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1 Introduction 

Chronic destructive lung diseases, e.g. fibrosis, emphysema and COPD, have become 

an increasing problem in today’s pulmonary medicine. The severe alterations of the 

lung structure cause a continuously increasing affection of gas-exchange efficiency and 

an ongoing loss of quality of life. Although the number of patients is increasing, there 

are still very few therapeutic options for inhibiting or at least decelerating the tissue 

degradation and reorganization processes. Often the only “cure” is lung transplantation, 

with all its inherent acute and chronic complications. 

Therefore, strategies to overcome pulmonary tissue damage of patients by activation of 

endogenous regenerative programs would be desirable. The study presented here deals 

with the search for suitable candidate genes in two different mouse lung growth models, 

namely compensatory lung growth, which regularly does not exist in humans, and 

normal postnatal alveolarization. 

1.1 Lung functions and structure 

As the experiments performed for the work presented here focused on the search for 

molecular mediators of alveolarization and lung growth, it is necessary to explain lung 

functions, structure and growth behaviour in detail first to give an overview of the 

regular situation and to show which elements and growth steps may be affected by 

disorders or may be targets for therapeutic approaches. 

Being situated in the thorax, the main function of the lung is the gas exchange, meaning 

to supply the organism with adequate amounts of oxygen and to dispose the carbon 

dioxide originating from metabolic processes. Apart from this, the lung is in direct 

contact with microorganisms and toxins / pollution from the outer environment which 

either need to be eliminated - using ciliated cells supplied by coughing - or which have 

to be inactivated or killed, e.g. by alveolar macrophages. 

Using respiratory movements of intercostal and thorax musculature as well as the 

diaphragm, the lung is alternatingly enlarged and down-scaled by air flowing through 

mouth, pharynx, trachea and the bronchial system up to the gas-exchanging alveoli and 

backwards. In humans, the trachea ends up with the primary bronchus and 

dichotomously divides into two main bronchi (bronchi (br.) principales) which 

themselves branch into br. lobares each supporting one lung lobe (three on the right side 
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of the thorax, two on the left). The latter ones again branch into br. segmentales to 

supply ten lung segments on the right side and nine on the left. After several further 

divisions and becoming cartilage-lacking bronchioli, the conducting bronchial system 

ends up with bronchioli terminales, which pass into the transitional zone, firstly 

represented by bronchioli respiratorii. These structures can be found from about the 17th 

generation of dichotomous divisions; they contain single alveoli and further branch to 

generate alveolar ducts with numerous adherent alveoli. The ducts divide into alveolar 

sacs which finally open up into numerous alveoli. As there are millions of these bubble-

like structures, the total gas-exchanging surface of the human lung (ca. 140 m2) roughly 

equals the size of a tennis court. In total, about 24 divisions are made from the end of 

the trachea up to the alveoli. 

To enable a gas exchange, blood needs to be transported to the alveoli. For this, 

branches of Arteria pulmonalis coming from the right ventricle and containing blood 

with low oxygen and high carbon dioxide concentrations run and divide in parallel with 

the bronchial system and spread up into fine meshes of capillaries surrounding the 

alveoli. Gas exchange is performed by diffusion through a thin tissue layer consisting of 

alveolar epithelial cells type I (AECs I) on the alveolar side, a common basal membrane 

and endothelial cells on the capillary side. To be pumped into the body, the resulting 

oxygen-rich blood is collected in branches of the four Venae pulmonales, running to the 

left atrium via connective tissue and between the lung segments - and not in parallel 

with arteries and bronchi. 

In opposite to humans, mice have four right lobes and only one on the left side, but the 

branching and vascularization pattern is similar. Further differences imply a 

comparatively wide central bronchial system facilitating a high breathing frequency and 

a mainly irregular, i.e. asymmetric, branching behaviour with the major branches being 

arranged vertically. This aspect helps to additionally function as an internal organ 

skeleton and fits best to the quadrupedal anatomy of the mouse. Due to the similarities 

with humans, rodents, which are mammals as well, are proper model animals for 

numerous scientific approaches. Because of that, mice, which additionally provide 

many genetically engineered strains for further studies, were chosen for the experiments 

performed in the study presented here. 
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1.2 Regular lung development 

Descriptions given here refer to human lung development; corresponding time points 

and events from mice - where nearly identical procedures happen significantly quicker - 

are given in parentheses. The different stages appear with some physiologic overlap. 

Prenatal development: 

a) Organogenesis / embryonic period: On gestational day 26 (mouse: embryonic day 

(E) 8-9), the lung appears as a small, single bud on the ventral part of the foregut. While 

the bud enlarges and invades into the surrounding mesenchyme, it is separated from the 

prospective oesophagus by laryngotracheal grooves; only a small, cranial connection to 

the foregut is maintained, the future larynx entrance. With 4.5 weeks (E9.5), the lung 

anlage consists of five little saccules, generated by dichotomous divisions: three on the 

right-hand side and two on the left, respectively (mouse: four / one). With ongoing 

branching, the future bronchial tree reaches subsegmental levels at the end of week 7 

(E10) [1].  

b) Fetal period: 

Pseudoglandular stage: In gestational weeks 5 to 17 (E10-16), the lung looks like a 

small, primitive gland. The whole air-conducting part, i.e. the bronchial tree, is 

generated in this period [2]. In vessel formation, arteries run and divide in parallel with 

the bronchial system, while veins branch separately. Cuboidal epithelial cells lining the 

distal airways contain significant amounts of glycogen serving as energy supply for 

later differentiation steps. Although a little controversy, today’s view of the final stage 

of the pseudoglandular period includes the “birth of the acinus”, which is defined as the 

respiratory unit originating from one bronchiolus terminalis [1, 3]. 

Canalicular stage: This period lasts from gestational week 16 to 26 (E16-18). The 

transition from the pseudoglandular appearance is performed by establishing gas-

exchanging tissue in the future acini, and the term “canalicular” originates from the 

“canalization” of future parenchyma by multiple capillaries forming a network in the 

mesenchyme and approaching bronchial structures. While air spaces enlarge, the 

glycogen-rich cuboidal epithelial cells either flatten to facilitate a thin air-blood barrier 

and become AECs I or they differentiate into AECs II. The latter ones begin to form 

lamellar bodies containing surfactant components and they start to secrete small 

amounts of surfactant at the end of the canalicular phase - what makes this time point 

the earliest at which premature babies could survive [1]. 
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Saccular stage: Lasting from 24 weeks up to term (E18 - postnatal day (P) 5), in this 

period a lot of gas-exchanging tissue is generated. The peripheral air spaces widen to 

form saccules, and more proximal parts of the acini widen and elongate. The number of 

distal branching generations significantly increases. Due to these processes, the volume 

of interstitial tissue is extremely reduced, and two layers of a capillary network are 

situated directly next to each other between the air spaces [1]. 

Alveolar stage: This period begins in the 36th week of human pregnancy; only about 

15 % of all alveoli have been generated at birth. In mice, the whole process is postnatal. 

Due to these facts, the alveolar stage is summarized in the postnatal time. 

Postnatal development: 

a) Alveolar stage: Beginning in the 36th week of pregnancy, this period lasts at least up 

to 18 month of age, but estimations go up to even 20 years. Similarly, the calculated 

number of alveoli at delivery is extremely variable [3, 4]. In mice, the alveolar stage 

ranges from birth up to about 4 weeks. 

For primary alveolarization, small ridges appear along the saccular walls. They divide 

the sacculi into smaller units to generate alveolar ducts and sacs as well as primary 

alveoli. The latter ones are immature, indicated by a double capillary layer. Within the 

following secondary alveolarization, additional septae fold up from the walls of primary 

alveoli. By this process (and microvascular maturation, see below), supported by 

apoptosis of interstitial cells, mature alveoli with only one capillary layer and thin air-

blood barriers are generated [5]. In the origin (and later the tips) of secondary septae, 

Elastin fibres play an important role in guidance and elongation [1]. 

b) Microvascular maturation: In addition to the extreme reduction of connective 

tissue, the capillary network needs to be changed from its double to a single layer to 

ensure an optimal gas exchange. For this purpose, two principles seem to interact: 

Capillaries fuse, involving apoptosis of dispensable cells, and merged / “mature” areas 

display a preferential growth, suppressing immature structures [1, 5]. 

c) Adult lung: Having undergone all developmental steps described above, the mature 

lung is still able to grow without major structural changes; this happens in parallel with 

the normal growth of the body and leads to following adult dimensions: Assuming an 

average body weight of 74 ± 4 kg, the lung volume makes up 4,340 ± 285 ml. The 

alveolar surface area adds up to 143 ± 12 m2, while the capillary surface covers only 

126 ± 12 m2 [1]. 



 

 11

1.3 Modifyers of lung development 

As normal lung development is a highly complicated process with many different cell 

types having to interact in an optimal temporospatial manner, there is obviously a high 

susceptibility for disturbances. These may result in alterations of structure and function, 

which may even cause the death of affected individuals. In the following chapters, 

examples of promoting / interfering molecules and of uncommon situations are given: 

1.3.1 Varying concentrations of endogenous molecules 

Glucocorticoids inhibit cell divisions in several tissues including the lung [6, 7]. Due to 

that, these hormones undergo a natural decrease in their concentration in the phase of 

septation, when a high degree of proliferation is required [8]. Another well-known 

effect of glucocorticoids is used in clinical practice when babies are (in danger of being) 

born too early: High hormone levels initiate the end of septation and accelerate the 

thinning of alveolar walls as well as the transition from the double-layer to the mature 

capillary system [9]. This results in lungs with a higher degree of maturity and improves 

the gas-exchange effectiveness of preterm babies. Despite the temporary advantages, 

glucocorticoid treatments also cause complications in later life as the inhibited septation 

is not spontaneously reactivated and the comparatively small number of pulmonary 

arteries generated under therapy tends to cause pulmonary hypertension [6, 10, 11]. 

Retinoic acid (RA), an active metabolite of vitamin A, is involved in embryonic 

development and septation. From the clinical point of view, its abilities to “rescue” 

septation after the application of glucocorticoids and to induce alveolar regeneration are 

very important [12-15]. Although having these positive effects, RA administration has 

to be weighed critically as a teratogenic impact of lacking as well as excess RA is 

known [16]. RA has an influence on the formation of alveoli by determining the 

distance between septae and inducing “eruptions” of primary to generate secondary 

septae. The length of the new septae is regulated by another mechanism (e.g. oxygen 

tension) as despite RA administration the total surface area of healthy test animals did 

not significantly change before adding hypoxic conditions [17, 18]. RA-specific effects 

are mediated via retinoic acid receptors (RARs): A knock-out of RAR-β, which is 

usually down-regulated within septation due to its exceptionally inhibitory effect, 

causes a preliminary, quick septation, while a constitutive expression and agonists lead 

to immature distal lung structures and collapsed air spaces at birth [19]. 
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Thyroid hormones are also known to have an influence on septation, as studies proved 

that the concentrations of these mediators and of their receptors significantly increase 

before the onset of this event [20, 21]. In newborn rats not only DNA synthesis was 

shown to be elevated, but triiodthyronine (T3) also accelerated the speed of septation. 

This resulted in more and smaller alveoli comprising a higher total gas-exchanging 

surface area without affecting the total lung volume [22]. 

TTF-1 (thyroid transcription factor 1, also known as Nkx2.1) is a growth factor 

downstream of the thyroid hormones. Apart from the thyroid gland and the foetal brain, 

it is expressed in AECs II of adult animals as well as in cells with epithelial 

characteristics during lung development. Its first appearance in the “respiratory tract” 

was detected even in the lung bud (→ 1.2) [23]. TTF-1 is of highest importance for 

surfactant synthesis as it binds to and activates the promoters of SP (surfactant protein) 

-A, SP-B and SP-C. Knocking out the TTF-1 gene caused a non-viable phenotype of 

lungs with a rudimentary bronchial tree and lacking parenchyma [24]. 

The TGF-beta (transforming growth factor beta) family consists of at least 24 

different cytokines, which can be modulated by RA (see above). These molecules are 

involved in cellular proliferation, differentiation, recognition and death; they influence 

extracellular matrix synthesis and epithelial cell growth and suppress the immune 

system [25, 26]. As a combined TGF-beta 1, 2 and 3-specific (overexpression) effect, 

Bragg et al. found an accumulation of alpha-smooth muscle actin as well as inhibited 

branching, cell proliferation and SP-C expression [27]. On the other hand, the important 

role of TGF-beta 3 on its own became obvious with knockout mice showing alveolar 

hypoplasia, lacking septation, thickened mesenchyme and not enough AECs II [28]. 

The Hox (Homeobox) genes are an RA-sensitive family of transcription factors 

containing a helix-turn-helix DNA binding-motif. They are arranged in four clusters 

(Hox a-d) on different chromosomes and they can be regarded as master regulators of 

developmental processes as they steer the positioning of organs [29]. In a 3’ → 5’ 

direction, the Hox genes of each cluster are sequentially arranged according to 

stimulatory sensitivity (decreasing RA gradients necessary for activation), localization 

of being operative (from rostral to caudal) and time point of activation during 

development (from early to later) [30]. The importance of the Hox genes becomes 

evident when studying for example Hox a-5 knockout mice, which die soon after birth 

due to lung defects [31]. 
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Surfactant proteins [SP-(A-D)]: These molecules are of extreme importance for 

growth and proper function of the lung. Surfactant consists of about 90 % phospholipids 

and 10 % proteins; the latter ones can functionally be divided in two groups: While 

SP-A and SP-D are hydrophilic and play a role in defending the body from microbial 

intruders and in keeping the alveolar maintenance, SP-B and SP-C are hydrophobic and 

essential for keeping the surface tension on low levels [32]. When an individual faces 

disturbances in the normal surfactant composition, this often causes life-threatening 

conditions: SP-A knockouts live well under normal circumstances, but have severe 

problems in defending themselves from microbial attacks [33]. Even worse are SP-D 

knockouts: They have less SP-A and SP-C and a slower phosphatidyl choline 

metabolism causing alveolar proteinosis, dilated distal airways and higher levels of 

oxidants and phospholipids [34, 35]. SP-B-lacking mice showed the worst experimental 

outcome as they died at birth due to lacking surface tension reduction, and SP-C 

knockouts presented with severe interstitial lung diseases [36, 37]. 

1.3.2 Extrapulmonary and environmental influences 

Congenital diaphragmatic hernia (CDH): 

A severe abnormality causing disturbances without originating from the lung itself is 

the CDH, a condition in which, due to a (mostly left-sided) hole in the diaphragm, parts 

of abdominal organs move up into the thorax and prevent the respiratory tract from 

regular development. The resulting hypoplastic lung features a reduced number of 

airway branches, cardial and vascular abnormalities including less vascular generations, 

extremely muscularized pulmonary vessels (possible long-term effect even under 

therapy: pulmonary hypertension due to vasoconstriction) and surfactant deficiency [38, 

39]. These conditions can cause a severe respiratory failure within hours after birth. 

CDH is found in 1 of about 2,500 births with a mortality of up to 35 % of the live-borns 

[40, 41]. According to the aetiology, different concepts have been raised: A higher 

susceptibility of selected pregnant women to environmental toxins was considered as 

well as disturbances in RA metabolism - or simply lacking RA [42-44]. Additionally, 

genetic reasons were suggested, e.g. aneuploidies, structural abnormalities of 

chromosomes or mutations of the transcription factor Nr2f2 (nuclear receptor subfamily 

2, group F, member 2), which plays a role in RA signalling [45, 46]. As long as a CDH 

is detected prenatally, a fetal tracheal occlusion therapy with a balloon plugging the 

trachea to increase the intrapulmonary pressure is helpful in some cases (→ 1.4.3) [47]. 
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Postnatally, the babies often need immediate intubation and ventilatory support using 

e.g. high frequency oscillatory ventilation; surgical interventions often become 

necessary very soon [48]. As more than 85 % of the affected patients are also facing 

(mostly pulmonary) problems in later life, one main therapeutic target is the reduction 

of the typical pulmonary hypertension, e.g. by inhaled NO (reduces intracellular Ca2+), 

PDE-5 (phosphodiesterase 5) inhibitors like Sildenafil or endothelin inhibitors like 

Bosentan [49, 50]. Due to its importance, there is a well-established mouse model of 

CDH as well. The unborn animals develop the defect after administration of nitrofen, an 

environmental toxicant formerly used as herbicide, to the pregnant mouse [51]. 

Inappropriate oxygen tension: 

Alveolarization processes are influenced by the amount of oxygen being present in 

breathing air. Excess concentrations (hyperoxia) as well as lacking oxygen (hypoxia) 

both cause fundamental changes in the outcome of lung formation: 

For hyperoxia, a diminished septation could be shown by several groups; this was 

accompanied by less gas-exchanging surface and slower growth of the body [52-54]. In 

experiments, regularly using ≥ 95 % oxygen, it could not be clearly figured out whether 

the observed effects were due to an intentionally diminished / not enlarged surface area 

(because of an effective oxygenation even with few alveoli), or whether a toxic effect of 

oxygen itself destroyed parts of the tissue [55, 56]. 

From the clinical point of view, the lung initially copes with excess oxygen by 

generating reactive oxygen species (first three days of treatment), followed by an 

accumulation of inflammatory cells releasing inflammatory mediators. The subsequent 

affection of capillary endothelial cells causes an increased capillary permeability 

resulting in pericapillary oedema, which aggravates the situation as the diffusion 

distance for gas exchange is enlarged. In addition to that, it has been observed that 

AECs I are lost due to persisting hyperoxia and AECs II show a hyperplasia trying to 

replace the missing cells [57-59]. Becoming a chronic affection, also fibroblasts 

proliferate, and with an increased collagen deposition a fibrosis is generated. This 

condition can finally cause secondary pulmonary hypertension [59, 60]. 

A common medical indication for usage of high oxygen concentrations is the artificial 

ventilation of very preterm babies. As a main reason for the oxygen-induced damage 

seems to be an immature endogenous antioxidant defence, therapies using external 

antioxidants (e.g. superoxide dismutases) in addition to glucocorticoid, nitric oxide and 

surfactant administration, are helpful [61-63]. 
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In opposite to hyperoxia, the effects of hypoxia / diminished oxygen tensions are 

relatively common, e.g. in case of people living in high altitudes. These individuals 

were found to have larger alveoli and a dysanaptic lung growth, i.e. a relative excess of 

gas-exchanging tissue compared to conducting airways [64]. Oxygen tension was found 

to be of highest relevance for the amount and shape of alveoli, but only in animals with 

postnatal septation: Sheep lungs, undergoing intrauterine septation, were not affected by 

high altitude conditions [65]. In opposite to that, rat lungs, performing postnatal 

alveolarization, had fewer and larger alveoli, as long as hypoxia was present in the 

critical first two postnatal weeks. In case of a hypoxia exposition beginning after this 

period, size and total surface area of alveoli were larger, but their number was not 

statistically changed [17, 66]. According to Massaro, these data suggest a hypoxia-

depressible component of septation [67]. Although the need for oxygen can be regarded 

as the most important regulator of the surface area, early hypoxia seems to decrease the 

basal organismal oxygen uptake, which generally is in relatively strict linear 

relationship with the body mass of mammals [18]. This may happen, because the 

mechanism of hypoxia-driven increase in ventilation does not yet work in the early 

postnatal phase; apart from this, hypometabolism, resulting in a lower body 

temperature, is a good way to cope with (temporal) hypoxia [68, 69]. Hypoxia-exposed 

animals have a smaller body weight, lowering the need of oxygen uptake and by this the 

required alveolar surface area. To overcome the hypoxia-driven structural deficiencies, 

individuals develop adaptation mechanisms; good examples are guinea pigs grown up in 

high altitudes and presenting a smaller mean thickness of alveolar walls as well as 

human “highlanders” also showing an improved diffusion capacity [70, 71]. 

1.4 Experimental modifications of lung growth 

As obviously no human alveolarization samples could be used for the study, animal 

experiments had to be performed. Due to many advantages including manageability, 

knowledge about the genome and ease of designing / available number of genetically 

engineered animals, mice were chosen. In order to search for genes possibly regulating 

alveoli formation, newborn animals were the first choice, but for a good comparison and 

to reduce the number of candidates by studying especially overlapping genes, at least 

one additional model had to be included. In the following chapters, some ways to either 

inhibit or to (re-) initiate lung growth are presented: 
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1.4.1 Glucocorticoid treatment 

Glucocorticoids have a well-known inhibitory effect onto septation (→ 1.3.1). Due to 

their maturity-promoting influence, these hormones are administered to very preterm 

babies in order to enable / ease an extra-uterine life (→ 1.3.1). In principle, it would 

have been interesting to see the differences in gene expression due to glucocorticoid 

administration as well as after discontinuation of the therapy at defined time points 

during and / or after regular septation as these processes can be assumed to happen also 

in numerous human individuals. On the other hand, glucocorticoids have many side 

effects according to several organs as well as the immune system, and not all changes 

observed in the lung are completely opposite of what naturally happens, e.g. the 

initiation of maturation in later stages of alveolarization. These facts make the detected 

effects difficult to judge and may cause unexpected interactions / pseudo-regulations not 

(only) originating from the lung. This led to the decision to not preferably study 

glucocorticoid-treated mice at first - but future comparisons with results from more 

“physiological” models may help to further curtail the list of candidate genes. 

Additionally, Clerch et al. have published a microarray study about dexamethasone and 

RA-treated neonatal mice which, although only one time point for measurement was 

monitored, can be used as a reference for initial comparisons [72]. 

1.4.2 Calorie restriction and refeeding 

Assuming that not only the mammalian liver, but also other organs including the lung 

have regenerative abilities, the group around D. Massaro performed calorie restriction 

and refeeding studies with mice [73]. Their idea was based on the knowledge that a) in 

adult mammals there is always a linear relationship between body mass and oxygen 

uptake / gas-exchanging surface area and b) oxygen uptake is diminished under calorie 

restriction what in consequence lowers the need for alveolar surface area [18, 74]. 

Additionally, the lung proteolysis rate was found to be doubled when food is lacking to 

provide substrates for gluconeogenesis and metabolism, while refeeding of starving 

mice leads to an increased oxygen uptake which can be met only with more gas-

exchanging surface [74, 75]. 

In their experiments, Massaro et al. fed mice with only one third of the chow they 

regularly consumed and found the animals to lose about 40 % of their body weight 

within 15 days, while there was no significant difference in lung volume [73]. Refed 

mice (3 weeks of ad libitum food after the restriction period) did not show any 
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significant difference in body mass or lung volume compared to control animals having 

been fed without any limitations. Measurements in lung sections proved that the 

alveolar number and the gas-exchanging surface area of calorie-restricted animals was 

significantly lower than in all control and refed groups, while the average volume of 

single alveoli increased [73]. Measurements showing less lung DNA after 3 days of 

restriction and a return to normal levels after 3 days of subsequent ad libitum-refeeding 

indicated varying cell numbers to be responsible for the findings. This was underlined 

by increasing amounts of fragmented DNA and by far more apoptotic cells in starving 

as well as extremely increased numbers of proliferating cells in refed mice [73]. 

By this study, Massaro et al. have proven a regenerative potential of lung tissue in adult 

mice. Their results were extended and deepened by two further, microarray-based 

studies concentrating on the regulation of gene expression in different functional groups 

including e.g. apoptosis, proteolysis, cell replication, angiogenesis, cell motion and 

extracellular matrix composition [76, 77]. As these data are nicely in line with the aims 

of the study presented here, they are discussed later in connection with own results 

(→ 4.2.1). 

Although the calorie restriction and refeeding model nicely shows an interesting type of 

“untypical” lung growth, it was not the first choice for a comparison with the gene 

expression in regular alveolarization of newborn mice. One reason for subordinating 

this model was, as before with the glucocorticoid treatment (→ 1.4.1), the starvation-

based affection of the whole body and its potentially falsifying influences on lung gene 

expression. Another complicating aspect would have been how to define when exactly 

calorie restriction starts or ends, as regulations on RNA level not immediately change 

and in the beginning of starvation / refeeding numerous overlaps could be expected. 

Due to these points, the effects to be seen might (still) have been covered. On the other 

hand, waiting for too long would have possibly skipped important early regulators. 

In summary: Due to non-excludable interactions with the whole body and because of 

expectable overlaps between growth-promoting and -inhibiting factors at the onset and 

the end of the restriction phase, this model was not chosen for the first studies. 
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1.4.3 Tracheal occlusion 

Congenital diaphragmatic hernia (CDH) is a major cause of hypoplastic lungs as 

abdominal organs move into the thorax and prevent the lung tissue from regular growth 

(→ 1.3.2). Due to the importance of this developmental disturbance, numerous attempts 

have been made to improve the outcome of affected babies (→ 1.3.2) [40, 41]. A 

potential intrauterine therapeutic approach is the tracheal occlusion procedure 

established in a sheep model. This intervention is based on two observations, namely a) 

a physiological fluid production of foetal lungs up to some days before birth (about 

4.5 ml/kg/h) and b) the finding of hyperplastic lungs in animals with laryngeal / tracheal 

atresia [78-81]. The idea of the model is to use an inflatable balloon (or simply a 

ligation) to simulate a tracheal atresia and to keep the fluid from leaving the lung [82]. 

By this, the intrapulmonary pressure is raised, preventing the abdominal organs from 

intruding into the thorax and compressing the developing lung. Studies proved the 

effectiveness of the treatment even in animals without CDH, as lungs significantly grew 

according to size, alveolar number, gas-exchanging surface, DNA and protein content 

etc. [82]. A major side-effect of the treatment is a loss in AEC II density (especially in 

case of early occlusion application) resulting in a severe surfactant deficit [83, 84]. 

Although these problems could mostly be overcome by applying only a temporal 

occlusion, the respiratory function remained critical afterwards [85]. 

Studying foetal rabbits undergoing tracheal ligation, de Paepe et al. found a 3-day lag- 

phase after treatment before accelerated distension of airspaces and proliferation 

became detectable [86]. Indicating preliminary maturity, architectural changes appeared 

earlier than regularly and numerous AECs II had transformed into AECs I [86]. 

Up to date, tracheal ligation is possible even in foetal mice. In different studies, it could 

be shown that internal pressure regulates the branching speed via the FGF10-FGFR2b-

Sprouty2 pathway and that tracheal occlusion accelerates epithelial cell proliferation 

and mesenchymal cell apoptosis [87, 88]. As in sheep, a decrease in maturity (e.g. 

lacking surfactant) in parallel with the increased proliferative activity was detected [89]. 

The tracheal occlusion model was not suitable for the intended microarray study as it 

just represents a change of the regular alveolarization accelerating some processes and 

inhibiting others, not applicable to adult individuals. As the intervention causes atypical 

lung structures and a potentially altered functional behaviour, it does not match the 

needs of a model for regular lung growth being comparable to newborn mice. 
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1.4.4 Compensatory lung growth 

Compensatory lung growth is defined as the re-initiation of lung growth in adult 

individuals after surgical removal of part of the gas-exchanging tissue; it could be 

observed in several mammalian species, e.g. mice, rats, dogs and rabbits [90-92]. This 

phenomenon includes not only an emphysema-like volumetric expansion of the 

remaining alveolar structures as seen after cancer surgery in humans, but true alveolar 

growth and neo-alveolarization [93]. Compensatory growth does not mean the 

generation of an exact copy of the excised lobe(s), but the hyperplastic reconstitution of 

tissue within the remaining part(s) of the lung [94]. Fehrenbach et al. showed that about 

50 % of the removed alveoli are restored, while organ volume and surface area are 

substituted completely; this implies an additional growth of pre-existing alveoli [93]. 

Usually, for induction of the process a unilateral pneumonectomy is performed. In case 

of mice this means the removal of the left part of the lung consisting of only one lobe 

and making up about 30-35 % of the total tissue (→ 2.1.1); the compensation takes 

about three weeks [95]. 

Although compensatory lung growth globally proceeds in a conserved manner, there are 

some species-specific exceptions and facts to keep in mind when judging the degree of 

lung regeneration: In rodents, the process is easily inducible by removal of one or two 

lobes, and the reaction is quick and generates (at least) most of the removed tissue [95]. 

Due to a large physiological reserve, comparatively small changes of the volume do not 

always cause the expected effect in other species: In dogs more than 50 % of the tissue 

need to be removed for induction of effective compensatory growth [92, 96]. For these 

and other large mammals the maturity is also very important: In immature dogs with 

ongoing proliferation the regenerative growth reaction is significantly quicker than in 

adult animals, and in the latter ones it is generally incomplete [94, 97]. Similar data 

were obtained for rabbits which change from a predominant alveolar multiplication in 

the juvenile time to a more pronounced airspace enlargement [91]. Even in humans, 

compensatory growth up to an age of 15 years was detected, but this finding is 

controversial as another group found no age-dependent changes in the reaction to lung 

resection [98, 99]. 

An increased blood and air flow through the remaining tissue seems to be the main 

stimulus for regeneration. As soon as an adequate stimulation has been generated, 

compensatory lung growth is implemented - even under complicating circumstances: 

Positioning an inflated prosthesis into the thorax of a right-sided pneumonectomized 
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dog to prevent a mediastinal shift caused a caudal enlargement of the remaining lung, 

deforming the diaphragm [100]. 

There are two further interesting phenomenons regarding compensatory lung growth: It 

is possible to re-initiate this process by removing additional lobes several weeks after 

the first surgical intervention; in this case, the affected rats tended to show a 

predominantly hypertrophic growth behaviour combined with pulmonary hypertension, 

the latter one probably due to the low amount of remaining parenchyma [101]. In 

another approach, Kaza et al. showed that the growth potential not only depends on the 

age / maturity of the affected lobe: Transplanting a left lower lung lobe from adult pigs 

to (left-sided) pneumonectomized immature animals of the same species resulted in a 

growth reaction of the originally mature tissue. As this effect was observed significantly 

later than in case of an immediate compensatory growth reaction, different steering 

mechanisms were assumed [102]. 

Despite the promising potential of compensatory lung growth, one has to take into 

account that there are also severe side-effects which could bear a risk for later patient 

therapy: The susceptibility to lung tumour generation and the speed of tumour growth 

are significantly increased in the period of tissue regeneration [103]. Additionally, 

metastases seem to settle down easier in lung tissue of pneumonectomized mice [104, 

105]. 

The compensatory lung growth model has been chosen for further experiments as there 

are several advantages, which could not (all) be found in the other treatments mentioned 

before (→ 1.4.1-3): 

• As the lung is by far the most affected organ in this model, influences from 

generalized effects can be widely excluded. 

• Compensatory growth leads to similar structural results as seen in normal 

alveolarization; there is no extreme interplay of stimulating and inhibiting factors. 

• In opposite to a glucocorticoid treatment, the surgical intervention has no 

physiological counterpart with a basic influence. 

• Working with adult mice, the influence of natural growth processes, as seen in the 

glucocorticoid and the tracheal occlusion model, can be excluded. 

• The generation of control / sham animals is relatively easy, and there is no problem 

in defining starting and end point of the experiment or the severity of treatment. 
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1.5 The present study: Intentions and technical approaches 

Aim of the study presented here was to find genes being involved in lung growth, in 

particular the process of alveolarization. Knowing these candidates, it might be possible 

to influence their activity in order to reactivate growth processes. This might help to 

overcome the necessity of transplantation and increase the quality of life in many cases 

of chronic lung diseases. 

The best way to screen the activity of large numbers of different genes is to perform 

microarray experiments. Within these, numerous, if not all, known genes of a species 

can be evaluated in parallel according to their expression / regulation on RNA level 

(→ 2.2). The microarray study presented here based on mouse experiments, as a) there 

are well-established murine lung growth models (→ 1.4) and b) consecutive studies 

should be easy to initiate due to a huge available pool of genetically engineered animals 

as well as good tools for own modifications of gene expression in this species. 

To increase the probability of participation in alveolarization, two different models were 

compared to find the most promising candidates in the intersection: As it represents the 

regular procedure, it was necessary to firstly study physiological alveolarization in 

newborn mice - happening unexceptionally postnatally (→ 1.2). As the intended future 

treatment mostly aims for mature organs of grown-up humans, a model implying adult 

mice and omitting extreme influences on the whole body (because of non-excludible 

interferences) was necessary; due to several reasons, compensatory lung growth was the 

best choice in this case (→ 1.4.4). 

In both models, two time points each were studied, namely one and three days after 

birth or surgery, respectively. This was done due to several reasons: a) Genes found in 

both time points of one model can be expected to have a longer-lasting influence on 

lung growth with a higher statistical impact. b) Secondary septation as most relevant 

process in alveolarization is known to begin at P4-5 in mice; this implies that the key 

genes inducing this process must be active beforehand (at about P3). Results from P1 

animals could be used as a comparison representing more general growth processes. c) 

In compensatory growth, the induction phase can be expected earlier, e.g. one day after 

surgery (S1); here, S3 served as a control. 

As the best way to generate objective data is a direct comparison, dual-colour 

microarrays with competing hybridization of target and control samples to the same 

chip were employed (→ 2.2). In case of newborn mice, adult animals with mature lungs 

were the best choice for comparison. For the pneumonectomy study, it had to be taken 
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into account that, even under therapy with antibiotics, influences from an activated 

immune system could not be excluded. Due to that, sham-operated mice receiving the 

same overall treatment apart from ligation and resection of the lung tissue served as 

controls in this case. By pooling samples, a more generalized gene expression profile 

not depending on falsifying influences of single “outliers” was generated (→ 2.2). 

Performing a genome-wide screening, it could not be excluded to have found some non-

regulated candidates just coincidentally - without playing any role in alveolarization; 

additionally, a difference on RNA level does not automatically cause a change of the 

associated protein content. Due to these reasons, it was necessary to check the validity 

of the array data using different approaches: Expression ratios were checked with real-

time PCR (→ 2.3, 3.4.1), and the amount of expressed proteins was detected using the 

Western blot technique (→ 2.4, 3.4.2). 

Subsequently, validated candidates were studied for their localization in growing as 

well as control lungs to specify the involved parts of the organ; this was done on RNA 

(in-situ hybridization; → 2.6, 3.5) as well as on protein level (immunofluorescence 

stainings; → 2.9, 3.6.6, 3.7.2). As long as the expression was not only restricted to 

vessels, but preferentially occurred in bronchi or, even better, the septal area (i.e. tissue 

involved in the generation of gas-exchanging surfaces), the most promising candidates 

went on to functional studies. 

Within these, effects of overexpression and knockdown of the respective RNA 

molecules were studied in cell culture experiments to evaluate their influence on cell 

division, apoptosis induction, migration and adhesion (→ 2.7+8, 3.6+7). Employing 

different cell types enlarged the result spectrum and helped to judge the importance of 

the candidate genes regarding their role in alveolarization. 

Further studies introducing genetically engineered mice were not part of the work 

presented here, but consecutively, these animals will be the next step in candidate 

evaluation. 
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1.6 Aims of the study 

The study presented here intended to identify candidate genes being involved in the 

regulation of normal and / or compensatory lung growth. This project is a basis for 

future strategies of regenerative therapeutic approaches in chronic destructive lung 

diseases. 

In detail, following goals were in the centre of interest: 

 

 

• Establishment of a mouse pneumonectomy model to induce compensatory growth 

• Microarray studies of lungs from newborn and pneumonectomized mice at different 

postnatal and post-surgery time points 

• Search for promising candidate genes appearing in one or both approaches 

• Validation of array data and quantification of associated proteins 

• Localization of target molecules on RNA and protein level 

• Functional studies: effects of overexpression or knockdown regarding cell number 

and behaviour 
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2 Material and Methods 

The origin (manufacturer and city) of important material is given in the text at the 

position of its first appearance. Everything else, especially consumables, was purchased 

from varying companies and its origin was not relevant for the experiments. 

2.1 Animal surgery 

All experiments were performed according to the guidelines of good animal practice of 

the University of Giessen (Giessen, Germany) and were approved by the local 

authorities for animal experiments (B2 / K 2237). For expression studies, adult (10 - 12 

weeks old) and newborn (P1 or P3) C57BL/6N mice of both genders, purchased from 

Charles River (Sulzfeld, Germany), were used. 

2.1.1 Pneumonectomy 

For compensatory lung growth experiments, the left lung lobe of adult mice was 

removed as described earlier [95]: Animals were anesthetized using 3.5 ml/kg of a 2:1:1 

mixture of 0.9 % NaCl (sodium chloride) solution and the anesthetics Ketavet 

(Ketamin; Pfizer, Karlsruhe, Germany) and Rompun (Xylazine; Bayer, Leverkusen, 

Germany) as a single intraperitoneal injection. After disinfection and shaving, mice 

were intubated (21-gauge atraumatic cannula) and ventilated (MiniVent mouse 

ventilator, Hugo Sachs Elektronik, March-Hugstetten, Germany; 150 x 200 µl/min). 

Skin, muscle and fat tissue was incised in the left fifth intercostal space. After opening 

of the pleura, the left lung lobe was lifted out of the thorax. Subsequently, all parts of 

the left hilus were ligated with 6/0 silk and the lung was resected. After closing of 

thorax and skin, mechanical ventilation was terminated at the onset of spontaneous 

breathing. All animals received an intramuscular injection of 1 ml of 0.9 % NaCl as 

liquid substitution. During the days of recovery, mice were treated with antibiotics 

(Baytril (Bayer), diluted 1:500 in drinking water) as well as subcutanous analgetics 

(buprenorphin, twice daily). 

For sham-operated mice, the whole treatment was performed identically, but without 

ligation and resection of the left lobe. 
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2.1.2 Removal of (residual) lungs 

Mice were killed by an overdose of isoflurane gas (Baxter, Unterschleissheim, 

Germany) and exsanguination via the vena cava inferior. After sacrifice and opening of 

the skin, the trachea was incised and cannulated.  The thoracic cavity was opened by 

sternotomy, and a second cannula was placed into the pulmonary artery, allowing the 

removal of residual intrapulmonary blood. Then, the apex of the left ventricle was 

incised, and the lung was flushed via the pulmonary artery using 20 ml of 0.9 % NaCl 

solution at a constant pressure of 25 cm H2O while being inflated with N2 (nitrogen) gas 

via the trachea. Afterwards, the organ was removed in total and immediately frozen in 

liquid nitrogen. In newborn mice, flushing was performed with less NaCl solution using 

a needle positioned in the right ventricle. 

2.2 Generation of array data 

A flowchart of how to generate lung gene expression profiles is given in Figure 1: 

Figure 1: Scheme for mouse lung array experiments. 

P0 = day of birth; Cy3 / Cy5 = fluorescent dyes for two-colour labelling; “Chapter” refers to where the 

mentioned procedures are described in detail. 
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2.2.1 Experimental design 

Profiles of differential gene expression were created by dual colour-hybridizations 

comparing the data of a) adult versus P1 (postnatal day 1), b) adult versus P3, c) sham 

versus S1 (post-pneumonectomy (surgery) day 1), and d) sham versus S3. Each group 

consisted of 18 individuals. Total RNA from 6 lungs per group was pooled before 

labelling, resulting in 3 sample pairs per comparison. Each pair was labelled and 

hybridized in a dye-swap manner (technical replications), resulting in 24 arrays in total. 

2.2.2 RNA extraction 

To isolate total RNA from whole lungs, 10 µm cryosections of up to 100 mg of tissue 

were lysed in 1 ml peqGOLD TriFastTM solution (peqLab Biotechnologie GmbH, 

Erlangen, Germany). After adding 200 µl of chloroform, 15 sec shaking and 5 min 

incubation at room temperature, samples were centrifuged at 20,000 x g (15 min / 4 °C). 

The resulting upper phase was transferred into a new tube and mixed 1:1 with ethanol 

(70 % v/v). For RNA purification, the RNeasy Mini Kit (QIAGEN, Hilden, Germany) 

was used, following the manufacturer’s instructions. Samples were eluted with 34 µl of 

RNase-free water. 

RNA quantity was measured using the NanoDrop ND-1000 system (Fisher Scientific, 

Schwerte, Germany). Satisfying results were expected to have high nucleic acid 

concentrations (≥ 2 µg/µl), a good 260/280 ratio (nucleic acids (260 nm) compared to 

proteins (280 nm) ≥ 1.90) and no phenol contamination at 270 nm. RNA quality was 

assessed with the Agilent 2100 Bioanalyzer (Agilent, Boeblingen, Germany). Good 

samples were defined as the appearance of two sharp peaks for 18S and 28S rRNA as 

well as no (or minimal) RNA degradation and no DNA contaminations (→ Figure 2A). 

2.2.3 Labelling 

Cy-labelled cDNA was generated by reverse transcription of 50 µg of total RNA 

(pooled from 6 individuals) using the Superscript II reverse transcriptase kit (Invitrogen, 

Karlsruhe, Germany). Primer annealing was performed with 0.75 µg of oligo-dT 

primers in a volume of 18.5 µl by heating the samples to 65 °C for 10 min and 

subsequent chilling on ice. Reverse transcription was performed for 2 h at 39 °C in 

40 µl Superscript first strand buffer containing 20 nmol of each dATP, dGTP, dTTP, 

8 nmol dCTP and 4 nmol Cy3- or Cy5-labelled dCTP (Perkin Elmer, Waltham, 
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Massachusetts, USA), respectively, 0.4 µmol DTT (1,4-Dithiothreitol) and 300 U 

Superscript II enzyme. The reaction was stopped by adding 10 µl 1 M NaOH (sodium 

hydroxide solution) and heating to 65 °C for 10 min. The mixtures were neutralized 

with 10 µl 1 M HCl (hydrochlorid acid solution). After addition of 200 µl TE buffer 

(10 mM Tris, 1 mM EDTA (ethylenediaminetetraacetic acid), pH 8), labelled cDNA 

was isolated using the PCR purification kit (QIAGEN) according to the manufacturer’s 

instructions, followed by a quality assessment using the NanoDrop instrument (Fisher 

Scientific; → Figure 2B). 

Figure 2: RNA quality assessment (A) and cDNA labelling (B). 

(A) RNA sample of good quality: sharp 18 and 28S rRNA peaks (ratio about 1:2), no DNA contamination 

(broad “peak” right of 28S) or degraded RNA (low rRNA peaks, broad “peak” left of 18S and between 

18S and 28S). Time = running time of samples through the gel matrix; fluorescence parallels RNA 

concentration. (B) Cy5-labelled cDNA sample showing two peaks: total DNA at 260 nm and labelled 

nucleotides at 650 nm. No peak at 550 nm (Cy3 emission).  Extinction parallels DNA concentration. 

2.2.4 Hybridization, scanning and image analysis 

Differently labelled cDNA samples (≥ 20 pmol Cy-dye / sample) were mixed in in-situ 

hybridization buffer (Agilent Technologies, Waldbronn, Germany) and applied to 

G4122A microarrays (whole mouse genome 44k arrays spotted with 60mer 

oligonucleotide probes, Agilent). Hybridization was carried out overnight at 60 °C in 

rotating hybridization chambers (Agilent). Slides were washed with SSC (standard 

saline citrate) / Triton-X-102 solutions according to the Agilent protocol. Dried slides 

were scanned using the GenePix 4100A scanner (Molecular Devices, Ismaning, 

Germany) at a resolution of 10 µm / pixel. Gains of the photomultipliers were adjusted 

to utilize the dynamic range and to obtain similar intensity histograms for both 

wavelengths. Image analysis was perfomed with GenePix Pro 5.0 software. 
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2.2.5 Statistical analysis 

Extracted feature data were analysed in R [106] using the limma package [107] of 

BioConductor [108]. The spots were weighted for subsequent analyses according to 

spot intensity, homogeneity and saturation. Spot intensities were corrected for the local 

background using the method of Edwards [109] with an offset of 64 to stabilize the 

variance of low-intensity spots. The M/A data were LOESS-normalized [110] before 

averaging. Genes were ranked for differential expression using a moderated t-statistic 

[111]. A power of approximately 90 % at a false-discovery rate of 10 % was desired. 

Microarray data from a similar study (4 arrays with technical dye-swap [= 8 arrays in 

total], RNA pooled from 6 mice per sample) was available to perform a-priori power 

tests. The required sample size (i.e. the number of dye-swap array pairs) was estimated 

based on this data using the method of Ferkinstad et al. [112]. 

(Image analysis (→ 2.2.4) and statistics were performed by Dr. Jochen Wilhelm.) 

2.3 Real-time PCR 

In order to validate the on-chip findings, real-time PCR was applied to genes selected 

from the list of candidates being regulated in at least one time point of both 

experimental settings (→ 3.3, Table 5) as well as to several Stefins as the most 

intensively up-regulated genes of the postnatal group. For cDNA synthesis, the 

GeneAmp RNA PCR kit (Applied Biosystems Applera Deutschland GmbH, Darmstadt, 

Germany) was used according to the manufacturer’s instructions employing random 

hexamers for the initiation of transcription. Real-time PCR was performed using the 

7900HT Fast Real-Time PCR system (Applied Biosystems, Foster City, USA) with 

porphobilinogen deaminase (PBGD) as reference gene [113]. PCR reactions were set up 

utilizing the Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen). Differential 

expression was calculated as ΔΔCT values [114]. Cycling conditions were: 2 min / 50 °C 

→ 6 min / 95 °C → 45 x [5 sec / 96 °C → 5 sec / 59 °C → 15 sec / 72 °C]. Products 

were checked by melting curve analysis and agarose gel electrophoresis (primer data → 

Table 1). 
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Table 1: Real-time PCR primers. 
All primer pairs span ≥ 1 long intron. Sequences in 5’ → 3’ direction, target exons and product lengths (in 

base pairs) are given. 

gene Accession No. forward primer exon reverse primer exon length
c-Fos NM_010234 gcctttcctactaccattcccc 1 aaagttggcactagagacggacag 2 104

D14Ertd449e NM_025311 ttccgtgtagccagactctgg 1 gataagggatgctctgaggcc 2 94
Egr1 NM_007913 gagcgaacaaccctatgagca 1 caaccgagtcgtttggctg 2 109
Fstl1 NM_008047 atggcgactctcacctggac 7 caatgagggcgtcaacacag 8 135
Lcn2 NM_008491 tgcggtccagaaaaaaacaga 2 atccagtagcgacagccctg 3 129

PBGD NM_013551.2 atgtccggtaacggcggc 1 ggtacaaggctttcagcatcgc 3 139
Rras2 NM_025846 gaggcatcggcaaagatcag 4 gttggttctggtgaaggaggg 5 107
StfA1 NM_001001332 gcaaggaagcaactcatcaaga 1 ttgcttcaagctgaggtctgac 2 109
StfA2 M92418 accctgcccagcaatgac 1 ctcttcaagcagtggtctg 2 118
StfA3 NM_025288 cctgcccatcaatgagtcaag 1 tgctcttcaagcagaggtctgac 2 118  

2.4 Western blot 

Proteins from lung homogenates were denatured in Laemmli buffer (5 min / 95 °C) and 

separated by SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) 

using 10 % polyacrylamide gels (stacking gels: 5 %) in a tank blot system (BioRad, 

Munich, Germany). Blotted membranes were blocked for 2 h with “milk” [PBS 

(phosphate-buffered saline; 137 mM NaCl / 2.68 mM KCl / 9.23 mM NaH2PO4 / 1.76 

mM KH2PO4) with 5 % skim milk powder and 5 % BSA (bovine serum albumin)]. 

Primary antibodies (anti (α)-Rras2 / α-c-Fos: Santa Cruz Biotechnology Inc., Santa 

Cruz, Ca, USA; α-Egr1 / α-Stefin A1: US Biological, Swampscott, Ma, USA) were 

incubated overnight (in “milk”, rotating, 4 °C) and secondary antibodies (with 

horseradish peroxidase) for 1 h (in “milk”, room temperature, shaking). For 

visualization of bands the Amersham ECL Plus Western Blotting Detection Reagents 

(GE Healthcare, Munich, Germany) were used. β-actin (antibody: Sigma, Saint Louis, 

Missouri, USA) served as loading control. Expression ratios were calculated with 

ImageJ (V1.41a). 

For protein extraction from cultured cells, trypsinized cells were centrifuged (100 x g / 

10 min), and NP-40 buffer containing 1 % vanadate and 4 % Complete (Roche) was 

applied to the pellet. After resuspension, followed by 30 min at 4 °C and a second 

centrifugation (25 min / 20,000 x g), proteins were in the liquid phase which was used 

for Western blot experiments. 
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2.5 Cloning 

For overexpression of candidate molecules, the whole coding sequences of human (hu) 

and mouse (m)-specific Egr1 and StfA1 cDNA were amplified in a polymerase chain 

reaction (PCR; primers and cycling conditions: → Table 2), introducing restriction sites 

for further digestion steps. After gel excision, products were cleaned up with the Min 

Elute Gel Extraction Kit (QIAGEN) and subcloned into pGEM-Teasy vector (Promega, 

Mannheim, Germany; overnight ligation at 16 °C). Resulting constructs were 

introduced into competent bacteria (target cells: E. coli, strain Dh5α) using a 60 sec heat 

shock at 42 °C for transformation (before and after: cooling on ice). Positive clones 

were selected by blue-white-screening and amplified in Luria Broth (LB) medium (with 

ampicillin, 37 °C, overnight). The following day, plasmids were isolated using the 

Wizard Plus SV Minipreps DNA Purification System (Promega). Sequence validation 

was achieved with the ABI Prism BigDye Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems). 

Table 2: Primers used for cloning. 
m = mouse; h = human; FP / RP = forward / reverse primer; capital letters = introduced restriction sites; 

length = base pairs of total PCR product; polymerase = enzyme used; vector = first target vector. 

Subsequently, vectors were digested using BamHI (target sequence: ggatcc) and EcoRI 

(gaattc) restriction enzymes (Promega) and ligated with the pcDNA3.1(+) expression 

vector (Invitrogen), which had been cut in the same way. After another round of 

transformation, plasmid isolation and sequence validation, plasmids were ready for 

transfection (→ 2.7.3). In case of huEgr1, due to problems with the standard procedure, 

primers were constructed with an overhang of 9 base pairs to enable a direct digestion 

of PCR products after gel extraction, followed by an immediate ligation with the 

pcDNA3.1(+) vector, which had been digested identically. Here, instead of a taq 

polymerase (AmpliTaq Gold, Applied Biosystems) needed for generating “A” (adenine) 

overhangs in the products essential for ligation with the complementary “T”s (thymines) 

Gene Primer sequence (5´→3`) length polymerase / vector
FP GGATCCatggcagcggccaaggccgagatg
RP GAATTCttagcaaatttcaattgtcctggg
FP actgactgaGAATTCatggccgcggccaaggccgagatgc
RP actgactgaCTCGAGttagcaaatttcaattgtcctgggag
FP GGATCCatgtacggaggtgtttcagaggccaaacctgccacaccagaaat
RP GAATTCttagaagtaggtcagctcatcatccttggttttgtcagtctgg
FP GGATCCatgatacctggaggcttatctgag
RP GAATTCctaaaagcccgtcagctcgtcatc

mEgr1

hEgr1

mStfA1

hStfA

Taq / pGEMTeasy

HotStar HiFidelity / pcDNA3.1(+)

Taq / pGEMTeasy

Taq / pGEMTeasy

1,614

1,662

303

309
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in the linearized pGEM-Teasy vector, the HotStar HiFidelity Polymerase Kit 

(QIAGEN) with proofreading properties was used. 

In case of mStfA1, there are numerous differences between the NCBI (NM 

001082543.1) and the EMBL reference sequence (M92417). To overcome the 

inconsistencies in the first 32 nucleotides (containing 8 differences), very long primers 

were designed to assure a constant, homogenous product according to the PubMed data. 

Cycling conditions for all target sequences were: 5 min / 95 °C → 45x [15 sec / 94 °C 

→ 30 sec / 60 °C → 2 min / 72 °C] → 10 min / 72 °C. 

2.6 In-situ hybridization 

For the localization of mRNAs coding for genes found to be regulated in array 

experiments (→ 2.2), in-situ hybridization was performed using paraffin sections. For 

this issue, specific RNA probes containing sequences complementary to the target 

molecules were generated and hybridized to the tissue (→ 2.6.1-3). 

2.6.1 Generation of probes 

Using mouse lung cDNA, fragments of 350 - 600 base pairs length, spanning at least 

one long intron (≥ 1,000 bp, if possible) were amplified in a taq polymerase-driven PCR 

reaction. Products (→ Table 3) were excised from agarose gels, cleaned up and ligated 

to pGEM-Teasy vector (→ 2.5). After sequence validation, 10 µg of plasmids were cut 

close to one end of, but outside the insert using restriction enzymes (Fermentas, St. 

Leon-Rot, Germany; 37 °C / overnight; mostly SalI or SacII, respectively). As for every 

probe (antisense sequence) a control (sense) was needed, every plasmid was cut on both 

sides of the insert, but in different reactions. Linearized products were cleaned up using 

the PCR Purification Kit (QIAGEN). In the following, DNA samples were transcribed 

into RNA probes using SP6 or T7 RNA polymerase (Promega; 37 °C / 2 h), respec-

tively, beginning with the synthesis close to the 5’-end of the inserts (given binding 

sequences of the vector) and stopping at the restriction point shortly 3’ behind the insert. 

In this reaction, digoxigenin (DIG)-labelled UTPs (uridine triphosphates), enabling an 

antibody-driven detection of the probes, were introduced into the products using the 

DIG RNA Labeling Mix (Roche). Finally, DNA was removed from the samples by 

DNase digestion (RQ1 RNase-free DNase, Promega), followed by column purification 

(illustra ProbeQuant G-50 Micro Columns, GE Healthcare, Freiburg, Germany). 
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Table 3: Data of probes for in-situ hybridization. 
For each gene, name and accession number are given. The given probe positions refer to the coding 

sequence of each gene; length: target PCR products in base pairs. 

2.6.2 Sampling 

After opening of the thorax and cannulating the airways, mouse lungs were - in 

modification from chapter 2.1.2 - flushed with PBS (4 mM NaH2PO4*H2O + 16 mM 

Na2HPO4*2H2O + 150 mM NaCl, pH = 7.3) via the right ventricle and fixated using 

4 % paraformaldehyde (PFA, Carl Roth GmbH, Karlsruhe, Germany; in PBS) via the 

trachea for 25 min. When removing the organ, PFA was left inside the lungs, and the 

whole tissue was fixated from in- and outside (4 % PFA / 4 °C / overnight). Afterwards, 

lungs were dehydrated in a series of ethanol-in-PBS solutions (50 % / 70 % / 80 % / 

90 % / 96 % ethanol: 2 h each → 100 % / 2 x 1 h), followed by 100 % butanol 

overnight. After a night in liquid paraffin (62 °C), the tissue was embedded in paraffin 

blocks. Finally, samples were cut in 12 µm slices and mounted onto SuperFrost Ultra 

Plus slides (Thermo Scientific, Schwerte, Germany). 

2.6.3 Hybridization 

Samples were rehydrated using Roti-Histol (3 x 7 min, Roth) and a series of ethanol-in-

PBS dilutions (Roti-Histol / ethanol (1:1) / 2 min → 100 % ethanol / 2 x 2 min → 

96 % / 90 % / 70 % / 50 % : 1 min each → PBS / 2 x 1 min). This was followed by a 

proteinase K digestion (Roth; 15 min, 37 °C, 20 µg/ml in PBS), which was stopped by 

glycine (Roth; 5 min, 0.2 % in PBS). After washing (PBS, 2 x 5 min), slices were 

fixated with PFA / 0.1 % glutaraldehyde (Sigma-Aldrich, St. Louis, USA) for 20 min 

and washed with PBS. Next, samples were preincubated in hybridization mix [70 °C, 

2 h; 50 % (v/v) formamide + 25 % SSC (20 x, pH = 4.5) + 20 % H2O + 1 ‰ Tween 20 

(Sigma-Aldrich) with 1 % (w/v) blocking reagent, 5 mM EDTA, 1 mM Chaps, 20 µg / 

ml Heparin and 1 mg / ml tRNA], followed by an overnight-incubation with preheated 

probes (1 ng/µl, in hybridization mix; → 2.6.1) at 70 °C. Then, slides were washed with 

2 x SSC (pH = 4.5) and incubated in 2 x SSC / 50 % formamide (2 x 15 min at 65 °C). 

Gene Accession No. Position of probe length
Egr1 NM_007913 247-827 581

Stefin A1 NM_001082543 29-396 368
c-Fos NM_010234 257-738 482
Lcn2 NM_008491 276-722 447  
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For removal of unspecifically bound probes, 3 washing steps (10 min each) using PBT 

(PBS with 0.1 % (v/v) Tween 20) were performed. This was followed by the usage of 

blocking solution (1 h / 37 °C; 0.2 % blocking reagent (Roche, Mannheim, Germany) + 

10 % goat serum in PBT) and 2 h of blocking solution with anti-DIG antibodies, which 

were coupled to alkaline phosphatase (37 °C / 1:1,000; Roche). Unbound antibodies 

were removed by washing with PBT (3 x 5 min), followed by 10 min of NTM (100 mM 

NaCl + 100 mM Tris (pH = 9.5) + 50 mM MgCl2). Afterwards, BM Purple substrate 

solution (Roche) was applied and the samples were incubated overnight. The next day, 

slices were washed with PBS and mounted with glass cover slides. Target RNA 

molecules were detectable due to their purple staining. 

2.7 Cell culture 

2.7.1 Culture conditions 

For cell culture experiments, lung epithelial cell lines of human (A549) and mouse 

origin (MLE-12) as well as primary human fibroblasts and smooth muscle cells (SMSc) 

and primary mouse alveolar epithelial cells type II (AECs II) were used. Cells were kept 

at 37 °C in humidified chambers containing 5 % CO2 (carbon dioxide); media were 

exchanged according to individual needs (about every 24 to 72 h). In case of A549 cells, 

RPMI 1640 culture medium (PAA, Pasching, Austria) containing 5 % FCS (fetal calf 

serum; PAA), 1 % L-glutamine (PAN Biotech GmbH, Aidenbach, Germany) and 1 % 

penicillin / streptomycin (PAN) was used. Fibroblasts were kept in MCDB 131 medium 

(PAN) with the same supplements. SMCs received Smooth Muscle Cell Growth 

Medium II (including the “SupplementMix”; PromoCell, Heidelberg, Germany). MLE-

12 cells were cultured in DMEM F-12 medium (PAA) containing 2 % FCS, 10 mM 

Hepes (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, Sigma-Aldrich, St. Louis, 

MO, USA), 1x insulin (Gibco, Invitrogen GmbH, Karlsruhe, Germany), 2 mM L-

glutamine, 1 % penicillin / streptomycin (PAN), 10 nM hydrocortisone (Sigma-

Aldrich), and 10 nM estradiol (Sigma-Aldrich). AECs II (isolation procedure → 2.7.2) 

were kept in DMEM medium (PAA) containing 10 % FCS and 1 % penicillin / 

streptomycin (PAN) and L-glutamine (PAN) each. Before transfection, cells were 

incubated in culture media containing no or very low amounts of FCS (≤ 0.1 %) for up 

to 48 h. This “starvation” helped to synchronize the cell cycle. 
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For supernatant experiments, used medium was removed from cultured cells, filtered 

(MillexGP filters with 0.22 µm pores; Millipore, Schwalbach / Ts., Germany) and re-

applied to different cells with no preceding transfection. In opposite to the other 

experiments, medium was not exchanged here before the readout one to three days after. 

2.7.2 Isolation of murine AECs II 

The method was adapted from Corti et al. [115]. In brief: After killing of the mice using 

isoflurane gas (Baxter) and removal of the skin, the diaphragm was opened from 

intraperitoneally. Then the rip cage was unclosed, the left atrium was incised and the 

lung was flushed via the right ventricle using sterile HBSS (Hank’s Buffered Salt 

Solution, Gibco) and a 20-gauge needle. In the following, another 20-gauge needle was 

fixed in the trachea, and the lung was instilled with 1.5 ml dispase (75 U, 37 °C; BD 

Biosciences, Heidelberg, Germany). To avoid a large-scale contamination due to 

bronchial cells, 0.5 ml of low-melting agarose (1 % in PBS, Promega) were added on 

top to cover the bronchi when hardening (2 - 3 min). Then the lung was removed from 

the thorax, washed with HBSS and incubated in 2 ml (100 U) dispase for 40 min at 

room temperature. In the following, lungs were put into 60 mm Petri dishes containing 

7 ml of DMEM culture medium (→ 2.7.1) with 10 mM Hepes and 0.01 % DNase 

solution (Sigma). Tissue was removed from the bronchial tree, minced and incubated 

for 10 min (room temperature, shaking). The resulting cell suspension was sheared with 

a pipette, sequentially cleaned up with 100, 40 and 20 µm filters and centrifuged at 

100 x g for 8 min (4 °C). The resulting pellet was resuspended in DMEM and incubated 

with biotinylated anti-CD32 and anti-CD45 antibodies (30 min, 37 °C; 0.65 and 1.5 µg 

antibodies / 106 cells, respectively). Afterwards, cells were mixed with streptavidin-

coated magnetic beads (30 min, shaking), followed by an extraction of cells of the 

immune system being positive for CD32 or CD45 surface antigens, respectively, using a 

magnetic separator. Remaining cells were centrifuged (100 x g, 8 min, 4 °C), and the 

pellet was resuspended in DMEM. Cells were cultured on fibronectin-coated culture 

dishes (→ 2.7.1). 

2.7.3 Transfection of cultured cells 

Plasmids were transfected using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions. For transfection of siRNA (Eurogentec, Cologne, 

Germany), the X-tremeGENE siRNA Transfection Reagent (Roche) was used following 
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the company’s protocol. Lipofectamine and X-tremeGENE were applied in Opti-Mem 

medium (Invitrogen), and 4 hours after transfection as well as on every following day, 

supernatant was replaced by fresh medium. 

SMCs and fibroblasts were more effectively transfected with the Amaxa Nucleofector II 

(amaxa biosystems AG, Cologne, Germany) using special nucleofector kits and 

protocols for primary cells provided by the manufacturer. Culture medium was 

exchanged beginning 24 h after transfection to assure a good adherence of the cells. 

2.8 Functional studies 

2.8.1 Proliferation 

Cell counts were performed at least in triplicate using either a Neubauer chamber for 

low or a Casy TT Electronic cell sizer (Innovatis, Bielefeld, Germany) for high cell 

numbers. For comparison of proliferation data, Student’s two-sided t-test was applied. 

P-values ≤ 0.05 were considered to be significant. In experiments with at least 4 values 

per group, outliers ≥ 3 standard deviations distant from the mean of the remaining 

values were excluded to avoid misinterpretations due to handling mistakes etc. 

2.8.2 Adhesion assay 

Cellstar 96-well tissue culture plates (Greiner Bio-One, Frickenhausen, Germany) were 

incubated with 50 µl of PBS containing BSA (negative control), collagen (type IV) or 

fibronectin (2 ng/µl each), respectively, at 4 °C overnight. After 30 min of blocking 

with 3 % BSA, equal amounts of cells in supplement-free culture medium were applied 

to the wells. After incubation for 30 - 90 min (37 °C, 5 % CO2, humidified), the process 

was stopped when adhesion became visible (unrounding of several cells in ≥ 1 well). 

Wells were washed three times (with PBS) and fixated with methanol / acetone (1:1,      

-20 °C, 10 min). After drying, 100 µl of Crystal Violet Solution (Sigma-Aldrich, 

Munich, Germany) were applied for 30 min. Thorough washing (water) and drying 

were followed by administration of 100 µl destaining solution (30 % (v/v) methanol, 

10 % acetic acid, 60 % aqua dest.) and an immediate quantification using an ELISA 

reader at 550 nm. Target cells were adhered to the culture plates at least in 

quadruplicate; as in proliferation studies, extreme outliers were excluded (→ 2.8.1). 
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2.8.3 Migration assay 

The migratory activity through pores was checked using the BD Falcon™ HTS 24-

Multiwell Insert System (5 µm pores, BD Biosciences, Heidelberg, Germany) or 

ThinCertTM Tissue Culture Inserts for Multiwell Plates (8 µm, Greiner Bio-One), 

respectively. Cells in supplement-free medium (→ 2.7.1) were applied to the inserts; 

medium with supplements (enhancing the migratory stimulus) was given to the wells. 

Plates were incubated overnight, washed with PBS and fixed / stained with Crystal 

Violet Solution (15 min). After washing (water) and drying, remaining cells were 

removed from the inner part of the inserts using a wettish cotton bud; for counting, 

membranes were excised and fixed on microscope slides. 

2.8.4 Detection of apoptosis 

To determine the degree of apoptosis, trypsinized cells were labelled with Annexin-V-

Fluos (1 : 50, Roche). For exclusion of dead cells, samples were counterstained with 

7-AAD (7-Aminoactinomycin D). Data were acquired by flow cytometry. 

2.9 Immunofluorescence staining 

For immunofluorescence stainings, different kinds of samples were used: 

a) To study paraffin-embedded tissue sections, the organs were fixated and rehydrated 

as described for in-situ hybridizations (→ 2.6.2, 2.6.3; exception: 1 % PFA instead of 

4 %). Using 10 µm sections, samples underwent a heat-driven antigen retrieval 

procedure (8 min / 630 W in preheated EDTA (1 mM, pH 8; applicable for most 

antibodies) or Tris-HCl solution, respectively (0.1 M, pH 9; for StfA1 stainings)). After 

25 min of cooling, samples were encircled using a Dako Pen (Dako, Denmark) to keep 

the liquids on the sections. Afterward, the common procedure was performed (s.b.). 

b) When stainings of PFA-fixated / paraffin-embedded lungs did not provide satisfying 

results, cryosections were studied alternatively, accepting the lower quality of structural 

preservation. In opposite to a), lungs were instilled with Tissue-Tek O.C.T. Compound 

(Sakura Finetek, Staufen, Germany) and immediately frozen in base molds (Thermo 

Scientific) filled with Tissue-Tek as well. For staining, 10 µm cryosections of the 

organs were air-dried at room temperature and consecutively fixated using methanol / 



 

 37

acetone (1:1 (v/v), -20 °C, 7 min). After drying, the sections were encircled with a Dako 

Pen and went on to the common procedure (s.b.). 

c) For staining of cultured cells, BD Falcon CultureSlides (BD Biosciences) were used. 

After thorough washing with PBS (s.b.), samples were fixated as described in b) and 

went on to the common procedure after drying. 

Common procedure: Sections / cells were washed with PBS (4 mM NaH2PO4*H2O + 

16 mM Na2HPO4*2H2O + 150 mM NaCl, pH = 7.3) / 0.1 % (v/v) BSA, followed by 

blocking (PBS / 3 % BSA, 1 h). Primary (→ 2.4, Table 4) and secondary antibodies 

(→ Table 4; in dark) were applied for 1 h each at room temperature, both followed by 3 

washing steps using PBS / 0.1 % BSA. Nuclei were stained with DAPI (AppliChem, 

Darmstadt, Germany; 1 µmol / ml, 5 min) or To-Pro-3 (1 µM, 20 min; Invitrogen) and 

fixated with 4 % PFA (10 min, at room temperature). After final washing (PBS / 0.1 % 

BSA), slides were mounted with Fluorescence Mounting Medium (Dako) and cover 

glasses (Roth). An incubation at 4 °C (dark / over night) caused the medium to harden 

before studying the results at a fluorescence or confocal microcope, respectively. 

Negative controls were performed with species-fitting IgG samples (isotype controls) 

instead of the primary antibodies. As many of the required antibodies were only 

available from rabbits (→ Table 4), several double stainings (for cell type characteri-

zation plus target antigen detection) were performed comprising the Zenon Rabbit IgG 

Labelling Kit (Invitrogen). With this tool, one of the rabbit antibodies was preincubated 

with pre-labelled goat Fab anti-rabbit IgG fragments; the resulting complexes, carrying 

a fluorescence dye different from that of the secondary antibody, were applied third in 

line (1 h / room temperature / dark), avoiding pseudo co-localisations. 

Table 4: Antibodies used for immunoflurorescence stainings. 
Antibodies were diluted in PBS / 0.1 % BSA. Conjugates were applied without secondary antibodies. For 

double stainings, primary were also used as tertiary and secondary as quarternary antibodies. * final 

dilution of the labelled primary antibody. 

Primary Antibodies: Target Antigens Host Species Dilution Company
Egr1 rabbit 1:100 US Biological

Stefin A1 rabbit 1:100 US Biological
alpha-Smooth Muscle Actin (SMA; Cy3 conjugate) (mouse) 1:1,000 Sigma

Vimentin (Cy3 conjugate) (mouse) 1:400 Sigma
proSurfactant Protein C (proSP-C) rabbit 1:100 Millipore

Cytokeratin rabbit 1:100 Dako
Ki-67 rat 1:100 Dako

IgG Isotype control rabbit / rat 1:100 Sigma
Zenon Rabbit IgG Labelling Kit (Alexa 488 or Alexa 555 conjugates) goat (Fab) 1:100 * invitrogen / Molecular Probes

Secondary Antibodies
Alexa Fluor 555 goat anti-rabbit IgG (H+L) goat 1:1,000 invitrogen
Alexa Fluor 488 goat anti-rabbit IgG (H+L) goat 1:1,000 invitrogen

Alexa Fluor 555 goat anti-rat IgG (H+L) goat 1:1,000 invitrogen
Alexa Fluor 488 goat anti-rat IgG (H+L) goat 1:1,000 invitrogen  
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3 Results 

3.1 Array analysis 

Data analysis (→ 2.2.5) revealed results of satisfying quality for all experimental 

groups. Figure 3 summarizes the statistical data and depicts the degree of intersection 

of the top 50 genes of each time point in both models. 

Figure 3: Statistical analysis. 

A) Volcano blots depicting regulatory mRNA changes (log2fold) of all genes tested in all experimental 

settings [(P1 / P3 and S1 / S3 vs. controls: adult and sham-operated mice] vs. the probability of regulation 

(-log(p)). 1 spot = mean data of 1 probe on ≥ 6 different arrays.  B) DE blots (differentially expressed 

genes) exemplarily comparing the regulation (log2fold changes) of all genes studied in a) P1 vs. P3 (left 

panel) and b) S1 vs. S3 mice (right panel). Most obviously changed postnatal candidates (out of the 

central “cloud”) showed very similar regulations at both time points (on or close to the bold line), while 

post-pneumonectomy genes were regulated more differently. Bold line: perfect correlation; thin and 

dashed line: ± 1 and 2 log2fold change units, respectively. C) Number of significantly (B ≥ 0) regulated 

genes in all array series. About tenfold more candidates were found in newborn mice (P1 and P3). D) 

Venn diagrams demonstrating the degree of overlap between the top 50 genes found to be regulated in a) 

P1and P3 (left panel) and b) S1 and S3 (right panel). Considerably more candidates with multiple 

appearance were detected in postnatal lung growth, while, in accordance with B), post-surgery genes 

seemed to be regulated for shorter periods, i.e. appeared in only one time point. 
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By far more significantly regulated genes (with B values ≥0) were found in newborn 

compared to adult mice (1,669 P1 and 2,032 P3 candidates, respectively) than in the 

surgery model (S1 = 183, S3 = 161), probably due to the extreme difference in maturity 

in the former collective. Additionally, 40 of the top 50 most significantly differentially 

expressed genes were changed in both postnatal time points, while there were only 10 

intersection candidates in post-surgery lung growth (→ Figure 3). 

All candidates found to be changed 1 and 3 days after birth or surgery, respectively, 

were uniformly up- or down-regulated, none showed a model-intern switch. 

Due to the huge amount of data, it was not possible to include the complete array 

results into this thesis, but a combined list of all study groups is available as an 

online supplement of the publication in the European Respiratory Journal [116]. 

3.2 Top-regulated genes of each model 

Screening both lung growth models separately first, the most intensively up- and down-

regulated genes of postnatal and post-surgery experiments were selected. Figure 4 gives 

an overview of the functions of these candidates as defined in PubMed / Entrez Gene 

(http://www.ncbi.nlm.nih.gov/gene/) and / or GeneOntology (http://www. 

geneontology.org/). Categorization was performed irrespective of promoting or 

inhibitory effects of the molecules. 

The most striking finding was a unique dominating function or combination of 

functions in each condition: In newborn mice, predominantly growth / differentiation 

and translation genes as well as enzymes and their inhibitors were found to be up-

regulated (Figure 4A), while a large group of genes ascribed to the immune system and 

defence mechanisms was most intensively down-regulated (Figure 4B). Similar to 

newborn mice, post-pneumonectomy lung growth was characterized by an involvement 

(i.e. up-regulation) of growth processes and enzymes. Interestingly, there also was a 

non-negligible amount of more intensively expressed immune response genes in this 

category, although the sham-operated animals in the control group were presumed to 

“neutralize” this effect (Figure 4C). The genes being down-regulated following surgical 

intervention were dominated by molecules found in mitochondria, mostly members of 

the respiratory chain (Figure 4D). Several collagen molecules unexceptionally being 

up-regulated were detected in both models, namely 13 genes in the postnatal and six in 

the post-surgery group (overlap: 5 candidates; → 3.3). 
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Figure 4: Functions of genes significantly regulated postnatally or after pneumonectomy. 

Each pie chart (A-D) represents the distribution (inserts: percentage) of global molecular functions found 

to play a role 1 and / or 3 day(s) after birth (newborn, A+B) or surgery (C+D) according to PubMed / 

GeneOntology assignments. The top 50 most intensively up- (A+C) and down-regulated genes (B+D), 

independent of whether changed after 1 or 3 days or both, were studied in each case. When more than one 

function was found, values were proportionally assigned. In every chart, up to 3 functions are 

emphasized, e.g. growth molecules and enzymes being up-regulated in newborn mice and members of the 

respiratory chain being less intensively expressed after surgery. 
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3.3 Intersection: newborn and pneumonectomy mice 

In total, 58 genes with significantly altered expression in both experimental settings (in 

at least one time point each) were found (→ Table 5: Genes being regulated in newborn 

and pneumonectomized mice.Table 5). Nineteen of these were mutually up- and 21 

down-regulated; the remaining 18 candidates either showed higher levels in newborn 

and lower amounts in pneumonectomized animals (6) or vice versa (12). 

Table 5: Genes being regulated in newborn and pneumonectomized mice. 
up / down: direction of regulation; Acc.-No.: accession number of the gene; P1 / 3 = postnatal day(s) 1 / 

3; S1 / 3 = post-surgery day(s) 1 / 3; --- = no significant regulation detectable; log2-fold changes: 

2(given value) = regulation factor; sorting: alphabetical order of gene abbreviations (Name) in each group. 

 

P1 P3 S1 S3
newborn / surgery Acc.-No. Name   log2-fold change   log2-fold change

up / up BC068175 BC068175 0.72 0.89 --- 0.39
NM_007742 Col1a1 1.52 1.18 0.99 ---
NM_007743 Col1a2 0.91 1.31 0.66 0.82
NM_031163 Col2a1 1.41 1.53 0.89 ---
NM_009930 Col3a1 --- 1.03 0.74 ---
NM_007737 Col5a2 0.98 1.37 --- 0.69
NM_025311 D14Ertd449e 1.00 0.87 0.61 0.66
NM_007925 Eln 2.77 1.97 0.84 ---
NM_007993 Fbn1 1.75 1.51 0.61 ---
NM_021891 Fignl1 --- 0.99 0.66 ---
NM_008047 Fstl1 1.61 2.03 0.53 ---
NM_013602 Mt1 0.57 --- 2.04 ---
NM_008630 Mt2 1.08 0.68 2.34 0.93
NP064182 NP064182 --- 1.86 2.19 ---

NM_008987 Ptx3 0.76 0.72 1.03 ---
AK007354 Rbm3 1.85 1.66 0.94 ---

NM_025846 Rras2 0.80 0.91 0.63 ---
BC024606 Saa2 --- 0.86 1.39 2.44

NM_010931 Uhrf1 --- 0.92 0.56 ---
up / down NM_009653 Alas2 1.17 0.91 -0.92 -1.22

NM_009749 Bex2 1.65 1.43 -0.56 ---
NM_009789 Calb3 2.13 --- -1.22 -1.32
AB015136 Ccl20 --- 1.44 -1.69 ---

NM_010174 Fabp3 1.40 --- -0.49 ---
NM_011353 Serf1 1.83 1.52 -0.76 -0.64

down / up NM_029000 9130002C22Rik -0.56 -0.69 --- 0.58
NM_009915 Ccr2 -0.84 -0.79 --- 0.63
NM_007913 Egr1 -0.58 --- 1.21 ---
NM_028784 F13a --- -0.45 --- 0.68
NM_010234 c-Fos --- -0.81 1.07 1.07
NM_008491 Lcn2 -1.18 --- 0.81 0.73
NM_010809 Mmp3 -2.12 -2.12 0.89 ---

NAP056316-1 NAP056316-1 --- -0.54 --- 0.45
NM_009252 Serpina3n --- -1.12 1.26 ---
NM_008871 Serpine1 --- -0.74 0.78 ---
NM_011595 Timp3 --- -1.12 0.66 ---
NM_011756 Zfp36 --- -0.60 0.62 ---

down / down BC048560 1700094D03Rik --- -0.81 -0.74 ---
NM_029803 2310061N23Rik -1.69 --- --- -1.15
AK013920 3100002J23Rik -0.81 -0.94 -0.81 ---
AK020314 9230104L09Rik -2.18 -2.56 -0.69 ---

NM_177624 A430083B19Rik --- -1.03 -0.62 ---
AA726875 AA726875 --- -2.18 -0.92 ---

NM_009605 Acdc -1.32 -1.69 --- -0.84
NM_007447 Ang1 -1.03 -1.03 -0.54 ---
NM_023617 Aox3 -1.89 -1.84 -0.51 ---
NM_009943 Cox6a2 --- -0.86 --- -0.86
NM_007812 Cyp2a5 -2.56 -2.94 -0.71 ---
NM_016974 Dbp -1.15 -1.12 -0.56 ---
NM_023612 Esm1 --- -0.51 -0.51 ---
NM_022023 Gmfb -0.60 --- --- -0.60
NM_139269 Hrasls3 -0.81 -0.81 -0.51 ---
NM_010654 Klrd1 -1.22 -1.09 -0.94 ---
NM_010742 Ly6d -0.74 --- --- -1.12
NM_013593 Mb --- -3.06 -1.22 -1.89
NM_011584 Nr1d2 -1.89 -1.47 -0.45 ---
NM_012050 Omd -0.79 -1.36 -0.64 ---
NM_011255 Rbp4 --- -0.89 -0.74 ---  
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Checking the functions of the intersection genes (→ Table 5) revealed many candidates 

being involved in growth and differentiation, followed by variable / unknown roles and 

immunomodulatory tasks (→ Figure 5): 

 
Figure 5: Functions of genes regulated postnatally and post-pneumonectomy. 
Distribution (inserts:  percentage) of global molecular functions found to play a role in all 58 candidate 

genes (→ Table 5). Functions were assigned according to PubMed / GeneOntology, independent of the 

direction and the time point of detected changes in array experiments. In case of more than one known 

function, values were proportionally assigned. 
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3.4 Validation of array data 

3.4.1 Real-time PCR 

To check the accuracy of the array data, real-time PCR controls of six candidates from 

the intersection list of both growth models (→ Table 5, Figure 5) were performed. For 

this, three randomly chosen candidates with consistent post-pneumonectomy and 

postnatal regulation and three with differing directions were studied (→ Figure 6).  

In total, all regulatory tendencies found in the array experiments could be reproduced, 

mostly with good accordance in the regulation factor. 

Figure 6: Real-time PCR controls of selected genes. 

Bar pairs with similar colours represent the regulation of the same gene in PCR and array studies. PBGD 

was used as reference gene; missing bar pairs = time point with no significant regulation in array 

experiments; PCR: ∆∆Ct values, array data: M values; 2∆∆Ct = 2M = regulation factor; P1 / 3 = postnatal 

days 1 / 3; S1 / 3 = 1 / 3 days after pneumonectomy; n = 3-4; values ± SEM. All regulatory tendencies of 

genes with different direction of change (Egr1, Lcn2 and c-Fos) as well as with unique up-regulation 

(D14Ertd449e, Rras2 and Fstl1) could be validated. 
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3.4.2 Western blot 

As differential regulations on RNA level (→ Table 5, Figure 6) not necessarily mean a 

change of the appropriate protein content, the expression levels of three of the PCR 

validation molecules, namely Rras2, c-Fos and Egr1, were checked using Western blot 

(→ Figure 7). For all of the target molecules, the same tendency of regulation as found 

on microarrays (same model, same time points) could be validated. 

Figure 7: Protein expression. 

Using Western blot, three selected candidate genes (from PCR validations, → Figure 6) were checked for 

their protein expression: A) Rras2, c-Fos and Egr1 blots, each with individual β-Actin expression for 

normalization. B) For a comparison of array and Western blot data, average mRNA and protein regulation 

factors of Rras2, c-Fos and Egr1 are given. (For calculation of protein values, more bands than shown in 

A) were utilised.) All regulatory tendencies found on mRNA level could be validated; where significant 

array data are missing, blot data are given in parentheses. P1 / 3 = postnatal day(s) 1 / 3; S1 / 3 = 1 / 3 

day(s) after surgery; Sh1 / 3 = 1 / 3 day(s) after sham. 
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3.5 Localization of mRNA: in-situ hybridizations 

For a proper decision whether candidate genes might be interesting for further 

investigations (i.e. expression in septal cells during alveolarization), in-situ 

hybridizations were performed to check the localization of mRNA formation. Two 

genes with interesting, changing profiles are exemplarily given in Figure 8, namely c-

Fos and Lcn2, known from PCR validations (→ 3.4.1, Figure 6). Both mRNAs were 

expressed in single septal cells in newborn mice and switched to a bronchial expression 

in adult animals. In the pneumonectomy model, there was an intensive up-regulation of 

both candidates in single cells of the peripheral lung where the largest changes due to 

expansion could be expected. 

Figure 8: Localization of mRNA. 

Using in-situ hybridization, mRNA coding for c-Fos was found to be intensively expressed in single 

septal cells of newborn mice (A; here: P3, similar in P1) and mainly in bronchial cells of adult animals 

(B). Post-pneumonectomy mice showed an up-regulation of c-Fos in single cells at the tip of a lobe (C; 

here: S1), which was missing in sham-operated animals (D; here: after 1 day). E) Control using c-Fos 

sense instead of antisense probes (S1 lung). In case of Lcn2, single, mainly peripheral septal cells 

expressed the target mRNA in newborn mice (F; here: P1), while adult animals produced only small 

amounts of the molecule in their bronchi (G). In compensatory growth, Lcn2 was extremely up-regulated 

in the peripheral lung (H; here: S1), but lacking in the same area of sham mice (I; here: after 1 day). 

Arrows exemplarily indicate peak expressions; magnification: 200 x. 
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3.6 First candidate gene: Egr1 

Having found Egr1 as a growth factor with promoting as well as inhibitory effects to be 

up-regulated in post-surgery, but down-regulated in newborn mice (→ Table 5, Figure 

6 + Figure 7) made this molecule an interesting candidate for further investigations. 

3.6.1 Proliferation 

In cell culture experiments, equal amounts of A549 cells were transfected with either 

plasmids causing an overexpression of Egr1 (→ 2.5; control: empty vector) or siRNA 

knocking down Egr1-specific mRNA (→ 2.7.3; control: siR, different (“random”) order 

of nucleotides). After 48 or 72 h, respectively, cell numbers were compared (→ 2.8.1). 

Figure 9 depicts the determined anti-proliferative effect of Egr1 overexpression; the 

opposite result was obtained by the application of siRNA. Similar findings were 

achieved using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) assays mirroring the mitochondrial activity of the cells 

and 3H-Thymidine incorporation representing newly formed DNA (both not shown). 

Figure 9: Egr1-dependent proliferation of A549 cells. 

Example of a transfection with n = 4 samples / group using 20,000 cells / well at 0 h. Samples were 

counted twice per well using a Neubauer chamber. An overexpression of Egr1 (A; control: empty vector 

= EV) showed a significant anti-proliferative effect after 72 h. Reducing the amount of Egr1-specific 

mRNA copies using siRNA (B; control: siR, nucleotides in random sequence) had the opposite effect of 

increasing the speed of cell division; * p < 0.01. 

To check the specificity of these findings and to evaluate their relevance / potential 

influence on lung growth, further lung cell types were transfected: In human fibroblasts 

and mouse AECs II and MLE-12 cells, Egr1 had the same anti-proliferative effect as 

above, and in fibroblasts, division ratios were increased by siRNA. Only human smooth 

muscle cells (SMCs) showed an inconsistent behaviour (→ Figure 10). 
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Figure 10: Proliferation of different cell types after Egr1 overexpression or knockdown. 

Given cell types were transfected with plasmids or siRNA according to the scheme in Figure 9. Egr1 

overexpression had an anti-proliferative effect (negative ratios) onto human A549 cells and fibroblasts as 

well as mouse alveolar type II (mAECs II) and MLE-12 cells. The opposite effect was observed after 

Egr1 knockdown (si_A549, si_fibroblasts). Only human smooth muscle cells (SMCs) showed an 

inconsistent reaction. each spot = log2[mean cell number (treated) / mean cell number (control)] of 1 

experiment with 4 treated and 4 untreated samples / group; n = number of experiments in the respective 

cell type; ─ = mean value; change = mean percental difference of treated cells compared to controls. 

3.6.2 Secreted mediators 

Technical procedures could not assure to transfect every target cell - and especially not 

to apply identical amounts of plasmids / siRNA molecules (→ 2.7.3). But as cell 

quantifications revealed comparatively constant results (→ 3.6.1), it was speculated that 

inconstancies may have been overcome by secreted mediators equilibrating the 

proliferative programs of neighbouring cells. To test this hypothesis, filtered (i.e. cell-

free) supernatants of transfected A549 cells were applied to non-transfected A549 cells 

and fibroblasts (→ 2.7.1). After 72 h, cell numbers were compared to those of cells 

proliferating in control cell supernatants (→ Figure 11). 

Interestingly, the result matched that one of the original transfection experiment: 

Supernatant of Egr1-transfected cells had an anti-proliferative effect onto identical 

(A549) as well as - with limitations - different cells (fibroblasts). The influence of 2nd 

day-supernatant was more pronounced than that of day 1. This can be regarded as a 

strong hint for secreted mediators being involved in the anti-proliferative Egr1 effect. 
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Figure 11: Effect of cell culture supernatants onto proliferation. 

Untransfected cells were incubated with supernatant of Egr1-overexpressing (Sup Egr1) or control A549 

cells (Sup EV) for 72 h before quantification. The supernatant was taken from the first (day 1) or second 

24 h period after transfection (day 2). As in the original experiment (→ Figure 9), the supernatant of 

Egr1-transfected cells had an anti-proliferative effect onto identical (A549, A) as well as - in tendency -

different cells (fibroblasts, B; p(day 2) = 0.056). In consequence, secreted molecules seem to mediate the 

Egr1-specific effect. * p < 0.01; n = 3 - 4 samples / group. 

3.6.3 Apoptosis 

Searching a reason for the lower cell numbers due to Egr1 overexpression (→ Figure 

10), one possible explanation was an increased apoptosis ratio as Egr1 is also known to 

promote this type of programmed cell death. In flow cytometry, annexin-V-stained 

A549 cells showed a higher degree of apoptosis due to Egr1 overexpression than empty 

vector-transfected control cells (→ 2.8.4, Figure 12). 

 

 

 
Figure 12: Fraction of apoptotic A549 cells. 

Using flow cytometry, A549 cells were 

checked for the fraction of apoptotic cells 48 h 

after transfection. In comparison to control 

cells (transfected with empty vector, “EV”), all 

Egr1-overexpressing samples (“Egr1”) 

showed a higher degree of apoptosis in the 

respective in-parallel experiment (connected 

symbols). 
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3.6.4 Migration 

Checking the migratory activity, different Egr1-overexpressing cell types migrated 

through the pores of multiwell plate inserts overnight, attracted by supplement gradients 

(→ 2.7.1, 2.8.3). While there was no obvious difference in the number of migrating 

cells, i.e. the migratory activity, in SMCs and fibroblasts, A549 cells seemed to show a 

tendency of increased migration due to Egr1 overexpression (→ Figure 13A). 

Figure 13: Migratory activity and adhesion. 

A) Ratios of cells migrating through 5 µm (A549) or 8 µm pores (SMCs and fibroblasts), respectively, 

overnight. After 48 h of post-transfection culture, equal numbers of Egr1-overexpressing and control 

cells (“EV”) were applied to the migration experiment. Only for A549 cells, a tendency of increased 

migratory activity was detected. Each value was calculated from ≥ 2 overexpression and ≥ 2 control 

samples processed in parallel; ─ mean values. B) Egr1-overexpressing (A549, n = 10; SMCs, n = 5; 

fibroblasts, n = 8) or -lacking (siRNA-transfected, “si_A549”, n = 9) cells adhered to culture plates pre-

coated with either BSA or collagen IV (“Coll”) or fibronectin (“FN”). Every value was calculated from 

the absorption difference between ≥ 3 treated and ≥ 3 control samples (EV or siR) processed in parallel. 

─ mean values. 

3.6.5 Adhesion 

Studying potential changes in adhesion behaviour, different Egr1-overexpressing or 

-lacking human cell types were adhered to culture plates which had been coated with 

BSA (as control), human collagen (type IV) or human fibronectin, respectively 

(→ 2.8.2). There were no significant changes according to cell type or coating substance 

detectable (→ Figure 13B). 
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3.6.6 Localization 

Using immunofluorescence stainings (→ 2.9), Egr1 protein expression was localized to 

different areas / cell types of the lung (→ Figure 14). The molecule was mainly 

detected in septal and bronchial cells, often co-localizing with SP-C. As far as possible, 

the lower degree of expression in newborn mice and the up-regulation due to 

pneumonectomy (→ Table 5, Figure 6 + Figure 7), could be reproduced in the staining 

series. Egr1 did not co-localize with smooth muscle-actin and the fibroblast and 

mesoderm marker vimentin (→ Figure 14B, C+E). There also was no obvious 

correlation between Egr1 localization and mitotic activity (detected by Ki-67 antigen 

expression; → Figure 14D). 

Figure 14: Egr1 localization using immunofluorescence. 

In adult mice, Egr1 was heterogeneously expressed in septal cells and in bronchial epithelium (A + F). 

An increased bronchial Egr1 expression was seen after pneumonectomy (B + C), while there was a 

tendency of postnatal bronchial down-regulation (D + E), especially at P1. In all time points, there was no 

obvious co-localization with vimentin (B), smooth muscle actin (C + E) and the proliferation marker Ki-

67 (D). Egr1 co-localized with SP-C-positive cells in bronchi and, with a less prominent expression, with 

peripheral AECs II (F, yellow staining). Colours: Egr1: red (A) or green (B - F); vimentin: red (B); 

smooth muscle-actin: red (C + E); Ki-67: red (D); SP-C: red (F); nuclei: blue (A - F); insert (F): negative 

control; magnifications given in each picture; S1 = one day after surgery; P1 / 3 = 1 / 3 day(s) after birth. 
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Localizing Egr1-specific mRNA, various expressions were found in different time 

points and models (→ Figure 15): Instead of the basal bronchial expression in adult 

mice, newborn animals showed an up-regulation in single septal cells and post-surgery 

mice in the area of the most intensive extension in the periphery of the lung. 

Figure 15: Detection of Egr1-specific mRNA using in-situ hybridization. 

A) In adult mice, Egr1 was mainly expressed in bronchi (B: negative control (hybridization of sense 

probes)). Newborn animals (C + D) focussed mRNA formation onto single septal cells, and post-surgery 

mice (E) overexpressed the molecule in the area of greatest extension in the lung periphery (F: sham 

control). P = postnatal day / S = post-surgery day / Sh = post-sham day; magnifications: A + B: 100 x; 

C - F: 200 x. 
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3.7 Second candidate gene: Stefin A1 

Stefin A1 was one of the most intensively up-regulated mRNA molecules in newborn 

mice (P1: 29.7fold / P3: 32.9fold; → online supplement). As such an extreme 

regulation could be expected to indicate a functionally important role in the usual 

alveolarization procedure it was regarded as reasonable to study this gene in detail. 

3.7.1 Quantification 

Measuring the regulatory changes of Stefin A1 expression, real-time PCRs validated the 

on-chip findings of a strong postnatal up-regulation (→ Figure 16A). Additionally, 

quantification of the protein expression revealed even extremer results: Stefin A1 

seemed not to be of a greater necessity for normal adult lungs or compensatory growth 

as - at best - minimal protein formation was detected (→ Figure 16B). 

Figure 16: Postnatal and post-surgery Stefin A1 expression. 

A) Using real-time PCR (left bar of each pair) and microarrays (right bars), Stefin A1-specific mRNA 

was shown to be extremely up-regulated postnatally (P1 / P3), but not after pneumonectomy (S1 / S3). 

Reference gene: PBGD; missing PCR bars: not done, because post-surgery array data showed no 

significant regulation. PCR: ∆∆Ct values; array data: M values; 2∆∆Ct = 2M = regulation factor; n = 3 - 4; 

values ± SEM. B) Western blot proving Stefin A1 expression in P1 and P3 mice, but not in normal adult 

or pneumonectomy (S1 / S3) animals; reference: β-Actin; every band = 1 individual animal. P1 / 3 = 

postnatal days 1 / 3; S1 / 3 = 1 / 3 days after pneumonectomy; Sh1 = 1 day after sham surgery. 
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3.7.2 Localization 

Using immunofluorescence stainings (→ 2.9), Stefin A1 protein was localized to cells 

with epithelial characteristics in bronchi and septae. Single septal cells, postnatally 

expressing Stefin A1 on a very high level, were missing in all adult and surgery mice 

(→ Figure 17). This explains the extreme regulatory difference found in array data. 

Figure 17: Stefin A1 localization using immunofluorescence. 

Stefin A1 was strongly expressed in single septal cells of newborn mice (A + B). Independent of age and 

model, it was constantly found in bronchial epithelial cells of newborn (A - C) as well as adult / post-

pneumonectomy animals (D - F) and - to a lower degree - in septal cells. In culture, AECs II (G) as well 

as A549 cells (H) stained positive for the molecule. Stefin A1 showed a co-localization with cytokeratin 

(C, G + H), but not with smooth muscle-actin (A + E) or vimentin (D, also representative for normal 

adult). There also was no obvious association with the proliferation marker Ki-67 (B + F). Colours: Stefin 

A1: green; all co-staining molecules: red; co-expression: yellow; nuclei: blue; I: negative control (adult 

lung); P = postnatal day / S = post-surgery day / Sh = post-sham-surgery day; magnifications: A + B / 

D - F / I: 250 x; C / G + H: 400 x. 
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To localize Stefin A1-specific mRNA, in-situ hybridization screenings of all models 

and time points were performed. As on protein level (→ Figure 17), single septal cells 

showed a unique, intensive expression in newborn mice, while all experimental groups 

contained a basal bronchial mRNA level (→ Figure 18). 

Figure 18: Detection of Stefin A1-specific mRNA using in-situ hybridization. 

In newborn mice, Stefin A1-specific mRNA was intensively expressed in single septal cells of the 

peripheral (A) and central lung (B). In all models and time points, the molecule additionally appeared in 

bronchi (B - D). Comparing with untreated adult animals (C), there was no detectable change due to 

pneumonectomy (D). P = postnatal day / S = post-surgery day; magnifications: A + D: 200 x / B + C: 

100 x; insert in D: negative control (hybridization of sense probe). 

3.7.3 Functional studies 

As for Egr1 (→ Figure 9, Figure 10 and Figure 13), the Stefin A1-driven influence on 

proliferation, migration and adhesion was tested for different cell types (→ Figure 19). 

In proliferation, Stefin A1 accelerated the division speed of MLE-12 cells, while it 

inhibited that of A549 cells. Studying adhesion, two significant changes were detected, 

namely an increased activity of A549 cells to adhere to fibronectin and a small decrease 

in the ability of fibrocytes to adhere to collagen. Checking for migratory activities, no 

influence of Stefin A1 became obvious (→ Figure 19). 
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Figure 19: Functional aspects of Stefin A1 overexpression and -knockdown. 

Cultured cells were transfected with Stefin A1-overexpressing plasmids (A - C) or Stefin A1-specific 

siRNA (C, “si_A549”). Checking proliferation (A), A549 cells showed a tendency of down-regulating 

their growth activity (in 7 of 9 experiments), while fibroblasts did not react uniformly and MLE-12 cells 

proliferated faster. The migratory activity (B) of A549 cells and fibroblasts was not obviously influenced 

at all. Studying adhesion (C), a statistically significant increase in the affinity to fibronectin (FN, in 

comparison to BSA) was observed in A549 cells, while fibroblasts showed a low, but significant 

decrease in adhesion to collagen (Coll). Each spot represents the difference between ≥ 3 treated and ≥ 3 

control samples (EV or siR) processed in parallel. ─ mean values; * p < 0.05. 
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4 Discussion 

4.1 Experimental design and technical approaches 

Performing screens in mouse models offered the chance to employ genetically 

engineered animals for in-vivo studies, as for mice large numbers of constitutive and 

conditional knockout and knockin animals are available. Additionally, the potential 

generation of own lines could be expected to be easier than in other species. 

The study presented here based on whole mouse genome screens employing microarray 

technology. As this procedure always bears the risk of just-by-chance findings due to 

simple statistical reasons without any connection to an altered gene expression, several 

tasks have been included in the whole process of data generation to avoid large numbers 

of false positives: 

• By using pooled RNA samples, the disturbing effect of single animals with unusual 

expression levels could be largely excluded. This was supported by the fact that at 

least three experiments (i.e. dye-swap array pairs) were performed per group of 

interest (→ 2.2.3+4). On the other hand, sample sizes were designed as small as 

possible to gain significant results without unnecessarily killing too many animals. 

• Hybridizing each target sample in competition with an appropriate control helped to 

overcome potential local inhomogeneities on the chip as a direct comparison was 

still possible (→ 2.2.4+5). Additionally, for several genes more than one sequence 

was spotted on the microarrays. 

• To exclude an influence of the labelling dyes, which was imaginable because of 

their different chemical structures, all samples were studied in a dye-swap manner, 

i.e. the same pair of samples was hybridized onto two microarrays, carrying 

opposite labellings each time (→ 2.2.4+5). 

• Applying analysis software, well-established procedures in combination with strict 

inclusion criteria for spot quality and statistical significance were used (→ 2.2.5). 

• Having chosen two different lung growth models (→ 1.2, 1.4.4), the most promising 

candidate genes could be expected in the intersection list; comparing different time 

points of the same approach (→ 2.1, 2.2) was regarded as a possibility to distinguish 

between longer-lasting influences (e.g. general lung development) and short-term 

activities, e.g. pathway activation (see below; → 1.5). 
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In general, the quality of array data was very convincing, as a) there was a high inter-

chip concordance (i.e. constant biological replications) and b) dye-swap experiments 

showed no obvious variations (i.e. constant technical replications). Analysis revealed 

more than 160 significantly regulated genes per time point after pneumonectomy and 

more than 1,600 postnatally (→ 3.1) with an intersection of 58 genes (→ 3.3). Of the 

latter ones, 40 were regulated synergistically; this made them promising candidates for 

further studies. 

 One might doubt that the time points 1 and 3 days after birth or surgery, respectively, 

were chosen ideally. Indeed, secondary septation is known to begin at about P4 - 5 in 

mice (→ 1.2), but as the main intention of this study was to find key regulators of this 

process, looking right before its onset, i.e. at P3, was expected to reveal numerous 

important pathway inducer molecules. On the other hand, in the pneumonectomy model 

the most intensive growth stimulation is present in the beginning of the process 

(→ 1.4.4). Consequently, genes found to be selectively regulated at P3 and S1 had a 

higher probability of being important alveolarization inducers with therapeutic potential 

than P1 and S3 candidates. The latter ones may be regarded as a measure of longer-

lasting, more general lung growth or, in case of some P1 candidates in newborn mice, 

may be located very early in extensive regulatory pathways. Regarding the 58 

intersection genes (→ 3.3), there were only 8 postnatal candidates being solely 

regulated at P1, but even 20 at P3; in the pneumonectomy group, an opposite 

distribution showing 37 genes being selectively changed at S1, but only 11 at S3, 

became apparent. In total, 14 intersection candidates were exclusively expressed at 

P3 and S1, with 9 of them being uniformly up- or down-regulated. The importance of 

these genes as well as the validity of the theory regarding the role of the different time 

points, should be verified in further studies. 

To avoid working with one of the few false-positive genes potentially remaining in the 

list and as a regulation on mRNA level does not necessarily mean a change in the 

appropriate protein content, it was very important to prove the array data with different 

methods. Due to that, real-time PCR and Western blot controls (→ 2.3, 2.4) were 

applied to promising candidates before considering any functional experiments with 

them. In all cases evaluated with these approaches, array data could be confirmed 

according to the direction of change; in PCR controls, most regulation factors matched 

quite well (→ 3.4.1), while some protein quantifications tended to be extremer than 

mRNA values (→ 3.4.2). 
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4.2 Interpretation of array data 

4.2.1 Comparison with previous investigations in the field 

Several groups also studied lung growth and regeneration in whole-genome approaches 

before, concentrating on specific aspects, medication effects or cell types, respectively: 

Mariani et al. analysed a time-course from embryonic day 12 to adulthood focusing on 

extracellular matrix molecules and generating functional gene clusters [117]. Here, one 

of the most interesting up-regulated candidates in the postnatal phase was 

(Tropo)elastin, which also was intensively induced in postnatal as well as post-surgery 

animals (→ Table 5). The group further analysed several collagens found to be 

overexpressed in either interstitial tissue or basement membranes. In both models 

presented within this thesis, the up-regulation of interstitial type I and III collagens 

could be confirmed (→ Table 5), while basement membrane collagen (IV) was found to 

be elevated only after surgery (→ online supplement of Wolff et al., [116]: Col4a2, 

NM_009932; MS1 = 0.86). 

Foster et al. generated mRNA expression data from the tips of growing P6 septae 

isolated by laser-capture microscopy [118]. Interestingly, only 3 of the 25 genes being 

most intensively up-regulated in Foster’s study were also significantly changed in own 

homogenate data, namely Tenascin-XB and C as well as Drebrin 1, whereas Tenascin-

XB was down-regulated (→ online supplement). Also Galectin-1, being the main focus 

of interest in the laser-capture study, could not be confirmed. These differences in 

expression profiles may be due to the varying time points of investigation (P1 and P3 

versus P6), but it also has to be taken into account that the use of lung homogenate 

instead of selected parts of the organ may have hidden certain findings, e.g. in case of 

different cell types regulating genes in distinct directions at the same time or due to a 

mass effect with mostly unregulated tissue components. 

Studying rat fibroblasts, Boucherat et al. searched for genes being up- or down-

regulated on P7 (phase of secondary septum formation) compared to P2 and P21 [119]. 

Among the 141 candidates with significant changes, there was a quite substantial 

overlap of 38 genes (27%; → online supplement) with own data. Of these, 35 were 

exclusively regulated in the newborn model and 16 were found to be changed in a 

different direction. Consequently, although the number of common genes appeared to 

be relatively high at a first glance, one has to be careful in directly comparing these data 
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as a) a different species was used, b) only a single cell type was studied and c) another 

(relative) time point within septation has been chosen. This is also reflected by the 10 

genes in the focus of interest of the study: Only Wnt5a, Fzd1 and Tnx were changed in 

concordance with own data (→ online supplement), while the remaining candidates, 

e.g. Ndp and Hox 1, 2 and 5, were not changed at all in homogenate. 

The group of D. Massaro performed several array-based lung growth studies, either on 

corticosteroid-triggered inhibition of alveolarization in young mice [72] or after calorie 

restriction and refeeding [76, 77]. In the former experiments, dexamethasone-treated 

animals (→ 1.4.1) were administered retinoic acid (→ 1.3.1) causing 46 drug-

influenced genes to be “rectified” in their regulatory tendency [72]. Only 4 of these 

candidates, namely Ly6a, Chi3l3, Clca1 and Rnf2, were found to be significantly 

changed in normal postnatal (and none in post-surgery) mouse lungs, and only the latter 

two showed the same regulatory tendency (→ online supplement). Especially Flk-1, 

the main focus of the manuscript, was not changed at all in usual growth. These findings 

support the assumption that corticosteroids seem to prevent lung growth by an 

inhibition of genes and pathways different from the candidates inducing regular 

secondary septation. 

In another series of experiments the group focused on time-related regulatory changes 

due to calorie restriction (→ 1.4.2) [76]. Screening for apoptosis-related genes, 63 

candidates with significant expressional changes were found; 10 of these (16 %) also 

appeared postnatally and / or post-pneumonectomy, and, matching the opposite 

intention of tissue growth instead of degradation, most of them (e.g. Casp1 and 3, 

Birc2) were regulated in a different direction. Regarding proteolysis-related genes, there 

was an overlap of 31 % (24 of 78 genes), again with most of the candidates (e.g. Psmb8, 

Gzma and Gzmb) exhibiting contrary alterations (→ online supplement). Having found 

so many common, lung growth-related genes being changed in opposite directions due 

to opposite stimuli upgrades the validity of own as well as that of Massaro’s data. 

In a recent approach, the group intensively studied mice being refed after two weeks of 

calorie restriction with focus on angiogenesis-, extracellular matrix- and cell replication-

related genes as well as steering elements of guided cell motion [77]. Altogether, data 

again showed a high degree of overlap (between 30 and 50 %) with newborn and / or 

pneumonectomized mice throughout the groups, with special focus on angiogenesis and 

cell replication. 
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4.2.2 Genes and functional groups found in at least one model 

Newborn mice: 

The largest group of genes found to be up-regulated was coding for molecules involved 

in growth and differentiation (31%; → 3.2, Figure 4). These mediators, e.g. Igf2 

(insulin-like growth factor 2), Cdc2a (cell division cycle 2 homolog A) and Tcf21 

(transcription factor 21), are known to have stimulating effects, fitting the necessity of 

growth promotion in this period of life. Additionally, for Igf2 deficiency, a delayed lung 

development has already been described [120], and Tcf21 (= Pod1) knock-outs were 

found to have a severely impaired lung and kidney development [121]. 

In the group of enzymes and their regulators, many molecules with inhibitory effects 

were up-regulated, e.g. several Stefins, which prevent proteases from the degradation of 

essential, just-built extracellular matrix material. Stefin A1 as one of the most 

intensively up-regulated candidates of all array series was studied more differentiatedly 

(→ 3.7) and will be discussed in detail later (→ 4.4). 

There were several down-regulated molecules with enzymatic activities as well, e.g. a 

procollagen endopeptidase enhancer (Pcolce2, [122]) and the proapoptotic 

allyldehydrogenase Aldh1a1 (→ 3.2); both of these findings also match the need of 

growth and stabilisation. For Aldh1a1, an enhanced retinoic acid (→ 1.3.1) metabolism 

and an overexpression in lung tumour cells have been described [123]. Accordingly, for 

normal lung growth, low Aldh1a1 levels can be regarded as helpful. 

Another interesting point was to find ten different cytochrome P450 oxidase (CYP) 

molecules to be down-regulated (→ online supplement). As these enzymes play a role 

in preventing damage through xenobiotics [124], one could speculate that in this early 

stage of life metabolites of these molecules would significantly harm the immature 

organ structure and that lower CYP levels prevent such damage. Regarding this point, 

the lack of Cyp2f2, which was down-regulated 3.4-fold in P3 lungs, has been shown to 

have a protective role in Naphthalene-induced Clara cell damage [125]. The down-

regulation of the microsomal epoxide hydrolase 1 (Ephx1), which also plays a role in 

detoxification, further supports this thesis. On the other hand, it was recently shown that 

Clara cell-specific stabilisation of β-Catenin leads to immature “progenitor”-like 

epithelial cells of the respiratory epithelium with significantly reduced expression of 

P450 cytochromes [126]. Therefore, a low CYP expression could also reflect the 

immature state of the epithelial cells during rapid cell expansion. 
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Having found Xdh (xanthine dehydrogenase) and Ly6a (lymphocyte antigen 6 complex, 

locus A), which both have a pro-differentiative influence, to be down-regulated, 

additionally confirms the immature state needed in postnatal alveolarization. This is 

underlined by the finding that large amounts of Ly6a have been detected in mature 

pulmonary vasculature [127]. 

The most striking finding in the down-regulated group was to see numerous candidates 

involved in immune response mechanisms (→ 3.2, Figure 4, online supplement). 

Taken together, the detected genes covered many areas of defence, e.g. antigen 

presentation via MHC (Major Histocompatibility Complex) molecules (H2-Eb1 / 

-D1 / -Ab1 / -Aa etc.), leukocyte surface receptors (Klra15, Ly6a / i / f / c etc.) and the 

complement system (Cfh). For explanation of the missing activity, one may assume that 

the immune system is still in an immature state in this developmental period and 

comparably few inflammatory cells reside in the lung. This may be tolerable as long as 

the babies receive antibodies via milk and it may also be happening “on purpose”, 

meaning to develop a certain degree of tolerance against own tissue components. 

 

Surgery model: 

In compensatory lung growth, there was a relatively homogenous distribution of most 

global molecular functions among the up-regulated genes (→ 3.2, Figure 4). Again, the 

largest group of candidates consisted of growth and differentiation molecules, especially 

transcription factors or mediators of pro-proliferative pathways (e.g. Creb3l3, Egr1, 

c-Fos; as the latter two were studied in detail (→ 3.4 - 3.6), they will be discussed 

separately: → 4.2.4, 4.3). 

As in newborn mice, numerous collagens were more intensively expressed (→ online 

supplement), underlining the need of connective tissue generation in compensatory 

lung growth. Due to the high overlap with the newborn model, the genes are discussed 

elsewhere (→ 4.2.1, 4.2.3). 

Interestingly, some immunomodulatory genes were detected to be up-regulated within 

the pneumonectomy model as well, although sham-operations were performed on 

control animals (→ Figure 4). Indeed, some of these candidates may have been induced 

by potentially more severe wounding than in the control animals, but among the genes 

there were also some with inhibitory and / or secondary (side-) effects, which may have 

been emphasized here, e.g. Lcn2 (= lipocalin 2; a) acute phase reaction, b) regulates 

epithelial morphogenesis; [128, 129]). On the other hand, some stimulators of the 
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immune system were found to be down-regulated as well, e.g. Ccl20, a pro-

inflammatory cytokine mediating B cell adhesion and leukocyte recruitment [130, 131]. 

A very interesting finding was to detect several members of respiratory chain and 

mitochondrial metabolism to be down-regulated after pneumonectomy (→ Figure 4). 

At a first glance, this was surprising, as a high degree of energy demand could be 

assumed during lung growth, needing to rebuild about one third of the total respiratory 

surface. One might think about a relative effect as the mitochondria may not have 

divided as quickly as their “mother” cells, but all of the genes detected to be less 

intensively expressed were encoded by the cellular genome and none by the 

mitochondria themselves. The down-regulation may be explained by the autophagy 

phenomenon and the resulting lower needs of mitochondria-stimulating mRNA: For the 

heart it is known that in periods of extreme demand cells are able to “burn up” their 

mitochondria to quickly gain large amounts of energy and amino acids [132, 133]. 

Something similar may also be assumed in the onset of compensatory lung growth. 

On the other hand, a physiological switch to a pronounced anaerobic metabolism to 

cope with (initially) reduced amounts of oxygen, implying an increased production of 

appropriate mRNAs and a parallel reduction of mitochondrial “stimulators” may also be 

possible. As such “anaerobic genes” were not frequently changed in array data and as 

the lacking lobe should be compensatable by an increased breathing frequency etc., 

these processes probably only play an inferior role. 

In summary, both lung growth models revealed numerous significantly regulated genes 

with interesting aspects according to growth regulation, connective tissue generation, 

immunological competence, energy balance etc. Assuming a more precise selection of 

the most promising candidates, the intersection of postnatal and post-pneumonectomy 

alveolarization needed to be evaluated as well to see whether both types are of the same 

origin or if they are differentially regulated (→ 3.3, 4.2.3). 

4.2.3 Intersection genes of newborn and pneumonectomy mice 

In total, 40 genes were concordantly up- or down-regulated in both experimental 

groups, while 18 candidates with opposite directions of change could be detected 

(→ Table 5). Among the former genes one can assume to have found some important 

regulators or operators of alveolarization as the “accidental” finding of uniform 

expressional changes without any functional mutuality in the intersection of two 
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independent models is unlikely. The discordant genes have to be judged more 

differentiatedly: Some, if not most of them, may simply not play an important role in 

lung growth, but the findings of few candidates could mirror different stages in a long 

regulatory pathway where opposing or completely distinct influences are needed, e.g. 

transcription factors like Egr1: This molecule promotes proliferation, differentiation, 

angiogenesis, induction and inhibition of apoptosis etc. [134-136] (→ 3.6, 4.3). All of 

these features are necessary for lung growth, but have to appear in correct order and 

location, what may cause the differing results seen for the two models studied. 

Among the candidates in the intersection list, the by far largest functional group was 

“growth and differentiation” (→ 3.3, Table 5, Figure 5): 10 of 19 (53 %) corporately 

up- and 9 of 21 (43 %) down-regulated genes were, at least in part, involved in these 

processes. Rbm3 (= RNA binding motif protein 3), being corporately up-regulated in 

both models, is necessary for mitosis progression [137]. Another example from this 

category is Fstl1 (Follistatin-like 1, TSC36): The protein has an anti-apoptotic, heart-

protecting effect and is thought to play a role in organogenesis. An expression in 

embryonic mouse lung and kidney development has already been described [138]. 

Uhrf1 (= ubiquitin-like, containing PHD and RING finger domains, 1; Np95), a 

molecule responsible for S-phase entry and genome stability, was found to be elevated 

in both models [139]. Rras2 (= related RAS viral (r-ras) oncogene homolog 2; TC21) is 

known to stimulate migration; in some cases it can even induce tumours [140]. The 

detected concordant up-regulation of its mRNA points to the need of cell migration for 

proper lung growth. 

In addition to these growth-promoting factors, there were several structural molecules 

concertedly up-regulated as well, providing a stabilizing and guiding scaffold for 

emerging tissue components (→ Table 5): Five different collagens were up-regulated in 

both models, complemented by eight solely induced in newborn and one in post-

pneumonectomy mice, respectively (→ online supplement). Additionally, Elastin and 

Fibrillin1 presented a uniformly elevated expression level. Lacking or not correctly 

cross-linked Elastin results in failing formation of regular alveoli or, e.g. in case of α1-

Antitrypsin deficiency, causes a severe emphysema, while Fibrillin1 mutations result in 

the Marfan syndrome [141-143]. Taken together, the induction of these genes strongly 

underlines the need of connective tissue generation in the growing lung, being a major 

aspect in both models. 



 

 64 

Among the down-regulated genes (→ Table 5), several candidates responsible for 

maintenance procedures and metabolism of differentiated cells were found, but also 

growth inhibiting molecules, e.g. Pla2g16 (= phospholipase A2, group XVI = Hrasls3 = 

H-rev107), which is a well-known cell cycle inhibitor [144]. 

Omd (= OSAD, osteoadherin / osteomodulin) is known to support osteoblast 

differentiation, while a lack of this molecule increases proliferation and migration [145]. 

Although bone cells are not directly involved in lung growth, similar effects onto 

pulmonary cells are imaginable. Therefore, the detected down-regulation could increase 

division ratios and migratory activities, both fitting the needs of alveolarization. 

Klrd1 (= CD94) is a surface receptor for MHC class I molecules on mature and 

differentiating natural killer cells [146]. As in newborn mice the immune system is still 

very immature and many relevant genes are expressed on low levels, e.g. for induction 

of self tolerance, a down-regulation in this group is not surprising. Due to the fact that 

the overall function of Klrd1 is inhibitory [147], the intention to lower its expression in 

post-pneumonectomy mice may be the necessity of an increased killer cell activity after 

surgical intervention, although sham controls should have “eliminated” most of the 

infection parameters (→ 4.2.2). 

Nr1d2 (nuclear receptor subfamily 1, group D, member 2) is a steroid (thyroid) 

hormone receptor; it indirectly induces lipogenesis and plays a role in the circadian 

rhythmic of gene expression [148, 149]. As these processes are not of high relevance 

during growth, a down-regulation in both models is comprehensible. 

Interestingly, the intersection of both models (58 candidates) was relatively small, 

although > 160 (pneumonectomy) and > 1,600 (postnatal) genes were significantly 

regulated in each setting and at each time point, respectively (→ 3.1). There are two 

different explanations for this outcome: On the one hand, the whole alveolarization 

procedure may be depending on few initiating and / or executing molecules. In this case, 

many of the key genes should have been found. On the other hand, both models could 

be relatively independent, showing similar features regulated by different pathways. 

Then the idea of future lung tissue regrowth in humans would have to be realized with 

genes from one or the other model, but preferably with pneumonectomy candidates, as 

this issue is closer to what can be expected to happen in adults. 

In the following chapters, findings regarding location and functional aspects of some 

interesting candidates from array experiments will be discussed in detail (→ 4.2.4, 4.3, 

4.4). 



 

 65

4.2.4 Known and new alveolarization candidates 

Array data narrowed down the number of genes which can be regarded as potential 

candidates for septation regulation, but functional and location studies have to reveal 

their actual role and answer the question whether there indeed is a common background 

of both models. In this chapter, candidates from own array data as well as genes already 

known to participate in lung growth are reflected, mainly addressing the question why 

they have (not) been detected, i.e. whether there may be a functional connection to 

alveolarization. Afterwards, two of the most interesting genes, namely Egr1 and StfA1, 

will be discussed, based on the results of evaluating functional studies (→ 4.3, 4.4) 

In a first step, intending to validate a growth participation of septal cells as probably 

most important region within alveolarization, c-Fos and Lcn2, showing a divergent 

regulation in array experiments (→ Table 5), could exemplarily be localized in in-situ 

hybridizations (→ 3.5, Figure 8). Both molecules revealed a switch of expression being 

present in, what was hoped for, single septal cells after birth, but in the bronchi of adult 

mice. The down-regulation detected in array data may be explained with the widely 

missing expression of mRNA in bronchi during the postnatal period. Regarding the 

surgery model, specific stainings were seen, in addition to bronchi, in the periphery of 

pneumonectomized, but not of sham-operated lungs. With respect to cell division ratios, 

this location feature has been described before [95], and it may be explained with the 

need of the outer part of the lung to more intensively grow than internal regions, e.g. 

due to different degrees of tissue tension. The findings do not only explain the detected 

up-regulation in post-pneumonectomy data (→ 3.3), but they can be regarded as a hint 

for a functional link between c-Fos / Lcn2 and compensatory lung growth (s.b.). 

Lcn2 (= Lipocalin 2, 24p3, Sip24, NGAL): 

The Lcn2 molecule is a 25 kD glycoprotein, which can form homodimers and which is 

part of a complex with neutrohil gelatinase, known as matrix metalloproteinase 9 

(MMP9) [150]. 

Being down-regulated in newborn mice, but overexpressed in the compensatory lung 

growth model, Lcn2 seems to be rather uninteresting at a first glance, but the divergent 

directions could simply mirror two different functional aspects of the appropriate 

protein, with one of them being of relevance for alveolarization: In its role as an acute 

phase molecule, Lcn2 is induced by reactive oxygen species [150]. Being secreted e.g. 

by epithelial cells and macrophages, it provides an innate immunity to protect numerous 
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organs from bacterial infections. The ability to interfere with various types of bacteria is 

based on its binding behaviour: In addition to being a member of a physiological iron 

delivery pathway [151], Lcn2 can tightly bind to bacterial iron-laden siderophores; this 

causes a sequestration of iron supplies resulting in a bacteriostatic effect [152]. 

Having found an up-regulation of Lcn2 in pneumonectomized mice may have two 

major reasons fitting the functions explained above: Although comparing to sham-

treated animals and administering antibiotics, removal of the left lung lobe could have 

induced more inflammatory reactions than expected, e.g. by introducing small numbers 

of bacteria. Alternatively, as the intervention causes significant physiological changes to 

immediately cope with and although compensation mechanisms are quick and restore 

the lost surface area within days to weeks, a non-negligible early disturbance of normal 

metabolic processes can be assumed. Within this, cellular stress reactions resulting in 

the generation of reactive oxygen species, which in turn induce Lcn2, are expectable. 

Moreover, in vitro, pro-migratory and pro-branching effects of Lcn2 were found [129]; 

both of these would characterize the molecule as potential key player in lung (re-) 

growth. 

In addition to the facts mentioned above, Lcn2 is expressed in blood cells (erythrocyte 

precursors and hematopoietic cells in the bone marrow) and has an anti-differentiative, 

pro-apoptotic effect [153]. This was interpreted as one potential reason for anaemia in 

chronic inflammations, where the molecule is up-regulated (s.a.). Furthermore, several 

studies proved tumour-inducing or -promoting effects and an easier metastasis 

formation within high Lcn2 levels [154, 155]. Taking these findings into account, a 

down-regulation of the molecule as found in postnatal lung growth can be justified: 

Needing cell divisions as well as differentiations, while urgently having to avoid a 

tumour formation in the quickly growing immature tissue, effects of “missing” Lcn2 

should be more helpful than the regular influence. As newborn mice are 

immunologically protected by antibodies from their mother, there is also no need to 

induce Lcn2 expression due to defence reasons. 

In summary, Lcn2 is an interesting candidate gene potentially involved in several 

aspects of lung growth, but due to its numerous effects, being adverse in some cases, a 

general on / off-regulation of alveolarization cannot be expected. Establishing a cell 

type- and situation-dependent expression / inhibition may provide a useful therapeutic 

approach anyhow. 
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c-Fos (= Fos, FBJ osteosarcoma oncogene, D12Rfj1): 

c-Fos is the cellular homologue of a viral oncogene (v-Fos) initially identified in 

transformed cells of a murine osteosarcoma [156]. It belongs to the group of immediate 

early genes, meaning a) a low basal expression level rapidly going up due to external 

stimuli, plus b) a transient induction of transcription, independent of the protein 

synthesis, plus c) a high turnover of its RNA and the appropriate protein[157]. 

To become an active transcription factor, phosphorylated members of the c-Fos family 

(c-Fos, FosB, Fra-1, Fra-2) form heterodimers with members of the Jun family (c-Jun, 

JunB, JunD), which have to be phosphorylated as well [158]; the resulting complex, 

called AP-1 (activator protein-1), binds to DNA motifs with the frequent consensus 

sequence TGACTCA [159]. According to its composition, AP-1 has different effects, 

e.g. a stimulation of target gene transcription (c-Fos + c-Jun) or its inhibition (c-Fos + 

JunB). Apart from the usual feature, c-Fos can also interact with other transcription 

factors and cellular molecules, each time causing different effects according to activity, 

localization or turnover, respectively (e.g. ubiquitinylation, sumoylation) [160]. 

When c-Fos is involved in proliferation or differentiation, respectively, the MAPK 

(mitogen-activated protein kinase) signalling pathway can be regarded as the main route 

of activation, but numerous effects compassing apoptosis, migration, cell death, 

organogenesis, immune response and tumour growth / progression etc. have also been 

ascribed to this mediator: 

One important physiological function of c-Fos is bone development and remodelling, 

implemented by osteoclast maturation; in company with this, a side effect of disturbed 

signalling is a reduced number of B cells, probably due to the impaired bone marrow 

environment (osteopetrosis) [161]. Additionally, c-Fos plays a role in T cell 

development and mast cell degranulation, and even a contribution to rheumatoid 

arthritis via induction of inflammatory cytokines and matrix metalloproteases could be 

shown [162]. 

In the neuronal system, the molecule is an important regulator of cellular survival and 

excitability and participates in the molecular effects of learning and memory [163]; due 

to its expression in this cell type, c-Fos has become a widely-used biomarker for 

monitoring activated neurons. 

According to pathological conditions, c-Fos can have numerous adverse effects as well: 

Being an oncogenic transcription factor, bone tumours like osteosarcomas may be 

initiated, possibly due to an intensive up-regulation of cell cycle regulators, e.g. cyclins 
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[164]. For skin tumours, a promotion of severity because of c-Fos activity could be 

shown [165]; there also was a maintenance effect of tumours losing their degree of 

severity after c-Fos withdrawel. Even the generation of metastasis by inducing an 

epithelial-mesenchymal transition (featured by loss of cell-cell adhesions and cellular 

polarity, increased motility, loss of epithelial cell markers etc.) facilitating an invasion 

of tissue, was ascribed to c-Fos [166]. 

In the lung growth studies presented here, c-Fos was found to be down-regulated 

postnatally, but overexpressed after pneumonectomy (→ 3.3-5). Different functional 

needs may be a justification for this antagonism: While surgery causes a sudden, 

intensive stimulation of growth, which might be induced or steered by an immediate 

early gene like c-Fos, the alveolarization of newborn mice, although involving extreme 

alterations, is a more permanent process without the necessity of quick changes. c-Fos 

plays an important role in the development of the immune system, which was found to 

be down-regulated in newborn mice as well (→ 3.2); this may be another reason for the 

postnatal findings. In addition to that, the induction of tumours by significant levels of 

c-Fos has to be excluded as far as possible; this may be more difficult in the labile phase 

of regular secondary alveolarization than in compensatory growth, affecting widely 

mature tissue. In consequence, expression levels may have to be adjusted to the degree 

of maturity.  

As the main interaction partners of c-Fos, namely the Jun family members, were all not 

significantly changed in their expression (→ online supplement), relatively uncommon 

pathways may be involved in lung growth. Having found its mRNA to be expressed in 

single septal cells in both models (→ 3.5) made c-Fos an interesting candidate for 

further experiments, despite still not knowing which of its multiple roles is relevant for 

alveolarization. 

Sonic hedgehog (Shh): 

Sonic hedgehog is a well-known mediator of branching morphogenesis in the frame of 

early lung development (→ 1.2) [167, 168]. It was found to be up-regulated 2.2- (P1) 

and 2.6fold (P3), respectively, in the postnatal phase, while there were no significant 

changes in the surgery model (→ online supplement). Array data may be interpreted in 

two different ways here: Either Shh still plays an important role in the postnatal phase, 

or the observed regulatory difference is a residuum from extreme embryonic expression 

levels and not of greater functional relevance any more. Favouring the former 

assumption, one might argue that there still is a clear difference from adult gene 
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expression, which is even slightly increasing when approaching the beginning of 

secondary septation at P4-5. In this case, a different function of Shh, possibly 

influencing dividing / migrating septal cells, could be assumed. According to the latter 

idea, one has to admit that the detected regulatory effect is relatively small (compared to 

the top postnatal genes; → 3.2, 4.4) and that the expressional decay may just take longer 

than expected, possibly due to a long half-life of the mRNA molecules or because of 

inhomogeneities in lung growth, i.e. an overlap of developmental phases (→ 1.2). 

As, due to a lacking change after pneumonectomy, Shh seems to be irrelevant for the 

compensatory growth model, further studies regarding its usefulness for adult organ 

regrowth may not be very promising. 

Fibrillin 1 / collagens: 

These molecules are of highest importance regarding the generation of a guiding and 

stabilizing scaffold for the expanding lung tissue during alveolarization. As stated 

before (→ 3.3, 4.2.3), there was a uniform up-regulation of Fibrillin 1 and five different 

collagens detected in both models studied here. This finding can be regarded as a proof 

of principle, showing that the generation of array data has worked correctly and that the 

time points chosen indeed involve active lung growth. Due to their widely structural 

demands, neither Fibrillin 1 nor collagens can be regarded as major steering elements of 

alveolarization, what makes them candidates of minor interest for functional 

experiments. 

Homeobox (Hox) genes: 

Being master regulators of developmental processes by steering the positioning of 

organs (→ 1.3.1) [29], the Hox transcription factors are very important also for lung 

growth. Interestingly, by far the most of these genes were found to be unregulated in the 

alveolarization models studied here (→ online supplement); only Hox b2 and Hox b3 

(2.0- and 1.3fold up-regulated at P3, respectively) showed significant expressional 

changes, but on a low level. As even the latter candidates may have been detected just 

coincidentally (false-positive rate of up to 10 % (→ 2.2.5) within 49 Hox spots in four 

screens; second Hox b2 spot unregulated), one can assume that the fundamental prenatal 

role of the Hox genes is mostly irrelevant after birth and in compensatory growth. This 

result is not surprising, as most of the organ positioning should have been finished in 

the models / time points tested. On the other hand, it cannot be excluded that there still 

may be some active members of the Hox family in the lung periphery, what may be 

hidden due to the screening of lung homogenate samples. 
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Hypoxia-induced mitogenic factor (= HIMF, FIZZ1, RELMα, Resistin-like alpha): 

HIMF is a potent pulmonary vasoconstrictor; it is induced by hypoxia and plays a role 

in different types of lung inflammation. In addition to these functions, an up-regulation 

in the developing lung, having an anti-apoptotic effect, was shown [169]. Interestingly, 

in the models studied here, HIMF was exclusively up-regulated three days after 

pneumonectomy (S3, 2.8fold; → online supplement). This finding may be explained in 

two different ways: Either the molecule is not relevant for both types of alveolarization 

and the up-regulation may be based on a reaction to inflammatory stimuli (as seen 

before with other mediators of the immune system; → 3.2), or there is a specific 

induction in compensatory lung growth, possibly mediating anti-apoptotic effects in a 

phase of increasing cell numbers. If the latter influence could be proven, HIMF would 

be an interesting candidate for further functional studies, being a mitogenic factor 

specifically regulating adult post-surgery lung growth. 

Further candidates: 

Although playing an important role in early lung development, TTF-1 (→ 1.3.1) did not 

show any significant regulation after birth or surgery, respectively (→ online 

supplement). While TGF-beta 1 and 3 were not found to be changed, TGF-beta 2 was 

induced up to 1.6fold postnatally. Which of its numerous - mostly inhibitory - effects 

(→ 1.3.1) is relevant in this phase still needs to be evaluated. 

Regarding surfactant molecules, only postnatal SP-A showed a significant expressional 

difference from adult conditions (up to 2.9fold down-regulation (P1); → online 

supplement), while the remaining mRNAs already tended to normal levels. In 

consequence, the surface tension (represented by SP-B and SP-C; → 1.3.1) should have 

reached satisfying conditions even one day after birth, while there was still a lacking 

defence against microbial attacks; this is in line with other observations of an immature 

immune system (→ 3.2, 4.2.2). Although surfactant molecules are essential for a regular 

lung function, array data imply that they are probably not directly involved in guiding 

alveolarization. Due to that, further surfactant molecule studies in the frame of the 

search for molecular mediators of alveolarization would not be promising. 

Due to space limitations, only a few interesting candidates could be mentioned within 

this chapter. Having omitted numerous genes does not mean that they are of no 

relevance or are necessarily unregulated. For further search, the online supplement 

contains all statistical data of all four experimental groups. 
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4.3 First candidate gene: Egr1 

Egr1 (Early growth response 1) is a transcription factor also known as Krox24, 

NGFI-A, Zif268, Zfp-6 etc. Being an immediate early gene (for definition see c-Fos 

description; → 4.2.4), it is quickly induced by multiple stimuli, e.g. other growth 

factors, mechanical stretch, hypoxia or radiation (→ Figure 20), and it has many, highly 

context-dependent and often even antagonizing effects (see below) [134]. 

Figure 20: Inducers and downstream effects of Egr1. 

The transcription factor Egr1 can be induced by many different stimuli and has numerous influences 

itself. Here, examples of regulatory chains, their mediators and the resulting cellular responses are given 

to indicate the broad field of Egr1’s interactions (modified from Adamson and Mercola, [134]). 

Array data: 

In array experiments, Egr1-specific mRNA was found to be down-regulated in newborn 

mice (factor 0.7 / P1), but more intensively expressed after pneumonectomy (2.3fold / 

S1; → 3.3). Although a common regulatory influence on alveolarization in both models 

was improbable due to these findings, the growth factor with its multiple effects was 

still regarded as an interesting candidate for functional experiments: Egr1 was among 

the most intensively induced post-surgery genes (→ Table 5), what was more 

promising for potential future therapies in adult human patients than an isolated 

postnatal regulation. Additionally, arrays might have depicted a stimulatory as well as 

an inhibitory level of this molecule due to slightly different relative time points within 

lung growth, with both regulatory changes fulfilling the needs of a corporate program. 

To more obviously monitor the effects of Egr1 and to check their compatibility with the 

expected growth regulation, overexpression and knockdown studies were performed 

with different lung cell types (→ 3.6, see below). 

Background: 

The Egr1 protein is an 80 kD molecule derived from a posttranscriptionally modified 

59 kD polypeptide. It has three zinc finger domains for DNA binding and numerous 

phosphorylation sites; being generally very short-lived, phosphorylation stabilizes the 
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protein. Egr1 belongs to a family of growth factors (Egr1 - 4), all binding to the same 

GC-rich DNA consensus sequence (GCG[G/T]GGGCG) as monomers [134]. The 

activity of Egr1 can be blocked by binding of one of two specific inhibitors / co-

repressors, namely NAB (NGFI-A binding protein) 1 and 2, to the repressive domain 

[170, 171]. While NAB1 is constitutively expressed, NAB2 seems to be induced by 

similar stimuli as Egr1 and possibly abrogates excessive stimulations within a negative 

feedback loop. Apart from these specific interactions, there are numerous interplays 

with molecules from very different fields of activity, e.g. a competition with the growth 

factors SP-1 (trans-acting transcription factor 1) and SP-3, which provide basal 

transcription levels, at overlapping DNA sites [172] or the binding of p53, which 

induces apoptosis [173]; some of these features will be discussed in detail (see below). 

Although being a growth factor with multiple interactions, a knockout of Egr1 is not 

lethal, probably due to an (at least partial) adoption of its functions by other family 

members: Affected mice are significantly smaller than wild type animals (lack of 

growth hormone) and, due to a lack of LH (luteinizing hormone) and the resulting 

severe affection of their reproductive system, homozygous mutants are infertile [174]. 

Interestingly, another group not even saw any significant changes in growth and 

differentiation due to an Egr1 deficiency some years before [175]. This inconsistency 

may be caused by the different mouse strains used for the studies with imaginable 

variable degrees of functional overlap with other members of the gene family. 

Egr1 functions: 

As an overview, basic functions with Egr1 involvement are given here; due to the 

extremely broad range of interactions, only a selection of target molecules and their 

effects could be shown. 

Being a growth factor, Egr1 plays an important role in promotion of proliferation. 

Examples of well-known target genes are Cyclin D1 (Ccnd1; [176]), platelet-derived 

growth factors (PDGF) A and B and insulin-like growth factor (Igf) 2 [177]. As the 

latter candidate was one of the top up-regulated postnatal genes (→ online 

supplement), while Egr1 was found to be less intensively expressed at the same time, 

there seems to be no link between these genes within the alveolarization models. 

Interestingly, Ccnd1 paralleled the down-regulation of Egr1 (-50 % at P1; → online 

supplement), even if without the opposite reaction in the post-surgery model. While 

inducing FGF (fibroblast growth factor) 2 [178], a molecule with multiple functions in 

proliferation, differentiation and development etc., Egr1 is up-regulated by FGF1 [179], 
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another member of the same family. The latter candidate was found to be down-

regulated by 45 to 50 % in the postnatal model, giving a hint for a possible interaction 

of both growth factors here. Unfortunately, the stimulation of proliferation can induce 

growth and invasiveness of tumours as well, as shown for prostate cancers [180]. 

Egr1 can also induce the differentiation of cells / organs, as described above: By 

inducing LH in the pituitary gland, a correct development of the reproductive organs is 

assured; otherwise, affected individuals may be infertile [174]. In own experiments, LH 

was not changed postnatally or after surgery, respectively (→ online supplement). 

Regarding apoptosis, Egr1 induces TNFα (tumour necrosis factor alpha) as well as p53, 

both leading to programmed cell death [181, 182]. These genes were not found to be 

regulated in own array data (→ online supplement). Apart from TNFα regulation, 

different functions within the immune system have also been ascribed to Egr1 [183]. 

In angiogenesis, Egr1 plays a role as well: VEGF (vascular endothelial growth factor), 

a well-known target gene, is induced in concert with HIF (hypoxia-inducible factor) 1α, 

[184, 185]. Being a growth factor itself, this molecule has multiple different functional 

targets including angiogenesis, differentiation, migration, proliferation, apoptosis 

inhibition etc. However, none of the VEGFs A, B and C was found to be regulated in 

any experimental group, making an Egr1-driven influence within alveolarization 

improbable (→ online supplement). 

Despite all of these promoting activities, Egr1 has inhibitory effects as well. One 

familiar example is TGF-beta, which is directly induced by the growth factor [186] and 

which was, amongst others, shown to inhibit branching, proliferation of epithelial cells 

and SP-C expression (→ 1.3.1, [27]). As no uniform regulation was detectable in both 

models (→ online supplement), a direct interplay could not be assumed here. 

Apart from promoting prostate cancer (s.a.), Egr1 is also known to regulate tumour 

inhibition: By induction of PAI-1 (plasminogen activator inhibitor-1; mediated by 

TGF-beta; [187]), Pten (phosphatase and tensin homolog; [188]), p53 and fibronectin, a 

protective network is thought to be generated [189]. While PAI-1 and fibronectin 

increase the attachment of cells to the extracellular matrix to aggravate metastasis 

formation [190], the other two candidates have proapoptotic effects. According to array 

data, a postnatal up-regulation of TGF-beta 2 and fibronectin was detected, but a lower 

expression of Pten; as only the latter one ran conform with Egr1 expression and as none 

of the genes was changed after surgery (→ online supplement), the relevance of the 

mentioned inhibitory network seemed not to be high during alveolarization. 
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Another aspect of inhibition could be shown by overexpressing or knocking down the 

Egr1 protein in tumour cell lines: Growth rates and degree of transformation were 

inversely related to the amount of Egr1 being present; this was also true when only the 

DNA-binding zinc-finger domain was overexpressed. The effect was cell type-specific, 

as it was detected only in lines which had lost the ability of autonomous Egr1 ex-

pression; it also did not appear in healthy or immortalized cells [191]. 

Recently, Egr1 was also shown to participate in autophagy: This process of “burning 

up” cellular mitochondria / organelles (→ 4.2.2) was mediated by an Egr1-induced up-

regulation of the LC3B gene (= MAP1LC3B, microtubule-associated protein 1 light 

chain 3 beta) in lung tissue of COPD patients [192]. 

Egr1 and the lung: 

Egr1 was found to be up-regulated in array studies of COPD lungs [193], what made 

the growth factor a potential target for treatment of the disease [194] - similar to what 

was intended with the growth studies presented within this thesis. Another group 

showed that cigarette smoke induces Egr1 expression in cultured lung epithelial cells, 

leading to an up-regulation of proinflammatory cytokines, e.g. IL (interleukin)-1β and 

TNFα [195], which are thought to significantly contribute to COPD development. 

Being induced by hypoxia in an ischemia / reperfusion model, Egr1 was shown to 

trigger processes of an acute lung injury including inflammatory reactions, blood 

coagulation and vascular hyperpermeability by up-regulating appropriate genes [136, 

196]; as proof of principle, knock-out animals presented with strongly diminished 

symptoms [136]. 

Cyclic stretch, e.g. administered by artificial ventilation with high tidal volumes, was 

shown to transiently up-regulate Egr1 expression [197]. In its function as an immediate 

early response gene, Egr1 was ascribed to the MAPK (mitogen-activated protein 

kinase) pathway here: An increased Ca2+ influx due to the cyclic stretch activated the 

GTPase Ras, which itself mediated an activation of the p44/42 MAPK, leading to Egr1 

expression. As Ras (here: Rras2), Egr1 and c-Fos, a further target of this regulatory 

chain, were concertedly induced after pneumonectomy (→ Table 5, 4.2.4), a functional 

relevance of the MAPK pathway for compensatory lung growth seems to be likely. 

Own functional experiments: 

Having found divergent regulatory directions for Egr1, i.e. an induction after 

pneumonectomy, but  a lower postnatal expression (→ 3.3, 3.4), made it difficult to find 

a common functional background for both lung growth models - unless both detected 
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values might have mirrored an early and a late stage of the same pathway (s.a.). 

Functional studies involving different pulmonary cell types (→ 3.6) were performed to 

evaluate at least the basic effects probably involved in one or both alveolarization 

procedures. 

Checking the influence on proliferation, Egr1 overexpression had a growth-inhibitory 

effect as significantly fewer cells were found in comparison to empty vector-transfected 

controls (→ 3.6.1). This was true for all cell types / lines tested (except for smooth 

muscle cells, which reacted inconstantly) and made up a loss of about one third of the 

control cell number. To exclude a toxic effect due to an extreme overexpression of the 

molecule, the opposite experiment using siRNA to reduce the amount of Egr1-specific 

mRNA was performed, expecting increased growth ratios this time. Indeed, data 

showed an up-regulation of final cell numbers in a similar magnitude as seen before 

(→ 3.6.1). Another proof of growth inhibition, going even one step further, was the 

anti-proliferative effect seen when applying the supernatant of transfected cells to 

untreated cultures (→ 3.6.2): The cells growing in media from Egr1-overexpressing 

dishes, which should contain more nutrients due to fewer “consumers”, showed a 

decreased proliferative activity; this was a clear hint for the secretion of inhibitory 

mediators following the transfection. 

Having found a down-regulation of a molecule which has an anti-proliferative effect in 

consequence means an intended increase in the division ratio of cells; this absolutely 

matches the situation in the growing postnatal lung. As Egr1 is a potent inducer of 

cellular differentiation, the main reason for its lower expression at P1 may also be the 

need of numerous immature, actively dividing cells in this early stage of lung growth. 

On the other hand, having found an up-regulation of Egr1 after pneumonectomy may be 

a sign for an exclusive pro-proliferative growth factor activity without the need of 

inhibition of differentiation, as most of the adult lung cells should be mature; in this 

case, an interplay with factors different from those in newborn mice would have to be 

expected. Additionally, other reasons for the up-regulation after surgery may be an 

increased degree of inflammation (even in comparison to sham animals; → 3.2, 4.2.2) 

or a hypoxic situation within the first time after removal of the left lobe. The latter 

points would match the known wide spectrum of Egr1 (s.a.), but, if being true, also 

lower its value as a potential growth initiator in adult individuals. 

Coming to the apoptosis studies (→ 3.6.3), Egr1 overexpression was shown to increase 

the fraction of apoptotic cells in comparison to empty vector-transfected controls, what 
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is a good justification for the slower proliferation described above. As typical apoptosis 

inducers like TNFα and p53 were not found to be regulated in array experiments 

(→ online supplement), also less well-known candidates may have been involved. 

Due to practical reasons (e.g. cell numbers, reproducibility), only one cell type, namely 

the A549 cell line, could be evaluated in flow cytometry. This may explain the high 

basal apoptosis rate of about 20 %; apart from this, one has to take into account that in 

malignant cells physiological mechanisms may be altered and non-transformed cells 

may have shown a different behaviour. 

Studying migration and adhesion (→ 3.6.4, 3.6.5), Egr1 was found not to change these 

parameters. The only exception was the migratory behaviour of A549 cells, which 

tended to increase due to higher Egr1 levels. As this line was the only epithelial cell 

type evaluated here, one might assume that the growth factor specifically supports the 

locomotoric activity of future AECs within alveolarization. This would be in line with 

the detected regulation in the surgery model, but not with that of the postnatal stage, 

where even more cellular movements have to be made. 

One effect of Egr1 is to provide a scaffold, protecting from malignant invasions (s.a.), 

mirrored e.g. by an increased adhesion. This would match a postnatal down-regulation 

as here proliferative and locomotoric activities could be disturbed by high Egr1 levels. 

Having found no effect at all in the adhesion study may either be due to technical 

reasons or because the “protecting network” (s.a.) is the result of an interplay of 

numerous factors, and essential Egr1 interaction partners were missing. 

According to localization, in immunofluorescence stainings (→ 3.6.6, Figure 14), Egr1 

was found to be intensively expressed in SP-C-positive bronchial epithelial cells and, to 

a smaller degree, in alveolar septal cells, where it was emphasized in AECs II. There 

was no co-localization with other cell type-specific markers, qualifying epithelial cells 

as potential key players of Egr1 function within alveolarization. The detection of a 

postnatal down-regulation of the growth factor seems to have been caused by a less 

intensive bronchial expression, while septal levels remained approximately constant. 

Having found Egr1 mainly in the cytoplasm of positive cells and only sometimes within 

the nuclei may be a hint for a global “expecting” status, waiting for external 

coordinating stimuli before nuclear translocation of the growth factor. As Egr1 is, if not 

phosphorylated, very short-lived (s.a.), a high turn-over with most of the molecules not 

becoming active at all is probable, which was underlined by numerous degradation 

products in Western blot experiments (not shown). 
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Coming to in-situ hybridizations depicting Egr1-specific mRNA (→ 3.6.6, Figure 15), 

a similar localization as in immunofluorescence could be shown: In adult mice, the 

expression / de-novo generation accumulated in bronchi, while these structures were 

only weakly stained in newborn animals. Postnatal lungs presented numerous single 

positive septal cells, which may be regarded as (mostly) AECs II. Interestingly, in-situ 

hybridizations revealed a new area of overexpression in pneumonectomized animals: In 

the tips of the remaining lobes, where the most intensive stimulation due to distension 

forces could be expected, many cells expressed Egr1-specific mRNA. This is conform 

with the behaviour known from cyclic stretch involving the MAPK pathway, of which 

several candidates were found to be up-regulated after surgery (s.a.). 

Taken together, both staining techniques detected AECs II / septal epithelial cells as the 

probably most relevant Egr1-expressing cells within the growing lung. 

Summary: 

Egr1 is a growth factor with multiple different interaction partners and numerous effects 

covering most of the known cellular processes. Having found a postnatal down-

regulation of this anti-proliferative, pro-apoptotic molecule fits the needs of high 

division ratios within alveolarization, but may also depict a diminished necessity of 

differentiation. Stainings revealed single alveolar septal cells of both models to (over-) 

express Egr1, potentially emphasizing a local pro-proliferative influence of the growth 

factor within this lung region. 

The pneumonectomy model, showing an up-regulation of Egr1, probably involves the 

MAPK signalling pathway, as some additional members of this regulatory chain were 

found to be overexpressed as well. In consequence, not only Egr1, but also these 

candidates should be further studied in order to find targets for potential tissue 

regrowth. In a first step, lungs of Egr1-knockout or -overexpressing mice may be 

stereologically quantified to curtail the degree of influence the growth factor has on 

both models presented here. 
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4.4 Second candidate gene: Stefin A1 

With a regulation factor of > 32, Stefin A1 was one of the most intensively up-regulated 

genes in all experimental settings (→ 3.2, 3.3); including this molecule, six of the top 10 

most intensively up-regulated genes in the postnatal period had a cysteine protease 

inhibitor function (→ Table 6). These findings clearly indicated an important role 

within alveolarization of newborn mice, justifying further functional studies, although 

no regulation was detectable in the pneumonectomy model (→ online supplement). 

Table 6: Cysteine protease inhibitors among the top 10 postnatally up-regulated genes. 
The genes are given with their individual rank, accession number (Acc.-No.), name(s) and regulation 

factor (Fold change). 

Background: 

Stefin A1 belongs to the Cystatin super-family. The appropriate molecules contain up 

to three cystatin domains, each implementing a cysteine protease inhibitor function. One 

domain consists of about 100 amino acids and has the structure of a five-stranded 

β-sheet, partially wrapped around a central α-helix [198]. 

In their best-known function, the family members competitively block papain-type 

proteolytic enzymes, defined by a combination of a cysteine (making up the name 

“cysteine proteases”) and a basic (mostly histidine) residue in their active site. 

According to localization and structure, the super-family can be divided into at least five 

different groups, namely Stefins, Cystatins, Latexins, Fetuins and Kininogens [199]. 

Both having only a single cystatin domain, the main difference between the first two of 

these sub-families is the localization: Stefins (Stf) are mostly found intracellularly, 

while Cystatins (Cst) are secreted molecules. For discrimination, the former ones, which 

are also called Cystatins nowadays, were given alphabetic character codes (StfA - D = 

CstA - D), and the latter molecules received arabic numbers (Cst1 - 14) [199]. While 

Stefins consist of about 100 amino acids, Cystatins are a little larger and more complex, 

i.e. they contain about 140 amino acids (with about 20 serving as extracellular 

signalling peptide) as well as two disulphide bridges [200]. 

Top 10 rank Acc.-No. Name Alternative / full name Fold change
1 NM_029733 2010005H15Rik 35.75
2 NM_001001332 Stfa1 Stefin A1 32.90
3 M92418 Stfa2 Stefin A2 25.11
5 NM_173869 LOC268885 Stfa2l1 = Stefin A2 like 1 21.86
7 NM_025088 Stfa3 Stefin A3 20.97
10 XM_148650 LOC209294 Cystatin A = Stefin A 13.45  
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In the following, the focus is directed to Stefin A, as numerous subtypes of this cysteine 

protease inhibitor were found to be regulated (→ Table 6). The primary function of 

Stefin A is the inhibition of intracellular cysteine proteases, mainly lysosomal 

Cathepsins (e.g. type B, H, L and S), but also of other enzymes like Calpains, 

Legumains or ubiquitin processing and recycling endopeptidases [199]. 

High concentrations of Stefin A were found in epithelial cell types (e.g. in the epidermis 

of postnatal mice; [201]) and different members of the immune system (s.b.) [202]; 

additionally, the molecule was detected in serum samples and extracellular matrix 

(ECM) regions. In the epidermal ECM, Stefin A was found to contribute to the 

bacteriostatic properties of the skin [203], probably by inhibiting the proteolytic 

activities of bacteria being necessary for invasion [204]. 

According to the immune system, Stefin A was for example found in 

polymorphonuclear granulocytes; additionally, follicular dendritic cells in the germinal 

centres of tonsils were shown to express the molecule [205]. Here, Stefin A was thought 

to prevent B lymphocytes from apoptosis [206]: This process can be induced by 

Cathepsins [207], which are in turn main targets of the cysteine protease inhibitor 

discussed here. Coming to another aspect, Cathepsins S and L, which play an important 

role in endosomal and lysosomal antigen processing and presentation [208], were 

shown to be effectively inhibited  by Stefin A [209]. 

Apart from their typical protease inhibitor function, several other immunological 

functions were ascribed to Cystatins in general, mediated via putative cystatin-binding 

cell surface molecules: They can stimulate a nitric oxide release from macrophages 

[210], modulate respiratory burst and phagocytosis in neutrophils [211] and alter the 

interleukin / cytokine production [212]. 

Cystatins are often mentioned in connection with tumour growth and severity. 

According to Stefin A, it was shown that the expression of this molecule is often lost 

with tumour progression, e.g. in breast, prostate and lung cancer [213-215], and that it is 

able to reduce the motility of malignant cells when exogenously administered [216]. 

The inverse correlation between Stefin A expression and degree of malignancy is 

supported by the fact that in many tumours Cathepsin B is overexpressed. Due to the 

missing inhibitor, this protease can subsequently cause an increased invasiveness of the 

malignant cells by degrading protective matrix tissue. Following this line, Li et al. 

showed that an overexpression of Stefin A in an oesophageal squamous cell carcinoma 

was able to significantly inhibit / reduce several aspects of tumour severity, namely 
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growth speed, associated angiogenesis, invasiveness and metastasis formation; these 

effects were primarily mediated by inhibiting Cathepsin B [217]. 

On the other hand, if Stefin A is exceptionally expressed in cancer, the average outcome 

of patients seems to be worse [213], probably due to the extreme malignancy 

overwhelming the inhibitory function. 

When talking about Stefins and their effects, one should not ignore the target 

molecules. Especially Cathepsins are known to be involved in many extra- and 

intracellular processes like ECM degradation (e.g. digestion of Elastin, Laminin, 

Fibronectin, different Collagens etc.), cell motility and adhesion (e.g. tumour 

invasiveness, ECM organization, migration of immune cells), angiogenesis and cell 

signalling (e.g. by cleaving surface molecules on immune cells) [218, 219]. Some 

further examples for Cathepsin-specific effects are: Type S mediates antigen 

presentation via MHC-II molecules [220] and type L regulates kerationcyte 

differentiation [221]; Cathepsin K steers bone remodelling [222], while type D has 

mitogenic properties [223]. 

As all of these enzymes can be inhibited by Stefins (or other Cystatins), an indirect 

participation of the inhibitory molecules in numerous intra- and extracellular processes 

is given. This makes the protease inhibitors interesting candidates for numerous 

experimental questions as well. 

Own experiments: 

Having validated the extreme up-regulation found in array experiments also for protein 

levels, subsequently the localization and cell type-specificity of Stefin A1 was checked 

(→ 3.2, 3.7.1, 3.7.2). Using immunofluorescence, a largely constant expression was 

detected in bronchial epithelial cells of all models and time points, complemented by 

low levels in septal cells. Interestingly, in postnatal lungs large amounts of single septal 

cells with intensive positive staining were found additionally (→ Figure 17A + B), 

obviously being the reason for the detected up-regulation. 

Due to the fact that no co-staining for immune cells or cell type markers different from 

cytokeratin revealed an obvious and constant co-localization with Stefin A1, these 

single overexpressing cells can be regarded as (mostly) AECs. From their position, 

many of them may be classified as AECs II, but some are also type I cells involved in 

secondary septum formation, e.g. being situated on the top of outgrowing tips. 

Performing cell culture, both lung cell lines tested (human: A549; mouse: MLE-12) 

validated the finding of an epithelial expression. Especially in A549 cells it could be 
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nicely shown that Stefin expression is locally enhanced in regions with intercellular 

contacts (→ Figure 17G) where the degrading influence of Cathepsins would be 

deleterious. 

The findings from immunofluorescence stainings could be validated using in-situ 

hybridizations (→ Figure 18), where also numerous single septal cells were positive. 

Here, the ratio of cells expressing Stefin A1-specific mRNA within the tips of 

secondary septae appeared to be slightly higher than that of the protein level. 

Taken together, in addition to the common bronchial expression, Stefin A1 was found to 

be intensively expressed in single septal  / epithelial cells of postnatal lungs, what can 

be explained with the need of massive tissue generation within this phase: Any 

inappropriate affection of the septal cells or, more important, the ECM, by Cathepsins 

or other degrading enzymes would severely damage the growing tissue and either cause 

structural abnormalities or reveal the necessity of rebuilding structures by the expense 

of energy and supplies. Due to that, the extensive generation of inhibitory molecules 

like Stefin A1, which can stop the action of cysteine proteases within cells as well as 

within the ECM (s.a.) can be regarded as a suitable way of self protection. 

Another reason for the extreme expression levels may be an immunological: As the 

immune system is still very immature in this early stage of development (→ 4.2.2), 

Stefins may be intended to be disposed in the ECM of the postnatal lung to fulfil a 

similar bacteriostatic function as shown for the epidermis (s.a.; [203]). As the lung 

comes into contact with microorganisms from the outer environment immediately after 

birth, an additional basal, rather unspecific protection would help the young animals to 

survive. 

The extensive postnatal growth always bears the risk of cancer development. Due to 

that, Stefin A’s role in tumour inhibition (s.a.) may also be of some importance. As the 

cells with extreme expression showed no co-localization with the proliferation marker 

Ki-67 (→ Figure 17B), this idea looks rather improbable. What may be more 

reasonable is the known influence of Cathepsin L on the regulation of keratinocyte 

differentiation (s.a.): If this molecule is also intensively involved in AEC maturation, 

there needs to be a certain stop point not to allow the protease to immediately destroy 

the “ready” cells again. This may be implemented by a strong Stefin A expression. 

Having found no single septal cells with extreme Stefin A1 overexpression in the 

pneumonectomy model (→ Figure 17E + F, Figure 18D) is a little surprising as there’s 

also the need of tissue and ECM generation as well as mitosis and maturation within 



 

 82 

proven growth processes (→ 1.4.4). To explain this finding implicating the ideas 

discussed above, there may be less need of ECM restructuring and of immunological 

influence in the operated lung due to the higher degree of maturity. Additionally, the 

relative time points within alveolarization are probably not completely identical in both 

models, meaning that the moment of cellular maturation, ECM alterations etc. may not 

be clearly visible in the one and three day post-surgery lungs. 

Coming to the functional experiments (→ 3.7.3, Figure 19), it has to be stated that 

human cells only express one type of Stefin A, while mice have more (A1 - 3, A2 like 1 

etc.). According to the examined species, the appropriate nomenclature will be used. 

Overexpressing Stefin A(1), changes in the proliferative behaviour were studied first 

(→ Figure 19A): While fibroblasts reacted indifferently, the epithelial cell types 

revealed contrary results as mouse cells (MLE-12) increased their ratio of mitosis, while 

human cells (A549) tended to grow slower. This finding may be explained either with 

(rather improbable) inter-species reaction differences or with the cell culture 

environment: As the usage of a single cell type can never completely resemble a real in-

vivo situation, important interaction partners may simply be missing, leading to atypical 

reactions in one case, while the other cell type may receive necessary “stimulators” with 

the culture medium. One also should not forget that both epithelial cell types tested here 

are cell lines, i.e. cancer cells. Although reacting like untransformed tissue in most of 

the cases, special features / behaviours may be altered by the mutations leading to 

malignancy. This is supported by the fact that normally cancer cells do not express 

Stefin A(1) any more (s.a.), while the molecule was detectable within A549 and MLE-

12 cells (→ Figure 17G + H). 

Checking migration (→ Figure 19B), there was no clear tendency of in- or decrease 

detectable. Although this may have been caused by the low number of experiments, the 

most probable explanation is the need of interplay with other cell types. As Stefin A is 

basically an enzyme inhibitor (s.a.), its amount does not necessarily need to change the 

behaviour of single (cultured) cells. The environment, i.e. other cell types and ECM, can 

be expected to play a more important role than in case of e.g. growth factor application 

(→ 4.3). 

Coming to adhesion (→ Figure 19C), there was a small, but significant increase in the 

adherence to Fibronectin and (in tendency) to Collagen. This fits to the function of 

Stefin as an inhibitor of ECM-degrading proteases: The less Cathepsins etc. are active, 
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the better the respective cells can adhere to “sticky” surfaces, while there was no 

difference in the control group (BSA-coated wells). This finding was supported by the 

fact that, although not significant, the majority of siRNA experiments showed an 

opposite reaction in case of Stefin A knockdown, resulting in fewer cysteine protease 

inhibitors as usual. Surprisingly, the adhesion to Collagen decreased in Stefin-

overexpressing fibroblasts. Although being significant, the practical relevance of this 

finding is questionable, as the detected difference is minimal. If there was any real 

effect, it may be explained with the overexpression of the inhibitory molecule in an 

untypical, normally non-Stefin A-expressing cell type, leading to rather untypical 

behaviour. 

Summary: 

Being strongly up-regulated in postnatal lung tissue, several subtypes of Stefin A can be 

assumed to play an important role in regular alveolarization. Inhibiting cysteine 

proteases, their main function is probably based on preventing ECM degradation, but 

also other aspects like bacteriostatic effects or influencing cellular maturation have to be 

considered. In functional studies, no clear association with proliferation and migration 

could be detected, while there was an increase in adhesion due to Stefin A 

overexpression. 

Unfortunately, there was no detectable Stefin A1 regulation after pneumonectomy, 

making the molecule a less promising candidate for future lung regrowth approaches in 

adult humans. 

From the functional point of view, experiments simultaneously changing the 

concentrations of Stefin A1 and different Cathepsins, which were mostly unregulated in 

array studies (→ online supplement), in identical as well as opposite directions might 

be interesting, as Stefin effects could become more obvious. 

To elucidate the complete band with of influences Stefin A1 has on alveolarization, 

studies should be performed in an appropriate environment, i.e. in vivo. For this 

approach, knockout and / or overexpressing animals should be generated, enabling 

structural analyses and stereological quantifications. 
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4.5 Conclusions and outlook 

Comparing postnatal and post-pneumonectomy lung growth, the intention of the study 

presented here was to see whether there are genes involved in both processes and, if yes, 

what may be their actual function. Doing so, the imaginable future goal was to find a 

way of potentially inducing lung tissue regrowth in severely handicapped patients by 

reactivating or inhibiting the most promising intersection genes (→ 1.5). 

Having found more than 1,600 candidates in both postnatal time points, there were less 

than 200 significantly regulated genes on each post-pneumonectomy day (→ 3.1); this 

difference probably resulted from the extreme discrepancy in maturity in the former 

studies. A model intersection of 58 genes sounded promising at a first glance, and 

indeed, there were several candidates with known participation in lung growth being 

uniformly up-regulated, e.g. some collagens and Elastin (→ 3.3, 4.2.3). On the other 

hand, 18 genes with opposing regulatory directions were found, which may have been 

detected just “by accident”, i.e. as false positives due to statistical reasons, or which 

may represent various regulatory stages at different relative time points within 

alveolarization. A closer look onto candidates like c-Fos and Egr1 revealed multiple, 

sometimes even contrary functions, which may explain the findings (→ 4.2.4, 4.3). 

Although there were several intersection genes, it can still not be clearly stated whether 

postnatal and compensatory lung growth are guided by the same genes. If so, these 

candidates should have been detected by the array screens, and in the following, 

interaction partners and involved pathways would have to be clearly elucidated; if not, 

also genes with a detection in only one model would come into play, e.g. Stefin A1 with 

its extreme up-regulation (→ 3.7, 4.4). In this case, candidates found in the surgery 

model might be preferable as they should better resemble the adult (patient) situation. 

One disadvantage of the microarray studies presented here is the usage of lung 

homogenate as this means a general pooling of RNA from all lung cell types; this bears 

the risk of overlooking interesting candidates due to the mixture of contrary regulatory 

directions. On the other hand, one had to find a reasonable starting point for 

experiments, and a preselection of cell types also has disadvantages as either the 

manipulation procedure may affect the target mRNA composition or the real molecular 

interplay necessary for a proper alveolarization may not be mirrored correctly. In further 

steps, selection techniques like microdissection should be used to verify the regulatory 

change of candidate genes in the expected cell types and to examine dependent 

pathways. 
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To reduce the risk of false selection, it may be worth to further curtail the number of 

candidate genes, e.g. by introducing an additional model like the glucocorticoid 

treatment or the refeeding procedure (→ 1.4.1, 1.4.2) or by studying human samples. 

The latter ones could be taken in different stages of chronic diseases in order to 

elucidate the degree of influence of certain candidates and to see whether the worsening 

can be reversed. 

Having finally found candidate genes like Egr1 and Stefin A1 (→ 4.3, 4.4), which may 

indeed influence / (re)induce lung growth, has to be followed by in-vivo studies 

validating the expected effects. For this issue, constitutive and / or inducible knockout 

or knockin mice should be evaluated. 

One major risk of selecting genes just from an array list is to ignore or underestimate 

the overall interplay of molecules within living organisms, meaning that although the 

expected effect of a candidate gene might be seen, its overexpression or knockdown 

could have side-effects severely harming the individual. Even if this could be excluded 

in extensive animal studies, it would not mean that a transfer to another species, e.g. 

humans, could be easily performed. There might always be interactions with up-to-date 

unknown gene products or metabolites disturbing or endangering the success of a gene 

therapy. Due to that, every trial to genetically manipulate “natural” conditions 

especially in sick individuals has to be weighed thoroughly. 

Although only being a first step on a long way to potential lung regrowth, the study 

presented within this thesis revealed interesting candidate genes potentially involved in 

one or both evaluated types of lung growth. Further experiments will try to prove their 

value using in-vivo models. 
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4.6 Summary: Results of the study 

Within the study presented here, following goals of a microarray approach searching for 

genes involved in the regulation of postnatal and / or compensatory lung growth were 

achieved: 

 

• A mouse model for compensatory lung growth after left-sided pneumonectomy was 

established. 

• Microarray data depicting mRNA expression levels in postnatal as well as post-

pneumonectomy lungs were generated for two different time points each. 

• Studying the significantly regulated genes, more than 1,600 candidates were found 

in both postnatal time points, while less than 200 were regulated on each post-

surgery day. The intersection constituted 58 genes. 

• For validation of array data, selected intersection genes were re-quantified using 

real-time PCR. Some promising candidates were also measured on protein level. 

• The expression of the most interesting genes was localized on mRNA and protein 

level, followed by functional analyses: 

o With Egr1, a growth factor, being down-regulated postnatally, but induced 

after pneumonectomy, was found. An anti-proliferative, pro-apoptotic effect 

of Egr1, mediated by secreted molecules, was demonstrated, and a bronchial 

and AEC II-specific expression was complemented by single peripheral 

overexpressing cells in both models. For compensatory growth, a 

participation of the MAPK signalling pathway was regarded as probable. 

o The cysteine protease inhibitor Stefin A1 was among the most intensively 

up-regulated postnatal genes. Mainly interacting with Cathepsins, its goal in 

lung growth was probably the inhibition of ECM degradation. The molecule 

was found to increase the adhesion tendency of epithelial cells. 

• Having found some, but not many intersection candidates between the models, a 

common regulatory mechanism cannot be excluded, but is also not highly probable. 

At least molecules definitively known to be essential for lung growth like collagens 

and Elastin were likewise up-regulated. 

 

Important aspects of the data presented within this thesis were published in the 

European Respiratory Journal [116]. 
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4.7 Zusammenfassung 

Hintergrund und Ziel: Obwohl zunehmend mehr Patienten an chronisch-destruktiven 

Lungenerkrankungen leiden, ist die bislang einzige „Heilung“ eine Transplantation. 

Falls man am Lungenwachstum beteiligte Gene ausfindig machen und reaktivieren 

könnte, wäre es ggf. möglich, eigenes Gewebe nachwachsen zu lassen. In einem ersten 

Schritt wurde nun in zwei Maus-Modellen nach solchen Regulatoren gesucht. 

Material und Methoden: Mittels Microarry-Screening wurde bei postnatalen und sich 

im kompensatorischen Wachstum befindenden Mäuse-Lungen zu jeweils zwei 

Zeitpunkten nach differentiell regulierten Genen gesucht. Aus der statistischen Analyse 

hervorgehende interessante Kandidaten wurden mittels Real-time-PCR und Western 

blot validiert, auf ihre Lokalisation in der Lunge hin untersucht und schließlich 

funktionellen Tests unterzogen. 

Ergebnisse: Es konnten pro Zeitpunkt über 1.600 postnatal regulierte Gene gefunden 

werden, jedoch jeweils nur knapp 200 im Pneumonektomie-Modell; die Schnittmenge 

betrug 58 Gene. Zwei interessante Kandidaten waren der Wachstumsfaktor Egr1 und 

der Cystein-Protease-Inhibitor Stefin A1. Für ersteres Molekül konnte gezeigt werden, 

daß es einen anti-proliferativen, pro-apoptotischen Effekt auf die meisten Lungen-

Zelltypen ausübt, welcher über sezernierte Moleküle vermittelt wird. Ein Typ II- und 

Bronchialepithel-spezifisches Expressionsmuster wurde in beiden Modellen noch um 

einzelne, in der Lungenperipherie liegende, überexprimierende Zellen ergänzt. Für das 

kompensatorische Wachstum wurde Egr1 eine Mediator-Rolle im Rahmen des MAPK-

Pathways zugeschrieben. Stefin A1 war eines der postnatal am intensivsten 

hochregulierten Gene; seine Aufgabe im Rahmen des Lungenwachstums besteht 

wahrscheinlich in einer Hemmung Matrix-abbauender Cathepsine. Für Stefin A1 konnte 

ein Adhäsions-steigernder Effekt bei Epithelzellen nachgewiesen werden. 

Diskussion und Ausblick: In beiden Modellen wurden zahlreiche regulierte Gene 

gefunden, wobei die Schnittmenge sich in Grenzen hielt. Falls es sich bei den 

gefundenen Kandidaten, neben den bekanntermaßen am Lungenwachstum beteiligten 

(z.B. Kollagene und Elastin), nicht um zentrale Steuerelemente handelt, wäre es 

möglich, daß beide Prozesse über unabhängige Wege gesteuert werden. Weitere 

funktionelle und In-vivo-Experimente sollen unter anderem diese Fragestellung klären. 

 

Wichtige Teile der hier vorgestellten Daten wurden im European Respiratory 

Journal veröffentlicht [116]. 
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