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SUMMARY 

Specific protein cysteine residues can serve as structural components, catalysts, or redox 

switches. In peroxiredoxins (Prx), cysteines facilitate the enzymes’ ability to reduce 

peroxides by forming intra- or intermolecular disulfide bridges and transient mixed 

disulfides in a downstream recycling process enabled by redoxins. Within the framework of 

my thesis, I aimed to further understand the underlying molecular processes. To characterize 

the role of specific, catalytically active cysteines during the recycling step of the catalytic 

cycle of Prxs, a surface plasmon resonance-based method was developed. With this new 

approach, which shows particular advantages over other methods investigating protein-

protein interactions (PPIs), the regioselectivity of Plasmodium falciparum (Pf) thioredoxin 

(Trx) to recycle disulfides at active site cysteines of PfPrxs was characterized in molecular 

detail. The data generated were confirmed with electrophoretic mobility shift assays on a 

selected, representative interaction couple. To compare the SPR-based approach with other 

methods currently used for studying PPI, isothermal titration calorimetry (ITC) and 

microscale thermophoresis (MST) were conducted with selected PPI partners. Comparing 

these three methods revealed the SPR-based approach as clearly preferable to ITC and MST 

in answering the leading question. Additionally, within this thesis the thiol-dependent 

interactomes of PfPrx1a and PfPrx1m were revealed using a pull-down assay. In the applied 

assay, 2-Cys Prxs and their mutants lacking the resolving or peroxidatic cysteines were used 

as bait to identify potential interacting partners. With this, 127 proteins were found to interact 

with PfPrx1a and 20 proteins with PfPrx1m via a mechanism involving disulfide bound 

formation. Based on bioinformatic and bibliographic analyses, the proteins identified 

components of various metabolic pathways such as carbohydrate metabolism, protein 

folding, the translational machinery, S-adenosylmethionine metabolism, signal transduction, 

and others. These results provide new insights into the regulatory mechanism of Prx-

mediated redox biology in Plasmodium falciparum and many new candidate targets for 

oxidation signal transduction by PfPrxs. Furthermore, proteins caught with resolving 

cysteine mutants may allow the innovative pronouncement of an additional function of Prxs 

as proteins that are capable of reducing oxidized proteins. This follows a catalytic process 

similar to peroxide reduction using the second active site cysteine to resolve the transient 

mixed disulfide between Prx and the targeted protein. To determine the pKa of the 

peroxidatic cysteines of PfPrxs, an HRP competition assay was used. The pKa of PfPrx1a, 

PfPrx5, and PfPrxQ1-164 could be determined to be 6.16 ± 0.1, 6.01 ± 0.18, and 6.57 ± 0.2, 

respectively, and the determined second order rate constant was 1.6 × 108 M-1 sec-1 for 

PfPrx1a,  2.8 × 108 M-1 sec-1 for PfPrx5, and 2.2 × 107 M-1 sec-1 for PfPrxQ1-164.  

In most cells, the thioredoxin (Trx) and glutathione systems are essentially involved in 

maintaining redox homeostasis in a thiol-dependent mechanism. The selenoprotein 

thioredoxin glutathione reductase (TGR) is a hybrid enzyme in which a glutaredoxin (Grx) 

domain is linked to a thioredoxin reductase (TrxR) and which is also capable of reducing 

glutathione disulfide (GSSG), thus representing an important link between the two redox 

systems. In this thesis, human TGR (hTGR wild type) was recombinantly produced by fusing 

its open reading frame with a bacterial SECIS element and co-expressing the construct in E. 

coli together with the selA, selB, and selC genes. Additionally, the Sec→Cys mutant 

(hTGRU642C) of the full-length protein as well as the isolated TrxR domain (hTGR151-642) and 

the Grx domain containing a monothiol active site (hTGR1-150) were produced and purified. 

All four proteins were kinetically characterized in direct comparison using Trx, DTNB, 

HEDS, or GSSG as oxidizing substrates. Interestingly, the HEDS reduction activity was Sec 
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independent and comparable in the full-length protein and the isolated Grx domain, whereas 

the TrxR and the glutathione reductase (GR) reactions were clearly selenocysteine 

dependent, with the GR reaction requiring the Grx domain. Site-directed mutagenesis studies 

revealed novel insights into the mechanism of GSSG reduction. Furthermore, several 

glutathionylation sites in hTGR, including Cys93, Cys133, and Cys619, were identified with 

an inhibitory effect of these modifications on enzyme activity. In contrast to other TGRs, 

e.g. from platyhelminth parasites, hTGR did not exhibit hysteretic behavior. These findings 

provide new insights into the reaction mechanism and regulation of monothiol Grx 

containing TGRs. 
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ZUSAMMENFASSUNG 

In Proteinen können spezifische Cysteinreste als strukturelle Komponenten, Katalysatoren 

oder Redoxschalter fungieren. In Peroxiredoxinen (Prx) vermitteln Cysteine die 

Peroxidasefunktion des Enzyms, was zur Entstehung von intra- oder intermolekularen 

Disulfidbrücken aber auch zu transienten, gemischten Disulfiden im Rahmen des 

nachgeschalteten Recyclingprozesses durch Redoxine führt. Im Rahmen meiner 

vorliegenden Arbeit galt das Ziel diese zugrundeliegenden Prozesse tiefer zu verstehen. Um 

die Rolle von spezifischen, katalytisch-aktiven Cysteinen in dem Prx-Recyclingschritt zu 

charakterisieren, wurde eine Oberflächenplasmonresonanz (SPR)-basierte Methode 

entwickelt. Mit dieser Methode, welche explizite Vorteile gegenüber anderen Methoden zur 

Protein-Protein-Interaktions (PPI)-Bestimmung aufzeigt, konnte die Regioselektivität von 

Plasmodium falciparum (Pf) Thioredoxin (Trx) im Recyclingprozess gegenüber Disulfiden 

des aktiven Zentrums von PfPrx auf molekularer Ebene aufgezeigt werden. Zudem konnten 

die generierten Daten an einem ausgewählten, repräsentativen Beispiel durch 

Electrophoretic Mobility Shift Assays bestätigt werden. Um die SPR-basierte Methode mit 

bereits bestehenden Methoden der PPI-Bestimmung zu vergleichen, wurde mit 

ausgewählten PPI-Partnern ebenfalls die isothermale Titrationskalorimetrie (ITC) und 

Microscale Thermophorese (MST) durchgeführt. Der Vergleich dieser drei Methoden zeigt 

dabei eindeutig, dass die SPR-basierte Methode für die zugrundeliegende Fragestellung zu 

bevorzugen ist. Des Weiteren konnte in dieser Thesis mittels eines Pull-down Verfahrens 

das Thiol-abhängige Interaktom von PfPrx1a sowie PfPrx1m dargestellt werden. In dem 

verwendeten Verfahren wurden 2-Cys Prxs sowie deren resolving Cystein- und peroxidatic 

Cystein-Mutanten als Fänger genutzt, um potentielle Interaktionspartner zu identifizieren. 

Hierbei konnten 127 Proteine gefunden werden, die über einen Disulfid-involvierten 

Mechanismus mit PfPrx1a interagieren und 20 Proteine, welche mit PfPrx1m 

wechselwirken. Durch bioinformatische und bibliographische Analysen konnten diese 

Proteine verschiedenen metabolischen Stoffwechselwegen, wie dem 

Kohlenhydratstoffwechsel, der Proteinfaltung, der Translationsmaschinerie, dem S-

Adenosylmethioninmetabolismus, der Signaltransduktion und anderen, zugeordnet werden. 

Diese Ergebnisse liefern neue Einblicke in den regulatorischen Mechanismus der Prx-

vermittelten Redoxbiologie in Plasmodium falciparum sowie viele neue Kandidatenproteine 

für eine Oxidationssignalübertragung durch PfPrxs. Weiterhin könnten Proteine, welche mit 

den resolving-Mutanten gefangen wurden, die Hypothese stützen, dass Prxs eine zusätzliche 

Funktion inne tragen. Demnach könnten Prxs in der Lage sein, oxidierte Proteine zu 

reduzieren, indem sie einem katalytischen Prozess ähnlich der Peroxidreduktion folgen, 

wobei das zweites Cystein im aktivem Zentrum genutzt wird, um das transiente, gemischte 

Disulfid zwischen dem Prx und seinem Zielprotein zu lösen. Um den pKa der peroxidativen 

Cysteine von PfPrx zu bestimmen, wurde ein HRP-Kompetitionsassay verwendet. Für 

PfPrx1a, PfPrx5 und PfPrxQ1-164 konnten hierbei ein pKa von 6,16 ± 0,1, 6,01 ± 0,18, 

beziehungsweise 6,57 ± 0,2 gemessen und eine Geschwindigkeitskonstante 2. Ordnung von 

1,6 × 108 M-1 sec-1 für PfPrx1a, 2,8 × 108 M-1 sec-1 für PfPrx5 und 2,2 × 107 M-1 sec-1 für 

PfPrxQ1-164 bestimmt werden. 

In den meisten Zellen sind das Thioredoxin- (Trx) und das Glutathion-System essenziell in 

die Aufrechterhaltung der Redoxhomöostase in einem Thiol-abhängigen Mechanismus 

involviert. Das Selenoprotein Thioredoxin-Glutathion-Reduktase (TGR) ist ein Hybrid-

enzym, in welchem eine Glutaredoxin (Grx)-Domäne mit einer Thioredoxinreduktase 

(TrxR) verknüpft ist, und das zudem in der Lage ist, Glutathiondisulfid (GSSG) zu 
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reduzieren, womit es eine bedeutende Verbindung zwischen zwei Redoxsystemen darstellt. 

In dieser Thesis wurde die humane TGR (hTGR Wildtyp) rekombinant hergestellt, indem 

sein offener Leserahmen mit einem bakteriellen SECIS-Element fusioniert wurde und das 

Konstrukt in E. coli zusammen mit selA, selB und selC Genen koexpremiert wurde. Zudem 

wurden die Sec→Cys Mutante (hTGRU642C) des Proteins sowie die isolierte TrxR-Domäne 

(hTGR151-642) und die Grx-Domäne (hTGR1-150), welche ein Monothiol im aktiven Zentrum 

beinhaltet, hergestellt und gereinigt. Alle vier Proteine wurden im direkten Vergleich durch 

die Verwendung von Trx, DTNB, HEDS oder GSSG als oxidierende Substrate kinetisch 

charakterisiert. Interessanterweise war die HEDS-Reduktions-Aktivität Sec-unabhängig und 

zeigte sich vergleichbar in dem Volllängenprotein und der isolierten Grx-Domäne, wobei 

die TrxR- und die Glutathionreduktase(GR)-Reaktion eindeutig eine Selenocystein-

abhängigkeit zeigten und die GR-Reaktion die Anwesenheit der Grx-Domäne benötigte. 

Ortsgerichtete Mutagenesestudien lieferten hierbei neuartige Einblicke in den Mechanismus 

der GSSG-Reduktion. Weiterhin konnten mehrere Glutathionylierungsstellen in der hTGR 

identifiziert (Cys93, Cys133 und Cys619) und ein inhibierender Effekt durch diese 

Modifikationen festgestellt werden. Im Gegensatz zu anderen TGRs, z.B. aus 

Platyhelminthen, weist die hTGR kein hysteretisches Verhalten auf. Diese Ergebnisse 

ermöglichen neue Einblicke in den Reaktionsmechanismus und die Regulation von 

Monothiol-Grx-beinhaltenden TGRs. 
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1 INTRODUCTION 

1.1 Oxidative stress 

An exposure to reactive oxygen species (ROS) is unavoidable for organisms living in an aerobic 

environment. Oxidative stress occurs when the cellular antioxidant capacity is decreased or 

when ROS are at high and/or sustained levels. ROS are generated intracellularly by a variety of 

physiological processes or can be provoked by exogenous sources where ROS can be taken up 

directly by the cell from the extracellular milieu or can be produced as a consequence of 

exposure to an environmental insult [1]. Endogenous sources of reactive oxygen are derived 

from leakages of activated oxygen from the respiratory chain during oxidative phosphorylation 

(complexes I and III), other enzymes such as xanthine oxidase or cytochrome P450, or 

autoxidation reactions or are deployed by the immune system to combat microorganisms. 

Xenobiotics [2], pollutants, heavy metal ions [3] (Haber-Weiss reaction or Fenton reaction), or 

ionizing radiation (radiolysis) [4] are exogenous sources of ROS. The term ROS encompasses 

superoxide anions (•O2
-), ozone (O3), singlet oxygen (1O2), hydrogen peroxides (H2O2), 

hydroxyl radicals (•OH), organic hydroperoxides (ROOH), alkoxy and peroxy radicals (RO•, 

ROO•), hypochlorous acid (HOCl), and peroxinitrite (NOO-). Since an excess of ROS can cause 

severe damage to DNA, RNA, proteins, or lipids, the human body is equipped with antioxidant 

systems to counterbalance these toxic effects. Antioxidants are composed of non-enzymatic and 

enzymatic antioxidants. Non-enzymatic molecules include α-tocopherol, ascorbic acid, β-

carotene, and glutathione (GSH). α-Tocopherol is the principal defense against oxidant-induced 

membrane injury since it is able to donate electrons to the peroxyl radical, which is generated 

during the autoxidation of unsaturated lipids, turning itself to an α-tocopherol radical [5]. It 

triggers apoptosis of cancer cells and inhibits free radical formations [6], and ascorbic acid 

converts the α-tocopherol radical back to the non-radical form. GSH is highly abundant and 

serves as a nucleophile and as a reductant. It is ubiquitously present in all cell types at millimolar 

concentrations [7] and can exist either in a reduced (GSH) or oxidized (GSSG) form, where the 

reduced form represents the major portion inside the cell [8]. GSH mediates its redox capacity 

via reversible oxidation of an active thiol and can covalently bind to proteins (glutathionylation) 

in the context of post-translational modification in order to activate or inhibit enzyme activity. 

Due to this, GSH serves as a coenzyme of many enzymes involved in cell defense [9]. The most 

important enzymatic antioxidants are superoxide dismutase, which catalyzes the dismutation of 

superoxide radicals to molecular oxygen or hydrogen peroxide, catalase, which decomposes 

hydrogen peroxide to H2O and oxygen, but also thiol-containing redox proteins like thioredoxin 

(Trx), glutaredoxin (Grx) and peroxiredoxins (Prxs). An imbalance of redox-homeostasis can 

lead to DNA modifications such as degradation of bases, DNA breaks, mutations, deletions, or 

translocation and cross-linking with proteins and therefore is highly relevant for carcinogenesis, 

aging, and neurodegenerative, cardiovascular, and autoimmune diseases [10]. ROS can also 

induce lipid peroxidation and can lead to membrane lipid bilayer derangement, inactivation of 

membrane-bound receptors, and an increase in tissue permeability [11]. Furthermore, ROS can 

regulate cellular signaling pathways such as mitogen-activated protein kinase (MAPK) 

cascades and the phosphoinositide 3-kinase (PI3K) pathway [2]. Moreover, cysteine and 

methionine residues are very prone to oxidation inside a protein, which can cause 

conformational changes, protein unfolding, and degradation [12]. Cysteines can undergo a 

broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including 

S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-

SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others [13], where some are 

reversible and others are not. Therefore, cysteines play a key role in the redox code, which 
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provides central principals of redox biology and genome-exposure interaction, contributing to 

the spatiotemporal organization of differentiation, development, and adaptation to the 

environment [14]. It should be mentioned at this point that the term ‘nitrosylation’ is often used 

mistakenly for the formation of a covalent bond between NO and a cysteine residue [15], which 

should correctly be termed as ‘nitrosation’. Since the incorrect term ‘nitrosylation’ is 

widespread in the redox community for this kind of modification, an amendment of this was 

not implemented in the text at hand. 

 

1.2 Thiol switches of cysteines 

Post-translational modifications (PTM) are required to mediate cellular signal transductions in 

order to change biological functions of proteins. PTMs can extend chemical features of amino 

acids and allow a specified response to external and internal stimuli. Moreover, selected 

cysteinyl side chains are targets of PTM and can influence the redox state of the thiol group and 

thereby protein structure and function. Regulatory cysteines are called ‘thiol switches’, and it 

was shown that the number of cysteines and thiol switches correlate positively with the 

complexity of an organism [16]. For categorizing a cysteine, parameters such as the redox state, 

molecular geometry of the cysteinyl residue, accessibility and environment of the residue inside 

the protein, and its properties as an acid/base or as a nucleophile/electrophile have to be taken 

into account. All of these parameters affect the role of the specific cysteine as a structurally 

important cysteine, as a catalyst, or as a redox switch [17]. The sulfur atoms of cysteinyl 

residues arise as thiolates (-S-), thiols (-SH), sulfenic acids (-SOH), sulfinic acids (-SO2H), 

sulfonic acids (-SO3H), and disulfides (-S-S-), which can be distinguished in intra- or 

intermolecular disulfide bonds with catalytic or structural properties based on their half-life [18, 

19]. The term “allosteric disulfide” was introduced since a strict discrimination between these 

classic disulfides was not always possible [20]. It describes a structural disulfide bond, which 

is susceptible to reduction and therefore sensitive to alterations in redox states with an impact 

on protein conformation and function under oxidative stress. The molecular geometry directly 

affects the reactivity of a cysteinyl residue [21] and includes three parameters: bond length, 

bond angles between three atoms, and dihedral angles between three bonds, but it is insufficient 

for explaining or predicting a thiol switch [17]. The reactivity of a cysteinyl residue is highly 

dependent on the microenvironment generated by the neighboring residues [22] (proton 

acceptors or ionic interactions with positively charged residues) that are able to perturb the 

normally high pKa (∼8.5) of cysteine thiols up to 3.5 [23]. The deprotonated thiolate is the basis 

for an active site cysteine residue since the thiolate is able to start a nucleophilic attack at a 

hydrogen peroxide, converting the cysteinyl residue to a sulfenic acid, which is an important 

source of disulfides [17]. Additional features that enhance the reactivity may include the 

presence of acid-base catalysts [24] and specialized substrate docking sites [25]. Thiol 

modification can occur at active site cysteines [25, 26] or at non-active site but regulatory 

cysteines [27, 28]. Redox signaling mechanisms require a primary signaling molecule, sensor, 

transducer, effector, and termination reaction [29], which is well described in the Orp1/Yap1 

couple from yeast. Orp1 acts as a sensor for H2O2 and becomes oxidized at its attacking 

cysteine. The originated sulfenic acid is reduced by Yap1, which results in disulfide formation 

inside Yap1. Oxidized Yap1 acts as a transducer of this oxidation signal and promotes the 

transcription of specific genes. Trx terminates this signal by reducing the disulfide bond in Yap1 

[30].  
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1.3 Peroxiredoxins 

Even when the specific catalytic rate constant of catalase or glutathione peroxidase is much 

higher than those of peroxiredoxins (∼107 M−1 sec−1), the high abundance of Prxs (1% or more 

of cellular proteins) is capable for their role as the dominant cellular peroxide-reducing enzymes 

[31]. Prxs (EC 1.11.1.15) are ubiquitous cysteine-dependent peroxidases and can regulate the 

intracellular messenger function of H2O2. They are able to reduce endogenous and exogenous 

H2O2, peroxynitrite (ONOO-), and organic hydroperoxides (ROOH) [32], and their recycling 

depends on redoxins such as Trx or Grx. Prxs can be localized in the cytosol, mitochondrion, 

nucleus, and even in plastids. They can interact with and inhibit the function of certain 

oncoproteins [33, 34], can enhance the toxic effect of natural killer cells [35], maintain genome 

stability, promote longevity [36], and can be induced by proliferative stimuli [37], nitric oxide 

[38], and oxidative stress [39].  

Peroxiredoxins are very sensitive to hyperoxidation, which leads to an inactivation and can be 

regulated by enzymes such as sulfiredoxin. This at the first glance disadvantage of Prxs was 

shown to be more likely an advantage. At low hydrogen peroxide concentrations, Prxs 

implement their peroxidase function but will be oxidized with time as well as their specific 

reductant. Moreover, redox-sensitive transcription factors such as Pap1 are oxidized due to the 

oxidized reductant, migrate to the nucleus, and can induce the adaptive response of transcription 

to persisting oxidative stress. At high H2O2 concentrations, Prx is rapidly hyperoxidized and 

will not act as a peroxidase. The reductant will not be oxidized since it is not able to deliver 

electrons to the hyperoxidized Prx, stays reduced as well as the transcription factor and 

therefore does not induce an adaptive response. Surprisingly, this leads to a higher survival rate 

[40] since the pool of reductant can mediate their repair activity to other proteins needed for 

cell survival in order to overcome a strong oxidative assault [41]. Furthermore, Prx’s sensitivity 

to hyperoxidation was shown to be very individual by finding sensitive and robust Prx groups 

[42]. Prxs are also found in parasites that affect human health such as pathogenic protozoa, 

helminths, and parasitic fungi, which are major contributors to the global burden of disease 

[43], where Prxs are important for defense against endogenous and host-derived ROS and 

ONOO-. Fundamental research into the parasites’ biochemistry and biology is needed in order 

to find new candidate drugs for clinical testing and overcome this global impact of neglected 

tropical diseases. 

 

1.3.1 Classification of peroxiredoxins 

Peroxiredoxins are subdivided into six evolutionary clusters or subfamilies (Prx1, Prx5, Prx6, 

Tpx, PrxQ, and AhpE) [44]. Inside one subfamily group, the oligomerization states, interfaces, 

or the localization of the resolving cysteine (CR) can vary [45]. Furthermore, Prxs can be 

divided mechanistically into three subfamilies. Since this work emphasizes mechanistic details, 

the classification of the Prx-families will be oriented on the mechanistic subdivision. Based on 

the number of active site cysteines involved in the catalytic cycle, Prxs can be distinguished 

into 1-Cys and 2-Cys peroxiredoxins. The 2-Cys Prxs can further be subdivided into typical 

and atypical 2-Cys Prxs. 1-Cys Prxs contain only the highly conserved peroxidatic cysteine (CP) 

in the characteristically N-terminal region and no CR. Oxidized 1-Cys Prxs can be reduced by 

small molecules such as GSH. 2-Cys Prxs contain, along with the CP, the C-terminal CR as well. 

Typical 2-Cys Prxs form a stable disulfide bond between the oxidized CP and the CR of another 

second subunit (intermolecular), and the atypical 2-Cys Prxs build a disulfide with the CP in the 

same polypeptide chain (intramolecular) in the resolving step (Figure 1) [46]. 
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Figure 1: Reaction mechanism of peroxiredoxin enzymes. (A) typical 2-Cys Prx, (B) atypical 2-Cys Prx, and (C) 1-Cys Prx 

[47]. 

 

1.3.1.1 Structural features of peroxiredoxins 

Although loop lengths and the conformation of the N-terminal and C-terminal extension of Prxs 

show variations across the subfamilies, they have a highly spatially conserved tertiary structure 

of the core. This core structure includes β-strands and α-helices organized as a central 5-

stranded antiparallel β-sheet facing two additional β-strands and one α-helix on the one side 

and three α-helices on the other side [48] (Figure 2A). The peroxidatic cysteine is always 

located in the first turn of the α2-helix, where a local unfolding also takes place. When the Prx 

converts to the locally unfolding conformation, the helix will be unraveled at this point, and the 

CP will be exposed in a loop segment. The geometry of the active sites of all fully folded Prxs 

is highly conserved and includes a Pro, a Thr, and an Arg [48] that are in contact with the CP 

via van der Waals forces (Figure 2B).   

 

Figure 2: Characteristic structure of Prxs. (A) Stereoview of hPrx5 (PDB code 1HD2); the peroxidatic cysteine is 

represented in yellow. (B) The universally conserved active site of Prxs with its substrate H2O2. H-bonds are outlined as dashed 

lines. Figure 2B was modified according to [44].  

A B 
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Pro shields the CP from water and plays a part in contributing to the position of the backbone 

amid the following Gly, which contributes to CP activation. Arg also activates the CP and 

influences the position and chemistry of the attacked peroxide oxygen, and Thr is seen as a 

proton shuttle between CP and the peroxyl bond of the hydroperoxide. The peptide amid the CP 

and the surrounding residues is also capable of influencing the position of the two resulting 

hydroxides [48]. When present, the resolving cysteine is located in the Trx-like fold and can 

occupy at least 5 different positions (on α2, α3, α5 helices) for intramolecular disulfides, and 

N-terminal (Nt) and C-terminal (Ct) types for intermolecular disulfides) [44].   

In terms of oligomerization behavior, Prxs are reported to be dimers, octamers, decamers, and 

dodecamers, but rarely monomers [49]. All of these quaternary structures were formed by the 

association of two types of interfaces, the A-type and B-type (Figure 3). In A-type interface 

dimerization, the interaction of the core structure is supported in an end-to-end fashion, and B-

type interface dimerization is defined as an antiparallel accretion of two monomers at their β-

sheets in a head-to-tail manner. The C-terminal extension of some B-type Prx can stabilize these 

dimers (α2), which can also interact to form toroidal complexes over the A-type dimer interface 

such as (α2)5 decamers (and rare (α2)6 dodecamers) [44]. Under some circumstances even larger 

complexes in a spherical aggregation or in an open-ended linear form can build up, often related 

to hyperoxidation and chaperone function [50, 51].  

 

 

Figure 3: Quaternary structures of Prx [44]. 

 

It was shown that reduced Prxs occur in the decameric and oxidized Prxs in the dimeric state 

and that chaperone activity does not depend on this oligomerization. Hyperoxidation represents 

only one possibility to change the peroxidase function of Prxs to its chaperone function [52]. 

Other factors that can influence the structure of the enzyme are posttranslational modifications 

such as glutathionylation [53], phosphorylation [54], acetylation [55], and proteolysis [56].  
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1.3.2 Catalytic cycle of peroxiredoxins 

The catalytic cycle begins with the thiolate (S-) of the peroxidatic cysteine of reduced Prx. The 

Prx is now in the fully folded (FF) conformation and starts a nucleophilic attack at the peroxyl 

bond of the hydroperoxide substrate (ROOH), whereby the thiolate oxidizes to a sulfenic acid 

(SOH), and a hydroxide is released (peroxidation). Upon build-up of excess oxidative stress, 

this sulfenic acid can further oxidize to sulfinic acid (SO2H) (overoxidation) or even to sulfonic 

acid (SO3H). In many organisms the sulfinic acid can be reduced by enzymes such as the ATP-

dependent sulfiredoxin (Srx) or sestrin proteins, which can reactivate the hyperoxidized (also 

called overoxidized) Prx (rescue). After the sulfenic acid is formed at the CP, the Prx has to be 

recycled. For 1-Cys Prx, the thiol group involved comes from other proteins or small molecules 

(e.g. GSH), and in the 2-Cys Prxs, the resolving cysteine residue participates in this step both 

typically and atypically. The CR forms a disulfide bond with the CP, which is intermolecular in 

the typical 2-Cys Prxs and intramolecular in the atypical 2-Cys Prxs, and changes the Prx from 

the FF conformation to the locally unfolded (LU) conformation (resolution). The reduction of 

the disulfide is mediated by reductants such as Trx or Grx-like proteins, which contain an 

attacking cysteine and a resolving cysteine (CxxC-motif). First, the attacking thiol(ate) of the 

reductant forms a mixed disulfide with the Prx, which will be reduced by the resolving cysteine 

of the reductant in the second step. After this recycling step, the Prx is reduced and activated 

for another catalytic cycle [57] (recycling). The oxidized reductant has to be reduced by other 

enzymes (e.g. TrxR) in order to be available for another recycling step of the oxidized Prx 

(Figure 4).  

 

Figure 4: Catalytic cycle of peroxiredoxins. The catalytic steps of (1) peroxidation, (2) resolution, (3) recycling, (4) 

overoxidation, and (5) rescue are shown [47].  

 

Peroxiredoxins can maintain intracellular H2O2 concentrations via their peroxidase activity. It 

was also shown that at persisting high levels of H2O2, the CP can hyperoxidize, and no further 

reduction of H2O2 will take place, which could then affect other targets (floodgate hypothesis) 

[36, 42]. Signaling proteins (SP), which are regulated by oxidation, can be influenced directly 

by the Prx-controlled H2O2 concentration, but since the reactivity towards H2O2 is five to seven 

orders of magnitude lower than the reactivity of a Prx towards H2O2 and the abundance of SP 

is also lower, the SP cannot compete with a Prx for the peroxide. A second mechanism for 

oxidation signaling is transduction of the oxidation to an SP by oxidized Prx via the thiol-

disulfide exchange mechanism, which facilitates the selective transfer of oxidation equivalents 

to downstream regulatory proteins [58]. Likewise, oxidized Trxs, which emerge from the 
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recycling step in the catalytic cycle, can transfer the oxidation signal to an SP [59, 60] (Figure 

5). 

 

Figure 5: Mechanisms of H2O2 sensing. H2O2 reacts directly with an effector protein where peroxiredoxins can regulate the 

intracellular H2O2 concentration. Second, oxidized Prxs transduce the oxidation to a protein by forming a disulfide intermediate 

that is resolved by a CR from the effector protein. Third, oxidized Prxs are reduced by thioredoxin (Trx), and the oxidized Trx 

transfers the oxidation to the target proteins. Modified according to Netto and Antunes [61]. 

1.4 Malaria and Plasmodium falciparum 

3.4 billion people lived in areas with a high risk of infection with malaria parasites in 2013, 

which represents approximately half of the present world population. In 2015, this infectious 

disease affected up to 214 million people and caused about 438,000 cases of death [62]. The 

mosquito-borne infectious disease, also called marsh fever or tertian fever, received its name 

from the Medieval Italian words mala aria, which means ‘bad air’ based on the delusion that 

the malodorous air in the marshes was responsible for the transmission of malaria. However in 

1880, the physician Alphonse Laveran was able to identify the true vector of this lethal disease 

[63]. Malaria is caused by the parasitic protozoan Plasmodium, an Apicomplexa that belongs to 

the taxonomic group of the Alveolata. The parasite is transmitted by the female Anopheles 

mosquito to mammals, reptiles, and birds. Plasmodium vivax, P. ovale, P. malariae, P. knowlesi 

and P. falciparum belong to the human pathogenic species, which cause various types of 

malaria (malaria tertiana, malaria quartana, and malaria tropica) with their respective 

spectrum of symptoms. All types of malaria cause symptoms such as fever, fatigue, vomiting, 

and headaches as well as hepatomegaly and splenomegaly. The most severe form of malaria, 

malaria tropica, can also cause chills, gastrointestinal afflictions, anemia, and icterus and is 

often lethal. Particularly in high risk areas of Central and South Africa P. falciparum is 

responsible for 75–100% of all malaria cases [64]. Therefore, P. falciparum belongs to the 

leading global causes of death caused by a single organism. The most vulnerable groups are 

children under five years as well as the elderly and pregnant women. 

The typical fever attacks are caused by a rupture of erythrocytes at the end of each stage. P. 

falciparum infects every age of erythrocytes, leading to a parasitemia up to 50% (peak of 

superinfection). P. falciparum also induces the formation of the surface antigen PfEMP1 (P. 

falciparum exterior membrane antigen) which acts as an adhesion protein and is cytoadherent. 

PfEMP1 is therefore responsible for the adhesion of infected red blood cells to the endothelial 

wall, which as a consequence cannot be removed by the spleen, leading to a higher parasitemia. 

PfEMP1 can likewise trigger the adhesion of parasitized erythrocytes among each other (rosette 

formation), which reduces the blood flow and leads to organ infarctions (brain, heart, lung, 

placenta, etc.) [65]. 



Introduction 

8 

 

1.4.1 Life cycle of P. falciparum 

The life cycle of P. falciparum is divided into a sexual phase, which is executed inside the 

Anopheles mosquito, and an asexual phase, which is executed in the intermediate host, the 

human body (Figure 6). Asexual multiplication is differentiated into two consecutive generation 

cycles, the exo-erythrocytic (hepatic) tissue schizogony and the erythrocytic schizogony. The 

cycle starts with the transmission of sporozoites through the bite of an infected fertilized female 

Anopheles mosquito, carrying the parasite in its salivary glands, to the human host. Once in the 

blood stream, the sporozoites will migrate rapidly to the liver and penetrate the hepatocytes, 

where the parasite will multiply asexually and develop into schizonts (liver stage) [66]. Mature 

schizonts rupture the hepatocyte and release merozoites into the blood stream, which enter the 

erythrocytes. Once in the erythrocytes, the intraerythrocytic cycle starts (blood stage), where 

the merozoites develop asexually to a ring form and later into trophozoites and mature 

schizonts, which rupture the erythrocyte and releases merozoites into the blood stream that are 

able to infect further erythrocytes. A small amount of merozoites differentiate into male and 

female gametocytes that can be ingested by another mosquito bite. Inside the mosquito 

(mosquito stage), gametocytes reach the midgut and develop into micro- and macrogametes. 

After fertilization these sexual forms fuse to form a diploid zygote, which develops into 

ookinetes and after transit of the midgut epithelial cell wall into mature oocysts. The midgut 

cells rupture and release sporozoites to invade the salivary gland and can be transmitted with 

the next mosquito bite. 

 

Figure 6: Life cycle of P. falciparum with different targets of malaria vaccines. Sporozoites targeted by pre-erythrocytic 

vaccines. (2) Liver stages of parasite targeted by pre-erythrocytic vaccines. (3) Asexual blood stages, mainly merozoites. (4) 

Parasite sexual stage in the mosquito midgut. (5) Midgut wall antigens (vector-stage vaccines, indirectly acting against the 

ookinete stage of the parasite) [66]. 
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1.4.2 Maintenance of the intracellular redox balance in P. falciparum 

During the life cycle of P. falciparum, the parasite is physiopathogenically exposed to high 

levels of oxidative stress. Large quantities of toxic redox-active byproducts are generated by its 

high metabolic rate and the degradation of host hemoglobin by the parasite [67]. Moreover, the 

production of ROS by the host immune system can further enhance overall oxidative stress in 

the parasite [68, 69]. Toxic free heme (ferri/ferroprotoporphyrin IX; FP) and ROS result from 

the degradation of hemoglobin in the food vacuole [70]. This FP can biocrystallize to hemozoin 

[71] and is therefore detoxified (Figure 7). When small amounts of FP escape this 

neutralization, it can cause damage to host and parasite proteins and membranes and can lyse 

the erythrocyte. To maintain redox equilibrium, P. falciparum relies on a well-equipped 

antioxidant mechanism composed of small molecules such as glutathione and antioxidant 

enzymes. These enzymes are glutathione and thioredoxin-dependent proteins [72, 73] as well 

as superoxide dismutase. The importance of these proteins is furthermore intensified since 

potent antioxidant enzymes such as catalase and glutathione peroxidase are not possessed by P. 

falciparum [74].  

 

Figure 7: Redox metabolism in P. falciparum [75]. 

 

1.4.2.1 Thioredoxin system of P. falciparum 

P. falciparum possesses two isoforms of thioredoxin reductases located in the cytosol and in 

the mitochondria [76] with similar kinetic properties [77]. PfTrxR catalyzes the reduction of 

oxidized thioredoxin and can also transfer electrons to low molecular weight compounds [75]. 

In the catalytic cycle the TrxR transfers two electrons from NADPH to FAD and afterwards to 

the oxidized substrate (for more details see Chapter 1.5.1). PfTrxR and human TrxR show high 

homology, although the C-terminal loop in the PfTrxR contains a CxxxxC motif instead of a 

cysteine-selenocysteine motif [78]. Since the PfTrxR is essential for the intraerythrocytic stages 

of the parasite, it is seen as a feasible drug target [79]. The physiological substrate of TrxR is 

thioredoxin. Trxs are a group of small proteins (~12 kDa) with redox-active properties 
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belonging to the Trx superfamily showing a characteristic Trx fold [80], which is composed of 

a central four-stranded β-sheet surrounded by α-helices [72, 81]. The three classic Trxs in P. 

falciparum (PfTrx1-3) are located in the cytosol and mitochondria, and all of them perform 

their redox-regulating activity via a dithiol mechanism. The cytosolic PfTrx1 plays the most 

important role in the parasite’s redox-homeostasis. It can be reduced by PfTrxR and is able to 

reduce many cellular targets such as Trx-dependent peroxiredoxins with its WCQAC motif 

(Figure 8). In this way, the attacking cysteine at the N-terminus starts a nucleophilic attack at 

the disulfide bridge of the oxidized target and forms a mixed disulfide with the substrate, which 

will be reduced by the resolving cysteine of the Trx at the C-terminus [22, 82]. PfTrx1 also acts 

as a backup system for the glutathione system since it is able to reduce GSSG directly [83]. It 

is located in the cytosol and interacts with proteins in protein folding, transcription and 

translation, glycolysis, and signal transduction [84] and is also involved in protein S-

glutathionylation [85]. Plasmoredoxin (Plrx), a Trx-superfamily member exclusively found in 

Plasmodium, is reduced by PfTrx, PfGrx, and GSH but is not essential for survival of the 

parasite. Physiological reducing partners are still unknown [86] although an interaction analysis 

could identify 21 potential interacting proteins [84]. 

 

Figure 8: The thioredoxin system in P. falciparum [75]. 

 

1.4.2.2 Glutathione system of P. falciparum  

The second central antioxidative system is the glutathione system, which consists of NADPH, 

glutathione (GSH), glutathione reductase (GR), and glutaredoxin (Grx). GSH reduces toxic 

peroxides, supports detoxification of xenobiotics, maintains the redox status of proteins by 

reducing oxidized cysteines, and participates in the regulation of the cell cycle and gene 

expression [87]. GSH is synthesized by γ-glutamyl-cysteine synthetase and glutathione 

synthetase and is essential for the development of P. falciparum in red blood cells. P. 

falciparum is not able to take up significant amounts of exogenous GSH, with the result that 

the intracellular GSH/GSSG ratio is closely regulated by its biosynthesis, the expression level 

of glutathione reductase, and GSSG efflux [88]. GR reduces the oxidized glutathione in an 

NADPH- and FAD-dependent reaction, which maintains the majority of the intracellular 

glutathione pool in a reduced state [75]. The intracellular GSH concentration (about 2 mM) is 
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higher than the concentration of NADPH (< 100 µM) and Trx (about 10 µM), and has to be 

kept in a reduced state since levels of GSSG over 100 µM are cytotoxic [73]. PfGR and human 

GR are very similar but differ in their respective cavity of the dimer interface [89], and the 

enzyme is located in the cytosol and in the apicoplast [76]. Notably, a lack of GR from P. 

berghei is not lethal for the parasite [83, 90]. However, for P. falciparum this remains to be 

studied. Antimalarial compounds such as methylene blue are able to inhibit PfGR as a redox-

cycling substrate by turning the GR into a pro-oxidative enzyme [91] or by binding to specific 

sequence motifs [75]. Another member of the thioredoxin superfamily is glutaredoxin, which 

shows the common structural motif of the thioredoxin fold (four stranded β-sheets and three 

flanking α-helices) and a similar active site [92]. Grxs reduce disulfide bridges, can 

deglutathionylate proteins, and are reduced non-enzymatically by GSH instead of reduction by 

a specific reductase. In P. falciparum only one dithiol Grx has been described so far (PfGrx), 

which contains the active site motif CPYC and is located in the cytosol. Three monothiol forms 

have also been found, which contain a CxxS motif and are named glutaredoxin-like proteins 

(Glp 1-3) [93]. 

 

1.4.3 Peroxiredoxins of P. falciparum 

As described in Chapter 1.3.2.1, peroxiredoxins are thioredoxin-dependent enzymes and belong 

to the first line of defense against ROS and peroxinitrite [36]. P. falciparum possesses five 

peroxiredoxins, which are located in distinct cell compartments and have different substrate 

specifities (Figure 9). Additionally, Plasmodium is able to import the human Prx2 out of the 

host’s erythrocytes and can accept PfTrx1 as a substrate, which accounts for up to 50% of the 

total thioredoxin peroxidase activity in the parasite [94]. Peroxiredoxins are suggested to be key 

antioxidants that guarantee parasite survival under enhanced oxidative stress [95]. 

PfPrx1a belongs to the typical 2-Cys Prx family with its peroxidatic cysteine at position C50 

and its resolving cysteine at position C170; it is located in the cytosol. It is constitutively 

expressed during the complete life cycle [76] and reduces not only H2O2, with a catalytic 

efficiency of 6.7 × 106 M−1 sec−1 [96], but also ONOO−, tBuOOH, and CHP by accepting PfTrx 

and PfPlrx as electron donors [97, 98]. It was shown that PfPrx1a is very sensitive to heat stress 

[99]. A knockout in P. berghei showed no effect on its asexual proliferation but caused a defect 

in gametocyte development [100] and may be involved in development during multiplying 

stages such as sporozoites and exo-erythrocytic forms [101]. 

The mitochondrial PfPrx1m is also a member of the typical 2-Cys Prx family, which detoxifies 

reactive oxygen species generated during the respiratory chain. It is Trx-dependent but cannot 

be reduced by GSH or dihydrolipoamide [102]. PfPrx1m contains its peroxidatic cysteine at 

position C67 and its resolving cysteine at position C187 and could be crystallized by Boucher 

et al. (PDB 2C0D). 

PfPrx5, also called the plasmodial antioxidant protein PfAOP, is located in the apicoplast and 

belongs to the 1-Cys Prx family, with the peroxidatic cysteine at position C117. It was shown 

to interact with tBuOOH, H2O2, GSH, and PfGrx [77, 103] and was crystalized in a 

homodimeric state with a resolution of 1.8 Å (PDB 1XIY) [104]. PfPrx5 contains a second 

cysteine at position 143, whose relevance has not yet been clarified. Since it has no effect on 

catalysis, subunit cooperativity, and enzyme activation, it is hypothesized that the enzyme 

might be involved in redox-dependent signal transduction, might lower the inactivation rate due 

to hyperoxidation, might be involved in the rescue reaction of the enzyme, or might act as a 

slow-acting resolving cysteine for (accidentally) formed disulfide bonds between PfPrx5 and 
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other proteins. It can also be glutathionylated at Cys143, although it is buried in the crystal 

structure [103]. 

The cytosolic 1-Cys Prx family member is PfPrx6 with a peroxidatic cysteine at C47. It shows 

peroxidase activity in a GSH-dependent [105] and a Trx-dependent [106] enzyme assay, can 

reduce H2O2 and tBuOOH, and also accepts Grx as an electron donor [77]. PfPrx6 can be S-

glutathionylated [85] and was suggested to bind to heme [107].  

More recently, a fifth PfPrx called PfPrxQ was found in the parasitic nucleus. It prefers Grx 

over Trx and detoxifies H2O2 and CHP. PfPrxQ is associated with chromatin in a genome-wide 

manner, suggesting an important role in protecting nuclear components or being involved in 

maintaining chromatin structure [108]. The nuclear enzyme contains, very similarly to linker 

histone H1, a C-terminal lysine-rich tail and is therefore speculated to potentially have the same 

property of a direct linker binding to the DNA [109]. 

 

Figure 9: Compartmentation of the redox system in P. falciparum [110]. 

 

Prxs have been found in a great number of eukaryotic and prokaryotic human pathogens, and 

knock-out studies have proved that Prxs are essential for their survival and virulence, suggesting  

these proteins to be potential drug targets [111]. Conoidin A (2,3-bis(bromomethyl)-1,4-

dioxide-quinoxaline; BBMQ) was reported to irreversibly inhibit the peroxidase activity of Prx 

in Toxoplasma gondii [112], which covalently binds to the CP [113], and other quinolone 

derivatives are reported to reversibly inhibit Prx1a of Leishmania major, which binds in a cavity 

near the CP [114]. The high conservation of Prx’s active site structure, as well as the fact that 

most known inhibitors are electrophilic reagents with great affinity for thiols and by that are 

able to react in principle with all available Cys residues, are the most challenging obstacles in 

developing clinically useful drugs [113] for Prx inhibition. 
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1.5 Thioredoxin glutathione reductase 

Until now, three kinds of thioredoxin reductases (TrxR1, TrxR2, and TGR) have been 

characterized. They are all members of the pyridine nucleotide disulfide oxidoreductase family 

[115] and are found in the cytosol and mitochondria, where TrxR1 and TrxR2 were shown to 

be essential for embryogenesis [116, 117]. The third form, thioredoxin glutathione reductase 

(TGR) (EC 1.8.1.B1), is mainly found in testes and shows high homology to the other two 

variants. TGR and TrxR1 generally co-occur in mammals, but could not be identified in all 

mammalian genomes, due perhaps to incomplete genome sequences and a lack of expressed 

sequence tags [118]. First described in Mus musculus [119], Schistosoma mansoni (S. mansoni) 

[120], and Echinococcus granulosus [121], TGR could be shown to be a linked combination of 

the TrxR and GR redox systems that contains TrxR, glutathione reductase (GR), and 

glutaredoxin activities and thereby represents an unusually wide range of substrate specificity. 

TrxR and GR are completely replaced by TGR in S. mansoni, which contributes a significant 

amount of Grx activity present in the parasite. During an infection with S. mansoni, the parasite 

is exposed to high levels of oxidative stress initiated by the host’s immune response, whereby 

the TGR plays a key role in the parasite’s redox defense [122]. Due to the versatile functions 

of SmTGR in the redox system, the enzyme could be an attractive drug target for future 

development of novel chemotherapeutic agents against schistosomiasis [120].  

First discovered in formate dehydrogenese [123] and glycine reductase [124], it was shown that 

enzymes can contain selenium, which plays a key role in the enzymes’ active site, especially 

from antioxidant enzymes. Selenocysteine (Sec) represents the major biological form of 

selenium and can act as an electron donor. Selenium and sulfur are nearly isosteric but exhibit 

significant, distinct chemical properties. The biggest advantage of Sec compared to a thiol is 

the much lower pKa of Sec (5.2 vs. 8.0), depending on the neighboring residues, and is with that 

a more reactive nucleophile and is sometimes even called the ‘superreactive cysteine’. It was 

also reported that Sec residues can adopt more varied conformations than Cys residues [125]. 

Sec is not coded directly in the genetic code as other amino acids because it is encoded by the 

UGA codon, which normally acts as the stop codon. Decoding the UGA codon in the mRNA 

and incorporating Sec requires a complex multi-component system and several reactions such 

as the synthesis of the selenium donor (monoselenophosphate), the conversion of seryl-tRNASec 

to selenocysteyl-tRNASec, and the formation of a cotranslational incorporation complex (SECIS 

element) [126]. Selenoproteins are involved in redox regulation of intracellular signaling, 

redox-homeostasis, and thyroid hormone metabolism and are closely linked to cancer and 

carcinogenesis [127]. In redox homeostasis the thioredoxin reductases are known to be one of 

the most important redox-regulating proteins and also belong to the group of proteins containing 

selenocysteine.  
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1.5.1 Thioredoxin reductase 

 

Figure 10: Postulated mechanism for Trx reduction by mammalian TrxR [128]. (For details see text below)   

 

The human thioredoxin reductase (TrxR, EC 1.8.1.9) is an enzyme that contains Sec and acts 

as a homodimer. The hTrxR possesses two redox centers. The first is located at the N-terminus 

(Cys59 and Cys64) and is buried in the protein. The second is located at a flexible and highly 

accessible C-terminal arm of the other subunit (Cys497′ and Sec498′), which is used for electron 

transport to its substrates by using a guiding bar for stabilized, controlled transfer [129]. All 

mammalian TrxRs have a conserved -Gly-Cys-Sec-Gly motif at the C-terminal end and a 

subunit homologous to glutathione reductase even in the conserved active site. The catalytic 

cycle starts with an oxidized TrxR (Eox), which is reduced by 2 molecules of NADPH to the 

fully reduced enzyme (EH4) (Figure 10). Here, one NADPH reduces FAD (NADPH-FAD and 

FADH--NADP+ charge transfer complexes as intermediates) to the transient FADH- in order to 

reduce the disulfide bond (thiolate-flavin charge transfer complex) within the sequence -Cys59-

Val-Asn-Val-Gly-Cys64. The second NADPH reduces selenenylsulfide to the selenolate anion, 

which subsequently attacks the disulfide bond of the oxidized thioredoxin at position Cys32hTrx 

and creates a mixed selenenylsulfide between TrxR and Trx. The thiol then attacks the mixed 

selenenylsulfide at position 497’ to reconstruct the selenenylsulfide between Cys497’ and 

Sec498’, thereby releasing the newly reduced Trx. The active site Cys of the first subunit will 

reduce the selenenylsulfide, leading to a disulfide bond at positions 59 and 64 that can be 

reduced by NADPH. In this manner, the active site dithiols are able to maintain the selenol in 

its reductive state [128]. The formation of the thiolate-flavin charge transfer complex can be 

determined by an increase of absorbance at 540 nm and a decrease at 463 nm. At 463 nm the 

absorbance decreases due to FAD reduction and increases due to flavin reoxidation, and at 540 

nm the absorbance decreases due to a loss of the FADH--NADP+ charge transfer complex and 

increases due to the formation of the thiolate-FAD charge transfer complex [130]. Due to this, 

hTrxR is reported to be able to reduce other substrates involved in DNA and selenium 

metabolism, antioxidant defense, and cell growth regulation [131, 132]. Furthermore, it is the 

most promising target in chemotherapy treatment based on induced redox stress [133-135]. 
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1.5.2 Glutathione reductase 

The glutathione reductase (GR; EC 1.8.1.7) is also a homodimer where each subunit contains 

an FAD binding site formed by a Rossmann-fold. It also contains an NADPH and a GSSG 

binding site formed by both subunits [136], which are linked by a cysteine disulfide bond [137-

139]. GR plays a central role in glutathione metabolism by linking the cellular NAPDH pool 

with the thiol/disulfide pool [18]. The GR activity is composed of two distinct half reactions. 

The reductive half reaction is initiated by the reduction of the prosthetic group FAD by NADPH 

to the transient FADH-, transporting electrons from NADPH to the isoalloxazine ring of FAD, 

which reduces the disulfide bond between the active site cysteines of the GR, forming the 

charge-transfer complex between the flavin and Cys63, which is located closer to the C-terminal 

end. Oxidized NADP+ is released and replaced by a new reduced NADPH at the end of this 

first step. The oxidative half reaction starts by binding GSSG, where the more N-terminally 

located Cys58 of the GR attacks the CysI of GSSG to form a mixed disulfide and releases the 

GSHII followed by a disulfide re-formation of the intramolecular cysteines of the GR that 

release GSHI [140]. Some TGRs are reported to show the existence of a lag time before catalysis 

(hysteretic kinetic behavior) in the GR assay, but the underlying mechanism for this inhibition 

of initial velocity has not been clarified. The hypotheses range from S-glutathionylation at 

Cys88 for the enzyme’s activation at high GSSG concentrations [141, 142] to substrate 

inhibition [143]. Gene knock-out strains of yeast GR are viable but more sensitive to oxidants 

and accumulate higher GSSG levels in the cytosol [144, 145].   

 

1.5.3 Glutaredoxin 

 

Figure 11: The glutaredoxin dithiol oxidoreductase mechanism. The reduced Grx starts a nucleophilic attack with its N-

terminal cysteine at the disulfide bridge of an oxidized target protein. B) A mixed disulfide build up, and the C-terminal cysteine 

of Grx becomes deprotonated. C) The deprotonated C-terminal cysteine of Grx starts a nucleophilic attack at the mixed disulfide 

intermediate. D) The target protein is now fully reduced and the Grx is in its oxidized form [146].  

Grxs are glutathione-dependent thiol/disulfide oxidoreductases that can catalyze thiol–disulfide 

exchange reactions. All Grx isoforms share an exposed active site cysteine residue at the N-

terminus. Depending on the existence of a second more C-terminal cysteine, Grxs are 

distinguished into monothiol and dithiol Grxs. Additionally, some contain a third cysteine 

residue after the GG-motif at the N-terminus of helix α4 [18] whose function has not yet been 

elucidated. Grxs are mostly monomers but have also been found as non-covalently linked [147-

149] and covalently linked dimers [147] and were found to be able to bind Fe/S clusters with 

glutathione as a ligand, which can lead to the formation of dimers and tetramers [150-152]. In 

the glutaredoxin oxidoreductase mechanism, a dithiol reduction mechanism, the N-terminal 

cysteine of the CxxC motif of Grx starts a nucleophilic attack on one cysteine, which is part of 
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a disulfide bridge in the target protein, building a mixed disulfide between Grx and the target 

protein. In this step, the remaining C-terminal cysteine of Grx becomes deprotonated in order 

to start an attack on the N-terminal sulfur atom, which is involved in the mixed disulfide 

between Grx and the target protein, in order to generate a reduced target protein and oxidized 

Grx (Figure 11). In the monothiol mechanism, where Grx is able to reduce protein-SG mixed 

disulfides due to its higher affinity to GSH, Grx uses its N-terminal cysteine thiol to interact 

with the GSH moiety of the GSH mixed target protein. In doing so, Grx generates a covalent 

Grx-SG intermediate and releases the protein in its reduced form. A second GSH reduces the 

Grx-SG intermediate by generating GSSG (Figure 12) [146]. 

 

Figure 12: The monothiol mechanism of glutaredoxins. In step 1, the reduced Grx is able to transfer the GSH moiety from 

a glutathionylated protein to its N-terminal active site cysteine. Step 2 describes the dissociation of the glutathione moiety by 

a high level of free GSH by forming GSSG. The reduced glutathione-free protein is able to be glutathionylated again (step 3) 

[153].  

 

1.5.4 Mammalian thioredoxin glutathione reductase 

Sun and colleagues were the first to describe the existence of the human thioredoxin glutathione 

reductase (hTGR) in 1999 [154]. Although almost two decades have elapsed since this 

detection, further studies on mammalian TGR have mainly been conducted on mouse TGR 

[118, 154-159]. The TGR was shown to be a fusion of an N-terminal glutaredoxin domain with 

a thioredoxin reductase module, representing a combination of the most important redox-

regulating systems inside the cell. Mammalian TGR is found in small amounts in the liver, 

kidney, brain, lung, heart, muscle, and prostate, as well as puberty-dependent in large amounts 

in post-pubertal testes [155]. In the proposed reaction mechanism from Sun et al. [118] the 

reducing equivalents are transferred from NADPH to FAD to the N-terminal active center and 

to the C-terminal selenenylsulfide active center of the second subunit and finally to the 

monothiol of the Grx domain of the first subunit (Figure 13). They also showed that all reactions 

catalyzed by TGR are selenocysteine dependent in order to achieve full efficiency and that a 

cysteine mutant can only partially compensate the lack of Sec. Furthermore, they were able to 

identify the Grx domain as responsible for the GR activity of the TGR. 
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Figure 13: Proposed reaction mechanism for TGR [118]. 

 

The hTGR (UniProtKB – Q86VQ6) is a homodimer with a monomeric size of about 70 kDa 

and is encoded by the human txnrd3 gene on the long arm of chromosome 3 (3q21.3). Along 

with an NADPH and FAD-binding domain, the sequence of hTGR also includes a dimer 

interface domain and a thiol/disulfide redox-active center. Due to the hTrxR domain, hTGR is 

an enzyme that contains selenocysteine. Here, Sec is placed as the penultimate amino acid at 

the C-terminal extension, encoded by a UGA codon that requires a SECIS element (cis-acting 

Sec insertion sequence) for proper recognition as an amino acid instead of a stop codon. 

Furthermore, hTGR contains an N-terminal GSH-binding motif, which is characteristic for the 

Grx domain. Moreover, in mammalian TGR this GSH-binding motif is a monothiol and 

contains only one active site Cys residue (CxxS), whereas the parasitic Grx domain contains a 

dithiol (CxxC). SmTGR and hTGR show 48.7% sequence identity and 64.1% sequence 

similarity where the thiol/disulfide redox-active center and the thioredoxin active sites are 

conserved (Figure 14). Mammalian TGR targets include proteins that form structural 

components of the sperm, implying its role in the process of sperm maturation [155]. Moreover, 

its composition of redox-regulating systems might indicate an important role in testis-specific 

redox homeostasis and thereby a function in cancer prevention.  
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SmTGR      ADGTSQWLRKTVDSAAVILFSKTTCPYCKKVKDVLAEAKIKHATIELDQLSNGSAIQKCL 63 

SjTGR      IDGTSQWLQRTIESAAVIVFSKTTCPFCKKLKDVLAEAKIKHATIELDQLSNGSVIQKAL 69 

HsTGR      REELRRHLVGLIERSRVVIFSKSYCPHSTRVKELFSSLGVECNVLELDQVDDGARVQEVL 111 

MmTGR      REELRRRLRDLIEGNRVMIFSKSYCPHSTRVKELFSSLGVVYNILELDQVDDGASVQEVL 120 

            :   : *   ::   *::***: **...::*::::.  :    :****:.:*: :*: * 

 

SmTGR      GKEAAKYGAKTAVLDYVEPTPIGTTWGLGGTCVNVGCIPKKLMHQAGLLSHALEDAEHFG 182 

SjTGR      GKEAAKYGAKIAVLDYVEPTPMGTTWGLGGTCVNVGCIPKKLMHQAGLLSHSLEDAQHFG 188 

HsTGR      AKEAAILGKKVMVLDFVVPSPQGTSWGLGGTCVNVGCIPKKLMHQAALLGQALCDSRKFG 231 

MmTGR      AKEAANLGKKVMVLDFVVPSPQGTTWGLGGTCVNVGCIPKKLMHQAALLGHALQDAKKYG 240 

           .****  * *  ***:* *:* **:*********************.**.::* *:.::* 

 

SmTGR      GPNAGEITQGYAVAIKMGATKADFDRTIGIHPTCSETFTTLHVTKKSGVSPIVSGCCG 598 

SjTGR      GPNAGEITQGYAVAIKMGATKEDFDRTIGIHPTCSETFTTLHVTKRSGGSAAVTGC-- 602 

HsTGR      GPNAGEVTQGFAAAMKCGLTKQLLDDTIGIHPTCGEVFTTLEITKSSGLDITQKGCUG 643 

MmTGR      GPNAGEITQGFAAAMKCGLTKQLLDDTIGIHPTCGEVFTTLEITKSSGLDITQKGCUG 652 

           ******:***:*.*:* * **  :* ********.*.****.:** ** .   .**   

 

Figure 14: Partial sequence comparison of TGR from different species. SmTGR (UniProtKB – Q962Y6), SjTGR 

(UniProtKB - B5THG7), hTGR (UniProtKB – Q86VQ6), MmTGR (UniProtKB - Q99MD6). The glutaredoxin-active site is 

colored in green, the thiol-disulfide redox active center is colored in blue and the thioredoxin active site is colored in yellow. * 

identical residues, : very similar residues, . similar residues 

To date there are no published data available that address overexpression conditions, 

purification, kinetics, reaction mechanism, or structure of the human homolog of TGR, which 

was part of this present dissertation.  

 

1.6 Objectives of the study 

As already mentioned, redox homeostasis is essential for every organism living in an aerobic 

environment. To counterbalance the toxic effect of excess ROS, organisms are equipped with 

several antioxidant systems. Prxs are known as the dominant cellular peroxide-reducing 

enzymes and can maintain intracellular H2O2 concentrations. Moreover, Prxs are able to transfer 

oxidation equivalents selectively to downstream proteins. In both cases, disulfide-dithiol 

exchange processes are involved. To gain further insights into the recycling step of oxidized 

plasmodial Prxs and the protein-protein interaction of PfPrxs, the following major topics have 

been addresses within this thesis: 

(i) Development of a surface plasmon resonance-based method for characterization of 

protein-protein interactions in Plasmodium falciparum peroxiredoxins and their 

redoxins in the recycling step of the catalytic cycle at molecular detail. 

(ii) Identification of potential interaction partners of 2-Cys Plasmodium falciparum 

peroxiredoxins via a pull-down assay and mass spectrometry.  

(iii) Determination of the catalytic cysteine pKa of Plasmodium falciparum peroxiredoxins 

with the horseradish peroxidase competition assay and crystallization of the recently 

discovered nuclear PfPrxQ. 

Since enzymatic redox control represents an excellent field of study in the context of drug 

development in the fight against parasitic organisms, the redox control of their hosts should be 

under intensive investigation as well. The most important enzymes for redox homeostasis inside 

the human body are the thioredoxin reductase and glutathione reductase systems. Both proteins 
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are combined in a single multifunctional enzyme, the thioredoxin glutathione reductase, in 

many parasites, including Schistosoma and platyhelminths such as Taenia and Echinococcus, 

which demonstrates that TGR is the major enzyme addressed for drug development in the 

context of redox maintenance. Due to this, the human body also possesses this hybrid enzyme, 

although TrxR and GR are found as dominant isolated proteins as well. The detection of 

differences in structure and kinetic behavior between the host’s and the pathogen’s TGR are 

therefore highly relevant. To characterize human TGR the following objectives were contents 

of this thesis as well: 

(iv) Heterologous overexpression, purification, and kinetic characterization of the human 

selenoprotein human thioredoxin glutathione reductase compared to with a SecCys 

mutant and other selective mutants. 
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2 MATERIAL 

2.1 Instruments 

Instrument Company 

Autoclave Webeco, Bad Schwartau 

Autoclave VX-95 Systec, Wettenberg 

Äkta FPLC system (Pump P-920, monitor UPC-

900, injection valve INV-907, mixer M-925, 

Fraction collector Frac-900, column XK16/60, 

column material Superdex 200 prep grade) 

GE Healthcare, Freiburg 

Biacore T200 GE Healthcare, Munich 

Centrifuge Megafuge 1.0 R Heraus Instruments, Hanau 

Centrifuge MiniSpin Eppendorf, Hamburg 

Centrifuge Sorvall RC5Plus (rotor SS-34 and 

SLA-3000) 

Kendro Laboratory Products, 

Langenselbold 

Centrifuge Sorvall RC 6+ (rotor SS-34 and F9S-

4x1000y) 

Thermo Scientific 

Centrifuge 5415R Eppendorf, Hamburg 

Crystallization robot Honeybee 961 Digilab, Marlborough 

Electrophoresis Chamber Mini-PROTEAN 3 cell BioRad, Munich 

Electrophoresis Chamber B1, B1A, B2 Owl Separation System Inc., 

Portsmouth, USA 

Electrophoresis Power Supply-EPS 200 Pharmacia Biotec, Dübendorf 

Switzerland 

GelDoc 2000 BioRad, Munich 

Heating block neoBlock II neoLab, Heidelberg 

High-purity water system Astacus MembraPure, Bodenheim 

Hybridization oven OV 2 Biometra, Göttingen 

Icemaker F80C Icematic Deutschland, Meerbusch 

Incubation shaker mytron Thermo Scientific, Dreieich 

Incubation shaker KS 500 Junke & Kunkel, IKA-Werke, Staufen 

Incubation shaker SM25 Edmund Bühler GmbH, Tübingen 

Magnetic stirrer CAT M15 MAGV Laborbedarf, Rabenau-Londorf 

Magnetic stirrer color squid IKA Werke, Staufen 

Magnetic stirrer HI 300N Hanna instruments, Kehl am Rhein 

Magnetic stirrer RCTbasic IKA Werke, Staufen 
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Multichannel pipette Discovery 1-10 µL HTL Lab Solutions, Warschau 

Multichannel pipette Discovery 20-200 µL HTL Lab Solutions, Warschau 

Multichannel pipette Transferpette 2-20 µL Brand GmbH, Wertheim 

OptimaTM TLX Ultracentrifuge Beckmann, Munich 

Peltier Cryobath System TPS 1500W Thermo Scientific 

PCR cycler Mastercycler Eppendorf, Hamburg 

PCR cycler Mastercycler gradient Eppendorf, Hamburg 

Peleus ball Deutsch & Neumann, Berlin 

pH meter model Ф 350 pH/Temp/mV Meter Beckman, Krefeld 

Pipette Eppendorf Research Eppendorf, Hamburg 

Pipette Gilson Pipetman P10, P20, P100, P200, 

P1000 

Gilson, Middleton 

Pipetting robot Lissy Zinsser Analytic, Frankfurt 

Precision scale ABT 120-5 DM Kern & Sohn, Balingen 

Precision scale AJ100 Mettler-Toledo, Giessen 

Precision scale SBC 22 Scaltec Instruments, Göttingen 

Scale 474-32 Kern & Sohn, Balingen 

Scale Bosch PE626 Bosch & Sohn, Jungingen 

Shaker Heidolph Unimax 2010 MAGV GmbH 

Spectrophotometer BioPhotometer  Eppendorf, Hamburg 

Spectrophotometer NanoDrop ND-1000 Thermo Scientific 

Spectrophotometer U-2001 Hitachi, Schwäbisch Gmünd 

Stereomicroscope M165 C Leica Mikrosysteme, Wetzlar 

Tecan infinite M 200 multiplate reader Tecan, Männedorf, Switzerland 

Ultracentrifuge, Optima TLX Beckmann, Munich 

Ultrasound device (GM 2070; UW 2070; SH 

706; MS 73) 

Bandelin Electronic, Berlin 

Ultrasound water bath Sonorex RK100 Bandelin Electronic, Berlin 

UV/VIS-Spectrophotometer Evolution 300 Thermo Scientific, Dreieich 

Vortex mixer MS2 Minishaker IKA Werke, Staufen 

Western Blot Trans-Blot SD Semi-dry transfer 

cell 

BioRad, Munich 

X-Ray Cassette IEE 60406 Rego X-Ray GmbH, Augsburg 
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2.2 Chemicals 

Chemical Company 

Acetate buffer (pH 5.5 - 4.0) GE Healthcare, Munich 

Acetic acid Roth, Karlsruhe 

Acrylamide/Bisacrylamide (Rotiphorese Gel 30 

(37.5:1)) 

Roth, Karlsruhe 

Agar-Agar Roth, Karlsruhe 

Agarose (peqGold Universal Agarose) Roth, Karlsruhe 

5-Amino-2,3,-dihydro-1,4,-phthalazinedione 

(Luminol) 

Sigma, Steinheim 

6-Aminohexanoic acid Merck, Hohenbrunn 

APS (Ammonium persulfate) Roth, Karlsruhe 

ATP (adenosine triphosphate) Boehringer, Mannheim 

Bradford reagent (BioRad Protein Assay) BioRad, Munich 

Bromphenol blue Sigma, Steinheim 

BSA (bovine serum albumin) Roth, Karlsruhe 

Calcium chloride Roth, Karlsruhe 

Carbenicillin Roth, Karlsruhe 

Coomassie Brilliant Blue R250 Sigma, Steinheim 

Cumaric acid Sigma, Steinheim 

Cystatin Sigma, Steinheim 

L-Cystine Sigma, Steinheim 

DMSO (dimethyl sulfoxide) Roth, Karlsruhe 

DNase I Roth, Karlsruhe 

DTNB (5,5’-dithiobis-2-nitrobenzoic acid), 

Ellmans reagent 

Roth, Karlsruhe 

DTT (dithiotreitol) Roth, Karlsruhe 

Ethanol Roth, Karlsruhe 

Glycerol Roth, Karlsruhe 

GSH (glutathione) Sigma, Steinheim 

GSSG (glutathione disulfide) Roche, Karlsruhe 

HCl (fuming, 37 %) Roth, Karlsruhe 

HEPES (2-(4-(2-hydroxyethyl)-1-piperazine)-

ethanesulfonic acid) 

Roth, Karlsruhe 

HRP (horseradish peroxidase) Sigma, Steinheim 
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Hydrogen peroxide Roth, Karlsruhe 

Imidazole Roth, Karlsruhe 

IPTG (isopropyl-β-D-1-thiogalactopyranoside) Roth, Karlsruhe 

Kanamycin sulfate Roth, Karlsruhe 

Magnesium acetate, Mg(CH3COO)2 Sigma, Steinheim 

MES (2-(N-morpholino)-ethanesulfonic acid) Roth, Karlsruhe 

Methanol Roth, Karlsruhe 

L-methionine Merck, Darmstadt 

Milk powder Roth, Karlsruhe 

MPD (2-methyl-2, 4-pentanediol) Roth, Karlsruhe 

NADPH (Nicotinamid adenine dinucleotide 

phosphate, reduced)  

Biomol GmbH, Hamburg 

Ni-NTA Agarose (nickel nitrilotriacetic acid) Invitrogen, Karlsruhe 

PEG (polyethylene glycol) Sigma, Steinheim 

Pepstatin A Sigma, Steinheim 

PMSF (phenylmethanesulfonylfluoride) Roth, Karlsruhe 

Polyethylene glycol (PEG) 200, 550, 600, 1000, 

3350 

Sigma, Steinheim 

Ponceau S Sigma, Steinheim 

Potassium chloride, KCl Roth, Karlsruhe 

Potassium dihydrogenphosphate, KH2PO4 Roth, Karlsruhe 

Di-Potassium hydrogenphosphate, K2HPO4 Roth, Karlsruhe 

Potassium hydroxide, KOH Roth, Karlsruhe 

Select Agar Invitrogen, Karlsruhe 

Sodium acetate Roth, Karlsruhe 

Sodium chloride, NaCl Roth, Karlsruhe 

Sodium citrate Sigma, Steinheim 

SDS (Sodium dodecyl sulfate) Sigma, Steinheim 

Sodium hydroxide, NaOH Roth, Karlsruhe 

Sodium selenite Honeywell, Seelze 

Surfactant P20  GE Healthcare, Munich 

Talon Metal Affinity Resin Clontech, Takara Bio Europe SAS, 

Saint-Germain-en-Laye, France 

TEMED (N, N, N’, N’-

tetramethylethylenediamine) 

Sigma, Steinheim 

TRIS (tris-(hydroxymethyl)-aminomethane) Roth, Karlsruhe 
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Triton X-100 Sigma, Steinheim 

Tryptone/Peptone Roth, Karlsruhe 

TWEEN 20 (polyethyleneglycol-sorbitan-

monolaurate) 

Sigma, Steinheim 

Yeast extract Oxoid LTD, Basingstdoke Hampshire 

 

2.3 Consumables 

Consumables Company 

CNBr-activated Sepharose 4B (Amersham) GE Healthcare, Munich 

Crystallization plate, 24 well, VDX plate Hempton Research, Jena 

Crystallization plate, 96 well, MRC 2 well Jena Bioscience, Jena  

Cuvettes, polystyrol Sarstedt, Nümbrecht 

Cuvettes, micro, UV Brand GmbH, Wertheim 

Halfmicro cuvettes 10x4x45 mm, polystyrol Sarstedt, Nümbrecht 

Falkon tube 15 mL, 50 mL Greiner Bio-One, Frickenhausen 

High performance chemiluminescence film 

Amersham hyperfilmTMECL 

GE Healthcare, Freiburg 

Glas capillaries 5 µL Brand GmbH, Wertheim 

Membrane filter ME 25, 0.45 µm Whatman GmbH, Dassel 

Micro pipettes Brand, Wertheim 

Microplate 96 well, PP, V-bottom, transparent Greiner Bio-One, Frickenhausen 

Microplate 96 well, PP, half area, flat bottom, 

clear 

Greiner Bio-One, Frickenhausen 

Microplate 96 well, PS, half area, black Greiner Bio-One, Frickenhausen 

Microplate 96 well, PS, half area, white Greiner Bio-One, Frickenhausen 

Microscope lens paper Glaswarenfabrik Karl Hecht, Sondheim 

Multiply PCR tube 0.2 mL Sarstedt, Nümbrecht 

Nitrocellulose blotting membrane, 0.45 µm GE Healthcare, Freiburg 

Parafilm ’M’ laboratory film Pechiney Plastic Packaging, Menasha 

USA 

Pasteur pipette 150 mm Hirschmann Laborgeräte, Eberstadt 

Petri dish, 15 cm Ø Sarstedt, Nümbrecht 

Pipette tips and tubes, disposable Eppendorf, Hamburg 

Pipette tips Omnitip FastRack 10 µL, 200 µL Ulplast, Warschau 

Plastic Vials GE Healthcare, Munich 
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Protein ladder unstained protein MW marker Fermentas, St. Leon-Rot 

Protein ladder 6xHis  Qiagen, Hilden 

PVDF membrane Roth, Karlsruhe 

Rubber Caps GE Healthcare, Munich 

Series S Sensor Chip CM5 GE Healthcare, Munich 

Silicone oil 550 Merck, Darmstadt 

Sterile filters 0.2 μm FP030 Schleicher & Schüll, Kassel 

Syringe 1 mL Plastipak Becton Dickson, Madrid 

Syringe 10 mL B. Braun, Melsungen 

24 Bottom Wells 1.7x1.6 cm MP Biochemicals Inc., U.S.A 

Vivaspin 20, 3,000 MWCO, 10,000 MWCO and 

30,000 MWCO 

Sartorius Stedim Biotech, Göttingen 

X-ray film Processore, Optimax  Protec, Oberstenfeld 

ZebaTM Desalt Spin Columns Thermo Scientific, Rockford, USA 

 

2.4 Kits 

Kit Company 

Biacore TM Maintenance Kit Type 2 GE Healthcare, Munich 

Bradford Assay Kit Bio-Rad, Munich 

QIAprep Spin Miniprep Kit Qiagen, Hilden 

QIAquick PCR Purification Kit Qiagen, Hilden 

Pierce Silver Staining Kit Thermo Scientific, Rockford, USA 

 

2.5 Enzymes 

2.5.1 Restriction enzymes 

Enzyme Company Restriction site 

DpnI Thermo Scientific 5´...GA-CH3^TC...3´ 

EcoRI Thermo Scientific 5´...G^AATTC...3´ 
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2.5.2 Enzymes for molecular biology 

Enzyme Company 

Pfu DNA Polymerase 

RedTaq® Polymerase 

Promega, Mannheim 

Sigma, Steinheim 

T4 Ligase Fermentas, St. Leon-Rot 

 

2.5.3 Recombinant enzymes 

Enzyme  

PfPrx1a 

PfPrx1aC50S 

PfPrx1aC170S  

PfPrx1aC74A 

PfPrx1aC50S/C170S 

PfPrx1aC50S/C74A/C170S  

PfPrx1aC50S/C74A 

PfPrx1aC74A/C170S  

PfPrx5 

PfPrx5C117S 

PfPrx5C143S  

PfPrx5C117S/C143S 

Truncated PfPrxQ1-164 

Truncated PfPrxQ1-164/C56S 

Truncated PfPrxQ1-164/C103S 

Truncated PfPrxQ1-164/C56S/C103S 

PfPrx1m 

PfPrx1mC67S 

PfPrx1mC187S 

PfPrx1mC67S/C187S 

PfPrx6 

PfPrx6C47S 

hTGR 

hTGRU642C 

hTGR1-150 

hTGR151-643 

hTGRH78A 

hTGRC133S 

hTGRD134A 

hTGRC133S/D134A 

hGR 

hTrxRU498S 

 

2.6 Antibodies 

Antibody Company 

Mouse anti-His-tag IgG Jackson Immuno Research, West Grove 

Rabbit anti-mouse IgG HRP Dianova, Hamburg 

Mouse anti-glutathione IgG Virogen, Watertown 

Rabbit anti-PfTrx1 IgG Bioscience, Heidelberg 

Rabbit anti-PfPrx1a IgG Bioscience, Heidelberg 

Goat anti-rabbit IgG HRP Dianova, Hamburg 
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2.7 E. coli cells 

Strain Genotype 

XL-1 blue F’::Tn10 proA+B+ lacIq Δ(lacZ)M15/recA1 endA1 gyrA96 (NaIR) 

thi hdgR17 (rK- mK+) glnV44 relA1 lac 

BL21 (DE3) E. coli B F- dcm omp T hsdS(rB
- mB

-) gal λ(DE3) 

Single Step (KRX) 

Competent Cells 

[F’, traD36, ΔompP, proA+B+, lacIq, Δ(lacZ)M15] ΔompT, endA1, 

recA1, gyrA96(Nal(r)), thi-1, hsdR17 (r(k)-, m(k)+), e14- (McrA-), 

relA1, supE44, Δ(lac- proAB), Δ(rhaBAD)::T7 RNA polymerase 

M15 nalS, StrS, rifS, KmR, lac-, ara-, gal-, mtl-, F-, recA+, uvr+ 

 

2.8 Cloning and expression vectors 

Vector Properties 

pET28a+ Kanamycin resistance, T7 promotor, His6-tag coding sequence, T7 

tag coding sequence, lac I coding sequence, T7 terminator 

pQE30 Carbenicillin resistance, T5 promotor, His-tag coding sequence, lac 

operator 

pSelABC Chloramphenicol resistance, selAB, selC coding sequence (kindly 

provided by E. Arnér, Karolinska Institute, Stockholm) 

 

2.9 Solutions and buffers 

2.9.1 Buffer for Ni-NTA-affinity chromatography 

Buffer Composition 

Elution buffer PfPrx1a 50 mM Na2HPO4, 300 mM NaCl, pH 8.0 

20, 75, 200 and 500 mM imidazole 

0.5 mM DTT 

Elution buffer PfPrx1m 50 mM Na2HPO4, 300 mM NaCl, pH 8.0 

20, 50, 100, 200 and 500 mM imidazole 

Elution buffer PfPrx5 50 mM Na2HPO4, 300 mM NaCl, pH 8.0 

30, 100 and 500 mM imidazole 

Elution buffer PfPrx6 50 mM Tris, 300 mM NaCl, pH 8.0 

with 30, 50, 100 ad 500 mM imidazole 

0.5 mM DTT 

Elution buffer PfPrxQ1-164 50 mM Na2HPO4, 300 mM NaCl, pH 8.0 

10, 30, 50 and 200 mM imidazole 
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Elution buffer hTGR 50 mM Na2HPO4, 300 mM NaCl, pH 7.2 

20, 30, 200 and 500 mM imidazole 

Elution roGFP2-Orp 50 mM Na2HPO4, 300 mM NaCl, pH 8.0 

10, 50, 200 and 500 mM imidazole 

Ultrasonication (US) buffer  50 mM Na2HPO4, 300 mM NaCl, pH 8.0 

 

2.9.2 Buffers for electrophoresis 

Buffer Composition 

Stacking gel buffer 0.5 M Tris, pH 6.8 

Separating gel buffer 1.5 M Tris, pH 8.8 

SDS chamber buffer 192 mM glycine, 25 mM Tris-HCl, pH 8.3 

0.1% (w/v) SDS 

SDS sample buffer 1x 62.5 mM Tris-HCl pH 6.8, 25% glycerin  

20 mL 10% (w/v) SDS 

2 mL 0.5% (w/v) bromophenol blue, 50 mM 

DTT, 40.5 mL H2O 

storage at room temperature  

before usage 5% (v/v) 2-ME were added 

SDS sample buffer 4x 3 mL stacking gel buffer, 300 mg DTT 

400 mg SDS, 2 mL glycerin 

tip of a spatula bromophenol blue 

Coomassie staining solution  160 mg Coomassie Brilliant Blue R 250 ad 1 L 

ddH2O, 2 h stirring, add 3 mL concentrated HCl 

 

2.9.3 Buffers for semi-dry Western blot 

Buffer Composition 

Anode buffer I 300 mM Tris 

Anode buffer II 25 mM Tris 

Cathode buffer 40 mM 6-Aminohexanoic acid 

TBS 10 mM Tris 

55 mM NaCl, pH 7.4  

TBST 10 mM Tris 

55 mM NaCl 

0.05% (v/v) TWEEN 20, pH 7.4 
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Ponceau S staining 1% (w/v) ponceau S 

5% (v/v) acetic acid 

Ponceau S destaining 1% (v/v) acetic acid 

Luminol 1.25 mM luminol 

0.0093% (v/v) H2O2 

0.1 M Tris-HCl, pH 8.6 

ECL-reagent 1 mL luminol, 10 µL cumaric acid  

 

2.9.4 Gels for electrophoresis 

Gel Composition 

15 % separating gel (4 gels) 3.6 mL ddH2O 

3.75 mL separating gel buffer 

7.5 mL acrylamide/bisacrylamid (30% (v/v)) 

0.15 mL SDS (10% (w/v)) 

75 μL APS (10% (w/v)) 

7.5 μL TEMED 

12 % separating gel (4 gels) 5.1 mL ddH2O 

3.75 mL separating gel buffer 

6 mL acrylamide/bisacrylamid (30% (v/v)) 

0.15 mL SDS (10% (w/v)) 

75 μL APS (10% (w/v)) 

7.5 μL TEMED 

4 % stacking gel (4 gels) 3.05 mL ddH2O 

1.25 mL stacking gel buffer 

0.65 mL acrylamide/bisacrylamid (30% (v/v)) 

0.05 mL SDS (10% (w/v)) 

25 μL APS (10% (w/v)) 

5 μL TEMED 

 

2.9.5 Assay buffers and solutions 

Assay solution Composition 

DTNB Assay  

Assay buffer 47.4 mM KH2PO4, 52.6 mM K2HPO4, pH 7.4 
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NADPH 4 mM in assay buffer 

DTNB 100 mM in DMSO 

Thioredoxin Reductase Assay  

Assay buffer 47.4 mM KH2PO4, 52.6 mM K2HPO4, pH 7.4 

NADPH 4 mM in in assay buffer 

hTrxC72S 1.57 mM in assay buffer 

Glutathione Reductase Assay  

Assay buffer 20.5 mM KH2PO4, 26.5 mM K2HPO4, 1 mM 

EDTA, 200 mM KCl, pH 6.9 

NADPH 4 mM in assay buffer 

GSSG 100 mM in assay buffer 

HEDS/Grx Activity Assay  

Assay buffer 100 mM Tris, 1 mM EDTA, pH 8.0 

NADPH 4 mM in assay buffer 

GSH 100 mM in assay buffer 

HEDS 7.5 mM in assay buffer 

HRP Competition Assay  

10 x BPCD 100 mM Na2HPO4, 100 mM C6H5Na3O7, 100 

mM BH3O3, 1 mM EDTA, 1 M NaCl 

Dilute to 2x BPCD and adjust to pH 2.5-10 

HRP 5 mM in US buffer  

DTT 1 M in US buffer 

H2O2 45 µM in US buffer 

Pull-down Assay  

Suspension buffer 1 mM HCl 

Lysis, wash and elution buffer 100 mM Tris, 500 mM NaCl, pH 8.0 

For elution ad 10 mM DTT, freshly 

Coupling buffer 100 mM NaHCO3, 500 mM NaCl, 0.5 mM DTT, 

pH 8.3 

Blocking buffer 100 mM Tris-HCl, 0.5 mM DTT, pH 8.0 
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pH shift buffer I 100 mM C2H3NaO2, 500 mM NaCl, 0.5 mM 

DTT, pH 4.0 

pH shift buffer II 100 mM Tris-HCl, 500 mM NaCl, 0.5 mM DTT, 

pH 8.0 

DTT was freshly added prior to each experiment 

Interaction Analysis (SPR)  

HBS-EP+ buffer (10x) 0.1 M Hepes, 1.5 M NaCl, 30 mM EDTA,  

0.5% Surfactant P20 (v/v), pH 8.0 

 

2.9.6 Stock solutions 

Stock solution Composition 

APS  10% (w/v) in ddH2O, storage at -20 °C 

Carbenicillin 50 mg/mL in 50% (v/v) EtOH,  

storage at -20 °C 

Chloramphenicol 35 mg/mL, 100% EtOH, storage at -20 °C 

Cystatin 40 μM in US buffer, storage at -20 °C 

DTT  200 mM in ddH2O, storage at -20 °C 

HRP (Horseradish peroxidase) 5 mM in PO4-buffer 

IPTG  1 M in ddH2O, sterile filtration 0.2 µm,  

storage at -20 °C 

Kanamycin  25 mg/mL in ddH2O, sterile filtration 0.2 µm,  

storage at -20 °C 

Pepstatin 0.3 mg/mL in US buffer, storage at -20 °C 

Ponceau S 2% ponceau S (v/v), 3% TCA (v/v) 

PMSF  100 mM in DMSO, storage at 23 °C 

Sodium selenite 50 mM in ddH2O 
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2.10 Media for bacterial culture 

After preparing, the medium suspension will be autoclaved for 30 min at 120 °C and stored at 

4 °C. Adding the respective antibiotic took place directly before inoculation. 

Medium Composition 

Lysogeny broth (LB) 10 g/L tryptone, 5 g/L yeast extract, 10 g/L 

NaCl 

Terrific broth (TB) 12 g/L tryptone, 24 g/L yeast extract, 9.4 g/L 

KH2PO4, 2.2 g/L K2HPO4, 4 mL/L glycerin, pH 

7.0 

2xYT (Yeast Extract Tryptone) 5 g/L NaCl, 16 g/L tryptone, 10 g/L yeast 

extract 

modified LB (Bar-Noy) 12 g/L tryptone, 24 g/L yeast extract, 5 g/L 

NaCl, 5 g/L K2HPO4, 0.142 g/L Na2SO4, 40 

mL/L glycerol 

 

2.11 Protein crystallization screens 

Crystallization screens Source 

(NH4)2SO4  Becker lab 

JBScreen Classic HTS I Jena Bioscience, Jena 

JBScreen Classic HTS II Jena Bioscience, Jena 

JCSG Core Suite I  Qiagen, Hilden 

JCSG Core Suite II Qiagen, Hilden 

JCSG Core Suite III Qiagen, Hilden 

JCSG Core Suite IV Qiagen, Hilden 

MPD Becker lab 

PEG part I Becker lab 

PEG part II Becker lab 

Isopropanol Screen Becker lab 

  

2.12 Oligonucleotides 

Primers for cloning                    Sequence (5'-3') 

OhTGRN  GCGGATCCCTGGAGCGGTCGCCGCCGCAGT 

OhTGR-GrxN  GCGGATCCGAAGATTTGGCATATGATTATGATCTC 
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Primers for generating the SECIS-element  
(in lower case, with stop codon in italics and the Sec codon boxed) 

 

OhTGRselR1  gcagacctgcaaccgatggCTAGCCTCAGCAGCCTTTCTGAGTGATG 

OhTGRselR2  CGAAGCTTctagctagcgattggtgcagacctgcaaccgatggCTAGCC 

Primers for site-directed mutagenesis  

OhTGRC133Ss  AAGTGCATGTAGGTGGATCTGACCAAACTTTCCAGGCA 

OhTGRC133Sas  TGCCTGGAAAGTTTGGTCAGATCCACCTACATGCACTT 

OhTGRD134As  GCATGTAGGTGGATGTGCCCAAACTTTCCAGGCA 

OhTGRD134Aas  TGCCTGGAAAGTTTGGGCACATCCACCTACATGC 

OhTGRH78As CAAGAGCTACTGTCCCGCTAGTACTCGGGTGAAA 

OhTGRH78Aas  TTTCACCCGAGTACTAGCGGGACAGTAGCTCTTG 

OhTGRC133SD134As  AAGTGCATGTAGGTGGATCTGCCCAAACTTTCCAGGCA 

OhTGRC133SD134Aas  TGCCTGGAAAGTTTGGGCAGATCCACCTACATGCACTT 

PfPrx1aC50Ss TTTTACGTTTGTATCTCCATCTGAAATC 

PfPrx1aC50Sas GATTTCAGATGGAGATACAAACGTAAAA 

PfPrx1aC170Ss AACATGGAGATGTTTCCCCAGCAAAC 

PfPrx1aC170Sas GTTTGCTGGGGAAACATCTCCATGTT 

PfPrx1mC67Ss CTATACCTTTGTCTCTCCAACCGAAAT 

PfPrx1mC67Sas ATTTCGGTTGGAGAGACAAAGGTATAG 

PfPrx1mC187Ss TCTGGTGAAGTTTCTCCGATCAATTG 

PfPrx1mC187Sas CAATTGATCGGAGAAACTTCACCAGA 

PfPrx5C117Ss ATTTACGCCTACTTCCAGTACAAAAATG 

PfPrx5C117Sas CATTTTTGTACTGGAAGTAGGCGTAAAT 

PfPrx5C143Ss GATGACATTTATTCTATTACTAATAATG 

PfPrx5C143Sas CTACTGTAAATAAGATAATGTTATTAC 

PfPrx6C47Ss ATTTTACTCCCGTTTCTACCACTGAAC 

PfPrx6C47Sas GTTCAGTGGTAGAAACGGGAGTAAAAT 

Truncated PfPrxQ1-164/C56Ss CAAACACTCCTGGTTCCACAAAACAAG 

Truncated PfPrxQ1-164/C56Sas CTTGTTTTGTGGAACCAGGAGTGTTTG 

Truncated PfPrxQ1-164/C103Ss GTATGAATTGCTGTCTGATGTTGATAAG 

Truncated PfPrxQ1-164/C103Sas CTTATCAACATCAGACAGCAATTCATAC 
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3 METHODS 

3.1 Molecular biological methods 

3.1.1  Plasmid preparation 

To purify plasmid DNA from E. coli cells the QIAprep Spin Miniprep Kit (Qiagen, Promega) 

was used following the manufacturer’s protocol. In brief, the pellet of 1-3 mL overnight culture 

containing the favored plasmid was lysed, neutralized, and centrifuged. The plasmid DNA 

comprising supernatant was than purified over a silica membrane column.  

 

3.1.2  Determination of DNA concentration 

DNA concentration was determined spectrophotometrically at 260 nm in UV cuvettes using a 

biospectrophotometer (Eppendorf) (1 OD260nm unit = 50 µg/mL). The degree of purity was 

delineated by the ratio of absorbance at 260 nm to 280 nm (for DNA a ratio of ~ 1.8 is generally 

accepted as “pure”) calculated by the following formula: 

DNA purity (A260/A280) = A260 reading ÷ A280 reading 

 

3.1.3 Site-directed mutagenesis for PfPrxs 

Selected cysteines of the PfPrxs were mutated with site-directed mutagenesis via PCR. 

Respective PfPrxs, each in pQE30, were used as gene templates, and oligonucleotide primers 

containing the respective mutated codons (Chapter 2.12) were used to insert the mutation using 

Pfu polymerase. 

Reaction mix  

Template DNA 

Forward primer (100 pmol/µL) 

Reverse primer (100 pmol/µL) 

dNTP mix 

10x Pfu buffer 

Pfu polymerase (3 U/µL)  

DMSO 

Sterile H2O 

0.5 µL (~100 ng/µL) 

1 µL 

1 µL 

1 µL (10 mM) 

5 µL 

1 µL 

2.5 µL 

38 µL 

PCR program 

Denaturation 90 sec 94 °C 

Cycles 24 

Denaturation 30 sec 94 °C 

Annealing 60 sec 58 °C 

Elongation 14 min 68 °C 

Final elongation 13 min 68 °C 

  

The PCR reaction products were purified with the QIAquick® PCR purification kit following 

the manufacturer’s protocols. In a second step, a DpnI-digestion of the template was performed 
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for 1 h at 37°C (for details please see below), and purified again. In doing so, the methylated 

template could be eliminated.  

Component  

Nuclease-free water 16 µL 

10x Buffer Tango   2 µL 

DNA (0.5-1 µg/µL)   1 µL 

DpnI   1 µL  

Mutated samples were sequenced at an in-house sequencing facility [160]. By reference to the 

chromatograms and with the help of the program FinchTV, the constructed mutations could be 

controlled.  

 

3.1.4 Site-directed mutagenesis for hTGR 

The coding sequence for hTGR (UniProtKB Q86VQ6) was amplified via PCR by using human 

cDNA (lung tissue, AG Becker) as a template. By changing the TGA-Sec-codon to a TGC-

Cys-codon within the reverse primer, Sec was mutated to Cys. The product - 1929 bp - was 

cloned into the expression vector pET28a using BamHI and HindIII and verified by sequencing 

in an in-house sequencing facility. This N-terminally His-tagged gene was used for 

overexpression of hTGRU642C in E. coli. 

To obtain wild type hTGR, Cys642 of the hTGRU642C construct was back-mutated to a Sec and 

the SECIS element of E. coli formate dehydrogenase was introduced into the sequence 

downstream of the stop codon via PCR by using primer elongation [161]. For this, a first PCR 

was conducted by using OhTGRN (or OhTGR-GrxN for the ‘TrxR-part’, hTGR151-643) and 

OhTGRselR1 as primers. The resulting PCR product was then used as template for a second 

PCR with the primers OhTGRN (or OhTGR-GrxN for the ‘TrxR-part’, hTGR151-643) and 

OhTGRselR2. The PCR products were also cloned into the expression vector pET28a using 

BamHI and HindIII. 

To obtain the N-terminal part of hTGR representing the glutaredoxin domain, hTGR1-150, was 

ordered as a synthetic gene (Eurofins MWG, Ebersberg) with codons optimized for expression 

in E. coli. By using this strategy, it was possible to overcome problems with the very high GC 

content in the N-terminal part of the gene. hTGR1-150 was then cloned into the expression vector 

pET28a by using BamHI and HindIII. 

 

3.1.5  Molecular cloning 

To clone the desired genes into expression vectors, the vector DNA and the DNA to be cloned 

were digested using restriction endonucleases (Chapter 2.5.1) creating compatible ends at their 

cleavage sites following the manufacturer’s protocols. Recombinant DNA was formed after 

linking the cleaved vector with the cleaved foreign DNA via ligation with the T4-DNA ligase 

following the manufacturer’s protocols. 
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3.2 Microbiological methods 

3.2.1  Transformation 

Transformation is the process of incorporating plasmids into competent E. coli cells. In our 

approach, the method of heat shock-induced DNA uptake was utilized [162].  

Cells and plasmids were thawed on ice, and approximately 100 ng of plasmid was added to 125 

µL of CaCl2 treated competent E. coli cells and incubated for 30 min on ice. During incubation, 

the plasmids bound to the E. coli cell membrane. A heat shock for 90 sec at 42 °C stressed the 

bacterial cells so that they took up the plasmids. Cells were allowed to rest for 1 min on ice and 

were incubated with 300 mL of LB medium at 37 °C for 1 h while shaking. 200 µL of cell 

suspension was plated out onto agar plates containing the respective antibiotics, incubated for 

16 h at 37 °C, and stored at 4 °C. 

 

3.2.2 Heterologous overexpression in E. coli 

For heterologous overexpression of the respective gene, 3 mL of medium containing the 

respective antibiotic was inoculated with one colony or 3 - 5 µL glycerol stock of transformed 

E. coli at 37 °C for eight hours in a shaking incubator. This first preculture was transferred to 

50 mL of rich medium containing antibiotics and was incubated over-night at 37 °C while 

shaking. The next day, 25 – 35 mL of the second preculture was added to 1 L of preheated rich 

medium with the required antibiotics up to an optical density of about 0.1 at 600 nm (OD600). 

E. coli was grown to an OD600 of 0.6 or 2.0, depending on the optimal expression conditions of 

the respective gene, at 37 °C, followed by an expression induction with isopropyl-β-D-1-

thiogalactopyranoside (IPTG). IPTG is an artificial inductor of the lac operon. IPTG binds to 

the lac repressor and by that deallocates the repressor from the lac operator, which enables the 

transcription of the recombinant genes. The induced culture was incubated for 2.5, 4, or 24 h at 

37 °C or room temperature (25 °C) according to the protocol while constantly shaking.  

 

3.2.2.1 Heterologous overexpression of PfPrxs in E. coli 

PfPrx1a 

PfPrx1a, PfPrx1aC50S, PfPrx1aC170S, PfPrx1aC74S, PfPrx1aC50S/C170S, and PfPrx1aC50S/C74A/C170S 

were heterologously overexpressed in competent E. coli M15 cells using pQE30 as a vector 

with an N-terminal His6-tag. Cells were grown in LB medium containing 50 µg/mL kanamycin 

and 100 µg/mL carbenicillin at 37 °C (while shaking) up to an OD600 of 0.6. Gene expression 

was induced with 1 mM IPTG for 4 h at 37 °C. 

PfPrx1m  

PfPrx1m, PfPrx1mC67S, PfPrx1mC187S, and PfPrx1mC67S/C187S were heterologously 

overexpressed in competent E. coli M15 cells using pQE30 as a vector with an N-terminal His6-

tag. Cells were multiplied in TB medium containing 50 µg/mL kanamycin and 100 µg/mL 

carbenicillin at 37 °C (while shaking) up to an OD600 of 0.6. Gene expression was induced by 

0.5 mM IPTG for 24 h at RT. 

PfPrx5 

PfPrx5, PfPrx5C117S, PfPrx5C143S
, and PfPrx5C117S/C143C were heterologously overexpressed in 

competent E. coli M15 cells using pQE30 as vector with an N-terminal His6-tag. Cells were 
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grown in LB medium containing 50 µg/mL kanamycin and 100 µg/mL carbenicillin at 37 °C 

(while shaking) up to an OD600 of 0.6. Gene expression was induced by 1 mM IPTG for 4 h at 

37 °C. 

PfPrx6 

PfPrx6 and PfPrx6C47S were heterologously overexpressed in competent E. coli BL21 cells 

using pET28a+ as a vector with an N-terminal His6-tag. Cells were grown in LB medium 

containing 50 µg/mL kanamycin at 37 °C (while shaking) up to an OD600 of 0.6. Gene 

expression was induced by 1 mM IPTG for 4 h at 37 °C. 

PfPrxQ1-164 

Truncated constructs of PfPrxQ1-164, PfPrxQ1-164/C56S, PfPrxQ1-164/C103S, and PfPrxQ1-

164/C56S/C103S were heterologously overexpressed in competent E. coli M15 cells using pQE30 as 

a vector with an N-terminal His6-tag. Cells were grown in LB medium containing 50 µg/mL 

kanamycin and 100 µg/mL carbenicillin at 37 °C (while shaking) up to an OD600 of 0.6. Gene 

expression was induced by 1 mM IPTG for 2.5 h at 37 °C. 

 

3.2.2.2 Heterologous overexpression of hTGR and mutants in E. coli 

Recombinant hTGR and hTGR151-643, hTGRH78A, hTGRC133S, hTGRD134A, and hTGRC133S/D134A 

all in pET28a+ (N-terminal His6-tag) were cotransformed with pSU SelABC into E. coli BL21 

(DE3) cells. Cells were grown in lysogeny broth (LB) medium, according to Bar-Noy with 

slight modifications. The medium contained 0.142 g Na2SO4 per liter of medium supplemented 

with kanamycin (50 µg/mL) and chloramphenicol (17.5 µg/mL), 0.1 g cystine and 0.37 g 

methionine at 37 °C. After reaching an OD600 of 2.0, the temperature was shifted to 21 °C for 

1 h. Expression was induced with 0.4 mM isopropyl-D-thiogalactopyranoside (IPTG), 5 µM 

sodium selenite, as well as riboflavin, nicotinic acid, and pyridoxine (20 mg/L each) for 24 h 

[163]. 

E. coli BL21 (DE3) cells were transformed with pET28a+ coding for hTGRU642C. Expression of 

the cysteine mutant was performed in LB medium in accordance with Bar-Noy and contained 

kanamycin (50 µg/mL), 0.1 g cystine, and 0.37 g methionine at 37 °C to an OD600 of 2.0. 

Induction was initialized by 0.4 mM IPTG, riboflavin, nicotinic acid, and pyridoxine (all 20 

mg/L) and was conducted for 24 h. 

hTGR1-150 was heterologously overexpressed in competent E. coli BL21 cells using pET28a+ 

as a vector. Cells were grown in LB medium that contained 50 µg/mL kanamycin at 37 °C 

while shaking up to an OD600 of 0.6. Gene expression was induced by 1 mM IPTG for 24 h at 

RT. 

 

3.2.3 Cell harvest 

Cells were harvested via centrifugation in an SLA rotor at 8,000 rpm and 4 °C for 15 min, and 

cell pellets were resuspended in the respective buffer containing protease inhibitors (100 µM 

PMSF, 150 nM pepstatin, and 40 nM cystatin) and stored at -20 °C. 
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3.3 Protein biochemical methods 

3.3.1 Cell disruption 

For cell disruption, the suspension was thawed, and 16 mg of lysozyme and an aliquot of DNase 

I were added to one liter of E. coli culture pellets. The lysis was done on ice on a magnetic 

stirrer. While stirring, the lysozyme, out of egg albumen, cleaved the β-1.4-glycosidic bond 

between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in the sugar chains of the 

peptidoglycan scaffold from the bacteria cell wall. DNase I is an endonuclease that cleaves 

phosphodiester bonds in the bacterial DNA. Chemical lysis of the cell suspension was followed 

by mechanical lysis with an ultrasonic treatment. Here the lysate was further cleaved via 

ultrasonication for 3 x 30 sec at 70% of maximum power. Subsequently, the suspension was 

centrifuged for 30 min at 4 °C and 18,000 rpm in an SS34 rotor to extract the proteins in the 

supernatant. This supernatant should contain the overexpressed protein next to the cytosolic 

proteins of E. coli. 

 

3.3.2 Purification with Ni-NTA affinity chromatography 

The purification of cell lysate took place under native conditions via immobilized metal ion 

affinity chromatography (IMAC) [164] using a nickel-nitrilotriacetic acid (Ni-NTA) resin. In 

this technique, the histidine rich side chain of proteins reversibly binds to the immobilized metal 

ion (nickel), which is bound to a Sepharose agarose. The crude extract of the E. coli culture was 

applied to the resin material, which had previously been equilibrated with buffer, and was run 

through the matrix with a speed of one drop per six sec. In doing so, the hexahistidyl-tag (His6-

tag), which was attached to the recombinant protein, bound reversibly to the column. 

Afterwards the loaded resin was washed with buffer to remove  unspecifically bond proteins. 

After washing, the remaining bound proteins were eluted with an increasing gradient of 

imidazole. Imidazole holds a very similar structure to histidine and is capable of replacing and 

liberating the bonded histidine-containing proteins. At low concentrations of imidazole, 

proteins with an unspecific or weak bonding were replaced. The fractions of eluates were 

collected in Eppendorf cups and stored at 4 °C. 

 

3.3.2.1 Purification of PfPrxs 

The His6-tagged proteins were purified via affinity chromatography using different column 

materials, additives, and buffers (Table 1). 

Table 1: General purification procedure for different Prxs. 

Protein Lysis Column 

material 

Volume of column 

material for 1 L cell 

culture 

Additive Buffer 

PfPrx1a 45 min Ni-NTA 1 mL 0.5 mM DTT US buffer 

PfPrx1m 30 min Ni-NTA 1 mL - US buffer 

PfPrx5 30 min Ni-NTA 3 mL - US buffer 
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PfPrx6 30 min Ni-NTA 4 mL 0.5 mM DTT Tris buffer 

PfPrxQ1-164 30 min Talon 4 mL - US buffer 

 

The respective proteins were eluted using an imidazole gradient (please see Chapter 2.9.1). 

Eluted samples were checked for purity using a sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). Protein samples with high purity were pooled using vivaspins 20 

with a molecular weight cut-off (MWCO) of 10,000 Da and stored on ice or at -20 °C in 20% 

glycerol depending on the intended use.   

 

3.3.2.2 Purification of hTGR 

For hTGR, hTGRU642C, and hTGR151-643, the supernatant was brought to 20 mM imidazole, and 

all proteins were purified utilizing a nickel affinity column. Purified recombinant protein was 

eluted in 200 and 500 mM imidazole. Eluted samples were checked for purity using an SDS-

PAGE. Protein samples with high purity were pooled using vivaspins 20 with a MWCO of 

30,000 Da and stored on ice.  

 

3.3.3 SDS polyacrylamide gel electrophoresis  

The purified protein was separated by its molecular weight in an electric field via sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) according to Laemmli [165]. 

SDS denatures and covers the given charge of the protein, resulting in an overall negatively 

charged protein. This charge is proportional to the molecular mass of the protein. The negatively 

charged proteins are then able to migrate through an electric field towards the anode 

fractionated by their size. To denature the protein and break present disulfide bonds, SDS buffer 

containing 50 mM DTT was added to the protein samples and heated for 5 min at 95 °C. The 

covered proteins were loaded on an SDS gel and were able to migrate through the gel at a 

constant voltage of 200 V. Subsequently, gels were washed with ddH2O for 2 x 10 min after 

short boiling (40 sec) in a microwave. Staining was conducted with Coomassie Brilliant Blue 

G-250 for 15 min after short boiling, followed by washing with ddH2O for 2 x 10 min. 

 

3.3.4 Size exclusion chromatography 

An additional purification step of all proteins that are the subject matter of this thesis was not 

necessary since the given purity after the respective affinity chromatography was very high 

(>95%). Size exclusion chromatography (via fast protein liquid chromatography, FPLC) was 

used to determine the molecular mass of oligomeric forms of the recombinant protein under 

different conditions. Native gel filtration was conducted using a HiLoadTM16/60 SuperdexTM 

200 prep grade column connected to an ÄKTA/Unicorn FPLC system (GE Healthcare). A final 

volume of 0.8 mL of purified and concentrated recombinant protein was loaded onto the gel 

filtration column (previously equilibrated with 1.5 column volumes of the respective buffer of 

interest). Proteins were eluted at a flow rate of 1 mL/min with an eluate fraction size of 2 mL 

and a column pressure limit of 0.3 MPa and were detected spectrophotometrically at 280 nm. 

With this technique, proteins are separated according to their molecular mass, with smaller 

molecules migrating more slowly than larger molecules. The respective molecular mass of the 
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eluted proteins was determined by comparison with protein standards of low and high molecular 

mass (GE healthcare). 

 

3.3.5 Determination of protein concentration 

Protein concentration was determined via the Bradford assay [166], using BSA for the standard 

curve, and by measuring the absorption of protein solutions (in 6 M guanidine hydrochloride, 

20 mM potassium phosphate, pH 6.5) at 280 nm taking into account their specific extinction 

coefficients (see Chapter 3.4) with the following formula: 

[Protein] in mM = 
A280

ɛ (cm-1mM-1) * d (cm)
 

ɛ = molar extinction coefficient at λ of 280 nm 

d = distance moved by the light in a cuvette (= 1 cm) 

 

3.3.6 Western blot 

Semi-dry western blot analysis was used for protein identification [167] for His6-tagged 

proteins or S-glutathionylated proteins. After protein separation via SDS-PAGE, the proteins 

were electrophoretically transferred to a polyvinylidene difluoride (PVDF) membrane. For this, 

the stacking gel was removed from the SDS gel and soaked in cathode buffer together with five 

filter papers. Two filter papers and the preactivated PVDF membrane (with 100% methanol) 

were soaked in anode buffer II, and three filter papers were soaked in anode buffer I. After 15 

min of equilibration in the respective buffers, the blot sandwich was built up air bubble-free 

into the transfer cassette. Starting from the anode, three filter papers from the anode buffer I 

were followed by two filter papers from the anode buffer II, the PVDF membrane, the SDS gel, 

and finally five filter papers from the cathode buffer. The separated proteins from the SDS gel 

were blotted onto the PVDF membrane at 13 V for 30 min. 

Upon completion of the transfer, the PVDF membrane was rocked in Ponceau S for 30 sec and 

was washed with 1% acetic acid to visualize transferred proteins (blot control). After washing 

the membrane with TBST for five minutes, the free surface of the blot was blocked with 5% 

non-fat milk in TBST for 1 h at room temperature or overnight at 4 °C. The PVDF membrane 

was then washed 3 times with TBST for 5 min and incubated with the first antibody for 1 h at 

room temperature. After incubation, the membrane was washed again 3 times with TBST 

followed by an incubation with the secondary antibody for 1 h at room temperature. Afterwards, 

the membrane was washed 3 times with TBST followed by chemiluminescent detection. For 

this, the membrane was incubated with the enhanced chemiluminescence (ECL)-reagent for 1 

min at room temperature. During incubation the horseradish peroxidase (HRP)-tagged 

secondary antibody oxidized the ECL reagent containing luminol, whose oxidized form 

releases a chemiluminescence, which was detected with an X-ray film. 

 

3.3.6.1 Western blot analysis for hTGR 

Samples were loaded onto an SDS-PAGE gel and the separated proteins were transferred to a 

PVDF membrane. The membrane was blocked overnight with 5% dry milk in Tris-buffered 

saline (TBS, 10 mM Tris, 0.9% NaCl, pH 7.4) containing 0.05% Tween 20 (TBST). After 

washing the membrane with TBST the primary antibody (mouse anti-his-tag IgG) (1:1,000 in 
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3% BSA) was added and incubated for 1 h at RT. The membrane was washed again with TBST, 

followed by an incubation with the secondary antibody (rabbit anti-mouse IgG HRP) (1:20,000 

in 5% milk) for 1 h and subsequent development with the ECL system containing luminol, 

whose oxidized form release a chemiluminescence which was detected by an X-ray film. 

 

3.3.7 Protein-protein interaction analysis 

3.3.7.1 Pull-down assay  

To identify interacting partners that are addressed for H2O2 signal transduction and reduction 

with plasmodial peroxiredoxins in vitro, a pull-down assay where covalent disulfide-bonded 

reaction intermediates can be visualized was developed. For this purpose, the respective protein 

was immobilized on CNBr-activated Sepharose 4B beads via amine coupling and then was 

incubated with parasite lysate from Plasmodium falciparum 3D7 containing all soluble proteins 

and putative interaction partners (Figure 15). All experiments were conducted in triplicate. The 

eluted samples containing the interacting partners were visualized via silver staining after gel 

electrophoresis and analyzed via mass spectrometry by Claire Delahunty, Ph.D. (The Scripps 

Research Institute, laboratory of Professor John R. Yates III, Ph.D., La Jolla, California). 

CNBr-activated Sepharose 4B beads are supplied lyophilized in the presence of additives, 

which had to be washed away with a low pH buffer (pH 3) before protein coupling. 

Additionally, the low pH preserves the activity of the reactive CNBr groups (cyanate esters). 

These reactive groups are able to react with primary amines to couple proteins onto the agarose 

matrix, building isourea derivatives immobilized at the Sepharose beads. Saturated groups were 

not blocked with buffer containing the small primary amine Tris. To remove ligands that were 

bound ionically to the immobilized protein, the matrix was washed with low and high pH 

buffers containing 500 mM NaCl. 

Ligand coupling 

5.7 mg of lyophilized CNBr-activated Sepharose 4B beads were suspended in 20 µL of 1 mM 

HCl. The swollen material was washed for 10 min with 800 µL 1 mM HCl followed by 

centrifugation for 90 sec at 13,400 rpm in a MiniSpin centrifuge. The supernatant was 

discarded, and the beads were washed again for 5 min with 400 µL of 1 mM HCl. After 

centrifugation for 90 sec at 13,400 rpm, the supernatant was discarded again. For ligand 

coupling, the respective protein was dialyzed 3 times for 30 min in coupling buffer (see Chapter 

2.9.5). 2 mg of reduced protein in coupling buffer were blended with washed beads and slightly 

swiveled for 1 h at 4 °C using a hybridization oven (OV 2, Biometra). The mixture was 

centrifuged again for 90 sec at 13,400 rpm, and the supernatant was discarded. The excess of 

ligand, which had not been bound to the Sepharose beads, was washed away by 3 cycles of 

inverting the material with 200 µL of coupling buffer and 90 sec of centrifugation at 13,400 

rpm. Unsaturated groups were blocked with 200 µL of blocking buffer (see Chapter 2.9.5) for 

2 h, at RT. After blocking, the medium was washed with 3 cycles of 200 µL of pH shift buffer 

I, alternating with 200 µL of pH shift buffer II (see Chapter 2.9.5). After each step of the pH 

seesaw, centrifugation for 90 sec at 13,400 rpm and discarding of the supernatant followed. To 

keep the decameric state of the recombinant peroxiredoxins, all immobilization steps were 

performed in the presence of 0.5 mM DTT. 

Parasite lysate preparation 

For parasite lysate preparation, a pellet from eight large culturing plates (45 mL) of P. 

falciparum 3D7 with 5% hematocrit, and 7% parasitemia was blended with 1.5 mL wash buffer 



Materials & Methods 

42 

 

in an Eppendorf cup, which was additionally sealed with Parafilm. Parasite pellets were 

generated according to Chapter 3.5. The cup was frozen in liquid nitrogen for 2 min and thawed 

in lukewarm water until the suspension was liquid again. The freeze and thaw cycle was 

repeated 4 times in order to lyse the parasite cells. Subsequently, the medium was transferred 

into centrifuge tubes and centrifuged at 50,000 rpm for 30 min at 4 °C in an ultracentrifuge 

(Beckmann). The protein concentration of the resulting parasite lysate was determined with the 

Bradford assay at 595 nm. 

Pull-down assay 

Approximately 6 mg of parasite lysate proteins were incubated with the loaded beads at RT for 

2 h while slightly swiveling. The beads were washed again with 200 µL of wash buffer in order 

to remove unbound parasite proteins. This washing step was repeated as long as no protein 

could be observed in the supernatant by determining the protein concentration at 280 nm in a 

UV cuvette using a biophotometer (Eppendorf). For elution of covalently bound parasite 

proteins, beads were incubated with 70 µL of wash buffer containing 10 mM of DTT for 30 

min at RT while occasionally inverting the mixture. After incubation, the cup was centrifuged 

again, and the supernatant was stored at -20 °C until used for MS analysis. 

Visualization  

To visualize the outcome of the pull-down assay, an SDS-PAGE was conducted with aliquots 

of parasite lysate, different washing steps, and the eluate. 1 µL of parasite lysate was mixed 

with 15 µL of 1 x sample buffer, 5 µL of the first washing step was mixed with 15 µL of 1 x 

sample buffer, 15 µL of an intermediate and 15 µL of the last washing step were mixed with 

4 x sample buffer, and 15 µL of the eluate was mixed with 4 x sample buffer. The SDS-PAGE 

was accomplished as described in chapter 3.3.3. Since the concentration of the proteins in the 

eluate fraction was very low according to expectations, silver staining was used. The staining 

was carried out following the manufacturer’s protocol (Pierce Silver Stain Kit, Thermo 

Scientific). 

 

Figure 15: Scheme of pull-down assay implementation. 
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Sample preparation for mass spectrometry analysis 

For MS analysis, the eluates were sent in a dry ice parcel to The Scripps Research Institute, La 

Jolla, California. Samples were then mixed with 60 µL of 200 mM Tris and 57 mg of solid urea. 

30 µL of Ni-NTA agarose, which had been washed and equilibrated in 100 mM Tris, pH 8.5, 

was added to each sample to remove the recombinant His-tagged PfPrxs. The slurry was shaken 

at RT for 1 hour. Samples were centrifuged at top speed for 30 minutes, and the supernatant 

was transferred to a new microcentrifuge tube. Supernatants were spun again for 20 minutes, 

and supernatants were removed and moved to a new tube. Samples were reduced with 6 µL 100 

mM TCEP and alkylated with 6 µL of 250 mM IAA. 1 µg of Endo-LysC was added, and the 

reaction was allowed to proceed for 4 hours at 37 °C. Samples were diluted with 360 µL 100 

mM Tris pH 8.5, and 2 µg of trypsin was added. Samples were shaken at 37 °C for 18 hours, 

quenched with 25 µL of formic acid and spun for 20 minutes.  

Mass spectrometry analysis 

After transfer to another tube, the supernatant was filtered through a 100 µm capillary column 

with a frit. Filtered supernatants were pressure loaded onto a fused silica microcapillary column 

containing 2.5 cm of Partisphere strong cation exchanger (Whatman) followed by 2.5 cm of 10 

cm Aqua C18 (Phenomenex) packed into a 250 µm inside diameter (i.d.) capillary (Polymicro 

Technologies) with a 1 cm frit. The column was washed for 60 min with buffer A. After 

washing, a 100 µm i.d. capillary with a 5 µm pulled tip packed with 15 cm of 3 µm Aqua C18 

material (Phenomenex) was attached via a union, and the entire split column was placed in line 

with an Agilent 1100 quaternary high performance liquid chromatography (HPLC) and 

analyzed using a nine-step separation. The buffer solutions used for separation were 5% 

acetonitrile / 0.1% formic acid (Buffer A), 80% acetonitrile / 0.1% formic acid (Buffer B), and 

500 mM ammonium acetate / 5% acetonitrile / 0.1% formic acid (Buffer C). Step 1 consisted 

of a 90 min gradient from 0% to 100% buffer B. Steps 2–9 had the following profile: 10 min of 

X% buffer C, a 15 min gradient from 0% to 5% buffer B, and a 95 min gradient from 15% to 

100% buffer B. The 10 min buffer C percentages (X) were 10%, 20%, 30%, 40%, 50%, 60%, 

70%, and 100%, respectively, for the nine-step analysis. As peptides eluted from the 

microcapillary column, they were electrosprayed directly into an Orbitrap Velos mass 

spectrometer (ThermoFisher) with the application of a distal 2.4 kV spray voltage. A cycle of 

one full-scan mass spectrum (400–1,800 m/z) followed by 15 data-dependent tandem mass 

spectrometry spectra at a 35% normalized collision energy was repeated continuously 

throughout each step of the multidimensional separation. The application of mass spectrometer 

scan functions and HPLC solvent gradients was controlled via the XCalibur data system. 

Mass spectrometry data analysis 

Tandem mass spectra were analyzed with Integrated Proteomics Pipeline-IP2 (Integrated 

Proteomics Applications, Inc., San Diego, CA. http://www.integratedproteomics.com) using 

ProLuCID [168] and DTASelect2.0 [169, 170]. Spectrum raw files were extracted into MS1 

and MS2 files using RawExtract 1.9.9 (http://fields.scripps.edu/downloads.php) [171], and 

tandem mass spectra were searched against the PlasmoDB database (release date 03/30/15). To 

accurately estimate peptide probabilities and false discovery rates, a decoy database containing 

the reversed sequences of all proteins appended to the target database [172] was used. Tandem 

mass spectra were matched to sequences using the ProLuCID algorithm with 50 ppm peptide 

mass tolerance [173] where at least 2 peptides per protein had to pass the filtering process with 

a minimum peptide length of 6 aa. The search space included all peptide candidates without 

restriction to tryptic cleavage that fell into the mass tolerance window. Modifications of 

+57.02146 on C owing to IAA treatment as part of the sample preparation were considered to 
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be a potential modification. The validity of peptide/spectrum matches was assessed according 

to Wang et al. (2015) [173] with a protein confidence of 97% as the minimum threshold and a 

peptide delta mass limitation of 15 ppm maximum, resulting in a peptide false discovery rate 

below 1.5%. 

 

3.3.7.2 Surface plasmon resonance spectroscopy 

When light is reflected off a thin metal film (e.g. gold or silver) at a defined angle, surface 

plasmon resonance occurs [174]. Incident light is not only reflected at a metal film, a fraction 

of light energy stimulates the resonant oscillation of electrons (plasmon), enhancing the 

evanescent field amplitude at the conducting material and leading to an electromagnetic surface 

wave (surface plasmon polariton, SPP), which propagates along a metal-dielectric interface 

(Figure 16) [175]. The SPPs are located at the boundary of the metal film and the external 

medium, with the result that these waves are very sensitive to alterations in this environment. 

SPPs reduce the reflected light intensity and therefore the refractive index at the backside of the 

metal film, which is determined with a two-dimensional detector array monitored as a 

characteristic drop in the reflected light intensity [176]. A change at the boundary can be 

induced by binding molecules to the conducting surface, resulting in a change of the local 

refractive index and leading to a detectable change in the surface plasmon resonance (SPR) 

angle. 

 

Figure 16: Simplified depiction of surface plasmon polariton formation (Kretschmann configuration). 

 

A surface plasmon resonance (SPR) biosensor (BiacoreT200) is able to detect those angle shifts 

in reflected light, depending on the mass of molecules binding to the surface layer. For 

interaction analysis, biomolecules are bound to the gold-covered surface (ligand) and can be 

challenged with other biomolecules free in solution (analyte) via a microfluidic system (flow 

channel; FC). If binding occurs, a local increase in the refractive index is produced, inducing 

an SPR angle shift [177]. The change in the refractive index can be monitored in real time as a 

plot of resonance signal versus time measured in resonance units (RU), which correlates with a 

mass increase (Figure 17) [178], where the angle shift of 0.0001° is defined as 1 response unit 

and equals 1 pg/mm2. This response is directly proportional to the concentration of 

biomolecules attaching to the surface. 
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Figure 17: General setup for an SPR biosensorMolecules in solution can bind to the surface-immobilized ligands. This 

binding can alter the refractive light index near the surface, which can be monitored in real time [178]. 

 

For protein-protein interaction (PPI) analysis, proteins can be attached via many different 

approaches onto the gold surface. For the experiments performed during this thesis, a covalent 

immobilization via amine coupling was chosen, where the proteins were bound through a 

covalent chemical link, most likely at the amine group of a lysine. Commercially available 

sensor chips (Series S Sensor Chip CM5, GE Healthcare) are covered with a carboxymethylated 

dextran matrix, which provides a hydrophilic interaction environment and relatively high 

freedom of mobility of the biomolecules attached to the surface due to the unbranched polymer 

chains of the matrix. They also provide the chemical basis for the covalent attachment of the 

respective proteins. 

As a first step of immobilization, the carboxyl groups have to be activated by 

1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). 

EDC activates the carboxyl group by forming reactive O-acylisourea, which is relatively 

unstable and has to be stabilized with NHS, building the NHS ester intermediate, which has a 

longer half-life (Figure 18). 

 

 
Figure 18: Activation of carboxymethyl dextran. 
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The reactive succinimide ester reacts spontaneously with primary amines of the ligand, which 

is passed over the surface to link the protein covalently to the dextran matrix. In this step, 50% 

of the COO- will be activated to retain the negative charge of the surface. To enable a pre-

concentration of the ligand on the dextran matrix, electrostatic attraction is used. The 

carboxymethylated dextran surface is negatively charged at pH values above 3.5. To generate 

positively charged ligands, a pH scouting for the ligand is generally used prior to 

immobilization to ascertain an optimal pH that should lie between the isoelectric point of the 

ligand and the pKa of the surface (Table 2). 

Table 2: Peroxiredoxins and the respective pH used for immobilization. 

Ligand pH for immobilization pI 

PfPrx1a 5.5 6.65 

PfPrx1aC50S, PfPrx1aC50S/C170S, PfPrx1aC74A 4.5 6.65 

PfPrx1m 5.0 8.81 

PfPrx1mC67S, PfPrx1mC67S/C187S 4.5 8.81 

PfPrx1mC187S 4.0 8.81 

PfPrx5, PfPrx5C117S 5.0 7.64 

PfPrx5C143S 4.0 7.64 

PfPrx6, PfPrx6C47S 4.5 6.31 

PfPrx1-164Q, PfPrxQ1-164/C56S, PfPrxQ1-164/C103S 4.0 4.96 

PfPrxQ1-164/C56S/C103S 4.5 4.96 

 

A 1:1 (v/v) mixture of 400 mM EDC and 100 mM NHS was injected for 7 min at 10 µL/min 

for surface activation. Freshly purified ligand was diluted to a final concentration of 50 µg/mL 

in 10 mM sodium acetate buffer with the respective pH, and was injected at 10 µL/min for 7 

min. To deactivate remaining reactive groups 1 M ethanolaminehydrochloride pH 8.5 was 

injected for 7 min at 10 µL/min, at 25 °C. 

Analytes used for PPI detection were already constructed prior to this thesis, namely PfTrx wild 

type [83], PfTrxC30S (PfTrxSCC), PfTrxC33S (PfTrxCSC), PfTrxC43S (PfTrxCCS), PfTrxC30S/C33S 

(PfTrxSSC), PfTrxC33S/C43S (PfTrxCSS), PfTrxC30S/C43S (PfTrxSCS), PfTrxC30S/C33S/C43S (PfTrxSSS) 

[84], PfGrx wild type [93], PfGrxC29S (PfGrxSCC), PfGrxC32S (PfGrxCSC), PfGrxC88S (PfGrxCCS), 

PfGrxC29S/C32S (PfGrxSSC), PfGrxC32S/C88S (PfGrxCSS), PfGrxC29S/C88S (PfGrxSCS), and 

PfGrxC29S/C32S/C88S (PfGrxSSS) [84]. 

The approach for identifying regioselectivity between redoxins and Pf peroxiredoxins were 

established within this study. Therefore, the protocol for this application is implemented in the 

results part of this thesis. 
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3.3.7.3 Electrophoretic mobility shift assay  

To evaluate covalent protein-protein bindings of PfPrx1a and PfTrx, an electrophoretic mobility 

shift assay (band shift assay) was conducted. To achieve this, recombinant PfPrx1a wild type, 

PfPrx1aC50S/C74A, PfPrx1aC170S, and PfTrxCSC were reduced with 0.5 mM TCEP for 30 min and 

desalted using ZebaTM Spin desalting columns. Afterwards, PfPrx1a was oxidized with 0.5 mM 

DTNB for 5 min and desalted again. Reduced PfTrxCSC and oxidized PfPrx1a were incubated 

for 1 h at RT. Protein binding was visualized with SDS electrophoresis under reducing and non-

reducing conditions. Moreover, antibodies detecting PfPrx1a, PfTrx, and His6-tags were used 

in western blot analyses to identify the respective protein bands. His-tagged (PfPrx1a and 

PfTrx) proteins were identified using mouse anti-His-tag IgG (1:1,000 in 3% BSA) as primary 

antibodies and rabbit anti-mouse IgG HRP (1:20,000 in 5% milk) as secondary antibodies on a 

PVDF membrane. For exclusive immunoblotting of PfPrx1a, rabbit anti-PfPrx1a IgG (1:2,000 

in 5% milk) was used as a primary antibody and goat anti-rabbit IgG HRP (1:20,000 in 5% 

milk) as a secondary antibody on a nitrocellulose membrane. For detection of PfTrx, rabbit anti-

PfTrx IgG (1:20,000 in 5% milk) was used as a primary antibody and goat anti-rabbit IgG HRP 

(1:20,000 in 5% milk) as a secondary antibody on a nitrocellulose membrane. 

 

3.3.7.4 Microscale thermophoresis  

Within a temperature gradient, particles are able to enforce a direct motion, called 

thermophoresis, thermal diffusion, or the Soret effect [179]. This phenomenon can be used to 

monitor direct movements of fluorescent molecules through a microscopic temperature gradient 

(MicroScale Thermophoresis, MST) and is employed to analyze binding events [180]. A 

movement in aqueous solutions is typically directed from regions of elevated temperature and 

will be monitored inside a small capillary (50 × 50 µm cross section). An infrared laser 

(emission wavelength: 1480 nm) locally applies the temperature gradient, where the 

concentration of molecules is observed with a fluorescent tag on the respective molecule [181]. 

The differences in thermophoresis of a protein and a protein-ligand complex due to binding-

induced changes in size, charge, and solvation energy, can be used to quantify the dissociation 

constant (Kd) in titration experiments [182] (Figure 19). 
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Figure 19: MST setup and thermophoresis assay. (A) Schematic representation of the MST optical system, (B) a typical 

thermophoretic curve. In the initial state the fluorescently labeled sample is homogenously distributed in the capillary. When 

the laser creates a temperature gradient, the labeled sample migrates out of the laser focal point observed in a fluorescence drop 

as it is sensitive to temperature. As soon as the laser is turned off, the fluorescence dye diffuses back. (C) MST time traces of 

titrations of an analyte against a ligand (left) and the temperature-jump signals fitted for calculating the dissociation constant 

of the ligand (here thrombin). Modified according to Liu et al. [183]. 

 

For interaction analysis of selected protein pairs (Trx and Prx), the thioredoxin mutants were 

chosen to be fluorescently labeled with the Monolith NT™ Protein Labeling Kit RED-NHS, 

following the manufacturer’s protocol [179]. For this, Trx was diluted to 20 µM in 190 µl US 

buffer. 10 µL of red dye NT-647 (solved in DMSO) was added and incubated for 1 h at RT in 

the dark. Labeled Trxs were centrifuged and desalted using a gravity flow column B 

(NanoTemper Technologies), followed by reduction with TCEP (ad 0.5 mM) for 15 min, and 

then they were desalted again. Reduced Prxs were desalted using P-6 gel (equilibrated in US 

buffer) and were oxidized with DTNB and desalted. A dilution series (1:1 (v/v)) was prepared 

for the unlabeled Prx starting with a concentration of 66 µM down to 1 nM. 200 nM labeled 

Trx was then added to every titration step. The assay mixture was then filled into 5 µl capillaries 

via adhesion. The motion behavior of the labeled Trx in dependency of the Prx concentration 

in the MST was measured with the Monolith NT.115 (Blue/Red) from NanoTemper 

Technologies at Philipps University, Marburg. Data were assessed using Origin8 (OriginLab). 

The interaction profiles of PfPrx1a wild type with PfTrxCSC and PfTrxSSS were chosen as 

representative interaction models. 
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3.3.7.5 Isothermal titration calorimetry  

Biochemical reactions are accompanied by a release or uptake of heat due to physical and 

chemical processes that can be measured via isothermal titration calorimetry (ITC) [184]. In 

this way, the heat-sensing device in the microcalorimeter can measure the differences in heat 

between a reference cell (water) and an analytical cell (sample). When binding occurs, which 

will lead to a temperature change, the calorimeter compensates the temperature difference 

between the cells. The amount of energy needed for compensation reveals the read out data 

(Figure 20). The detected heat transfer (isotherm) is used in order to determine binding 

constants (KD), reaction stoichiometry (n), enthalpy (ΔH), and entropy (ΔS). In the experiment, 

one sample is titrated into a second sample until no further heat changes (in µcal or µJ) are 

detected due to saturation of the second reactant. The resulting raw data is converted to a 

binding isotherm that can be fitted to a binding model. 

 

Figure 20: Schematic representation of the isothermal titration calorimeter. ITC (left) and a characteristic titration 

experiment (isotherms) (upper right) with its evaluation (lower right) [185]. 

 

For sample preparation, samples were reduced with 1 mM TCEP for 30 min or oxidized with 

0.5 mM DTNB and desalted using desalting columns. These proteins were used for association 

experiments. In a second approach, the oxidized Prx and the reduced Trx were desalted and 

incubated for 1 h and applied as a protein-ligand-couple as injectant for dissociation 

experiments. Samples were degassed for 5 min (MicroVal, MicroCal) at 20 °C in a 5 mL vial. 

The syringe was filled with 300 µL of injectant and the analytical cell with 1.4 mL of 

buffer/protein solution. Titration experiments were performed automatically at 25 °C for a 

maximum of 30 injections of 10 µL (100 µM of Trx or 30 µM Prx-Trx) of injectant with an 

initial delay of 60 sec and a 120 sec lag between each injection into the analytical cell (10 µM 

of Prx or 0.5 mM TCEP). Stirring speed was adjusted to 286 rotations/min, and the reference 

power was set to 10 µcal/sec. Data were evaluated using Origin7. Control titrations of protein 

into buffer and buffer into buffer were performed and subtracted from the resulting isotherms. 



Materials & Methods 

50 

 

The isotherms of PfTrxCSC with PfPrx1a wild type as well as PfTrxSSS with PfPrx1a wild type 

were chosen as representative interaction models of a covalent and non-covalent interaction, 

respectively. 

 

3.3.8 Absorption titration spectrum 

To verify the successful incorporation of FAD into hTGR and the presence of a charge transfer 

complex, an NADPH titration was performed. 20 µM of enzyme in 300 µL of US buffer pH 

7.2 was titrated with 4, 12, and 20 µM NADPH, followed by a single dose of 50 µM hTrx in 

UV cuvettes at 25 °C. For every titration step, a spectrum from 200–800 nm was recorded with 

the UV/VIS spectrophotometer Evolution 300 (Thermo Scientific). Spectra were plotted and 

smoothed with SigmaPlot 8.0. 

 

3.3.9 Measurement of the catalytic cysteine pKa 

To determine the pKa of the catalytic cysteine for the plasmodial peroxiredoxins, a HRP 

competition assay was conducted [186, 187]. With this, the second-order rate constant for the 

active site Cys was obtained at different pH values varying from 5 to 10. 

The competition assay was used to monitor the enzyme’s ability to compete with HRP. HRP 

reacts with hydrogen peroxide to form the so-called compound I with a second order rate 

constant of 1.78 × 107 M−1 sec−1 over a wide pH range [188], and the formation of this compound 

I can be measured spectroscopically at 403 nm. When reduced Prx (Prx-SP
–) is also involved in 

this reaction, it too will react with H2O2 to form sulfenic acid (Prx-SPOH) so that less peroxide 

is available to oxidize HRP, with the result that compound I formation will decrease (Figure 

21). 

 

Figure 21: Basic principle of Prx activity determination by the HRP competition assay  [187]. 

 

With this assay, Prx activity can be detected as a function of the decreased formation of 

compound I as the Prx competes with HRP for the available peroxide. Since formation of 

compound I will decrease as Prx concentration increases, the relative amount of H2O2 reacting 

with HRP and Prx can be used to calculate the second order rate constant for each implemented 

Prx concentration (kPrx). These values are plotted against Prx concentration and fitted via linear 

regression. This competition assay was conducted in a wide range of different pH values. The 

slopes of each linear regression out of the different pH milieus (Figure 22) can be plotted against 

the pH values and will give pH dependency and by association the pKa of the respective catalytic 

cysteine inside the Prx [187]. 
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Figure 22: Determination of kPrx with the HRP competition assay. At 403 nm, HRP absorbance decreases via compound I 

formation due to oxidation of HRP with H2O2. (B) When [Prx] increases, the amount of compound I formation decreases since 

Prx is competing with HRP for the available H2O2. The apparent second order rate constant of each [Prx] can be calculated 

[(ΔAmax-ΔAobs)/ΔAobs] × kHRP[HRP]. (C) k[Prx] values are plotted against [Prx] and fitted via linear regression. The slope of the 

linear regression provides the kPrx for H2O2 at a defined pH. kPrx values across a range of different pH values are plotted against 

pH in order to determine the pKa of the catalytic cysteine of the respective Prx [187]. 

 

Prxs, stored at -20 °C with 10 mM DTT and 20% glycerol, were used for the HRP competition 

assay. Prxs were reduced again with 10 mM DTT for 30 min prior to every experiment and 

were desalted over desalting columns (Zeba spin). Before the reaction was induced, a 52 µM 

H2O2 stock was freshly prepared in US buffer, and the HRP concentration was determined. 

Assay mixtures containing 15 µM HRP and reduced Prx (0, 10, 15, 20, 30, and 40 µM) in US 

buffer were prepared (mix 1), and 2x BPCD buffers were adjusted to pH 2.5-10 (mix 2). 75 µL 

of mix 1 and 75 µL of mix 2 were transferred 1:1 (v/v) into a transparent 96-well plate (half 

area from Greiner Bio-One) with a multichannel pipette and were pipetted up and down very 

carefully to avoid air bubbles. Absorbance at 403 nm was measured with a multiplate reader at 

25 °C (Tecan infinite M 200). Directly after adding 10 µL of the H2O2 stock and carefully 

mixing the assay solution, absorbance at 403 nm was measured again since the formation of 

compound I is stable for only 90 sec. Measurements were performed for at least three 

independent samples with four replicates each. To determine ΔAobs, absorbance after adding 

H2O2 was subtracted from the average change in absorbance during the absence of Prx (ΔAmax). 

The respective kPrx values were calculated for each well using a second order rate constant of 

1.78 x 107 M−1 sec−1 for the reaction of HRP with 7.5 µM H2O2 [188]. Every kPrx value was 

plotted against the peroxiredoxin concentration and was fitted to linear regression using Excel. 

The corresponding slope of this line gives the second order rate constant of the respective Prx 
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reacting with hydrogen peroxide. To determine the pKa of the catalytic cysteines (CP), kPrx 

values obtained at different pH values were plotted against pH and were used to calculate the 

pKa with GraphPad Prism5 via sigmoidal fitting and the three-parameter logistic equation. 

 

3.4 Determination of kinetic parameters 

Enzyme activities were all measured at 25 °C using either a HITACHI U-2001 

spectrophotometer (total assay volume 500 µL) or an Evolution 300 UV/VIS 

spectrophotometer (Thermo Scientific) (total assay volume 600 µL), and the extinction 

coefficients of NADPH (6.22 mM-1 cm-1) and TNB- (13.6 mM-1 cm-1 (×2)) were used for 

calculations. To determine KM and Vmax values, the final concentrations of the respective 

substrates were varied at standard assay concentrations of the second substrate (see assay 

descriptions below), and kinetic values were calculated via nonlinear regression of the 

Michaelis-Menten equation; kcat values were calculated on the basis of the Vmax values; specific 

activities were determined at standard assay conditions. The reaction velocity was plotted 

against the substrate concentration using GraphPad Prism5. All measurements were carried out 

in at least three independent experimental series. 

 

Specific activity [µmol * min-1 * mg-1] = (
µmol

min  ∗ mL
) ∗ (

mL

mg
) 

kcat [molecules * min-1] = (
µmol

min  ∗ mL
) ∗ (

mL

µmol
) 

 

For calculations of stock solution concentrations and kinetic parameters, the specific extinction 

coefficients of the respective proteins (calculated by the ProtCalc online tool of JustBio, 

www.justbio.com) and substrates were used. 

ɛ280 (PfPrx1a)  = 21.7 mM-1 * cm-1  ɛ280 (hTGR1-150) =   2.71 mM-1 * cm-1 
ɛ280 (PfPrx1m)  = 21.8 mM-1 * cm-1  ɛ280 (hTGR151-643)       = 62.04 mM-1 * cm-1 
ɛ280 (PfPrx5)  = 20.4 mM-1 * cm-1  ɛ340 (NADPH ) =   6.22 mM-1 * cm-1 

ɛ280 (PfPrx6)  = 30.9 mM-1 * cm-1  ɛ412 (TNB-)  = 13.60 mM-1 * cm-1 

ɛ280 (PfPrxQ)  = 13.5 mM-1 * cm-1 

ɛ280 (hTGR)   = 64.8 mM-1 * cm-1 

 

 

3.4.1 Thioredoxin reductase activity assays 

The enzyme’s ability to reduce thioredoxin was determined using a thioredoxin reductase 

(TrxR) assay. The decrease in absorption at 340 nm was detected since the reduction of oxidized 

hTrx converts the co-substrate NADPH to NADP+, which leads to a shift in absorption at 340 

nm [189]. To determine thioredoxin-reducing activity, hTGR (and variants) were added to an 

assay mixture consisting of 100 mM potassium phosphate, 2 mM EDTA, pH 7.4, and 100 µM 

NADPH. After monitoring the baseline, the reaction was started by adding human TrxC72S (20 

µM final concentration), and the initial ΔA/min was monitored at 340 nm. 

The capability to reduce the artificial substrate 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB, 

Ellman’s reagent) was detected with a DTNB assay. DTNB is reduced to the yellow colored 2-

nitro-5-thiobenzoate (TNB-) stoichiometrically by thiols, leading to an increase in absorbance 

at 412 nm [190]. The standard 2-nitro-5-thiobenzoate (DTNB) reduction assay contained 100 
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mM potassium phosphate, 2 mM EDTA, pH 7.4, 100 µM NADPH, and 3 mM DTNB (dissolved 

in DMSO). After monitoring the baseline, the reaction was initiated by adding the enzyme. The 

reaction was followed by measuring the initial change in absorbance at 412 nm. 

 

3.4.2 Grx activity assay  

The HEDS reduction assay was used to determine the enzyme’s ability to deglutathionylate a 

substrate via a monothiol mechanism. In this coupled assay, GSH and the disulfide substrate 

bis(2-hydroxyethyl)disulfide (HEDS) react non-enzymatically with each other to form the 

mixed disulfide GSSEtOH, which is the actual substrate for the Grx domain. The active site 

cysteine in its thiolate form attacks GSSEtOH in the oxidative half reaction and becomes 

glutathionylated. A second GSH molecule subsequently regenerates the enzyme during the 

reductive half reaction, releasing GSSG [191-193]. The GSSG that originates is then reduced 

by hGR in the presence of NADPH, leading to a decrease in absorption at 340 nm due to 

NADPH consumption. The assay mixture contained 100 mM Tris, 1 mM EDTA, pH 8.0, 100 

µM NADPH, 0.25 U/ml of human GR, 1 mM reduced glutathione (GSH) and 750 µM HEDS. 

The reaction was initiated by adding hTGR. A decrease in NADPH absorbance was monitored 

at 340 nm for 1 min. The initial reaction of all assay components, excluding the hTGR, 

generates a background reaction that depends on the HEDS concentration and was subtracted 

from the respective absorbance changes. 

 

3.4.3 Glutathione reductase activity assay 

To evaluate GR activity of hTGR a glutathione reductase (GR) assay was conducted. An 

enzyme with GR activity is able to reduce GSSG in the presence of NADPH. The decrease in 

absorbance at 340 nm was detected for 1 min after adding GSSG. To detect GR activity [194], 

hTGR was added to an assay mixture comprising 20.5 mM KH2PO4, 26.5 mM K2HPO4, 1 mM 

EDTA, 200 mM potassium chloride, pH 6.9, and 100 µM NADPH. After monitoring the 

baseline, the reaction was started by adding 0.2 mM GSSG, and the initial decrease in 

absorbance at 340 nm due to NADPH consumption was monitored. Recombinant hGR served 

as a positive control. 

 

3.4.4 Hysteretic effect 

The time-based dependency of the enzymatic reaction on present and past inputs (hysteresis) 

was detected with the GR assay as described above. For this, the assay was conducted in the 

presence of varying GSSG concentrations in order to detect its influence on the initial velocity 

of the enzyme’s reaction. 0.45 µM hTGR was incubated with 0.1 – 4 mM GSSG and 100 µM 

NADPH. The following decrease in absorbance at 340 nm was recorded for 6.5 h. 

 

3.4.5 Protein-S-glutathionylation 

For glutathionylation studies, hTGR wt was reduced with 5 mM DTT for 30 min at 4 °C and 

desalted using Zeba™ Spin Desalting Columns. The reduced enzyme was incubated with 5 mM 

GSSG for 5 min at 37 °C and loaded onto a 12% SDS gel for western blot analysis. For 

immunoblotting, the first antibody (mouse anti-glutathione antibody) was diluted 1:500, and 

the secondary antibody (rabbit anti-mouse IgG HRP) was diluted 1:5,000 in 5% milk powder. 
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For mass spectrometry analysis, proteins were loaded onto a 12% polyacrylamide gel followed 

by SDS-PAGE. Protein containing gel pieces of interest were excised, digested with trypsin 

and analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass 

spectrometry (Ultraflex I, Bruker Daltonics, Bremen) (by Protein Analytics, Prof. Lochnit, 

Giessen). 

 

3.5 P. falciparum cell culture methods 

The chloroquine-sensitive strain 3D7 was maintained in cell culture according to Trager and 

Jensen with modifications [195]. In brief, parasites were grown in red blood cells (A+) at 5% 

hematocrit with a parasitemia not higher than 8% to avoid cell death at steady 37 °C, purged 

with a gas mixture containing 3% O2, 3% CO2, and 94% N2. Parasite growth was monitored via 

Giemsa staining. To ensure synchronous parasites, sorbitol synchronization was performed 

according to Lambros and Vanderberg [196]. Once parasites became trophozoites, saponin lysis 

was conducted to remove red blood cells and obtain the parasite pellet [197]. The pellets were 

stored at - 80 °C until use. 

 

3.6 Protein crystallization  

Atomic resolution structures of proteins provide a deep and unique understanding of protein 

function and help unravel the inner workings of the living cell [198]. To obtain the three-

dimensional structure, proteins must be purified to homogeneity, which is a key factor in 

obtaining crystals that diffract to high resolution [199]. For crystallization, the protein has to be 

brought to supersaturation and should therefore be concentrated as highly as possible without 

causing aggregation or precipitation of the macromolecule. Precipitating agents (e.g. salt, 

organic solvents, or polyethylene glycols (PEG)) can promote the nucleation of protein crystals 

in the solution [198]. The salt concentration in the sample has to be kept as low as possible 

because salt itself tends to crystallize at a high concentration, and a higher salt concentration is 

inversely connected to a decrease in protein solubility. Organic solvents decrease the water 

content of the solution and the dielectric constant of the medium, and PEG, as a polymer, uses 

its volume exclusion property to lower the solubility of the solution [200]. Vapor diffusion and 

batch crystallization are the main techniques for obtaining protein crystals, and the former was 

used in the present thesis. For vapor diffusion, an unsaturated precipitant-containing protein 

solution is sealed in a chamber with pure precipitant. Vapor equilibration of the drop and 

reservoir induces dehydration of the drop to reach a supersaturation level where nucleation and 

crystal growth can occur and can be carried out with the hanging drop or sitting drop method. 

For initial screening of appropriate crystallization conditions, different screens were performed 

in microplates using the sitting drop method. With the HoneyBee 961 crystallization robot, 

commercially available and self-arranged crystallization screens (see Chapter 2.11) were set up 

using 200 nL of protein-precipitant mixture, which enables a simultaneous test of 96 different 

conditions in one plate. For crystallization setup, an initial protein concentration of 17 mg/mL 

(PfPrxQ1-164) was used. Once a promising condition was found, further crystallization trials 

were performed with the hanging drop method. For this, 2 µL of protein solution and 2 µL of 

precipitant were mixed on a cover slip and were applied upside down onto a well filled with 

precipitant (800 µL), sealed with silicon oil to avoid dehydration and enable vapor diffusion. 

Visual controls and protocols of the protein drops were regularly performed with a 

stereomicroscope (Leica). Protein crystals of appropriate quality were brought to an X-ray 

source at the Max Plank Institute for Medical Research, Heidelberg.
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4 RESULTS 

4.1 The interactome of Plasmodium falciparum 2-Cys peroxiredoxins 

To study the interactome of Plasmodium falciparum 2-Cys Prxs (Chapter 4.1) and to further 

investigate the recycling step of Prxs via its redoxins (Chapter 4.2), multiple active site Cys 

mutants of Prxs were constructed and new overexpression and purification protocols were 

established, which are described in the following. Due to this, the pKa of different PfPrxs could 

be determined using the HRP competition assay and the truncated PfPrxQ1-164 could be 

crystallized, which shall be described at the end of Chapter 4.2. 

4.1.1 Site-directed mutagenesis of PfPrxs 

For the investigation of redox-regulated cysteines in the PfPrxs the respective peroxidatic and 

resolving cysteines were mutated, in most cases, to serine, which is the closest replacement to 

cysteine in terms of size. A cysteine to alanine substitution was used, in one case, to maintain 

the hydrophobicity at the buried C74 in PfPrx1a. Within this thesis, mutants of PfPrx1a 

(PfPrx1aC50S, PfPrx1aC170S, PfPrx1aC50S/C74A, PfPrx1aC74A/C170S, PfPrx1aC50S/C170S, 

PfPrx1aC50S/C74A/C170S), PfPrx1m (PfPrx1mC67S, PfPrx1mC187S, PfPrx1mC67S/C187S), PfPrx5 

(PfPrx5C117S, PfPrx5C143S), PfPrx6 (PfPrx6C47S), and mutants of the truncated form of PfPrxQ1-

164 (PfPrxQ1-164/C56S, PfPrxQ1-164/C103S, PfPrxQ1-164/C56S/C103S) were constructed with site-directed 

mutagenesis.  

 

4.1.2 Heterologous overexpression and purification of PfPrxs and mutants 

The heterologous overexpression and purification of PfPrx mutants (PfPrx1aC50S, PfPrx1aC170S, 

PfPrx1aC50S/C170S, PfPrx1mC67S, PfPrx1mC187S, PfPrx1mC67S/C187S, PfPrx5C117S, PfPrx5C143S, 

PfPrx6C47S, PfPrxQ1-164/C56S, PfPrxQ1-164/C103S, PfPrxQ1-164/C56S/C103S) was performed using the 

same protocol as for the wild type PfPrxs. Within this thesis, overexpression and purification 

conditions of the truncated form of PfPrxQ164 were optimized to obtain about 150 mg purified 

protein out of 1 L E. coli culture. Figure 23 represents respective purification results via Ni-

NTA affinity chromatography for all five PfPrxs. The purification of PfPrx1a and PfPrx5 

required the presence of a reducing agent during all involved steps, which was realized by the 

addition of 0.5 mM TCEP to prevent hyperoxidation. For all further experiments, only fractions 

with the highest purity were pooled. After elution, the purified proteins were stored at either 4 

°C or with 10 mM DTT and 20% glycerol at -20 °C. 
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Figure 23: Purification of PfPrxs via Ni-NTA affinity chromatography.  PfPrx1a, PfPrx1m, PfPrx5, and PfPrx6 were 

purified using Ni-NTA affinity resin, and PfPrxQ1-164 was purified using talon affinity resin. L: protein ladder, P: pellet, SN: 

supernatant, FT: flow through, W: wash. Numbers indicate the concentration of imidazole for protein elution. Red arrows 

indicate the respective protein. 

To study the oligomerization behavior of PfPrxQ1-164 size-exclusion chromatography using a 

HiLoadTM16/60 SuperdexTM 200 prep grade column was also performed in the master’s thesis 

of Kathrin Pauli in parallel to this thesis [201]. For this, the protein was analyzed in its reduced 

and oxidized form by adding 5 mM of DTT or 10 mM of H2O2, respectively (Figure 24).  

          

 

 

Figure 24: Size-exclusion chromatogram of PfPrxQ1-164 under reducing and oxidizing conditions. 

The resulting chromatogram demonstrated PfPrxQ1-164 (monomeric size = 19.7 kDa) as a 

monomeric Prx independently from its redox state.  
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4.1.3 Pull-down assay with 2-Cys PfPrxs 

In the used pull-down procedure, where immobilized PfPrxs are able to capture interacting 

proteins via a dithiol-disulfide mechanism, PfPrx1a and PfPrx1m are confronted with 500 mM 

NaCl containing buffers. To confirm a constant oligomerization state of the respective Prxs, 

under the used salt concentration, size exclusion chromatography of the applied Prxs was 

conducted. The elution profile of both proteins could demonstrate uniform oligomerization in 

the different buffers. All peaks in the elution profiles correspond to the respective decameric 

Prx (Figure 25). 

 

 

Figure 25: Size-exclusion chromatography profile of PfPrx1a wt and PfPrx1m wt.  A) In red: reduced PfPrx1a wt elution 

profile in US buffer, in blue: reduced PfPrx1a wt elution profile in coupling buffer. B) In red: reduced PfPrx1m wt elution 

profile in US buffer, in blue: PfPrx1m elution profile in coupling buffer. 

 

For pull-down experiments, the 2-Cys peroxiredoxins (PfPrx1a and PfPrx1m), their resolving 

cysteine mutants (PfPrx1aC170S and PfPrx1mC187S), and their peroxidatic cysteine mutants 

(PfPrx1aC50S and PfPrx1mC67S) were used. Additionally, 2-Cys PfPrxs lacking their peroxidatic 

and resolving cysteines were used as bait for mixed disulfides with parasitic proteins 

(PfPrx1aC50S/C170S and PfPrx1mC67S/C187S) (Figure 26). 
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Figure 26: Elution profile of 2-Cys PfPrxs during pull-down assays.  Representative elution profiles of the pull-down 

experiment on an SDS page, dyed with silver staining after gel electrophoresis. L: protein ladder, Ly: parasite lysate, W: number 

of washing step, E: eluate with 10 mM DTT.  

Proteins in the elution fractions were identified via mass spectrometry. To account for 

unspecific protein binding of parasite lysate to the CNBr-activated Sepharose 4B beads, the 

immobilization of bait proteins to the beads were mimicked with water during the pull-down 

procedure, which was also conducted in triplicates. Parasitic proteins captured with empty 

beads were subtracted from all ensuing results.  
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Tables 3 and 4 provide an overview of proteins exclusively captured with the wild type enzyme, 

a peroxidatic or resolving cysteine mutant of PfPrx1a and PfPrx1m, and their double active site 

mutants. For PfPrx1a, captured potentially interacting proteins are involved in carbohydrate 

metabolism, transcription and translation, protein degradation, and signaling. Interacting 

proteins for PfPrx1m are involved in energy and lipid metabolism, and anti-oxidative stress 

response.



Results 

59 

 

Table 3: Interaction partners of PfPrx1a.  Proteins located in the cytosol and exclusively captured by PfPrx1a wild type, PfPrx1aC50S, PfPrx1aC170S, or PfPrx1aC50S/C170S. Listed proteins occurred in 

at least two independent experiments. 

Protein name Accession number Protein MW (Da) pI Sequence coverage (%) 

       

PfPrx1a wild type 
   

1 2 3 

Serine repeat antigen 5 (SERA5)  PF3D7_0207600 111,768 5.4 7.6 % 10.9 % 6.2 % 

Heat shock protein 40, putative  PF3D7_0213100 37,356 8.8 5.8 % 9.8 % 12.2 % 

40S ribosomal protein S23, putative  PF3D7_0306900 16,130 10.8 8.3 % 0 8.3 % 

40S ribosomal protein S15A, putative  PF3D7_0316800 14,874 10.0 30.0 % 30.8% 6.2 % 

Proteasome regulatory protein, putative  PF3D7_0317800 26,466 6.9 0 9.8 % 4.9 % 

40S ribosomal protein S3A, putative  PF3D7_0322900 30,047 9.8 6.9 % 21.8 % 9.9 % 

Small GTP-binding protein sar1 (SAR1)  PF3D7_0416800 22,020 7.3 24.0 % 22.9 % 24.0 % 

Eukaryotic initiation factor, putative  PF3D7_0422700 44,800 7.6 7.4 % 3.8 % 0 

Translation initiation factor IF-2, putative  PF3D7_0607000 112,358 8.0 2.4 % 1.9 % 0 

Nascent polypeptide associated complex alpha chain, putative  PF3D7_0621800 20,623 4.9 20.1 % 23.9 % 0 

Ubiquitin carboxyl-terminal hydrolase, putative  PF3D7_0726500 373,171 7.9 0.3 % 0.3 % 0.6 % 

Karyopherin alpha (KARalpha)  PF3D7_0812400 61,159 5.3 8.3 % 4.0 % 0 

Eukaryotic translation initiation factor 3 subunit 5, putative  PF3D7_0918300 36,820 6.7 6.6 % 6.6 % 0 

26S protease regulatory subunit 4, putative (RPT2)  PF3D7_1008400 49,839 7.5 10.9 % 0 2.0 % 

S-adenosylmethionine decarboxylase/ornithine decarboxylase 

(AdoMetDC/ODC)  

PF3D7_1033100 168,169 6.4 3.2 % 0 1.5 % 

Phosphoglycerate mutase, putative (PGM1)  PF3D7_1120100 28,770 8.3 13.2 % 14.0 % 8.4 % 

40S ribosomal protein S18, putative  PF3D7_1126200 17,891 10.5 0 13.5 % 16.7 % 

Casein kinase 1 (CK1)  PF3D7_1136500.1 37,631 9.3 23.8 % 16.4 % 0 

Casein kinase 1 (CK1)  PF3D7_1136500.2 37,789 9.2 23.8 % 16.4 % 0 

Protein phosphatase 2C (PP2C)  PF3D7_1138500 105,404 4.5 0 2.6 % 2.6 % 

60S ribosomal protein L35ae, putative  PF3D7_1142600 16,265 10.5 8.6 % 0 15.0 % 

40S ribosomal protein S21 (RPS21)  PF3D7_1144000 9,145 8.5 0 13.4 % 11.0 % 

Eukaryotic translation initiation factor 3 subunit 8, putative  PF3D7_1206200 116,014 5.4 5.0 % 4.3 % 2.2 % 

Eukaryotic translation initiation factor 3 subunit 10, putative  PF3D7_1212700 166,061 6.8 5.9 % 3.0 % 0 

Endoplasmin, putative (GRP94)  PF3D7_1222300 95,018 5.4 10.2 % 9.6 % 4.6 % 

Ras-related protein Rab-2 (RAB2)  PF3D7_1231100 24,424 6.8 11.3 % 6.1 % 0 
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Acyl-CoA synthetase (ACS11)  PF3D7_1238800 92,092 8.7 2.8 % 0 1.3 % 

26S protease regulatory subunit 8, putative (RPT6)  PF3D7_1248900 49,545 7.0 5.1 % 0 2.5 % 

26S protease regulatory subunit 10B, putative (RPT4)  PF3D7_1306400 44,677 8.9 0 3.1 % 9.9 % 

Carbamoyl phosphate synthetase (cpsSII)  PF3D7_1308200 273,437 6.6 0.9 % 0 0.6 % 

26S protease regulatory subunit 7, putative (RPT1)  PF3D7_1311500 46,835 6.7 9.8 % 0 5.0 % 

Glutamine-tRNA ligase, putative  PF3D7_1331700 108,532 8.2 2.4 % 2.4 % 1.0 % 

Lysine-tRNA ligase (KRS1)  PF3D7_1350100 67,591 7.4 9.4 % 3.1 % 0 

60S ribosomal protein L17, putative  PF3D7_1351400 23,415 10.9 0 3.9 % 7.9 % 

26S proteasome regulatory subunit RPN11, putative (RPN11)  PF3D7_1368100 35,212 6.7 4.2 % 0 7.1 % 

Eukaryotic translation initiation factor 2 gamma subunit, putative  PF3D7_1410600 51,245 8.0 9.5 % 4.9 % 2.4 % 

60S ribosomal protein L14, putative  PF3D7_1431700 19,297 10.2 7.9 % 13.9 % 4.2 % 

       

PfPrx1aC50S    1 2 3 

Protein transport protein SEC31 (SEC31)  PF3D7_0214100 166,708 6.9 3.1 % 0 4.2 % 

RING zinc finger protein, putative  PF3D7_0215100 34,401 7.0 16.8 % 0 16.8 % 

Exportin-1, putative  PF3D7_0302900 147,938 6.0 2.6 % 0 3.4 % 

RNA pseudouridylate synthase, putative PF3D7_0511500 1187,631 7.5 0.3 % 0 0.3 % 

Eukaryotic translation initiation factor 3 37.28 kDa subunit, 

putative 

PF3D7_0716800 37,284 6.9 5.5 % 0 15.0 % 

Serine--tRNA ligase, putative  PF3D7_0717700 62,454 7.0 2.8% 0 5.8 % 

60S ribosomal protein L11a, putative  PF3D7_0719600 20,228 10.1 8.7 % 0 17.3 % 

40S ribosomal protein S10, putative  PF3D7_0719700 16,478 9.7 10.9 % 0 34.3 % 

Proteasome subunit alpha type-5, putative PF3D7_0727400 28,388 5.1 20.7 % 0 27.7 % 

26S proteasome regulatory subunit RPN10, putative (RPN10)  PF3D7_0807800 55,067 4.8 3.1 % 0 11.0 % 

60S ribosomal protein L22, putative PF3D7_0821700 16,382 10.2 10.1 % 0 16.5 % 

Ubiquitin domain-containing protein DSK2, putative PF3D7_1113400 42,706 4.7 9.3 % 0 9.3 % 

Peptidyl-prolyl cis-trans isomerase (CYP19B)  PF3D7_1115600 21,731 7.6 13.3 % 0 25.6 % 

Pyridoxine biosynthesis protein PDX2 (PDX2)  PF3D7_1116200.1 24,563 6.9 22.4 % 0 5.5 % 

Box C/D snoRNP rRNA 2'-O-methylation factor, putative  PF3D7_1118500 69,390 5.9 5.4 % 0 18.7 % 

Protein transport protein SEC13 (SEC13)  PF3D7_1230700 90,749 6.6 7.3 % 0 5.2 % 

U4/U6.U5 tri-snRNP-associated protein 2, putative  PF3D7_1317000 74,636 7.9 6.1 % 0 15.6 % 

Proteasome subunit alpha type-4, putative  PF3D7_1353800 27,948 6.1 22.8 % 0 26.4 % 
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Alanine-tRNA ligase (AlaRS) PF3D7_1367700 165,135 8.9 1.6 % 0 1.0 % 

Glycine-tRNA ligase (GlyRS) PF3D7_1420400 104,306 7.9 3.7 % 0 12.5 % 

Histidine-tRNA ligase, putative  PF3D7_1445100 133,668 7.7 1.6 % 0 2.5 % 

       

PfPrx1aC170S    1 2 3 

Deoxyribose-phosphate aldolase, putative  PF3D7_1021600 28,980 7.2 0 4.2 % 4.2 % 

60S ribosomal protein L23, putative  PF3D7_1331800 14,993 9.9 21.6 % 7.2 % 0 

       

PfPrx1aC50S/C170S    1 2 3 

Elongation factor 1-beta (EF-1beta) PF3D7_0913200 32,027 5.1 0 8.3 % 8.3 % 

       

PfPrx1a wild type, PfPrx1aC50S    1 2 3 

60S ribosomal protein P0 (PfP0)  PF3D7_1130200 34,967 6.7 0 9.2 % 6.0 % 

Elongation factor 1-gamma, putative PF3D7_1338300 47,777 7.4 4.6 % 0 20.9 % 

60S ribosomal protein L6-2, putative PF3D7_1338200 25,532 10.1 17.2 % 0 25.8 % 

60S acidic ribosomal protein P2 (PfP2)  PF3D7_0309600 11,948 4.5 33.0 % 43.8 % 21.4 % 

40S ribosomal protein S4, putative  PF3D7_1105400 29,772 10.1 22.6 % 27.2 % 8.0 % 

Dolichyl-phosphate-mannose protein mannosyltransferase, 

putative  

PF3D7_1010700 25,678 7.0 28.7 % 0 59.2 % 

Purine nucleoside phosphorylase (PNP)  PF3D7_0513300 26,858 6.5 18.0 % 0 27.8 % 

60S acidic ribosomal protein P1, putative (RPP1) PF3D7_1103100 13,014 4.6 39.8 % 0 48.3 % 

Translation initiation factor 4E (eIF4E)  PF3D7_0315100 26,948 8.3 15.0 % 0 29.1 % 

26S proteasome AAA-ATPase subunit RPT3, putative PF3D7_0413600 44,666 7.5 9.4 % 0 12.2 % 

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) PF3D7_1012400 26,362 7.7 19.0 % 0 48.9 % 

Heat shock protein 70 (HSP70-3)  PF3D7_1134000 73,298 6.9 9.2 % 0 33.8 % 

Heat shock protein 70 (HSP70-2)  PF3D7_0917900 72,388 5.3 29.1 % 14.3 % 15.5 % 

Protein disulfide isomerase (PDI-11) PF3D7_1134100 49,195 8.9 12.5 % 0 24.1 % 

Phosphoribosylpyrophosphate synthetase  PF3D7_1325100 49,383 9.3 10.3 % 0 18.5 % 

Enolase (ENO)  PF3D7_1015900 48,678 6.6 26.5 % 0 38.3 % 

Fructose-bisphosphate aldolase (FBPA)  PF3D7_1444800 40,105 8.1 11.7 % 0 35.5 % 

Erythrocyte membrane-associated antigen  PF3D7_0703500 264,915 8.6 1.4 % 0 4.2 % 

Suppressor of kinetochore protein 1, putative (SKP1)  PF3D7_1367000 18,786 4.5 17.9 % 0 8.0 % 
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Phosphoethanolamine N-methyltransferase (PMT)  PF3D7_1343000 31,043 5.6 13.2 % 0 57.9 % 

Ubiquitin carboxyl-terminal hydrolase 2, putative  PF3D7_0516700 156,332 6.8 4.6 % 0 10.2 % 

Dihydropteroate synthetase (DHPS)  PF3D7_0810800 83,374 7.1 2.7 % 0 5.9 % 

L-lactate dehydrogenase (LDH)  PF3D7_1324900 34,108 7.5 31.0 % 0 39.2 % 

Asparagine--tRNA ligase (AsnRS)  PF3D7_0211800 70,498 6.7 15.2 % 0 25.4 % 

1-cys peroxiredoxin (1-CysPxn)  PF3D7_0802200 25,164 6.8 30.5 % 0 36.8 % 

Fibrillarin, putative (NOP1) PF3D7_1407100 34,129 10.0 6.3 % 0 14.5 % 

40S ribosomal protein S5  PF3D7_1447000 29,958 10.0 11.8 % 0 29.4 % 

S-adenosyl-L-homocysteine hydrolase (SAHH) PF3D7_0520900 53,839 5.9 20.9 % 0 21.7 % 

Adenylate kinase (AK1)  PF3D7_1008900 27,611 8.9 5.8 % 19.0 % 18.6 % 

60S ribosomal protein L3 (RPL3)  PF3D7_1027800 44,221 10.2 0 13.0 % 5.4 % 

Casein kinase 2, alpha subunit (CK2alpha)  PF3D7_1108400 39,890 8.8 10.7 % 11.3 % 0 

Phosphoglycerate kinase (PGK)  PF3D7_0922500 45,427 7.8 23.1 % 4.3 % 11.8 % 

40S ribosomal protein S3  PF3D7_1465900 24,668 10.2 7.7 % 0 18.6 % 

       

PfPrx1a wild type, PfPrx1aC170S    1 2 3 

40S ribosomal protein S7, putative  PF3D7_1302800 22,481 9.8 14.9 % 4.6 % 0 

Inosine-5'-monophosphate dehydrogenase  PF3D7_0920800 56,150 7.9 13.3 % 13.1 % 8.8 % 

60S ribosomal protein L5, putative  PF3D7_1424100 33,998 9.8 7.1 % 7.1 % 6.1 % 
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Table 4: Interaction partners of PfPrx1m.  Proteins located in the mitochondrion and exclusively captured by PfPrx1m wild type, PfPrx1mC176S, or PfPrx1mC187S. Listed proteins occurred in at least 

two independent experiments. 

Protein name Accession number Protein MW (Da) pI Sequence coverage (%) 

       

PfPrx1m wild type 
   

1 2 3 

Diacylglycerol kinase, putative  PF3D7_1471400 57,643 8.8 11.4 % 2.8 % 0 

       

PfPrx1mC67S    1 2 3 

GrpE protein homolog, mitochondrial, putative (MGE1)  PF3D7_1124700 35,043 8.9 33.9 % 0 13.6 % 

Sortilin, putative  PF3D7_1451800 102,270 6.7 8.4 % 0 3.1 % 

       

PfPrx1mC187S    1 2 3 

Ferrodoxin reductase-like protein  PF3D7_0720400 72,722 8.7 3.9 % 3.9 % 0 

Superoxide dismutase [Fe] (FeSOD)  PF3D7_0814900 22,734 6.8 7.1 % 7.1 % 0 

ATP synthase subunit beta, mitochondrial  PF3D7_1235700 58,394 6.4 2.1 % 9.0 % 0 

Glutathione S-transferase (GST) PF3D7_1419300 24,789 6.4 11.8 % 21.8 % 0 

Glutathione reductase (GR)  PF3D7_1419800.1 56,492 7.9 5.4 % 3.0 % 0 

Mitochondrial acidic protein MAM33, putative PF3D7_1434800 28,872 5.0 15.9 % 15.9 % 0 

       

PfPrx1m wild type, PfPrx1mC187S    1 2 3 

Acyl-CoA synthetase (ACS10)  PF3D7_0525100 76,852 8.2 24.8 % 0 7.0 % 
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4.1.4 Measurement of the catalytic cysteine pKa of PfPrxs 

For pKa measurements of the catalytic cysteine residues, the enzyme’s ability to reduce H2O2, 

and thus to compete with HRP for the available substrate, was detected for PfPrx1a, PfPrx5, 

and PfPrxQ1-164 at different Prx concentrations and varying pH values. The slopes of every 

linearized activity curve at different pH values were plotted against the respective pH values 

[187], where the highest corresponding activity was set to 100% to compensate for pipetting 

mistakes or slightly varying H2O2 or HRP concentrations. Figure 27 shows sigmoidal fits of the 

pH dependency of Prx activity and the corresponding pKa value. The second order rate constants 

for hydrogen peroxide of PfPrx1a (1.6 × 108 M-1 sec-1), PfPrx5 (2.8 × 108 M-1 sec-1), and 

PfPrxQ1-164 (2.2 × 107 M-1 sec-1) were determined with the same competition assay at a constant 

pH value of 7.4. 

 

 

 

The pKa determination for PfPrx1m and PfPrx6 were not possible, probably due to 

hyperoxidation of the enzymes, and delivered no reproducible data. The pKa for PfPrx5 had 

been determined prior to this thesis by Dr. Esther Jortzik. 

 

4.1.5 Crystallization of the truncated PfPrxQ1-164 

Protein needles of the truncated PfPrxQ1-164 were obtained within three days at RT using the 

initial Core Suite IV screen (Jena Bioscience). Based on these initial conditions, protein, 

glycerol, and PEG concentrations, as well as pH values and buffer systems were varied. This 

led to small protein crystals at pH values of 7.0 and 7.4 (Figure 28 A). Finally, the addition of 

Figure 27: pH-dependent activity curves of PfPrx1a, PfPrxQ1-164, and PfPrx5. pKa values are mean values ± SE. 

Measurements were performed in five independent experiments carried out in quadruplicate.  
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2 mM TCEP and 2 mM magnesium acetate to the protein solution and a higher protein 

concentration (45 mg/mL) provided large protein crystals at 4 °C within one week (Figure 30 

B and C). 

 

 

 

 

Protein crystals were obtained from truncated PfPrxQ1-164 and the truncated mutant PfPrxQ1-

164/C103S. Single isomorphous replacement with mercury soaking was performed with crystals 

of truncated PfPrxQ1-164 for phasing purposes. Diffraction data of all three crystals were 

collected at the X10SA beam line of the Swiss Light Source at the Paul Scherrer Institute, 

Villigen, Switzerland, with a resolution up to 2.5 Å. Dr. Karin Fritz-Wolf assessed the measured 

data at the Max Plank Institute for Medical Research, Heidelberg. Diffraction patterns were 

processed with the XDS program package [202] to identify the position and intensity of 

reflections. The analyzed data showed a systematic obliteration of specific reflections, 

indicating a space group with a screw axis. However, space groups could not be exactly 

determined even when all crystals had similar unit cells. The program Xtriage (http://phenix-

online.org/documentation/reference/xtriage.html) assumed a possible twinning in crystal 

symmetry based on the integrated sanity checks of the program. Since the data obtained was of 

poor quality and the underlying homology model (truncated cysteine mutant of yeast nuclear 

thiol peroxidase; PDB code: 2a4v) showed only 36% sequence similarity, molecular 

replacement was inapplicable. 

 

4.2 Protein-protein interaction analysis of PfPrxs and their redoxins 

Surface plasmon resonance spectroscopy 

A protocol for identifying interacting active site cysteines from peroxiredoxins and their 

reducing redoxins was developed within this thesis. Prxs, which were immobilized on a CM5 

chip by amine coupling, were first oxidized with 500 µM DTNB (solved in running buffer) for 

30 sec at 10 µL/min, called conditioning cycle, followed by 5 µM of the respective reduced 

redoxin for 60 sec at 10 µL/min. The dissociation time was set to 700 sec at a flow rate of 10 

µL/min of running buffer. To resolve covalently bound proteins, 500 µM TCEP was injected 

for 30 sec at 10 µL/min in running buffer. As internal controls, the analytes, in our case the 

redoxins, were injected as duplicates, and a sample containing no protein was injected in 

between these replicates as a technical control. All analytes flowed over the active surface and 

over a reference surface where no protein was immobilized in order to account for unspecific 

binding events on the carboxymethylated dextran surface. 

A B C 

Figure 28: Protein crystals of PfPrxQ1-164.  A) Protein needles obtained in the initial Core IV Screen (sitting drop): 0.1 M 

MES, pH 6.0, 30% PEG 600, 5% PEG 1000, 10% glycerol, [PfPrxQ1-164]: 17 mg/mL in 50 mM TrisHCl, pH 7.4. B) and C) 

hanging drop crystals after refinement: 0.1 M MES, pH 7.0, 30% PEG 600, 5% PEG 1000, 10% glycerol. [PfPrxQ1-164]: 

45 mg/mL in 50 mM TrisHCl, pH 7.4, 2 mM TCEP, 2 mM Mg(CH3COO)2. 



Results 

67 

 

The prior reduction of the redoxins was performed by 1 mM TCEP for 15 min. The proteins 

were desalted using desalting columns (Zeba spin) via centrifugation at 2,200 rpm for 2 min 

following the manufacturer’s protocol. Figures 29 shows representative sensograms for the 

interaction of PfPrx and PfTrx. 

 

Figure 29: Interaction profile of PfPrx1aC50S with PfTrx wild type and its Cys mutants.  Ligand oxidation was achieved 

with 0.5 mM DTNB prior to every cycle. Reduced analytes were injected for 30 sec, followed by a 700 sec phase of dissociation 

with running buffer. After the dissociation phase, 0.5 mM TCEP was injected for 30 sec into the flow cell (black arrow) 

followed by 60 sec of running buffer injection and a conditioning cycle with 0.5 mM DTNB to oxidize the ligand for the next 

cycle.  

In the corresponding sensogram, an interaction between the peroxiredoxin and the redoxin was 

observed as an increase in response units during the association phase. A decrease in RU 

displayed the dissociation of the redoxin. When this interaction event was mediated by a 

disulfide bridge, the RU stayed constant, representing a plateau in RU over time. The covalently 

bound redoxins were then resolved with the reducing agent TCEP at the end of the dissociation 

phase, resulting in an instant, steep decrease of RU within the plot. A covalent binding event 

was concluded every time a significant, steep drop of RU was observed directly after TCEP 

injection. To compare binding events between different Cys mutants of redoxins and Prxs the 

same amount of redoxins was used in the experiments (5 µM). With the used concentration of 

redoxins (and its mutants) some interactions resulted in very distinct sensograms (cylindrical) 

and others showed no interaction at all. Since only one concentration of analyte was used, it is 

not possible to calculate an association and a dissociation rate constant (describes kinetics), or 

the affinity constant (strength of interaction) via the described approach.  

Covalent binding events were monitored between PfPrx1a and PfTrxCSC as well as between 

PfPrx1a and PfTrxCSS. The same result was found for the peroxidatic Cys mutant PfPrx1aC50S. 

The resolving Cys mutant PfPrx1aC170S and the mutant lacking both active site cysteines showed 

covalent binding with PfTrxCSC as well. Since in PfPrx1a a third cysteine (Cys74) is located 

among the active site cysteines, an additional C74A mutant was used, which had already been 

constructed in the Becker lab for prior experiments. The Cys mutants containing a C74A 

mutation (PfPrx1aC50S/C74A, PfPrx1aC74A/C170S, PfPrx1aC50S/C74A/C170S) showed no covalent 

binding events except for the PfPrx1aC74A/C170S and PfPrx1aC74A mutants. No covalent 

interaction of Grx with PfPrx1a and all their mutants was found in the conducted experiments 

(Table 5). 
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Table 5: Interaction of PfPrx1a with PfTrx and PfGrx.  The x indicates a confirmed event. 

 

PfPrx1a PfPrx1aC50S PfPrx1aC170S PfPrx1aC50S/C170S 
 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

PfTrx 
     

x 
 

x 

PfTrxCSC x 
 

x 
 

x 
 

x 
 

PfTrxCCS 
     

x 
 

x 

PfTrxSCC 
        

PfTrxCSS x 
 

x 
  

x 
 

x 

PfTrxSSC 
       

x 

PfTrxSCS 
        

PfTrxSSS 
 

x 
 

x 
 

x 
 

x 

PfGrx 
 

x 
 

x 
   

x 

PfGrxCSC 
 

x 
 

x 
   

x 

PfGrxCCS 
 

x 
 

x 
   

x 

PfGrxSCC 
 

x 
 

x 
   

x 

PfGrxCSS 
 

x 
 

x 
   

x 

PfGrxSSC 
 

x 
 

x 
   

x 

PfGrxSCS 
 

x 
 

x 
 

  
 

x 

PfGrxSSS 
 

x 
 

x 
   

x 
 

PfPrx1aC74A PfPrx1aC50S/C74A PfPrx1aC74A/C170S PfPrx1aC50S/C74A/C170S 
 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

PfTrx   
      

PfTrxCSC x  
  

x 
   

PfTrxCCS   
      

PfTrxSCC   
      

PfTrxCSS x  
   

x 
  

PfTrxSSC   
      

PfTrxSCS   
      

PfTrxSSS   
      

PfGrx  x 
   

x 
  

PfGrxCSC  x 
   

x 
  

PfGrxCCS  x 
   

x 
  

PfGrxSCC x  
      

PfGrxCSS  x 
   

x 
  

PfGrxSSC  x 
   

x 
  

PfGrxSCS  x 
   

x 
  

PfGrxSSS  x 
   

x 
  

 

Concerning the interaction of PfPrx1m with Pf redoxins, a covalent binding event was 

monitored for the interaction of PfPrx1m with PfTrxCSC, and for the interaction of the 

peroxidatic cysteine mutant (PfPrx1mC67S) with PfTrxCSC and PfTrxCSS (Table 6). Our results 

indicate that the resolving cysteine mutant (PfPrx1mC187S) and the double active site mutant 

PfPrx1mC67S/C187S were not covalently bound by thioredoxin or glutaredoxin and their 

respective active site cysteine mutants.  
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Table 6: Interaction of PfPrx1m with PfTrx and PfGrx.  The x indicates a confirmed event. 

 
PfPrx1m PfPrx1mC67S PfPrx1mC187S PfPrx1mC67S/C187S 

 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

PfTrx 
 

x 
      

PfTrxCSC x 
 

x 
  

x 
 

x 

PfTrxCCS 
     

x 
  

PfTrxSCC 
 

x 
      

PfTrxCSS 
 

x x 
  

x 
 

x 

PfTrxSSC 
 

x 
      

PfTrxSCS 
 

x 
      

PfTrxSSS 
     

x 
 

x 

PfGrx 
 

x 
 

x 
 

x 
 

x 

PfGrxCSC 
 

x 
 

x 
 

x 
 

x 

PfGrxCCS 
 

x 
 

x 
 

x 
 

x 

PfGrxSCC 
 

x 
      

PfGrxCSS 
 

x 
 

x 
   

x 

PfGrxSSC 
 

x 
 

x 
   

x 

PfGrxSCS 
 

x 
 

x 
   

x 

PfGrxSSS 
 

x 
 

x 
   

x 

 

A covalent binding was observed during the interaction of the peroxidatic Cys mutant of PfPrx5 

(PfPrx5C117S) with PfTrxCSC, however no covalent interaction between wild type PfPrx5 and 

PfTrxCSC could be detected. PfPrx5 wild type was generally prone to rapid hyperoxidation, 

known from prior experiments. To detect whether the second more N-terminal located cysteine 

(Cys143), which is not known to be part of the active site, is able to be bound by Trx, 

PfPrx5C143S was immobilized as a ligand, oxidized with DTNB, and confronted with PfTrx and 

PfGrx, and its cysteine mutants. Out of the arising sensograms it could be observed that 

PfTrxCSC was bound covalently to PfPrx5C143S. Additionally, non-covalent interactions between 

PfGrx and its mutants with PfPrx5C143S were markedly decreased (Table 7).  

Table 7: Interaction of PfPrx5 with PfTrx and PfGrx.  The x indicates a confirmed event. 

 
PfPrx5 PfPrx5C117S PfPrx5C143S 

 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

PfTrx 
 

x 
    

PfTrxCSC 
 

x x 
 

x 
 

PfTrxCCS 
 

x 
 

x 
 

x 

PfTrxSCC 
 

x 
   

x 

PfTrxCSS 
     

x 

PfTrxSSC 
 

x 
   

x 

PfTrxSCS 
 

x 
   

x 

PfTrxSSS 
   

x 
 

x 

PfGrx 
 

x 
 

x 
  

PfGrxCSC 
 

x 
 

x 
 

x 

PfGrxCCS 
 

x 
 

x 
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PfGrxSCC 
 

x 
 

x 
  

PfGrxCSS 
 

x 
 

x 
  

PfGrxSSC 
 

x 
 

x 
  

PfGrxSCS 
 

x 
 

x 
  

PfGrxSSS 
 

x 
 

x 
  

 

PfPrx6 wild type and its peroxidatic Cys mutant PfPrx6C47S showed both covalent interaction 

events with the resolving Cys mutant of PfTrx (PfTrxCSC). Non-covalent interaction between 

PfPrx6 wild type and the redoxins PfTrx and its mutants (excluding PfTrxSSS), and PfGrx and 

its mutants could be observed (Table 8). 

Table 8: Interaction of PfPrx6 with PfTrx and PfGrx.  The x indicates a confirmed event. 

 
PfPrx6 PfPrx6C47S  

covalent 

binding 
interaction 

covalent 

binding 
interaction 

PfTrx 
 

x 
  

PfTrxCSC x 
 

x 
 

PfTrxCCS 
 

x 
  

PfTrxSCC 
 

x 
  

PfTrxCSS 
 

x 
  

PfTrxSSC 
 

x 
  

PfTrxSCS 
 

x 
  

PfTrxSSS 
    

PfGrx 
 

x 
  

PfGrxCSC 
 

x 
  

PfGrxCCS 
 

x 
  

PfGrxSCC 
 

x 
  

PfGrxCSS 
 

x 
  

PfGrxSSC 
 

x 
  

PfGrxSCS 
 

x 
  

PfGrxSSS 
 

x 
  

 

PfPrxQ1-164 and the resolving Cys mutant PfPrxQ1-164/C103S were both able to covalently interact 

with PfTrxCSC, whereas PfPrxQ1-164/C103S was also able to build a covalent bond with PfTrxCSS. 

However, for the interaction of the peroxidatic Cys mutant of PfPrxQ1-164 (PfPrxQ1-164/C156S) 

with PfTrxCSC a covalent binding was not observed. All other combinations of Cys mutations 

in PfTrx, as well as its wild type, showed non-covalent interactions or any observed interactions 

with PfPrxQ1-164 wild type or its Cys mutants. PfGrx and all of its active site mutants showed 

interactions with all variants of active site mutations and the wild type of PfPrxQ1-164 (Table 9). 
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Table 9: Interaction of PfPrxQ1-164 with PfTrx and PfGrx. The x indicates a confirmed event. 

 
PfPrxQ1-164 PfPrxQ1-164/C56S PfPrxQ1-164/C103S PfPrxQ1-164/C56S/C103S  

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

covalent 

binding 
interaction 

PfTrx 
   

x 
    

PfTrxCSC x 
  

x x 
  

x 

PfTrxCCS 
 

x 
 

x 
 

x 
 

x 

PfTrxSCC 
        

PfTrxCSS 
 

x 
 

x x 
   

PfTrxSSC 
 

x 
 

x 
 

x 
 

x 

PfTrxSCS 
     

x 
  

PfTrxSSS 
 

x 
 

x 
 

x 
 

x 

PfGrx 
 

x 
 

x 
 

x 
 

x 

PfGrxCSC 
 

x 
 

x 
 

x 
 

x 

PfGrxCCS 
 

x 
 

x 
 

x 
 

x 

PfGrxSCC 
 

x 
 

x 
 

x 
 

x 

PfGrxCSS 
 

x 
 

x 
 

x 
 

x 

PfGrxSSC 
 

x 
 

x 
 

x 
 

x 

PfGrxSCS 
 

x 
 

x 
 

x 
 

x 

PfGrxSSS 
 

x 
 

x 
 

x 
 

x 

 

To confirm the observed results of the SPR based approach and to compare different methods 

of PPI-detection, electrophoretic mobility shift assays, microscale thermophoresis, and 

isothermal titration calorimetry were performed with PfPrx1a and PfTrx Cys mutants.  

 

Electrophoretic mobility shift assay 

As shown in Figure 30, PfTrxCSC is able to covalently bind PfPrx1a wt under non-reducing 

conditions. Under reducing conditions and sample boiling, PfPrx1a wt occurs mainly as a 

monomer at 23 kDa (lanes 1) and under non-reducing conditions as monomer and dimer at 23 

kDa and 46 kDa, respectively (lanes 4). In the Coomassie-stained gel (A) as well as in the anti-

PfTrx Western blot (D; lane 2, 5 and 6), a second band of PfTrxCSC appears at ~25 kDa and it 

is therefore suggested to be a Trx dimer. A band shift due to covalent binding of both proteins 

to each other can be demonstrated in lanes 6 (non-reducing conditions without sample boiling) 

in contrast to lanes 3 (reducing conditions). All three Western blots (anti-His, anti-PfPrx1a, and 

anti-PfTrx) as well as the Coomassie-stained gel indicate a binding of both the PfPrx1a 

monomer and dimer with PfTrxCSC.  
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Furthermore, a regioselectivity of PfTrx towards the respective active site cysteines of PfPrx1a 

was confirmed via electrophoretic mobility shift assays and add-on Western blot analyses 

(Figure 33). The protein immunoblots revealed a binding of PfTrxCSC to the CP of PfPrx1a as 

shown with the SPR-based approach. A binding of PfTrxCSC to the CR of PfPrx1a was not 

detected, which corresponds to the SPR data as well. When incubated with PfPrx1a wt, 

PfTrxCSC was able to build stable complexes (under non-reducing conditions) with the Prx 

monomer (~35 kDa) and dimer (~70 kDa), following a 1:1 stoichiometry, which was confirmed 

with anti-PfPrx1a and anti-PfTrx Western blots (see Figure 31). PfTrxCSC was also able to bind 

covalently to PfPrx1aC170S, confirming the CP as a target for PfTrxCSC. In Figure 32 a double 

band was observed for the PfPrx1aC170S monomer in the anti-His and in the anti-PfPrx1a WB. 

Here, PfTrxCSC is able to bind both the full-length Prx monomer mutant and the fragmented 

monomeric Prx1a mutant, visible in the anti-PfPrx1a and anti-PfTrx WB. As shown in the 

immunoblots, PfTrxCSC was not able to bind the CP mutants of PfPrx1a (PfPrx1aC50S/C74A) 

demonstrated in all three WBs. Due to this, it should be noted that the applied antibodies 

recognizing PfPrx1a and PfTrx cross react slightly with both proteins. A distinct discrimination 

of identified proteins is however possible by comparing lanes 4 and 5 to lane 6. A covalent 

complex binding of both proteins (mobility shift) must cause every positive signal not visible 

in lanes 4 and 5 but occurring in lane 6. 

Figure 30: Western blot confirmation of covalent binding in PfPrx1a and PfTrx1.   A) Coomassie staining, B) anti-His-

tag Western blot containing a His-tagged PfGR (57.2 kDa) as His-positive control marked with +, C) anti-PfPrx1a Western 

blot, D) anti-PfTrx1 Western blot 1: reduced PfPrx1a wt, 2: reduced PfTrx1, 3: reduced coupled PfPrx1a wt + PfTrx1, 4: 

oxidized PfPrx1a wt, 5: reduced PfTrx1, 6: coupled PfPrx1a wt + PfTrx1 without DTT. Arrows are indicating the respective 

protein, oligomerization or coupling. 
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Figure 31: Western blot confirmation of cysteine-dependent regioselectivity of PfPrx1a interacting with PfTrx1.  A 

juxtaposition of the anti-His, anti-PfPrx1a, and anti-PfTrx Western blots of PfPrx1a wt, PfPrx1aC170S, PfPrx1aC150S/C74A and 

PfTrxCSC is represented. 4: oxidized PfPrx1a wt, 5: reduced PfTrx1, 6: coupled PfPrx1a wt + PfTrx1 without DTT. Arrows 

indicate the respective protein, oligomerization, or coupling. 

 

Microscale thermophoresis 

For protein interaction analyses via MST, two representative protein pairs were selected that 

showed different interaction behavior based on the SPR spectroscopy experiments performed. 

The interaction of PfPrx1a wt and PfTrxCSC was chosen to represent a covalent binding and the 

interaction of PfPrx1a wt and PfTrxSSS served as example for a non-covalent interaction event. 

All assays were performed in triplicate.  
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Figure 32: Quantitative determination of the interactions between PfPrx1a and PfTrx Cys mutants.  A) Interaction 

analysis of PfPrx1a wt and PfTrxCSC. B) Interaction analysis of PfPrx1a wt and PfTrxSSS. C) Association constant (1/Kd) of the 

interaction between PfPrx1a wt and PfTrxCSC or PfTrxSSS, respectively. A student’s unpaired t-test with a 95% confidence level 

was performed in order to compare means. *p<0.05, **p<0.01, ***p<0.001  

 

MST analysis showed a dissociation constant (Kd) of 0.887 ± 0.027 µM and an association 

constant (Ka) of 1.127 ± 0.034 µM-1 for the interaction of PfPrx1a wt and PfTrxCSC and a Kd of 

0.799 ± 0.034 µM and a Ka of 1.252 ± 0.053 µM-1 for the interaction of PfPrx1a wt and PfTrxSSS 

(Figure 32). An interaction of the respective proteins was thereby proven. Both interactions 

showed a significant difference in Kd and Ka to each other, with a p-value of 0.025. Since both 

dose-response curves had similar shapes, a discrimination between covalent and non-covalent 

binding was not possible, and a covalent binding could not be concluded based on these data. 

 

Isothermal titration calorimetry  

In traditional association experiments with ITC, a titrant is titrated to a second molecule. The 

arising and fitted reaction enthalpy is thereby illustrated as a declining or ascending sigmoidal 

curve out of the emerging isotherms (rate of heat release) (see Fig. 20 in Material & Methods). 

In such experiments, initially titrated molecules are less abundant in the analytical cell and are 

bound immediately by the more abundant molecules already present in the cell. By injecting 

more titrant over time, the first molecules begin to saturate the second interaction partner, 

resulting in a sigmoidally shaped curve. Unfortunately, a test series of association experiments 

provided no reproducible data, and the assay set-up was shifted to dissociation experiments. 
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In the dissociation experiments performed (Figure 33), the titrant (protein or coupled proteins) 

was titrated to US buffer with and without 1 mM TCEP. In the latter, the second interaction 

partner (TCEP) is not limited and is therefore able to reduce the same amount of titrant in every 

single injection step. Therefore, the arising isotherms are approximately equal in every titration 

step, and the curve for reaction enthalpy obtains no sigmoidal shape. This is also the reason 

why these dissociation experiments are not able to provide information about association 

constants (slope of the curve at the inflection point), dissociation constants (inverse of 

association constant), and stoichiometry of the binding partners (molar ratio at the inflection 

point) but can generate enthalpy values. These enthalpy values (ΔH) reflect the change in 

Figure 33: Dissociative calorimetric titration of PfPrx1a wt coupled with PfTrxCSC and PfTrxSSS.  In A) oxidized PfPrx1a 

wt incubated with reduced PfTrxCSC and then titrated in US buffer containing 1 mM TCEP (n=3) and in B) oxidized PfPrx1a 

wt incubated with reduced PfTrxSSS and then titrated in US buffer containing 1 mM TCEP (n=4) are shown. Controls are 

composed out of C) oxidized PfPrx1a wt titrated in US buffer containing 1 mM TCEP (n=4), D) oxidized PfPrx1a wt incubated 

with reduced PfTrxCSC and then titrated in US buffer (n=2), E) oxidized PfPrx1a wt incubated with PfTrxSSS titrated in US 

buffer (n=2), and F) reduced PfTrxCSC titrated in US buffer containing 1 mM TCEP (n=2). Representative measurements out 

of different test series and the mean ΔH (± SE) of the respective measurements are depicted. 
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internal energy of the respective chemical reactions (area under the isotherm), where the first 

titration step provides the most representative ΔH. In Figure 35, representative raw data and 

dissociation isotherms of all performed dissociation experiments and their controls are shown. 

The titration of coupled PfPrx1a wt and PfTrxCSC in 1 mM TCEP buffer (A) generated a 

significantly higher enthalpy value (ΔH = -46.26 ± 0.93) than the titration of coupled PfPrx1a 

wt and PfTrxSSS in 1 mM TCEP buffer (B) (ΔH = -5.66 ± 0.31). The ΔH for the latter is therefore 

caused by a change in internal energy of the reduction of the disulfide bridge of the artificially 

oxidized Prx (Prx-TNB) shown in Figure 35 C. A titration of the stated couples in US buffer 

(D and E) and the titration of reduced PfTrxCSC generate no heat changes at all (F). 

 

4.3 Kinetic characterization of the human thioredoxin glutathione 

reductase 

 

4.3.1 Heterologous overexpression and purification of hTGR and hTGRU642C 

Within this thesis, the heterologous overexpression and purification of hTGR were optimized. 

The construct was cloned in pET28 and co-transformed with pSelABC (containing SelA, B, and 

C genes for proper Sec incorporation) in competent BL21 cells to obtain the soluble, pure 

protein with a concentration of ~2 mg/mL out of 1 L E. coli culture. The same protocols, without 

adding Na2SeO3 at the time of induction, were used for the Sec→Cys mutant. Figure 34 shows 

a representative elution profile of hTGR wild type (74.1 kDa) and a Western blot of hTGR wild 

type using anti-His6 antibodies. 

 

Figure 34: Purification of hTGR wild type. A) Coomassie stained elution profile of hTGR wild type on a 12 % SDS PAGE, 

B) Western blot confirmation of His6-tagged hTGR. M: protein ladder, SN: supernatant, FT: flow through, W1: 20 mM 

imidazole, W2: 30 mM imidazole, 200-500: fraction eluted with 200-500 mM imidazole. Red arrows indicate hTGR.  

 

In the Coomassie-stained SDS-PAGE, a prominent band at ~30 kDa could be observed, which 

was not removable via size exclusion chromatography or by adding 1 mM DTT, 1 M NaCl, 1 

mM guanidine hydrochloride, or 1 M NaCl + 20 mM DTT performed in the master’s thesis of 

Eva König [203] in parallel to this thesis. Mass spectrometry (MS) analysis identified the 

additional protein band as a degradation product of hTGR (see Supplementary Table 1 for the 

corresponding MS data). 

The protocols for heterologous overexpression and purification of all Sec-containing hTGR 

mutants (hTGR151-643, hTGRH78A, hTGRC133S, hTGRD134A, and hTGRC133S/D134A) were identical 
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to the protocol developed for the wild type enzyme (see Chapters 3.2.2.2 and 3.3.2.2). Due to 

this, the isolated Grx domain and the TrxR domain were overexpressed and purified 

successfully (see Figure 35). 

 

Figure 35: Protein profile of purified recombinant hTGRs and their isolated domains.  Purified recombinant wild type 

hTGR, the Sec→Cys mutant hTGRU642C, the isolated Grx domain hTGR1-150 and TrxR domain hTGR151-643 after SDS gel 

electrophoresis and staining with Coomassie Brilliant Blue. 

 

In order to identify the oligomerization behavior of hTGR wild type, size exclusion 

chromatography was performed in US buffer, pH 7.2, characterizing hTGR as a dimer with an 

elution peak at about 75 mL, which corresponds to approximately 180 kDa (Figure 36).          

 

Figure 36: Oligomerization behavior of hTGR wild type.  Representative size-exclusion chromatogram of hTGR after His6-

tag purification. 

         

4.3.2 Absorption titration spectrum for hTGR 

The EH2 species (two electron reduced enzyme) of hTGR has a wavelength absorption centered 

at around 540 nm due to a thiolate-flavin charge transfer complex. Figure 37 demonstrates the 

titration of hTGR with NADPH, indicating a conversion of Eox to EH2 at 540 nm. At this 
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wavelength the absorbance rises with increasing NADPH concentrations, used for reduction of 

hTGR, and falls via oxidation with hTrx, whereas the absorption at 463 nm decreases during 

reduction and increases during oxidation. Therefore, a functional active thiolate-flavin charge 

transfer complex was confirmed within hTGR, even though the enzyme seems to be not fully 

saturated with the prosthetic group (Figure 37). 

 

Figure 37: NADPH titration of hTGR wild type. Spectrum between 300 and 700 nm represent 20 µM oxidized hTGR (—), 

enzyme after reduction with 20 µM NADPH (•••), and reoxidized enzyme with 50 µM hTrx (---). The insert shows 

exponentially smoothed data (polynomial degree = 1) of the reduction of 20 µM recombinant hTGR wild type with 4, 12, and 

20 µM NADPH followed by reoxidation of the enzyme with 50 µM hTrx. Resulting spectra were monitored after each titration 

step. A representative titration spectrum between 400 and 700 nm, where the characteristic changes (decrease at 463 nm and 

increase at 540 nm upon reduction) become evident, is shown. Reduction of 20 µM hTGR with 4, 12, and 20 µM of NADPH 

occured. Rapid reaction kinetic traces were observed at 463 nm and 540 nm for the reduction of hTGR by increasing 

concentrations of NADPH and reoxidizing of hTGR with 50 µM of hTrx. 

 

4.3.3 Kinetic parameters of hTGR and hTGRU642C 

In order to determine the specific activity and steady-state kinetic parameters of hTGR wild 

type and the Sec mutant hTGRU642C, a thioredoxin reductase assay, DTNB assay, HEDS assay, 

and glutathione reductase assay were performed. For this, one substrate concentration was set 

to a fixed optimum and the other substrate concentration was varied. The velocity was then 

plotted against the concentration of the varied substrate and fitted to the Michaelis-Menten 

equation.  

 

4.3.3.1 Thioredoxin reductase activity  

In the TrxR assay system, hTGRU642C showed a significantly decreased specific activity 

compared to the wild type enzyme. In hTGRU642C, the KM-value for hTrx was significantly 

higher than in the wt enzyme, whereas the KM for NADPH was decreased (Figure 38). 

Additionally, kcat values for hTrx and NADPH were lowered. Table 10 summarizes the kinetic 

parameters of hTGR wild type and hTGRU642C in the thioredoxin reductase assay. 
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Figure 38: KM for hTrx and NADPH in hTGR wild type and hTGRU642C. A) KM for hTrx in hTGR wild type in the presence 

of 100 µM NADPH. B) KM for NADPH in hTGR wild type in the presence of 20 µM hTrx. C) KM for hTrx in hTGRU642C in 

the presence of 100 µM NADPH. D) KM for NADPH in hTGRU642C in the presence of 20 µM hTrx. Measurements were 

performed in at least three independent experiments. 

 

Table 10: Kinetic parameters of hTGR wild type and hTGRU642C in the TrxR assay. 

 hTGR hTGRU642C 

Specific activity [nmol*min-1*mg-1]             94.7 ± 10.6 

 

         12.5 ± 0.5*** 

 
KM for hTrx [µM]               7.5 ± 2.1          20.5 ± 4.9*** 

KM for NADPH [µM]             16.6 ± 1.8  5.1 ± 0.6*** 

kcat for hTrx [s-1]  0.18 ± 0.07  0.02 ± 0.01*** 

kcat for NADPH [s-1]               0.2 ± 0.12        0.015 ± 0.001* 

Values represent mean values ± SE of at least three independent experiments. The kinetic characteristics given here were 

determined using the TrxR assay. A student’s unpaired t-test with a 95% confidence level was performed in order to compare 

means. *p<0.05, **p<0.01, ***p<0.001. 

 

Kinetic parameters were also determined in the DTNB assay. Figure 39 shows representative 

Michaelis-Menten curves for hTGR wild type and hTGRU642C in the DTNB assay. 

 

KM = 7.5 ± 2.1 µM 

 

KM = 16.6 ± 1.8 µM 

 

KM = 20.5 ± 4.9 µM 

 

KM = 4.6 ± 0.6 µM 

A) B) 

C) D) 
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Figure 39: KM for DTNB and NADPH in hTGR wild type and hTGRU642C. A) KM for DTNB in hTGR wild type in the 

presence of 200 µM NADPH. B) KM for NADPH in hTGR wild type in the presence of 3 mM DTNB. C) KM for DTNB in 

hTGRU642C in the presence of 200 µM NADPH. D) KM for NADPH in hTGRU642C in the presence of 3 mM DTNB. 

Measurements were performed in at least five independent experiments. 

 

Similar to the TrxR assay, hTGRU642C showed a decreased specific activity in the DTNB assay 

compared to the wild type. The affinity of hTGR to DTNB is significantly lower than in the 

cysteine mutant, and the affinity of hTGR to NADPH is higher than in hTGRU642C. The kcat 

values of hTGRU642C for DTNB and NADPH are reduced significantly. Table 11 summarizes 

the kinetic parameters of hTGR wild type and hTGRU642C for their DTNB reduction properties. 

 

Table 11: Kinetic parameters of hTGR wild type and hTGRU642C in the DTNB assay. 

 hTGR hTGRU642C 

Specific activity [nmol*min-1*mg-1]             91.4 ± 15.6 

±  

 

         14.3 ± 1.9*** 

KM for DTNB [µM] 6.0 ± 1.6          17.1 ± 3.1*** 

KM for NADPH [µM] 5.1 ± 1.2 0.4 ± 0.1*** 

kcat for DTNB [s-1] 0.23 ± 0.04   0.03 ± 0.004*** 

kcat for NADPH [s-1] 0.10 ± 0.04 0.02 ± 0.002** 

Values represent mean values ± SE of at least five independent experiments. The kinetic characteristics given here were 

determined using the DTNB assay. A student’s unpaired t-test with a 95% confidence level was performed in order to compare 

means. *p<0.05, **p<0.01, ***p<0.001. 

 

 

KM = 6.0 ± 1.6 µM 

 

KM = 5.1 ± 1.2 µM 

 

KM = 17.1 ± 3.1 µM 

 

KM = 0.4 ± 0.07 µM 

A) B) 

C) D) 
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4.3.3.2 Grx activity assay  

The Grx assay describes the enzyme’s ability to deglutathionylate a protein, where the protein 

is replaced by the substrate HEDS. In this assay, a substrate inhibition could be observed at 

GSH concentrations above 2 mM (shown in representative KM curves in Figure 40) and at 

HEDS concentrations above 2 mM for both hTGR wild type and hTGRU642C. 

       

 

Figure 40: Substrate inhibition at hTGR with GSH and HEDS. Michaelis-Menten curves of substrate inhibition at A) 

[GSH] > 2 mM and B) [HEDS] > 2 mM. Measurements were performed in at least six independent experiments. 

 

Figure 41 shows representative KM curves of hTGR wild type and hTGRU642C in the HEDS 

reduction assay, disregarding the reaction velocities at substrate inhibition. The steady-state 

kinetic parameters for NADPH were not determined since the dinucleotide is involved in the 

downstream reaction of hGR. 

            

 

 

KM = 447 ± 180 µM KM = 535 ± 144 µM 

 

KM = 955 ± 560 µM 

 

KM = 2862 ± 3472 µM 

A) B) 

A) B) 
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Figure 41: KM for GSH and HEDS for the enzymes hTGR wild type and hTGRU642C. A) KM of GSH for hTGR wild type 

in the presence of 750 µM HEDS, 30 U/mL hGR and 100 µM NADPH. B) KM of HEDS for hTGR wild type in the presence 

of 1 mM GSH, 30 U/mL hGR and 100 µM NADPH. C) KM of GSH for hTGRU642C in the presence of 750 µM HEDS, 30 U/mL 

hGR and 100 µM NADPH. D) KM of HEDS for hTGRU642C in the presence of 1 mM GSH, 30 U/mL hGR and 100 µM NADPH. 

Measurements were performed in at least six independent experiments. 

 

The kinetic parameters for hTGR wild type and hTGRU642C are presented in Table 12. No 

significant differences could be shown between the variants for specific activity or the KM 

towards its substrates in the HEDS reduction assay. A significant increase was shown for the 

kcat for GSH in hTGRU642C with a p-value of 0.036. The HEDS reduction assay was likewise 

performed with the Grx domain of hTGR (hTGR1-150), which showed a specific activity of 9.45 

± 2.2 U/mg. 

 

Table 12: Kinetic parameters of hTGR wild type and hTGRU642C in the HEDS reduction assay. 

 hTGR hTGRU642C 

Specific activity [µmol*min-1*mg-1]               7.3 ± 0.7            7.3 ± 2.3 

KM for GSH [µM]              447 ± 180           544 ± 186 

KM for HEDS [µM]              535 ± 144           547 ± 113 

kcat for GSH [s-1]             4.77 ± 2.2            6.5 ± 1.6* 

kcat for HEDS [s-1]             21.1 ± 1.6          20.7 ± 2.6 

Values represent mean values ± SE of at least six independent experiments. The kinetic characteristics given here were 

determined using the HEDS assay. A student`s unpaired t-test with a 95% confidence level was performed in order to compare 

means. *p<0.05, **p<0.01, ***p<0.001. 

 

To detect an unspecific reduction of the artificial substrate HEDS, a HEDS reduction  assay 

was performed without adding GSH and hGR (modified HEDS reduction assay) to hTGR, 

hTGR lacking the N-terminal Grx elongation (hTGR151-643), native hTrxR from placenta, or the 

recombinant hTrxRU498S mutant (Table 13). 

 

 

KM = 544 ± 186 µM KM = 547 ± 113 µM 

C) D) 
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Table 13: Specific activity of hTrxR wt, hTrxRU498S, hTGR151-643, and hTGR in the mod. HEDS reduction assay. 

 Specific activity [nmol*min-1*mg-1] 

hTrxR wt (placenta preparation) 65 ± 13 

hTrxRU498S    3 ± 0.4 

hTGR151-643 2.3 ± 1.8 

hTGR 3.2 ± 1.3  

Values represent mean values ± SE of at least three repetitions. The kinetic characteristics given here were determined using a 

modified HEDS assay (without adding GSH and GR).  

 

In the modified HEDS reduction assay all proteins were able to reduce the disulfide HEDS. All 

recombinant enzymes showed similar activities. Native hTrxR showed a 20% higher unspecific 

reduction of HEDS than the recombinant enzymes.  

 

4.3.3.3 Glutathione reductase activity 

In the glutathione reductase assay, only hTGR wild type showed a turnover of GSSG upon 

consumption of NADPH. Figure 42 shows representative KM curves for GSSG and NADPH 

for hTGR wild type. 

 

Figure 42: KM for GSSG and NADPH for hTGR wild type. A) KM of GSSG for hTGR wild type in the presence of 100 µM 

NADPH. B) KM of NADPH for hTGR wild type in the presence of 200 µM GSSG. Measurements were performed in at least 

three independent experiments. 

 

Table 14 represents the kinetic parameters of hTGR wild type in the GR assay. 

 

Table 14: Kinetic parameters of hTGR wild type and hTGRU642C in the GR assay. 

 hTGR hTGRU642C 

Specific activity [nmol*min-1*mg-1]             59.9 ± 1.6 <0.1 

KM for GSSG [µM]             20.8 ± 8.9 n.d. 

KM for NADPH [µM]             20.8 ± 3.9 n.d. 

 

KM = 20.8 ± 8.9 µM 

 

KM = 20.8 ± 3.9 µM 

A) B) 
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kcat for GSSG [s-1] 0.11 ± 0.04 n.d. 

kcat for NADPH [s-1] 0.14 ± 0.06 n.d. 

Values represent mean values ± SE of at least three independent experiments. The given kinetic characteristics were determined 

using the GR assay. N.d. = not detectable.  

 

To detect GR activity dependency on the Grx-elongation, a GR assay was performed with 

hTGR151-643, recombinant hTrxRU498S mutant, and hTGR1-150 (Table 15). The Grx domain of 

hTGR (hTGR1-150) showed no activity in the GR assay. 

 

Table 15: Specific activity of hTrxR wt, hTrxRU498S, hTGR151-643, and hTGR in the GR assay. 

 Specific activity [nmol*min-1*mg-1] 

hTrxR (native)                                        n.d. 

hTrxRU498S                                    2.7 ± 1 

hTGR151-643                                       3 ± 0.9 

hTGR1-150                                        n.d. 

Values represent mean values ± SE of at least six repetitions. Native hTrxR was purified from placenta as previously reported 

[204]. Since hTrxR and hGR are closely related enzymes, traces of hGR (activity) can be present in the native hTrxR sample. 

Therefore, GR activity was not determined for this enzyme. The given kinetic characteristics were determined using the GR 

assay. N.d.= not detectable. 

 

4.3.3.4 Hysteretic behavior of the GR activity of hTGR 

To identify a potential lag phase in the initial reaction velocity of hTGR in the GR assay, the 

full time course of NADPH oxidation was monitored over 6.5 h at increasing GSSG 

concentrations (100 µM – 4000 µM) and 100 µM NADPH at 340 nm. Additionally, a control 

containing only 100 µM GSSG and 100 µM NADPH was observed over time (Figure 43).  
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Figure 43: Full time courses of NADPH oxidation by 2 µM of hTGR in the GR assay.  The decrease of absorbance was 

monitored at 340 nm over a time course of 6.5 h. Every third data point is shown for clarity. The experiments were carried out 

in triplicate with the same result. One representative dataset is shown. 

 

Since GSSG inhibits hTGR in the GR assay at concentrations above 200 µM, the reaction 

velocity decreases at higher GSSG concentrations, which is visualized by flatter NADPH 

degradation curves. No lag phase was observed in the initial reductase activity of hTGR, and 

no hysteretic behavior of the enzyme during GR activity could be shown. 

 

4.3.4 Protein-S-glutathionylation of hTGR 

The enzyme hTGR could be glutathionylated by 5 mM of GSSG. Figure 44 shows a Western 

blot with anti-GSH antibody. The first lane represents the glutathionylated hTGR with DTT 

addition, which leads to the reduction of the covalently bound glutathione, showing no GSH 

detection in the Western blot. The second lane represents the glutathionylated protein without 

DTT addition in order to maintain the disulfide bridge between the enzyme and glutathione, 

resulting in a positive GSH signal. 
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Figure 44: Western blot confirmation of S-glutathionylation of hTGR.  Lane 1 = glutathionylated hTGR with 50 mM DTT. 

Lane 2 = glutathionylated hTGR without adding DTT. 

 

The number and position of glutathionylated cysteines within hTGR could be identified via 

MALDI-TOF MS. MS data were obtained from three independent detections (see 

Supplementary Table 2). Not all cysteines located in the hTGR structure nor the Sec-containing 

peptide could be detected by MS analysis. Within hTGR, glutathionylated cysteines were found 

in triplicate at positions C93, C133, C225, and C619. Two glutathionylated cysteines were only 

detected in one sample each, namely C571 and C171. To analyze an activating or inhibiting 

influence of glutathionylation on hTGR activity, the specific activity of glutathionylated hTGR 

in a TrxR, DTNB, HEDS, and GR assay was measured. 

Table 16: Specific activities of hTGR and glutathionylated hTGR. 

 hTGR 
Specific activity [nmol*min-1*mg-1] 

hTGR-SG 
Specific activity [nmol*min-1*mg-1] 

TrxR assay                 136 ± 6.9 41.6 ± 1.1*** 

DTNB assay                 109 ± 5.1 65.8 ± 0.9*** 

HEDS assay     11.46 × 103 ± 1.35 × 103      1.26 × 103 ± 0.540 × 103*** 

GR assay                69.9 ± 5.8                39.9 ± 7*** 

Values represent mean values ± SE of at least three independent experiments with at least two replications. The kinetic 

characteristics given here were determined using the standard assay. A student’s unpaired t-test with a 95% confidence level 

was performed in order to compare means. *p<0.05, **p<0.01, ***p<0.001. 

 

Table 16 represents the specific activities under standard assay conditions in the three 

implemented enzyme assay systems with hTGR wild type and glutathionylated hTGR wild 

type. As shown here, a glutathionylation of this protein decreases the enzyme’s ability to reduce 

thioredoxin, DTNB, oxidized glutathione, and the glutathionylated substrate HEDS. 
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5 DISCUSSION 

5.1 Plasmodium falciparum peroxiredoxins 

Over the last years research on Prxs expanded rapidly [205]. After their initial discovery in 

human erythrocytes [206, 207] Prxs were later described as redox-active proteins [208] present 

in all kingdoms of life. Prxs are cysteine-dependent peroxidases and were shown to act as sensor 

transducers [61]. Prxs are also found in protozoal parasites such as Toxoplasma, Trypanosoma, 

Leishmania, and Plasmodium. During infection, these protozoans have a high demand for 

reducing equivalents for enhanced metabolic rate and DNA synthesis caused by stage-

dependent high proliferation rates. In addition, these parasites are challenged by the host`s 

immune system [209]. As a result, redox-based drug development strategies [210, 211] with a 

focus on peroxiredoxin networks are of major interest. A detailed knowledge of the 

mechanistical properties of Prxs and their redox network clusters is of utmost importance to 

gain further insights into the biochemistry of the parasites and to overcome the consequences 

of their severe impact on global health and economy. 

 

5.1.1 Pull-down assay with 2-Cys PfPrxs 

In previous studies several affinity chromatography approaches based on active site cysteine 

mutants as bait proteins have been conducted with Trx [84, 212-216], Grx [84, 217], and Plrx 

[84] from P. falciparum and other organisms. Sturm et al. identified 33 putative interacting 

proteins for Trx, Grx, and Plrx from whole cell Plasmodium falciparum parasite lysate via mass 

spectrometry [84] using the same pull-down protocol as in this thesis. The this study, the authors 

identified the redox interactome (based on Trx, Grx, and Plrx) of malarial parasites and 

demonstrated that redoxins are highly involved in various metabolic pathways and, in part, are 

even required to balance metabolic fluxes [84]. In that study, as well as in others, Prxs were 

found to interact with Trx via an intermolecular disulfide bond, which confirmed the 

mechanism of the catalytic cycle of Prx reduction by Trx. The interactome of Prxs has hardly 

been explored so far. However, first studies suggest Prxs to “transfer oxidizing equivalents” via 

a mixed disulfide to downstream signaling proteins, meaning that an oxidized protein A can 

receive an electron from a second protein B while transferring the oxidation signal (disulfide or 

sulfenic acid formation) from A to B. These identified targeted proteins seem to react only 

slowly with hydrogen peroxide although their activities are dependent on Cys oxidation [218-

220]. To identify proteins interacting with Prxs via a transient disulfide bond, we employed the 

principle of mixed disulfide fishing [217] to plasmodial 2-Cys peroxiredoxins.  

To our knowledge a pull-down assay using Prx as bait and cell lysate as prey has never been 

previously reported.  For this, wild types and active site Cys mutants of plasmodial 2-Cys Prxs 

were generated and immobilized on Sepharose beads via amine coupling. These proteins were 

incubated with parasite lysate and intensively washed with buffer. Covalently bound proteins 

were eluted with dithiothreitol and interacting proteins were identified by MS. Although the 

immobilized peroxiredoxins in this pull-down experiment were kept in a reduced state until 

incubation with parasite lysate, it can`t be excluded that the immobilized Prxs which are very 

prone to oxidation, were present as a mixture of reduced and oxidized proteins during protein-

protein interaction. This implies that in our experimental setup the Prxs can act both, as reducers 

and oxidizers of putative interacting proteins. Possible reducing and oxidizing pathways of 2-

Cys Prxs are explained in detail in the following. 
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Figure 45 A shows steps of peroxidation and resolution of the common catalytic cycle of 

atypical 2-Cys Prxs. Here, the fully reduced Prx is oxidized (step 1) by hydroperoxide substrates 

at the reactive peroxidatic Cys, resulting in sulfenic acid formation at the CP. In the next step 

(2), the resolving Cys forms an intramolecular disulfide bond with the CP by releasing H2O. 

This disulfide bond can be resolved by redoxins (not shown). 

Resolving Cys mutants (see Figures 45 B & C) can theoretically act as oxidizers or as reducers. 

CR mutants are still highly reactive towards hydroperoxide substrates (Figure 45 B). Here, a 

sulfenic acid formation is triggered in the same way as in wild type Prxs (step 1). A following 

disulfide bond formation with the resolving Cys is however not possible, since the CR has been 

mutated (to serin). The identification of proteins interacting with the remaining peroxidatic Cys 

supports the notion that in the next step (step 2) downstream regulatory signaling or messaging 

proteins can receive the oxidizing equivalents from the oxidized Prx by building a mixed 

disulfide intermediate. In case the 2-Cys Prx resolving Cys mutant is not oxidized by 

hydroperoxide substrates (Figure 45 C) the highly reactive reduced peroxidatic Cys might be 

able to reduce oxidized interacting proteins (step 1) by building a mixed-disulfide with the 

targeted protein (TP). Afterwards, these disulfide bonds might be resolved by reduced redoxins 

such as Trx in vivo, thereby releasing the reduced Prx and TP.  

The same can in principle be postulated for peroxidatic Cys mutants (Figures 45 D & E). When 

CP mutants are acting as transducers of oxidizing signals, the Prxs are oxidized by 

hydroperoxide substrates at the still remaining resolving Cys (step 1 in Figure 45 D). The 

formed sulfenic acid at the CR (HOSR) might then be able to transmit the oxidizing signal to 

downstream interacting proteins by building a disulfide intermediate. CP mutants acting as 

reducers are not oxidized by hydroperoxide substrates but reduce oxidized targeted proteins by 

mixed-disulfide formation (Figure 45 E, step 1). As it was also true for CR mutants this disulfide 

bond could be resolved by downstream redoxins in vivo. It should be noted here, that it cannot 

be excluded that the oxidized protein (Figures 45 C & E), which might be reduced by Prx, could 

also possess a disulfide bridge as a signal of oxidation rather than a sulfenic acid (not shown in 

the figure). 

To correct for putative proteins binding to other cysteines of the Prxs, the respective PfPrx wt 

was initially used as a control, assuming that a potential disulfide-bonded intermediate can be 

formed and would be released subsequently due to the present resolving cysteine. However, 

when evaluating our data, a huge number of proteins that had been exclusively bound to the Prx 

wt in all three independent experiments was identified. Our hypothesis explaining these 

interesting data is given at the end of Chapter 5.1.1. 
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Figure 45: Proposed mechanisms of reduction and oxidation of targeted proteins via 2-Cys Prxs mutants.  A) The first 

two steps of peroxidation and resolution of the common catalytic cycle of atypical 2-Cys Prx are shown: 1) peroxidation and 

2) resolution with disulfide formation are presented. B & C represent the proposed mechanisms of transmitting oxidizing or 

reducing equivalents via Prx resolving Cys mutants. D & E represent the proposed mechanisms of transmitting oxidizing or 

reducing equivalents via Prx peroxidatic Cys mutants. For further details, please see text above. 

 

5.1.1.1 Identification of proteins interacting with PfPrx1a 

In this pull-down assay, proteins from trophozoite stage P. falciparum cell lysate were 

identified that potentially interact with wild type and Cys mutants of the cytosolic PfPrx1a. 

Captured proteins were found to be implemented in various metabolic pathways such as 

carbohydrate metabolism, protein folding, the translational machinery, S-adenosylmethionine 

metabolism, signal transduction, and others (clustered and summarized in Table 17). With the 

described method, we were able to identify 288 different putative interacting proteins for 

PfPrx1a wt and its active site mutants (Figure 46 A). Since PfPrx1a is located in the cytosol, 

we also evaluated our data after excluding proteins that only occur in other organelles. With 

this limitation, a number of 127 proteins interacting with PfPrx1a and its mutants could be 

identified (Figure 46 B). Venn diagrams in Figure 46 demonstrate the overall amount of 

proteins captured exclusively by PfPrx1a wild type, the CP mutant PfPrx1aC50S, the CR mutant 

D 

E 
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PfPrx1aC170S, or the double active site mutant PfPrx1aC50S/C170S. Furthermore, the overlap 

between these groups is shown. For data interpretation, only proteins that occurred in two or 

three independent experiments out of the triplicates were taken into account. 

In our experiment, we found 91 proteins interacting with PfPrx1a wild type and 70 proteins 

interacting with PfPrx1aC50S exclusively. Additionally, 68 proteins were identified interacting 

with PfPrx1a wild type and the CP mutant PfPrx1aC50S (Figure 46 A). Proteins captured with 

the double mutant PfPrx1aC50S/C170S might reflect interacting partners that were caught with the 

remaining Cys at position C74 of PfPrx1a. This C74 is located too far away from the active site 

cysteines of PfPrx1a but was shown to be potentially able to interact with PfTrx 1 (see Chapter 

5.1.3.1). These results are indicating a potential role of this C74 in redox reactions in Pf. A very 

similar pattern can be recognized in the Venn diagram depicting only identified cytosolic 

interacting proteins (Figure 46 B). Here, most of the identified proteins were captured with 

PfPrx1a wild type and the CP mutant PfPrx1aC50S as well (37 and 21, respectively, and an 

overlap of 33 proteins). In general, a smaller number of proteins were identified interacting with 

the resolving Cys mutant PfPrx1aC170S. Therefore, the CR of PfPrx1a might be involved much 

more strongly in protein-protein interactions as the CP (see Figures 45 D & E). This might 

implicate that the CP in PfPrx1a could be specialized in ROOH recognition and once the CP is 

hyperoxidized the CR could interact with proteins via a disulfide bond to transfer oxidizing or 

reducing equivalents (see Figures 48 C & E) or to protect the targeted protein against 

hyperoxidation.  

  

 

 

Figure 46: Venn diagrams of the number of proteins found in pull-down assay with PfPrx1a.  A) Total number of proteins 

putatively interacting via disulfides bridges with PfPrx1a, PfPrx1aC170S, PfPrx1aC50S, or PfPrx1aC50S/C170S. B) Number of 

cytosolic proteins putatively interacting via disulfides bridges with PfPrx1a, PfPrx1aC170S, PfPrx1aC50S, or PfPrx1aC50S/C170S. 

 

Functional implications of proteins interacting with PfPrx1a  

Many proteins captured with PfPrx1a in this study – representing potential interacting partners 

– have already been reported to be redox modulated in other organisms. For example, 40S 

ribosomal protein S23 and 40S ribosomal protein S21 (RPS21) from Schizosaccharomyces 

pombe were found to be oxidized in a thiol-labeling approach to characterize the disulfide 

proteome of fission yeast [221]. Lysine-tRNA ligase (KRS1) was characterized to be peroxide 

sensitive in Saccharomyces cerevisiae by the quantitative redox proteomic OxICAT method 

(ICAT: isotope-coded affinity tag) [222]. Moreover, heat shock protein 40 from mice (DnaJb5) 

was shown to be redox regulated by Trx1. DnaJb5, reduced by Trx1, is able to form a complex 

A B 
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with class II histone deacetylases 4 (HDAC4) via intramolecular disulfide bonds in order to 

hinder HDAC4 nuclear export and with this to inhibit cardiac hypertrophy after ROS-generated 

hypertrophic stimuli [223]. Investigated in Parkinson’s disease patients, cysteine oxidation was 

identified in ubiquitin carboxyl-terminal hydrolase, a deubiquitinating enzyme [224], and the 

ubiquitin proteasome system itself can be altered with cysteine modifications such as disulfide 

formation, S-nitrosylation, and S-glutathionylation [225, 226]. Protein phosphatase 2C (PP2C) 

from Arabidopsis thaliana (ABI1) was significantly inactivated when challenged with 

hydrogen peroxide via specific cysteine oxidation [227]. The translation initiation factor 4E 

(eIF4E) was reported to form intramolecular disulfide bridges in order to impede a proper 

translation as shown in wheat [228, 229]. Protein disulfide isomerase (PDI) is a dithiol–

disulfide oxidoreductase chaperone from the thioredoxin superfamily formed by four 

thioredoxin domains with a redox catalytic WCGHC motif and a thioredoxin fold structure, 

which is able to maintain disulfides and reconstruct un/misfolded proteins [230, 231]. Along 

with other proteins linked to protein folding, the redox-dependent heat shock protein 70 (Hsp70) 

was captured within this work. Hsp70 had already been identified to interact with Trx and Grx 

in plants [212, 216, 217, 232-234], depicting its redox linkage. Enolase, the enzyme that 

catalyzes the conversion of 2-phospho-D-glycerate to phosphoenolpyruvate in the penultimate 

step of glycolysis, was shown to be inhibited by Adriamycin, a ROS releasing potent anticancer 

drug in humans [235]. Furthermore, enolases of Arabidopsis thaliana and Mesernbryanthemum 

tallinum were reported to be redox regulated by a cytosolic Trx system at their disulfide bond 

between C313 and C339 [236]. Since Pf enolase was captured in this pull-down assay, 

regulation in Plasmodium falciparum is likewise conceivable. A redox regulation of S-

adenosyl-L-homocysteine hydrolase depending on Grx [217] and Trx [84] has also been 

previously reported. Based on already published data from other working groups and the 

appearance of these redox-regulated proteins in the underlying experiment, similar redox 

regulation in Plasmodium falciparum can be assumed. Moreover, it can be deduced that Prxs 

in Plasmodium and potentially in other eukaryotic cells have a higher functional and redox-

regulating implication than it was expected before and Plasmodium could serve here as a model 

organism for eukaryotic cells. In this context, one should mention that plasmodial L-lactate 

dehydrogenase, heat shock protein 70, disulfide isomerase, and S-adenosyl-L-homocysteine 

hydrolase were captured in the pull-down experiment with Trx, Grx, and Plrx by Sturm et al. 

[84], suggesting an interplay or synergy between Prx, the respective redoxin, and the effector 

protein.  
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Table 17: Functional clustering of the proteins interacting with PfPrx1a. 

Functional cluster Captured proteins 

  

PfPrx1a wild type  
Transcription/translation 40S ribosomal protein S23, 40S ribosomal protein S15A, 40S ribosomal protein S3A, eukaryotic initiation factor, 

translation initiation factor IF-2, nascent polypeptide-associated complex alpha chain, eukaryotic translation 

initiation factor 3 subunit 5, 40S ribosomal protein S18, 60S ribosomal protein L35ae, 40S ribosomal protein S21 

(RPS21), eukaryotic translation initiation factor 3 subunit 8, eukaryotic translation initiation factor 3 subunit 10, 

glutamine-tRNA ligase, lysine-tRNA ligase (KRS1), 60S ribosomal protein L17, eukaryotic translation initiation 

factor 2 gamma subunit, 60S ribosomal protein L14 

Protein degradation 26S proteasome regulatory subunit RPN11, 26S protease regulatory subunit 7, 26S protease regulatory subunit 

10B, 26S protease regulatory subunit 8, 26S protease regulatory subunit 4, ubiquitin carboxyl-terminal hydrolase, 

proteasome regulatory protein 
Protein folding Heat shock protein 40, endoplasmin 

Protein transport Ras-related protein Rab-2 (RAB2), karyopherin alpha (KARalpha) 

S-adenosylmethionine metabolism S-adenosylmethionine decarboxylase/ornithine decarboxylase  

Carbohydrate metabolism Phosphoglycerate mutase 

Signal transduction Casein kinase 1 (CK1), protein phosphatase 2C (PP2C) 

Others Carbamoyl phosphate synthetase (cpsSII), acyl-CoA synthetase (ACS11), small GTP-binding protein sar1 

(SAR1), serine repeat antigen 5 (SERA5) 

  

PfPrx1aC50S  

Transcription/translation RNA pseudouridylate synthase, eukaryotic translation initiation factor 3 37.28 kDa subunit, serine-tRNA ligase, 

60S ribosomal protein L11a, 40S ribosomal protein S10, 60S ribosomal protein L22, box C/D snoRNP rRNA 2'-

O-methylation factor, U4/U6.U5 tri-snRNP-associated protein 2, alanine-tRNA ligase, glycine-tRNA ligase, 

histidine-tRNA ligase 

Protein degradation Proteasome subunit alpha type-4, ubiquitin domain-containing protein DSK2, 26S proteasome regulatory subunit 

RPN10, proteasome subunit alpha type-5, RING zinc finger protein 

Protein folding Peptidyl-prolyl cis-trans isomerase (CYP19B) 

Protein transport Protein transport protein SEC31, exportin-1, protein transport protein SEC13 
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PfPrx1aC170S  

Transcription/translation 60S ribosomal protein L23 

Carbohydrate metabolism Deoxyribose-phosphate aldolase 

  

PfPrx1aC50S/C170S  

Transcription/translation Elongation factor 1-beta (EF-1beta) 

  

PfPrx1a wild type, PfPrx1aC50S  

Transcription/translation 60S ribosomal protein P0 (PfP0), elongation factor 1-gamma, 60S ribosomal protein L6-2, 60S acidic ribosomal 

protein P2 (PfP2), 40S ribosomal protein S4, 60S acidic ribosomal protein P1, translation initiation factor 4E 

(eIF4E), asparagine-tRNA ligase, 40S ribosomal protein S5, 60S ribosomal protein L3 (RPL3), 40S ribosomal 

protein S3 

Protein degradation 26S proteasome AAA-ATPase subunit RPT3, suppressor of kinetochore protein 1, ubiquitin carboxyl-terminal 

hydrolase 2 

Protein folding Heat shock protein 70 (HSP70-3), heat shock protein 70 (HSP70-2), protein disulfide isomerase (PDI-11) 

Carbohydrate metabolism Phosphoribosylpyrophosphate synthetase, enolase (ENO), fructose-bisphosphate aldolase, L-lactate 

dehydrogenase (LDH), phosphoglycerate kinase 

S-adenosylmethionine metabolism S-adenosyl-L-homocysteine hydrolase (SAHH), phosphoethanolamine N-methyltransferase (PMT) 

Energy metabolism Adenylate kinase (AK1) 

Others Casein kinase 2, alpha subunit, 1-cys peroxiredoxins, dihydropteroate synthetase (DHPS), erythrocyte membrane-

associated antigen, purine nucleoside phosphorylase (PNP), dolichyl-phosphate-mannose protein 

mannosyltransferase 

  

PfPrx1a wild type, PfPrx1aC170S  

Transcription/translation 40S ribosomal protein S7, 60S ribosomal protein L5 

Purine metabolism Inosine-5'-monophosphate dehydrogenase 
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5.1.1.2 Identification of proteins interacting with PfPrx1m 

In mitochondria, oxidative post-translational modifications (Ox-PTMs) are linked to 

mitochondrial dysfunctions and clinicopathological consequences such as heart failure, acute 

neuronal trauma, peripheral diseases, and chronic neurodegenerative diseases [237, 238]. With 

the used approach, we were able to identify 20 mitochondrial proteins, which are potentially 

interacting with PfPrx1m and its active site mutants. Figure 47 shows Venn diagrams that 

demonstrate the overall number of proteins exclusively captured by PfPrx1m wild type, the CP 

mutant PfPrx1mC67S, the CR mutant PfPrx1mC187S, and PfPrx1mC67S/C187S. Furthermore, the 

overlap between these groups is shown. Figure 47 B shows the results for mitochondrial 

proteins only. Data interpretation only considers proteins that occurred in two or three 

independent experiments out of the respective triplicates. Proteins that are captured with the 

double active site mutant PfPrx1mC67S/C187S are potentially interacting via a disulfide bridge 

between the targeted proteins and non-active site cysteines of PfPrx1m (C54, C55, or C152) 

which seems to be not relevant in the mitochondrion (Figure 47 B). Using PfPrx1m wild type 

as bait, we could identify one interacting mitochondrial protein (Figure 47 B).  This interaction 

might follow the proposed mechanism of reduction and/or oxidation of targeted proteins 

illustrated in Figure 48. Both mitochondrial proteins that were captured using the CP mutant 

PfPrx1mC67S (Figure 47 B and Table 18) might potentially interact via the redox mechanism 

depicted in Figures 45 D & E. 

 

          

    

 

Figure 47: Venn diagrams of number of proteins found in pull-down assay with PfPrx1m.  A) Total number of proteins 

putatively interacting via disulfides bridges with PfPrx1m, PfPrx1mC187S, PfPrx1mC67S, or PfPrx1mC67S/C187S. B) Number of 

cytosolic proteins putatively interacting via disulfides bridges with PfPrx1m, PfPrx1mC187S, PfPrx1mC67S, or PfPrx1mC67S/C187S. 

 

Functional implications of proteins interacting with PfPrx1m 

Identified proteins interacting with PfPrx1m are involved in lipid metabolism, protein folding, 

redox control, and energy metabolism (clustered and summarized in Table 18). All target 

protein candidates contain a minimum of one cysteine inside their protein sequence, facilitating 

the intermolecular disulfide with PfPrx1m in the conducted experiment. The respective 

metabolic function of the captured proteins is presented in Table 18. Some of the captured 

proteins have already been described to be redox modulated in humans by other authors, and 

will be described in the following. Human diacylglycerol kinase (DGK) reduces the activity of 

the diacylglycerol (DAG) protein kinase C (PKC), an enzyme involved in the pathomechanism 

A B 
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of diabetic nephropathy. It could be shown that antioxidants such as d-α-tocopherol and 

probucol are able to restore the strong glucose-induced decrease in DGK activity, and 

additionally that H2O2 mediates a downregulation of DGK activity, proving a redox-dependent 

regulation of DGK [239]. Since the implemented pull-down assay revealed DGK as a potential 

interacting partner for PfPrx1m, a maintenance function of the peroxiredoxin seems to be the 

logical interpretation. Cellular ATP is produced by the electron transport chain in combination 

with the F1FO-ATP synthase [240]. The latter shows a high number of Ox-PTMs at cysteines 

of the α- and γ-subunits [241-244], which were found to be negatively correlated with 

conformational changes and ATP synthase hydrolytic activity (summarized in [237]). Since the 

aforementioned proteins could be captured with PfPrx1m in triplicate and have already been 

reported to be redox regulated in other organisms, we conclude that a similar redox regulation 

of these proteins might exist in Plasmodium falciparum. 

 

Table 18: Proteins interacting with PfPrx1m. 

Functional cluster Captured protein 

  

PfPrx1m wild type 
 

Lipid metabolism Diacylglycerol kinase 
 

 

PfPrx1mC76S  

Protein folding GrpE protein homolog, mitochondrial 

others Sortilin 

  

PfPrx1mC187S 
 

Redox metabolism Ferrodoxin reductase-like protein, superoxide dismutase [Fe] 

(FeSOD), glutathione S-transferase, glutathione reductase 

Energy metabolism ATP synthase subunit beta, mitochondrial 

Translation Mitochondrial acidic protein MAM33 

  

PfPrx1m wild type, PfPrx1mC187S  

Others Acyl-CoA synthetase (ACS10) 

 

In conclusion, the Prx pull-down assays using PfPrxs as bait proteins provided new insights 

into Prx-mediated redox reactions in eukaryotic cells and many new candidate targets for 

protein-protein interaction with Prxs. The proposed mechanisms that might facilitate the 

transduction of reducing and oxidizing equivalents in wild type 2-Cys Prxs are depicted in 

Figure 48 and is explained in the following. 

Reduced 2-Cys Prx wild type might reduce an oxidized target protein with its peroxidatic Cys 

(Figure 48 A, step 1) by forming a transient mixed disulfide with the TP. In the next step, the 

resolving Cys of Prx might resolve this disulfide bond and the reduced TP would be released 

(step 2). This step 2 could also be replaced by the reduction of the disulfide bond via Trx. In 

Chapter 5.1.3.1 of this thesis, it is clearly shown that PfTrx attacks disulfide bridges when 

introduced at the peroxidatic Cys (in PfPrx1a). In our experiments, using resolving Cys mutants, 

the former transient mixed disulfide between Prx and the targeted protein cannot be resolved 

since the resolving Cys is mutated (to serin). The TP is therefore “trapped” and was eluted by 

the reducing agent DTT in our approach. 
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Proteins caught with the peroxidatic Cys mutants of Prx in our experiments might reflect a 

second mechanism for target protein reduction (Figure 48 B). In this proposed mechanism, the 

reduced 2-Cys Prx is hyperoxidized to sulfinic acid by hydroperoxides at the peroxidatic Cys 

(step 1). The still reduced thiolate of the resolving Cys in Prx might then reduce oxidized TP 

by building a mixed-disulfide between the resolving Cys (step 2) and the TP which might be 

reduced by redoxins (not shown). This mechanism is rather likely since we caught more TPs 

with CP mutants. 

An oxidation/hyperoxidation of 2-Cys Prxs could theoretically also lead to a sulfenic acid 

formation at the resolving Cys of Prx (Figure 48 C, step 1). In this scenario, the oxidized 

resolving Cys of Prx might form a mixed disulfide with a former reduced target protein. This 

complex could serve (i) as a transmitted signal of an oxidizing environment to alter the 

properties of the targeted protein and/or (ii) could be resolved via downstream reduced 

redoxins. The fact that Trx is able to attack a disulfide bridge when introduced at the resolving 

Cys in 2-Cys Prxs (PfPrx1m) was clearly shown in this thesis with an SPR-based approach (see 

Chapter 5.1.3.1). Another result that supports this hypotheses (Figures 48 B & C) is the high 

number of proteins captured with CP mutants of the cytosolic PfPrx1a. 

A second mechanism of protein oxidation could start again with an oxidation of the 2-Cys Prx. 

Here, the active site Cys thiols might be oxidized both to sulfenic acid and the oxidized 

peroxidatic Cys might oxidize a reduced target protein via mixed-disulfide formation (not 

shown). However, since the simultaneous formation of sulfenic acid at both active site Cys in 

2-Cys Prxs has not yet been described in literature, and since we caught only a few proteins 

with the PfPrx1a resolving Cys mutant this mechanism seems to be unlikely/less abundant. 

Since mutations can lead to consequences on protein-protein interface structures and thereby 

also to changes in binding affinities [245], proteins caught exclusively with wild type proteins 

or their active site mutants may reflect these individual alterations when binding the respective 

captured proteins.  

Native Prxs have a high abundance inside the cell and are present in the parasite’s cell lysate. 

Therefore, native Prxs in the used cell lysate might be able to capture a majority of interacting 

proteins so that the overall protein amount caught with the respective recombinant and 

immobilized Prxs was generally low. Many bound proteins interacting with the respective PfPrx 

and its mutants were found, and some of those are not located in the same cell organelle as 

where the respective Prx occurs. This could reflect an unspecific recognition of substrate 

proteins due to loose complementary physio-chemical interactions between the partners. 

Additionally, these observed interactions can be stated as physiologically non-specific, but the 

proteins captured could be speculated to represent interaction partners of Prxs in other 

compartments [246]. 
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Figure 48: Proposed mechanisms of reduction and oxidation of targeted proteins via 2-Cys Prx wild type.  A) Reduction 

of oxidized targeted proteins (TP) via the Prx peroxidatic Cys: 1) reduction of the oxidized TP via the peroxidatic Cys of Prx 

and 2) resolving of the mixed disulfide via the resolving Cys of Prx. B) Reduction of oxidized TP via the Prx resolving Cys: 1) 

oxidation of the 2-Cys Prx and 2) reduction of oxidized TP via the resolving Cys of Prx. C) Oxidation of reduced TP via the 

oxidized resolving Cys of Prx: 1) oxidation/hyperoxidation of Prx and 2) oxidation of the reduced TP via the resolving Cys of 

Prx. 

A 

B 

C 
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In their role as nature’s predominant peroxidases Prxs reduce H2O2, organic hydroperoxides 

(ROOH), and peroxynitrite (ONOO-) [32] but have so far not been reported to reduce oxidized 

proteins. Within their catalytic cycle Prxs reduce a peroxide with the peroxidatic cysteine (CP), 

converting the former thiolate of the CP into a sulfenic acid followed by a disulfide bond 

formation triggered by the resolving cysteine of Prx (Figure 47 A). In this thesis, we 

hypothesize a potential additional function of Prx as a protein, which is able to reduce other 

interacting proteins based on the same catalytic mechanism with a bound sulfenic acid in 

proteins as a substrate. In addition, we identified potential interacting proteins in the sensor 

transducer cascade of plasmodial 2-Cys Prxs. In the applied pull-down assay, based on the 

principle of mixed disulfide fishing [84, 217], 2-Cys Prxs and their mutants lacking their 

resolving or peroxidatic cysteines were used to identify those potential interacting partners. 

Based on our hypothesis, proteins caught with CP mutants are recipients of an oxidizing signal 

formed via oxidation of the remaining resolving cysteine of the 2-Cys Prx. Since the reactivity 

of Prxs to H2O2 is five to seven orders of magnitude higher than the one of other target proteins 

(TP) without a peroxidatic cysteine [247], and since Prxs are much more abundant than TPs, 

the targeted protein itself cannot outcompete with Prxs for H2O2. In an oxidizing environment, 

the CP is prone to hyperoxidation and is thereby blocked for the resolving capacity of the CR. 

The now “free” CR can be further oxidized and could act henceforth as a signal transducer of 

the upstream oxidizing signal to proteins that are less prone to oxidation (Figure 48 C). It is 

therefore assumed that oxidized Prxs are able to selectively transfer the oxidation signal to 

downstream regulatory proteins through specific protein-protein interactions (PPI) and thiol-

disulfide exchange reactions [58, 248] (Figures 48 A & B). This assumption is supported by the 

investigations of Turner-Ivey et al. [249] and Sobotta et al. [218]. The peroxidatic cysteine of 

Prdx1 was found to orchestrate the redox signaling to MAPK phosphatases (MKP-1 and/or 

MKP-5) in the senescence signaling of a tumor suppressive mechanism in breast epithelial cells 

[249]. Sobotta et al. evidenced a redox relay connecting human Prx2 with the transcription 

factor STAT3, where hPrx2 was found to be oxidized at the CP (C51) at low levels of H2O2 and 

subsequently oxidized STAT3 via a mechanism involving disulfide rearrangement [218]. All these 

findings substantiate the role of 2-Cys PfPrxs as signal transducers and the identification of 

interacting proteins from parasite’s cell lysate. 

To verify the protein-protein interaction partners identified in this thesis as biologically 

relevant, further experiments should be conducted, including cloning, expression, and 

purification of identified, interacting proteins; verifying the PPI (e.g. with surface plasmon 

resonance spectroscopy, isothermal titration calorimetry, microscale thermophoresis, or in vivo 

yeast or bacterial two-hybrid screenings); enzyme kinetic studies; co-crystallization; and x-ray 

crystallographic analyses. Nevertheless, when working with tagged recombinant target 

proteins, the fact that captured proteins interacting in vivo might not interact in vitro due to 

steric variations in the target protein or the absence of PTMs owing to the expression system 

should be taken into account. 

 

5.1.2 pKa determination of the active site cysteine of PfPrxs 

The peroxidatic cysteine in peroxiredoxins acts as a nucleophile in attacking hydrogen 

peroxide. Since a thiol group has a pKa value of about 8.3 – 8.5 [250, 251], it is generally 

accepted that the peroxidatic cysteine present in a Prx has to exhibit a lower pKa in order to act 

as a stronger nucleophile in its thiolate form. In this thesis the pKa of the peroxidatic cysteine 

of the plasmodial Prx1a and PrxQ1-164 could be determined to be 6.16 ± 0.1 and 6.57 ± 0.2, 

respectively, which demonstrates ‘activation’ to a nucleophile for a higher reactivity towards 

the peroxide substrate due to interactions with the microenvironment. The pKa values of the 
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Prxs determined reflect a higher reactivity for peroxide reduction than a free cysteine but are 

more likely moderate compared to pKa values detected for peroxidatic cysteines from other 

proteins and species. For human peroxiredoxin 2 the pKa of the CP was suggested to range 

between 5-6 [252]. Using the HRP competition assay based on the same protocol as the assay 

used in this thesis, Ogusucu et al. determined the pKa of the peroxidatic cysteine of thioredoxin 

peroxidase I (TsaI) and II (TsaII) of Saccharomyces cerevisiae, to be 5.4 and 6.3, respectively. 

Although signal reading was performed with a stopped-flow spectrophotometer, results were 

very similar to others performed with slower devices. Interestingly the authors could 

demonstrate a difference of 1 unit pKa value between these peroxidases, which share 86% 

identity in amino acid sequence [186]. The pKa of the bacterial AhpC of Salmonella 

typhimurium was also determined with the HRP competition assay and was stated to be 5.84 

[253], and the pKa of AhpE of Mycobacterium tuberculosis found to be 5.2 [254]. In this thesis 

a second order rate constant of 1.6 × 108 M-1 sec-1 for PfPrx1a, 2.8 × 107 M-1 sec-1 for PfPrx5, 

and 2.2 × 106 M-1 sec-1 for PfPrxQ1-164 could be determined using H2O2 as substrate in the HRP 

competition assay. The catalytic efficiency of these proteins is very similar to those described 

in literature (4 × 107 M-1 sec-1 for AhpC of Salmonella typhimurium [255], 1 × 107 M-1 sec-1 for 

TsaI and II of Saccharomyces cerevisiae [186], 3.4 × 104 M-1 sec-1 for PrxQ of Xylella fastidiosa 

[256], and 7 ± 3 × 107 M−1 sec−1 for human Prx5 [257]). 

 

5.1.3 Protein-protein interaction analysis of PfPrxs using SPR spectroscopy 

Surface plasmon resonance spectroscopy represents a label-free approach to characterize 

biomolecular interactions in real time and is generally used in drug discovery research, quality 

control, and process development. In SPR-based research, most publications address 

biomedical applications with interactions of antibody-based therapeutics [258, 259], high 

throughput screenings [260, 261], proteomics [262-264], and cell-based detections [265-267]. 

In this thesis, SPR spectroscopy was shown to be able to provide deeper insights into the 

catalytic mechanism of electron transfer reactions on a molecular level. Using the Prx-Trx 

interaction as example, the method was able to reveal the regioselectivity of PfTrx recognizing 

disulfide bonds of oxidized Prxs. This newly designed protocol for PPI analysis between Prxs 

and their interacting redoxins might contribute to the continuously growing area of SPR 

applications. 

In SPR-based research, the term “binding” is generally used as soon as an attachment occurs to 

the surface when a sample passes the ligand. When interpreting a binding event with a wild 

type couple of Prx and a redoxin, it is not possible to evaluate, out of the arising sensogram, 

whether this interaction is based on strong chemical bonds, e.g. covalent bonds and coordinated 

bonds, or weak interactions such as hydrogen bonds and van der Waals forces. Since an 

intermolecular disulfide bond is formed in the recycling step of the catalytic cycle of the Prxs, 

mutations in the resolving cysteine of the redoxins can visualize this transient state under 

physiological conditions. A covalent bond between Trx and Prx is characterized by an increased 

response during the association phase. Here the Trx remains on the Prx during the dissociation 

phase and can only be released by a reducing agent (TCEP) in a setup, which resolves the 

disulfide bond between Prx and Trx.  

Depending on the combination of mutants, it is possible to identify the interacting cysteines in 

the recycling process of Prx. During the interaction of PfPrx wild type and PfTrx wild type, the 

former reduced analyte (PfTrx) reduces the oxidized ligand (PfPrx). Since the reduced Trx is 

faced with the oxidized Prx on the surface, a reduction of Prx is directly induced, releasing a 

reduced Prx. The reduced Prx is no longer the substrate of the reduced Trx. Because this 
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reaction is very fast, recognizing a binding between wild type Prx and wild type Trx in the 

resulting sensograms is nearly impossible. In the first 0.5 sec of association a very low binding 

was observed, visualizing the interaction of reduced Trx with oxidized Prx. After this time 

point, the amount of oxidized Prx diminishes rapidly due to reduction by Trx. As a result, 

reduced Trx no longer recognizes its substrate because of the modification in the redox state of 

the ligand, leading to a decreasing response up to the baseline level during the 30 seconds of 

association phase. The same is true for Prx wt interactions with TrxCCS mutants since the active 

site cysteine in the Trx is not altered. Trx mutants such as TrxSSS, which lack all their cysteines, 

still bind to Prx due to weak interactions between the oxidized ligand and the analyte. Even 

when it is not possible to build a covalent bond (a mixed disulfide) between Prx and Trx, the 

Trx still recognizes its substrate (the oxidized Prx) but is not able to attack the oxidized cysteine 

of Prx. This recognition process was monitored via an increasing response in the sensogram 

and a decrease in the dissociation phase up to the baseline level. In our experiments, it was 

shown that Trx only recognizes disulfide bridges in the Prx substrate. Reduced Prx was not 

recognized. To identify a specific resolution of the disulfide bridge inside the Prx, which can 

exclusively been formed within the Prx wild type, an artificial disulfide bond with DTNB as an 

oxidation signal was introduced into the wild type and single active site mutations of the Prxs 

[84], building an S-TNB- mixed disulfide. Since the target signal for the reduced Trx is a 

disulfide bond and not a sulfenic acid, this approach can be used to design an artificial disulfide 

bond in the absence of a peroxidatic cysteine. DTNB-oxidized PfPrx1aC74A/C170S was recognized 

by reduced PfTrx1CSC, leading to an increase in response units during the association phase. 

The Trx mutant remained on the ligand during the dissociation phase, proving a covalent 

binding between the attacking cysteine of the Trx and the peroxidatic cysteine of the 

peroxiredoxin, which can only be resolved by TCEP.  

Reduced PfPrx1aC74A/C170S was recognized by reduced PfTrx1CSC as well. During the 

dissociation phase, the response decreased down to baseline level, demonstrating a non-

covalent reversible interaction. PfPrx1aC74A/C170S, which was oxidized with H2O2 instead of 

DTNB, was recognized by PfTrx1CSC, but no covalent binding could be observed. These results 

indicate selective attacking of disulfide bridges at the active site cysteines of Prx by the Trx. 

Palde and Carroll could also show the preference of S-S bonds over sulfenic acids in target 

recognition of EcTrx, which is stated to be an entropy-driven mechanism. The authors proposed 

the lower entropy of oxidized targets that show conformational changes to be the preferred 

target conformation. A transition from the low-entropy conformer to the reduced high-entropy 

native form was shown to lead to decreased target recognition by Trx [268], confirming our 

observations with PfPrx wild type and PfTrx wild type. Although a TNB-mixed disulfide only 

partially mimics the oxidized wild type protein [269], the DTNB-oxidized Prx is a much better 

mimic for the native catalysis of Prxs of Plasmodium. Since all 2-Cys PfPrxs are typical Prxs, 

building an intermolecular disulfide bond with a second 2-Cys PfPrx monomer, and 1-Cys 

PfPrxs are transitorily glutathionylated in the resolving mechanism with GSH and GST, 

representing a temporary mixed disulfide bond in the resolution process of oxidized 1-Cys 

PfPrxs, the “bulkiness” of bonded TNB presents a preferred simulation of the native conditions 

of a recognition target for Trx [269]. 

PfPrx5 and PfPrxQ were both reported to be PfGrx-dependent peroxidases, but they also accept 

PfTrx as an electron donor [77, 108, 270]. Surprisingly, in the conducted SPR-based approach, 

no covalent interaction between PfGrx and PfPrx5 or PfGrx and PfPrxQ could be demonstrated, 

which was unexpected. These findings are, however supported by the study of Sturm et al. who 

did not find covalent interaction of PfGrx and the mentioned Prxs in a PfGrx pull-down assay 

either [84]. These results need to be studied in further detail. 
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During the catalysis of peroxide reduction, Prxs undergo local conformational changes at their 

active sites. The reduced Prx is in a fully folded (FF), substrate-ready conformation [42], and 

oxidation rotates its CP outwards in a locally unfolded (LU), partially unwound conformation 

where the CP and CR are connected via a disulfide bond [271, 272]. Due to this, investigations 

revealed a successive transition of these conformations from the FF to the FFlike state, which 

describes a decoiling of the α2 helix in the still reduced enzyme. The transient FFlike 

conformation converts to a LUlike and finally to the LU conformation stabilized at the disulfide-

bonded active site [273] (Figure 49). Since FFlike and LUlike conformations were observed in a 

reduced Prx, both conformations seem to be present in some reduced Prx isoforms. 

Additionally, conformational changes due to oxidizing processes inside Prxs were reported in 

already crystallized Prxs (XcPrxQ from Xanthomonas campestris), presenting key shifts in 

active site residues but minimal changes between the thiolate and sulfonate forms of the CP. In 

this study, the authors mentioned a potentially different behavior of other Prx isoforms due to 

their separation by billions of years of evolution, which could vary in how they locally unfold, 

for example [274]. Furthermore, the conformational alterations of a TNB-oxidized CP should 

be explored in more detail in order to unravel whether a conjugation with TNB also promotes 

local unfolding or not. 

             

        

Figure 49: Comparison of FF and LU states from EcAhpC1-186-YFSKHN crystal structures.  A) Superposition of two 

different active sites, the FFlike-(brown) and LUlike state (salmon) observed in the reduced state (PDB code 5B8B). B) The 

oxidized (green) and reduced (salmon) active sites observed in EcAhpC1-186-YFSKHN structures (PDB code 5B8A) are 

compared to the reduced StAhpC (light blue) FF active site (PDB code 4MA9). The intermediate FFlike (brown) and LUlike 

(salmon) conformations represent the transition state from the FF to the LU state. Taken from [273].   

 

5.1.3.1 Protein interaction analysis with 2-Cys PfPrxs 

For SPR analysis, PfPrx and PfTrx wild types and active site cysteine mutants were generated. 

In our approach, respective peroxiredoxins were immobilized via amine coupling on CM5 chips 

and used as ligands. Redoxins like Trx and Grx were used as analytes. Reduced ligands were 

incubated with DTNB in a conditioning cycle introducing an artificial mixed disulfide with 

TNB at the active site cysteines of the respective Prxs. After oxidation with DTNB, the ligands 

were incubated with reduced analytes. Reduced Trx were shown to resolve the mixed disulfide 

of Prx-TNB complex. By combinations of Cys mutation of Prx and Trx, it was shown that this 

disulfide bond recognition and resolving is regioselective.  
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PfTrx1 possesses three Cys, were C30 is described as an attacking Cys and C33 as a resolving 

Cys [275]. The impact of the third Trx Cys (C43) has not been described so far. In our 

experiment, attacking Cys mutants of Trx were not able to bind the oxidized Prxs, whereas 

resolving Cys mutants of Trx were able to attack the mixed disulfide bond via a disulfide-dithiol 

exchange reaction. The emerging Prx-Trx mixed disulfide complex could not been resolved 

due to the absence of the resolving Cys in TrxCSC. The usually transient mixed disulfide 

complex was “trapped” and therefore non-transient, which was visualized by a stable plateau 

in response units in the SPR system. As it was expected based on the common catalytic 

mechanism of Prx recycling, SPR analysis could demonstrate that PfTrx reduces a mixed 

disulfide between PfPrx1a and TNB with its C30 attacking Cys.   

We also showed that Trx favors particular disulfide bonds of Prx-TNB complexes introduced 

at Prx active site cysteine residues. Via the underlying SPR approach, we could show that the 

C30 of Trx can reduce the mixed disulfide of PfPrx1a and TNB when the oxidation signal is 

introduced at position C50 and/or C74 in PfPrx1a. This conclusion was confirmed with 

electrophoretic mobility shift assays, with PfPrx1a wt, PfPrx1aC170S, and PfPrx1aC50S/C74A 

interacting with PfTrxCSC (Figure 30 & 31). C74 of PfPrx1a is however, not suggested to be 

involved in the catalytic cycle since it is too far away from the active site. C74 might however 

be involved in oxidation signaling, and a mixed-disulfide at that position could potentially be 

reduced by Trx (Figure 50 A) which was clearly shown by our SPR-based approach using 

PfPrx1aC50S/C170A. Here, the active site cysteines were mutated to serin and the remaining C74 

was still able to interact via a disulfide bond with the attacking Cys of PfTrx 1. In PfPrx1m, we 

could show that the favored cysteine for the attacking cysteine of PfTrx is the resolving cysteine 

C187 (Figure 50 B). Similar results have been obtained with the structurally related yeast Ahp1 

[276]. These two 2-Cys Prxs already demonstrate the fact that Trx target recognition is a highly 

individual process and can not be generalized. 

                

Figure 50: Cysteine preference in the recycling process of 2-Cys PfPrxs with Trx.  A) Interacting cysteines in PfPrx1a and 

PfTrx. B) Interacting cysteines in PfPrx1m and PfTrx.                                                                                                                                                                              

 

5.1.3.2 Protein interaction analysis with 1-Cys PfPrxs 

Resolving the artificially introduced disulfide bridge at the peroxidatic cysteine of PfPrx5 

(Cys117) was shown to be achieved by C30 of PfTrx, as expected as well. Surprisingly, in 

addition to that, PfTrx was able to target the more C-terminally located C143 (Figure 51 A). 

This finding substantiates the suggestion of other authors that C143 of PfPrx5 might be involved 

A B 
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in redox-dependent signal transduction due to glutathionylation signals or might act as a slow-

acting resolving cysteine for (accidentally) formed disulfide bonds between PfPrx5 and other 

proteins [103]. The mixed Prx-TNB disulfide bond could therefore mimic a disulfide bond to 

glutathione or an intermolecular disulfide bond to a protein. 

For PfPrx6 it was not possible to ultimately identify the cysteines targeted by PfTrx. Since a 

covalent binding between the attacking cysteine of PfTrx and the wild type but also with the CP 

mutant of PfPrx6 was proven, an alternative cysteine seems to be the favored cysteine for 

attacking via Trx. As shown in arsenate reductase from Staphylococcus aureus, an intricate 

cascading disulfide switch mechanism inside the protein, to form an accessible disulfide for 

thioredoxin, could be a possible explanation [277]. Since PfPrx6 contains seven additional 

cysteines next to the CP, the identification of the targeted cysteine(s) with Cys→Ser single 

and/or multiple mutations was not terminated within this thesis.  

PfPrxQ1-164 possesses only two Cys (C56 and C103). Via SPR it was clearly shown that the 

recycling process of the disulfide group within PfPrxQ1-164 starts at position C56 and the 

attacking Cys of PfTrx is also C30 (Figure 51 B). When C103, the second cysteine in PfPrxQ1-

164 is oxidized with DTNB, the resolving Cys mutant of PfTrx is able to build up the Prx-Trx 

mixed disulfide complex.  

 

                                              

Figure 51: Cysteine preference in the recycling process of 1-Cys PfPrxs with Trx.  A) Interacting cysteines in PfPrx5 and 

PfTrx. B) Interacting cysteines in PfPrxQ and PfTrx. 

  

The conducted experiments demonstrate a regioselectivity of specific cysteines in disulfide 

bond recognition and resolving of plasmodial peroxiredoxins by thioredoxin 1. It was shown 

that Trx preferentially binds to selected cysteines of the Prxs. Additionally, the previous concept 

that describes the C30 of PfTrx1 as the attacking Cys [82] could be confirmed. The targeted 

cysteines differ between PfPrxs inside the malaria parasite, strengthening the specificity of this 

recognition process, which may be further complicated by diverse thioredoxin-mixed disulfide 

complex formations. 

Alternative methods for PPI analysis 

Already existing methods to evaluate interacting cysteines show many disadvantages in 

comparison with this SPR-based approach. Enzyme assays with site-directed mutations are not 

always feasible due to catalytically inactive mutants. For example the peroxidase assay, used 

for determining peroxiredoxin activity, which includes TrxR, Trx, and NADPH as a backup 

reaction to maintain the reduced state of Prx, cannot be conducted with active site mutants of 

A B 
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thioredoxin. In that assay, a persisting covalent binding between Prx and Trx would lead to the 

same readout as a Prx or Trx with no activity at all. A complex formation between Prx and Trx 

with preincubation and complex confirmation via gel filtration requires large quantities of 

proteins and can provide only semiquantitative data. To identify interacting partners via 

disulfide bonds, a pull-down assay also requires large protein quantities and is semiquantitative, 

and non-covalent binding events are very difficult to detect. Co-crystallization represents a very 

time consuming and static possibility to detect those interactions and is not able to deliver any 

affinity constants. The process of cross-linking would alter the molecules involved and would 

give no information about affinities as well, and the detection of interacting partners with 

fluorescence resonance energy transfer (FRET) involves fluorophores as labels. In summary, 

in our new SPR-based method for the identification of interacting cysteines of Prx and Trx, 

several samples can be studied in parallel with a direct readout of data, and covalent, non-

covalent, and no binding/interaction can be clearly distinguished and described quantitatively. 

This enables an elucidation of mechanism in molecular detail, can be studied in real time and 

label free, is very fast, and requires low quantities of protein. 

To investigate the suitability of other approaches for answering our leading question, MST and 

ITC were performed with selected, representative interacting proteins. As shown in Figure 33, 

a discrimination between a covalent binding and a non-covalent interaction was not feasible 

with MST. The SPR data set and the mobility band shift assays demonstrated an incomplete 

binding of the interacting partners, under the experimental conditions chosen. Therefore, the 

assay solution is not composed of 100% covalently bound proteins. In principle, a distinction 

between covalent and non-covalent PPI with MST is possible. When all proteins in the sample 

are covalently bound, the emerging dose-response curve would be steeper and would also 

develop a ‘knee’, and a covalent binding could be estimated (personal communication with Dr. 

Sven-Andreas Freibert, Philipps University Marburg after consultation with NanoTemper 

Technologies GmbH). Since, however, our coupling samples were only partially covalently 

bound, purification (with fast protein liquid chromatography) would be necessary to extract the 

bound complexes. In that case, the leading question of whether covalent binding exists or not 

would already be answered and MST would be redundant. Additionally, MST proteins, which 

are only stable in Tris buffer, cannot be used since labeling the protein would also label the 

small amine Tris. An intervention in the reaction, or in our case, an addition of a reducing agent 

to the running system is not possible. Additionally, MST does not provide information 

regarding Kon and Koff, especially because the reaction between the interacting partners has 

already taken place when the measurement starts. 

In ITC experiments, one protein can be titrated against another protein (association experiment), 

or a protein mixture can be titrated into a buffer (dissociation experiment) to evaluate the 

resulting binding or dissociation isotherms. To fathom whether our experimental approach can 

be realized with ITC as well, initial association experiments were conducted, leading to 

irreproducible isotherms with weak data readouts since the sensitivity of the ITC seems to be 

insufficient for our approach or the coupling reaction is to slow. The transition to dissociation 

experiments and the extension of coupling time then led to significant differences in 

dissociation behaviors of the chosen interacting partners, as well as high reproducibility and a 

strong data readout. In the experiments, a discrimination of a reduction-induced dissociation of 

a disulfide-bridged interaction couple and a dissociation of interacting proteins, where no S-S 

bond is involved, is clearly deducible. Here, the reduction of a disulfide-coupled Prx-Trx couple 

(PfPrx1a wt + PfTrxCSC) requires significantly more energy under reductive dissociation than 

the reduction of a Prx-TNB couple or the non-covalently interacting couple PfPrx1a wt + 

PfTrxSSS (Figure 33). 
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However, an intervention to the running system at a later time point with a reducing buffer, for 

example, is not possible either, once the reaction has started. Additionally, ITC requires large 

amounts of protein to generate sufficient heat changes in order to obtain valid and reproducible 

isotherms, and measurements of more than one analyte in parallel are not possible and are 

therefore more time consuming than our SPR-based method. Furthermore, in MST and ITC a 

discrimination of covalent and non-covalent interactions is only achievable via direct 

comparison of the data generated for wild type and mutants, since a concrete parameter (e.g. 

the stabile and visible plateau of RU in the SPR-based approach) is missing. 

In conclusion, our SPR-based method for identifying interacting cysteines of Prx and Trx 

provides particular advantages to the existing methods due to a real-time, label-free method, 

which is very fast and requires low quantities of protein. Proteins that cannot be produced in 

high amounts or are not stable at higher concentrations can be used as well. Furthermore, in 

SPR, proteins can be reutilized after regeneration with buffer or, when necessary, with a 

reducing agent. In doing so, the immobilized proteins can be used for multiple binding analysis. 

Several samples can be studied in parallel with a direct readout of data, and covalent, non-

covalent, and missing bindings/interactions can be clearly distinguished and described 

quantitatively, which enables an elucidation of mechanistic details. Due to this, this SPR-based 

method may also serve as a good prediction tool for co-crystallization partnerships of 

interacting and coupled proteins. The SPR-based method for detecting binding events of PPI in 

redox-regulated proteins on a molecular level therefore presents an alternative method (with 

particular advantages) to ITC, the current gold standard for label-free quantitative 

measurements of biomolecular interactions. 

 

5.2 Human thioredoxin glutathione reductase 

5.2.1 Heterologous overexpression and purification of hTGR 

The rare amino acid selenocysteine is ubiquitous in all three domains of life - eukarya, bacteria, 

and archaea [278, 279] - and is incorporated via the genetic machinery by a unique codon 

(UGA). This codon has a dual function as a STOP signal for protein synthesis and as a signal 

for selenocysteine incorporation [280], using a stem-loop structure in the mRNA (SECIS 

element) [281, 282]. Utilizing the SECIS element as a marker, 25 selenoproteins could be 

identified within the human genome [283]. Since the Sec-inserting machineries of prokaryotes 

and eukaryotes differ in position, sequence, and structure of the SECIS element [284], 

recombinant expression of mammalian selenocysteine-containing proteins in bacteria are 

extremely difficult [285]. Nevertheless, in this thesis, we were able to recombinantly produce 

full length selenocysteine-containing hTGR by fusing its open reading frame with a SECIS 

element of the bacterial selenoprotein formate dehydrogenase H and co-expressing it with the 

selA, selB, and selC genes as reported previously for rat and human thioredoxin reductases [286, 

287]. After different vectors, competent cells, and culture media were tested, the publication of 

Bar-Noy, suggesting a supplementation of sulfur in the form of L-methionine and L-cystine to 

decrease non-specific selenium incorporation into the protein and the supplementation of a 

vitamin mixture consisting of riboflavin, niacin, and pyridoxine at the time of induction [163], 

contributed to the successful expression of a soluble and active protein. The percentage of 

selenocysteine incorporation into the overexpressed protein has so far not been quantifiable, 

neither via MALDI-TOF MS (due to poor flight qualities of the Sec-containing peptides) nor 

via ICP-MS (due to a lower deviation of the detection limit). We therefore have to assume that 

the protein was likely a mixture of full-length and truncated Sec-containing and Sec-free 

molecules. Since hTGR needs FAD as a prosthetic group in order to evolve catalytic activity, 
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an increase in the FAD incorporation rate was attempted by adding FAD to the hTGR at 

different time points (in culture media before and after induction, in the purification process, 

and to the already purified protein) in the master’s thesis of Eva König [203], however, without 

increasing the specific activity. Nevertheless, an incorporation of FAD, albeit without 

saturation, was verified with the typical absorption titration spectrum with NADPH which 

demonstrated a functional active thiolate-flavin charge transfer complex inside hTGR (Chapter 

4.3.2). 

 

5.2.2 Kinetic characterization of hTGR and hTGRU642C 

The selenocysteine protein hTGR concatenates the most powerful redox-regulating systems 

inside the cell: the thioredoxin and the glutathione systems. As mentioned before, the hTGR 

has an unusually wide substrate range by reducing thioredoxin and oxidized glutathione and 

also facilitating the deglutathionylation of the artificial substrate HEDS. The hTrxR domain of 

hTGR catalyzes the NADPH-dependent reduction of oxidized Trx (Trx(S)2) in several distinct 

reaction steps, including the transfer of electrons from NADPH to FAD and from FAD to the 

N-terminal active site cysteines. The flexible C-terminal end of another subunit acts 

subsequently as an electron shuttle between the N-terminal active site in the TrxR domain and 

the Trx [78, 128, 288]. Native human TrxR from placenta was shown to have a KM value of 88 

µM and a kcat of 33 sec-1 in the DTNB assay, but showed no GR activity, which was surprising 

since substrate recognition sites of hGR for GSSG are conserved in hTrxR and the same 

cofactors are responsible for electron transport. This non-existent GR activity was hypothesized 

to be a C-terminal extension of 16 amino acids [289], but other authors could disprove this 

concept with hTrxR mutants that lack this C-terminal tail and only showed weak GR activity 

(25 mU/mg) [290] compared to the wild type hGR (200 U/mg) [291-293]. The hTGR involves 

a TrxR module with an N-terminal elongation composed of a monothiol glutaredoxin domain 

[146, 294]. Based on the assembly of hTGR, naming the enzyme thioredoxin glutathione 

reductase does not seem to be reasonable but was indeed the right choice since hTGR shows 

distinct GR activity. In Schistosoma mansoni and other platyhelminths, TrxR and GR are absent 

as independent entities and only appear as a combined enzyme in the TGR form [120, 141], 

which is also applicable to Taenia solium [143], illustrating the parasite’s redox system as a 

bottleneck dependent on TGR [295]. TGR from the helminth Schistosoma japonicum (SjTGR) 

shares about 55% similarity to the human TGR and was kinetically described by Song et al. 

[296] and Han et al. [297]. Song et al. expressed the SjTGR in the presence of 75Se, pSUABC, 

and selenate and reported selenocysteine incorporation but no incorporation rate. Han et al. did 

not include any beneficial additives or a helper plasmid for Sec incorporation and could measure 

a TrxR activity using the DTNB assay, which was 5.13 U/mg compared to Sun et al. They 

reported a TrxR activity in the DTNB assay of 8.1 U/mg, which leads to the suggestion of a 

low Sec incorporation rate in the TGR of Han et al.. TGR from Schistosoma mansoni (SmTGR) 

is 91% identical to SjTGR and was likewise expressed as SjTGR. Kinetic analysis of SmTGR 

could show similar results in kinetic parameters [295]. At this point, I would like to mention 

that Kuntz et al. did a kinetic comparison of SmTGR and human TGR, but the cited paper for 

hTGR was conducted on mouse TGR. TGR of the parasite Taenia solium cysticerci, which is 

involved in neurocysticercosis, occurs in two isoforms: cytosolic (cTsTGR) and mitochondrial 

TGR (mTsTGR). Isolated native cTsTGR and mTsTGR show kinetic properties in the DTNB 

assay that are similar to Schistosoma TGRs. The specific activity in the TrxR assay of both 

enzymes is lower than that in Sm and SjTGR and especially in cTsTGR, which had a specific 

activity in this assay that was four orders of magnitude lower. GR activity was also in the same 

range but with a lower KM, and the HEDS assay revealed a significant difference in Grx activity 
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between the Ts isoforms [143]. Kinetic characterizations on mammalian TGR have so far been 

exclusively conducted on mouse TGR. Sun et al. [118], expressing mouse TGR at conditions 

very similar to this study, were able to reach a Sec incorporation rate of 10% by working with 

an enzyme mixture that consisted of wild type proteins and truncated proteins without Sec 

incorporation. Enzymatic studies of this mouse TGR revealed how important Sec is for TrxR 

and GR activity, whereas Cys only partially compensates for the replaced Sec. The authors also 

claimed that Grx activity depended on Sec, but the underlying HEDS assay was performed 

without GSH. As a consequence, the detected activity could be caused by TrxR or GR activity 

reducing the disulfide HEDS with NADPH as an electron donor, which would also lead to a 

weak readout, but in fact it is not the traditional HEDS assay for Grx activity measurements. A 

similar result with native hTrxR (from placenta) [204], hTrxRU498C [290], hTGR151-643, and 

hTGR wild type could be shown in this thesis (Table 18). This result also explains the influence 

of Sec in this cut back assay since both TrxR and GR activities depend on Sec. The significant 

difference in HEDS activity between native hTrxR and recombinant hTrxRU498S strengthens the 

Sec dependency of this TrxR-based phenomenon. In a HEDS assay containing GSH, performed 

by the same authors, Grx activity did not depend on Sec, which was demonstrated on Sec→Cys, 

Sec→Ser, and Sec→Stop mutants. Additionally, the authors characterized the isolated Grx 

domain of mice TGR in the HEDS assay, detecting even higher specific activity there than in 

the entire TGR, which substantiates Sec independence of the Grx activity inside the TGR. 

Furthermore, adding human Grx2 (dithiol) and the Grx domain of rat liver TGR (monothiol) to 

the GR assay of rat TrxR and TGR led to an increase in GR activity [118]. This finding is also 

contestable since mammalian TrxRs are able to reduce oxidized dithiol Grx [298] and 

covalently dimerized monothiol Grxs [147, 299, 300] by using electrons from NADPH, which 

would also lead to an increase in GR assay read-outs but is in fact an activity based on TrxR 

and dependent on the concentration of Grx as demonstrated in the experiment. It was not 

reported whether the added Grxs were reduced prior to this experiment or if the Grx reduction 

due to TrxR was subtracted as a background reaction. In this thesis, the kinetic properties of 

human TGR were characterized for the first time. In the DTNB assay, the human homolog 

showed less specific activity in DTNB and NADPH turnover but a higher affinity to DTNB 

than other TGRs. The specific activity of hTGR in the TrxR assay was slightly lower than that 

of SjTGR, SmTGR, and mTsTGR but was higher than that of cTsTGR and mouse TGR. The 

specific activity in the GR assay was also slightly lower but higher than that in mouse TGR. 

Additionally, the HEDS assay showed similar results for hTGR compared to the parasitic TGRs 

but was significantly higher than that in mouse TGR. Although Sec incorporation was not 

detectable, a significant difference in activity could be shown in the TrxR and GR activities of 

hTGR of the full-length and truncated SecCys mutant enzyme. The results suggest Sec 

dependency in the TrxR and GR activity but Sec independence in the HEDS activity (Table 

19). It should be mentioned that the kinetic parameters determined can vary depending on the 

Sec incorporation and FAD saturation rates of the selenoproteins. 
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Table 19: Comparison of kinetic activities of TGRs from different species.  Kinetic parameters of S. japonicum, S. mansoni, M. musculus, and both cytosolic and mitochondrial Taenia solium 

cysticerci are compared to human TGR. Enzymatic assays were performed as mentioned in Materials and Methods. All assays are based on the same or very similar protocols for TrxR, GR, and HEDS 

assays, varying slightly due to individual adaptations for the respective enzymes. N. d. = not detectable 

Specific activity [µmol * min-1 * mg-1] 

 

TrxR activity (Trx)   3.3   2.2 0.040 0.008     0.0002        1.02    0.10     0.02 

TrxR activity (DTNB)   8.1 10.2 0.174 0.123 2.14    10.1    0.14     0.02 

HEDS activity 12.1   9.9 0.413 0.348 3.05 131          11.5  11.6 

GR activity   2.2   7.2 0.023 0.004 0.98      1.3    0.07     n. d. 

         

 KM 

(µM) 

kcat  

(s-1) 

KM 

(µM) 

kcat 

(s-1) 

KM 

(µM) 

kcat 

(s-1) 

KM 

(µM) 

kcat  

(s-1) 

KM 

(µM) 

kcat  

(s-1) 

KM 

(µM) 

kcat 

(s-1) 

KM 

(µM) 

kcat 

(s-1) 

KM 

(µM) 

kcat 

(s-1) 

TrxR assay  

 Trx 3 4.78 6.4 30 - - - - 67 0.35 - -   7.5 0.2 20.5 0.02 

 NADPH  - - - - - - - - - - - - 16.6 0.2   5.1 0.02 

                  

DTNB assay                 

 DTNB 145   8.2 114  16 - - - - 88 1.85 45 12.6 6.0 0.2 17.1 0.03 

 NADPH  21 10.9 13.7 20.1 - - - - 48 1.64 1.6 12.6 5.1 0.1   0.4 0.02 

                  

HEDS assay                 

 GSH 1698 15.8   248 20.1 - - - - - - - - 447   4.8 544   6.5 

 HEDS 2792   8.7 1867 17.8 - - - - 184 5.13 410 163 535 21.1 547 20.7 

  

GR assay  

 GSSG 49 5.35 71 21.7 - - - - 6.3 0.96 4 1.6 20.8 0.11 n. d. n. d. 

NADPH 83 4.87 - - - - - - - - - - 20.8 0.14 n. d. n. d. 

 Schistosoma 

japonicum 

[296] 

Schistosoma 

mansoni [295] 

Mouse [118]  Mouse  

Sec  Cys 

mutant [118] 

Taenia solium 

cysticerci 

(cytosolic) 

[143] 

Taenia solium 

cysticerci 

(mitochondrial) 

[143] 

Human Human  

Sec  Cys  

mutant 
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5.2.3 Proposed catalytic reaction mechanism of hTGR 

The catalytic mechanism of the TGR is not yet fully understood and is subject to ongoing 

mechanistic theories. Dimeric hTGR is composed of two identical subunits with two domains 

each (TrxR and Grx domains) (Figure 52), probably arranged in a head-to-tail manner as in 

other TGRs [122]. According to the catalytic mechanism of TrxR, reducing equivalents 

obtained from NADPH are transported to the prosthetic group FAD and to the adjacent 

dithiol/disulfide redox center (C203/C208) and further to the cysteine/selenocysteine pair of the 

second subunit (C641´/U642´) to reduce oxidized Trx, DTNB, and GSSG [130, 204, 301-303]. 

In contrast to parasitic TGRs, where the additional cysteine pair of the dithiol Grx domain is 

likewise dependent on the flexible C-terminal arm by obtaining reducing equivalents from the 

cysteine/selenocysteine pair, the human TGR contains a monothiol Grx domain. Huang et al. 

proposed two potential mechanisms of deglutathionylation reactions inside the Grx domain 

catalyzed by a dithiol Grx. After the first Cys residue is glutathionylated, resulting in a mixed 

disulfide, the first mechanism includes resolving the glutathionylated cysteine with high 

concentrations of GSH (monothiol mechanism) and the second suggests the second cysteine to 

act as a resolving cysteine in order to break the GrxS-SG intermediate by building a disulfide 

with the first cysteine and releasing GSH (dithiol mechanism). This disulfide will then be 

reduced by the C-terminal redox pair [304], which explains the Sec-dependency of HEDS 

activity in parasitic TGRs (dithiol Grx). Since human TGR contains a monothiol Grx, the 

second proposed mechanism for deglutathionylation processes is not conceivable for 

mammalian TGRs. The measured Sec independence of HEDS activity and the presence of only 

one redox-active cysteine in the Grx domain support the conjecture of a traditional monothiol 

Grx deglutathionylation mechanism inside hTGR. Additionally, TGR has GR activity that is 

thought to be facilitated due to its Grx domain [122, 141] by the second cysteine stabilizing the 

thiolate anion on the first cysteine inside the Grx domain via a hydrogen bond, which was also 

possible with Ser mutants of the second Cys. Stabilized as an anion, the first Cys is able to start 

the nucleophilic attack on GSSG. The resulting mixed disulfide between the Grx domain and 

GSHI can be resolved by electron pairs from the C-terminal arm [304]. Furthermore, in NMR 

studies of the monothiol Grx domain of Mus musculus TGR, a significant overlap between the 

GSH and GSSG binding sites has been postulated [159]. In conclusion, the N-terminal Cys in 

the Grx domain of the TGR is able to bind both glutathionylated proteins (or glutathionylated 

HEDS) and GSSG [303]. 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

111 

 

 

Figure 52: Model of the hTGR dimer in complex with bound Trx and GSSG.  HTrx1 (purple) and hTGR are shown in 

ribbon representation. The two subunits of the TrxR moiety are colored dark blue and light blue and the Grx moieties are shown 

in green. The flexible C-terminal loop (632- 642) is colored orange or red depending whether it interacts with Trx or Grx, 

respectively. FAD (brown), GSSG (steel blue) and some relevant hTGR residues are shown in sticks. The NADPH dependent 

redox centers are marked with NR (C203, C208), the C-terminal with C641/642 and the Grx active site cysteine is labeled with 

C76. The rotation center of the swinging C-terminal arm is indicated by S631. Modeling was performed using the crystal 

structures of 3qfa (hTrxR+hTrx; TrxR-part:seq_id = 75%) [129], 3h8q (human; Grx-domain:, A51-E151) and 2x8h (smTR; 

TrxR-part seq_id = 55%) [305] as templates [306]. The structural superposition of the models and the known structures has 

been done with Coot [307]; Phenix was used for the refinement of the complete model and all figures have been prepared with 

Chimera [308].  

 

However, in our study, none of the four generated GSH binding site mutants showed drastic 

changes in GR activity when compared to wild type hTGR (C133S: 0.07 U/mg; H78A: 0.03 

U/mg; D134A: 0.05 U/mg; C133S/D134A: 0.14 U/mg; wild type hTGR: 0.07 U/mg; given are 

mean values of two independent experiments, which differed by less than 10%) [303]. 

Therefore, although the GR activity of TGR clearly depends on the Grx domain – be it 

monothiol or dithiol (Table 14 & 15) [122, 141] – the residues involved in GSH binding seem 

to contribute only partially to GSSG binding. The crystal structures of CoGrx with bound GSH 

(4tr0) and with bound GSSG (4tr1) [309] showed that oxidized GSH (GSSG), composed of two 

GSH molecules (GSHI and GSHII), is mainly bound by GSHI to the enzyme. Interestingly, the 

comparison of the highly conserved GSH binding pocket of CoGrx, hTGR, mice TGR, and 

SmTGR showed more similarity between the mammalian TGRs and CoGrx than with bacterial 

TGR [303].  In SmTGR, the GSH -glutamyl moiety interacts with Asp84, which is replaced 

by a glycine in CoGrx (G65), hTGR (G132), and mouse TGR (G104); instead the interacting 

asparagine residues are Asp67, Asp134, and Asp106, respectively. Ser85 in SmTGR is 

substituted by a cysteine and Thr27 by a tyrosine residue in Clostridium oremlandii, humans, 

and mice. Therefore, we modelled the GSH and GSSG binding to the Grx domain of hTGR 

according to the CoGrx crystal structures (Figure 52) [303]. GSHI has a large number of 

interactions with Grx in contrast to GSHII, which is bound very loosely and is only stabilized 

with one hydrogen bond to the main chain of Tyr11 and van der Waals interactions with the 
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side chains of Pro13 and Tyr11 (corresponding to Tyr75 in hTGR). The position of GSHI differs 

only slightly between the two mentioned structures; however, upon GSSG binding, Grx 

markedly changes its conformation - mainly in the region aa 10-14 (NYCPY), corresponding 

to aa 74-78 (SYCPH) in hTGR, to aa 46-50 (SYCPH) in mouse TGR, and to aa 26-30 (TTCPY) 

in SmTGR [303]. Furthermore, the side chain of the first tyrosine residue (Tyr75 in hTGR) 

moves outwards and interacts with the second GSH moiety (GSHII). Based on our 

considerations, this is a central mechanistic turning point in catalysis since the movement of the 

tyrosine opens the access for the reducing C-terminal arm to the oxidizing disulfide. We 

hypothesize that in case of the GR reaction of hTGR this could be either the bound GSSG 

molecule itself or a nascent mixed disulfide between Cys76 and GSHI. As long as only GSH is 

bound, the side chain of Tyr75 (hTGR) blocks this access, and the GSH glycine moiety interacts 

per two strong hydrogen interactions with the side chains of Tyr75 and Lys73 (Figure 53) [303]. 

These interactions are not present when GSSG is bound, which allows the positively charged 

Lys73 to stabilize the negatively charged C-terminal arm, thus enabling the reduction process 

of substrates. In our model, only the last 10 residues of the C-terminal arm have to oscillate 

towards the active site of Grx, and notably the last 4 residues (GCUG) keep the same 

conformation as seen in the hTrxR-Trx complex structure (Figure 52). We therefore propose 

that GSH and GSSG binding in hTGR depend on the intracellular [GSH]/[GSSG] ratio. At low 

GSSG concentrations and high GSH concentrations, the Grx domain is able to act 

independently to deglutathionylate specific interaction partners conjugated with GSH. The high 

GSH concentration would then help resolve the Cys-SG mixed disulfide as mentioned before, 

which could be verified with the hTGR1-150 (Grx domain) in the HEDS assay. At high GSSG 

concentrations (and low GSH concentrations) (GR assay), GSSG binds to the Grx domain and 

is directly or indirectly (via a mixed disulfide with Cys76) reduced by the flexible arm [303]. 

In both cases, the NADPH-reduced, Cys-Sec-containing arm will deliver the electrons required 

for GSH release [303], in accordance to the reaction model proposed by Sun et al. [118, 119]. 

 

 

Figure 53: Structural model of GSH (A) and GSSG (B) binding to the monothiol Grx domain of hTGR, according to the 

Grx crystal structures from the bacterium Clostridium oremlandii with bound GSH (C, 4tr0) or with bound GSSG (D, 4tr1). 

GSH, GSSG, and Grx residues involved in substrate binding are shown as sticks; for clarity hTGR residues are marked in A or 

B. GSSG is composed of two molecules GSH1 (blue) and GSH2 (light purple). Hydrogen bonds to GSH are shown with blue 

springs. In A and B the Grx ribbon is colored green and the C-terminal arm of the TrxR-domain red; in A the access for the 

arm is blocked by Y75, marked by a transparent representation.  
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5.2.4 S-glutathionylation of hTGR 

Protein-S-glutathionylation is an established modification of reactive cysteines in the context 

of PTM, which is site specific and reversible. This modification was reported to inhibit [310-

312] or activate [313, 314] proteins, sometimes both, depending on the cysteines involved 

inside the protein [315]. For the TGR homolog from the platyhelmith Echinococcus granulosus, 

glutathionylation on specific cysteines has already been reported in connection with a hysteretic 

behavior of the enzyme (see Chapters 4.3.3.4 and 4.3.4). The authors could detect 

glutathionylation sites at position C88 and C354 and intramolecular disulfide formations in 

cysteines belonging to the Grx active site and TGR CxxxxC catalytic redox center when the 

protein was glutathionylated [141, 142]. The authors did not conduct an inhibitory or activating 

effect on TGR activity. Cysteine 88 of E. granulosus is located in a motif conserved in human 

TGR and corresponds to the C171 of hTGR. [315]. Five mM of GSSG could glutathionylate 

the enzyme hTGR (Figure 44). The inhibiting influence of glutathionylation on the enzyme’s 

activity in the TrxR, DTNB, HEDS, and GR assays is shown in Table 16. All specific activities 

are significantly inhibited in this manner. The glutathionylated protein showed 30% less activity 

in the TrxR assay, 60% less in the DTNB assay, 11% less in the HEDS assay, and 57% less in 

the GR assay than the non-modified enzyme. Although peptides that contain the active site 

cysteines of hTGR were undetectable via mass spectrometry, it could be proved that hTGR can 

be glutathionylated at different cysteines. The glutathionylated protein showed significant 

inhibitions in its kinetic efficiency towards Trx, DTNB, GSSG, and HEDS. Cysteine 571 and 

171 are both buried in the hTGR structure and were found once to be glutathionylated in 

triplicate. Cysteines that are modified by glutathione in all three repetitions are C93, C133, and 

C619. Glutathionylation at C93 in hTGR could hinder the flexibility of the C-terminal arm, 

which would lead to an inhibition of all Sec-dependent activities (TrxR and GR activity). 

Moreover, the modification at C619 could lead to restricted electron transport from the C-

terminal arm to the redox-active sites. The cysteine at position 133 is located in the immediate 

vicinity of Grx’s active site (also described in Brandstaedter et al.). Therefore, HEDS activity 

might be impaired via glutathionylation at this residue. Since mass spectrometry data did not 

include the active site cysteines of hTGR, no information about the glutathionylation status of 

these cysteines is available so far, and modification at these redox-active centers is possible as 

well. Active site glutathionylation here would lead to direct inhibition of the respective enzyme 

activities, but this remains speculative. Human thioredoxin glutathione reductase catalyzes the 

reduction of GSSG and exhibits deglutathionylation properties, raising the question of whether 

hTGR glutathionylation itself takes place in vivo under physiological conditions. 

 

5.2.5 Hysteretic behavior of hTGR 

In several TGR homologs, a hysteretic behavior was reported when GSSG was used as a 

substrate in high concentrations [141-143, 189, 316, 317] but was not reported to appear in 

Schistosoma or any mammalian TGRs. Some authors explained the hysteretic behavior as 

strong, temporary substrate inhibition of GSSG that an increase in enzyme concentration could 

reverse [143], and others suggested that the lag phase depended on the Grx domain of TGR 

[316]. Since mutants of the C-terminal Cys in the Grx domain were reported to be able to 

abolish GR hysteresis [304, 318], implicating a disulfide intermediate between GSSG and the 

C-terminal Cys residue [189], which unfortunately could not be found in the Grx domain or 

catalytic redox center of TGR [141]. Additionally, in all hysteretic TGRs found so far, the 

inhibitory influence of GSSG has been reported to be reversible and temporary. Nonetheless, 

in this thesis it was shown that hTGR does not exhibit hysteretic behavior at high GSSG 
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concentrations in the GR assay under tested conditions. Although a glutathionylation could be 

verified, which has a significant influence on any kinetic activities of hTGR, and substrate 

inhibition at GSSG concentrations above 200 µM occured, these inhibiting modifications were 

not temporary. In the full time course of the GR assay, no lag phase due to a reduced initial 

reaction velocity at high GSSG concentrations was monitored (Figure 43). The inhibiting effect 

of high GSSG concentrations was illustrated as a persisting influence on the enzyme. Hysteretic 

behavior therefore seems not to be a common feature of all TGRs, even when some cysteine 

residues that are glutathionylated are highly conserved. Parasitic and helminthic TGRs contain 

a dithiol Grx domain instead of the monothiol Grx domain in mammalian TGRs, which could 

suggest that this second cysteine in the N-terminal elongation is involved in the manifestation 

of this unusual kinetic behavior [303]. 

In this thesis, recombinant hTGR was kinetically characterized, interacting with its substrates 

NADPH, GSSG, Trx, and HEDS. To determine the pKa of the active site cysteines of the 

respective catalytic domains, functional assays could be conducted in future analyses with the 

isolated Grx and TrxR domains at varying pH values, revealing the reactivity of the active site 

Cys. Furthermore, the influence of additional posttranslational modifications such as 

nitrosylation could be studied in more detail, and crystallization (and co-crystallization) trials 

might give a deeper insight into the structure and kinetic mechanisms. To gather the full 

spectrum of kinetic parameters of the fully FAD-saturated hTGR and to obtain a sample 

consisting of pure Sec-containing enzyme, an isolation of hTGR from human testes could be a 

useful tool. As shown for other NADPH dependent and Sec-rich proteins, a chloroform-1-

butanol extraction followed by acetone precipitation and DEAE cellulose chromatography, 

2′,5′-ADP-Sepharose 4B affinity chromatography as well as an add-on fast protein liquid 

chromatography could lead to the native protein [204]. Due to this, interaction partners might 

be identified with mutants of the recombinant enzyme using testes cell lysate as a pool of 

interacting proteins. Additionally, cell culture experiments in human cancer cells lines and 

cross-linking as well as immunoprecipitation could also identify potentially interacting 

proteins. Once interacting proteins are identified, the biochemical relevance of hTGR as a 

hybrid enzyme of two independently existing and highly active enzymes could be illustrated, 

and inhibition studies could outline a potential medical impact of hTGR. 
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SUPPLEMENTS 

Supplementary Table 1. Mass spectrometry analysis of proteolytic hTGR band. Recombinant hTGR was analyzed on 

SDS-PAGE and stained with Coomassie. The appearing band at ~30 kDa was subjected to in-gel tryptic digestion and analyzed 

by MALDI-TOF analysis in duplicate with a sequence coverage between 17.2 – 18.1%. Here, the detected peptides of the 

additional appearing band belong to the N-terminal, C-terminal and central parts of the enzyme. 

RESIDUE 

NUMBER1 
SEQUENCE 

THEORETICAL 

PEPTIDE MASS 

(M/Z)2 

4-13 SPPQSPGPGK   951.458 

14-21 AGDAPNRR   856.478 

40-47 LSSPGPSR   800.377 

40-52 LSSPGPSRSSEAR 1330.711 

58-65 HLVGLIER   936.557 

107-118 VQEVLSEITNQK 1387.753 

119-127 TVPNIFVNK 1031.614 

366-379 SILLRGFDQEMAEK 1652.815 

380-390 VGSYMEQHGVK 1234.660 

501-508 LFGASLEK   864.438 

579-601 VIGFHILGPNAGEVTQGFAAAMK 2344.130 

1 Amino acid residues of human thioredoxin glutathione reductase (according to Uniprot-HUMAN: Q86VQ6). 

2 Theoretical peptide masses were obtained using the sequence editor of BioTools V3.2 (Bruker Daltonics, 

Bremen). 

 

Supplementary Table 2. Mass spectrometry analysis of glutathionylated hTGR. Recombinant hTGR was incubated with 

5 mM GSSG and analyzed on non-reducing SDS-PAGE and stained with Coomassie. The protein band at ~70 kDa was 

subjected to in-gel tryptic digestion and analyzed by MALDI-TOF analysis in triplicate with a sequence coverage between 61.4 

– 66.1%. Peptides containing modifications by glutathione and the frequency of this modification are listed (n) and cysteines 

are marked in light grey.  

RESIDUE 

NUMBER1 
SEQUENCE 

THEORETICAL 

PEPTIDE MASS 

(M/Z)2 

GLUTATHIONYL

ATION N3 

4-13 SPPQSPGPGK   951.4821 
  

14-21 AGDAPNRR   856.4985 
  

30-37 VLSPPGRR   881.4663 
  

40-47 LSSPGPSR   800.3956 
  

48-56 SSEAREELR          1076.524 
  

57-65 RHLVGLIER 1092.6333 
  

58-65 HLVGLIER   936.5533 
  

82-106 VKELFSSLGVECNVLELDQVDDGAR 3040.4779 Cys 93 2 

84-106 ELFSSLGVECNVLELDQVDDGAR 2813.3055 Cys 93 3 

107-118 VQEVLSEITNQK 1387.7522 
  

119-127 TVPNIFVNK 1031.5932 
  

128-147 VHVGGCDQTFQAYQSGLLQK 2484.1831 Cys 133 3 

148-173 LLQEDLAYDYDLIIIGGGSGGLSCAK 2989.4728 Cys 171 1 

182-211 VMVLDFVVPSPQGTSWGLGGTCVN 

VGCIPK 

3060.4666 
  

213-228 LMHQAALLGQALCDSR 2031.9450 Cys 225 3 

213-229 LMHQAALLGQALCDSRK 2160.0311 Cys 225 3 

229-239 KFGWEYNQQVR 1454.7272 
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230-239 FGWEYNQQVR 1326.6286 
  

240-247 HNWETMTK 1046.4875 
  

248-261 AIQNHISSLNWGYR 1658.8235 
  

248-265 AIQNHISSLNWGYRLSLR 2128.0983 
  

266-283 EKAVAYVNSYGEFVEHHK 2107.0494 
  

268-283 AVAYVNSYGEFVEHHK 1849.8854 
  

290-310 KGQETYYTAAQFVIATGERPR 2386.2353 
  

311-318 YLGIQGDK   893.4591 
  

371-379 GFDQEMAEK 1054.4453 
  

380-390 VGSYMEQHGVK 1234.6085 
  

394-405 KFIPVMVQQLEK 1459.8388 
  

395-405 FIPVMVQQLEK 1331.7388 
  

417-437 STEGTETIEGVYNTVLLAIGR 2223.1676 
  

460-495 IPVNDVEQTNVPYVYAVGDILEDKPE

LTPVAIQSGK 

3910.9837 
  

501-508 LFGASLEK   864.4799 
  

534-540 AIEVYKK   850.4706 
  

540-560 KENLEIYHTLFWPLEWTVAGR 2602.3404 
  

541-560 ENLEIYHTLFWPLEWTVAGR 2474.2320 
  

561-568 ENNTCYAK   942.4049 
  

569-573 IICNK   895.4576 Cys 571 1 

569-578 IICNKFDHDR 1260.6316 
  

569-578 IICNKFDHDR 1260.6176 
  

579-601 VIGFHILGPNAGEVTQGFAAAMK 2328.2331 
  

607-630 QLLDDTIGIHPTCGEVFTTLEITK 2949.4607 Cys 619 3 

631-639 SSGLDITQK   948.5016 
  

1 Amino acid residues of human thioredoxin glutathione reductase (according to Uniprot-HUMAN; Q86VQ6). 

2 Theoretical peptide masses were obtained using the sequence editor of BioTools V3.2 (Bruker Daltonics, 

Bremen). 

3 Number of positive glutathionylation sites in the triplicate. 
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PfPrx1a (PlasmoDB: PF14_0368, PF3D7_1438900) 

Sequence Length: 588 bp  

     1 - ATGGCATCATATGTAGGAAGAGAAGCTCCTTATTTTAAGGCTGAAGCAGTTTTTGCAGAT - 60  

     1 - M  A  S  Y  V  G  R  E  A  P  Y  F  K  A  E  A  V  F  A  D   - 20  

 

    61 - AACACATTTGGAGAAGTAAATTTGCATGATTTTATTGGAAAGAAATATGTATTATTATAT - 120  

    21 - N  T  F  G  E  V  N  L  H  D  F  I  G  K  K  Y  V  L  L  Y   - 40  

 

   121 - TTTTATCCATTAGATTTTACGTTTGTATGTCCATCTGAAATCATTGCATTAGATAAGGCT - 180  

    41 - F  Y  P  L  D  F  T  F  V  C  P  S  E  I  I  A  L  D  K  A   - 60  

 

   181 - CTTGATGCATTTAAGGAAAGAAATGTTGAATTAATAGGCTGTAGTGTGGATAGTAAATAT - 240  

    61 - L  D  A  F  K  E  R  N  V  E  L  I  G  C  S  V  D  S  K  Y   - 80  

 

   241 - ACTCATTTGGCATGGAAAAAAACACCATTAACTAAAGGAGGTATAGGAAATATCCAACAT - 300  

    81 - T  H  L  A  W  K  K  T  P  L  T  K  G  G  I  G  N  I  Q  H   - 100  

 

   301 - ACATTAATATCTGATATTACTAAAAGTATATCAAGAAGTTATAATGTGTTGTTTGGTGAT - 360  

   101 - T  L  I  S  D  I  T  K  S  I  S  R  S  Y  N  V  L  F  G  D   - 120  

 

   361 - AGTGTATCATTAAGAGCATTTGTATTAATCGACAAGCAAGGTGTTGTTCAACATTTACTT - 420  

   121 - S  V  S  L  R  A  F  V  L  I  D  K  Q  G  V  V  Q  H  L  L   - 140  

 

   421 - GTTAATAATTTAGCTATTGGTAGATCAGTTGAGGAAGTCTTAAGAATTATTGATGCTGTA - 480  

   141 - V  N  N  L  A  I  G  R  S  V  E  E  V  L  R  I  I  D  A  V   - 160  

 

   481 - CAACACCACGAACAACATGGAGATGTTTGCCCAGCAAACTGGAAAAAGGGAAAGGTAGCC - 540  

   161 - Q  H  H  E  Q  H  G  D  V  C  P  A  N  W  K  K  G  K  V  A   - 180  

 

   541 - ATGAAACCATCAGAAGAAGGTGTTAGTGAATATTTATCAAAGTTGTAA - 588  

   181 - M  K  P  S  E  E  G  V  S  E  Y  L  S  K  L  *  X - 200 

 

 

PfPrx1m (PlasmoDB: PFL0725w, PF3D7_1215000) 

Sequence Length: 651 bp 

     1 - ATGTTTTTAAAAAAACTGTGCAGGAGCAATTTTTTCGGGAATTCAAGAAGATCCTTTTCG - 60  

     1 - M  F  L  K  K  L  C  R  S  N  F  F  G  N  S  R  R  S  F  S   - 20  

 

    61 - CTAGTGACAAAGAAGGCTTATAATTTCACAGCTCAAGGATTAAATAAAAATAATGAAATA - 120  

    21 - L  V  T  K  K  A  Y  N  F  T  A  Q  G  L  N  K  N  N  E  I   - 40  

 

   121 - ATAAATGTTGACCTTTCCTCTTTTATAGGTCAGAAATACTGTTGTTTGTTATTTTATCCA - 180  

    41 - I  N  V  D  L  S  S  F  I  G  Q  K  Y  C  C  L  L  F  Y  P   - 60  

 

   181 - TTAAACTATACCTTCGTATGTCCAACAGAAATAATTGAATTTAATAAGCATATAAAAGAT - 240  

    61 - L  N  Y  T  F  V  C  P  T  E  I  I  E  F  N  K  H  I  K  D   - 80  

 

   241 - TTTGAAAATAAAAATGTAGAGTTATTAGGTATATCCGTAGATTCAGTATATAGTCATTTG - 300  

    81 - F  E  N  K  N  V  E  L  L  G  I  S  V  D  S  V  Y  S  H  L   - 100  

 

   301 - GCATGGAAAAATATGCCTATTGAAAAAGGAGGAATTGGAAATGTGGAATTTACTTTAGTA - 360  

   101 - A  W  K  N  M  P  I  E  K  G  G  I  G  N  V  E  F  T  L  V   - 120  

 

   361 - TCAGATATAAATAAAGACATTTCTAAAAATTATAATGTACTTTATGATAATTCTTTTGCT - 420  

   121 - S  D  I  N  K  D  I  S  K  N  Y  N  V  L  Y  D  N  S  F  A   - 140  
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   421 - TTAAGAGGTTTATTTATTATTGATAAAAATGGATGTGTAAGACATCAAACCGTTAATGAT - 480  

   141 - L  R  G  L  F  I  I  D  K  N  G  C  V  R  H  Q  T  V  N  D   - 160  

 

   481 - TTACCAATAGGTAGAAATGTACAGGAAGTTTTAAGAACTATAGATTCAATTATTCATGTA - 540  

   161 - L  P  I  G  R  N  V  Q  E  V  L  R  T  I  D  S  I  I  H  V   - 180  

 

   541 - GATACAAGTGGAGAAGTTTGTCCAATCAACTGGAAAAAGGGACAAAAAGCATTCAAACCA - 600  

   181 - D  T  S  G  E  V  C  P  I  N  W  K  K  G  Q  K  A  F  K  P   - 200  

 

   601 - ACTACCGAATCGTTAATAGATTATATGAATAATGCAAATAAAAATGTATAA - 651  

   201 - T  T  E  S  L  I  D  Y  M  N  N  A  N  K  N  V  *  X - 220  

 

 

 

PfPrx5 (PfAOP; PlasmoDB: PF3D7_0729200) 

Sequence Length: 723 bp 

     1 - ATGAGAATGAGAAGAACAATACTAATATTTACTGTTATATTAATACCTCTTACTTTTTGT - 60  

     1 - M  R  M  R  R  T  I  L  I  F  T  V  I  L  I  P  L  T  F  C   - 20  

 

    61 - TTTAAAAATGCTTTAATTAAGCATTCTATTAATATAGTATCCAAGCGAGGAAACTCGAAG - 120  

    21 - F  K  N  A  L  I  K  H  S  I  N  I  V  S  K  R  G  N  S  K   - 40  

 

   121 - AATCGGTTTTCCCAAAAAGTTTATGAATCCAAAAATATAGATTTGGAAAATGATATAAAA - 180  

    41 - N  R  F  S  Q  K  V  Y  E  S  K  N  I  D  L  E  N  D  I  K   - 60  

 

   181 - GAAAATGATCTTATTCCTAACGTGAAAGTTATGATTGACGTAAGAAATATGAACAACATA - 240  

    61 - E  N  D  L  I  P  N  V  K  V  M  I  D  V  R  N  M  N  N  I   - 80  

 

   241 - TCTGATACCGATGGGAGCCCAAACGATTTTACTTCAATAGATACACATGAATTATTTAAT - 300  

    81 - S  D  T  D  G  S  P  N  D  F  T  S  I  D  T  H  E  L  F  N   - 100  

 

   301 - AACAAAAAGATTTTATTAATCAGTTTACCTGGGGCATTTACGCCTACTTGCAGTACAAAA - 360  

   101 - N  K  K  I  L  L  I  S  L  P  G  A  F  T  P  T  C  S  T  K   - 120  

 

   361 - ATGATACCAGGATATGAAGAAGAATATGATTATTTTATAAAAGAGAATAATTTTGATGAC - 420  

   121 - M  I  P  G  Y  E  E  E  Y  D  Y  F  I  K  E  N  N  F  D  D   - 140  

 

   421 - ATTTATTGTATTACTAATAATGATATATATGTATTAAAGAGTTGGTTTAAAAGTATGGAT - 480  

   141 - I  Y  C  I  T  N  N  D  I  Y  V  L  K  S  W  F  K  S  M  D   - 160  

 

   481 - ATAAAAAAAATAAAATATATAAGTGATGGTAATAGTTCATTTACAGAAAGTATGAATATG - 540  

   161 - I  K  K  I  K  Y  I  S  D  G  N  S  S  F  T  E  S  M  N  M   - 180  

 

   541 - TTAGTAGACAAATCTAATTTTTTTATGGGAATGAGACCTTGGAGATTTGTTGCTATTGTT - 600  

   181 - L  V  D  K  S  N  F  F  M  G  M  R  P  W  R  F  V  A  I  V   - 200  

 

   601 - GAAAATAATATTTTGGTTAAAATGTTTCAAGAAAAAGATAAACAACATAATATTCAAACA - 660  

   201 - E  N  N  I  L  V  K  M  F  Q  E  K  D  K  Q  H  N  I  Q  T   - 220  

 

   661 - GACCCATATGATATATCAACTGTCAATAATGTAAAAGAGTTTTTAAAAAATAATCAGTTA - 720  

   221 - D  P  Y  D  I  S  T  V  N  N  V  K  E  F  L  K  N  N  Q  L   - 240  

 

   721 - TAA - 723  

   241 - *  X - 260  

 

 

 

 

 



Supplements 

141 

 

PfPrx6 (1-cys peroxiredoxin (1-CysPxn); PlasmoDB: PF3D7_0802200; PF08_0131) 

Sequence Length: 663 bp 

 

     1 - ATGGCTTACCATTTAGGAGCTACTTTTCCAAACTTTACTGCTACTGCTTCTAATGTAGAT - 60  

     1 - M  A  Y  H  L  G  A  T  F  P  N  F  T  A  T  A  S  N  V  D   - 20  

 

    61 - GGAGTTTTTGACTTTTATAAATATGTAGGAGATAATTGGGCTATTTTATTTAGTCACCCA - 120  

    21 - G  V  F  D  F  Y  K  Y  V  G  D  N  W  A  I  L  F  S  H  P   - 40  

 

   121 - CATGATTTTACTCCCGTTTGTACCACTGAACTTGCTGAATTTGGTAAAATGCATGAAGAA - 180  

    41 - H  D  F  T  P  V  C  T  T  E  L  A  E  F  G  K  M  H  E  E   - 60  

 

   181 - TTTTTAAAACTCAACTGCAAATTAATAGGATTTAGCTGTAACTCCAAAGAATCTCACGAT - 240  

    61 - F  L  K  L  N  C  K  L  I  G  F  S  C  N  S  K  E  S  H  D   - 80  

 

   241 - CAATGGATTGAAGATATAAAATTTTACGGAAACCTAGATAAGTGGGATATTCCTATGGTT - 300  

    81 - Q  W  I  E  D  I  K  F  Y  G  N  L  D  K  W  D  I  P  M  V   - 100  

 

   301 - TGTGATGAATCCAGAGAATTAGCTAACCAATTAAAAATTATGGATGAAAAAGAAAAAGAT - 360  

   101 - C  D  E  S  R  E  L  A  N  Q  L  K  I  M  D  E  K  E  K  D   - 120  

 

   361 - ATTAAAGGACTTCCATTAACTTGTAGATGTGTTTTCTTTATTTCTCCAGATAAAAAAGTC - 420  

   121 - I  K  G  L  P  L  T  C  R  C  V  F  F  I  S  P  D  K  K  V   - 140  

 

   421 - AAAGCAACCGTTCTTTATCCAGCCACAACAGGAAGAAATTCTCAAGAAATTCTTAGAGTT - 480  

   141 - K  A  T  V  L  Y  P  A  T  T  G  R  N  S  Q  E  I  L  R  V   - 160  

 

   481 - CTTAAATCCTTACAACTTACAAACACACACCCTGTTGCTACTCCTGTTAATTGGAAAGAA - 540  

   161 - L  K  S  L  Q  L  T  N  T  H  P  V  A  T  P  V  N  W  K  E   - 180  

 

   541 - GGAGACAAATGCTGTATCTTACCATCTGTTGATAATGCAGACCTTCCAAAACTTTTTAAA - 600  

   181 - G  D  K  C  C  I  L  P  S  V  D  N  A  D  L  P  K  L  F  K   - 200  

 

   601 - AATGAAGTAAAAAAATTGGATGTACCATCCCAAAAGGCATATTTAAGATTTGTTCAAATG - 660  

   201 - N  E  V  K  K  L  D  V  P  S  Q  K  A  Y  L  R  F  V  Q  M   - 220  

 

   661 - TAA - 663  

   221 - *  X - 240  

 

 

 

PfPrxQ (PlasmoDB: PF3D7_1027300) 

Sequence Length: 1182 bp 

     1 - ATGGCTCAATTAGCAGAAAATACTGTATTAGATGAAAGCATTCAAAAAGTTGAAGTCTTA - 60  

     1 - M  A  Q  L  A  E  N  T  V  L  D  E  S  I  Q  K  V  E  V  L   - 20  

 

    61 - AATCATAATGGAGAGACAACAAGTTTTTATAATGAAGTCGAAAAACATAAAGAGAACAAC - 120  

    21 - N  H  N  G  E  T  T  S  F  Y  N  E  V  E  K  H  K  E  N  N   - 40  

 

   121 - GAAGGTATTGTAGTTTTTACATACCCAAAGGCAAATACCCCAGGATGTACAAAACAAGCC - 180  

    41 - E  G  I  V  V  F  T  Y  P  K  A  N  T  P  G  C  T  K  Q  A   - 60  

 

   181 - GAATTATTTAAAGAAAAACATGAAGAATTTGTAAATAACAAATATGTTGTTTATGGTTTG - 240  

    61 - E  L  F  K  E  K  H  E  E  F  V  N  N  K  Y  V  V  Y  G  L   - 80  

 

   241 - TCTGCAGATACTGCTGAGGACCAACTCAAATGGAAAGAAAAGCTAGAACTTCCTTACGAA - 300  

    81 - S  A  D  T  A  E  D  Q  L  K  W  K  E  K  L  E  L  P  Y  E   - 100  



Supplements 

142 

 

 

   301 - TTATTATGCGATGTAGACAAGAATTTATTGAAACTTTTAGGTTTGACCAACGAAGAAGAT - 360  

   101 - L  L  C  D  V  D  K  N  L  L  K  L  L  G  L  T  N  E  E  D   - 120  

 

   361 - AAAACCATAAGATCCCACCTTGTTCTTAAGAACGATTTTACGGTTTCTTATGTAAAAAAG - 420  

   121 - K  T  I  R  S  H  L  V  L  K  N  D  F  T  V  S  Y  V  K  K   - 140  

 

   421 - AGCGTATCCCCAGGAAAGTCAGCAACCCAAGTTTTAAACTTTCTTGTGAATGGTGACGAT - 480  

   141 - S  V  S  P  G  K  S  A  T  Q  V  L  N  F  L  V  N  G  D  D   - 160  

 

   481 - GGAGGTGATGGAAACGAAGAAGAAGAAAATGAAGAAAATAATAATAATGAAGATAAGGAT - 540  

   161 - G  G  D  G  N  E  E  E  E  N  E  E  N  N  N  N  E  D  K  D   - 180  

 

   541 - AATAACGAAAATGATGAAGAAGGTGATGTCCAAGGAGAAGGAGAAGGTGAAGGTGAAGGT - 600  

   181 - N  N  E  N  D  E  E  G  D  V  Q  G  E  G  E  G  E  G  E  G   - 200  

 

   601 - GATGAAGAGAAAACAGCAGACACCGATAAAGAAAAACCAAAGAAATCATCCACCAGCACA - 660  

   201 - D  E  E  K  T  A  D  T  D  K  E  K  P  K  K  S  S  T  S  T   - 220  

 

   661 - CAAAAGAAAAAAGGTAGTGTTAGTAGTACTATTTCTAAAAAGTCCGTAAAAAAAAGTAAC - 720  

   221 - Q  K  K  K  G  S  V  S  S  T  I  S  K  K  S  V  K  K  S  N   - 240  

 

   721 - AAAGTTGTTAAAAAAAATGTTAAAGTAAAAAAAGAAATAAAAAAAAAAACAAATAAAAAA - 780  

   241 - K  V  V  K  K  N  V  K  V  K  K  E  I  K  K  K  T  N  K  K   - 260  

 

   781 - GCTGATAACAAAAAAGGAAAAAATGTGAACAACAAACTTATGAAAAGCAATGCTAAAGGT - 840  

   261 - A  D  N  K  K  G  K  N  V  N  N  K  L  M  K  S  N  A  K  G   - 280  

 

   841 - GCTAACAAAAAAGGTGGAAAAAAAAATAGTGTTGTTAAAAAAGAAGACAACAAAAAAAAA - 900  

   281 - A  N  K  K  G  G  K  K  N  S  V  V  K  K  E  D  N  K  K  K   - 300  

 

   901 - GGAAAAAATAATAAGAAGAAAAATAAAAATCAAAACTTAAAAGATTTAAAGAAAAAAAAT - 960  

   301 - G  K  N  N  K  K  K  N  K  N  Q  N  L  K  D  L  K  K  K  N   - 320  

 

   961 - GTGAAATCAGGAAAAGGAAGCGTCTCCTCATCAAACAAAAAATTACCTAAAGGATTAAAG - 1020  

   321 - V  K  S  G  K  G  S  V  S  S  S  N  K  K  L  P  K  G  L  K   - 340  

 

  1021 - AATGCTGCCAAAAAAGCTGGAAAAAAAATTGACAAAAAAAAAGAACAAGCCAACAAAAAA - 1080  

   341 - N  A  A  K  K  A  G  K  K  I  D  K  K  K  E  Q  A  N  K  K   - 360  

 

  1081 - AATAACAATAACAAAAATAAAAATAAAAATAAAAATCTATCCAAAGGAAATAATATGAAA - 1140  

   361 - N  N  N  N  K  N  K  N  K  N  K  N  L  S  K  G  N  N  M  K   - 380  

 

  1141 - CATAACAAAAAACCAGCCAAAAAAGTGGTAAAGAAAAAGTAA - 1182  

   381 - H  N  K  K  P  A  K  K  V  V  K  K  K  *  X - 400  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplements 

143 

 

hTGR (UniProtKB: Q86VQ6) 

Sequence Length: 1932 bp 

 

     1 - CTGGAGCGGTCGCCGCCGCAGTCGCCCGGGCCGGGAAAGGCGGGCGATGCCCCCAACCGC - 60  

     1 - M  E  R  S  P  P  Q  S  P  G  P  G  K  A  G  D  A  P  N  R   - 20  

 

    61 - CGCTCGGGCCATGTCCGAGGGGCGCGCGTGTTGTCGCCGCCGGGGCGCCGTGCCCGCCTG - 120  

    21 - R  S  G  H  V  R  G  A  R  V  L  S  P  P  G  R  R  A  R  L   - 40  

 

   121 - TCGTCCCCCGGGCCCAGCCGCTCGTCCGAGGCCCGCGAGGAGCTGCGCCGCCACCTCGTG - 180  

    41 - S  S  P  G  P  S  R  S  S  E  A  R  E  E  L  R  R  H  L  V   - 60  

 

   181 - GGCCTCATCGAGCGCAGCCGGGTGGTGATCTTCAGCAAGAGCTACTGTCCCCATAGTACT - 240  

    61 - G  L  I  E  R  S  R  V  V  I  F  S  K  S  Y  C  P  H  S  T   - 80  

 

   241 - CGGGTGAAAGAACTCTTTTCTTCTTTGGGAGTCGAATGTAATGTCTTGGAACTTGATCAA - 300  

    81 - R  V  K  E  L  F  S  S  L  G  V  E  C  N  V  L  E  L  D  Q   - 100  

 

   301 - GTTGATGATGGGGCCAGGGTTCAAGAAGTGCTGTCAGAAATCACTAATCAGAAAACTGTG - 360  

   101 - V  D  D  G  A  R  V  Q  E  V  L  S  E  I  T  N  Q  K  T  V   - 120  

 

   361 - CCCAATATTTTCGTGAATAAAGTGCATGTAGGTGGATGTGACCAAACTTTCCAGGCATAT - 420  

   121 - P  N  I  F  V  N  K  V  H  V  G  G  C  D  Q  T  F  Q  A  Y   - 140  

 

   421 - CAGAGTGGTTTGTTACAGAAGCTCCTTCAGGAAGATTTGGCATATGATTATGATCTCATC - 480  

   141 - Q  S  G  L  L  Q  K  L  L  Q  E  D  L  A  Y  D  Y  D  L  I   - 160  

 

   481 - ATCATCGGTGGTGGTTCTGGAGGCCTTTCATGTGCGAAGGAAGCTGCCATTTTGGGAAAG - 540  

   161 - I  I  G  G  G  S  G  G  L  S  C  A  K  E  A  A  I  L  G  K   - 180  

 

   541 - AAAGTTATGGTGCTAGACTTTGTTGTCCCGTCACCTCAGGGCACATCCTGGGGTCTTGGT - 600  

   181 - K  V  M  V  L  D  F  V  V  P  S  P  Q  G  T  S  W  G  L  G   - 200  

 

   601 - GGCACTTGTGTAAATGTAGGTTGTATTCCTAAGAAATTGATGCATCAGGCTGCCCTTTTG - 660  

   201 - G  T  C  V  N  V  G  C  I  P  K  K  L  M  H  Q  A  A  L  L   - 220  

 

   661 - GGGCAGGCATTATGTGACTCAAGGAAATTTGGCTGGGAATATAATCAACAAGTGAGGCAC - 720  

   221 - G  Q  A  L  C  D  S  R  K  F  G  W  E  Y  N  Q  Q  V  R  H   - 240  

 

   721 - AACTGGGAGACAATGACAAAAGCGATTCAGAACCACATCAGCTCTCTAAACTGGGGCTAC - 780  

   241 - N  W  E  T  M  T  K  A  I  Q  N  H  I  S  S  L  N  W  G  Y   - 260  

 

   781 - AGGTTGTCTCTGAGGGAAAAGGCTGTGGCCTATGTCAATTCCTATGGAGAATTTGTTGAA - 840  

   261 - R  L  S  L  R  E  K  A  V  A  Y  V  N  S  Y  G  E  F  V  E   - 280  

 

   841 - CATCATAAAATAAAGGCAACCAATAAAAAAGGACAGGAGACTTATTATACTGCTGCACAG - 900  

   281 - H  H  K  I  K  A  T  N  K  K  G  Q  E  T  Y  Y  T  A  A  Q   - 300  

 

   901 - TTTGTCATAGCAACGGGTGAAAGGCCACGGTATTTAGGAATCCAAGGAGATAAAGAATAC - 960  

   301 - F  V  I  A  T  G  E  R  P  R  Y  L  G  I  Q  G  D  K  E  Y   - 320  

 

   961 - TGTATTACTAGTGATGACCTTTTTTCTCTGCCTTATTGCCCTGGCAAAACATTAGTGGTG –1020  

   321 - C  I  T  S  D  D  L  F  S  L  P  Y  C  P  G  K  T  L  V  V   - 340  

 

  1021 - GGTGCCTCTTATGTTGCCCTGGAGTGTGCAGGGTTTCTGGCTGGCTTTGGCCTAGATGTC -1080  

   341 - G  A  S  Y  V  A  L  E  C  A  G  F  L  A  G  F  G  L  D  V   - 360  

 

  1081 - ACAGTTATGGTACGCTCAATCCTTCTCCGTGGCTTCGACCAAGAAATGGCAGAAAAAGTG -1140  

   361 - T  V  M  V  R  S  I  L  L  R  G  F  D  Q  E  M  A  E  K  V   - 380  



Supplements 

144 

 

  1141 - GGTTCCTACATGGAGCAGCATGGTGTGAAGTTCCTACGGAAATTCATACCTGTGATGGTT -1200  

   381 - G  S  Y  M  E  Q  H  G  V  K  F  L  R  K  F  I  P  V  M  V   - 400  

 

  1201 - CAACAGTTGGAGAAAGGTTCACCTGGAAAGCTGAAAGTGTTGGCTAAATCCACTGAAGGA -1260  

   401 - Q  Q  L  E  K  G  S  P  G  K  L  K  V  L  A  K  S  T  E  G   - 420  

 

  1261 - ACAGAAACAATTGAAGGAGTCTATAACACAGTTTTGTTAGCTATTGGTCGTGACTCCTGT -1320  

   421 - T  E  T  I  E  G  V  Y  N  T  V  L  L  A  I  G  R  D  S  C   - 440  

 

  1321 - ACAAGGAAAATAGGCTTGGAGAAGATTGGTGTCAAAATTAATGAGAAGAGTGGAAAAATA -1380  

   441 - T  R  K  I  G  L  E  K  I  G  V  K  I  N  E  K  S  G  K  I   - 460  

 

  1381 - CCTGTAAATGATGTGGAACAGACCAATGTGCCATATGTCTATGCTGTTGGTGATATTTTG -1440  

   461 - P  V  N  D  V  E  Q  T  N  V  P  Y  V  Y  A  V  G  D  I  L   - 480  

 

  1441 - GAGGATAAGCCAGAGCTCACTCCTGTCGCCATACAGTCAGGCAAGCTGCTAGCTCAGAGA -1500  

   481 - E  D  K  P  E  L  T  P  V  A  I  Q  S  G  K  L  L  A  Q  R   - 500  

 

  1501 - CTTTTTGGGGCCTCTTTAGAAAAGTGTGATTATATTAATGTTCCGACTACAGTGTTTACT -1560  

   501 - L  F  G  A  S  L  E  K  C  D  Y  I  N  V  P  T  T  V  F  T   - 520  

 

  1561 - CCTCTGGAGTATGGTTGCTGTGGATTATCTGAAGAGAAAGCTATTGAAGTATATAAAAAA -1620  

   521 - P  L  E  Y  G  C  C  G  L  S  E  E  K  A  I  E  V  Y  K  K   - 540  

 

  1621 - GAGAATCTAGAAATATATCATACTTTGTTCTGGCCTCTTGAATGGACAGTAGCTGGCAGA -1680  

   541 - E  N  L  E  I  Y  H  T  L  F  W  P  L  E  W  T  V  A  G  R   - 560  

 

  1681 - GAGAACAACACTTGTTATGCAAAGATAATCTGCAATAAATTCGACCATGATCGGGTGATA -1740  

   561 - E  N  N  T  C  Y  A  K  I  I  C  N  K  F  D  H  D  R  V  I   - 580  

 

  1741 - GGATTTCATATTCTTGGACCAAACGCCGGTGAGGTTACCCAAGGATTTGCAGCTGCAATG -1800  

   581 - G  F  H  I  L  G  P  N  A  G  E  V  T  Q  G  F  A  A  A  M   - 600  

 

  1801 - AAATGTGGGCTCACAAAACAGCTACTTGATGACACCATTGGAATTCACCCCACATGTGGG -1860  

   601 - K  C  G  L  T  K  Q  L  L  D  D  T  I  G  I  H  P  T  C  G   - 620  

 

  1861 - GAGGTGTTCACGACTTTGGAAATCACAAAGTCGTCAGGACTAGACATCACTCAGAAAGGC -1920  

   621 - E  V  F  T  T  L  E  I  T  K  S  S  G  L  D  I  T  Q  K  G   - 640  

 

  1921 - TGCTGAGGCTAG - 1932  

   641 - C  U  G  *  X - 643  

 

 

 

 

 

 

 

 


