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Stephen Senn

You May Believe You Are a Bayesian
But You Are Probably Wrong

Abstract:
An elementary sketch of some issues in statistical inference and in particular of the cen-
tral role of likelihood is given. This is followed by brief outlines of what George Barnard
considered were the four great systems of statistical inferences. These can be thought of
terms of the four combinations of two factors at two levels. The first is fundamental pur-
pose (decision or inference) and the second probability argument (direct or inverse). Of
these four systems the ‘fully Bayesian’ approach of decision-making using inverse proba-
bility particularly associated with the Ramsay, De Finetti, Savage and Lindley has some
claims to be the most impressive. It is claimed, however, and illustrated by example,
that this approach seems to be impossible to follow. It is speculated that there may be
some advantage to the practising statistician to follow George Barnard’s advice of being
familiar with all four systems.

1. Introduction

The great statistician R. A. Fisher was sceptical of systems of statistical infer-
ence that claimed to provide the recipe for all human reasoning. One interpreta-
tion of his extremely influential, subtle and original contributions to the subject
is that he considered that there were many ways we might seek to reach reason-
able conclusions and that the job of the statistician was to improve them rather
than to replace them. This particular point of view will be a disappointment to
those who believe that statistics should provide a sure and certain guide to how
we should think what we think about the world. Thus, I think Fisher was and
will continue to be a disappointment to many philosophers. He did not provide a
unifying concept for all inference and my interpretation is that he was sceptical
that this was possible.

Fisher was also a brilliant geneticist (Edwards 2003) and evolutionary bi-
ologist (Grafen 2003) and, although it is really pure speculation on my part, I
wonder if his views on evolution did not influenced his views on inference. There
are at least two intriguing possible connections. First, in the Darwinian, as op-
posed to the Lamarckian view, the information flows directly from genotype to
phenotype and not the other way around. The statistical analogy is from param-
eter to statistic but not from statistic to parameter. The latter is natural in the



You May Believe You Are a Bayesian But You Are Probably Wrong 49

Bayesian mode of inference and Fisher was generally hostile to this. (Although
fiducial inference tends in this direction.) Second, the process of evolution works
by accident and elimination. In fact Fisher (1930) was the first to really look at
the probabilistic aspect of this in great detail in work that has been described as
being decades ahead of its time (Grafen 2003). The inferential analogy here is
that our knowledge grows by a process that is partly random but also involves
a struggle for survival amongst ideas. To make a connection with epistemol-
ogy, this has at least some superficial similarity to Karl Popper’s falsificationist
views and to Deborah Mayo’s error statistical philosophy (Mayo 1996). Fisher’s
construction of approaches to testing statistical hypothesis could be interpreted
as a way of increasing the evolutionary pressure on ideas.

Having tried, as a practising jobbing statistician, to use various alternative
approaches to inference including Fisher’s, I have reached a stage of perplexed
cynicism. I don’t believe that any one of them is likely to be enough on its own
and, without any intent of immodest implication I can say that the position I
have now reached is one that is even more eclectic than Fisher’s. I am very
reluctant to do without the bag of inferential tricks he created for us (although
I am unenthusiastic about fiducial inference) and I think that his wisdom is
regularly underestimated by his critics, but I also don’t think that Fisher is
enough. I think, for example, that you also need to think regularly in a Bayesian
way. However, I also think that Bayes is not enough and I hope to explain below
why.

Thus, I suspect I will disappoint any philosophers reading this. I assume that
what most philosophers like, pace Kant and his famous critique, is purity rather
than eclecticism. In being eclectic I am doing what a great statistician, George
Barnard (1915–2002), ‘father of the likelihood principle’ advised all statisticians
to do (Barnard 1996): be familiar with the four great systems of inference. I
shall give below a brief explanation as to what these are but a brief introduction
to some statistical concepts is also necessary.

2. Four Systems of Inference

Before considering the four systems, we review Bayes theorem and some funda-
mental notions concerning the statistical concept of likelihood. However, first we
mention an important distinction between two types of probabilities: direct and
inverse. The distinction is simply explained by an example. The probability that
five rolls of a fair die will show five sixes is an example of a direct probability—it
is a probability from model to data. The probability that a die is fair given that
it has been rolled five times to show five sixes is an inverse probability: it is
a probability from data to model. Inverse probabilities are regarded as being
problematic in a way that direct probabilities are not.

Turning now to discussing Bayes theorem and likelihood, we let P (A) stand
for the so-called marginal probability of an ‘event’ , ‘statement’ or ‘hypothesis’ A
and we let P ( B|A) stand for the conditional probability of an event, statement
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or hypothesis B given A.We let Hi stand for a particular hypothesis in a set H
of mutually exclusive hypotheses and we let HT

i stand for the hypothesis being
true.

We suppose that we have some evidence E. If we are Bayesians we can assign
a probability to any hypothesis Hi being true, HT

i , and, indeed, to the conjunc-
tion of this truth, HT

i ∩E, with evidence E. Elementary probability theory tells
us that
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Simple algebra applied to (1) then leads to the result known as Bayes theorem,
namely that
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provided P (E) > 0, which, since we have the evidence, must be the case. In
many applications, terms such as P

(
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)

can be regarded as probabilities known
in advance of the evidence and are referred to as prior probabilities, whereas
terms like P

(
HT

i

∣∣E
)

condition on the evidence and are generally referred to as
posterior probabilities.

In order of increasing difficulty, both in terms of calculation and in terms of
getting any two statisticians to agree what they should be in any given practical
context, the three terms on the right hand side of (2) can usually be ordered as
P
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)
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)
,P (E). The reason that the first term is easier than the second

is that when we consider an interesting scientific hypothesis it is usually of the
sort that makes a prediction about evidence and thus, (with some difficulty) a
reasonable (approximate) probabilistic statement may be an intrinsic by-product
of the hypothesis, although careful consideration will have to be given to the way
that data are collected, since many incidental details will also be relevant. When
the first term is considered as a function of H that is to say one accepts that E
is fixed and given and studies how it varies amongst the members of H it is
referred to as a likelihood by statisticians which is an everyday English word
invested with this special meaning by Fisher (1921). On the other hand P

(
HT

i
)

is the probability of a hypothesis being true and to assign this reasonably might,
it can be argued, require one to consider all possible hypotheses. This difficulty
is usually described as being the difficulty of assigning subjective probabilities
but, in fact, it is not just difficult because it is subjective: it is difficult because it
is very hard to be sufficiently imaginative and because life is short. Finally, we
also have that
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, (3)

where summation is over all possible hypotheses, so that calculation of P (E)
inherits all the difficulties of both of the other two terms over all possible hy-
potheses. (Although the point of view of De Finetti (1974; 1975), to be discussed
below, is that it has the advantage, unlike the other terms, of being a probability
of something observable.) Note, also, that in many practical contexts statisti-
cians will consider a family of hypotheses that can be described in terms of a
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parameter that varies from one hypothesis to another, the hypotheses other-
wise being the same. For example we might assume that the observations are
distributed according to the Poisson distribution but that the mean, µ, is un-
known. Different values of µ correspond to different hypotheses. Since µ can
vary continuously, this means that (3) has to be modified to involve probability
densities rather than probabilities (for hypotheses at least; in the Poisson case
the evidence is still discrete) and integrals rather than summations. This raises
various deep issues I don’t want to go into, mainly because I am not competent
to discuss them.

Some problems with (3) can be finessed if we are only interested in the rela-
tive probability of two hypotheses, say Hi,H j being true. We can then use (2) to
obtain
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because a common term P (E i) cancels.
Since a ratio of probabilities is known to statisticians as an odds, then (4) is

sometimes referred to as the odds form of Bayes theorem and it can be expressed
verbally as posterior odds equals prior odds multiplied by the ratio of likelihoods.

Note that since we can express the likelihood theoretically using (1) as
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(although, in practice, none of the terms on the right hand side are usefully
considered as being more primitive than the left hand side) then since there
is no particular reason as to why the ratios P
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should sum to
1/P (E) there is no reason why likelihoods unlike probabilities should sum to
1. They do, however, share many other properties of probabilities and they are
involved to greater or lesser degree in all the systems of inference, which we now
consider.

2.1 Automatic Bayes
This is particularly associated with Laplace’s principle of insufficient reason but
received a more modern impetus with the appearance of the influential book
on probability by Harold Jeffreys (1891–1989) (Jeffreys 1961; the first edition
was in 1939) and also more recently with the work of Edwin Jaynes (1922–
1998) (Jaynes 2003). Also important is a paper of Richard Cox (1898–1991) (Cox
1946), although it could be argued that this is a contribution to the fully sub-
jective Bayesian tradition discussed below. Where the family of hypotheses can
be indexed by the value of a given parameter, the approach is to assign a prior
probability to these that is ‘uninformative’ or vague in some sense. A further
curious feature of the approach of Jeffreys is that in some applications the prior
probability is improper: it does not sum to one over all possible parameter val-
ues. That this may still produce acceptable inferences can be understood by
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intuitively considering the analogous problem of forming a weighted summary
of a set of so-called point estimates, τ̂i, i = 1,2, · · · ,k from a series of clinical trials
as part of a so-called meta-analysis. We can define an estimator as

τ̂=
∑k

i=1 wiτ̂i∑k
i=1 wi

, wi > 0,∀i, (6)

where the wi are a series of weights, or we can use instead normalised weights,
pi = wi

/∑k
i=1 wi and thus replace (6) by

τ̂=
k∑

i=1
piτ̂i,0< pi < 1,∀i. (7)

The weights of the form pi are analogous to probabilities whereas the weights
of the form wi are improper but the result is the same.

A further feature of the work of Jeffreys is that a method is provided of choos-
ing between simpler and more complex models or, as Jeffreys (who was a physi-
cist) referred to them laws. Jeffreys had been much impressed by Broad’s (1918)
criticism of Laplace’s approach to the determination of prior distributions. Broad
(1887–1971) had pointed out that no finite sequences of ‘verifications’ of a law
could make it probably true, since the number of possible future instances would
outweigh any set of verifications and a law was a statement not just about the
next observation but about all future observations of a particular kind (Senn
2003). Jeffreys’s solution was to place a lump of probability on a particular
simpler hypothesis being true. For instance, a special case of the quadratic re-
gression model

Y =β0 +β1X +β2X2 +ε, (8)

where X is a predictor, Y is an observed outcome and ε is a stochastic distur-
bance term is the linear one given when β2 = 0. However, if one puts vague
prior distributions on the parameter values, then in practice the value of β2 = 0
will not be the most probable posterior value given some data. If, however, you
make it much more probable a priori that this special value β2 = 0 is true than
any other particular given value, then it may end up as being the most probable
value a posteriori. Another way of looking at this is to say if all values of β2,
of which, if β2 is real, there will be infinitely many, are equally probable, then
the value β2 = 0 has (effectively) a probability of zero. (Or measure zero, if you
like that sort of thing.) In that case the posterior probability will also have to be
zero.

2.2 Fisherian
The Fisherian approach has many strands. For example, for estimation, the
likelihood function is key and an approach championed by Fisher was to use as
an estimate that value of the parameter, which (amongst all possible values)
would maximise the likelihood. Associated with Fisher’s likelihood system were
many properties of estimators, for example consistency and sufficiency.
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Fisher also developed the approach of significance tests. These relied on a
wise choice of a test statistic, T: one whose value could be completely determined
if a so-called null-hypothesis was true but was also sensitive to departures from
the null-hypothesis. Then, given a set of data and an observed calculated value
t of the test statistic one could calculate the probability, P

(
T > t|H t

0
)

that if the
null-hypothesis were true the value would be at least as great as that observed.
This particular excedence probability is now known as a P-value and is one of
the most ubiquitously calculated statistics.

A further theory of Fisher’s is that of fiducial probability and concerns his
approach to what is sometimes called interval estimation. Very few statisticians
have been prepared to follow this theory. It seems to rely on the fact that a prob-
ability statement about a statistic given a parameter is capable under certain
circumstances of being turned via mere algebraic manipulation into a statement
about a parameter given a statistic. Most statisticians have been reluctant to
conclude that this is legitimate and I am one of them. However, I also know that
it is very dangerous to underestimate Fisher’s thinking. Therefore, I mentally
assign this to the ‘I don’t understand’ pigeon-hole rather than the ‘definitely
wrong’ one and I also note with interest that Deborah Mayo’s ‘severity’ measure
(Mayo 2004) may have a link to this.

2.3 Neyman-Pearson
This system was introduced during the period 1928–1933 as a result of a col-
laboration between the Polish mathematician Jerzy Neyman (1894–1980) and
the British statistician Egon Pearson(1895–1980) (Neyman and Pearson 1928;
1933).

Neyman and Pearson presented the problem of statistical inference as being
one of deciding between a null-hypothesis H0 and an alternative hypothesis H1
using a statistical test. A statistical test can be defined in terms of a test statistic
and a critical region. If the test statistic falls in the critical region the hypothesis
is rejected and if it does not then it is not rejected. In carrying out a test one
could commit a so-called Type I error by rejecting a true null hypothesis and a
so-called Type II error by failing to reject the null hypothesis when it was false.
The probability of committing a type I error given that H0 is true is referred to
as the Type I error rate and equal to α (say) and the probability of committing a
Type II error given that H1 is true as the Type II error rate, and equal to β (say).
The probability of deciding in favour of H1 given that it is true is then equal to
1−β and is called the power of the test whereas α is referred to as the size of the
test.

In a famous result that is now referred to as the Neyman-Pearson lemma,
they showed that if one wished to maximise power for a given size one should
base the decision on a ratio of the likelihood under H1 and the likelihood under
H0. If this ratio were designated λ then a suitable test was one in which one
would decide in favour of H1 in all cases in which λ≥λc and in favour of H0 in all
cases in which λ<λc, where λc is some critical value of λ. They also showed how
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various standard statistical tests involving tests statistics and critical regions
were formally equivalent to such a rule.

As usually interpreted, the Neyman-Pearson lemma is assumed to provide
a justification for using likelihood in terms of a more fundamental concept of
power. However, of itself, it does no such thing and an alternative interpreta-
tion is that if one uses likelihood as a means of deciding between competing
hypotheses, then an incidental bonus can be that the test is most powerful for a
given size. In particular, The Neyman-Pearson lemma does not justify that min-
imising the type II error rate whilst holding the type I error rate at the same
pre-determined level on any given occasion is a reasonable rule of behaviour. To
do this requires the use of different values of λc from occasion to occasion as the
amount of information varies. However, Pitman (1897–1993) was able to show
that if a statistician wished to control the average type I error rate

ᾱ=
∑k

i=1αi

k
(9)

over a series of k tests whilst maximising power, he or she should change the
value of αi but use the same value of λc from test to test (Pitman 1965). In my
view, this implies that likelihood is really the more fundamental concept.

Furthermore, it turns out that for certain problems involving a discrete sam-
ple space it is often not possible to produce a rule that will have a guaranteed
type I error rate unless an auxiliary randomising device is allowed. If the device
is disallowed, it will often be the case that a more powerful rule for a given level
α can be created if the strict ordering of points in the sample space by ratio of
likelihoods is not respected. There have been several proposals of this sort in
the literature (Cohen and Sackrowitz 2003; Streitberg and Röhmel 1990; Cor-
coran et al. 2000; Ivanova and Berger 2001). In my view, however, this is quite
illogical; in effect they rely on using the sample space as a covert randomising
device (Senn 2007a).

An analogy may be helpful here. A problem that arises in the construction of
real portfolios is a variant of the so-called knapsack problem (Senn 1996; 1998).
How does one choose amongst candidate projects? Ranking them in terms of the
ratio of expected return divided by expected cost seems an intuitively reasonable
thing to do and is analogous to a likelihood ratio (Talias 2007). (I am grateful to
Philip Dawid for first pointing out the similarity to me.) However, it is unlikely
that if we select projects in terms of decreasing values of this ratio and gradually
add them to the portfolio that we will exactly reach our total cost constraint.
By promoting up the list some small projects we may get closer to the total
cost constraint and it may be that the value of the portfolio will be greater in
consequence. In the real world however, this can be a bad practice. It may be
appropriate instead to either raise money or save it (to invest elsewhere). What
appears to be locally valuable can turn out to be globally foolish.
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2.4 Subjective Bayes
This system of inference is sometimes called neo-Bayesian and is particularly
associated with the work of Frank Ramsey (1903–1930) (Ramsey 1931), Jimmy
Savage (1917–1971) (Savage 1954), Bruno de Finetti (1906–1985) (de Finetti
1974; 1975) and Dennis Lindley (1923–) (Lindley 1985; 2006). It is also appro-
priate to mention the extremely important work of Jack Good (1916–2009) (Good
1983), although he was too eclectic in his approach to inference to be pinned
down as being just a subjective Bayesian.

The basic idea of the theory is that a given individual is free to declare prob-
abilities as he or she sees fit; there is no necessary reason why two individual
should agree. However, the set of probabilities issued by an individual must be
coherent. It must not be possible for another individual to construct a so-called
Dutch book whereby a given bet placed using the declared probabilities could
lead to the individual making a certain loss.

One interpretation of this theory, which is particularly attractive, is in terms
of observable sequences of events. This can be illustrated by a simple example.
Consider the case of a binary event where the two outcomes are success, S, or
failure F and we suppose that we have an unknown probability of success P (S)=
θ. Suppose that we believe every possible value of θ is equally likely, so that in
that case, in advance of seeing the data, we have a probability density function
for θ of the form

f (θ)= 1, 0≤ θ ≤ 1. (10)

Suppose we consider now the probability that two independent trials will pro-
duce two successes. Given the value of θ this probability is θ2. Averaged over all
possible values θ using (10) this is

∫ 1

0
θ2dθ =

[
θ3

3

]1

0
= 1

3
. (11)

A simple argument of symmetry shows that the probability of two failures must
likewise be 1/3 from which it follows that the probability of one success and
one failure in any order must be 1/3 also and so that the probability of success
followed by failure is 1/6 and of failure followed by success is also 1/6.

However, an even simpler argument shows that the probability of one success
in one trial must be 1/2 and of one failure must be also 1/2. Furthermore, since,
two successes in two trials inevitably imply one success in the first trial, the
probability of a success in the first trial and a success in the second trial is
simply the probability of two successes in two trials, which is 1/3. It thus follows
from Bayes theorem that the probability of two successes given one success is
simply

1/3
1/2

= 2
3

.
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However, this particular probability could equally well have been obtained by
the following argument. We note the probabilities of the four possible sequences,
which given the argument above are

Sequence Probability
HH 1

3

HT 1
6

TH 1
6

TT 1
3

(12)

Then, given the result of the first trial we simply strike out the sequences that
no longer apply (for example if the result in the first trial was H then sequences
TH and TT in (12) no longer apply) and rescale or re-normalise so that the total
probabilities that remain add to 1 rather than to 1/3+1/6 = 1/2. We thus divide
the remaining probabilities by their total 1/2 and the probability of a further H
given that we have obtained a first H is (1/3)/(1/2)= 2/3, as before.

This suggests a particularly simple way of looking at Bayesian inference. To
have a prior distribution about the probability of success θ is to have a prior dis-
tribution about the probability of any sequence of successes and failures. One
simply notes which sequences to strike out as result of any experience gained
and re-normalises the probabilities accordingly. No induction takes place. In-
stead probabilities resulting from any earlier probability statements regarding
sequences are deduced coherently.

I note by the by, that contrary to what some might suppose, de Finetti and
Popper do not disagree regarding induction. They both think that induction in
the naïve Bayesian sense is a fallacy. They disagree regarding the interpretation
of probability (Senn 2003) .

2.5 The Four Systems Compared
One way of classifying the four systems is in terms of two dimensions each rep-
resenting two choices. The first is a choice of making inferences or making de-
cisions and the second is whether the stress is on direct or inverse probabili-
ties. I prefer the dichotomy direct/inverse to the possible alternative of objec-
tive/subjective, since in my opinion Bayesians are happy to use not only sub-
jective but also objective probabilities (after all through their use of Markov
Chain Monte Carlo simulations Bayesians are amongst the biggest users of long
run relative frequencies) and since many so-called frequentist analyses concern
unique events.

Figure 1 is a schematic representation of this with the X axis running from
inferences on the left to decisions on the right and the Y axis running from direct
probability at the bottom to inverse probability at the top.

I have labelled three of the schools by their major proponents. Fisher is,
of course, sui generis. Although significance tests are a direct probability de-
vice, fiducial probability is more akin to an inverse probability. In the case of
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the Neyman-Pearson school I have decided to represent what I see (agreeing, I
think, with Deborah Mayo) as the slightly different positions of its two progeni-
tors. Pearson never signed up to the programme of making decisions with power
as your guide. He described these as being ways of getting your ideas in gear.
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Figure 1: Schematic illustration of the major schools of inference.

Because it is useful to have a single word to describe the process of reasoning
about the world, whatever the system, I will use the word inference in connection
with them all, even though Neyman in particular would object that this has no
meaning.

When Fisher’s system is compared to the N-P system reference is often made
to P-values, that is to say the probability of a result as extreme or more extreme
given that the null hypothesis is true, as being a Fisherian device alien to the
N-P system, where decisions rather than inferences are valued (Goodman 1992).
However, I disagree that this is so since it is perfectly possible to give P-values a
definition within the NP system (Senn 2001; 2002a).They are part of the way in
which remote scientists using different type I error rates could decide whether
a particular hypothesis is rejected by them.

A further claimed disadvantage of the Fisherian system is that it seems to
have no basis for preferring a particular test to another whereas the N-P system
can justify this in terms of power, which itself depends on the nature of the
alternative hypothesis. However, in a letter to Chester Bliss (Bennett 1990)
Fisher makes it clear that whereas he regards the null hypothesis as being more
primitive than the test statistic he does not consider the alternative hypothesis
as being more primitive than the test statistic. Thus he considers that to make
the alternative hypothesis a justification for the test statistic is back to front.
In his view a number of different statistics would satisfy the Fisherian criterion
of having a suitable level of significance. The scientist is free to choose one in
preference to another but the only basis for preferring one to another would be
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that in the past it had shown itself to be more ‘sensitive’. On the other hand
to use restricted tests because they follow from a restricted set of alternative
hypotheses, would be to claim to know more about what must apply if the null
hypothesis is false than could ever reasonably be the case.

If any one of the four systems had a claim to our attention then I find de
Finetti’s subjective Bayes theory extremely beautiful and seductive (even though
I must confess to also having some perhaps irrational dislike of it). The only
problem with it is that it seems impossible to apply. I will explain why I think so
in due course. I will then provide some examples to try and convince the reader
that it is not so easy to apply. In doing so I am well aware that examples are not
arguments.

Before I do so, however, I want to make one point clear. I am not arguing
that the subjective Bayesian approach is not a good one to use. I am claiming in-
stead that the argument is false that because some ideal form of this approach
to reasoning seems excellent in theory it therefore follows that in practice us-
ing this and only this approach to reasoning is the right thing to do. A very
standard form of argument I do object to is the one frequently encountered in
many applied Bayesian papers where the first paragraphs lauds the Bayesian
approach on various grounds, in particular its ability to synthesise all sources of
information, and in the rest of the paper the authors assume that because they
have used the Bayesian machinery of prior distributions and Bayes theorem
they have therefore done a good analysis. It is this sort of author who believes
that he or she is Bayesian but in practice is wrong.

3. Reasons for Hesitation

The first of these is temporal coherence. De Finetti was adamant that it is not
the world’s time, in a sense of the march of events (or the history of ‘one damn
thing after another’), that governs rational decision making but the mind’s time,
that is to say the order in which thoughts occur or evidence arises. However, I
do think that he believed there was no going back. You struck out the sequences
of thought-events that had not occurred in your mind and renormalized. The
discipline involved is so stringent that most Bayesians seem to agree that it is
intolerable and there have been various attempts to show that Bayesian infer-
ence really doesn’t mean this. I am unconvinced. I think that de Finetti’s theory
really does mean this and the consequence is that the phrase ‘back to the draw-
ing board’ is not allowed. Attempts to explain away the requirement of temporal
coherence always seem to require an appeal to a deeper order of things—a level
at which inference really takes place that absolves one of the necessity of doing
it properly at the level of Bayesian calculation. This is problematic, because it
means that the informal has to come to the rescue of the formal. We concede
that the precise Bayesians calculations do not necessarily deliver the right an-
swer but this failure of the super-ego does not matter because the id is happily
producing a true Bayesian solution.
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Note that in making this criticism, I am not criticising informal inference.
Indeed, I think it is inescapable. I am criticising claims to have found the perfect
system of inference as some form of higher logic because the claim looks rather
foolish if the only thing that can rescue it from producing silly results is the
operation of the subconscious. Nor am I criticising subjective Bayesianism as a
practical tool of inference. As mentioned above, I am criticising the claim that it
is the only system of inference and in particular I am criticising the claim that
because it is perfect in theory it must be the right thing to use in practice.

A related problem is that of Bayesian conversion. Suppose that you are not
currently a Bayesian. What does this mean? It means that you currently own
up to a series of probability statements that do not form a coherent set. How
do you become Bayesian? This can only happen by eliminating (or replacing or
modifying) some of the probability statements until you do have a coherent set.
However, this is tantamount to saying that probability statements can be dis-
owned and if they can be disowned once, it is difficult to see why they cannot
be disowned repeatedly but this would seem to be a recipe for allowing individ-
uals to pick and choose when to be Bayesian. I sometimes put it like this: the
Bayesian theory is a theory of how to remain perfect but it does not explain how
to become good.

I think that this is a much more serious problem than many Bayesians sup-
pose. It is not just a theoretical problem. I sometimes describe a Bayesian as one
who has a reverential awe for all opinions except those of a frequentist statis-
tician. It is hard to see what exactly a Bayesian statistician is doing when in-
teracting with a client. There is an initial period in which the subjective beliefs
of the client are established. These prior probabilities are taken to be valuable
enough to be incorporated in subsequent calculation. However, in subsequent
steps the client is not trusted to reason. The reasoning is carried out by the
statistician. As an exercise in mathematics it is not superior to showing the
client the data, eliciting a posterior distribution and then calculating the prior
distribution; as an exercise in inference Bayesian updating does not appear to
have greater claims than ‘downdating’ and indeed sometimes this point is made
by Bayesians when discussing what their theory implies.

Also related is the date of information problem. It is necessary, to an extent
that is often overlooked, to establish exactly what the basis is for any particular
prior distributions being established. This, as indeed are all the difficulties, is
related to the first one of temporal coherence. It is important to make sure that
one knows exactly what was known when. I am often asked by my clients in the
pharmaceutical industry whether they should do a Bayesian analysis. I reply
that they should when they wish to make a decision but reporting a Bayesian
analysis is not a very useful thing to do. Faced with a series of Bayesian analyses
one needs to be able to subtract the prior information first in case it or some
element of it is common. It is an important irony that a Bayesian statistician
wishing to do a Bayesian analysis will (usually) find it easier to do so if presented
with a series of frequentist summaries rather than a set of Bayesian posterior
distributions.
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This is related, I think, to Deborah Mayo’s claim that scientists want to have,
“a way to check whether they are being misled by beliefs and biases, in scruti-
nizing both their own data and that of other researchers” (Mayo 2004, 103). The
problem with prior beliefs and likelihoods is that they are (to a degree specified
by the model) exchangeable. Thus, if you have a conjugate beta prior distri-
bution equivalent to having seen 50 successes and no failures and then see 50
failures, your posterior inference is the same as if your prior said you had seen
25 successes and 25 failures and you then observed a further 25 successes and
25 failures. Of course, in practice, Bayesians will protest that this is simply a
naïve use of conjugate prior distributions and in practice one would treat the
two cases differently. I have no objection to this practice, what I am objecting to
is claiming to have a perfect theoretical and logically inescapable contract with
the past and the future but making frequent appeal to force majeure.

This does not let frequentists off the hook. Some frequentist habits also only
make sense in the context of making a decision and are not, therefore, useful
ways of summarising evidence. For example, if there is any point at all to stan-
dard frequentist approaches to sequential analysis it is in the sense of having to
make a decision for the given trial. As a summary of evidence, I would not want
the adjusted analysis (Senn 2008).

Indeed, I see a lot of value in the distinction that Richard Royal makes be-
tween three questions one might ask having completed a study: ‘what should I
believe?’, ‘what should I do?’ and ‘what is the evidence?’ (Royall 2004). The like-
lihood approach seems an attractive one to dealing with the latter, however, as
David Cox (2004) has pointed out, it has problems in dealing with nuisance pa-
rameters. In theory, the subjective Bayesian approach should be good at this—in
practice, as in the examples below, things are not so simple.

4. Examples

Space does not permit me to discuss these in detail; some of them have been
discussed elsewhere.

My first concerns an example of Howson and Urbach (1989). They consider
600 rolls of a die in which four of the possible scores are observed 100 times
each but there are 77 ones and 123 twos. The Pearson-Fisher chi-square value
on five degrees of freedom is 10.58 and so not significant at the 5% level and
H&U conclude that the test has got it badly wrong. They do not say, however,
what a Bayesian analysis would show and this is a problem because it is not
possible to know what is on the table. Any Bayesian who wishes to claim that
a Bayesian analysis would produce a conclusion that we all feel is right should
proceed to the demonstration. Here, I believe, one would have to distinguish
between two extreme cases: 1. the rolling of the die has been agreed and wit-
nessed 2. These are some numbers some philosophers have written down in a
book; do they report a real die? (There are, of course, many other intermediate
cases.) I have produced an analysis of the first case (Senn 2001) but as far as
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I am aware they have not. Using a fairly conventional Bayesian analysis I find
that the evidence (if case 1 applies) is not overwhelming that the die is not fair.
For case 2, I consider that claiming that the chi-square test was suspect because
it failed to detect a problem would be like saying the miller’s scales were faulty
because they gave the wrong reading when his thumb was on the pan. The fault
would lie with the miller not the scales.

In a second example Denis Lindley (1993) produces a prior distribution for
the probability that a lady, holding the ‘Master of Wine’ qualification can discern
which of a pair of wine glasses contains claret and which a Californian blend
of the same grapes. The prior distribution for her probability θ of discerning
correctly is given by

f (θ)= 48(1−θ) (θ− 1/2) , θ ≥ 1/2 (13)

This is plotted in Figure 2. I think that it is actually really hard for anybody
to come up with a reasonable prior distribution for this example but I am also
convinced that nobody not even Lindley would consider that the prior distribu-
tion given is reasonable. I would suppose a U shaped distribution of some sort
to apply with it being likely that if the lady can distinguish the two she can do
so fairly reliably and if not that she will guess. So that far from values near 0.5
and 1 having low probability they have high probability.
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Figure 2: Plot of Lindley’s prior for the lady tasting wine. Probability density is plotted
on the vertical scale against probability of discerning correctly.

The above two examples concerned Bayesian theoreticians and perhaps one can
excuse these on the grounds that they are not meant to be taken seriously. How-
ever, my further examples concern practitioners and these will illustrate that it
is possible to claim to be Bayesian without doing anything that De Finetti would
really regard as such.

In a ground breaking paper published in Applied Statistics in 1985 Racine et
al. (1986) illustrated Bayesian approaches to problems that arise in the pharma-
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ceutical industry. One of them concerned the analysis of a so-called AB/BA cross-
over trial of two doses of a beta-blocker in hypertension (Martin and Browning
1985). Patients were randomised to one of two sequences: treatment A in a first
period followed by treatment with B in a second period or treatment B in the
first period followed by treatment A. The key problem in the analysis of cross-
over trials is that of carry-over (Senn 2002b). This is the residual effect of a
treatment given in an earlier treatment in a subsequent treatment period. If
this happens then one is in danger of making a biased estimate of the treatment
effect. The amount of carry-over is usually of no great interest in itself but must
form part of the model (even if only to have it explicitly set to zero) and is thus
an example of a nuisance parameter: one whose values can affect inference.

Various approaches to modelling the effect of carry-over were considered by
the authors and also by the leading Bayesian statistician David Spiegelhalter as
well as others in discussion of the paper. However, what nobody considered was
the actual details of the trial. The treatment effect was measured 4–8 hours
after the last dose of treatment but the period of treatment was six weeks or
1008 hours. Thus the residual effect of the previous treatment (the carry-over)
is measured after a time interval that is at least 125 times as long as the direct
effect of treatment (Senn 2000b). A frequentist statistician who chose to set
such a carry-over to zero (that is to say ignore it) would be being more Bayesian
in the De Finetti sense then one who used conventional uninformative prior
distributions or even Bayes factors.

In a paper published in Statistics in Medicine in 2005 Lambert et al. consid-
ered thirteen different Bayesian approaches to the estimation of the so-called
random effects variance in meta-analysis. This variance is another example of
what statisticians call a nuisance parameter—although of some direct interest,
its value determines other inferences that are more important. In this example
it is a variance of the ‘true’ treatment effect, which is taken to vary from trial to
trial. The more important parameter is the average treatment effect, not least
because, given no other information, this would be the best guess of the treat-
ment effect in any given trial and hence, it is frequently assumed, for any future
patient. (Further discussion as to whether this assumption is reasonable has
been given in Senn 2000b.)

The paper begins with a section in which the authors make various intro-
ductory statements about Bayesian inference. For example, “In addition to the
philosophical advantages of the Bayesian approach, the use of these methods
has led to increasingly complex, but realistic, models being fitted” and, “an ad-
vantage of the Bayesian approach is that the uncertainty in all parameter esti-
mates is taken into account” (Lambert et al. 2005, 2402) but whereas one can
neither deny that more complex models are being fitted than had been the case
until fairly recently, nor that the sort of investigations presented in this paper
are of interest, these claims are clearly misleading in at least two respects.

First, the ‘philosophical’ advantages to which the authors refer must surely
be to the subjective Bayesian approach outlined above, yet what the paper con-
siders is no such thing. None of the thirteen prior distributions considered can
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possibly reflect what the authors believe about the random effect variance. One
problem, which seems to be common to all thirteen prior distributions, is that
they are determined independently of belief about the treatment effect. This is
unreasonable since large variation in the treatment effect is much more likely
if the treatment effect is large (Senn 2007b). Second, the degree of uncertainty
must be determined by the degree of certainty and certainty has to be a matter
of belief so that it is hard to see how prior distributions that do not incorporate
what one believes can be adequate for the purpose of reflecting certainty and
uncertainty.

Certainly, another Bayesian paper on meta-analysis only a few years later
(Higgins et al. 2008) agreed implicitly with this, the authors writing: “We as-
sume a priori that if an effect exists then heterogeneity exists, although it may
be negligible.” This latter paper by the by is also a fine contribution to practical
data-analysis but it is not, despite the claim in the abstract, “We conclude that
the Bayesian approach has the advantage of naturally allowing for full uncer-
tainty, especially for prediction”, a Bayesian analysis in the De Finetti sense.
Consider, for example this statement, “An effective number of degrees of free-
dom for such a t-distribution is difficult to determine, since it depends on the
extent of the heterogeneity and the sizes of the within-study standard errors as
well as the number of studies in the meta-analysis.” (Higgins et al. 2008, 145).
This may or may not be a reasonable practical approach but it is certainly not
Bayesian.

There are two acid tests. The first is that the method must be capable of
providing meta-analytic results when there is only one trial. That is to say the
want of data must be made good by subjective probability. The practical problem,
of course, is that you cannot estimate the way in which the results vary from trial
to trial unless you have at least two trials (in fact, in practice more are needed).
But to concede this causes a problem for any committed Bayesian.

The second test is that whereas the arrival of new data will, of course, re-
quire you to update your prior distribution to being a posterior distribution, no
conceivable possible constellation of results can cause you to wish to change your
prior distribution. If it does, you had the wrong prior distribution and this prior
distribution would therefore have been wrong even for cases that did not leave
you wishing to change it. This mean, for example, that model checking is not
allowed.

5. Conclusion, a Defence of Eclecticism

The above examples are not a proof of anything: certainly not that analysis that
currently sails under a Bayesian flag of convenience is bad. At least in the more
applied cases I illustrated I personally would be interested in the results the
authors came up with. But not so interested that I would consider them to be the
final word on any problem. Also what I would flatly deny is that analyses that so
frankly contradict in many respects what pure Bayesian theory dictates should
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be done could use any claim such a theory has to coherence as a justification for
the analysis performed.

This leaves us, I maintain, with applied Bayesian analysis as currently prac-
ticed as one amongst a number of rough and ready tools that we have for look-
ing at data. I think we need many such tools because we need mental conflict
as much as mental coherence to spur us to creative thinking. When different
systems give different answers it is a sign that we need to dig deeper
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