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1  Introduction 

 

1.1 COPD 
 

Chronic obstructive pulmonary disease (COPD) is a slowly progressing 

syndrome of airflow limitation caused by chronic inflammation of the airways 

and lung parenchyma [1]. Chronic obstructive bronchitis, obstruction of small 

airways, and emphysema, with enlargement of air spaces and destruction of 

lung parenchyma, loss of lung elasticity, and closure of small airways 

constitutes the syndrome of patients with COPD (Figure. 1). It is to be noted 

that the extent of emphysema and obstructive bronchitis within individual 

patients can vary.  

 

 

Figure 1. COPD is characterized by bronchitis and emphysema [2] 

COPD is characterized by emphysema and chronic bronchitis. Emphysema comprises 
of the enlargement and destruction of the alveoli limiting the surface area for gas 
exchange. Chronic bronchitis is narrowing down of the small airways and deposition 
of mucus within them limiting the air flow inside. 
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1.1.1 Chronic bronchitis  

 
The inflammation of the bronchial epithelium with hypertrophy of the mucus 

glands and increased goblet cells characterizes chronic bronchitis. Chronic 

cough and sputum formation for at least three months is indicative of chronic 

bronchitis. In chronic bronchitis, there is a destruction of the airway cilia 

leading to the impaired efficiency of the mucociliary escalator. Mucus 

viscosity and mucus production are increased. There is also an increased 

susceptibility to infection. Repeated infections and inflammation cause 

irreversible damage of the airways structure due to narrowing and distortion of 

the peripheral airways. 

 

1.1.2 Emphysema 

 
The small air sacs, which constitute the lung, and where the exchange of 

oxygen and carbon dioxide takes place, are called alveoli. Any extrinsic or 

intrinsic damage to the alveoli, which results in air becoming trapped, may 

cause them to expand and rupture. Emphysema is characterized by the 

destruction of alveolar walls and loss of immanent lung elasticity. Emphysema 

leads to a progressive reduction of alveolar surface area, where exchange of 

oxygen and carbon dioxide between gas and blood takes place. 

Hyperinflation of the lung flattens the diaphragm. This leads to less effective 

contraction and impaired breathing mechanics. Over time, this results in severe 

airflow limitation and severe decrease of the forced expiratory volume.  

 

1.1.3 Diagnosis of COPD 

The clinical diagnose of COPD comprises patient history taking (for cigarette 

smoke or other toxin exposure as well as chronicity of the symptoms) and 

spirometery and is characterized by airway obstruction where the ratio of 

Forced Expiratory Volume (FEV1) and  Forced Vital Capacity (FEV1/ FVC) is 

less than 70% [3]. A short comparison of the spirometric definition of COPD is 

given in Table 1. 
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Table 1. The spirometric definition and grading of COPD [4] 

 

 

 

 

 

 

 

GOLD spirometric criteria for COPD severity 

I. Mild 
COPD 

* FEV1/FVC < 0.7 

* FEV1 > or = 80% 
predicted 

At this stage, the patient is 
probably unaware that 
lung function is starting to 
decline 

II. 
Moderate 
COPD 

* FEV1/FVC < 0.7 

* FEV1 50% to 79% 
predicted 

Symptoms during this 
stage progress, with 
shortness of breath 
developing upon exertion. 

III. Severe 
COPD 

* FEV1/FVC < 0.7 

* FEV1 30% to 49% 
predicted 

Shortness of breath 
becomes worse at this 
stage and COPD 
exacerbations are 
common. 

IV. Very 
Severe 
COPD 

* FEV1/FVC < 0.7 

* FEV1 < 30% 
predicted or FEV1 < 
50% predicted with 
chronic respiratory 
failure 

Quality of life at this stage 
is gravely impaired. COPD 
exacerbations can be life 
threatening. 



11 
 

1.1.4 Epidemiology  

Chronic obstructive pulmonary disease (COPD) represents a major health and 

economic burden with increasingly aging populations as shown in Figure 2.  

65 million people have moderate to severe chronic obstructive pulmonary 

disease according to the WHO. In 2005, more than 3 million people died of 

COPD which corresponds to approximately 5% of deaths globally. Most of the 

information available on COPD prevalence, morbidity and mortality comes 

from high-income countries. Even in those countries, accurate epidemiologic 

data on COPD are difficult and expensive to collect. It is known that almost 

90% of COPD deaths occur in low- and middle-income countries. 

COPD had been previously reported to be more prevalent in men than 

women. Due to the increased tobacco use among women in high income 

countries and the higher risk of exposure to indoor air pollution (such as 

biomass fuel used for cooking and heating) in low income countries; the 

disease now affects men and women almost equally. 

 
In 2002 COPD was the fifth leading cause of death. Total deaths from COPD 

are projected to increase by more than 30% in the next 10 years unless urgent 

action is taken to reduce the underlying risk factors, especially tobacco use. 

Estimates show that COPD becomes in 2020 the third leading cause of death 

worldwide [5].  
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Figure 2. COPD mortality worldwide in comparison to major diseases [6] 

 

1.1.5 Cigarette smoke 

 

Cigarette smoking is the primary cause of COPD. The tobacco smoke is a 

mixture of up to 4,700 chemicals with about 1010 particles/ml aerosolic 

components. The cigarette smoke components include about 60 known 

carcinogens and with each puff of cigarette the smoker takes in 1017 oxidant 

molecules [7]. Tobacco smoke is broadly divided into the mainstream and the 

side stream smoke. The mainstream is divided into a particulate solid phase 

(tar) and the gas phase (toxic gases, volatile organic compounds, free 

radicals, etc.). 
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The solid phase contains very high concentrations of free radicals (approx. 

1017 spins·g−1) with long lifetimes. The particulate phase is comprised of at 

least 3,500 chemical compounds and a high proportion of them are toxic, 

carcinogens or mutagens, (e.g. benzene, 2-napthylamine, 210Po, 226Ra, 228Ra, 

nickel, cadmium, benzo[a]pyrene, etc) [8].  The side stream smoke comprises 

of the solid and gas phases, containing higher concentrations of toxic and 

carcinogenic compounds and other volatile and semi volatile compounds [9]. 

The existence of the free radicals and oxidants in the gas phase remains in a 

steady state in which they are continuously formed or destroyed and their 

concentration increases as the smoke ages [10]. A few water components of 

the cigarette tar (ACT) can produce superoxide anions (O2
•−), which 

subsequently result in the formation of H2O2 and the reactive hydroxyl radical 

(HO•). These free radicals further cause oxidative stress. This leads to 

damage of the cellular membrane lipids, proteins, enzymes and most 

importantly the DNA. The side stream smoke consists of similar chemical 

components in the solid and gas phases and is also rich in highly reactive and 

short-lived free radicals. Passive smoking (or environmental tobacco smoke, 

ETS) has been proven to be a health hazard for non-smokers and is burden of 

major lung diseases [11]. 
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Figure 3. Major components of mainstream cigarette smoke [12] 

Detailed figure showing the composition of cigarette mainstream smoke (MS). The 
figure shows four vertical bars, the second vertical bar representing the main 
chemical constituents of MS smoke, labelled WHOLE SMOKE, dominated by N2 
(nitrogen) ~62% by weight, and O2 (oxygen) ~13% by weight. The 4.5% at the top of 
this symbolic cigarette is in the “TPM (Wet)” category, the main components of which 
are shown in the first vertical bar. The main constituent in the “VAPOR PHASE,” which 
constitutes 13.5% of the total, is shown in the third vertical bar. 
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1.1.6 Risk factors and current therapies 

The main precipitating factors are cigarette smoke, environmental pollution by 

inorganic and organic dust (e.g. due to open fireplaces), genetic 

predisposition, recurrent pulmonary infections, socioeconomic status and 

aging. Even if smoking or pollutant exposure is stopped, the condition often 

progresses at an accelerated rate compared with the normal age-related 

decline in FEV1. Hallmarks of COPD are chronic, self-perpetuating 

inflammation of the airways and gas exchange regions, loss of gas exchange 

tissue leading to emphysema, and collapse of small airways leading to 

increasing shortness of breath. Today, there is no causal treatment which 

could hold the progression of the disease. The currently available therapeutic 

armamentarium comprises bronchodilators such as muscarinic antagonists 

and beta adrenergic receptor agonists [13], anti-inflammatory drugs including 

inhaled and oral steroids and phosphodiesterase-4 inhibition [14, 15], and 

interventional or surgical procedures to relieve air trapping [16, 17]. These 

treatments improve symptoms like breathlessness and exercise intolerance 

and they may reduce the frequency of exacerbations of the disease, but their 

effects are often very limited.  

The fact of ongoing inflammation and tissue destruction despite of smoking 

cessation in COPD is an intriguing finding, which may be explained at least in 

part by the effects of premature cellular senescence and its associated 

secretory phenotype also known as Senescence Associated Secretory 

Phenotype or SASP.  

 

1.2 Cellular senescence  
 

Leonard Hayflick noticed in 1961 for the first time, that human tissue derived 

primary fibroblasts, which were maintained for multiple passages in culture, 

ceased to divide indefinitely. He discovered, that after a limited number of 

divisions, the cell proliferation gradually grinded to a complete halt [18]. The 

proliferation of the fibroblasts in culture showed three distinct phases: 1. Lag 

phase of slow proliferation during culture establishment, 2. Log phase where 
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the cells show rapid proliferation and 3. Stationary phase in which the cells 

gradually accomplish permanent arrest [18]. The possible causes of the 

transition to phase 3 were described by Hayflick [19] as “the finite lifetime of 

diploid cell strains in-vitro may be an expression of aging or senescence at the 

cellular level.” The term cellular senescence thus represented an irreversible, 

stable and long-term loss of proliferative capacity, despite continued viability 

and metabolic activity. The primary cells kept in culture cease to divide further 

after a replicative senescence. The replicative senescence, or Hayflick’s limit, 

occurs due to the fact, that each time when the cell divides, the telomeres at 

the chromosome ends become shorter. Telomeres are subject to attrition due 

to the fact that the DNA polymerase fails to completely replicate the lagging 

strands. In the early 1970s, Olovnikov [20] and Watson [21] independently 

described this so-called “end replication problem”, which contributes to 

telomere shortening. Thus, telomeres reflect the replicative history of a 

primary cell as a molecular clock [22].  

The telomere capping provides a protective and structural integrity at the end 

of the chromosomes. If the telomere shortening reaches a crucial minimal 

length, their protective structure is compromised. The cell recognizes this 

crucial loss in the chromosome as DNA damage and thus triggers a DNA 

damage response (DDR). DDR is associated with the appearance of DNA 

damage foci, that recruit important proteins of the DNA- repair machinery, 

such as γ-H2AX (a phosphorylated form of the histone variant H2AX) and the 

DDR proteins 53BP1(p53 Binding Protein 1), NBS1 (protein responsible for 

Nijmegen Breakage Syndrome 1) and MDC1 (Mediator of DNA damage 

Checkpoint protein 1). It has also been reported that the DNA damage kinases 

ATM (Ataxia Telangiectasia Mutated) and ATR are activated in senescent 

cells [23]. The amplification of the DDR signal activates the cell cycle 

checkpoint kinases CHK1 and CHK2. DDR-associated factors communicate 

with the cell cycle machinery via phosphorylation and activation of several cell 

cycle proteins, including CDC25 (a family of phosphatases) and the key 

regulator of cell cycle arrest p53. In addition, differential expression of p53 

isoforms has been linked to replicative senescence [24]. Together, these 

factors can either induce a transient proliferation arrest, allowing cells to repair 

their damage, or in case where the DNA damage seems to be irreparable, 
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cells are destined to undergo either senescence or apoptosis. The molecular 

decision making that determines the fate of these cells with irreparable DNA 

damage to senescence or apoptosis still remains elusive.  The cell type, the 

intensity and duration of the stress signal, as well as the nature of the 

damage, are likely to be important determinants [25].  

 

1.2.1 Markers of cellular senescence  

Senescent cells may be confused with quiescent or terminally differentiated 

cells as the distinction is not always straightforward. No marker or hallmark of 

senescence identified thus far is entirely specific to the senescent state. 

Further, not all senescent cells express all possible senescence markers. 

Nonetheless, senescent cells display several phenotypes, which, in 

aggregate, define the senescent state (Figure 4).  

 

Figure 4. Hallmarks of senescence  

Markers of senescence include senescence-associated beta-galactosidase activity at 
pH 6, formation of senescence associated heterochromatin foci, DNA damage foci, 
expression of cyclin dependent kinase inhibitors such as p16 INK4a or p21. If 
senescence induction includes DNA damage, the senescent cell releases several 
cytokines termed senescence associated secretory phenotype or SASP. 
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Salient features of senescent cells are: 

a) The senescence growth arrest is permanent and irreversible without 

genetic interventions [19]. 

 

(b) Senescent cells increase in size, sometimes enlarging more than twofold 

relative to the size of nonsenescent counterparts [19]. Senescent cells lose 

their original morphology. They look larger than their controlled counterparts 

and have a much larger flattened cytoplasm that contain many vacuoles and 

cytoplasmic filaments [26, 27], a bigger nucleus and nucleoli and are 

sometimes multinucleated [28, 29]. In some cases, senescent cells display an 

increase in the number of lysosomes and golgi [30]. 

 

(c) Senescent cells express a senescence-associated β-galactosidase [31] 

SA- β-galactosidase activity is expressed from GLB1, the gene encoding 

lysosomal beta-D-galactosidase. The levels of lysosomal-β-galactosidase 

protein increase during senescence [32]. The SA- β-galactosidase activity in 

senescent cells is believed to be present due to higher lysosomal mass in 

senescent cells [33]. 

 

(d) Most senescent cells express p16INK4a and p21 [34] . p16 INK4a and p21 

are key inhibitors of cyclin-dependent kinases (CDKs), the expression of 

which leads to cell cycle arrest. 

 

(e) Cells that senesce with persistent DDR signaling harbor persistent nuclear 

foci, termed DNA segments with chromatin alterations reinforcing senescence 

(DNA-SCARS) and are distinguishable from transient damage foci [35]. DNA-

SCARS foci contain activated DDR proteins. 

 

(f) Senescent cells with persistent DDR signaling secrete growth factors, 

proteases, cytokines and other factors that have potent autocrine and 

paracrine activities [36]. 
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(g) Senescence-associated heterochromatic foci (SAHF). Senescent cells 

exhibit increased heterochromatinization that reflects a compact chromatin 

structure, and are enriched for repressive histone modifications, the histone 

variant macro-H2A, HP1 proteins and HMGA proteins. SAHF can be 

visualized in cells as dense bright nuclear spots through DAPI staining.   

 

 

1.2.2 Premature cellular senescence 

Senescence can also be induced in the absence of any detectable telomere 

attrition or dysfunction by a variety of conditions, which will be discussed in the 

following section. The term premature explains the fact, that the senescence 

achieved in these cells is not caused by the replicative limit. Evidence for the 

existence of premature senescence in vivo has been accumulating rapidly and 

altogether points to the fact, that senescence plays an important and critical 

role in tumor suppression. Different ways of premature senescence is 

diagrammatically represented in Figure 5. 

Premature senescence is primarily due to environmental factors that exert 

cellular stress. Various factors like nutrients, growth factors, oxygen levels, 

absence of other cell types and extracellular matrix components, belonging to 

the original environment of the cells, can be detrimental for the acclimatization 

of the explanted culture in the new artificial environment. Changes in one or 

more of these factors can induce a culture shock, resulting in stress-induced 

senescence [37]. This type of cell cycle arrest is independent of telomere 

length.  

1.2.3  Stress-Induced Premature Senescence (SIPS) in-vitro 

Stress induced premature senescence or SIPS is primarily due to the cell 

culture medium that exerts cellular stress. Various factors like nutrients, 

growth factors, oxygen levels, absence of other cell types and extracellular 

matrix components belonging to the original environment of the cells can be 

detrimental for the acclimatization of the explanted culture in the new artificial 

environment. Changes in one or more of these factors can induce a culture 
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shock, resulting in stress-induced senescence [37]. This type of cell cycle 

arrest is independent of telomere length. Mouse embryonic fibroblasts (MEFs) 

undergo senescence after a limited number of passages in culture, despite 

their retaining of long telomeres. Murine cells, in contrast to most human cells, 

express telomerase [38] and have long telomeres [39]. Oxidative stress 

induces cessation of replication in cultured human cells [40-42] while the 

replicative potential of human melanocytes and epithelial cells depends largely 

on the composition of the culture medium used, as well as on the use of 

feeder layers [43-45]. Senescence of MEFs can be bypassed also by 

inactivation of p53 or simultaneous ablation of RB family genes [46-48]. Thus, 

the long term culture of mammalian cells requires not only telomere 

maintenance, but also optimal culture conditions [49]. 

1.2.4  Oncogene-Induced Premature Senescence (OIPS) in- 
vitro 

Transfection of the GTPase HRas, also known as  transforming protein p21 or 

HRAS, can induce cell cycle arrest in primary cells [50]. Cells arrested via 

HRas showed striking phenotypic resemblance to those cells which underwent 

replicative senescence. This phenomenon of oncogene mediated senescence 

has eventually come to be known as OIPS [51]. hTERT expression can 

rescue replicative senescence but not OIPS, confirming its independence from 

telomere attrition [52]. OIPS occurs in the early stages of tumor development 

both in mouse models and in humans [53-56]. These observations strongly 

indicate that OIPS checks the proliferation  of oncogenically stressed cells and 

maintains the tumor in premalignant state; by contrast, the absence of OIPS, 

which is caused by the mutation of the senescence-inducing pathways, leaves 

the road to oncogene-driven malignant progression unimpeded [53, 54]. 

Detection of senescence markers could be of prognostic value for those 

premalignant lesions, which are characterized by normal cell morphology and 

lack of invasive growth and are often associated with senescence. 

Senescence associated with the premalignant tumors is not paradoxical in 

context to the growth of tumor as only a fraction of the cells within a tumor are 

able to propagate successfully, while many undergo apoptosis or senescence 

triggered by the stress due to the aberrant intracellular and extracellular 
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conditions that are characteristically present in tumors [57]. Hence, it is the 

balance between cellular proliferation and apoptosis or senescence that 

determines the growth rate of a particular tumor [36].  

1.2.5  Tumor suppressor loss-Induced Premature Senescence 
(TIPS)  

Premature senescence can also be triggered by the loss of tumor suppressor 

molecules in mouse and human cells. PTEN (Phosphatase and tensin 

homolog) gene deficient MEFs undergo senescence, which is accompanied 

by induction of p53. Concomitant loss of p53 allows these cells to override the 

cytostatic effects of PTEN deletions [41]. Similarly, loss of NF1 causes 

senescence in-vitro, which is eventually accompanied by decreases in ERK 

and AKT activities [58]. Another example is VHL, loss of which triggers 

senescence in an RB- and p400-dependent manner [59].  

1.2.6 Senescence Associated Secretory Phenotype (SASP) 

The fact that the culture medium of senescent cells is enriched with secreted 

proteins has been shown in the past [60, 61]. When cells become senescent, 

they often display a senescence-associated secretory phenotype consisting of 

cytokines, growth factors and proteases, which collectively has been termed 

SASP by the Campisi group [62]. Daniel Peeper termed the same 

phenomenon SMS (Senescence Messaging Secretome) [63]. Contribution of 

senescence might seem to be passive, but the recent discovery of the SASP 

strongly suggests that senescence might have a more active and 

pathologically diverse role to play [63, 64]. The physiological role of SASP has 

been proposed to be a wound healing mechanism [65]. The initial observation 

of SASP implied, that senescence might not just be a tumor suppressor 

mechanism, but rather a double-edged sword within the tumor 

microenvironment [36]. SASP factors might contribute to signal immune cells 

for the removal of senescent cells. If this removal process is impaired, or if the 

number of senescent cells in a tissue is too high, the senescent cells might 

persist and maintain the secretory phenotype, exposing the local tissue 

persistently to the SASP. The secretion of these senescence-associated 

factors has the potential to detrimentally alter the local microenvironment, 
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leading to tissue dysfunction associated with ageing and disease.  However, It 

is also to be noted that SASP occurs in case senescence involves DNA 

damage. If senescence is mediated by factors not involving any DNA damage, 

there is no SASP response (Figure 5). 

 

Figure 5. Several factors could lead to senescence, but SASP response occurs only 

when senescence involves DNA damage. 

 

         

1.2.7  Molecular induction of SASP 

Cellular senescence is most often the result of nuclear DNA damage fuelling a 

chronic DNA damage response (DDR). The DDR pathway is triggered usually 

by ionizing radiation or other genotoxic events, resulting in DNA double-strand 

breaks. The DDR pathway initiates with the phosphorylation of histone H2AX 

by ATM (Ataxia Telangiectasia Mutated) that occurs at or near the DNA 

double-stranded break site and is required for phosphorylation of 53 Binding 

Protein-1(53-BP1) by ATM and localization of 53BP1 to nuclear repair foci 

[66]. 53BP1 function is important for coupling ATM to several of its 

downstream targets, including p53 and SMC1 (Structural Maintenance of 

Chromosomes protein 1). In the case of the checkpoint homolog 2 (Chk2) 
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kinase, the coupling mechanism to ATM seems to be largely independent of 

53BP1 and may involve another undefined member of the BRCT repeat family 

of proteins [66]. Upstream elements of the DDR signalling pathway like ATM, 

NBS1 (Nibrin) and CHK2 are necessary for full blown SASP, and additional 

crosstalk occurs between the DDR and cytokine secretion  in an autocrine 

loop, meaning that the secreted cytokines both control and are controlled by 

the DDR [67]. 

p53-knock out cells embark SASP response in the absence of senescence 

upon persistent DNA damage and in contrast, cells induced to senesce by 

p16INK4a over expression, but in the absence of DNA damage, do not initiate a 

SASP response [67]. This emphasizes the fact, that persistent DNA damage 

response is the major cause for SASP (Figure 6). It is also to be noted, that 

DDR signaling drives only a subset of SASP factors, but those include the 

potent inflammatory cytokines IL-6 and IL-8. Development of SASP is a slow 

process. SASP initiates only upon persistent DNA damage of sufficient 

magnitude. Delayed SASP might allow cells to attempt DNA repair before 

initializing the immune clearance signal through SASP. 

 

As a summary, senescence can be of replicative and premature type. 

Telomere attrition due to repeated replication leads to replicative senescence 

whilst the premature senescence occurs due to genotoxic stress, oncogene 

insertion or loss of a tumor suppressor. Stress induced senescence via the 

chronic or intense DNA damage leads to a DDR that engages ATM, NBS1 

and CHK2, leading to cellular senescence via the cell cycle effectors p53 and 

pRB [67]. Persistent DDR in turn is responsible for the SASP response.  
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Figure 6. Genotoxic stress, including cigarette smoke, may lead to persistent DNA 

double breaks which if unrepaired may lead to senescence and inflammation. 

DNA double strand breaks lead to a transient DNA damage response. However, if the 
DNA damage is persistent, this leads to activation of chemokine pathway. Persistent 
DNA damage may further drive the cell to senescence. Senescent cells activate a self-
amplifying secretory network (SASP) in which CXCR2-activation reinforces growth 
arrest. 

 

1.2.8  Paradoxical role of senescence: 

Although senescence represents a halt in cell division and thought to possess 

tumor suppressive capabilities, it has been shown that senescent cells could 

promote tumor formation and may have a role in tissue repair as well. Cell 

cycle arrest is the major mechanism by which cellular senescence suppresses 

malignant tumorigenesis [64, 68, 69]. However, some of the factors secreted 

by senescent cells help to reinforce the senescence growth arrest in an 

autocrine manner as well, for example the pro-inflammatory cytokines IL 

(interleukin)-6 and IL-8, but also factors such as the pro-apoptotic protein 

IGFBP (insulin-like growth factor binding protein)-7 and PAI (plasminogen 

activator inhibitor)-1. Many evidences confirm the tumor suppressor nature of 

senescence response in both mice and humans [70]. It seems paradoxical 
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that senescent cells secrete factors that may also promote cancer progression 

[36, 62]. Examples of such SASP factors include amphiregulin and GRO 

(growth-related oncogene)-α, which stimulate cell proliferation; VEGF 

(vascular endothelial growth factor), which stimulates angiogenesis; and the 

pro-inflammatory cytokines IL-6 and IL-8, which can induce an epithelial-to-

mesenchyme transition and epithelial cell migration and invasion [71]. There 

are a few evidences where senescence has been linked to tissue repair or 

regeneration [72, 73]. 

These evidences suggest that senescent cells feature a paradoxical 

phenomenon and the effect might be context dependent. Senescence has 

thus been viewed as a form of antagonistic pleiotropy, in which it is beneficial 

early in life, but detrimental at a later old stages of life [64]. 

 

Figure 7. Senescence as an example of antagonistic pleiotropy 

Benefits of senescence include tumor suppression and wound healing early in life and 
the harms include aging and cancer which could be detrimental later in life. 
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1.2.9 COPD, aging and cellular senescence  

Aging has an influence on development of COPD and at the same time COPD 

has been reported to be a disease of premature lung tissue aging [74, 75]. 

The progressive decline of tissue homeostasis after a certain span 

(reproductive age) of life is termed as aging. Aging leads to an increasing 

susceptibility of disease and causes the failure of organs due to oxidative 

stress induced premature senescence and the replicative exhaust due to 

telomere shortening (replicative senescence). Environmental stress, such as 

cigarette smoke or other pollutants accelerate the aging of lung cells through 

oxidative stress, thereby inducing accelerated progression of COPD in some 

patients. The striking fact that only 25% of the cigarette smokers develop 

COPD points towards additional “hits” by infections as well as to genetic 

variability and predisposition for the disease. It has also been suggested that 

human beings possessing different length of telomeric DNA might elicit 

variable susceptibility for the disease [76].  

It has been reported that cigarette smoking causes premature cellular 

senescence in lungs. In-vitro exposure of human lung epithelial cells to 

cigarette smoke extract results in an increased expression of SA-β-gal 

(senescence-associated β-galactosidase), a marker of cellular senescence 

[77]. Cultured lung fibroblasts from patients with emphysema show increased 

expression of SA-β-gal and decreased proliferative capacity in-vitro, when 

compared with those from healthy smokers [78, 79]. 

In several health disorders related to age, cigarette smoking is considered to 

be an important risk factor. Cigarette smoking is associated with increased 

systemic inflammation and oxidative stress [80]. This also supports the fact 

that extra pulmonary manifestations of COPD might include muscle wasting, 

cardiovascular disease or osteoporosis [81]. It is not mere coincidence but an 

established fact that these manifestations are also common characteristics of 

aging [82]. Elderly individuals (more than 60 years) possess a higher COPD 

disease rate than younger groups, independent of their history of exposure to 

tobacco smoke. The aging lung normally shows progressive distal air space 
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enlargement, with loss of gas-exchanging surface area and the support of the 

alveolar attachments for peripheral airways [83].  Lung function declines in 

elderly healthy individuals normally but is accelerated in patients with COPD 

[84]. One of the prominent possible causes for the lung function decline might 

be the elastin fiber fragmentation which also is associated with age [84, 85]. 

Although the structural changes in the lung are thought to be non-destructive, 

in contrast with smoking-induced emphysema [85] , they do have functional 

consequences, resulting in a loss of elastic recoil of the lungs, an increase in 

residual volume and functional residual capacity or over-inflation of the lungs.  

This loss of elastin fibers is similar to that which occurs with aging in the skin, 

resulting in loss of elasticity and skin wrinkling which is enhanced by smoking 

[86]. Interestingly, the degree of skin wrinkling correlates with quantitative 

measurements of emphysema by CT (computed tomography) scanning [87]. 

Thus cigarette smoking seems to cause elastolysis both in the lungs and 

systemically in the skin [88], suggesting that cigarette smoke may accelerate 

the aging process [89]. 

 

1.2.10   Similarities between the secretory profile of 
senescescent cells and inflammation in COPD 

 

Patients with COPD show severe increase in inflammatory molecules along 

with various others which was collectively termed COPD associated secretory 

phenotype or CASP. The link between senescence and COPD arises from the 

fact that each of them primarily is the result of oxidative abuse. Oxidative 

stress via Cigarette smoke/noxious gas causes persistent DNA damage in 

alveolar cells further leading to premature pulmonary senescence. 

Senescence, mediated via persistent DNA damage, leads to a secretory 

phenotype as discussed above (Figure 6). It is interesting to note that both 

senescence and COPD display a prominent secretory phenotype associated 

with it. The factors that have been reported to be upregulated in COPD show 

clear resemblance to that of SASP, suggesting a significant link between the 

two.  
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Below, a review of the striking similarities between the secretory phenotypes 

of senescence (SASP) and COPD is displayed. A summarized version is 

tabularized for ease in Table 2. 

1.2.11  Interleukins and chemokines 

 

IL-1, IL-6, IL-8 (CXCL-8), GROα, GROβ, GROγ, have been previously shown 

to be upregulated in senescescent cells [62]. These are upregulated in COPD 

as well [90, 91]. Monocyte Chemoattractant Protein 2 or MCP 2, Macrophage 

Inflammatory Protein (MIP)-1α and 3α levels are increased in senescent cells 

[62, 92]. Similarly in COPD, MCP-1, and IL-8 were increased in sputum, with 

further increases during exacerbations, and the bronchiolar epithelium 

overexpressed MCP-1, its receptor CCR2, MIP1α, and IL-8. MCP-1 and 

CCR2 were involved in the recruitment of macrophages and mast cells into 

the airway epithelium in COPD [93, 94]. Inflammatory cytokines such as the 

colony-stimulating factors (CSFs, including GM-CSF and G-CSF) are secreted 

at high levels by senescent fibroblasts [62]. Strikingly the concentrations of 

GM-CSF in BAL fluid are also increased in stable COPD and significantly 

elevated during exacerbations [95]. Macrophage migration inhibitory factor 

(MIF) is upregulated in senescence and has recently been forwarded as a 

critical regulator of inflammatory conditions and it has been hypothesized that 

MIF may have a role in the pathogenesis of asthma and chronic obstructive 

pulmonary disease (COPD). 

1.2.12  Growth factors 

 

Growth factors like epithelial growth factor (EGF), basic fibroblast growth 

factor (bFGF), vascular endothelial growth factor (VEGF) and angiogenin have 

been shown to be upregulated significantly in senescent cell culture media. 

EGF, bFGF, VEGF and angiogenin have also been reported to be upregulated 

in COPD [96, 97]. The insulin-like growth factor (IGF) and its IGF receptor 

have a major role in SASP response. Senescent endothelial, epithelial, and 

fibroblast cells express high levels of almost all the IGF-binding proteins 
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(IGFBPs), including IGFBP-2, 3, 4, 5, and 6 [62, 92, 98, 99]. Recently, 

activation of the BRAF oncogene in primary fibroblasts was shown to lead to 

the secretion of IGFBP-7, which acts through autocrine/paracrine pathways to 

induce senescence and apoptosis in neighboring cells [100]. Strikingly, lung 

fibroblasts from emphysema patients also showed upregulation of insulin-like 

growth factor-binding protein-3 (IGFBP-3) and IGFBP-related protein-1 

(IGFBP-rP-1) [78].  

1.2.13  Proteases and their regulators 

Senescent cells secrete a myriad of proteases in addition to soluble signaling 

cytokines and growth factors. The main proteases are the matrix 

metalloproteinases (MMPs). MMPs are a large family of zinc-dependent 

proteinases that regulate the destruction of extracellular matrix components 

[101]. The MMP family members that are consistently upregulated in human 

and mouse fibroblasts undergoing replicative or stress-induced senescence 

are stromelysin-1 and -2 (MMP-3 and -10, respectively) and collagenase-1 

(MMP-1) [102-106]. Similarly in COPD there is an increase in bronchoalveolar 

lavage concentrations and macrophage expression of MMP-1 (collagenase) 

and MMP-9 (gelatinase B) in patients with emphysema [107-109]. Alveolar 

macrophages from normal smokers express more MMP-9 than those from 

normal subjects [110], and there is an even further increase in cells from 

patients with COPD [111], which has greatly enhanced elastolytic activity 

[112]. MMP-9 and the ratio of MMP-9 to TIMP-1 are increased in induced 

sputum of patients with COPD [113, 114]. MMP-8 and MMP-9 do not only act 

as secreted enzymes, but they are also bound to cells where they exert 

elastolytic activity.  

Another family of proteases present in the SASP comprises serine proteases 

and regulators of the plasminogen activation pathway. Members of this family 

include urokinase or tissue-type plasminogen activators (uPA or tPA, 

respectively), the uPA receptor (uPAR), and inhibitors of these serine 

proteases (PAI 1 and 2) [92, 115]. Indeed, a >50-fold increase in plasminogen 

activator activity has been reported in senescent endothelial cells and lung 

and skin fibroblasts [92, 116, 117]. PAI-1 is also upregulated in fibroblasts and 

endothelial cells from aged donors [92, 118-120]. Induced sputum of COPD 
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patients also has been shown to contain significantly increased u-PAR, PAI-1, 

and IL-8 compared to the control subjects [121].  

1.2.14  Shed receptors or ligands 

Shed receptors include ICAM-1 (Intercellular Adhesion Molecule 1), -3, 

osteoprotegerin, TRAIL-R3, sTNFR1, Fas, STNFR2, uPAR and EGF-R, which 

are present at high levels in the extracellular milieu of senescent fibroblasts 

and are also found to be upregulated in COPD [122-124]. In fact, 

osteoprotegerin in sputum might be a potential biomarker in COPD [125].  

1.2.15  Non protein factors, extra cellular matrix and reactive 
oxygen species  

Non protein factors upregulated upon senescence include prostaglandin E2 

(PGE2) [126] and Cox-2, the enzyme responsible for the production of PGE2 

and other prostaglandins. These act in an autocrine or paracrine way. 

Similarly, it has been reported that the concentration of prostaglandin PGE2 in 

exhaled breath of COPD patients increases significantly [127]. This is likely to 

be derived from cyclooxygenase-2 (COX-2), which is expressed in alveolar 

macrophages [128]. There is also an increased COX-2 expression in alveolar 

macrophages from patients with COPD compared with normal control subjects 

[129].  

Fibronectin is a large multidomain glycoprotein found in connective tissue, on 

cell surfaces, and in plasma and other body fluids. It interacts with a variety of 

macromolecules, including cell-surface receptors, components of the 

cytoskeleton, and other ECM molecules. Through its interactions with cell-

surface receptors, primarily integrins, fibronectin can affect cell adhesion, 

survival, growth, and migration. Fibronectin production is upregulated in 

prematurely aging Werner syndrome fibroblasts [130]. Moreover, cells 

undergoing premature cellular senescence in culture and in-vivo show 

increased fibronectin expression [131]. Data from previous studies suggest a 

similar profile of ECM molecules including fibronectin in COPD [132]. 

Senescent cells have been shown to release nitric oxide and reactive oxygen 

species due to alterations in inducible nitric oxide synthase (iNOS), endothelial 
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nitric oxide synthase (eNOS), and superoxide-dismutase activities [92, 133-

137]. These reactive molecules are known modulators of cellular phenotype, 

such as the differentiation of monocytes. In addition, these molecules can 

enhance cancer cell aggressiveness and can promote aging and age-related 

degeneration [138, 139]. Similarly inflammatory and structural cells that are 

activated in the airways of patients with COPD also produce ROS, including 

neutrophils, eosinophils, macrophages, and epithelial cells [140]. Superoxide 

anions (O2·
-) are generated by NADPH oxidase, and this is converted to 

hydrogen peroxide (H2O2) by superoxide dismutases. H2O2 is then dismuted 

to water by catalase. O2·
- and H2O2 may interact in the presence of free iron to 

form the highly reactive hydroxyl radical (·OH). O2·
- may also combine with 

NO to form peroxynitrite, which also generates ·OH [141]. Nitrosylation and 

oxidation of lung proteins is a prominent finding in COPD and emphysema. 

The genetic ablation as well as pharmacological inhibition of inducible NOS 

prevented and reversed cigarette smoke induced emphysema in mice [142].  

Table 2. Similarities between the secretory profile of senescent cells and cytokine 

profiles of the lungs in COPD  

SASP factors Secretory profile for Senescent 
Cells [62, 92] 

Secretory Profile of COPD lung 

Interleukins  
 

 
[90, 91, 143] 

IL-6 
 

↑ 
 

↑ 
 

IL-1a, -1b 
 

↑ 
 

↑ 
 

IL-13 
 

↑ 
 

↑ 
 

Chemokines (CXCL, CCL) 
 

 
 

[93, 94] 
 

IL-8 
 

↑ 
 

↑ 
 

GRO-α,-β,-γ 
(Growth-Related Oncogene) 

↑ 
 

↑ 
 

MCP-2 
(monocyte chemoattractant protein) 

↑ 
 

↑ 
 

MIP-1a, 3a 
(macrophage inflammatory protein) 

↑ 
 

↑ 
 

Other inflammatory factors 
 

 
 

 
[95, 144] 

GM-CSF 
(granulocyte macrophage colony 
stimulating factor) 

↑ 
 

↑ 
 

MIF 
(macrophage migration inhibitory 
factor) 

↑ 
 

↑ 
 

Growth factors and regulators   
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EGF 
(endothelial growth factor) 

↑ 
 

↑[145] 
 

bFGF 
(basic fibroblast growth factor) 

↑ 
 

↑[132, 146] 
 

VEGF 
(vascular endothelial growth factor) 

↑ 
 

↑[96] 
 

Angiogenin 
 

↑ 
 

↑[96] 
 

IGFBP-3, 1, 2, 5 ( Insulin like growth 
factor binding protein) 

↑ 
 

↑[78] 
 

Proteases and regulators 
 

  

MMP-1, -3, -10, -12, -13, -14 
(matrix metalloproteinase) 

↑[102-106] 
 

↑[107-110] 
 

 
PAI-1, -2, uPAR 
(plasminogen activator inhibitor) 
(urokinase-type plasminogen 
activator) 
 

↑[98, 117-119, 147] 
 

↑[148, 149] 
 

Cathepsin B 
 

↑ 
 

↑[150] 
 

Soluble or shed receptors or ligands 
 

 
 

 

ICAM-1, -3 
(intercellular adhesion molecule) 

↑ 
 

↑[122, 151] 
 

OPG 
(osteoprotegerin) 

↑ 
 

↑[152] 
 

TRAIL-R3, sTNFRI, Fas 
sTNFRII 
(tumor necrosis factor–related 
apoptosis-inducing ligand) 
(soluble tumor necrosis factor 
receptor) 

↑ 
 

↑[153] 
 

uPAR 
(urokinase-type plasminogen 
activator receptor) 

↑[115] 
 

↑[115, 149] 
 

EGF-R 
(endothelial growth factor receptor) 

↑ 
 

↑[97] 
 

Nonprotein factors 
 

  

PGE2 
(prostaglandin E2) 

↑ 
 

↑[127, 129] 
 

Nitric oxide 
 

↑ 
 

↑[135, 141, 142] 
 

Reactive oxygen species 
 

↑ 
 

↑[154] 
 

Extracellular Matrix proteins 
 

 [132, 155] 

Fibronectin 
 

↑ 
 

↑ 
 

Collagens 
 

↑ 
 

↑ 
 

Laminin 
 

↑ 
 

↑ 
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1.3 DNA damage and DNA repair response 
 

 

Oxidative stress leads to damage of various molecules within the cell, DNA 

being most crucial. DNA damage has been shown to be accumulated in 

various tissues such as brain, liver, muscle, kidney, liver etc.  Evolution 

facilitated the eukaryotic cells to possess advanced multiple mechanisms to 

counter the DNA damage and control stress or age-associated damage to 

their genomes. 

Damaged DNA has been shown to accumulate during aging in many tissues, 

including brain, muscle, kidney and liver. Cellular Senescence involves DNA 

damage as well. However, it remains elusive if DNA damage is entirely a 

product of the aging process or the cause. Furthermore, several studies 

suggest that dietary (calorie) restriction reduces the amount of age-

associated oxidative DNA damage. Although, senescence could exist 

independent of any DNA damage, many of the aforementioned triggers of 

senescence usually elicit the DDR. DNA damage engages the p53 and pRB 

pathways. Thus, it is not surprising that the DNA damage response (DDR) is 

an important effector pathway through which senescence is established. In 

fact, telomere attrition, oncogene activation, or ionizing radiation all induce 

senescence through activation of the DDR [23]. A simplified DDR response 

is represented in Figure 8. 

 

End replication problem of the DNA leads to the progressive telomere 

shortening and is a well-documented trigger of the DNA damage response. 

It has been reported that replicative senescent cells could accumulate 

several markers of DNA damage including phosphorylated γ-H2AX, SMC1, 

RAD17, CHK1 and CHK2 [23]. The study further revealed that γ-H2AX was 

enriched at subset of sub telomeric regions of chromosomes   that   have   

been   shown   to   have   particularly   short   telomeres. In contrast, 

inactivation of the DNA response through expression of dominant negative 

forms of ATM, ATR, CHK1 and CHK2 enabled replicative senescent cells to 

resume DNA replication. Further, it has been shown that  DNA  damage  

occurring  at  telomeres  cannot  be effectively repaired, which results in 
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the presence of chronic DNA damage foci, a persistent DDR and 

establishment of senescence [156]. 

 

Oncogene mediated senescence have also been reported to involve DDR.  

Furthermore, it has been demonstrated that oncogenic activation indeed 

initiates a DDR by  causing  hyper-replication  that  results  in  DNA  

double-strand  breaks  and improperly terminated replication forks [157, 

158]. Inactivation of CHK2 not only abolishes H-RAS-induced senescence 

but also results in cell transformation, highlighting the importance of an intact 

DDR for establishment of OIS [158].  

 

Finally, it is to be emphasized that the DDR is not only important for the 

induction of a permanent proliferation arrest, but is also critically important to 

the generation of the SASP. It has been reported that inactivation of critical 

DDR mediators including NBS1, ATM and CHK2 prevents the SASP in 

response to radiation-induced senescence [67]. In addition, SASP factors 

including the chemokine IL8 and ligands of CXCR2 provide a feedback 

loop that enhances the DDR [159]. Therefore, the DDR is not an 

independent process, but rather a fully integrated branch of the other effector 

pathways that establish senescence. 

 



35 
 

 

Figure 8. DNA damage response (DDR) 

DNA double strand breaks trigger the activation of ATM which phosphorylates H2AX  
and further recruits 53BP1 at the site of DNA double strand breaks. The DDR drives 
the cell either to repair the DNA damage or halt the cell cycle, depending upon the 
extent and nature of DNA damage. 
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1.4 Hypothesis 
 

The close comparison between the factors that are up regulated during SASP 

response and in COPD draws attention to the striking similarity between the 

phenotypic state of cellular senescence and that of the pulmonary cells 

during COPD. Thus, the understanding of the phenomenon of senescence in 

COPD and the possible molecular mechanism that leads to SASP during 

senescence could also be very relevant in understanding the pathogenesis 

and inflammatory phenotype of COPD. Having this information in the 

background, two questions were asked.  

 

1. Is there an involvement of pulmonary cellular senescence in the 

pathogenesis of COPD?   

 

And if yes, 

 

2.  Does this senescence involve persistent DNA damage?  
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1.5 Aims of study 

 
 

The overall goal of this thesis was to investigate markers of senescence, 

DNA damage and repair in an in-vitro model of cigarette smoke induced 

senescence and in a cigarette smoke-induced mouse emphysema model.  

 

In particular, the aims of this thesis are: 

 

 

1. Establishment of an in-vitro model to study the effects of cigarette 

smoke induced premature senescence. 

 

 

2. To evaluate the markers of senescence, DNA damage and repair in an 

in-vitro model of cigarette smoke extract (CSE) induced premature 

cellular senescence. 

 

 

3. To evaluate the markers of senescence, DNA damage and repair in the 

murine model of cigarette smoke induced emphysema. 

 

 

4. To compare the extent of DNA damage with the development of 

emphysema in tobacco-smoke exposed mice. 
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2   Materials  

 

2.1 Reagents and chemicals 

 

Reagent  Company 

Acetic acid, glacial 99% Sigma, USA 

Acrylamide solution  Sigma, USA 

Agarose Carl Roth, Germany 

Ammonium Persulfate Sigma, USA 

β mercaptoethanol Sigma, USA 

Bromophenol Blue Roche, Germany 

Bovine serum albumin Carl Roth, Germany 

BSA solution (2mg/ml) Bio-Rad, USA 

Chloroform Carl Roth, Germany 

DAPI Invitrogen, USA 

Dimethyl sulfoxide Sigma, USA 

Digest All 2 (Trypsin) Invitrogen, USA 

DNA ladder (100bp,1Kb) Fermentas, Germany 

Ethanol absolute Carl Roth, Germany 

Ethidium Bromide Carl Roth, Germany 

Ethylenediamine- Tetracetic acid 

(EDTA) 

Carl Roth, Germany 

Fluorescence mounting medium Dako, Germany 
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Formaldehyde Carl Roth, Germany 

Glycerol Sigma, USA 

Glycine Sigma, USA 

Hydrochloric acid Carl Roth, Germany 

IQ SYBR® Green Supermix BioRad, USA 

Isopropanol Carl Roth, Germany 

JM109 competent cells Promega, USA 

Luria Broth agar Sigma, USA 

Luria Broth Sigma, USA 

Lipofectamine 2000 Invitrogen, USA 

Methanol Carl Roth, Germany 

Milk powder Carl Roth, Germany 

N,N,N´,N´-Tetramethyl-1,2-

diaminomethane (TEMED) 

Sigma, USA 

Ponceau S solution Sigma, USA 

Potassium dihydrogen phosphate Carl Roth, Germany 

Potassium phosphate monobasic Carl Roth, Germany 

Rainbow protein molecular weight 

marker 

Amersham Biosciences, USA 

RIPA lysis buffer Thermo Scientific, Germany 

Rnase Away Invitrogen , USA 

Sodium chloride Carl Roth, Germany 
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Sodium citrate tribasic trihydrate Carl Roth, Germany 

Sodium dodecyl sulfate (20% w/v) Carl Roth, Germany 

Sodim hydroxide Carl Roth, Germany 

Stripping Buffer Thermo Scientific, Germany 

TOPRO-3 Invitrogen, USA 

Tris base Sigma, USA 

Tris 1.5M (pH 8.9) Amresco, Germany 

Tris 0.5 M (pH 6.8) Amresco, Germany 

Trizol reagent Invitrogen, USA 

Tween 20  Sigma, USA 

Xtreme gene siRNA transfection 

reagent 

Roche, Germany 

Xylol Carl Roth, Germany 

 

 

2.2 Kits 

 

Names  Company 

Dc Protein assay kit BioRad, USA 

Plasmid maxi prep kit NucleoBond, Germany 

InProm-II reverse transcriptase kit Promega, USA 

In situ apoptosis Roche, Germany 
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NovaRed substrate kit Vector, USA 

Rneasy minikit Qiagen, Germany 

Supersignal west femto  Thermo Scientific,  Germany 

Senescence β-galactosidase staining 

kit 

 Cell signalling technology, Germany 

 

Agarose electrophoresis chambers Biometra, USA 

BioDoc analyzer Biometra, USA 

Cell culture incubator Heraeus, Germany 

Centrifuge Heraeus, Germany 

CFX96 tm real-time PCR detection 

system 

BioRad, USA 

Fluorescence microscope Leica, Germany  

Fujifim image Fujifilm, Japan 

Light microscope Hund, Germany 

Precellys Homogenizer PeQLab, Germany 

Microplate reader Infinite 200 TECAN , Germany 

PCR thermocycler Eppendorf, USA 

Power supply BioRad, USA 

Vacuum Pump SBG, Germany 

Water bath (cell culture) BioRad, USA 

Western blot chambers BioRad, USA 
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2.3         Cell culture medium and reagents 

 

Names  Company 

Dulbecco's phosphate buffered saline 

(DPBS) 

PAA, Germany 

Endothelial growth medium (EGM-2) Lonza, USA 

Fetal calf serum PAA, Germany 

OptiMEM-I+ GlutaMax-I Gibco, Germany 

Pencillin/Streptomycin Sigma, USA 

Smooth muscle cell medium (SmGM) Lonza, USA 

Trypsin/EDTA Sigma, USA 

 

 

2.4 Other materials 
 

Names  Company 

Cell scrapers BD Falcon, USA 

Cell culture  dishes (10cm, 3cm, 

6well, 48well,96well) 

Greiner bio-one, Germany 

Cell culture flasks (75cm2, 25cm2) Greiner bio-one, Germany 

Centrifugal protein concentrators Millipore, Germany 

Filter tips (10, 100, 1000 μl) Greiner bio-one¸ Germany 

Gel blotting paper Whatman, USA 

Microcentrifuge tubes Eppendorf, USA 
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Nitroceullulose membrane Pall Corporation, USA 

Polypropylene tubes (15ml, 50ml) Greiner bio-one, Germany 

Precellys Tubes with beads Precellys, Germany   

Real time PCR plates BioRad, USA 

Tips (10, 100, 1000 μl) Greiner bio-one, Germany 

Tissue culture chamber slides BD Falcon, USA 

 

2.5 Microscopes 
 

Names Company 

Confocal microscope Axio Imager Z.1, Germany 

Fluorescence Leica DMI 3000 B, Germany 

Fluorescence Leica DM 6000 B, Germany 

Light Microscope cell culture  Axiovert 25, Germany 

  Stereo microscope Leica MZ 16FC, Germany 

  Binocular Leica S6, Germany  

 

 

2.6 Smoke generating system 

 

Name Company 

Vacuum pump for smoke generator TSE, Germany 

Pump for removing smoke TSE, Germany 
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Smoke chamber TSE, Germany 

Millipore filter Millipore, Germany 

Cigarettes University of Kentucky, USA 

Computer program for monitoring 

smoke 

TSE, Germany 

Smoke Generator TSE, Germany 

 

2.7 Antibodies 
 

The primary and secondary antibodies used in this study are listed below: 

2.7.1 Primary antibodies 

Antigen Purpose/Dilution Isotype Supplier 

p21 WB 1:1000 

IF 1: 200 

Mouse 

monoclonal 

BD (556430) 

Germany 

53BP1 IF 1:200 Rabbit 

polyclonal 

Bethyl 

Biotech, USA 

(A300-272A-

2) 

 

Caspase - 

3/CPP32 

Mab 

 

IF 1:200 

 

Mouse 

monoclonal 

 

BD (611048) 

Germany 

Anti phospho-

Histone 

H2A.X 

(ser139)clone 

JBW301 

IF 1:200 Mouse IgG1 Millipore(05-636) 

Germany 
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HP1 IF 1:200 Rabbit Cell signaling 

(2619) 

Germany 

NF kappa B WB 1:1000 Rabbit Abcam (ab7971) 

Germany 

CD11b/CD18 IF 1:200 Mouse Millipore 

(MAB1387Z) 

Germany 

CD 34 IF 1:200 Mouse SerotecMCA 

(1825GA) 

Germany 

Von Willebrand 

factor 

IF 1:200 Human Dako (A0082) 

Germany 

CD45 PE IF 1:200 Mouse eBioscience 

(12-0451) 

Germany 

Monoclonal anti-beta 

actin 

WB-1: 5000 Mice Sigma (A5441) 

USA 

ADFP IF 1:200 Rabbit Abcam (ab52355) 

Germany 

pro SP-C polyclonal IF 1:200 Rabbit Millipore (AB3786) 

Germany 
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2.7.2 Secondary Antibodies 

 

 

Antigen Purpose/Dilution Isotype Supplier 

Alexa Fluor 488 

 

Anti-Rabbit 

ICC 1:1000 Goat IgG Invitrogen, USA 

Alexa Fluor 594 

 

Anti-Rabbit 

ICC 1: 1000 Goat IgG Invitrogen, USA 

Alexa Fluor 488 

 

Anti-Mouse 

ICC 1: 1000 Goat IgG Invitrogen, USA 

Alexa Fluor 594 

 

Anti-Mouse 

ICC 1: 1000 Goat IgG Invitrogen, USA 

Alexa Fluor 646 

 

Anti-Mouse 

ICC 1: 1000 Goat IgG Invitrogen, USA 

Anti-Rabbit IgG 

HRP-linked 

WB 1:10000 Donkey IgG GE Health care, UK 

 

Anti-Mouse IgG 

HRP-linked 

WB 1:10000 Sheep IgG GE Health care, UK 
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2.8 Buffers and solutions 

 

The buffers and solutions used in this work are listed in Table 2.11. 

Unless specified otherwise the solutions were prepared in distilled 

and autoclaved water. Freshly prepared solutions for an application 

were not autoclaved. 

 

2.8.1 Compositions of buffers and solutions 

 

 

Buffer/Medium/Solution Compositions 

Agarose gel loading buffer 0.25% bromophenol blue [w/v] 

  0.25% xylene cyanol FF [w/v] 

 

15% Ficoll 400 [v/v] in dH2O Alkaline phosphatase (NTMT) 

buffer 

 1 ml NaCl (5 M) 

 510 mg MgCl2, 6H2O 

 50 µl Tween 20 

 5 ml Tris (1 M; pH 9.5) 

 

100 µl 1 M levamisole, dH2O q.s. to 50 ml Antigen retrieval buffer 0.1 M Tris/HCl buffer (pH 9.0) 

AEC stock 1 tablet AEC (20 mg) 

dissolve in 7.5 ml N,N dimethyl formamide 

store at -20°C 
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Buffer/Medium/Solution Compositions 

AEC working solution 50 µl AEC stock 

  900 µl dH2O 

 100 µl 0.5 M acetate buffer (pH 4.9) 

 

1 µl H2O2 (30%) Acetate buffer (pH 4.9) 85 g CH3COONa, 3H2O 

 900 ml dH2O 

 adjust pH with glacial acetic acid 

dH2O q.s. to 1 l 

Blocking buffer (for in situ) 5% goat serum in PBS [v/v] 

B-Block 2% BSA [w/v]  

 10% goat serum in PBST [v/v] 

 0.1% Tween 20 [v/v] 

 

store at -20°C DEPC-Water 0.01% DEPC [v/v] in dH2O 

incubate overnight at RT and then 

autoclave for 60 min. 

DNase I solution 100 mg DNase I 

dissolve in 10 ml 10 µM MgCl2 solution,      

filter and store at -20°C 
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Buffer/Medium/Solution Compositions 

  

PBS (1x)  8 g NaCl 

 0.2 g KCl 

 1.44 g Na2HPO4 

 0.24 g KH2PO4 

 dissolve in 800 ml of dH2O, adjust pH to 

 7.4 and add H2O q.s. to 1 l 

PCR buffer (10x) without MgCl2  20ml KCl (1 M) 

 4ml TrisHCl (1 M), pH 9 

 0.4ml Triton X100 

 sterile distilled water q.s. to 40 ml 

PFA in PBS (4%) 4 g PFA dissolve in 100 ml PBS (add 

few drops of NaOH). Heat at 55°C until 

PFA is dissolved. Cool and adjust the pH 

to 6-7 

PBT 0.1% Tween in PBS [v/v] 
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Buffer/Medium/Solution Compositions 

PBT/glycine 0.2% glycine in PBT [w/v] 

PT 0.3% Triton X100 in PBS [v/v] 

PBA 5% BSA [w/v] 

 

0.02% NaN3 [w/v] 

 

dissolve in PBS 

PBAT 0.3% Triton X100 in PBA [v/v] 

PBDT 0.1% DMSO and 0.1% Triton X100 in PBS 

PEM 0.1 M PIPES 

  1 mM MgSO4, 7H20 

  2 mM EGTA 

 

adjust pH to 7 RIPA buffer 2.5 ml 10% SDS in water 

 15 ml NaCl (5 M) 

  5 ml NP40 

 25 ml 10% deoxycholate in water [w/v] 

 1 ml EDTA (0.5 M) 

 25 ml Tris (1M, pH 8.0) 

 dissolve in DEPC-treated water q.s. to 

500 ml. (Not autoclaved). 
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Buffer/Medium/Solution Compositions 

SADO mix 50 ml HEPES Na (200 mM; pH 7.6) 

50 ml NaCl (1.3 M) 

5 ml KCl (300 mM) 

5 ml NaH2PO4 (100 mM) 

1 ml glucose (2 M) 

 

dissolve in 390 ml dH2O 
SSC (20x) 17.53 g NaCl 

8.82 g Na citrate 

Dissolved in 80 ml DEPC-treated water    

and adjusted the pH to 7. DEPC-treated 

water q.s. to 100 ml 

SSC/Formamide/Tween 5 ml SSC (20x) 

25 ml formamide 

50 µl Tween 20 

 

DEPC-treated water q.s. to 100 ml TBST (10x) 8 g NaCl 

0.2 g KCl 

25 ml Tris (1 M; pH 7.5) 

1 ml Tween 20 dH2O 

q.s. to 100 ml 

TAE running buffer (1x) 0.04 M Tris base 

0.002 M glacial acetic acid 

0.002 M EDTA, 2H2O 

 

dissolve in dH2O TBS 40 g NaCl 

1.8 g tris base 

dissolved in 4.5 l dH2O 

adjusted the pH 7.6 

dH2O q.s. to 5 l 

TBST 0.1% Tween 20 in TBS [v/v] 

  



52 
 

 

 

Buffer/Medium/Solution Compositions 

Transformation  buffer  (KCM 

 

buffer) 

500 mM KCl 

 

150 mM CaCl2 

 

250 mM MgCl2 

Transfer buffer (20x) 163.2 g bicine 

  209.3 g bis Tris 

  2 g EDTA 

 

dH2O q.s. to 2 l Transfer buffer (1x) 250 ml 20x transfer buffer 

 1 l methanol     

dH2O q.s. to 5 l 

 

 

2.9 Antibiotics  

 

Antibiotics that were used in this study are listed below. 

Antibiotics  Working 

concentration 

liquid culture 

Working 

concentration agar 

plates 

Ampicillin 100µg/ml 100µg/ml 

Streptomycin 15µg/ml 30µg/ml 

Penicillin 20µg/ml 20µg/ml 
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3 METHODS 

 

3.1 Culture conditions 

 

For cell culture experiments cells were kept at 37 °C in humidified 

chambers containing 5 % CO2 (carbon dioxide); media were 

exchanged according to individual needs (about every 24 to 72 h). In 

case of HLF-1 cells, DMEM culture medium containing 10 % FCS 

(fetal calf serum), 1 % L-glutamine and 1 % penicillin / streptomycin 

was used.   

 

3.2  Preparation of cigarette smoke extract 

 

Cigarette smoke extract (CSE) was prepared following some 

modification from the method described by Carp and Janoff [160] 

Briefly, three 100-mm cigarette (Research Grade Cigarette, University 

of Kentucky) was combusted with a Variable Speed Pump or Water 

Jet Filter pump. The smoke was bubbled through 30 ml serum 

containing media at a speed of 1 cigarette / 2min. The prepared 

suspension was then filtered through a 0.22-μm pore filter. This 

solution was considered to be 100% CSE within 30 min of preparation 

to obtain the desired concentration.  
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Figure 9. Setup for the preparation of the cigarette smoke extract 

An in-vitro set was devised to determine if cigarette smoke indeed induced 
senescence on various cell types of interest. The cell culture media was 
bubbled with cigarette smoke. The cigarette smoke extract was freshly used 
for treating cells after 24 hours of serum starvation.  

 

 

 

The cells were treated post 24 hours of serum starvation with several 

concentrations of the prepared cigarette smoke extract as per scheme 1. 
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Scheme 1.   Cigarette smoke exposure to different cell types. 

Human lung fibroblasts and rat pulmonary arterial smooth muscle cells were 
treated by cigarette smoke extract on day 3 and day 5. Staining was 
performed on day 7. Fibrocytes were differentiated by day 7 from the PBMCs 
isolated from the human blood and later on treated with CSE/H202 on day 10 
post 24 Hours serum starvation. Second exposure was given on day 12 and 
staining was carried out on day 14. 

 

 

3.3 Cigarette smoke exposure in-vivo 

 

Wild type mice C57BL/6J were exposed to the mainstream smoke of 

3R4F cigarettes at a concentration of 140 mg particulate matter/m3 

f o r  6 h/day, 5 days/week for up to 8 months. To assure age-

matched controls, respective control groups were kept under 

identical conditions as smoke-exposed mice but without smoke 

exposure the t ime  course of COPD development was correlated 

with the markers of senescence. 

 

For alveolar morphometry and staining, lungs were fixed in chest by 

infusion of 4.5% formaldehyde solution at 22 cm H2O of inflating 

pressure via the trachea. During fixation, tracheal pressure of 12 cm 

Oxidative stress via CSE or H2O2 

For fibroblasts and smooth muscle cells              For circulating fibrocytes 
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H2O was maintained. For both alveolar and vascular morphometry, 

lungs were isolated from the chest cavity after 20 minutes and allowed 

to immerse overnight in respective fixative solution. Thus fixed lungs 

were transferred to 0.1 M phosphate buffered saline the following day. 

 

After this, the lung lobes were individually placed in histological 

cassettes and dehydrated in an automated dehydration station and 

then embedded in paraffin blocks. Staining was done on 3µm lung 

sections for alveolar staining.  

 

3.4 Removal of (residual) lungs 
 

Mice were   anesthetized   by   intraperitoneal   injection   with 

ketamine/xylazine (20µl ketamine/20µl xylazine/40µl NaCl) and 

sacrificed for investigation. Mice were k i l l ed  by an overdose o f  

i s o f l u r a n e  gas and exsanguination via the vena cava inferior. After 

sacrifice, mice were given first incision in longitudinal ventral area 

from trachea to abdomen, diaphragm was opened and tracheal area 

was cleaned. 

 

For molecular biology the trachea was incised and cannulated.  The 

thoracic cavity was opened by sternotomy, and a second cannula 

was placed into the pulmonary artery, allowing the removal of residual 

intrapulmonary blood. Then, the apex of the left ventricle was incised, 

and the lung was flushed via the pulmonary artery using 20 ml of 0.9 

% NaCl solution at a constant pressure of 25 cm H2O while being 

inflated with N2 (nitrogen) gas via the trachea at a pressure of 15 cm. 

Afterwards, the organ was removed in total and immediately frozen in 

liquid nitrogen.  

 

For alveolar morphometry, lungs were fixed in chest by infusion of 

4.5% formaldehyde solution at 20 cm H2O of inflating pressure via 

the trachea for 20 minutes. Lungs were isolated from the chest cavity 

and allowed to immerse overnight in respective fixative solution. Thus 
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fixed lungs were transferred to 0.1 M phosphate buffered saline the 

following day. 

 

After this, the lung lobes were individually placed in histological 

cassettes and dehydrated in an automated dehydration station and 

then embedded in paraffin blocks. Staining was done on 3µm lung 

sections for alveolar staining.  

 

3.5 Protein isolation from tissues 

 

100 mg of tissue was weighed and put into 500μl of RIPA buffer 

(Thermo Scientific) containing protease and phosphatase inhibitor 

cocktail. Tissues were homogenized by precellys lysing kit, followed 

by centrifugation for 30min at 4°C (13,000xg). Supernatants were 

transferred to 1,5ml tubes and directly quantified or stored at -80°C.  

 

3.6 Protein isolation from cells 

 

Protein isolation from cells was carried out using RIPA buffer (Thermo 

Scientific) containing protease and phosphatase inhibitor cocktail 

(Thermo Scientific). Media was removed from the wells, followed by a 

PBS wash. 75µl of RIPA buffer was directly added to each well of 6 

well plates and after 10min of incubation at 4°C; plates were scratched 

with cell scrapers and supernatants were put into 1,5ml tubes. The 

tubes were centrifuged for 30min at 4°C (13,000xg). Supernatants 

were transferred to 1,5ml tubes and directly quantified or stored at -

80°C. 
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3.7 Protein estimation 

 

Protein quantification was carried out using Bio-Rad DC Protein Assay 

kit. It is a colorimetric assay based on Lowry’s method involving 

reaction of protein with an alkaline copper tartrate solution and Folin 

reagent giving rise to a characteristic blue color showing absorbance 

at 750nm. Different concentrations of BSA in range of 0.125-2mg/ml 

were used as standard. Protein samples were prediluted in range of 

the standard and the absorbance was measured at 750nm using a 

micro plate reader (Tecan). Exact concentrations were calculated in 

accordance to the standards. 

 

3.8 SDS polyacrylamide gel electrophoresis (SDS-

PAGE) 

 

SDS PAGE is carried out to separate various proteins in a sample 

according to their molecular weights for further immunoblot analysis. 

Protein samples from cells and tissues were equalized to same 

concentrations and mixed with 5X gel loading buffer at a ratio of 4:1 

and denatured at 95°C for 10min. Protein samples were loaded along 

with molecular weight marker into the wells of 7% or 10% (depending 

on protein sizes to be separated) polyacrylamide gels. Gels were run 

in vertical electrophoretic assembly using 1X running buffer at 100-

120V for 2-3 hrs. Buffers used are as follows:  

 

5X gel loading buffer 

components 
Final concentration 

Tris-HCl (2M, pH-6.8) 375mM 

SDS 10% (w/v) 

Glycerol 50%(v/v) 

β-Mercaptoethanol 12.5%(v/v) 

Bromophenol Blue 0.02%(w/v) 
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1X SDS Running buffer 

components 
Final concentration 

Tris  25mM 

Glycine 250mM 

SDS 10% (w/v) 0.1%(w/v) 

 

Stacking gel (5%) 

Gel Component  Final concentration 

Tris-HCl (0.5M, pH-6.8) 125mM 

Acrylamide/Bis-acrylamide 

40% (w/v) 
6% 

SDS 10% (w/v) 0.10% 

APS 10% (w/v) 0.05% 

TEMED 0.10% 

Water up to the final volume  

 

Resolving gel 

Gel component Percentage of gel 

 

 8% 10%          12% 

Tris-HCl (1.5M, pH-8.8) 375mM 375mM
  375mM 

Acrylamide/Bis-acrylamide 

40% (w/v) 

10% 10%          12% 

SDS 10% (w/v) 0.10% 0.10%      0.10% 

APS 10% (w/v) 0.05% 0.05%      0.05% 

TEMED 0.10% 0.10%      0.10% 

Water up to the final volume   
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3.9 Immunoblotting  

 

Proteins separated on gel were transferred to a nitrocellulose 

membrane by electrophoretic transfer. The transfer was carried out for 

1hr at 100V in transfer buffer. 

 

Blotting buffer components Final concentration 

Tris 25mM 

Glycine 192mM 

Methanol 20%(v/v) 

  

After the transfer, membranes were removed and blocked in blocking 

buffer for 1hr on shaker at RT, followed by overnight incubation in 

primary antibodies diluted in blocking buffer (for dilutions, Appendix 

Table 2) at 4°C.  Following day, membranes were washed 3 times for 

10min with 1xTBST buffer and subsequently incubated in secondary 

HRP-conjugated antibodies diluted in blocking buffer for 1hr at RT. 

After 1hr of incubation, membranes were washed thrice for 10min in 

1x TBST and incubated with ECL substrate (Thermo Scientific) in the 

Image reader (Fujifilm) to detect the signal. The time of exposure was 

determined on the basis of signal intensity.   

 

1xTBST (1xTBS, 0.1% (v/v) Tween 20) 

Tris buffer saline (TBS) components              Final  Concentration 

Tris 20mM                              20mM 

Sodium                              137mM 

Tween                              0.1% 

HCl                                                                                          To set the pH 

Water                                                               up to the final volume 
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Blocking buffer (5% non-fat dry milk powder in 1xTBST) 

In order to reprobe the membranes for housekeeping genes, 

membranes were stripped in a stripping buffer (Thermo Scientific) for 

30min at 37°C, washed and incubated with the primary antibodies. 

 

Densitometry analysis of the immuno-blots 

Western blots were quantified using the multi gauge software 

(Fujifilm). Expression was quantified using bands intensity values (in 

arbitrary units) which were normalized to the housekeeping gene (β-

actin). 

 

3.10  Transfection with over expression plasmid 

 

Transfection refers to the process of introducing foreign DNA or RNA 

into mammalian cells. In this study, lipofection was used as the 

method of transfection, lipofection refers to use of synthetic cationic 

lipid to facilitate the delivery of DNA into the cells. These cationic lipids 

tend to form liposomes in aqueous solution. Liposomes, thus formed, 

interact with negatively charged DNA to form lipid-DNA complexes. 

The complex fuses with the plasma membrane of cells, resulting in the 

uptake of DNA and further expression of the gene carried by the 

plasmid DNA. 

HEK 293 cells were cultured to 70-80% confluence in 6well plates (for 

protein isolation) or chamber slides (for immunofluorescence). Plasmid 

and lipofectamine were diluted in antibiotic free opti-MEM medium and 

mixed within 5 min at ratio of 1:2 (DNA in μg to transfection reagent in 

μl). The mixture was incubated at RT for 30min and added to the cells 

which were cultured in antibiotic free transfection medium (opti-MEM 

medium + basal growth medium with 0.1% FCS). After 5hrs, medium 

was changed to the normal growth medium up to 48hrs, followed by 

protein isolation or immunofluorescence staining. 
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3.11 Immunohistochemistry  

 

4μm thick sections were cut from paraffin embedded lung tissues. 

Sections were incubated at 65°C for 20min, followed by 

deparaffinization in xylene and rehydration in series of grade-

decreasing ethanol solutions. Sections were washed with PBS and 

incubated in boiling 10mM citrate buffer for 8min at 630watt in 

microwave for antigen retrieval. When needed, antigen retrieval was 

carried out by using 0.25% trypsin for 10min at 37°C. After blocking 

endogenous peroxidases activity by treatment with 15% hydrogen 

peroxide for 20min, Nova RED horseradish peroxidase (HRP)-

substrate kit was used for immunohistochemical staining according to 

the manufacturer’s instructions. Sections were kept in serum blocking 

for 1hr, followed by overnight incubation with primary antibody at 4°C. 

After washing with PBS, sections were incubated with biotinylated 

secondary antibody for 10min, followed by again a PBS wash and 

incubation with streptavidin conjugated HRP for 5min. Sections were 

washed and color development was carried out using a 

substrate/chromogenic mixture, followed by counterstaining with 

hematoxylin. Stained sections were examined under Leica DM 2500 

microscope using Leica Q Win imaging software 

 

3.12  Senescence associated β-galactosidase cell 

staining 

 

The growth media from the cells was removed. The plate was then 

rinsed once with 1X PBS (2 ml for a 35 mm well). 1 ml of 1X fixative 

solution to each 35 mm well was added. The cells were then allowed 

to fix for 10-15 minutes at room temperature. The plate was then 

rinsed two times with 1X PBS (2 ml for a 35 mm well). 1 ml of the b-

galactosidase staining solution to each 35 mm well was added and the 

plate was incubated at 37°C overnight in a dry incubator (no CO2). 
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While the b-galactosidase staining solution was still on the plate, the 

cells were checked under a microscope (200X total magnification) for 

the development of blue color. For long-term storage of the plates, the 

b-galactosidase staining was removed and the cells were overlaid with 

70% glycerol and stored at 4°C. 

 

 

3.13  Senescence detection by fluorescence  

 

The ImaGene Green C12 FDG lac-Z Gene Expression Kit (I-2904) 

was used for fluorescence staining of senescent cells as per the 

manufacturer’s protocol. 

Cells were grown on coverslips inside a culture dish with appropriate 

cell culture medium to the desired confluency. The medium was 

removed from the dish and the cells were covered with pre-warmed 33 

µM substrate containing culture medium. The cells are then incubated 

for 20-60 minutes under desired conditions. The coverslips then can 

be removed and examined in the fluorescence microscope. 

 

3.14  Statistical analysis 

 

All data are expressed as mean ± standard error of mean (SEM). 

Statistical comparisons of samples were performed by Student's t test 

for comparing two groups or by one-way ANOVA followed by the 

Newman-Keuls post-hoc test for multiple comparisons. Difference with 

p<0.05 between groups was considered significant. 
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4  RESULTS 

Classically, COPD primarily has been considered a lung disease that is mainly 

caused by cigarette smoking. However, COPD has important manifestations 

beyond the lungs, the so-called systemic effects. These include unintentional 

weight loss, skeletal muscle dysfunction, and an increased risk of 

cardiovascular disease, osteoporosis, and depression, among others. Low-

grade, chronic systemic inflammation is one of the key mechanisms underlying 

these systemic effects. Because these extra-pulmonary manifestations of 

COPD are common and/or may have significant implications for the patient 

wellbeing and prognosis both lung resident cell types as well as the systemic 

cells are believed to be involved in the pathogenesis of or response to COPD. 

It was hence an aim to investigate lung resident cells and systemic cells. It had 

been hypothesized that the primary cause of increased inflammation and 

pathogenesis is the onset of DNA damage and premature senescence upon 

exposure to cigarette smoke. 

 

4.1 Characterization of lung resident and systemic cells.  

Isolation and characterization of different lung resident and systemic cells 

were carried out with the aim to decipher the markers of cellular senescence 

and DNA damage upon treatment with cigarette smoke exposure over them. 

Cell types that were investigated further for our studies were namely human 

lung fibroblasts and circulating fibrocytes from human blood and are shown in 

Figure 10.  
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Figure 10. Characterization of lung resident fibroblasts and systemic human circulating 

fibrocytes.  

(A). Representative images of primary lung fibroblasts characterized by spindle shape 

morphology in bright field (B). Circulating fibrocytes were isolated from the PBMCs and 

characterized by the presence of CD 11b and alpha smooth muscle actin (α-SMA). 

.  
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66 
 

4.2 Cigarette smoke extract exposure induced cellular 

senescence in-vitro 

 

Morphologic changes are characteristic features of the senescent phenotype 

that occur at both the cellular and organism level. Senescent cells showed 

morphologically flattened and enlarged cell shapes. Human lung fibroblasts 

were exposed to cigarette smoke exposure in-vitro as described in Scheme 1 

in the methods section. Cigarette smoke exposure in-vitro could induce 

characteristic morphological senescent phenotype as shown in Figure 11. 

 

 

Figure 11. Morphological changes in Human Lung Fibroblasts 1 (HLF-1) cells after 
chronic exposure to cigarette smoke in-vitro. 

HLF-1 cells were exposed to 1 % cigarette smoke and their morphology was examined 
through bright field microscopy. The morphological changes upon CSE treatment 
resembled closely to senescent phenotype. (A). Normal HLF-1  cells as control. (B). 
HLF-1 cells treated with 1% CSE showed flattened and enlarged phenotype resembling 
senescent phenotype. 

 

 

 

 

 

 

A B 
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Senescence-associated (beta)-galactosidase is widely used as a biomarker of 

senescence. The pH 6 β-galactosidase activity detected in senescent cells 

can be attributed to a rise in the level of the classic lysosomal enzyme. 

Furthermore, there are evidences that this is a consequence of an increase in 

lysosomal mass in senescent cells [161]. β-D-galactosidase is an eukaryotic 

lysosomal hydrolase.  It acts by cleaving β-linked terminal galactosyl residues 

from many substrates like the glycoproteins, gangliosides, glycosaminoglycan 

and many other artificial substrates. The β-D-galactosidase has an optimum 

pH 4 for its activity which is closer to the natural pH of the lysosome. 

Lysosomal β-galactosidase activity can be detected in situ in most mammalian 

cells by means of a cytochemical assay, normally carried out at pH 4, using 

the chromogenic substrate 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside 

(X-Gal). Dimri et al. (1995) described a pH 6 β-galactosidase activity, which 

was found specifically in senescent human fibroblast cultures, but not in 

quiescent or terminally differentiated cells. Furthermore, this pH 6.0 activity 

enabled identification of senescent fibroblasts and keratinocytes in biopsies of 

aged human skin, and subsequently became known as senescence 

associated β-galactosidase (SA-β-galactosidase). 

 

Different cell types were exposed to CSE or H2O2 (as described in scheme 1). 

A sub lethal dose of CSE could indeed induce senescence, as evident by 

senescence associated β-galactosidase activity. Hydrogen peroxide was used 

as a positive control. Senescence was detected by the presence of beta 

galactosidase activity at pH-6 (Figure 12).   
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Figure 12. Increased senescence upon cigarette smoke treatment Human Lung 

Fibroblasts 1 cells (HLF-1). 

HLF-1 cells were treated with different doses of cigarette smoke extract (CSE) leading 
to senescence. H2O2 treatment was done as a positive control. Senescence was 
detected by β-galactosidase activity using x-gal. Higher β-galactosidase activity 
indicates higher senescence. Representative bright field images of (A). Control HLF-1 
cells (B). HLF-1 cells treated with 300uM H

2
O

2
 (C). HLF-1 cells treated with 1% CSE (D). 

HLF-1 cells treated with 2% CSE (E). HLF-1 cells treated with 3%CSE (F). HLF-1 cells 
treated with 5% CSE (G). Quantitative analysis of the senescescent cells were 
performed by counting blue cells in 10 random fields.  
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In addition, the modified version of a cell permeable fluorescent β-

galactosidase substrate, fluorescein di-b-D-galactopyranoside (FDG), supplied 

by Molecular Probes as ImaGene Green™ C12FDG lacZ Gene Expression Kit 

(I-2904) was used to assess senescence (Figure 13). Once fluorescein di-b-

D-galactopyranoside (FDG) reacts with the β-galactosidase, it turns into a 

fluroscencent compound which is not further permeable to the cells. Hence the 

substrate could be used as a marker of β-galactosidase activity at pH 6 

indicative of cellular senescence.  

 

β-D- galactosidase activity at pH 6 was found to be increased with C12FDG 

indicative of increased cellular senescence after chronic exposure to cigarette 

smoke extract in-vitro. 
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Figure 13. Increased senescence upon cigarette smoke treatment in Human Lung 

Fibroblasts (HLF-1). 

HLF-1 cells were treated with different doses of H2O2 and cigarette smoke extracts 
(CSE). Senescence induced by treating the cells by H2O2 was used as a positive 
control. Senescence was detected by β-galactosidase activity using a fluorescent dye 
C12 FDG. Higher β-galactosidase activity indicates higher fluorescence. Induction of 
senescence was found to be concentration dependent.  
 
A & D. HLF-1 cells untreated as control. B & E. HLF-1 cells treated with 100µM H2O2.  

C & F. HLF-1 cells treated with 200µM H2O2. G & J. HLF-1 cells treated with 300µM 
H2O2.  H & K. HLF-1 cells treated with 1% CSE.  I & L. HLF-1 cells treated with 5%CSE  
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While the human lung fibroblasts underwent senescence upon CSE treatment, 

the human circulating fibrocytes rather proliferated and were resistant to CSE 

challenge as shown in the Figure 14 below.  

 

 

 
 

 

Figure 14. Circulating fibrocytes did not undergo increased senescence upon CSE 

treatment 

Circulating fibrocytes were isolated from human blood and treated with hydrogen 
peroxide and different doses of cigarette smoke extract. Senescence was detected by 
β-galactosidase activity using C12FDG (in green). Higher β-galactosidase activity 
indicated higher senescence. There was no increase in senescence upon CSE 
treatment with reference to the controls.  

A & D. Representative images of control circulating fibrocytes untreated.  

B & E. Representative images of circulating fibrocytes treated with 500uM of 
hydrogen peroxide.  

C & F. Representative images of circulating fibrocytes treated with 3% Cigarette 
smoke extract.  

 

 

 

 



 

72 
 

4.3 Cigarette smoke extract exposure lead to increased 

hetero-chromatinization 

 

Senescence leads to hetero-chromatinization within the nucleus and this also 

may serve as a marker of senescence. Cells treated with cigarette smoke 

extract at sub lethal doses showed an increased amount of nuclear DNA 

domains stained densely by DAPI. This represents increased 

heterochromatinization inside their nucleus, so called senescence associated 

heterochromatin foci (SAHF) (Figure 15).  

 

 

 

 

 

 

 

 

Figure 15. CSE lead to the formation of senescence associated heterochromatin foci 

Cells were treated with CSE and observed under light microscope for nucleus with 
condensed chromatin foci indicative of increased heterochromatinization (SAHF) with 
DAPI staining (blue).   

A. Represents a normal nucleus with diffuse DAPI (blue) staining.  

B. Represents nucleus with DAPI (blue) punctate staining indicative of the formation 
of SAHF upon 1% CSE treatment. 
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4.4 Senescence induced by cigarette smoke extract exposure 

in-vitro involves accumulation of DNA double strand 

breaks 
 

Keeping in mind the chronic inflammation in COPD, it was obvious to think that 

pulmonary cellular senescence, if any in COPD, must involve factors that lead 

to a SASP response. SASP occurs only when senescence involves factors 

that lead to DNA damage. Cigarette smoke exposure is the primary cause of 

COPD. Hence, investigations were carried out to check if cigarette smoke 

extract in-vitro caused DNA damage.  

Nuclear  Specific marker of DNA double strand break (dsb), 53 BP1 foci were 

checked upon by immunofluorescence microscopy. 53BP1 forms foci on the 

site of DNA double strand breaks and is a specific marker for DNA dsb. 53 

BP1 was found to form DNA damage foci in the cells that were treated with 

cigarette smoke extract. p21, which is a maker of cell cycle arrest, was 

localized in parallel. Both 53BP1 and p21 were found to be upregulated 

(Figure 16).  

What was interesting to note, was that not all the cells that were positive for 53 

BP1 were positive for p21, but all the cells positive for p21 were positive for 

53BP1. This indicated that not all the cells that undergo DNA damage 

necessarily undergo cell cycle arrest, but only those cells, in which the DNA 

damage has been persistent and accumulated beyond repair, decide to halt. 

It was also noted that a higher dose of CSE not necessarily lead to formation 

of higher DNA damage induced 53 BP1 foci. A higher dose of CSE rather 

induced apoptosis (Figure 17). 
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Figure 16. Human Lung Fibroblast-1 (HLF-1) cells treated with CSE display nuclei 

with 53 BP1 positive DNA damage foci indicative of DNA double strand breaks and 

higher expression of p21 indicative of cell cycle arrest.  

A. Control HLF-1 cells stained with DAPI (blue) B. Control cells stained with 53BP1 
(green). C. Control HLF-1 cells stained with p21 (red) D. Represents a merged image of 
A, B and C. E. s HLF-1 cells treated with 1% CSE stained with DAPI (blue) F. HLF-1 cells 
treated with 1% CSE stained with 53BP1 (green) G. HLF-1 cells treated with 1% CSE 
stained with p21 (red) H.  Merged image of E, F and G. I. Quantification of 53 BP1 and 
p21 positive cells in control and CSE treated cells.  
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4.5 Treatment with increased doses of CSE lead to apoptosis 

 

It was also noted that while a lower dose of CSE lead to the formation of 53 

BP1 foci, the higher dose lead to activation of Caspase 3 (Figure 17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Chronic exposure to lower concentration of cigarette smoke 

extract lead to accumulation of the DNA damage while higher 

concentration of CSE lead to apoptosis in Human Lung Fibroblast -1 (HLF-1) 

cells.   

HLF-1 cells were cultured and treated with different dose of CSE.A. HLF-1 cells 
stained with DAPI as control B. HLF-1 cells with exposure to lower dose of CSE 
(1%) having DNA double strand break inside the nucleus with recruitment of 
53 BP1 positive foci (green dots) C. HLF-1 cells exposed to higher dose of CSE 
(3%) and D. 5% lead to apoptosis as evident from activated Caspase 3 
(CPP32) staining in red. 
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4.6 Activation ofH2A.X and DNA damage foci in-vitro 

 

Activation of a DNA damage response leads to the formation of DNA damage 

foci comprising of the activated H2A.X (gamma-H2A.X). Double-strand breaks 

(DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may 

have severe consequences for cell survival. Persistent DNA strand breaks are 

the major trigger of cellular senescence. This is because DNA DSBs may lead 

to chromosome aberrations, genomic instability, or cell death.  

DSB induction could occur due to various physical, chemical, and biological 

factors. Cells respond to DNA damage by activating the so-called DNA 

damage response (DDR), a complex molecular mechanism developed to 

detect and repair DNA damage. The formation of DSBs triggers activation of 

many factors, including phosphorylation of the histone variant H2AX. This 

leads to the formation of gamma H2AX foci within the nucleus of the cell. 

Phosphorylation of H2AX plays a key role in DDR and is required for the 

assembly of DNA repair proteins at the sites of DNA damage as well as for 

activation of checkpoints proteins which arrest the cell cycle progression. 

Formation of gamma H2AX foci can be used as a specific marker of DNA 

double strand breaks.  

Hence we stained for gamma-H2A.X. Significant gamma H2AX foci formation 

were observed in the CSE treated cells ( Figure 18). 
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Figure 18. Human Lung Fibroblast-1   (HLF-1) cells treated with cigarette smoke 

extract shows formation of gamma H2AX positive DNA damage foci indicative of 

DNA double strand breaks and higher expression of HP1 indicative of 

heterochromatin formation.  

HLF-1 cells were cultured and treated with different dose of CSE A.  Control HLF-1 cells 
stained with DAPI in blue B. Control cells stained with H2AX in red. C. Control HLF-1 
cells stained with HP1 in green D. Merged image of A, B and C. E. HLF-1 cells treated 
with 1% CSE stained with DAPI in blue F. HLF-1 cells treated with 1% CSE stained with 
H2AX in red G. HLF-1 cells treated with 1% CSE stained with HP1 in green H. Merged 
image of E, F and G. I. Quantification of H2AX and HP1 positive cells in control and CSE 
treated cells.  
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4.7 Mouse model of pulmonary emphysema 

 

There are no animal models available which exactly mimic chronic obstructive 

pulmonary disease. Mice, exposed to cigarette smoke exposure chronically 

over a long period of time, resemble a valid animal model to study 

emphysema pathophysiology [142]. However, the model does not exhibit 

much chronic bronchitis; hence calling it a model of COPD may not be precise. 

We utilized this animal model in which mice were exposed to cigarette smoke 

for different times (2, 6 or 8 months) and lung sections were examined for 

formation of emphysema (Figure 19).  

 

 

 

 

 

 

 

 

A. Lung sections from 8 month old control mice stained with DAPI B. Differential 
Interference Contrast (DIC) image of lung sections from 8 month old control mice. C. 
Lung sections from 8 month smoke exposed mice, stained with DAPI D. DIC image of 
Lung sections from 8 month smoke exposed mice E. Lung sections from 6 month old 
control mice stained with DAPI F. DIC image of lung sections from 6 month old control 
mice G. Lung sections from 6 month smoke exposed mice stained with DAPI H. 
DIC image of lung sections from 8 month smoke exposed mice. 

 

 

Figure 19. Mice were exposed to cigarette smoke upto 8 months and the lung 

paraffin sections (5𝝁M) were viewed to characterize emphysema 
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4.8 Gamma H2AX foci was found to be upregulated in 

cigarette smoke exposed mice model of emphysema 

 

To correlate the in-vitro findings to that in the in-vivo model, lung sections from 

mice with chronic cigarette smoke exposure were also examined for gamma 

H2AX as shown in Figure 20.  Gamma H2AX was significantly upregulated in 

lung sections from mice exposed to cigarette smoke.  
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Mice were exposed to cigarette smoke for 2, 6 and 8 months respectively and the lung 
paraffin sections (5 M) were stained with γ H2AX. The sections were examined by 
confocal microcopy for DNA damage. A. Lung paraffin sections from 2 month control 
mouse, stained with γ H2AX (red) B. Lung paraffin sections from 2 month control 
mouse, stained with DAPI (blue). C. Lung paraffin sections from mouse exposed to 
cigarette smoke for 2 month, stained with γ H2AX (red). D. Lung paraffin sections from 
2 month control mice, stained with DAPI (blue). E. Lung paraffin sections from 6 
month control mice, stained with γ H2AX. F. Lung paraffin sections from 6 month 
control mice, stained with DAPI (blue). G. Lung paraffin sections from mice exposed to 
CS for 6 month, stained with γ H2AX (red). 

 

Figure 20. Increased  γH2AX foci indicating DNA damage-repair foci in mice lungs 

upon cigarette smoke exposure.  
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H.  Lung paraffin sections from mice exposed to cigarette smoke for 6 month smoked 
lung paraffin sections, stained with DAPI (blue). I.   Lung paraffin sections from 6 
month control stained with γ H2AX (red). J.   Lung paraffin sections from 6 month 
control stained with DAPI (blue). K. Lung paraffin sections from mice exposed to 
cigarette smoke for 8 month stained with γ H2AX (red). L.  Lung paraffin sections from 
mice exposed to cigarette smoke for 8 month stained with DAPI (blue). M. Basic 
fluorescence Intensity quantification of γ H2AX with ImageJ (n = 4, mean ± SEM). 
 
 

 

 

4.9 53BP1 foci and p21 was found to be upregulated in 

cigarette smoke exposed mice model of emphysema 

 

Antibodies for 53 BP1 and p21 did not work well enough on the lung paraffin 

sections. Hence lung cryo sections from the aged matched control and smoke 

exposed mice were prepared. The lungs sections revealed that 53BP1 foci 

were upregulated in the cigarette smoke exposed mice. Expression of p21 

revealed that p21 was significantly upregulated upon exposure to cigarette 

smoke in our in-vivo model. 
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Figure 21.  Increased 53BP1 indicating DNA double strand breaks in mice lungs upon 

cigarette smoke exposure.  
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Mice were exposed to cigarette smoke for 2, 6 and 8 months respectively and the lung 

cryo sections (5 M) were examined for DNA double strand breaks by 53BP1 and cell 

cycle arrest with p21. 

 A.  Lung cryo sections from mice exposed to cigarette smoke for 8 months stained 
with 53BP1 (green). B .  Lung cryo sections from mice exposed to cigarette smoke for 
8 months with p21 (red). C. Lung cryo sections from mice exposed to cigarette smoke 
for 8 months with DAPI D.  Lung cryo sections from 8 month old mice stained with 
53BP1. E. Lung cryo sections from 8 month old mice stained with p21. F. Lung cryo 
sections from 8 month old mice stained with DAPI. G. Lung cryo sections from mice 
exposed to cigarette smoke for 6 months stained with 53BP1. H. Lung cryo sections 
from mice exposed to cigarette smoke for 6 months stained with p21. I. Lung cryo 
sections from mice exposed to cigarette smoke for 6 month stained with DAPI. J. Lung 
cryo sections from 6 month old mice stained with 53BP1. K. Lung cryo sections from 6 
month old mice stained with p21. L. Lung cryo sections from 6 month old mice stained  
with DAPI blue. M. Lung cryo sections from mice exposed to cigarette smoke for 2 
months stained with 53BP1. N. Lung cryo sections from mice exposed to cigarette 
smoke for 2 months stained with p21. O. Lung cryo sections from mice exposed to 
cigarette smoke for 2 months stained with DAPI. P. Lung cryo sections from 2 month 
old mice stained with 53BP1 (green). Q. Lung cryo sections from 2 month old mice 
stained with p21 (red) R. Lung cryo sections from 2 month old mice stained with DAPI. 
S. Represents quantification of 53 BP1 foci (n =5, mean ± SEM). 
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4.10  Increased inflammation in the lungs upon smoke 

exposure 

 

Western blot analysis of the protein isolated from the lung homogenate of mice 

exposed to cigarette smoke and their aged matched controls that were not 

exposed to cigarette smoke revealed that cigarette smoke exposure induces 

inflammation as evident from increased NF-Kappa B expression (Figure 22).  

 

 

  

Figure 22.  Increased NF kappa B expression in mouse lungs upon cigarette smoke 

exposure. 

Mice (n=6 in each group) were exposed to cigarette smoke for 2 months and the lung 
homogenates were examined for the expression of NF kappa B through western 
blotting. 22. A. Western blots indicating the upregulation of NF kappa B in the lung 
homogenate of cigarette smoke exposed mice (SM) compared to the aged match 
control (Ct) mice 22.B. Quantification of the western blots by densitometry analysis 
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4.11 Increased cell cycle arrest (p21) in mouse lungs upon 

smoke exposure 

 

 

Figure 23. Increased p21 expression in mice lungs upon cigarette smoke exposure. 

 

Mice (n=6 each group) were exposed to cigarette smoke for 8 months and the lung 
homogenate were examined for the expression of p21 through western blotting. 

 23. A. Western blots indicating the upregulation of p21 in the lung homogenate of 
cigarette smoke exposed mice(SM) compared to their aged match control mice (C).  

23. B. Quantification of the western blots by densitometry analysis 
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4.12  Short hairpin RNA (ShRNA) for ATM blocks IL6 release in 

CSE induced senescent cells 
 

RNA interference is a powerful technology that allows to suppress gene 

expression [162]. However, in most mammalian cells this provokes a strong 

cytotoxic response [163]. This non-specific side effect could be bypassed by 

using synthetic short (21- to 22-nucleotide) interfering RNAs, or short hairpin 

RNA, which can mediate strong and specific suppression of gene expression.  

 

 

Figure 24. Strategy to block ATM with shRNA to block SASP response 

The figure explains a strategy to knock down ATM to observe any changes in SASP 
response. ATM is central to DNA damage response. If the SASP response in senescence 
indeed is due to the DDR response, knocking down the central player of the DDR 
response would inhibit SASP response.  
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Since the first application of RNA interference (RNAi) in mammalian cells, the 

expression of short hairpin RNAs (shRNAs) for targeted gene silencing has 

become a benchmark technology. We employed it to suppress the central key 

player of the DDR response pathway, ATM with the aim to investigate if 

inflammation induced by cigarette smoke in-vitro is indeed caused by the DDR 

signalling and not senescence per se.  

Short hairpin RNA or shRNA against ATM were used to knock down ATM in 

HEK 293 cells and IL-6 release was checked upon subsequently. IL-6 release 

was diminished upon CSE treatment by blocking ATM (Figure. 25). 

 

 

Figure 25. shATM suppresses IL6 release in CSE induced  senescent cells in-vitro 

HEK 293 cells were transfected with shRNA for ATM and scrambled control. These cells 
were treated with 1 % CSE and later stained for IL-6.  While the control cells show no 
IL6 release (A), the CSE treated HEK293 cells and CSE treated HEK 293 cells 
transfected with the scramble showed IL-6 release (B &C). The shRNA for ATM 
suppressed the release of IL-6 upon CSE treatment. 
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5 Discussion 

 

Researchers in the past have described several theories for the pathogenesis 

of COPD [1, 164-167]. Laurell and Eriksson described the association 

between α-1 protease inhibitor (PI) deficiency and pulmonary emphysema 

[168] Further experimental studies conducted by Gross and others 

demonstrated that infusion of elastolytic enzymes into the lungs induced 

emphysema[169-171]. In contrast, a proteolytic enzyme that does not degrade 

elastin could not induce emphysema. These observations led to the protease-

antiprotease theory of emphysema. The initial attention largely focused on α-1 

protease inhibitor and neutrophil elastase. Later, other enzymes and inhibitors 

were believed to play an important role. Numerous serine proteases in 

addition to leukocyte elastase, including chymotrypsin and proteinase 3, have 

elastolytic activity and may contribute to the development of emphysema 

[172]. Similarly it was observed that metalloproteases and cysteine proteases 

may also have elastolytic activity as they were found in the lung of COPD 

patients and believed to contribute in the development of emphysema[173]. 

Further, inhibitors of these enzymes are also present in the normal lung, thus 

expanding the concept of protease-antiprotease balance. 

Variations in antioxidants may also predispose one to COPD. There is 

considerable evidence for increased oxidative stress in COPD [174-

176]. Oxidative stress is derived from cigarette smoke and from inflammation 

caused by the activation of macrophages and neutrophils. Epidemiological 

evidence suggests that reduced dietary intake of antioxidants may also be a 

factor causing COPD. The population surveys have linked a low dietary intake 

of the antioxidant ascorbic acid with declining lung function [177, 178].  

 The increased oxidative stress in the airways of COPD patients may play an 

important pathophysiological role in the disease by amplifying the 

inflammatory response in COPD. This may reflect the activation of NF-κB and 

activator protein-1, which then induce a neutrophilic inflammation via 

increased expression of IL-8 and CXC chemokines, TNF-α and MMP-9. 

Oxidative stress may therefore serve to amplify the ongoing chronic 
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inflammatory response in COPD and may be an important mechanism leading 

to increased inflammation during acute exacerbations.  

 

5.1 COPD a disease of elderly 
 

Inspite of the numerous scientific findings supportive of the various 

hypotheses for pathogenesis of COPD, there is still a fundamental lack of 

knowledge about the molecular mechanisms underlying the causes of COPD.  

With the exception of those who have homozygous alpha-1-antitrypsin 

deficiency, in the vast majority of COPD patients there is no in-vivo evidence 

of significant protease–antiprotease imbalance at the cellular or organ level, 

indicating that there must be some other processes additionally in play. It is 

important to note that the prevalence of COPD increases exponentially with 

aging. Before 40 years of age COPD is extremely rare, but by 70 years of age 

the prevalence is as high as 30%[179, 180], even among ex-smokers or 

lifetime nonsmokers, indicating a strong link between aging and COPD. 

Patients diagnosed with chronic obstructive pulmonary disease have limited 

therapeutic options.  

The existing therapies are inadequate because no causative treatments exists 

that could hold disease progression. Airflow limitation, measured by reduced 

FEV1, progresses very slowly over several decades. So most patients with 

symptomatic COPD are in middle age or are elderly. Thus, the prevalence of 

COPD is at least partly also an age dependent phenomenon. The prevalence 

of the disease in elderly suggests an intimate relationship between the 

pathogenesis of COPD and aging. 

 

5.2 Aging hypothesis of COPD 
 

Aging is characterized as a condition that basically satisfy four principles: it is 

intrinsic (gene dependent), universal, progressive, and usually detrimental to 

the host[181]. Aging lung results in both structural and functional lung 
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changes that comply with these four principles in healthy subjects [182].  

Cellular senescence is a vital biological state that implements a halt on the 

replicative capacity of any impaired or damaged cell via a network of 

programmed processes. As a result, senescence has evolved as a potent 

barrier to tumorigenesis and contributes to other physiological processes such 

as aging and wound healing.  

 

 

 

Figure 26. Hypothesis of development of COPD by an accelerating lung aging [183].  

Aging is defined as the progressive decline of homeostasis, and this is the result of 
failure of organ maintenance from DNA damage, oxidative stress, and telomere 
shortening. During aging, pulmonary function deteriorates progressively and 
pulmonary inflammation is increased with structural changes in the lung parenchyma 
and small airways. Environmental exposure, for example cigarette smoke, may 
accelerate aging-dependent defective lung function [183]. 
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Several clinical observations support the hypothesis, that accelerated aging 

may play a role in the pathogenesis of COPD. First, lung function starts to 

decline in healthy individuals over 30 years of age. This is associated with 

several structural changes, such as progressive distal air space enlargement, 

with loss in the gas exchange surface area and the supporting alveolar 

attachments in the peripheral airways[182]. It is postulated that smoking 

induces elastin fiber degradation and matrix remodeling in the lungs similar to 

that which occurs with aging in the skin, resulting in skin wrinkling[184-186]. It 

has also been shown in the past, that an in-vitro exposure of human epithelial 

cells to cigarette smoke extract results in an increased expression of 

senescence-associated [beta]-galactosidase (SA-[beta]-gal), a marker of 

cellular senescence[77]. Further, it has been shown that senescence marker 

protein-30 (SMP30) is a multifunctional protein which provides protection 

against deleterious changes related to aging. Transgenic mice with deficiency 

in SMP30 (i.e. SMP30 knockout mice) contain lungs that demonstrate 

significantly larger mean linear intercept than wild-type mice when exposed to 

cigarette smoke, suggesting more emphysematous changes in the lungs[187] 

Mice with deficiencies in the klotho gene have short life span and age related 

disorders. Klotho gene knockout mice develop emphysematous changes in 

the lungs following normal development [188]. 

Several striking similarities in the profile of aging lung to that of COPD lung 

suggest that accelerated aging could be one of the root causes of COPD. It 

has been believed, that premature cellular senescence contributes to 

accelerate organismal aging. Furthermore, reviewing the similarities between 

the secretory profiles of DNA damage induced senescent cells and that of 

COPD, a premature cellular senescence hypothesis may hold value for the 

pathogenesis of COPD.  

 

Evidence of premature cellular senescence in COPD patients had been 

reported by a few groups [189, 190], however a systematic study of an animal 

model of emphysema in a time dependent manner for assessing the 

senescence hypothesis had been missing. Moreover, it remained elusive 

whether the pulmonary senescence that occurs in COPD could be linked to 
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DNA damage, possibly caused by the oxidative stress due to the cigarette 

smoke.  

 

 

5.3 COPD involves more than just lungs  

 

Many patients with chronic obstructive pulmonary disease (COPD) suffer from 

exercise intolerance. In about 40% of the patients exercise capacity is limited 

by alterations in skeletal muscle rather than pulmonary problems [191]. 

Increasing evidence suggests that COPD is a complex systemic disease 

involving more than just the airways and lungs [192]. COPD patients have high 

rates of comorbidities. These include cardiovascular disease and metabolic 

disorders which have been linked to the systemic component of COPD 

inflammation [190]. COPD does not just affect the lung resident cells but 

systemic cells as well. Data from the past shows evidence for increased 

systemic markers of oxidative stress in patients with COPD as measured by 

biochemical markers of lipid peroxidation [192]. 

 

While the in-vitro investigation of resident fibroblasts with cigarette smoke 

extract resulted in an increased state of senescence, circulating fibrocytes 

seemed unaffected by the cigarette smoke even at much higher 

concentrations. They rather showed enhanced proliferation, which was 

surprising. However, this is in correlation with the later findings of Wang et al, 

where they show increased activation of fibrocytes in patients with chronic 

obstructive asthma through an epidermal growth factor receptor-dependent 

pathway [193]. As this work aimed to focus on cellular senescence, circulating 

fibrocytes were not further pursued. 
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5.4 An in-vitro model of cellular senescence 

 

In order to investigate the relationship between cigarette smoke, DNA damage 

and senescence, an in-vitro model of cellular senescence was established and 

validated. To this end, senescent cells were established by subjecting the cells 

to hydrogen peroxide. Using common molecular markers of senescence like 

its morphology, SA ß-gal assay and SAHF formation[29, 69, 106, 119, 194, 

195] it was further confirmed that the cigarette smoke induced cells in our 

experimental model generated senescent cells. 

 

5.5 β-D Galactosidase activity as a marker of senescence 

 

The most widely used biomarker for senescent and aging cells is senescence-

associated beta-galactosidase (SA-beta-gal), which is defined as beta-

galactosidase activity detectable at pH 6.0 in senescent cells[31]. SA-β-gal 

activity is expressed from GLB1, the gene encoding lysosomal β-D-

galactosidase, the activity of which is typically measured at acidic pH 4.5. 

Lysosomal β-galactosidase displays maximal activity between pH 4.0 and 4.5 

but markedly lower activity at pH 6.0[196]. In fact, β-galactosidase activity is 

not detectable in proliferating cells by in situ staining with X-gal at pH 6.0, the 

conditions used to detect SA-β-gal activity, even though lysosomal β-

galactosidase activity is readily detectible in these cells at acidic pH. 

Nevertheless, based on indirect physiological experiments, it has been 

proposed that increased lysosomal-β-galactosidase activity in senescent cells 

accounts for SA-β-gal activity [33]. Specifically, the levels of total cellular β-

galactosidase activity is higher in late-passage compared to early-passage 

cells at pH 4.5 as well as at pH 6.0, and maximal β-galactosidase activity is 

measurable at low pH in both early- and late-passage cells[33, 197-200]. 

Furthermore, the number and size of lysosomes increase in cells at late 

passage[201, 202]. These results suggest that lysosomal β-galactosidase 

activity increases in senescent cells due to increased lysosome content, 

surpassing a threshold level, so that it is detectable at the suboptimal pH 6.0 

[33, 199].  
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Cells treated with cigarette smoke extract or hydrogen peroxide both contained 

higher lysosomal content as evident from lysosomal β-galactosidase activity 

that  were detected by the formation of a perinuclear blue precipitate. Bright 

field microscopy of stained cells also revealed significant differences. While 

the control cells displayed normal spindly fibroblasts morphology, the 

senescent cells possessed enlarged, flattened shape with prominent vacuoles.  

 

5.6 Senescent Associated Heterochromatin Foci (SAHF) 

 

In addition to a variety of well characterized morphological and biochemical 

changes, senescent cells displays profound changes in its chromatin 

structure. It has been established that senescent cells exhibit excessive 

heterochromatization [203, 204]. The changed chromatin architecture during 

cellular senescence plays a very important role in the senescence program. 

This change in chromatin architecture in senescent cells could be visible at 

the global level when senescent cells are stained with 4′-6-Diamidino-2-

phenylindole (DAPI). Proliferating cells exhibit a diffuse distribution of DNA 

throughout the cell nucleus. However in DAPI-stained senescent cells, 

punctate DNA foci become visible (Figure 14). These foci have been 

described as heterochromatic (so-called senescent associated 

heterochromatin foci (SAHF) [205]. Each SAHF focus in a senescent cell is 

thought to represent an individual chromosome [206, 207]. It has also been 

reported that SAHF do not contain pericentromeres and telomeres, pointing to 

massive heterochromatization of euchromatin in senescent cell [203, 206-

208]. Formation of SAHF has been reported by some to be wholly or partly 

dependent on major effectors of senescence, such as pRB and p53 [203, 

208]. There is large-scale reorganization and heterochromatization during 

formation of SAHF in senescent cells. It has been proposed specifically, that 

the formation of facultative heterochromatin plays an important role in 

mediating several aspects of senescence, including the repression of 

proliferation genes and limiting the DNA damage response [207, 208]. 

Therefore, the heterochromatic modifications induced by cigarette smoke 

extract were investigated in this study. Formation of SAHF was clearly 
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noticeable upon DAPI staining in the CSE treated cells. This suggested that 

the cigarette smoke extract also led to a change in the chromatin landscape 

of the cell. 

 

5.7 Cigarette smoke induce DNA double strand breaks 

 

Subsequently, DNA damage profiles for the respective senescence model 

were investigated. It was found that the senescence induced in our model 

involved DNA double strand breaks. 53 BP1 is a DNA repair protein that is 

known to be recruited at the site of DNA double strand breaks at punctate 

nuclear foci [66, 209]. Our results clearly showed such formation of DNA 

double strand break foci upon cigarette smoke exposure. We also 

investigated for p21 and found that it was expressed more in those cells that 

had more DNA double strand break (DSB) foci [210]. While we noted DNA 

DSB foci in more number of cells, p21 expression was limited to those cells 

which had more punctuate foci of 53 BP1. In other words, not all the cells that 

had 53 BP1 foci, showed increased levels of p21 but all the cells that had 

increased p21 were 53BP1 positive. These results pointed out, that while a 

low level of DNA damage could be self-repaired [211] and the cell does not 

express cell cycle inhibitors, higher expression of p21 for the required cell 

cycle halt occurs only above a threshold level of DNA damage, which was 

induced through the cigarette smoke. Investigating γH2AX levels and the 

presence of heterochromatin protein 1 in the cells upon CSE treatment 

showed, that the γH2AX foci were co-localized with heterochromatin protein 1 

[212], thereby demonstrating the validity of γH2AX as a biomarker. 

 

5.8 Importance of the in-vitro study  

 

An in-vitro model to study the various effects induced by cigarette smoke 

provides an easy, efficient and reproducible method of assessing biological 

changes, which may occur inside the cells. These results could then be 

extrapolated to animal models of cigarette smoke induced disease to 
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investigate any similarities and address number of questions. Detection of 

premature senescence by β-gal or immunofluorescence based (C12FDZ) 

assay could be used for measuring the number of senescent cells. Since 

premature cellular senescence in general could be mediated by several 

factors, it was interesting to understand if persistent DNA damage, that could 

lead to SASP response and hence inflammation, indeed accumulated upon 

chronic exposure to cigarette smoke over a long period of time in mice model 

of emphysema. This could let us understand, if DNA damage indeed may be 

linked to premature cellular senescence of alveolar cells in case of COPD. 

Detection of DNA damage and its quantification could be in addition also 

useful as a prognostic marker of COPD progression.  

 

To sum up the in-vitro data, significantly increased numbers of senescent cells 

upon cigarette smoke extract treatment of human lung fibroblasts were found. 

Cellular senescence could be successfully assessed by staining for β-

galactosidase and evaluation of senescence associated heterochromatin foci 

(SAHF), reflecting condensed chromatin, in the nuclei. DNA double strand 

breaks could be demonstrated and quantified by up regulated γH2AX, 53-

BP1and it’s quantification. Cell cycle arrest could be demonstrated by 

upregulation of p21 at protein level. In-vitro, senescence of lung fibroblasts 

could be induced by 100uM H2O2 as well as by 1% cigarette smoke extract. 

PBMC derived circulating fibrocytes were rather stimulated in growth 

by H2O2 than driven towards senescence. The presence of γH2AX foci in 

fibroblast cells was associated with, apoptosis and pro-inflammatory 

phenotypic changes. The results of this study also showed that the γH2AX foci 

were co-localized with DNA damage thereby demonstrating the validity of 

γH2AX number as a biomarker of DNA damage. 

 

5.9 Studies in the cigarette smoke induced mouse 

emphysema model 

 

As chronic tobacco smoke exposure is regarded as the major cause of the 

disease, chronic cigarette smoke exposure of mice [142][213] has been 
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investigated for a correlation of induction of emphysema and appearance of 

DNA damage over time. Investigation of DNA damage and cell cycle 

inhibition was done in mice exposed for 2, 6 or 8 month to cigarette smoke. 

 

Remarkably, the in-vivo results were in close correlation to the in-vitro results. 

The in-vivo model displayed accumulating DNA damage over time shown by 

γH2AX and 53BP1 levels in the lung sections. Immunofluorescence-based 

assays of γH2AX provide a sensitive, efficient and reproducible method of 

measuring the number of DSBs. Since persistence of γH2AX foci after the 

initial induction of DNA DSBs indicates, that some of the damage remains 

unrepaired, the γH2AX foci is widely used as a biomarker of DNA damage in 

various tissues[214-217]. In the present study, significantly increased 

numbers of γH2AX foci were detected in the alveolar cells. The presence of 

γH2AX foci in these cells was associated with cellular senescence. Western 

blotting is commonly accepted as the gold- standard method for the accurate 

determination of protein levels. We verified the p21 levels with western 

blotting and found that p21 indeed was upregulated upon cigarette smoke 

exposure in the lungs. 

 

5.10  Knocking down of ATM diminished IL6 release upon 

cigarette smoke exposure 

 

The DNA damage response facilitates recognition of DNA damage sites and 

initiates the desired cellular programs to maintain the genomic integrity [218]. 

The cellular programs initiated by DDR ranges from cell cycle checkpoints 

regulation, transcription, translation, DNA repair, metabolism to cell fate 

decisions like cellular senescence or apoptosis. Ataxia telangiectasia mutated 

ATM (Kinase), a master controller of the signal transduction, is central to the 

DNA damage response [219, 220]. Evidence suggests, that the ATM also is 

the key regulator of oxidative stress induced vascular endothelial cell 

senescence [221].  

Though only a subset of SASP factors is driven by DDR signalling [67] it 

becomes very important to understand the role of DDR signalling in SASP 
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response as the subset of SASP includes IL-6 and IL-8. The cytokine IL-6 

becomes particularly interesting for the ability of senescent cells to promote 

cancel cell invasion [62].   

Our results suggest that cigarette smoke exposure induces IL-6 release 

representing inflammation during senescence. This release of IL-6 could be 

suppressed by knocking down ATM.  

 

 

 

5.11 Conclusions 

 

The results of the present study suggest that DNA damage, in particular DNA-

doublestrand breaks DSBs caused by cigarette smoke, contributes to the 

molecular pathogenesis of emphysema by inducing cellular senescence, 

apoptosis and pro-inflammatory responses.  

 

The findings may imply, that the DNA damage in the lungs of cigarette smoke 

exposed mice are amplified and/or remain unrepaired, which results in gradual 

accumulation of DNA damage in their lungs. The current theory of the 

pathogenesis of COPD suggests that alveolar destruction is caused by 

interactions between several pathobiological processes, including 

inflammation, apoptosis, cell senescence and oxidative stress. By carefully 

analyzing correlations at both the tissue and cellular levels, we found that DNA 

damage is correlated with apoptosis, cellular senescence and pro-

inflammatory phenotypic changes, thereby underscoring DNA double strand 

breaks as a molecular link between the pathobiological processes thought to 

be involved in the alveolar destruction in COPD. 

 

As a limitation of the study it may be that some of the DNA damage observed 

in may also have been the result of apoptosis, cell senescence and 

inflammation rather than their cause. However, it is well established that DNA 
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damage, in particular DSBs, is a strong inducer of apoptosis, cell senescence 

and pro-inflammatory responses in various types of cells and tissues. 

Furthermore, It has been suggested that activation of an ATM/γH2AX-

mediated signaling pathway in response to DSBs, which are of irreparable 

nature, may lead to cellular senescence or apoptosis, thereby eliminating the 

DNA-damaged cells from the tissue and preventing their oncogenic 

transformation [214]. However, the detrimental factor that decides the fate to 

apoptosis or senescence isn’t known. In the present study, we showed that 

DSBs caused by cigarette smoke exposure in mice go along with pro-

inflammatory responses, such as NF kappa B activation, suggesting that 

DSBs may be linked to pro-inflammatory responses. These lines of evidence, 

although not wholly conclusive, support the hypothesis that DNA damage 

plays a causative role in the apoptosis, cell senescence and pro-inflammatory 

responses observed in the lungs of COPD patients. However, future studies 

on animal models of COPD will be needed to show whether this view is 

correct. 

 

Based on the results of the present study, we hypothesize that the cell 

senescence and inflammation, which are thought to represent the 

pathobiological processes of COPD is at least partly linked to DNA damage, 

particularly double strand breaks.  A model is proposed which starts with 

cigarette smoke inducing DNA double strand breaks and activation of DNA 

damage response. The DNA damage response acts to repair the damage or 

drive the cell to arrest depending upon the extent of DNA damage. Chronic or 

persistent DNA damage lead the cell to senescence or apoptosis where as a 

transient DNA damage is repaired by the cell [67]. The DNA damage also 

triggers an inflammatory response. Cellular senescence on the other hand 

also secretes myriads of cytokines further reinforcing inflammation. Hence 

there is an establishment of a vicious loop where senescescent cells reinforce 

inflammation through autocrine and paracrine pathways. Traditional theory of 

the pathogenesis of COPD suggests that activation of inflammation by inhaled 

cigarette smoke and other pollutants plays a central role in airway wall 

thickening, alveolar destruction, airspace enlargement and vascular 

remodeling[222]. Our hypothesis that DNA damage underlies the molecular 
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mechanism of COPD seems to suggest answers to several important 

questions that the traditional theory does not address. The first question is, 

why does COPD take decades to develop? The answer based on our DNA 

damage hypothesis would be that the DNA damage caused by long-term 

smoking needs to accumulate over several decades before COPD develops, 

by analogy to the development of lung cancer. The second question is, why 

does inflammation persist after ceasing to smoke? The answer is that it 

probably persists because smoking-induced DNA damage persists long after 

smoking cessation, as is reported previously [3, 4]. The third question is why 

do corticosteroids have little impact on the inflammation in COPD? The 

answer may be that corticosteroids do not restore the DNA damage. Finally, 

why is it that some smokers develop COPD while others do not and, why are 

COPD smokers more prone to develop lung cancer than non-COPD smokers? 

The answer to the last two questions would be that the greater susceptibility to 

DNA damage due to smoking may be genetically determined just as greater 

susceptibility to smoking-induced lung cancer, so that smokers who are more 

susceptible to DNA damage may be predisposed to both COPD and lung 

cancer. However, the results of the current study do not answer all these 

question; longitudinal studies will be needed that include a larger number of 

COPD patients with different stages of disease severity. 
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Figure 27 A hypothesis suggesting cigarette smoke induced COPD involving DNA 

damage mediated premature cellular senescence.  

Cigarette smoke causes DNA damage (in particular DNA double strand breaks). If the 
damage is persistent, DNA damage induces premature senescence and a pro-
inflammatory response of the lung resident cells. The senescencent cells further 
resleases SASP which reinforces inflammation all of which contribute to the 
development of COPD.  

 

In conclusion, the results of the present study strongly suggest that DNA 

damage at least partly underlies the molecular pathogenesis of COPD. The 

DNA damage hypothesis may help to better understand the pathogenetic 

mechanism of COPD and to target new drugs, such as drugs to prevent DNA 

damage and to modulate responses to the DNA damage that leads to the 

pathobiological processes of COPD and emphysema. 
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6 Summary  
 

Chronic obstructive pulmonary disease (COPD) is an age-associated disease 

caused mainly by cigarette smoking. Deregulated repair, tissue destruction, 

inflammation and lung regression are the hallmarks of COPD. Cellular 

senescence is a signal transduction program leading to irreversible cell cycle 

arrest. The growth arrest can be triggered by several different mechanisms, 

including recognition of DNA double-strand breaks by cellular sensors, leading 

to the activation of cell cycle checkpoint responses and recruitment of DNA 

repair machinery to damaged foci. The execution of regenerative programs in 

lung and remote organs is closely linked to viability or senescence of resident 

cells as well as progenitor cells derived from the circulation. It was proposed 

here, that COPD might be a disease of premature lung senescence and 

therefore this work aimed to decipher markers of DNA damage, repair and 

senescence in lung cell culture and a murine model of cigarette smoke 

induced emphysema.  

 

In-vitro, cellular senescence could be successfully assessed by staining for β-

galactosidase and evaluation of senescence associated heterochromatin foci 

(SAHF), reflecting condensed chromatin, in the nuclei. DNA double strand 

breaks and cell cycle arrest could be demonstrated by up regulated 53-BP1, 

γH2AX and p21. Paraffin lung sections from mice exposed to cigarette smoke 

were investigated for markers of cellular senescence, DNA damage and 

repair. Markers of DNA double strand breaks and senescence were up 

regulated in a time dependent manner, showing a correlation of DNA damage 

and emphysema progression. These results indicated that the pulmonary 

senescence in COPD is linked with persistent DNA double-strand breaks due 

to prolonged cigarette smoking.  
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7 Zusammenfassung  
 

Die chronisch obstruktive Lungenerkrankung (COPD ) ist eine altersbedingte 

Krankheit, die vor allem durch Inhalation von Zigarettenrauch oder anderen 

Rauchgasen verursacht wird. Eingeschränkte Geweberegeneration, verstärkte 

Inflammation und Lungenregression sind zentral an der Pathogenese der 

COPD beteiligt. Zelluläre Seneszenz ist ein Signaltransduktionsprogramm, 

welches zu irreversiblem Zellzyklusarrest führt. Die Wachstumshemmung 

kann durch viele verschiedene Mechanismen ausgelöst werden. Dazu 

gehören die Erkennung von DNA-Doppelstrangbrüchen durch zelluläre 

Sensoren, welche zur Aktivierung von Zellzykluskontrollproteinen führen und 

die Rekrutierung von DNA-Reparaturmaschinerie zu den schadhaften DNA-

Loci initiieren. Die Ausführung des regenerativen Programms der Lunge ist 

eng an Viabilität bzw. Seneszenz der residenten Zellen sowie Vorläuferzellen 

gebunden. Zur Untersuchung der zellulären Seneszenz als Mechanismus der 

Entstehung der COPD adressierte diese Arbeit die Induktion von DNA 

Doppelstrangbrüchen durch Zigarettenrauchextrakt in-vitro, sowie die 

Korrelation von Seneszenz, DNA Doppelstrangbrüchen und 

Emphysemprogression in einem Mausmodell des Zigarettenrauch- induzierten 

Lungenemphysems.  

Zelluläre Seneszenz konnte erfolgreich anhand der β –Galaktosidase Aktivität 

und der Analyse der Seneszenz-assoziierten Heterochromatin-Foci (SAHF) in 

den Zellkernen beurteilt werden. DNA-Doppelstrangbrüche und 

Zellzyklusarrest wurden durch die spezifische Rekrutierung von 53-BP1 und 

γH2AX an die DNA-Reparaturpunkte sowie durch Expression des 

Zellzyklusinhibitors p21 nachgewiesen. Paraffinschnitte von Lungen 

Zigarettenrauch-exponierter Mäuse wurden in Hinsicht auf Seneszenzmarker, 

DNA-Doppelstrangreparatur und Zellzyklusinhibition untersucht. Marker der 

DNA-Doppelstrangbrüche und Seneszenz waren nach längerer 

Rauchexposition in signifikant mehr Zellen exprimiert, als in den gleichaltrigen 

Kontrolltieren. Diese Ergebnisse zeigen, dass DNA Doppelstrangbrüche durch 

Zigarettenrauch-Inhaltsstoffe ausgelöst werden und mit zunehmendem 

experimentellem Emphysem verstärkt auftreten.  



 

104 
 

8 References 

 

1. Barnes PJ. Chronic Obstructive Pulmonary Disease. New England Journal of 
Medicine 2000: 343(4): 269-280. 
2. Houghton AM. Mechanistic links between COPD and lung cancer. Nature reviews 
Cancer 2013: 13(4): 233-245. 
3. Hausen T. [New GOLD guidelines for the therapy of COPD]. Pneumologie 2012: 
66(12): 768. 
4. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the 
diagnosis, management, and prevention of chronic obstructive pulmonary disease. 
http://www.goldcopd.org 2007. 

5. Raherison C, Girodet PO. Epidemiology of COPD. European respiratory review : an 
official journal of the European Respiratory Society 2009: 18(114): 213-221. 
6. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 
2002 to 2030. PLoS medicine 2006: 3(11): e442. 
7. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic 
obstructive pulmonary disease. Proceedings of the American Thoracic Society 2005: 2(1): 50-
60. 
8. Hecht SS. Tobacco smoke carcinogens and lung cancer. Journal of the National 
Cancer Institute 1999: 91(14): 1194-1210. 
9. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, 
peroxynitrate, and peroxynitrite. Annals of the New York Academy of Sciences 1993: 686: 
12-27; discussion 27-18. 
10. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its 
toxicological implications. Environmental health perspectives 1985: 64: 111-126. 
11. Hagstad S, Bjerg A, Ekerljung L, Backman H, Lindberg A, Rönmark E, Lundbäck B. 
PAssive smoking exposure is associated with increased risk of copd in never smokers. Chest 
2014: 145(6): 1298-1304. 
12. Dube MFG, C.R. . "Methods of Collection of Smoke for Analytical Purposes.". 
1982.: Bates: 503556519-. 
13. Ray NC, Alcaraz L. Muscarinic antagonist-β-adrenergic agonist dual pharmacology 
molecules as bronchodilators: a patent review. Expert Opinion on Therapeutic Patents 2009: 
19(1): 1-12. 
14. Lipworth BJ. Phosphodiesterase-4 inhibitors for asthma and chronic obstructive 
pulmonary disease. Lancet 2005: 365(9454): 167-175. 
15. Kerstjens HA, Timens W. Phosphodiesterase 4 inhibitors: antiinflammatory 
therapy for chronic obstructive pulmonary disease at last? Am J Resp Crit Care 2003: 168(8): 
914-915. 
16. Sugi K, Kaneda Y, Nawada K, Fujita N, Ueda K, Nawada S, Esato K. [Efficacy of 
thoracoscopic pulmonary reconstruction in diffuse pulmonary emphysema--selection of 
surgical procedures based on Xe SPECT findings]. [Zasshi] [Journal] Nihon Kyobu Geka 
Gakkai 1997: 45(3): 372-373. 
17. Cooper JD. The history of surgical procedures for emphysema. The Annals of 
thoracic surgery 1997: 63(2): 312-319. 
18. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. 
Experimental cell research 1961: 25: 585-621. 



 

105 
 

19. Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. 
Experimental cell research 1965: 37: 614-636. 
20. Olovnikov AM. [Principle of marginotomy in template synthesis of 
polynucleotides]. Doklady Akademii nauk SSSR 1971: 201(6): 1496-1499. 
21. Watson JD. Origin of concatemeric T7 DNA. Nature: New biology 1972: 239(94): 
197-201. 
22. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human 
fibroblasts. Nature 1990: 345(6274): 458-460. 
23. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, 
Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated 
senescence. Nature 2003: 426(6963): 194-198. 
24. Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, Bowman ED, 
Mathe EA, Schetter AJ, Pine SR, Ji H, Vojtesek B, Bourdon JC, Lane DP, Harris CC. p53 
isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular 
senescence. Nature cell biology 2009: 11(9): 1135-1142. 
25. d'Adda di Fagagna F. Living on a break: cellular senescence as a DNA-damage 
response. Nature reviews Cancer 2008: 8(7): 512-522. 
26. Comings DE, Okada TA. Electron microscopy of human fibroblasts in tissue culture 
during logarithmic and confluent stages of growth. Experimental cell research 1970: 61(2): 
295-301. 
27. Lipetz J, Cristofalo VJ. Ultrastructural changes accompanying the aging of human 
diploid cells in culture. Journal of ultrastructure research 1972: 39(1): 43-56. 
28. Cristofalo VJ, Kritchevsky D. Cell size and nucleic acid content in the diploid human 
cell line WI-38 during aging. Medicina experimentalis International journal of experimental 
medicine 1969: 19(6): 313-320. 
29. Mitsui Y, Schneider EL. Increased nuclear sizes in senescent human diploid 
fibroblast cultures. Experimental cell research 1976: 100(1): 147-152. 
30. Brunk U, Ericsson JL, Ponten J, Westerma.B. Residual Bodies and Aging in Cultured 
Human Glia Cells - Effect of Entrance into Phase Iii and Prolonged Periods of Confluence. 
Experimental cell research 1973: 79(1): 1-14. 
31. Dimri GP, Lee XH, Basile G, Acosta M, Scott C, Roskelley C, Medrano EE, Linskens 
M, Rubelj I, Pereirasmith O, Peacocke M, Campisi J. A Biomarker That Identifies Senescent 
Human-Cells in Culture and in Aging Skin in-Vivo. P Natl Acad Sci USA 1995: 92(20): 9363-
9367. 
32. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, 
Hwang ES. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging 
Cell 2006: 5(2): 187-195. 
33. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-
galactosidase reflects an increase in lysosomal mass during replicative ageing of human 
endothelial cells. J Cell Sci 2000: 113 ( Pt 20): 3613-3622. 
34. Effects of tocopherol and deprenyl on the progression of disability in early 
Parkinson's disease. The Parkinson Study Group. The New England journal of medicine 1993: 
328(3): 176-183. 
35. Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, 
Beausejour CM, Kim SH, Davalos AR, Campisi J. DNA-SCARS: distinct nuclear structures that 
sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J 
Cell Sci 2011: 124(1): 68-81. 
36. Young AR, Narita M. SASP reflects senescence. EMBO reports 2009: 10(3): 228-
230. 



 

106 
 

37. Sherr CJ, DePinho RA. Cellular senescence: mitotic clock or culture shock? Cell 
2000: 102(4): 407-410. 
38. Prowse KR, Greider CW. Developmental and tissue-specific regulation of mouse 
telomerase and telomere length. P Natl Acad Sci USA 1995: 92(11): 4818-4822. 
39. Kipling D, Cooke HJ. Hypervariable ultra-long telomeres in mice. Nature 1990: 
347(6291): 400-402. 
40. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured 
human diploid cells. Nature 1977: 267(5610): 423-425. 
41. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN. Oxidative DNA damage and 
senescence of human diploid fibroblast cells. P Natl Acad Sci USA 1995: 92(10): 4337-4341. 
42. Yuan H, Kaneko T, Matsuo M. Relevance of oxidative stress to the limited 
replicative capacity of cultured human diploid cells: the limit of cumulative population 
doublings increases under low concentrations of oxygen and decreases in response to 
aminotriazole. Mechanisms of ageing and development 1995: 81(2-3): 159-168. 
43. Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE. 
Putative telomere-independent mechanisms of replicative aging reflect inadequate growth 
conditions. Genes & development 2001: 15(4): 398-403. 
44. Bennett DC, Medrano EE. Molecular regulation of melanocyte senescence. 
Pigment cell research / sponsored by the European Society for Pigment Cell Research and the 
International Pigment Cell Society 2002: 15(4): 242-250. 
45. Bennett DC. Human melanocyte senescence and melanoma susceptibility genes. 
Oncogene 2003: 22(20): 3063-3069. 
46. Tanaka N, Ishihara M, Kitagawa M, Harada H, Kimura T, Matsuyama T, Lamphier 
MS, Aizawa S, Mak TW, Taniguchi T. Cellular commitment to oncogene-induced 
transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 1994: 77(6): 
829-839. 
47. Dannenberg JH, van Rossum A, Schuijff L, te Riele H. Ablation of the 
retinoblastoma gene family deregulates G(1) control causing immortalization and increased 
cell turnover under growth-restricting conditions. Genes & development 2000: 14(23): 3051-
3064. 
48. Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, Theodorou E, Jacks T. 
Targeted disruption of the three Rb-related genes leads to loss of G(1) control and 
immortalization. Genes & development 2000: 14(23): 3037-3050. 
49. Mathon NF, Malcolm DS, Harrisingh MC, Cheng L, Lloyd AC. Lack of replicative 
senescence in normal rodent glia. Science 2001: 291(5505): 872-875. 
50. Land H, Parada LF, Weinberg RA. Tumorigenic conversion of primary embryo 
fibroblasts requires at least two cooperating oncogenes. Nature 1983: 304(5927): 596-602. 
51. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes 
premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997: 
88(5): 593-602. 
52. Wei S, Wei S, Sedivy JM. Expression of catalytically active telomerase does not 
prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal 
human fibroblasts. Cancer research 1999: 59(7): 1539-1543. 
53. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, 
Dorken B, Jenuwein T, Schmitt CA. Oncogene-induced senescence as an initial barrier in 
lymphoma development. Nature 2005: 436(7051): 660-665. 
54. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, 
Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP. Crucial role of p53-dependent cellular 
senescence in suppression of Pten-deficient tumorigenesis. Nature 2005: 436(7051): 725-
730. 



 

107 
 

55. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, 
Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M. Tumour biology: senescence in 
premalignant tumours. Nature 2005: 436(7051): 642. 
56. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst 
CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS. BRAFE600-associated senescence-like cell 
cycle arrest of human naevi. Nature 2005: 436(7051): 720-724. 
57. Collado M, Serrano M. The power and the promise of oncogene-induced 
senescence markers. Nature reviews Cancer 2006: 6(6): 472-476. 
58. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, 
Johannessen CM, Hollstein PE, MacCollin M, Cichowski K. A negative feedback signaling 
network underlies oncogene-induced senescence. Cancer cell 2006: 10(6): 459-472. 
59. Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C, Signoretti S, 
Kaelin WG, Jr. VHL loss actuates a HIF-independent senescence programme mediated by Rb 
and p400. Nature cell biology 2008: 10(3): 361-369. 
60. Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects 
of the aging stroma. The international journal of biochemistry & cell biology 2002: 34(11): 
1401-1414. 
61. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of 
replicative senescence. Current biology : CB 1999: 9(17): 939-945. 
62. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, 
Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous 
functions of oncogenic RAS and the p53 tumor suppressor. PLoS biology 2008: 6(12): 2853-
2868. 
63. Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. 
Nature reviews Cancer 2009: 9(2): 81-94. 
64. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to 
good cells. Nat Rev Mol Cell Biol 2007: 8(9): 729-740. 
65. Rodier F, Campisi J. Four faces of cellular senescence. The Journal of cell biology 
2011: 192(4): 547-556. 
66. Abraham RT. Checkpoint signalling: focusing on 53BP1. Nature cell biology 2002: 
4(12): E277-279. 
67. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, 
Campeau E, Davalos AR, Campisi J. Persistent DNA damage signalling triggers senescence-
associated inflammatory cytokine secretion. Nature cell biology 2009: 11(8): 973-979. 
68. Ohtani N, Yamakoshi K, Takahashi A, Hara E. The p16<SUP>INK4a</SUP>-RB 
pathway : molecular link between cellular senescence and tumor suppression. The Journal 
of Medical Investigation 2004: 51(3,4): 146-153. 
69. Campisi J. Senescent cells, tumor suppression, and organismal aging: good 
citizens, bad neighbors. Cell 2005: 120(4): 513-522. 
70. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. 
Nature reviews Cancer 2010: 10(1): 51-57. 
71. Campisi J. Cellular senescence: putting the paradoxes in perspective. Current 
opinion in genetics & development 2011: 21(1): 107-112. 
72. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, 
Lowe SW. Senescence of activated stellate cells limits liver fibrosis. Cell 2008: 134(4): 657-
667. 
73. Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and 
restricts fibrosis in cutaneous wound healing. Nature cell biology 2010: 12(7): 676-685. 
74. Karrasch S, Holz O, Jorres RA. Aging and induced senescence as factors in the 
pathogenesis of lung emphysema. Resp Med 2008: 102(9): 1215-1230. 



 

108 
 

75. Vogelmeier C, Bals R. Chronic obstructive pulmonary disease and premature 
aging. Am J Resp Crit Care 2007: 175(12): 1217-1218. 
76. Alder JK, Guo NN, Kembou F, Parry EM, Anderson CJ, Gorgy AI, Walsh MF, Sussan 
T, Biswal S, Mitzner W, Tuder RM, Armanios M. Telomere Length Is a Determinant of 
Emphysema Susceptibility. Am J Resp Crit Care 2011: 184(8): 904-912. 
77. Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar 
epithelial cells. American journal of respiratory cell and molecular biology 2004: 31(6): 643-
649. 
78. Muller KC, Welker L, Paasch K, Feindt B, Erpenbeck VJ, Hohlfeld JM, Krug N, 
Nakashima M, Branscheid D, Magnussen H, Jorres RA, Holz O. Lung fibroblasts from patients 
with emphysema show markers of senescence in vitro. Respiratory research 2006: 7: 32. 
79. Holz O, Zuhlke I, Jaksztat E, Muller KC, Welker L, Nakashima M, Diemel KD, 
Branscheid D, Magnussen H, Jorres RA. Lung fibroblasts from patients with emphysema 
show a reduced proliferation rate in culture. The European respiratory journal : official 
journal of the European Society for Clinical Respiratory Physiology 2004: 24(4): 575-579. 
80. Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome? 
Lancet 2007: 370(9589): 797-799. 
81. Agusti A. Systemic effects of chronic obstructive pulmonary disease: what we 
know and what we don't know (but should). Proceedings of the American Thoracic Society 
2007: 4(7): 522-525. 
82. Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function 
associated with ageing. The European respiratory journal : official journal of the European 
Society for Clinical Respiratory Physiology 1999: 13(1): 197-205. 
83. Fletcher C, Peto R. The natural history of chronic airflow obstruction. British 
medical journal 1977: 1(6077): 1645-1648. 
84. Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, Van de 
Woestijne KP. The senile lung. Comparison with normal and emphysematous lungs. 2. 
Functional aspects. Chest 1992: 101(3): 800-809. 
85. Teramoto S, Ishii M. Aging, the aging lung, and senile emphysema are different. 
Am J Resp Crit Care 2007: 175(2): 197-198; author reply 198. 
86. Aizen E, Gilhar A. Smoking effect on skin wrinkling in the aged population. 
International journal of dermatology 2001: 40(7): 431-433. 
87. Patel BD, Loo WJ, Tasker AD, Screaton NJ, Burrows NP, Silverman EK, Lomas DA. 
Smoking related COPD and facial wrinkling: is there a common susceptibility? Thorax 2006: 
61(7): 568-571. 
88. Just M, Ribera M, Monso E, Lorenzo JC, Ferrandiz C. Effect of smoking on skin 
elastic fibres: morphometric and immunohistochemical analysis. The British journal of 
dermatology 2007: 156(1): 85-91. 
89. Bernhard D, Moser C, Backovic A, Wick G. Cigarette smoke--an aging accelerator? 
Experimental gerontology 2007: 42(3): 160-165. 
90. Gessner C, Scheibe R, Wotzel M, Hammerschmidt S, Kuhn H, Engelmann L, 
Hoheisel G, Gillissen A, Sack U, Wirtz H. Exhaled breath condensate cytokine patterns in 
chronic obstructive pulmonary disease. Resp Med 2005: 99(10): 1229-1240. 
91. Obot C, Lee K, Fuciarelli A, Renne R, McKinney W. Characterization of mainstream 
cigarette smoke-induced biomarker responses in ICR and C57Bl/6 mice. Inhalation 
toxicology 2004: 16(10): 701-719. 
92. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory 
phenotype: the dark side of tumor suppression. Annual review of pathology 2010: 5: 99-
118. 



 

109 
 

93. de Boer WI, Sont JK, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS. 
Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in 
COPD. The Journal of pathology 2000: 190(5): 619-626. 
94. Traves SL, Culpitt SV, Russell RE, Barnes PJ, Donnelly LE. Increased levels of the 
chemokines GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax 
2002: 57(7): 590-595. 
95. Balbi B, Bason C, Balleari E, Fiasella F, Pesci A, Ghio R, Fabiano F. Increased 
bronchoalveolar granulocytes and granulocyte/macrophage colony-stimulating factor 
during exacerbations of chronic bronchitis. The European respiratory journal : official journal 
of the European Society for Clinical Respiratory Physiology 1997: 10(4): 846-850. 
96. Kristan SS, Marc MM, Kern I, Flezar M, Suskovic S, Kosnik M, Korosec P. Airway 
angiogenesis in stable and exacerbated chronic obstructive pulmonary disease. 
Scandinavian journal of immunology 2012: 75(1): 109-114. 
97. de Boer WI, Hau CM, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS. 
Expression of epidermal growth factors and their receptors in the bronchial epithelium of 
subjects with chronic obstructive pulmonary disease. American journal of clinical pathology 
2006: 125(2): 184-192. 
98. Wang S, Moerman EJ, Jones RA, Thweatt R, Goldstein S. Characterization of IGFBP-
3, PAI-1 and SPARC mRNA expression in senescent fibroblasts. Mechanisms of ageing and 
development 1996: 92(2-3): 121-132. 
99. Grillari J, Hohenwarter O, Grabherr RM, Katinger H. Subtractive hybridization of 
mRNA from early passage and senescent endothelial cells. Experimental gerontology 2000: 
35(2): 187-197. 
100. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF 
Induces Senescence and Apoptosis through Pathways Mediated by the Secreted Protein 
IGFBP7. Cell 2008: 132(3): 363-374. 
101. Stamenkovic I. Extracellular matrix remodelling: the role of matrix 
metalloproteinases. The Journal of pathology 2003: 200(4): 448-464. 
102. West MD, Pereira-Smith OM, Smith JR. Replicative senescence of human skin 
fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. 
Experimental cell research 1989: 184(1): 138-147. 
103. Millis AJ, Hoyle M, McCue HM, Martini H. Differential expression of 
metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human 
fibroblasts. Experimental cell research 1992: 201(2): 373-379. 
104. Zeng G, Millis AJ. Differential regulation of collagenase and stromelysin mRNA in 
late passage cultures of human fibroblasts. Experimental cell research 1996: 222(1): 150-
156. 
105. Parrinello S, Coppe JP, Krtolica A, Campisi J. Stromal-epithelial interactions in aging 
and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 2005: 118(Pt 
3): 485-496. 
106. Liu D, Hornsby PJ. Senescent human fibroblasts increase the early growth of 
xenograft tumors via matrix metalloproteinase secretion. Cancer research 2007: 67(7): 
3117-3126. 
107. Finlay GA, O'Driscoll LR, Russell KJ, D'Arcy EM, Masterson JB, FitzGerald MX, 
O'Connor CM. Matrix metalloproteinase expression and production by alveolar 
macrophages in emphysema. Am J Resp Crit Care 1997: 156(1): 240-247. 
108. Betsuyaku T, Nishimura M, Takeyabu K, Tanino M, Venge P, Xu S, Kawakami Y. 
Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical 
emphysema. Am J Resp Crit Care 1999: 159(6): 1985-1991. 



 

110 
 

109. Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, Barnes PJ. Effect of 
high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic 
obstructive pulmonary disease. Am J Resp Crit Care 1999: 160(5 Pt 1): 1635-1639. 
110. Lim S, Roche N, Oliver BG, Mattos W, Barnes PJ, Chung KF. Balance of matrix 
metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in 
cigarette smokers. Regulation by interleukin-10. Am J Resp Crit Care 2000: 162(4 Pt 1): 
1355-1360. 
111. Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J, Barnes PJ. 
Release and activity of matrix metalloproteinase-9 and tissue inhibitor of 
metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive 
pulmonary disease. American journal of respiratory cell and molecular biology 2002: 26(5): 
602-609. 
112. Russell RE, Thorley A, Culpitt SV, Dodd S, Donnelly LE, Demattos C, Fitzgerald M, 
Barnes PJ. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, 
cysteine, and serine proteases. American journal of physiology Lung cellular and molecular 
physiology 2002: 283(4): L867-873. 
113. Cataldo D, Munaut C, Noel A, Frankenne F, Bartsch P, Foidart JM, Louis R. MMP-2- 
and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and 
chronic obstructive pulmonary disease. International archives of allergy and immunology 
2000: 123(3): 259-267. 
114. Beeh KM, Beier J, Kornmann O, Buhl R. Sputum matrix metalloproteinase-9, tissue 
inhibitor of metalloprotinease-1, and their molar ratio in patients with chronic obstructive 
pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Resp Med 2003: 
97(6): 634-639. 
115. Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 
2002: 3(12): 932-943. 
116. Comi P, Chiaramonte R, Maier JA. Senescence-dependent regulation of type 1 
plasminogen activator inhibitor in human vascular endothelial cells. Experimental cell 
research 1995: 219(1): 304-308. 
117. West MD, Shay JW, Wright WE, Linskens MH. Altered expression of plasminogen 
activator and plasminogen activator inhibitor during cellular senescence. Experimental 
gerontology 1996: 31(1-2): 175-193. 
118. Mu XC, Higgins PJ. Differential growth state-dependent regulation of plasminogen 
activator inhibitor type-1 expression in senescent IMR-90 human diploid fibroblasts. Journal 
of cellular physiology 1995: 165(3): 647-657. 
119. Mu XC, Staiano-Coico L, Higgins PJ. Increased transcription and modified growth 
state-dependent expression of the plasminogen activator inhibitor type-1 gene characterize 
the senescent phenotype in human diploid fibroblasts. Journal of cellular physiology 1998: 
174(1): 90-98. 
120. Martens JW, Sieuwerts AM, Bolt-deVries J, Bosma PT, Swiggers SJ, Klijn JG, 
Foekens JA. Aging of stromal-derived human breast fibroblasts might contribute to breast 
cancer progression. Thrombosis and haemostasis 2003: 89(2): 393-404. 
121. Xiao W, Tong WL, Ma DD. [Higher levels of urokinase plasminogen activator 
system components in the airways of chronic obstructive pulmonary disease patients]. 
Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of 
tuberculosis and respiratory diseases 2006: 29(11): 723-726. 
122. Di Stefano A, Maestrelli P, Roggeri A, Turato G, Calabro S, Potena A, Mapp CE, 
Ciaccia A, Covacev L, Fabbri LM, Saetta M. Upregulation of adhesion molecules in the 
bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Resp Crit Care 1994: 
149(3 Pt 1): 803-810. 



 

111 
 

123. Ishii Y. [Role of adhesion molecules in the pathogenesis of COPD]. Nihon rinsho 
Japanese journal of clinical medicine 1999: 57(9): 1965-1971. 
124. Popper HH, Pailer S, Wurzinger G, Feldner H, Hesse C, Eber E. Expression of 
adhesion molecules in allergic lung diseases. Virchows Archiv : an international journal of 
pathology 2002: 440(2): 172-180. 
125. To M, Ito K, Ausin PM, Kharitonov SA, Barnes PJ. Osteoprotegerin in sputum is a 
potential biomarker in COPD. Chest 2011: 140(1): 76-83. 
126. Lu SY, Chang KW, Liu CJ, Tseng YH, Lu HH, Lee SY, Lin SC. Ripe areca nut extract 
induces G1 phase arrests and senescence-associated phenotypes in normal human oral 
keratinocyte. Carcinogenesis 2006: 27(6): 1273-1284. 
127. Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ. Exhaled leukotrienes and 
prostaglandins in COPD. Thorax 2003: 58(7): 585-588. 
128. Jiang YJ, Lu B, Choy PC, Hatch GM. Regulation of cytosolic phospholipase A2, 
cyclooxygenase-1 and -2 expression by PMA, TNFalpha, LPS and M-CSF in human monocytes 
and macrophages. Molecular and cellular biochemistry 2003: 246(1-2): 31-38. 
129. Taha R, Olivenstein R, Utsumi T, Ernst P, Barnes PJ, Rodger IW, Giaid A. 
Prostaglandin H synthase 2 expression in airway cells from patients with asthma and chronic 
obstructive pulmonary disease. American journal of respiratory and critical care medicine 
2000: 161(2 Pt 1): 636-640. 
130. Rasoamanantena P, Thweatt R, Labat-Robert J, Goldstein S. Altered regulation of 
fibronectin gene expression in Werner syndrome fibroblasts. Experimental cell research 
1994: 213(1): 121-127. 
131. Kumazaki T, Kobayashi M, Mitsui Y. Enhanced expression of fibronectin during in 
vivo cellular aging of human vascular endothelial cells and skin fibroblasts. Experimental cell 
research 1993: 205(2): 396-402. 
132. Kranenburg AR, Willems-Widyastuti A, Moori WJ, Sterk PJ, Alagappan VK, de Boer 
WI, Sharma HS. Enhanced bronchial expression of extracellular matrix proteins in chronic 
obstructive pulmonary disease. American journal of clinical pathology 2006: 126(5): 725-
735. 
133. Sato I, Morita I, Kaji K, Ikeda M, Nagao M, Murota S. Reduction of nitric oxide 
producing activity associated with in vitro aging in cultured human umbilical vein 
endothelial cell. Biochemical and biophysical research communications 1993: 195(2): 1070-
1076. 
134. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, 
Finkel T. Ras proteins induce senescence by altering the intracellular levels of reactive 
oxygen species. The Journal of biological chemistry 1999: 274(12): 7936-7940. 
135. van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-
Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF. 
Enhanced peroxynitrite formation is associated with vascular aging. The Journal of 
experimental medicine 2000: 192(12): 1731-1744. 
136. Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA. Inhibition of 
p21-mediated ROS accumulation can rescue p21-induced senescence. The EMBO journal 
2002: 21(9): 2180-2188. 
137. Xin MG, Zhang J, Block ER, Patel JM. Senescence-enhanced oxidative stress is 
associated with deficiency of mitochondrial cytochrome c oxidase in vascular endothelial 
cells. Mechanisms of ageing and development 2003: 124(8-9): 911-919. 
138. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 
2000: 408(6809): 239-247. 
139. Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature 
2007: 448(7155): 767-774. 



 

112 
 

140. MacNee W. Oxidative stress and lung inflammation in airways disease. European 
journal of pharmacology 2001: 429(1-3): 195-207. 
141. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, 
the bad, and ugly. The American journal of physiology 1996: 271(5 Pt 1): C1424-1437. 
142. Seimetz M, Parajuli N, Pichl A, Veit F, Kwapiszewska G, Weisel FC, Milger K, 
Egemnazarov B, Turowska A, Fuchs B, Nikam S, Roth M, Sydykov A, Medebach T, Klepetko 
W, Jaksch P, Dumitrascu R, Garn H, Voswinckel R, Kostin S, Seeger W, Schermuly RT, 
Grimminger F, Ghofrani HA, Weissmann N. Inducible NOS inhibition reverses tobacco-
smoke-induced emphysema and pulmonary hypertension in mice. Cell 2011: 147(2): 293-
305. 
143. Chung KF. Cytokines as targets in chronic obstructive pulmonary disease. Current 
drug targets 2006: 7(6): 675-681. 
144. Korsgren M, Kallstrom L, Uller L, Bjerke T, Sundler F, Persson CG, Korsgren O. Role 
of macrophage migration inhibitory factor (MIF) in allergic and endotoxin-induced airway 
inflammation in mice. Mediators of inflammation 2000: 9(1): 15-23. 
145. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel 
JA. Epidermal growth factor system regulates mucin production in airways. P Natl Acad Sci 
USA 1999: 96(6): 3081-3086. 
146. Kranenburg AR, De Boer WI, Van Krieken JH, Mooi WJ, Walters JE, Saxena PR, 
Sterk PJ, Sharma HS. Enhanced expression of fibroblast growth factors and receptor FGFR-1 
during vascular remodeling in chronic obstructive pulmonary disease. American journal of 
respiratory cell and molecular biology 2002: 27(5): 517-525. 
147. Kortlever RM, Higgins PJ, Bernards R. Plasminogen activator inhibitor-1 is a critical 
downstream target of p53 in the induction of replicative senescence. Nature cell biology 
2006: 8(8): 877-884. 
148. Xiao W, Hsu YP, Ishizaka A, Kirikae T, Moss RB. Sputum cathelicidin, urokinase 
plasminogen activation system components, and cytokines discriminate cystic fibrosis, 
COPD, and asthma inflammation. Chest 2005: 128(4): 2316-2326. 
149. Stewart CE, Sayers I. Characterisation of urokinase plasminogen activator receptor 
variants in human airway and peripheral cells. BMC molecular biology 2009: 10: 75. 
150. Burnett D, Crocker J, Stockley RA. Cathepsin B-like cysteine proteinase activity in 
sputum and immunohistologic identification of cathepsin B in alveolar macrophages. The 
American review of respiratory disease 1983: 128(5): 915-919. 
151. Zandvoort A, van der Geld YM, Jonker MR, Noordhoek JA, Vos JT, Wesseling J, 
Kauffman HF, Timens W, Postma DS. High ICAM-1 gene expression in pulmonary fibroblasts 
of COPD patients: a reflection of an enhanced immunological function. The European 
respiratory journal : official journal of the European Society for Clinical Respiratory 
Physiology 2006: 28(1): 113-122. 
152. To M, Ito K, Ausin PM, Kharitonov SA, Barnes PJ. Osteoprotegerin in Sputum Is a 
Potential Biomarker in COPDOsteoprotegerin in COPD. CHEST Journal 2011: 140(1): 76-83. 
153. Takabatake N, Nakamura H, Inoue S, Terashita K, Yuki H, Kato S, Yasumura S, 
Tomoike H. Circulating levels of soluble Fas ligand and soluble Fas in patients with chronic 
obstructive pulmonary disease. Resp Med 2000: 94(12): 1215-1220. 
154. Langen RC, Korn SH, Wouters EF. ROS in the local and systemic pathogenesis of 
COPD. Free radical biology & medicine 2003: 35(3): 226-235. 
155. D'Armiento J, Dalal SS, Okada Y, Berg RA, Chada K. Collagenase expression in the 
lungs of transgenic mice causes pulmonary emphysema. Cell 1992: 71(6): 955-961. 
156. Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, 
Taschuk M, Mann J, Passos JF. Telomeres are favoured targets of a persistent DNA damage 
response in ageing and stress-induced senescence. Nature communications 2012: 3: 708. 



 

113 
 

157. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LVF, 
Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson 
F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis 
TD, Bartek J, Gorgoulis VG. Oncogene-induced senescence is part of the tumorigenesis 
barrier imposed by DNA damage checkpoints. Nature 2006: 444(7119): 633-637. 
158. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, 
Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, di Fagagna FD. Oncogene-induced 
senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006: 
444(7119): 638-642. 
159. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da 
Costa M, Brown C, Popov N, Takatsu Y, Melamed J, di Fagagna FD, Bernard D, Hernando E, 
Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008: 133(6): 
1006-1018. 
160. Carp H, Janoff A. In vitro suppression of serum elastase-inhibitory capacity by 
reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. J Clin 
Invest 1979: 63(4): 793-797. 
161. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated beta-
galactosidase reflects an increase in lysosomal mass during replicative ageing of human 
endothelial cells. Journal of cell science 2000: 113(20): 3613-3622. 
162. Sharp PA. RNAi and double-strand RNA. Genes & development 1999: 13(2): 139-
141. 
163. Hunter T, Hunt T, Jackson RJ, Robertson HD. The characteristics of inhibition of 
protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. The Journal of 
biological chemistry 1975: 250(2): 409-417. 
164. Sethi S, Murphy TF. Chronic obstructive pulmonary disease. The New England 
journal of medicine 2000: 343(26): 1969-1970; author reply 1970-1961. 
165. Hogg JC. Chronic obstructive pulmonary disease: an overview of pathology and 
pathogenesis. Novartis Foundation symposium 2001: 234: 4-19; discussion 19-26. 
166. Koczulla AR, Vogelmeier C. [Chronic obstructive pulmonary disease: from 
pathogenesis to treatment]. Deutsche medizinische Wochenschrift 2008: 133(10): 471-475. 
167. MacNee W. Pathogenesis of chronic obstructive pulmonary disease. Proceedings 
of the American Thoracic Society 2005: 2(4): 258-266; discussion 290-251. 
168. Laurell CB, Eriksson S. The Electrophoretic alpha(1)-Globulin Pattern of Serum in 
alpha(1)-Antitrypsin Deficiency. Copd-Journal of Chronic Obstructive Pulmonary Disease 
2013: 10: 3-8. 
169. Gross P, Babyak MA, Tolker E, Kaschak M. Enzymatically Produced Pulmonary 
Emphysema; a Preliminary Report. Journal of occupational medicine : official publication of 
the Industrial Medical Association 1964: 6: 481-484. 
170. Janoff A, Sloan B, Weinbaum G, Damiano V, Sandhaus RA, Elias J, Kimbel P. 
Experimental emphysema induced with purified human neutrophil elastase: tissue 
localization of the instilled protease. The American review of respiratory disease 1977: 
115(3): 461-478. 
171. Senior RM, Tegner H, Kuhn C, Ohlsson K, Starcher BC, Pierce JA. The induction of 
pulmonary emphysema with human leukocyte elastase. The American review of respiratory 
disease 1977: 116(3): 469-475. 
172. Travis J. Structure, function, and control of neutrophil proteinases. The American 
journal of medicine 1988: 84(6A): 37-42. 
173. Takeyabu K, Betsuyaku T, Nishimura M, Yoshioka A, Tanino M, Miyamoto K, 
Kawakami Y. Cysteine proteinases and cystatin C in bronchoalveolar lavage fluid from 



 

114 
 

subjects with subclinical emphysema. The European respiratory journal : official journal of 
the European Society for Clinical Respiratory Physiology 1998: 12(5): 1033-1039. 
174. Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary 
disease. Oxidative Stress Study Group. Am J Resp Crit Care 1997: 156(2 Pt 1): 341-357. 
175. Bowler RP, Barnes PJ, Crapo JD. The role of oxidative stress in chronic obstructive 
pulmonary disease. Copd 2004: 1(2): 255-277. 
176. Koyama H, Geddes DM. Genes, oxidative stress, and the risk of chronic obstructive 
pulmonary disease. Thorax 1998: 53 Suppl 2: S10-14. 
177. Britton JR, Pavord ID, Richards KA, Knox AJ, Wisniewski AF, Lewis SA, Tattersfield 
AE, Weiss ST. Dietary antioxidant vitamin intake and lung function in the general 
population. Am J Resp Crit Care 1995: 151(5): 1383-1387. 
178. Schunemann HJ, Freudenheim JL, Grant BJ. Epidemiologic evidence linking 
antioxidant vitamins to pulmonary function and airway obstruction. Epidemiologic reviews 
2001: 23(2): 248-267. 
179. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global 
burden of COPD: systematic review and meta-analysis. The European respiratory journal : 
official journal of the European Society for Clinical Respiratory Physiology 2006: 28(3): 523-
532. 
180. Buist AS, McBurnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, 
Menezes AMB, Sullivan SD, Lee TA, Weiss KB, Jensen RL, Marks GB, Gulsvik A, Nizankowska-
Mogilnicka E, Grp BCR. International variation in the prevalence of COPD (The BOLD Study): 
a population-based prevalence study. Lancet 2007: 370(9589): 741-750. 
181. Strehler BL, Mark DD, Mildvan AS, Gee MV. Rate and Magnitude of Age Pigment 
Accumulation in the Human Myocardium. J Gerontol 1959: 14(4): 430-439. 
182. Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function 
associated with ageing. European Respiratory Journal 1999: 13(1): 197-205. 
183. Ito K, Barnes PJ. COPD as a Disease of Accelerated Lung Aging. Chest 2009: 135(1): 
173-180. 
184. Maclay JD, McAllister DA, Rabinovich R, Haq I, Maxwell S, Hartland S, Connell M, 
Murchison JT, van Beek EJ, Gray RD, Mills NL, Macnee W. Systemic elastin degradation in 
chronic obstructive pulmonary disease. Thorax 2012: 67(7): 606-612. 
185. He J, Turino GM, Lin YY. Characterization of peptide fragments from lung elastin 
degradation in chronic obstructive pulmonary disease. Experimental lung research 2010: 
36(9): 548-557. 
186. Stone PJ, Gottlieb DJ, O'Connor GT, Ciccolella DE, Breuer R, Bryan-Rhadfi J, Shaw 
HA, Franzblau C, Snider GL. Elastin and collagen degradation products in urine of smokers 
with and without chronic obstructive pulmonary disease. Am J Resp Crit Care 1995: 151(4): 
952-959. 
187. Sato T, Seyama K, Sato Y, Mori H, Souma S, Akiyoshi T, Kodama Y, Mori T, Goto S, 
Takahashi K, Fukuchi Y, Maruyama N, Ishigami A. Senescence marker protein-30 protects 
mice lungs from oxidative stress, aging, and smoking. Am J Resp Crit Care 2006: 174(5): 530-
537. 
188. Suga T, Kurabayashi M, Sando Y, Ohyama Y, Maeno T, Maeno Y, Aizawa H, 
Matsumura Y, Kuwaki T, Kuro OM, Nabeshima Y, Nagai R. Disruption of the klotho gene 
causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity 
during postnatal life. American journal of respiratory cell and molecular biology 2000: 22(1): 
26-33. 
189. Muller KC, Welker L, Paasch K, Feindt B, Erpenbeck V, Hohlfeld J, Krug N, 
Nakashima M, Branscheid D, Magnussen H, Jorres RA, Holz O. Lung fibroblasts from patients 
with emphysema show markers of senescence in vitro. Respiratory research 2006: 7. 



 

115 
 

190. Holz O, Zuhlke I, Jaksztat E, Muller KC, Welker L, Nakashima M, Diemel KD, 
Branscheid D, Magnussen H, Jorres RA. Lung fibroblasts from patients with emphysema 
show a reduced proliferation rate in culture. European Respiratory Journal 2004: 24(4): 575-
579. 
191. Wust RC, Degens H. Factors contributing to muscle wasting and dysfunction in 
COPD patients. International journal of chronic obstructive pulmonary disease 2007: 2(3): 
289-300. 
192. Tkacova R, Kluchova Z, Joppa P, Petrasova D, Molcanyiova A. Systemic 
inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. 
Respiratory medicine 2007: 101(8): 1670-1676. 
193. Wang C-H, Huang C-D, Lin H-C, Huang T-T, Lee K-Y, Lo Y-L, Lin S-M, Chung KF, Kuo 
H-P. Increased activation of fibrocytes in patients with chronic obstructive asthma through 
an epidermal growth factor receptor–dependent pathway. Journal of Allergy and Clinical 
Immunology 2012: 129(5): 1367-1376. 
194. Adams PD. Remodeling of chromatin structure in senescent cells and its potential 
impact on tumor suppression and aging. Gene 2007: 397(1-2): 84-93. 
195. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts 
promote epithelial cell growth and tumorigenesis: a link between cancer and aging. P Natl 
Acad Sci USA 2001: 98(21): 12072-12077. 
196. Zhang S, McCarter JD, Okamura-Oho Y, Yaghi F, Hinek A, Withers SG, Callahan JW. 
Kinetic mechanism and characterization of human beta-galactosidase precursor secreted by 
permanently transfected Chinese hamster ovary cells. The Biochemical journal 1994: 304 ( 
Pt 1): 281-288. 
197. Ferland G, Perea A, Audet M, Tuchweber B. Characterization of liver lysosomal 
enzyme activity in hepatocytes, Kupffer and endothelial cells during aging: effect of dietary 
restriction. Mechanisms of ageing and development 1990: 56(2): 143-154. 
198. Gerland LM, Peyrol S, Lallemand C, Branche R, Magaud JP, Ffrench M. Association 
of increased autophagic inclusions labeled for beta-galactosidase with fibroblastic aging. 
Experimental gerontology 2003: 38(8): 887-895. 
199. Gary RK, Kindell SM. Quantitative assay of senescence-associated beta-
galactosidase activity in mammalian cell extracts. Analytical biochemistry 2005: 343(2): 329-
334. 
200. Yang NC, Hu ML. The limitations and validities of senescence associated-beta-
galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. 
Experimental gerontology 2005: 40(10): 813-819. 
201. Robbins E, Levine EM, Eagle H. Morphologic Changes Accompanying Senescence 
of Cultured Human Diploid Cells. Journal of Experimental Medicine 1970: 131(6): 1211-&. 
202. Brunk U, Ericsson JL, Ponten J, Westermark B. Residual bodies and "aging" in 
cultured human glia cells. Effect of entrance into phase 3 and prolonged periods of 
confluence. Experimental cell research 1973: 79(1): 1-14. 
203. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, 
Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during 
cellular senescence. Cell 2003: 113(6): 703-716. 
204. Howard BH. Replicative senescence: considerations relating to the stability of 
heterochromatin domains. Experimental gerontology 1996: 31(1-2): 281-293. 
205. Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA, Myers MP, Lowe 
SW. A novel role for high-mobility group a proteins in cellular senescence and 
heterochromatin formation. Cell 2006: 126(3): 503-514. 
206. Funayama R, Saito M, Tanobe H, Ishikawa F. Loss of linker histone H1 in cellular 
senescence. The Journal of cell biology 2006: 175(6): 869-880. 



 

116 
 

207. Zhang RG, Chen W, Adams PD. Molecular dissection of formation of senescence-
associated heterochromatin foci. Mol Cell Biol 2007: 27(6): 2343-2358. 
208. Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P, Adams PD. 
Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated 
formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007: 27(7): 2452-
2465. 
209. Morales JC, Franco S, Murphy MM, Bassing CH, Mills KD, Adams MM, Walsh NC, 
Manis JP, Rassidakis GZ, Alt FW, Carpenter PB. 53BP1 and p53 synergize to suppress 
genomic instability and lymphomagenesis. P Natl Acad Sci USA 2006: 103(9): 3310-3315. 
210. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nature 
Reviews Cancer 2009: 9(6): 400-414. 
211. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, 
Venere M, Ditullio RA, Jr., Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, 
Halazonetis TD. Activation of the DNA damage checkpoint and genomic instability in human 
precancerous lesions. Nature 2005: 434(7035): 907-913. 
212. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR. HP1-beta mobilization 
promotes chromatin changes that initiate the DNA damage response. Nature 2008: 
453(7195): 682-U614. 
213. Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary 
disease. American journal of physiology Lung cellular and molecular physiology 2008: 
295(1): L1-15. 
214. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, 
Pommier Y. GammaH2AX and cancer. Nature reviews Cancer 2008: 8(12): 957-967. 
215. Qvarnstrom OF, Simonsson M, Eriksson V, Turesson I, Carlsson J. gammaH2AX and 
cleaved PARP-1 as apoptotic markers in irradiated breast cancer BT474 cellular spheroids. 
International journal of oncology 2009: 35(1): 41-47. 
216. Sedelnikova OA, Bonner WM. GammaH2AX in cancer cells: a potential biomarker 
for cancer diagnostics, prediction and recurrence. Cell cycle 2006: 5(24): 2909-2913. 
217. Jeon JH, Kim SK, Kim HJ, Chang J, Ahn CM, Chang YS. Insulin-like growth factor-1 
attenuates cisplatin-induced gammaH2AX formation and DNA double-strand breaks repair 
pathway in non-small cell lung cancer. Cancer letters 2008: 272(2): 232-241. 
218. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nature 
reviews Cancer 2003: 3(3): 155-168. 
219. Rotman G, Shiloh Y. ATM: from gene to function. Human molecular genetics 1998: 
7(10): 1555-1563. 
220. Jung M, Timofeeva O, Cheema AK, Varghese R, Ressom H, Dritschilo A. Human 
fibroblasts for large-scale "omics" investigations of ATM gene function. Advances in 
experimental medicine and biology 2011: 720: 181-190. 
221. Zhan H, Suzuki T, Aizawa K, Miyagawa K, Nagai R. Ataxia telangiectasia mutated 
(ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell 
senescence. The Journal of biological chemistry 2010: 285(38): 29662-29670. 
222. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive 
pulmonary disease. The New England journal of medicine 2009: 360(23): 2445-2454. 

 

 

 



 

117 
 

9 Acknowledgements 

 

First, I would like to thank my parents for providing me with unconditional 

love, support and encouragement as I endeavored to complete these 

studies. Their constant and genuine belief in my abilities provided me with 

the confidence and drive that I needed to make it through the challenging 

days and nights in the laboratory. I would also like to thank my brothers 

Ashutosh Kumar and Anand Hrishikesh for their everlasting support and for 

encouraging me to explore a new locale. 

 

 

I would like to express my sincerest gratitude to Bhavna for her relentless 

encouragement and cheerful optimism. Her continual patience and 

willingness to listen enabled me to stay focused and keep things in 

perspective. I am truly honored to have such a remarkable person in my life! 

 

 

I would like to thank my supervisor, Prof .  Robert Voswinckel, for 

providing me with the opportunity to pursue a PhD in his laboratory. I am 

extremely grateful for the years of mentorship and thoughtful discussion that 

he has provided. I would also like to thank Robert for providing exceptional 

training when I was a young impressionable scientist. I am also grateful to 

Prof. Werner Seeger for his timely suggestions and support. I would also like 

to take this opportunity to thank my collaborators and all my lab members for 

their insightful discussions and cooperation throughout my research work.  

 

 

Finally, I would like to acknowledge the generosity of Max Planck Institute 

for heart and Lung Research, Germany for providing me with the financial 

resources necessary for completion of this work. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Der Lebenslauf wurde aus der elektronischen 
Version der Arbeit entfernt. 
 
 
 
 

The curriculum vitae was removed from the 
electronic version of the paper. 

mailto:manish.kumar@mpi-bn.mpg.de


 
 

121 
 

11 Declaration 
 

 

“I declare that I have completed this dissertation single-handedly without the 

unauthorized help of a second party and only with the assistance acknowledged therein. 

I have appropriately acknowledged and referenced all text passages that are derived 

literally from or are based on the content of published or unpublished work of others, 

and all information that relates to verbal communications. I have abided by the 

principles of good scientific conduct laid down in the charter of the Justus Liebig 

University of Giessen in carrying out the investigations described in the dissertation.” 

 

 

 

 

Giessen, March 2014                                                                                      Manish 

Kumar 

 

 


