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1. INTRODUCTION 

1.1 Background 

For more than five decades nicotinic acid (NA) has been used as a lipid-lowering drug (Karpe 

and Frayn, 2004; Bodor and Offermanns, 2008). At pharmacological doses, NA shows 

remarkable lipid-lowering activities, particularly on triacylglycerols (TAG), but also on total 

cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) 

cholesterol and, interestingly, NA increases high-density lipoprotein (HDL) cholesterol 

(Carlson, 2005; Gille et al., 2008; Kamanna and Kashyap, 2008) but to date, the underlying 

lipid-lowering mechanism of NA is only partially understood. However, the inhibition of 

lipolysis by NA in adipocytes through binding with the NA receptor G protein-coupled 

receptor 109A (GPR109A) causes reduction of plasma free fatty acids (FFA, also called non-

esterified fatty acids, NEFA), which are substrates for hepatic TAG synthesis and VLDL 

formation and synthesis, is endorsed as the basic mechanism for the lipid-lowering effects of 

NA (Gille et al., 2008; Kamanna and Kashyap, 2008). But this classic view of lipid-lowering 

mechanism of NA has been put into question because the circulating FFA level even become 

increased during long-term (at least 2 weeks) NA treatment due to a profound rebound on 

lipolysis even though its lipid-lowering effect keeps on (Choi et al., 2011). Moreover, very 

recently Lauring et al. (2012) throw a challenge to this classic view by revealing that 

GPR109A is not the major molecular target responsible for NA lipid efficacy. In this 

circumstance, the explanation of the lipid-lowering effect of NA by the reduced FFAs 

delivery to the liver is obscure. 

Skeletal muscle is the major tissue for whole body glucose and fatty acid metabolism (Wang 

et al., 2004) and recently it has been found that NA has widespread effects on gene expression 

in major other tissues of lipid metabolism than adipose tissue, such as skeletal muscle (Choi et 

al., 2011), raising the possibility of another underlying explanation of lipid-lowering effect of 

NA. Skeletal muscle fibers are generally classified as type I (oxidative/slow) and type II 

(glycolytic/fast) fibers. They display marked differences in respect to contraction, metabolism, 

and susceptibility to fatigue. Type I fibers are mitochondria rich and mainly use oxidative 

metabolism for energy production, on the other hand fast-twitch glycolytic type II fibers 

utilize glucose for energy production (Pette and Staron, 1990; Olson and Williams, 2000). 

Adult skeletal muscle shows marked plasticity and can undergo transformation between 

different fiber types in response to physical activity, such as exercise or modulation of 

motoneuron activity, mechanical loading/unloading or obesity (Pette, 1998; Olson and 
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Williams, 2000; Hood, 2001; Cassano et al., 2006; Fujita et al., 2012). Notably, it has been 

shown in humans (Watt et al., 2004) and recently in rats (Ringseis et al., 2013) that high dose 

of NA induces the expression of two transcription factors, peroxisome proliferator-activated 

receptor (PPAR) δ and PPARγ coactivator-1α (PGC-1α) in skeletal muscle. Both of these 

transcription factors are key regulators of muscle fiber composition and the muscle’s 

metabolic phenotype because they control genes involved in muscle fiber switching, fatty acid 

utilization, oxidative phosphorylation, mitochondrial biogenesis and function (Wang et al., 

2004; Schuler et al., 2006) and angiogenesis (Chinsomboon et al., 2009). Based on the 

observation that NA up-regulates key regulators (PPARδ and PGC-1α) of fiber switching in 

skeletal muscle, it has been already investigated whether NA supplementation can inhibit the 

obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and 

increases the number of type I fibers in skeletal muscle of obese Zucker rats (Ringseis et al., 

2013). Indeed, in this study, it was found that NA favored muscle fiber transition from type II 

to type I in obese Zucker rats (Ringseis et al., 2013). Moreover, it was also found that the 

expression of genes involved in fatty acid transport, mitochondrial fatty acid import and 

oxidation, oxidative phosphorylation and angiogenesis and key regulators of muscle fiber 

switching PPARδ, PGC-1α and PGC-1β in skeletal muscle were elevated by NA treatment 

(Ringseis et al., 2013). PGC-1β (another member of PGC-1 family) has been less extensively 

studied than PGC-1α, but recently it has been found that PGC-1β is a potential mediator of the 

development of oxidative sub-type IIX fibers in skeletal muscle of mice (Arany et al., 2007). 

PGC-1β also contributes to the regulation of contractile and metabolic phenotype of the 

skeletal muscle (Mortensen et al., 2006). It was also revealed that PGC-1β in skeletal muscle 

increases mitochondrial biogenesis, expression of genes encoding mitochondrial proteins and 

mitochondrial activity (Arany, 2008). 

However, there is no investigation, to our knowledge, whether NA treatment also causes type 

II to type I muscle fiber switching and increases the type I fiber content of skeletal muscles in 

healthy non-ruminant and ruminant farm animals. Thus, on the base of these literature 

findings it has been hypothesized in the present thesis that NA treatment causes similar 

effects, namely transition of type II fiber to type I fiber in pig as a model of non-ruminant 

(study 1) and in sheep as a model of ruminant (study 2). 

Contextual talk of study 1: According to Liaubet et al. (2011), muscle fiber characteristics 

play a key role in meat quality of farm animals. Fiber type, fiber area, oxidative and glycolytic 

capacity, glycogen and lipid contents of muscle may strongly affect the energy metabolism of 
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live animals as well as the postmortem conversion of muscle to meat, thus affecting ultimate 

quality of meat (Karlsson et al., 1999; Ryu and Kim, 2005; Choe et al., 2008; Choi and Kim, 

2009). Muscles with a higher percentage of type I fibers and lower percentage of type IIb 

fibers showing lower lightness and drip loss of meat (Ryu and Kim, 2005; Choe et al., 2008; 

Ryu et al., 2008). Pre-slaughter metabolic response that takes place in different fiber types is 

an important factor for post-mortem changes and meat quality of meat producing animals 

(Karlsson et al., 1999), since oxidative muscles with a high percentage of type I fibers have a 

lower glycolytic potential (Monin et al., 1987; Fernandez et al., 1994) a darker color (Warner 

et al., 1993; Brewer et al., 2001) and a higher ultimate pH (Monin et al., 1987; Warner et al., 

1993). Additionally, muscles with higher amount of oxidative fibers have a tendency to 

develop dark, firm and dry pork in response to intense physical activity and/or high 

psychological stress levels associated to preslaughter handling. Conversely, muscles with 

higher amount of glycolytic fibers may develop pale, soft, and exudative pork (Hambrecht et 

al., 2005). Therefore, a NA-induced change in the muscle’s fiber type distribution (type II to 

type I muscle fiber switching) may influence meat quality of pigs.  

Contextual talk of study 2: Ketosis (Hyperketonemia) and fatty liver (Hepatic lipidosis) are 

two common diseases, which are characterized by altered energy metabolism of high-yielding 

dairy cows (Block et al., 2001; Xu and Wang, 2008). During transition period (defined as 3 

weeks prepartum until 3 weeks postpartum) of high-yielding dairy cows, a negative energy 

balance (NEB) is observed because of the increased requirement of energy for high milk 

production on the one side and a depression in the energy intake on the other side (Brockman, 

1979; Xu et al., 2008; Pescara et al., 2010). In severe NEB animals start to mobilize body fat 

(adipose tissue) and release excessive amounts of FFAs which are quickly circulated to the 

liver, converted to acetyl-CoA by β-oxidation, overwhelming liver’s ability to handle these 

excessive amount of acetyl-CoA either through tricarboxylic acid (TCA) cycle or through 

conversion to TAG and release in the form of lipoproteins. Then these huge volumes of 

acetyl-CoA are converted to ketone bodies, resulting in ketosis, or FFAs are deposited as 

TAG in hepatocytes resulting in fatty liver (Grummer, 1993; Vazquez-Añon et al., 1994). 

Since skeletal muscle, particularly type I fibers significantly contributes to whole body fatty 

acid utilization, an increased capacity of oxidative type I fiber for fatty acid utilization is 

expected to be useful during conditions where fatty acids are available at increased levels, 

such as in ketosis or fatty liver of high-yielding cows.  
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1.2 Niacin 

Niacin or vitamin B3 is a water soluble vitamin of the vitamin B complex, which is a vital 

element of human and animal nutrition. It has two vitamers called NA (pyridine 3-carboxylic 

acid) and nicotinamide (NAM, pyridine 3-carboxylic acid amide), both are biologically active 

forms of niacin, which are very stable in light, heat and alkali, and therefore also stable in 

feed (Pond et al., 2005). In addition to feed as a source of niacin, almost all species are 

capable to synthesise niacin from tryptophan (Pond et al., 2005; McDowell, 2005) and 

quinolinate (Henderson, 1983). In many countries, especially in North America, the term 

‘niacin’ means exclusively for NA (Harmeyer and Kollenkirchen, 1989; Bender, 2003). Thus 

causes some confusion between the generic and specific terms. NA acts in two aspects, one is 

as ‘vitamin’, effective in milligram doses and the other is as ‘lipid drug’, effective in gram 

doses; but interestingly although NA and NAM, chemically quite alike, and nutritionally 

equivalent, NAM has no plasma lipid-lowering property (Parsons and Flinn, 1959; DiPalma 

and Thayer, 1991; Carlson, 2005; Lukasova, et al., 2011). The chemical name and structure of 

both forms of niacin are presented in Table 1.  

 

Table 1: Chemical name and structure of vitamers of niacin 

 Nicotinic acid Nicotinamide 

Chemical name Pyridine 3-carboxylic acid 

 

Pyridine 3-carboxylic acid amide 

Chemical formula C6H5NO2 

 

C6H6N2O 

 

Structure 

 

 

 

(Adapted from Bender, 2003) 

1.2.1 Nutritional function of niacin  

Both vitamers of niacin (NA and NAM) are the direct precursors of two important coenzymes 

nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate 

(NADP), which have great importance in lipid, carbohydrate and protein metabolism (Bender, 

2003; Pond et al., 2005). NAD and NADP, synthesized from niacin are involved as proton 



Introduction 

 

5 
 
 

and electron carriers in a wide variety of energy-yielding oxidation and reduction reactions, 

which occur in animal and human tissues (Bender, 2003). Almost all cellular metabolisms are 

involved NAD/NADH or NADP/NADPH linked schemes, therefore, cellular functions as 

well as life itself would be impaired for the deficiency of niacin, and for that niacin is a 

critical nutrient for human and animal body (Henderson, 1983).  

 

1.2.2 Pharmacological use of nicotinic acid 

 NA, but not NAM, has been used for decades as a lipid-lowering drug (Hotz, 1983; Knopp, 

1999; Karpe and Frayn, 2004; Bodor and Offermanns, 2008). It is the earliest lipid-regulating 

drug used in the treatment of lipid disorders and atherosclerotic coronary heart disease 

(Kamanna et al., 2009). In the landmark study, Altschul et al. (1955) reported, that NA in 

gram doses lowered plasma cholesterol in normal as well as hypercholesterolemic subjects. 

This milestone finding was consequently confirmed in numerous studies and NA has been 

gained the name ‘the broad-spectrum lipid drug’ (Carlson, 1990). At pharmacological 

doses, NA decreases TAG, total cholesterol, VLDL, LDL, and lipoprotein(a) [Lp(a)] as well 

as increases HDL levels in blood plasma (Meyers et al., 2004; Carlson, 2005; Gille et al., 

2008) (Table 2). The anti-lipolytic effect of NA was first found in rabbits (Altschul and 

Herman, 1954), later in mice (Carlson and Hanngren, 1964), goats (Schultz et al., 1968), 

sheep (Nye and Buchanan, 1969) and cows (Schultz, 1971). NA is also known as an 

antiketogenic substance (Flachowsky, 1993), because the direct effect of NA on ketone bodies 

(β-hydoxybutyrate, BHBA) in dairy cows has been broadly observed (Waterman et al., 1972; 

Fronk and Schultz, 1979; Dufva et al., 1983; Jaster et al., 1983; Erickson et al., 1992; Al-

Abbasy, 2013). The antiketogenic effect of NA is based on the antilipolytic action of the 

substrates (Waterman and Schultz, 1973; Pires and Grummer, 2007; Al-Abbasy, 2013). In 

dairy cows, NA can decrease the plasma level of FFA and BHBA, resulting in reduced 

prevalence of metabolic disorders, such as ketosis and fatty liver by inhibiting TAG lipolysis 

(Schwab et al., 2005; Pires and Grummer, 2007). In humans, high doses of NA (3 g/day) 

decrease total plasma levels of cholesterol by almost 10% in healthy volunteers and by more 

than 20% in hypercholesterolemic patients (Altschul et al., 1955; Parsons and Flinn, 1959). 

NAM has no effect on the plasma lipid or lipoprotein concentration, undoubtedly indicating 

that the antilipolytic effect of NA is distinct to its role as a vitamin. 
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Table 2: Effects of nicotinic acid (>1.5 g / day) on plasma lipid profile at a glance 

VLDL (25–40%) ↓ 

LDL  (6–22%) ↓ 

HDL  (18–35%) ↑ 

Total cholesterol  (4–16%) ↓ 

TAG  (21–44%) ↓ 

Lp(a)  (16–36%) ↓ 

(Addapted from review Gille et al., 2008) 

1.2.3 Nicotinic acid receptor 

About 50 years ago the rapid uptake, preferential distribution and accumulation of NA in 

adipose tissue was described by Carlson and Hanngren (1964). After that, specific binding 

sites for NA on plasma membranes of adipocytes and spleen cells were demonstrated 

(Lorenzen et al., 2001). In 2003, three independent research groups identified a G protein-

coupled receptor as a specific and high affinity receptor for NA which mediates the 

antilipolytic effects of NA (Soga et al., 2003; Tunaru et al., 2003; Wise et al., 2003). The 

receptor was termed as GPR109A (HM74A in human and PUMA-G in mice, no specific term 

for sheep or pig has been found) and is expressed mainly in adipocytes and immune cells. In 

line with bioinformatics data NA receptor belongs to a subfamily of G protein-coupled 

receptors that includes GPR109A and GPR81, both of which are expressed in humans and in 

rodent species. A third member of this receptor family, GPR109B (HM74), has also been 

found (in humans, but not in rodent species) as a low-affinity receptor for NA (Soga et al., 

2003; Wise et al., 2003). GPR81, GPR109A and GPR109B have recently been renamed 

hydroxy-carboxylic acid receptor 1, 2 and 3 (HCA1, HCA2 and HCA3), respectively 

(Offermanns et al., 2011). The endogenous ligand for GPR109A is BHBA (Gille et al., 2008). 

 

1.2.4 Mechanisms of antidyslipidemic effects of nicotinic acid-prevailing hypothesis 

Although NA has the extraordinary capability to decrease TAG, VLDL cholesterol, LDL 

cholesterol and Lp(a), as well as to increase HDL cholesterol levels and thus improves the 

total plasma lipid profile, the underlying mechanisms by how NA exerts its antidyslipidemic 

effect have remained unclear (Gille et al., 2008; Kamanna et al., 2009; Chapman et al., 2010; 

Lukasova et al., 2011; Lauring et al., 2012; Offermanns, 2012). One of the well-established 

classic views of action of NA is “FFA hypothesis” (Lauring et al., 2012). According to this 

classic view, the antilipolytic effect in adipocytes causing reduction of plasma FFAs 
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concentrations, which modulates hepatic TAG synthesis and VLDL formation and synthesis, 

and subsequently results in decrease plasma levels of LDL cholesterol (Carlson and 

Hanngren, 1964; Wang et al., 2001; Gille et al., 2008; Kamanna and Kashyap, 2008). NA 

binds to the GPR109A receptor in adipose tissue and activation of GPR109A by NA leads to 

inhibition of adenylyl cyclase activity and, consequently decreases cellular cyclic adenosine 

monophosphate (cAMP) levels. Decreased cAMP in adipocytes leads to an inactivation of 

protein kinase A (PKA), and accordingly decreases phosphorylation of hormone-sensitive 

lipase (HSL) and perilipin, which are obligatory for TAG hydrolysis. Reducing these enzyme 

activities leads to decrease TAG lipolysis, consequently reduce FFA production. The 

decreased FFA levels, induced by NA, resulted in a substrate shortage for hepatic TAG 

synthesis. Accordingly, less TAG and VLDL are produced in liver, and thus, plasma levels of 

TAG and VLDL as well as LDL are dropped (Gille et al., 2008; Kamanna and Kashyap, 

2008). The mechanism by which NA increases the plasma HDL cholesterol is less clear, but 

has been shown to require the presence of cholesterol ester transfer protein (CETP) 

(Hernandez et al., 2007; van der Hoorn et al., 2008). However, this long-standing FFA 

hypothesis of NA efficacy has been put into question because the circulating FFA level even 

become increased during long-term NA treatment due to a profound rebound on lipolysis even 

though its lipid-lowering effect keeps on (Choi et al., 2011). Some other previous studies have 

also questioned the FFA hypothesis because of the marked “rebound” or “baseline over-

shoot” of both acute and more chronic dosing of NA (Jin et al., 1997; Wang et al., 2001; de 

Grooth et al., 2004; Ganji et al., 2004; Lamon-Fava et al., 2008; Hernandez et al., 2010), 

suggesting that the fundamental mechanisms other than anti-lipolysis may be responsible for 

lipid efficacy (Wang et al., 2001; Lukasova, et al., 2011).Very recently, Lauring et al. (2012) 

provided additional evidence, that is very much contradictory to the prevailing FFA 

hypothesis. By using a humanized genetic mouse model and dyslipidemic patients, treated 

with NA and GPR109A agonists, Lauring et al. (2012) strongly suggest that GPR109A is not 

the major molecular target responsible for NA lipid efficacy and thus the long-standing FFA 

hypothesis has been challenged, but they did not investigate the mechanism further. The 

underlying mechanism is not discovered, so far.  

 

1.3 Skeletal muscle 

In mammals, skeletal muscle constitutes up to 50% of total body mass and thus making it the 

largest organ of the body (Ehrenborg and Krook, 2009) which is mainly involved in the 
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implementation of voluntary movement. It is also called voluntary muscle because its 

activities are usually under conscious regulation. It is also known as striated muscle because it 

contains fibers in an arrangement of altering dark and light bands, which create a striated 

appearance under the microscope. Skeletal muscles are the major site for carbohydrate and 

fatty acid metabolism, and heat generation (Kiens, 2006; Schuler et al., 2006; Houmard, 

2008). As it constitutes a large part of the total body mass, by considering the whole volume, 

skeletal muscle metabolism affects the metabolic budget of the whole organism (Ehrenborg 

and Krook, 2009). The distinctive characteristics of skeletal muscle is its diversify 

composition with a large number of different types of muscle fibers (muscle cells), which 

differ according to their molecular, contractile and metabolic properties, and thus, can 

contribute to a diversity of functional capabilities (Pette and Staron, 2001) (structure of 

skeletal muscle Figure 1). 

 

Figure 1 Structure of skeletal muscle (Adapted from URL, 2013) 

 

1.3.1 Skeletal muscle fiber types 

The functional unit of skeletal muscle tissue is the muscle fiber (cell), which may extend the 

entire length of the muscle (Karlsson et al., 1999). The muscle fibers are multinucleated, long, 

cylindrical cells, and composed of myofibrils, which constitute the contractile apparatus of the 
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muscle. Skeletal muscle fibers are generally classified into two broad categories: Type I and 

Type II fibers. They exhibit clear differences according to their contraction, metabolism and 

susceptibility to fatigue capabilities. Type I fibers are mitochondria rich, and also called 

oxidative, because these fibers use oxidative metabolism to generate adenosine triphosphate 

(ATP). They are also fatigue-resistant or slow twitch fibers, because they take more time for 

contraction, again also known as red fibers, because they contain oxygen binding protein 

myoglobin. Functionally, type I fibers are used for daily living aerobic activities requiring low 

level force production, such as walking, maintaining posture or holding head by neck muscle. 

Type II fibers have low level of mitochondria, and are also known as glycolytic, because these 

fibers use glycolytic metabolism to generate ATP and are susceptible to fatigue. They are also 

known as fast twitch fibers, because the contraction time is fast, again also called white fibers, 

because of absence or very low myoglobin content. Functionally, type II fibers are used for 

anaerobic activities such as locomotion, racing 400 meters or for short anaerobic high force 

producing activities such as sprinting, hurdling, weight lifting, jumping, kicking or biting. 

Type II fibers comprise two subtypes, IIa/IIx and IIb depending upon species. The oxidation 

and contraction ability of type IIa/IIx place between type I and IIb (Booth and Thomason, 

1991; Berchtold et al., 2000; Olson and Williams, 2000; Wang et al., 2004; Schiaffino and 

Reggiani 2011). The major characteristics of different types of muscle fibers are summarized 

in Table 3. 

 

Table 3: Properties of different types of skeletal muscle fibers 

 Type I Type IIa/IIx Type IIb 

Speed of contraction Slow Fast Very fast 

Resistance to fatigue  High Intermediate Low 

Activity used for  Aerobic Long term anaerobic Short term anaerobic 

Force production Low High Very high 

Metabolic type Oxidative Oxido-glycolytic Glycolytic 

Oxidative (aerobic) capacity High Intermediate Low 

Glycolytic (anaerobic) capacity  Low High High 

Mitochondrial density High High/medium Low 

Capillary density High Medium/low Low 

Myoglobin content High  High Low 

                                                                     (Adapted from Lefaucheur and Gerrard, 2000) 
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1.3.2 Skeletal muscle plasticity and molecular mechanism of fiber type switching 

Skeletal muscle tissue exhibits a unique capacity to undergo adaptive changes in response to 

functional demands by changing their phenotypic profiles, leading to a gradual switch from 

one fiber type to another, and this process is known as muscle plasticity (Jorquera, et al., 

2013). It shows remarkable plasticity and has the ability to convert between different fibers 

types in response to exercise training or modulation of motoneuron activity (Pette and Staron, 

1997; Booth and Thomason, 1991; Jarvis et al., 1996; Pette, 1998; Olson and Williams, 2000; 

Hood, 2001). Numerous factors, in particular altered neuromuscular activity, mechanical 

loading/unloading, circulating factors including different hormones (especially thyroid 

hormones) and aging are recognized to affect muscle fiber type composition (Schiaffino and 

Reggiani, 2011). The transformation of muscle fiber from fast-to-slow type is likely to be 

mediated by a calcium signalling pathway that involves calcineurin, calmodulin-dependent 

kinase, and the transcriptional cofactor PGC-1α (Naya et al., 2000; Olson and Williams, 

2000; Lin et al., 2002a; Wu et al., 2001; Pette and Staron, 2001). 

 

1.4 Genes involved in fatty acid catabolism pathways, thermogenesis and angiogenesis 

The first step of the oxidative pathway is the transport of fatty acids from the cytoplasm into 

the mitochondrial matrix. This step is controlled by the carnitine palmitoyltransferase (CPT) 

system (McGarry and Brown, 1997). The protein encoded by CPT1B gene is carnitine 

palmitoyl- transferase 1B [also known as muscle-type CPT1 (M)] (Price et al., 2003), a 

member of the carnitine/choline acetyltransferase family, is the integral rate-controlling 

enzyme of the long-chain fatty acid β-oxidation pathway in the mitochondria of muscle fiber. 

This enzyme is located on the outer mitochondrial membrane and required for the net 

transport of long-chain fatty acetyl-CoAs from the cytoplasm into the mitochondria (McGarry 

et al., 1978; Ramsay et al., 2001). Fatty acid transport protein 1 (FATP1), also named solute 

carrier family 27 member 1 (SLC27A1), gene encodes a member of a family of fatty acid 

transport proteins, which are involved in transport of long-chain fatty acids across the cell 

membrane (Martin et al., 2000). Moreover, FATP1 also has a role in mitochondrial fatty acid 

oxidation in collaboration with CPT1 (Sebastián et al., 2009). Carnitine-acylcarnitine 

translocase (CACT), also known as SLC25A20, embedded in the inner mitochondrial 

membrane, is essential for mitochondrial oxidation of long-chain fatty acids (Indiveri et al., 

1997), because this protein catalyzes a mole-to-mole exchange of carnitines and 

acylcarnitines, so that the fatty acid moieties can be translocated into the mitochondrial matrix 
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(Peluso et al., 2005). Novel organic cation transporter 2 (OCTN2), also named SLC22A5, is 

the second member of the OCTN family, positioned within the cell membrane (Wu et al., 

1998; Ohashi et al., 2001). It is a physiologically important Na
+
 dependent transporter for 

carnitine, which is a hydrophilic nutrient essential to carry long-chain fatty acids into 

mitochondria for β-oxidation (Tamai et al., 1998; Ohashi et al., 2001). Cytochrome c oxidase 

(COX), a terminal enzyme of the respiratory chain of mitochondria, is a key enzyme of 

aerobic respiration, meaning a decrease of COX activity decreases ATP production (Villani 

and Attardi, 1997; Hosler et al., 2006; Pacelli et al., 2011; Yoshikawa et al., 2011; Hüttemann 

et al., 2012). COX4/1, COX5A and COX6A1 are subunits of COX, which are embedded in 

the inner mitochondrial membrane and catalyze the transfer of electrons from cytochrome c to 

molecular oxygen and contribute to a proton electrochemical gradient across the inner 

mitochondrial membrane (Villani et al., 1998; Shoubridge, 2001; Cui et al., 2006). Succinate 

dehydrogenase (SDH) is a multimeric enzyme that is bound to the inner membrane of 

mitochondria (Oyedotun and Lemire 2004). The SDHA protein is the active subunit of SDH 

that performs the conversion of succinate, and it also helps to transfer electrons to the 

oxidative phosphorylation pathway. In oxidative phosphorylation, the electrons help to create 

an electrical charge that provides energy for the production of the cell's main energy source 

ATP (Kantorovich et al., 2010). The uncoupling protein (UCP) is a subfamily of the larger 

family of mitochondrial anion carrier proteins (MACP), located in the inner mitochondrial 

membrane (Krauss et al., 2005). These anion-carrier proteins transport protons (H
+
) to the 

mitochondrial matrix and in turn dissipate the proton motive force as heat and uncouple the 

substrate oxidation from the production of ATP, also referred to as the mitochondrial proton 

leak. UCP2 and UCP3 are the member of UCP expressed in several tissues and thought to 

participates in thermogenesis (Dulloo and Samec, 2001; Henry et al., 2011). They play a role 

in uncoupling oxidative phosphorylation, as a result energy is dissipated in the form of heat, 

and maintains energy homeostasis (Krauss et al., 2005; Liu et al., 2013). Type I fibers exhibit 

a higher expression of angiogenic factors, such as vascular endothelial growth factor (VEGF). 

VEGF subunit A (VEGFA) is one of the most potent inducers of angiogenesis and 

vasculogenesis, and is a key regulator of both physiological and pathological angiogenesis. It 

causes proliferation, sprouting, migration and tube formation of endothelial cells (Ferrara et 

al., 2003). This also contributes to the preferential use of fatty acids by type I fibers, because 

angiogenic factors increase capillary density and thereby blood perfusion (Hagberg et al., 

2010). 
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2. AIMS AND HYPOTHESES  

The overall aim for the present PhD studies was, to investigate the effect of NA 

administration at a pharmacological dose on fiber type distribution and metabolic phenotype 

of different skeletal muscles of pig as a model for non-ruminants and sheep as a model for 

ruminants. 

 

Study 1: Khan M, Ringseis R, Mooren FC, Krüger K, Most E, Eder K (2013) Niacin 

supplementation increases the number of oxidative type I fibers in skeletal muscle of growing 

pigs. BMC Veterinary Research 9:177.  

 

General aim of study 1: In obese Zucker rats, it was observed that NA supplementation 

switches muscle fiber from glycolytic type II to oxidative type I in skeletal muscle and these 

effects were likely mediated by the induction of key regulators of fiber transition, PGC-1α 

and PGC-1β, leading to muscle fiber switching and up-regulation of genes involved in 

mitochondrial fatty acid import and oxidation, citrate cycle, oxidative phosphorylation, 

mitochondrial biogenesis (Ringseis et al., 2013). In contrast, it has not been known whether 

high levels of NA also causes type II to type I muscle fiber switching in metabolically healthy 

animals. This question may be of particular interest in farm animals used for meat production, 

such as growing pigs because a change in the muscle’s fiber type distribution is expected to 

influence meat quality. To address this issue, the aim of the present study was to investigate 

whether NA administration also influences fiber distribution and the metabolic phenotype of 

different skeletal muscles in pig as a model for non-ruminant farm animals.  

 

Specific hypotheses of study 1: The following three hypotheses were tested in the present 

study- 

(i) NA supplementation switches muscle fiber from type II (fast-glycolytic) to type I 

(slow- oxidative), and thereby induces an oxidative metabolic phenotype of skeletal 

muscle in pigs. 

(ii) The relative mRNA levels of key regulators of fiber transition, PGC-1α and PGC-1β 

are upregulated in NA treated pigs compared to control pigs. 

(iii) The relative mRNA levels of genes involved in mitochondrial fatty acid catabolism 

(CACT, FATP1, OCTN2), citrate cycle (SDHA), oxidative phosphorylation (COX4/1, 
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COX6A1), and thermogenesis (UCP2, UCP3) in skeletal muscle are higher in the NA 

group compared to control group pigs.  

 

Study 2: Khan M, Couturier A, Kubens JF, Most E, Mooren FC, Krüger K, Ringseis R, Eder 

K (2013) Niacin supplementation induces type II to type I muscle fiber transition in skeletal 

muscle of sheep. Acta Veterinaria Scandinavica, 55:85. 

 

General aim of study 2: It has been observed that NA supplementation increases the number 

of type I fibers in skeletal muscle of obese Zucker rats (Ringseis et al., 2013) and pigs (Study 

1), and these effects were likely mediated by the induction of key regulators of fiber 

transition, PPARδ, PGC-1α and PGC-1β, leading to type II to type I fiber transition and 

upregulation of genes involved in fatty acid oxidation, mitochondrial oxidative 

phosphorylation, and angiogenesis (Ringseis et al., 2013). The aim of the present study was to 

investigate whether NA administration also influences fiber type distribution and the 

metabolic phenotype of different skeletal muscles in sheep as a model for ruminant farm 

animals. 

 

Specific hypotheses of study 2: The following three hypotheses were tested in the present 

study- 

(i) NA supplementation induces muscle fiber transition from type II (fast-glycolytic) to 

type I (slow-oxidative), and thereby creates an oxidative metabolic phenotype of 

skeletal muscle in sheep.  

(ii) The relative mRNA and protein levels of key regulators of fiber transition (PGC-1α, 

PGC-1β and PPARδ) are upregulated in NA treated sheep than in control sheep. 

(iii) The relative mRNA levels of genes involved in mitochondrial fatty acid uptake 

(CPT1B, SLC25A20), TCA cycle (SDHA), mitochondrial respiratory chain (COX5A, 

COX6A1), and angiogenesis (VEGFA) in skeletal muscle are higher in the NA treated 

sheep compared to control sheep.  
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RESEARCH ARTICLE Open Access
Niacin supplementation increases the number of
oxidative type I fibers in skeletal muscle of
growing pigs
Muckta Khan1, Robert Ringseis1, Frank-Christoph Mooren2, Karsten Krüger2, Erika Most1 and Klaus Eder1*
Abstract

Background: A recent study showed that niacin supplementation counteracts the obesity-induced muscle fiber
switching from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of
obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PGC-1α
and PGC-1β, leading to muscle fiber switching and up-regulation of genes involved in mitochondrial fatty acid
import and oxidation, citrate cycle, oxidative phosphorylation, mitochondrial biogenesis. The aim of the present
study was to investigate whether niacin supplementation causes type II to type I muscle and changes the
metabolic phenotype of skeletal muscles in growing pigs.

Results: 25 male, 11 wk old crossbred pigs (Danzucht x Pietrain) with an average body weight of 32.8 ± 1.3
(mean ± SD) kg were randomly allocated to two groups of 12 (control group) and 13 pigs (niacin group) which
were fed either a control diet or a diet supplemented with 750 mg niacin/kg diet. After 3 wk, the percentage
number of type I fibers in three different muscles (M. longissismus dorsi, M. quadriceps femoris, M. gastrocnemius) was
greater in the niacin group and the percentage number of type II fibers was lower in the niacin group than in the
control group (P < 0.05). The mRNA levels of PGC-1β and genes involved in mitochondrial fatty acid catabolism
(CACT, FATP1, OCTN2), citrate cycle (SDHA), oxidative phosphorylation (COX4/1, COX6A1), and thermogenesis
(UCP3) in M. longissimus dorsi were greater in the niacin group than in the control group (P < 0.05).

Conclusions: The study demonstrates that niacin supplementation induces type II to type I muscle fiber switching,
and thereby an oxidative metabolic phenotype of skeletal muscle in pigs. Given that oxidative muscle types tend to
develop dark, firm and dry pork in response to intense physical activity and/or high psychological stress levels
preslaughter, a niacin-induced change in the muscle´s fiber type distribution may influence meat quality of pigs.

Keywords: Niacin, Pig, Muscle fiber transition, Oxidative type I fiber
Background
Niacin, also called nicotinic acid, is a water-soluble
vitamin which belongs to the vitamin B complex and is
essential for the metabolism of carbohydrates, fats and
many other substances. At pharmacological doses, niacin
exerts pronounced lipid-lowering activities, particularly
on triacylglycerols (TAG), but also on total cholesterol
and LDL cholesterol [1], and, interestingly, niacin increa-
ses HDL cholesterol [2]. Besides these well-documented
* Correspondence: klaus.eder@ernaehrung.uni-giessen.de
1Institute of Animal Nutrition and Nutrition Physiology,
Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35390,
Germany
Full list of author information is available at the end of the article

© 2013 Khan et al.; licensee BioMed Central Lt
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
effects on blood lipid profile, high doses of niacin were
also shown to cause profound, but less recognized changes
in gene expression in several tissues [3]. In this regard it is
worth mentioning, that studies in both, humans [4] and
rats [5] revealed that high levels of niacin cause an up-
regulation of transcription factors in skeletal muscles, like
PPARγ coactivator-1α (PGC-1α) and PGC-1β, which are
key regulators of fiber distribution in skeletal muscle [6,7].
In principle, two major fiber types of skeletal muscle can
be distinguished: type II fibers, also called glycolytic fibers,
which have few mitochondria and largely generate
ATP through glycolytic metabolism, and type I fibers,
also called oxidative fibers, which are mitochondria-
rich and utilize mainly oxidative phosphorylation for
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:klaus.eder@ernaehrung.uni-giessen.de
http://creativecommons.org/licenses/by/2.0


Khan et al. BMC Veterinary Research 2013, 9:177 Page 2 of 8
http://www.biomedcentral.com/1746-6148/9/177
energy production [8,9]. Remarkably, the type II to type I
fiber distribution in a given muscles displays high plasti-
city and can be induced to switch depending on various
factors, like exercise, mechanical unloading or obesity
[10-13]. Since the muscle´s fiber distribution determines
its metabolic phenotype, fiber switching induced by exer-
cise, mechanical unloading or obesity results in a change
of the functional and metabolic phenotype of skeletal
muscle [10-13]. Based on the observation that niacin up-
regulates key regulators of fiber switching in skeletal
muscle, it has been investigated whether niacin supple-
mentation can prevent the obesity-induced muscle fiber
switching from type I to type II and causes an elevation in
the number of type I fibers in skeletal muscle of obese
Zucker rats [5]. This study indeed showed that niacin
prevents the obesity-induced muscle fiber switching from
type I to type II and elevates the number of type I fibers in
skeletal muscle of obese Zucker rats [5]. Corresponding to
this niacin-induced increase in the muscle´s type I fiber
content niacin supplementation to the obese Zucker rats
caused the development of a more oxidative metabolic
phenotype of skeletal muscle as evidenced by an increased
expression of genes involved in mitochondrial fatty acid
import and oxidation, citrate cycle, oxidative phosphory-
lation, mitochondrial biogenesis and angiogenesis [5]. This
obvious improvement in the muscle´s capacity for oxida-
tive utilization of fatty acids has likely contributed, at least
partially, to the strong lowering effect of niacin on blood
levels of TAG and non-esterified fatty acids (NEFA) in the
obese Zucker rats [5], which are characterized by mark-
edly elevated blood levels of TAG and NEFA.
It is currently unknown whether high levels of niacin

also causes type II to type I muscle fiber switching in
metabolically healthy animals. This question may be of
particular interest in farm animals used for meat pro-
duction like growing pigs because a change in the
muscle´s fiber type distribution is expected to influence
meat quality considering that several studies have
reported that oxidative muscles with a high percentage
of type I fibers have a lower glycolytic potential [14,15],
a darker color [16,17] and a higher ultimate pH [14,16].
In addition, it was shown that oxidative muscle types
tend to develop dark, firm and dry pork in response to
intense physical activity and/or high psychological stress
levels preslaughter [18]. Therefore, the present study
aimed to investigate whether niacin supplementation
causes type II to type I muscle fiber switching, thereby,
resulting in an increased type I fiber percentage in
skeletal muscle of growing pigs.

Methods
Animals, housing, and experimental design
The experiment was performed at the Institute of
Animal Nutrition and Nutrition Physiology, University
of Giessen, Germany. A total of 25 male, 11 wk old
crossbred pigs (Danzucht × Pietrain) with an average
body weight of 32.8 ± 1.3 (mean ± SD) kg were randomly
allocated to two groups of 12 (control group) and 13
pigs (niacin group), respectively. The pigs were kept
individually in pens in a room under controlled
temperature at 23 ± 2°C and relative humidity at 55 to
60% with light from 06.00 to 18.00 hrs. Both groups of
pigs received a nutritionally adequate commercial diet
(RWZ-UNIVERSAL-START HE Press, RWZ, Köln,
Germany) for growing pigs containing (in g/kg) wheat
(226), barley (200), soybean meal (149), triticale (100),
corn (100), wheat gluten (100), dried distiller´s grains
(31), rapeseed meal (20), wheat bran (20), calcium car-
bonate (16.1), vegetable oil (10), sodium chloride (3.9),
monocalcium phosphate (2), and vitamin-mineral pre-
mix (22). The vitamin-mineral premix provided 34 mg
of niacin per kg diet, a dose which is sufficient to meet
the niacin requirement of growing pigs [19]. In the nia-
cin group, the commercial diet was supplemented with
additional 750 mg of niacin (obtained from Lonza, Basel,
Switzerland) per kg as a pharmacological dose. The diets
and water were given ad libitum. The feeding experi-
ment lasted 21 days. All experimental procedures were
in strict accordance with the recommendations in the
guidelines for the care and use of laboratory animals
[20] and the Appendix A of European Convention for
the Protection of Vertebrate Animals used for Experi-
mental and other Scientific Purposes. In accordance with
article 4 par. 3 of the German Animal Welfare Law all
animals were humanely killed for scientific purpose
approved by the Animal Welfare Officer of the Justus-
Liebig-University.

Sample collection
After 21 days the animals were slaughtered after a 12 h
fasting period at a commercial slaughterhouse near by
the Institute. Blood samples were taken into EDTA poly-
ethylene tubes (Sarstedt, Nürnbrecht, Germany) and
plasma was collected by centrifugation (1,100 × g;
10 min, 4°C). Samples from three different skeletal
muscles [M. longissimus dorsi (LD), M. quadriceps
femoris (QF), M. gastrocnemius (G)] were excised and
samples were shock frozen with liquid nitrogen and stored
at −80°C pending analysis.

Determination of type I and type II fiber percentages in
skeletal muscle
Determination of type I and type II fiber percentages in
skeletal muscle was carried out as recently described in
detail [5]. In brief, 30 μm thick, serial cross sections
were prepared using a cryostat microtome, mounted on
cover slips and stained for myosin ATPase (mATPase)
using a modified method of Hämäläinen and Pette [21].
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Subsequently, the sections were analyzed by light
microscopy (Leica DMI 6000B) for calculating the type I
and type II fiber percentages.
Determination of TAG and NEFA concentrations in plasma
Concentrations of TAG and NEFA in plasma were
determined by enzymatic reagent kits from Merck
Eurolab (ref. 113009990314) and from Wako Chemicals
(ref. RD291001200R), respectively.
Determination of nicotinic acid and nicotineamide
concentrations in plasma
Concentrations of nicotinic acid and nicotineamide in
plasma were determined by LC-MS/MS according to the
method from Liu et al. [22].
RNA isolation, cDNA synthesis and qPCR analysis
RNA isolation, cDNA synthesis and qPCR analysis were
performed as described recently in detail [23]. In brief,
total RNA was extracted from 50–60 mg skeletal muscle
aliquots using peqGOLD TriFast™ RNA Extraction reagent
(Peqlab, Erlangen, Germany) according to the manu-
facturer´s protocol, and RNA concentration and purity
were estimated from the optical density at 260 and
280 nm (Infinite 200 M microplate reader, Tecan,
Männedorf, Switzerland). cDNA synthesis was carried out
within one week after RNA isolation using dT18 primer
and M-MuLV Reverse Transcriptase (MBI Fermentas,
St. Leon-Rot, Germany). qPCR analysis was performed
using KAPA SYBR FAST qPCR Universal Mastermix
(Peqlab, Erlangen, Germany) and gene-specific primer
pairs which are listed in Table 1. Calculation of gene
expression data and normalization by GeNorm normali-
zation factor were carried out as described recently [23].
The normalization factor was calculated as the geometric
mean of expression data of the three most stable out of
five tested potential reference genes. Means and SD were
calculated from normalized expression data for samples of
the same treatment group. The mean of the group control
group was set to 1 and mean and SD of the niacin group
were scaled proportionally. Data on qPCR performance
for genes measured in skeletal muscle are shown in
Table 1.
Statistical analysis
Data were statistically analysed by one-way ANOVA
using the Minitab Statistical Software (Rel. 13.0, State
College, PA, USA). Means of the two groups were
compared by Fisher’s multiple range test. Means were
considered significantly different for P < 0.05. Data
presented are shown as means ± SD.
Results
Feed intake, body weight development, carcass weights
and feed conversion ratios
Feed intake, initial and final body weights, total and daily
body weight gain, carcass weights and feed conversion
ratio did not differ between the control group and the
niacin group (Table 2).

Concentrations of nicotinic acid and its metabolite
nicotineamide in plasma
The plasma concentrations of nicotinic acid (NA) and
its metabolite nicotineamide (NAM) were greater in the
niacin group than in the control group (NA: < 5 ng/mL
(limit of detection) vs. 32.0 ± 13.0 ng/mL; NAM: 0.34 ±
0.07 vs. 3.88 ± 2.02 μg/mL; control group vs. niacin
group; P < 0.05).

Concentrations of TAG and NEFA in plasma
In order to assess whether lipid concentrations in
plasma are influenced by niacin supplementation, we
measured the concentrations of TAG and NEFA in
plasma of the pigs. The plasma concentrations of both,
TAG and NEFA were not different between the two
groups of pigs (TAG: 0.51 ± 0.12 vs. 0.51 ± 0.10 mmol/L;
NEFA: 0.47 ± 0.27 vs. 0.65 ± 0.21 mmol/L; control group
vs. niacin group).

Fiber type distribution of different skeletal muscles
To study whether niacin supplementation causes type II
to type I fiber switching, we determined the fiber type
distribution in different skeletal muscles (LD, QF and
G). The percentage number of type I fibers in all three
muscles considered was greater in the niacin group than
in the control group, whereas the percentage number of
type II fibers was less in niacin group than in the control
group (P < 0.05, Figure 1).

Transcript levels of genes encoding fiber-specific MHC
isoforms and regulators of muscle fiber distribution in
LD muscle
In order to explore whether the niacin-induced fiber
switching is reflected by changes in the expression of
fiber-specific MHC isoforms, we determined the tran-
script levels of different MHC isoforms, from which
three isoforms exist in pigs, namely one type I isoform
(MHCI encoded by MYH7) and two type II isoforms
(MHCIIA encoded by MYH2, and MHCIIB encoded by
MYH4), in LD muscle. In line with the decreased type II
fiber percentage the transcript levels of MYH2 and
MYH4, which are expressed in type II fibers, were
significantly reduced (P < 0.05) or tended to be reduced
(P < 0.15), respectively, in LD muscle in the niacin group
compared to the control group (Table 3). The transcript
level of the MHC isoform MYH7, which is expressed in



Table 1 Characteristics and performance data of primers used for qPCR

Gene Forward primer (3′-5′) Product length (bp) NCBI Genbank Slope R2# Efficiency*

Reverse primer (5′-3′)

Reference genes

ATP5G1 CAGTCACCTTGAGCCGGGCGA 94 NM_001025218 −3.42 0.999 1.96

TAGCGCCCCGGTGGTTTGC

ACTB GACATCCGCAAGGACCTCTA 205 XM_003124280 −3.60 0.998 1.89

ACATCTGCTGGAAGGTGGAC

RPS9 GTCGCAAGACTTATGTGACC 325 XM_003356050 −3.64 0.999 1.88

AGCTTAAAGACCTGGGTCTG

Target genes

COX4/1 GTGGAACTGTACCGCCTGAA 257 XM_003355730 −3.44 1.000 1.95

TTGTCGTAGTCCCACTTGGC

COX6A1 CTCAGCTCGCATGTGGAAGA 139 NM_001190221 −3.34 0.996 1.99

GATGCGAAGATGGGGGTAGG

CACT/SLC25A20 GCAAAGCCCATTAGCCCTCT 235 XM_003483178 −3.21 0.988 2.05

GAGCACATCCTCTGGGTGTT

PPARGC1A TAAAGATGCCGCCTCTGACT 168 NM_213963 −3.94 0.993 1.79

TGACCGAAGTGCTTGTTCAG

PPARGC1B AAGTGCGGCTTCGTCACCTA 216 XM_003124093 −3.28 0.998 2.02

GCTGTCGAAATCCATGGCTT

SLC22A5 TGCATTTGGCTACATGCTGC 174 XM_003123912 −3.76 0.995 1.85

ATGATCACCTCAGCTTCCTG

SDHA CTACGCCCCCGTCGCAAAGG 380 DQ402993 −3.24 1.000 2.03

AGTTTGCCCCCAGGCGGTTG

MYH2 GGCCCTTTGATGCCAAGACA 188 NM_214136 −3.45 1.000 1.95

GGCCATGTCCTCGATCTTGT

MYH4 GTGCCCTGCTGCCATCAATA 363 NM_001123141 −3.53 1.000 1.92

TGCGTAACGCTCTTTGAGGT

MYH7 TGCCAGCTTGAGCCTCTTTC 380 NM_213855 −3.33 0.999 2.00

GTAGCGCTCCTTGAGGTTGT

FATP1 GGTTCCAGCCTGTTGAATGT 275 NM_001083931 −3.44 0.990 1.95

AACAAAACCTTGGTGCTTGG

UCP2 AGTGTGAGACCTGACGAAGC 435 NM_214289 −3.64 0.996 1.88

GCTTGACGGAGTCGTAGAGG

UCP3 GCCACTTTGTCTCTGCCTTC 219 NM_214049 −3.49 0.998 1.93

CAAACATCACCACGTTCCAG
#Coefficient of determination of the standard curve.
*The efficiency is determined by [10(−1/-slope].
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type I fibers, in LD muscle tended to be increased in the
niacin group compared to the control group (P < 0.15,
Table 3).
To elucidate the mechanisms underlying type II to

type I fiber transition in skeletal muscle of pigs in
response to niacin supplementation, we determined the
transcript levels of two key regulators of muscle fiber
transition, PGC-1α and PGC-1β, in LD muscle. The
transcript level of PGC-1β in LD muscle was greater in
the niacin group than in the control group (P < 0.05;
Table 3). In addition, the transcript level of PGC-1α in
LD muscle was numerically greater in the niacin group
than in the control group but this effect was not signifi-
cant (P > 0.05; Table 3).



Table 2 Feed intake, body weight gain, feed conversion
ratio and carcass weight of pigs fed either a control diet
or a diet supplemented with 750 mg niacin/kg diet
for 3 wk

Control Niacin P value

n = 12 n = 13 (ANOVA)

Feed intake (kg/d) 2.14 ± 0.27 2.13 ± 0.26 0.838

Initial body weight (kg) 32.7 ± 1.3 32.9 ± 1.5 0.829

Final body weight (kg) 53.5 ± 2.4 53.7 ± 3.9 0.864

Total body weight gain (kg) 20.7 ± 2.2 20.9 ± 2.6 0.915

Daily body weight gain (kg) 0.99 ± 0.10 0.99 ± 0.13 0.915

Carcass weight (kg) 40.5 ± 1.9 41.0 ± 2.9 0.567

Feed conversion ratio
(kg feed/kg weight gain)

2.21 ± 0.42 2.22 ± 0.42 0.899

Values are means ± SD.
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Transcript levels of genes involved in fatty acid
utilization, citrate cycle, oxidative phosphorylation and
thermogenesis in LD muscle
Given that induction of PGC-1α and PGC-1β results in
the induction of genes involved in mitochondrial fatty
acid catabolism (CACT, FATP1, OCTN2), citrate cycle
(SDHA), oxidative phosphorylation (COX4/1, COX6A1),
and thermogenesis (UCP2, UCP3), we determined tran-
script levels of genes representing these pathways in LD
muscle. The transcript levels of CACT, FATP1, OCTN2,
SDHA, COX4/1, COX6A1 and UCP3 in LD muscle
were greater in the niacin group than in the control
group (P < 0.05; Table 4). The transcript level of UCP2
in LD muscle tended to be elevated in the niacin group
compared to the control group (P < 0.15; Table 4).
M.gastrocnemius M. quadriceps f
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Figure 1 Muscle fiber type distribution of M. gastrocnemius, M. quadr
diet or a diet supplemented with 750 mg niacin/kg diet for 3 wk. Bars
Images from cross sections representing one animal per group are shown
Discussion
The main finding of the present study is that supple-
mentation of a pharmacological niacin dose, similar with
that recently used in Zucker rats (Pigs: 30–49 mg/kg
body weight; Zucker rats: 40–54 mg/kg body weight [5])
in pigs causes type II to type I muscle fiber switching,
thereby, resulting in an increased type I fiber percentage
in skeletal muscle in comparison to pigs receiving a diet
with a nutritionally adequate niacin concentration. In
contrast to our study in Zucker rats, in which fiber
distribution of only one muscle (M. rectus femoris) was
studied, we analyzed fiber distribution of three different
skeletal muscles (LD, QF and G) in the pigs in the
present study. These muscles contained predominantly
type II fibers but varied in their type II to type I fiber
type ratios (control group: 4.6, 7.6 and 2.8 for LD, QF
and G, respectively). We observed that niacin supple-
mentation decreased this ratio in all three muscles
considered (niacin group: 2.8, 2.6 and 1.6 for LD, QF
and G, respectively) indicating that niacin exerts its
effect on muscle fiber distribution independently of the
muscle type, which extends our knowledge with regard
to the effect of niacin supplementation on muscle fiber
distribution. This effect was also reflected by a reduced
expression of the type II fiber-specific transcript levels of
MYH2 (P < 0.05) and MYH4 isoform (P < 0.15) and an
increased expression of the type I fiber-specific isoform
MYH7 (P < 0.15) in LD muscle of the niacin group
compared to the control group.
Muscle fiber switching was reported to be initiated

through the up-regulation of key regulators of muscle fiber
distribution and muscle metabolic phenotype [6,24-26],
emoris M. longissimus dorsi 
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iceps femoris and M. longissimus dorsi of pigs fed either a control
represent means ± SD, n = 12 (control) and 13 (niacin) pigs/group.
at the bottom. Asterisk denotes difference from control group, P < 0.05.



Table 3 Transcript levels of genes encoding fiber-specific
MHC isoforms and regulators of muscle fiber distribution
in LD muscle of pigs fed either a control diet or a diet
supplemented with 750 mg niacin/kg diet for 3 wk

Control Niacin P value

n = 12 n = 13 (ANOVA)

Relative mRNA level
(fold of control)

Fiber-specific MHC isoforms

MYH7 (type I-specific) 1.00 ± 0.29 1.26 ± 0.42 0.139

MYH2 (type IIA-specific) 1.00 ± 0.40 0.65 ± 0.21 0.023

MYH4 (type IIB-specific) 1.00 ± 0.51 0.67 ± 0.27 0.086

Regulators of fiber distribution

PGC-1α 1.00 ± 0.91 1.49 ± 0.98 0.309

PGC-1β 1.00 ± 0.24 1.33 ± 0.31 0.021

Values are means ± SD.
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and we have recently shown that niacin supplementa-
tion causes an up-regulation of two of these key regula-
tors, namely PGC-1α and PGC-1β, in rectus femoris
muscle of rats [5]. Like in rats, we observed in the
present study that the transcript level of PGC-1β was
elevated in LD muscle of pigs of the niacin group. In
addition, the transcript level of PGC-1α in LD muscle
was also increased in pigs of the niacin group, even
though this effect was not significant, which is
attributed to the relatively high standard deviation of
this parameter in both groups of pigs. PGCs regulate
the muscle metabolic phenotype by binding to and
Table 4 Transcript levels of genes involved in fatty acid
utilization, citrate cycle, oxidative phosphorylation and
thermogenesis in LD muscle of pigs fed either a control
diet or a diet supplemented with 750 mg niacin/kg diet
for 3 wk

Control Niacin P value

n = 12 n = 13 (ANOVA)

Relative mRNA level (fold of control)

Fatty acid utilization

CACT 1.00 ± 0.43 1.55 ± 0.62 0.038

FATP1 1.00 ± 0.31 1.33 ± 0.27 0.020

OCTN2 1.00 ± 0.31 1.44 ± 0.44 0.018

Citrate cycle

SDHA 1.00 ± 0.34 1.53 ± 0.58 0.037

Oxidative phosphorylation

COX4/1 1.00 ± 0.28 1.40 ± 0.45 0.033

COX6A1 1.00 ± 0.36 1.57 ± 0.62 0.022

Thermogenesis

UCP2 1.00 ± 0.63 1.53 ± 0.84 0.130

UCP3 1.00 ± 0.45 1.46 ± 0.49 0.036

Values are means ± SD.
activating a variety of nuclear receptors and additional
transcription factors. For example, PGC-1α dramatically
co-activates PPARα and/or PPARδ in various cell types
and tissues and thereby induces the expression of genes
involved in fatty acid catabolism and thermogenesis.
Similarly, co-activation by PGC-1α and PGC-1β has
also been shown for the myocyte enhancer factor 2
family of transcription factors, which stimulate specific-
ally the expression of MHC genes from oxidative fibers
[25,27], and for nuclear respiratory factor-1 and
estrogen-related receptor α, which are required for
oxidative phosphorylation and mitochondrial biogenesis
[28]. In line with the up-regulation of key regulators of
type II to type I fiber switching in LD muscle, we observed
that pigs of the niacin group had elevated transcript levels
of genes involved in mitochondrial fatty acid catabolism
(CACT, FATP1, OCTN2), citrate cycle (SDHA), oxidative
phosphorylation (COX4/1, COX6A1), and thermogenesis
(UCP3) in LD muscle. All these genes are abundantly
expressed in type I fibers, which is responsible for the oxi-
dative metabolic phenotype and the preferred utilization
of oxidative phosphorylation for energy production of type
I fibers [8,29]. Thus, the abovementioned changes in gene
expression in LD muscle of pigs of the niacin group are
consistent with the niacin-induced increase of type I fiber
content in LD muscle. It is currently unknown how niacin
mediates the observed up-regulation of key regulators of
skeletal muscle phenotype because the skeletal muscle
does not express the niacin receptor. This suggests that
the effect of niacin involves niacin receptor-independent
mechanisms. In this context it noteworthy that niacin has
been reported recently to induce several humoral changes,
like increases in the plasma levels of epinephrine, cortico-
sterone and glucagon [30]. In addition, niacin supplemen-
tation also causes an elevation in the plasma levels of
growth hormone, adiponectin and leptin [31,32], all of
which are well-documented to influence gene expression
and cellular signaling in different tissues. Thus, future
studies have to clarify whether these niacin-induced
humoral changes are responsible for the observed muscle
fiber switching.
In contrast to our recent study in obese Zucker rats

[5] niacin supplementation did not induce the well-
documented plasma TAG-lowering effect in pigs. The
lack of effect, however, is probably not due to an insuffi-
cient niacin dose because the dose was similar as in our
rat study [5] and the administered niacin dose caused a
significant increase in plasma nicotinic acid and par-
ticularly nicotineamide levels indicating sufficient
bioavailability. It is more likely that plasma TAG concen-
tration of pigs was not lowered because it was yet within
the normal range making a further reduction unlikely.
In addition, in opposite to the well-documented
antilipolytic effect of niacin [1] the plasma NEFA
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concentration in pigs of the niacin group was also not
reduced but even increased, at least numerically. This
result, however, is in agreement with recent observations
that chronic niacin administration for at least 2 weeks
results in elevated plasma NEFA levels [33]. The basis
for this rebound phenomenon on lipolysis during long-
term niacin treatment is only incompletely understood,
but recent findings indicate that niacin favors an in-
crease in the net rate of lipolysis through reducing TAG
synthesis and expression of perilipin in adipocytes [34].
Conclusions
The present study demonstrates that niacin supplemen-
tation induces type II to type I muscle fiber switching,
and thereby an oxidative metabolic phenotype of skeletal
muscle in pigs as a farm animal model. The observed
up-regulation of key regulators of fiber distribution in
skeletal muscle in response to niacin supplementation is
likely causative for the induction of muscle fiber
switching in pigs. Given that oxidative muscle types tend
to develop dark, firm and dry pork in response to
intense physical activity and/or high psychological stress
levels preslaughter [18], a niacin-induced change in the
muscle´s fiber type distribution may influence meat
quality of pigs which would be worth of being investi-
gated in future studies.
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Niacin supplementation induces type II to type I
muscle fiber transition in skeletal muscle of sheep
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Abstract

Background: It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber
transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of
obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ
(encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to
type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study
was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of
different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model
for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep
each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk.

Results: After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin
group, whereas the percentage number of type II fibers was less in niacin group than in the control group
(P < 0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in
mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain
(COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P < 0.05) or tended to be
greater (P < 0.15) in the niacin group than in the control group.

Conclusions: The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and
thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity
of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty
acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows.

Keywords: Niacin, Sheep, Muscle fiber transition, Oxidative type I fiber
Background
Pharmacological doses of niacin have long been known
to lower the levels of blood lipids, especially triacylglyc-
erols (TAG), but the mechanism underlying this effect is
only incompletely understood. Even though it has been
established that niacin inhibits lipolysis in adipocytes
through binding to the niacin-receptor HCA2 and there-
by reduces the supply of non-esterified fatty acids (NEFA)
for hepatic TAG synthesis [1], this effect can only insuffi-
ciently explain the lipid-lowering effect because blood
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NEFA levels even become elevated during long-term nia-
cin treatment due to a strong rebound phenomenon on
lipolysis while the TAG lowering effect remains [2]. How-
ever, less well-documented niacin treatment also causes
significant changes in gene expression in other tissues
than adipose tissue, like skeletal muscle [2], a tissue which
due to its great mass is particularly important for whole
body fatty acid utilization. Noteworthy, it has been
recently shown in humans that niacin administration in-
duces the expression of two transcription factors, peroxi-
some proliferator-activated receptor δ (PPARδ, encoded
by PPARD) and PPARγ coactivator-1α (PGC-1α, encoded
by PPARGC1A) in skeletal muscle [3]. Both transcription
factors are key regulators of muscle fiber composition and
the muscle’s metabolic phenotype because they control
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genes involved in muscle fiber switching, fatty acid
utilization, oxidative phosphorylation, mitochondrial bio-
genesis and function [4,5], and angiogenesis [6]. Skeletal
muscle contains two major types of muscle fibers which
differ in their contractile proteins and their metabolic cap-
acity [7]. The type II fibers (“glycolytic fibers”) have a little
number of mitochondria and largely generate ATP
through glycolytic metabolism, whereas type I fibers (“oxi-
dative fibers”) are mitochondria-rich and thus utilize
mainly oxidative phosphorylation [8,9]. Interestingly, the
distribution of type I and type II fibers of skeletal muscles
shows high plasticity and can be altered by diverse factors,
such as exercise, mechanical unloading, obesity or dia-
betes, resulting in a change of the muscle’s functional and
metabolic phenotype [10-13]. In an attempt to study
whether the induction of PPARδ and PGC-1α in skeletal
muscle by pharmacological niacin doses leads to a change
of muscle fiber distribution and the muscle’s metabolic
phenotype, we have previously tested the effect of niacin
supplementation at a dose used for reduction of serum
lipids in obese Zucker rats [14] and pigs [15]. Both studies
revealed that niacin supplementation induces muscle fiber
transition from type II to type I and increases the number
of type I fibers in skeletal muscle [14,15]. Moreover, we
found that the expression of genes involved in fatty acid
transport, mitochondrial fatty acid import and oxidation,
oxidative phosphorylation and angiogenesis and genes
encoding PPARδ, PGC-1α and PGC-1β (encoded by
PPARGC1B), which, like PGC-1α, is a key regulator of
skeletal muscle’s oxidative and contractile phenotype [16],
in skeletal muscle is elevated by niacin treatment [14,15].
Thus, these findings suggest that niacin induces a change
in the muscle metabolic phenotype which is indicative of
an increased capacity of muscle for oxidative utilization of
fatty acids and which might be useful during metabolic
states where TAG and NEFA are strongly elevated, such
as during early lactation in high producing dairy cows
[17]. However, whether niacin treatment also causes type
II to type I muscle fiber switching and increases the type I
fiber content of skeletal muscles in ruminants has not
been investigated yet. Thus, the present study aimed to
investigate whether niacin administration at a pharma-
cological dose influences fiber distribution and the meta-
bolic phenotype of different skeletal muscles in sheep as
a model for ruminants. Niacin was administrated by
drenching ensuring that the main part of the adminis-
trated niacin bypasses the rumen and reaches the small
intestine.

Methods
Animals, housing, and experimental design
The experiment was located at the Research Station of
the Institute of Animal Breeding and Genetics at the
University of Giessen, Germany. A total of 16 male, 11
wk old Rhoen sheep with an average body weight of
29.6 ± 3.0 (mean ± SD) kg were randomly allocated to
two groups of 8 sheep each (control group and niacin
group). All sheep within one group were kept together
in a barn on straw. All sheep received hay ad libitum
and 1.5 kg concentrate per day and sheep. The hay con-
tained (% of dry matter) 47.5% nitrogen-free extractable
substances, 30.3% crude fiber, 7.0% crude protein, 6.1%
crude ash and 1.1% crude fat. The concentrate (RWZ-
Schaf 18 Uni Press, RWZ, Köln) consisted of (g/kg):
Root pulp (250), wheat (200), dried distillers grains with
solubles (120), wheat bran (104), wheat gluten feed
(100), rapeseed extraction meal (100), soybean extraction
meal (37), calcium carbonate (22), soy hulls (20), molasses
(20), vinasse (10), monocalcium phosphate (8), sodium
chloride (1.9), magnesium oxide (1.6) and a premix sup-
plying vitamins and minerals (5.5; amounts of vitamins
and minerals supplied per kg: vitamin A, 8,000 IE; vitamin
D3, 1,000 IE; vitamin E, 65 mg; zinc, 40 mg as zinc sulfate
monohydrate; manganese, 20 mg as manganese (II) sulfate
monohydrate; selenium, 0.2 mg as sodium selenite; cobalt,
0.2 mg as cobalt (II) sulfate monohydrate; iodine, 0.1 mg
as calcium iodate). According to the manufacturer’s
declaration the concentrate contained 10.6 MJ ME/kg
and 18% crude protein. Additionally, sheep of the niacin
group received 1 g niacin (obtained from Lonza, Basel,
Switzerland) dissolved in 100 ml drinking water by
drenching daily at eleven a.m. Sheep of the control
group were given the same amount of drinking water by
drenching without addition of niacin. Since the concen-
trate did not contain any supplemental niacin, the sheep
of the control group received only the niacin contained
in the hay and the feed components of the concentrate,
from which no actual concentrations of niacin are avail-
able. Based on literature data, the niacin concentration
in hay and concentrate is below 100 mg/kg dry matter
[18]. The experimental period during which sheep were
administered either no (control group) or 1 g niacin per
day (niacin group) lasted for 4 wk. Water was given ad
libitum. All experimental procedures were in strict ac-
cordance with the recommendations in the guidelines
for the care and use of laboratory animals [19] and the
Appendix A of European Convention for the Protection
of Vertebrate Animals used for Experimental and other
Scientific Purposes. In accordance with article 4 par. 3
of the German Animal Welfare Law all animals were
humanely killed for scientific purpose approved by the
Animal Welfare Officer of the Justus-Liebig-University.

Sample collection
After 4 wk the animals were slaughtered at a commercial
slaughterhouse located in the near of the Research Sta-
tion. Blood samples were taken into EDTA polyethylene
tubes (Sarstedt, Nürnbrecht, Germany) and plasma was
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collected by centrifugation (1,100 × g; 10 min, 4°C).
Samples from three different skeletal muscles [M. longissi-
mus dorsi (LD), M. semimembranosus (SM), M. semitendi-
nosus (ST)] were excised nearly at the same location and
samples were shock frozen with liquid nitrogen and stored
at −80°C pending analysis.

Muscle fiber typing
Fiber typing was performed as recently described in de-
tail [14]. In brief, 30 μm thick, serial cross sections were
taken using a cryostat microtome, mounted on cover
slips and stained for myosin ATPase (mATPase) using a
modified method of Hämäläinen and Pette [20]. In brief,
sections were pre-incubated for 5 min in sodium acetate
(54.3 mM) – sodium barbital (32.6 mM) solution ad-
justed with hydrogen chloride to pH 4.6. After washing,
the sections were incubated for 30 min at 37°C in sub-
strate solution (2.7 mM ATP, 100 mM glycin, 54 mM
calcium (II) chloride, 100 mM sodium chloride, pH ad-
justed to 9.6). Following incubation in 1% calcium (II)
chloride and 2% cobalt (II) chloride, a black insoluble
compound was developed in 1% ammonium sulfide for
50 s leading to a black staining of type I fibers and grey
staining of type II fibers. Subsequently, the sections were
analyzed by light microscopy (Leica DMI 6000B) for cal-
culating the type I and type II fiber percentages. Fiber
typing was carried out in the best five images out of ten
stained sections per muscle and animal, and all fibers
within a 100 cm2 area were calculated. This area corre-
sponded to about 60 fibers. Thus, a total of 300 fibers
were calculated per animal and muscle.

Determination of nicotinic acid and nicotinamide
concentrations in plasma
Concentrations of nicotinic acid and nicotineamide in
plasma were determined by LC-MS/MS according to the
method from Liu et al. [21].

Determination of plasma lipids
The plasma concentrations of TAG and NEFA were
measured using enzymatic reagent kits from Merck
Eurolab (ref. 113009990314) and from Wako Chemicals
(ref. RD291001200R), respectively.

RNA isolation and qPCR analysis
RNA isolation, cDNA synthesis qPCR analysis were per-
formed as described recently in detail [22]. In brief, total
RNA was isolated from 25–30 mg skeletal muscle aliquots
using Trizol™ reagent (Invitrogen, Karlsruhe, Germany),
and RNA concentration and purity were estimated from
the optical density at 260 and 280 nm (Infinite 200 M
microplate reader, Tecan, Männedorf, Switzerland).
RNA integrity was assessed by confirming intact bands
corresponding to the 18S and 28S ribosomal RNA
subunits using 1% agarose gel electrophoresis. Following
cDNA synthesis within one week after RNA isolation
using dT18 primer and M-MuLV Reverse Transcriptase
(MBI Fermentas, St. Leon-Rot, Germany), qPCR ana-
lysis was performed as described recently in detail [22].
Features of gene-specific primer pairs are listed in Table 1.
Calculation of gene expression data and normalization by
GeNorm normalization factor were carried out as de-
scribed recently [22]. The normalization factor was calcu-
lated as the geometric mean of expression data of the
three most stable out of six tested potential reference
genes (RPL19, YWHAZ, RPS26, MDH1, B2M, and
GAPDH). In each muscle the three most stable reference
genes were the same (the stability score M as calculated
by GeNorm is shown in brackets): LD muscle: RPL19
(0.025), YWHAZ (0.026), and RPS26 (0.029); SM muscle:
RPL19 (0.026), YWHAZ (0.028), and RPS26 (0.028); ST
muscle: RPL19 (0.033), YWHAZ (0.037), and RPS26
(0.040). Means and SD were calculated from normalized
expression data for samples of the same treatment group.
The mean of the group control was set to 1 and mean and
SD of the niacin group were scaled proportionally. Data
on qPCR performance for target and reference genes mea-
sured in skeletal muscle are shown in Table 2.

Immunoblotting
Preparation of homogenates, determination of protein
concentration and immunoblotting were performed as
described recently in detail [23]. In brief, proteins were
separated by 12,5% SDS-PAGE, transferred to a nitrocel-
lulose membrane and incubated with primary antibodies
against PGC-1α (dilution 1:1000; polyclonal anti-PGC-1α
antibody; Millipore, Temecula, CA), PPARδ (dilution 1:1000;
polyclonal anti-PGC-1α antibody; Abcam, Cambridge, UK),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(dilution 1:5000; monoclonal anti-GAPDH antibody, Abcam,
Cambridge, UK) as a reference protein. Nitrocellulose mem-
branes were washed, and subsequently incubated with a
horseradish peroxidase conjugated secondary monoclonal
anti-mouse-IgG antibody (Abcam, Cambridge, UK) for
GAPDH and polyclonal anti-rabbit-IgG antibody (Sigma-
Aldrich, St. Louis, Germany) for PGC-1α, and PPARδ at
room temperature. Finally, blots were developed by either
ECL Select or ECL Prime (both GE Healthcare, Munich,
Germany), respectively, and the intensities of the specific
bands detected with a Bio-Imaging system (Syngene,
Cambridge, UK) and quantified by Syngene GeneTools
software (nonlinear dynamics).

Statistics
Data were statistically analysed by Student’s t-test using
the Minitab Statistical Software (Rel. 13.0, State College,
PA, USA). Means were considered significantly different
for P < 0.05. Data presented are shown as means ± SD.



Table 2 qPCR performance data

Gene Slope R2# Efficiency*

B2M −3.20 0.999 2.05

COX5A −3.22 0.999 2.04

COX6A1 −2.99 0.997 2.16

CPT1B −3.79 0.996 1.84

GAPDH −2.97 0.999 2.17

MDH1 −3.21 0.999 2.05

MHCI −3.37 1.000 1.98

MHCIIA −3.21 0.998 2.05

MHCIIX −3.29 0.999 2.01

PPARD −3.05 0.967 2.13

PPARGC1A −3.34 0.999 1.99

PPARGC1B −3.29 0.956 2.01

RPL19 −3.31 0.997 2.00

RPS26 −3.72 0.998 1.86

SDHA −3.12 0.999 2.09

SLC25A20 −3.81 0.980 1.83

VEGFA −3.31 0.997 2.00

YWHAZ −3.34 0.993 1.99
#Coefficient of determination of the standard curve.
*The efficiency is determined by [10(−1/-slope].

Table 1 Characteristics of primers used for qPCR

Gene Forward primer (3′-5′) Reverse primer (5′-3′) Product length (bp) Tm (°C) NCBI Genbank

Reference genes

B2M GCGTATTCCAGAGGTCCAGG CGGCAGCTGTACTGATCCTT 234 60 NM_001009284

GAPDH GGCGTGAACCACGAGAAGTA GCAGGGATGATGTTTTGGGC 227 60 AF022183

MDH1 TACGTGTTCCCTGGAGTTGC TGCTTCCTTGTTTGGGGGTT 249 57 NM_001135220

RPL19 AGCCTGTGACTGTCCATTCC TTCTCGGGCATTCGAGCATT 118 57 JN811679

RPS26 ACAACGGTCGTGCCAAAAAG AAATCGGGGTGGAGGTGTTC 284 57 NM_001009435

YWHAZ AGACGGAAGGTGCTGAGAAA TGGGGATCAAGAACTTTTCCAA 120 57 JN811681

Target genes

COX5A GCTCGCTGGGTGACATACTT ACCTCTAGGATGCGAACTGC 173 60 AF233074

COX6A1 TGCAGCTGAGTCGGTGTATG GAACTCGGGTCTCTCCTCCT 161 60 GU585577

CPT1B GACGTTTCCATGGGACTGGT GCCAGCGTCTCCATTCGATA 389 60 NM_001009259

MHCI TCGTCAAGGCCACAATTTTG CTGTCGCAACACCTGGTCCT 100 60 AB058898

MHCIIA AAGCCTTTTGATGCCAAGACAT TTCACCGTCACTTTCCCACC 100 60 AB058896

MHCIIX CTTCGTGGCGGACCCTAAG CAGTTACTGTCGCCCCAGCT 100 60 AB058897

PPARD TCAGCGTGCACGTCTTCTAC CAGGAATTCCCGGGTGACAA 230 59 XM_004018769

PPARGC1A GGTGACCATGACTATTGTCAG CTCGGATTTCCTGGTCTTGAA 216 58 XM_004009738

PPARGC1B CTGGACCGAGTTCTCCATCC CACGTGCCCTTTCACCTGCA 244 61 XM_004008965

SDHA GTTTGAGCAGCACTGGAGGA AGTCGGTCTCGTTCAAAGTCC 110 60 DQ386895

SLC25A20 CCGAGGGATCTACAAGGGGA CCTTCATCCCGGATCAGCTC 288 61 NM_001127277

VEGFA GGACATCTTCCAGGAGTACC GCATGGTGATGTTGAACTCCT 137 58 EU857623
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Results
Final body weight, body weight gain and carcass weight
Final body weights, daily body weight gain and carcass
weights did not differ between the control group and the
niacin group (Final body weight: 37.4 ± 2.3 vs. 37.8 ± 3.7 kg;
daily body weight gain: 308 ± 50 vs. 308 ± 41 g; carcass
weight: 17.2 ± 1.4 vs. 17.3 ± 2.4 kg; control group vs. niacin
group; n = 8/group).

Concentrations of nicotinic acid and its metabolite
nicotinamide in plasma
The plasma concentrations of nicotinic acid and its me-
tabolite nicotinamide were greater in the niacin group
than in the control group (nicotinic acid: 0.41 ± 0.31 vs.
0.75 ± 0.42 μg/mL; nicotinamide: 0.46 ± 0.25 vs. 3.42 ±
0.90 μg/mL; control group vs. niacin group; P < 0.05).

Lipid concentrations in plasma
In order to assess the lipid-lowering properties of niacin
in sheep, we determined the plasma concentrations of
NEFA and TAG. The plasma TAG concentration tended
to be lower in the niacin group than in the control
group (0.20 ± 0.02 vs. 0.17 ± 0.03 mmol/L; control group
vs. niacin group; P < 0.1). The plasma NEFA concentra-
tion did not differ between the niacin and the control
group (0.32 ± 0.11 vs. 0.29 ± 0.14 mmol/L; control group
vs. niacin group).
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Muscle fiber type composition and expression of
fiber-specific myosin heavy chain (MHC) isoforms
in skeletal muscles
To evaluate an effect of niacin on fiber type distribution,
muscle fiber typing and transcript level measurement of
fiber-specific MHC isoforms was carried out. As shown
in Figure 1A, the percentage number of type I fibers in
LD muscle, SM muscle and ST muscle was greater in
the niacin group than in the control group, whereas the
percentage number of type II fibers was less in niacin
group than in the control group (P < 0.05). The PCR
primers used to detect transcript levels of sheep MHC
isoforms corresponding to MHCI, MHCIIA and MHCIIX
have been designed based on available sheep partial-
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respectively, in the niacin group than in the control group.
In ST muscle, the mRNA level of MHCIIX was not differ-
ent between groups.

Expression of key regulators of muscle fiber transition in
skeletal muscles
To explore the mechanisms underlying the niacin-
induced muscle fiber transition we determined mRNA
and/or protein levels of the key regulators of muscle
fiber transition, PGC-1α, PGC-1β and PPARδ, in the
three muscles. The mRNA level of PPARGC1A in all three
muscles was greater in the niacin group than in the control
group (P < 0.05; Figure 2). The mRNA level of PPARGC1B
was greater in LD muscle (P < 0.05) and tended to be
greater in SM muscle and ST muscle (P < 0.15) of the nia-
cin group than in the control group (Figure 2). The mRNA
level of PPARD was increased in LD muscle and ST
muscle (P < 0.05) and tended to be increased in SM muscle
(P < 0.15; Figure 2). The protein level of PGC-1α was ele-
vated in LD muscle and SM muscle of the niacin group
compared to the control group (P < 0.05), but did not differ
in ST muscle between groups (Figure 2). The protein level
of PPARδ in all three muscles did not differ between
groups.

Expression of genes involved in fatty acid oxidation,
mitochondrial respiratory chain and angiogenesis in
skeletal muscles
Since PGC-1α and PPARδ are important regulators of
genes involved in fatty acid oxidation, mitochondrial re-
spiratory chain and angiogenesis, we determined mRNA
levels of CPT1B and SLC25A20, which encode two en-
zymes of the carnitine shuttle system, SDHA, which
encodes the tricarboxylic acid cycle (TCA) enzyme suc-
cinate dehydrogenase, COX6A1 and COX5A, which en-
code two subunits of the respiratory chain complex IV
(cytochrome c oxidase), and VEGFA encoding the angio-
genic factor VEGF-a. Relative mRNA levels of COX5A,
COX6A1, VEGFA, CPT1B, and SLC25A20 in all three
muscles were greater in the niacin group than in the
control group (P < 0.05; Figure 3). In addition, the rela-
tive mRNA level of SDHA in SM muscle and ST muscle
was greater in the niacin group than in the control
group (P < 0.05; Figure 3). In LD muscle, the mRNA
level of SDHA tended to be greater in the niacin group
than in the control group (P < 0.15; Figure 3).

Discussion
In the present study we tested the hypothesis that, like
in rats and pigs [14,15], niacin supplementation induces
muscle fiber transition from type II (glycolytic) to type I
(oxidative), and thereby an oxidative metabolic pheno-
type of skeletal muscle in sheep as a ruminant model.
The dietary niacin dosage (1 g niacin per day) given to
the sheep related to 27–35 mg/kg body weight which is
only slightly below that given to the rats (40–54 mg/kg
body weight [14]) and pigs (30–49 mg/kg body weight
[15]) in our recent studies and which was shown to
induce a muscle fiber switch from type II to type I in
skeletal muscle. The niacin dosage administered by
drenching to the sheep of the niacin group was markedly
higher than that taken up from the feed ration (hay and
concentrate) by the sheep of the control group, because
according to literature data the native concentration of
niacin in hay and the main components of the concen-
trate is below 100 mg/kg dry matter [18]. In line with
this, the niacin administration to the sheep caused a sig-
nificant increase in the plasma concentration of the nic-
otinic acid metabolite nicotinamide. In addition, it has
to be considered that the sheep used in this study had
already fully developed rumen. This means that the nia-
cin requirement for the sheep was covered from niacin
synthesized by the rumen microbes and that the niacin
from the ingested hay and concentrate was largely de-
graded by rumen microbes [25]. In contrast, the drench-
ing procedure, which was used to administer the daily
niacin bolus, is a suitable approach to ensure that the
main part of the administered niacin bypasses the rumen
and reaches the small intestine. In the present study, we
considered three different skeletal muscles, LD, SM and
ST, containing predominantly type II fibers (the type II
fiber percentage in all three muscles in the control group
was approximately 81%), because we expected an effect
of niacin only in skeletal muscles with a high percentage
of type II fibers. The main finding of the present study is
that supplementation of niacin induces muscle fiber
switching also in skeletal muscles of sheep. Muscle fiber
typing revealed that the type I fiber percentage in the
three muscles investigated increased from approximately
18–20% in the control group to 30–31% in the niacin
group, whereas the type II fiber percentage decreased
from 81% to 69%. In line with this, we observed that the
mRNA level of the type I-specific MHCI was signifi-
cantly greater in SM muscle and ST muscle and tended
to be greater in LD muscle, but the mRNA levels of type
II-specific MHC isoforms in LD and SM muscle were
less in the niacin group than in the control group.
Regarding that muscle fiber transition is induced on

the molecular level by an increased activity of PGC-1α,
PGC-1β and PPARδ [4,5,26,27], we determined the
mRNA and/or protein levels of these key regulators in
the three muscles. We found that the mRNA level of
PPARGGC1A in all three muscles was markedly ele-
vated, and the mRNA levels of PPARGC1B and PPARD
in all three muscles were either significantly increased or
tended to be increased in the niacin group compared to
the control group. In addition, the protein level of PGC-
1α in two of three muscles was greater in the niacin than
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Figure 2 Relative mRNA levels of PPARGC1A, PPARGC1B and PPARD (A), and relative protein levels of PGC-1α and PPARδ (B) in LD
muscle, SM muscle, and ST muscle of sheep administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk. Bars
represent means ± SD, n = 8 (mRNA) and 6 (protein) sheep/group. Representative immunoblots specific to PGC-1α, PPARδ and GAPDH as internal
control are shown for one animal per group; immunoblots for the other animals revealed similar results. *different from control group, P < 0.05,
#different from control group, P < 0.15.
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in the control group, whereas the protein level of PPARδ
in all muscles was not different between groups. The
PGC-1β protein level could not be determined, because
no appropriate antibody to reliably detect PGC-1β was
available. We cannot definitely explain the lack of effect
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activity was increased because it is known that PGC-1α
and PGC-1β, whose genes expression was clearly in-
creased, act as coactivators of PPARδ and enhance the
transactivation activity of PPARδ [28]. Therefore, our
finding suggests that niacin supplementation increases
the transcriptional activity of these critical regulators of
muscle fiber transition, and thus provides an explanation
for the increased type I fiber content in skeletal muscles
of niacin-treated sheep.
Type I fibers, also called slow-twitch oxidative fibers,

contain a high number of mitochondria, have a high oxi-
dative capacity, and preferentially use fatty acids for en-
ergy production [8,9]. This oxidative metabolic phenotype
of type I fibers is the consequence of a markedly higher
expression of genes involved in fatty acid transport and
uptake, β-oxidation, carnitine shuttle, TCA cycle and re-
spiratory chain compared to glycolytic type II fibers
[26,27]. In addition, type I fibers exhibit a higher expres-
sion of angiogenic factors, like VEGFA, which favors the
preferential use of fatty acids by type I fibers because an-
giogenic factors increase capillary density and thereby
blood perfusion but also the expression of fatty acid trans-
port proteins [29]. In the present study we could demon-
strate that several genes encoding proteins involved in
oxidative metabolism (SDHA, COX5A, COX6A1, VEGFA,
CPT1B, SLC25A20) were up-regulated in the muscles of
the niacin group compared to the control group which is
in line with the niacin-induced changes in fiber type distri-
bution and expression of MHC isoforms. Although we did
not provide data showing that the increased expression of
oxidative genes is also accompanied by an enhanced activ-
ity of the encoded enzymes and an elevated capillary dens-
ity, we suggest that the niacin-induced changes in skeletal
muscle mRNA levels are indicative of an improved oxida-
tive capacity because it is well known that the changes in
the muscle’s metabolic and contractile phenotype are in-
duced at the transcriptional level through an enhanced ac-
tivity of PGC-1α and PPARδ [26,27].

Conclusions
The results of this study show that niacin supplementation
in sheep as a model for ruminants induces muscle fiber
transition from type II (glycolytic) to type I (oxidative)
being indicative of a change of the muscle’s metabolic
phenotype towards a more oxidative one. An enhanced
capacity of skeletal muscle to utilize fatty acids in rumi-
nants might be particularly useful during metabolic states
in which fatty acids are extensively mobilized from adi-
pose tissue, such as during the early lactating period in
high producing cows. In addition, considering that sev-
eral studies have reported that oxidative muscles with a
high percentage of type I fibers have a lower glycolytic
potential, a darker color and a higher ultimate pH
[30-32], the niacin-induced change in the muscle’s fiber
type distribution may influence meat quality. At least in
pigs it was demonstrated that oxidative muscle types
tend to develop dark, firm and dry pork in response to
intense physical activity and/or high psychological stress
levels preslaughter [33]. Thus future studies have to in-
vestigate whether niacin administration influences meat
quality from sheep.
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4. DISCUSSION 

The overall aim of the present thesis was to test the hypothesis that, like in obese Zucker rats 

(Ringseis et al., 2013) NA supplementation induces muscle fiber transition from type II 

(glycolytic) to type I (oxidative), and thereby increases an oxidative metabolic phenotype of 

skeletal muscle in pig as a non-ruminant model and sheep as a ruminant model of farm 

animals. Although NA is only necessary in minor quantities to meet metabolic requirements 

(NRC, 2001) for the normal functioning of the body, pharmacological doses of NA have the 

capability to inhibit lipolysis (Pires et al., 2007). NA has been shown to reduce total 

cholesterol and LDL cholesterol levels by an average of 20 to 30%, TAG levels by 35 to 55%, 

and increase HDL cholesterol levels by 20 to 35% (Berge et al., 1961; Rivin, 1962; Knopp et 

al., 1985; Alderman et al., 1989). These findings have led to the use of high doses of NA, for 

the treatment of hypertriglyceridemia/hypercholesterolemia for more than five decades 

(Bodor and Offermanns, 2008). The lipid-lowering effects of NA have been extensively 

investigated, and traditionally attributed to its antilipolytic effect in adipocytes (Carlson and 

Hanngren, 1964; Lukasova et al., 2011), the prevailing mechanisms underlying the 

antidyslipidemic effects of NA are shown in Figure 2. NA can decrease the concentration of 

FFA and BHBA in blood thus reducing the incidence of ketosis and fatty liver in lactating 

dairy cows by inhibiting TAG lipolysis (Schwab et al., 2005; Pires and Grummer, 2007; Pires 

et al., 2007). However, the circulating FFA level rebound due to long-term NA treatment 

even though its lipid-lowering effects persists (Jin et al., 1997; Wang et al., 2001; de Grooth 

et al., 2004; Ganji et al., 2004; Lamon-Fava et al., 2008; Hernandez et al., 2010; Choi et al., 

2011). Thus, in spite of a long history of clinical use, the precise mechanism by which NA 

lowers circulating lipids, remains unclear. Nevertheless, it does not appear to be related to 

vitamin coenzyme actions because NAM does not have a similar effect (Altschul et al., 1955; 

Carlson, 2005). In search for a novel mechanism underlying lipid-lowering effect of NA, in 

the present thesis studies, it has been demonstrated for the first time that NA induces muscle 

fiber transition from type II (glycolytic) to type I (oxidative) in metabolically healthy growing 

pig and sheep. The diagrammatical picture of potential mechanisms underlying the lipid-

lowering effect of NA is presented in Figure 3.  

 In the present studies, the dietary NA doses given to pigs, related to 30-49 mg/kg body 

weight and to sheep, related to 27-35 mg/kg body weight, which is only slightly below that 

given to Zucker rats in the recent study (40-54 mg/kg body weight) (Ringseis et al., 2013), 

and which was shown to induce a muscle fiber switch from type II to type I in rectus femoris 

muscle of Zucker rats. Doses of NA of the Zucker rats study chosen were based on amounts 
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of NA used for the reduction of serum lipids in humans, typically in the range of 2-6 g/d 

(Rosen et al., 1987), which relates to ~30–90 mg/kg body weight for an individual weighing 

70 kg. Similar doses of NA were also used in epidemiological studies with diabetic humans, 

in which up to 2.5 g of NA/d were administered for a 70 kg body weight person (Meyers and 

Kashyap, 2004). 

 

 

 

Figure 2: Prevailing mechanisms underlying the antidyslipidemic effects of nicotinic 

acid. Nicotinic acid binds to the nicotinic acid receptor GPR109A in adipose tissue. Activation of 

GPR109A by nicotinic acid leads to inhibition of adenylyl cyclase activity and, consequently 

decreases cAMP levels. Decreased cAMP levels in adipocytes leads to inactivation of PKA and 

accordingly decreases phosphorylation of HSL and perilipin, which are obligatory enzymes for TAG 

hydrolysis. Reducing these enzyme activities leads to decrease of TAG synthesis, and consequently 

reduction of FFA production. The decreased plasma FFA levels, induced by nicotinic acid, results in a 

substrate shortage for hepatic TAG synthesis. Accordingly, less TAG and VLDL are produced in liver, 

and thus, plasma levels of TAG and VLDL as well as LDL-C are dropped. cAMP, cyclic adenosine 

monophosphate; FFA, free fatty acid; GPR109A, G protein-coupled receptor 109A; HSL, hormone-

sensitive lipase; LDL-C, low-density lipoprotein cholesterol; PKA, protein kinase A; TAG, 

triacylglycerols; VLDL, very-low-density lipoprotein; ↓, decrease. (Adapted from Lukasova et al., 

2011). 

In contrast to the recent study in Zucker rats (Ringseis et al., 2013), in which fiber distribution 

of only one muscle (M. rectus femoris) was studied, the present studies analyzed three 

different skeletal muscles in pigs (M. longissismus dorsi, LD; M. quadriceps femoris, QF; M. 
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gastrocnemius, G) in study 1 and in sheep (LD; M. semimembranosus, SM; M. 

semitendinosus, ST) in study 2. All of these muscles contained predominantly type II fibers 

(the type II fiber percentage in LD, QF and G muscles in the control group pigs were 81%, 

87% and 71%, respectively; in LD, SM, and ST muscles in the control group sheep were 

81%, 81% and 82%, respectively), because an effect of NA was expected only in skeletal 

muscles with a high percentage of type II fibers. A similar fiber type composition was also 

found in rats in the study of Delp and Duan (1996). As expected, muscle fiber typing revealed 

that the type I fiber percentage in all three muscles investigated increased from approximately 

13-29% in pigs of the control group up to 28-39% in pigs of the NA group, whereas the type 

II fiber percentage decreased from 71-87% to 61-72% in study 1. In study 2, the type I fiber 

percentage in all three muscles studied increased from about 18-19% in sheep of the control 

group up to 30-32% in sheep of the NA group, whereas the type II fiber percentage decreased 

from 81-82% to 68-70%. This suggests that the effect of NA on muscle fiber distribution is 

largely independent of the muscle type, providing that the muscle contains a sufficient 

number of type II fibers. 

 

 

 

Figure 3: Diagrammatical picture of potential mechanisms underlying the lipid- 

lowering effect of nicotinic acid. Administration of nicotinic acid induces type II to type I muscle 

fibers transition in skeletal muscle, which increases the whole body oxidative capacity, and ultimately 

decreases the level of plasma lipids. ↑, increase; ↓, decrease. 
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Myosin is one of the most abundant proteins in the body and is essential for the body 

movement. It is a large protein molecule, which is responsible for muscle contraction, 

composed of six amino acid chains: two myosin heavy chains (MHC) and four myosin light 

chains (MLC) (Sciote and Morris, 2000). Skeletal muscle fiber can be distinguished by their 

MHC isoforms. In line with this, it was observed that the NA-induced fiber switching is also 

reflected by changes in the transcript levels of genes encoding fiber-specific MHC isoforms. 

Relative mRNA level of the type I fiber-specific MHCI isoform (encoded by MYH7 gene) 

tended (P < 0.15) to be higher and type II fiber-specific MHCIIA isoform (encoded by MYH2 

gene), and MHCIIB isoform (encoded by MYH4 gene) were reduced or tended (P < 0.15) to 

be reduced, respectively, in LD muscle in the NA group compared to the control group of pigs 

in study 1. Similarly in study 2, relative mRNA level of the type I-specific MHCI was higher 

in SM and ST muscles and tended (P < 0.15) to be higher in LD muscle, but the relative 

mRNA levels of type II-specific MHC isoforms (MHCIIA, MHCIIX) in LD and SM muscle 

were lower in the NA group compared to the control group of sheep.  

It is known that muscle fiber switching is initiated through the upregulation of key regulators 

of muscle fiber distribution and muscle metabolic phenotype (Lin et al., 2002b; Wang et al., 

2004; Lin et al., 2005; Schuler et al., 2006) and recently it has been shown that NA 

supplementation results in an upregulation of three of these key regulators, namely PPARδ, 

PGC-1α and PGC-1β in rectus femoris muscle of rats (Ringseis et al., 2013). PPARδ is the 

most abundant PPAR isotype in skeletal muscle (Braissant et al., 1996; Muoio et al., 2002; de 

Lange et al., 2006) and has a higher expression in oxidative type I muscle fibers than 

glycolytic type II muscle fibers (Wang et al., 2004). PPARδ is involved in many different 

biological activities such as lipid and lipoprotein metabolism (Leibowitz et al., 2000; Risérus 

et al., 2008), skeletal muscle lipid oxidation (Wang et al., 2004), mitochondrial respiration 

(Luquet et al., 2003), thermogenesis (Guardiola-Diaz et al., 1999), and skeletal muscle fiber 

type distribution (Wang et al., 2004). Short-term exercise (Watt et al., 2004; Mahoney et al., 

2005), endurance training (Russell et al., 2003; Fritz et al., 2006) and supplemental NA 

(Ringseis et al., 2013) lead to increased relative mRNA levels of PPARδ in human and rodent 

skeletal muscle. Similarly in sheep there was a significant effect of NA on relative mRNA 

levels of PPARδ in LD and ST muscles, and tended (P < 0.15) to be increased in SM muscle 

(study 2). To determine the translation level of PPARδ relative mRNA into protein, the 

protein levels were analyzed of three muscles by western blot analysis, but the protein level of 

PPARδ in any muscle of sheep was not different between groups. It is not clear, why there 

was no effect of NA on PPARδ protein levels, but this may be due to the comparatively small 
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sensitivity of the western blotting technique making it difficult to detect slight differences 

between groups. It was observed, that the transcript levels of relative mRNA of PPARδ in all 

three muscles were also not so abundant in both groups. So, the unaltered protein level of 

PPARδ does not exclude that its DNA-binding activity was increased because it is known that 

PGC-1α and PGC-1β, whose relative mRNA expressions was clearly increased, act as 

coactivators of PPARδ and enhance the transactivation activity of PPARδ (Yu and Reddy, 

2007).  

PGC-1α is a transcription coactivator that coactivates a broad range of transcription factors 

that are involved in a wide variety of biological responses including adaptive thermogenesis, 

glucose/fatty acid metabolism and fiber type switching in skeletal muscle (Lin et al., 2002b; 

Puigserver and Spiegelman, 2003; Lin et al., 2005; Liang and Ward 2006). PGC-1α is also 

known as a master regulator of mitochondrial biogenesis (Wu et al., 1999; Fernandez-Marcos 

and Auwerx, 2011). PGC-1α is preferentially expressed in type I-rich and type IIA-rich 

muscle beds (Lin et al., 2002a). Like PGC-1α, PGC-1β is another member of PGC-1 family 

(Puigserver and Spiegelman, 2003; Lin et al., 2002b), also a key regulator of fatty acid 

oxidation, oxidative phosphorylation, mitochondrial biogenesis (Liang and Ward 2006, Arany 

et al., 2007). PGC-1β is also involved in the regulation of skeletal muscle fiber transition 

(conferred a switch toward a more slow myofibers phenotype) (Mortensen et al., 2006). Both 

PGC-1α and PGC-1β are more highly expressed in oxidative fibers (Lin et al., 2002a; Arany 

et al., 2007), and particularly PGC-1α expression in human and rodent skeletal muscle is 

strongly induced by short-term exercise and endurance training (Baar et al., 2002; Russell et 

al., 2003; Norrbom et al., 2004; Koves et al., 2005). Though PGC-1β is highly expressed in 

skeletal muscle, it does not seem to be regulated by endurance exercise and/or have not been 

studied extensively (Meirhaeghe et al., 2003; Arany, 2008). However, in another study it was 

demonstrated that PGC-1β knockout causes a decrease of mitochondrial volume, a reduced 

expression of genes of the electron transport chain, and a mitochondrial respiration defect in 

skeletal muscle of rats (Mortensen et al., 2006). As expected, the relative mRNA levels of 

PGC-1α in LD muscle of pigs were numerically increased in NA group in study 1, even 

though this effect was not significant, which is attributed to the relatively high standard 

deviation of this parameter in both groups of pigs. Moreover, the relative mRNA level of 

PGC-1α in all three muscles and protein levels in two skeletal muscles (LD and SM) of sheep 

(study 2) were elevated in the NA group compared to control group. As predicted, it has been 

observed in study 1 and 2 that, the transcript level of PGC-1β was higher or tended (P < 0.15) 

to be higher in all analyzed muscle of pigs and sheep of the NA group compared to control 
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group. Thus, the findings of the present studies, suggest that NA supplementation increases 

the transcriptional activity of these critical key regulators (PPARδ, PGC-1α and PGC-1β) of 

muscle fiber transition, and thus provides an explanation for the increased type I fiber content 

in skeletal muscles of NA-treated animals. 

Type I fibers, also called slow-twitch oxidative fibers, contain a high number of mitochondria, 

have a high oxidative capacity, and preferentially use fatty acids for energy production 

(Barnard et al., 1971; Peter et al., 1972). This oxidative metabolic phenotype of type I fibers 

is reflected by an elevated expression of genes involved in fatty acid transport and uptake, β-

oxidation, carnitine shuttle, TCA cycle, respiratory chain and oxidative phosphorylation. So, 

relative mRNA levels of genes involved in mitochondrial fatty acid uptake and oxidation 

(CACT/ SLC25A20- in study 1 and 2; CPT1B- in study 2), mitochondrial fatty acid 

transport (FATP1- in study 1), carnitine uptake (OCTN2- in study 1), oxidative 

phosphorylation (COX4/1- in study 1; COX5A- in study 2; COX6A1- in study 1 and 2), 

citrate cycle (SDHA- in study 1 and 2) and thermogenesis (UCP2, UCP3- in study 1) were 

determined in different skeletal muscle of pig and sheep. All of these genes are abundantly 

expressed in type I fibers, which is responsible for the oxidative metabolic phenotype and 

preferred oxidative phosphorylation for energy production (Peter et al., 1972; Pette and 

Staron, 1990). As expected, the relative mRNA levels of all of these genes were higher in the 

NA group compared to control group [only UCP2 had tendency (P < 0.15) to increase] in both 

pig and sheep of the present studies. Thus, abovementioned changes in skeletal muscle gene 

expression induced by NA indicate that as the oxidative type I fibers are increased, the 

capacity of the skeletal muscle for oxidative utilization of fatty acids has also increased by 

NA administration. 

As VEGFA is one of the most potent inducers of angiogenesis and vasculogenesis, a key 

regulator of both physiological and pathological angiogenesis (Ferrara et al., 2003; Roy et al., 

2006) and type I fibers exhibit a higher expression of this angiogenic factor, the relative 

mRNA level of this gene was measured in study 2. As expected, the relative mRNA level of 

VEGFA was higher in the NA group compared to control group in all three muscles of sheep. 

This suggests that angiogenesis was stimulated by NA leading to a higher capillary density 

which also contributes to an increased utilization of fatty acids in skeletal muscle (Ringseis et 

al., 2013). Indeed, VEGFs increase capillary density as well as the expression of endothelial 

cell fatty acid transport proteins and thus enhancing fatty acid uptake from blood into skeletal 

muscle (Hagberg et al., 2010). 
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In contrast to the recent study in obese Zucker rats (Ringseis et al., 2013), NA 

supplementation did not induce the well-documented plasma TAG-lowering effect in pigs, 

while TAG levels tended (P < 0.15) to be lower in the NA group than in the control group of 

sheep. It is not quite surprising because with similar dose of NA there were also no effect of 

NA on plasma TAG in healthy human subjects (Poynten et al., 2003). The lack of effect, 

however, is probably not due to an insufficient NA dose because the dose was similar as used 

in the obese Zucker rat study (Ringseis et al., 2013) and the administered NA dose caused a 

significant increase in plasma NA, particularly NAM levels, indicating sufficient 

bioavailability in both studies. It is more likely that plasma TAG concentration of pigs was 

not lowered because it was yet within the normal range making a further reduction unlikely.  

 

In opposite to the well-documented antilipolytic effect of NA (Gille et al., 2008; Morey et al., 

2011) the plasma FFA concentration of NA group was also not reduced in sheep, but even 

increased in pigs, at least numerically. The potential explanation for the non-reduced plasma 

FFA levels of NA treatment is rebound of plasma FFA. The increased FFA levels of pigs 

(study 1) and the baseline plasma FFA levels in sheep (study 2) are in agreement with the 

observations that chronic NA administration for at least 2 weeks results in elevated plasma 

FFA levels (Alvarsson and Grill, 1996; Poynten et al., 2003), and this rebound increased up to 

fasting FFA levels have been observed in case of more than 2 weeks of NA treatment 

(Poynten et al., 2003). It is well recognized that, both oral and intravenous administration of 

NA lead to dramatic and acute reductions of plasma FFA, followed by a rebound and 

subsequent return to baseline (Pereira, 1967; Waterman and Schultz, 1972; Waterman et al., 

1972; Jaster et al., 1983; Carlson, 2005; Pires and Grummer, 2007). The basis for this 

rebound phenomenon on lipolysis during long-term NA treatment is not clear, but recent 

findings indicate that chronic NA treatment in rats resulted in the significant decrease of 

phosphodiesterase-3B (PDE-3B) gene expression, which might have led to increase cAMP 

level (a major regulator of lipolysis in adipocytes) and thus increase lipolysis to cause the 

FFA rebound (Oh et al., 2011). Moreover, the relative mRNA expression of several key 

enzymes of TAG synthesis was markedly decreased, suggesting the possibility that decreased 

TAG synthesis contributes to the FFA rebound (Oh et al., 2011). A meta-analysis of multiple 

studies involving NA feeding to dairy cows showed no statistical effects of NA in plasma 

FFA and BHBA concentrations (Schwab et al., 2005). 

The underlying mechanism how NA switches fiber types cannot be resolved from the present 

thesis studies, but the possibility is that the effect of NA involves NA receptor-independent 
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mechanisms, because the skeletal muscle does not express NA receptor. In this line it is 

remarkable that NA has been reported to induce several humoral changes, such as increases in 

the plasma levels of epinephrine, corticosterone and glucagon (Quabbe et al., 1983). 

Furthermore, NA supplementation also causes an elevation in the plasma levels of growth 

hormone, adiponectin and leptin, all of which are recognized to influence gene expression and 

cellular signalling in different tissues (Westphal et al., 2007; Plaisance et al., 2008). Hence, 

future studies remain to figure out whether these NA-induced humoral changes are 

responsible for the observed muscle fiber switching.  

In conclusion, the results of the present thesis studies show that NA supplementation to pig 

and sheep induces a switch from type II to type I fibers with profound changes in the skeletal 

muscle metabolic phenotype. Thus, NA supplementation induces type II to type I muscle fiber 

switching, and thereby an oxidative metabolic phenotype of skeletal muscle in pigs. It is 

recognized that muscle fiber’s composition affects the energy metabolism during postmortem 

conversion of muscle to meat, hence affecting ultimate meat quality (Karlsson et al., 1999; 

Monin and Ouali, 1992). Given that oxidative muscle types tend to develop dark, firm and dry 

pork in response to intense physical activity and/or high psychological stress levels 

preslaughter, a NA-induced change in the muscle fiber type distribution may improve meat 

quality of pigs. Furthermore, the NA-induced switch from type II to type I in skeletal muscle 

indicates an increased capacity of skeletal muscle for oxidative utilization of fatty acids. 

Therefore, the results suggest that an increased utilization of fatty acids by increased type I 

fibers, which significantly contributes to whole-body fatty acid utilization, and ultimately 

contributes to the lipid-lowering effects of NA treatment. Thus, findings of the study 2 might 

be most appropriate in the circumstances in which farms are experiencing unusually high 

incidence rates of metabolic disorders like ketosis and/or fatty liver of high yielding dairy 

cows. 
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5. SUMMARY 

Nicotinic acid (NA) is the oldest lipid-lowering drug and has been used for more than five 

decades in the treatment of atherosclerosis and metabolic disorders. The lipid-lowering 

mechanism of NA has been extensively investigated and traditionally attributed to its 

antilipolytic effect on adipocytes through binding with the NA receptor G-protein-coupled 

receptor 109A (GPR109A). However, the circulating free fatty acid (FFA) level rebound and 

over-shoot the baseline due to long-term NA treatment even though its lipid-lowering effects 

persist. Thus, despite a long history of clinical use, to date the precise mechanism by which 

NA lowers plasma lipid is far from clear. In such a context, in the present thesis it has been 

hypothesized that NA induces type II to type I muscle fiber transition, thereby increasing the 

oxidative capacity of overall skeletal muscle, which may be the background mechanism of 

lipid-lowering properties of NA. It has been already found that NA supplementation 

counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic 

type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. 

These effects were likely mediated by the induction of key regulators of fiber transition, 

peroxisome proliferator-activated receptor δ (PPARδ), PPARγ coactivator-1α (PGC-1α) and 

PPARγ coactivator-1β (PGC-1β), leading to type II to type I fiber transition and upregulation 

of genes involved in fatty acid oxidation, mitochondrial oxidative phosphorylation, and 

angiogenesis. So, the main intention of the present thesis studies was to investigate the 

hypothesis that, whether NA administration also influences fiber type distribution and thereby 

the metabolic phenotype of different skeletal muscles in two farm animal species, namely in 

pig as a model of non-ruminants (study 1) and in sheep as a model of ruminants (study 2).  

In order to investigate the hypotheses of study 1, twenty five male, 11 weeks old crossbred 

pigs (Danzucht x Pietrain) with an average body weight of 32.8 ± 1.3 (mean ± SD) kg were 

randomly allocated to two groups of 12 in control group and 13 pigs in NA group which were 

fed either a control or a diet supplemented with 750 mg NA/kg diet for 3 weeks. Fiber typing 

was performed in three different skeletal muscles (M. Longissimus dorsi, LD; M. Quadriceps 

femoris, QF; M. Gastrocnemius, G) and quantitative polymerase chain reaction (qPCR) was 

performed in LD muscle only. The percentage numbers of type I fibers in three different 

skeletal muscles were higher in the NA group and the percentage numbers of type II fibers 

were lower in the NA group compared to the control group. In line with this, the relative 

mRNA level of the type I fiber-specific myosin heavy chain, MYH7 gene tended (P < 0.15) to 

be higher; type II fiber-specific MYH2 and MYH4 genes were reduced or tended (P < 0.15) to 

be reduced, respectively, in LD muscle in the NA group compared to the control group of 
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pigs. The relative mRNA levels of key regulators of muscle fiber transition, PGC-1β was 

increased and PGC-1α was numerically increased by NA treatment. Genes involved in 

mitochondrial fatty acid utilization and thermogenesis [carnitine acylcarnitine translocase,  

fatty acid transport protein1, novel organic cation transporter 2, succinate dehydrogenase 

subunit A (SDHA), cytochrome c oxidase 4/1 and 6A1, (COX4/1 COX6A1) and uncoupling 

proteins 3] measured in LD muscle were higher in the NA treated pigs compared to control 

pigs.  

In order to investigate the hypotheses of study 2, sixteen male, 11 weeks old Rhoen sheep 

with an average body weight of 29.6 ± 3.0 (mean ± SD) kg were randomly allocated to two 

groups of 8 sheep each and treated either without (control group) or with 1 g NA per day (NA 

group) for 4 weeks. After 4 weeks, the percentage numbers of type I fibers in three different 

skeletal muscles (LD; M. Semimembranosus, SM; M. Semitendinosus, ST) were higher in the 

NA treated sheep, whereas the percentage numbers of type II fibers were lower in the NA 

group compared to the control group of sheep. This effect was also reflected by the NA 

induced increase in the transcript level of fiber type I specific myosin heavy chain I, (MHCI) 

isoform in SM and ST muscles or tended (P < 0.15) to be increased in LD muscle; the fiber 

type II specific MHCIIA isoform was lowered in LD and SM muscles; fiber type II specific 

MHCIIX isoform was lowered in LD and tended (P < 0.15) to be lowered in SM muscle by 

NA treatment. The relative mRNA levels of the key regulators of muscle fiber transition, 

PGC-1α, PGC-1β and PPARδ, in all three muscles were higher or tended (P < 0.15) to be 

higher in the NA treated group compared to the control group sheep. Moreover, the protein 

level of PGC-1α was elevated in two muscles (LD and SM) of the NA group compared to the 

control group. In line with this, it was observed that the relative mRNA levels of genes 

involved in fatty acid oxidation and angiogenesis [SDHA, carnitine palmitoyltransferase 1B, 

solute carrier family 25 member 20, COX5A, COX6A1 and vascular endothelial growth 

factor A] in all three skeletal muscles of sheep were elevated by NA treatment. 

In conclusion, the overall finding of the present PhD thesis is that NA causes type II (fast-

glycolytic) to type I (slow-oxidative) fiber switch and thereby increases the oxidative capacity 

in different types of skeletal muscle of pigs and sheep. This increased oxidative skeletal 

muscle capacity induced by NA might improve the pork quality because the oxidative muscle 

types tend to develop dark, firm and dry pork in response to intense physical activity and/or 

high psychological stress levels preslaughter. As well as the increased oxidative capacity of 

skeletal muscle to utilize fatty acids in ruminants could be particularly useful during 
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metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as in 

ketosis and/or fatty liver of high yielding dairy cows.  
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6. ZUSAMMENFASSUNG 

Nikotinsäure (NA) ist das älteste lipidsenkende Medikament und wird bereits seit mehr als 

fünf Jahrzehnten bei der Behandlung von Atherosklerose und Stoffwechselkrankheiten 

eingesetzt. Der lipidsenkende Effekt der Nikotinsäure wurde intensiv untersucht und ist 

gekennzeichnet durch einen antilipolytischen Effekt auf Adipozyten, der durch die Bindung 

an den Nikotinsäurerezeptor GpR109A vermittelt wird. Während der Langzeittherapie mit 

Nikotinsäure kommt es zu einem Rebound-Effekt mit überschießenden Konzentrationen an 

freien Fettsäuren im Plasma, wobei jedoch der lipidsenkende Effekt erhalten bleibt. Trotz der 

langen Historie der klinischen Verwendung, ist der genaue Mechanismus der lidpidsenkenden 

Wirkung noch nicht eindeutig geklärt. In diesem Zusammenhang soll die vorliegende 

Dissertation die Hypothese überprüfen, dass Nikotinsäure den Übergang von Typ-II-

Muskelfasern zu Typ-I- Muskelfasern induziert und somit die oxidative Kapazität des 

Skelettmuskels erhöht, was einen zugrundeliegenen lipidsenkenden Mechanismus der 

Nikotinsäure darstellten könnte. Es ist bereits bekannt, dass die Supplementierung von 

Nikotinsäure der Adipositas-induzierten Muskelfaserumwandlung von oxidativen Typ-I 

Muskelfasern zu glykolytischen Typ-II Fasern entgegenwirkt und die Anzahl der Typ-I 

Muskelfasern im Skelettmuskel von adipösen Zucker-Ratten erhöht. Dieser Effekt wird 

wahrscheinlich über die Aktivierung der Hauptregulatoren der Muskelfaserumwandlung 

erreicht, zu denen der peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(PGC-1α), der peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-

1β) und der peroxisome proliferator-activated receptor delta (PPARδ) gehören. Dessen 

Aktivierung führt zu einer Umwandlung von Typ-II Muskelfasern zu Typ-I Muskelfasern und 

einer Hochregulierung von Genen, die bei der Fettsäureoxidation, der oxidativen 

Phosphorylierung sowie der Angiogenese involviert sind. Das Ziel der vorliegenden 

Dissertation bestand darin, die Hypothese zu untersuchen, dass die Verabreichung von 

Nikotinsäure die Muskelfaserverteilung und den metabolischen Phänotyp ausgewählter 

Skelettmuskeln beim Schwein, als Model eines Nichtwiederkäuers (Studie 1), und beim Schaf 

(Studie 2), als Model eines Wiederkäuers, beeinflusst.  

Um die Hypothese der ersten Studie zu untersuchen, wurden 25 männliche Schweine im Alter 

von 11 Wochen und einem durchschnittlichen Körpergewicht von 32,8 ± 1,3 kg (Mittelwert ± 

SD) zufällig 2 Gruppen zugeordnet. Die 12 Schweine der Kontrollgruppe bekamen ein 

Kontrollfutter, während den 13 Schweinen der Behandlungsgruppe das Kontrollfutter mit 

Zusatz von 750 mg Nikotinsäure/kg Ration verabreicht wurde. Die Muskelfasertypisierung 

wurde mit Proben des M. longissimus dorsi (LD), M. quadriceps femoris (QF) und M. 
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gastrognemicus (G) vorgenommen. Zusätzlich wurden quantitative PCR-Analysen mit LD-

Proben durchgeführt. Durch die Gabe von Nikotinsäure erhöhte sich der prozentuale Anteil 

von Typ-I-Muskelfasern signifikant in allen ausgewählten Muskeln (LD, QF, G), während 

sich der prozentuale Anteil der Typ-II-Muskelfasern verringerte, im Vergleich mit der 

Kontrollgruppe.  

In Übereinstimmung dazu waren die relativen mRNA-Konzentrationen des Typ-I-

spezifischen Gens myosin heavy chain, MYH7 im LD der Behandlungsgruppe tendenziell 

höher (P < 0.15) und die der Typ-II-spezifischen Gene MYH2 und MYH4 signifikant bzw. 

tendenziell (P < 0.15) vermindert, im Vergleich zur Kontrollgruppe. Die relativen mRNA-

Konzentrationen der Hauptregulatoren waren nach Behandlung mit Nikotinsäure im Falle von 

PGC1β signifikant erhöht und bei PGC1α numerisch erhöht. Für die Gene des 

mitochondrialen Fettsäurestoffwechsels [carnitine acylcarnitine translocase, fatty acid 

transport protein1, novel organic cation transporter 2, succinate dehydrogenase subunit A, 

(SDHA), cytochrome c oxidase 4/1 und 6A1, (COX4/1 und COX6A1) und der Thermogenese 

uncoupling proteins 3] konnte ein signifikanter Anstieg der relativen mRNA-Konzentrationen 

im LD in der Gruppe mit Nikotinsäuresupplementierung gezeigt werden.  

Zur Überprüfung der Hypothese der zweiten Studie wurde ein vierwöchiger Versuch mit 16 

männlichen, 11 Wochen alten Rhönschafen durchgeführt, welche ein durchschnittliches 

Körpergewicht von 29,6 ± 3,0 kg (Mittelwert ± SD) hatten und zufällig der Kontrollgruppe 

(Kontrollration ohne Nikotinsäure) oder der Behandlungsgruppe (Kontrollration plus 1 g 

Nikotinsäure/Tag) zugeordnet wurden.  

Die vierwöchige Nikotinsäuresupplementierung der Schafe führte zu einer prozentualen 

Erhöhung der Typ-1-Muskelfasern in den ausgewählten Muskeln LD, M. semimebranosus 

(SM) und M. Semitendinosus (ST), wohingegen der prozentuale Anteil der Typ-II 

Muskelfasern im Vergleich zur Kontrollgruppe geringer war. Dieser Effekt äußerte sich auch 

in den erhöhten relativen mRNA-Konzentrationen der spezifischen myosin heavy chain, 

MHCI Isoform im Muskel SM und ST (P < 0.05) und LD (P < 0.15) sowie in den 

Transkriptleveln der MHCIIX-Isoform, die verringert waren in den Muskeln SM (P < 0.05) 

und LD (P < 0.15), verglichen mit der Kontrollgruppe. Auch die relativen mRNA-

Konzentrationen der Hauptregulatoren der Muskelfaserumwandlung, PGC1α, PGC1ß und 

PPARδ, waren in den drei ausgewählten Muskeln signifikant oder tendenziell signifikant 

erhöht in der Gruppe mit Nikotinsäuresupplementierung. Darüber hinaus konnte auch ein 

Anstieg der Proteinkonzentration von PGC1α in den Muskeln LD und SM nach Gabe von 

Nikotinsäure mittels Western Blot Analysen nachgewiesen werden. Damit einhergehend 
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zeigten die ausgewählten Gene des Fettsäurestoffwechsels und der Angiogenese (SDHA, 

carnitine palmitoyltransferase 1B, solute carrier family 25 member 20, COX5A, COX6A1 

und vascular endothelial growth factor A) in allen drei Muskeln der Schafe der Niacingruppe 

erhöhte relative mRNA-Konzentrationen. 

Zusammenfassend bestätigt die vorliegende Dissertation, dass Nikotinsäure ursächlich für die 

Muskelfaserumwandlung von (schnellen-glykolytischen) Typ-II Fasern zu (langsamen-

oxidativen) Typ-I Fasern ist und damit die oxidative Kapazität in den verschiedenen 

ausgewählten Muskeln von Schwein und Schaf erhöht. Diese gesteigerte oxidative Kapazität, 

die durch Nikotinsäure induziert wird, verbessert möglicherweise die Fleischqualität, da die 

oxidativen Muskelfasern aufgrund der intensiven körperlichen Aktivität und/oder des hohen 

psychischen Stresslevels unmittelbar vor der Schlachtung die Entstehung von dunklem, 

festem und trockenem Fleisch begünstigen. Die erhöhte oxidative Kapazität der 

Skelettmuskulatur könnte auch in Situationen, die mit einer erhöhten Stoffwechselrate 

assoziiert sind, wie zum Beispiel Ketose oder Fettleber bei der hochleistenden Milchkuh, 

vorteilhalt sein, da somit möglicherweise die Metabolisierung von Fettsäuren verbessert 

werden kann. 
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