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1. Introduction 

1.1 Influenza virus  

1.1.1 Structure and replication cycle 

Influenza A viruses are zoonotic pathogens which continuously circulate in several 

hosts including birds, pigs and humans (1). They belong to the family of 

Orthomyxoviridae and can be divided into influenza A, B and C viruses dependent 

on their viral antigens, whereby influenza A and B viruses are mostly relevant for 

humans (2-6). They are classified according to their hemagglutinin (HA) and 

neuraminidase (NA) properties. Currently, there are seventeen different HA and 

ten different NA protein subtypes known for influenza A viruses (1, 7). Their 

genome is composed of eight negative stranded RNA segments which encode 

eleven viral proteins (1): hemagglutinin (HA), neuraminidase (NA), matrix protein 1 

(M1), matrix protein 2 (M2), non-structural protein 1 (NS1), non-structural protein 2 

or nuclear export protein (NS2 or NEP), polymerase basic protein 1 (PB1), 

polymerase basic protein 2 (PB2), polymerase acidic protein (PA), nucleoprotein 

(NP) and polymerase basic protein 1-F2 (PB1-F2) (3). Influenza viruses are 80-

120 nm in diameter and roughly spherical (3, 8). HA, NA and M2 are integrated in 

the viral envelope, (Figure 1) which consists of a lipid bilayer, originally derived 

from the host cell. HA is the most abundant protein in the envelope which makes 

up to 80% of the surface molecules. It is important for the entrance of the virus by 

binding to the host cell receptor (3). NA is the second most abundant protein on 

the virus surface, which is important for proper budding to release virions from the 

host cell (1, 3). M2 forms tetramers and acts as an ion channel which acidifies the 

viral core in endocytosed vesicles, enabling virus uncoating (1), whereas M1 is 

located underneath the viral envelope, holding the viral ribonucleoproteins (vRNP) 

together (3). The vRNPs are composed of negative, single-stranded RNAs bound 

to a trimeric RNA polymerase complex (PA, PB1, PB2) on the terminal side. The 

remaining sequence is wrapped around multiple NPs forming a rod-shaped 

structure (9). 
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Figure 1: Schematic illustration of influenza A virus structure.  

Influenza virus is composed of eight single-stranded RNA segments which encode 11 different proteins:  
hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), matrix protein 2 (M2), non-structural protein 1 
(NS1), non-structural protein 2 or nuclear export protein (NS2 or NEP), polymerase basic protein 1 (PB1), 
polymerase basic protein 2 (PB2), polymerase acidic protein (PA), nucleoprotein (NP) and polymerase basic 
protein 1-F2 (PB1-F2). 

 

The influenza virus life cycle can be divided into five main stages: 1) entry of the 

virus into the host cell, 2) vRNP transport into the host cell nucleus and 3) 

replication of viral genes, 4) export of vRNPs to the cytoplasm, 5) assembly of viral 

proteins and vRNPs at the host cell membrane and budding (3). 

The initial step for virus propagation is the attachment to the host cell, via binding 

of HA to either α-2,6 or α-2,3 sialic acid (1). Human influenza virus strains primarily 

bind to α-2,6 sialic acid, in contrast to avian influenza viruses which mainly 

recognize α-2,3 linkages (3). In humans, the upper respiratory tract is primarily 

lined by α-2,6 sialic acid receptors, and α-2,3 sialic acid receptors are found in the 

lower, distal part (1).  

The virus is internalized by endocytosis and decrease of pH in the endocytic 

vesicle causes the ion channel M2 to open leading to release of vRNP complexes 

into the cytoplasm followed by translocation to the nucleus (1). Therefore, the 

proteins of the vRNP complex have a nuclear localization signal (3) and bind to 

cellular nuclear import complexes (3, 9). The negative single-stranded RNA of 

influenza viruses is converted to positive RNA strands, which then serve as a 

template for further viral RNA production (3). The negative sense vRNPs are 

exported by the nuclear pores and viral proteins and vRNP complexes associate 

with the host cell membrane, where viral particles are formed using the host cell 

plasma membrane. The final step for virion release is the sialic acid cleavage by 

NA which releases the virion from the apical side of polarized host cells (3, 10). 
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During influenza virus evasion, three major antiviral pathways are activated by 

host cells to limit infection (11), whereas influenza virus manipulates and 

counteracts host innate immune responses in order to replicate efficiently (12). 

The innate immune response which is primarily triggered by viral RNA initiates 

Toll-like receptors, inflammasome and retinoic acid inducible gene-1 (RIG-1) (11, 

13). Therefore, viral RNA is bound by RIG-1 and associates with mitochondrial 

associated antiviral signaling protein (MAVS) to induce NFκB (nuclear factor κ B) 

and interferon (IFN) production for viral clearance (11). Due to IFN production, the 

protein kinase R (PKR) is induced and usually gets activated by binding of dsRNA, 

which can initiate a general block of translation (14, 15). The viral NS1 protein is 

responsible for the inhibition of IFN production by limiting the activation of the 

transcription factor NFκB and dependent on the strain, also IRF3 (interferon 

regulatory factor 3) which is an interferon-inducible transcription factor (16, 17). 

Another cytoplasmatic antiviral protein which is activated by dsRNA binding is the 

2`-5`- oligoadenylate synthetase (OAS), that initiates the activation of RNase and 

thereby the inhibition of virus replication. NS1 is able to interact with both proteins 

to block their antiviral properties (18).  

 

1.1.2 Pathogenicity and epidemiology 

Influenza virus infection of the human respiratory tract can result in respiratory 

disease and may lead to death. At times, it is the most common cause of 

respiratory tract infections (19, 20). After infection, the host cell protein 

biosynthesis is shut down to focus on the production of viral proteins (21). 

Influenza virus can adapt to the host with certain strategies and is able to evolve 

minor changes in their surface proteins and thereby evade immune recognition by 

host neutralizing antibodies, which is called antigenic drift and results in host 

susceptibility to infection (22). Another modification of influenza viruses or even 

generation of new strains can occur by antigenic shift, which requires infection of 

one host with two influenza virus strains followed by reassortment of gene 

segments between the two strains (1).  

Influenza virus is usually airborne transmitted and causes a rapid onset of high 

fever, cough, headache, malaise and inflammation of the upper respiratory tract 

including trachea and upper respiratory tree, which persists for up to ten days. 
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Usually, people of all ages are affected, but severity is greatest in infants, aged 

persons and those with illness (19, 23). Interestingly, it has been demonstrated in 

an experimental approach that repair mechanisms after influenza infection are 

delayed in aged mice (24). In uncomplicated cases, influenza viruses only 

replicate in ciliated and non-ciliated cells of the nasal mucosa in the upper 

respiratory tract. Nevertheless, the virus can spread to the distal part of the lung, 

causing pneumonia with severe consequences. The cytolytic effect by the virus 

itself, or the indirect effects of host response causes damage of the alveolar 

epithelium, composed of type I and type II pneumocytes, leading to edema 

formation and severe respiratory dysfunction. Epidemics concerning all groups of 

ages occur each winter season, whereas worldwide pandemics appear irregularly 

(6). The most severe pandemic was the so-called spanish flu in 1918 which 

caused approximately 50 million deaths worldwide (2, 25).  

 

1.2 Acute lung injury and acute respiratory distress syndrome  

The most severe consequence which can result from influenza virus infection is 

the acute respiratory distress syndrome (ARDS) which was firstly described in 

1967 (26, 27). Since a standard definition for acute lung injury (ALI) and ARDS 

was made in 1994, the mortality rate did not remarkably change and still accounts 

for 30-40% (28-30). However, in the last years, new definition criteria for ARDS 

were addressed (31, 32) and a new categorization has been applied subdividing 

ARDS into mild, moderate, or severe. This is based on the degree of hypoxemia 

levels, according to the ratio between arterial oxygen concentration and the 

fraction of inspired oxygen (PaO2:FiO2) (32-34). Other criteria include a rapid onset 

and bilateral infiltrates, usually diagnosed by chest x-ray, with the exclusion of left 

arterial hypertension (35, 36).  

ARDS can have different causes. Some of the most common risk factors are 

pneumonia, sepsis, aspiration of gastric contents, inhalational injury and major 

trauma (36). The pathology can be divided into three main stages, which include 

the inflammatory, proliferative and fibrotic phase. The inflammatory phase is 

characterized by diffuse alveolar damage with disruption of the epithelial-

endothelial barrier and edema formation (37). The proliferative phase is defined by 

further damage to the alveolar epithelium and capillary network, where type II 
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pneumocytes start to proliferate to restore barrier function, and the alveolar air 

space is filled with cell debris and erythrocytes and fibroblasts become more 

apparent (38). The fibrotic phase includes deposition of collagen, fibronectin and 

extracellular matrix components and is characterized by an imbalance of pro- and 

antifibrotic factors which may stimulate lung resident fibroblast, and aberrant repair 

(31, 39, 40). 

The central role of ARDS treatment is protective ventilation, since mechanical 

ventilation can induce additional injury to the lung (41, 42). Severe life- threatening 

hypoxemia is treated by extracorporeal membrane oxygenation, if no other therapy 

is successful, to at least keep up oxygen levels and protect the lung (43, 44). 

Pharmacotherapeutic ARDS treatments include vasodilators, like nitric oxide which 

increases blood flow of ventilated alveoli, exogenous surfactant application, to 

decrease surface tension, or anti-coagulants to avoid thrombus formation to 

improve lung function (45, 46). Recent new therapies include mediators which 

promote cytoprotective or mitogenic effects, like KGF (keratinocyte growth factor) 

or GM-CSF (granulocyte/macrophage colony-stimulating factor) (47-49). 

Nowadays, also cell-based therapies with bone marrow derived mesenchymal 

stem cells are clinically tested. Nevertheless, new approaches for therapy of 

ARDS are required to decrease mortality rates and improve outcome (47, 50).  

 

1.3 Structural and cellular compartments of the lung 

The lung is a complex organ, which enables crucial oxygen supply and alterations 

in the lung structure may lead to impaired gas exchange (51). There is a clear 

hierarchy and branching morphometry in the lung (52). The human airway tree 

branches dichotomously about 23 times (51), which leads to about 480 million gas 

exchange units: the alveoli. This complex and delicate lung structure is supported 

by a fiber system which surrounds the entire conducting and alveolar structures 

(51). The upper, conducting airways are lined by bronchial epithelium (51). Ciliated 

cells remove potential harmful organisms or dust particles and filter the inhaled air 

by coordinated beating, whereas secretory cells, like goblet cells do not only keep 

the mucosa moist, but also bind particles and pathogens by their secreted mucus 

(53, 54). The bronchial epithelium contains club cells which produce surfactant 

(club cell 10 kDa secretory protein; CC10). They have multiple roles in lung 
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protection, for example by production of antimicrobial peptides or metabolism of 

toxic substances (54, 55). The alveolar compartment is lined by type I and type II 

pneumocytes. Type I pneumocytes are large squamous epithelial cells, which 

enable normal gas exchange (56). They are extraordinary thin (57) and share a 

basement membrane with the endothelial cells. The capillary is incorporated 

between the walls of two alveoli, allowing gas exchange on both sides of the 

septum (51). Type I pneumocytes cover 95% of alveoli, while they make up only 

8% of total cells (57). The cuboidal type II cells are mainly located in the corner of 

the alveolus and express surfactant proteins (57) which mostly consist of lipids 

and line the inner alveolar surface. Surfactants are important for alveolar stability 

and surface tension and therefore regulate proper ventilation (58). Another 

function is their contribution to host defense by binding surface structures of 

various pathogens to promote their elimination by alveolar macrophages (58). 

Microenvironmental factors, necessary for epithelial cells are provided and 

regulated by lung resident mesenchymal cells. They are not only important for 

secondary septa formation during development, they also regulate elastin and 

collagen deposition (59-61).  

 

1.4 Lung epithelial stem/progenitor cells 

The lung is a very complex organ which contains more than 40 different cell types 

(51, 62). Therefore, different region-specific epithelial progenitor cells have been 

detected in tracheobronchial, as well as in distal alveolar tissue (63). Due to slow 

turnover of epithelial cells in the lung, the proliferative response of lung epithelial 

progenitor cells are preferentially studied in injury models (62, 64). These different 

injury models, involving proximal airway, broncho- and/ or alveolar injury suggest 

that the adult lung contains different epithelial progenitor cell niches, which are 

characterized by self-renewal potential, clonogenicity and multipotency, 

representing classical properties of stem/progenitor cells (62, 63, 65). In general, 

stem cells can either divide symmetrically or asymmetrically. Symmetric division 

leads to generation of identical daughter cells, in contrast to asymmetric division 

which leads to the generation of terminally differentiated cells in addition to new 

progenitors (65-68). Furthermore, the local microenvironment or “niche” which 
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includes for example extracellular matrix and a broad spectrum of autocrine and 

paracrine factors, plays a crucial role in the regulation of stem cells (66, 69). 

 

1.4.1 Epithelial progenitor cells in rodents 

In the adult lung, various stem/progenitor cells are responsible for homeostasis of 

cells, as well as for the repair of injured lung tissue (70). In the cartilage containing 

tracheobronchial region, basal cells, defined by various markers, like nerve growth 

factor receptor, Krt5/14 (Cytokeratin 5/14), p63 (tumor protein 63) and aquaporin 3 

play an essential role during injury and can generate the major epithelial cell types 

found in the proximal airways, including basal cells, club cells, ciliated cells and 

goblet cells, which includes a Notch-mediated differentiation (71-76). Of note, cells 

located at the submucosal gland ducts (SMG), in between cartilage rings, are 

involved in repopulating processes of the SMG and its surface epithelium after 

injury. Therefore, the SMG is considered as a stem/progenitor cell niche (70, 77-

79). In the trachea and bronchioles, CC10-expressing club cells can be found, 

which respond differently during injury or homeostasis (80). Moreover, the majority 

of club cells express the cytochrome P450 which plays an important role in 

detoxification processes (55, 81, 82). Application of naphthalene causes severe 

bronchiolar damage to the epithelial cells due to cytochrome P450-mediated 

conversion into a toxic intermediate (83, 84). A small naphthalene resistant club 

cell subpopulation (vClub cells) is located at the distal conducting airways (83) 

which lacks the cytochrome P450 and contributes to airway repopulating 

processes after injury. It has been demonstrated that club cells give rise to ciliated 

cells and self-renew. In injury models of severe alveolar damage, club cells can 

also repopulate type II pneumocytes, most probably after a bronchiolar epithelium 

transitional state (69, 85, 86).  

A relatively undefined cell type is the neuroendocrine cell, located at airway 

branches or bronchoalveolar duct junctions (BADJ) and are usually clustered into 

neuroendocrine bodies (NEB). These cells are resistant to naphthalene injury and 

in close proximity to vClub cells, which suggests that the neuroendocrine body 

microenvironment habours a progenitor cell niche (87-89). Another cell population, 

located at the BADJ are the so-called bronchoalveolar stem cells (BASC), which 

were first described by Kim et al.. They express the type II pneumocyte marker 
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surfactant protein C (SP-C) and the club cell marker CC10. These cells are 

resistant to naphthalene treatment and increase in cell numbers after injury, which 

then return to baseline levels after restoration. Characterization of surface markers 

show a CD45negCD31negSca-1+CD34+ signature. In vitro experiments revealed that 

these cells can give rise to alveolar type I and type II pneumocytes, as well as club 

cells, which suggests that BASC self-renew but also habour the potential for 

multilineage differentiation (90). Interestingly, bronchopulmonary dysplasia, 

induced by hyperoxia treatment of newborn mice does not increase BASC 

numbers compared to normoxia controls, suggesting that not all types of injury 

stimulate BASC proliferation. However, additional factors, like bone marrow 

derived mesenchymal stromal cells or conditioned medium of these cells, increase 

the BASC population in hyperoxia-treated newborn mice, suggesting a contribution 

of paracrine factors (91).  

McQualter et al. defined a rare population with EpCamhighα6+β4+CD24low signature. 

This multipotent epithelial stem/progenitor cell (EpiSPC) fraction gives rise to 

airway or alveolar epithelial lineages in vitro suggesting an organized stem cell 

hierarchy in the adult murine lung (92, 93). Additionally, undifferentiated lung 

stromal cells, in contrast to α-smooth muscle actin+ (α-SMA+) myofibroblasts have 

a supportive influence on EpiSPC growth and upregulate genes which are 

associated with lung development, suggesting reactivation of developmental 

pathways during lung injury (94). Another progenitor cell type with the expression 

of integrin α6β4 was proposed by Chapman et al.. These cells clonally expand and 

proliferate ex vivo. This rare population possesses the ability to proliferate and 

form organoid structures after kidney capsule implantations (95). 

Of note, it has been demonstrated that p63+Krt5+ expressing cells undergo rapid 

proliferation after influenza virus infection. These cells form clusters ("pods") which 

are found in interbronchial regions of damaged tissue (96). Lineage tracing studies 

of p63+ cells after influenza virus infection or bleomycin treatment show that the 

majority of newly generated p63+ cells derived from CC10+ cells and not from pre-

existing p63+ basal cells located in the upper airways (97). These so-called distal 

airway stem cells (DASC) differentiate into alveolar and bronchiolar lung tissue, 

and selective depletion of these cells impairs the regenerative process in vivo (98). 

Another report describes migration and co-expression of α6β4+ cells in 

combination with Krt5, in influenza virus-challenged lung tissue and excludes the 
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contribution of basal cells for Krt5+p63+ pods. These lineage-negative epithelial 

progenitors (LNEP) are an important responder after severe lung injury. 

Interestingly, ex vivo culture of LNEP alone, or with various morphogenic factors 

does not stimulate Krt5 expression, in contrast to culture with bronchoalveolar 

lavage fluid (BALF) of influenza virus-infected mice which results in proliferation 

and Krt5 upregulation (99), suggesting that multiple factors induced in the stem 

cell niche contribute to their regenerative response. The distal lung is lined by two 

cell types, the squamous type I pneumocytes which enable gas exchange and the 

cuboidal surfactant protein-producing type II pneumocytes (100). Since a long time 

it has been suggested that type II pneumocytes act as progenitors for type I 

pneumocytes (101). A recent report demonstrates the self-renewal abilities of type 

II pneumocytes and differentiation into cells that express type I pneumocyte 

markers after bleomycin-induced injury (102), representing an important alveolar 

progenitor cell activated after mild injury. 

Although the presence of different epithelial progenitor cell populations is well 

described, their lineage relation and particularly their defined roles in replenishing 

different epithelial components of the lung after injury is not well defined. In 

addition, the signals which stimulate them to drive coordinated repair processes 

without aberrant wound healing is still not well understood.  

 

 
 

Figure 2: Schematic illustration of epithelial stem/progenitor cells in the murine lung. 

Epithelial stem/progenitor cells of the adult murine lung are located at side-specific regions from the 
tracheobronchial until the distal alveolar tissue. They contribue to tissue repair processes after injury and are 
characterized by self-renewal, multipotency and clonogenicity; BASC, bronchoalveolar stem cell; DASC, distal 
airway stem cells; LNEP, lineage-negative epithelial progenitor; NEB, neuroendocrine bodies; SMG, 
submucosal gland; vClub cell; variant club cell. 
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1.4.2 Epithelial progenitor cells in the human lung 

Although, the epithelial stem cell research in the adult murine model is well 

established, much less is known about epithelial progenitor cells in the adult 

human lung. In particular, the knowledge about defined markers to isolate a 

homogenous population is very limited (103). It has been described that different 

airway epithelial cells of the bronchial epithelium in the upper respiratory tract have 

the ability to form submucosal glands in xenograft models (104). In the 

tracheobronchial region, a side population of CD45neg cells is identified with 

clonogenic capacity. These cells express epithelial cell markers, like Krt5, E-

cadherin, ZO-1 (zona occludens protein 1), p63 and are isolated according to their 

property to efflux hoechst stain (105). The hoechst stain is a vitality staining and 

primarily used to determine the DNA content for cell cycle studies, but it can be 

used to identify cells with stem or progenitor abilities (106). In the pseudostratified 

epithelium, p63+ cells can be found, which are morphologically comparable to 

murine basal cells. These cells are able to either self-renew or differentiate into 

luminal or ciliated cells in vitro which is dependent on the Notch signaling pathway 

(72, 73). In the distal lung, it is demonstrated that type II pneumocytes form 

spheres in co-culture with a human lung fibroblast cell line (MRC-5), suggesting 

clonality and self-renewal properties of type II pneumocytes. Of note, culture of 

type II pneumocytes alone does not result in spheric outgrowth. Histological 

analysis revealed that most of the cells express the type II pneumocyte-specific 

membrane protein HTII-280 (102, 107). Another report describes the identification 

of multipotent human lung stem cells with the stem cell marker c-kit (mast/stem 

cell growth factor  receptor kit). Cultured multicellular clones are negative for 

specialized cell types, like epithelial, smooth muscle, and endothelial cell markers 

but express NANOG (homeobox protein NANOG), Oct3/4 (octamer binding 

transcription factor 3/4), Sox2 (sex determining region Y-box2) and Klf4 (krueppel-

like factor 4), and show mutipotency, clonogenicity and self-renewal capacity. 

Injection of these c-kit+ cells into damaged mouse lung tissue result in the 

formation of bronchioles, alveoli and pulmonary vessels in vivo (65). Terminal 

bronchoalveolar tissue is generated by single cell injections of E-cadherin+/lgr6+ 

(leucine-rich repeat containing G protein-coupled receptor) human epithelial lung 

cells into kidney capsules (103). Of note, the E-cadherin+/lgr6+ cell population is a 

subpopulation of integrin α6+ cells, which show self-renewal and differentiation into 
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specialized epithelial cells, but not mesenchymal or endothelial differentiation 

(103).  

 

1.5 Fibroblast growth factors and corresponding receptors 

The first fibroblast growth factors (Fgf) were isolated from brain and pituitary gland. 

They were termed Fgfs due to their mitogenic activity on cultured fibroblasts (108-

110). Today, the mammalian Fgf family comprises 22 members of structurally 

related polypeptides, which can be divided by their mode of action into endocrine, 

paracrine and intracrine members. The endocrine and paracrine Fgfs act via a cell 

surface tyrosine receptor, in contrast to the intracrine Fgfs which act intracellularly 

and independent of a receptor (111). The family of paracrine Fgfs is the largest 

family which comprises four subfamilies, including Fgf7 and Fgf10. Most of the 

paracrine Fgfs are secreted proteins and mediate biological responses by binding 

to cell surface tyrosine kinase receptor with heparin/heparan sulfate which acts as 

a cofactor and ensures stable interaction and signaling (111-113). The Fgf 

receptors are composed of an extracellular domain which is responsible for ligand 

binding, a transmembrane domain and an intracellular domain with the tyrosine 

kinase core as well as regulatory sequences (112). The extracellular ligand 

binding domain consists of immunoglobulin-like domains which can be 

alternatively spliced (112, 113). Four fibroblast growth factor receptor (Fgfr) genes 

have been identified, but due to splicing seven major forms exist with different 

ligand-binding specificities (1b, 1c, 2b, 2c, 3b, 3c, 4)  (111, 112). The isoform b of 

the Fgfr is preferentially expressed by the epithelium, whereas the c isoform of the 

receptor is expressed mainly by mesenchymal cells (114, 115). Ligand binding 

induces functional dimerization, phosphorylation of tyrosine residues on the 

receptor, and activation of four major downstream signaling pathways RAS-RAF-

MAPK, PI3K-AKT, STAT and PLCγ and may lead to migration, survival and 

proliferation (116).  

 

1.6 Fibroblast growth factor 10 in the embryonic and adult lung 

During lung organogenesis, Fgf10 is expressed in the distal mesenchyme where it 

activates the epithelial Fgfr2b to induce branching of the local epithelium whereat 
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Fgf10 dosage seems to be critical in the epithelial amplification process (117-119). 

The importance of Fgf10/Fgfr2b signaling during lung development is 

demonstrated in respective knockout animals which are not viable after birth. The 

absence of the receptor Fgfr2b or its ligand Fgf10 result in a wide range of 

phenotypic abnormalities in multi-organ development of all three germ layers 

including lung development failure, and the phenotype of Fgf10 knockouts 

correlates with Fgfr2b null mice (120-123). Fgf10 is structurally most related to 

Fgf7 (also known as keratinocyte growth factor; KGF) and both bind to the Fgfr 

isoform Fgfr2b which is present on epithelial components of various tissues 

including lung (123, 124). But in contrast to Fgf10-/- or Fgfr2b-/- animals, Fgf7-/- 

animals display not such remarkable abnormalities during lung development (120, 

124-126). Of note, Fgf7 can only activate Fgfr2b, whereas Fgf10 is able to bind to 

Fgfr2b and Fgfr1b. However, Fgfr1b knockout animals do not show a lung-specific 

phenotype (112, 127), suggesting a minor importance of Fgfr1 in lung 

development or repair. Interestingly, Fgfr2b stimulation with different ligands 

results in different responses. Stimulation with Fgf7 results in rapid receptor 

degradation, whereat stimulation with Fgf10 results in prolonged signaling and 

receptor recycling (128). 

During lung development, Fgf10 is secreted by mesenchymal progenitor cells, and 

acts on distal epithelial progenitor cells to keep them in a progenitor phenotype by 

preventing differentiation (129, 130). Furthermore, Fgf10 acts as chemoattractant 

for distal lung epithelial cells in a mesenchymal-free environment, promotes 

endodermal outgrowth and induces budding (131, 132). Inhibition with a dominant 

negative, soluble Fgfr2, which binds several ligands, including Fgf10, reveals a 

time-dependent Fgf requirement for lung formation, whereat postnatal suppression 

of Fgf signaling has no remarkable effect on late alveologenesis (133). However, 

in the adult lung it has been demonstrated that parabronchial smooth muscle cells 

get reactivated by epithelial Wnt7b (wingless-type, mouse mammary tumor virus 

(MMTV) integration site family, member 7B) signaling to express Fgf10 after 

epithelial injury caused by naphthalene. This paracrine Fgf10 signaling activates 

the remaining airway progenitor cell pool to proliferate and to promote restoration 

of the lung barrier. Interestingly, parabronchial smooth muscle precursors 

represent one of the pools for Fgf10 expression during development (129, 134). 

This demonstrates the ability to reactivate developmental pathways in the adult 
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lung after injury and to promote epithelial repair (134-136). In another lung injury 

model, induced by profibrotic bleomycin, Fgf10 overexpression in inducible 

transgenic animals attenuates the fibrotic phenotype, resulting in less collagen 

deposition, increased survival, and protection of epithelial cells (137). It also has 

been shown that overexpression of a soluble, dominant negative Fgfr2 expressed 

under the surfactant protein C (SP-C) promoter increases alveolar permeability, 

inflammatory cytokine expression and decreases surfactant protein expression. 

Additionally, adult mice fail to recover after hyperoxia treatment, when the 

dominant negative Fgfr2b is expressed (133, 138).  

 

1.7 Aim of the thesis work 

Influenza virus causes respiratory tract infections which may lead to acute lung 

injury or its severe form, the acute respiratory distress syndrome (ARDS). ARDS is 

characterized by epithelial cell apoptosis, disruption of the epithelial layer and 

edema formation which impairs gas exchange dramatically. The pathological 

consequences of influenza virus infection are well described, but regenerative 

pathways and host-pathogen interactions during these processes are poorly 

understood. Epithelial progenitor cells have been shown to proliferate after injury 

and contribute to repair processes to restore lung architecture and function.  

The aim of this work was to investigate if repair processes after influenza virus 

infection are dependent on a distinct pool of distal epithelial progenitor cells, and 

thereby evaluating the role of contributing regenerative signaling pathways. 

Furthermore, the interaction between virus and host cell-mediated regenerative 

pathways is elucidated to finally find new therapeutic approaches to foster repair 

processes after influenza virus infection. Therefore, evaluation of the proliferative 

potential and differentiation properties of distal epithelial progenitor cells in three-

dimensional cultures, as well as in in vivo mouse models with wildtype, inducible 

genetically modified, or knockout animals were performed. 
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2. Materials & Methods 

2.1 Cell culture media  

Medium  Ingredients 

Avicel overlay medium 2xMEM (Gibco), 0.1% NaHCO3 (Sigma-Aldrich), 

0.2% BSA (Sigma-Aldrich), 1.25% Avicel (FMC 

Biopolymers), 1x penicillin/streptomycin (Sigma-

Aldrich), 1 µg/ml trypsin TPCK (Worthington). 

Basal medium 2 Basal Medium (Promocell), 0.02 ml/ml FBS 

(Promocell), recombinant human insulin [1 ng/ml] 

(Promocell), recombinant human basic FGF [5 

µg/ml] (Promocell), 1x penicillin/streptomycin 

(Sigma-Aldrich). 

DMEM/HEPES DMEM (Gibco), 25 mM HEPES (Biochrom). 

EpiSPC basic medium MEM-alpha (Gibco), 10% FBS (Gibco), 1x insulin/ 

transferrin/ selenium (Gibco), 1x 

penicillin/streptomycin (Sigma-Aldrich), 0.0002% 

heparin (Stemcell Technologies), 2 mM L-glutamine 

(PAA). 

EpiSPC expansion 

medium (murine and 

human) 

EpiSPC basic medium, 50 ng/ml recombinant 

human Fgf10 (R&D Systems), 30 ng/ml recombinant 

murine or human HGF (R&D Systems). After 

influenza virus infection 1 µg/ml trypsin TPCK 

(Worthington) was added to the medium. 

hAEC medium F12 Nutrient Mixture (Ham) (Gibco), 10% FBS 

(Gibco), 1x penicillin/streptomycin (Sigma-Aldrich),  

2.5 µg/ml amphotericin B (PAA). 

Human co-culture 

medium 

MEM-alpha (Gibco), 2% FBS (Gibco), 1x insulin/ 

transferrin/ selenium (Gibco), 1x 

penicillin/streptomycin (Sigma-Aldrich), 0.0002% 

heparin (Stemcell Technologies), 2 mM L-glutamine 

(PAA). 
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Medium  Ingredients 

Infection medium DMEM (Gibco), 1x penicillin/streptomycin (Sigma-

Aldrich), L-glutamine (PAA), 0.2% BSA (Sigma-

Aldrich), 1 µg/ml trypsin TPCK (Worthington). 

Inoculation medium PBSMg+/Ca+ (Gibco), 0.2% BSA (Sigma-Aldrich), 1x 

penicillin/streptomycin (Sigma-Aldrich). 

mAEC medium DMEM (Gibco), 25 mM HEPES (Biochrom), 10% 

FBS (Gibco), 1x penicillin/streptomycin (Sigma-

Aldrich). 

MDCK.2 medium DMEM (Gibco), 10% FBS (Gibco), 1x 

penicillin/streptomycin (Sigma-Aldrich). 

 

2.2 Buffers and solutions 

Buffers /Solutions Ingredients 

FACS buffer 920 ml PBS-/- (Gibco), 74 ml 1% EDTA (Biochrom), 5 

ml FBS (Gibco), 10 ml 9% Na-azide (Sigma-Aldrich), 

sterile filtered, pH= 7.4. 

MACS buffer 920 ml PBS-/- (Gibco), 74 ml 1% EDTA (Biochrom), 5 

ml FBS (Gibco), sterile filtered, pH=7.4. 

PII-Solution 7.95 g/l NaCl (Carl Roth GmbH), 0.4 g/l KCl (Merck), 

1.11 g/l glucose (Sigma-Aldrich), 0.46 g/l Na2HPO4 

(Merck), 2.38 g/l HEPES (Sigma-Aldrich), 0.28 g/l 

CaCl2 x 2H2O [2mM] (Sigma-Aldrich), MgSO4 x 

7H2O (Fluka) [1.3 mM] diluted in H2O (B. Braun), 

pH= 7.2, sterile filtered. 

Paraformaldehyde 

(PFA) 4% 

4 g PFA (Sigma-Aldrich) in 100 ml PBS-/- (Gibco), 

pH= 7.4. 

PBS/EDTA 2 mM EDTA (Biochrom) in PBS-/- (Gibco), sterile 

filtered. 
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2.3 Transgenic mouse strains 

The following mice strains were used for experimentation.  

Mouse strain Features 

C57BL/6N  Wildtype (WT) 

Rosa26rtTA/+;tet(O)sFgfr2b/+ Inducible overexpression of soluble, dominant 

negative Fgfr2b  

Rosa26rtTA/+;tet(O)Fgf10/+ Inducible Fgf10 overexpression 

Fgf7-/- Fgf7 knockout 

 

Generation of Rosa26 rtTA mice was achieved by crossing CMV-Cre mice with 

rtTAflox mice (139, 140), which resulted in a ubiquitous expressed rtTA under the 

Rosa26 promoter. This constitutive Rosa26rtTA/+ strain was crossed with either 

tet(O)sFgfr2b (133, 141) or tet(O)Fgf10 (134, 142) responder lines to allow 

expression of either soluble, dominant negative Fgfr2b or Fgf10 when doxycycline 

containing food (625 mg/kg, Harlan Teklad) was administered. Rosa26rtTA/+; 

tet(O)sFgfr2b/+ and Rosa26rtTA/+; tet(O)Fgf10 heterozygous mice were generated 

on a mixed background and genotyped as previously described (133, 140, 142, 

143). Fgf7 knockout animals were purchased from Jackson Laboratories (stock 

number 4161) on a mixed background and backcrossed for five generations into a 

C57BL/6N background. Animal experiments performed at the Justus-Liebig 

University were approved by regional authorities of the State of Hesse 

(Regierungspräsidium Giessen). 

 

2.4 Influenza virus strains 

The following virus strains were used for the experimental part: 

Virus strain Characteristics 

A/Puerto Rico/8/34 

(A/PR8) 

H1N1 adapted to mice 

by passaging 

A/X-31(H3N2) 

(x-31) 

H3N2 in a A/PR8 

backbone 

A/Hamburg/04/09 

(pH1N1) 

H1N1 pandemic, 

human isolate 
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2.5 Human lung tissue 

Human lung tissue was obtained from patients undergoing lobectomy for tumor 

removal after written consent in cooperation with the departments of Pathology 

and Surgery, Justus-Liebig-University, Giessen. Processing of human lung tissue 

was approved by the Ethics Committee of the University Giessen (Az. 10/06). 

 

2.6 Preparation of virus stock  

For the preparation of a virus stock, MDCK.2 cells (Madin darby canine kidney 

cells; ATCC number CRL-2936) were passaged. Therefore cells were washed 

twice with PBSMg+/Ca+ (Gibco) and trypsin EDTA (Biochrom) was added until the 

cells detached from the T75 culture flask (Greiner Bio-one), followed by addition of 

MDCK.2 medium and further incubation at 37°C, 5% CO2. After  4h (confluency    

80%), cells were infected with a MOI (multiplicity of infection) of 0.01. Therefore, 

cells were washed twice with PBSMg+/Ca+ (Gibco) and 4 ml of inoculum were added 

to the cells, followed by incubation at room temperature for 1h. The inoculum was 

removed and infection medium was added to the cells, followed by additional 

incubation for 48h at 37°C, 5% CO2. The infection medium was collected and 

centrifuged to remove cell debris (4,000 rpm, 15 min, 4°C). The supernatant was 

aliquoted and stored at -80°C until quantification of virus titers were performed. 

 MOI calculation:    Virus (plaque-forming units)    
                  Cell number 

 

2.7 Quantification of virus concentration  

To quantify virus concentration, a plaque assay was performed. MDCK.2 cells 

were passaged and seeded in 6-well plates (Greiner bio-one) one day prior 

infection. The cells were washed with PBSMg+/Ca+ (Gibco) and a dilution series of 

the virus stock or BALF was made and 1 ml of the inoculum was added to the 

MDCK.2 cells, followed by incubation at room temperature for 1h. 2 ml Avicel 

overlay medium were added to the cells, followed by incubation for 48h at 37°C, 

5% CO2. The Avicel overlay medium was removed, and cells were fixed with 1 ml 

4% paraformaldehyde (PFA, Sigma-Aldrich) for 30 min at 4°C, followed by three 

times washing with PBSMg+/Ca+ (Gibco). After permeabilization with 1 ml of 0.3% 

Triton-X 100 (Roth) for 15 min at room temperature, 0.5 ml of the primary 
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antibody, detecting influenza A nucleoprotein (NP) 1:1000 (Meridian Life Science) 

in PBSMg+/Ca+ (Gibco), 0.1% Tween-80 (Sigma-Aldrich), 10% horse serum (PAA) 

was added and incubated for 1h at room temperature, followed by three times 

washing with PBSMg+/Ca+ (Gibco), 0.05% Tween-80 (Sigma-Aldrich). After addition 

of 0.5 ml of the secondary antibody (goat α-mouse horseradish peroxidase, Santa 

Cruz) in a 1:2000 dilution (diluent: PBSMg+/Ca+ (Gibco) in 0.1% Tween-80 (Sigma-

Aldrich), 10% horse serum (PAA)), cells were incubated for 1h at room 

temperature, followed by three times washing with PBSMg+/Ca+ (Gibco), 0.05% 

Tween-80 (Sigma-Aldrich). After addition of the peroxidase substrate (True Blue, 

KPL) and incubation for 15-30 min, plaques were detected. The reaction was 

stopped by washing with H2O (B. Braun) and plates were dried and stored at room 

temperature. The quantification of virus stocks or BALF was always performed in 

duplicates.  

 

2.8 Quantitative real-time PCR 

FACS sorted or cultured cells were washed once with PBSMg+/Ca+ followed by lysis 

with RLT buffer (Qiagen). RNA isolation was performed using RNeasy Kit (Qiagen) 

according to manufacturer's manual. After extraction, RNA concentration and 

quality were measured by Nanovue Plus (GE Healthcare). cDNA synthesis was 

prepared with a total volume of 13.5 µl containing 250 ng RNA in dH2O (5 prime 

GmbH) which was denatured at 70°C for 5 min, followed by addition of 11.5 µl 

PCR mixture to the samples.  

 

PCR mixture: 

5x First stand buffer (Invitrogen) 5 µl 

0.1 M Dithiothreitol (DTT) (Invitrogen)  2.5 µl 

Random primer (Boehringer) 1.5 µl 

Recombinant ribonuclease inhibitor 40 U/µl (Invitrogen) 0.5 µl 

PCR Nucleotide Mix (Roche)  1 µl 

M-MLV Reverse Transcriptase 200 U/µl (Invitrogen) 0.75 µl 

dH20 (5 Prime GmbH) 0.25 µl 
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Samples were incubated in a thermocycler machine (Peqlab) for 1h at 37°C until 

reaction was stopped by heating up the samples for 5 min at 95°C. cDNA was 

diluted in a 1:3 ratio with dH2O (5 Prime GmbH) for qRT-PCR reaction. β-actin or 

ribosomal protein subunit S-18 (RSP18) expression served as normalization 

control. The reactions were performed with SYBR green I (Invitrogen) in the AB 

Step one plus Detection System (Applied Bioscience) with intron-spanning 

primers. The following qRT-PCR mixture was used for a reaction: 

 

qRT-PCR mixture: 

Sybr Green (Invitrogen) 13 µl 

Forward primer [10 pmol/µl] 0.5 µl 

Reverse primer [10 pmol/µl] 0.5 µl 

50 mM MgCl2 (Invitrogen) 1 µl 

dH2O (5 Prime GmbH) 5 µl 

 

The following intron spanning primers were used for quantitative RT-PCR: 

Gene Primer sequence 

murine Actin forward 

murine Actin reverse 

5′-ACCCTAAGGCCAACCGTGA-3′ 

5′-CAGAGGCATACAGGGACAGCA-3′ 

murine Aquaporine 5 forward 

murine Aquaporine 5 reverse 

5’-TGGGGATCTACTTCACCGGC-3′ 

5’-TACCCAGAAGACCCAGTGAGAGG-3′ 

murine β-tubulin forward 

murine β-tubulin reverse 

5’-CCACCACCATGCGGGAAA-3′ 

5’-CTGATGACCTCCCAGAACTTG-3′ 

murine Ccnd1 forward 

murine Ccnd1 reverse 

5’- GCGTACCCTGACACCAAT-3′ 

5’- GGTCTCCTCCGTCTTGAG-3′ 

murine CC10 forward 

murine CC10 reverse 

5’-CAGACACCAAAGCCTCCAACC-3′ 

5’-GGGCAGATGTCCGAAGAAGC-3′ 

murine Fgf7 forward 

murine Fgf7 reverse 

5’- TCGCACCCAGTGGTACCTG-3′; 

5’- ACTGCCACGGTCCTGATTTC- 3’ 

murine Fgf10 forward 

murine Fgf10 reverse 

5’-CCATGAACAAGAAGGGGAAA-3′ 

5’-CCATTGTGCTGCCAGTTAAA-3′ 

murine Krt5 forward 

murine Krt5 reverse 

5’-CCTTCGAAACACCAAGCACG-3′ 

5’-AGGTTGGCACACTGCTTCTT-3′ 
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Gene Primer sequence 

murine Podoplanin forward 

murine Podoplanin reverse 

5’-CCCCAATAGAGATAATGCAGGGG-3′ 

5’-GCCAATGGCTAACAAGACGC-3′ 

murine proSP-C forward 

murine proSP-C reverse 

5’-TCCTGATGGAGAGTCCACCG-3′ 

5’-CAGAGCCCCTACAATCACCAC-3′ 

murine p63 forward 

murine p63 reverse 

5’-CAAAGAACGGCGATGGTACG-3′ 

5’-CCTCTCACTGGTAGGTACAGC-3′ 

murine RPS-18 forward 

murine RPS-18 reverse 

5’- CCGCCATGTCTCTAGTGATCC-3′ 

5’- TTGGTGAGGTCGATGTCTGC-3′ 

The relative gene abundance compared to the housekeeping gene was calculated 

as ΔCt value (Ctreference – Cttarget). Comparison with control cells are presented as 

ΔΔCt (ΔCtreference - ΔCttarget). Data are presented as ΔCT or ΔΔCt. 

 

2.9 Immunohistochemistry and immunofluorescence 

For the preparation of cryosections, lungs were perfused with HBSS (Gibco) and 

filled with 1.5 ml Tissue Tek (O.C.T. Compounds, Sakura) mixed with PBS-/- 

(Gibco) in a 1:1 ratio. The lungs were embedded in Tissue Tek (Sakura) and snap-

frozen in liquid nitrogen. 3-4 µm slices were cut with a Leica CM 1850 UV 

Cryotome and the slides were stored at -20°C. Lung sections or cytospins of 

FACS sorted cells were Hematoxylin-Eosin (H&E) or Pappenheim stained 

according to the following protocols. 

For the H&E staining the cryosections were put in Hematoxylin solution (modified 

according to Gill III, Merck) for 10 to 20 sec. Slides were washed with tap water 

until staining solution was removed, followed by differentiation in 1% actetic acid 

for 10 sec and washing with tap water. After that, the slides were dipped in dH2O 

(B. Braun) and stained with Eosin G-solution (0.5% aqueous, Merck) for 10-15 

sec, followed by a stepwise dehydration with 70%, 96% and 100% ethanol (J.T. 

Baker). 

For the Pappenheim staining, cytospins were stained with May Grünwald (Merck) 

for 5 min, followed by short washing with dH2O (B. Braun). After that, the slides 

were stained for 10 min in Giemsa’s azur eosin methylene blue solution (Merck) 

and finally washed with dH2O (B. Braun) and subsequently dried and mounted 

(Neo-mount, Merck). 
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For immunofluorescence stainings, lung sections were fixed with 4% PFA (Sigma-

Aldrich) for 20 min and subsequently incubated with 0.05% Tween-20 (Sigma-

Aldrich), 5% BSA (Sigma-Aldrich), 5% horse serum (PAA) in PBS-/- for 30 min. 

Fluorochrome-labeled antibodies or corresponding isotype control antibodies were 

diluted in PBS-/-, 0.1% BSA, 0.02% Triton X-100 (Roth) and incubated for 2h. For 

non-labeled antibodies the slides were washed with PBS-/-, 0.1% BSA, 0.02% 

Triton X-100 (Roth) and incubated with corresponding fluorochrome-labeled 

secondary antibodies for 2h, followed by mounting with dapi-containing mounting 

medium (Vectashield, Vector Labs). Cultured cells were fixed in a 1:1 ratio of ice-

cold acetone/methanol for 5 min and subsequently incubated with 3% BSA in  

PBS-/- for 30 min. Cells were stained with primary or isotype control antibodies, 

respectively, followed by addition of corresponding secondary antibodies for 2h 

and mounting with dapi-containing mounting medium. Images were taken with a 

Leica DM 2000 microscope using the Leica digital imaging software LAS. The 

following antibody dilutions were applied: 

 

Immunofluorescence stainings:  

Primary Antibodies Dilution 

α-SMA FITC (clone: 1A4, Sigma-Aldrich) 1:100 

β-IV-tubulin (clone: ONS.1, Abcam) or isotype control 

IgG1 (clone: CT6, Abcam) 

1:50 

CC10 (clone: T-18, Santa Cruz) and isotype control 

normal goat IgG (Santa Cruz) 

1:100 

CD49f PE (clone: GoH3, Biolegend) 1:50 

E-cadherin (clone: DECMA-1, Abcam) 1:200 

EpCam FITC (clone: G8.8, Biolegend) 1:20 

Keratin 5 FITC (Bioss) 1:100 

Ki67 (Thermo Scientific) 1:100 

Mucin5ac biotin (clone: 45M1, Abcam) 1:50 

p63 protein A-555 (clone: P51A, Bioss) 1:100 

pro-surfactant protein C (Millipore) or rabbit serum 

(Sigma-Aldrich) 

1:500 
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Secondary Antibodies Dilution 

anti-streptavidin-APC (BD Pharmingen) 1:50 

chicken anti-goat IgG Alexa Fluor 488 (Invitrogen) 1:800 to 1:1000 

chicken anti-goat IgG Alexa Fluor 647 (Invitrogen) 1:800 to 1:1000 

donkey anti-mouse IgG Alexa Fluor 555 (Invitrogen) 1:500 

donkey anti-rabbit IgG Alexa Fluor 555 (Invitrogen) 1:800 

donkey anti-rabbit IgG Alexa Fluor 488 (Invitrogen) 1:800 to 1:1000 

donkey anti-rabbit IgG Alexa Fluor 647 (Invitrogen) 1:800 to 1:1000 

donkey anti-rat IgG Alexa Fluor 555 (Abcam) 1:800 to 1:1000 

donkey anti-rat IgG Alexa Fluor 488 (Invitrogen) 1:1000 

 

2.10 Quantitative flow cytometry and FACS sorting   

Multicolor flow cytometry or fluorescence activated cell sorting was performed with 

the LSR Fortessa (BD Bioscience) and the Aria III (BD Bioscience) using DIVA 

software (BD Bioscience) or Flowing Software. For analytical measurements 1-5 x 

105 cells were freshly stained with fluorochrome-labeled antibodies for 20 min at 

4°C. For intracellular stainings, permeabilization of cells was achieved by previous 

incubation with 0.2% saponin (Calbiochem) diluted in FACS buffer for 20 min at 

4°C, followed by incubation with respective antibodies or isotype controls for 20 

min at 4°C. For stainings with non-labeled primary antibodies, a fluorochrome-

labeled secondary antibody was added and incubated for 20 min at 4°C. Finally, 

the cells were resuspended in the corresponding buffer. Annexin V staining for 

apoptosis measurements was performed on unfixed, non-permeabilized cells. 

Prior to antibody incubation, cells were washed and resuspended in Annexin V 

buffer (BD Bioscience) and incubated with Annexin V Alexa Fluor 647 and 

respective antibodies for 20 min at 4°C, followed by resuspension in Annexin V 

buffer. For the LipidTox staining (Invitrogen), cells were first stained with 

antibodies, followed by fixation in 4% PFA and incubation with diluted LipidTox for 

30 min at 4°C. Immediately after staining, flow cytometric measurements or FACS 

sorting were performed. For dead cell exclusion 7-AAD (7-amino-actinomycin D; 

Biolegend) was added to the stained cell suspensions, or cells were treated with a 

fixable live/dead cell reagent (Life Technologies) according to the manual. FACS 
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sorting was performed with 85 or 100 µm nozzles. The sorted cells were counted 

and processed for RNA isolation, cell culture or cytospin stainings. Single cell 

sorting was performed with the automated cell deposition unit (ACDU) directly in a 

24-well plate with 12 mm cell culture inserts (Millipore, 0.4 µm pore size). The 

following antibody mixtures were used for the different analysis: 

 

 Fgrf2b detection: 

Antibody Dilution 

CD24 PE-Cy7 (clone: M1/69, Biolegend) 1:200 

CD49f PE (clone: GoH3, Biolegend) 1:50 

EpCam APC-Cy7 (clone: G8.8, Biolgend) 1:50 

Fgfr2b (clone: 133730, R&D Systems) or corresponding 

isotype control IgG2A (clone: 54447, R&D Systems) 

150 µg/ml 

goat anti-rat IgG Alexa Fluor 647 (Invitrogen) 1:1000 

Influenza A virus nucleoprotein FITC (clone: 431, Abcam) 1:20 

Sca-1 PerCP/Cy5.5 (clone: D7, Biolegend) 1:50 

 

 Proliferation measurements: 

Antibody Dilution 

CD24 PE-Cy7 (clone: M1/69, Biolegend) 1:200 

CD49f PE or Pacific Blue (clone: GoH3, Biolegend) 1:50 

EpCam APC-Cy7 (clone: G8.8, Biolgend) 1:50 

Ki67 FITC or PE (clone: B56, BD Bioscience) and 

corresponding isotype control IgG1 κ FITC, PE (clone: MOPC-

21, BD Bioscience) 

undiluted 
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 Apoptosis measurements: 

Antibody Dilution 

Annexin V Alexa Fluor 647 (Invitrogen) 1:100 

CD24 PE-Cy7 (clone: M1/69, Biolegend) 1:200 

CD31 Alexa Fluor 488 (clone: MEC13.3, Biolgend) 1:50 

CD45 FITC (clone: 30-F11, Biolegend) 1:50 

CD49f PE (clone: GoH3, Biolegend) 1:50 

EpCam APC-Cy7 (clone: G8.8, Biolgend) 1:50 

 

 Measurement of mesenchymal cells: 

Antibody Dilution 

α-SMA FITC (clone: 1A4, Sigma-Aldrich) 1:100 

CD31 PE (clone: MEC13.3, Biolgend) 1:50 

CD45 APC-Cy7 (clone: 30-F11, Biolegend) 1:50 

CD90.2 APC (clone: 53-2.1, Biolegend) 1:100 

CD140a APC (clone: APA5, Biolegend) 1:100 

EpCam APC-Cy7 (clone: G8.8, Biolgend) 1:50 

Sca-1 Pacific Blue (clone: D7, Biolegend) 1:50 

 

 Sorting of type I and type II pneumocytes: 

Antibody Dilution 

CD24 PE-Cy7 (clone: M1/69, Biolegend) 1:200 

CD31 Alexa Fluor 488  (clone: MEC13.3, Biolegend)  1:50 

CD45 FITC (clone: 30-F11, Biolegend) 1:50 

CD49f PE (clone: GoH3, Biolegend) 1:50 

EpCam APC-Cy7 (clone: G8.8, Biolgend) 1:50 

Podoplanin APC (clone: 8.1.1, Biolegend) 1:20 

Sca-1 Pacific Blue (clone: D7, Biolegend) 1:50 
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 Sorting of leukocytes, mesenchymal cells, endothelial cells, epithelial cells 

Antibody Dilution 

CD31 PE  (clone: MEC13.3, Biolegend) 1:100 

CD45 FITC (clone: 30-F11, Biolegend) 1:50 

EpCam APC-Cy7 (clone: G8.8, Biolgend) 1:50 

Sca-1 Pacific Blue (clone: D7, Biolegend) 1:50 

 

 Sorting of human epithelial cells: 

Antibody Dilution 

CD24 PE-Cy7 (clone: ML5, Biolegend) 1.50 

CD49f PE (clone: GoH3, Biolegend) 1:50 

EpCam FITC (clone: HEA-125, Miltenyi Biotec) 1.50 

lgr6 Alexa Fluor 647 (Bioss), lgr6 (clone: EPR6874, LifeSpan 

Bioscience) 

1:20 

 

 Sorting of epithelial stem/progenitor cells, small airway epithelial cells and 

mesenchymal cells 

Antibody Dilution 

CD24 PE-Cy7 (clone: M1/69, Biolegend) 1:200 

CD31 Alexa Fluor 488  (clone: MEC13.3, Biolegend)  1:50 

CD45 FITC (clone: 30-F11, Biolegend) 1:50 

CD49f PE (clone: GoH3, Biolegend) 1:50 

CD104 Alexa Fluor 647 (clone: 346-11A, AbD SeroTec) 1:20 

EpCam APC-Cy7 (clone: G8.8, Biolgend) 1:50 

Sca-1 Pacific Blue (clone: D7, Biolegend) 1:50 

 

2.11 Murine lung epithelial cell isolation 

Mice were scarified by cervical dislocation, thorax was opened and the vena cava 

was disconnected. A small incision was made in the left ventricle, and a 21-gauge 

butterfly cannula (Ecoflo) was installed in the right heart chamber to perfuse the 

lung with 20 ml HBSS (Gibco) until the lung was free of blood. A small incision was 

made in the dissected trachea and a blunt end 21-gauge cannula (B. Braun) was 
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fixed with a 4-0 surgical thread (Ethicon). The lung was filled with 1.5 ml dispase 

(5,000 caseinolytic units/100 ml, BD Bioscience), removed, washed in HBSS 

(Gibco) and incubated in dispase (BD Bioscience) for 40 min at room temperature. 

The lung was transferred into a petridish (Corning) with DMEM/HEPES 0.01% 

DNase I (Serva) and the bronchial tree, heart and trachea were removed. Lungs 

were homogenized (gentleMACS, MACS Miltenyi Biotech) in 7 ml DMEM/HEPES 

0.01% DNase I (Serva) and afterwards incubated for 5-10 min while rotating 

(Heidolph). The cell suspension was filtered through 100 µm and 40 µm (both BD 

Bioscience) filters, followed by centrifugation (800 rpm, 8 min, 4°C). The pellet was 

recovered in 5 ml mAEC medium and the cell number was determined with a 

Neubauer chamber and trypan blue staining (0.4%, Gibco). By addition of mAEC 

medium, the cell suspension was set to 10 million cells/ml. According to the cell 

number the following calculations were performed for magnetic negative selection: 

 

Calculation of biotinylated antibody volumes: 

biotinylated anti-CD45 antibody (BD Pharmingen):  

 number of million cells x 0.45 x 2 

biotinylated anti-CD16/32 antibody (BD Pharmingen):   

 number of million cells x 0.45 x 1.5 

biotinylated anti-CD31 antibody (BD Pharmingen):    

 number of million cells x 0.2 x 2 

 

Calculation of magnetic bead volumes: 

A: Number of million cells x 0.65 

B: A/3 ml 

C: B x 50 µl 

 

The calculated antibody volumes were added to the cell suspension to bind to 

leukocytes (anti-CD45, anti-CD16/32) and endothelial cells (anti-CD31), followed 

by incubation for 30 min at 37°C. The cell suspension was washed twice with 

DMEM/HEPES. The cell pellet was resuspended in a determined volume 

(calculated in B) of DMEM/HEPES and added to the biotin-binding magnetic 

beads (Dynabeads, Invitrogen), calculated in C. Prior to cell depletion, magnetic 

beads were washed three times and resuspended in PBS-/-. The cell suspension 
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containing the magnetic beads (Dynabeads, Invitrogen) was incubated for 30 min 

at room temperature until the tube was placed in the magnetic separator 

(Invitrogen) for 15 min. After separation the suspension was removed and 

centrifuged for 8 min, 800 rpm at 4°C. The pellet  was recovered and purity was 

determined by flow cytometry. Cells were either cultured in mAEC medium or 

further processed for flow cytometric analysis or cell sorting. 

 

2.12 Isolation of primary human epithelial cells and fibroblasts  

Lung tissue was minced and extensively washed with hAEC medium, followed by 

dispase II digestion (2.5 mg/ml, Roche) in PII-solution for 180 min at 37°C. The 

cell suspension was filtered through 100 µm, 40 µm (BD Bioscience) and 20 µm 

(Millipore) pore size filters. Cells were centrifuged at 1,500 rpm for 20 min at room 

temperature and the pellet was resuspended in PII-solution with 0.25% DNase 

(Serva). Separation of erythrocytes and lung cells was achieved by ficoll density 

centrifugation (Ficoll Paque; Amersham Pharmacia Biotech). Therefore, 20 ml 

Ficoll was overlayed with 15 ml cell suspension and centrifuged at 2,500 rpm for 

15 min at room temperature. The interphase was collected and centrifuged at 

1,500 rpm for 15 min at room temperature. The pellet was resuspended in hAEC 

medium and cells were counted in a Neubauer chamber with trypan blue to 

exclude dead cells. Cells were centrifuged at 1,500 rpm for 10 min at room 

temperature and resuspended in MACS buffer (10 million cells/ 80 µl MACS 

buffer), followed by subsequent depletion of leukocytes by anti-CD45 magnetic 

beads (Miltenyi Biotech). 20 µl anti-CD45 beads were added to 10 million cells, 

respectively, and incubated for 15 min at 4°C until cells were washed with MACS 

buffer and added to a washed MACS column (Miltenyi Biotec) for magnetic 

separation. The flow through was collected, centrifuged at 1,500 rpm for 20 min 

and the pellet was recovered with hAEC medium. Cells were counted and purity 

was determined by flow cytometry. Viability was analyzed by trypan blue exclusion 

and was always >95%.  

For the isolation of primary human lung fibroblasts, cells were collected after ficoll 

density centrifugation, counted and seeded in well plates with Basal medium 2 to 

promote fibroblasts growth. Cells were passaged at a confluency of ~ 80% up to 4-

5 times until they were directly used for co-cultures or frozen in liquid nitrogen. 
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Therefore, the cells were treated with trypsin EDTA (Biochrom), washed with 

Basal medium 2 and transferred to cryotubes (Thermo Scientific) with Basal 

medium 2 and DMSO (Sigma-Aldrich) in a 1:1 ratio. Cells were frozen overnight at 

-80°C and stored in liquid nitrogen until they were thawn at 37°C and cultured in 

Basal medium 2. 

 

2.13 Culture of murine or human epithelial cells in 3D matrix   

FACS sorted cells were centrifuged at 1,200 rpm for 10 min. After pellet recovery, 

cells were counted with trypan blue to exclude dead cells. The respective cell 

number was resuspended in 50 µl EpiSPC basic or expansion medium and mixed 

with growth factor reduced matrix (BD Biosciences) in a 1:1 ratio. After the cell 

suspension was shortly mixed with a vortex, 90 µl of the cell/ matrix suspension 

were seeded in 12 mm cell culture inserts, with a pore size of 0.4 µm (Millipore), 

and placed in a 24-well plate (Greiner bio-one). The plate was incubated for 5 min 

at 37°C, 5% CO2 to solidify the matrix, followed by addition of 350 µl EpiSPC basic 

or expansion medium into the lower well chamber. The medium was changed 

every second day. For mono-cultures 1000 epithelial cells (murine or human), 

were seeded into the matrix. For co-cultures of epithelial stem cells with 

mesenchymal cells, endothelial cells or leukocytes, the cells were seeded in a 

1:100 ratio into the matrix. For cell reseeding (clonality assay) or RNA isolation, 

the inserts were washed two times with PBSMg+/Ca+ and a prewarmed enzyme mix 

composed of 3 mg/ml collagenase I and dispase (Boehringer, Gibco) in PBSMg+/Ca+ 

(Gibco) was added to the wells and inserts. After 15-20 min of incubation, the 

enzyme mix containing lung organoids was pipetted in a reaction mix tube and 

incubated at 37°C for 30 min, followed by extensive mixing with a 1 ml syringe. 

Cells were washed two times with respective medium, counted and reseeded as 

described above (93), or processed for RNA isolation. For ex vivo Fgf10 blockade, 

5 µg/ml of Fgf10 neutralizing antibody (clone: C17, Santa Cruz) or corresponding 

isotype control (normal goat IgG, Santa Cruz) were added to the medium, after 2d 

of culture. Images were taken with a Leica DM IL LED microscope and 

corresponding camera MC170 HD.  
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2.14 Influenza virus infection of murine and human epithelial cells in vitro  

FACS sorted human or murine epithelial cells were infected with A/PR8  (murine 

cells) or A/Hamburg/04/09 (human cells) with the indicated MOIs. Cells were 

washed, counted and inoculum was added and incubated for 1h at room 

temperature. Inoculum was removed and 10,000 cells were seeded in matrix with 

corresponding medium and were further incubated, as already described. In 

selected experiments, FACS sorted murine or human epithelial cells were infected 

in liquid culture. The cells were incubated in a 1.5 ml tube while rotating for 8h at 

37°C, 5% CO2 until they were processed for flow cytometry.  

 

2.15 In vivo treatment protocols 

2.15.1 Orotracheal or intraperitoneal applications 

Mice were pretreated with a subcutaneous injection of 0.05 mg/kg Atropinsulphate 

(0.5 mg/ml, B. Braun), 1:10 diluted in sterile 0.9% NaCl (Delta Select GmbH) with 

a 27-gauge cannula. Mice were anesthetized by intraperitoneal injection of 

ketamin/rompun (ketaminhydrochloride 100 mg/kg, Pfizer; xylazinhydrochloride 

16mg/kg, Bayer). Mice were transferred to a heating plate (37 °C) and their eyes 

were covered with salve (Bepanthene, Bayer). When mice showed no reflexes to 

pain, an injection port of a safety intravenous catheter (B. Braun) was 

orotracheally applied and mice were inoculated with 500 PFU (except where 

otherwise indicated) A/PR8 (H1N1), A/X-31 (H3N2), A/Hamburg/04/09 (pandemic 

H1N1) diluted in 70 µl sterile  PBS-/- or PBS-/- alone as mock control. In selected 

experiments, 5 µg of recombinant murine Fgf10 (R&D Systems) dissolved in 

sterile PBS-/- or PBS-/- alone was orotracheally applied after influenza virus 

infection. Intraperitoneal injections (i.p.) of 100 µl naphthalene diluted in corn oil 

(both Sigma-Aldrich) or corn oil alone was administered. For organ isolation of 

non-treated animals, mice were sacrified by cervical dislocation, after a short 

anesthesia with 4% isoflurane (Baxter). Mice were visited daily and scored for 

morbidity according to the approved protocol. A morbidity score of more than 20 or 

additional criteria, like cyanosis of the mucosa, gasping, apathy, low body 

temperature and loss of more than 25% body weight within two days leaded to the 

termination of an experiment. 
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2.15.2 Sample collection  

After the given time points mice were exsanguinated in anesthesia. In selected 

experiments, lung permeability was determined by intravenous (i.v.) injection of 1 

mg FITC-labeled albumin (Sigma-Aldrich) diluted in sterile 0.9% NaCl (B. Braun). 

After the incubation time, mice were anesthetized as previously described. The 

blood was collected from the vena cava with a 1 ml syringe (Dispomed). The 

trachea was dissected and a blunt 21-gauge cannula was fixed with a 4-0 surgical 

thread (Ethicon) and BALF was collected by intratracheal addition and retraction of 

PBS/EDTA. The BALF was centrifuged at 1,200 rpm for 10 min at 4°C and the 

supernatant was aliquoted. After the blood had clotted completely, it was 

centrifuged at 3,500 rpm for 15 min. The serum was collected, followed by 8 min of 

centrifugation until erythrocyte-free serum was left. The serum and BALF were 

aliquoted in 0.5 ml tubes and stored at -80°C. Lung permeability was determined 

by quantification of FITC fluorescence in BALF and serum with a fluorescence 

reader (FLX800, Bio-Tek instruments). A standard curve of FITC albumin was 

prepared by serial dilution of 1 µg to 0.1 pg. 

Lung homogenates were obtained by instillation of 1.5 ml dispase (5,000 

caseinolytic U/100 ml, BD Biosciences) through the trachea into the HBSS (Gibco) 

perfused lung, followed by incubation in dispase for 40 min. After removal of the 

heart, trachea and bronchial tree, the lung was homogenized (gentleMACS, MACS 

Miltenyi Biotech) in DMEM and 2.5% HEPES with 0.01% DNase (Serva) and 

filtered through 100 µm and 40 µm nylon filters. The single cell suspension was 

further processed for flow cytometric analysis and cell sorting or magnetic-assisted 

epithelial cell isolation.  

 

2.16 Statistics 

All data are given as mean ± SD. Statistical significance between 2 groups was 

estimated using the unpaired Student’s t test or ANOVA and post-hoc Tukey for 

comparison of 3 groups calculated with GraphPad Prism. A p value less than 0.05 

was considered significant. 
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3. Results 

3.1 Characterization of distal airway epithelial stem/progenitor cells in the adult 

murine lung  

3.1.1 Gating strategy of adult murine epithelial cell populations 

For the enrichment of distal airway epithelial stem/progenitor cells (EpiSPC) in 

lung epithelial cell populations, flow cytometric analysis was performed with 

established surface markers (92). In a first enrichment step, biotin-labeled 

endothelial cells and leukocytes were depleted by biotin-binding magnetic beads. 

The majority of the remaining lung cells expressed the cell surface marker 

epithelial cell adhesion molecule (EpCam; CD326) and integrin α6 (CD49f). 

According to the expression levels of these two surface markers, the epithelial cell 

population was fractionated in EpCamlowα6low and EpCamhighα6high (Figure 3). In 

combination with the surface marker CD24, further division of the EpCamhighα6high 

cell population was achieved in CD24 low and high expressing cells. Therefore, 

the murine epithelial cells were fractionated into three major subpopulations. The 

high frequent EpCamlowα6low population included 91.3 ± 1.8% of the EpCam+ 

population, whereas the EpCamhighα6highCD24low made up 1.7 ± 0.3% and the 

EpCamhighα6highCD24high comprised 6.3 ± 1.8 % of the EpCam+ population. 

 

 

 

Figure 3: Flow cytometric characterization and gating strategy of primary murine distal airway 
epithelial cells.  

CD45 and CD31 depleted lung homogenate of WT mice was analyzed with flow cytometry according to 
surface marker expression of EpCam, integrin α6 (CD49f) and CD24. Adult murine epithelial cells were 
fractionated into EpCam

low
α6

low
, EpCam

high
α6

high
CD24

low
 and EpCam

high
α6

high
CD24

low 
subpopulations. FSC; 

forward scatter; SSC, side scatter.    
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3.1.2 Characterization of epithelial stem/progenitor cells according to their 

proliferative response in vivo 

Progenitor cells are characterized by their ablity to self-renew after injury and 

thereby contribute to repair processes (62, 144). Therefore, the proliferative 

response was analyzed in different injury models in vivo by quantitative flow 

cytometry. In addition to the gating strategy to differentiate lung epithelial cells 

(Figure 3), a nuclear marker for proliferation (Ki67) was included (145). 

Measurement of the proliferative response after bronchiolar injury induced by 

naphthalene revealed high renewal capacity in the EpCamhighα6highCD24low 

population, as compared to EpCamlowα6low or EpCamhighα6highCD24high populations 

at d3 after treatment. At d10 after i.p. treatment, the proliferative response 

returned to baseline levels (Figure 4).  

 

 

Figure 4: Proliferative response of epithelial cell subsets after naphthalene injury. 

WT mice were treated with naphthalene or corn oil as a control. CD31
+
 and CD45

+
 cell subsets were depleted 

and the proliferative response of the different epithelial cell subsets was measured by quantitative flow 
cytometry and staining for Ki67 at d3 and d10 after i.p. treatment. Bar graphs represent mean ± SD of n=4 
independent experiments; *p˂0.05; **p˂0.01; ***p˂0.001; d, day. 

 

Further investigation of the proliferative response after severe influenza virus-

induced bronchoalveolar injury was performed (146). As shown in figure 5A, the 

highest proliferative response was observed in the EpCamhighα6highCD24low 

fraction. Analysis of different time points after infection revealed strong 

proliferation at d7 and d14 post infection, whereat baseline levels were reached at 

d21 post infection. A representative FACS plot of Ki67+ EpCamhighα6highCD24low 

cell subset after influenza virus infection is shown in figure 5B. Analysis of 

apoptosis rates by Annexin V staining of EpCam+ cells revealed injury resistance 

of the EpCamhighα6highCD24low population in A/PR8 infected WT mice at d7 post 
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infection (Figure 5C) which is a characteristic feature of lung progenitor/stem cells 

(144). Due to the ability of the EpCamhighα6highCD24low cell fraction to strongly 

proliferate after injury, the epithelial cell subset is defined as epithelial 

stem/progenitor cell (EpiSPC), as previously suggested (92, 93).  

 

 

Figure 5: Proliferative response and apoptosis rates of epithelial cell subsets after influenza virus 
infection.  

(A) WT mice were infected with 500 PFU A/PR8 and the proliferative response of epithelial cell fractions was 
measured at day 0, 4, 7, 14 and 21 post infection. CD31 and CD45 positive cells were depleted and Ki67 
positive cells were analyzed by flow cytometry. (B) Representative FASC plots of Ki67 and isotype stained 
EpCam

high
α6

high
CD24

low
 at d7 post infection. (C) Apoptosis rates were measured by flow cytometric analysis of 

Annexin V
+
 cells in in vivo infected WT mice at d7. At least three animals/group were analyzed. EpCam

low
α6

low
 

and EpCam
high

α6
high

CD24
high

 were compared to EpCam
high

α6
high

CD24
low

 (EpiSPC); *p˂0.05; **p˂0.01; 
***p˂0.001; d, day.  

 

3.1.3 Characterization of epithelial stem/progenitor cells according to endogenous 

marker expression  

Further characterization of the EpiSPC population was performed by flow 

cytometry and immunofluorescence stainings according to markers which are 

associated with known epithelial stem/progenitor cells (80, 85, 90, 92, 95, 102). 
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Flow cytometric analysis of CD104 (integrin β4) and Sca-1 (stem cell antigen-1) 

revealed an ubiquitous expression in the EpiSPC population (Figure 6A). 

Cytospins of FACS sorted EpiSPC showed a morphologically homogenous 

population with a relatively large nucleus and a dense cytoplasm after 

Pappenheim staining. Immunofluoresence staining of FACS sorted EpiSPC 

revealed co-expression of proSP-C and CC10 in an EpiSPC subpopulation (Figure 

6B) as described for the BASC stem cell phenotype (90).  

 

 

Figure 6: Characterization of EpiSPC according to endogenous marker expression. 

(A) EpCam
high

α6
high

CD24
low

 cells were analyzed for expression of CD104 (integrin β4) and Sca-1 by flow 
cytometry. (B) Either Pappenheim or immunofluorescence stainings were performed with FACS sorted 
EpCam

high
α6

high
CD24

low
 cells with the indicated antibodies; EpiSPC, epithelial stem/progenitor cells.  

 

Further investigation of Krt5 and p63 expression in WT non-infected and influenza 

virus infected mice was performed by immunofluorescence stainings and qRT-

PCR. These markers were shown to be expressed by a so-called DASC (distal 

airway stem cell) population, which strongly contribute to repair processes and 

give rise to alveolar and bronchiolar lung tissue (98, 99). Another report described 

the contribution of lineage-negative epithelial progenitor cells (LNEP) to the 

p63/Krt5 repair program (99). Additionally, these markers are present in basal cells 

in the tracheal tissue (71). To investigate the Krt5 and p63 expression in EpiSPC 

of non-infected WT mice, lung and trachea digestions were prepared, followed by 

the preparation of cytospins of FACS sorted EpiSPC and tracheal cells, which 

served as a positive control. Immunofluorescence stainings showed high 
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expression of Krt5 and p63 in the tracheal cell compartment as compared to 

stained FACS sorted EpiSPC of non-infected WT animals (Figure 7A). To 

investigate the Krt5 and p63 expression after influenza virus infection, WT mice 

were infected with A/PR8 and EpiSPC were FACS sorted at d14 post infection. 

mRNA expression levels of Krt5 and p63 were compared to sorted EpiSPC of non-

infected WT mice. Krt5 and p63 were highly upregulated in EpiSPC after influenza 

virus-induced injury, indicating a strong endogenous regenerative capacity and 

contribution to the Krt5 repair program. 

Figure 7: EpiSPC upregulate Krt5 and p63 during influenza virus infection. 

(A) Cytospins of tracheal digests and FACS sorted EpiSPC of non-infected WT mice were stained with p63 
and Krt5. (B) EpiSPC of A/PR8 infected WT mice were sorted at d14 post infection and compared to non-
infected sorted EpiSPC of WT animals. Krt5 and p63 expression levels were analyzed by qRT-PCR. Bar 
graphs show mean ± SD of n=4 independent experiments; **p˂0.01; ***p˂0.001.  

 

3.1.4 Characterization of the EpCamlowα6low and EpCamhighα6highCD24high 

populations 

Further characterization of the two remaining epithelial cell subsets was performed 

by cytospins of FACS sorted EpCamlowα6low and EpCamhighα6highCD24high cell 

subsets and Pappenheim stainings. A characteristic feature of the EpCamlowα6low 

population were large granular inclusions in the cytoplasm, which was likely to be 

surfactant protein stored in lamellar bodies (147, 148). Flow cytometric analysis of 

the EpCamlowα6low subset identified that the majority of these cells expressed 

proSP-C, a marker for type II pneumocytes (58). A minor fraction of EpCamlowα6low 

population expressed podoplanin (Figure 8A), indicating the presence of type I 

pneumocytes (149).  

To characterize the EpCamhighα6highCD24high population, cells were FACS sorted 

and cytospins were made, followed by Pappenheim staining, which revealed 
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ciliated and non-ciliated cells (Figure 8B). Additionally, cells were cultured for 4d 

and stained for mucin5ac and β-tubulin, which revealed the presence of ciliated (β-

tubulin+) and goblet cells (mucin5ac+) (54, 150). Flow cytometric analysis showed 

that there is also a minor population of CC10+ cells, but no proSP-C+ cells. 

Together, these data revealed that EpCamlowα6low cells represented mainly 

alveolar epithelial cells (AEC) (type II and type I pneumocytes), whereas 

EpCamhighα6highCD24high cells were mainly composed of ciliated, goblet and club 

cells and were therefore termed small airway epithelial cells (SAEC). 

 
 

Figure 8: The EpCam
low
α6

low
 and EpCam

high
α6

high
CD24

high
 cell fractions included terminally 

differentiated lung epithelial cells. 

(A) Characterization of the EpCam
low
α6

low
 (AEC) cell subset with FACS sorted and Pappenheim stained 

cytospins or by flow cytometry with the indicated antibodies. (B) FACS sorted and Pappenheim stained 
cytospins of the EpCam

high
α6

high
CD24

high
 cells subset revealed cilliated (arrow) and non-ciliated cell fractions. 

Immunofluorescence stainings of FACS sorted EpCam
high

α6
high

CD24
high

 epithelial cells cultured for 4d and 
stained with mucin5ac and β-tubulin. Flow cytometric analysis of EpCam

high
α6

high
CD24

high
 epithelial cells with 

CC10 and proSP-C was performed.  

 

3.2 EpiSPC show organoid outgrowth, clonal expansion and terminal 

differentiation in 3D cultures 

To identify the proliferative capacity and clonality of EpiSPC in vitro, the different  
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epithelial cell fractions were FACS sorted according to the gating strategy in figure 

3, seeded in matrix and stimulated with hepatocyte growth factor (HGF) and 

fibroblast growth factor 10 (Fgf10) (Figure 9A). After 5, 8 and 14 days in culture, 

images were taken. EpiSPC responded to growth factors (GF) by proliferation and 

expansion which resulted in organoid outgrowth, as compared to AEC and SAEC. 

The clonality of EpiSPC was tested by serial passaging, therefore the matrix was 

digested and a single cell suspension of EpiSPC were reseeded with very low cell 

densities (   1000 cells/well), which again resulted in growth of organoids. The 

culture was repeatedly passaged for up to six times (Figure 9B). To further confirm 

the clonality of EpiSPC, a single cell sort was performed, which similarly resulted 

in organoid outgrowth (Figure 9C) and confirmed the robust clonogenic potential of 

EpiSPC. 

 

 

 

 

 

 

Figure 9: EpiSPC show high proliferative capacity and clonal expansion in the presence of growth 
factors.  

(A) AEC, SAEC and EpiSPC were FACS sorted and seeded in matrix. Medium was either supplemented with 
30 ng/ml hepatocyte growth factor (HGF) and 50 ng/ml fibroblast growth factor 10 (Fgf10) or left 
unsupplemented (w/o GF). Images were taken at d5, d8 and d14 after seeding. (B) Schematic illustration of 
serial passaging of the EpiSPC population in 3D culture. FACS sorted EpiSPC were seeded in matrix and 
supplemeted with HGF and Fgf10. After one week of culture, the matrix was digested and 1,000 cells were 
reseeded, which was performed for up to 6 weeks. (C) Single cell sort of EpiSPC was performed in matrix with 
supplemented medium. d, days; Fgf10, fibroblast growth factor 10; HGF, hepatocyte growth factor; w, weeks; 
w/o GF, without growth factors. 



Results 

43 

 

To determine the differentiation status of the EpiSPC in vitro, the matrix was 

digested after 10d of culture. RNA was extracted of cultured (d10) as well as 

freshly FACS sorted EpiSPC (d0), and analyzed for markers of differentiated cell 

types. Aquaporin 5 was significantly upregulated after 10d in culture, as compared 

to freshly sorted EpiSPC and in relation to flow sorted type I pneumocytes, defined 

by CD31negCD45negEpCamlowα6lowpodoplanin+. Moreover, also β-tubulin was 

upregulated after EpiSPC culture in relation to expression in SAEC indicating 

upregulation of bronchiolar, as well as alveolar markers and the multilineage 

potential of EpiSPC (Figure 10A, B).  

 

Figure 10: EpiSPC upregulate markers of terminal differentiated airway and alveolar epithelial cells in 
3D culture. 

RNA was extracted of FACS sorted EpiSPC (d0) and EpiSPC which were cultured in matrix for 10 days (d10) 
with growth factors. (A) Aquaporin 5 expression of EpiSPC was compared to freshly sorted type I 
pneumocytes. (B) β-tubulin expression of FACS sorted (d0) or cultured EpiSPC (d10) was compared to 
SAEC. Bar graphs represent mean ± SD of n=3 independent experiments; *p˂0.05; ***p˂0.001; d, days; ddCt, 
delta delta Ct; AEC I , Type I pneumocyte; SAEC, small airway epithelial cell. 

 

3.3 Gating strategy and 3D culture of putative human lung epithelial progenitor 

cells 

To identify a population of human lung epithelial progenitor cells (huEpiSPC) in 

distal airway tissue, healthy lung tissue was collected from lobectomy material. 

CD45+ cells of human lung digests were depleted and remaining cells were FACS 

sorted according to the surface marker expression, which was already established 

for the murine system (Figure 11). The EpCam+ epithelial cells were distinguished 

into EpCamlowα6low and EpCamhighα6high expressing cells, whereas the 

EpCamhighα6high population was further divided into a CD24low-neg and CD24+ 

fraction. Additionally, 95% of the EpCamhighα6highCD24low-neg fraction expressed 

lgr6 (leucine rich G protein coupled receptor), which is known to be expressed by 

epithelial progenitor cells in human lungs (66). FACS sorted 
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EpCamhighα6highCD24low-neg (huEpiSPC) showed organoid outgrowth in 3D cultures 

and were dependent on the growth factors HGF and Fgf10 (Figure 11C). 

 

 

Figure 11: Gating strategy of putative primary human epithelial progenitor cells and 3D culture.  

(A) Gating strategy of primary human epithelial progenitor cells, according to surface marker expression of 
EpCam, integrin α6 and CD24. (B) Flow cytometric analysis of the EpCam

high
α6

high
CD24

low-neg 
cells with lgr6. 

(C) 3D culture of FACS sorted EpCam
high

α6
high

CD24
low-neg 

primary human epithelial progenitor cells with and 
without addition of the growth factors HGF and Fgf10; ctrl, control; Fgf10, Fibroblast growth factor 10; HGF, 
Hepatocyte growth factor; w/o GF, without growth factors; FSC, forward scatter; SSC, side scatter. 

 

3.4 EpiSPC renewal capacity is dependent on the Fgf10/Fgfr2b axis after influenza 

virus infection 

To investigate the role of the Fgf10/Fgfr2b signaling pathway in the EpiSPC-

mediated proliferative response, different inducible transgenic or gene-deficient 

mice were infected with A/PR8 and the renewal capacity was measured by flow 

cytometry and Ki67 expression. Rosa26rtTA/+;tet(O)sFgfr2b/+ mice overexpressed 

a dominant negative, soluble receptor (sFgfr2b) after treatment with doxycyline-

containing food, which resulted in blockade of the Fgfr2b axis and decreased 

proliferative response of EpiSPC at d7 post infection (Figure 12A). Concomitantly, 

treatment of Rosa26rtTA/+;tet(O)Fgf10/+ animals with doxycycline-containing food, 

resulted in Fgf10 overexpression and led to an increased proliferative capacity of 

EpiSPC compared to mice which were fed with normal food (Figure 12B). Of note, 

Fgfr2b is able to bind Fgf10 as well as Fgf7 (112), therefore analysis of the 

proliferative response was performed using Fgf7 knockout mice compared to WT 

littermates. However, Fgf7 knockout mice showed only a slight, non-significant 
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decrease in EpiSPC proliferation (Figure 12C) which indicated that EpiSPC 

proliferation and renewal capacity was dependent on Fgf10 but not on Fgf7 in vivo. 

 

 

Figure 12: The proliferative capacity of EpiSPC is dependent on Fgf10 and the receptor Fgfr2b but not 
on Fgf7. 
(A) Rosa26

rtTA/+
;tet(O)sFgfr2b/+ (induction of soluble, dominant negative Fgfr2b) or (B) 

Rosa26
rtTA/+

;tet(O)Fgf10/+ mice (induction of Fgf10) were infected with 500 PFU A/PR8 and the proliferative 

response of EpiSPC, AEC and SAEC was measured with flow cytometry and Ki67 staining at d7 post infection 
in doxycycline treated mice (+dox) and in non-induced (-dox) animals. (C) The proliferative capacity of A/PR8 
infected Fgf7 knockout animals or WT littermates was measured with flow cytometry at d7 post infection. Bar 
graphs represent mean ± SD of at least n=4 animals/group; *p˂0.05; **p˂0.01; dox, doxycycline. 

 

3.5 Fgfr2b is upregulated on EpiSPC during influenza virus infection 

To address whether lung injury resulted in regulation of the Fgf10/Fgfr2b axis on 

receptor level, WT mice were infected with 500 PFU A/PR8 and Fgfr2b expression 

was analyzed on the EpiSPC population by flow cytometry at different time points 

post infection. The Fgfr2b surface expression was highly upregulated on EpiSPC 

at d5 and d7 post infection and reached baseline levels at d14 post infection 

(Figure13A). To evaluate if this effect was influenza virus-specific, quantification of 

Fgfr2b surface expression on EpiSPC after naphthalene treatment was performed 

(Figure 13B). At d3 after treatment a robust proliferative response was observed in 

the EpiSPC subset (Figure 4) and additionally, Fgfr2b expression was upregulated 

as compared to the control. However, the Fgfr2b upregulation was most prominent 

after influenza virus-induced injury, suggesting a particular involvement of Fgfr2b 

in repair after influenza-induced injury. 
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Figure 13: Fgfr2b is highly upregulated during influenza virus-induced injury. 

(A) WT mice were infected with 500 PFU A/PR8 or treated with sterile PBS
-/-

 as a control and Fgfr2b 
expression was analyzed by flow cytometry at d3, d5, d7 and d14 post infection on the EpiSPC subset. (B) 
WT mice were treated with either naphthalene or corn oil as a control. Fgfr2b expression was measured by 
flow cytometry at d3 after treatment. Values are given in MFI (median fluorescence intensity) normalized to 
non-treated WT mice indicated as dotted lines. Bar graphs represent mean ± SD of at least n=3 independent 
experiments. *p˂0.05; **p˂0.01; ***p˂0.001. 

 

3.6 EpiSPC outgrowth and differentiation is mediated by cross-talk with lung 

resident mesenchymal cells  

3.6.1 Characterization of lung resident mesenchymal cells 

To further elucidate the Fgf10/Fgfr2b cross-talk mechanisms, the predominant 

source of the Fgfr2b ligands in adult murine lungs was determined. To achieve 

this, fractionation of whole lung homogenate into the four main cell subsets was 

performed by sorting of epithelial cells (CD31negCD45negEpCam+), endothelial cells 

(CD31+CD45negEpCamneg), leukocytes (CD31negCD45+EpCamneg) and 

CD31negCD45negEpCamnegSca-1+ cells (151) (Figure 14A). mRNA expression 

analysis revealed that the Fgfr2b ligands Fgf7 and Fgf10 were predominantely 

expressed by cells gated in R4 of non-infected and A/PR8 infected WT mice 

(Figure 14B and C). Of note, neither Fgf7, nor Fgf10 mRNA were significantly 

increased after influenza virus infection. Previous data suggested that the 

CD31negCD45negEpCamnegSca-1+ population was associated with the fibroblast 

lineage (151). Further characterization of the R4 population revealed that ~ 5% 

expressed α-SMA representing myofibroblasts/smooth muscle cells, ~ 20% 

expressed CD90, a marker which indicate progenitor cells of the mesenchymal 

lineage, and ~ 12% were LipidTox+ PDGFRα+ indicative of a lipofibroblast 

phenotype (102, 129, 152, 153). Pappenheim stained cytospins of the flow sorted 

R4 population showed a morphologically homogenous population with large 
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cytoplasm. Cultured cells revealed an upregulation of α-SMA (smooth muscle 

actin) expression after 6d, suggesting that the CD31negCD45negEpCamnegSca-1+ 

population was composed of lung resident mesenchymal cells (rMC) with a 

fibroblast phenotype (Figure 14A).   

 

 

Figure 14: Characterization of lung resident mesenchymal cells and analysis of Fgfr2b ligand 
expression.  

(A) Representative flow cytometry plots (left) of the gating strategy to fractionate total lung homogenate of WT 
mice into endothelium (R1), leukocytes (R2), epithelium (R3) and Sca-1

high
 lung rMC (R4). Characterization of 

the Sca-1
high

 population according to mesenchymal cell markers was performed by flow cytometry (right 
panel). The FACS sorted Sca-1

high
 population was either Pappenheim stained or α-SMA  expression was 

analysed after 6d of culture. (B) mRNA expression of Fgf10 (C) or Fgf7 in FACS sorted lung cell populations 
was determined by qRT-PCR analysis. Bar graphs represent mean ± SD of at least n=3 independent 
experiments.  

 

3.6.2 Lung resident mesenchymal cells mediate EpiSPC expansion 

To investigate if Fgfr2b ligand-expressing rMC support organoid growth and/or 

differentiation of EpiSPC, FACS sorted rMC and EpiSPC were co-cultured in 3D 

matrix without growth factor supplementation (93). The presence of Fgf10-

expressing rMC was sufficient to promote the proliferative response of EpiSPC 

and the formation of organoids at d5 (Figure 15). Additionally, rMC supported 

saccular outgrowth of EpiSPC at d10 and the formation of lung-like structures at 

d16, as compared to growth factor supplemented EpiSPC mono-cultures (Figure 

9), or co-cultures with CD31+ or CD45+ cells (R1 and R2, figure 14), respectively. 

The role of the Fgf10-mediated cross-talk between EpiSPC and rMC was 
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addressed by the addition of an Fgf10 blocking antibody in the co-culture system. 

Treatment with the blocking antibody resulted in decreased proliferative response, 

at an early stage, which was indicated by reduced organoid outgrowth and showed 

the important role of Fgf10 in EpiSPC proliferation and outgrowth in the cross-talk 

with rMC.  

 

 

 

Figure 15: Lung resident mesenchymal cells promote EpiSPC organoid outgrowth which is mediated 
by Fgf10. 

(A) FACS sorted EpiSPC and rMC were co-cultured in 3D matrix without addition of growth factors. (B) CD45
+
 

leukocytes and CD31
+
 endothelial cells were co-cultured with EpiSPC without growth factor supplementation. 

(C) Co-culture of EpiSPC and rMC with a Fgf10 neutralizing antibody, compared to IgG control of n=3 
independent experiments. ab, antibody; GF, growth factors; IgG, Immunoglobulin; rMC, resident mesenchymal 
cells; w/o, without. 

 

To evaluate whether Fgf10-expressing rMC have an influence on the EpiSPC 

differentation capacity, RNA was extracted after 10d and 28d of EpiSPC mono-

cultures or EpiSPC-rMC co-cultures and expression levels of markers for 

differentiated airway and alveolar epithelium were analyzed and compared to 

freshly FACS sorted EpiSPC (Figure 16). Podoplanin, a marker for type I 

pneumocytes (149) was highly upregulated in the co-culture model as compared 

to EpiSPC mono-cultures after 10d of culture, suggesting that the rMC promoted 

differentiation into alveolar epithelium. After 28d of EpiSPC mono-culture, 

podoplanin was also highly upregulated, which suggested, that EpiSPC in mono-

culture differentiated much slower, than in the co-culture system. Similar to 
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podoplanin, β-tubulin was highly upregulated in the co-culture, as compared to 

mono-cultures, indicating that rMC may promote the differentiation of EpiSPC into 

ciliated airway epithelium (154). In contrast, cyclin D1, a marker for proliferation 

(155) showed less expression in co-cultures, which suggested that rMC rather 

promote differentiation compared to proliferation of EpiSPC at later stages of 

culture. 

 

 

Figure 16: EpiSPC differentiation is accelerated in co-cultures with rMC. 

FACS sorted EpiSPC were either mono- or co-cultured with rMC. Mono-cultured EpiSPC were supplied with 
HGF and Fgf10, whereas co-cultured EpiSPC were left unsupplemented. After 10d and 28d of culture, RNA 
was isolated and expression of (A) podoplanin, (B) β-tubulin and (C) cyclin D1 was analysed by qRT-PCR. 
Bar graphs show ddct values compared to freshly FACS sorted EpiSPC. Bar graphs represent mean ± SD of 
n=3 independent experiments; *p˂0.05; **p˂0.01; ***p˂0.001; rMC, lung resident mesenchymal cells. 

 

3.6.3 Human lung fibroblast cross-talk with huEpiSPC to promote organoid 

formation  

To investigate if primary human fibroblasts similary cross-talk with huEpiSPC, 

FACS sorted huEpiSPC (EpCamhighα6highCD24low-neg) were co-cultured with 

primary human lung fibroblasts, without addition of growth factors. Figure 17 

shows that lung resident human fibroblasts supported organoid outgrowth of 

huEpiSPC, as observed by co-cultures of murine EpiSPC and rMC, suggesting a 

similar supportive phenotype of primary lung fibroblasts in the human lung. 
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Figure 17: huEpiSPC show organoid outgrowth in co-culture with primary human fibroblasts. 

Isolated primary human fibroblasts were co-cultured with FACS sorted huEpiSPC without addition of growth 
factors in matrix. Images were taken at day 5 and 10 after seeding. Representative images of n=3 
independent experiments. 

 

3.7 Influenza virus targets EpiSPC resulting in reduced proliferative capacity 

3.7.1 Ex vivo infection of EpiSPC results in reduced organoid formation 

To analyze the proliferative response and the ability to form organoids in 3D 

culture after influenza virus infection, FACS sorted EpiSPC were ex vivo infected 

with MOIs of 0.1 up to 5 and seeded in matrix. After 6d of culture, organoids were 

counted and revealed that higher MOIs of A/PR8 resulted in less organoid 

formation and decreased proliferative capacity (Figure 18A). Control staining with 

influenza virus NP after 8h of ex vivo infected EpiSPC revealed a robust infection 

rate of ~ 44% (Figure 18B).  

 

 

Figure 18: EpiSPC show impaired organoid formation after influenza virus infection.  
(A) Organoid formation in 3D culture was evaluated of FACS sorted and ex vivo A/PR8 infected EpiSPC with 
different MOIs at d6 post infection. (B) Representative FACS plots of ex vivo A/PR8 infected and NP stained 
EpiSPC after 8h showed an infection rate of ~ 44%. Bar graphs represent mean ± SD of n=3 independent 
experiments; *p˂0.05; **p˂0.01; ***p˂0.001; MOI, multiplicity of infection; ctrl, control; NP, nuceloprotein. 
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3.7.2 Influenza virus infected EpiSPC show reduced proliferative capacity and 

impaired Fgfr2b upregulation 

To investigate if an impaired reparative response after influenza virus infection is 

caused by the extent of EpiSPC infection, different influenza virus strains varying 

in their pathogenicity were analyzed. WT mice were infected with 500 PFU of low 

pathogenic H3N2 (x-31), pandemic H1N1 (A/Hamburg/04/09; pH1N1) causing 

mild to moderate injury and high pathogenic, mouse adapted A/PR8 (20, 156). 

After 21d post infection H&E stained lung sections of A/PR8 infected mice still 

showed alveolar wall thickening and impaired re-epithelialization (arrows), in 

contrast to x-31 or pH1N1 infected mice which represented an almost intact lung 

structure (Figure 19A). Interestingly, the pathogenicity of the different influenza 

virus strains correlated with EpiSPC infection rates, measured by influenza virus 

nucleoprotein (NP) staining in infected WT mice at d4 post infection (Figure 19B). 

Additionally, A/PR8 infected EpiSPC were limited in their proliferative response, 

indicated by reduced proliferation rates, measured by Ki67+ cell fractions of the 

corresponding epithelial cell subsets. Most importantly, the infected (NP+) EpiSPC 

cell fraction showed impaired Fgfr2b upregulation after influenza virus infection, as 

compared to the non-infected (NP-) EpiSPC cell fraction (Figure 19C, D), which 

indicated that the influenza virus-infected EpiSPC fraction were limited in their 

proliferative response due to impaired Fgfr2b upregulation. 
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Figure 19: The extent of EpiSPC infection correlates with the pathogenicity of different virus strains 
and the regenerative response is impaired by reduced Fgfr2b upregulation. 

(A) Lung sections were stained with H&E of mock-infected (PBS
-/-

) or influenza virus infected WT mice at d21 
post influenza virus infection. The different influenza virus strains varied in their pathogenicity from low (x-31), 
intermediate (pandemic H1N1) to high (A/PR8). Arrows indicate non-epithelialized areas. (B) WT mice were 
infected with 500 PFU A/PR8, pandemic H1N1 or x-31, respectively. Infection rates were determined with NP 
staining by flow cytometry. (C) WT mice were infected with 500 PFU A/PR8 and the proliferative response was 
measured by Ki67 staining of infected and non-infected epithelial subpopulations. (D) Fgfr2b

+
 EpiSPC were 

subdivided in infected (NP
+
) and non-infected (NP

-
) by flow cytometry at d7 post A/PR8 infection of WT mice. 

Bar graphs show mean ± SD of at least n=3 independent experiments; *p˂0.05; **p˂0.01; ***p˂0.001; NP, 
nucleoprotein. 

 

3.7.3 Ex vivo infection of primary human epithelial cells results in reduced cyst 

formation 

To investigate if primary huEpiSPC were targeted by influenza virus, FACS sorted 

huEpiSPC were infected with different MOIs of the pandemic H1N1 influenza virus 

strain A/Hamburg/04/09. Infection of huEpiSPC resulted in reduced proliferative 
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response, indicated by reduced organoid formation with increasing MOI in 3D 

cultures. The infection rate of ex vivo infected huEpiSPC was measured with 

influenza virus NP staining by flow cytometry and revealed to be ~ 20% (Figure 

20A, B).  

 

Figure 20: HuEpiSPC show reduced organoid formation after ex vivo infection with influenza virus. 

(A) Organoid formation in 3D culture was evaluated of FACS sorted and ex vivo infected huEpiSPC with 
different MOIs at d6 post infection. (C) Representative FACS plots of ex vivo infected and NP stained 
huEpiSPC after 8h of infection showed an infection rate of ~ 20%. Bar graphs represent mean ± SD of n=3 
independent experiments; *p˂0.05;**p˂0.01; MOI, multiplicity of infection; ctrl, control; NP, nuceloprotein; 
pH1N1, pandemic H1N1. 

 

3.8 Targeting the Fgf10/Fgfr2b axis during influenza virus infection in vivo 

3.8.1 Fgf10/Fgfr2b blockade impairs lung regeneration and restoration of barrier 

function 

To evaluate the role of the Fgf10/Fgfr2b axis in lung regeneration and outcome in 

vivo, inducible, transgenic Rosa26rtTA/+;tet(O)sFgfr2b/+ mice were treated with 

doxycycline food to inhibit Fgfr2b signaling. After influenza virus infection, lung 

permeability of induced and non-induced mice was measured by i.v. administration 

of FITC-albumin and determination of the FITC fluorescence in BALF and serum. 

At d14 post influenza virus infection, the alveolar leakeage was increased in 

doxycycline-induced mice (Figure 21A). Additionally, induced mice showed an 

increased mortality rate compared to non-induced mice. Moreover, the weight 

curve revealed that induced animals did not fully recover after influenza virus 

infection (Figure 21B and C). However, analysis of virus titers in BALF at d7 post 

infection revealed no significant difference between induced and non-induced 

mice, indicating that morbidity and mortality differences were not associated to 

altered host defense (Figure 21D). 
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Figure 21: Blockade of Fgf10/Fgfr2b signaling results in increased lung permeability, morbidity and 
mortality. 

Rosa26
rtTA/+

;tet(O)sFgfr2b/+ animals were infected with A/PR8. Doxycycline induced animals (+ dox) 
overexpressed soluble, dominant negative Fgfr2b and were compared with mice with normal food (- dox). 
Alveolar leakage was measured (A) by i.v. injection of FITC-albumin and quantification of FITC fluorescence in 
serum and BALF. (B) Induced and non-induced mice were analysed for their survival rates in % (Kaplan-Maier 
curve; n=8 respectively) and their corresponding body weight loss in % (C). (D) Virus titers were determined in 
BALF of induced and non-induced mice at d7 post infection of n=5 independent experiments. Bar graphs 
represent mean ± SD; *p˂0.05; AU, Arbitrary units; BALF, bronchoalveolar lavage fluid; dox, doxycyline; PFU, 
plaque forming units.  

 

3.8.2 Therapeutic Fgf10 application restores lung barrier function and improves 

outcome after influenza virus infection  

To evaluate whether recombinant Fgf10 (rFgf10) treatment would improve 

outcome after influenza virus infection, orotracheal application of 5 µg rFgf10, 

diluted in PBS-/-, or sterile PBS-/- alone as control was applied in WT animals at d6 

after influenza virus infection. Measurement of the proliferative response by Ki67 

staining at d7 post infection revealed an enhanced proliferative response in the 

EpiSPC fraction of rFgf10 treated mice as compared to PBS-/- treatment (Figure 

22A). Additionally, the percentage of EpCam+ epithelial cells in lung homogenates 
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was increased after rFgf10 treatment at d14 post infection (Figure 22B). To 

evaluate if the enhanced proliferative response of EpiSPC was accompanied by 

decreased alveolar permeability, measurement of alveolar leakage by i.v. FITC 

albumin injection and determination of FITC fluorescence in BALF and serum at 

d14 post infection was performed, which revealed a significant decrease of  

alveolar permeability by a single dose of rFgf10. Moreover, the mortality rate of 

rFgf10 treated WT mice was decreased as compared to PBS-/- treated WT mice 

after influenza virus infection (Figure 22C and D).  

 

Figure 22: Therapeutic application of recombinant Fgf10 improves alveolar barrier function and 
survival. 

WT mice were infected with A/PR8 and treated with either 5 µg recombinant Fgf10 or sterile PBS
-/-

 at d6 post 
infection. (A) Flow cytometric measurements of Ki67

+
 cells in the different epithelial cell subsets at d7 post 

infection was analyzed. (B) EpCam
+
 epithelial cells were analyzed in total lung homogenates at d14 post 

infection.  Alveolar permeability (C) was measured  by quantification of i.v. injected FITC-albumin in serum 
and BALF. The mortality rate (D) of rFgf10 and PBS

-/-
 treated WT mice was analyzed of n=8 mice/group after 

influenza virus infection. Bar graphs represent mean ± SD of at least n=5 independent experiments; *p˂0.05; 
**p˂0.01; AU, Arbitrary units; rFgf10, recombinant fibroblast growth factor 10. 

 

Additionally, analysis of the lung structure in rFgf10 or PBS-/- treated WT mice after 

influenza virus infection revealed a reduced number of alveolar septa in PBS-/- 

treated mice (see lower magnification). At d21 post infection, the rFgf10 treated 
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mice showed re-epithelialization and restoration of the lung structure 

(arrowheads), in contrast to PBS-/- treated mice which still showed an increased 

area of non-epithelialized lung tissue (arrows) (Figure 23). To evaluate the lung 

structure in terms of proliferation and cell to cell contact re-establisment, lung 

sections were stained for the adherence junction protein E-cadherin and the 

proliferation marker Ki67 (Figure 24). rFgf10 treated mice showed robust E-

cadherin expression, as compared to infected and PBS-/- treated or mock-infected 

mice. Furthermore, increased Ki67 expression of rFgf10 treated mice revealed a 

prolonged effect of the rFgf10 treatment until d21.  
 

 

Figure 23: Influenza virus infected and recombinant Fgf10 treated WT mice show re-epithelialization in 
hematoxylin/eosin stained lung sections. 

WT mice were infected with A/PR8 and treated with either 5 µg recombinant Fgf10 or PBS
-/-

 at d6 post 
infection. Lung sections were obtained at d10 and d21 post infection and stained with Hematoxylin-Eosin. 
Arrows indicate areas of unrepaired non-epithelialized alveolar tissue. Arrow heads represent areas of re-
epithelialization; bars= 200 µm; rFgf10, recombinant fibroblast growth factor 10. 
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Figure 24: Influenza virus infected and recombinant Fgf10 treated WT mice show re-establishment of 
cell to cell contacts and prolonged proliferation.  

WT mice were infected with A/PR8 or mock infected with PBS
-/-

 (mock). Orotracheal instillation of infected 
mice was performed using either recombinant Fgf10 or PBS

-/-
 at d6 post infection. Lung sections were 

obtained at d21 post infection and immunofluorescence stainings for E-cadherin and Ki67 were performed and 
compared to mock infected WT animals; bars= 200 µm; rFgf10, recombinant fibroblast growth factor 10. 

 

To investigate the contribution of rFgf10 treatment on the Krt5 repair program, lung 

sections of PBS-/- or rFgf10 treated mice were stained for Krt5 after influenza virus 

infection. The Krt5 repair program was initiated in both treatment groups (Figure 

25), but enhanced Krt5 expression was observed in the mice which were treated 

with rFgf10, suggesting that Fgf10 enhances the Krt5-dependent repair program 

after influenza virus-induced injury, which was shown to be cruical for the 

regeneration of lung tissue (98, 99). 

 

Figure 25: Recombinant Fgf10 treatment increases the Krt5 expression after influenza virus-induced 
injury. 

WT mice were infected with A/PR8 and treated with PBS
-/-

 or recombinant Fgf10 at d6 post infection. At d21 
lung sections were stained for Krt5 and dapi; bars= 100 µm; rFgf10, recombinant fibroblast growth factor 10; 
Krt5, Keratin 5.  
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4. Discussion 

Influenza virus pneumonia is characterized by epithelial cell apoptosis resulting in 

increased alveolar permeability and infiltration of protein-rich fluid into the air filled 

alveoli impairing gas exchange. Structural and functional re-establishment of the 

distal alveolar epithelial barrier after severe influenza virus pneumonia is crucial for 

survival and recovery.  

This project demonstrates that distal epithelial stem/progenitor cells (EpiSPC) 

drive renewal processes after severe influenza virus pneumonia, which involves 

cross-talk with lung resident mesenchymal cells and Fgf10/Fgfr2b-mediated repair. 

Additionally, EpiSPC show high infection rates, correlating with the pathogenicity 

of different virus strains. Importantly, infected EpiSPC show reduced renewal 

capacity and impaired upregulation of the Fgf10 receptor Fgfr2b. Therapeutic 

application of recombinant Fgf10 after influenza virus infection enhances the 

proliferative response which leads to increased survival rates and improved lung 

function and structure. These data show that Fgf10 plays a cruical role in 

promoting the regenerative phenotype of EpiSPC which provides a new 

therapeutic approach after severe influenza virus infection. 

 

4.1 EpiSPC characterization and proliferative response  

It has been shown that the lung comprises different region-specific epithelial 

stem/progenitor cells in the tracheobronchial as well as in the distal compartment, 

which contribute to lung restoration after injury (63). Regeneration of the distal 

epithelial compartment was shown to involve different epithelial stem/progenitor 

cell populations, including p63+Krt5+ lineage-negative epithelial progenitors 

(LNEP), distal airway stem cells (DASC) (98, 99), an α6β4+ alveolar epithelial cell 

population or more lineage committed CC10+ and/or proSP-C+ epithelial cells (55, 

90, 92, 95, 97, 102).  

The analysis of a popuation with the signature EpCamhighα6highCD24lowβ4+Sca-1+ 

(EpiSPC) (92, 93) showed stem cell characteristics as identified by clonogenic 

potential, injury resistance and organoid outgrowth in the presence of growth 

factors including Fgf10. Of note, organoid outgrowth could only be observed in the 

EpiSPC population and was not observed for terminally differentiated AEC 
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(EpCamlowα6low) or SAEC (EpCamhighα6highCD24high) populations. The clonality 

was demonstrated by single cell sorting and clonal passaging which included 

digestion of organoids and reseeding of single cell suspensions with a low cell 

density (92). This could be performed for up to 6 passages until cystic outgrowth 

was dramatically decreased, possibly due to terminal differentiation of EpiSPC in 

culture. To test the differentiation potential of EpiSPC in vitro, cysts were digested 

after ten days in culture, RNA was extracted and qRT-PCR analysis of β-tubulin 

and aquaporin 5 revealed expression of terminally differentiated airway and 

alveolar markers, suggesting the potential of EpiSPC to contribute to bronchial as 

well as alveolar lineages (54, 56, 154). EpiSPC showed a high proliferative 

response after bronchiolar injury induced by naphthalene (84) and bronchoalveolar 

injury caused by influenza virus infection (19), in contrast to other distal lung 

epithelial cell populations. This suggests, that EpiSPC contributed to alveolar and 

bronchiolar repair processes, indicated by their proliferative capacity after 

naphthalene treatment and influenza virus-induced injury. In the influenza virus 

model, the proliferative response of EpiSPC was especially observed at d7 post 

infection, continued until d14 and reached baseline levels at d21 post infection. 

This renewal response was associated to a strong induction of the p63/Krt5 

regeneration program, which was highly upregulated after influenza virus infection 

and absent in FACS sorted EpiSPC of non-infected mice. Of note, the p63/Krt5 

repair program was found to be crucial for distal lung repair (95, 98, 99).  

Analysis of the EpiSPC profile revealed that a fraction of these cells co-expressed 

low levels of CC10 and proSP-C, suggesting that a part of these proliferating 

EpiSPC differentiated into more lineage committed cells of the alveolar or 

bronchiolar tissue. Conflicting data exsist on the contribution of lineage committed 

cells to repair programs after injury (97-99, 157). It was previously suggested that 

most of the p63+ cells which were found during repair processes derived from the 

CC10+ pool, whereas a recent report suggested that the p63/Krt5 repair program 

is initiated by lineage-negative cells (97-99). Another report highlighted the type II 

pneumoncytes as a progenitor for alveolar tissue after bleomycin injury (102). 

However, the proliferative response of type II pneumocytes in the EpCam lowα6low 

AEC subset was limited after influenza virus infection in vivo. This suggests that 

the contribution of different progenitor cell polulations which are involved in 
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alveolar repair processes is injury-specific, and dependent on the injury severity as 

well as microenvironmental factors.  

 

4.2 Characterization of human epithelial stem/progenitor cells  

In order to identify epithelial stem/progenitor cells (huEpiSPC) in primary distal 

human lung tissue, the same gating strategy which identified EpiSPC in the murine 

model was applied. Interestingly, analogies between human and murine epithelial 

cells were found. The human EpCamhighα6highCD24low-neg fraction was strictly 

dependend on growth factors, including Fgf10 and showed organoid outgrowth in 

3D cultures. Additionally, the majority of these cells were lgr6+, which was 

previously found to be expressed by an E-cadherin+ population in the adult human 

lung that was able to form bronchoalveolar tissue in kidney capsules. Of note, the 

E-cadherin+lgr6+ cells were a subpopulation of α6+ cells (103). Therefore, the E-

cadherin+lgr6+α6+ population may be included in the EpCamhighα6highCD24low-neg 

subpopulation. Nevertheless, it is necessary to define specific markers for 

huEpiSPC characterization to determine their differentiation potential to alveolar or 

bronchiolar tissue after injury.  

Ex vivo co-culture of primary human lung fibroblasts and huEpiSPC revealed a 

supportive phenotype of fibroblasts in the human system, although huEpiSPC co-

culture did not result in the formation of lung-like structures. This could be 

explained by the variability of patient samples, concerning both epithelial cells and 

fibroblasts or due to reduced differentiation capacity of the cells ex vivo. 

Nevertheless, these data clearly show that fibroblasts composed a 

miroenvironment required for huEpiSPC outgrowth.  

Furthermore, huEpiSPC were effectively infected by a pandemic influenza virus 

strain, and whether pathogenicity of different virus strains also affects the infection 

rates of huEpiSPC needs to be addressed in future studies. 

 

4.3 The Fgf10/Fgfr2b axis during influenza virus infection  

It has been described that the Fgf10/Fgfr2b pathway plays a crucial role during 

lung development. Fgf10 and Fgfr2b knockout mice are not viable due to failure of 

organ formation which includes the absence of distal lung tissue (120-122). The 
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Fgf10/Fgfr2b pathway is usually inactive in adults but it has been shown that this 

pathway can be reactivated after naphthalene injury (134). To evaluate the impact 

of Fgf10 during influenza virus infection, the proliferative response was analyzed in 

different inducible transgenic animals. Rosa26rtTA/+; tet(o)sFgfr2b/+ or Rosa26rtTA/+; 

tet(o)Fgf10/+ mice either express a dominant negative, soluble Fgfr2b (sFgfr2b) 

which block the ligands before binding to cell-adherent Fgfr2b and therefore 

prevent Fgfr2b signaling, or overexpress the ligand Fgf10. Moreover, the 

proliferative response in Fgf7 knockout animals was investigated, since Fgf10 and 

Fgf7 share the same receptor (123, 124).  

Evaluation of Ki67+ cells showed that Fgf10 had a crucial role in the proliferative 

phenotype of the EpiSPC. Fgfr2b blockade resulted in reduced EpiSPC 

proliferation. Additionally, Fgf10 overexpression displayed an increased EpiSPC 

renewal capacity. The Fgf7 knockout animals only showed a slight, non-significant 

decrease in the EpiSPC proliferation, which lead to the conclusion that EpiSPC 

proliferation clearly depends on Fgf10 after influenza virus infection. Although Fgf7 

also acts as a ligand for Fgfr2b (124, 128), Fgf7 deficiency has not such a fatal 

effect during lung development (120, 125). Another report highlighted the different 

function of the two ligands with respect to Fgfr2b signaling and recycling. Fgf7 

stimulation leads to rapid receptor degradation, whereas Fgf10 receptor binding 

leads to recycling and prolonged signaling (128), suggesting ligand-specific effects 

on the EpiSPC renewal capacity and importance of the Fgf10 induced receptor 

maintainance on the cell surface. Evaluation of Fgfr2b surface expression on 

EpiSPC during influenza virus infection revealed an upregulation of the receptor 

especially during the acute phase of the infection. In naphthalene treated mice, the 

effect of Fgfr2b upregulation was moderate, indicating an injury-specific response 

with particular engagement of the Fgf10/Fgfr2b axis after influenza virus-induced 

injury.  

 

4.4 Lung resident mesenchymal cells mediate EpiSPC expansion 

During lung development, the Fgfr2b ligands Fgf7/10 are expressed by 

mesenchymal cells (158). With respect to the cellular source of the Fgfr2b ligands, 

the EpCamnegCD31negCD45negSca-1high popluation was found to primarily express 

Fgf7/10. Further characterization of the EpCamnegCD31negCD45negSca-1high 
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popluation revealed a mixture of α-SMA+ cells, a marker for myofibroblasts/smooth 

muscle cells, resident mesenchymal cells which may have stem cell potential 

characterized by CD90, and LipidTox+ PDGFRα+ indicating lipofibroblasts (102, 

129, 152, 153). Of note, Fgfr2b ligand expression did not remarkably change in 

non-treated and influenza virus infected mice suggesting that previously described 

Fgf10 upregulation in bleomycin and naphthalene treated mice (134) is an injury-

specific observation. Moreover, it indicates that the Fgf10/Fgfr2b axis is mainly 

regulated by receptor, and not by ligand expression, during influenza infection.  

 

Given that Fgf10 plays a role in stem cell maintenance by preventing 

differentiation during development (130), and that Fgfr2b ligands are expressed by 

the mesenchymal lineage, co-culture of lung resident mesenchymal cells (rMC) 

and EpiSPC was sufficient to support organoid outgrowth and formation of lung-

like structures without growth factor supplementation. Of note, CD45+ leukocytes 

or CD31+ endothelial cells did not have any supportive effect on EpiSPC 

outgrowth. In accordance to the in vivo data, blockade of the Fgf10 signaling by a 

neutralizing antibody ex vivo resulted in reduced proliferative responses of EpiSPC 

at an early stage of cystic outgrowth. At later stages, EpiSPC formed organoid, 

lung-like stuctures and increased the expression of terminal differentiation 

markers. These data confirm that EpiSPC are able to contribute to the restoration 

of lung organoids by proliferation in vivo and differentiation ex vivo. Whether 

EpiSPC expansion and differentiation requires additional factors induced by Fgf10 

itself or other microenvironmental factors which are released during injury has to 

be elucidated.  

 

4.5 Influenza virus targets EpiSPC thereby limiting EpiSPC mediated regeneration 

by restriction of Fgfr2b upregulation 

To evaluate the impact of influenza virus infection on the proliferative capacity, 

EpiSPC were FACS sorted and ex vivo infected. EpiSPC showed high infection 

rates after 8h post infection. Increasing virus dose of A/PR8 (MOI 0-5) resulted in 

reduced organoid outgrowth and size after ex vivo infection demonstrating a 

reduced proliferative response. Of note, EpiSPC showed reduced apoptosis 

indicating resistance to injury and resulting in survival of previously infected 
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EpiSPC. Whether surviving EpiSPC reveal disturbed regeneration programs in 

forms of induction of aberrant repair responses later on, such as promotion of 

tissue fibrosis, needs to be addressed. 

Importantly, infection of EpiSPC prevented EpiSPC-mediated repair processes by 

impaired Fgfr2b upregulation, resulting in limited proliferative capacity of infected 

EpiSPC compared to the non-infected EpiSPC subset of the same lung. In 

addition to that, the pathogenicity of different virus strains correlated to the 

infection rates of EpiSPC, indicating a previously undefined factor for the 

pathogenicity of influenza virus strains. Whether a specific tropism to EpiSPC 

determines pathogenicity of different influenza virus stains is currently 

investigated.  

Recent data, obtained in this research group showed that influenza virus interferes 

with the β-catenin-dependent gene transcription by inhibition of Fgfr2b expression 

in the infected EpiSPC fraction and thereby limits the proliferative response. 

Additionally, culture of distal lung epithelial cells with a β-catenin activator resulted 

in reduced viral replication, whereas an inhibitor showed increased viral load. The 

activation of Wnt signaling pathways can result in activation of various cell 

signaling cascades which may be cross-connected and regulate differentiation, 

proliferation, polarity and migration (159). During lung development it has been 

demonstrated that Wnt/β-catenin signaling is upstream of the Fgf signaling 

cascade (160). Additionally, it has been demonstrated that β-catenin expression is 

inhibited during influenza virus infection, and active β-catenin is an important 

regulator of the antiviral immune response (161). In accordance to that, recent 

unpublished data support the observation that canonical Wnt/β-catenin has an 

anti-viral effect and inhibition of the Wnt/β-catenin represents an immune evasion 

strategy of the virus, which additionally impairs the EpiSPC regeneration program. 

 

4.6 Targeting the Fgf10/Fgfr2b axis during influenza virus infection  

To elucidate the role of the Fgf10/Fgfr2b axis during influenza virus infection in 

vivo, induced and non-induced Rosa26rtTA/+; tet(o)sFgfr2b/+ were infected and 

analyzed for weight loss, survival and alveolar permeability. The data demonstrate 

that inhibition of the Fgf10/Fgfr2b axis resulted in increased alveolar leakage, 

higher mortality rates and increased weight loss after influenza virus infection. 
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Additionally, the induced mice showed incomplete recovery, indicated by reduced 

weight gain. Due to the fact that the Fgf10/Fgfr2b signaling pathway was mainly 

regulated by receptor expression and not by altered ligand secretion, the effects 

observed in the Rosa26rtTA/+; tet(o)sFgfr2b/+ mice seemed to be moderate in 

comparison with recombinant Fgf10 (rFgf10) treatment after influenza virus 

infection, demonstrating a strong benefit in outcome. WT mice which were treated 

with either rFgf10 or sterile PBS-/- after influenza virus infection showed enhanced 

proliferative response, likely by targeting the Fgfr2bhigh, non-infected EpiSPC 

subset. Additionally, the alveolar permeability was reduced, and the survival rate 

increased. H&E stained lung sections confirmed re-epithelialization and restoration 

of distal lung tissue in rFgf10 treated mice. The establishment of cell to cell 

contacts was demonstrated by E-cadherin stained lung sections. These findings 

indicate that, even after severe influenza virus-induced injury, excess Fgf10 can 

promote alveolar and airway repair processes by enganging the non-infected 

EpiSPC pool. Moreover, the prolonged proliferative effect of rFgf10 treatment is 

shown by Ki67 stained lung sections, which may be due to Fgfr2b recycling and 

prolonged singnaling (128). Furthermore, rFgf10 treated mice showed increased 

Krt5 expression in the distal lung tissue, indicating that the p63/Krt5 expressing 

EpiSPC subset contribute to the expansion of Krt5+ cells during repair processes 

which are fostered by rFgf10 application.  

Altogether, these data demonstrate that influenza virus infection of epithelial 

stem/progenitor cells severely impairs their Fgfr2b-mediated regenerative 

response, and that therapeutic treatment of influenza virus pneumonia with rFgf10 

promotes epithelial renewal capacity. Fgf10 therefore represents a putative 

treatment to drive epithelial repair to re-establish lung structure and improve gas 

exchange after a severe influenza virus pneumonia (Figure 26). 
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Figure 26: Proposed model of the EpiSPC repair program after influenza virus infection. 

Highly pathogenic influenza virus infect a substantial fraction of EpiSPC, which results in reduced Fgfr2b 
upregulation and impaired epithelial repair, partially mediated by Fgf10-expressing resident mesenchymal 
cells. Therapeutic application of recombinant Fgf10 overcomes influenza virus-induced regeneration failure by 
engagement of Fgfr2b-expressing EpiSPC which increases proliferation and leads to barrier repair and 
improved survival with the involvement of the Krt5 repair program. 
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5. Summary 

Influenza virus pneumonia causes apoptosis of alveolar epithelial cells, disruption 

of the epithelial barrier and edema formation that affects gas exchange 

dramatically, resulting in the acute respiratory distress syndrome with poor 

outcome. The pathology of influenza virus-induced injury is well studied, but repair 

mechanisms of the distal lung epithelium, which may influence the outcome are 

not well understood. It has been demonstrated that epithelial progenitor cells in the 

adult murine lung can repopulate injured tracheobronchial or alveolar regions. 

Therefore, this project investigated repair mechanisms of distal epithelial 

stem/progenitor cell (EpiSPC) after severe influenza virus pneumonia. The 

EpiSPC express the surface markers EpCamhighα6highCD24lowβ4+Sca-1+. They 

highly proliferate after influenza virus injury, but show low apoptosis rates after 

infection as compared to other epithelial subsets. Characterization of their 

phenotype in ex vivo 3D cultures revealed that flow sorted EpiSPC clonally expand 

in presence of growth factors, including Fgf10, and upregulate markers associated 

with terminally differentiated bronchiolar and alveolar cells. Lung resident 

mesenchymal cells defined as CD45negCD31negEpCamnegSca-1high revealed to be 

the primary source of Fgf10, and supported lung-like outgrowth in the absence of 

further growth factors. During influenza virus infection, the Fgf10 receptor Fgfr2b 

was highly upregulated on non-infected EpiSPC, whereas the infected population 

poorly upregulated the Fgfr2b, resulting in severe limitation of their proliferative 

response. Interestingly, the pathogenicity of different influenza virus strains 

correlated with infection rates of EpiSPC in vivo, suggesting a causal relation 

between the extent of EpiSPC infection and their capacity to restore lung function. 

Targeting the Fgf10/Fgfr2b axis by induction of dominant negative soluble Fgfr2b 

in transgenic mice resulted in increased alveolar permeability, weight loss, and 

decreased proliferative capacity of EpiSPC. Application of recombinant Fgf10 

(rFgf10) as a therapeutic approach in the acute phase of influenza virus infection 

enhanced the proliferative response of EpiSPC, decreased alveolar leakage and 

improved survival rates. Additionally, lung sections revealed better resolution of 

inflammation and restoration of lung structure after rFgf10 application. In 

accordance with decreased alveolar leakage, staining of lung sections revealed 

improved cell to cell connections in the alveolar compartment. With respect to the 
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human lung, a population similar to EpiSPC, expressing EpCamhighα6highCD24low-

neglgr6+ was identified, which similarly depended on growth factors, including Fgf10 

and formed cystic spheres in 3D culture. As demonstrated in murine organoid 

cultures, co-cultures of human EpiSPC with primary human lung fibroblasts 

promoted outgrowth without addition of growth factors, whereas infection with 

pandemic influenza virus resulted in a reduced proliferative response.  

In conclusion, this work identifies Fgf10/Fgfr2b-dependent EpiSPC as primary 

drivers of lung regeneration after influenza virus-induced lung injury. Influenza 

virus-induced inhibition of Fgf10-mediated repair caused by influenza virus 

infection could be overcome by therapeutic application of Fgf10, highlighting this 

approach as putative therapy for patients with influenza virus-induced ARDS. 
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6. Zusammenfassung 

Influenzaviren infizieren vorwiegend die Epithelzellen der oberen Atemwege. 

Dennoch kann das Virus in den distalen Bereich der Lunge vordringen und 

Pneumonien verursachen, die schließlich zum akuten Lungenversagen führen. Die 

Reparatur und Wiederherstellung eines funktionstüchtigen Epithels ist deshalb für 

die Genesung des Patienten von besonderer Bedeutung. Dabei spielen epitheliale 

Progenitorzellen eine zentrale Rolle. Diese können nach einer Schädigung des 

Epithels proliferieren und zu alveolärem und/oder bronchialem Epithel 

differenzieren und somit die alveoläre Schrankenfunktion wieder herstellen und die 

Sauerstoffversorgung gewährleisten.  

In dieser Arbeit  wurde eine Progenitorzellpopulation mit der Oberflächensignatur 

EpCamhighα6highCD24lowβ4+Sca-1+ untersucht, die maßgeblich an der 

Regeneration des Lungenepithels nach einer Influenzavirus-induzierten 

Pneumonie beteiligt ist. Diese epithelialen Stamm/Progenitorzellen (EpiSPC) sind 

im Gegensatz zu terminal ausdifferenzierten Epithelzellen Apoptose-resistent. 

Durchflusszytometrisch separierte und in Matrix kultivierte EpiSPC bilden 

organoide Strukturen in Abhängigkeit von der Verfügbarkeit des 

Wachstumsfaktors Fgf10. Die Fgf10-abhängige Proliferation der EpiSPC konnte 

auch in vivo in verschiedenen transgenen murinen Infektionsmodellen gezeigt 

werden. Eine gezielte Inhibierung des Fgf10/Fgfr2b Signalweges führte in diesen 

Tieren zu verringerten EpiSPC-Proliferationsraten, wohingegen eine Aktivierung 

des Signalweges die Proliferationsraten erhöhte. Dabei stellte sich heraus, dass 

der Ligand Fgf7, der wie Fgf10 den Rezeptor Fgfr2b aktivieren kann, keinen 

Einfluss auf die Proliferationsraten der EpiSPC ausübt. Desweiteren wurde der 

Rezeptor Fgfr2b durch eine Influenzavirusinfektion verstärkt auf den EpiSPC 

exprimiert, wohingegen die Expression seines Liganden Fgf10 nicht massgeblich 

beeinflusst wurde. Die erhöhte Expression des Rezeptors wurde insbesondere auf 

nicht infizierten EpiSPC nachgewiesen, deren Proliferationsrate, im Gegensatz zu 

infizierten EpiSPC, erheblich verstärkt ist. Desweiteren weisen die EpiSPC in vivo 

eine hohe Infektionsrate auf, wobei diese mit der Pathogenität verschiedener 

Influenzavirus Stämme korreliert. In in vitro Ko-Kulturen mit primären, Fgf10-

exprimierenden mesenchymalen Zellen der Lunge konnte ein verstärktes 

Wachstum der EpiSPC beobachtet werden, das in Abhängigkeit von Fgf10 zur 
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Ausbildung von Lungenorganoiden führte. Eine gezielte Inhibierung des 

Fgf10/Fgfr2b Signalweges in vivo führte zu einer höheren alveolären Permeabilität 

sowie Mortalität. Behandlung mit intratracheal appliziertem rekombinantem Fgf10 

resultierte in erhöhten EpiSPC Proliferationsraten, sowie geringerer Mortalität. 

Desweiteren konnte die alveoläre Schrankenstörung verringert, und die 

Regeneration des distalen Lungengewebes verbessert werden. Im distalen 

humanen Lungengewebe konnte eine, den murinen EpiSPC entsprechende 

Progenitorzellpopulation mit der Oberflächensignatur EpCamhighα6highCD24low-neg 

nachgewiesen werden, deren Wachstum ebenfalls Fgf10-abhängig war.  

Zusammenfassend wurde gezeigt, dass der Fgf10/Fgfr2b Signalweg nach einer 

Influenzavirusinfektion eine wesentliche Rolle in der EpiSPC abhängigen 

Regeneration des distalen Lungengewebes spielt. Eine durch Influenzaviren 

hervorgerufene Inhibierung der Regeneration konnte durch eine gezielte 

Behandlung mit rekombinantem Fgf10 kompensiert werden. Diese Ergebnisse  

weisen darauf hin, dass eine Behandlung mit rekombinantem Fgf10 zu einem 

Therapieerfolg bei Influenzavirus-induziertem ARDS-Patienten führen könnte. 
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