mixtures were plated evenly on each LB plate and cultured at 30 °C. 

 

1×SMMP (25 mL) 

2×SMM                          13.8 mL 

4×PAB                               10 mL 

5%BSA                              1.25 mL 

It can stay at 4 °C for 2 days.  

2×SMM (200 mL) 

1.0 M Sucrose                  68.4 g 

0.02 M Tris                       0.49 g 

0.01 M MgCl2                  0.41 g 

0.04 M Maleic acid        0.93 g 

Adjust pH 6.8 with 10N NaOH, then autoclave for 12 min 

 

 

4×PAB (Bacto Perrasam Broth) (500 mL) 

Nutrient Broth (Gibro)                         8 g 

Bactopepton (Difco)                            7 g 

Yeast Extract                                       6.2 g 

Adjust pH 6.8, then autoclave 

 

Fusogen (100 mL) 

PEG 6000 40 g  

2×SMM (without autoclaving) 50 mL  

Add water up to 100 mL, adjust pH 6.8, then autoclave for 12 min 
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2.8.3 Co-cultivation of GFP-RrF4 and P. indica  

GFP-RrF4 suspension with OD600=0.1 was added to three days old germinated P. 

indica spores solution in liquid CM medium. Thereafter the mycelium of P. indica 

was daily investigated by epi-fluorescence microscopy. The protoplasts of P. indica 

were inoculated with GFP-RrF4 suspension with OD600=0.1 in Eppendorf tube for 40 

min, thereafter cultured on CM medium with 300 μg/mL spectinomycin. The material 

was analysed by microscopy after one week.  

2.9 Biological activity of P. indica and RrF4 assays  

Barley Golden Promise were inoculated with P. indica or RrF4, and cultured in 

climate chamber for three weeks as describes in 2.2.3. Plants cultured in pots 

containing 3:1 expanded clay (Seramis®, Masterfoods) and Oil Dri® (Damolin) were 

used for the growth promotion assay. The shoot and root weights were measured in 

each treatments. Plants cultured in pots containing soil were used for the pathogenic 

assay. The third leaves from three-week old plants were used for a detached 

leaf-segment test to see the plant systemic resistance. Barley powdery mildew 

Blumeria graminis f. sp. hordei was used as pathogen in the assessment. The leaf 

segments were inoculated with 15 conidia mm-2 spores of B. graminis f. sp. hordei 

for 10 min, and kept on water agar plates (1.5% agar) with 5% benzimidazole under 

darkness for 6 days. Then the pustules on the leaves segments were counted under 

microscope.  
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3 Results 

3.1 Detection of the endobacterium R. radiobacter in P. indica  

The endofungal bacterium associated with the fungus P. indica was detected in the 

fungal tissue by FISH using the fluorescently labeled universal bacterial 16S rRNA 

binding probe EUB-338. The FISH results showed the presence of few endobacteria 

in both mycelium (Fig. 3.1 A) and chlamydospores (Fig. 3.1 B) of P. indica which 

was cultured in liquid CM medium. Since the cell wall of fungi could be a barrier for 

the entrance of the FISH probe into the fungal cells to bind to the ribosomal RNA of 

endobacteria, crushed hyphae and protoplasts from P. indica were analyzed by FISH 

in parallel. The low abundance of endobacteria in P. indica was also illustrated with 

crushed P. indica material (Fig. 3.1 C). The nucleic acid staining dye 

4',6-diamidino-2-phenylindole (DAPI) was used together with the FISH probe 

EUB-338-FITC (green fluorescent signal) to exclude unspecific fluorescence signals. 

While probe EUB-338-FITC stained only bacterial cells (Fig. 3.1 D), DAPI stained 

bacterial cells and nuclei of fungi and thereby confirmed the presence of endobacteria 

(Fig. 3.1 E) in the fungal tissue (Fig, 3.1 F) In this experiment, pure RrF4 cells were 

used as positive control to control the efficiency of the probe binding (Fig. 3.1 G, H, 

I). Compared with the rod-shaped pure RrF4, the endobacterial cells of the Rhizobium 

were smaller in size and had a coccoid-shape in P. indica. Probe EUB-338-Cy3 (red 

fluorescence signal) was used for confocal laser scanning microscopy to further 

confirm the existence of the endobacteria within fungal tissue (Supplement Fig. 7.1). 

Probe Rh-1247, which is specific for bacteria in the Rhizobium group, was also used 

to detect the endobacteria in P. indica (data not shown). 
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Fig. 3.1 FISH detection of endobacteria in P. indica lab cultures by fluorescence microscopy. P. 

indica was cultured in liquid CM medium for three weeks, fixed and analysed with FISH using a 

univseral bacterial probe (A, B). A: endobacterial cells detected in hyphae; B: endobacterial cells 

detected in chlamydospores; Three-week-old P. indica was crashed with blender and fixed for FISH 

(C). P. indica cultured in petri dish with solid CM medium was used for endobacteria detection, the 

same field showed in different channels (D, E, F); D: stained with FISH (green signal); E: DAPI 

staining (blue signal); F: light microscopical image. Pure RrF4 was cultured overnight in modified 

YEB medium and fixed for FISH detection as positive control (G, H); G: pure RrF4 stained by FISH; 

H: light microscopic image. The probe used in FISH detection was the bacteria probe EUB-338-FITC 

(green fluorescence). White arrows point to the detected endobacterium. All microscopic analyses were 

done at 1,000 fold magnification; all bars indicated 10 µm.  

 

3.2 Growth of RrF4 stain in pure culture 

The endofungal bacterium was isolated from P. indica and named as strain Rhizobium 

radiobacter F4 (RrF4, Glaeser et al. 2015). The size of RrF4 cells was 1.2-2.0 µm in 

length and 0.7-0.9 µm in width. To get an indication of the growth stage of cultures 

applied for different kind of experiments, the growth behavior of RrF4 in liquid 
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culture was evaluated in four independent cultures. As shown below, with the starting 

of OD600=0.01, slow growth occurred at the beginning of the incubation experiment 

because RrF4 needed to adapt to the new growth condition. This lag phase lasted 

approximately 4 hours (lag phase). Subsequently, bacterial cell division became faster 

and got optimal between 4-17 hours (logarithmic phase). After 17 hours of incubation 

the cell density did not increase anymore, the producing of new bacterial cells and the 

dying of old bacterial cells were at a dynamic balance (stationary phase) (Fig. 3.2). 

RrF4 culture at the logarithmic phase was used for all the root inoculation 

experiments.  

 

 

Fig. 3.2 Pure culture of RrF4 in liquid medium. RrF4 cells were visualized with microscopy, and the 

length and width of the bacterial cells were measured (A). Growth curve of pure RrF4 culture was 

measured by spectrophotometry (B). RrF4 was first cultured in YEB medium to OD600=0.2. Then 20 

mL of RrF4 culture were taken out from the original culture and sub-cultured in four independent 

flasks filled with 100 mL YEB medium at 130 rpm min
-1

 room temperature (starting OD600=0.01). The 

sub-culture in these four independent flasks was measured every 2 hours till the stationary phase. The 

curve is based on mean values of four independently growing cultures. The standard deviation was 

always below 5% and is therefore not shown. Growth phases: lag phase (0-2 h), log phase or 

exponential phase (2-17 h), late exponential phase (around 17 h), stationary phase (18-29 h). 
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3.3 Multiplication of RrF4 on the barley root surface 

The aim of this experiment was to compare the root colonization pattern of free RrF4 

with the fungal host P. indica; the colonization of RrF4 on barley roots was assessed 

microscopically with GUS- and GFP-tagged RrF4 cells. Pure RrF4 were labelled with 

GFP and GUS reporter genes, respectively. The green or blue bacteria cells were 

visualized by microscopy (Fig. 3.3 A, B). Surface sterilized barley seeds were 

germinated in autoclaved jars on sterile filter paper. After three days, germinated 

barley seedlings were dip-inoculated with RrF4 cell suspension (OD600=1.2) and 

incubated for 30 min under a clean bench. Inoculated seedlings were transferred into 

autoclaved jars supplied with ½ MS medium, and cultured in the culture room (24℃, 

16h/8h photoperiod) until harvest.  

 

 

Fig. 3.3 GUS- and GFP-tagged RrF4 cells. The pure culture of RrF4 cells were labelled with reporter 

gene GUS (A) and GFP (B). A: Blue GUS-tagged RrF4 cells were visualized by light microscopy after 

incubating with substrate X-Gluc. B: Green GFP-tagged RrF4 cells were visualized using fluorescence 

microscopy. The bar indicates 10 µm (Reporter bacteria were produced with support of Dr. J. Imani, 

IPAZ).  

 

3.3.1 Colonization of RrF4 on primary barley roots  

Root samples were harvested at 5, 7, 14 and 21 dpi, incubated overnight in the 

substrate X-Gluc and investigated by light or CLSM microscopy. The colonization of 

primary roots with RrF4 cells increased from 5 to 21 dpi (Fig. 3.4 A, B, C and D). We 

observed the sample at each time point, with higher magnification at later time points 
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(Fig. 3.5 A, B, C and D). At 5 dpi, GUS-tagged RrF4 cells colonized the maturation 

zone I of primary roots; blue colonization (GUS-RrF4 cells) covered an area of 

approximately one centimeter in length at the root tip (Fig. 3.5 A). At 7 dpi, the 

colonized area increased in length, but the root cap was still virtually free from 

bacteria colonization (Fig. 3.5 B). At 14 dpi, bacteria had spread into the maturation 

zone II but only few cells were detected in the elongation- and meristematic zones, 

the root cap still remained virtually free of bacteria (Fig. 3.5 C). The same pattern of 

bacterial colonization was also observed at 21 dpi (Fig. 3.5 D).  

 

 

Fig. 3.4 Multiplication of GUS-tagged RrF4 cells on barley roots. Root samples were harvested at 

four time points after dip-inoculation (dpi), 5 (A), 7 (B), 14 (C) and 21 (D) dpi. After washing in 70% 

(v/v) ethanol for one time and treating with sonication for three times, roots were embedded into the 

solution of the substrate X-Gluc, and incubated at 37℃ for overnight. The root area colonized by 

bacteria stained blue.  
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Fig. 3.5 Multiplication of GUS-tagged RrF4 cells on barley roots shown at higher magnification. 

Single roots were taken from the stained roots as showing above in Fig. 3.3 at 5 dpi (A), 7 dpi (B), 14 

dpi (C) and 21 dpi (D). All bars indicat 3,000 µm.  

 

Microscopically observation of stained roots showed a distinct pattern of dark and 

bright blue staining in the root hair zone (Fig. 3.5 D). This dark-bright staining 

suggested higher RrF4 proliferation at specific sites on the root surface. In addition, 

single root cells filled with dark blue RrF4 (GUS-labelled) were observed on the root 

surface of the maturation zone I at 7 dpi and 14 dpi (Fig. 3.6 A and B). Transmission 

electron microscopy (TEM) confirmed that these cells were heavily colonized with 

bacterial cells (Fig. 3.6 C). The same phenomenon was also found with GFP-tagged 

RrF4 by confocal laser scanning microscopy (CLSM) analysis (Fig. 3.6 D). TEM 

analysis and additionally tested DAPI staining (data not shown) did not show the 

presence of a nuclei in those cells which indicate that those plant cells were dead. 

Whether dead cells were invaded by bacteria or the plant cells died after invasion 

could not be clarified with the obtained data. 
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Fig. 3.6 Colonization of single root surface cells by RrF4. Dark blue cells on the root surface were 

observed under the light microscope at 7 (A) and 14 dpi (B). Transmission electron microscopy (TEM) 

scanned single root cells filled with bacteria (C). Confocal laser scanning microscopy (CLSM) showed 

single root cells filled with GFP-tagged RrF4 bacterial cells (D). Arrows show the presence of bacterial 

cells. (B and C were published in Glaeser et al. 2015) 

 

3.3.2 Colonization at root junctions and lateral barley roots 

Beside the colonization of primary barley roots, RrF4 cells were also found to form 

conglomerates at root junctions and lateral roots at 14 and 21 dpi. Epifluorescence 

microscopy using a GFP-filter showed the colonization of GFP-tagged RrF4 on the 

lateral root protrusion site at 14 dpi (Fig. 3.7 A) and proliferated at the base of fresh 

lateral roots at 21 dpi (Fig. 3.7 B), in a similar manner as primary roots. Root samples 

colonized by GUS-tagged RrF4 cells were investigated by light microscopy, blue 

bacterial cells were constantly detected at root junctions as the growth of lateral root 

both at 14 and 21 dpi (Fig.3.7 C and D). At 21 dpi, the root hair zones of lateral roots 

were colonized with the same pattern as in primary roots (Fig. 3.8 A and B). The 
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colonization pattern on lateral roots was mutual verified with GUS-tagged RrF4 and 

GFP-tagged RrF4.  

 

 

Fig. 3.7 Colonization of GUS- and GFP-tagged RrF4 on barley root junctions. Barley seedlings 

were inoculated with GFP-tagged RrF4 and cultured in sterilization condition. Harvested root samples 

were subsequently observed under the microscope with the GFP filter; green fluorescence was detected 

at the lateral root protrusion site at 14 dpi (A) and fresh lateral root base at 21 dpi (B). Barley roots 

treated with GUS-expressing RrF4 were observed with the light microscope; blue bacterial 

colonization was detected at the root junctions at 14 (A) and 21 dpi (B).  

 

 

Fig. 3.8 Colonization pattern of GUS- and GFP-tagged RrF4 on lateral roots. Barley root samples 
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were harvested at 21 dpi. GUS-expressing RrF4 were detected on the root hair zone of lateral roots (A). 

Green fluorescence was at roots inoculated with GFP-expressing RrF4 on the root hair zone of lateral 

roots (B). (B was published in Glaeser et al. 2015) 

3.3.3 RrF4 cell aggregates and single cells on root surface  

The surface colonization of barley primary roots was further investigated by SEM and 

TEM. Consistent with the above findings of GFP and GUS-tagged, root-cap and 

elongation zones were much less colonized by RrF4 (Fig. 3.9 A-D) compared to root 

hair zones, where RrF4 formed dense surface attached biofilms (Fig. 3.9 E-G). Root 

cap colonizing RrF4 cells formed cell aggregates located in cracks between root cap 

cells but did not fully cover the cell surface (Fig. 3.9 A and B). These cell aggregates 

and single surface attached cells were cross-linked by fiber-like structures (Fig. 3.9 C 

and D). Larger cell aggregates (micro-colonies), often developed at the sites of root hair 

protrusion rather than being attached to fully developed root hairs (Fig. 3.9 E and F).  

The dense surface attached biofilm in the maturation zone of primary roots, as shown in 

Fig. 3.9 E, was investigated in more detail by TEM. RrF4 form an approximately 5 µm 

thick multilayer biofilm with cells embedded by a dense matrix of extracellular 

polymeric substances (Fig. 3.9 G). 
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Fig. 3.9 Colonization of barley primary roots by RrF4 analyzed by scanning and transmission 

electron microscopy. A, B: RrF4 at the root tip (B is a zoom out of A showing RrF4 cells at the root 

cap cells, square). C: RrF4 cell aggregates at the root tip. D: Single RrF4 cells attached to the root 

surface distal to the root tip area. Bacterial cells are cross-linked by fiber-like structures. (E) Different 

stages in biofilm formation at the rhizoplane of the root hair zone: single RrF4 cells attached to the 

rhizoplane (s); micro-colonies formed through multiplication of single attached cells (m); larger cell 

aggregates (a), thick surface attached biofilm (b); root hairs (rh). (F) RrF4 cell aggregates around the 

root hair protrusion site; assumed area of penetration into the root tissue (arrow). (G) Surface-attached 

dense biofilm of RrF4 cells. Bacterial cells are embedded in an extrapolysaccharide (EPS)-like 

structure; biofilm at the root surface (b). (Glaeser et al. 2015) 

 

3.4 Localization of RrF4 in the inner barley root tissue 

To explore the localization of RrF4 in the inner root tissue, cross-sections of barley 

roots were analyzed with cytological method. Three-day-old barley seedlings were 

dip-inoculated with GUS- or GFP-tagged RrF4 suspension (OD600=1.2) for 30 min 

under aseptic condition, thereafter cultured in sterilized jars supplied with ½ MS 

medium. The root samples were harvested at 5, 7, 14 and 21 dpi and horizontal 

cross-sections of root areas showing blue stain were prepare for further 

microscopically analysis.  
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Cross-section of barley roots colonized by GUS-tagged RrF4 was analyzed by 

microscopy (Fig. 3.10 A). At 5 dpi, blue GUS staining was showing on the root 

surface, around the root hairs and the rhizodermis (Fig. 3.10 B). At 7 dpi, the blue 

staining extended to the rhizodermis, exodermis and cortical tissues, which indicated 

the invasion of GUS-tagged RrF4 cells into the root cortex (Fig. 3.10 C). Later (21 dpi) 

blue staining also was seen in the endodermis (Fig. 3.10 D). At higher magnification 

(1,000 fold), it was clearly shown that the endodermal cells were surrounded by blue 

bacteria (Fig. 3.10 E). To test whether the bacteria moved to upper plant parts the 

shoots of the barely seedlings were examined by microscopy after incubation with 

substrate X-Gluc. No blue stained bacterial cells were detected in the stem, leaf or leaf 

sheath (Supplement Fig. 7.2). Consistent with this, PCR amplification of RrF4 

specific ITS targets with DNA extracted from the shoot part of barley was also 

negative. Re-isolation of RrF4 from leave tissue was also not successful.  

The colonization pattern of RrF4 in the inner barley root tissue was confirmed with 

GFP-tagged RrF4 (Fig. 3.11). Green fluorescence RrF4 cells were consistently 

detected on the root hair and in the rhizodermis, exodermis and cortex layers. At 21 

dpi, RrF4 cells were detected in cell junctions of endodermal cells and in the central 

cylinder. Inside the central cylinder, bacteria were also seen in the intercellular spaces 

while intracellular colonization was not detectable.  
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Fig. 3.10 Light microscopy of barley primary root cross-sections. The localization of RrF4 in the 

root hair zone and inner root tissue was analyzed after inoculation with GUS-tagged RrF4. A: overview 

of root cross-section at 5 dpi (root hairs were destroyed during the sonication and fixation steps in 

sample preparation). B: zoom out of Fig. A showing blue RrF4 cells on the root surface and root hair. C: 

blue strained bacteria in the different layers of the root tissue at 7 dpi (rhizodermis, exodermis and 
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cortex). D, E: bacteria around the endodermal cells at 21 dpi. (A and D were published in Glaeser et al. 

2015). 

 

 

Fig. 3.11 Confocal laser scanning microscopy of barley primary root cross-sections. The 

localization of RrF4 in barley roots was analyzed after inoculation with GFP-tagged RrF4. A: overview 

of a root cross-section in the root hair zone at 21 dpi. B: a zoom out of central cylinder showing green 

fluorescence RrF4 cells in the root endodermis and central cylinder. C, D: green bacteria on the 

rhizodermis, exodermis and cortex layers. (D was published in Glaeser et al. 2015) 
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Fig. 3.12 Localization of RrF4 in the cortex and endodermis of barley primary root cross sections. 

The localization of RrF4 in the cortex of barley root was analyzed after inoculation with GUS and 

GFP-tagged RrF4. A: GUS-tagged RrF4 were localized in the intercellular space. B: GFP-tagged 

bacterial showed the same colonization pattern in the intercellular cells. C: bacteria surrounded the 

cortical cells in the intercellular space was observed. D: a zoom out of one single cortical cell and many 

small bacterial cells around, square box indicated bacteria cells. (B was published in Glaeser et al. 

2015) 

 

Analysis with GUS-expressing RrF4 showed that bacteria colonized in the 

intercellular spaces among rhizodermal and exodermal cells (Fig. 3.12 A). 

Cross-section with GFP-tagged RrF4 showed bacteria in the intercellular spaces of 

cortical cells, endodermal cells and the central cylinder (Fig. 3.12 B). More details are 

shown by TEM. A dense colonization of the intercellular spaces was shown in the 

cortex tissue and up to the endodermis (Fig. 3.12 C, D). 

3.5 Colonization of Arabidopsis roots by RrF4 

The colonization pattern of Arabidopsis roots was assessed using GUS- and 
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GFP-tagged bacteria. GUS-expressing RrF4 cells were colonized on the maturation 

zone of Arabidopsis roots while the root cap was free of bacteria. The colonization of 

GUS-expressing RrF4 on Arabidopsis roots was increased from 5 to 14 dpi (Fig. 3.13 

A, B and C). No blue staining was obtained on control seedlings without inoculation 

with GUS-expressing RrF4 but incubated with substrate X-Gluc which excluded plant 

derived glucuronidase activity (Fig. 3.13 D, E and F). Confocal laser scanning 

microscopy of Arabidopsis roots inoculated with GFP-tagged RrF4 showed single 

RrF4 cells as well as dense, locally restricted aggregates at the surface of root hair 

zones at 7 dpi and 14 dpi, the surface of root hairs and, in higher abundance, at the 

base of root hair cells (Fig. 3.14 A, B). At a later time point (21 dpi) RrF4 also 

colonized on the sites of secondary root emergence (Fig. 3.14 C, D). The central 

vascular systems (xylem) of primary and secondary roots were heavily colonized (Fig. 

3.14 E). But still, RrF4 cells were not detectable by q-PCR and FISH in the shoot 

parts of the Arabidopsis.  
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Fig. 3.13 The colonization pattern of GUS-tagged RrF4 on Arabidopsis thaliana. A, B, C: the root 

hair zone of Arabidopsis inoculated with GUS-tagged RrF4 became blue after incubated with the 

substrate X-Gluc at 5, 7 and 14 dpi, while the Arabidopsis seedlings control (D, E, F) without 

GUS-tagged RrF4 treatment, showed no blue coloration after incubation with X-Gluc. (A, B and C 

were published in Glaeser et al. 2015) 
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Fig. 3.14 Colonization of primary Arabidopsis roots by GFP-tagged RrF4. Arabidopsis roots were 

analyzed at 7 dpi and 21 dpi. A: RrF4 colonization of the root surface in the root hair zone with single 

attached bacteria, thin biofilms and dense locally restricted aggregates (arrows). B: colonization of the 

root hairs mainly at the cell bottom (arrows). C: Localization of bacteria forming biofilms and 

aggregates at the root surface of the primary root and at the sites of lateral root protrusions (arrows). D: 

Bacterial cells inside the plant’s vascular system (arrow: xylem). C and D represent different layers of a 

CLSM screen on Arabidopsis roots. (Published in Glaeser et al. 2015) 

 

3.6 The impact of cell death regulator BAX inhibitor-1on the colonization of 

RrF4 

P. indica initially colonizes living cells, which die during the colonization process. P. 

indica was shown to proliferate in dead host cells. Since endobacterium Rhizobium sp. 

has a strong relationship with P. indica, it was investigated whether also RrF4 invades 

living cells and causes host cell death. First, the expression of the HvBI-1 gene in wild 

type barley cultivar Golden Promise was analyzed. Quantitative PCR analysis showed 
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that the expression of HvBI-1 was slightly increased in barley root during the plant 

development, while the expression was slightly but not significantly increased when 

seedlings inoculated with RrF4 were compared with the non-inoculated plants (Fig. 

3.15). Barley mutants, which overexpress the functional GFP-HvBI-1fusion protein, 

were used to determine the colonization density of RrF4. The amount of RrF4 was 

measured in independent GFP–HvBI-1 barley mutant lines by q-PCR. It was shown 

that the relative amount of RrF4 in the transgenic line E14L1 slightly but not 

significantly increased at 7 dpi compared with the colonization on wild type barley 

(Fig. 3.16).  

 

 

Fig. 3.15 Impact of RrF4’s colonization on the expression of HvBI-1 in barley roots. The 

expression of HvBI-1 was analyzed by quantitative PCR at 7 dpi and 14 dpi. The relative amount was 

increased in both treated and untreated barley samples from 0 to 14 dai. Mean values and Error bars of 

three independent biological replicates are shown.   
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Fig. 3.16 Relative amount of RrF4 in wt barley and the transgenic barley HvBI-1 line. WT 

represents wild-type barley (Golden Promise). E14L1 represent an independent transgenic HvBI-1 

Golden Promise line. The relative amount of RrF4 was based on the ITS region in RrF4 relative to the 

barley ubiquitin gene. Mean values and error bars of three independent biological replicates are given. 

Letters on the top of the bars indicate statistically differences tested by T-test (P<0.05). Same litters 

indicate no significant differences.  

 

3.7 Quantification of endobacterium R. radiobacter in P. indica 

3.7.1 Limited detection of bacteria R. radiobacter 

An RrF4 ITS-target standard curve was generated to quantify the amount of 

Rhizobium cells in P. indica. The standard curve consisted of eight concentrations of 

RrF4 ITS targets 1 x 10
2
 to 1 x 10

9
 per µL. The amplification efficiency of the ITS 

Q-PCR, which determined by the standard curve, was 69% (y=-4.391x + 45.872, 

R
2
=0.988). Melt curve of Q-PCR products indicated the problem of the detection limit 

for this primer system. Primer dimers were formed at low concentrations of target 

DNA (100 targets per PCR reaction) or in NTCs. Those had a lower melting point 

(Tm = 78ºC) than RrF4’s ITS target (Tm=88°C) in the Q-PCR (Fig. 3.17). Because 

the ITS amplification products did not melt at 83ºC, while the amplification products 

from primer dimers were totally molten at that temperature, this temperature 83ºC was 

ajusted to the Q-PCR cycles before fluorescence measurement to avoid the unspecific 

quantification of primer dimers. In the dilution with 100 targets, only primer dimers 
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could be detected as indicated by melt curve analysis (Tm = 78ºC). The detection 

limit by Q-PCR was 100 ITS targets per Q-PCR reaction. In order to detect the 

endobacterium by Q-PCR, approximately 500 mg of fungal tissue was necessary for 

DNA extraction.  

 

 

Fig. 3.17 Melt curve of PCR amplified ITS fragments and primer dimers in Q-PCR. Three 

different concentrations of ITS targets (10
7
, 10

3
 and 10

2
 per PCR reaction) and pure RrF4 were used to 

see the primer efficiency. There was melting peak (Tm) with 10
7
 and 10

3
 targets at 83ºC as in pure RrF4. 

There was only melting peak from primer dimer with 10
2
 targets at 78ºC instead of ITS melting peak at 

83ºC.      

 

3.7.2 Quantification of endobacteria R. radiobacter in P. indica colonized barley 

roots  

The amount of endobacteria R. radiobacter was quantified with P. indica colonized 

barley roots and compared to axenic P. indica cultures. The relative amounts of P. 

indica and endobacteria R. radiobacter in barley roots were determined relative to the 

amount of the barley housekeeping gene ubiquitin. The colonization of P. indica was 

stronger for seedlings cultured in jars with ½ MS meidum than those cultured in pots 

filled with 2:1 mixture of expanded clay and Oil-Dei, since the relative amount of P. 

indica in jars growth condition was higher than in pot growth condition (Fig. 3.18 A). 

The relative amount of endobacteria was constantly detected in barley roots grown in 

jars at 7 and 14 dpi, while in pots it was only detectable at 7 dpi (Fig. 3.18 B). The 
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absolute amount of endobacteria R. radiobacter was calculated with the standard 

curve of RrF4’s ITS amplification products (Fig. 3.18 C), while the absolute amount 

of P. indica was calculated using a standard curve based on the amplification of the 

fungal Tef gene (Fig. 3.18 D). Based on the genome sequence, RrF4 has likely three 

ribosomal rRNA operons and therefore three ITS regions on the bacterial genome. 

The number of targets determined by the Q-PCR quantification needs to be divided by 

three to get the number of endobacteria cells.  

 

 

Fig. 3.18 Quantification of endofungal R. radiobacterand P. indica in barley roots under different 

growth conditions. Three-day-old barley seedlings were dip-inoculated with P. indica spores for 1.5 

hour, subsequently cultured in sterilized jars with ½ MS medium or pots with Seramis and Oil-Dri (3:1). 

Roots were harvested at 7 and 14 dpi. A: The relative amount of P. indica was quantified with Tef and 

related to barley ubiquitin; B: The relative amount of endobacteria was quantified with RrF4’s ITS 

related to barley ubiquitin; C: The absolute amount of P. indica calculated with standard curve of Tef 

gene; D: The absolute amount of endobacteria calculated with standard curve of ITS region from RrF4. 

Error bars indicate standard errors based on three independent biological replicates. Asterisks indicate 

statistical significant difference (Student’s t-test *P<0.05; **P<0.01). 
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The experiment above showed plants growing in sterile condition with ½ medium is a 

better system for the measurement of endobacterium Rhizobium than plants growing 

in pots. The abundance of Rhizobium bacteria was detected and compared in P. indica 

in the presence and absence of the plant host. The relative amount of endobacteria in P. 

indica was calculated with ITS related to Tef gene from P. indica. Q-PCR results 

showed that the relative amount of endobacteria in P. indica colonized on barley roots 

was significantly higher than in axenic P. indica at all the time points, and the amount 

detected in root samples at 7 dpi was higher than at 14 dpi (Fig. 3.19).   

 

Fig. 3.19 Quantification of endobacterium R. radiobacter in the presence and absence of the plant 

host. Three-day-old barley seedlings were inoculated with spores of P. indica, and cultured in sterile 

jars. At the same time the spores were cultured in liquid CM medium in flask. Barley roots were 

harvested at 7 dpi and 14 dpi, while the P. indica from liquid culture was harvested after 14 days. The 

relative amount of endobacteria from each sample was quantified with Q-PCR. Mean values and error 

bars based on three independent biological replicates are given. Different letters on the top of the bars 

indicate statistically significant differences tested by one-way analysis of variance performed with the 

Tukey test (P<0.05). 

 

3.7.3 Quantification of endobacteria R. radiobacter in P. indica supplied with 

root extracts  

Root extracts obtained from grinded root tissue and small root pieces obtained from 

mechanical cutting were added into the liquid culture of P. indica spores as growth 

supplement, and harvested after one week for endobacteria R. radiobacter 

quantification, respectively. The relative amount of endobacteria increased in both 
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cases, but the increase in both P. indica cultures was not significant compared with the 

relative endobacteria amount in axenic P. indica culture (Fig. 3. 20).  

 

Fig. 3.20 The relative amount of endobacterium R. radiobacter in P. indica cultured with root 

extracts and small pieces of roots, respectively. Sterilized barley seeds were germinated under sterile 

growth condition for five days, roots from these seedlings were harvested under the clean bench. Half 

of the root material was cut into small pieces, added into liquid culture of P. indica spores and cultured 

at 130 rpm/min room temperature. The other half of the root material was grinded with sterilized 

mortar and pestle in liquid CM medium, and filtered through 0.2 μm filter. The filter-sterilized root 

extraction was added into liquid culture of P. indica spores and cultured in the same way. After 

cultivation for 7 days the relative amount of endobacteria was quantified and calculated based on the 

genome ratio. Mean values and error bars based on three independent biological replicates are given. 

Different letters on the top of the bars would indicate statistically significant differences tested by 

one-way analysis of variance performed using the Tukey test (P<0.05). 

 

3.8 Re-isolation of P. indica  

Since the amount of endobacterium Rhizobium was increased when P. indica 

colonized on barley roots，fresh P. indica was re-isolated from barley roots, and the 

endobacteria were quantified in this freshly re-isolated P. indica (RE-Piri). Barley 

roots were surface sterilized and cultured with CM medium on agar plate or liquid 

CM medium. After one week of incubation, spores or mycelia of P. indica resident 

inside the roots broke the root cell wall, propagated and formed colony on the agar 

medium around the root (Fig. 3.21 A, B, C) or mycelium around the root tissue and 

root hair in liquid culture (Fig. 3.21 D and E). The re-isolated P. indica subculture-1 

(Re-Piri-1) was further transferred to a fresh plate which represented as re-isolated P. 
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indica subculture-2 (Re-Piri-2) (Fig. 3.21 F). The biomass from Re-Piri-1 and 

Re-Piri-2 were taken from the plates and used for DNA extraction with 

Macherey-nagel kit. The amount of endobacteria was quantified and compared with 

long-term lab cultured P. indica (LL-Piri) by Q-PCR. Higher amount of endobacteria 

were detected in RE-Piri and decreased again after sub-cultivation on agar plates. As 

shown in Fig. 3.22, the relative amount of endobacteria was significantly increased in 

Re-Piri-1 compared to axenic LL-Piri culture. The amount of endobacteria was 

significantly higher in Re-Piri-1 than in Re-Piri-2.   

 

 

Fig. 3.21 Re-isolation of P. indica from barley roots. Barley seedlings were inoculated with P. indica 

and cultured on ½ MS agar in sterile jars for two weeks. The inoculated roots were surface sterilized 

(washed with 70% ethonal for 1 min and 3% NaClO for 5 min), cut into small pieces and cultured on 

CM solid and liquid medium. After two weeks, P. indica colonies were formed around root pieces 

which was recorded as re-isolated-P. indica-1 (Re-Piri-1) (A, B, C, D and E). The Re-Piri-1 was 

sub-cultured on CM agar plate as re-isolated-P. indica-2 (Re-Piri-2) (F). 

 

Fig. 3.22 Quantification of endobacterium R. radiobacter in RE-Piri (Re-Piri-1 and Re-Piri-2) 
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compared to LL-Piri. The relative amount of endofungal bacteria was quantified with ITS targets of 

RrF4 related to Tef gene of P. indica. Three-week-old cultures were used for quantification. The relative 

amount of endobacteria was quantified in Re-Piri-1, Re-Piri-2 and compared with LL-Piri. Mean 

values and standard errors based on three independent biological replicates. Different letters on the top 

of the bars would indicate statistically significant differences tested by one-way analysis of variance 

performed using the Tukey test (P<0.05). 

 

3.9 Invasion of free living RrF4 into P. indica was not observed 

Pure culture of GFP-tagged RrF4 cells were co-cultured with P. indica to test if RrF4 

can invade the fungal host where it was originally isolated from. Spores of P. indica 

were cultured in liquid CM medium and germinated for three days. Subsequently 

different concentrations of GFP-tagged RrF4 cells were added to the P. indica culture. 

The co-culture was observed under the fluorescence microscopy after cultivation for 

one day, two days and three days. Many GFP-tagged RrF4 cells were sticking at the 

surface of hyphae especially at the tips (Fig. 3.23A) and on chlamydospores (Fig. 

3.23B), but green fluorescent RrF4 cells were not detected within hyphae or spores 

(Fig. 3.23). In order to introduce RrF4 into the fungal host, protoplasts of P. indica 

were generated to merge with protoplast of GFP-tagged RrF4, but it was still not 

successful to bring RrF4 back to fungus host (data not showed).   

 

 

Fig. 3.23 GFP-tagged RrF4 sticking around the hyphae (A) and chlamydospores (B) of P. indica. 

Chlamydospores were collected from three-week-old P. indica cultures on agar plates, and cultured for 

three-day in CM medium to germinate. Overnight cultured GFP-tagged RrF4 bacteria were collected, 

re-suspended and added to the P. indica culture with final bacterial concentrations of OD600=0.1, 0.01 

and 0.001. The co-culture was observed under the fluorescence microscopy after one day, two days and 
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three days. Figure A and B showed the fluorescence microscopic analysis after one day co-culture. A: 

The GFP-tagged RrF4 stacking around the hyphae. B: the GFP-tagged RrF4 surrounding the spores. 

The square box showed GFP-tagged RrF4 around the tip of hyphae.  

   

3.10 Curing P. indica through antibiotics treatments and single protoplast 

cultivation 

The biological activity and functional mechanism of RrF4 were exploited because of 

the successful isolation of the endobacterium Rhizobium radiobacter. It has not been 

possible to cure P. indica so far, therefore further trials were performed here to further 

expose the connection among the endobacterium, the fungus P. indica and the plant 

host. Treatments with antibiotics are often used to kill endofungal bacteria and to 

obtain a cured fungus (Partida-Martinez and Hertweck 2005). We decided to carry out 

our experiment bythis method as well. In order to avoid that the fungal cell wall 

prohibits the entrance of antibiotic into the fungal cells, protoplasts of P. indica were 

used for the antibiotic treatments. CM medium containing 300 μg/mL spectinomycin 

and 300 μg/mL ciprofloxacin were testified to be very efficient on killing RrF4 cells 

grown as pure culture. Therefore those concentrations were used in this experiment. 

Five-day-old single fungal colonies that were derived from single protoplasts were 

transferred to a new culture plate. No differences were obtained between antibiotic 

treated and untreated P. indica cultures at the beginning of the cultivation, but after 

three generations, the germination of P. indica was obviously delayed when the 

protoplasts cultured on the round petri dish with medium containing antibiotics (Fig. 

3.24 A, B). Light microscopical imaging showed that the fungal colonies on medium 

with antibiotics were smaller than the colonies on medium without antibiotics. The 

single colony was picked up and cultured on new agar media, the diameter of the 

colony without antibiotic treatment was approximately 6 cm, while the diameter of 

the colony on antibiotic containing medium had a size of only 3 cm (Fig. 3.24 C, D). 

During the experiment, no apparent morphology change was obtained on the hyphae 

of P. indica, but the number of spores formed by P. indica with antibiotic treatment 

was significantly reduced (Fig. 3.24 E, F). With q-PCR analysis, endobacteria could 
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not be detected in four samples from the third generation of culture. Because of the 

detection limitation of the ITS q-PCR system of 100 ITS targets in the PCR reaction, 

further tests are needed to check for endobacteria in these single-protoplast-derived P. 

indica cultures (SP-Piri) (see chapter 3.11).  

The single-protoplast-derived P. indica culture and control P. indica culture were 

cultivated in liquid CM medium for one week, respectively. The mycelia were taken 

from these liquid cultures, stained with DAPI and observed with fluorescence 

microscopy. Changed nuclei structures were observed among them. The nuclei in the 

hyphae of SP-Piri were in rod shape (Fig. 3.25 A), while the nuclei from control P. 

indica were in spherical shape (Fig. 3.25 B).  
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Fig. 3.24 morphological changes of P. indica cultures after antibiotics treatment and single 

protoplast cultivation. The protoplasts of P. indica were extracted and cultured on CM medium with 

spectinomycin and ciprofloxacin (A, C, E,) and without antibiotics (B, D, F). A: protoplasts germinated 

for 5 days on CM medium containing 300 μg/mL spectinomycin and 300 μg/mL ciprofloxacin. B: 

protoplasts germinated for 5 days on CM medium without antibiotics. C: single colony picked up from 

A and propagated on medium with antibiotics for 10 days. D: single colony picked up from B and 

propagated on medium without antibiotics for 10 days. E: the mycelia of P. indica growing on the 

medium with antibiotics were observed under microscope. F: the mycelia and spores of P. indica 

growing on the medium without antibiotics were observed under the microscope.   
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Fig. 3.25 Nuclei structure in the hyphae of single-protoplast-derived P. indica and control P. 

indica. Single-protoplast-derived P. indica culture and control P. indica culture were cultivated in 

liquid CM medium with 130 rpm/min for one week. The mycelia were stained with DAPI and observed 

under fluorescence microscopy. A: mycelium from single-protoplast-derived P. indica culture, the 

nuclei were stained with DAPI resulting in blue fluorescence under fluorescence microscopy; B: 

mycelium from control P. indica culture.  

 

3.11 Biological activity conferred by SP-Piri, LL-Piri and RE-Piri 

To address the question whether single-protoplast-derived P. indica and freshly 

re-isolated P. indica exhibit biological activities comparable with long term 

lab-cultured P. indica, barley seedlings inoculated with SP-Piri, LL-Piri and RE-Piri, 

respectively, were cultured in pots containing 2:1 mixture of expanded clay and 

Oil-Dri. Fresh weights from shoot and root of the seedlings were measured to test for 

growth promotion, while the systemic resistance was assessed with barley powdery 

mildew infection.  

3.11.1 Root colonization patterns from SP-Piri, LL-Piri and RE-Piri 

During the cultivation for biological activity assay, the roots of barley seedlings at 7 

dpi were investigated microscopically with WGA-staining to visualize the 

colonization density and pattern of different P. indica cultures. The staining showed a 

high amount of pear-shaped chlamydospores and mycelium in the roots inoculated 

with RE-Piri (Fig. 3.26 A), while a much less colonization was obtained for roots 

infected by LL-Piri (Fig. 3.26 B). The lowest infection rate was determined for the 

roots inoculated with SP-Piri, the culture showed a very low colonization of the root 
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tissue by the SP-Piri and most of the structures obtained were mycelium (Fig. 3.26 C). 

Similar results were obtained in three independent biological replicates.  

 

 

Fig. 3.26 WGA-staining of barley roots colonized by P. indica at 7 dpi. Three-day-old seedlings 

were dip-inoculated with mycelium of SP-Piri, LL-Piri, and RE-Piri, respectively, and cultured for 7 

days in a growth chamber. Roots were harvested from one-week-old plants and stained with WGA for 

fluorescence microscopy analysis. A: pear-shaped chlamydospores and mycelium in the root colonized 

by RE-Piri; B: spores and mycelium in the root infected by LL-Piri; C: mycelium colonized on the 

barley root inoculated with SP-Piri.  

 

3.11.2 Quantification of endobacteria R. radiobacter in root colonized by SP-Piri, 

LL-Piri and RE-Piri 

Q-PCR analysis was used to determine the abundance of endobacteria in barley roots 

colonized by single-protoplast-derived P. indica culture (SP-Piri), re-isolated P. indica 

culture (RE-Piri) and long term lab-cultured P. indica culture (LL-Piri). Three-day-old 

seedlings were dip-inoculated with mycelium from SP-Piri, fresh RE-Piri and LL-Piri, 

respectively. Root samples were harvested at 7 dpi, and used to quantify the 

colonization density of P. indica and the amount of endobacteria present in the root 

colonized with different P. indica cultures. The Tef gene of P. indica was used for the 

quantification of the fungus, while the specific ITS primer system was used for the 

quantification of the endobacteria Rhizobium. The fresh RE-Piri showed a significant 

highest colonization density of the roots of barley seedlings grown on 1/2 MS in jar, 

no significant colonization difference were obtained between SP-Piri and LL-Piri (Fig. 

3.27 A). The relative amount of endobacteria in roots colonized by RE-Piri was 

significantly higher compared with LL-Piri and SP-Piri colonized roots (Fig. 3.27 B). 
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There was still endobacteria detectable in roots colonized by SP-Piri, although the 

amount was significantly reduced compared with LL-Piri and RE-Piri (Fig. 3.27 B). 

The constantly detected endobacteria in SP-Piri indicates that single protoplast 

cultivation and antibiotics treatment did not curing P. indica from its endobacteria 

completely.  

 

Fig. 3.27 Colonization of different P. indica cultures on barley roots and quantification of 

endobacterium R. radiobacter inside. Three-day-old barley seedlings were dip-inoculated with 

mycelium from SP-Piri, fresh RE-Piri and LL-Piri, respectively. The seedlings were cultured in a 

growth chamber and harvested after one week for quantification. A: the colonization of different P. 

indica cultures on barley roots. The amount of P. indica was quantified with q-PCR detection of the 

fungal Tef gene. B: genome ratio of endobacteria Rhizobium and P. indica (endobacteria/Piri) on barley 

roots. The amount of endobacteria was quantified with ITS of RrF4 and uniformed with Tef gene of P. 

indica. SP-Piri: single-protoplast-derived P. indica cultue; LL-Piri: long term lab-cultured P. indica; 

RE-Piri: fresh P. indica re-isolated from barley roots. Mean values and standard errors of three 

independent biological replicates are given. Different letters on the top of the bars indicate statistically 

significant differences tested by one-way analysis of variance performed with the Tukey test (P<0.05). 

 

3.11.3 Fresh weight measurement and pathogen resistance assessment 

Three-week-old plants inoculated with different P. indica cultures were harvested for 

biomass measurement. Growth promotion was observed from barley plants inoculated 

with LL-Piri and RE-Piri compared to the control (non-inoculated plants) before 

harvest (Fig. 3.28 A). Compared with control, shoot fresh weight was increased in all 

the plants treated with P. indica cultures (Fig. 3.28 B). The shoot weight was 
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significantly increased in barely seedlings treated with RE-Piri (17.7%) and LL-Piri 

(15.9%) compared to the control seedlings which were not inoculated with any P. 

indica culture. Although slight growth promotion was obtained by the visual 

observation from SP-Piri inoculated plants, the 7.5% increase induced by SP-Piri was 

not significantly different from control plants. There was no significant difference 

among plants infected with SP-Piri, LL-Piri and RE-Piri. The average root weights 

showed increase in plants treated by SP-Piri, LL-Piri and RE-Piri compared to control 

plants, but the increase was not significant (Fig. 3.28 C).  

To determine the systemic resistance among different P. indica cultures, the third 

leaves from three-week-old plants inoculated with P. indica cultures were used in 

detached-leaves pathogen assay. Conidia from powdery mildew pathogen were blwn 

to infect the detached leaf-segment, pustules were counted after 6-day infection. In 

contrast to control plants, the number of pustules formed on leaves was decreased in 

all the plants treated with P. indica cultures (Fig. 3.28 D). The pustules on leaves from 

plants inoculated with RE-Piri and LL-Piri were significantly reduced compare with 

control, nevertheless there was no significant reduction on plant infected with SP-Piri. 

The maximum systemic resistance against Bgh was induced in RrF4 treated plants 

(26.9%) followed by infection from RE-Piri (14.5%) and SP-Piri (14.5%). The lowest 

systemic resistance was from the infection of LL-Piri (3.4%).  
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Fig. 3.28 Biological activity conferred by SP-Piri, LL-Piri, RE-Piri and RrF4 on barley. 

Three-day-old barley seedlings were inoculated with mycelium of SP-Piri, LL-Piri and RE-Piri, 

respectively, and cultured in growth chamber. A: three-week old plants inoculated with RE-Piri, 

LL-Piri, SP-Piri and control; B: the fresh weight from shoot; C: the fresh weight from root; D: number 

of pustules on the detached-leaves. Bars indicate standard errors based on three independent biological 

replicates. Letters on the top of the bars indicate statistically significant differences tested by one-way 

analysis of variance performed with the Tukey test (P<0.05). 
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4 Discussion 

RrF4 treatment increased plant biomass and resistance to powdery mildew Blumeria 

graminis f. sp. hordei in barley, the pathogenic bacterium Xanthomonas translucens 

pv. Translucens (Xtt) in wheat and Pseudomonas syringae pv. tomato DC3000 (Pst) in 

Arabidopsis (Scharma et al. 2008; Glaeser et al. 2015), while its fungal host P. indica 

conferred promotion on biomass and yield, induction of resistance to leaf and root 

pathogens, and increase in the tolerance to salt stress (Peškan-Berghöfer et al. 2004; 

Waller et al. 2005; Sherameti et al. 2005; Schäfer and Kogel 2009; Jacobs et al. 2011; 

Varma et al. 2012; Oberwinkler et al. 2014; Ye et al. 2014). The beneficial effects 

induced by RrF4 in plants suggest a crucial role of the bacterial partner from P. indica 

and raise the question whether P. indica induces pathogenic resistance and biomass 

formation on the broad spectrum plant host alone. 

4.1 Colonization pattern of RrF4 on the root surface 

RrF4 labeled with GUS- and GFP- reporter genes were used to visualize the 

colonization pattern of bacterium RrF4 on barley and Arabidopsis. It was clearly 

showed in barley root that GUS-labeled RrF4 colonized on the maturation zone I at 

the early inoculation period, spread to maturation zone II on the primary root later on, 

and proliferated at lateral roots with the same pattern as in primary root after longer 

inoculation period. During the whole growth period, root cap was virtually remained 

free of bacteria colonization while elongation zone and meristematic zone were 

seldom colonized (Glaeser et al. 2015). The resembled root colonization pattern was 

observed from P. indica. Fungal colonization and proliferation were gradually 

increased on the root maturation zone, while the elongation zone was colonized with 

occasional hyphal structures, and root cap was a litter bit heavier infested by hyphae 

than the elongation zone but much less than the colonization on maturation zone 

(Deshmukh et al. 2006; Schäfer et al. 2009; Jacobs et al. 2011). On the basis of P. 

indica’s colonization pattern on Arabidopsis, we drew a comparison draft about the 

colonization pattern of RrF4 and its fungal host P. indica in the meristematic zone, 

https://en.wikipedia.org/wiki/Blumeria_graminis
https://en.wikipedia.org/wiki/Blumeria_graminis
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elongation zone and maturation zone on Arabidopsis roots, and it is published in 

Glaeser et al. 2015 (Fig. 4.1). These data indicate the free-living RrF4 not only has 

similar biological function on plant host, but also has quite similar colonization 

pattern as its fungal host P. indica on the plant.  

 

 

Fig. 4.1 Comparison of the colonization pattern of RrF4 and its fungal host P. indica on 

Arabidopsis roots (taken from Glaeser et al. 2015). Root colonization of P. indica is mainly on the 

maturation zone II of Arabidopsis, while RrF4 additionally colonized on the elongation zone, 

maturation zone I and meristematic zone as well.  

 

Dense biofilms formed by RrF4 on the root surface were detected by scanning and 

transmission electron microscopy, the multilayer biofilm were approximately 5 µm 
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thick with bacterial cells embedded in a dense matrix of extracellular polymeric 

substances. This matrix could be formed by extracellular polysaccharides, 

extracellular DNA or (glyco) proteins (Flemming and Wingender 2010). Several 

genes responsible for the synthesis of polysaccharide were found in the genome of 

RrF4 (Glaeser et al. 2015). The polysaccharide can be succinoglycan, glucans and 

outer membrane lipopolysaccharides, they are well known to be involved in the 

formation of extracellular biofilm matrix of ‘Agrobacterium tumefaciens’ strains 

(Goodner et al. 2001; Heindl et al. 2014; Matthysse 2014). 

Fiber-like structures were detected to cross-link bacterial cells on root surface. It was 

previously reported that the production of cellulose is necessary for the efficient root 

surface attachment for Agrobacterium tumefaciens and leads to the loose aggregation 

of cells on root (Heindl et al. 2014; Matthysse 2014; Matthysse 1983). Based on these 

findings, we presumed the fiber-like structures could be cellulose. Through the 

analysis of RrF4’s genome sequencing, we found that two gene clusters, which are 

required for the cellulose production in R. radiobacter C58, celABCG and celDE, 

presented on RrF4’s linear chromosome (Glaeser et al. 2015). This molecular 

information got from genome analysis confirmed our presumption that fiber-like 

structures among RrF4 cells are cellulose.  

Many bacteria cells were preferentially proliferated at the lateral root protrusion and 

root hair protrusion, formed bacterial conglomerates at primary and lateral root 

junction as the growth of the lateral roots. Bacterial cell micro-colonies were also 

located in the cracks among plant cells on the root cap instead of fully cover the cell 

surface. The colonization of RrF4 on plant doesn’t induce more root hairs compared 

with the untreated control plants. Compant and colleagues reported that the cracks on 

plant root, such as lateral root bases, root hairs and root tips, are normally served as 

entry sides for bacterial penetration (Compant et al. 2005; Compant et al. 2010; 

Reinhold-Hurek and Hurek 1998). These evidences in combination with results 

shown here indicate that RrF4 probably make use of the lateral root emergence, root 

hair protrusion and cracks on the root as the passive entrance into the inner root tissue.   
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4.2 Intercellular localization of RrF4 in the root cortex and central cylinder 

Cross-section of barley roots were used to analyze the bacterial colonization in the 

inner roots. GUS-tagged and GFP-tagged RrF4 bacteria were visible in the root cortex 

(rhizodermis, exodermis and cortical tissues) after seven days inoculation. Light 

microscopy and TEM with the ultrathin root cross-section showed that most of the 

bacteria were detected among the rhizodermal cells and cortical cells in the 

intercellular spaces. After 21 days inoculation, GUS-RrF4 cells were detected in the 

intercellular space between the endodermal cells and the central cylinder, while 

GFP-RrF4 cells were also seen in the intercellular spaces of central cylinder. The 

finding of bacterial colonization in the endodermis is crucial, since the RrF4’s fungal 

host P. indica was not observed in the inner part of root beyond the endodermis to 

central cylinder layer (Deshmukh et al. 2006; Jacobs et al. 2011). We can not exclude 

that bacteria RrF4 were able to pass the endodermis into central cylinder, it is also 

possible that RrF4 cells invaded the vascular tissue via the non-maturated tissue of the 

elongation zone where differentiation has not been completed yet. However, bacteria 

cells were not found in the over ground part shoot tissue, since the blue or green 

bacterial (GUS-RrF4 and GFP-RrF4) were neither visible under microscopes nor 

culturable on medium from stem, leaf or leaf sheath, and the specific ITS target of 

RrF4 could not be detected by qPCR in shoot and leaves. Those data suggested that, 

RrF4 is different from other endophytic bacteria (Rothballer et al. 2008; Hardoim et 

al. 2008; Van der Ent et al. 2009), it does not spread systemically into the upper plant 

tissue.  

RrF4 cells were assessed to colonize in the interior of Arabidopsis roots. Bacterial 

cells were consistently seen on the surface of root hair zones, at the base of root hair 

and emergence site of secondary root from 7 dpi to 21 dpi. The central vascular 

system of primary and secondary Arabidopsis roots were heavily colonized compared 

with the barley roots.  

4.3 Single root cell colonization strategies of RrF4 

Bax inhibitor-1 (BI-I) is a negative regulator of cell death that suppresses cell death 

through Bcl-2 in mammals, and is located in the membrane of endoplasmic reticulum 
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(Xu and Reed, 1998). There are no homologs of the cell death inducer BAX in plants, 

but BI-1 in barley and other plants were shown to suppress cell death induced by 

BAX (Hückelhoven, 2004; Eichmann et al. 2006; Watanabe and Lam 2009). 

Although the relative expression of HvBI-1 was increased during barley root 

development, RrF4-treated barley plants showed an additional increase in expression 

compared with non-treated plants from 0 dai to 14 dai, while P. indica colonized 

plants showed a reduced expression of HvBI-1 compared with non-colonized plants 

(Deshmukh et al. 2006). Quantification of RrF4 in transgenic HvBI-1 line showed no 

significant difference compared with the amount in wt barley, while the quantification 

of P. indica in those lines showed significant reduction (Deshmukh et al. 2006). These 

experimental data and the comparison with the data from P. indica indicates that the 

colonization of RrF4 doesn’t induce cell death in plant host. 

Our previous study showed that RrF4 multiplies at the maturation zone on the primary 

and secondary roots, enters the inner roots through the lateral root protrusions and 

root hair protrusion sides, propagates at the rhizodermal, cortical and endodermal 

layers and spreads into the central cylinder (Gleaser et al. 2015). During the 

experiment, we observed that there were single root cells heavily colonized by 

GUS-tagged RrF4 on root hair zone. Confocal laser scanning microscopy analysis 

showed cells within several GFP-tagged RrF4 on the root surface at early time pints, 

single cell was filled by GFP-tagged RrF4 except the nucleus at the later time points. 

Root cross-section analysis illustrated RrF4 colonized in the epidermis and went into 

the root cortex through the intercellular space. These data reveal RrF4’s cell 

colonization strategies that RrF4 multiplies in the intercellular space firstly, 

afterwards some RrF4 invade the barrier of cell wall and successfully infect the dead 

root cells in the maturation zone, after some time from that, RrF4 proliferates quickly 

in the dead cells till the dead cell is full of bacteria except the nucleus. The dead cells 

here could be caused by programmed cell death (PCD), which was carried out in a 

self-regulated process in the plant host. 
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4.4 Endobacteria in stationary phase-VBNC 

Some gram-negative bacteria have extraordinary ability to survive under 

nutrient-shortage or harsh environment. They enter into a stationary phase like state 

that involves morphological and physiological adaptations, when the environment is 

not sufficient enough to keep the steady growth (Llorens et al. 2010). In this 

stationary phase like state, bacterial cells become smaller as the result of reductive 

division and dwarfing, more resistant against different assaults since the formation of 

cell envelopes, and non-proliferative because of the starving (Nystrom 2004; Llorens 

et al. 2010). We adventurously assume that RrF4 is at a stationary phase-like viable 

but nonculturable (VBNC) in fungal host P. indica in axenic culture, which could 

explain the very low numbers of endobacteria RrF4 in the fungal hyphae and spores 

and the smaller spherical shape of endobacteria compared with the free-living axenic 

RrF4 culture in liquid or solid medium. In this stationary phase, bacterial cells are 

more resistant to antibiotics, which could be one reason for the insufficient antibiotics 

treatment to cure endobacteria RrF4 from its fungal host. Bacteria resuscitate from the 

stationary phase to growth phase when there is third partner plant supplying with 

enough nutrition and better propagation conditions, which could explain the increased 

amount of RrF4 when P. indica colonized on plant root. A clinical strain of Vibrio 

parahaemolyticus Vp5 was explored to be recoveried from VBNC after upshift 

temperature from 4 ºC to 20 ºC and 37 ºC (Coutard et al. 2007). 

FtsZ is the primary cytoskeletal protein responsible for cell division in almost all the 

bacteria. In the bacterial cell, the ftsZ protein assembles into a protofilament that will 

further form into a cytokinetic Z ring at the center of the cell. This Z ring is tethering 

to the bacterial membrane through the binding of C-terminal peptide with FtsA 

protein, and supplying the bacterial cell division with cytoskeletal framework (Osawa 

et al. 2008; Peters et al. 2007; Pichoff and Lutkenhaus 2005). FtsZ as a marker gene 

for cell division, the expression of FtsZ in one endocellular bacterium Candidatus 

Glomeribacter gigasporarum was analyzed and showed to be at the highest value 

when the fungal host Gigaspora margarita colonized on plant (Anca et al. 2009). It 

will be interesting in the following work to measure the expression of FtsZ in 
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endobacteria Rhizobium during the tripartite interaction.    

4.5 Secretion system  

The co-culture of GFP-tagged RrF4 and P. indica showed GFP-RrF4 cells sticking on 

the hyphae and chlamydospores instead of entry into hyphae. Moebius and coleagues 

found that the type 2 secretion system (T2SS) of endosymbiotic Burkholderia is 

central for the active invasion into hyphe of the living fungus Rhizopus (Moebius et al. 

2014). They said that during the invasion T2SS releases chitinase, chitosanase and 

chitin-binding proteins to soften the cell wall of fungus and allow the bacterial entry 

into fungal hyphae (Moebius et al. 2014). Based on this information, we checked the 

genome information of RrF4. Not surprisingly, the whole gene cluster that is 

responsible for the encoding of T2SS components is missing in the genome of RrF4 

compared with the endosymbiont bacterium Burkholderia. Instead, RrF4 has a Type 

IV secretion system, which mediates the transfer and conjugation of plasmid DNA 

fragment from bacteria in to the genome of plant, fungi and human cells. T4SS is a 

remarkable characteristic of Agrobacterium tumefaciens, which plays a crucial role in 

the transgenic technology and shows very close relationship to stain RrF4 in 

phylogenetic tree (Fronzes et al. 2009; Sharma et al. 2008). The missing T2SS in 

RrF4 could be the reason for the un-successful invasion of RrF4 into fungal host P. 

indica.   

Our co-culture experiment showed that RrF4 sticking around the fungus especially the 

tip of hyphae and spores, which are the active part from P. indica. Those hyphae tips 

and germinating spores can be potential entry sides in the long term evolution 

between fungus P. indica and bacteria RrF4. In natural environments there are many 

microbes in the soil, there are nutrition competition and limit, under a certain 

circumstance with a fine microbe balance, P. indica could be able to uptake RrF4 

from the soil in the long evolution from the active hyphae tips and germinating 

spores.  

4.6 Removing endobacterium from P. indica 

In general, there are two possibilities to explore the critical role of the endobacteria R. 
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radiobacter in the tripartite relationship. One way is the function analysis of pure 

bacteria RrF4 on plant host without the influence from fungus host P. indica, which 

has been achieved as the successful insolation of endobacteria from fungus (Sharma et 

al. 2008; Glaeser et al. 2015). The other one is the functional exploration of cured P. 

indica on plant host without the impact coming from the endosymbiont. So it is an 

urgent target to remove the endobacteria from P. indica and obtain the cured P. indica. 

Partide-Martinez and Hertweck obtained cured fungus Rhizopus microspores from 

endosymbiont Burkholderia rhizoxinica through the antibiotics treatment 

(Partide-Martinez and Hertweck 2005). Alternatively, repeated passages through 

single-spore inoculation with plant host was used to dilute the initial Candidatus 

Glomeribacter gigasporarum (CaGg) bacterial population eventually leading to cured 

AM Gigaspora margarita spores (Lumini et al. 2007). In order to generate 

endobacteria-free fungus P. indica, we combined single-protoplast propagation and 

antibiotics treatment. In this experiment, single protoplast was used instead of single 

chlamydospore because of the consideration that fungal cell wall could protect 

endofungal bacteria being killed by applied antibiotics. P. indica cultures showed no 

endobacterial detection were further inoculated with barley seedlings, unfortunately, 

RrF4 bacteria were again detected in the plant root samples. However, the relative 

amount of RrF4 is significantly reduced compared with root samples colonized by wt 

P. indica. Sharma reported similar result that endobacteria were coming up after 

culture in medium without antibiotics (Sharma et al. 2008). From these data, we 

concluded that single-protoplast-derived P. indica cultures were partially cured fungus 

with reduced amount of endobacteria and therefore termed as partially cured P. indica 

(pcPIRI). 

During the experiment, we observed that the germination of chlamydospores derived 

from single clones were delayed and single colonies were approximately 50% smaller 

in size and produced less spores compared to colonies grown without antibiotics. 

Although we cannot exclude the effect coming from antibiotics treatment, those 

morphological changes could be induced by the reduced number of endobacteria. 
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There are some research showed endobacteria mediated the fitness of its fungal host, 

for instance, the cured Rhizopus microspores showed no sporulation (Partida-Martinez 

et al. 2007; Partide-Martinez and Hertweck 2005). The cured fungus Gigaspora 

margarita showed limited changes in spore morphology, while the symbiosis with this 

endobacterium CaGg increases the environmental fitness and bioenergetics potential 

of the AM fungal host (Lumini et al. 2007; Salvioli et al. 2015).   

4.7 Amount variation of endobacteria R. radibacter in P. indica 

It is proofed by specific FISH detection, PCR amplification and successful bacteria 

isolation that the endobacterium R. radiobacter is presenting in P. indica in a very low 

amount, sometimes even under the detection of Q-PCR. This low amount and limited 

detection are the bottlenecks to analysis the function of endobacterium in P. indica 

and eventually in the tripartite relationship with plant. From our experiment, we found 

that the amount of the endobacterium significantly increased in plant roots treated 

with P. indica than the axenic P. indica culture from agar plate. Higher amount of 

endobacterial R. raiobacter were was also detected in grinded root extract and small 

root pieces. This new finding about significantly increased amount of R. radiobacter 

in the root sample colonized by P. indica shed new light on the further study.  

Subsequently, fresh P. indica culture was re-isolated from the surface sterilized root. 

Single colonies growing out from barley root were sub-cultured on new agar plate. 

Quantification results showed that the relative amount of endobacterium in re-isolated 

P. indica (RE-Piri) were significantly higher than the endobacterium amount in 

long-term laboratory cultured P. indica (LL-Piri), while the relative bacterial amount 

in fresh P. indica was significantly higher than that in sub-cultured P. indica. The 

higher amount of endobacteria in fresh P. indica isolated from infected barley roots, 

and the significantly decrease in the subculture on axenic agar plate further indicate 

that plant host promotes the propagation of endobacterium.  

N-acyl homoserine lactones (AHLs) are one kind of signaling molecules produced in 

many Gram-negative bacteria, and mediate the bacterial behavior through a 

density-dependent communication quorum sensing (QS) (Schenk and Schikora 2015; 
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Dong et al. 2011; Teplitski et al. 2000). The short chain AHLs induce growth 

promotion effect on a plant due to an impact to the phytohormone auxin, while long 

chain AHLs have positive impact on plant defense mechanisms (von Rad et al. 2008; 

Bai et al. 2012; Liu et al. 2012; Schikora et al. 2011; Schenk et al. 2012, 2014). 

AHL-induced resistance in plant is called AHL-priming (Schenk and Schikora 2015). 

Variety of oxo- and hydroxyle-C8- to C12-HSL compounds were detected in the 

concentrated RrF4 extracts through Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR-MS) analysis (Dan Li 2010). QS signal molecules 

p-coumaroyl-HSL, methylated p-coumaroyl-HSL and ethylated p-coumaroyl-HSL 

were produced by RrF4, when p-coumaric acid was supplied in the culture medium 

(Dan Li 2010). P-coumaric acid is a natural compound produced by plant on the 

rhizosphere as precursor compound for plant polymer lignin (Whetten and Sederoff 

1995). They reached the possibility that RrF4 requires p-coumaric acid secreted from 

plant to produce AHL signaling molecular p-coumaroyl-HSL (Dan Li 2010). My 

colleague generated RrF4 mutant that is impaired in AHL production. The 

colonization of this mutant RrF4 on plant roots is significantly reduced compared with 

wt RrF4, and the growth promotion and disease resistance on plant host induced by 

the mutant were also low than wt RrF4 (data not published yet). Based on this 

previous research, our results on the variable cell numbers of endobacteria 

with/without the plant host suggest that the proliferation of endobacterium in P. indica 

needs the chemical p-coumaric acid from the plant host to synthesis long chain 

p-coumaroyl-HSL, methylated p-coumaroyl-HSL and ethylated p-coumaroyl-HSL, 

which act as homoserine lactone quorum-sensing signals to increase plant resistance 

to pathogens in turn.  

The increased amount of endobacteria R. radiobacter in plant root, and in the 

presence of root extractions, root pieces infected by P. indica, and the significant 

reduced amount in the sub-cultured P. indica isolated from the plant indicate that the 

endobacterium getsmore benefit from the tripartite relationship with both fungal and 

plant hosts than in the bipartite relation with only the fungus. Meanwhile, this result 
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also leads to more complicate questions on whether the endobacteria are released 

from the fungus during fungal colonization of plants, and whether the increased 

amount of endobacteria is inside the fungus or endobacteria released from fungus host 

into root tissue and propagated in a large number in roots.  

4.8 Characteristics of SP-Piri and RE-Piri  

Colonization and induced biological activity were compared among three kinds of P. 

indica cultures. Single-protoplast-derived P. indica (SP-Piri) has very low amount of 

endobacteria, long term laboratory P. indica (LL-Piri) has normal amount, while 

re-isolated P. indica (RE-Piri) has highest endobacterial amount compared with the 

other two cultures. The quantification with inoculated plants confirmed the difference 

among these three cultures in bacteria. The genome ratio RrF4/Piri was significantly 

low in barley root colonized by SP-Piri than by LL-Piri, while the genome ratio from 

RE-Piri colonizing plants was significantly higher than from LL-Piri plants.  

Compared with control plants, RE-Piri treated plants and LL-Piri treated plants had 

significantly increased shoot weighs, which is identical to the results in many 

publications that P. indica promoted the growth of plant host (Waller et al. 2005; 

Sharma et al. 2008; Qiang et al. 2012). But there was neither significant difference 

between SP-Piri plants and control nor SP-Piri plants and LL-Piri plants, the 

biological promotion induced by SP-Piri was between control plants and LL-Piri 

plants. These results indicate that with low amount of endobacterium, the fungus host, 

as SP-Piri, mediates reduced plant growth promotion compared with normal P. indica; 

with high amount of endobacterium, the fungus host, as RE-Piri, induces increased 

plant host promotion. Taken together, we reach the conclusion that endobacterium 

mediates growth promotion of plant host, contributes to the biological activity 

induced by fungus host P. indica.  

The colonization of SP-Piri, LL-Piri and RE-Piri on barley seedlings were quantified 

by Tef gene with standard curve. The quantification results showed that RE-Piri had 

the best colonization on barley roots, while there was no significant difference 

between LL-Piri and SP-Piri. WGA-staining with treated barley roots showed strong 
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mycelium and spores colonization from RE-Piri inoculated seedlings, whereas less 

colonization in LL-Piri roots and few mycelium colonization in SP-Piri roots. Those 

results suggested that the amount of endobacterium has an influence on the fungus 

sporulation and the fungal colonization on plant host.  

4.9 Conclusions  

The aim of this study was to investigate the role of endobacterium R. radiobacter in 

the tripartite symbiosis with fungal and plant hosts. Plant growth promotion and 

pathogen resistance induced by the isolated enobacterium R. radiobacter stain F4 has 

been showed in previous research (Sharma et al. 2008). In the present work, the focus 

was on the colonization pattern of RrF4 on the plant host, the variation of the 

endofungal R. radiobacter with and without plant host under different growth 

conditions, the morphology change of P. indica with decreased endobacteria, and the 

biological activity on plant mediated by P. indica with different amount of 

endobacterial R. radiobacter cells.  

GUS- and GFP- tagged RrF4 were used to explore the colonization pattern on barley 

and Arabidopsis thaliana roots. RrF4 were detected on the root maturation zone I at 

early inoculation period, spread into maturation zone II and proliferate on the lateral 

roots with the same pattern later on, root caps were virtually free of bacteria while 

meristematic and elongation zones were rarely colonized by RrF4 through the whole 

period of study. Bacterial cells were cross-linked by fiber-like structures and formed 

multilayer biofilms on the root surface. 

RrF4 not only colonized the root surface but also entered into the inner root. Bacterial 

cells were mostly detected on the root hairs, in the intercellular space in rhizodermis, 

exodermis, endodermis and central cylinder, but not in the upper parts like stem and 

leaf. Occasionally, some single root cells in root hair zone were heavily colonized by 

RrF4 cells. Bacterial cell colonies were formed in the root hair and lateral root 

protrusions, root junctions between primary and lateral roots, and cracks among cells 

on the root cap. Nonetheless, the colonization of RrF4 on plant roots did not induce 

more root hairs or lateral roots.  
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Quantification results showed that the low relative amount of endobacteria R. 

radiobacter in axenic P. indica was increased in plant root samples inoculated with P. 

indca. Subsequently, fresh P. indica was re-isolated from barley roots. Re-isolated P. 

indica harbored higher amount of endobacteria R. radiobacter than long-term 

laboratory cultured P. indica, and the relative amount was significantly reduced in 

subcultures. RrF4 could not go back to the fungal host P. indica under laboratory 

condition.  

Single-protoplast-derived P. indica cultures produced less chlamydospores, showed 

delayed germination of protoplast, slowly growth of the fungus, and reduced amount 

of endobacteria. There was no significant plant growth promotion induced by 

single-protoplast-derived P. indica, while there was significant promotion mediated 

by long-term laboratory cultured P. indica and re-isolated fresh P. indica. RI-Piri had 

the best colonization on barley roots, while there was no significant difference 

between LL-Piri and PC-Piri. RI-Piri had high activity on plant and produced lots of 

mycelium and spores on roots, whereas less colonization from LL-Piri and only very 

few mycelium colonization from PC-Piri colonized roots.  
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5 Summary/Zusammenfassung 

5.1 Summary  

Endofungal bacteria as symbionts residing in the fungal mycelium and spores were 

first describes as Bacteria-Like Organisms (BLOs) in 1970’s (Mosse 1970). The 

bipartite relationship between fungi and terrestrial plants on the rhizosphere becomes 

complicated tripartite interaction as the discovery of endobacteria. In the last decade, 

research focussed on the endobacteria in arbuscular mycorrhizal fungi (Bonfante and 

Anca 2009; Naumann et al. 2010; Salvioli et al. 2015), in ectomycorrhizal 

basidiomycete fungus (Bertaux et al. 2005), and in rice pathogenic fungus Rhizopus 

microsporus (Partida-Martinez and Hartweck 2005; Moebius et al. 2014). We 

extended the former work to explore and establish a model tripartite symbiosis system 

among the Sebacinalean fungus Piriformospora indica, the Alphaproteobacterium 

Rhizobium radiobacter and a broad spectrum of plants.  

The free-living bacterial strain R. radiobacter F4 (RrF4) showed similar colonization 

pattern as its fungal host P. indica in plant roots. RrF4 cells heavily colonizedthe root 

maturation zone, embedded in dense polysaccharides biofilms and were interwoven in 

cellulose fiber-like structures on the root surface. Thereafter, RrF4 cells entered into 

inner tissue through lateral root emergence, root hair protrusion and cracks on the root, 

proliferated in the intercellular space in the rhizodermal and cortical layers into the 

central vascular system. Nevertheless, RrF4 only invaded and colonized the dead root 

cells instead of inducing plant host cell death. The systemic resistance mediated by 

RrF4 is based on the jasmonate-based ISR pathway, and defense gene expression 

resembles that observed with P. indica (Gleaser et al. 2015).   

The increased amount of endobacteria R. radiobacter in plant roots inoculated with P. 

indica, and the significantly reduced amount of endobateria in the sub-cultured P. 

indica that was isolated from plant roots indicate endobacteria R. radiobacter obtain 

more benefit from the tripartite relationship with both fungal and plant hosts than in 

the bipartite relation with only the fungus. It is an open question whether the 

endobacteria R. radiobacter released from P. indica into root tissue during the fungal 
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colonization on plant. 

It was not successful to cure P. indica from the endobacteria through antibiotics 

treatment and single protoplast cultivation. However, we obtained a P. indica culture 

with reduced amount of endobacteria R. radiobacter, and partially cured P. indica 

showed low beneficial activity on plants. We presume the endobacteria R. 

radidobacter inside P. indica are at a stationary phase, which is the reason for the low 

number, small size and resistance to antibiotics in axenic culture. The endobacteria R. 

radiobacter resuscitate from stationary phase to growth phase when there is third 

partner plant supplying with enough nutrition and better propagation conditions, 

which results in the increased amount of endobacteria R. radiobacter when P. indica 

colonized on plant root. 

Taken together, this study underlines the crucial role of endofungal bacteria in the 

tripartite symbiosis. Further studies are needed to better understand the mechanism of 

R. radiobacter in the tripartite interaction, such as the regulation of mRNA on 

transcriptome level. 
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5.2 Zusammenfassung 

Endofungale Bakterien wurden als Symbionten, die im pilzlichen Myzel residieren, 

zuerst in den 1970ern als Bakterien-ähnliche „Bacteria-Like Organisms“ (BLOs) 

beschrieben (Mosse 1970). Mit der Entdeckung von Endobakterien ist aus der 

zweiteilige Symbiose von Pilzen und terrestrischen Pflanzen eine komplizierten 

dreiteiligen Symbiose geworden. Im letzten Jahrzehnt konzentrierte sich die 

Forschung auf Endobakterien in Arbuskulären Mykorrhizapilze (Bonfante and Anca 

2009; Naumann et al. 2010; Salvioli et al. 2015), in ektomykorrhizalen 

Basidiomyceten (Bertaux et al. 2005) und in den Reispflanzen befallenden Rhizopus 

microspores (Partida-Martinez and Hartweck 2005; Moebius et al. 2014). Bei Sharma 

et al. (2008) wurde erstemals gezeigt, dass auch der endophytische Sebacinaleen Pilz 

Piriformospora indica Wirt eines Endobakteriums ist. Dieses wurde als Rhizobium 

radiobacter (syn. Agrobacterium tumefaciens) identifiziert und konnte in Reinkultur 

kultiviert werden (Stamm R. radiobacter F4, RrF4). In der vorliegenden Studie wurde 

die bisherige Arbeit zu dieser dreiteiligen Symbiose zwischen P. indica, dem 

Alphaproteobakterium Rhizobium radiobacter und  einem breitem Spektrum von 

Pflanzen näher untersucht. 

Das freilebende Bakterium RrF4 zeigte ein dem Wirtspilz ähnliches 

Kolonisierungsmuster von Pflanzenwurzeln. RrF4 Zellen kolonisieren die 

Wurzeloberfläche der Reifungszone der Wurzel in erheblichem Maße, die Zellen sind 

mit faserartigen Zellulose-ähnlichen Strukturen auf der Wurzeloberfläche angehaftet 

und bilden Biofilme an der Wurzeloberfläche in denen die Zellen in eine dichte 

Polysaccharid Schicht eingebettete sind. Durch Ausbuchtungen der Wurzelhaarzellen 

und die Austrittsstellen der Seitenwurzeln scheinen RrF4 Zellen ins innere Gewebe 

der Wurzel einzutreten; dort vermehren sie sich im Interzellularraum der 

rhizodermalen und kortikalen Wurzelschichten. Entgegen dem Wirtspilz dringen RrF4 

Zellen auch in die zentralen Leitungsbahn vor. Mikroskopisch wurden einzelne 

Wurzelhaarzellen an der Wurzeloberfläche nachgewiesen die gefüllt waren mit RrF4 

Zellen. Da keine Zelltod-Induktion durch RrF4 in den Wurzeln nachgewiesen werden 
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konnte ist anzunehmen das RrF4 nur in tote Wurzelzellen eindringt und sich dort 

vermehrt. Die durch RrF4 vermittelte systemische Resistenz basiert auf den 

Jasmonsäure-abhängigen Signalweg der induzierten systemischen Resistenz. Die 

Expression von Abwehr-Genen bei der Pflanze entspricht größtenteils der 

beobachteten Expression bei P. indica (Glaeser et al. 2015).   

Im Rahmen der Arbeit konnte gezeigt werden das die Anzahl an Bakterienzellen in 

der Tripartiden Symbiose im Vergleich zu einer Laborkultur von P. indica signifikant 

zunehmen. Wurde der Pilz von der Wurzel re-isoliert konnte gezeigt werden das die 

Konzentration an Bakterienzellen mit jeder weiteren Subkultivierung des Pilzes auf 

Agarplatten wieder abnahm.   

Dies zeigt, dass die Abundanz der Endobakterien vielmerh abhängig ist von der 

dreiseitigen Symbiose mit P. indica und der Wirtpflanzen als von der zweiteiligen 

Symbiose mit P. indica. Es ist immer noch eine offene Frage, ob während der 

Kolonisierung durch den Pilz Endobakterien aus P. indica im Wurzelgewebe 

ausgesscheidet werden. 

Während RrF4 in Reinkultur wächst war es auch in dieser Arbeit nicht möglich, P. 

indica, durch Antibiotikabehandlung kombiniert mit der Kultivierung einzelner 

Protoplasten, Bakterien-frei zu bekommen. Es war jedoch möglich eine P. indica 

Kultur zu selektieren, die mit einer geringeren Anzahl von Endobakterien besiedelt ist. 

Diese P. indica Kultur zeigte eine reduzierte Aktivität hinsichtlich der 

Pflanzenwachstumsförderung. Diese Ergebnisse lassen vermuten das das 

Endobakterium in der dipartiden Symbiose in einen sogenannten „viable but not 

culturable“ VBNC Status übertreten indem die Bakterienzelle ähnlich zu Zellen in der 

stationären Phase sind. Die Zellen haben eine reduzierte metabolische Aktivität, sind 

kleiner und unempfindlich gegen Antibiotika. Bei Kontakt mit der Wirtspflanze treten 

die Bakterienzellen vermutlich wieder in einen normalen aktivwachsende Zellform 

über, was bei einer Kolonisierung von Pflanzwurzeln durch P. indica zu einer 

erhöhten Anzahl von Endobakterien führt. 

Zusammenfassend betont diese Studie die entscheidende Rolle der endofungalen 
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Bakterien in der dreiteiligen Symbiose von P. indica, dem Endobakterium und den 

entsprechenden Wirtspflanzen. Weitere Untersuchungen sind erforderlich, um ein 

tieferes Verständnis der Rolle von RrF4 in der dreiteiligen Beziehung zu erhalten, wie 

zum Beispiel die Regulierung der Gen Expression auf Transkriptionsebene. 

 

 

 

 

 

 

 

 

 

 

 

 



References 

97a 

6 Reference 

Abramovitch R. B., Kim Y. J., Chen S., Dickman M. B., Martin G. B. (2003) 

Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by 

inhibition of host programmed cell death. EMBO J. 22: 60–69 

Akiyama K., Matsuzaki K., Hayashi H. (2005) Plant sesquiterpenes induce hyphal 

branching in arbuscular mycorrhizal fungi. Nature 435: 824–827 

Akum F. N., Steinbrenner J., Biedenkopf D., Imani J., Kogel K. H. (2015) The 

Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean 

symbiosis. Front. Plant Sci. 6: 906 

Alber F., Dokudovskaya S., Veenhoff L. M., Zhan W., Kipper J., Devos D., 

Suprapto A., Karni-Schmidt O., Williams R., Chait B. T., Sali A., Rout M. P. 

(2007) The molecular architecture of the nuclear pore complex. Nature 450: 695–701  

Alexander T., Toth R., Meier R., Weber H. C. (1989) Dynamics of arbuscule 

development and degeneration in onion, bean and tomato with reference to 

vesiculararbuscular mycorrhizae in grasses. Can. J. Bot. 67: 2505–2513  

Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R. and Stahl D. 

A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow

cytometry for analyzing mixed microbial populations. App. Environ. Microbiol. 56: 

1919-1925 

Amann R., Fuchs B. M. (2008) Single-cell identification in microbial communities 

by improved fluorescence in situ hyridization techniques. Nat. Rev. Microbiol. 6: 

339-348



References 

Antolín-Llovera M., Ried M. K., Parniske M. (2014) Cleavage of the SYMBIOSIS 

RECEPTOR-LIKE KINASE ectodomain promotes complex formation with Nod 

factor receptor 5. Curr.Biol. 24: 422–427 

Arnold A.E., Mejia L.C., Kyllo D., Rojas E.I., Maynard Z., Robbins N., Herre 

E.A. (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. 

Acad. Sci. U.S.A. 100: 15649–15654 

Artursson V., Finlay R. D., Jansson J. K. (2006) Interactions between arbuscular 

mycorrhizal fungi and bacteria and their potential for stimulating plant growth. 

Environ. Microbiol. 8:1–10 

Ausubel, F. M. (2005) Are innate immune signaling pathways in plants and animals 

conserved. Nat. Immunol. 6: 973–979  

Bago B., Pfeffer P. E., Abubaker J., Jun J., Allen J. W., Brouillette J., Douds D. 

D., Lammers P. J., Shachar-Hill Y. (2003) Carbon export from arbuscular 

mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant 

Physiol. 131: 1496–1507  

Bakker P. A. H. M., Pieterse C. M. J., Van Loon L. C. (2007) Induced systemic 

resistance by fluorescent Pseudomonas spp. Phyto. 97: 239–243  

Baltruschat H., Fodor J., Harrach B. D., Niemczyk E., Barna B., Gullner G., 

Janeczko A., Kogel K. H., Schäfer P., Schwarczinger I., Zuccaro A., Skoczowski 

A. (2008) Salt tolerance of barley induced by the root endophyte Piriformospora 

indica is associated with a strong increase in antioxidants. New Phytol. 180: 501–510 

Banhara A., Ding Y., Kuehner R., Zuccaro A., Parniske M. (2015) Colonization of 

98a 



References 

99a 

root cells and plant growth promotion by Piriformospora indica occurs independently 

of plant common symbiosis genes. Front. Plant Sci. 6: 667 

Bashan Y., Dubrovsky J. G. (1996) Azospirillum spp. Participation in dry matter 

partitioning in grasses at the whole plant level. Biol. Fertil. Soils. 23: 435–440 

Bäerbel G. (1992) Untersuchungen zur Induktion der Kompetenz zur somatischen 

Embryogenese in Karotten-Petiolenexplantaten (Daucus carota L.) Histologie und 

Proteinsynthesemuster. Book,  Published by Wissenschafts-Verlag Dr. W. Maraun in 

Frankfurt, Germany 

Bertaux J., Schmid M., Hutzler P., Hartmann A., Garbaye J., Frey-Klett P. (2005) 

Occurrence and distribution of endobacteria in the plant-associated mycelium of the 

ectomycorrhizal fungus Laccaria bicolor S238N. Environ. Microbiol. 7: 1786–1795 

Bertaux J., Schmid M., Prévost-Bourre N. C., Churin J. L., Hartmann A., 

Garbaye J. (2003) In situ identification of intracellular bacteria related to 

Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor 

S238N. App. Environ. Microbiol. 69: 4243–4248 

Besserer A.,  Puech-Pagès V., Kiefer P., Gomez-Roldan V., Jauneau A., Roy S., 

Portais J. Bianciotto V., Lumini E., Bonfante P., Vandamme P. (2003) ‘Candidatus 

Glomeribacter gigasporarum’ gen. nov., sp nov., an endosymbiont of arbuscular 

mycorrhizal fungi. Int. J. Syst. Evol. Microbiol. 53: 121–124  

Bharadwaj D. P., Lundquist P. O., Persson P., Alström S. (2008) Evidence for 

specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. 

FEMS Microbiol. Ecol. 65: 310–22 



References 

100 

Bianciotto V., Andreotti S., Balestrini R., Bonfante P., Perotto S. (2001) 

Extracellular polysaccharides are involved in the attachment of Azospirillum 

brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur. J. 

Histochem. 45:39–49 

Bianciotto V., Genre A., Jargeat P., Lumini E., Becard G., Bonfante P. (2004) 

Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora 

margarita through generation of vegetative spores. App. Environ. Microbiol. 70: 

3600-3608  

Bianciotto V, Lumini E, Bonfante P, Vandamme P. 2003. ‘Candidatus 

Glomeribacter gigasporarum’ gen. nov., sp. nov., an endosymbiont of arbuscular 

mycorrhizal fungi. Int. J. Syst. Evol. Microbiol. 53:121–24 

Binns A. N., Thomashow M. F. (1998) Cell biology of agrobacterium infection and 

transformation of plants. Annu. Rev. Microbiol. 42: 575  

Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., 

Nickstadt A., Bonas U. (2009) Breaking the code of DNA binding specificity of 

TAL-type III effectors. Science (New York, NY), 326 (5959):1509-1512 

Bonfante P., Anca I. (2009) Plant, mycorrhizal fungi, and bacteria: a network of 

interactions. Annu. Rev. Microbiol. 63: 363-83 

Boraston A. B., Bolam D. N., Gilbert H. J., Davies G. J. (2004) 

Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 

382: 769–781 

Bostock R. M. (2005) Signal crosstalk and induced resistance: straddling the line 



                                                            References 

101 
 

between cost and benefit. Annu. Rev. Phytopathol. 43: 545-580 

 

Bouwmeester H. J., Roux C., Lopez-Raez J. A., B´ecard G. (2007) Rhizosphere 

communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12:224–30 

 

Brewin N. J. (2004) Plant cell wall remodelling in the Rhizobium-legume symbiosis. 

Crit. Rev. Plant Sci. 23: 293–316 

 

Camehl I., Drzewiecki C., Vadassery J., Shahollari B., Sherameti I., Forzani C., 

Munnik T., Hirt H., Oelmüller R. (2011) The OXI1 kinase pathway mediates 

Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog. 7: 

e1002051 

 

Camehl I., Sherameti I., Venus Y., Bethke G., Varma A., Lee J., Oelmüller R. 

(2010) Ethylene signalling and ethylene-targeted transcription factors are required to 

balance beneficial and nonbeneficial traits in the symbiosis between the endophytic 

fungus Piriformospora indica and Arabidopsis thaliana. New Phytol. 185: 1062–1073 

 

Chandler P. M., Marion-Poll A., Ellis M., Gubler F. (2002) Mutants at the Slender1 

locus of barley cv Himalaya. Molecular and physiological characterization. Plant 

Physiol. 129: 181–190 

 

Chang J. H., Urbach J. M., Law T. F., Arnold L. M., Hu A., Gombar S., Grant S. 

R., Ausubel F. M., Dangl J. L. (2005) A high-throughput near-saturating screen for 

type III effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. U.S.A 102: 

2549-2554 

 

Chelius M. K., Triplett E. W. (2001) The diversity of archaea and bacteria in 

association with roots of zea mays L. Micro. Ecol. 41: 252-263 



                                                            References 

102 
 

 

Chin-A-Woeng T. F. C., Bloemberg G. V., Mulders I. H. M., Dekkers L. C., 

Lugtenberg B. J. J. (2000) Root colonization is essential for biocontrol of tomato 

foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas 

chlororaphis PCL1391. Mol. Plant-Microbe Interact. 13: 1340–45 

 

Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. (2006) Host–microbe 

interactions: shaping the evolution of the plant immune response. Cell 124:803–814.  

 

Colditz F., Braun H.P., Jacquet C., Niehaus K., Krajinski F. (2005) Proteomic 

profiling unravels insights into the molecular background underlying increased 

Aphanomyces euteiches-tolerance of Medicago truncatula. Plant Mol. Biol. 59: 387–

406 

 

Compant S., Clement C., Sessitsch A. (2010) Plant growth-promoting bacteria in the 

rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and 

prospects for utilization. Soil Biol. Biochem. 42: 669-678 

 

Cormack B. P., Valdivia R. H., Falkow S. (1996) FACS-optimized mutants of the 

green fluorescent protein (GFP). Gene. 173: 33–38 

 

Coutard F., Crassous P.,  Droguet M., Gobin E., Colwell R. R., Pommepuy M., 

Hervio-Heath D. (2007) Recovery in culture of viable but nonculturable Vibrio 

parahaemolyticus: regrowth or resuscitation? The ISME Journal 1: 111-120 

doi:10.1038/ismej.2007.1 

 

Cunnac S., Lindeberg M., Collmer A. (2009) Pseudomonas syringae type III 

secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 

12: 53-60 



                                                            References 

103 
 

 

Daims H., Breuhl A., Amann R., Schleifer K.H., Wagner M. (1999). Probe 

EUB338 is insufficient for the detection of all bacteria: development and evaluation 

of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 438-448. 

 

Dale C., Plague G. R., Wang B., Ochman H., Moran N. A. (2002) Type III 

secretion systems and the evolution of mutualistic endosymbiosis. Proc. Natl. Acad. 

Sci. U.S.A. 99: 12397-12402 

 

Dan Li (2010) Phenotypic variation and molecular signalling in the interaction of the 

rhizosphere bacteria Acidovorax sp. N35 and Rhizobium radiobacter F4 with roots. 

Ph.D thesis, Ludwig-Maximilians-Universität München 

 

Dangl, J. L. & Jones, J. D. G. (2001) Plant pathogens and integrated defence 

responses to infection. Nature 411: 826-833 

 

DebRoy S., Thilmony R., Kwack Y.B., Nomura K., and He S.Y. (2004). A family 

of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and 

promotes disease necrosis in plants. Proc. Natl. Acad. Sci. U.S.A. 101: 9927–9932. 

 

De Bruijn I., De Kock M. J. D., Yang M., De Waard P., Van Beek T. A., 

Raaijmakers J. M. (2007) Genome-based discovery, structure prediction and 

functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. 

Microbiol. 63: 417–28 

 

De Jonge R., Van Esse H. P., Kombrink A., Shinya T., Desaki Y., Bours R., Van 

der Krol S., Shibuya N., Joosten M. H. A. J., Thomma B. P. H. J. (2010) 

Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. 

Science. 329: 953–955 



                                                            References 

104 
 

 

Deshmukh S., Hückelhoven R., Schäfer P., Imani J., Sharma M., Weiß M., 

Waller F.,  Kogel K. H. (2006) The root endophytic fungus Piriformospora indica 

requires host cell death for proliferation during mutualistic symbiosis with barley. 

Proc. Natl. Acad. Sci. U.S.A. 103: 18 450–18 457 

 

Deshmukh Sachin, Hückelhoven Ralph, Schäfer Patrick, Imani Jafargholi, 

Sharma Monica, Weiss Michael, Waller Frank, Kogel Karl-Heinz (2006) The root 

endophytic fungus Piriformospora indica requires host cell death for proliferation 

during mutualistic symbiosis with barley. Proc Natl Acad Sci U.S.A. 103 (49): 18450–

18457 

 

Desirò A. Faccio A., Kaech A., Bidartondo M. I., Bonfante P. (2015) Endogone, 

one of the oldest plant-associated fungi, host unique Mollicutes-relared endobacteria. 

New Phyto. 205: 1464-1472 

 

Dodds P. N. and Rathjen J. P. (2010) Plant immunity: towards an integrated view of 

plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548 

 

Dong X. (2004) NPR1, all things considered. Curr. Opin. Plant Biol. 7: 547-552. 

 

Durrant W.E., Dong X. (2004) Systemic acquired resistance. Annu. Rev. Phytopathol. 

42: 185–209  

 

Finlay R. D. (2008) Ecological aspects of mycorrhizalsymbiosis: with special 

emphasis on the functional diversity of interactions involving the extraradical 

mycelium. J. Exp. Bot. 59: 1115–1126  

 

Fitter A. H. (2005) Darkness visible: reflections on underground ecology. J. Ecol. 93: 



                                                            References 

105 
 

231–243  

 

Fobert P. R., Despres C. (2005) Redox control of systemic acquired resistance. Curr. 

Opin Plant Biol. 8: 378-382. 

 

Frey-Klett P., Garbaye J., Tarkka M. (2007) Themycorrhiza helper bacteria 

revisited. New Phytol. 176:22–36 

 

Fujimura R., Nishimura A., Ohshima S., Sato Y., Nishizawa T., Oshima K., 

Hattori M., Narisawa K., Ohta H. (2014). Draft genome sequence of the 

betaproteobacterial endosymbiont associated with the fungus Mortierella elongata 

FMR23-6. Genome Announc. 2. pii: e01272-14. 

 

Galleguillos C., Aguirre C., Barea J. M., Azcon R. (2000) Growth promoting effect 

of two Sinorhizobium meliloti strains (a wild type and its genetically modified 

derivative) on a non-legume plant species in specific interaction with two arbuscular 

mycorrhizal fungi. Plant Sci. 159: 57–63 

 

Garbaye, J., and Frey-Klett, P. (2003) In situ identification of intracellular bacteria 

related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria 

bicolor S238N. Appl. Envir. Microbiol. 69: 4243–4248 

 

Gaulin E., Drame N., Lafitte C., Torto-Alalibo T., Martinez Y., 

Ameline-Torregrosa C., Khatib M., Mazarguil H., Villalba-Mateos F., Kamoun S., 

Mazars C., Dumas B., Bottin A., Esquerré-Tugayé M., Rickauer M. (2006) 

Cellulose binding domains of a Phytophthora cell wall protein are novel 

pathogen-associated molecular patterns. Plant Cell 18: 1766–1777 

 

Genre A., Chabaud M., Faccio A., Barker D. G., Bonfante P. (2008) Prepenetration 



                                                            References 

106 
 

apparatus assembly precedes and predicts the colonization patterns of arbuscular 

mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus 

carota. Plant Cell 20: 1407–1420  

 

Genre A., Chabaud M., Timmers T., Bonfante P., Barker D. G. (2005) Arbuscular 

mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root 

epidermal cells before infection. Plant Cell 17: 3489–3499  

 

German M. A., Burdman S., Okon Y. Kigel J. (2000) Effects of Azospirillum 

brasilense on root morphology of common bean (Phaseolus vulgaris L.) under 

different water regimes. Biol. Fertil. Soils. 32: 259–264 

 

Gherbi H. et al. (2008) SymRK defines a common genetic basis for plant root 

endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc. 

Natl Acad. Sci. U.S.A. 105: 4928–4932  

 

Ghignone S., Salvioli A., Anca I., Lumini E., Ortu G., Petiti L., Cruveiller S., 

Bianciotto V., Piffanelli P. Lanfranco L., Bonfante P. (2012) The genome of the 

obligate endobacterium of an AM fungus reveals an interphylum network of 

nutritional interactions. ISME J. 6:136–45 

 

Gomez-Roldan V., Fermans S., Brewer P. B., Puech-Pagès V., Dun E. A, Pillot J. 

P., Letisse F., Matusova R., Danoun S., Portais J. C., Bouwmeester H., Bécard G., 

Beveridge C. A., Rameau C., Rochange S. F. (2008) Strigolactone inhibition of 

shoot branching. Nature 455: 189-194  

 

Goodner B., Hinkle G., Gattung S., Miller N., Blanchard M., Qurollo B., 

Goldman B. S.,  Cao Y., Askenazi M., Halling C., Mullin L., Houmiel K., 

Gordon J., Vaudin M., Iartchouk O., Epp A., Liu F., Wollam C., Allinger M., 



                                                            References 

107 
 

Doughty D., Scott C., Lappas C., Markelz B., Flanagan C., Chris Crowell C., 

Gurson J., Lomo C., Sear C., Strub G., Cielo C., Slater S. (2001) Genome 

sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens 

C58. Science 294: 2323-2328 

 

Gray E. J., Smith D. L. (2005) Intracellular and extracellular PGPR: commonalities 

and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37: 

395-412 

 

Griffiths B. S., Ritz K., Ebblewhite N., Dobson G. (1999) Soil microbial 

community structure: effects of substrate loading rates. Soil Biol. Biochem. 31: 145–

153 

 

Hallmann J., Berg B. (2007) Spectrum and population dynamics of bacterial root 

endophytes. In: Schulz, B. J. E., Boyle C. J. C., Sieber T. N. (Eds.), Microbial Root 

Endophytes. Springer, Berlin Heidelberg, pp. 15-31 

 

Hardoim P. R., Van Overbeek L. S., Elsas J. D. (2008) Properties of bacterial 

endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463-471 

 

Harman G. E., Howel C. H., Viterbo A., Chet I., Lorito M. (2004) Trichoderma 

species–opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43–56 

 

Harrison M. J. (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. 

Microbiol. 59: 19–42  

 

Hauck P., Thilmony R., and He S.Y. (2003) A Pseudomonas syringae type III 

effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis 

plants. Proc. Natl. Acad. Sci. U.S.A. 100: 8577–8582 



                                                            References 

108 
 

 

Heuer H., Krsek M., Baker P., Smalla K. (1997) Analysis of Actinomycete 

communities by specific amplification of genes encoding 16S rRNA and 

gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 

3233–3241 

 

Hibbett D. S., Binder M., Bischoff J. F., Blackwell M., Cannon P. F., Eriksson O. 

E., Huhndorf S., James T., Kirk P. M., Lücking R., Thorsten Lumbsch H., 

Lutzoni F., Matheny P. B., McLaughlin D. J., Powell M. J., Redhead S., Schoch C. 

L., Spatafora J. W., Stalpers J. A., Vilgalys R., Aime M. C., Aptroot A., Bauer R., 

Begerow D., Benny G. L., Castlebury L. A., Crous P. W., Dai Y. C., Gams W., 

Geiser D. M., Griffith G. W., Gueidan C., Hawksworth D. L., Hestmark G., 

Hosaka K., Humber R. A., Hyde K. D., Ironside J. E., Kõljalg U., Kurtzman C. P., 

Larsson K. H., Lichtwardt R., Longcore J., Miadlikowska J., Miller A., 

Moncalvo J. M., Mozley-Standridge S., Oberwinkler F., Parmasto E., Reeb V., 

Rogers J. D., Roux C., Ryvarden L., Sampaio J. P., Schüssler A., Sugiyama J., 

Thorn R. G., Tibell L., Untereiner W. A., Walker C., Wang Z., Weir A., Weiss M., 

White M. M., Winka K., Yao Y. J., Zhang N. (2007) A higher-level phylogenetic 

classification of the Fungi. Mycol. Res. 111: 509–547  

 

Hildebrandt U., Janetta K., Bothe H. (2002) Towards growth of arbuscular 

mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68:1919–24 

 

Hildebrandt U., Ouziad F., Marner F. J., Bothe H. (2006) The bacterium 

Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus 

intraradices up to the formation of fertile spores. FEMS Microbiol. Lett. 254:258–67 

 

Hoffman M. T., Arnold A. E. (2010) Diverse bacteria inhabit living hyphae of 

phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76: 4063-4075 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Binder%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bischoff%20JF%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blackwell%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cannon%20PF%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Eriksson%20OE%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Eriksson%20OE%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Huhndorf%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=James%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kirk%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=L%C3%BCcking%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thorsten%20Lumbsch%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lutzoni%20F%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matheny%20PB%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=McLaughlin%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Powell%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Redhead%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schoch%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schoch%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spatafora%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stalpers%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vilgalys%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aime%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aptroot%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bauer%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Begerow%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Benny%20GL%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Castlebury%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Crous%20PW%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dai%20YC%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gams%20W%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Geiser%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Griffith%20GW%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gueidan%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hawksworth%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hestmark%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hosaka%20K%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Humber%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hyde%20KD%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ironside%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=K%C3%B5ljalg%20U%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kurtzman%20CP%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Larsson%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lichtwardt%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Longcore%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miadlikowska%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moncalvo%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mozley-Standridge%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oberwinkler%20F%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parmasto%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Reeb%20V%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rogers%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Roux%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ryvarden%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sampaio%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sch%C3%BCssler%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sugiyama%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thorn%20RG%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tibell%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Untereiner%20WA%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Walker%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weir%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weiss%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=White%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Winka%20K%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yao%20YJ%5BAuthor%5D&cauthor=true&cauthor_uid=17572334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20N%5BAuthor%5D&cauthor=true&cauthor_uid=17572334


                                                            References 

109 
 

 

Holguin G., Glick B. R. (2001) Expression of the ACC deaminase gene from 

Enterobacter cloacae UW4 in Azospirillum brasilense. Microbial. Ecol. 41: 281–288 

 

Huang, Y. J., Pirie E. J., Evans N., Delourme R., King G. J., Fitt B. D. L. (2009) 

Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma 

stem canker) in Brassica napus (oilseed rape). Plant Pathol. 58: 314–323 

 

Imaizumi-Anraku H., Takeda N., Charpentier M, Perry J, Miwa H, Umehara Y, 

Kouchi H, Murakami Y, Mulder L., Vickers K., Pike J, Downie J. A., Wang T., 

Sato S., Asamizu E., Tabata S., Yoshikawa M., Murooka Y., Wu G. J., Kawaguchi 

M., Kawasaki S., Parniske M.,  Hayashi M. (2005) Plastid proteins crucial for 

symbiotic fungal and bacterial entry into plant roots. Nature 433: 527–531  

 

Imani J., Berting A., Nitsche S., Schäfer S., Gerlich W. H., Neumann K.-H. (2002): 

The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot 

cell suspension cultures and its expression in regenerated carrot plants. Plant Cell 

Tissue Organ Cult. 71: 157-164 

 

Iwasaki S., Kobayashi H., Furukawa J., Namikoshi M., Okuda S., Sato Z., 

Matsuda I., Noda T. (1984) Studies on macrocyclic lactone antibiotics.VII. Structure 

of a phytotoxin “rhizoxin” produced by Rhizopus chinensis. J. Antibiot. 37:354–62 

 

Iwasaki S., Namikoshi M., Kobayashi H., Furukawa J., Okuda S. (1986) Studies 

on macrocyclic lactone antibiotics. VIII. Absolute structures of rhizoxin and a related 

compound. J. Antibiot. 39: 424–29 

 

Jacobs S., Zechmann B., Molitor A., Trujillo M., Petutschnig E., Lipka V., Kogel 

K. H., Schäfer P. (2011) Broad-spectrum suppression of innate immunity is required 



                                                            References 

110 
 

for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant 

Physiol. 156: 726–740 

 

Jan A. L. van Kan (2006) Licensed to kill: the lifestyle of a necrotrophic plant 

pathogen. Trends Plant Sci. 11: 247-253 

 

Janjusevic R., Abramovitch R. B., Martin G. B., Strebbins C. E. (2005) A 

bacterial inhibitor of host programmed cell death defences is an E3 ubiquitin ligase. 

Science 311: 222–226.  

 

Javot H., Penmetsa R. V., Terzaghi N., Cook D. R., Harrison M. J. (2007) A 

Medicago truncatula phosphate transporter indispensable for the arbuscular 

mycorrhizal symbiosis. Proc. Natl Acad. Sci. U.S.A. 104: 1720–1725  

 

Jefferson R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion 

system. Plant Mol. Biol. Rep. 5: 387–405 

 

Jones Jonathan D. G. and Dangl Jeffery L. (2006) The plant immune system. 

Nature 444: 323-329 

 

Kai K., Kasamatsu K., Hayashi H. (2012) (Z)-N-(4-Decenoyl) homoserine lactone, 

a new quorum-sensing molecule, produced by endobacteria associated with 

Mortierella alpina A-178. Tetrahedron Letters 53: 5441-5444 

 

Kai K., Furuyabu K., Tani A., Hayashi H. (2012) Production of the quorum-sensing 

molecules N-acylhomoserine lactones by endobacteria associated with Mortierella 

alpine A-178. ChemBioChem 13: 1776-1784 

 

Kamoun S. (2007) Groovy times: filamentous pathogen effectors revealed. Curr. 

Opin. Plant Biol. 10: 358–365  



                                                            References 

111 
 

 

Kanamori N. Madsen L. H., Radutoiu S., Frantescu M., Quistgaard E. M. H., 

Miwa H., Downie J. A., James E. K., Felle H. H., Haaning L. L., Jensen T. H., 

Sato S., Nakamura Y., Tabata S., Sandal N., Stougaard J. (2006) A nucleoporin is 

required for induction of Ca2+ spiking in legume nodule development and essential 

for rhizobial and fungal symbiosis. Proc. Natl Acad. Sci. U.S.A. 103: 359–364  

 

Kijne, J. W. (1992) The Rhizobium infection process. In Biological Nitrogen 

Fixation (Stacey, G. Burris, R.H. & Evans, H.J., eds), pp. 293–398. Chapman, New 

York, USA 

 

Kim K. Y., Jordan D., McDonald G. A. (1998) Effect of phosphatesolubilizing 

bacteria and vesicular–arbuscular mycorrhizae on tomato growth and soil microbial 

activity. Biol. Fertil. Soils 26: 79–87 

 

Kisa M., Sanon A., Thioulouse J., Assigbetse K., Sylla S., Spichiger R., Dieng L., 

Berthelin J., Prin Y., Galiana A., Lepage M. (2007) Arbuscular mycorrhizal 

symbiosis can counterbalance the negative influence of the exotic tree species 

Eucalyptus camaldulensis on the structure and functioning of soil microbial 

communities in a sahelian soil. FEMS Microbiol. Ecol. 62:32–44 

 

Kistner, C., Winzer T., Pitzschke A., Mulder L., Sato S., Kaneko T., Tabata S., 

Sandal N., Stougaard J., Webb K. J., Szczyglowski K., Parniske M. (2005) Seven 

Lotus japonicus genes required for transcriptional reprogramming of the root during 

fungal and bacterial symbiosis. Plant Cell 17: 2217–2229  

 

Kogel, K. H., Franken, P., Hueckelhoven R. (2006) Endophyte or parasite – what 

decides? Curr Opin in Plant Biol. 9: 358-363 

 



                                                            References 

112 
 

Kosuta, S., Chabaud M., Lougnon G., Gough C., Dénarié J., Barker D. G., 

Bécard G. (2003) A diffusible factor from arbuscular mycorrhizal fungi induces 

symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant 

Physiol. 131: 952–962  

 

Kumar M., Yadav V., Tuteja N., Johri A. K. (2009) Antioxidant enzyme activities in 

maize plants colonized with Piriformospora indica. Microbiol. 155: 780–790 

 

Lackner G., Moebius N., Partida-Martinez L. P., Boland S., Hertweck C. (2011a) 

Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica 

genome. BMC Genomics 12: 210 

 

Lackner G., Moebius N., Partida-Martinez L. P., Hertweck C. (2011b) Complete 

genome sequence of Burkholderia rhizoxinica, an endosymbiont of Rhizopus 

microsporus. J. Bacteriol. 193: 783–84 

 

Lackner G., Möbius N., Scherlach K., Partida-Martinez L. P., Winkler R., 

Schmitt I., Hertweck C. (2009) Global distribution and evolution of a toxinogenic 

Burkholderia-Rhizopus symbiosis. Appl. Environ. Microbiol. 75: 2982–86 

 

Lackner G., Partida-Martinez L. P., Hertweck C. (2009) Endofungal bacteria as 

producers of mycotoxins. Trends Micorbiol. 17: 570-576 

 

Lahrmann U., Ding Y., Banhara A., Rath M., Hajirezaei M. R., Döhlemann S., 

Von Wiren N., Parniske M., Zuccaro A. (2013) Host-related metabolic cues affect 

colonization strategies of a root endophyte. Proc. Natl. Acad. Sci. U.S.A. 110: 13965–

13970 

 

Lahrmann U., Zuccaro A. (2012) Opprimo ergo sum–evasion and suppression in the 



                                                            References 

113 
 

root endophytic fungus Piriformospora indica. Mol. Plant Microbe Interact. 25: 727–

737 

 

Lévy J., Bres C.,  Geurts R., Chalhoub B., Kulikova O., Duc G., Journet E., Ané 

J.,  Lauber E., Bisseling T., Dénarié, J., Rosenberg C., Debellé F. (2004) A 

putative Ca2+ and calmodulindependent protein kinase required for bacterial and 

fungal symbioses. Science 303: 1361–1364  

 

Lin Y. H., Xu J. L., Hu J. Y., Wang L. H., Ong S. L., Leadbetter J. R., Zhang L. 

H. (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a 

novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47: 849–60 

 

Livak K. J, Schmittgen T .D (2001) Analysis of relative gene expression data using 

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, 

Calif) 25 (4):402-408 

 

Lodewyckx C., Vangronsveld J., Porteous F., Moore E. R. B., Taghavi S., 

Mezgeay M., Van der Lelie D. (2002) Endophytic bacteria and their potential 

applications. Crit. Rev. Plant Sci. 21: 583-606 

 

Long, S. R. (1989) Rhizobium-legume nodulation: Life together in the underground. 

Cell 56: 203–214 

 

Long, S. R. (1996) Rhizobium symbioses: nod factors in perspective. Plant Cell 8: 

1885–1898 

 

Ludwig W., Amann R., Martines-Romero E., Schoenhuber A., Bauer S., Neef A., 

Schleifer K. H. (1998) rRNA based identification systems for rhizobia and other 

bacteria. PI Soil 204: 1-9 

http://www.sciencemag.org/search?author1=Julien+L%C3%A9vy&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Jean-Michel+An%C3%A9&sortspec=date&submit=Submit


                                                            References 

114 
 

 

Lugtenberg B., Kamilova F. (2009) Plant-Growth-Promoting Rhizobacteria. Annu. 

Rev. Micorbiol. 63: 541-56  

 

Lunau M., Lemke A., Walther K., Martens-Habbena W., Simon M. (2005) An 

improved method for counting bacteria from sediments and turbid environments by 

epifluorescence microscopy. Environ Microbiol 7: 961–968 

 

Lusk C. P., Blobel G., King M. C. (2007) Highway to the inner nuclear membrane: 

rules for the road. Nature Rev. Mol. Cell Biol. 8: 414–420  

 

Ma W., Zalec K., Glick B. R. (2001) Biological activity and colonization pattern of 

the bioluminesence-labeled plant growthpromoting bacterium Kluyvera ascorbata 

SUD165/26. FEMS Microbiol. Ecol. 35: 137–144 

 

Macdonald R. M., Chandler M. R. (1981) Bacterium-like organelles in the 

vesicular-arbuscular mycorrhizal fungus Glomus caledonius. New Phytol. 89: 241-246 

 

Manz W., Aman, R., Ludwig W., Vancanneyt M. Schleifer K. H. (1996). 

Application of a suite of 16S rRNA-specific oligonucleotide probes designed to 

investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural 

environment. Microbiol. 142: 1097-1106 

 

Markmann K., Giczey G., Parniske M. (2008) Functional adaptation of a plant 

receptor-kinase paved the way for the evolution of intracellular root symbioses with 

bacteria. PLoS Biol. 6: e68  

 

McCully M. E. (2001) Niches for bacterial endophytes in crop plants: a plant 

biologist’s view. Aust. J. Plant Physiol. 28: 983–990 



                                                            References 

115 
 

 

Mitra R. M., Gleason C. A., Anne Edwards A., Hadfield J., Downie J. A., Giles E. 

D. Oldroyd G. E. D., Long S. R. (2004) A Ca2+/calmodulin-dependent protein 

kinase required for symbiotic nodule development: gene identification by 

transcript-based cloning. Proc. Natl Acad. Sci. U.S.A. 101: 4701–4705  

 

Moebius N., Üzüm Z., Dijksterhuis J., Lackner G., Hertweck C. (2014) Active 

invasion of bacteria into living fungal cells. eLife 3: e03007 

 

Mosse B. (1970) Honey-coloured sessile Endogone spores: II. Changes in fine 

structure during spore development. Arch. Mikrob. 74:129–45 

 

Muyzer G., Smalla K. (1998) Application of denaturing gradient gel electrophoresis 

(DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. 

Antonie van Leeuwenhoek 73: 127–141 

 

Naito M., Morton J. B., Pawlowska T. E. (2015). Minimal genomes of 

mycoplasma-related endobacteria are plastic and contain host-derived genes for 

sustained life within Glomeromycota. Proc. Natl. Acad. Sci. U.S.A. 112: 7791–7796 

 

Naumann M., Schuessler A., Bonfante P. (2010) The obligate endobacteria of 

arbuscular mycorrhizal fungi are ancient heritable components related to the 

Mollicutes. ISME J. 4: 860-871 

 

Nautiyal C. S., Bhadauria S., Kumar P., Lal H., Mondal R. Verma D. (2000) 

Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS 

Microbiol. Lett. 182: 291–296 

 

Newell C. A. (2000) Plant transformation technology. Mol. Biotechnol. 16: 53  

http://www.pnas.org/search?author1=Sharon+R.+Long&sortspec=date&submit=Submit


                                                            References 

116 
 

 

Newton, A. C., Fitt, B. D. L., Atkins S. D., Walters D. R., Daniell T. J. (2010) 

Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant 

interactions. Trends Microbiol. 18: 365-373 

 

Oberwinkler F, Riess K, Bauer R, Garnica S. (2014). Morphology and molecules: 

the Sebacinales, a case study. Mycol. Prog. 13: 445–470.  

 

O’Callaghan K. J., Dixon R. A., Cocking E. C. (2001) Arabidopsis thaliana: a 

model for studies of colonization by non-pathogenic and plant-growth-promoting 

rhizobacteria. Aust. J. Plant Physiol. 28: 975–982 

 

Oelmüller, R., Peškan-Berghöfer, T., Shahollaria, B., Trebicka, A., Sherameti, I., 

Varma, A. (2005) MATH domain proteins represent a novel protein family in 

Arabidopsis thaliana, and at least one member is modified in roots during the course 

of a plant–microbe interaction. Physiol. Plant 124: 152–166 

 

Oke V., Long S. R. (1999) Bacteroid formation in the Rhizobium-legume symbiosis. 

Curr. Opin. Microbiol. 2: 641 

 

Okon Y., Bloemberg G. V., Lugtenberg B. J. J. (1998) Biotechnology of 

biofertilization and phytostimulation. In Agricultural Biotechnology, ed. A Altman, pp. 

327–49. New York: Marcel Dekker 

 

Oldroyd G. E. D., Downie J. A. (2008) Coordinating nodule morphogenesis with 

rhizobial infection in legumes. Annu. Rev. Plant Biol. 59: 519–546  

 

Oldroyd G. E., Murray J. D., Poole P. S., Downie J. A. (2011) The rules of 

engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45: 119–144  



                                                            References 

117 
 

 

Ongena M., Jourdan E., Adam A., Paquot M., Brans A. (2007) Surfactin and 

fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in 

plants. Environ. Microbiol. 9: 1084–90 

 

Panstruga R., Dodds P. N. (2009) Terrific protein traffic: the mystery of effector 

protein delivery by filamentous plant pathogens. Science 324: 748–750  

 

Parniske M. (2000) Intracellular accommodation of microbes by plants: A common 

developmental program for symbiosis and disease? Curr. Opin. Plant Biol. 3: 320–

328  

 

Parniske M. (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. 

Nat. Rev. Microbiol. 6: 763-775 

 

Parniske M. (2005) Plant-fungal association: Cue for the branching connection. 

Nature 435: 750–751  

 

Partida-Martinez L. P., Groth I., Schmitt I., Richter W., Roth M., Hertweck C. 

(2007a) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., 

bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int. J. 

Syst. Evol. Microbiol. 57: 2583–90 

 

Partida-Martinez L. P., Hertweck C. (2005) Pathogenic fungus harbours 

endosymbiotic bacteria for toxin production. Nature 437: 884–88 

 

Partida-Martinez L. P., Monajembashi S., Greulich K. O., Hertweck C. (2007b) 

Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. 

Curr. Biol. 17: 773–77 



                                                            References 

118 
 

 

Peiter E., Sun J., Heckmann A. B., Venkateshwaran M., Riely B. K., Otegui M. S., 

Edwards A., Freshour G., Hahn M. G., Cook D. R., Sanders D., Oldroyd G. E. D., 

Downie J. A., Ané J. M. (2007) The Medicago truncatula DMI1 protein modulates 

cytosolic calcium signaling. Plant Physiol. 145: 192–203  

 

Peškan-Berghöfer T., Shahollari B., Giong P. H., Hehl S., Markert C., Blanke V., 

Varma A. K., Oelmüller R. (2004) Association of Piriformospora indica with 

Arabidopsis thaliana roots represents a novel system to study beneficial plant–

microbe interactions and involves early plant protein modifications in the 

endoplasmatic reticulum and at the plasma membrane. Physiol. Plant. 122: 465–477 

 

Pham G. H., Kumari R., Singh A., Mall, R., Prasad R., Sachdev M., Kaldorf M., 

Buscot F., Oelmuller R., Hampp R., et. al. (2004). Axenic culture of symbiotic 

fungus Piriformospora indica. In Plant Surface Microbiol (Varma, A., Abbott, L, 

Werner, D. and Hampp, R. (ed.) Berlin: Springer-Verlag, pp. 593–611 

 

Pieterse C. MJ, Leon-Reyes A., Van der Ent S., Van Wees S. CM (2009) 

Networking by small-molecule hormones in plant immunity. Nat. Chem.Biol. 5(5): 

308-316 

 

Pieterse C. M., Van Wees S. C., Van Pelt J .A., Knoester M., Laan R., Gerrits H., 

Weisbeek P .J., Van Loon L. C. (1998) A novel signaling pathway controlling 

induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580 

 

Post L. E., Arfsten A. E., Davis G. R., Nomura M. (1980) DNA sequence of the 

promoter region for the alpha ribosomal protein operon in Escherichia coli. J. Biol. 

Chem. 255: 4653-4659 

 



                                                            References 

119 
 

Pozo M. J., Azcon-Aguilar C. (2007) Unraveling mycorrhiza-induced resistance. 

Curr. Opin. Plant Biol. 10: 393–398  

 

Qiang X. Y., Weiss M., Kogel K. H., Schäfer P. (2012) Piriformospora indica—a 

mutualistic basidiomycete with an exceptionally large plant host range. Mol. Plant 

Pathol. 13(5): 508-518 

 

Qiang X. Y., Zechmann B., Reitz M. U., Kogel K. H., Schäfer P. (2012) The 

Mutualistic Fungus Piriformospora indica Colonizes Arabidopsis Roots by Inducing 

an Endoplasmic Reticulum Stress–Triggered Caspase-Dependent Cell Death. Plant 

Cell 24: 794–809 

 

Radutoiu S., Madsen L. H., Madsen E. B., Jurkiewicz A., Fukai E., Quistgaard E. 

M., Albrektsen A. S., James E. K., Thirup S., Stougaard J. (2007) LysM domains 

mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic 

host range. EMBO J. 26: 3923–3935  

 

Rae A. L., Bonfante-Fasolo P., Brewin N. J. (1992) Structure and growth of 

infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J. 2: 

385–395 

 

Rafiqi M., Jelonek L., Akum F. N., Zhang F., Kogel K. H. (2013) Effector 

candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated 

fungus. Front. Plant Sci. 4: 228 

 

Ralph Panstruga (2003) Establishing compatibility between plants and obligate 

biotrophic pathogens. Curr. Opin in Plant Biol. 6: 320-326 

 

Redman R.S., Sheehan K.B., Stout R.G., Rodriguez R.J., Henson J.M. (2002) 

Thermotolerance generated by plant/fungal symbiosis. Science 298: 1581 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Madsen%20LH%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Madsen%20EB%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jurkiewicz%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fukai%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Quistgaard%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Quistgaard%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Albrektsen%20AS%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=James%20EK%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thirup%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17690687
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stougaard%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17690687


                                                            References 

120 
 

Roden J., Eardley L., Hotson A., Cao Y., Mudgett M. B. (2004) Characterization of 

the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. 

Mol. Plant Microbe Interact. 17: 633–643. 

 

Roesti D., Ineichen K., Braissant O., Redecker D.,Wiemken A., Araqno M. (2005) 

Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus 

geosporum and Glomus constrictum. Appl. Environ. Microbiol.71:6673–79 

 

Rojo, E., R. Solano and J. J. Sanchez-Serrano (2003) Interactions between 

signaling compounds involved in plant defense. J. Plant Growth Regul. 22: 82-98 

 

Rosebrock T. R., Zeng L., Brady J. J., Abramovitch R. B., Xiao F., Martin G. B. 

(2007) A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant 

immunity. Nature 448 (7151):370-374 

 

Rosenblueth M., Martinez-Romero E. (2006) Bacterial endophytes and their 

interaction with hosts. Mol. Plant Microbe Interact. 19: 827-837 

 

Roth L. E., Stacey G. (1989) Bacterium release into host cells of nitrogen-fixing 

soybean nodules: The symbiosome membrane comes from three sources. Eur. J. Cell 

Biol. 49: 13–23 

 

Roux C., Bécard G., Séjalon-Delmas N. (2006) Strigolactones stimulate arbuscular 

mycorrhizal fungi by activating mitochondria. PloS Biol. 4: 1239–1247  

 

Rovira A. D. (1956) A study of the development of the root surface microflora during 

the initial stages of plant growth. J. Appl. Bacteriol. 19: 72–79 

 

Saito K., Makoto Yoshikawa M., Koji Yano K., Miwa H., Uchida H., Asamizu E., 



                                                            References 

121 
 

Shusei Sato S., Tabata S., Haruko Imaizumi-Anraku H., Umehara Y., Hiroshi 

Kouchi H., Yoshikatsu Murooka Y., Szczyglowski K., Downie J. A., Martin 

Parniske M., Makoto Hayashi M., Kawaguch M. (2007) NUCLEOPORIN85 is 

required for calcium spiking, fungal and bacterial symbioses, and seed production in 

Lotus japonicus. Plant Cell 19: 610–624  

 

Sawada H., Ieki H., Oyaiizu H., Matsumoto S. (1993) Proposal for rejection of 

Agrobacterium tumefaciens and revised description for the genus Agrobacterium and 

for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int. J. Syst. Bacteriol. 

43: 694-702 

 

Scannerini S, Bonfante P. (1991) Bacteria and bacteria like objects in 

endomycorrhizal fungi (Glomaceae). In Symbiosis as Source of Evolutionary 

Innovation: Speciation and Morphogenesis, ed. L Margulis, R Fester, pp. 273–87. 

 

Scherlach K., Busch B., Lackner G., Paszkowski U., Hertweck C. (2012) 

Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew. Chem. Int. Ed. 51: 

9615–18 

 

Scherlach K., Partida-Martinez L. P., Dahse H. M., Hertweck C. (2006) 

Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice 

pathogenic fungus Rhizopus microsporus. J. Am. Chem. Soc. 128: 11529–36 

 

Schmitt I., Partida-Martinez L. P., Winkler R., Voigt K., Einax E., Dölz F., Telle 

S., Wöstemeyer J., Hertweck C. (2008) Evolution of host resistance in a 

toxin-producing bacterial-fungal alliance. ISME J. 2: 632–41 

 

Schrey S. D., Tarkka M. T. (2008) Friends and foes: streptomycetes as modulators of 

plant disease and symbiosis. Antonie van Leeuwenhoek 94:11–19 



                                                            References 

122 
 

 

Schäfer P., Kogel, K. H. (2009) The sebacinoid fungus Piriformospora indica: an 

orchid mycorrhiza which may increase host plant reproduction and fitness. In: The 

Mycota, Vol. 5, Plant Relationships (Deising, H.B. and Esser, K., eds), pp. 99–112. 

Heidelberg: Springer-Verla 

 

Schäfer P., Pfiffi S., Voll L. M., Zajic D., Chandler P. M., Waller F., Scholz U., 

Pons-kühneann J., Sonnewald S., Sonnewald U., Kogel K. H. (2009) Manipulation 

of plant innate immunity and gibberellin as factor of compatibility in the mutualistic 

association of barley roots with Piriformospora indica. Plant J. 59: 461–474 

 

Schübler A., Schwarzott D., Walker C. (2001) A new fungal phylum, the 

Glomeromycota: phylogeny and evolution. Mycol. Res. 105: 1413–1421  

 

Schueßler A. (2002) Molecular phylogeny, taxonomy, and evolution of arbuscular 

mycorrhiza fungi and Geosiphon pyriformis. Plant Soil 244:75–83 

 

Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into 

PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 11 (4):389-395 

 

 

 

Segarra, G., Van der Ent S., Trillas I., Pieterse C. M. J. (2009) MYB72, a node of 

convergence in induced systemic resistance triggered by a fungal and a bacterial 

beneficial microbe. Plant Biol. 11: 90–96 

 

Serfling A., Wirsel S. G., Lind V., Deising H. B. (2007) Performance of the 

biocontrol fungus Piriformospora indica on wheat under greenhouse and field 

conditions. Phytopathology 4: 523–531 



                                                            References 

123 
 

 

Shahollari, B., Vadassery, J., Varma, A. and Oelmüller, R. (2007) A leucine-rich 

repeat protein is required for growth promotion and enhanced seed production 

mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. 

Plant J. 50: 1–13 

 

Sharma M., Kogel K. H. (2009) Fungal isolates of the order Sebacinales provide 

growth promotion and systemic disease resistance to barley. In: Biological control of 

fungal and bacterial plant pathogens. IOBC/WPRS Bull. 43: 211–215 

 

Sharma M., Schmid M., Rothballer M., Hause G., Zuccaro A., Imani J., 

Kämpfer P., Domann E., Schäfer P., Hartmann A., Kogel K. H. (2008) Detection 

and identification of bacteria intimately associated with fungi of the order Sebacinales. 

Cell Microbio.l 11: 2235-2246 

 

Shephard R. W., Lindow S. (2008) Two dissimilarN-acyl-homoserine lactone 

acylases of Pseudomonas syringae ninfluence colony and biofilm morphology. Appl. 

Environ. Microbiol. 74: 6663–71 

 

Siciliano V., Genre A., Balestrini R., Cappellazzo G., Dewit P. J. G. M., Bonfante 

P. (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development 

of the prepenetration apparatus. Plant Physiol. 144: 1455–1466  

 

Singh B. K., Nunan N., Ridgway K. P., McNicol J., Young J. P., Daniell T. J., 

Prosser J. I., Millard P. (2008) Relationship between assemblages of mycorrhizal 

fungi and bacteria on grass roots. Environ. Microbiol. 10:534–41 

 

Singh S., Katzer K., Lambert J., Cerri M., Parniske M. (2014) CYCLOPS, a 

DNA-binding transcriptional activator, orchestrates symbiotic root nodule 



                                                            References 

124 
 

development. Cell Host Microbe 15: 139–152  

 

Singh S., Parniske M. (2012) Activation of calcium- and calmodulin- dependent 

protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr. 

Opin. Plant Biol. 15: 444–453     

 

Slater S., Setubal J. S., Goodner B., Houmiel K., Jian Sun J., Kaul R., Goldman 

B. S., Farrand S. K., Jr. N. A., Burr T., Nester E., Rhoads D. M., Kadoi R., 

Ostheimer T., Pride N., Sabo A., Henry E., Telepak E., Cromes L., Harkleroad A., 

Oliphant L., Pratt-Szegila P., Welch R., Woodf D. (2013) Reconciliation of 

sequence data and updated annotation of the genome of Agrobacterium tumefaciens 

C58, and distribution of a linear chromosome in the genus Agrobacterium. Appl. 

Environ. Microbiol. 79: 1414-1417 

 

Smit P., Limpens E., Geurts R., Fedorova E., Dolgikh E., Gough C., Bisseling T. 

(2007) Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. 

Plant Physiol. 145: 183–191  

 

Solaiman M. D. Z., Saito M. (1997) Use of sugars by intraradical hyphae of 

arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol. 136: 533–

538  

 

Sowley E. N. K., Dewey F. M., Shaw M. W. (2010) Persistent, symptomless, 

systemic, and seed-borne infection of lettuce by Botrytis cinerea. Eur. J. Plant Pathol. 

126: 61-71 

 

Spaink H. P., Kondorosi A., Hooykaas P. J. J. (1998) The Rhizobiaeceae. Dordrecht, 

The Netherlands: Kluwer Acad 

 



                                                            References 

125 
 

Spencer D., James E. K., Ellis G. J., Shaw J. E., Sprent J. I. (1994) Interaction 

between rhizobia and potato tissues. J. Exp. Bot. 45: 1475–1482 

 

Staskawicz B. J., Mudgett M. B., Dangl J. L., Galan J. E. (2001) Common and 

contrasting themes of plant and animal diseases. Science 292: 2285-2289 

 

Stein E., Molitor A., Kogel K. H., Waller F. (2008) Systemic resistance in 

Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires 

jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 11: 

1747–1751 

 

Sun, T.P. (2008) Gibberellin metabolism, perception and signaling pathways in 

Arabidopsis. In: The Arabidopsis Book. Rockville, MD: American Society of Plant 

Biologists. DOI/10.1199/tab.0103 

 

Tavaria F. K., Zuberer D. A. (1998) Effect of low pO2 on colonization of maize 

roots by a genetically altered Pseudomonas putida [PH6(L1019)]. Biol. Fert. Soils. 26: 

43–49 

 

Ton J., Van Pelt J. A., Van Loon L. C., Pieterse C. M. J. (2002) Differential 

effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced 

resistance in Arabidopsis. Mol. Plant Microbe Interact. 15: 27–34  

 

Topping J. F., Wei W., Clarke M. C., Muskett P., Lindsey K. (1995) 

Agrobacterium-mediated transformation of Arabidopsis thaliana. Methods Mol. Biol. 

49: 63  

 

Torres-Cortés G., Ghignone S., Bonfante P., Schüßler A. (2015). Mosaic genome 

of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an 



                                                            References 

126 
 

ancient mycoplasma-fungus association. Proc. Natl. Acad. Sci. U.S.A. 112: 7785–

7790 

 

Varma S., Varma A., Rexe, K. H., Hassel A., Kost G., Sarabhoy A., Bisen P., 

Beutehorn B., Franken P. (1998). Piriformospora indica, gen. et sp. nov., a new 

root-colonizing fungus. Mycologia. 90: 896-903 

 

Verna J., Lodder A., Lee K., Vagts A., Ballester R. (1997) A family of genes 

required for maintenance of cell wall integrity and for the stress response in 

Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 94: 13804–13809 

 

Vesterg˚ard M., Henry F., Rangel-Castro J. I., Michelsen A., Prosser J. I., 

Christensen S. (2008) Rhizosphere bacterial community composition responds to 

arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar 

cutting. FEMS Microbiol. Ecol. 64:78–89 

_ 

Umehara M., Hanada A., Yoshida S., Akiyama K., Arite T., Takeda-Kamiya N., 

Magome H., Kamiya Y., Shirasu K., Yoneyama K., Kyozuka J., Yamaguchi S. 

(2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 

195-200  

 

Uren N. C. (2007) Types, amounts, and possible functions of compounds released 

into the rhizosphere by soil-grown plants. In The Rhizosphere. Biochemistry and 

Organic Substances at the Soil-Plant Interface, ed. R Pinton, Z Varanini, P Nannipieri, 

pp. 1–21. Boca Raton, FL: CRC Press/Taylor & Francis Group. 2nd ed. 

 

Vadassery, J., Tripathi, S., Prasad, R., Varma, A. and Oelmüller, R. (2009a) 

Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a 

mutualistic interaction between Piriformospora indica and Arabidopsis. J. Plant 



                                                            References 

127 
 

Physiol. 166: 1263–1274 

 

Vadassery, J., Ranf, S., Drzewiecki, C., Mithöfer, A., Mazars, C., Scheel, D., Lee, 

J., Oelmüller, R. (2009b) A cell wall extract from the endophytic fungus 

Piriformospora indica promotes growth of Arabidopsis seedlings and induces 

intracellular calcium elevation in roots. Plant J. 59: 193–206 

 

Vadassery, J., Ritter, C., Venus, Y., Camehl, I., Varma, A., Shahollari, B., Novák, 

O., Strnad, M., Ludwig-Müller, J. and Oelmüller, R. (2008) The role of auxins and 

cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora 

indica. Mol. Plant–Microbe Interact. 21: 1371–1383 

 

Van der Ent, S., Van Wees S. C. M., Pieterse C. M. J. (2009) Jasmonate signaling 

in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70: 

1581–1588 

 

Van Loon L. C., Bakker P. A. H. M., Pieterse C. M. J. (1998) Systemic resistance 

induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453–483  

 

Van Oosten V. R., Bodenhausen N., Reymond P., Van Pelt J. A., Van Loon L. C., 

Dicke M., Pieterse C. M. J. (2008) Differential effectiveness of microbially induced 

resistance against herbivorous insects in Arabidopsis. Mol. Plant Microbe Interact. 21: 

919–930  

 

Van Peer R., Niemann G. J., Schippers B. (1991) Induced resistance and 

phytoalexin accumulation in biological control of Fusarium wilt of carnation by 

Pseudomonas sp. strain WCS417r. Phytopathology 81: 728–34 

 

Van Rhijn P., Vanderleyden J. (1995) The Rhizobium-plant symbiosis. Microbiol. 



                                                            References 

128 
 

Rev. 59: 124–42 

 

Van Wees S. C. M., Van der Ent S., Pieterse C. M. J. (2008) Plant immune 

responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11: 443–448  

 

Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R. (2012). Piriformospora 

indica: A novel plant growth promoting mycorrhizal fungus. Agric. Res. 1: 117–131 

 

Varma A., Verma S., Sudha, Sahay N., Bütehorn B., Franken P. (1999) 

Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. 

Environ. Microbiol. 65: 2741–2744 

 

Vasse J., De Billy F., Camut S., Truchet G. (1990) Correlation between 

ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J 

Bacteriol. 172: 4295–4306 

 

Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., 

Bütehorn, B. and Franken, P. (1998) Piriformospora indica, gen. et sp. nov., a new 

root-colonizing fungus. Mycologia. 90: 896–903 

 

Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E., Uknes 

S., Kessmann H., Ryals J. (1994) Salicylic acid is not the translocated signal 

responsible for inducing systemic acquired resistance but is required in signal 

transduction. Plant Cell 6: 959-965 

 

Vessey J. K., Buss T. J. (2002) Bacillus cereus UW85 inoculation effects on growth, 

nodulation, and N accumulation in grain legumes: Controlled-environment studies. 

Can. J. Plant Sci. 82: 282–290 

 



                                                            References 

129 
 

Von Wiren N., Khodr H., Hider R. C. (2000) Hydroxylated phytosiderophore 

species possess an enhanced chelate stability and affinity for iron(III). Plant Physiol. 

124: 1149–1157 

 

Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., Heier T., 

Hückelhoven R., Neumann C., Von Wettstein D., Franken P., Kogel K. H. (2005) 

The endophytic fungus Piriformospora indica reprograms barley to salt-stress 

tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U.S.A. 102: 

13386–13391 

 

Walters, D. R., McRoberts N., Fitt B. D. L. (2008) Are green islands red herrings? 

Significance of green islands in plant interactions with pathogens and pests. Biol. Rev. 

83: 79–102 

 

Weiß M., Selosse M. A., Rexer K. H., Urban A., Oberwinkler F. (2004) 

Sebacinales-a hitherto overlooked cosm of heterobasidiomycetes with a broad 

mycorrhizal potential. Mycol. Res. 108: 1003–1010 

 

Weyens N., Van der Lelie D., Taghavi S., Newman L., Vangronsveld J. (2009) 

Exploiting plant-microbe partnerships to improve biomass production and 

remediation. Trends Biotechnol. 27: 591–598 

 

Wood D. W., Setubal J. S., Kaul R., Monks D. E., Kitajima J. P., Okura V. K., 

Zhou Y., Chen L., Wood G. E., Jr. N. F. A., Woo L., Chen Y., Paulsen I. T., Eisen J. 

A., Karp P. D., Sr. D. B., Chapman P., Clendenning J., Deatherage G., Gillet W., 

Grant C., Kutyavin T., Levy R., Li M. J., McClelland E., Palmieri A., Raymond 

C., Rouse G., Saenphimmachak C., Wu Z., Romero P., Gordon D., Shiping 

Zhang S., Heayun Yoo H., Tao Y., Biddle P., Mark Jung M., Krespan W., Perry 

M., Gordon-Kamm B., Liao L., Kim S., Hendrick C., Zhao Z. Y., Dolan M., 



                                                            References 

130 
 

Chumley F., Tingey S. V., Tomb J. F., Gordon M. P., Olson M. V., Nester E. W. 

(2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. 

Science 294: 2317-2323 

 

Xu H. L. (2000) Soil–root interface water potential in sweet corn as affected by 

organic fertilizer and a microbial inoculant. J. Crop Prod. 3: 139–156 

 

Yadav V., Kumar M., Deep D. K., Kumar H., Sharma R., Tripathi T., Tuteja N., 

Saxena A.K., Johri, A.K. (2010) A phosphate transporter from the root endophytic 

fungus Piriformospora indica plays a role in phosphate transport to the host plant. J. 

Biol. Chem. 285: 26 532–26 544 

 

Yamamura N. (1997) Diversity and evolution of symbiotic interactions, p. 75-82. In 

T. Abe, S. A. Levin and M. Higashi (ed), Biodiversity: an ecological perspective. 

Springer, New York, N.Y.  

 

Yang B., Zhu W., Johnson L. B., White F. F. (2000) The virulence factor AvrXa7 of 

Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent 

nuclear-localized double-stranded DNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 

97: 9807–9812 

 

Yang, J., Kloepper J. W., Ryu C. M. (2009) Rhizosphere bacteria help plants 

tolerate abiotic stress. Trends Plant Sci. 14: 1–4 

 

Ye W, Shen CH, Lin Y, Chen PJ, Xu X, Oelmüller R., Yeh K. W., Lai Z. (2014). 

Growth promotion-related miRNAs in Oncidium orchid roots colonized by the 

endophytic fungus Piriformospora indica. PLoS One 9: e84920 

 

Young J. M., Kuykendall L. D., Martinez-Romero E., Kerr A., Sawada H. (2001) 



                                                            References 

131 
 

A revision of Rhizobium Frank 1889, with an emended description of the genus, and 

the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola 

de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. 

rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 51: 89 

 

Zipfel C., Felix G. (2005) Plants and animals: a different taste for microbes? Curr. 

Opin. Plant Biol. 8: 353-360 

 

Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) 

Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts 

Agrobacterium-mediated transformation. Cell 125 (4):749-760 

 

Zuccaro A., Basiewicz M., Zurawska M., Biedenkopf D., Kogel K. H. (2009) 

Karyotype analysis, genome organization, and stable genetic transformation of the 

root colonizing fungus Piriformospora indica. Fungal Genet. Biol. 46: 543-550 

 

Zuccarol A., Lahrmann1 U., Güldener U., Langen G:, Pfiffi1 S., Biedenkopf D., 

Wong P., Samans B., Grimm C., Basiewicz M., Murat C., Martin F., Kogel K. H. 

(2011) Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses 

of the Mutualistic Root Symbiont Piriformospora indica. 7: e1002290 

 

Zupan J., Muth T. R., Draper O., Zambryski P. (2000) The transfer of DNA from 

Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23: 

11  

 



                                                           Supplement 

132 
 

7 Supplement  

 

 

Fig. 7.1. FISH analysis of endobacteria in P. indica by confocal laser scanning microscopy 

(CLSM). P. indica material was fixed and hybridized with probe EUB-338-Cy3. Endobacteria in 

fungal mycelium were detected under UV (A and D), and under light microscope (B and E). The 

fluorescence pictures overlaid with light pictures showed in figure C and F. CLSM was at 5000-fold 

magnification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                           Supplement 

133 
 

 

 

 

 

 

Fig. 7.2 The GUS-containing plasmid map for GUS-tagged RrF4. 
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