GENERATION AND CHARACTERIZATION OF TAL EFFECTOR
NUCLEASES WITH NOVEL CATALYTIC DOMAINS

FABIAN BIETZ

Dissertation zur Erlangung des Akademischen Grades des Doktors der
Naturwissenschaften (Dr. rer. nat.)

Fachbereich 08
Institut fiir Biochemie
Justut Liebig Universitat
July, 2015



This dissertation was prepared in the research and development di-
vision Computational Biology at CELLECTIS (Paris) and at the Institute
for Biochemistry in the department Biology and Chemistry (FBo8) of the
Justus-Liebig-Universitit Gieflen from April,2011 to July 2015. The work
was supported by the DFG financed graduate college “Enzymes and
Multienzyme Complexes acting on Nucleic Acids” (IRTG GRK 1384).

PRIMARY REFEREE:

Prof. Dr. Peter Friedhoff
Institut fiir Biochemie
Fachbereich Biologie und Chemie
Heinrich-Buff-Ring 58
35392 Giefsen

SECONDARY REFEREE:
Prof. Dr. Michael U. Martin
Institut fiir Inmunologie
Fachbereich Biologie und Chemie
Schubertstrafse 81
35392 Giessen

SUPERVISORS:
Dr. George Silva and Dr. Wolfgang Wende

Fabian Bietz: Generation and characterization of TAL effector nucleases
with novel catalytic domains, Dissertation zur Erlangung des Akademis-
chen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.), July,
2015



I learned once again what a many-sided thing
is the telling of any tale

— GENE WOLFE

Dedicated to my parents, to my sister and to all other people
who I enjoyed spending time with in the last few years






ABSTRACT

Site-specific nucleases (ssNs) are molecular tools to introduce pNa
double-strand breaks (psBs) at definite genomic loci. bsBs can be ex-
ploited to knock-out, delete, repair or insert genes of interest. Con-
struction of ssns was simplified tremendously with the discovery of
transcription activator-like effector (TALE) proteins. The novel TALE
nucleases (TALENs) consist of a TALE-derived DNA binding domain,
guiding the construct to its target site, and a nuclease domain, which
is cleaving the pNA. The standard nuclease domain is the catalytic
domain of type IIS restriction endonuclease Fokl, which was adopted
from the older zinc-finger-nuclease architecture. Fokl requires dimer-
ization for the creation of a pDsB, making two TALENs necessary. Aim
of this work is the replacement of this catalytic domain to gener-
ate monomeric TALENs, that simplify production and transfection.
To cover nuclease domains with varying degrees of specificity, three
groups were chosen: promiscuous H-N-H and DRGH nucleases (I), the
more specific I-Tevl catalytic domain (II) and variants of the highly-
specific homing endonuclease I-Crel (III). The selected domains were
adapted to the fusion scaffold via rational design strategies and tested
in vitro and in vivo in several model organisms. Special properties of
these domains made the generation of novel, monomeric TALENS pos-
sible. Colicin E7, Nuclease A and Endonuclease A (I) were used to
create switchable TALENs and I-Crel (III) fusion yielded a highly spe-
cific construct. Investigation of the influence of the fusion terminus
allowed the construction of scaffolds with multiple nuclease domains
via I-TevI (II) and FokI.

ZUSAMMENFASSUNG

Hoch-spezifische Nukleasen (ssNs) sind molekulare Werkzeuge um
DNA-Doppelstrangbriiche (DsBs) an definierten Stellen im Genom zu
erzeugen. Diese DsBs konnen fiir Gen-Knockout, -Deletion, -Reparatur
oder -Insertion genutzt werden. Die Herstellung der ssNs wurde durch
die Entdeckung der Transcription Activator-Like Effector-(TALE)-Proteine
enorm vereinfacht. Die neuen TaALE-Nukleasen (TALEN) bestehen aus
einer TALE-basierten DNaA-Bindedomine, die das Konstrukt zu sei-
ner Zielsequenz fiihrt, und einer Nukleasedoméine, welche die pNna
schneidet. Die gingigste Nukleasedomaéne ist die katalytische Doma-
ne der Typ IIS Restriktionsendonuklease Fokl, die aus der &lteren
Zinkfingernukleasen-Architektur tibernommen wurde. Da FokI eine



Dimerisierung zur psB-Erzeugung erfordert, werden zwei TALENS be-
notigt. Ziel dieser Arbeit ist der Austausch dieser katalytischen Doma-
ne um monomere TALEN, die Herstellung und Transfektion vereinfa-
chen, anzufertigen. Um Nukleasedomédnen mit verschiedenem Grad
an Spezifitit abzudecken, wurden drei Gruppen ausgewdihlt: unspe-
zifische H-N-H und DRGH Nukleasen (I), die spezifische, katalytische
Doméne von I-Tevl (II) und Varianten der hoch-spezifischen Homin-
gendonuklease I-Crel (III). Die gewdhlten Doménen wurden durch
rationales Design fiir die Fusion adaptiert und in vitro sowie in vivo
in verschiedenen Modelorganismen getestet. Die besonderen Eigen-
schaften der jeweiligen Domé&nen machte die Entwicklung neuartiger,
monomerer TALEN moglich. Colicin Ey, Nuklease A und Endonuklea-
se A (I) wurden verwendet um regulierbare TALEN zu erzeugen und
aus der Fusion mit I-Crel (III) entstand eine hoch-spezifischen Nu-
klease. Untersuchungen tiber den Einfluss des Fusionsterminus er-
laubte die Herstellung von Geriisten mit multiplen Nukleasedoma-
nen mittels I-Tevl (II) und Fokl.
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INTRODUCTION

Since the first steps in agriculture and animal husbandry, humans,
albeit unintentional at first, are breeding plant and animal species to-
wards beneficial ends. Modification on the molecular level however,
started with the advent of genetics and biotechnology. Even before
the discovery of the desoxyribonucleic acid (DNA) double-helix [234],
people found out how to increase the natural mutation rate of organ-
isms to yield mutants with desired traits [197, 3]. The main drawback
is the random nature of mutagenesis.

Changes came when genetic backgrounds were investigated and re-
combinant DNA methods were developed [44]. Plant genomes could
be modified with bacterial vectors or with a particle inflow gun [163,
67], while micro injection and viral vectors allowed the modification
of animal genomes [100]. Even human gene therapy became a possi-
bility with these methods [76]. One main obstacle of these approaches
is the pseudo random nature of integration of the transferred DNAs.
As a consequence, integration events can be cytotoxic or worse: inac-
tivate tumor suppressor genes. Progress was made with the use of
homology directed repair (see subsection 1.3.2) to insert genes. Here,
a template DNA with homology regions is transfected into a cell and
then integrated into the genome via the cell’s own repair mechanisms
(see section 1.3). Although integration is site-specific, homologous re-
combination is rare in somatic cells of higher organisms. Fortunately,
the frequency of integration can be increased by several orders of
magnitude by stimulating homologous recombination (HR) through
introduction of a DNA double-strand break (DSB) in the region of in-
terest [201, 172]. This site-specific DSB, can also be repaired via the
non-homologous end-joining (NHEJ) pathway (see subsection 1.3.1),
leading to small insertion and deletion events (INDELs), which can
be exploited for the creation of gene knock-outs. Both however are
reliant on highly specific endonucleases with programmable target
site preferences (see figure 1). Approaches to provide these were
the reprogramming of highly specific homing endonucleases (see sec-
tion 1.2.2) and the creation of chimeric FokI based zinc-finger nucle-
ase (ZFN)s (see section 1.2.1). These ZFNs cleave DNA as dimers, each
consisting of one DNA-binding domain (DBD) and one FokI based nu-
clease domain. Both platforms have been applied for genome modifi-
cation in research and a successful therapeutic approach for ZFNs has
been reported [213].

Despite this progress adjustment of the target-site specificity and
prevention of off-target cleavage remain non-trivial and time-consuming.
The breakthrough for genome editing came with the deciphering of
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the transcription activator-like effector (TALE) DNA recognition code
(see section 2) and the application of clustered regularly interspaced
short palindromic repeats (CRISPR)/ CRISPR-associated system (CAS)
proteins (see section 1.2.3). Main advantages of the TALE-DBD over the
zinc finger DBD are its improved specificity and ease of reprogram-
ming. Therefore it is no surprise that they were used to replace the
zinc finger DBD in the new transcription activator-like effector nucle-
ase (TALEN) architecture. The ribonucleic acid (RNA) guided endonu-
clease Casg on the other hand proved to be even easier to retarget
and was shown to be ideal for multiplex genome editing. Drawbacks
are the large size of Casg variants [71] and significant off-site activity
[232, 74, 221].

So while TALENs seem to be among the most specific approaches,
they can be difficult to transfect for some applications. TALENs have
been introduced into cells via plasmid DNA, mRNA or as proteins
[4, 135], but this is not ideal for every cell type. Problems also occur,
when viral vectors are the preferred method of transfection. Adeno-
associated viruses only assemble efficiently when the expression cas-
sette is smaller than 4.7 kb [87], which would only fit one TALEN
monomer, a promoter and a small repair template. The repetitive
nature of the underlying TALEN DNA seems to make delivery via
integrase-defective lentiviral vectors difficult, which requires the gen-
eration of modified versions [153].

A monomeric TALEN can circumvent difficulties during transfection,
reduce production cost and also broaden the range of targetable re-
gions, since regions with only one suitable binding site can now be ad-
dressed. In this work, monomeric nuclease domains are investigated
in a TALE context and optimized to fit different applications. Three dif-
ferent approaches were pursued: non-specific (ColEy, NucA, EndA),
semi-specific (I-Tevl) and highly specific nuclease domains (I-Crel).
These monomeric nuclease domains made the creation of completely
new switchable and multi-domain architectures possible.

1.1 TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASES

TALENs possess a bipartite layout, consisting of a TALE-based DNA-
binding domain and a nuclease domain, which was adopted from
the older zinc-finger nuclease architecture.

1.1.1  Transcription activator-like effectors

The genus Xanthomonas consists of bacterial plant pathogens, which
secrete TALE proteins as pathogenicity factors. TALEs are translocated
into the host organisms via the bacterial type III secretion system
[185]. After entering the cytoplasm, they bind to the promotor se-
quences of a subset of genes and increase expression [111]. One of
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Double strand
break via SSNs
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Figure 1: Site-specific double-strand breaks can be used for genome editing
A DNA double-strand break is introduced by site-specific nucleases, such
as meganucleases, RNA-guided endonucleases or TALENs. The resulting
lesion can be repaired (see section 1.3) by two groups of pathways: non-
homologous end-joining (NHEJ) and homologous recombination (HR).
Small insertion and deletion events can occur during repair via NHE],
while the addition of a homologous repair template permits the replace-
ment of a whole genomic region via HR.
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the best characterized examples is the effector AvrBs3 of Xanthomonas
campestris pv vesicatoria, which can be seen as an example for the gen-
eral mechanism of TALEs.

X. campestris pv vesicatoria infects pepper plants (Capsicum annuum)
and induces transcription of UPA (up-regulated by AvrBs3) genes.
The transcribed gene products cause the enlargement (hypertrophy)
of the plants mesophyll amongst other effects [141]. Pepper variants
carrying the bacterial spot (Bs) resistance gene Bs3 are unaffected. In-
terestingly, the promotor region of Bs3 contains an effector binding
element (EBE), which causes AvrBs3 itself to induce the immune re-
sponse [28]. This is why this effector was first termed avirulence (Avr)
protein AvrBs3. Other adaptations against TALE proteins include mu-
tations in the host promotor regions.

It has also been shown that TaL-effector proteins are present in the
beta proteobacterium Ralstonia solanacearum, which causes bacterial
wilt in different species of plants [56]. These Ralstonia injected protein
TAL (RipTAL) proteins share a similary code, but show some structural
differences compared to Xanthomonas TALEs (see subsection 1.1.1.1).
Cryptic TALEs, which can be engineered to bind DNA, can be found
in Burkholderia rhizoxinica [104, 203].

1.1.1.1 Structure

TAL effectors are comprised of a central sequence of tandem repeats;
an N-terminal type III secretion sequence, a C-terminal nuclear local-
isation signal (NLS) and a C-terminal acidic transcriptional activation
domain (see figure 2). The central sequence is responsible for DNA-
binding and possesses a characteristic a-solenoid fold. Crystal struc-
tures for PthXo1 [140] and AvrBs3 [204] show that the DNA binding
domain forms a super-helix following the major groove. Effectors con-
tain between one and 34 repeats, though no function has been shown
for the tiniest TALEs (<6.5 repeats) [25]. Typical repeats comprise be-
tween 33 and 36 amino acids (aa), which form a hairpin-like structure
made up of two a-helices (small and large). Larger, non-canonical
repeats, that contain duplications of the small or large helix, can also
be found in nature. These duplications seem to reduce TALE activity
slightly, but allow “skipping” of a mismatching base pair by turning
single repeats outwards [182]. It is thought that this is a counter-
adaptation against mutation of the EBE.

The amino acid sequence is highly conserved with the exception
of position 12 and 13, located in the loop connecting the two helices.
Amino acids at these positions are hyper variable and are referred
to as repeat variable diresidue (RVD)s. It has been shown that these
RVDs determine the DNA sequence specificity of each repeat, creating
a “one repeat - one base” relationship. This relationship can be ex-
pressed with a simple code (see figure 2) [26, 156]. Commonly, the
diresidue “NI” is used to target adenine (A); “HD” for cytosine (C);



1.1 TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASES

“NN” for guanine (G) or adenine (A) and “NG” for thymine (T). Stud-
ies have shown that a single asparagin at position 12 (referred to as
“N*” RVD) can offer a benefit when binding methylated bases [224].
Alternative RVDs like “NK” are more specific for guanine, but appear
less often in nature [156] and seem to impair binding negatively [47].
The extended TALE code accommodates even more RVDs, however the
more exotic ones play less of a role for biotechnological applications.

The N-terminal region prior to the first TALE-repeat is involved in
DNA binding and conveys specificity to thymine or in case of RipTALs
to guanine. It is therefore referred to as “To” region. This region con-
sists of four degenerate repeats (N_;, N_,, N_; and N,) which exhibit
structural similarity but deviating amino acid sequence and smaller
size. It has been shown for the AvrBs3 scaffold that TALE-binding do-
mains lacking this region (AN-terminus > 152aa) have reduced affin-
ity to DNA or result in TALENs with lowered activity [151]. It had
already been shown, that these residues were only needed for type
III secretion [211]. N-termini with changed specificities have been
engineered by directed evolution experiments [122]. A tryptophan at
position 232, located in the loop in repeat N_;, seems to play an impor-
tant role in the specificity of the N-terminus. An alternative to using
an engineered N-terminus is a substitution with a guanine-targeting
RipTAL N-terminus.

The last TALE-repeat is an incomplete “half-repeat”. To date, there
is contradictory information about the importance of the last repeat.
There seems to be little to no contribution to binding in some cases
[249, 142], while other groups report a significant or overproportional
impact of this last repeat [229, 27]. It has to be noted that a variety of
C-terminal truncations and linkers are functional in the TALEN context

[151].

1.1.1.2 Target binding and recognition

Crystal structures suggest, that TALE DBDs undergo a conformational
change when binding to DNA. The superhelix is being compressed so
that the helical-pitch length is reduced from 60 A to 35 A [158, 59].
Several studies measured affinity to DNA, however different dissoci-
ation constants were observed [79, 142, 106]. Recent single-molecule
analysis revealed that TALEs find their target sequence in a two-step
process [51]. The first part seems to be a classic example of facili-
tated diffusion (“sliding/hopping”). The DBD binds non-specifically
and then moves one dimensionally along the DNA (“1D sliding”). In-
terestingly, longer TALEs with more repeats move slower during this
1D sliding. This movement is combined by quick dissociation and
rebinding in the near vicinity (“hopping”). It is proposed that the
TALE adopts a looser conformation while searching and is then com-
pressed upon binding of the EBE [51]. Although specificity of single
repeats is conferred via the RVDs, the main energetic contributions for

7
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A)
N-terminus DNA-binding domain C-terminus
Typelll____  pseudo repeats
secretion
signal
Activator
domain
B) Q)
LTPDQVVAIAS
_XX_
GGKQALETVQRLLPVLCQAHG
RVD Base
NI Adenine
HD Cytosine
NG —» Thymine
NN Guanine/Adenine
NS Any
N* 5-Methylcytosine

Figure 2: Structure of a TaL-effector

A transcription activator-like effector protein (A) consists of a type III
secretion signal, a DNA binding domain (pBD of effector PthXo1 is given
as an example, [140], PDB-ID:3UGM), an NLS and an activator domain.
The DBD forms a superhelix following the major groove. It exhibits a
characteristic a-solenoid topology, that consists of small repeat units. The
N-terminal pseudo repeats are not well-resolved in this crystal structure.
Each repeat (B) is made up of a small (orange) and a large helix (blue),
linked by the repeat variable diresidue (RVD, green/red). Lysine 16 and
glutamine 17 are clamping the phosphate backbone, while residue 13
(red, here gly) determines the base specificity. Shown is an example
sequence for a 34 aa repeat (C). The RVD at position 12/13 determines
which base can be bound. This relationship can be expressed in a simple
code.
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specific DNA binding seems to stem from the residues G14, K16 and
Q17 [236]. Furthermore, molecular dynamic simulations suggest that
the free energy contributions of amino acid 13 binding to its respec-
tive nucleotide is lower than its binding contribution to the previous
nucleotide. The other RVD residue, amino acid 12, does not seem to
interact with the DNA at all. One model postulates that residues G14,
K16 and Q17 clamp the phosphate backbone and orientate residue 13
towards the target base [236]. Specificity is then obtained via negative
discrimination of non-fitting base pairs, that means residue 13 creates
steric or electrostatic clashes with wrong bases. In this model, residue
12 is thought to act as a helix breaker for the a-hairpin motif.

1.1.1.3 Beyond nuclease domains

Since TALE proteins contain an activator domain and act as activators
of expression, it is no surprise that they have been successfully ap-
plied in a variety of cell types. One example of a working activator
fusion is TALE::vp16 (or vp64), with an activator domain derived from
the herpex simplex virus. It has been shown that this construct can
activate genes in mammalian cells [245]. The next logical step was
the fusion of repressor domains (e. g., KRAB) to reduce or block gene
expression of a target gene [80]. Activator and repressor TALEs have
been colorfully used to create logical gates [199], bistable switches
[124] and even more complex genetic circuits [133, 200]. The range of
DNA-modifying enzymes also includes CpG-methyltransferases [18]
and demethylases [138, 130] to examine epigenetic connections. Fu-
sion of histon-modifying enzymes to study chromatin remodeling is
also interesting in this context [146, 40]. But also inactive marker pro-
teins have been used [152]. Marker-fusions act as fluorescent probes
and help to visualize the location of certain DNA sequences in a cell.
Till now, this application seems to be limited to repeating sequences
[152].

Another interesting fusion partner for TALE-DBDs are recombinases
and transposases [147, 164]. These proteins can allow the direct inte-
gration of a template, bypassing the cells DSB repair machinery and
without the creation of potentially toxic DNA lesions (see section 1.3).
Currently, off-target integration is however still a problem for these
enzymes [147, 164].

1.1.2  Catalytic domains

Nucleases have many different functions in nature, such as defense
against invading nucleic acids, processing of RNA, maintenance and
recombination of DNA, scavenging of extracellular DNA or cytotoxicity
[240]. Catalysis works through an acid-base mechanism. The general
base deprotonates a nucleophile which usually attacks the scissile
phosphate of the backbone in an Sy2 manner [168]. Suitable for TALE
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fusion are endonucleases that accept dsDNA as substrate. Catalytic
domains used in this work (see figure 3) can be divided into groups
depending on the amount of divalent metal ions used for catalysis
and structural similarities [241]. FokI and I-Crel both need two metal
ions for catalysis. Fokl carries a rp-(D/E)xx motif, which is typical for
many type II restriction endonuclease (RE)s [169]. I-Crel is a highly-
specific homing endonuclease of the LAGLIDADG family. The other
nucleases in this work catalyze phosphodiester cleavage with only
one metal ion. ColE7, NucA and EndA are non-specific nucleases
and share a (fo-metal motif. In this family, a 3-hairpin is connected
to an o-helix. A histidine at the end of the first -strand activates a
water molecule which serves as the attacking nucleophile, while the
metal ion is thought to stabilize the Sn2 transition state (see figure
4) [233]. I-Tevl is a homing endonuclease of the Gry-vic family. Al-
though the motif is also located on a Z-hairpin followed by an a-helix,
the catalytic center differs from the $3a-Me family [206, 241].

1.1.2.1  FokI

Fokl is a restriction endonuclease found in Planomicrobium okeanokoites
[91]. It is no surprise that Fokl was the first catalytic domain for
TALENS [42], since it has already been applied in the context of zinc-
finger nucleases [114] and even meganucleases [134]. Hence, it is not
only well characterized as an endonuclease, but also as a fusion do-
main [195, 170]. More active derivatives of Fokl, like the “Sharkey”
variant have also been engineered [88].

Fokl is a member of type IIS restriction endonucleases [169], which
means it cleaves its substrate at a defined distance outside of its
recognition sequence (5’GGATG(N)9v NNNN, 15 (¥ for top-, o for bottom
strand cleavage)). The reason for this is the bipartite layout of FokI
[228]. There is a helix-turn-helix related DNA-recognition domain,
consisting of three smaller subdomains, at the amino terminus and
a DNA-cleavage domain at the carboxy terminus. The cleavage do-
main possesses a PD-(D/E)xk motif and uses Mg>" as a cofactor. It is
non-specific, but contains only one catalytic center, forcing transient
dimerization of two catalytic domains to effect a DNA-DSB [227, 23].
Dimerization of the catalytic domain can occur with just one DBD
binding [89] and also in trans [123]. Since cleavage and recogni-
tion are separated, the DNA-recognition domain can be replaced with
another specific DNA-binding domain, effectively changing the pre-
ferred substrate of this enzyme. Interestingly, two DBDs are needed
to create a DSB, when the natural DBD has been replaced by a zinc-
finger or a TALE-DBD. Fokl is commonly fused to the C-terminus
of a TALE-DBD, however N-terminal fusion is also possible, allowing
cleavage by N/N dimers and N/C heterodimers [105]. In this work,
TALE::FOKI is used as control nuclease but also as a fusion partner for
dual catalytic TALEN (dcTALEN)s.
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A) Catalytic domain of Fokl D) Colicin E7 / Im7

B)

Figure 3: Overview of catalytic domains

Shown are crystal structures for all nucleases used in this work. Catalytic
residues are displayed as sticks and colored in red. Fokl (A, [227], PDB-1ID:
2FOK) is the most used nuclease domain for ZFNs and TALENs. Catalytic
residues shown are D450, D467 and k468. The catalytic domain of homing
endonuclease I-TevI (B, [225], PDB-ID: 1LNoO) is comparatively small. Its
linker, consisting of a DNA-binding helix and a zinc-finger, are not shown
in this crystal structure. Catalytic residues are E75 and rR27, which was
mutated to alanine for crystalization. A detailed look into the cleavage
mechanism of Endonuclease A (C, [154], PDB-ID: 30WV) can be seen in
figure 4. Four histidines (H544,H545,H569 and H573) mediate cleavage by
the nuclease domain of Colicin E7 (D, [207], PDB-ID: 1MZ8). Its inhibitor
Im7 (orange) binds an exosite allosterically. NucA (E, ref, PpB-1D: 203B)
on the other hand is inhibited competitively. The active site is similar to
the one of EndA and consists of H124, R93, N155 and E163. It is blocked
here by the inhibitor NuiA. I-Crel (E, [171], PDB-ID: 207M) is a dimer that
is coordinated by the eponymous LAGLIDADG helices (blue). The catalytic
center (D20 D20’) is located at the bottom of the helices.
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1.1.2.2 [-Tevl

I-Tevl, which was discovered in the enterobacteria phage Ty, is a
member of the Gry-vic family of homing endonuclease (HE)s [17].
These “selfish” enzymes are highly-specific endonucleases, which prop-
agate their own intron-localised coding sequence into cognate alleles
lacking this particular intron [206]. It shares its bipartite layout of dis-
crete recognition and cleavage functions with Fokl, but domain orien-
tation differs. The catalytic domain of I-Tevl is located at the amino
terminus and it is connected via a linker domain to a carboxytermi-
nal recognition domain [118]. However, the main differences to Fokl
lie in the catalytic domain. Contrary to Fokl, the catalytic domain

of I-TevI has an intrinsic 5" CN,NN" G 3’ specificity and leaves a 2 bp
5’-overhang. Recent studies further suggest that the linker domain,
which consists of a zinc finger and a major-groove-binding helix, con-
veys an additional preference for specific target sites [115]. While FokI
needs to dimerize, I-Tevl is thought to hydrolyze the phosphodiester
bond of one strand first, rotate around the DNA and then hydrolyze
the other one, similar to what has been shown for related Gry-vic
HE I-Bmol [116]. The catalytic core consists of a three-stranded anti-
parallel 3-sheet, that is flanked by three helices [225]. Recently the
catalytic domain has also been used for fusion constructs with zinc-
fingers [117] and with the LAGLIDADG HE I-Onul (“MEGATEV”) [238] as
DNA-binding domains . In the case of MEGATEV, two cuts are made,
similar to the dualcatalytic TALENSs in this work. It is therefore not sur-
prising that I-TevI can also be used as a nuclease domain for TALENs

[21, 115].

1.1.2.3 Colicin E7,

Colicin Ey (ColEy) is an unspecific endonuclease, cleaving double-
strand (ds)- and single-strand (ss)DNA and can be characterized by its
histidine-asparagine-histidine (H-N-H) motive. ColE7 has no sequence
specificity, but prefers to cleave by creating nicks 3" after deoxythymi-
dine [233].

It is part of a group of E.coli exotoxins known as colicines. Colicines
are expressed to kill non-self cells during stress and are function-
ally diverse [29]. Two DNA endonucleases from this group are ColEy
and ColEg. They share structural similarities and their respective in-
hibitors can be adapted to block the other nuclease [127]. The nucle-
ase domain of ColE7 is connected to a receptor-binding and a translo-
cation domain, which transport it through the bacterial periplasm.
Both domains are later separated from the catalytic domain by pro-
teolytical cleavage between residues k446 and Rr447, which is also
involved in binding of the phosphate backbone [194]. The active site
is made up of four histidines. It is thought that H544, H569 and H573
are coordinating the metal ion, while H545 activates the nucleophile



1.1 TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASES

[92]. Zn*as well as Mg**can serve as divalent metal ions. For ease
of reading, “ColEy” and “Colicin Ey” in this work will refer to the
N-terminal catalytic domain of Colicin E7.

Because of its toxicity to the producing organism, ColE7 is blocked
by the allosteric inhibitor Imy. This inhibition is one of the tightest
protein-protein interactions with an affinity in the femtomolar range
[112]. In contrast to I-Tevl and FoklI, there is no recognition domain
and ColEy is fully active as nuclease domain. Correspondingly, its
activity and affinity for DNA are not preadapted for a fusion protein.
Interestingly, use of the ColEy catalytic domain for zinc-finger fusion
has been theorized recently and potential constructs have been de-
signed in silico [160].

1.1.2.4 NucA

NucA is a sugar-non-specific endonuclease that is found in the cyanobac-

terium Anabaena sp. strain PCCy120 [159]. These nucleases can cut
both DNA and RNA sequence independently [72]. NucA is secreted
and degrades extracellular nucleic acids, probably for nutrient scav-
enging [143]. Intracellular toxicity is avoided via the inhibitor NuiA.
In contrast to ColEy/Imy, inhibition takes place competitively at the
active site[84]. There is no sequence specificity, but NucA avoids
d(A) or d(T) tracts [143]. It is a member of the $3a-Me superfamily
and includes a characteristic DRGH motif. In the proposed mecha-
nism, histidine 124 acts as general base and activates the attacking
water molecule [85]. Arginine 93 helps position the scissile phos-
phate, while glutamate 163 and asparagine 155 coordinate the stabi-
lizing metal ion. NucA is more active with Mn**or Co**than with the
more common Mg>* [144].

1.1.2.5 EndA

The nuclease EndA was found in Streptococcus pneumoniae, where it
is a virulence factor during host infection [121]. It is attached to the
cell membrane and exposed to the outside of the cell [173] and it is
thought to degrade the DNA scaffold of neutrophil extracellular traps
[15], which are part of the mammalian innate immune system.

EndA shares a structural similarity to NucA [154]. Both contain a
DRGH catalytic motive and share the characteristic $Zo-Me fold. Wild-
type EndA cannot be reliably expressed in E. coli due to its toxicity. A
way to circumvent this is the use of a H160G variant, which replaces
one of the catalytic histidines by glycine [148]. Although this variant
is inactive by itself, activity can be restored through chemical res-
cue with imidazole. An overview of the catalytic center and relevant
catalytic residues can be seen in figure 4. A number of mutations af-
fecting DNA-binding and catalysis have also been identified [149] and
were used in this work.
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Figure 4: EndA H160G activity can be rescued chemically

Shown is the proposed catalytic mechanism of EndA (A), which is similar
to that of H-N-H nucleases. Histidine 160 activates a water molecule to act
as the nucleophile for the Sy2 in-line attack on the central phosphorous
atom. The negatively charged transition state is stabilized by a metal ion,
which is coordinated by asparagine 191 and a glutamate. Aspartate 157
is thought to interact with N191 to facilitate metal binding. For members
of the H-N-H family, asparagine 191 is replaced by a histidine and an
asparagine coordinates the two histidines.

Mutation to H160G creates a space that can be filled by imidazole (B).
Imidazole can replace the histidine and activate the catalytic water.
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1.1.2.6  I-Crel

I-Crel, together with I-Scel and I-Anil, is probably the best charac-
terized member of the LAGLIDADG family of homing endonucleases
[38, 171] (see section 1.2.2). It is a dimer with a size of 18 kDa per
subunit. The natural target-site is a 22 bp pseudopalindromic se-
quence (TCAAAACGTCGTGAGACAGTTTGG, [107]) in the 23S rRNA gene of
the chloroplast genome in the green algae Chlamydomonas rheinhardtii
[218].

Mutagenesis of I-Crel can change the prefered recognition site [192,
184]. The target sequence can be grouped into smaller blocks [202, 6]
that are recognized almost discretely. Consequently, one can alter
residues recognizing one block, without necessarily changing speci-
ficity for the other blocks. The cleavage site is located in the GTGA
motif in the middle (-2...2). Other blocks are the 10 to 8, 7/6 and
5 to 3 regions [202, 6]. Obligate heterodimers of I-Crel need to be
constructed, since most target sequences are not palindromic. This
can be achieved by generating single-chain fusions [64] or by mutat-
ing residues of the LAGLIDADG helix [196]. E.g., lysine 7 on top of
the helix interacts with glutamate 8" in the other subunit. Homod-
imerisation is greatly reduced by changing residues 7 and 8 to the
negatively charged glutamate and residues 7" and 8’ to the positively
charged arginine. A prominent example of a successful reengineering
of I-Crel is a variant targeting the human XPC gene [8, 178], which is
involved in the disease Xeroderma Pigmentosum.

1.1.2.7 Poull, Bfil, MutH, scFokI and I-Anil

More nuclease domains have been fused to TALE-DBDs by other groups.

e Pvull is a type IIP restriction endonuclease with a character-
istic PD-(D/E)xK motif [37, 169]. It is one of the smallest REs
(18 kDa) and functions as a dimer or artificial single-chain ver-
sion. It cleaves a 5' CAG, ' CTG 3’ sequence, leaving blunt ends.
TaLe::Pvull fusions have to dimerize like Fokl, but obligate het-
erodimers have also been designed [243]. The target site re-
quirement and the heterodimerization are thought to reduce the
amount of off-site activity, but the amount of targetable sites is
reduced as a consequence.

* Bfil is a type IIS restriction enzyme like FokI and also requires
dimerization for cleavage. DNA binding and catalytic functions
are separated in different domains. Bfil is one of the few metal-
ion independent DNases and uses a conserved His as nucle-
ophile [186, 187]. The linker, which is connecting nuclease and
DNA-binding domain can inhibit cleavage activity in solution.
This autoinhibition could reduce off-site activity in vivo [242].
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e MutH is a nickase, which creates single-strand nicks, from the
E. coli DNA-mismatch repair system. It is recruited to a mis-
paired DNA by proteins MutS and MutL and nicks a 5" ¥ GTAC
3’ sequence [125]. MutH was fused C-terminally to TALE-DBDs
and TALE:MuTH monomers were shown to work as site-specific
nickases [77], similar to TALE::TEv. Drawbacks are its compara-
tively low activity and requirement for a GTAC sequence.

¢ FokI nuclease domains can also be constructed as single-chain
variants. TALE::scFOk monomers are toxic, but mutagenesis was
used to reduce the activity and generate monomeric TALENs
[209]. However, scFokl based constructs showed between 2- and
10-fold lower activity than their dimeric counterparts and were
significantly more cytotoxic in some cases.

¢ I-Anil is a HE of the LAGLIDADG family. TALE fusion allowed the
redirection to just one of many I-Anil target sites in the human
genome. Subsequently, an engineered I-Anil variant targeting
the T-cell receptor alpha-chain gene (TcrA), was successfully ap-
plied in a fusion construct in vivo [27].

1.2 TOOLS FOR GENOME EDITING

The first genetically modified organisms (GMOs) were created only
shortly after the discovery of recombinant DNA technologies [98, 44].
Among the first were transformed bacteria [155, 32], but also trans-
genic mice [100] and plants [22]. Till now a huge variety of GMOs
has been generated. Loss- and gain-of-function mutants have eluci-
dated genetic backgrounds and therefore helped to advance medicine,
agriculture and biology in general [210]. The other side are non-
scientific applications. Engineered microorganisms that produce valu-
able metabolites like insulin, human growth hormone or chymosin
[31, 86, 108] have become common place. Plants and animals have
been modified to yield more or higher quality end products [70, 250,
36], to serve as bioreactors after metabolic engineering [35, 48, 13], to
be more resistant to herbicides, disease or predators [223, 43, 165], to
control pest populations in the wild (“gene-drive”, [220, 9, 10, 14])
and interestingly also for aesthetic reasons. Blue carnations (Moon se-
ries, [212]), blue roses (Suntory rose, [109]) and fluorescent fish (GloFish,
[157]) have been constructed, as well as bioluminescent houseplants
[65]. Genetic engineering has also been applied to humans. A few
hundred patients have been treated for genetic diseases like severe
combined immunodeficiency, cystic fibrosis, -thalassemia or muscu-
lar dystrophia [183, 5, 69, 145] and human T-cells are altered to be
resistant to human immunodeficiency virus by deletion of the CCR5
receptor [231] or to recognize cancer cells via a chimeric antigen recep-
tor (CAR) [61]. In 2012, a gene-therapy (“Glybera”, [82]) for lipopro-
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tein lipase deficiency has been approved in the European union. Re-
cently even (non-viable) human embryos have been modified [132],
which sparked controversy in the scientific community [193]. There
are also integration sites of endogenous retroviruses in the human
genome (“safe harbors”) that can be used to insert transgenes [137].
Although these mutations would not be inserted into the germline,
human amelioration remains of ethical concern.

Zinc-finger nucleases and homing endonucleases represent the first

efforts to generate highly-specific nucleases, before the advent of TALENs

and RNA-guided endonuclease (RGEN)s. Due to their ease of use,
TALENs and RGENSs are probably the most widely applied site-specific
nuclease (SSN)s nowadays. Nevertheless, zinc-finger nucleases and
meganucleases still have their specific niches. The first used meth-
ods for integration of DNA were untargeted and are also shortly men-
tioned.

1.2.1 Zinc finger nucleases

ZFNs are the spiritual precursors of TALENs. Both share a bipartite
layout consisting of a DNA-binding domain fused to a FokI nuclease
domain [114]. Both DNA-binding domains are made up of smaller
units, with individual DNA specificities that form a larger array with
a composite specificity. The building blocks for this array are three
to six Cys2-His2 fingers. Each finger recognizes 3 bp and consists of
about 30 aa in a conserved [33a-fold [167], which explains the smaller
size of ZFNs compared to TALENs. ZFNs targeting a wide range of
different genes have been constructed and successfully tested in vivo
[113, 175, 78]. However, there is crosstalk between the modules [96,
971, making their design difficult [176] and requiring approaches that
take context dependence into account [139]. Another problem is in-
creased off-target activity compared to TALENSs [20, 166]. Intriguingly,
it is also possible to re-engineer the zinc-fingers themselves to act
as nucleases. Attachment of a lanthanide binding loop between the
fingers allows cleavage in the presence of cerium ions [95].

1.2.2  Homing endonucleases of the LAGLIDADG family

Homing endonucleases (HEs) or meganucleases are naturally occur-
ring endonucleases with recognition sequences between 12 and 40
bp. They can be divided into the families LAGLIDADG (I), H1s-Cys box
and H-N-H (II) and cIy-vig (II) [206]. There are also few examples
of HEs with a Pp-(D/E)xK motif [162, 247]. A trait of these nuclease
is their “selfish” nature. HEs are coded in introns or inteins and a
functional version of the protein is then later spliced out either on
the mRNA (intron) or on the protein (intein) level. The homing en-
donuclease will then introduce a DNA-DSB in a cognate allel that is
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lacking the coding sequence of the homing endonuclease. During ho-
mology directed repair, the intron-containing allel serves as a repair
template for the damaged locus, effectively replacing its intron-less
counterpart. Members of the LAGLIDADG family occur as monomers
or dimers and are characterized by their of3Saf33a-fold. Recognition of
their target is carried out by the four ($-sheets, which form a saddle
like structure around the DNA (see figure 3). Two central o-helices,
containing the eponymous LAGLIDADG consensus, are coordinating
the two subunits or subdomains, respectively. Right at the base of the
helices lie the two catalytic centers, where cleavage of the phosphodi-
ester bonds is carried out by two acidic residues. Crystal structures
show three metal ions in the catalytic center. Each active site depends
on two metal ions, with one metal ion being shared between the two
[39, 16].

Meganucleases were among the first used for genome editing via
induction of a specific DSB [41] and variants targeting a variety of
genes have been engineered [7]. HEs are smaller than other SSNs and
therefore easier transfected, which makes them major contenders for
application in gene drive [237, 9, 220]. Their biggest drawback is the
way they are adapted to a new target sequence. The whole DNA-
binding region needs to be engineered via rational design and/or
directed evolution [219, 99]. This prerequisite for experience, time
and specialized equipment makes HEs virtually impossible to design
for non-experts.

1.2.3 RNA-guided endonucleases

Clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-

associated system (CAS) are parts of an adaptive immune system,
which protects prokaryots against foreign nucleic acids [81]. Frag-
ments of invading DNA are integrated into a CRISPR cluster and then
later transcribed together with their spacer. The nuclease Casg, found
in the bacterial type II CRISPR systems, causes site-specific DSBs. Se-
quence specificity is granted by an RNA (CRISPR RNA (crRNA)) that
forms watson-crick bonds with a complementary target DNA. A sec-
ond RNA molecule (trans-activating CRISPR RNA (tracrRNA)) stabi-
lizes the complex [103]. The guide RNA (gRNA), a synthetic fusion
of tracr- and crRNA, is employed for biotechnical applications [93].
Due to this, Casg variants are also called “RNA guided endonucleases”
(RGENSs). Two nuclease motifs are contained in Casg. The complemen-
tary strand is cleaved by the RuvC, the non-complimentary by the
H-N-H motif [102]. It is no surprise that inactivation of one motif via
mutagenesis creates a nickase [177]. Targets that can be addressed
by Casg, are limited by the necessity of a protospacer-adjacent mo-
tif (PAM). Cleavage occurs 3 nucleotids upstream of the PAM and
produces blunt ends [81]. RGENs could be successfully applied in
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a variety of species and even multiplexing is possible [46, 129, 235].
Retargeting the nuclease is easier than for TALENs or ZFNs, however
RGENSs are slightly larger, show greater off-target activity [232, 75] and
are restricted by the PAM motif and limited gRNA length.

Usage of CRISPR is not limited to the creation of DSBs. Activator
or repressor fusions have been reported [66, 246], inactive Casg can
also block transcription by itself in a technique termed “CRISPR inter-
ference (CRISPRi)” [248] and selection of special PAM sequences even
allows the binding of RNA [161]. Another interesting exploitation of
the CRISPR system is a bioinformatic analysis (spacer oligonuclotide
typing) of the CRISPR region to determine relationships of closely re-
lated species or clones [53, 226].

1.2.4 TFO-linked nucleases

It is also possible to fuse nuclease modules to a triplex-forming oligonu-
cleotid (TFO). The nuclease is then guided to its target sequence by
an oligonucleotid which forms a DNA-triplex with that sequence via
hoogsten base pairs [63]. TFO-linked nucleases need to be assembled
in vitro, given that they are DNA-protein hybrids. Another drawback
is slow binding to their target sequences, allowing the possibility of
off-target cleavage by the linked nuclease [63]. Therefore, TFO-linked
nucleases do not play a major role for genome editing.

1.2.5 Untargeted genome editing

The probably simplest way to introduce DNA into a genome is to trans-
port it into a cell and to look for integration. These method includes
chemical or electrical transfection methods [45], micro-injection [100]
but also transfection via particle inflow gun [67]. An alternative is the
employment of naturally occuring vectors. The a-proteobacterium
Agrobacterium tumefaciens has been widely used to generate plant cul-
tivars [163, 222]. Agrobacterium transfers a Ti-plasmid (tumor induc-
ing plasmid) into plant cells via the type IV secretion system. Part
of the plasmid, the so called transfer DNA (t-DNA) is then integrated
into the plant genome. This t-DNA can be chosen by replacing the
Ti-plasmid with a recombinant version [163].

For animals, integrative viral vectors are alternatives. Transduction
by these recombinant viral vectors occurs in a “dead-end” fashion
so that no new viral particles are produced after infection. This is
possible by separating the essential viral genes from the packaging
domain and linking this packaging domain to a therapeutic cassette
[110]. The recombinant vectors are then assembled in the presence
of both DNAs. Retro-, lenti-, adeno- and adeno-associated viruses
have been used as vectors [76, 110, 217]. Even special properties can
be exploited: herpes simplex virus can be used to specifically target
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the nervous system [68]. Non-integrative viral vectors still remain
important vehicles to transport SSNs and templates into a cell.

1.3 DNA DOUBLE-STRAND BREAK REPAIR

Double-strand breaks (DSBs) are highly toxic DNA lesions which can
lead to aneuploidy or other genetic aberrations if left unrepaired.
One of them being the recently described chromothripsis [205] (thrip-
sis (greek) meaning “shattering”). During chromothripsis a singular
event fragments one or more chromosomes that are then incorrectly
reassembled, leading to catastrophic outcomes like cell death or even
cancer. DSBs can be caused by ionizing radiation (IR) or genotoxic
chemicals, but also endogenously, such as replication over a single-
strand nick and subsequent replication fork collapse [54]. Not all
DSBs are harmful in nature. Programmed DSBs are absolutely essen-
tial in some processes that generate genetic variability such as meiotic
recombination, mating type switching, autogamy in ciliates or V(D)]J-
and class switch recombination in immune cells [119, 19].

DNA double-strand breaks can be repaired by two groups of path-
ways (see figure 5): non-homologous end-joining (NHE]) (I) and ho-
mologous recombination (HR) (II). NHE] and HR can be further subdi-
vided into

¢ classical non-homologous end-joining (C-NHE]) and alternative
non-homologous end-joining (A-NHE])

e classical homologous recombination (C-HR) and single-strand
annealing (SsA)

As the name implies, HR requires a homologous repair template,
whereas NHE] directly ligates DSB ends without the need of a tem-
plate. All pathways compete with each other and their frequency is
related to the organism, cell type and point in the cell cycle. For ex-
ample, HR is much more prevalent in S. cerevisine and S. pombe than
in mammalian cells or plants [101].

Which pathway acts on the DSB is dependent on how the DNA ends
are processed. Examples for mammalian functional homologs are
given in brackets. In yeast, repair is initiated by the MRX (MRN)
complex, formed by Mre11,Radso and Xrsz2 that then recruits the re-
sponse protein ATM or in the case of replication forks ATR (ATM
related). ATM phosphorylates mediator proteins which then amplify
the signal by phosphorylating other mediator proteins. This signaling
cascade then “determines” the implementation of the type of repair
pathway or of additional responses (e. g., cell cycle arrest or apopto-
sis) [54]. C-NHE] is carried out by the heterodimer Ku and Dnl4/Lif1
(LIG4/XRCCy). It is thought that Ku physically blocks access to the
DNA ends, while Dnly and Lif1 stabilize its binding and join the DNA.
The p53 binding protein 53BP1, a protein involved in DNA damage
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response, seems also to be favoring C-NHE]J. It is therefore no surprise
that mutation of Ku or 53bp1 reduce the ratio of C-NHEJ [60].

Antagonistically to this end-protection is exonucleolytic resection,
initiated by end-binding of Parp1 and carried out by endonuclease
Sae2 . DNA binding proteins CtIP and BRCA1, which is known for its
role in breast cancer, replace Sae2 in mammalian cells. Interestingly,
lethal Brcar mutants can be rescued by 53bp1 mutation, presumably
by removing end-protection [119]. Resection can also occur via ex-
onuclease Exo1 (EXO1) or Sgs1 and Dna2 (BLM). Resected DNA ends
can then be substrates for C-HR, SSA or A-NHEJ [60].

1.3.1  Non-homologous end-joining

1.3.1.1  Classical Non-homologous End-Joining

As mentioned before, classical NHEJ (C-NHE]J) is reliant on the end-
protection of DSBs. After Kuyo/Ku8o heterodimers bind the DNA
ends, they recruit DNA dependent protein kinase DNA-PKcs. Subse-
quently Artemis, polynucleotidkinase (PNK) and polymerase X (PolX)
process the DNA until it is ligated by ligase IV and its cofactors (Xrcc44
and XLF). Although C-NHE] is used to generate genetic variability, it is
thought to be mostly error-free for blunt and cohesive DNA ends [19].
Examples are the aforementioned autogamy in ciliates, where thou-
sands of DSBs are repaired in a short time frame, and the creation
of genetic diversity in immunoglobulin genes via V(D)] recombina-
tion. In the later, recombinases RAG1 and RAGz2 create DSBs and cap
the ends with a hairpin. This hairpin is resolved in different ways
by Artemis and variable nucleotids are attached by the terminal de-
oxynucleotidyl transferase (TdT). The resulting ends are then ligated
via C-NHE]J, which has to be able to tolerate non-complementary ends
for this [120]. Other causes that generate non-complementary DNA-
ends are ionizing radiation or reactive oxygen species. Depending
on the type of overhang, lesions cannot be repaired without error. It
can therefore be argued that the variability or mutagenicity was in-
troduced by previous treatment of the DNA and not by C-NHE]J itself.

1.3.1.2 Alternative Nonhomologous End-Joining

A-NHE], also termed backup NHE] (B-NHEJ) or microhomology medi-
ated end-joining (MMEJ), is different from the aforementioned C-NHE]
in several ways. It was suggested that A-NHE] utilizes ligase III and
Xrce1 instead of ligase 4 and Xrccgq [19]. Moreover, it is dependent
on the same processing enzymes as HR. Therefore, A-NHE] is always
mutagenic in nature since it ligates resected DNA ends. It is thought
that resection of single-strands uncovers microhomologies (o-10 bp)
which can be annealed and ligated, after gaps are filled and flaps are
removed [126]. Nevertheless, if A-NHE] is one or a group of pathways
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Figure 5: Repair pathways

The Mre11 complex (MRN/MRX, blues) binds first to a DNA-DSB. Which
pathway is used for repair depends on the proteins that are recruited
next. Ku (red) will protect the DNA, while Parp 1 (purple) will recruite
exonuclease Sae2 (light purple) to resect the ends. Some end modifica-
tion via Artemis/PNK and Pol X (brown) can also occur after end pro-
tection . Several mediator proteins (grey) are recruited next. Ligase 4
with its cofactors (brown) is joining the dna in the case of C-NHEJ. Rad51
(green) binds the resected ssDNA, which is then ligated via Ligase 1 or 3
(brown) in A-NHEJ or is further processed in homologous recombination.
Here a strand invades the homologous strand forming the D-Loop het-
eroduplex. The homologous strand acts as a template for synthesis (red).
Then the invading strand can be moved out during strand-displacement,
which leads to non-crossover products. An alternative is the capture of
the second end, creating a dHJ. This dHJ can then be resolved to yield
Non-Crossover or Crossover products.
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remains unclear [73]. As does its exact biological function. A-NHEJ is
robust and can be used to ligate incompatible 5" and 3’-ends, which
would be an advantage over C-NHEJ [120]. Interestingly, A-NHE] has
been discovered in E. coli [34], which is deficient in components of
C-NHEJ like Ku, suggesting that it could be an evolutionary older
pathway[19].

An intriguing application for A-NHE] and TALEs is the correction
of trinucleotide repeat expansions. Here trinucleotide repeats reach
abnormal lengths and cause a variety of severe disorders. A cut inside
these repeats can cause their contraction via A-NHEJ [181, 180].

1.3.2  Homologous Recombination

1.3.2.1  Classical Homologous Recombination

A defining step of HR is the invasion of a 3’-single-strand into a ho-
mologous duplex. To generate single-stranded overhangs, exonucle-
olytic resection of DNA ends is needed. This happens as mentioned
before by Parp1 binding and resection via Sae2 (CtIP and BRCA1).
Next, strand-exchange protein Rad51 (RecA in E. coli) binds ssDNA
and stretches it. Binding of Rad51 is regulated by a complex network
of regulator proteins that get sumo- or phosphorylated in the process.
The Rad51-ssDNA nucleoprotein filament can then form Watson-Crick
interactions with the homologous duplex DNA, creating a heterodu-
plex structure called the “D-loop” [101]. Rads1 now binds dsDNA
and thereby stabilizes this complex. The invading 3’-end then acts
as a template for DNA synthesis and thereby extends the D-loop[101].
Several polymerases (6, and x) can extend the strand, however this
process is not well characterized [191]. Now repair can take two dif-
ferent paths that result in crossing over or non-crossing over events
[119]. In the double-strand break repair (DSBR) pathway, the second
end is captured by the D-loop, resulting in a double Holliday Junc-
tion (dHJ). Subsequently to DNA synthesis, these junctions can then
be resolved to generate crossover or non-crossover products.

The second pathway is called synthesis-dependent strand anneal-
ing (SDSA). Here, the nascent strand is displaced and anneals to the
other 3’-overlap of the original strand. Therefore, SDSA exclusively
produces non-crossover products. Strand displacement can also oc-
cur after formation of the dHJ [119].

A special case of homologous recombination is meiotic recombi-
nation. Endonuclease Spo11 induces a DSB that is processed by the
meiosis-specific proteins Meis and Sae3. Single-strand DNA is then
bound by Rads1 paralogue Dmc1, which is also specific for meio-
sis. Although, defects in Dmc1 and Spo11 are linked to infertility,
model organisms like D. melanogaster and C. elegans lack Dmc1. The
subsequent repair process is biased towards DSBR and also towards
crossover events [101].
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Figure 6: SSA-assays in yeast can be used to assess nuclease activity
SSA-assays are explained with the example of yeast assays used in this
work. In this assay, cells harboring the nuclease plasmid were mated
with cells containing the target plasmid. A disrupted (3-galactosidase gene
served as a reporter gene.

1.3.2.2 Single Strand Annealing pathway

Single-strand annealing (SSA) is independent from the single-stranded
DNA (ssDNA)-binding Rads51. Exonucleolytic end-resection uncovers
homology regions that can bind each other. Flaps are then excised
and the strands are ligated together [131]. Genetic information is lost
during this process, similar to the end-joining by A-NHE].

A prominent application for this pathway is the SSA-assay [6] to
profile site-specific nuclease activity in vivo (see figure 6). SSNs are
expressed in cells harboring a target plasmid. The target plasmid
contains a reporter gene, which is disrupted by a nuclease recognition
site. This recognition site is flanked by homologous sequences of the
reporter gene, which allows these regions to anneal after induction
of a DNA-DSB and subsequent 5’-end resection. Functionality of the
reporter is restored, after deletion of the disrupting recognition site
and ligation of the ends. Observed amount or activity of the reporter
is an indirect measurement of the nuclease activity.
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1.4 AIM

Construction of ZFNs was focused on the DNA-binding domain, due to
the inherent difficulties in designing a functional and highly-specific
zinc-finger. Fokl presented a suitable nuclease module to gain more
specificity via its dimerization requirement. While this strategy is
valid for the small ZFNs, it can limit the applications of the larger
TALENs. Moreover, TALE-DBDs are easier to design and proved to
cause less off-target cleavage than their predecessors [20, 166]. There-
fore TALENs now present the opportunity to focus on the nuclease
domain.

Aim of this work is the design of monomeric TALENSs to replace or
complement FokI-TALENs. Investigation of these monomeric TALENs
can help understand the TALE-DBD better, since the nuclease activity
is not a composite of two proteins, but originates from one singular
construct. Additionally, proof-of-concept models with diverse nucle-
ase domains can grant valuable insights into the potential and the
limits of the TALE scaffold. These insights can lead to general guide-
lines on what type of fusions are sensible or which nuclease domains
are suitable for which task. Another advantage of novel catalytic do-
mains are special features of the domains, like control by an inhibitor
protein or chemical activation.

To get a broad overview, a range of different nucleases are to be
adapted via rational design. They need to be tested in plasmid based
SSA-assays and also biochemically. Finally it has to be seen, if the
new constructs are active on a chromosomal locus and if they have
advantages over a FokI-TALEN.
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RESULTS

2.1 OVERVIEW

In this work, different catalytic domains were fused to a variety of
TALEN scaffolds based on the AvrBs3 effector. Part of the experiments
were carried out in the Computational Biology department of CELLEC-
1S, the other part was carried out at the Institute for Biochemistry at
the JusTus-LIEBIG-UNIVERSITAT (GIESSEN.

To cover different types of catalytic domains, members from three
groups were selected and fused. The chosen were ranging from
promiscuous H-N-H and DRGH nucleases (I) over the more restrained I-
TevI nuclease domain (II) to the faithful homing endonuclease I-Crel
(III) (see table 1).

Table 1: Catalytic domains
Shown are catalytic domains used in this work to create novel TALE nu-
cleases. ColEy, nucA and EndA are unspecific H-N-H nucleases. I-Tevl
is a member of the GIy-vic homing endonucleses and possesses a CNNNG
specificity. LAGLIDADG HE I-Crel recognizes a 22 bp target sequence.

NAME COMMENTS
CoLEy N-terminal (nuclease) domain of E. coli exotoxin
Colicin Ey
NucA Nuclease A of Anabaena
ENDA DNA-entry nuclease of S. pneumoniae
[-Tevl Nuclease domain of HE I-TevI from

enterobacteriophage T4

scl-Crel single-chain of HE I-Crel of C. reinhardtii
scl-Crel_DS scl-Crel with degenerate scaffold mutations
scTcr_DS engineered scl-Crel targeting T-cell receptor

B-chain gene; degenerate scaffold

“AvrBs3” was abbreviated “Avr” sometimes to keep construct names
and target sequences short. We used a truncated TALE-DBD with an
N-terminus of 136 aa (or AN152) and various C-termini (see figure 7).
The most common length was 11 aa after the half-repeat (or AC220);
28 aa for ENDA::TALE, 40 aa for the NPTIL::FokI controls. In the case of
EndA:TarLE:EndA, we connected a Fokl-based linker to the last half-
repeat. See appendix A.2.1 for the protein sequences). Due to the
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Figure 7: TAL effector and scaffolds

Layout of a Xanthomonas-based TAL effector. The TALE consists of an N-
terminal type III secretion signal (yellow), a C-terminal acidic activator
domain (brown), C-terminal nuclear localization signals (black) and a
central DNA-binding region. The central region can be separated into:
(I) the pseudo repeats forming the To region (purple) and (II) the 34 aa
repeats (blue to red, arrows) including the incomplete, last half-repeat
(darkred). Scaffolds used in this work are based on the AvrBs3 effector
and were truncated, leaving 136 aa at the N-terminus and 11,28 or 40 aa
at the C-terminus.

modularity of TALENs, RVD arrays can be easily exchanged to target
other effector binding elements.

One important way to benchmark nuclease activity were colori-
metric SSA-assays in yeast (see figure 6). The CEeLLECTIS platform
transformed nuclease plasmids into yeast strains, which were then
subsequently mated with yeast strains harboring the target plasmid.
Diploids were then gridded on a plate (see figure 8) and expressed nu-

cleases induced homology directed repair of the disrupted (3-galactosidase

reporter gene. Functional -galactosidase cleaved 5-bromo-4-chloro-3-
indolyl-beta-D-galactopyranoside (X-Gal), which consecutively caused
blue color. The blueness of the colonies can be quantified and is a
measure of specific nuclease activity. Values for blueness are ranging
from o to 1, with 1 meaning full saturation. To be able to further grade
nucleases, values at 8, 24 and 48 hours were taken and yeasts were
grown at 30° and 37°C. Empty expression vector, lacking a nuclease,
was used as a negative control and homing endonuclease I-Scel or a
zinc-finger nuclease were used as positive controls.
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Figure 8: Nuclease activity can be measured in yeast
A standard plate (A) contains 24x24 clusters of six colonies each or 3456
colonies in total. All six colonies per cluster contain the same target plas-
mid, but different nuclease plasmids, which leads to different activities
in different clusters (B). The amount of blue is calculated and used as a
measurement for specific activity of the nuclease.
Usually, three out of six colonies per cluster are controls (C). Colonies 5
and 6 harbor the meganuclease I-Scel and a zinc-finger nuclease as pos-
itive controls. Colony 3 contains an empty expression vector and serves
as a negative control. Constructs to be profiled are expressed in colonies
1,2 and 4.
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2.2 UNSPECIFIC DOMAINS

As a starting point for monomeric TALENs we decided to look at
unspecific nuclease domains. We identified Colicin E7 and Nucle-
ase A (see table 1) as suitable nuclease domains during a prelimi-
nary screening. Both domains were then profiled in the context of
a AvrBs3::CatDomain fusion in a yeast SSA-assay. Our NucA fusion
construct reached relative activities between 0.6 and 0.8 , while ColE7-
based TALENs stayed between 0.6 and o.7.

Our working hypothesis was that the apparent lower activity of
ColEy was due to off-target effects and general cytotoxicity. Con-
sidering that DNA yields for the expression plasmids were also very
low (~400 ng DNA / 3 ml culture = 10 ng / pl eluate), we chose
binding and catalytic mutants (see section 1.1.2) and benchmarked
them on a group of standard targets with two effector binding ele-
ments. The provided “Avr-Spacer-Avr” targets were cleaved more or
less uniformly by our mutants (see figure 9).

An exception to this was the construct AvRBs3::CoLE7_H573E, which
showed a surprising cleavage pattern. Relative activity reached val-
ues comparable to Fokl on the targets Avr-16-Avr and Avr-17-Avr,
while other targets were not cut at all, suggesting that this mutant dis-
plays a cleavage preference. The two mutants D493Q and k497A were
both more active than the wild-type (WT). Though x497a displayed
little off target activity, D493Q caused recombination on all off-targets.
Variants R496A, H545A and H545Q were inactive; N560D and H573A
showed reduced activity. Interestingly H573A cleaves targets much
more uniformly than H573E. A reduction of toxicity could already be
seen in E.coli. Inactive variants yielded the same DNA concentrations
as the AvrBs3 shuttle vector (~8 pg DNA / 3ml culture), while less
active variants yielded intermediate amounts of DNA.

A feature of Colicin E7 and NucA is the control of activity by their
respective inhibitors Imy and NuiA. These inhibitors allowed the con-
struction of SSNs with an off-switch. We constructed shuttle vectors
containing the sequence of the respective inhibitors upstream of our
TALENs. This improved the stability of our DNA sequences and re-
moved any toxicity observed in E.coli. Coexpression in yeast revealed
that our TALENs can be inhibited completely (see figure 10). There
was no crossinhibition and no negative effect on our AvrBsj3::Fokl
control.

Another improvement upon our constructs was found during one
of our TALE architecture experiments. For this experiment, we fused
ColE7 and NucA domains between two DNA-binding domains (DBD::cat.
domain::DBD). These “sandwich”-TALENs had reduced activity and
were only active on a very small subset of targets (see appendix ta-
ble 15). Furthermore, due to the two TALE-DBDs, which are highly
repetitive by themselves, unwanted recombination of the plasmids
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Figure 9: Mutations alter the cleavage pattern of a ColEy-based TALEN
Mutants for the ColEy nuclease domain were assayed in yeast. Data
were obtained after 48h at 30° and 37°C. Blue color stands for low, while
red stands for high relative activity. Here only targets containing two
AvrBs3 EBEs on opposite strands are shown. The spacer length deter-
mines the distance between the two. Targets were cut with different
efficiencies, despite the TALENs working as monomers. Mutants for the
catalytic residues H545 and R496 were inactive.
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Figure 10: ColE7 and NucA constructs can be inhibited in vivo
AvVrBs3::CoLEy_x497A and AvRBs3:NUCA were coexpressed with in-
hibitors Imy and NuiA in yeast. Shown is the relative activity of each
construct on one target plasmid Avr-16-Avr and the off-target I-Crel
after 48h at 37°C. No activity was detectable, when the respective in-
hibitors were present.

was always a possibility. Nevertheless, we found that addition of a
short linker sequence, which allowed fusions to the C-terminus of
ColE7, was increasing relative activity in yeast by itself, while slightly
reducing off-site activity. We decided to test this augmented catalytic
domain (here termed CoLEy_x497a_cFs) along with other monomeric
TALEN constructs in a different RVD context. Here, we used TALE DNA-
binding domains targeting the neomycin phosphotransferase II gene
(see figure 11).

NPTIl gene

Figure 11: NPTII gene and EBEs

DBDs targeting four effector binding elements (EBE A, EBE B, EBE cB and
EBE C) in the NPT II gene were chosen for our monomeric TALENs. The
sequence for EBE B is partially complementary to EBE cB. Target sites
had a length of either 57 or 60 bp, with two EBEs on opposite strands.
Sequences of the target sites A-25-B and cB-24-C are present in the
neomycin phosphotransferase II gene (nptll). Arrows show the direc-
tionality in 5" to 3" direction of each EBE.

This gene conveys resistance to a variety of aminoglycoside antibi-
otics (e.g., kanamycin, neomycin) and is used as a selection marker.
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Figure 12: Monomeric TALENs induce homology directed repair on the
NPTII locus
TALENs based on I-Tevl, ColE7 and NucA nucleases were examined in
a yeast SSA-assay. Fokl constructs acted as positive controls. Target
plasmids contained sequences from the neomycin phosphotransferase
II gene (see figure 11). Shown are datapoints that were obtained after
48 hours at 37°C.

An nptll knockout can improve biosafety and reduce regulatory con-
cerns for GMOs. We selected repeat arrays which had been made for
the FokI architecture so we could compare our constructs. Profiling
with a yeast SSA-assay revealed that our constructs were active (see fig-
ure 12) on their respective targets. Three monomeric TALENSs, based
on the nuclease domains from I-Tevl, ColE7 and NucA, were tested.
FoklI-based constructs acted as controls.

Activity of Tev-based constructs was highly dependent on the pres-
ence of a suitable CNNNG sequence. For example, activity for the TALEN
Tev:NPTII-CB on the target A-25-B had an average relative activity of
0.45, while there was no activity detectable on the target cB-24-C. The
EBE in both cases was the same, with the only difference being a miss-
ing CNNNG motif for target cB-24-C.

Colicin E7 constructs did not share this limitation. All constructs
displayed activity, albeit lower than for Fokl. Recombination was gen-
erally higher when two EBEs were present, with the surprising excep-
tion of the construct targeting NPTII-A. This construct was virtually
inactive (0.05) when a target plasmid with two A-EBEs was provided,
although it displayed some activity when just one site was present.

The most active compact TALEN (cTALEN)s were based on NucA.
Their relative activities reached values comparable to FokI (0.8) on
targets with two EBEs. We detected one case of off-target activity.
NrTII-B:NUCA cut the target C-24-C, despite no suitable target being
present.
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Figure 13: monomeric TALENs enable recombination in tobacco protoplasts
TALEN constructs were expressed via a 355 CaMV promoter in proto-
plast cells. Active constructs cut a target plasmid harboring a NPTII
site which disrupted a YFP reporter gene. Homologous recombination
restored the reporter gene. YFP-positive cells were then sorted and the
total percentage was calculated. Transfection efficiency was controlled
via a 355 CaMV YFP reporter plasmid and was at 82% +1.7%. Con-
structs acting on off-targets are shown in red. See section 2.3 for more
information about I-Tevl TALENS.

After this initial validation we decided to see if our constructs were
working in higher plants. For this, the constructs were subjected to
another SSA-assay in tobacco protoplasts by CeLLECTIS PLANT Sci-
ENCES [21]. Plasmids containing TALENs under the control of a 355
cauliflower mosaic virus (CaMV) promoter were cotransfected with
plasmids containing either the A-B or the cB-C target site. Successful
recombination restored a flanking YFP reporter gene. Cells were then
sorted and the percentage of YFP-positive cells was calculated (see fig-
ure 13). Four Tev-based and two Colicin E7-based TALENs were used,
whereas the NucA constructs could not be transferred into the plant
expression vector.

The strongest effect had the Tev-based construct targeting the EBE
A, on average reaching a rate of 45% YFP-positive cells, while the re-
spective Fokl TALEN pairs reached 16%. The Fokl value was also sur-
passed by the ColEy TALENSs (21%) targeting this EBE. Other monomeric
TALENs were less active, suggesting that TALE array or CNNNG motif
were worse.

Surprisingly the constructs with the largest amount of off-target ac-
tivity were the FokI TALENs. The FokI TALEN pair A/B even exceeded
the FokI pair cB/C on its native target, despite only matching the cB
EBE. Monomeric TALENs exhibited off-target activities below 0.3%.
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In view of these findings, we decided to evaluate the nucleases
in a mammalian system. We cloned AvrBs3:CoLE7_k497A_v2 and
the low activity variant AvRBs3::CoLE7_H573E into a mammalian ex-
pression vector and transfected the constructs into chinese hamster
ovary (CHO) cells. No activity could be detected in extrachromoso-
mal SSA-assays.

Complete wild-type Colicin E7 consists of a translocation, a receptor-
binding and a nuclease domain, which is cleaved off upon entering
of the target bacterium. Lysis occurs between arginine 446 and ly-
sine 447, which is also involved in DNA binding. To ascertain that
we did not include a cryptic cleavage site in our fusion constructs,
we mutated these two residues and profiled the mutants in a yeast
SSA-assay (see figure 14). Tested target plasmids could be grouped
into four classes: plasmids with two EBEs in the standard head to
head orientation (1, a bound TALEN C-terminus faces another bound
TALEN C-terminus), plasmids with two EBEs but non-standard orien-
tation (2,N-terminus faces C-terminus), plasmids with just one EBE (3)
and off-target plasmids without an AvrBs3 EBE (4).

One conservative mutation (glutamine for lysine 446 and lysine for
arginine 447) and one non-conservative mutation was chosen (tyro-
sine for 446 and alanine for 447). Alteration of residue 446 yielded

mutants with cleavage profiles comparable to AvRBs3::COLE7_K497A_v2.

Interestingly, the mutant AvrRBs3::CoLE7_r447K displayed no detectable
off-target activity. Only two off-targets were cut, however, these two
targets were also cut by the AvkRBs3::FoxlI control, making the correct
identity of these targets doubtful. Activity on the standard targets re-
mained comparable, while roughly half of the one-site targets showed
no apparent recombination. The variants k446Q and R447K were then
tested in a mammalian SSA-assay, since the first variant showed good
activity in yeast, while the later did not show any off-site cleavage.
Neither variant caused any sort of recombination.

Another interesting find was the difference between the targets
with two EBEs. ColE7 TALENSs cut targets with the standard EBE ori-
entation better than non-standard targets. Furthermore, these non-
standard targets were cut as well or worse than targets with just one
EBE, suggesting that the location of the DSB in relation to the homol-
ogy regions is more important than the amount of DSBs. There was
also the additional variability that could be seen when just examining
the standard FoklI targets (see figure 9).

To evaluate these findings, we compared a ColEy variant fused
to the TALE N-terminus to the original AvrBs3:CoLEy (see figure
15). Both constructs cut the standard targets best. CoLE7::AvRBs3
cut the atypical two EBE plasmids slightly better than the one target
site plasmids. A striking difference between the two constructs was
their behavior on the off-targets. While AvkRBs3::CoLE7 cut all plas-
mids with a relative activity of at least 0.09 with an average of o.12,
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Figure 14: Residues 446 and 447 have a strong effect on activity

Mutants were profiled in a yeast SSA-assay. Each point represents at
least two measurements at 37°C after 48h on the same target. Green
points represent targets that contain two AvrBs3 sites in “head-to-head
(C-C)” orientation, which is suitable for Fokl. Orange targets also con-
tain two target sites, however in the “tail-head (N-C)” orientation.
Blue targets contain one target site, while red represents off-targets
wihout any AvrBs3-EBE. Relative activity is given on a scale of o to
1. As a reference, the cleavage profiles of AvrBs3::Foxl (top left) and
AvrBs3::CoLEy_Rr497K_v2 (top right) are given. Both 446 mutants are
slightly more active than the WT (see figure 15) and exhibit a profile
similar to the one of R497k_v2. Conservative mutation of the residue
R447 (bottom left) removes detectable off-site activity, while reducing
overall activity slightly.
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Figure 15: The fusion terminus has an impact on ColE7’s cleavage pattern
Two constructs based on the same TALE-DBD and catalytic domain, but
with different domain arrangement, were tested in a yeast SSA-assay.
The orientation of the catalytic domain has an impact on the cleavage
profile. The N-terminal fusion ColE7::AvrBs3 is more active than its
C-terminal counterpart AvrBs3:ColEy. There are two populations of
off-targets for the N-terminal fusion. One population is not cut at all,
while the other is cut with a relative activity of around o.3. This is not
the case for the c-terminal fusion. Here, all off-targets are cut with equal
activity.

ColE7::AvrBs3 cut half the off-target plasmids with an activity com-
parable to the single EBE plasmids, while no recombination could be
measured for the other half. This lead us to believe that off-site activ-
ity is either star-site like or eluded detection in this type of assay.

We tested some of the variants with a smaller TALE-DBD (13.5 re-
peats) targeting part of the recombination activating gene RAG2 (see
figure 16). RAG2 is a target of interest for gene therapy since a de-
fective version can cause severe combined immunodeficiency (scip).
Yeast SSA-assays showed that for the shorter construct relative activity,
but also off-target activity, decreased compared to the longer AvrBs3
DBD (17.5 repeats). It has to be noted that both arrays cannot be com-
pared adequately, since the recognition sequences are different.
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Figure 16: Activity of TALE::ColE7 is reduced for the RAG TALE-DBD
Two ColE7-based constructs were profiled in a yeast SSA-assay. Activity
for the target sequences reached 0.4, while it reached 0.6 for an AvrBs3-
based TALEN (see figure 14). The majority of off-target plasmids were
not cut.

To study unspecific nuclease domains further, we decided to in-
vestigate cleavage of an unspecific nuclease domain in vitro. It had
been shown that inactive EndA mutants could be chemically res-
cued in vitro [148]. Our nuclease variants contained the mutations
H160A or H160G, which replaced a catalytic histidine of the H-N-H
motif with a glycine or alanine. Addition of imidazole restored the
activity. This system allowed us to safely express constructs and then
assess specificity in vitro. For this, we fused the DNA-entry nuclease
(EndA) of Streptococcus pneumoniae to the N-terminus of the AvrBs3
DNA-binding domain. The chimeric nuclease was then purified with
two affinity purifications. First via binding of its C-terminal His-tag
to a Ni-NTA column, then via binding to a heparin column. Heparin
“mimics” the structure of DNA and can be used to purify DNA-binding
enzymes, but also kations in general. The elution profile for the hep-
arin column can be seen in figure 17.

Purity of the eluates was then determined via sodium dodecyl sul-
fate (SDS)-polyacrylamide gel electrophoresis (PAGE) (for an example
purification, see figure 18). All TALENs had higher eletrophoretic mo-
bilities than what their molecular mass suggested. Resequencing of
the expression vectors and use in cleavage assays confirmed however,
that the constructs were not truncated.

Cleavage assays proved that the construct ENDA_H160G::AVRBs3
completely degraded our target plasmid, given enough time (see fig-
ure 19). To reduce this off-site activity, we decided to lower the activ-
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Figure 17: ENDA_H160G::AVRBs3 binds to a heparin column and elutes at
400 mM of NaCl
Shown is UV absorbance at 260, 280 and 340 nm, conductivity and the
concentration of the HighSalt-buffer. A preequilibrated heparin column
was injected with His-tag-purified eluates and then washed. Samples
were eluted by increase of the salt concentration up to a total of 1 M
NaCl at 100% HighSalt buffer. Here, the protein samples eluted in frac-
tions A11, A12 and Bz, at a sodium chloride concentration of about 400
mM NaCl.

Figure 18: Purification of ENDA::AVRBs3::sNAP

Shown on the left are samples from an XL10 GOLD expression culture
for ENDA_H160G_Q186A_N202A::AVRBs3::sNAP before and after induc-
tion with IPTG. On the right are samples: after cell lysis via sonication
(crude fraction), soluble fractions after centrifugation and flowthrough,
wash, eluate for the His-tag and heparin affinity chromatographies. The
protein of interest is ENDA_H160G_Q186A_N202A::AvRBs3::sNAP with
a molecular mass of 126 kDa. Its electrophoretic mobility is compara-
ble to a much smaller protein between 100 and 75 kDa. The acrylamid
percentage of the gels was 12.5%.
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Figure 19: Mutation of the EndA domain diminishes enzymatic activity
Shown are different EndA::AvrBs3 variants cutting a plasmid target har-
boring an AvrBs3 EBE. 50 nM protein were used to digest 10 nM of
plasmid DN4, in 100 mM NaCl, 50 mM Tris-HCI pH 7.9, 10 mM MgCl,,
100 pg/ml BSA. The H160G mutant completely degrades (red arrow)
the DNA. The mutations H160A and Q186A / N2024a reduced the activity.
Addition of the sNAP-tag seemed to have little impact.

ity of the nuclease domain. This was achieved by replacing residue
160 with an alanine. It is thought that the imidazole can fit better
into the active site when His 160 was replaced by Glycine. This ap-
proach reduced the activity (see figureig), however its application
in vivo is difficult in some types of cells, due to the chemical activa-
tion. Since the goal was to engineer the nuclease to be specific and
then revert the H160 mutation, we chose two mutations that have
been shown to reduce EndA activity [149]. For this reason we in-
troduced the mutations Q186A N2024, which had the intended effect.
While the original H160G mutant completely degrades the DNA in
already 10 minutes at 37°C, the same amount of enzyme for the mu-
tants produced clean cleavage products after an hour, although some
degradation products can be seen. Another variant additionally con-
tained a C-terminal snap-tag. This tag is a modified version of the
O6-alkylguanine DNA alkyltransferase [83] and can be used to cova-
lently label proteins via a benzyl group. It has been demonstrated
that TALE::sNAP and SNAP:TALE fusion proteins still bind to DNA [90].
Addition of this tag seemed to slightly improve specificity, which can
be seen in figure 20.

Activity of the constructs depended on several factors. High salt
concentration lowered, while low salt concentration promoted on-
and off-site cleavage (see figure 21). Varying degrees of specificity
could be obtained, depending on the buffer composition (see ap-
pendix 49).
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Uncut

Figure 20: EndA mutants exhibit reduced off-target cleavage

10 nM of a linearized plasmid, lacking the AvrBs3 EBE, were incu-
bated with 50 nM of different EndA mutants in 100 mM NaCl, 50
mM Tris-HCI pH 7.9, 10 mM MgCl,, 100 ng/ml BSA. The mutant
closest to the wild-type (H160G) completely degraded the plasmid DNA
in less than 10 minutes. Mutation of the catalytic site (H160A) re-
duced the amount of off target activity. Alteration of the DNA bind-
ing residues (H160G/Q186A/N202A and H160G/Q186A/N202A SNAP) de-
creased it even further. Still some degradation products (red arrows)
and a smear of unspecifically cut DNA can be seen.

mM NaCl
- BamHI 25 50 75 100 200 400 800

Uncut

Figure 21: High salt concentration inhibits cleavage

A PCR fragment (594 bp, 30 nM) harboring an AvrBs3 EBE was cleaved
by ENDA_H160G::AvRBs3 (50 nM, 15 min at 20°C, 50 mM Tris pH 8,
50 mM imidazole, 10 mM MgCl,). The nuclease proved to be active at
low sodium chloride concentrations, however the amount of specifically
cut fragments (red arrows) was highest around a NaCl concentration of
100 mM. While lower salt concentrations reduced the amount of uncut
fragment most, they also showed the highest amounts of degradation.
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Figure 22: ENDA_H160G::AVRBs3 is active over a wide range of imidazole

concentrations

Shown is a cleavage assay (50 mM ENDA_H160G::AVRBs3, 10 mM ad-
dressed plasmid, 15 min at 20°C, 50 mM Tris pH 8, 100 mM NaCl,
10 mM MgCl,) to determine imidazole requirements for bNA cleavage
by ENDA_H160G::AvRBs3. The construct is active for the most concen-
trations under these reaction conditions. Unspecific cleavage products
appear (red arrow).

The constructs proved to be functional over a wide range of imida-
zole concentrations (see figure 22).

To determine potential strand specificities, we examined cleavage
fragments of a fluorophor labeled PCR product during a timecourse
assay with denaturing urea native PAGE. Double strand breaks will
only show up in the native gel, while nicks appear in the denaturing

gel (see figure 23).
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Fig

ure 23: Overview of EndA::TALE cleavage assay
Substrate (A) for the cleavage assay is a 211 bp PCR fragment labeled
with ATT0488 (green, top strand) and ATT0647 (red, bottom strand). An
AVRBs3-EBE is located in the later half of the fragment. During catalysis,
a single strand is cut first and then converted to a double strand break
(B). Nicked intermediates can be discriminated via denaturing PAGE.
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Figure 24: ENDA_GAA constructs do not show a strand preference

Shown are composite images of ATT0488 (green) and ATTO647N (red)
fluorescence for a native and a denaturing (urea) gel. A PCR product
was cleaved and then half of the sample was analysed via native-, the
other half with urea PAGE. Green fluorescence reprensents the top-, red
fluorescence the bottom strand. TALE and DNA concentration were both
at 20 nM. Paa concentration was 8% for the native and 10% for the
denaturing gel. Assays were carried out at 37°C in 100 mM NaCl, 50
mM Tris-HCl, 10 mM MgCl,, 100 ug/ml Bsa and pH 7.9. BamHI was
used as a positive control. The amount of nicked- and cut DNA increases
over time. For the analysis see figures 25 and 26.

It is also possible to discriminate top- and bottom strand nicks via
different fluorescence. By subtracting DSBs (native) from total nicks
(urea), one can conclude the amount of single nicked products. Exam-
ple gels for ENDA_H160G_Q186A_N202A:AVRBs3 and its snap-tagged
version can be seen in figure 24.

The analysis of the gels (see figure 25) showed that there was no
strand preference for the constructs. Interestingly the snar-tagged
variant produced fewer nicked DNA strands, but overall the same
amount of double strand breaks (see figure 26). This is suggesting
that the initial nicks are slower for ENDA_H160G_Q1865_N202A::AVRBs3:
:SNAP, but the nicked intermediate states are converted faster to DSBs.
Under the assay conditions, no cleavage could be observed for PCR
fragments lacking the AvrBs3-target site.
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Figure 25: There is no detectable strand-preference for N-terminally fused

Cleavage [%)]

EndA

Shown are percentages of top- (green) and bottom strand (red) cut PCR-
product from time course cleavage assays (see figure 24 (n=5)). The
two constructs ENDA_H160G_Q186A_N2024::AVRBs3 (here abbreviated:
ENDA::AvkRBs3) and ENDA_H160G_Q186A_N202A::AVRBs3::sNAP (here
abbreviated: ENDA::AvRBs3::sNAP) show no preferences for bottom- or
top strand cleavage (EndA::AvrBs3 p=0.47;EndA::AvrBs3::Snap p=0.30).
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Figure 26: Addition of a sNaP-tag changes the cleavage pattern of an EndA

TALEN

Shown is the amount of double-strand breaks in a PCR-product
from time course cleavage assays (see figure 24 (n=5)). The two
constructs ENDA_H160G_Q186A_N202A::AVRBs3 (blues, here abbrevi-
ated: ENDA:AVvRrBs3) and ENDA_H160G_Q186A_N202A::AVRBs3::SNAP
(oranges, here abbreviated: ENDA::AvRBs3::sNAP) produce the same
amount of DNA-DSBs (p=0.32), but the amount of single-nicked sub-
strate differs significantly (p=3*107 for just top-nicked, p=6*10 for just
bottom-nicked substrates). No preferences for bottom- or top strand
cleavage were found.
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Since the EndA-scaffold worked as a monomer, we decided to fuse
a second EndA nuclease domain to the C-terminus to create a tripar-
tite enzyme (for more dual catalytic TALENSs see section 2.5). After con-
firming that both domains were active (e. g., appendix 49), the previ-
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ous assays were redone with the new ENDA_H160G_Q186A_N202A:AVRBs3::

ENDA_H160G_Q186A_N202A. Interpretation of the results is more dif-
ficult, since there are two DNA single strands (top and bottom), which
can be cut at two places (up- and downstream of the AvrBs3-EBE).
This means that one DNA molecule can be converted into 16 different
forms. It has also to be noted that a single strand with two nicks
cannot be distinguished from a single strand with a nick close to
the fluorophore. For examples a downstream (or C-terminal) - top
strand nick will disappear in this assay, as soon as the top strand
is also nicked upstream (by the N-terminal nuclease domain). This
works vice versa for the bottom strand.

Analysis via PAGE showed (see figure 27) that the C-terminal nu-
clease domain was less active overall, but that this lack of activity
stemmed from a lack of bottom strand cleavage (see figures 28 and
29). These findings are consistent with observations made with N-
terminal ColE7 and N-terminal I-Tevl TALENs (see section 2.3). To-
gether they suggest that domains fused directly to the N-terminus are
more flexible than domains fused to the C-terminus via commonly
used linkers.

To test our EndA constructs in vivo, we reverted the H160G mutation
in the Q186A / N202A context, so that the EndA domain is constitu-
tively active. While the wild-type H160 mutant could not be cloned,
mutants H160Q and H160N were generated successfully. The idea was
that the amino groups in glutamine and asparagine could take over
the function of the nitrogen in the histidine sidechain and activate the
catalytic water molecule (see figure 4 for an overview of the cleavage
mechanism of H-N-H nucleases). Plasmids for both mutants could be
propagated in E. coli, however only H160N could be expressed, despite
correct sequences for both. In vitro assays after purification showed
no detectable activity for ENDA_H160N_Q186A_N202A::AVRBs3, sug-
gesting that a different replacement is needed for histidine 160.
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Figure 27: A C-terminal EndA domain is less efficient than an N-terminal
one
Shown are composite images of ATT0488 (green) and ATTO647N (red)
fluorescence for a native and a denaturing (urea) gel. A PCR prod-
uct was cleaved and then half of the sample was analyzed via native-
, the other half with urea PAGE. Green fluorescence represents the
top-, red fluorescence the bottom strand. TALE concentration was
8o nM and DNA concentration was at 20 nM. PAA concentration was
8% for the native and 10% for the denaturing gel. Assays were car-
ried out at 37°C in 100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl,,
100 pg/ml Bsa and pH 7.9. BamHI was used as a positive control.
ENDA_H160G_Q186A_N202A(GAA)::AvRBs3::ENDA(GAA) is overall less ac-
tive than its single domain counterpart. Although the C-terminal do-
main produces less DSBs than the N-terminal one, it generates a more
similar amount of top strand nicks. For a detailed analysis see figures
28 and 29.
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Figure 28: The C-terminal EndA domain in a tripartite construct has a pref-
erence for top strand cleavage
Shown are top- (green) and bottom (red) strand cleavage for the N-
and C-terminal EndA domain of a tripartite TALEN (see figure 27 (n=3)).
The C-terminal EndA domain has a clear preference (p=4*10"'?) for top
strand cleavage. It has to be noted that top strand cleavage for the
C-terminal domain and bottom strand cleavage for the N-terminal do-
main are underestimated in this assay, due to conversion of the long
fragments to shorter fragments by the opposite domain (see text).
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Figure 29: The N-terminal EndA domain in a tripartite TALEN construct is
more active than the C-terminal one
Shown are bottom-, top- and double-strand cleavage for the N-
(blue) and C-terminal ( ) EndA domains of the tripartite TALEN
ENDA_H160G_Q186A_N202A:AVRBS3::ENDA_H160G_Q186A_N202A (see
figure 27). The N-terminal domain generated more strand breaks in
total, however the C-terminal domain produced more top strand breaks
in the first few minutes. The real amount of top strand cleavage by the
C-terminal domain is underestimated (see text).
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Figure 30: Genome modification by an I-Tevl-based TALEN can be verified
via Ty assay
Shown are PCR fragments generated from genomic DNA (obtained from
CHO-K1 cells treated with nucleases), which were cut by T7 endonu-
clease 1. 5 or 10 pg of plasmids harboring a nuclease targeting the
NrTll locus were transfected. Cleavage products (red arrows) of the Ty
endonuclease 1 mirror the amount of gene modification in vivo. The
I-Tevl-based TALEN had a greater impact at a transfection amount of 5
pg than at 10 pg. Cotransfection of a plasmid harboring human exonu-
clease Trex2 instead of a mock plasmid reduced the amount of cleavage
when 5 pg of the TEV::TALE plasmid where transfected and slightly in-
creased the amount, when 10 pg were transfected.

2.3 I-TEVI FUSION CONSTRUCTS

As an alternative to our unspecific catalytic domains we chose the nu-
clease domain of homing endonuclease I-Tevl. A trait of this domain
is its “CNNNG” specificity that should reduce the number of potential
target sites and off-targets, which it is thought to do in nature. I-
Tevl binds to its own promotor for autorepression, while the missing
CNNNG motif prevents the catalytic domain from cleaving [62].

We fused the catalytic domain to the N-terminus of TALE-DNA bind-
ing domains, mimicking the natural I-TevI structure (N- to C-terminus:
nuclease domain - linker - DNA-binding domain). TEv:TALE fusion
constructs targeting the neomycin phosphotransferase II gene worked
successfully as monomers in yeast (see figure 12) and in tobacco pro-
toplasts (see figure 13). We also tested the constructs on an endoge-
nous target in CHO-K1 cells. In some cases we cotransfected a plasmid
coding for the human 3’ to 5" exonuclease Trex2, which can act as an
enhancer reagent for mutagenic NHEJ [58].

A quick overview can be achieved by generating PCR fragments of
the modified genomic region and then using them in a T7 endonu-
clease 1 assay. Here, PCR fragments are denatured, reannealed and
mismatching duplexes are subsequently cut by the Ty endonuclease
1. The amount of cleavage products is an indicator for the amount of
genome modification, since they stem from annealing wild-type DNA
copies with mutated forms. The assay proved that the TEv::TALE was
active (see figure 30), which was then confirmed by deep sequencing
(on average ~4.3% modification for 5 pug samples, see [21]).
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Figure 31: TEv::NPTII-CB is active but shows signs of off-site cleavage

A supercoiled plasmid (10 nM, 10 kb) harboring a neomycin phospho-
transferase Il gene was incubated (1h at 37°C in 50 mM Tris/HCl pH 7.9,
100 mM NaCl, 10 mM MgCl,, 1 mM DTT) with varying concentrations
of the TEv:NPTII-CB TALEN. Scal was used to linearize part of the sam-
ples. A five fold excess of protein (50 nM) over DNA generated specific
cleavage products (green arrows), but also produced unspecifically cut
plasmid (red arrow). The amount of degraded plasmid increased with
protein concentration with the highest amount of off-target activity at a
15-fold excess. Linearization could also be achieved by the TALEN (right
lane), however a smear of unspecific cleavage products appeared.

Tev:NpTII-cB was also purified and assayed in vitro to assess fi-
delity. Our nuclease generated specific double strand breaks, but
also a smear of unspecific degradation products (see figure 31). The
amount of degradation products is proportional to the nuclease con-
centration. Despite these findings, we did not observe any toxicity
for Tev-based constructs in viability assays (see [21]). Interestingly,
even a Fokl-based nuclease generates off-site products in vitro (see
appendix 50), suggesting that off-site activity in vivo is either lower or
less relevant.

We also tried an “unnatural” arrangement by attaching the I-TevI

nuclease domain to the C-terminus of a TALE-DBD, generating a TALE::TEV

fusion. Surprisingly, this changed the cleavage mechanism of the nu-
clease. While the I-Tevl nuclease domain causes DSBs when fused to
the N-terminus, it only creates nicks when fused to the C-terminus.
Two EBEs were needed to achieve homologous recombination in a
yeast SSA-assay (see figure 32). An additional requirement was the
presence of the “CNNNG” motif between the two binding sites. This
nickase activity was sufficient to introduce genes in human embry-
onic kidney cells (see [21]).
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Figure 32: Two TALENs are needed to stimulate SSA when the I-TevIl nuclease
domain is connected C-terminally
A TAaLE:TEV fusion targeting the AvrBs3 site and a TALE:TEV pair tar-
geting the RAG locus (“L” and “R”) were profiled in a yeast-SSA as-
say. Shown are relative activities after incubation for 48h at 37°C. Nu-
cleases were tested on four targets with effector binding elements for
Avr, RagT2-L and RagT2-R. The “Avr-15-Avr” target could be cut by
the AvrBs3::Tev nuclease, since there are two Avr EBEs. Target “Avr-15-
RagR” required the Avr and the RagT2-R nuclease. The complete “Rag
target” was only cut by the Rag-TALEN pair when the spacer was re-
placed by the spacer of the Avr-target, because the later contained the
needed “CNNNG” motif.



2.4 TALE::MEGANUCLEASE FUSIONS

Effector Binding Element  Spacer HE recognition HE recognition
site A site B

Figure 33: Layout of TAL::MEGAs and their target sequences

A TALE-DBD (light grey) is connected via a linker to the N-terminus of
scl-Crel (dark grey). RvDs are highlighted in green consistend with
their effector binding element which is also shown in green. EBE and
homing endonuclease recognition site are separated by a variable spacer.
The HE recognition site can be separated into two parts (blue and or-
ange) and each part is bound by one domain due the bipartite nature
of LAGLIDADG HEs. Cleavage occurs between the recognition sites. The
consensus cleavage sequence is GTAC.

2.4 TALE::MEGANUCLEASE FUSIONS

I-Crel was chosen as a model for highly specific catalytic domains.
Since I-Crel is a member of the dimeric group of LAGLIDADG hom-
ing endonucleases, we first generated a single-chain variant termed
scl-Crel by fusing the C- and N-terminus via a linker. The subse-
quent monomeric variant was then attached to the C-terminus of a
TALE-DBD scaffold [see figure 33] with another linker. This second
linker is an o-helix based on a natural linker from Gry-vic homing
endonuclease I-Tevl, which in that context connects the nuclease do-
main to its binding domain. We also introduced several mutations
into scI-Crel to create the degenerate scaffold scI-CrRel_DS. Parts of
these mutations had been identified in broad-specificity variants of
I-Crel within a mutant library [Claudia Bertonati, personal commu-
nication]. The reasoning behind this was to broaden the specificity
of I-Crel while reducing its affinity; effectively increasing the number
of possible targets for the catalytic domain without increasing overall
toxicity.

The first TALE-DBD we tested was the well characterized AvrBs3 in
our cT11-scaffold [see figure 7]. As an additional control we also
fused an empty scaffold just containing a TALE N- and C-terminus
without any repeats. We then profiled our constructs in yeast ssa-
assays to assess activity.

Scl-Crel cleaved all provided target plasmids, when an I-Crel recog-
nition site is present, while the derivative scI-CrRel_DS exhibited only
moderate activity (see figure 34) and no activity at 30°C growth condi-
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Figure 34: AvrBs3-DBD fusion modifies the activity of scl-Crel

Relative B-galactosidase activity as a consequence of DSB induced recom-
bination in a yeast SSA-assay. Values shown are mean values obtained
48h after transfection with growth at 37°C. Both scI-CRel constructs (red
and purple) caused a saturated signal under these conditions. The de-
generate scaffold mutant (blue) is less active, but activity can be restored
by fusion of a TALE-DBD (green). This rescued activity is dependent on
the distance between effector binding element and HE recognition site.

tions. Another difference between the two variants is the influence of
the TALE-DBD domain. The Avr fusion boosted the activity of scI-CRrEI
on all targets and improvements could be seen at early timepoints or
low temperatures (e. g., 37°C & 8h Avr-o5-Cre: relative activity of 0.35
[scCre] to 0.65 [Avr::scCre]). This increase was seen independently of
proximity or presence of an Avr-EBE. Interestingly, even the empty
scaffold control increased activity. While the TALE-DBD uniformly aug-
mented cleavage for scI-Crel, it interfered with cleavage when fused
to scI-Crel_DS. If the distance between Avr-effector binding element
and HE recognition site was greater than 10 bp or the EBE is missing,
no signal could be detected. The same is true for the control lacking
repeats.

Additionally we created the variants scI-CReEl_DS-N and scI-Crel_DS-
C. Both were hetero domain variants with the first one containing the
DS mutations in the N-terminal domain and the second one in the
C-terminal domain. Profiling revealed some differences. Both were
slightly less active than scI-Crel, but unlike scI-Crel_DS both had
saturating activity (see appendix 16). They had increased activity in
the TALE context, but like scI-Crel did not seem to depend on the
spacer length, suggesting that both subdomains need to be altered
for full restriction of activity.

As a proof of concept, we then decided to test our constructs for
their ability to promote homology directed repair in a mammalian
model. We used a CHO-cell line harboring a chromosomal 3-galactosidase
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Figure 35: TaL::scl-CREI exhibits no toxicity at large transfection concentra-
tions
CHO cells, containing an artificial, chromosomal I-Crel site, were trans-
fected with 200 (red) or 3000 ng (blue) of construct plasmid and 2 ng
of LacZ repair matrix. Cleavage of the I-Crel site and subsequent ho-
mology directed repair yielded LacZ expressing CHO cells. Cells were
stained with X-gal after three days of growth. Blue cell clusters were
considered as integration events.
Scl-Crel efficiency decreases dependent on the transfection dose (see ta-
ble 2). There are almost no blue cells on the scI-CrRel_DS plate, however
fusion of a TALE domain targeting the outside region of the chromo-
somal target (cHO::sCI-CREI_DS) rescues activity. Interestingly, there is
no discernible difference for the CHO-TALE and the Mock-TALE domain,
when fused to scI-CreL

gene, which is disrupted by an I-Crel target site. Two different doses
of our expression vectors were then cotransfected with a repair ma-
trix. After three days, we fixated the cells and stained them with X-Gal.
Plates were then incubated for another day and groups of blue cells
were counted.

For scI-CRrel, there were significantly less integration events for the
high transfection dose (see figure 35 and table 2). However, this dose
dependent effect disappears for both TAL::sCI-CREI constructs. Inter-
estingly, there seems to be little difference in integration efficiency
between the TALE array recognizing the chromosomal target region
(cHO::) and the TALE-DBD recognizing a mock sequence (Mock::). This
is suggesting that the apparent boost in recombination stems from an
overall reduction of activity of scI-Crel and thereby reduction of tox-
icity. Contrary to this, the correct TALE-DBD is very important for the
degenerate scaffold. While scI-Crel_DS caused almost no integration
events by itself, activity could be restored when fusing the matching
array. On the other hand, addition of the wrong TALE-DBD (Mock::)
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Table 2: Mean amount of integration events in transfected CHO cells

Shown are mean amount of events for each construct and dose of trans-
fected DNA. No events were seen when just an empty expression vector
and the repair matrix were transfected. Transfection of a LacZ expression
vector yielded a large amount of blue cells after staining.

The amount of integration events is significantly (p = 2.6*107) lower for
the 3 pg than for the 0.2 pg transfection of scI-Crel (see figure 36 for ef-
fects of toxicity). For the scI-CRel_DS transformations, integration events
only occured at higher DNA concentration.

CONSTRUCT DNA [pg] MEAN EVENTS [] SEM
scl-Crel 0.2 1131.3 +358.5
3 126.7 +82.3
CHO::scl-Crel 0.2 992.7 +265.6
3 506.7 +121.9
Mock::scl-Crel 0.2 645 +192.7
3 881 +278.3
scl-Crel_DS 0.2 0 +0
3 6 +3.5
CHO::scl- 0.2 72 +24.3
Crel_DS
3 262 +114.3
Mock::scl- 0.2 0 +0
Crel_DS
3 0 +0
Mock 3 0 +0
LacZ expression 2 +++
vector

shut down the construct.

The difference between the single-chain variant and the TAL:MEGA
was clearest when directly looking at the petridishes (see figure 36).
Not only was the amount of integration events lower but also the
overall amount of cells was reduced for the 3 pg scI-Crel samples.
There were almost empty regions with only single cells. The round
morphology suggested that these cells were either dead or dying. On
the other hand, cells transfected with cHo::scI-CRrEl formed a lawn
at 3 pg of transfected DNA. Even at high concentrations, no toxicity
could be observed for any of the DS variants. These findings are
consistent with viability assays done in CHO cells (see appendix 51).

The next step was to estimate the specificity of our constructs, since
the DS mutations were introduced to allow the nuclease domain to
address more targets. Therefore, we profiled the two meganucle-
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Figure 36: The number of viable cells is low at high scI-Crel doses
Shown are sections of plates containing CHO cells which were trans-
fected with scI-Crel derivates. There were empty patches and overall
fewer cells after transfection of 3 ng scI-Crel vector (A), while plates are
covered with cells after transfection of 3 pg CHO::scI-Crel vector (B).
Cells groups expressing [3-galactosidase turned blue (red circle). Each
group was considered as one integration event.

ases and their TALE fusions on a library of targets in a yeast SSA-
assay (see figure 37). The library consisted of a total of 234 tar-
gets, which contained variations of a palindromic I-Crel target site
(+12 TCNNNNCGTCGT -ACGACGXXXXGA -12). It had been shown previously
that the palindromic target is cut at least as good as the pseudo-
palindromic WT target [6].
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Figure 37: Degenerate scaffold mutations alter the range of addressed tar-
gets
I-Crel and two scI-Crel variants are profiled on a library of I-Crel tar-
get site derivatives in a yeast ssa-assay. In this library, nucleotides
at 10 to 7 bp positions of the palindromic recognition sequences (+12
TCNNNNCGTCGT-ACGACGXXXXGA -12) vary. Each dot represents one mea-
surement after 48 hours of incubation at 37°C. Relative activities <o.2
were normalized to o. The y-axis shows the estimated density of the
data. I-Crel and scl-CrEel show similar profiles. scI-Crel_DS is inac-
tive on more targets, but also cleaves more targets with a high relative
activity compared to scI-CREL
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Figure 38: Addition of a TALE-DBD improves a meganucleases ability to tol-
erate mismatches
The same library as in figure 37 was used to profile TaL::scl-Crel fu-
sion constructs. The TALE-DBDs recognize a sequence 8 bp upstream
(TALFORO08) of the I-Crel sequence. DBD fusion reduces the amount of
uncut (<o.2) targets while increasing overall activity.

There seems to be very little difference between the single-chain
and the dimer forming I-Crel. Both variants cleaved a small subset of
targets well, a larger amount with moderate efficiency (0.5 +0.2) and
the majority of targets were not cleaved at all. The WT was slightly
more active than our single-chain construct. This profile differs for
the degenerate scaffold. It cuts more targets with a high efficiency,
but less targets overall.

TALE-DBD fusion has a positive effect on both single-chains (see fig-
ure 38). and increased the mean activity significantly (***, both p =
2.2 *10%%). Detected signals were generally higher and less targets
were not cut. TALE-DBD fusion had a more prominent effect on the
degenerate scaffold than on the regular single-chain. By itself, scl-
Crel caused DSBs on more targets than scI-Crel_DS. However after
TALE fusion this ratio switches: TALFOR08::scI-CReI_DS acts on more
targets than its predecessor TALFOR08::sCI-CREL.

To have a look at the base preference, the targets can be plotted in
a heat map with the bases at position 9 and 10 on the x- and bases at
position 7 and 8 on the y-axis (see figure 39). Mean relative activity
is then illustrated as a color spectrum.

As previously seen, fusion of the TALFORo08 array increased relative
activity for all previously cleaved targets. Activity on some of the un-
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Figure 39: Cleavage profile of scI-CrEl and TAL::sCI-CREI
All 234 profiled sequences are ordered in a matrix with bases at position
10 and 9 on the x- and bases at position 8 and 7 on the y-axis. Mean
values for the relative activity of clones measured after incubation for 48
hours at 37°C are plotted. Red stands for high activity; blue for low or
no activity. The cleavage profile of scI-Crel and the degenerate scaffold
differs (see figure 40).
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cleaved targets could be restored by TALFOR08, however there are
targets that remain without detectable activity. More interesting are
the differences in cleavage patterns, when comparing the two cleav-
age domains. Since I-Crel’s pseudopalindromic target sequence in
Chlamydomonas rheinhardtii is “AAAA” and “AAAC” at position 10 to 7
(or -10 to -7 respectively), it is no surprise that scI-Crel had a “AANM”
base preference. Adenine is the clear preference at position 10 and
thymine is tolerated poorly. A purine base is preferred at position
9, although targets with pyrimidine bases are also cleaved well, if
a cytosine is present at position 7. Furthermore, position 7 has the
biggest influence on activity and cytosine or adenine are required in
most cases. The majority of targets with an “NNNK” (T or G) sequence
are not cut, even in the TALE context.

scI-Crel_DS exhibited an almost completely different cleavage pat-
tern. ScI-CREl’s rejection of thymine at position 10 changed to a pref-
erence in the degenerate scaffold. The importance of an adenine or
cytosine (M) at base 7 has been completely removed for the degener-
ate scaffold. In fact, without the TALE-DBD only few targets that do
not posses a thymine at position 10, were addressed at all. The before
mentioned preference for a purine base at position g could be seen in
the TALE fusion context. Interestingly, the pyrimidine base thymine is
accepted nicely at position 9, if there is also a thymine at position 10.
“TTNN” targets were generally cleaved with a high relative efficiency.
A consensus (see figure 40) of well cut targets (relative activity >0.85)
was generated for a simpler overview.

A1.o B1.0
0.5 -Arc 0.5 Ag

=l (edal 00lASC-
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Figure 40: TALE-DBD fusion broadens the 10-7 bp consesus sequence
Shown are probability consensus sequences of the 10 to 7 bp posi-
tions in a palindromic I-Crel wt target for scl-Crel (A), scI-CrRel_DS
(B), TALFORS::scI-CREI (C) and TALFORS::scI-Crel_DS (D). Targets that
were cut with a relative activity of >0.85 were included in the consen-
suses.
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Figure 41: Relative activity is increased after TALE fusion

Constructs I-Crel, scI-CREl and TaL10555p4::5CI-CREI were profiled on
a library for the cleavage sequence at position -2 to 2. Since the “-12
to -3” and “3 to 12” sequences are palindromic, only 128 target plas-
mids are needed. Data points obtained after 48h at 37°C were plotted.
While there is only a small difference between I-Crel and its single-chain
derivative, a larger amount of targets is cleaved at high activity when
scl-Crel was fused to a TALE-DBD.

Similar boosting effects could be seen when fusing the TALE array
“TALREVo02::”, which bound 2 bp distant from the target site on the
opposite DNA strand. Differences between TALREVo02::scI-CREl_DS
and TALFORO08::scI-Crel_DS were subtle, but the later had an overall
higher activity. One set of measurements for TALREV02::scI-Crel did
not yield any detectable signals, thereby reducing the mean. Data for
this array were therefore not included.

Since TALE-DBD fusion allowed the addressing of a much wider
range of targets, we decided to profile our constructs on the -2 to
2 region, which is the area of cleavage. It is thought that, apart from
interactions by the catalytic center to the phosphate backbone, there
are few protein/DNA interactions in this region [128]. Therefore it is
difficult to engineer specificity in this region without affecting cleav-
age.

We found that the TALE-DBD had a very prominent effect on activity
of scI-Crel (see figure 41). Although the amount of uncut targets did
not change much, the number of targets that were cut with a relative
efficiency of >0.85 almost tippled. This change is reflected nicely in
the consensus sequence (see figure 42).

For all constructs, the palindromic “GTAC” was the most highly
ranked and “GTGA”, the “-2 to 2” sequence in I-Crel’s natural tar-
get, was also visible. Overall, the consensus of well cleaved target
sequences was much wider for the TaL::scI-CRrel fusion. We also pro-
filed scI-Crel_DS, although the 10 to 7 region (here: “AAAA”) of our
library was not optimal. Only two targets were cleaved at all (GTAC
and GTGC), nonetheless the DBD rescued activity for 26 targets with
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Figure 42: The cleavage consensus sequence is expanded for TALE constructs
A cleavage consensus for I-Crel (A), scI-Crel (B) and taL::scI-Crel (C)
was built by gathering all sequences in a -2 to 2 library that were cut
with a relative activity of >0.85. The palindromic consensus GATC is
clearly visible in A and B; more bases are tolerated in C.

four of them reaching activities above 0.85.

Due to the positive effects that TALE fusion and the degenerate scaf-
fold mutations had, we chose to test both modifications into an al-
ready established meganuclease. The engineered I-Crel variant scTcr
is targeting the gene for the human t-cell receptor 3-chain, but dis-
played toxicity in mammalian cells. So we introduced the degenerate
scaffold mutations and profiled our new meganuclease in a yeast SSA-
assay (see figure 43), along with two TALE::MEGANUCLEASE versions
of it. Since scTcRr is targeting a non-palindromic site, we included
palindromic versions of the first (A) and the second half (B) of the
target site termed TCR_AA and TCR_BB.

Our scTcr_DS was active on all targets containing a TCR target
site, but also on the off target TCR_AA. The TAL::MEGA on the other
hand needed two correct DNA motifs to induce a double-strand break:
effector binding element and meganuclease recognition site. No activ-
ity was detectable, when EBE (TCR- / TCR_AA- Target) or HE recogni-
tion site (EBE_TCR-05-Cre / EBE_TCR-null) were missing. There was
also a noticeable effect of spacer length between EBE and meganucle-
ase site. TALTCR::scTcr_DS was more active on targets with a small
spacer and less active on targets with a longer spacer (>10bp). This
effect can also be seen at earlier timepoints (8 h and 24 h). Unlike
its relative scI-Crel_DS, it is working at 30°C albeit with much lower
efficiency and only on an optimized target (relative activity of ~0.4).
Moreover activity was not completely shut down for spacers longer
than 8 bp. Fusion of an Avr TALE array inactivated the construct when
there was no AvrBs3 site present. Nonetheless, both tested TALE ar-
rays (TALTCR:: and Avr:) did not abolish activity on an optimized
TCR target with the “-2 to 2” sequence of “GTAC” instead of “GTAA”.
Here we saw homology directed repair with relative efficiencies be-
tween 0.5 and 0.6, even when no EBE was present.

In view of our positive yeast-SSA results and because there was
no dose/response related impairment of viability in CHO cells (see
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Figure 43: Meganuclease scTcr_DS is more specific and more active after
TALE-DBD fusion
Relative B-galactosidase activity as a consequence of DSB induced re-
combination in a yeast SSA-assay. Blue color signifies no or low activ-
ity; red signifies saturation. All values were measured at 37°C. The
TAL::MEGANUCLEASE TALTCR:scTcr_DS is active on targets containing
effector binding element and meganuclease recognition site (EBE_TCR-
spacer-TCR); there is no detectable activity on the TCR-target or the
palindromic off-target TCR-AA.

appendix 52), we tested our constructs in human embryonic kidney
cell line 293 (HEK293) cells. The cell line were transfected with 3 pg
of expression plasmids for our nucleases. To enhance the amount
of INDELs, 2 ng of a plasmid expressing human 3" -> 5" exonuclease
Trex2 were cotransfected in some of the samples. In the case of the
TAL:MEGA without Trex2, 9 pg DNA were transfected to determine
toxicity. Two samples were taken: one during the first passage (Early)
of the cells and another one after seven days (Late). We extracted the
genomic DNA and determined the total percentage of insertion and
deletion events via next generation sequencing.

The nuclease scTcr caused more NHE] events than our version
scTcr_DS (see figure 44). However in the scTcr samples, the amount
of INDELs that are present after seven days (Late) was much lower
than at the earlier time point. This is suggesting that cells with an
active sCTcrR meganuclease either died between the two time points
or at least divided less. The variant TALTCR::scTcr_DS — a TCR-
targeting TALE-DBD fused to the degenerate meganuclease scTcr_DS
- induced a similar amount of INDELs as scTcr without any of the
reduction after seven days. Consistently even with high transfection
concentrations of g ug (see table 3), no decrease could be seen for our
TAL:MEGA. In fact, the amount of INDELs even increased slightly over
time.
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Without Trex2, our constructs showed little activity, especially scTcr_DS

was virtually inoperative when compared to the mock control. Only
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Figure 44: Tcr meganucleases induce INDELs in vivo

Two plasmids, one harboring the construct and one harboring human
exonuclease Trex2, were transfected into HEKz93 cells. A sample (Early)
was taken between 48 and 60 hours, a second sample (Late) was taken
after seven days. Genomic DNA was then extracted and the TcrB ge-
nomic region was amplified via PCR. INDELs were then quantified by
deep sequencing.

The amount of insertions and deletions is a result of nuclease mediated
NHEJ. TALTCR::scTcr_DS is as active as SCTcr during the first passage
of cells (Early); however, the induced mutations are significantly higher
(p = 5.8%1073) after seven days (Late).
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Table 3: Mean amount of NHE]J events in the TcrB region of transfected
HEK293 cells
While the amount of INDELs decreases for the scTcr variant, no signifi-
cant decrease can be seen for TALTCR::scTcr_DS. Cotransfection of Trex2
promotes mutagenic NHEJ by increasing the amount of deletions.

CONSTRUCT TREX SAMPLE MEAN NHEJ [%] SEM
scTcr + Early 6.52 +2.33
Late 0.44 +0.14
- Early 0.64 +0.13
- Late 0.31 +0.05
scTcr_DS + Early 1.56 +0.55
Late 0.59 +0.18
- Early 0.12 +0.06
- Late 0.09 n/a
TALTCR:scTcr_ DS + Early 6.93 +1.26
Late 5.88 +0.82
TALTCR::scTcr_DS - Early 0.67 +0.16
9 ug

transfection - Late 1.10 +0.22
Mock + Early 0.26 +0.21

Late 0.05 n/a
- Early 0.27 +0.22

- Late 0.04 +0.01

when examining the sequences directly could one see that scTcr_DS
was active without Trex2, since almost all of the positive sequences in
two of the Mock controls stemmed from two insertion artifacts.
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Figure 45: Layout of a TEv::TALE::FOKI construct binding its target site
A FokI nuclease domain (red) is fused to the C-terminus of an AvrBs3
TALE-DBD (green); an I-Tevl nuclease- and part of its linker domain (pur-
ple) are fused to the N-terminus. Two EBEs (grey) and an adjacent CNNNG
motif (light purple) have to be present on the DNA for full activity.

2.5 DUAL CATALYTIC TALENS

Seeing that the TALE-DBD proved to be compatible to a large variety
of domains and fusion orientations, we chose to design nucleases
with two catalytic domains (dcTALEN). Figure 45 shows the dcTALEN
Tev::AvrBs3:Fokl. Its tripartite architecture consists of the I-Tevl nu-
clease domain and its linker, the TALE-DBD and the FokI nuclease do-
main. The construct can act as a monomeric TALEN due to the I-TevIl
domain. However two EBEs are needed to allow the Fokl domain to
dimerize.

We tested TEv::AvRBs3::FOkI in extrachromosomal SSA-assays in CHO-
K1 cells (see figure 46). This assays works similar to the yeast ver-
sion, with one of the differences being that onrc (o-Nitrophenyl-3-D-
galactopyranosid) instead of X-Gal is used to ascertain 3-galactosidase
activity. Three target plasmids with two AvrBs3 EBEs and differing
spacers were chosen: Avr-12-Avr, Avr-15-Avr and Avr-18-Avr. One
CNNNG site for the I-Tevl nuclease domain is located upstream of one
AvrBs3 site and downstream of the first LacZ homology region in
the Avr-12-Avr and Avr-18-Avr plasmids. The Avr-15-Avr plasmid is
based on a different backbone and is lacking this CNNNG site. A spacer
length of 18 bp is unsuitable for our Fokl constructs and causes re-
duced activity. As a result of this Avr-12-Avr is ideal for both catalytic
domains, Avr-15-Avr is suitable for Fokl- and Avr-18-Avr is suitable
for Tev-constructs.

Tev::AVRBs3 was cleaving the Avr-12-Avr and Avr-18-Avr plasmids,
while it was practically inactive on Avr-15-Avr (see table 5). AvRBs3::FokI
showed a different pattern: it induced recombination on Avr-12-Avr
and Avr-15-Avr, while exhibiting reduced activity on Avr-18-Avr. TEv::AvRBs3
was overall less effective than AvRBs3::FOkI. Our dcTALEN Tev::AvRBs3::FokI
surpassed both predecessors on all targets. The biggest effect can be
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Figure 46: dcTALEN TEv::AvRBs3::Foxkl is highly active in CHO cells

Various talen constructs were tested in a CHO-based SsA-assay. A plas-
mid coded LacZ gene is restored via homology directed repair and
relative activity is quantified after oNPG staining. Curves represent
mean activity. Target “Avr-12-Avr” is suitable for both catalytic do-
mains, “Avr-15-Avr” lacks the necessary “CNNNG” motiv for Tev and
“Avr-18-Avr” has a poor spacer distance for our Fokl constructs. As-
sayed were the constructs TEv::AvRBs3 (orange), AvRBs3::Fokl (green),
TEvV::AvrRBs3::FoKI (red) and an empty vector control (“Mock”, blue). A
jitter of 0.5 was introduced on the X-axis to reduce overlapping of points;
this has no impact on the average curve. TEv::AvRBs3::FokI induces on
average more recombination than AvrBs3::Fokl, even when no suitable
CNNNG motif is near the EBE (Avr-15-Avr).
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seen on Avr-18-Avr, where the dcTALEN is twice as active as the stan-
dard Fok-TALEN. A positive effect of the Tev domain can be seen on
the Avr-15-Avr target, even though it is inactive by itself.

Maximum activity and half maximal effective concentration can
be determined after regression analysis (see figure 47 and table 4).
Tev::AvrRBs3::FoklI reached higher Enax values than AvrBs3::Fokl, in
agreement with the average values. The effect of the dcTALEN was
greater than the combined effect of its single components, suggesting
some kind of synergistic effect of the two nuclease domains.

We chose to test the inactive mutant Tev_r27A fused to an AvrBs3
DBD and to a AvrRBs3::FokI TALEN, since a boosting effect of Tev also
occured on the Avr-15-Avr target, which lacks a nearby CNNNG mo-
tif. Tev_r27A fused to an AvrBs3 scaffold did not show any activ-
ity and was indistinguishable from the empty vector control. Inter-
estingly, there was no difference (Avr-12-Avr: p=0.529, Avr-15-Avr:
p=0.121) between Tev::AvRBs3::Fokl and Tev_r27A::AvkRBs3::Foxkl on
the spacer 12 and 15 targets; both exhibited increased activity over
AvrBs3::Foxl (see also table 5). On the other hand, TEv::AvRBs3::Foxl
was significantly more active than Tev_r27A::AvrRBs3:Fokl on the
Avr-18-Avr target (p < 2*10°). In fact, the inactive dcTALEN had
half of the relative activity of AvkBs3::Foxl. This is suggesting that
the boosting effect of the N-terminal Tev domain can be divided into
two parts: a DNA-binding (see Avr-15-Avr) and a cleavage effect (see
Avr-18-Avr).

In addition we tested a fusion construct containing a single-chain
version of human 3’ to 5" exonuclease Trex2, which can increase muta-
genic NHE] [58]. This scTrReEx::AvRBs3::FOkI construct induced recom-
bination on all three targets despite the addition of the comparatively
large scTrex. However, the construct displayed reduced cleavage on
the spacer 12 and 15 targets compared to the FokI control.
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Figure 47: Potency can be estimated via regression analysis

Three parameter logistic models were used to fit the data displayed
in figure 46. Resulting regression curves for target plasmids Avr-12-Avr
(A), Avr-15-Avr (B) and Avr-18-Avr (C) are shown. Only average points
are displayed for clarity reasons. No reliable maximum values could be
estimated for Tev::AvrRBs3 ( ) since it never reached saturation.
TEv::AvRBs3::Fokl induced more recombination than AvrBs3::FoxI on
all target plasmids. Calculated values for Epax and ECs, can be found
in table 4.

Table 4: Regression analysis (see figure 47) yields values for maximal effect
(Emax) and half maximal effective concentration (EC5,)
The effect of TEv::AvRBs3::FoKI is greater than the one of AvkRBs3::FokI on
the 12 and 15 target, however the EC5, values are in a similar range. Since
TEv::AvrRBs3::Fokl did not reach saturation when assayed on Avr-18-Avr,
Emax and ECs,were greatly overestimated here. AvrBs3::Fokl was much
less active when the Avr-18-Avr target was provided.

CONSTRUCT TARGET Enax [a.0.]  ECso [ng]
AvrBs3::Fokl Avi-12-Avr 2.54 0.63
Tev::AvrRBs3::FokI 2.97 0.61
AvrBs3::FokI Avr-15-Avr 2.71 2.84
TEV::AvRBs3::FOKI 2.92 1.06
AvrBs3::Foxl Avr-18-Avr 0.84 1.60

Tev::AvRBs3::FoxkI 5.02 261
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Table 5: The impact of the Tev catalytic domain goes beyond its catalytic
activity

Shown are mean values at a transfection dose of 25 ng.

TEV_R27A::AVRBs3::FOkI possessed an inactive Tev domain, but yielded

similar activities like TEv::AvrRBs3::FOkl on the Avr-i12 and -15 targets.

This effect was converse on the Avr-18 target; here addition of the inactive
Tev domain impaired cleavage, while an active Tev domain greatly
improved cleavage over AvRrBs3:Foxl. Fokl was still active when the
scTrex exonuclease was fused N-terminally.

CoNSTRUCT TARGET MeaN 25 SEM  95%CI N
Tev::AVRBs3 Avr-12-Avr 0.38 +0.04  +0.07 23
AvrBs3::Fokl 2.6 +0.14 *0.29 26
Tev::AvRBs3::FoxkI (Tev: “+” 3.17 +0.06  *0.12 26
TevR27A::AvrRBs3::FokI  Fok: “+” 3.1 +0.16  +0.35 12
SCTREX:: AVRBs3::FokI 1.8 +0.41 *1.04 6
Mock 0.10 £0.005 #0.01 20
TEV::AVRBs3 Avr-15-Avr 0.14 +0.01  +0.02 9
AvrBs3::Fokl 2.2 +0.36 *0.79 12
TEV::AvRBs3::FOKI (Tev: “-” 2.8 +0.23  +0.51 12
TeEVR27A::AvrRBs3:Foxl ~ Fok: “+”) 3.3 +0.29  *1.25 3
SCTREX::AVRBs3::FokI 1.4 +0.22  *0.55 6
Mock 0.09 +0.007  +0.01 13
TeV::AVRBS3 Avr-18-Avr 0.31 +0.03  +0.05 23
AvrBs3::Fokl 0.7 +0.12  +0.24 23
Tev::AvRBs3::Foxkl (Tev: “+” 1.5 +0.16  +0.32 23
TeEVR27A::AvrRBs3:Foxl ~ Fok: “+”) 0.33 +0.05  +0.12 12
sCTREX::AVRBs3::FOKkI 0.7 +0.19 *0.49 6
Mock 0.17 +£0.01  +0.03 40




DISCUSSION

The main limitation of the nuclease domain FoklI lies in its need to
dimerize for DNA cleavage. Two effector binding elements are needed
and both should respect the guidelines described in [30]: thymine at
position o, no thymine at position 1, no adenine at position 2, T at last
position is advantageous and the base composition should be within
two standard deviations of the average. Additionally, both EBEs have
to be within a defined distance to get optimal cleavage. This is fur-
ther complicated by the accessibility of a genomic locus [52] and the
need to avoid potential off-sites. For a monomeric TALEN, only one
effector binding element has to fulfill these prerequisites. We could
show in our experiments on the neomycin phosphotransferase II lo-
cus, (see section 3.1) that a dimeric TALEN pair can be impaired by its
weakest DBD and that a monomeric TALEN containing the better DBD
can circumvent this. Monomeric nucleases can broaden the range of
suitable loci and can also act as tools to determine the quality of sin-
gle TALE-DBDs. However, the even greater advantage of these TALENs
over regular TALENS is their size. Some viral vectors are difficult to
use for regular TALENs. Adeno-associated viruses can only carry a
limited payload of DNA [87], which is too little for two TALENs (>2.8
kb each), a promoter and a repair template DNA. The larger non-
integrative lentiviruses would be able to accommodate a TALEN pair,
but are unable to package the highly repetitive nucleases. A small
size remains a big advantage even when other methods of delivery
are used. Transfection quality mRNA in sufficient quantities and viral
vectors in general are expensive to produce. So monomeric TALENS
halve the cost of production and make some types of transfections
feasible.

A CATALYTIC DOMAIN should fulfill several prerequisites, to be
suitable for a fusion construct. Information about

¢ structure
* biochemical properties
* biological function and interactions

should be available. A crystal structure is needed to choose suitable
fusion orientations and linkers. Biochemical information is necessary
to select residues for mutagenesis and to predict activity (E.g., “will
the construct be active at a certain temperature?”,”how fast is the
turnover?”). And lastly, the biological context is required, to deter-
mine possible interaction partners. A different strategy would be to
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pick endogenous nuclease domains. The advantage of this approach
is that the nuclease domain is already adapted to the host organism
and it is obviously possible to control the cleavage reaction somehow.
Additionally, the nuclease domain could recruit factors that are ben-
eficial for the processing of the DSB. However one would need to
show, if these advantages even apply in the TALEN context and how
many species are covered by a specific construct. Another problem
is the aforementioned recruitment and regulation. This recruitment
could also work in reverse, i.e., the TALEN could be recruited via its
catalytic domain. It is not clear if the chimeric nuclease could then
still assume the function of its natural predecessor. Moreover, the nu-
clease domain could be down-regulated or even be inactivated by the
cell. Another question is, if the function and interactions of the target
catalytic domain are really understood well enough.

For these reasons, we chose heterologous catalytic domains that
preferably do not interact with other proteins in the target cell.

3.1 COLE7, NUCA AND ENDA

On paper, unspecific nuclease domains are the ideal fusion partners
for DNA-binding domains, since they do not reduce the amount of
addressable sequences. Ideally, the nuclease domain is guided to
its target by the TALE-DBD, creates the double-strand break at a well-
defined distance to the EBE, dissociates and is then quietly degraded
by the proteasome. Unfortunately, off-target activity exists. Part of
the off-target activity is owed to the specificity of the TALE-DBD [106].
Since some RVDs can bind multiple bases and since repeat arrays
can tolerate single mismatches, off-sites resembling the target site are
bound with lower activity. These types of off-sites can be minimized
with careful selection of the target-site and knowledge of the target
genome.

Another type of off-site activity has not been well studied, since
it is prevented by the obligatory dimerization of Fokl in standard-
TALENS. TALE-DBDs need to bind the DNA to find their target via
facilitated (1D-) diffusion [51]. During this process, the DBD slides
1-dimensionally along the DNA, “pauses”, dissociates and rebinds to
the DNA (“hopping”). While the TALEN is “searching”, it is bound
to DNA, but not to its recognition sequence. Therefore, nearly any
cleavage occurring while searching will be at an off-target. Off-target
activity has been described for other monomeric TALE-fusions such as
methyltransferases or demethylases [138, 130].

More off-site cleavage arises as a result of the linker connecting
DNA-binding and catalytic domain. A flexible linker can allow cleav-
age in trans, as has been already suggested for Fokl based SSNs [123,
89]. A rigid linker on the other hand can impair cleavage, since the
nuclease module has to be at the right angle and orientation to bind
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its DNA. For these reasons, a nuclease domain should be designed
to only cleave when it has been in proximity of a certain DNA for
a “longer” period, which is the case when the DBD is bound to the
EBE. This can be achieved by reducing its affinity or by slowing down
catalysis.

The unspecific catalytic domains used in this work are well char-
acterized members of the 33a-Me family of nucleases. Hence, there
is structural and biochemical data available (see section 1.1.2), which
was resorted to for design of the constructs and mutagenesis. Mod-
ification of the relevant catalytic or binding residues allowed us to
adjust the activity of our fusion constructs.

COLICIN E7 AND NUCLEASE A -based TALE-fusion plasmids proved
to be difficult to clone and amplify in E. coli DH5-a. At first glance, it
is surprising that the constructs were apparently toxic, even though
expression had not been induced. In fact, the nearest promoter in
front of the fusion proteins is >1 kb upstream, meaning that leaky ex-
pression should be extremely low. Like typical cloning strains, DH5-o
is a recA mutant that is therefore deficient for homology directed re-
pair. This prevents it from recombining highly repetitive sequences
(e.g., TALENSs), but slows growth and makes it more susceptible to
DNA damage (e.g., by heterologous nucleases). More evidence for
this is that mutagenesis of catalytic residues increased the DNA yield
and inactive variants had the same yields as the shuttle vector. New
shuttle vectors, that coexpressed the respective inhibitors, solved the
problem and allowed easier manipulation of the plasmid (see sec-
tion 2.2). Yeast on the other hand seemed to tolerate the nucleases
well and could also be used to clone the inhibitor-free yeast expres-
sion vectors. Nonetheless, mutation of ColE7 residues suggests that
there is also a cytotoxic effect. Mutation of k4974, D493Q and H573E
should reduce the catalytic activity of the nuclease in vitro [208], but
showed increased recombination efficiency in vivo. These three mu-
tants are less active and as a consequence also less toxic. Interestingly,
AvrBs3:CoLEy_nH573E did not cleave all targets and was inactive on
some, while AvrRBs3::CoLE7_H573A cleaved the targets uniformly. An
explanation can be the size of the replaced residue. While the large
glutamate sterically clashes with the bases, the smaller alanine does
not. On the other hand, both nucleases show a very similar cleav-
age pattern at 30° C, suggesting that the targets they cut share some
characteristics.

More interesting, however, are the interactions of the site-specific
nucleases with their respective inhibitors. The ability to regulate the
activity of a nuclease is an advantageous trait. This way a time win-
dow in which SSNs are active can be assigned, so that off-site cleavage
is kept to a minimum. One way to achieve this is the generation of
photo-switchable restriction enzymes [188], whose underlying design
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principles could also be carried over to SSNs [244]. However, this class
of photo-sensitive proteins has been chemically modified and cannot
be simply expressed in vivo. A different approach has been recently
described for RGENs. Here, a cell-permeable molecule binds to an
added intein, thereby converting the Casg/intein chimera from an
on- to an off-state [55]. Our approach for TALENs simply required ex-
pression of the natural inhibitor. No activity could be detected in our
SSA-assays when the inhibitors were coexpressed, which is not sur-
prising given the tight binding of the inhibitors. These are the first
examples of TALENSs that can be shut off.

The next logical step was testing their activities as monomers on a
relevant target. Targeting the neomycin phosphotransferase II (nptIl-)
gene was a sensible choice, since it is one of the most widely used
resistance markers in plant biotechnology. Removal of this marker
can improve biosafety and reduce regulatory concerns. Constructs
we tested were active in yeast and worked as cTALENs. I-Tevl-based
TALENs will be covered in the section 3.2. WT NucA was slightly
more active than the mutated CoLEy_k497A catalytic domain we used,
nonetheless both were active on all targets that contained their re-
spective EBEs. One NucA TALEN cut a plasmid without the fitting
EBE, which was the only case of off-target cleavage in this experi-
ment. More interestingly, we saw that SSA-experiments in yeast did
not correlate well with SSA-experiments in tobacco protoplasts. The
two tested ColE7-based nucleases were highly active in protoplasts
and exhibited off-site activity <1%. In fact, our FokI-controls showed
clear off-site activity, although just one EBE was present for the TALEN
pair. This can be seen as a prime example of one of the previously
described off-site cleavage types of Fokl. Plant expression vectors for
NucA could not be generated at a high enough concentration — again
highlighting the toxicity of this protein.

There are different possibilities to explain the disparity in activity
between yeast and plants. Tobacco protoplasts simply provide differ-
ent reaction conditions than S. cerevisiae. E.g., the protoplasts were
grown at temperatures below 30°C and contain different concentra-
tions of divalent metals and ions in general. Altering the tempera-
ture of a cell for a shorter period could be a promising way to regu-
late nuclease activity. This is probably more feasible for plants and
microorganisms than for homoiothermic animal cells.

Although fusions of the ColE7 variant x497A_v2 (see figure 13)
worked in a higher eukaryote, they did not show any activity in
mammalian cells. Our working hypothesis included two scenarios.
ColE7_k497A_v2 TALENS still possessed a rest of off-site activity, which
could be detrimental for the cells. Another possibility was the prote-
olytic cleavage of the linker connecting the TALE-DBD to ColEy. Full
Colicin E7 consists of an C-terminal catalytic domain — here referred
to as ColE7 — and N-terminal translocation and receptor-binding do-
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mains, which transport the catalytic domain through the bacterial
periplasm to its target. The catalytic domain is then cleaved off be-
tween lysine 446 and arginine 447. Both residues were still present
in our construct. Still, the rest of the protease recognition sequence
and the periplasmic protease itself are missing, making this scenario
unlikely. The perceived toxicity in our cloning strains can also not be
fully explained by this. A ColE7 nuclease domain could hardly enter
an E.coli cell, even if it was cleaved off a TALEN in the periplasm, since
the receptor-binding domain is not present in our construct.

Despite this scenario being unlikely for mammalian cells, we mu-
tate the two residues. Arginine 447 has also been described to be very
important for DNA-binding [194], which fit our idea of reducing affin-
ity to limit off-site activity. As expected, mutation of the residue 446
had little impact. This residue is cleaved off in nature and therefore
plays no role for catalysis or binding. In the TALEN context, muta-
tion of this residue is basically equivalent to changing residues in the
linker. Residue 446 can alter binding only indirectly by influencing
residue 447 or by changing the orientation of ColE7 to the binding
domain.

Residue 447 on the other hand had a bigger impact. The constructs
lost most of their activity after non-conservative mutation of arginine
447 to alanine, which is in agreement with the findings of Németh
et al. [160], who used the non-conservative R447G mutation on the
free catalytic domain. However, our conservative mutation to lysine
removed all detectable off-site activity, while keeping an on-target
activity comparable to the most active constructs. The only drawback
being a loss of activity on some targets. Which type of on-targets
are affected remains unclear and needs to be further elucidated in
benchmarks.

The nuclease AvrBs3:CoLE7_r447k showed no activity in mam-
malian cells, despite its promising properties in yeast. The intracellu-
lar concentrations of Zn**, the co-factor of ColE7, lie between 5 pM
and 1 nM in mammalian cells and in the femtomolar range for E.
coli [49]. Zinc concentrations for plants vary over a large range [198].
ColE7 is also able to accept the more ubiquitous Mg** ion, anyway.
While the differences in metal ion concentrations cannot satisfacto-
rily explain the discrepancy between our model organisms, there are
still the aforementioned variations in the cytosolic composition and
reaction temperature.

The importance of the fusion terminus was another point of inter-
est. While there have been fusions to the TALE N-terminus in the
dimeric FoklI context [105], there is little known for monomeric nucle-
ases. For this reason, we fused WT ColE7 to the AvrBs3 N-terminus
and compared it to the C-terminal fusion. The profiling in yeast
SSA-assays revealed increased activity compared to the C-terminal fu-
sion. Relative activities for the two EBE targets shifted from 0.3-0.6 for
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AvRrBs3::CoLE7 to 0.4-0.7 for CoLE7::AvRBs3. Similar increases were
seen for the single EBE targets. What is surprising are the activities
on unaddressed target plasmids. Two populations could be seen for
CoLE7::AvrBs3, with one population not being cut at all and another
population being cut with the same efficiency as monomeric targets.
On the other hand, for AvrBs3::COLE7 there was only one off-target
population, whose members were cut with low efficiency. This could
be an artifact, which can occur for values near the cutoff for activity.
Quantification of the relative activity is not possible for values below
0.2. While yeast SSA-assays are useful to determine the fidelity of a
construct, they are ill-suited to quantify toxicity. No dose/response
dependent toxicity is shown in this setup and dead yeast cells are not
looked for. We could not test our ColE7 constructs in a standardized
CHO-based toxicity assay, due to them not being active in mammalian
cells. In vitro assays were needed to further investigate a cTALEN with
an unspecific nuclease domain. For this, we chose Endonuclease A
from S. pneumoniae.

ENDONUCLEASE A variants, which could be chemically rescued
had been described [148]. Here, mutation of the catalytic histidine
to glycine creates a cavity, which can be occupied by imidazole to
replace the missing histidine. This way one can express the nuclease,
without damaging the cell. Activity is then later restored via addition
of imidazole. Chemical rescue of NucA had also been demonstrated,
albeit with much lower activity than for EndA [148]. This concept
can not only be used to facilitate expression and investigation of the
nuclease but also allows the aforementioned time-dependent control
of the nuclease.

We fused EndA H160x to an AvrBs3 N-terminus, due to the per-
ceived higher activity of ColEy in that context. As expected, protein
could be expressed in large quantities. The purified cTALEN could
then be characterized biochemically. However, the same problems
that were seen for ColE7 TALENs also occurred for EndA TALENs
after activation. In the assays, DNA fragments stemming from spe-
cific cleavage events appeared early, but were then fully degraded. It
would be an interesting experiment to sequence the unspecific band,
to see if it is an AvrBs3 EBE, which was protected by the DBD.

Mutation of binding and catalytic residues reduced the problem
of off-site activity, showing that the untargeted activity emanated
from the TALEN and not from a nuclease contamination. We saw
that ENDA_H160A::AVRBs3 was less active than ENDA_H160G::AvVRBs3,
which is consistent with the observations made by Midon et al. for the
nuclease itself. The mutations Q186A and N202A greatly reduced off-
target activity. The constructs were also not impaired after fusion of
a C-terminal sNaP-tag, which could allow monitoring of the nuclease
in vivo via fluorescence labeling.
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Activity of EndA TALENs could also be modulated by external fac-
tors. Lower temperature means reduced molecular motion and there-
fore allowed us to investigate the H160G mutant without it degrading
the target plasmids immediately. Besides one can adjust the ion con-
centration. A high ion concentration can “mask” the DNA, thereby
reducing binding of DNA-binding proteins. A more interesting op-
tion to adjust the activity is the imidazole concentration, since other
factors can or should normally not be changed for in vivo applications.
EndA TALENs were active over a long millimolar range. The cavity in
the catalytic center is occupied less often, if the imidazole concentra-
tion is too low. If it is too high, then the imidazole will interfere with
DNA binding.

Another point of interest is the cleavage mechanism of monomeric
TALENs. For this reason, a double-fluorescently-labeled DNA was
cleaved during a time course assay. Half of each sample was analyzed
via standard PAGE, the other half was analyzed by denaturing PAGE.
This way one could determine and compare the amount of nicks and
DSBs. Different fluorophores allowed the discrimination of top- and
bottom strand cleavage. No strand preference could be seen for the

two constructs ENDA_H160G_Q186A_N202A(GAA)::AvRBs3 and ENDA _

GAA::AvrBs3::sNar. That means both strands are either cut with
equal probability or cleavage of the second strand occurs shortly af-
ter cleavage of the first cut strand. To see if this is the case one
can compare the amount of uncut DNA in the PAGE and the dena-
turing PAGE. Nicks and DSBs will be seen in the denaturing PAGE,
while standard PAGE only shows DSBs. The amount of pure nicks
can then be obtained by subtraction. While there was no difference
in specific activity for the two tested constructs, there was a differ-
ence in nicks. ENDA_GAA::AvrBs3 caused significantly more nicked
intermediates than the snap-tagged version. This could mean that
ENDA_GAA::AvRBs3::sNAP either dissociates less often after making
the first cut or that the second cut is made faster after the first one.
The sNAr-tag is a synthetic version of the human O°-alkylguanine
DNA alkyltransferase. It is 19.4 kDa in size and was engineered not
to bind DNA [83]. Therefore, interactions of the SNAP tag to the TALE-
bound DNA should be unspecific in nature, although the possibility
of some residual affinity for DNA in this context cannot be excluded.
To be able to directly compare the influence of the two fusion ter-
mini, we fused two EndA modules onto the TALE-DBD. The construct
ENDA_H160G_Q186A_N202A:AVRBs3::ENDA_H160G_Q186A_N202A was
then used in the previously explained fluorescence assay. The great
advantage of this setup is that the two domains are present in equal
purity and equimolar concentrations and can therefore be directly
compared. However, one has to keep in mind that the results are
only valid for the specific polypeptid linkers that were used and that
there could be a context dependence between the two catalytic do-
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mains (i.e., one domain could influence binding of the domain on
the other side). The specific activity of this dcTALEN was lower than
for the N-terminal EndA TALENs, which does not necessarily mean
that the actual activity is also lower. Nevertheless, clear differences
between the two EndA domains could be observed. The N-terminal
EndA had no strand preference and generated more DSBs than the C-
terminal one. The reason for this seems to lie in the strand preference
of C-terminal EndA. It cleaves the top strand faster than N-terminal
EndA, but it barely cleaves the bottom strand. Bottom strand cleav-
age is around five fold lower than for N-terminal EndA, despite the
fact that in this assay bottom strand cuts for N-terminal EndA are
underestimated. An explanation for this could be a difference in flex-
ibility of the two catalytic domains. E. g., the C-terminal linker could
prohibit EndA from reaching the bottom strand. The fusion terminus
is discussed further in section 3.2.

Since the ameliorated constructs showed very little off-target cleav-
age in vitro, we reverted the H160G mutation to remove the imidazole
activation. While imidazole is not overly toxic (LDs,, mouse, oral: 880
mg/kg), it induces programmed cell death in some tissues [94] and
is considered harmful in general. Therefore, it would not be suitable
for application in mammalian cells.

ENDA_H160_Q186A_N202A::AVRBs3 could not be cloned, suggest-
ing that leaky expression is already too toxic for the cells, similar
to what was observed for ColE7 and NucA TALENs. Since the re-
versal of the mutation was not possible, we used conservative mu-
tation of histidine 160 instead. Asparagine and glutamine both con-
tain an amino group that could possibly activate the catalytic water
for the cleavage reaction, but not as well as the histidine. Indeed,
the ENDA_Q186A_N202A::AVvRBs3 variants H160Q and H160N could
both be cloned, showing that they are less toxic. The glutamine
variant could not be expressed, suggesting that it is active, but still
too toxic for the expression strain. Glutamine has a comparable size
to histidine and the amino group should be positioned at a similar
position as the imino group of the histidine. The asparagine vari-
ant ENDA_H160N_Q186A_N202A::AVRBs3 could be expressed and pu-
rified, but was not active in vitro. A possible explanation is that the
amino group of asparagine is not arranged properly for the activation
of the nucleophile. Histidine is hard to substitute due to its special
properties, but cysteine can be considered as a more conservative re-
placement and could be tried.

3.2 I-TEVI

Though the use of the I-Tevl nuclease domain seems to be only a
variation of the previous approaches, there are some ameliorations
over the unspecific domains we tested. I-Tevl can be divided into a
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DNA-binding domain, a linker and a nuclease domain. The nuclease
domain therefore already possesses natural adaptations for a fusion.
One of them being its CNNNG specificity and another one being the
linker, who has DNA-binding affinity and positions the catalytic do-
main at the right distance to the binding domain. Both these features
may also reduce off-site activity in chimeric constructs.

Fusion of the I-Tevl nuclease domain and the linker to a TALE-DBD
N-terminus proved to be active in yeast, plants and mammals. These
findings are consistent with what has been described for Tev::zinc-
finger fusions [117] and Tev::Meganucleases [238]. The only draw-
back of the I-Tevl architecture lies in the requirement for a CNNNG
motif, which has not been fully characterized yet. I.e., there seem
to be some NNNs that are cut well, while others are cut with very
low efficiency [21, 115]. There also seems to be a sequence prefer-
ence of the linker domain, causing a small subset of targets not to
be cleaved, which contrasts with previously described findings [57].
Despite benchmarking of the Tev domain requiring more work, com-
pact Tev::TALENSs could be used for genome editing with good activity
in multiple organisms. TEvV:TALEs could even be purified and tested
in vitro. Wild-type I-Tevl is highly toxic and cannot be expressed in
the usual way [239]. This was not the case for our constructs, sug-
gesting that the TALE is a “safer” DBD than the natural I-Tevl DBD.
Interestingly, no toxicity could be observed in vivo [21], while unspe-
cific degradation was seen in vitro. This could be a nuclease con-
tamination, since the Tev::TALENs were only purified via Ni-NTA. On
the other hand, it could also be a consequence of the reaction con-
ditions. We also saw similar in vitro degradation of DNA for FokI
TALENs (see appendix 50), which are considered safe in general. In
vitro experiments are useful to investigate cleavage patterns and to
elucidate cleavage mechanisms, but they do not take into account the
DNA-repair systems, the proteasome or the chromatin structure of a
living cell. Additionally, enzyme concentrations have mostly been in
excess to substrate. Therefore, toxicity of a nuclease can be predicted
in vitro, but has to be determined in vivo. Several suitable techniques
to profile off-site activity of SSNs have been described recently [232].

THE DIFFERENCE BETWEEN THE TWO FUSION TERMINI could
be seen especially well with I-Tevl fusions. These fusions worked
as cTALENs, when the catalytic domain was fused in the natural or-
der (i.e., N- catalytic domain - linker - DBD -C). On the other hand,
fusion to the C-terminus yielded a construct that was active as a
nickase, so that two nucleases were needed to get a double-strand
break. Contrary to TALE:FOKkI, a TALE:TEV monomer could induce
recombination in vivo (see [21]), showing that activity stemmed from
single-strand nicks and not from a dimerization of two Tev domains.
These observations further support what was found for the EndA fu-
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sions. Flexibility of the nuclease domain seems to be greater at the
N-terminus than at the C-terminus of the TALE-DBD. A cleavage mech-
anism has been proposed for homing endonuclease I-Bmol, which is
also a member of the Gry-vic family. It is thought that the nuclease
domain of I-Bmol first cleaves one strand and then rotates to cleave
the other strand [116]. Maybe a similar rotation is impaired for the
Tev catalytic domain by the C-terminus.

3.3 MEGANUCLEASE FUSIONS

At first glance, meganucleases seem to be an unconventional choice
of nuclease domain, since they are already highly specific by them-
selves. In fact, the recognition sequence of I-Crel (22 bp) is longer
than the one of AvrBs3 (17.5 bp). It is therefore no surprise that
meganucleases of the LAGLIDADG family have been some of the first
enzymes to be applied for genome engineering (see section 1.2.2). The
dimeric nature of the standard TALE::Fokl architecture reduces the
amount of off-target cleavage by requiring two DNA-binding mod-
ules. By using a meganuclease as catalytic domain, we integrated
this second DNA binding module into the nuclease domain, creating
a monomeric version. The price of slimmer constructs are three main
drawbacks of meganucleases: reprogramming to the desired target
site is not as straightforward as for TALENs or RGENs, since the whole
DNA/protein interface has to be engineered (I); the ability to tolerate
single base pair mismatches can allow constructs to cleave off-sites (II)
and the range of addressable sequences is intrinsically limited by the
meganuclease scaffold (III). Therefore, creating an application-related
meganuclease remains a time- and work-consuming task, although
there have been multiple approaches via rational design or selection
[219, 99].

The concept of a DBD::MEGANUCLEASE fusion already occurred at
least once in nature: the homothallic switching endonuclease in Sac-
charomyces cerevisiae, involved in mating type switching, is a meganu-
clease of the LAGLIDADG family with a short DNA-binding zinc-finger
domain [12]. Presence of the zinc finger is essential for activity. TALE
fusions to the LAGLIDADG HE I-Anil have been described by Boissel et
al. [27].

Our constructs can mitigate the shortcomings mentioned above.
The difficulties in tailoring a meganuclease to the right target-site
can be circumvented by using a low-affinity variant with a broader
specificity. Precision is ensured by the TALE-DBD, which is guiding
the meganuclease. Thereby, the nuclease domain can tolerate differ-
ent targets, but will only cut those that are adjacent to a fitting EBE.
Proof of this can be seen in figure 34. Here, our broad specificity vari-
ant scI-Crel_DS displayed reduced activity, which could be rescued
to WT activity by the AvrBs3 TALE-DBD. Moreover, the TALE-DBD pre-
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vented scI-Crel_DS from cleaving target sequences that were lacking
an adjacent EBE. No activity could be detected when the EBE was not
present or further away than 8 bp. While the spacers with a length
between o and 8 bp did not show any difference in our assay, Boissel
et al. [27] found that only spacers between 5 and 10 bp worked sat-
isfactorily; with a 7 bp spacer working best. This can be explained
by a difference in architectures: NA154/C+63 (TAL), Glycine/Serine-
based linkers and I-Anil (MEGA) vs NA153/C+11 (TAL), I-TevI-derived
linker and scI-Crel (MEGA). Since the distance between the last TALE-
repeat and the nuclease domain is larger, it is no surprise that the
Boissel construct cannot tolerate small spacer lengths. Interestingly,
we did not see any spacer- or even EBE-dependence for WT TAL::scl-
Crel, even though DNA affinities for I-Crel (K4: 7 £ 1 nM [192]) and
I-Anil (Kg4: 8.4 + 3 nM [33]) are thought to be in the same range. The
different C-termini and linker seem to have a larger impact on I-Anil
than on scI-Crel.

It is not surprising that the TALE-DBD could not prevent the orig-
inal scI-Crel from cutting, given that a detergent is needed to re-
move I-Crel from its target site in vitro [230]. It could however reduce
the amount of off-target activity, and thereby cytotoxicity in a mam-
malian assay (see figure 2 and 36, see appendix 51).

Interestingly, the reduction of cytotoxicity could also be achieved
by fusing a binding domain that did not target a genomic region.
Affinity to off-sites is by definition lower than for a main target site.
Interference of the binding domain is not enough to have an impact
on cleavage of I-Crel’s recognition sequence, however, it seems to be
able to impede cleavage of the lower affinity off-sites. Not necessar-
ily only by binding its own EBE, but maybe also by unspecific DNA
binding during target search or by other types of steric interference.

When interpreting the degenerate scaffold results one has to take
into account that the recognition sequence changed with introducing
our mutations (see figure 39). Meaning that the WT recognition se-
quence represents an off-target for scI-CrRel_DS which accordingly is
cut less often. The activity on this off-target can now be increased by
fusion of the TALE-DBD. Here, the TALE-DBD will bind its EBE, which
is located adjacent to the homing endonuclease recognition site. This
increases the local concentration of the nuclease domain, which con-
sequently increases the probability of cleavage.

In continuative experiments we evaluated the differences between
the specificities of scI-Crel and scl-CRel_DS as well as the target
range of our fusion constructs. For this reason, we first focused on a
library of target plasmids that had varied the 10 to 7 (-10 to -7) region
of the idealized palindromic I-Crel target. Our monomeric I-Crel was
only marginaly less active than its dimeric predecessor, which was
also the case in [64]. The degenerate scaffold mutations, however,
had a more prominent effect. The new variant could cleave more
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target plasmids with high efficiency, but it also cleaved more target
plasmids not at all. After examining the well-cut targets (see figure
37), we found that the requirement for an adenine at position 10 had
been changed to a thymine and the requirements at position 7 had
been relaxed (see figures 39 and 40). TALE fusion further widened the
amount of acceptable targets (see figure 38). So while the meganucle-
ase is able to tolerate more mismatches and has a reduced accuracy
after fusion, there still is a net gain in specificity for the total con-
struct. Similar observations were made for the cleavage region 2 to
-2 (see figures 41 and 42). Many targets that were cut with medium
efficiency before, saturated the assay after TALE-DBD fusion. However,
the amount of uncut targets did not change, suggesting that there are
some sterical constraints in the catalytic center which cannot be over-
come by increasing the time the nuclease is bound to its substrate.

Profiling in yeast showed that the insights we obtained from scl-
CRrel could be carried over to scTcr. This synthetic meganuclease
targets the T-Cell Receptor a-chain and can be applied in generation
of CARs, which proved to be difficult due to scTcr’s cytotoxicity. TALE
fusion abolished cleavage of targets without fitting EBE (see figure 43)
and reduced activity on targets with more distant EBEs (spacer length
>10 bp), again suggesting that the unbound TALE domain is interfer-
ing with meganucleases binding. We also saw the aforementioned
boosting effect on target plasmids with a meganuclease recognition
site adjacent (3-10 bp) to an EBE. In light of this, it is no surprise
that our degenerate scaffold mutations also reduced toxicity in CHO
cells (see appendix 52) and during our test in HEKz293 cells, where we
compared the amount of NHEJ INDELs between day 2 (Early) and day
7 (Late) samples. It is expected that if an active nuclease is cytotoxic,
there will be a difference between the early and late samples. Cells
expressing a sufficient amount of nucleases will induce detectable
INDELs in the target region. However, a toxic nuclease will cause DNA
damage to accumulate over time, causing a decrease in detected NHE]
since the respective cells are dying. As expected, we see this decrease
for our original scTcr Meganuclease. Introduction of our degenerate
scaffold mutations reduced the activity, probably by slightly altering
the recognition sequence. Fusion of the TALE-DBD TALTCR reverses
this drop and rescues our nuclease to at least the values of the origi-
nal scTcr. The most interesting observation, however, is that the NHE]
INDELs introduced by TALTCR::scTcr are stable over time and even
slightly increased, indicating that toxicity is greatly reduced here, too.

Addition of a TALE-DBD proved to augment activity and specificity
of our I-Crel-based meganucleases.
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Our novel, tripartite TALEN design (see figure 45) containing two nu-
clease domains proved to be an augmentation over the older architec-
tures. Tev and Fokl complemented each other. More than one FokI
domain per DBD rarely makes sense, since two catalytic domains ori-
ented in the right fashion are needed for cleavage. On the other hand,
two I-Tevl domains fused to one DBD can work, if there are CNNNG sites
at the right distance up- and downstream of the EBE, thereby limiting
the range of targets again. Anyway, the C-terminal Tev domain only
produces single-strand nicks. The Tev:TALE:Foxl architecture sur-
passed the already high activity of Fokl TALENs. Our experiments
showed that the fusion construct caused higher levels of recombina-
tion than their predecessors (see figure 46). This was expected, since
two nuclease domains should cause more DSBs than just one. Interest-
ingly, this boost was not restricted to target sites that were optimal for
both constructs. We could see an increase in activity even on targets
that were lacking a suitable CNNNG motif for Tev. In agreement with
these findings, a construct with the inactive Tev variant R27A also
caused this increase. This is suggesting that Tev’s affinity for DNA
is more impactful on this target than its ability as an endonuclease.
By fusing the Tev domain, the overall affinity for DNA is increasing,
which in turn is enhancing Fokl'’s ability to effect a DSB.

The reverse situation is the case, when we looked at a target that
is less suitable for Fokl. On our Avr-18-Avr targets, AvrRBs3::Fokl
TALENs had poorer activities compared to targets with shorter or
longer spacers. Fusion of an inactive Tev nuclease domain reduced
this activity even further. The TALE-DBDs are positioning the two FokI
domains in an unfavorable orientation, which is further exacerbated
by the added affinity of the Tev_r27A domain. Contrary, we see a
large increase in activity on the same target plasmid, when WT-Tev
is fused. Here, the Tev domain can cleave the plasmid upstream of
the EBE. This DSB relaxes the DNA, which could have a beneficial ef-
fect on the positioning of the two Fokl domains. Here, the activity of
the dcTALEN is even greater than the absolute activities of the single
TALENS.

An interesting side note is the activity of the scTREx:TALE:FoxI
fusions. The single-chain version of the human exonuclease TREX2
increases the amount of deletion events, when cotransfected with a
site-specific nuclease. Here, it adds another 491 aa (53 kDa) to the
TALEN. The resulting construct, with a total size of 155 kDa, could
still induce a DSB, albeit with lower efficiency. If the exonuclease still
improves non-conservative DNA-repair mechanisms when it is fused
to a TALEN, has to be further determined.
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Figure 48: Summary of catalytic domains
Shown are the types of catalytic domains used in this work and their
special features.



3.5 SUMMARY

3.5 SUMMARY

The FokI nuclease domain has been the state of the art for ZFNs for
over a decade. A new DBD that is more specific and easier to engineer
came with the discovery of TALEs. Now one could approach the engi-
neering of the nuclease domain, since two main problems of the ZFN
architecture had been suddenly solved. A comparison of the nuclease
domains used in this work can be seen in figure 48. The unspecific
domains that were used in this work were active as monomers in a
variety of organisms. Flaws they all shared at first, were the suscep-
tibility to off-site activity and consequential toxicity. Both could be
reduced by lowering the overall activity of the nuclease domain via
mutagenesis. The goal of this approach is that the nuclease can only
cleave when it is held in proximity of the DNA for a long enough
time. Cleavage in trans, while the TALE-DBD is bound, is then ide-
ally prevented by a short enough linker. Other types of toxicity are a
consequence of the method and cannot be fully excluded.

E.g., cycles of “cleavage ~ repair ~ recleavage” will cause the loss
of genetic information eventually. Ideally, the recognition site disap-
pears during homology directed repair or alternative NHEJ. Two dif-
ferent ideas that could avoid these problems have been presented in
this work. The first is a time-dependent control of the nuclease. SSNs
are only active in a time window, to minimize the collateral damage
they could cause. Transfection of mRNA or protein can achieve this,
thereby also circumventing the unwanted integration of vector DNA
into the target genome. Switchable nucleases could allow an even
tighter control. Remaining nucleases could be shut off by addition
of their inhibitor. Or activity could be restrained by addition of only
a small amount of imidazole. Imidazole can permeate the cellular
membrane, so intracellular imidazole concentration could be diluted
by changing the growth medium.

A different approach is the excision of the recognition site. TALENs
with two catalytic domains can remove the EBE, by creating double-
strand breaks up- and downstream of it. ENDA::TAL:ENDA are able
to do this in vitro, but unfortunately have not been tested in vivo yet. It
should nevertheless be remembered that the nuclease domains create
different types of strand-breaks depending on their fusion terminus,
which was nicely seen for I-Tevl and EndA. Both constructs used
here had different linkers (N-terminus: GlySer (EndA) / partial WT- I-
Tevl linker (Tev); C-Terminus: FokI linker (EndA) / 11 residues (Tev),
see appendix A.2.1), suggesting that the difference originates mostly
in the structure of the TALE-DBD and not so much from the linkers.
It would be interesting to see, if other TALEN architectures behave
similarly. E.g., can the nickase TaL:MUTH [77] work as a cleavase,
when MutH is fused to the N-terminus or is scPvull:: AvRBs3 more
active than AvrBs3::scPvull [243]?
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The dcTALEN TEev::TaL::FOKI described in this work, however, dis-
played a great activity in vivo, which surpassed a regular FokI TALEN.
A similar construct with two catalytic domains is the meganuclease
fusion to the I-Tevl nuclease domain, which has been described re-
cently by [238]. Alternatively one can also use multiple standard
TALENs or gRNAs, with the downside of an even larger transfection
load.

ANOTHER TYPE OF INHERENT TOXICITY stems from the natural
properties of the DNA-binding domain. TALE proteins have to be
able to tolerate mismatches. Otherwise a small mutation in the ef-
fector binding element could prevent the TALE from binding, which
would be beneficial for the host organism. Therefore, TALEs have to
be undiscriminating enough to counteradapt mutations of the EBE,
but be specific enough to not bind too many off-sites. TALEs share
this dichotomy with the selfish homing endonucleases: here counter-
adaption and ability to propagate to new alleles conflicts with off-site
cleavage and toxicity. This is also the reason, why I-Crel is slightly
toxic in mammalian cells. Understandably, inaccuracy is neither a
desired trait for TALE-DBDs, nor for synthetic meganucleases. Both
shortcomings can be fixed by creating a TALE::MEGANUCLEASE fusion.
The highly-specific nuclease domain compensates for weaknesses in
the TALE-DBD, while the TALE-DBD prevents the HE from binding to off-
sites. Integration of part of the recognition into the catalytic domain
combined with the mere length (e.g., ~40 bp for AvRBs3::sCCRE) of
the target site, make TALE::MEGAS extremely specific SSNs. This safety
and their monomeric layout makes them ideal for genetherapy:.

Certain types of DNA-damage appears however, no matter how pre-
cise the nuclease is. Wrong ends can be joined during NHEJ or the
target chromosome can form a crossing-over product with the repair
template during HR. Recombinase and transposase fusions [147, 164]
can integrate a template without the necessity of the DSB-repair sys-
tem. Although the main drawback for this system is off-site integra-
tion at the moment. TALE:recombinases might replace SSNs in the
future, when the recombinases have been engineered sufficiently for
a fusion context.

THE FOUNDATION for successful engineering of a fusion domain
is sufficient information about it. Structural knowledge, but also clas-
sic biochemical insights into mechanisms and relevant residues are
invaluable. In vitro experiments may not fully imitate the conditions
inside a cell, but they nevertheless provide practical evidence and will
still help us understand biochemical systems better in the future.
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Site-specific genome engineering represented a paradigm shift in the
modification of genomes. Earlier, genomes were mutated as a whole
or therapeutic factors and beneficial genes were integrated randomly.
The next revolution came with the second generation of site-specific
nucleases. The design of meganucleases or ZFNs requires time and ex-
perience, while TALENs and RGENs make the addressing of a specific
sequence almost trivial. This is reflected in the magnitude of how fast
researchers have adapted this new technique. New SSNs have been
applied successfully in virtually every model organism and greatly
augmented the ability to study them. It is therefore no surprise that
genome editing has been named “Method of the Year 2011” by Na-
TURE METHODS [1] and runner-up for “Breakthrough of the Year 2012”
by Science [2]. Beyond nucleases, synthetic biologists have started to
create complex artificial genetic circuits that artfully apply TALE fu-
sions.

Novel or improved DNA modifying domains will allow new ther-
apies and new applications in the future. The author of this work
hopes that some of the findings described here may prove helpful
then.
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Materials and methods are described in this chapter. Sequences for
proteins (A.2.1) and primers (A.2.2), as well as the compositions of
standard buffers, can be found in the appendix.

4.1 MOLECULAR CLONING

Coding sequences were subcloned into their recipient vectors (table
11) with standard molecular biological methods. First, sequences
were obtained by PCR or by restriction digest from a plasmid. Frag-
ments were then cleaned up with a PCR-clean up kit, if clipped frag-
ments were small enough to be removed (<60bp). Otherwise samples
were gel purified. Standard cloning strains Da50 or XL10 GOLD were
transformed with the ligated plasmids and grown in 3-4 ml cultures
over night. Correct integration of plasmids was verified by screen-
ing and sequencing. An overview of the subcloned fragments can be
found in table 6, while the recipient scaffolds can be found in table 7.

4.1.1  Restriction digests

Between two and four ng of DNA were digested (see table 8) for 10
minutes per pg. Restriction endonucleases were obtained from NEB
and THERMO ScIENTIFIC. Buffers and incubation temperatures were
adjusted accordingly.

Table 8: Layout for restriction digests

REAGENT FINAL CONCENTRATION VOLUME
Plasmid DNA 2-4 ng var
Buffer 1X 5 ul
Enzyme 1 var 0.25 -1 pl
(Enzyme 2) var 0.25 -1 pul
Water to final volume
Total 50 pl

4.1.2  Gel purification

Restriction digests were supplemented with standard DNA loading
dye (e.g. Orange DNA Loading Dye 6x (LIFE TECHNOLOGIES), Gel Load-
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Table 6: Cloning strategies
Shown are DNA fragments for catalytic domains, fusion terminus in the
final construct, sequence size as well as the 5" and 3’ restriction sites that
were used for subcloning. Protein sequences can be found in appendix
A.2.1.

NAME  FUSION TERMINUS 5  SITE 3’ SITE SIZE [bp]

Col E7 N Ncol  BamHI 414
C Kpnal Eagl 426

NucA C BamHI  Eagl 768
EndA N Nisil BamHI 747
C Avrll Blpl 759

Tev N Ncol Kpnal 567
C BamHI  Eagl 573

Fok C Kpnal Eagl 639
scCre C BamHI  Eagl 1104
scCreDS C BamHI  Eagl 1104
scTcr C BamHI Eagl 1104
scTrex N Ncol  BamHI 729
SNAP tag C Sacl  HindIlI 588

Table 7: Recipient scaffolds
Shown are tale scaffolds in vectors pCLSy865 and pQE30, which can
accept catalytic domains. EndA dual catalytic talens used the N-
ter_AvrBs3(28) scaffold, while Tev::tale::Fok nucleases were generated by
first constructing TEv::TALE and TALE:FOK and subsequent digest with
Nsil in the N-terminal pseudo repeat region of the tale. Note that Nsil

(A, TGCA" T), instead of Ncol (C" CATG, G), is used to cut at the start codon
in pQE3o0.

NAME MULTIPLE CLONING SITE  MCS LOCATION
Tal11_NFS1 Ncol / Agel / 5 /N
(N-terminal Fusion Scaffold) Kpn2l / BamHI
Tal11_CFS1 BamHI / Kpn2l / 3 /C
(C-terminal Fusion Scaffold) Bglll / Eagl
Nter_AvrBs3_(28)_His (5”) Nsil/BamHI/Sall/Bsu36l both

(3") Avrll/Sacl/HindIII/Blpl
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Table g9: Layout for ligations
REAGENT FINAL CONCENTRATION VOLUME
Recipient vector 5ng / pl var
Insert fragment 2-6x molar excess var
T4 DNA ligase buffer (10x) 1X 1l
T4 DNA ligase 1-3U 1l
Water to final volume
Total 10 pul

ing Dye (NEB) or AAP buffer 5x (ethylenediaminetetraacetate (EDTA)
250 mM, all (w/v): 25 % Sucrose, 1,2 % sps , 0,01 % Bromophenol-
blue , 0,01 % Xylencyanol, NaOH to pH 8.0)) and completely loaded
onto a 1% agarose gel buffered in 1x TAE. Gels were run at 5V / cm
until satisfying separation was achieved. Fragments were visualized
by ethidium bromide staining and then cut out of the gel under UV
light. Time under the UV was limited to a minimum to avoid nick-
ing of the DNA and accompanying low ligation efficiencies. Isolated
fragments were then purified using the PCR Clean Up and Gel Extrac-
tion-Kit (MACHEREY NAGEL) or the Wizard SV gel and PCR clean up
system (PROMEGA).

4.1.3 Ligations

Stocks of the recipient vector were dephosphorylated with calf intesti-
nal alkaline phosphatase (CIAP) to increase efficiency. Between 1 and
4 pg of vector were treated with 1 nl of CIAP (PROMEGA or NEB) in
50 pl of total volume for 30 minutes at 37°C. Vectors were purified
with the Wizard SV gel and PCR clean up system (PROMEGA) or the PCR
Clean up and Gel Extraction Kit (MACHEREY NAGEL). Reagents for the
ligation were mixed as shown in table 9. Inserts were added in two to
six fold molar excess over the recipient. Solutions were incubated at

room temperature (RT) between 20 minutes and one hour. T4 ligase
was obtained from LIFETECHNOLOGIES, PROMEGA or NEB.

4.1.4 Escherichia coli Strains

Several E. coli strains were used, depending on the application. Plas-
mid DNA was amplified in DH50, XL1BLUE and XL10GOLD. Proteins
were expressed in XL10GoLDp (for T5 promoters) or BL21(pE3) (for Ty
promoters). Genotypes are:

e Br21(DE3): F~ ompT gal dem lon hsdSg(rg” mp”) araB:: T7RNAP-
tetA
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* Dusw: F endA1 gInV44 thi'1 recA1 relA1 gyrAg6 deoR nupG
®8odlacZAM15 A(lacZYA argF)U169, hsdR17(rx” mk™), A—

e XL1BLUE: endA1 gyrAg6(nal®) thi-1 recA1 relA1 lac glnV44 F/[
:‘Tn1o proAB* lacl1 A(lacZ)M15] hsdR17(rx” mx™)

e XrL1oGoLD: endA1 gInV44 recAi1 thi-1 gyrAg6 relA1 lac Hte
A(mcrA)183 A(mcrCB-hsdSMR-mrr)173 tet® F/[proAB lacliZAM15
Tn1o(Tet® Amy CmR)]

4.1.5 Transformations

Bacterial aliquots of 50l were gently thawed on ice for ten minutes
and then incubated for another five minutes with five ul of a ligation
solution or between one to five ng of supercoiled plasmid DNA.

¢ Chemically competent bH50 or BL21 were then heatshocked for
30s at 42°C, placed on ice for 2 minutes and gooul of soc medium
were added. Cells were then grown at 37°C for 30-45 minutes
in soc-medium and between 10 and 100 pls were plated out on
LB agar (LB medium supplemented with 1.5% agar (w/v)). The
30 minute growth step was skipped if ampicillin resistance was
the selection marker. Agar plates were then placed at 37°C over
night.

e Z. competent xL10GOLD did not require a heat shock and could
be plated directly onto the agar plates, if ampicillin was used.
Otherwise a 30 to 45 minute growth step with soc medium had
to be added.

4.1.6  Screening

A colony PCR (see 4.1.10) was used to screen for successfully inserted
constructs. Amplicon length is then determined by standard agarose
gel electrophoresis or PAGE. Examples for agarose gel electrophoresis
and PAGE can be found in [11].

4.1.7  Plasmid purification

Plasmids were extracted from 3 ml cultures with the Miniprep-kits
NucleoSpin (MACHEREYNAGEL) or Wizard Plus (PROMEGA). When endotoxin-
free or more DNA was required, larger cultures were cleaned up with

the NucleoBond Xtra Midi EF kit (MACHEREYNAGEL) or the Wizard Plus

Midi kit (PROMEGA).
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4.1.8 DNA quantification

The NanoDrop 1000 system by THERMOSCIENTIFIC was used to quan-
tify DNA and fluorophores.

4.1.9 Sequencing

Sequencing results were obtained from MmwG-BroTecH (EUROFINS) or
LGC-GENOMICS.

4.1.10 Polymerase Chain Reactions

Depending on the requirements, different polymerases were selected.
Annealing temperatures were adjusted depending on primer length
and composition.

* The Thermus aquaticus (Taq) (PROMEGA or preparation by Heike
Biingen) or the REDTaq polymerase (SIGMA-ALDRICH) was used
for colony PCR to screen for successful ligations. Here a bac-
terial colony is transferred into 10 pl of water. Then 10 nl of
master mix (0.5 uM Primer forwards, 0.5 pM Primer reverse,
Tag buffer [Final: 10 mM Tris/HCI pH 9.0, 50 mM potassium
chloride, 0.1% Triton X 100 (v/v), 1.5 mM magnesium chloride]
or REDTaq buffer, 0.2 pl Tag polymerase) were added and a PCR
was carried out.

PCRs with Pyrococcus furiosus (Pfu) (Heike Biingen) or Phusion
(Phu) High-Fidelity (NEB) DNA polymerases were chosen for
standard cloning procedures. A standard layout would be: 5 to
15 ng of plasmid DNA, 0.5 uM Primer forward, 0.5 pM Primer re-
verse, 200 uM deoxyribonucleotide triphosphate (dNTP)s, buffer
(1x Pfu: 20 mM Tris/HCl pH 9.0, 10 mM ammonium sulfate,
10 mM potassium chloride, 0.1% Triton X 100 (v/v), 2.5 mM
magnesium hyposulfite; 1x Phu: see NEB), 1 pl polymerase (Pfu,
Phu), nuclease-free water to 50 pl.

QuikChange Lightning or Lightning Multi Site-Directed Mutagene-
sis Kits (AGILENT) were used according to protocol. A megaprimer
PCR, utilizing Pfu polymerase, was applied in a similar manner
to modify single nucleotides or codons. Here a fragment is am-
plified from a plasmid template by mismatch PCR. This PCR
introduces point mutations via mismatching oligos. The result-
ing fragment acts as a primer for a second round of PCR, which
replicates the whole plasmid. Afterwards, the methylated tem-
plate plasmids were removed by Dpnl digest. Linear plasmid
copies were ligated and then transformed into a cloning strain.
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Table 10: Cycle times and temperatures of various PCRs

Annealing temperatures were adjusted depending on primer length and

composition.

STEP STANDARD PCR MEGAPRIMER 2 HERCULASE
Initial denat. 60", 94°C 57, 93°C 2/, 95°C
Denaturation 10-20", 94°C 1/,93°C 10-20”, 95°C

Annealing 10-45", 50-60°C 50", 60°C 20", 50-60°C
Extension 1" / kb (Tag)+15”, 68°C 15”7, 68°C 30”7, 72°C
0.5" / kb (Pfu)+15", 72°C
0.5" / kb (Phu)+15”, 72°C
Cycles 30-33 18 30
Final ext. 2x Ext., same °C 20", 68°C 2’,72°C

¢ splicing by overlap extension (SOE) PCRs were introducing re-

striction sites and point mutations. Here two DNA fragments
of a region of interest were generated in two separate PCR reac-
tions. This way mutations were introduced via mismatch PCR.
Both fragments overlapped so they could hybridize and act as
a template in a second PCR. The resulting fragments were re-
combinant fusions of both original PCR products and were sub-
cloned into plasmids of choice via restriction and ligation. They
used the standard Pfu setup, but with an annealing time of 1
minute for the second PCR.

To amplify genomic regions of DNA for the surveyor assay and
for deep sequencing, two rounds of PCR with the high-fidelity
polymerase Herculase 1I Fusion (AGILENT) were applied accord-
ing to the manufacturer’s instructions. The first round ampli-
fied the target region, while the second round was a nested PCR
to add multiplex identifier (MID) tags and adapter sequences
for 454 sequencing. Here the reverse primer was the same for
all samples of one genomic locus, while the forward primers
contained different MIDs to distinguish the constructs later.

4.2 DNA SYNTHESIS
4.2.1  DNA oligonucleotides

Primers were aquired from EUROFINS or BIOMERSs.



4.2 DNA SYNTHESIS

4.2.2  TALE scaffold generation

TALE constructs used in this work are based on the AvrBs3 scaffold
(see figure 7). For the N-terminus, a length of 136 amino acids was
chosen, resulting in a truncation of A152 aa. The C-terminus lengths
were either 11, 28 or 40 residues after the last TALE half-repeat. Two
BsmBI restriction-sites are located in the central region between the
TALEN N- and C-terminus. The type IIS restriction endonuclease
BsmBI was then used to excise the RVD-less central region leaving
compatible overhangs for the ligation of the RVD array.

4.2.3 TALE repeat synthesis

The AvrBs3 binding domain was used for most experiments to be
able to compare constructs. Other RvD-arrays were synthesized by
the CELLECTIS PLATFORM. During synthesis, small DNA fragments
(“blocks”) coding for combinations of two repeats were fixated to a
biotin matrix, ligated to a new set of blocks and then removed from
the matrix by restriction digest. This process was iterated until the
sequence of direpeat building blocks reached the desired length. The
final DNA fragment was cloned into a shuttle vector and provided for
further cloning.

4.2.3.1 Insertion of RVDs into TALE backbones

The provided shuttle vectors were first predigested with the restric-
tion endonuclease Sfil and subsequently gelpurified. The gelpurified
fragments were further digested with the REs BbvI and SfaNI. Frag-
ments were then cleaned up with the PCR Clean Up and Gel Extraction
Kit (MACHEREY NAGEL). The resulting fragment was ligated into TALE
scaffolds predigested with BsmBI.

4.2.4 Catalytic domains

Synthesized pNAs and Plasmid vectors containing catalytic domains

of I-Tevl/ColE7/NucA or subunits of I-Crel were bought from GENECUST.

Plasmids containing EndA mutants were provided by Marika Midon
and Heike Biingen. The sNaP-tag was obtained from NEB.

4.2.5 Vectors

Several different vector plasmids were used in this work dependent
on the intended purpose. All vectors contained a pUC origin of repli-
cation. Constructs were assembled in the cloning vectors pCLS7865,
pCLS12081 (ColE7 and NucA) or pQE30 (EndA).
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Table 11: List of plasmids
Ncol and Eagl could be used to subclone sequences into pCLSy865,
pCLS12081, pCLS0368, pCLSo542 and pCLS7763. Constructs had to be
transferred from the shuttle vector into pcls1853 via digest with Xhol and
BssHII. Nsil and HindIII (or BlpI) could be used to clone fragments into
our pQE3o derivate.

NAME PURPOSE COMMENTS
pCLS7865 cloning-/shuttle vector (CSV) Amp resistance
pCLS12081 CSV with inhibitor (Im7 or NuiA) based on 7865
pCLS0368 expression (E.coli) T7 promoter
pCLSo542 expression (yeast) Gal 1/10 promoter

Leu1 auxotrophic

marker (yeast)

pCLS7763 expression (yeast) Gal 1/10 promoter
Kan resistance (yeast)
pCLS1853 expression (mammals) CMV promoter
pCLS15603 expression (plants) CaMV 35S promoter
pCLSo002 mock controls empty
pCLSo003 mock controls empty
pQE30 cloning / expression (E. coli) T5 promoter

pAT PEB in vitro target plasmids
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4.2.6 Target plasmids and PCR fragments

Yeast and mammalian target plasmids were provided by the CELLEC-
T1S PLATFORM. The pAT PEB (negative control) and pAT PEB 339
(AvrBs3 EBE) plasmids were provided by Mert Yanik. Small DNA frag-
ments and fluorescently labeled targets were prepared via Pfu-PCR
with a pAT PEB 339 template. For primers see appendix (A.2.2).

4.3 PROTEINPURIFICATION

Constructs were either expressed in XL10 GOLD or Br21 cells, accord-
ing to the protocols below.

4.3.1  In XL10GOLD

Starter cultures of xL10 GOLD cells harboring EndA expression plas-
mids were grown over night (O/N) at 37°C. Expression cultures were
then inoculated with the starter culture in a 1% ratio. Cells were
grown at 37°C to an ODgg, of 0.5. Cultures were cooled down to
20°C, while “before induction” samples were taken. Induction was
started with a final concentration of 1 mM IPTG. Growth continued
over night at 20°C for 18h.

Cells were harvested and resuspended in 20 ml lysis/equilibra-
tion/wash buffer (1 M NaCl) per 500 ml of culture. The mixture
was then sonicated on ice for 5x 30 seconds with 30 second pause in
between (Output control: 5, duty cycle 50%). The cell lysate was cen-
trifuged (BECkMANN COULTER JA-20 rotor, 19 000 rpm or ~43 000 rcf)
and filtered through a 0.45 uM filter. A Protino-Ni-IDA 2000 column
(MAcHEREYNAGEL) was prequilibrated, before the filtrate was poured
onto it. The column was then washed in succession with 4x4 ml buffer
with decreasing salt concentrations (1, 0.8, 0.6 and 0.3 M NaCl). Pro-
teins were eluted with 1.5 ml elution buffer (MACHEREYNAGEL).

The eluates were diluted with 50 mM sodium phosphate to a sodium
chloride concentration of 150 mM (this step was skipped if the 300
mM NaCl Low-Salt buffer was used), before being loaded on a prequi-
librated 1 ml HiTrap Heparin column in the Akta urLc system (both GE
HeAaLTHCARE). The column was washed with 5 column volumes (cv)
of Low-Salt buffer. Elution was accomplished with a linear sodium
chloride gradient over 10 cv to a final concentration of 1 M (100%
High-Salt buffer). UV /Vis Absorbance at 280 nm was measured and
peak fractions were collected. Buffers are shown in table 12.

4.3.1.1  Dialysis

Nucleases were dialyzed (see table 12) O/N and the buffer was ex-
changed in the morning to allow four more hours of dialysis. Dial-
ysis membranes with a molecular weight cut-off of 10 kDA were used
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Table 12: Buffers for Protino and HiTrap purification

BUFFER REAGENT CONCENTRATION
Lysis/Equilibration/Wash buffer NaCl 1000-300 mM
pH 8.0 NaH,PO, 50 mM
Elution buffer (MACHEREYNAGEL) NaCl 300 mM
pH 8.0 NaH,PO, 50 mM
Imidazole 250 mM
Low-Salt buffer NaCl 300 (or 150) mM
Tris/HCI pH 8.0 50 mM
EDTA 1 mM
DIT 1 mM
Glycerol 5% (v/v)
High-Salt buffer NaCl 1M
Tris/HCl pH 8.0 50 mM
EDTA 1 mM
DTT 1 mM
Glycerol 5% (V/V)
Dialysis buffer NaCl 500 M
Tris/HCI pH 8.0 50 mM
EDTA 1 mM
DIT 1 mM

Glycerol

50 % (V/V)
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(e. g., SnakeSkin Dialysis Tubing, LIFETECHNOLOGIES). Afterwards TALENs
were separated into 50 nl aliquots, flash frozen in liquid nitrogen and
stored at -80°C.

4.3.1.2 SDS-PAGE

Protein samples were analyzed via standard SDS-PAGE. Gels were run
in the MiniProtean Tetra System (BIoRAD) for 45 min at 35 mA. Gels
were either self-cast (Separating gel: 10, 12 or 15% acryl amide (v/v),
0.1 % sps (w/v), 840 mM TrisHCI pH 8.8; Stacking gel: 6% acryl
amide (v/v), 0.1% sps (w/v), 125 mM TrisHCI pH 6.8) or precast
MiniProtean TGX (BroRap) gels were used. Gels were then stained
with coomassie brilliant blue (e. g., 0.1% coomassie brilliant blue G250
(w/v), 2% phosphoric acid (v/v), 5% aluminum sulfate (w/v), 10%
ethanol (v/v)).

4.3.1.3 Protein quantification

The absorbance at 280 nm was measured and concentrations were
determined with a calculated extinction coefficient (see 4.6).

4.3.2 InBr21

Expression cultures were grown to an ODgq, of 0.5 and then induced
with IPTG. Growth continued O/N at 20°C for 18h. Cells were har-
vested (resuspenion in Native IMAC Lysis buffer), sonicated and the
constructs TEv:NPTII-CB TALENs and AvrBs3::FokI were then purified
with the Profinia Protein Purification Instrument from BioRAD. For this
the Mini-Profinity Profinia IMAC Cartridge from the Native IMAC Purifi-
cation-kit (BIoRAD) was used according to the manufacturer. Buffers
can be found in table 13.

4.3.3 Cleavage assays in vitro

4.3.3.1 EndA cleavage assays

All concentrations were as described in the results section. Water,
buffer and DNA were mixed first and kept on ice. Protein was added
from a fresh dilution of an ENDA::TALE aliquot. Imidazole was added
to the desired concentration and the samples were placed in a pre-
heated thermocycler after mixing. The reaction was stopped with
AAP buffer 5X (EDTA 250 mM, all (w/v): 25 % Sucrose, 1,2 % SDS
, 0,01 % bromophenol blue , 0,01 % xylencyanol, NaOH to pH 8.0).
Samples were then analyzed with standard agarose gel electrophore-
sis Or PAGE (e. g., see [11]).
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Table 13: Buffers for Profinia IMAC

BUFFER REAGENT CONCENTRATION

Native IMAC Lysis buffer KCl 300 mM
pH 8.0 KH,PO, 50 mM
Imidazole 5 mM

Native IMAC Wash buffer 1 KCl1 300 mM
pH 8.0 KH,PO, 50 mM
Imidazole 5 mM

Native IMAC Wash buffer 2 KC1 300 mM
pH 8.0 KH,PO, 50 mM
Imidazole 10 mM

Native IMAC Elution buffer KC1 300 mM
pH 8.0 KH,PO, 50 mM

Imidazole 250 mM

Desalting buffer NaCl 137 mM

pH 7.4 KCl 2.7 mM

Na,HPO, 4.3 mM

KH,PO, 8.1 mM
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4.3.3.2  Fluorescence assays and denaturing PAGE

For the timecourse assays to determine strand specificity, a master
mix was used. Two samples per construct were taken at 2,4,8,16,32
and 64 minutes and pippetted into stop buffers. Samples for the na-
tive PAGE were stopped with AAP buffer without bromophenol blue
and xylencyanol. The 2X stop buffer for the denaturing PAGE con-
tained 80% formamide, 0.5 % sps and 0.5 mM EDTA. Both samples
were incubated for 2 minutes at 80°C to ensure denaturation of the
protein.

Half of the samples were separated in the dark by standard 8%
PAGE. The other samples were analyzed via denaturing gels ( 10%
Acrylamide, 0.1 M Tris, 0.1 M borate, 2.5 mM EDTA, 40% formamide
(V/V), 42% urea (w/v)). Replacement of borate with taurin and addi-
tion of glycerol to the stop buffer yielded equal qualtiy gels and did
not improve the method. The MiniProtean (BIoRAD) system was used
to run the gels. Two denaturing gels were prerun at 400 V and 40
mA for 25 minutes, to heat up the gel. The actual run was carried out
in the dark at 300 V and 30 mA for 1 h with a 100 W power supply.
Gels were scanned with the Typhoon FLAg500 biomolecular imager (GE
HEALTHCARE). Band intensity was calculated with IMAGE] (see section

4.6).

4.3.3.3 Other cleavage assays

Tev:TALE and TALE:FOKI in vitro cleavage assays were carried out
similar to the standard EndA assays. Assays were started by addition
of the protein. Concentrations and conditions were as described for
the specific experiment.

4.4 YEAST SINGLE STRAND ANNEALING ASSAYS

Profiling in yeast was carried out by the CELLECTIS yeast platform. At
least two clones were assayed per nuclease construct and experiment.
Experiments were repeated on average three times, but at least twice.

Yeast expression plasmids (542 or 7763) containing SSNs were trans-
fected into yeast strains. These nuclease strains were gridded with a
colony gridder (QpixII from GENETIX LIMITED) on a nylon filter. Com-
patible yeast strains harboring a target plasmid were added on top in
a second gridding process. The filter membranes were placed on agar
containing YPGlycerol-rich medium and were allowed to mate O/N
at 30°C. Filters were then transferred to synthetic medium, without
leucine and tryptophan, with glucose (2% (w/v)) as carbon source.
If needed for coexpression experiments, G418 (Geneticin) was added
to select for Kanamycin resistance. Cells were grown for 5 days at
30°C and diploids were selected for. The filters were then transferred
onto YPGalactose-rich medium to express the TALENs for 48 h at
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30°C and 37°C. Subsequently, filters were placed on agarose medium
(1% agarose (w/v), 0.02% X-Gal (w/v) in 0.5M sodium phosphate
buffer, pH 7.0, 0.1% SDS (W/v), 6% dimethyl formamide (v/v), 7 mM
B-mercaptoethanol) and incubated at 30°C and 37°C for 48 h. The fil-
ters were scanned after 8 h, 24 h and 48 h, to measure $3-galactosidase
activity. Median values for the color of the colonies were used to
quantify blueness. White colonies were assigned the activity value o,
while dark blue, saturated colonies were assigned the activity value
1. B-galactosidase activity is then used as a measurement for homol-
ogous recombination efficiency. Plasmid DNA for the expression vec-
tors could later be extracted and validated by sequencing, to ascertain
the identity of a nuclease.

4.4.0.4 In vivo cloning

Sequences coding for SSNs could also be transferred into the expres-
sion vectors via in vivo cloning in yeast. For this a linearized (BssHII)
fragment, coding for the nuclease, was cotransfected with a linearized
recipient vector (Ncol / Eagl). A functional expression vector is then
generated in yeast via homologous recombination, since both frag-
ments contain two homology regions of ~40 bp.

4.5 CELL CULTURES
4.5.1 General

4.5.1.1 Strains

Three cell lines were used in this work:
® CHO cells, strain K1

* CHO r-10 cells, harboring an optimized, palindromic I-Crel tar-
get site on a chromosomal locus

® HEK293 cells

4.5.1.2  Cell growth and passages

Cells were grown at 37°C and 5% CO,. For passage, cells were
washed in phosphate-buffered saline (PBS), trypsinized and resus-
pended in F-12 K (CHO) or DMEM (HEK293) complete medium (G1Bko).
2 mM L-glutamine, penicillin (100 IU / ml), streptomycin (100 mg /
ml), amphotericin B (Fungizone, 0.25 mg / ml) and 10% fetal bovine
serum were supplemented.
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4.5.1.3 Cell numbers

The Countess Automated Cell Counter from LIFETECHNOLOGIES in com-
bination with Trypan Blue staining was used to determine the cell
number.

4.5.1.4 Expression

Ectopic expression was driven by a cytomegalovirus (CMV) promoter
in plasmid pCLS1853.

4.5.1.5 CHO-K1

CHO-K1 cells (1 x 10° cells) were electroporated with the Nucleofec-
tor Kit T for CHO-K1 cells (LoNzaA) according to the provided proto-
col. Between 200 ng and 10 pg of expression plasmid were trans-
fected. Expression vectors for scITREX, repair matrices or “empty”
mock-plasmids were sometimes cotransfected, so that total transfec-
tion amounts were at 10 or 15 pug. The cells were then plated in a
10 cm petridish in complete medium (F-12K medium (GiBko) sup-
plemented with 2mM L-glutamine, penicillin (100 IU / ml), strepto-
mycin (100 mg / ml), amphotericin B (Fungizone, 0.25 mg / ml) and
10% fetal bovine serum).

4.5.1.6 Hek293

Aliquots of 1.2 * 10° HEKz293 cells were plated onto a 10-cm dish and
grown O/N. Five ng of DNA were transfected the next day with the
Lipofectamin 2000 reagent (LIFE TECHNOLOGIES), as specified by the
manufacturers instructions.

4.5.1.7 Transfection efficiency

Transfection efficiency was measured by blue- or cyan fluorescent pro-
tein with the MACSQuant Flow Cytometer (MILTENYI).

4.5.1.8 Genomic DNA extraction and analysis

Two or three days and seven days after transfection, genomic DNA
was extracted with the DNeasy Blood and Tissue Kit from QIAGEN, ac-
cording to the manufacturer’s instructions. Extracted DNA was then
amplified with two rounds of Herculase PCR with specific primers
flanking the endogenous target site (see 4.1.10). Amplicons were
purified via magnetic beads using the Agencourt AMPure XP system
(BEckmaN COULTER), according to the manufacturer’s instructions.
Samples were analyzed via T7 endonuclease 1 assay was carried out
or with a 454 sequencing system (454 LIFE SCIENCES). NHE] events
were considered if insertions or deletions were detected within the
expected cleavage site.
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Table 14: List of X-gal staining buffers

BuUFrFER REAGENT CONCENTRATION
Fixation buffer = sodium phosphate pH 7.3 100 mM
MgCl, 1 mM
glutaraldehyde 0.5% (v/V)
Wash buffer sodium phosphate pH 7.3 100 mM
MgCl, 1 mM
NP-40 0.02% (V/V)
Coloration buffer sodium phosphate pH 7.3 100 mM
MgCl, 1mM
potassium ferricyanide 5 mM
potassium ferrocyanide 5 mM
X-Gal 0.1% (wW/Vv)

4.5.1.9 T7 endonuclease 1 assays

The purified PCR products were also analysed via a Ty endonuclease
1 assay. 200 ng of DNA were denatured and reannealed in NEB buffer
2 and a volume of 19 pl. One pl of T7 endonuclease 1 (~10 U, NEB)
was added and the samples were incubated at 37°C for 15 minutes.
The reaction was stopped by addition of 2 ul 0.5 M EDTA and samples
were analyzed via PAGE.

4.5.1.10 X-Gal staining of CHO cells

A CHO strain containing a chromosomal I-Crel target site, flanked
by a defective B-galactosidase reporter, was grown and transfected
as described earlier. Two micrograms of a LacZ repair matrix were
cotransfected with each nuclease. After three days, the medium was
removed and cells were first washed with 10 ml PBS, then with 5 ml
fixation buffer and 5 ml wash buffer. After removal of the wash buffer,
5 ml of X-Gal containing coloration buffer were added and the plates
were incubated O/N at 37°C. Plates were then examined via confocal
microscopy.

4.5.1.11  Dose-response assays in CHO-K1 on an extrachromosomal target

Single-strand annealing assays were also carried out on extrachro-
mosomal targets in CHO-K1 cells. Analogous to the yeast assays, a
disrupted [-galactosidase gene with homology regions was used as
a reporter. However, oNPG (0-Nitrophenyl-3-D-galactopyranosid) re-
placed the X-Gal from the yeast SSA-assays. The readout was carried
out by measuring the optical density at 420 nm. For each experiment,
several g6-well plates, containing decreasing amounts of mammalian
expression plasmids, and a 96-well plate, containing SSA-target plas-
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mids, were needed. These were provided to the CELLECTIS PLAT-
FORM for transfection using an automated Velocity 11 BioCel system
(BroCeL). Transfection and readout were carried out as described in

[21].

Relative nuclease activities for each data point were then re-

turned.

4.5.1.12  Toxicity assay

Cell survival assays shown in the appendix, were performed by the
CeLLECTIS PLATFORM as described in [21].

4.5.2 Plant ssa-assays

ColE7, NucA and I-Tevl based constructs were cloned into 355 CaMV
based expression vector pCLS17693. Single-strand annealing assays
in tobacco protoplasts were carried out by CELLECTIS PLANT SCIENCES
as described in [21].

4.6

SOFTWARE

A number of specialized programs was used in this work.

Graphical representations of biomolecules in this work were
generated with PymoL [190].

Gel images were analyzed and quantified with IMAGE] [189].

The development environment RsTupro was used to sort, group
and to analyze data as well as to generate figures with the lan-

guage “R” [174].
Figures were edited with INkscAPE [215] and Gimp [214].

Sequence and sequencing data was managed with VECTORNTI
[136].

The Java frontend of EMBoss (European Molecular Biology Open
Software Suite, [179]) was used for standard bioinformatic appli-
cations such as translations, reverse complementations, or calcu-
lations of molecular masses and extinction coefficients.

Cleavage probability consensus sequences were generated with
WEeBLoco [50].

The picture on the dedication page was rendered with the BLENDER
package using the CYCLEs engine [24].

This document was typeset with the IETEX editor LyX [216] uti-
lizing the Classicthesis template by André Miede [150].
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APPENDIX

A.1 SUPPLEMENTARY EXPERIMENTS

Experiments that further complement the data are presented here.

AvrBs3-15-AvrBs3 AvrBs3-15-Hax I-Crel site
- + AvriFokl - + AvriFokl - + Avr::Fokl

—-— — — oo - . §o  tinear
- ey <« -— il Cut

Figure 50: AvRrBs3::Fokl causes unspecific cleavage in vitro

3 <~ Unspecific

100 nM of AvrBs3::Fokl were used to cleave 10 nM of 3 kb plasmids
harboring two, one or zero AvrBs3 EBEs. Samples were incubated for
one hour at 37°C in 50 mM Tris/HCl pH 7.5, 100 mM NaCl, 10 mM

MgCl,. Kpn2l was used as a positive control for the Avr-targets,

WT

I-Crel was used as a control for the I-Crel target plasmid. The target,
with two AvrBs3 sites, is cut specifically (green arrows) by Avr:Fokl.
Unspecific cleavage products (red arrows) appear for all three targets,

though.
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Figure 49: Buffer composition changes the cleavage pattern of EndA
A 440 bp PCR target (30 nM), harboring an AvrBs3 EBE, was incu-
bated with 200 nM of ENDA_H160G_Q186A_N202A::AVRBs3::SNAP or
ENDA_H160G_Q186A_N202A::AVvRBs3:ENDA(GAA) for 30 or go minutes
in different buffers. The target fragments were cleaved by the N-
terminal EndA domain (red arrows) and also by the C-terminal domain
(orange arrow), albeit with lower activity. Buffers with low salt concen-
tration caused DNA degradation, which can be seen as a smear. Buffers:
Old OI: 100 mM NaCl, 25 mM Tris/HCl, 1 mM MgCl2, pH8
Newl: 1omM Bis-Tris-Propane-HCl, 1omM MgCl,, 1mM DTT, pHy.o
Newll: s5omM NaCl, tomM Tris/HCl, 1omM MgCl,, 1mM DTT, pH7.9
Newlll: 50 mM Tris/HCl pHy7.9, 100 mM NaCl, 10 mM MgCl2,
1001g/ml BSA
NewlV: somM Potassium Acetate, 20mM Tris-acetate, 1omM Magne-
sium Acetate, 1imM DTT, pH7.9
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Figure 51: TALE fusion reduces toxicity of I-Crel variants
Shown is a dose-response assay in CHO cells to determine nuclease toxi-
city in vivo. The single-chain I-Crel variant (red) is as toxic as the wild-
type (black), while the degenerate scaffold scCre_DS (blue) is non-toxic.
Fusion of the AvrBs3 DBD (green and purple) reduces toxicity.
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Figure 52: TALE fusion reduces toxicity of scTcr variants
Shown is a dose-response assay in CHO cells to determine nuclease tox-
icity in vivo. Engineered I-Crel variant sclcr (brown) is as toxic as a
medium toxicity control (grey). Introduction of the degenerate scaffold
mutations (green) or TALE-DBD fusion (red, blue, purple) removes mea-
surable toxicity.
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Table 15: Sandwich TALEN architecture
Shown are relative activities in a yeast ssa-assay at 37°C after 48h for
the nuclease RagR::ColE7::Avr on exemplary targets. The EBEs on Rag-
spacer-Avr targets are present on the same (!) strand and should allow
binding of the complete construct in the right orientation. The nuclease
was not active on the majority of assayed targets. Including the suitable
Rag-Avr targets.

CONSTRUCT TARGET ACTIVITY
RagR-21-Avr 0
Avr-ColE7-RagR  Rag-Target 0
Avr-21-Avr 0,21

Table 16: Avr::scCre constructs

Shown are relative activities in a yeast ssa-assay at 37°C after 48h for
Avr:scCre constructs on exemplary targets. N and C denominate to
which subdomain of scCre the degenerate scaffold mutations have been
applied. CFS is the RvD-less TALE fusion-scaffold. The mixed N/C vari-
ants are slightly more active than the full degenerate scaffold. Like wr
scCre, they can cleave their target, even when no EBE is in proximity.
Constructs are still fully active with the empty TALE-scaffold.

CONSTRUCT VS TARGET AVR-0O7-CRE AVR-1I0-CRE CRE TCR

SCCRE 1 1 1 0
scCre_DS 0,72 0,66 0,72 0
scCre_DS-N 0,84 0,89 0,96 o]
scCreDS-C 1 1 1 o}
CFS::scCre 1 1 0
CFS::scCre_DS o} 0 0 0
CFS::scCre_DS-N o}
CFS::scCreDS-C 0,97 0,97 1 0
AVR::sCcCRE 1 1 1 o]
Avr::scCRE_DS 0,93 0 0 0
AvR::scCre_DS-N 0,99 0,93 1 o}
Avr::scCre_DS-C 0,98 0,95 1 0
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A.2 SEQUENCES
A.2.1  Proteinsequences

Given are protein sequences for catalytic domains and the AvrBs3
binding domains used in this work.

CATALYTIC DOMAIN OF COLICIN E7, N-TERMINAL FUSION
Blue: Colicin E7, residues 445-576
Red: Glycine/Serine linker

MASGSKRNKPGKATGKGKPVNNKWLNNAGKDLGSPVPDRIANKLRD
KEFKSFDDFRKKFWEEVSKDPELSKQFSRNNNDRMKVGKAPKTRTQ
DVSGKRTSFELHHEKPISQNGGVYDMDNISVVTPKRHIDIHRGKGS

CatAaLyTIC DOMAIN OF COLICIN E7, C-TERMINAL FUSION
Red: Glycine/Serine linker
Blue: Colicin E7, residues 445-576

GSSGSKRNKPGKATGKGKPVNNKWLNNAGKDLGSPVPDRIANKLRD
KEFKSFDDFRKKFWEEVSKDPELSKQFSRNNNDRMKVGKAPKTRTQ
DVSGKRTSFELHHEKPISQNGGVYDMDNISVVTPKRHIDIHRGKGS
SADx*

NucLEASE A, C-TERMINAL FUSION
Red: Glycine/Serine linker
Blue: Nuclease A residues, 24-274

GSQVPPLTELSPSISVHLLLGNPSGATPTKLTPDNYLMVKNQYALS
YNNSKGTANWVAWQLNSSWLGNAERQDNFRPDKTLPAGWVRVTPSM
YSGSGYDRGHIAPSADRTKTTEDNAATFLMTNMMPQTPDNNRNTWG
NLEDYCRELVSQGKELYIVAGPNGSLGKPLKGKVTVPKSTWKIVVV
LDSPGSGLEGITANTRVIAVNIPNDPELNNDWRAYKVSVDELESLT
GYDFLSNVSPNIQTSIESKVDNAADx*
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ENDONUCLEASE A, N-TERMINAL FUSION
Blue: DNA-entry nuclease A, residues 30-274
Red: Glycine/Serine linker

MHSAPNSPKTNLSQKKQASEAPSQALAESVLTDAVKSQIKGSLEWN
GSGAFIVNGNKTNLDAKVSSKPYADNKTKTVGKETVPTVANALLSK
ATRQYKNRKETGNGSTSWTPPGWHQVKNLKGSYTHAVDRGGLLGYA
LIGGLDGFDASTSNPKNIAVATAWANQAQAEYSTGQAYYESKVRKA
LDQNKRVRYRVTLYYASNEDLVPSASQIEAKSSDGELEFNVLVPNV
QKGLQLDYRTGEVTVTQGS

ENDONUCLEASE A, C-TERMINAL FUSION
Blue: DNA-entry nuclease A residues, 31-274
Orange: Polyhistidine-Tag

GTAPNSPKTNLSQKKQASEAPSQALAESVLTDAVKSQIKGSLEWNG
SGAFTIVNGNKTNLDAKVSSKPYADNKTKTVGKETVPTVANALLSKA
TRQYKNRKETGNGSTSWTPPGWHQVKNLKGSYTHAVDRGGLLGYAL
IGGLDGFDASTSNPKNIAVATAWANQAQAEYSTGQAYYESKVRKAL
DQNKRVRYRVTLYYASNEDLVPSASQIEAKSSDGELEFNVLVPNVQ
KGLQLDYRTGEVTVTQHHHHHH=*

CATALYTIC DOMAIN AND LINKER OF I-TEVI, N-TERMINAL FUSION
Blue: I-Tevl, residues 2-183
Red: Serine/Glycine linker

MAKSGIYQIKNTLNNKVYVGSAKDFEKRWKRHFKDLEKGCHSSIKL
QRSFNKHGNVFECSILEEIPYEKDLITERENFWIKELNSKINGYNI
ADATFGDTCSTHPLKEEIIKKRSETVKAKMLKLGPDGRKALYSKPG
SKNGRWNPETHKFCKCGVRIQTSAYTCSKCRNRSGENNSFFNHKHS
QGPSG
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CATALYTIC DOMAIN AND LINKER OF [-TEV], C-TERMINAL FUSION
Blue: I-Tevl, residues 2-183
Red: Glycine/Serine Linker

GSKSGIYQIKNTLNNKVYVGSAKDFEKRWKRHFKDLEKGCHSSIKL
QRSFNKHGNVFECSILEEIPYEKDLITERENFWIKELNSKINGYNI
ADATFGDTCSTHPLKEEIIKKRSETVKAKMLKLGPDGRKALYSKPG
SKNGRWNPETHKFCKCGVRIQTSAYTCSKCRNRSGENNSFFNHKHS
QGPSADx*

CATALYTIC DOMAIN OF FOKI, C-TERMINAL FUSION
Red: Glycine/Serine linker
Blue: Catalytic domain of variant FokI-L, residues 381-583

GSSGPNRGVTKQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNS
TQDRILEMKVMEFFMKVYGYRGKHLGGSRKPDGAIYTVGSPIDYGV
IVDTKAYSGGYNLPIGQADEMQRYVEENQTRNKHINPNEWWKVYPS
SVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGE
MIKAGTLTLEEVRRKFNNGEINFGSSAD*

SINGLE-CHAIN [-CREI, C-TERMINAL FUSION

Red: Glycine/Serine linker

Purple:DNA binding helix (I-Tevl WT residues 184-199)
Orange: Single-chain linker

Blue: I-Crel variant (residues 2-163 and 6-163)

Green: LAGLIDADG motif

GSDITKSKISEKMKGQGPSGNTKYNKEFLLYLAGFVDGDGSITAQI
KPNQSYKFKHQLSLTFQVTQKTQRRWFLDKLVDEIGVGYVRDRGSV
SDYILSEIKPLHNFLTQLQPFLKLKQKQANLVLKITIEQLPSAKESP
DKFLEVCTWVDQIAALNDSKTRKTTSETVRAVLDSLSEKKKSSPAA
GDSSVSNSEHIAPLSLPSSPPSVGSNKEFLLYLAGFVDGDGSITAQ
IKPNQSYKFKHQLSLTFQVTQKTQRRWFLDKLVDEIGVGYVRDRGS
VSDYILSEIKPLHNFLTQLQPFLKLKQKQANLVLKIIEQLPSAKES
PDKFLEVCTWVDQIAALNDSKTRKTTSETVRAVLDSLSEKKKSSP*
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SINGLE-CHAIN [-CREI, DEGENERATE-SCAFFOLD, C-TERMINAL FUSION
Red: Glycine/Serine linker

Purple:DNA binding helix (I-Tevl WT residues 184-199)

Orange: Single-chain linker

Blue: I-Crel variant (residues 2-163 and 6-163)

Green: LAGLIDADG motif

GSDITKSKISEKMKGQGPSGNTKYNKEFLLYLAGFVDGDGSITACI
RPNQTCKFKHQLSLTFQVTQKTQRRWFLDKLVDEIGVGYVRDRGSV
SDYILSETAPLHNFLTQLQPFLKLKQKQANLVLKITIEQLPSAKESP
DKFLEVCTWVDQIAALNDSKTRKTTSETVRAVLDSLSEKKKSSPAA
GDSSVSNSEHIAPLSLPSSPPSVGSNKEFLLYLAGFVDGDGSITIAC
IRPNQTCKFKHQLSLTFQVTQKTQRRWFLDKLVDEIGVGYVRDRGS
VSDYILSEIKPLHNFLTQLQPFLKLKQKQANLVLKIIEQLPSAKES
PDKFLEVCTWVDQIAALNDSKTRKTTSETVRAVLDSLSEKKKSSP*

ENGINEERED MEGANUCLEASE SCTCR, C-TERMINAL FUSION
Red: Glycine/Serine linker

Purple:DNA binding helix (I-Tevl WT residues 184-199)
Orange: Single-chain linker

Blue: I-Crel variant (residues 2-163 and 6-163)

Green: LAGLIDADG motif

GSDITKSKISEKMKGQGPSGNTKYNEEFLLYLAGFVDGDGSIVAQI
KPHQSCKFKHQLRLTFNVTQKTQRRWFLDKLVDEIGVGHVYDSGSV
SYYQLSEIKPLHNFLTQLQPFLELKQKQANLVLKITIEQLPSAKESP
DKFLEVCTWVDQVAALNDSKTRKTTSETVRAVLDSLSEKKKSSPAA
GDSSVSNSEHIAPLSLPSSPPSVGSNKKFLLYLAGFVDSDGSITAQ
IKPNQSYKFKHYLSLTFCVTQKTQRRWFLDKLVDRIGVGYVQDRGS

VSDYRLSEIKPLRNFLTQLQPFLKLKQKQANLVLKIIEQLPSAKES
PDKFLEVCTWVDQVAALNDSKTRKTTSETVRAVLDSLSEKKKSSP~
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SNAP-TAG, N-TERMINAL FUSION

Red: Glycine/Serine linker

Blue: sNAp-tag, corresponding to residues 4-181 in O6-alkylguanine-
DNA alkyltransferase (human)

Orange: Polyhistidine-tag

GSSDKDCEMKRTTLDSPLGKLELSGCEQGLHEIKLLGKGTSAADAV
EVPAPAAVLGGPEPLMQATAWLNAYFHQPEAIEEFPVPALHHPVFQ
QESFTRQVLWKLLKVVKFGEVISYQQLAALAGNPAATAAVKTALSG
NPVPILIPCHRVVSSSGAVGGYEGGLAVKEWLLAHEGHRLGKPGLG
PAGGSHHHHHH*

SCTREX, N-TERMINAL FUSION

Red: Glycine/Serine linker

Blue:Three prime repair exonuclease 2 (human), residues 45-279 (x2)
Green: internal linker

MGSEAPRAETFVFLDLEATGLPSVEPEIAELSLFAVHRSSLENPEH
DESGALVLPRVLDKLTLCMCPERPFTAKASEITGLSSEGLARCRKA
GFDGAVVRTLQAFLSRQAGPICLVAHNGFDYDFPLLCAELRRLGAR
LPRDTVCLDTLPALRGLDRAHSHGTRARGRQGYSLGSLFHRYFRAE
PSAAHSAEGDVHTLLLIFLHRAAELLAWADEQARGWAHIEPMYLPP
DDPSLEATPPQTGLDVPYSEAPRAETFVFLDLEATGLPSVEPEIAE
LSLFAVHRSSLENPEHDESGALVLPRVLDKLTLCMCPERPFTAKAS
EITGLSSEGLARCRKAGFDGAVVRTLQAFLSRQAGPICLVAHNGFD
YDFPLLCAELRRLGARLPRDTVCLDTLPALRGLDRAHSHGTRARGR
QGYSLGSLFHRYFRAEPSAAHSAEGDVHTLLLIFLHRAAELLAWAD
EQARGWAHIEPMYLPPDDPSLEAGGGGSGGGGS
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AVRBs3(11) N-TERMINAL FUSION SCAFFOLD

“NS” repeats have been replaced with the more stringent “NI” repeats
in this version

Red: Glycine/Serine linker

Light blue: N-terminal pseudo repeats, AvrBs3 residues 153-288
Blue: TALE-repeats, AvrBs3 residues 289-866

Orange: RVDs

Green: half-repeat, AvrBs3 residues 867-886

Purple: AvrBs3 C-terminus, residues 887-897

MANTGGSSGVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFT
HAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGA
RALEALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNA
LTGAPLNLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQ
VVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQ
ALETVQALLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVL
CQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVV
ATASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQAL
ETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQ
AHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAI
ASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALET
VQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAH
GLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIAS
HDGGKQALETVQRLLPVLCQAHGLTPEQVVATIASHDGGKQALETVQ
RLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGL
TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG
GGRPALESIVAQLSRPDPSADx*
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AvRBs3(11) C-TERMINAL FUSION SCAFFOLD

“NS” repeats have been replaced with the more stringent “NI” repeats
in this version

Light blue: N-terminal pseudo repeats, AvrBs3 residues 153-288
Blue: TALE-repeats, AvrBs3 residues 289-866

Orange: RVDs

Green: half-repeat, AvrBs3 residues 867-886

Purple: AvrBs3 C-terminus, residues 887-897

Red: Glycine/Serine linker

MVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALS
QHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLT
VAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNL
TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG
GGKQALETVQRLLPVLCQAHGLTPEQVVATIASNIGGKQALETVQAL
LPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTP
EQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGG
KQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLP
VLCQAHGLTPEQVVATASHDGGKQALETVQRLLPVLCQAHGLTPEQ
VVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQ
ALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVL
CQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVV
ATIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQAL
ETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQ
AHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAI
ASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALES
TVAQLSRPDPGSSGRSSAD*

121




122

APPENDIX

NTER_AVRBs3(28) SCAFFOLD

Red: Glycine/Serine linker

Light blue: N-terminal pseudo repeats, AvrBs3 residues 153-288
Blue: TALE-repeats, AvrBs3 residues 289-866

Orange: RVDs

Green: half-repeat, AvrBs3 residues 867-886

Purple: AvrBs3 C-terminus, residues 887-914

Underlined: Polyhistidine-tag

MHSGSVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHI
VALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALE
ALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGA
PLNLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAI
ASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNSGGKQALET
VQRLLPVLCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAH
GLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIAS
NIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQ
ALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGL
TPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNG
GGKQALETVQRLLPVLCQAHGLTPEQVVAIASNSGGKQALETVQAL
LPVLCQAHGLTPEQVVAIASNSGGKQALETVQRLLPVLCQAHGLTP
EQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGG
KQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLP
VLCQAHGLTPQQVVAIASNGGGRPALETVQRLLPVLCQAHGLTPEQ
VVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRP
ALESTVAQLSRPDPALAALTNDHLVALACLGSSHHHHHH=*
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AvRBs3-DBD IN ENDA::TALE:ENDA

Red: Glycine/Serine linkers

Light blue: N-terminal pseudo repeats, AvrBs3 residues 153-288
Blue: TALE-repeats, AvrBs3 residues 289-866

Orange: RVDs

Green: half-repeat, AvrBs3 residues 867-886

Purple: WT Fokl-linker, residues 379-391

GSVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVAL
SQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALL
TVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLN
LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASN
GGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNSGGKQALETVQR
LLPVLCQAHGLTPEQVVATASNGGGKQALETVQRLLPVLCQAHGLT
PEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVATIASNIG
GKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALL
PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPE
QVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGK
QALETVQRLLPVLCQAHGLTPEQVVAIASNSGGKQALETVQALLPV
LCQAHGLTPEQVVAIASNSGGKQALETVQRLLPVLCQAHGLTPEQV
VATIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQA
LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLC
QAHGLTPQQVVAIASNGGGRPALETVQRLLPVLCQAHGLTPEQVVA
TASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALE
GSSVIPNRGVTKQLVKGT

A.2.2  Oligonucleotides

The following tables contain oligonucleotide sequences (forward primer
(for) and reverse primer (rev)) used in this work for mutagenesis,
screening or insertion of multiple cloning site (MCS)s. Sequences for
common primers (e. g., Ty forward, M13 reverse, etc.) are not shown
here.

A.2.3 argets

Recognition sites for TALEs and meganucleases are given in table 25.
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Table 17: General cloning oligonucleotides

NAME SEQUENCE COMMENTS
CMP_oo1 ACACGCAAACACAAATACACAGCGGCCTTGCC- pCLS7865 (for)
ACCATGG (and 542)
CMP_oo3 AGAAGTCCAAAGCTTCAGCTGCTGCAGGCTCG- pCLS7865 (rev)
AGGAGCTC (and 542)
CMP_124 GCTGGAGAGCATTGTTGCCCAGTTATCTCGCCC TALE C-ter (for)
CMP_125 CCTGTTGCTGCTGGCTGTAGCCGAGCGTGCGTAG TALE N-ter (rev)
CMP_169 GGAGAGGACACGCACGAGATCTG pCLS15603 (for)
CMP_170 GGCAACAGGATTCAATCTTAAG pCLS15603 (rev)
CMP_145 TAAGGAGGAAACATTCATGGGAGACGGACACA- Insert (sense)
GCATCCTCGTGGCGTCTCAGGCCAACTGATTT - to create
AAT pCLS12081
CMP_146 TAAATCAGTTGGCCTGAGACGCCACGAGGAT - Insert (anti-sense)
GCTGTGTCCGTCTCCCATGAATGTTTCCTCC- to create
TTAAT pCLS12081
CMP_171 AGCTGTTCTAGAGGCGCGCCACACGCAAACA- primer (for) to insert
CAAATAC 7865 MCS into 15603
CMP_172 AAAGCTAGCGCTCGCCGGCGCTCGAGGAGCT - primer (rev) to insert
CTTATCAGTGG 7865 MCS into 15603
Oligo_571 TTCCGGATCCGTCGACCTTAGAACATTGGGA - TALE Nter End A-MCS
TATTCACAACAACAGCAGGAGAAGATTAAGCC insert (sense)
Oligo_572 TTAGGCTTAATCTTCTCCTGCTGTTGTTGTG- TALE Nter End A-MCS
AATATCCCAATGTTCTAAGGTCGACGGATCC- insert (anti-sense)
GGAATGCA
Oligo_68 CATTACTGGATCTATCAACAGGAG pQE30 (rev)
Oligo_126 GTATCACGAGGCCCTTTCGTCT PQE30 (for)
Oligo_241 ATTGAGCAGACCCGATCCTGCTTTGG TALE C-ter (for)
Oligo_283 CCTGCTGTTGTTGTGAATATCCCAAT TALE N-ter (rev)

Tal_N-Ter_Rev CTGTAGATCTAACCTTAGGCTTAATCTTCTCC

TALE N-ter (rev)
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Table 18: ColE7 soEing primers

NAME SEQUENCE COMMENTS
CMP_082 GAATTTCTTGCGAAAGTCTGCAAAACTCTTGAATTC D493A (rev)
CMP_083 GAATTCAAGAGTTTTGCAGACTTTCGCAAGAAATTC D493A (for)
CMP_084 CTTCCCAGAATTTCTTGGCAAAGTCATCAAAACTC R496A (rev)
CMP_085 GAGTTTTGATGACTTTGCCAAGAAATTCTGGGAAG R496A (for)
CMP_86 CACTTCTTCCCAGAATTTTGCGCGAAAGTCATCAAAAC K497A (rev)
CMP_87  GTTTTGATGACTTTCGCGCAAAATTCTGGGAAGAAGTG K497A (for)
CMP_88  GAGAGATTGGTTTTTCCTGATGCAATTCAAAAC H545Q (rev)
CMP_89  GTTTTGAATTGCATCAGGAAAAACCAATCTCTC H545Q (for)
CMP_go  GTAACCACAGAGATGTCGTCCATGTCGTAAACG N560D (rev)
CMP_og1 CGTTTACGACATGGACGACATCTCTGTGGTTAC N560D (for)
CMP_92  GAGGATCCTTTACCGCGAGCAATATCGATATGTCTTTTC H573A (rev)
CMP_93  GAAAAGACATATCGATATTGCTCGCGGTAAAGGATCCTC H573A (for)
CMP_94  GAGGATCCTTTACCGCGTTCAATATCGATATGTCTTTTC H573E (rev)
CMP_95  GAAAAGACATATCGATATTGAACGCGGTAAAGGATCCTC H573E (for)
CMP_153 GAGAGATTGGTTTTTCAGCATGCAATTCAAAAC H545A (rev)
CMP_154 GTTTTGAATTGCATGCTGAAAAACCAATCTCTC H545A (for)
CMP_155 CTTACCTGGTTTGTTGCGCTGAGATCCGGAGGATCC K446Q (rev)
CMP_156 GGATCCTCCGGATCTCAGCGCAACAAACCAGGTAAG K446Q (for)
CMP_157 CTTACCTGGTTTGTTGCGGTAAGATCCGGAGGATCC K446Y (rev)
CMP_158 GGATCCTCCGGATCTTACCGCAACAAACCAGGTAAG K446Y (for)
CMP_159 GCCTTACCTGGTTTGTTGGCCTTAGATCCGGAGGATC R447A (rev)
CMP_160 GATCCTCCGGATCTAAGGCCAACAAACCAGGTAAGGC R447A (for)
CMP_161 GCCTTACCTGGTTTGTTCTTCTTAGATCCGGAGGATC R447K (rev)
CMP_162 GATCCTCCGGATCTAAGAAGAACAAACCAGGTAAGGC R447K (for)
CMP_163 GCCTTACCTGGTTTGTTCTTCTGAGATCCGGAGGATCC K446Q, R447K (rev)
CMP_164 GGATCCTCCGGATCTCAGAAGAACAAACCAGGTAAGGC K446Q, R447K (for)
CMP_165 GCCTTACCTGGTTTGTTGGCGTAAGATCCGGAGGATCC — K446Y,R447A (rev)
CMP_166 GGATCCTCCGGATCTTACGCCAACAAACCAGGTAAGGC K446Y,R447A (for)
CMP_167 GAATTTCTTGCGAAAGTCCTGAAAACTCTTGAATTC D493Q (rev)
CMP_168 GAATTCAAGAGTTTTCAGGACTTTCGCAAGAAATTC D493Q (for)
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Table 19: Inhibitor related primers

NAME

SEQUENCE

COMMENTS

CMP_147 CGATTGCCATGGAACTGAAGAACTCCATCAGCG

Im7 (for), rem. BamHI

CMP_148 CCACCACCATGGCCACCAAGACCAACAGCGAGATTC NuiA (for), rem. BamHI

Table 20: EndA primers

NAME SEQUENCE COMMENTS
Oligo_573 TAATATGCATTCCGCACCTAATAGTCCCAAAACC EndA (for), +Nisil
Oligo_574 CTGGGATCCCTGAGTTACAGTTACTTCTCC EndA (rev), +BamHI

160H_Forward

GATCGAGGTCACTTGCTCGGGTATGCCTTAATCG

SOE (for), G160H

160H_Reverse

CCCGAGCAAGTGACCTCGATCGACTGCATGCG

SOE(rev), G160H

X160_Reverse

ACCTCGATCGACTGCATGCGTATAAG

SOE (rev), X160

H160_Forward2

ATGCAGTCGATCGAGGTCATTTGCTCGGGTATGCC

SOE (for), G160H

N160o_Forward

ATGCAGTCGATCGAGGTAACTTGCTCGGGTATGCC

SOE (for), GI60N

Qi160_Forward

ATGCAGTCGATCGAGGTCAATTGCTCGGGTATGCC

SOE (for), G160Q

Table 21: In vitro substrate oligos

NAME SEQUENCE COMMENTS
Oligo_209 GCTATATGCGTTGATGCAATTTCTATGCGCACCC pAT (for)
Oligo_396 ACCCAGAGCGCTGCCGGCAC pAT (rev)
1/bS/H_For  CGTTCTCGGAGCACTGTCCGACCGCTTTGG Atto488 top (for)

lab T4-x-H_rev

GCACCGCCGCCGCAAGGAATGGTGC

Atto647 bottom (rev)

Table 22: SNAP-tag primers

NAME

SEQUENCE

COMMENTS

Oligo_597 AACATATGCATGGGAGCTCAGACAAAGATTGC-

GAAATG

SNAP (for), for N&C,

+Nsil/Sacl

Oligo_598 AATTAAGCTTTTAGTGGTGATGATGATGGTGG-
GATCCGCCTGCAGGTCCC

SNAP (rev), for N&C,
+BamHI/6xHis/HindIII
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Table 23: I-Crel primers

NAME SEQUENCE COMMENTS
CMP_191 AATACCGGATCCAACAAAGAGTTCCTGCTGTA Cre (for), +BamHI
CMP_192 AATACCAGATCTAACAAAGAGTTCCTGCTGTA Cre (for), +BglII
CMP_193 TGCAGGCTCGAGTTACTACGGGGAGGATTTCT - Cre (rev), first mono.

TCTTCTCGCTC
CMP_194 TTTGTTGGATCCAACAGATGGAGGAGAGGAAGGC Cre (rev), second mono.
CMP_195 TTTGTTGGATCCAACAGATGGAGGAGAGGAAGGC Cre linker (rev)
Table 24: I-TevI primers

NAME SEQUENCE COMMENTS
CMP_069 GCCACCGGATCCAAGTCTGGCATCTACCAGATTAAG [-Tevl, (for)
CMP_118 GAAGTGCCTCTTCCATGCTTTCTCAAAGTCCTTG SOE (rev), R27A
CMP_oy1 TGGTATCGGCCGATGGACCTTGAGAATGCTTGTGG I-Tevl, (rev)
CMP_119 CAAGGACTTTGAGAAAGCATGGAAGAGGCACTTC SOE (for), R27A

Table 25: Recognition sites

NAME SEQUENCE COMMENTS
AvrBs3 TCTATAAACCTAACCCTCT
RagT2-L TATATTTAAGCACTTTAT
RagT2-R TGTTTATGGTTACTTAT
NPTII-A TCCTTGCGCAGCTGTG
NPTII-B TAGCAGCCAGTCCCTTC
NPTII-cB TGAAGCGGGAAGGGACT
NPTII-C TGACAGGAGATCCTGCC
I-Crel TCAAAACGTCGTACGACGTTTTGA optimized
TCR (EBE) TGCTGGTCAGCGCCC TALE
TCR GATGGCCATGGTAAGCAGGAGGGC Meganuclease
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Table 26: Common media

BUFFER COMPONENT CONCENTRATION
LB-medium Yeast extract 5g/1
(lysogeny broth)

Tryptone 10 g/l
NaCl 5g/1
soB/soC medium Bacto- 2 g / 100 ml
tryptone
pH 6-7 with NaOH  Yeast extract 0.5 g / 100
ml
NaCl 10 mM
KC1 0,5 mM
MgCl, 10 mM
MgSO, 10 mM
For soc medium after
autoclaving
add glucose 20 mM
Phosphate-buffered NaCl 137 mM
saline (PBS)
KC1 2.7 mM
Na,HPO, 10 mM
KH,PO, 1.8 mM

A.3 BUFFERS, MEDIA AND CHEMICALS

Common media, electrophoresis buffers and antibiotics can be found
in this section. Chemicals used in this work were molecular biology
grade and were obtained from ApPLICHEM, MERK, ROTH, QIAGEN or
SIGMA-ALDRICH.
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Table 27: Electrophoresis buffers

BUFFER COMPONENT CONCENTRATION
TAE buffer (1X) Tris 40 mM
pH 8.0 with acetic Sodium 20 mM
acid acetate
EDTA 1 mM
TBE buffer (1X) Tris 100 mM
pH 8.3 with boric Borate 100 mM
acid
EDTA 2.5 mM
TPE buffer (1X) Tris 90 mM
pH 8.2 with Phosphate 90 mM
phosphoric acid
EDTA 2 mM
TTE buffer 1X Tris 100 mM
pHo9.0 Taurine 28.8 mM
EDTA 1 mM
Laemmli running Tris 25 mM
buffer
Glycine 190 mM
SDS 1% (W/V)
Table 28: Antibiotics
NAME CONCENTRATION (PLATE) CONCENTRATION (MEDIUM)
Ampicillin 100 (200) pg / ml 75 ng / ml
Chloramphenicol 30 pg / ml 20 pg / ml
Kanamycin 25 ng / ml 25 pg / ml

Tetracylcin 10 ug / ml 10 ng / ml
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