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Abstract: The appearance of persister cells with low metabolic rates are key factors leading to antibi-
otic treatment failure. Such persisters are multidrug tolerant and play a key role in the recalcitrance of
biofilm-based chronic infections. Here, we present the genomic analyses of three distinct Pseudomonas
aeruginosa Egyptian persister-isolates recovered from chronic human infections. To calculate the per-
sister frequencies, viable counts were determined before and after treatment with levofloxacin. The
susceptibilities of isolates to different antibiotics were determined using the agar-dilution method.
To determine their recalcitrance, the levofloxacin persisters were further challenged with lethal
concentrations of meropenem, tobramycin, or colistin. Furthermore, the biofilm formation of the
persister strains was estimated phenotypically, and they were reported to be strong biofilm-forming
strains. The genotypic characterization of the persisters was performed using whole genome se-
quencing (WGS) followed by phylogenetic analysis and resistome profiling. Interestingly, out of
the thirty-eight clinical isolates, three isolates (8%) demonstrated a persister phenotype. The three
levofloxacin-persister isolates were tested for their susceptibility to selected antibiotics; all of the
tested isolates were multidrug resistant (MDR). Additionally, the P. aeruginosa persisters were capable
of surviving over 24 h and were not eradicated after exposure to 100X-MIC of levofloxacin. WGS for
the three persisters revealed a smaller genome size compared to PAO1-genome. Resistome profiling
indicated the presence of a broad collection of antibiotic-resistance genes, including genes encoding
for antibiotic-modifying enzymes and efflux pump. Phylogenetic analysis indicated that the persister
isolates belong to a distinct clade rather than the deposited P. aeruginosa strains in the GenBank.
Conclusively, the persister isolates in our study are MDR and form a highly strong biofilm. WGS
revealed a smaller genome that belongs to a distinct clade.

Keywords: persister cells; Pseudomonas aeruginosa; multidrug-tolerant cells; killing curve; whole
genome sequencing (WGS); resistome profiling; phylogenetic analysis

1. Introduction

Pseudomonas aeruginosa is an opportunistic pathogen that poses a threat in clinical
settings due to its intrinsic and acquired resistance to a wide range of antibiotics and
biocides [1–3]. During chronic infection, P. aeruginosa can be evolved toward a high-
persister state, producing more antibiotic-tolerant cells [4]. Persister-cell formation is a
phenomenon that contributes to the tolerance of a bacterial sub-population to antimicrobial
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agents. The presence of persister cells surviving high concentrations of antibiotics makes it
virtually impossible to eradicate the chronic infection caused by P. aeruginosa. Although
persisters constitute a small fraction of the population, they can be selected by surviving the
treatment with high doses of bactericidal antibiotics [5]. Notably, this antibiotic tolerance
of persister cells is distinct from genetically inherited resistance [6].

Although persister cells were discovered in Staphylococcus sp. as early as 1944 by
Bigger [7], they were ignored for a long time. The first mutants identified to be altered
in their persistence were the high persistence (hip) mutants in Escherichia coli that were
discovered in 1983 [8]. Furthermore, persister cells have been described for other pathogens,
including P. aeruginosa, Mycobacterium tuberculosis, Salmonella sp., and Streptococcus sp. [6,9].
The existence of persisters is believed to prolong and exacerbate the treatment of infectious
diseases, such as tuberculosis and cystic fibrosis (CF)-associated lung infections [10].

Biofilm formation by bacteria is highly associated with increased resistance to con-
ventional antibiotic therapy. Pseudomonas possesses a strong tendency to develop biofilm,
which aids in its persistence and contributes to recalcitrant and/or recurrent infections after
antibiotic therapy [11–13]. The biofilm growth mode creates micro-environment conditions
that activate stringent response mechanisms and toxin–antitoxin (TA) systems that render
the bacterial population dormant and hence highly tolerant to antibiotics [14].

Persister cells represent a stage of dormancy that protects them from complete erad-
ication by antimicrobial substances, even in the presence of concentrations that vastly
exceed the minimal inhibitory concentration (MIC). Persister cells are genetically identical
to antibiotic-sensitive bacteria within a population but have a distinct phenotype in that
they are tolerant to antibiotics [15,16]. The dormancy stage in persister cells is thought to
be the underlying mechanism of antibiotic tolerance, since most antibiotics target bacterial
components or pathways involved in replication [17]. Nevertheless, persister cells can
switch from the dormant to the replicating stage. This ‘bet-hedging’ strategy is thought to
be a survival strategy of microbial populations [18].

It has been reported that the level of persisters could be increased as a result of a
heritable mutation in genes such as hipA (encodes the toxin entity of the toxin-antitoxin
module hipBA) [8]. After 30 years of reporting hipA mutants, it was found that HipA
inactivates glutamyl tRNA synthetase (GltX) by phosphorylation [19]. The inhibition
of GltX stimulated the synthesis of guanosine pentaphosphate/tetraphosphate (ppGpp);
ppGpp is a very important stress alarm, one that dramatically increases the persistence
level [20,21].

Although persister cells can arise from stochastic events in growing cultures [22],
evidence suggests that their formation can also be induced as a response to several environ-
mental factors, such as nutrient and oxygen deprivation, oxidative stress, DNA damage,
and antibiotics [23]. The addition of levofloxacin at a concentration of 10–100 times higher
than its specific MIC was capable of inducing and separating persister cells [24]. Starva-
tion, hypoxia, and antibiotic stress could be directly correlated to a reduced metabolic
rate and decreased cellular activity. Reduced metabolic activity is related to increased
persistence [25].

Previous reports have suggested that persister cells exhibit different phenotypes
compared to the wild-type strains, including smaller colony sizes or changes in pigmen-
tation [10,14,26]. Given that persister cells can enter a non-growing state, tolerate high
concentrations of bactericidal antibiotics (for example by activating efflux pumps), and
regrow once the treatment is ceased, these cells have already been linked to the relapse and
recalcitrance of chronic infections [14].

This study aimed to examine the fraction of persister cells in the P. aeruginosa cultures
of clinical isolates and to determine the susceptibility to different antimicrobials and the
biofilm-forming capacity for P. aeruginosa persister isolates as compared to the reference
strain PAO1. Moreover, whole genome sequencing, resistome profiling, and phylogenic
analysis were performed for the three persister isolates compared to the first sequenced
P. aeruginosa strain (PAO1 genome).
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2. Materials and Methods
2.1. Bacterial Strains and Ethical Statement

Thirty-eight P. aeruginosa isolates were obtained from different sources (urine, sputum,
and burn specimens) from patients admitted to El-Ahrar Educational Hospital and Zagazig
University Hospital, Egypt. The standard strain of P. aeruginosa PAO1 was included in
this study. It was provided from the stock culture collection of the Microbiology and
Immunology Department, Faculty of Pharmacy, Zagazig University.

Experiments involving human samples were performed in accordance with the Dec-
laration of Helsinki and were approved by the Zagazig University Institutional Review
Board (Approval number: ZU-IRB-10360).

2.2. Antimicrobial Agents

The antibiotics used in the study were pharmaceutical grade products. Meropenem
was obtained from the ADWIA Company, Egypt. Cefoperazone and tobramycin were
obtained from the Egyptian Pharmaceutical Industries Company (EPICO), 10th of Ramadan
city, Egypt. Cefepime was obtained from RAMEDA, Egypt. Levofloxacin and amikacin
were obtained from the AMOUN Company, Egypt. Colistin and chloramphenicol were
the products of SIGMA-TEC, 6th October City, Egypt. The batch numbers of the used
antimicrobials were listed in Supplementary Table S1.

2.3. Determination of Viable Bacterial Count

Ten-fold serial dilutions (final volume 1000 µL) of the bacterial suspensions, from an
overnight culture in a nutrient broth (Oxoid, Hampshire, England), were performed in
Eppendorf tubes. Triplicates of 100 µL of the appropriate dilutions were plated on nutrient
agar plates (Oxoid, Hampshire, England). The plates were incubated for 24–48 h at 37 ◦C.
The average numbers of colonies on the appropriate plate were counted and the colony
forming units (CFU)/mL were calculated [27].

2.4. Selection and Quantification of Levofloxacin Persister Cells

Levofloxacin was added to a growing nutrient broth culture of the isolate at a con-
centration of 10–100 times its MIC. The suspensions were incubated in a shaker incubator
(200 rpm) at 37 ◦C for 24 h. Falcone tubes containing bacterial cultures were centrifuged for
5 min at 8000 rpm and the supernatant was removed without disrupting the pellet. The
cells were washed by re-suspending them in 1 mL phosphate-buffered saline (PBS) and
transferred to an Eppendorf tube for centrifugation for 5 min at 14,000 rpm. The super-
natant was gently discarded and the pellets were re-suspended in 1 mL of Mueller–Hinton
broth (MHB). The viable count was made as described previously [28].

2.5. Determination of the MIC of Tested Antibiotics

The MICs of antibiotics were determined using the agar dilution method, according
to the clinical laboratory standard institute (CLSI) guideline [29]. The used antibiotics
were levofloxacin, chloramphenicol, amikacin, cefoperazone, meropenem, tobramycin,
cefepime, and colistin. The MICs were reported and interpreted as sensitive, intermediate,
or resistant, according to the CLSI breakpoints indicated in Supplementary Table S2.

2.6. The Killing Curve of Bactericidal Antibiotics against Levofloxacin Persisters

Time-killing curves were performed for selected persister-forming strains with an-
tibiotics, as described previously [30]. Three water-soluble antimicrobial agents (colistin,
meropenem, and tobramycin) were selected for time-killing curve assay.

Briefly, the overnight cultures of P. aeruginosa cells, treated with 100X MIC of lev-
ofloxacin (~2–5 × 103 CFU/mL), were pelleted (at 6000 rpm for 20 min), washed, and
resuspended in 1 mL of a double-strength broth. The stock solutions of antimicrobial
agents were prepared with concentrations equivalent to their 2x MICs and added to the
suspension of persister cells. Tubes were incubated in a shaker incubator (200 rpm) at 37 ◦C
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for up to 24 h. Viable counts were made at zero time and after that at 1, 3, 5 and 24 h. The
experiments were performed in triplicate with three independent cultures.

2.7. Biofilm Formation Capacity Test

The quantitative assay of biofilm formation was performed according to Stepanovic et al. [31].
A suspension of tryptone soy broth (TSB, Oxoid, Hampshire, UK) was prepared from the
overnight culture of each isolate and adjusted to 106 CFU/mL in the freshly prepared
culture broth of TSB. Aliquots of 200 µL of the bacterial suspension were transferred to the
wells of a flat-bottom microtiter plate and incubated at 37 ◦C for 48 h. The TSB was removed
gently and distilled water was used to wash the plates to remove any planktonic cells with
subsequent air drying. After 20 min of treatment with 200 µL of 99% fixing methanol, the
biofilm was then stained with 200 µL of 1% crystal violet (CV) solution for 15 min. After
washing of the plate, 33% glacial acetic acid was used as a solvent for CV and the optical
density (OD) of the solubilized dye was measured at 570 nm with a spectrofluorimeter
(Biotek, Winooski, VT, USA). Wells containing only media were included in the study to
serve as a negative control. The experiment was performed in triplicate.

The cut-off optical density (ODc) was calculated as three times the standard devia-
tions above the mean OD of the negative control. The tested strains were classified into:
non-biofilm producer (OD ≤ ODc), weak biofilm producer (OD > ODc, but ≤2 × ODc),
moderate biofilm producer (OD > 2 × ODc, but ≤ 4 × ODc), and strong biofilm producer
(OD > 4 × ODc), as described previously [31].

2.8. Genomic DNA (gDNA) Extraction and Whole Genome Sequencing

The GeneJET™ Genomic DNA Purification Kit was used for gDNA extraction. The
DNA purification protocol was performed according to the manufacturer’s instructions.
The purified gDNA was used immediately or stored at −20 ◦C. For the whole-genome
sequencing, genomic, short-read sequencing was performed on an Illumina NextSeq 500 se-
quencer (Illumina, The Netherlands) using a library prepared with MiSeq v3 (2 × 75 bp)
reagent kit.

2.9. Genome Annotation and Phylogeny

The raw reads were filtered for adaptor sequences and low-quality bases using
Trimmomatic v0.36 [32] and assembled de novo using Unicycler v0.4.8 [33]. For both
tools, the default parameters were used. Only contigs > 500 bp were considered for
further analysis. Genome-based annotation was carried out using PROKKA v1.11 [34].
Single nucleotide variants (SNVs) were identified by mapping filtered reads against
the closed reference genome of P. aeruginosa PAO1 (NC_002516) using Snippy v4.3.6
(https://github.com/tseemann/snippy (accessed on 5 January 2023)). Furthermore, the
isolates were identified using TYGC server (https://tygs.dsmz.de/ (accessed on 5 January
2023)), which compared the genomes to type-strain and calculated the in-silico DNA–DNA
hybridization score [35].

All the available (as of June 2022) completely closed genomes of 445 isolates were
downloaded from NCBI using the NCBI-genome-download script (https://github.com/
kblin/ncbi-genome-download (accessed on 5 January 2023)). The phylogeny was con-
structed based on the MASH distance using Ondov et al. [36]. The multilocus sequence
typing was carried out using MLST script (https://github.com/tseemann/mlst (accessed
on 5 January 2023)). The pangenome atlas was created using gView Server (https://server.
gview.ca/ (accessed on 5 January 2023)).

2.10. Resistome Analysis

The gene differences among the isolates were studied by calculating the core and pan-
genome using the Panaroo tool v1.2.3 [37]. Virulence gene profiling was performed by align-
ing the amino-acid sequences of all genes (using 70% query coverage and 80% nucleotide
identity) against the ‘virulence factor database (VFDB) using the Diamond v0.8.36.98

https://github.com/tseemann/snippy
https://tygs.dsmz.de/
https://github.com/kblin/ncbi-genome-download
https://github.com/kblin/ncbi-genome-download
https://github.com/tseemann/mlst
https://server.gview.ca/
https://server.gview.ca/
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tool [38]. Antibiotic resistance gene profiling was carried out using NCBI’s AMRfinder
(https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/ (ac-
cessed on 8 January 2023)) as well as the ‘resistance gene identifier’ v5.05.5 against the
CARD database (v3.0.3) [39]. The circular image was created using the BRIG tool v0.95 [40].
The heatmap for clustering AMR elements was constructed using ClustVis tool [41]. All
the bioinformatics tools were run with default parameters, unless specified.

3. Results
3.1. Separation of P. aeruginosa Persister Cells and Determination of Their
Antimicrobial Susceptibility

Thirty-eight P. aeruginosa isolates taken from chronically ill patients were studied for
persister cells formation using 100X MIC of levofloxacin. From the thirty-eight P. aeruginosa
isolates, only three isolates (8%) yielded persisters; these three isolates were isolated from
respiratory tract infections and from patients with cystic fibrosis and were named P1, P2,
and P3.

The resistance profile of these persisters showed increased resistance patterns to seven
tested antimicrobials (Table 1). In comparison to the reference strain PAO1, all persis-
ter strains were resistant to meropenem, levofloxacin, chloramphenicol, and tobramycin
(100%), while 90% of these strains were resistant to cefoperazone and colistin. Respective
resistance was observed against cefepime (60%) and amikacin (70%). The three persister
strains were found to be MDR.

Table 1. Resistance profiles of the recovered persister strains and PAO1 standard strain.

Strain
Code

MICs (µg/mL)
MDRCHL AK LEV CEP FEP MEM CT TOB

PAO1 2 (S) 4 (S) 0.5 (S) 4 (S) 1 (S) 0.5 (S) 1 (S) 2 (S) -
P1 256 (R) 128 (R) 8 (R) 256 (R) 64 (R) 64 (R) 16 (R) 128 (R) 5
P2 512 (R) 512 (R) 8 (R) 512 (R) 128 (R) 16 (R) 32 (R) 128 (R) 5
P3 256 (R) 128 (R) 16 (R) 512 (R) 64 (R) 16 (R) 16 (R) 512 (R) 5

S: Sensitive, R: Resistant, MDR: Multidrug Resistant, AK: Amikacin, CEP: Cefoperazone, FEP: Cefepime, MEM:
Meropenem, CT: Colistin, TOB: Tobramycin, LEV: Levofloxacin, CHL: Chloramphenicol.

3.2. Survival Curve of Persisters in the Presence of Levofloxacin, Tobramycin, Meropenem,
and Colistin

After overnight growth in Mueller–Hinton (MH) broth, (Oxoid, Hampshire, England),
cells were exposed to increasing concentrations of levofloxacin (250, 500, 1000 µg/mL). The
analysis of the number of survivor cells after 5 and 24 h (Figure 1) showed that the bulk of
the population was effectively killed with 250 µg/mL levofloxacin. The killing curves were
followed on the original strains.

A small fraction of cells (~10−3) were tolerant for up to 1000 µg/mL levofloxacin
(~100X MIC), The persisters after treatment with levofloxacin were exposed to lethal
concentrations of colistin, meropenem, or tobramycin, and the survivor’s numbers were
followed for 24 h (Figure 2).

https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
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ducers, as the measured OD was greater than 4ODc (the ODc was 0.1). The persister-form-
ing isolates showed the highest absorbance compared to PAO1, indicating their higher 
biofilm-forming capacity; the relative absorbance was calculated in comparison to the ab-
sorbance of ODc (Table 2 and Figure 3). 

0 5 10 15 20 25 30
2

4

6

8

250 ug/ml
500 ug/ml
1000 ug/ml

Time (hour)

Lo
g 1

0 C
FU

/m
l

Figure 1. Population analysis curve of levofloxacin against P. aeruginosa persister (isolate P1). Lev-
ofloxacin was added at time zero at the indicated concentrations to a stationary-phase culture. Data
are expressed as the Mean ± SEM of three independent experiments.
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Figure 2. Biphasic time killing curves of (a) tobramycin, (b) colistin, and (c) meropenem against
levofloxacin persisters of P. aeruginosa. After treatment with 100X-MIC of levofloxacin, P. aeruginosa
strains (P1, P2, P3) were exposed to bactericidal concentrations of antibiotics and viable counts were
determined at different time points (0, 1, 3, 5, and 24 h). Data are expressed as the Mean ± SEM of
three independent experiments.

3.3. Biofilm Forming Capacity of Isolates

The biofilm-forming capacity of the three levofloxacin-persister isolates in addition to
the PAO1 strain and a non-persister forming isolate (clinical isolate which had no survival
cells after treatment with high concentration (100X MIC) of levofloxacin) was quantified
using a spectrophotometric assay. All the tested isolates were strong biofilm producers, as
the measured OD was greater than 4ODc (the ODc was 0.1). The persister-forming isolates
showed the highest absorbance compared to PAO1, indicating their higher biofilm-forming
capacity; the relative absorbance was calculated in comparison to the absorbance of ODc
(Table 2 and Figure 3).
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Table 2. Biofilm forming capacity of persister strains compared to PAO1.

Isolate Absorbance (OD) at 570 nm Biofilm Forming Capacity

P1 0.967 S

P2 0.831 S

P3 0.872 S

PAO1 0.584 S

NP 0.547 S

ODc 0.1 Control (no biofilm)
S: strong biofilm forming, NP: non persister isolate.
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persister (NP) clinical isolate. The quantitative assay of biofilm formation was performed using a
spectrophotometric assay. All isolates formed strong biofilm with the highest strength observed
with persister isolates. Data are expressed as the Mean ± SEM of three independent experiments.
Two-tailed unpaired T-tests were employed to analyze significance; ns denotes no significance,
*** p < 0.001.

3.4. Whole Genome Sequencing (WGS) Reveals Distinct Features of the Persisters

All the genome sequences were submitted to the public database under the project
accession number PRJNA890046. Genomes of the P1, P2, and P3 isolates were deposited
as 1 (SRR21888463), 2 (SRR21888462), and 4 (SRR21888461). Isolates were identified to be
Pseudomonas aeruginosa, as all the three isolates showed more than 70% DDH to type strain.
The genome sizes of the persister isolates were 4,471,320 bp, 4,951,902 bp, and 4,661,420 bp
for the isolates P1, P2, and P3, respectively, compared to 6,264,404 bp the genome size of the
PAO1_NC_002516 reference strain. The genomes were distinguished into 1547, 1688, and
1706 contigs, respectively. The numbers of protein-coding sequences within the genomes
were 4606, 5130, and 4928 genes, for the persister isolates P1, P2, and P3, respectively,
compared to the 5671 coding genes for the PAO1 reference strain. The GC contents of the
genomes were 64.38, 63.91, and 64.14%, respectively, compared to 66.56% for the PAO1
genome. WGS confirmed species-level identification of all isolates with percent identity
values of 98.5% for all assemblies to the reference strain PAO1.

The circular map representing the entire genome assembly is shown in Figure 4.
The circular image depicts the comparison of the genome of isolates P1, P2, and P3 to
the reference genome of the PAO1 (NC_002516) strain. From the inner to outer circle is
depicted the nucleotide position, GC content, GC skew (of the PAO1), and genes of isolates
P1, P2, and P3, respectively. In addition, a comparison of the PAO1 genome with persister
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genomes revealed the presence of a number of genes (2401) in the persister genomes that
were absent in the PAO1 genome (Supplementary Table S3).
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isolates and PAO1 strain. The four strains shared in 3149 genes, while 334, 830, and 560 genes are
unique to P1, P2, and P3, respectively.

3.5. Antimicrobial Resistance Elements

Resistome profiling was carried out to detect the resistance elements contributing to
the MDR-pattern of these persisters forming isolates against anti-pseudomonas antibiotics.
The analysis of antibiotics and antiseptic resistance elements pinpointed 26 resistance genes
distributed among the isolates, 21 of them only exist in these persister isolates and 4 are
shared with the PAO1 genome, while the blaPDC-1 gene is present in only the standard
strain of PAO1 (Figure 5). These resistance elements represent a cocktail of resistance
elements against most of the clinically used antibiotics, including the major aminoglyco-
sides modifying enzymes acetyltransferases: aac(6′)-Ib and aac(6′)-Ib4, phosphotransferase:
aph(3′)-IIb, nucleotidyltransferases: aadA1 and aadA11 beside the 16S-rRNA methylase
rmtB4. Variants and sub-variants of different classes of β-lactamases were detected, in-
cluding blaOXA-10, blaOXA-14, bla OXA-395, bla OXA-50, bla OXA-796, and bla OXA-864. Several
pseudomonas-derived cephalosporinase (PDC) variants were also detected, i.e., bla PDC,
blaPDC-1, blaPDC-11, and blaPDC-16 and finally the blaNDM-1 gene, which encodes for the
New Delhi metallo-β-lactamase 1. Acquired resistance elements against chloramphenicol
were also detected, including catB7, cmlA5, and floR2, while individual resistance factors
against tetracycline (tetG), fosfomycin (fosA), sulphonamides (sul1), novel ciprofloxacin-
modifying enzyme encoding gene crpP, quinolone resistance determinant (qnrVC1), and
the antiseptic resistance gene (qacE∆1) are mainly found in isolate number 3. The broad
collection of antibiotic resistance genes found in the genomes are the reason for the MDR
of these isolates.
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Figure 5. Resistome profiling of antimicrobial modifying enzymes in persister isolates compared to
PAO1 standard strain. Antibiotic resistance gene profiling was carried out using NCBI’s AMRfinder
as well as ‘resistance gene identifier’ v5.05.5 against the CARD database. Heatmap was constructed
using Clustvis online tool.

Aside from the antibiotic modifying enzymes, the persisters’ genome harbored gene
clusters that correspond to the efflux pump-mediated resistance. Genome analysis identi-
fied 24–30 genes shared among the three isolates. These genes code for membrane fusion
proteins (MFP), resistance nodulation division proteins (RND), and outer membrane pro-
teins (OMP) that constitute efflux pump systems (Table 3). Based on the identified gene
clusters, nine multidrug resistance efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-
OprN, MexGHI-OpmD, MexJK-OpmH, MexMN-OprM, MexPQ-OpmE, MexXY-OprM,
and MexVW-OprM) were chromosomally encoded in the persister isolates. Moreover,
mutagenic analysis of the MexAB-OprM efflux pump regulators recognized a few point
mutations in the MexAB-OprM repressors (MexR, NalD, and NalC).

Table 3. Genotypic characteristics of efflux pump systems in P. aeruginosa persister isolates.

Persister
Number

Efflux Pump Component
Efflux Pump

Mutation in MexAB-OprM
Efflux Pump

Regulatory ProteinsMFP RND OMP

P1

MexA MexB OprM MexAB-OprM

MexR (V126E),
NalC (S209R, G71E)

MexC MexD OprJ MexCD-OprJ
MexJ MexK OpmH MexJK-OpmH

MexM MexN OprM MexMN-OprM
MexP MexQ -
MexV MexW OprM MexVW-OprM

P2

MexA MexB OprM MexAB-OprM

MexR (V126E),
NalC (S209R, G71E)

MexC MexD OprJ MexCD-OprJ
MexE MexF OprN MexEF-OprN
MexG MexH,I -
MexJ

MexM
MexK
MexN

OpmH
OprM

MexJK-OpmH
MexMN-OprM

MexP MexQ -
MexV MexW OprM MexVW-OprM

P3

MexA MexB OprM MexAB-OprM

MexR (V126E),
NalC (S209R, G71E)

MexC MexD OprJ MexCD-OprJ
MexE MexF OprN MexEF-OprN
MexG MexH,I OpmD MexGHI-OpmD
MexJ MexK OpmH MexJK-OpmH

MexM MexN OprM MexMN-OprM
MexP MexQ -
MexV MexW OprM MexVW-OprM
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3.6. Global Phylogenetic Analysis of the Persister Isolates

The phylogenomic location of the studied isolates was performed. Completely closed
genomes of 445 P. aeruginosa isolates were downloaded from the public database and
compared with these persister-forming isolates. When phylogenomically compared to
previously known P. aeruginosa strains from different countries, the studied isolates were
placed in a unified but separate clade (Figure 6 and Supplementary Table S4).
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4. Discussion

Chronic infections represent a terrible therapeutic challenge and have a puzzling
property. These infections are difficult and even impossible to eradicate. There is growing
evidence that bacterial persisters are involved in the relapse of bacterial infections [42]. Th
characterization of persister cells is important, not only in regarding the understanding
of population dynamics but also concerning antibiotic tolerance in chronic-infections ther-
apy [43]. Few studies have assayed persister formation in clinical isolates from complex
host environments [44,45]. In the current study, the characterization of P. aeruginosa persis-
ters isolated from chronic respiratory tract infections was performed using phenotypic and
genotypic methods.

Initially, we isolated P. aeruginosa multidrug-tolerant persister forming strains. Al-
though 100-fold MIC is unlikely to be achieved in the therapy of clinical infections, the
application of high doses of antimicrobials would select for high persister mutants. The
treatment with 100-fold MIC is a method of choice to identify highly drug-tolerant persister
cells of P. aeruginosa [46]. Accordingly, in our study, three different P. aeruginosa isolates were
identified as persister-forming strains. These isolates were recovered from 38 P. aeruginosa
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clinical isolates (8% persister-forming capacity). A low persister level, approaching 1% of
the total population, was reported by Mulcahy et al. [44]. While a higher persister forming
percentage (19%) was reported recently [45], their isolates were only obtained from CF
infections, which is a deadly disease accompanied with a chronic respiratory infection.

Two of the three persister isolates (P2 and P3) formed both large colonies and small
colonies on agar plates. Similarly, it was reported that S. aureus persisters induce a phe-
notypic change into small colony variants due to genomic inversion [47]. Furthermore, a
recent study indicated that P. aeruginosa can persist for a long time in an acidic environment,
through phenotypic alteration to a slow-growing colony phenotype [13].

The frequency of persisters was calculated for each isolate, and it ranged from 0.0017
to 0.0027 (approximately 10−3, meaning 1 out of 103 cells can form persister). Our result is
quite consistent with the results of Salcedo-Sora and Kell [48], who reported a persister level
within the range of 0.0012–0.0016. However, our results reveal much higher frequencies
than the 10−5 and the 10–6 reported previously [24,49].

P. aeruginosa strains are intrinsically resistant to a variety of antimicrobials, and can
further develop resistance during therapy [3]. In this study, the MIC results revealed
that the persister-forming isolates were highly resistant to most of the tested antibiotics.
Similarly, a recent study of Pseudomonas CF isolates revealed that more than 75% of the CF
isolates were resistant to at least half of the antibiotics. Additionally, 25% of their isolates
were found to be resistant to all the tested antibiotics, and only 36% of CF-isolates were
resistant to tobramycin [50]. Furthermore, it was reported that persister (Hip) isolates were
resistant to ciprofloxacin by 72.4% [45]. In this investigation, the time-killing curves using
colistin, meropenem, and tobramycin revealed that the curves substantially differentiate
not only between clinical isolates of P. aeruginosa but also between the different antibiotics.
For example, isolate P1 showed a higher number of survival after exposure to tobramycin
and meropenem, while isolate P2 had more survivor cells upon exposure to colistin.

The threat of P. aeruginosa is complicated due to its ability to form biofilms that
provide a protected environment to bacterial cells which help in tolerating various stresses,
including antimicrobials [51,52]. It was reported that the formation of P. aeruginosa persisters
and biofilms are interrelated [53]. The biofilm formation was evaluated in the three persister-
forming isolates, in addition to the PAO1 standard strain and a non-persister clinical isolate.
All the tested isolates were strong biofilm formers; however, the persister isolates had
stronger biofilms (as their OD was twice that of the PAO1 strain). In contrast, a previous
study reported that the biofilm of PAO1 and their persister strain had the same strength [26].

Genomics has been a key element in the study of P. aeruginosa evolution. It has
been reported that P. aeruginosa strains had a variable genome size of approximately
5–7 Mbp [54]. The omnipresence of P. aeruginosa may be related to its high genome plasticity.
The genome of the P. aeruginosa PAO1 standard strain was sequenced approximately two
decades ago [54]. However, the genetic mediators of persister formation for P. aeruginosa
are poorly understood [4]. In the current study, genome sequencing of persister-forming
isolates revealed that they had smaller genomes (4.66–4.9 Mbp), compared to PAO1-genome
(6.3 Mbp) sequenced previously [55], and the genome of Pseudomonas CF-isolates (6.36 Mbp)
recently sequenced [50]. The smaller genome size for our isolates could be due to the short-
reads-based sequencing and assembly used in our study. Furthermore, it is documented
that P. aeruginosa can customize its genome as individual strains have the ability to acquire
or discard genomic segments to fit their needs for survival in virtually any environment [56].

Resistome profiling indicated the presence of a broad collection of antibiotic-resistance
genes in our persisters’ genome, with 25 resistance genes distributed in persister-isolates,
most of which confer resistance to β-lactams (11 genes), aminoglycoside resistance (6 genes),
and chloramphenicol resistance (3 genes), while resistance to other antibiotic classes is
mediated by one gene each. CARD analysis revealed that the CF-isolates genome contains
a high number of resistance genes, including beta-lactam resistance genes (n = 6), efflux
pumps (n = 37), antibiotic inactivation enzymes (n = 8), and only one aminoglycoside
resistance gene [50].
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Multidrug efflux pumps constitute a group of antibiotic resistance elements that are a
core part of bacterial genomes [57]. The P. aeruginosa PAO1 genome contains several drug
efflux systems, predominantly of the RND and MFS families [56]. In the current study,
several multidrug efflux tripartite pumps that encoded in operon were recognized at the
genome level in our persister isolates (6–8 classes of the RND multidrug efflux pump-
operon in each genome), which explains their profound resistance against tested antibiotics.
Consistent with our results, MexA/B pumps were reported to be closely associated with
antimicrobial resistance and biofilm formation in clinical P. aeruginosa isolates recovered
from respiratory infections [58].

It was reported previously that mutations in mexR, nalC, and nalD regulatory genes
yield a MDR phenotype in P. aeruginosa [59,60]. Surprisingly, the identified point mutations
within the MexAB-OprM efflux pump regulatory genes (MexR, NalC) have been previously
described in clinical MDR–P. aeruginosa isolates [61,62]. In addition, an inactivating muta-
tion in mexZ, encoding a repressor of the MexXY-OprM pump, was reported in P. aeruginosa
persister isolates from CF patients [44]. All of these mutations favored the overexpression
of these pump systems and caused increased resistance to different antimicrobials. Future
work will focus on studying the transcriptional changes associated with persister formation
to identify potential targets for the anti-persister drug.

Our results in resistome profiling of persister isolates allow the identification of genes
that are likely to be involved in the antibiotic resistance of P. aeruginosa persister isolates.
Knowledge of the complete genome sequence and encoded processes provides a wealth
of information for the discovery of new antibiotic targets and for the development of
more effective strategies to treat the life-threatening opportunistic infections caused by
P. aeruginosa in humans.

Furthermore, phylogenetic analysis indicated that persister isolates belong to a unified
but separate clade rather than the deposited P. aeruginosa strains in the public repositories.
Further investigation is required to explore the validity and features of this clade. Similarly,
the phylogenetic analysis of P. aeruginosa CF isolates performed by Datar et al. [50] revealed
their unique clustering and indicate their location in different clades. To the best of our
knowledge, our study is the first to study the genome sequence of persister isolates from
local hospitals in Egypt.

5. Conclusions

The present study characterized, for the first time in Egypt, P. aeruginosa persister
isolates. The persister isolates were strong biofilm producers and have a highly resistant
phenotype when compared to the PAO1 standard strain. These results were confirmed
by genome sequencing revealing a large number of resistance genes. Furthermore, WGS
revealed a smaller genome that belong to a unified but separate clade compared to the
genome of other P. aeruginosa strains deposited in the GenBank.
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