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1. Introduction and Problematic 
Since its discovery by the Swedish chemist Jöns Jacob Berzelius in 1817 selenium (Se) has 

had a chequered history. Livestock disorders, commonly referred to as alkali disease or blind 

stagger were found to be endemic in areas with soils rich in Se. Similarly, the consequences 

of chronic Se intoxication in humans were noticed in seleniferous geographic areas long 

before Se was recognized as the causative agent. The prominent features of a Se 

intoxication are depression and fatigue, loss of hair and breakage of the nails. In brief Se was 

classified as poisonous and carcinogenic up to the late 1940s. The attitude to Se in life 

sciences began to change in the 1950s. In 1954 Pinsent observed that certain bacteria grew 

faster in Se-fortified media. In 1957, Schwarz and Foltz discovered that Se was contained in 

“factor 3”, a still ill-defined compound isolated from hog kidney, which efficiently prevented 

the experimentally induced fatal liver necrosis of rats that were fed a diet based on torula 

yeast and sucrose. It soon became apparent that factor 3 could be replaced by a variety of 

inorganic or organic Se compounds in the liver necrosis model. Consequently Se was 

considered as acting as an essential trace element. In the 1960s this view was corroborated, 

since various syndromes such as white muscle disease in cattle, mulberry heart disease and 

hepatosis dietetica in pigs as well as exsudative diathesis in poultry could be attributed to 

insufficient Se supply. After identification of cellular glutathione peroxidase 1 as a Se 

containing protein the protective effect of Se regarding the above mentioned tissue-

destructing disorders could soon be attributed to the peroxide reducing and antioxidant 

features of Se representing the catalytically active centre of glutathione peroxidase 1. The 

discovery of cellular glutathione peroxidase 1 was followed by the finding to date of six 

further tissue specific glutathione peroxidases with a peroxide reducing function. Cellular and 

mitochondrial thioredoxin reductase 1 and 2 as well as thioredoxin glutathione reductase, 

also termed thioredoxin reductase 3, represent another class of relatively small redox active 

selenoproteins which are expressed in a number of mammalian tissues. Thioredoxin 

reductases are involved in desoxyribonucleotide synthesis and in the reduction of a broad 

spectrum of other compounds not completely known yet. For instance ascorbate and selenite 

are compounds undergoing reduction by thioredoxin reductases. A further important class of 

functional selenoenzymes is represented by three members of the iodothyronine deiodinase 

family participating in the precise regulation of thyroid hormone metabolism. One of the 

remaining selenoproteins to which a main research focus is dedicated is selenoprotein P 

which plays a key role in the interorgan- and tissue-distribution of Se in mammals. 

In recent years a number of studies were carried out investigating specific physiological 

properties of single Se compounds as well as additional properties of Se and functional 

selenoproteins on the expression of other genes. Examples for these specific physiological 

features however appear partly contradictory. For instance, on the one hand it could be 
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shown that the application of high supranutritional selenate doses (Se oxidation state +VI) 

mimicked insulin effects and featured strong antidiabetic and antiadipogenic properties 

whereas the overexpression of glutathione peroxidase 1, representing the best characterised 

antioxidant selenoprotein, has been demonstrated as promoting the development of obesity 

and insulin resistance in mice. Consequently the aim of the present studies was to examine 

the molecular mechanisms underlying the differentiated action of Se and in particular of 

inorganic Se compounds on metabolic processes critically. 
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2. Literature survey 
2.1 Selenium metabolism in mammals 
Selenium (Se) belongs to the chalcogens and many of its chemical properties (outer valence 

shell electronic configuration, atomic size, bond energy, ionisation potential, 

electronegativity) are similar to those of sulphur. As in the case of sulphur, Se occurs in the 

oxidation states –II (selenide), 0 (elemental selenium), +IV (selenite) and +VI (selenate). In 

its elemental oxidation state (0) Se forms red crystals with a hexagonal ring structure [1]. 

Besides these similarities there exist nevertheless some important differences between the 

two elements regarding the chemistry of their oxyanions and the acid strengths of their 

hydrides. Since Se compounds are preferentially reduced and sulphur compounds undergo 

oxidation, the following inorganic reaction between quadrivalent Se and quadrivalent sulphur 

displays the basis for physiological chemistry of Se in mammals: 

      +IV       +IV          ±0 +VI 

H2SeO3 + H2SO3 -  Se + 2 H2SO4 + H2O [2, 3]. 

A translation of this inorganic reaction to the seleno- and sulphur-hydrides as present in the 

glutathione peroxidase reaction reflects a similar reaction pattern [4]. 

Figure 1: Physiological chemistry of Se and sulphur in glutathione peroxidase 

according to [4] 
In the glutathione peroxidase reaction the sulphur compound glutathione undergoes oxidation 
to the disulfide, whereas Se is reduced. 
At a physiological pH value Se in glutathione peroxidases is present as a selenolate anion. The 
reduction of a peroxide effects the oxidation to the selenol oxidation state (selenenic acid). 
Starting from the selenol oxidation state Se is reduced again in a two step reduction by 
glutathione (sulphur compound) 
 
When taken up at the recommended level (animals: 0.15 – 0.30 mg Se/kg dietary dry matter, 

humans: 50 – 100 µg Se daily) [5, 6, 7, 8, 9] Se performs its physiological functions in the 
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body of animals and humans in form of a catalytically active selenocysteine residue in 

functional selenoproteins (for details see 2.2). 

In human food Se is present in two major forms. Foodstuffs derived from animal sources 

mainly contain Se in the form of selenocysteine from functional selenoproteins, while Se from 

plant derived foodstuffs is present predominantly as selenomethionine. In mineral and trace 

element supplements Se is frequently added in the form of the inorganic salts sodium 

selenite (Se oxidation state +IV) and sodium selenate +VI) [10, 11]. 

 

The following information on Se metabolism is summarized in Figure 2. 

 

Se from various dietary sources is absorbed by individual mechanisms in the small intestine 

of mammals. The amino acid derivatives selenomethionine and selenocysteine use the same 

carriers as their sulphur analogues methionine and cysteine [12]. Selenate uses a sodium- 

sulphate cotransporter for its absorption, which is driven by the activity of Na+/K+-ATPase at 

the basolateral enterocyte membrane [13]. In the lumen of the small intestine selenite 

partially reacts with glutathione or other thiols to selenotrisulfides, which are presumably 

taken up into the enterocytes by amino acid transporters. Another part of selenite diffuses 

through the apical membrane and reacts with thiols in the cytosol of enterocytes. The Se 

compounds mentioned above are absorbed to a high extent (> 85%) from dietary sources, 

but differences exist in the absorption time. As a result of the upstream selenotrisulfide 

synthesis selenite absorption is slower than selenate and selenomethionine absorption [12, 

13]. Subsequently the selenocompounds are liberated into the blood stream at the 

basolateral enterocyte membrane and distributed to the various peripheral tissues. The exact 

transport mechanism for the various Se compounds is not fully understood yet. 

Selenomethionine associates with hemoglobin, while selenate and the remaining free 

selenite were found to be transported with α- and γ-globulins [14, 15, 16]. Orally administered 

selenite presumably enters the peripheral organs in the form of selenotrisulfides or is already 

reduced in the erythrocytes to the selenide oxidation state -II. Selenate is metabolized during 

and after its unmodified uptake by the peripheral tissues. This hypothesis of a distinctly 

different cellular metabolism for selenite and selenate is supported by an investigation into 

intermediary Se metabolites after intravenous injection of rats with both compounds [17]. 

Selenite was rapidly taken up by red blood cells, reduced in the erythrocytes to the selenide 

oxidation state –II and delivered to peripheral organs (liver) in an albumin bound form. In 

contrast unmodified selenate (Se+VI) could be detected in the bloodstream and in peripheral 

organs. Thus it can be assumed that the successive selenate reduction to the oxidation state 

–II takes place after its uptake into peripheral organs [18, 19, 20]. A surplus of inorganic Se is 

stored in peripheral organs as “acid labile Se”. This Se fraction consists of Se bound 
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unspecifically to proteins (presumably via the formation of Se-S bonds) [21, 22]. The main 

excretion products of Se detected in urine are the methylated metabolites 

monomethylselenol (MMS) and trimethylselenonium (TMS). Methylated Se metabolites are 

formed from Se reduced to the oxidation state –II as well as from Se stored unspecifically in 

proteins as selenomethionine and from acid labile Se [23]. Se exhalation as dimethylselenide 

only takes place when Se is ingested in toxic doses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Current comprehension of mammalian Se metabolism  

[modified from 24,25, 256, 257] 
- detailed information on the single pathways is given in the text of chapters 2.1 and 2.2 -  
 

Selenomethionine represents the only Se compound which can be incorporated 

unspecifically into proteins instead of its sulphur analogue methionine. Thus 

selenomethionine containing proteins are termed non-specific Se containing proteins [24]. 

 

2.2 Functional selenoproteins – their role and regulation in mammals 
Se metabolism of functional selenoproteins is also termed specific Se metabolism and it 

starts from Se derived from nutritional sources as well as from Se stored unspecifically as 
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selenomethionine in other proteins or from Se stored in the acid labile Se pool. For the 

synthesis of functional selenoproteins which are characterized by a catalytically active 

selenocysteine moiety it is a must to have Se from the above mentioned sources reduced to 

the selenide oxidation state –II [Figure 2]. During the further course of functional 

selenoprotein synthesis reduced Se is activated in an ATP-dependent reaction to 

selenophosphate by selenophosphate synthetase followed by the cotranslational synthesis of 

selenocysteine starting from a specific serine-tRNA-population and from the activated Se. 

Selenocysteine thereby is encoded by an unusal UGA-stop code in the mRNA of functional 

selenoproteins. The regulation of these complex processes including the cotranslational 

synthesis of selenocysteine and the incorporation of selenocysteine into the growing protein 

chain is controlled by the so-called SECIS element (selenocysteine insertion sequence) 

located in the 3´-untranslated mRNA region of functional selenoproteins. The knowledge that 

selenocysteine firstly is encoded by a base triplet and that it secondly represents a self-

contained proteinogenic amino acid led to the establishment of selenocysteine as the “21st 

proteinogenic amino acid” [26, 27, 28, 29, 30]. 

As many as 26 functional selenoproteins have so far been identified in mammals. Much less 

is known regarding the exact functions fulfilled by these proteins. To date the highest level of 

knowledge exists regarding 3 main families of functional selenoproteins, namely glutathione 

peroxidases (GPxs), thioredoxin reductases (TrxRs) and iodothyronine deiodinases (DIOs). 

In the following some important facts are given on these enzyme families. Information on the 

the remaining selenoproteins, known so far, is displayed in Table 1. 

 

2.2.1 The glutathione peroxidases 1 – 7 (GPx1 – GPx7) 
Glutathione peroxidase GPx (EC 1.11.1.9 = GPx1) (EC 1.11.1.12 =GPx4) was the first 

specific mammalian selenoprotein identified [31, 32] and has received ever increasing 

attention. Today the family of glutathione peroxidases includes seven isoenzymes in 

mammals. One of the last additions to the list, GPx6, was identified in 2003 – 20 years after 

the discovery of GPx1 [32,33]. The black sheep of the family are GPx5 and GPx7, which are 

not selenoenzymes [34, 35]. The selenocysteine residue in GPx5 and GPx7 is replaced by a 

simple cysteine.  

Glutathione peroxidases reduce and thereby detoxify different types of peroxides to their 

respective alcohols typically at the expense of glutathione according to the following reaction 

equation: 

R-OOH + 2 GSH → R-OH + H2O + GSSG [c.f. also Figure 1]. Apparently all of them share 

the same catalytic mechanism involving a strictly conserved catalytically active centre formed 

by selenocysteine, tryptophan and glutamine [4, 36, 37]. Glutathione peroxidases play an 

important role in the tissue’s antioxidant defense. 
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Glutathione peroxidase 1 
GPx1, which was later found to have selenoprotein properties, was originally discovered in 

1957 [38]. It is an ubiquitous homotetrameric cytosolic enzyme (therefore often referred to as 

cGPx). GPx1 is abundant in the liver, in kidneys and in erythrocytes. Its concentration and 

activity are keenly dependent on the nutritional Se status [37, 39]. GPx1 is subject to a 

severe loss of its mRNA concentration and enzyme activity due to a lack of dietary Se 

supply. It therefore ranks low in the hierarchy of the functional selenoproteins [37]. 

Nevertheless GPx1 is one of the most important antioxidant enzymes, and besides the 

microsomal enzyme catalase it is responsible for H2O2 detoxification in tissues [40] according 

to the common reaction, displayed in Figure 1. Under conditions of a regular Se 

supplementation GPx1 accounts for the prevention of lipid- and protein-oxidation in cells. 

GPx1 knockout mice however show no obvious phenotype under normal conditions, yet 

when challenged with oxidative stress, significant pathologies become evident [41, 42, 43, 

44, 45]. 

 

Glutathione peroxidase 2 
GPx2 is found in the liver and in the gastrointestinal tract but the enzyme is absent in heart 

and kidney. Therefore GPx2 is often referred to as GI-GPx. Its distribution varies in the 

intestine and shows a decline from the crypts to the luminal surface [46]. GPx2 is a 

homotetrameric cytoplasmatic enzyme accepting a broad range of organic hydroperoxides 

such as t-butylhydroperoxide, linolic acid hydroperoxides and cumene hydroperoxide as its 

substrates. The enzyme does not reduce phosphatidyl choline hydroperoxide. GPx2 is 

conserved for a very long time under conditions of inadequate dietary Se supply, and 

therefore it ranks high in the hierarchy of functional selenoproteins [47, 48]. Some authors 

assume that GPx2 represents the first line of defense against organic hydroperoxides 

derived from food [37, 48, 49]. Regulatory functions for GPx2 are suggested as well, and the 

enzyme seems to participate in the regulation of apoptosis and proliferation [46]. GPx2 

knockout mice do not have a unique phenotype. However, in GPx1-GPx2 double knockout 

mice inflammatory bowel disease and bacteria-induced tumors were observed [50]. 

 

Glutathione peroxidase 3 
GPx3 is located extracellularly in the plasma, hence the acronym pGPx, and in the intestine 

[51, 52]. After selenoprotein P, GPx3 makes the second highest contribution to plasma Se 

concentration. The exact physiological function of this homotetrameric glycoprotein has not 

so far been exhaustively explained [53]. Furthermore there is no convincing evidence about 

the redox substrates used by GPx3 due to a nearly complete lack of glutathione in plasma. 

Presumably GPx3 uses glutaredoxin and thioredoxin for hydroperoxide reduction [53]. GPx3 
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acts as an efficient reductant towards hydroperoxides and presumably as an antioxidant 

towards proteins [54]. Furthermore it is speculated that GPx3 may have further regulatory 

functions. GPx3 expression is induced by hypoxia, and its deficiency seems to correlate with 

cardiovascular events and cancer [55, 56]. Like GPx1 Se deficiency leads to a fast and 

strong decrease in GPx3. Therefore GPx3 ranks low in the hierarchy of glutathione 

peroxidases. GPx3 is primarily expressed and synthesized in the renal proximal tubules. 

Subsequently the enzyme is liberated into plasma [57]. 

 

Glutathione peroxidase 4 
In contrast to the glutathione peroxidases 1-3, GPx4 (EC 1.11.1.12) is a monomeric enzyme 

with a number of unusual features. By using alternative initiation sites (Met1 or Met28), 

mitochondrial and cytoplasmatic isoforms of GPx4 are generated during its synthesis. 

Moreover GPx4 uses the broadest substrate range of all glutathione peroxidases. GPx4 is 

even able to reduce phospholipid hydroperoxides and therefore is often referred to as PH-

GPx. The enzyme is even capable of reducing hydroperoxides still integrated in cell 

membranes and it may thus play a role as a universal antioxidant in the protection of 

biomembranes [58, 59]. GPx4 is additionally involved in redox signalling and regulatory 

processes, such as inhibiting lipoxygenases and apoptosis [37, 60]. In the testes, where it 

accounts for almost the total Se content GPx4 transforms into a relevant structural protein of 

the sperm’s midpiece [61, 62, 63]. GPx4 is therefore required for sperm motility and fertility 

rather than for antioxidant defense of spermatozoa [63]. Thus it is not surprising that a long 

term Se deficiency and possibly GPx4 polymorphisms are associated with male infertility [61, 

65, 66]. GPx4 knockouts appear multimorbid and die at an early embryonic stage. The 

causes for retardation and the early death of GPx4 knockouts seem to be very complex and 

require further investigation [67]. Similar to GPx2, expression and activity of GPx4 are 

maintained for a long time during alimentary Se deficiency. Therefore GPx4 ranks very high 

in the hierarchy of glutathione peroxidases [37]. 

 

Glutathione peroxidase 6 
GPx6 was discovered using an in silico approach. So far, GPx6 expression, as judged by its 

mRNA concentration, is present only in olfactory epithelium and embryonic tissues [33]. 

GPx6 is expressed in or near the Bowman’s glands which is a site for several olfactory-

specific biotransformation processes. This finding solely suggests but does not prove yet a 

function for GPx6 in olfaction. 

 

The following two glutathione peroxidases, namely GPx5 and GPx7, are non-selenocysteine 

containing GPx isoforms and therefore the text regarding these enzymes is italicised. 
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However, both enzymes share the common reaction mechanism postulated for the classical 

glutathione peroxidases 1, 2, 3, 4 and 6. In the case of GPx5 the non-selenoenzyme 

presumably substitutes partially for its selenocysteine containing relative GPx4. Therefore 

some basic information is also provided for these two glutathione peroxidases. 

 

Glutathione peroxidase 5 

GPx5 is a non-selenocysteine containing glutathione peroxidase isoform and found 

exclusively in the epididymis [34]. It exists as a secretion protein as well as a membrane 

bound enzyme. It was suggested that GPx5 functions as a backup for the selenocysteine-

containing isoforms of GPx4 in sperm [68]. The expression level of GPx5 in mammals is 

however very low and further research is needed to determine the relevance and the exact 

functions of the enzyme [69]. 

 

Glutathione peroxidase 7 

GPx7 - like GPx5 – is a non-selenocysteine-containing glutathione peroxidase isoform. GPx7 

has little detectable glutathione peroxidase activity in vitro [35]. GPx7 is reported as one 

protective factor against breast cancer by its antioxidant function towards oxidative stress 

deriving from the metabolism of polyunsaturated fatty acids [35]. 

 

2.2.2 The cellular and mitochondrial thioredoxin reductases 1 and 2 (TrxR 1 and 2) 
and thioredoxin glutathione reductase = (TrxR3) 

The classical thioredoxin system is formed by thioredoxin reductase (TrxR; EC 1.8.1.9) 

catalysing the following reaction using its associated substrate thioredoxin (Trx) at the 

expense of NADPH: 

TrxS2 + NADPH + H+ → Trx(SH)2 + NADP+. Reduced thioredoxin serves as a reducing 

equivalent for various target molecules such as ribonucleotide reductase [70]. Thioredoxin 

reductases belong to a family of homodimeric pyridine nucleotide-disulfide oxidoreductases, 

inclusive of lipoamide dehydrogenase, glutathione reductase, and mercuric ion reductase 

[71]. Two very distinct classes of thioredoxin reductases have evolved:  

1. small thioredoxin reductases (subunit Mr ~35 kDa) which are present in prokaryotes and 

fungi 

2. large thioredoxin reductases (subunit Mr approx. 55 kDa) which are present in higher 

eukaryotes and mammals. 

Historically these two classes were considered to be mutually exclusive until a report on the 

thioredoxin system in the green algae Chlamydomonas reinhardtii was published [72]. This 

organism is unusual since it harbours both classes of thioredoxin reductases. However, due 
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to the fact that small TrxRs are absent in the human genome, they will not be further 

elucidated in this section. That mammalian cellular thioredoxin reductase is a selenoprotein 

was first discovered in human carcinoma cells [73]. This result could soon be confirmed for 

the other two mammalian thioredoxin reductases 2 and 3 [74, 75]. The selenocysteine 

residue of thioredoxin reductases was thereby identified uniquely as the penultimate amino 

acid [76]. A relatively large number of thioredoxin reductase splice variants exists and may 

be relevant for regulating organelle- and cell-specific localization [77, 78]. Interestingly, 

knockout experiments that eliminated the two known thioredoxin reductase isoforms 1 and 2 

are both lethal in utero [79, 80]. The thioredoxin system is involved in a myriad of cellular and 

intercellular processes, and today it is difficult to distinguish the most important pathways. It 

should be noted that thioredoxin reductases exhibit an unusually broad substrate spectrum, 

ranging from low molecular weight compounds to large proteins [82]. 

 

Thioredoxin reductase 1 
TrxR1 is an ubiquitous cytoplasmatic housekeeping enzyme. It is involved in many aspects 

of cellular redox regulation [83]. It is capable of inducing apoptosis if the enzyme does not 

contain selenocysteine or if this residue is blocked, e. g. by chemotherapeutic agents [84]. 

Besides its primarily important involvement in desoxyribonucleotide synthesis, these findings 

predestine TrxR1 as a very interesting target for chemotherapy [85]. TrxR1 is also secreted 

into plasma but the importance of this finding could not be explained as yet [86]. 

 

Thioredoxin reductase 2  
TrxR2 is located in mitochondria with the highest levels in the prostate, testes, liver, uterus 

and small intestine and intermediate levels in brain, skeletal muscle, heart and spleen [87]. 

Two splice variants designated SelZf1 and SelZf2 are described at the mRNA level [88]. 

However, these isoforms lack the N-terminal redox active site CVNVGC and remain 

catalytically inactive. Whether these isoforms are artefacts or have another function has not 

yet been established. TrxR2 knockout studies led to early embryonic death with signs of 

severe anaemia, apoptosis in the liver and heart abnormalities. A heart-specific knockout 

causes a dilatative cardiomyopathy and early death, similar to Keshan disease [89, 90]. Both 

TrxR1 and TrxR2 are moreover capable of reducing a broad range of other substrates, e.g. 

dehydroascorbate, selenite, and proteins with oxidized SH-residues [91, 92]. 

 

Thioredoxin reductase 3 = (Thioredoxin glutathione reductase) 
TrxR3 is a testis-specific enzyme. Unlike TrxR1 and TrxR2 it can reduce glutathione disulfide 

since it contains a N-terminal 1-Cys glutaredoxin-like domain. It is located in the 

endoplasmatic reticulum [93]. Specific functions of TrxR3 are however unknown so far. 

 10



To date only little information exists on thioredoxin reductase regulation by dietary Se and/or 

other nutrients. From the few studies dealing with TrxR expression due to dietary Se 

manipulation it is evident that thioredoxin reductase expression and activity remain almost 

stable during a short term Se deficiency of up to 10 weeks. Therefore it can be assumed that 

thioredoxin reductases, comparable to GPx2 and GPx4, rank high in the hierarchy of 

functional selenoproteins [81, 82]. 

 

2.2.3 The iodothyronine deiodinases 1 – 3 (DIO 1 – 3) 
The first deiodinase (DIO) identified as a selenoenzyme was DIO1 in 1990 [94, 95]. DIO1 

was amongst the first mammalian selenoproteins discovered. Deiodinases cleave specific 

iodine carbon bonds in thyroid hormones [Figure 3], thereby regulating their hormonal 

activity. Thyroid hormones and in particular T4 (= 3,3´,5,5´-tetraiodo-L-thyronine, half-life 

period: = 7 days), T3 (= 3,3´,5-triiodo-L-thyronine, half-life period: 1 day) and reverse T3 (= 

3,3´,5´-triiodo-L-thyronine) are of crucial importance to human health as they regulate a 

number of metabolic functions. Thyroid hormones act primarily via intracellular receptors as 

transcription factors and are required for normal growth and development, for thermogenesis, 

and for the regulation of basal metabolic rate. Normal thyroid function depends on the two 

trace elements iodine and Se. The thyroid gland has the highest Se content per gram among 

all organs [96]. Thereby Se is not only present in the deiodinases, but also in glutathione 

peroxidases which are presumably required for the peroxide-dependent formation of T4. 

Iodine seems to be solely used for thyroid hormone synthesis which makes the thyroid 

system particularly vulnerable to iodine deficiency [97]. Diseases such as myxedematous 

cretinism and Kashin-Beck may result from combined iodine-Se-deficiencies [98, 99]. Today 

three types of deiodinases are known which do not only differ in sequence and structure, but 

they also catalyze different reactions. However, most enzymatic deiodination reactions 

require an endogenous reductant that has not yet been identified for the deiodinases. In fact, 

it is suggested that deiodinases may act as “single-use enzymes” in vivo [100]. The thyroid 

hormone system is very complex, especially in the anterior pituitary of the brain, which 

releases the thyroid-stimulating hormone; but different peripheral tissues must also respond 

appropriately to circulating T3 and T4. 

 

Deiodinase 1 
DIO1 (EC 1.97.1.10, formerly 3.8.1.4) was identified in 1990 as a selenoenzyme by two 

groups independently [94, 95]. The Sec-encoding UGA was discovered a little later [101, 

102]. DIO1 is a homodimeric plasma membrane protein and primarily deiodinates the 5’-

position of the phenolic ring [Figure 3], but it can also deiodinate the 5-position under certain 

circumstances. By its 5’-deiodination activity DIO1 converts L-thyroxine (T4), which is 
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secreted by the thyroid gland to the highest extent, to T3 representing the actual active 

thyroid hormone. Furthermore almost inactive reverse T3 (rT3) can be converted to 3,3´-

diiodo-L-thyronine. DIO1 expression is high in the liver, kidney, thyroid and pituitary gland. 

Trace levels of the enzyme can be detected in most other tissues with the exception of the 

brain, where DIO2 predominates. The relative contribution of different tissues to plasma T3 

levels via DIO1 activity is difficult to assess. Fast-exchanging tissues, such as liver and 

kidney, however appear to represent the primary sources. More than 80% of T4 is converted 

to T3 outside the thyroid. Moreover conversion to T2 and T1 is almost exclusively done 

outside the thyroid gland [103]. DIO1 expression is induced by elevated T4 and T3 levels and 

responds to increased carbohydrate intake. 6-propyl-2-thio-uracil (PTU) [104] and gold-I-

complexes, such as aurothioglucose, were described as potential inhibitors of several 

selenoenzymes including DIO1 [101, 105, 106]. 

 

Deiodinase 2  
Establishing DIO2 (EC 1.97.1.10) as a mammalian selenoenzyme was under debate until it 

could be proven that the functional SECIS element was present in the mRNA of the enzyme, 

even though it was located unusually far away (5.4 kb) from the UGA codon [107]. DIO2 is 

an ER-membrane protein [108]. It deiodinates the 5’-position with a preference for T4 over 

rT3. DIO2 is present in the central nervous system, in the pituitary gland and in the thyroid 

gland as well as in skeletal muscle, heart muscle, in the placenta and in brown adipose 

tissue. Low levels are detectable in the kidney and in the pancreas. As the predominant DIO 

form in the brain, DIO2 is responsible for more than 75 % of the local T3 production in this 

organ. T3 production within the brain is necessary, as there is only a minimal absorption of 

T3 from the blood stream across the blood-brain barrier [109]. Interestingly the T4:T3 ratio 1 

in the brain is approximately 1:1 in comparison to other tissues in which T4 is more 

abundant. Total T3 produced in peripheral tissues provides ~50 % of total plasma T3. Unlike 

DIO1, DIO2 is down-regulated by both, increasing T4 and rT3 levels and rapidly degraded 

via an ubiquitin-dependent pathway (half life: minutes to 1 h) [110]. All these mentioned facts 

allow a rapid fine tuning of local T3 production in response to changes in circulating T4 

levels. With the exception of mild growth retardation and hearing loss DIO2 knockout mice 

only show little gross phenotype abnormalities [111, 112]. DIO2 activity is only minimally 

affected by PTU and aurothioglucose. 
 
Deiodinase 3 
DIO3 (EC 1.97.1.11) was discovered in 1995 [113]. Unlike DIO2, DIO3 deiodinates the 5-

position of the tyrosyl ring [Figure 2]. The resulting products cannot bind to the nuclear T3 

receptor and have therefore no classical thyromimetic effect. Thus, the prime physiological 
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function attributed to DIO3 is the inactivation of T3 and T4. Brain, placenta and pregnant 

uterus express considerably high amounts of DIO3. Persistently high levels of DIO3 and low 

levels of T3 may however have deleterious effects upon central nervous system 

development and brain function [113]. The particular expression pattern for DIO3 presumably 

reflects the organism’s attempt to protect the fetal central nervous system from inappropriate 

levels of T4 and T3 [114]. DIO3 is induced with increasing T4 levels, and like DIO2 the 

enzyme is almost insensitive towards PTU and gold(I). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Metabolic pathways of L-thyroxine 
Shown are the structures of L-thyroxine (T4), its primary metabolites T3 and reverse T3 and 
their metabolic fates. The respective deiodinases are indicated. Alternative pathways, such as 
glucuronidation or sulfation, are not shown. 
 
2.2.4 Selenoprotein P 
Selenoprotein P not only represents the major selenoprotein in plasma, but also provides 

more than 50 % of total plasma Se [115]. Its existence was originally discovered in 1982 in 

rats and later confirmed for other mammalian species [116, 117]. SelP mRNA is detectable in 

a number of tissues. The majority of SelP occurring in plasma (>80 %) is secreted by the 

liver and presumably enters target cells via a receptor-mediated mechanism [118, 119]. 

Unlike most selenoproteins that contain only one selenocysteine per polypeptide chain 

mammalian SelP contains up to 10 selenocyteine residues per chain [120–122]. Two 

selenocysteines apparently form selenyl-sulfide bridges with cysteine residues [123]. SelP is 
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an established marker for the nutritional Se status [118, 124]. Its extracellular localization and 

the repression of SelP expression during acute phase reaction, as well as its intrinsic high Se 

content and plasma concentration, led researchers to the assumption that the primary 

functions of SelP consist in the storage and the transport of Se [116, 125, 126, 127]. Studies 

using radiolabelled 75Se support this hypothesis by demonstrating Se enrichment in brain, 

kidney and testes [116, 128]. The tendency of Se to bind heavy metal ions and its redox 

properties also suggest functions for SelP as a plasma antioxidant and as a heavy metal 

antidote [129–133]. However, the belief that SelP functions as an effective antioxidant is 

challenged by the fact that no efficient reductant has been identified in sufficient 

concentrations in the plasma as yet [134, 135]. In 2003, more than 20 years after its 

discovery, results regarding the consequences of SelP-gene disruption were published for 

mice [136-138]. These results show that SelP functions as a Se-transport-molecule, 

distributing nutritional Se from the liver to peripheral organs. SelP-knockout mice had an 80–

90 % decreased plasma Se concentration. Se tissue concentrations and selenoenzyme 

activities dropped markedly in the brain, in kidney, and in testes [138]. Whereas mice with a 

complete tRNA [Ser]Sec knockout were not viable in utero, embryonal development in SelP 

knockouts showed no obvious deficits. Symptoms which could be attributed to the SelP 

knockout did not become evident prior to the third postnatal week [139]. These data show 

that SelP itself is not of vital importance during early development, and they further indicate 

that SelP is not the underlying cause of embryonal lethality in selenoprotein tRNA [Ser]Sec 

knockout mice. Deficits of a SelP knockout, occurring after some weeks of life include a 

reduced weight gain, sporadic fatalities and cerebral symptoms such as ataxia [140]. 

Interestingly, most symptoms, including the cerebral signs can be avoided by high 

supranutritional Se supply (studied for selenite) or by Se transfer from the females to their 

offspring by suckling [138, 140]. The symptomatic recovery correlates with increasing 

selenoenzyme activities in the affected tissues. The only symptom not responding to 

supranutritional dietary Se supplementation in SelP-knockout mice is the reduced fertility in 

males. Testicular Se levels and enzyme activities remain low [138, 141]. A withdrawal of 

supranutritional Se again leads to a rapid loss of Se in all organs, including the brain, and 

consecutively clinical symptoms (re)develop [118]. In a further study hepatic SelP release 

was selectively prevented by a liver-specific tRNA[Ser]Sec knockout [118]. As a 

consequence SelP levels in plasma dropped markedly. However, unlike in the complete SelP 

knockout experiments, neither a decrease in cerebral Se concentration and cerebral 

selenoprotein levels, nor clinical neurological symptoms could be observed in the liver 

knockout model [118, 138]. Only renal Se concentration and the secretion of GPx3 from the 

kidneys were diminished. These data indicate that SelP is required in the brain to retain Se 

and that transport mechanisms other than hepatic SelP exist to provide Se for most organs 
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at a supranutritional supply. In summary these results give evidence for the current 

hypothesis that Se from nutritional sources reaches the liver in a first-pass effect. In the liver 

Se is used partially for the synthesis of SelP which again functions as intermediary Se 

storage [118, 142]. In contrast to most other low molecular weight Se compounds 

(selenotrisulfides and acid labile Se) SelP is rather inert. SelP is then secreted into plasma 

and delivered to target tissues where it is taken up via a receptor-mediated mechanism. 

Within the cell SelP and subsequently selenocysteine are degraded to liberate Se which 

again is recycled for the synthesis of novel selenoproteins. Decreased SelP mRNA levels 

often occur in prostate cancer and suggest that SelP expression is down-regulated in this 

cancer type [143]. Indeed, Se levels are commonly reduced in the plasma of prostate cancer 

patients. Contrary to this Se concentration is even lower in patients with benign prostate 

hyperplasia [144]. Furthermore tissue Se concentrations have also been reported to be 

increased in prostate cancer [145]. 
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2.2.5 Information on further functional selenoproteins 
Information on further functional selenoproteins, known to date, is summarized briefly in 

Table 1. 

Table 1:  Comprehensive description of further functional selenoproteins and 

their functions as known to date 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 161no information 
available as yet

●With 669 residues and a molecular 
weight of about 73 kDa a large protein
●The C-terminal CysXXSec motif 
indicates redox properties

SelO

161, 164 - 167skeletal muscle, 
brain, lung

●Glycoprotein retained in the ER
●Some rare myopathies
(e.g. multiminicore myopathy, desmin-
related myopathy with Mallory anti-
bodies) are referred to as SelN
deficiency

SelN

161, 163many tissues with 
the highest level 

in brain and lower 
levels in liver and 

spleen

●Protein of the endoplasmatic reticulum 
(ER), containing presumably 122 amino 
acid residues, of which the first 23 form 
an ER signal sequence
●A CXXU motif indicates a redox
function

SelM

161, 162originally cloned 
in hemopoietic

stem cells

●Structural data are unavailable as yet
●Membrane associated protein
●Biochemical functions unknown so far

SelK

161liver, spleen, 
kidney, brain

●Structural data are unavailable as yet
in silico sequence analysis predicts up 
to 10 transmembrane domains
●Biochemical functions unknown so far

SelI

161liver, spleen, 
kidney, brain

●Globular protein with 122 amino acid 
residues. The Sec-residue is at position 
44
●Presumably possesses a redox
function by forming a selenyl-sulfide
bridge with Cys-40

SelH

160adrenals, brain, 
epididymis, 

pituitary, thyroid, 
prostate

●Different SSPs with molecular weights 
of 3, 4, 5, and 7 kDa were described
●Their function remains unknown as yet

SSPs (small 
selenoproteins)

159liver, spleen, 
kidney, brain

●No information availableSeP 18

153 - 158prostate●H2O2 degradation
●Associated with UDP-glucose-
glycoprotein-glucosyl-transferase in the 
endoplasmatic reticulum and therefore 
involved in quality control of miss-folded 
proteins

SeP 15

152prostate●300 kDa holoenzyme with 15 kDa
subunits
●Antioxidant function not yet proved

PES (prostate-
epithelial-specific-
selenoprotein)

146 - 151all mammalian
tissues

•Provides selenophosphate during the 
synthesis of functional selenoproteins:
HSe–+ ATP + H2O →
HSePO3

2- + HPO4
2- + AMP

Selenophosphate
synthetase
(Sps2, selD2)

Reference(s)Tissue
localization

Available information on 
structure, functions, catalyzed 
reactions and subcellular
localization

Functional 
selenoprotein
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Table 1 (continuation): Comprehensive description of further functional 

selenoproteins and their functions as known to date 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

161, 168expression in 
nearly all 

mammalian 
tissues

●In literature SelZ is partially referred to 
as a splice variant of mitochondrial 
thioredoxin reductase (TrxR2)

SelZ

161liver, kidney●Seems to possess a function related 
to DIO2

SelY

161, 169 - 174c.f. SelRSelX = SelR

179 - 189mainly muscle 
tissue

expression in 
nearly all 

mammalian 
tissues detectable

cytosolic and 
membrane-
bound forms 

detected

●The W is derived from the fact that 
SelW is one of the missing seleno-
proteins in Se deficient lambs with
“White Muscle Disease”
●Antioxidant function not yet proved

Selenoprotein W

161, 168liver, spleen, 
kidney, brain

●Identified using an in silico approach 
●Shows partial homology to SelW
●CGLU motif suggests a redox-related 
function

SelV

161, 168no information 
available yet

●A CysXXSec motif indicates redox
properties

SelT

161, 175 - 178numerous tissues
cytosolic and 

membrane bound 
forms detected

●First selenoprotein discovered using 
an in silico approach
●SelS has numerous glycosylation and 
phosphorylation sites
●SelS is also referred to as TANIS and 
its expression seems to correlate 
inversely with plasma glucose concen-
tration
●Recent studies investigate a role of 
SelS in reverse transport of missfolded
proteins into cytosol for ubiquitin-
dependent degradation 

SelS

161, 169 - 174liver, spleen, 
kidney, brain

●Cytosolic and nuclear protein with a 
molecular weight of 12 kDa. One Zn is 
additionally bound via 4 Cys residues
●Functions as methionine-sulfoxide-
reductase:
R-S (=O)-CH3 + thioredoxin-(SH)2→
R-S-CH3 + H2O + thioredoxin-S2

SelR = SelX

Reference(s)Tissue
localization

Available information on 
structure, functions, catalyzed 
reactions and subcellular
localization

Functional 
selenoprotein
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2.3 Specific physiological functions of Se, Se compounds and functional 
selenoproteins 

Observations on antidiabetic properties of ultra trace elements and trace elements were 

originally made for vanadium. The incubation of hepatocytes with vanadyl sulphate led to an 

increased glycogen synthesis in these cells [190]. For other cell types (adipocytes, skeletal 

muscle cells and fibroblasts) positive effects of vanadium compounds on glucose metabolism 

such as the stimulation of glucose uptake and oxidation and the induction of GLUT1 mRNA 

could be confirmed [191, 192, 193, 194, 195]. These effects could be attributed to an 

enhanced phosphorylation of signalling proteins downstream the insulin receptor like protein 

kinase c (PKC), phosphatidyl inositol-3-kinae (PI3K) and mitogen activated protein kinase 

(MAPK) [196]. Insulinomimetic properties of vanadate could also be found in vivo in type 1- 

and type 2-diabetic rats and mice when high doses (up to 5 mg per animal and day) of 

different vanadium compounds (vanadyl, vanadate, bis-[maltolato]-oxovanadium) were 

administered to the animals for several weeks [197, 198, 199, 200]. In more recent 

investigations it could be demonstrated that the insulinomimetic action of vanadium as the 

result of an enhanced phosphorylation of certain major proteins of the insulin signalling 

pathway is caused indirectly by an inhibition of PTPs (including PTP1B) rather than by a 

direct influence on phosphorylation. Vanadium compounds seem to bind to the catalytic 

active centre of PTP1B and therefore inhibit the enzyme activity [200, 201]. 

 

2.3.1  Effects of high selenate concentrations on glucose transport and uptake 
Regarding insulinomimetic effects of Se, in the literature similar findings as for vanadate, are 

reported for selenate (Se oxidation state +VI). The first investigation into an insulin-like effect 

of selenate was made in an experiment with rat adipocytes [202]. Incubation of these cells 

with 100 µmol/L selenate resulted in a stimulation of glucose transport which was equipotent 

to that of 1nmol/L insulin. In contrast the incubation of adipocytes with selenite (Se oxidation 

state +IV) showed a distinctly lower stimulation of glucose transport. In this study the 

increase in glucose transport activity by selenate was attributed to the translocation of the 

glucose transporters (GLUT-1 and GLUT-2) to the membrane surface. This insulin-like effect 

of selenate on glucose uptake could also be confirmed in rat soleus muscle. In this 

experiment the incubation of the muscle with both sodium selenite and sodium selenate in 

increasing concentrations resulted in a markedly stimulated glucose uptake. A maximum 

stimulation was reached with a concentration of 100 mmol/L [203]. 

Antidiabetic effects of selenate could also be observed for the in vivo application to type 1 

diabetic animals. When selenate was administered to rats and mice with streptozotocin 

induced type 1 diabetes orally or by intraperitoneal injection for 3 to 8 weeks in daily doses 
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up to half the lethal dose (≈ 3.5 mg/kg body weight) it lowered the elevated blood glucose to 

a level of non diabetic control animals [204, 205]. 

The oral treatment of mice with alloxan induced type 1 diabetes with a high dose of selenite 

(4 mg/kg body weight and day) however failed to reduce hyperglycemia in these animals. 

This observation suggests that fundamental differences in the intermediary metabolism of 

selenite and selenate lead to a differentiated influence of both Se compounds on pathways of 

nutrient metabolism [206]. 

 

2.3.2 Insulinomimetic effects of high selenate concentrations on gene expression 
related to glucose and fatty acid metabolism 

In addition to glucose uptake into insulin sensitive tissues followed by glycolysis and 

glycogen synthesis, insulin fulfils a broad spectrum of other metabolic roles including 

facilitating the entry of amino acids into cells for the production of cellular protein. Moreover 

insulin controls the expression of a number of genes. Some insulin responsible genes are 

key enzymes associated with both carbohydrate and fatty acid metabolism, e.g. glycogen 

synthase, glucokinase, phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-

diphosphatase (F-1,6-Dptase), fatty acid synthase (FAS) and glucose-6-phosphate-

dehydrogenase (G6PDH) [207, 208]. Several studies have shown that both vanadate and 

selenate also possess insulinomimetic properties regarding to glycolysis, gluconeogenesis, 

fatty acid synthesis and the pentose phosphate pathway. Vanadate was found to inhibit the 

expression of transfected chimeras of PEPCK in both FTO-2B and H4IIE rat hepatoma cells 

[209]. Similarly the oral administration of high selenate doses to type 1 diabetic rats partly 

normalized the changed expression of glyolytic and gluconeogenic marker enzymes (in 

diabetes the expression of glycolytic enzymes is down-regulated and gluconeogenic 

enzymes are up-regulated) to the level of non-diabetic animals. An up-regulation of glycolytic 

enzymes, in particular L-type pyruvate kinase, and for gluconeogenesis a down-regulation of 

PEPCK could be observed [210]. Regulation of the expression of lipogenic enzymes by 

selenate was also found as being similar to that of insulin. FAS and G6PDH activity were 

normalized in the livers of type 1 diabetic rats and hepatocytes. Selenate treatment of the 

diabetic animals or cultured rat hepatocytes restored the expression of both FAS and 

G6PDH, demonstrating that selenate was capable of stimulating lipogenesis in the liver [211, 

212]. 

 

2.3.3 Further physiological effects of high selenate doses 
A changed lipid metabolism in diabetic humans and animals with syndrom X is assumed to 

be one factor contributing to a higher risk of heart disease and apoplectic stroke. Against this 

background a study evaluated cardiac performance in streptozotocin induced type 1 diabetic 
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rats. The treatment of one rat group with supranutritional selenate doses improved glucose 

tolerance in these animals and normalized postprandial plasma glucose levels. Beside a high 

blood glucose concentration untreated diabetic rats developed increased left ventricular 

pressure. Treatment with selenate normalized the heart function. Moreover plasma lipid 

levels, triglycerides, cholesterol and free fatty acids were improved in selenate treated rats 

[205]. Thus a powerful influence of selenate on lipid metabolism seems to represent a further 

medical effect of high selenate doses [205, 213].  

 

2.3.4 Cellular mechanism behind the antidiabetic = ”insulinomimetic” action of high 
selenate doses 

All effects of insulin at the cellular level as described above are initiated by insulin binding to 

its plasma membrane receptor. Following insulin binding to the α subunit of the insulin 

receptor the protein changes its conformation and undergoes a multi-site phosphorylation in 

the cytosolic β subunit. By a subsequent phosphorylation of a number of endogenous 

substrates the insulin signal is spread and amplified by transmission to other signalling 

proteins. The insulin receptor substrate (IRS) family which includes IRS1, IRS2 and IRS3 

(p60) is responsible for a number of insulin effects [214]. In contrast to insulin the 

insulinomimetics do not bind to the insulin receptor. Nevertheless the results of some studies 

show an increased phosphorylation of the β subunit of the insulin receptor and of its 

substrate IRS1. An increased tyrosine phosphorylation of the insulin receptor’s β subunit has 

been observed when cell cultures were incubated with vanadate. The insulinomimetic effect 

of selenate also seems to derive from an enhanced phosphorylation of certain compounds of 

the insulin signalling pathway. In the above mentioned early study with rat adipocytes not 

only could a stimulation of glucose transport be attributed to the incubation of these cells with 

selenate, but also important insight into the mechanism by which selenate develops its 

antidiabetic properties was given. After incubation of adipocytes the analysis of the whole cell 

lysate showed an enhanced phosphorylation of several cellular proteins with molecular 

weights of 170-, 95-, and 60 kDa. Thereby the 170 kDa protein presumably represented 

IRS1 and the 95 kDa protein was related to the β subunit of the insulin receptor [202]. In a 

study with NIH3T3 HIR 3.5 cells the effect of selenate on IRS1 phosphorylation could be 

confirmed [215]. In further experiments with 3T3L1 adipocytes and hepatocytes it could be 

demonstrated that beside IRS1 and the β subunit of the insulin receptor the p42 and p44-

subunit of MAPK were also affected by an increased phosphorylation due to incubation with 

selenate in concentrations up to 1 mmol/L. Studies on general effects of insulin signalling 

proteins confirmed the the crucial role of PI 3-kinase for stimulation of DNA synthesis, 

glucose transporter translocation, regulation of glycogen synthase, glycogen synthase 
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kinase-3, the expression of PEPCK and G6PDH expression as well as GLUT-4-mediated 

glucose transport and membrane ruffling. One protein that has been identified as lying 

downstream of PI3-kinase is p70 S6 kinase [216]. Both S6 kinase and ribosomal S6 protein 

play an important role in the initiation of protein synthesis. In a study with primary adipocytes 

the incubation of these cells with selenate (100 µmol/L – 10 mmol/L) resulted in an increased 

phosphorylation of S6 kinase. In this study and in the above mentioned early study [202] the 

insulinomimetic effects of selenate (glucose uptake, increase in the phosphorylation of the β 

subunit of the insulin receptor and of S6 kinase) needed a certain incubation time until the 

onset of the reaction and an even longer period until a maximum response was achieved 

[217, 218]. 

On the whole the results of the studies mentioned so far have shown that selenate in high 

doses (in vivo: application of doses up to half the lethal dose = up to 3.5 mg Se as 

selenate/kg body weight, in vitro: incubation of living cells with 100 µmol/L – 10 mmol/L) has 

a distinct insulinomimetic effect which could be attributed to an increase in the 

phosphorylation of some major proteins of the insulin signalling pathway (c.f. Figure 4 in the 

“Discussion section”). 

 

2.3.5 Opposite effects of Se, Se compounds and functional selenoproteins on 
metabolic disorders 

Opposite effects of Se regarding the development of insulin resistance and obesity have 

been shown in a recent study with transgenic mice overexpressing the selenoprotein GPx1. 

The decreased phosphorylation of the β subunit of the insulin receptor and of AKT in liver 

and muscle were attributed to GPx1 overexpression and led to the early onset of insulin 

resistance and obesity [219, 220]. 

Data of a human study support the hypothesis that there may be a coherence between GPx1 

activity and diabetes incidence. Remarkable ethnic differences exist in erythrocyte GPx1 

activity and populations with a higher GPx1 activity concurrently showed a higher incidence 

of gestational diabetes [221]. 

Another trial highlighting the inverse relation between H2O2-detoxifying enzymes and insulin 

resistance focussed on the effect of catalase overexpression. Catalase overexpressed mice 

with dietary induced insulin resistance had a slightly better protection against cardiac 

contractile dysfunction compared to wild type (WT) mice. However intrinsic insulin sensitivity 

in catalase overexpressed mice was significantly lower in comparison to WT mice, and it was 

based on a significantly increased expression of PTP1B due to catalase overexpression 

[222]. 
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2.4 Protein tyrosin phosphatase 1B - its function and regulation and its role 

regarding insulin resistant diabetes and obesity 
The PTPase family comprises a number of classes of functionally and structurally unrelated 

enzymes; it represents an important component of the protein-tyrosine 

phosphorylation/dephosphorylation mechanism, which regulates the level of tyrosine 

phosphorylation of a number of intracellular proteins. The so called cysteine based 

phosphatases (CBPs), which include protein tyrosine phosphatases (PTPs), dual-specificity 

phosphatases, low-molecular-weight PTPs, and the lipid phosphatase PTEN, all contain a 

nucleophilic catalytic cysteine within a conserved motif that enables these enzymes to 

dephosphorylate phosphoproteins or phospholipids [223, 224, 225]. 

Apart from the low molecular weight PTPs in recent years many studies have focussed on 

protein tyrosine phosphatase 1B (PTP1B) acting as a negative regulator of insulin signalling 

by its ability to dephosphorylate the insulin receptor substrates 1 and 2 as well as the 

intracellular β subunit of the insulin receptor [226]. 

Since obesity, insulin resistant type II diabetes and the metabolic syndrome represent 

disorders increasing in particular in industrial countries, research into molecular targets such 

as PTP1B linked to these diseases is gaining in importance [227, 228, 229]. 

In severe obese humans (body mass index > 40) a clear relation could be shown between 

obesity, insulin resistance and the activity of PTP1B in adipose tissue. Therapy of insulin 

sensitivity accompanied by weight loss led to a 20% reduction of PTP1B activity in adipose 

tissue [230]. Mice with a knockout of the PTP1B gene (PTP1B null) develop normally, with a 

lifespan comparable to their wild type littermates (WT) but they require only half the level of 

insulin for an optimum insulin signalling compared to WT mice [231]. When subjected to a 

high-fat diet PTP1B null mice were resistant to weight gain and remained insulin sensitive, 

whereas WT mice rapidly gained weight and became insulin resistant [232, 233]. Similar 

observations regarding insulin resistance were made for mice treated with an antisense 

oligonucleotide for PTP1B [233, 234, 235]. A strong inhibition of PTP1B enzyme activity 

along with an amelioration of diabetic symptoms could also be shown for vanadium 

compounds which act as potent PTP1B inhibitors [200, 201, 236]. Apart from the regulation 

of PTP1B activity by exogenously applied agents a number of recent investigations have 

focussed on the physiological inhibition of PTP1B in mammals via oxidation of the active site 

cysteine residue, Cys215, by H2O2 and reactive oxygen species. The activity could be 

recovered by the addition of dithiothreitol (DTT) which reduces the sulphenic acid 

intermediate and glutathionylated enzyme [237, 238]. Two investigations using mass 

spectrometry could further elucidate the stepwise oxidation of cysteine 215 in PTP1B by 

H2O2 [239, 240]. The cysteine sulphenic acid (PTP1B-SOH) may indeed undergo such 

reactions, although it can be oxidized further to other non-reducible derivatives like cysteine 
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sulphinic acid (PTP1B-SO2H) and cysteine sulphonic acid (PTP1B-SO3H). A possible way to 

prevent this oxidation of cysteine sulphenic acid to irreversibly oxidized forms is the reaction 

to the sulphenyl amide followed by the reaction with glutathione. The formation of a mixed 

disulfide between Cys-215 of PTP1B and GSH (or GSSG) is termed “glutathionylation”. 

 

Also the direct reaction of the reduced Cys 215-SH with high concentrations of GSSG (> 25 

mM) may induce the formation of glutathionylated PTP1B [241]. 

In mammalian metabolism one major prooxidative compound is H2O2 which is not only 

generated as a coproduct of the respiratory chain and some oxidoreductases but also after 

insulin binding to the insulin receptor in insulin sensitive tissues, presumably for the 

differential regulation of PTP activity [242, 243]. Thus the influence of Se and GPx1 on H2O2-

and glutathione-concentration, representing just the critical metabolites in PTP1B regulation, 

strongly suggests a link between Se metabolism and pathways of intermediary metabolism.  

 

2.5 Concluding remarks and relevance to the projected investigations 
In industrial countries the number of patients suffering from obesity, insulin resistant diabetes 

and the metabolic syndrome is increasing permanently [227, 228, 229, 244]. Concomitantly 

in these countries the fortification of foodstuffs derived from plants and animals with vitamins, 

minerals and trace elements including Se by fertilization and animal nutrition is intensively 

practised [245 –252]. Health-conscious individuals frequently consume multivitamin and/or 

Se supplements in order to optimize their antioxidant defense and to obtain a better 

protection against several cancer types [253]. 

 

Information from literature available to date suggests that Se in addition to its antioxidative 

function plays a pivotal role in the regulation of metabolic processes. 

 

• On the one hand high supranutritional selenate doses effect antidiabetic properties. 

• On the other hand an exaggerated detoxification of H2O2 by glutathione peroxidase 1, 

representing the best characterised selenoprotein, seems to accelerate the 

development of insulin resistant diabetes and obesity. This even negative aspect of 

Se supply may be related to its influence on the regulation of H2O2 and glutathione 

representing the critical metabolites modulating the activity of insulin antagonistic 

protein tyrosine phosphatases. 

 

The aim of the present studies consequently was to examine molecular coherences and 

mechanisms behind both physiological properties of Se in different rodent species. 
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3. Insulin-sensitizing and antidiabetic features of high supranutritional selenate 
doses 

3.1 Introduction to chapter 3 
At the beginning of the experiments in this study little information on antidiabetic effects of 

Se, Se compounds and selenoproteins existed. The studies available had been carried out 

only with type I diabetic animals and with tissue cultures. Moreover insulinomimetic features 

of Se have been described exclusively for selenate (Se oxidation state: +VI) [202, 203-206, 

210, 212]. 

 

• No information was available on possible insulinomimetic or insulin sensitizing 

properties of selenate in animals with insulin resistant type II diabetes and obesity.  

• Information on the molecular mechanisms behind the insulinomimetic benefits of 

selenate in relation to mammalian Se metabolism was lacking. 

• Moreover no investigations on a distinct differentiation of the insulinomimetic 

properties of selenate in comparison to other Se compounds on obesity, insulin 

resistance and diabetes could be found. 

 

 The aim of the first part of the present studies consequently was to examine if selenate 

also evolves insulinomimetic features in type II-diabetic animals. For this purpose two 

experiments were carried out with C57BL/KsOlaHsd-Lepr db mice (dbdb mice) with a 

defective leptin receptor, featuring severe symptoms of obesity and insulin resistant type 

II diabetes. 

 The second main topic of the studies with dbdb mice was to examine whether 

insulinomimetic properties are only derived from selenate (Se oxidation state: +VI) or if 

other inorganic Se compounds like selenite (Se oxidation state: +IV), frequently used as 

Se supplements for diets of laboratory animals and livestock, also have insulinomimetic 

effects. 

 The third aim of the dbdb mouse studies was to investigate molecular mechanisms 

behind insulinomimetic effects of selenate in type II diabetic animals. 

 

The experimental setup of the two dbdb mouse trials as well as the results of these 

experiments and a discussion of the results is given in the following three publications: 

1. Müller A.S., Pallauf J. and Rafael J. (2003): The chemical form of selenium affects 

insulinomimetic properties of the trace element: Investigations in type II diabetic dbdb 

mice. J. Nutr. Biochem. 14, 637 – 647 

• [publication No. 254 in the Literature Index] 
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2. Müller A.S., Erika Most and Pallauf J. (2005): Effects of a supranutritional dose of 

selenate compared to selenite and selenium deficiency on insulin sensitivity in type II 

diabetic dbdb mice. J. Anim. Physiol. Anim. Nutr. 89, 94 – 104 

• [publication No. 255 in the Literature Index] 

 

3. Müller A.S. and Pallauf J. (2006): Compendium of the antidiabetic effects of 

supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic 

dbdb mice. J. Nutr. Biochem. 17 (8), 548 - 560 

• [publication No. 256 in the Literature Index] 

 

 

The above mentioned publications can be found as the “Attachment 2” of this work, following 

page 85. 
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4. Potentially critical functions of Se regarding obesity, insulin resistance 
glucose- and lipometabolism 

4.1 Introduction to chapter 4 
During the experiments with dbdb mice it became evident that antidiabetic effects of Se are 

restricted to the oral application of high supranutritional selenate doses. The fact that in 

industrial countries on the one hand the incidence of diabetes is permanently increasing, and 

on the other hand a fortification of foodstuffs with trace elements like Se is also widely 

practised, raised the question if a permanent surplus of dispensable Se may be critical for 

the development of diabetes. To investigate this hypothesis two studies with healthy growing 

rats were carried out. Shortly after the completion of the data analysis of the first rat study, 

the first critical findings on the effects of Se on insulin resistant diabetes and obesity were 

published [219, 220, 221]. 

The few results published regarding this undesirable aspect of Se were however obtained 

either from a non-physiological animal model with an overexpression of the selenoprotein 

GPx1 [219, 220] or they represented a merely statistical data analysis [221]. Moreover these 

investigations did not provide sufficient explanations of mechanisms by which Se may 

develop undesirable influences on insulin resistant diabetes and obesity. 

 

A physiological model examining the effects of a permanent moderate surplus of Se on 

molecular pathways linked to insulin resistant diabetes and obesity was lacking. 

• Thus the aim of the second part of this work consequently was to critically examine 

cellular pathways by which Se can potentially influence the development of obesity, 

insulin resistance and type II diabetes even negatively. 

 

Therefore two trials were performed with healthy growing rats fed Se at the recommended 

dietary level and in slightly supranutritional doses (5-and 10-fold the recommended daily 

amount). 

 

 To find out critical cellular triggers regarding insulin resistant diabetes and obesity 

influenced by Se, a gene expression profile was carried out using microarray analysis. 

 The second main focus of the analyses was the examination of the regulation of PTP1B 

by Se. In current literature this insulin antagonistic phosphatase is discussed as one 

promising target for both the development and therapy of insulin resistance and obesity. 

Since Se and GPx1 are involved in the regulation of glutathione and H2O2 in tissues, 

representing those central metabolites in the modulation of PTP1B, the idea suggested 

itself to examine if PTP1B may be one molecular target triggering undesirable influences 

of Se on insulin resistant diabetes and obesity. 
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The experimental design of both experiments, the results of these experiments and a 

discussion of the results is given in the following two publications: 

 

1. Müller A.S., Astrid Bosse and Pallauf, J. (2006): Selenium an ambivalent factor in 

diabetes? Established facts, Recent findings and Perspectives. Current Nutrition and 

Food Science 2 (2), 151 – 168 (Invited Review: Combined review and original 

contribution containing a depiction of new experimental results) 

• [publication No. 257 in the Literature Index] 

 

2.  Mueller AS, Bosse AC, Most E, Klomann SD, Schneider S and Pallauf J. (2007): 

Selenium a risk factor for diabetes development ? The regulation of PTP1B may be 

one part of the puzzle (submitted to J Nutr Biochem) 

• [publication No. 258 in the Literature Index] 

 

 

The above mentioned publications can be found as the “Attachment 2” of this work, following 

page 85. 

 

Additional information regarding publication 2: The latter publication is meanwhile in press in 

the Journal of Nutritional Biochemistry under a changed title. During the review process the 

reviewers desired changing of the title. The publication now reads: 

Mueller AS, Bosse AC, Most E, Klomann SD, Schneider S, Pallauf J. 

Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied 

in growing rats. J Nutr Biochem. 2008 Jul 3 [Epub ahead of print] 
http://www.ncbi.nlm.nih.gov/pubmed/18602818?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.
Pubmed_ResultsPanel.Pubmed_RVDocSum 
 

 

 

 

 

 

 

 

 

 

 27

http://www.ncbi.nlm.nih.gov/pubmed/18602818?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


5. General discussion and future perspectives 
5.1  Antidiabetic effects of high supranutritional selenate doses 
5.1.1 Knowledge concerning antidiabetic effects of high supranutritional selenate 

doses at the start of the present studies 
When starting the present studies on effects of Se on type II diabetes with dbdb mice only 

little information regarding antidiabetic effects of high supranutritional selenate doses (Se 

oxidation state +VI) were available. Furthermore all these investigations were carried out in 

tissue cultures and with animals with alloxan –or-streptozotocin-induced type I diabetes 

[202–205, 210-213, 217, 218]. 

No information on possible antidiabetic effects of high supranutritional selenate doses was 

available for animal species with type II diabetes and insulin resistance. 

Moreover no results on a distinct differentiation of the insulinomimetic properties of selenate 

(oxidation state +VI) in comparison to other inorganic Se compounds (e.g. selenite: oxidation 

state +IV) were reported before the start of the present studies. 

 

5.1.2 Antidiabetic effects of high supranutritional selenate doses in a rodent model 
with severe insulin resistant diabetes: New investigations into the molecular 
mechanism behind these effects 

In the first study with adult male dbdb mice a group with Se deficient nutrition for 10 weeks 

was compared to two experimental groups receiving the same diet in combination with 15% 

of their individual half lethal dose of selenite (Se +IV) or selenate (Se +VI). These Se 

supplements amounted to about 15 to 20-fold the recommended dietary level. At the 

beginning of the experiment the animals already had an established severe type II diabetes, 

indicated by a very high starved blood glucose concentration (about 25 mmol/L = 450 

mg/dL). At the end of the trial characteristic changes in the activity of some glycolytic and 

gluconeogenic enzymes towards a normalization of metabolism (increase in glycolysis and 

decrease in gluconeogenesis) could be analyzed exclusively in selenate treated animals. 

These results are in accordance with prior examinations with type I diabetic animals. The 

changes regarding glycolysis and gluconeogenesis measured in the first dbdb mouse trial 

were not as distinctive as reported in prior examinations [204, 212]. This observation may 

result from the lower Se doses used in this trial compared to other investigations (15% of the 

LD50 vs. 50 to 100% of the LD50). Precisely the use of these lower doses was intended to test 

if antidiabetic effects could already be obtained with lower and thus more physiological 

selenate concentrations. 

• The most important and new finding of the first dbdb mouse study was the 

observation that the application of high supranutritional selenate doses led to an 

amelioration of insulin sensitivity in the type II diabetic mice, as found by whole body 
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insulin sensitivity tests [249]. Selenite treatment even caused an impaired diabetic 

status and deteriorated insulin sensitivity. The ineffectiveness of selenite in diabetes 

therapy was also found in a study with alloxan treated type I diabetic mice, which was 

published soon after the results of the first dbdb mouse trial [206]. 

 

The amelioration of insulin sensitivity by therapy with high supranutritional selenate doses 

was the basis for the second study with female growing dbdb mice focussing on the 

examination of molecular mechanisms behind the insulin sensitizing effects of selenate. 

 

In prior studies with tissue cultures and type I diabetic animals the insulinomimetic effects of 

selenate were linked to an increased phosphorylation of certain proteins of the insulin 

signalling pathway (c.f. for details 2.3.4) [202, 217, 218]. The proteins with increased 

phosphorylation investigated in the above mentioned studies are numbered with 1) and 2) 

and indicated by orange arrows in Figure 4. 

 

 
Figure 4:  Main pathways of the insulin signalling cascade and interfaces with 

antidiabetic effects of high supranutritional selenate doses 

 

The experimental conditions in the second trial with growing female dbdb mice were similar 

to those in the first dbdb mouse trial with adult male animals [254, 255]. In this experiment 

growing female animals were chosen deliberately because diabetes development in female 

dbdb mice is not as rapid as in male animals [259]. Thus in contrast to the first trial in which 

adult male mice with fully established diabetes served as experimental animals in the second 

trial growing animals were chosen in order to test the retarding effect of selenate on diabetes 
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development. Furthermore in the second dbdb mouse trial slightly higher selenite- and 

selenate concentrations (up to 35% of the LD50 = about 30 to 35-fold the recommended 

dietary amount) were applied to guarantee sufficient antidiabetic effects. In comparison to 

prior studies with type I diabetic animals these doses were however still relatively low. The 

results of the first dbdb mouse trial could be corroborated by the data of the second trial. 

Insulin sensitivity could be maintained till the end of the experiment in selenate treated mice 

whereas a distinct impairment of insulin sensitivity was measured in Se deficient and selenite 

treated mice. 

 

• Besides very powerful influences of selenate on the reduction of gluconeogenesis 

and on lipid metabolism, a central result of the second dbdb mouse study was the 

finding that high supranutritional selenate doses reduce the activity of insulin 

antagonistic protein tyrosine phosphatases (PTPs) [255, 256]. 

 

This result is a novel finding, which has not been reported previously, and it is concurrently 

not inconsistent with prior results. The reduction of PTP activity provides a plausible 

explanation for the maintenance of insulin sensitivity due to the treatment of insulin resistant 

animals with high supranutritional selenate doses (Figure 5). Since PTPs and in particular 

PTP1B act as potent inhibitors of insulin signalling, the inhibition of these enzymes increases 

insulin sensitivity and simultaneously effects an increase in the phosphorylation of 

downstream proteins of the insulin signalling pathway. Effects on metabolic pathways like 

glycolysis, gluconeogenesis and lipid metabolism finally arise as the consequence of PTP 

inhibition and the subsequent increased phosphorylation. 

 

Thus in accordance with prior investigations metabolic effects of high supranutritional 

selenate doses [203–205, 210-212] are mediated by an increase in the phosphorylation of 

central proteins in the insulin signalling pathway [202, 217, 218], but in consideration of the 

present results they represent the consequence of a strong inhibition of PTPs rather than 

reflecting a direct influence of selenate on protein phosphorylation (Figure 4). 

 

• The second central finding regarding insulin sensitizing and antidiabetic effects of 

high supranutritional selenate doses derives from the results of the “PTP in vitro 

inhibition test” (Figure 5) [255, 256]. 

 

The results of this test were initially surprising, since selenate (Se +VI) per se did not inhibit 

PTP activity in vitro. A strong inhibition of PTP activity could be found instead for the selenite 
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oxidation state +IV [derived from: a) selenate, reduced with HCl, b) selenite, c) selenious 

acid]. A lower, but still distinct inhibition of PTPs could be obtained with selenotrisulfides. The 

coherence between the Se compound used and PTP inhibition could be clearly displayed by 

correlation and regression analyses (Table 2, Figure 5). 

With the exception of selenate a distinctly negative correlation could be found between the 

Se concentration in the assay and PTP inhibition for Se +IV compounds and for 

selenotrisulfides (oxidation state – I). The slopes in square regression analyses were 

however distinctly steeper for the Se +IV compounds compared to selenotrisulfides, 

confirming their lower inhibition. 

 

 

 
Figure 5: In vitro inhibition kinetics of different Se compounds on PTP activity in 

dbdb mouse liver cytosol 

 

A plausible explanation for the results of the in vitro inhibition assay is founded on 

fundamental differences in mammalian Se metabolism. Se from selenite (+IV) and selenate 

(+VI) is absorbed by different mechanisms [13]. Selenite either reacts with thiols like 

glutathione prior to its absorption and enters the peripheral organs in the form of 

selenotrisulfides (oxidation state: - I) or it is reduced in the erythrocytes to the selenide 

oxidation state –II and delivered to peripheral organs bound to albumin [14, 15, 16]. In 

contrast unmodified selenate can be detected in the bloodstream and in peripheral tissues 

[17, 19]. During successive selenate reduction both thiol reactive oxidation states as selenite 

(+IV) and selenotrisulfides (–I) can be formed intermediately in vivo. 
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Table 2:  Correlation- and regression-analyses for the in vitro inhibition kinetics of 

different Se compounds on PTP activity in dbdb mouse liver cytosol 

Relation examined 

 

Se compound and concentration : PTP inhibition 

 

Selenate (Se +VI)  

Pearson correlation 0 

p<0.001 

Linear regression y = 100 

R2 = 1.0 

Selenate reduced with HCl (Se + IV)  

Pearson correlation -0.854 

p<0.003 

Square regression 4 x 10 -6 x2 - 0.0278 x + 84.688 

Selenite (Se + IV)  

Pearson correlation -0.895 

p<0.001 

Square regression 5 x 10 -6 x2 - 0.0401 x + 89.414 

Selenious acid (Se + IV)  

Pearson correlation -0.887 

p<0.001 

Square regression 5 x 10 -6 x2 - 0.0392 x + 91.310 

Selenotrisulfides (Se – I)  

Pearson correlation -0.888 

p<0.001 

Square regression 2 x 10 -6 x2 - 0.0153 x + 93.291 

 

In vivo selenate application therefore matches in vitro effects of the selenite- and 

selenotrisulfide oxidation states +IV and –I. But an effective PTP inhibition by oral selenate 

application presumably also depends on the kind of application: As practised in the dbdb 

mouse trials a quick and intermittent flooding of selenate to the peripheral organs by tube 

feeding can be assumed as more effective than feeding the Se as a dietary component, 

because the organism has then a rapid need for selenate reduction. 

 

As biochemical mechanisms behind PTP inhibition through oral selenate application 

mimicked by in vitro incubation with selenite the following two pathways are likely: 
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1. Se IV compounds (derived from selenate feeding or in vitro incubation with selenite) 

react with the active site SH group of PTP1B and form a cysteine-selenodisulfide-

bond, leading to PTP1B inhibition (Figure 6A). 

2. Se IV reduction leads to the formation of superoxide radicals [260, 261] which attack 

the active site cysteine of PTP1B and effect its oxidation to the inactive sulfenic acid 

[262, 263] as shown in Figure 6B. 

 

A) 
 

 

 

B) 
 

 

 

 

 

 

 

 

Figure 6: Presumed pathways of PTP1B inhibition by oral selenate application or 

in vitro incubation with selenite 

A) At the expense of glutathione selenite directly reacts with the active 

site SH-group of PTP1B 

B) At the expense of glutathione selenite generates superoxide radicals, 

which oxidize the active site SH-group of PTP1B to a sulphenic acid 

 

Thus it is plausible that an effective PTP inhibition can only be achieved in the presence of 

the thiol reactive selenite oxidation state +IV. A distinctly lower PTP inhibition seems to take 

place through the selenotrisulfide oxidation state –I. The inhibitory effect of both Se 

compounds on PTP activity is based on their need for thiols for their further reduction. 

Future investigations using mass spectrometry and radical trappers could be helpful for the 

further explanation of the exact reaction mechanisms by which high doses of oral selenate 

can inhibit PTP1B activity. 

 

In conclusion both dbdb mouse studies [254, 255, 256] could contribute to the clarification of 

molecular mechanisms by which the oral application of high supranutritional selenate to type 

SeO32- GSSeSG GSSeH H2Se Se (0) 

4 GSH GSSG GSH GSSG GSH GSSG O2 O2-

O2-PTP-SH + + H2O PTP-SOH + OH-

PTP-SH + SeO3
2- + 3GSH PTP-SSeSG + GSSG
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II diabetic animals with insulin resistance can perform antidiabetic and insulin sensitizing 

effects (Figure 7). An increased insulin sensitivity obtained by oral selenate supply thereby 

involves selenate reduction during Se metabolism and the subsequent inhibition of PTPs by 

intermediary formed Se IV compounds. Thus the increased phosphorylation of other proteins 

of the insulin signalling pathway is more likely a consequence of PTP inhibition than a direct 

influence of Se on protein phosphorylation. 
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Figure 7: Outline of the insulin sensitizing and antidiabetic effects of high 

supranutritional selenate doses 

 

5.1.3 Future perspectives for the use of high supranutritional selenate doses as a 
therapeutic agent in the treatment of insulin resistance and type II diabetes 
In conclusion the present trials with type II diabetic dbdb mice could elaborate the following 

novel findings on antidiabetic effects of Se: 

1) Selenium develops antidiabetic effects also in type II diabetic species and they are 

based on an amelioration of insulin sensitivity. 

2) Diabetes therapy with selenium is restricted to the oral application of high 

supranutritional selenate doses, and the antidiabetic effects of selenate are related in 

particular to mammalian Se metabolism 

3) Contrary to prior studies it could be demonstrated in a type II diabetic animal model 

that insulinomimetic and insulin sensitizing effects of selenate are based on an 

inhibition of PTPs rather than on a direct influence of phosphorylation of downstream 

proteins in the insulin signalling pathway  
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The safety of high supranutritional selenate doses, as required for antidiabetic effects, 

however has so far only been tested in tissue cultures and in animal models and it is still 

questionable if selenate application in therapeutical and thus physiological doses can be 

relevant for diabetes treatment in humans. The present studies with dbdb mice however 

could contribute to a considerably better understanding of the molecular mechanisms by 

which selenate attains antidiabetic effects. 
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5.2 Potentially critical functions of Se regarding insulin resistant diabetes and obesity 
During the research on antidiabetic and insulin sensitizing features of Se selenate it 

appeared that these effects, based on protein tyrosine phosphatase inhibition, represent a 

merely biochemical effect of high supranutritional selenate doses (Se +VI). Due to an 

increasing health awareness in industrial countries the fortification of foodstuffs with vitamins, 

minerals and trace elements including Se by fertilisation, animal nutrition or pure addition is 

widely practised to improve product quality and to comply with consumer demands for 

functional food [245-253]. On the other hand an increased incidence of metabolic disorders 

like obesity, diabetes and syndrome X can be observed in these very countries [227, 228, 

244], and it raises the question if a permanent oversupply with de facto health-supporting 

substances may have undesirable properties regarding the above mentioned disorders. The 

first reports regarding such critical effects of Se [219, 220, 221] were published shortly after 

the evaluation of the data from the first rat study - scanning molecular mechanisms behind 

undesirable effects of Se on insulin resistant diabetes - was completed. In the following 

section a brief outline of the essential points from studies dealing with critical effects of Se on 

insulin resistant diabetes and obesity is given: 

 

5.2.1 Findings on critical functions of Se regarding insulin resistant diabetes and 
obesity in the most recent literature 

A U.S. study, published in 2003 [221] examined the coherence between erythrocyte 

glutathione peroxidase activity and gestational diabetes in 408 women. In this study two 

major findings were pointed out: 

1. Women from different ethnic groups which were included into this project showed 

significant differences in their erythrocyte GPx1 activity. Significantly higher 

erythrocyte GPx1 activities in African-American women compared to Caucasians at 

the beginning of pregnancy were maintained till the third trimester. During pregnancy 

erythrocyte GPx1 activity in all three ethnic groups increased. The examination of 

nutritional habits in the different ethnic groups revealed that African-American women 

had a statistically significantly higher dietary fat intake, and thus additionally a highly 

positive correlation between dietary fat intake and erythrocyte GPx1 activity could be 

evaluated. 

2. Further data analysis in this study showed the existence of a significantly positive 

correlation between the height of erythrocyte GPx1 activity and the degree of insulin 

resistance during development of gestational diabetes. Women with a high GPx1 

activity also featured higher basal insulin- and reactive-C-peptide-levels to 

compensate for their insulin resistance. 
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Another interesting study, published in 2004 [219, 220], found an accelerated development of 

obesity and insulin resistant diabetes for mice with an overexpression of glutathione 

peroxidase 1. One group of mice in this experiment had an overexpression of whole body 

GPx1 (OE), whereas the control group consisted of animals of the black 6 wild type (WT). 

The mice of both groups were fed a diet containing a sufficient amount of 0.4 mg Se/kg diet 

for 16 weeks (week 8 after birth till week 24). Thus an alimentary Se deficiency could be 

excluded as a factor responsible for changes in GPx1 activity. 

OE mice had a 21% higher GPx1 activity in the liver and 3-fold higher GPx1 activity in 

skeletal muscle compared to WT mice. OE mice featured a 37% higher body weight 

compared to WT mice and they had a 20% higher absolute whole body fat content. By week 

24 basal insulin concentrations were significantly higher in OE mice compared to their WT 

companions. At the end of the experiment insulin resistance in OE mice was significantly 

higher than in WT mice. 

As the molecular cause for the increased insulin resistance the authors could show a 

decreased phosphorylation of the β subunit of the insulin receptor and of Akt a downstream 

protein involved in insulin signal transduction (c.f. Figure 4). 

 

A further study with mice, published in 2006 [222], did not directly examine the influence of 

glutathione peroxidase on insulin resistance - but instead the influence of catalase, the 

second main enzyme involved in cellular H2O2-detoxification. Feeding wild type mice a diet 

with a high sucrose content inherently led to the advanced development of insulin resistance, 

accompanied by an increased expression of PTP1B compared to mice fed a diet based on 

starch. In this experiment two further groups of transgenic animals had an overexpression of 

catalase (sucrose fed + catalase overexpression, starch fed + catalase overexpression). In 

particular sucrose fed mice with catalase overexpression featured the highest PTP1B within 

the experimental groups. The antioxidative effect of the H2O2-detoxifying catalase could 

indeed partially reverse cardiac contractile dysfunction by lowering oxidation of contractile 

proteins, but on the other hand it increased PTP1B expression and with it the intrinsic insulin 

resistance. 
Very recent results from two U.S. studies, published in 2007 [264, 265] with sizable human 

populations (NHANES III trial = Third National Health and Nutrition Examination Survey and 

NPC trial = Nutritional Prevention Of Cancer) independently found a distinct positive 

correlation between serum Se concentration and the incidence of type II diabetes. Data 

analysis in the NHANES III trial (8.876 participants) was based on conventional nutrition 

whereas the NPC trial was a randomized study in which one group was supplemented with 

200 µg Se daily in order to test prevention against non melanoma skin cancer (600 

participants). The control group (602 participants) received a placebo for 7.7 years. 
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The data of the NHANES III trial revealed that Se status in U.S. adults is distinctly higher in 

comparison to other populations. After assignment of the data to quintiles participants from 

quintile 5 (serum Se ≥ 137.66 mg/L) had a 1.57-fold higher diabetes incidence compared to 

participants from quintile 1 (serum Se ≤111.62 µg/L). The results from the NPC trial were 

even stronger compared to the NHANES III trial. The median value of serum Se 

concentration from those Se supplemented participants and from the placebo group was 

113.4 µg/L. Diabetes incidence in the residual group with a serum Se concentration beyond 

the median (>113.4 µg/L) was 2.5-fold higher compared to the residual group with a serum 

Se concentrations below the median (≤ 113.4 µg/L). When the data were subdivided into 

tertiles, diabetes incidence was even 2.7-fold higher in the third tertile (serum Se >121.6 

µg/L) compared to the first tertile (serum Se ≤105.2 µg/L). 

 

The few results published regarding undesirable aspects of Se on insulin resistant diabetes 

and obesity however provided only very little information concerning two major aspects. 

1) Data of all the above mentioned studies were obtained either from non-physiological 

animal models with the overexpression of a particular gene [219, 220, 222] or they 

represented a merely statistical data analysis [221, 264, 265].  

2) Moreover these investigations did not provide satisfactory explanations of the 

molecular mechanisms by which Se may have an undesirable influence on insulin 

resistant diabetes and obesity. 

 

Physiological models examining the effects of a permanent moderate surplus of Se on 

molecular pathways linked to insulin resistant diabetes and obesity were lacking. 
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5.2.2 New approaches in the present studies to explain mechanisms behind critical 
functions of Se regarding insulin resistant diabetes and obesity 

In the present studies consequently two nutrition physiological approaches [259, 260] with 

healthy growing rats were used to investigate molecular mechanisms behind undesirable 

effects of Se on the development of insulin resistant diabetes and obesity: 

1. A microarray screening was carried out to evaluate genes which may mediate 

undesirable effects of additional Se supply on the development of insulin resistant 

diabetes and obesity 

2. A detailed study of PTP1B regulation by moderately supranutritional Se supply was 

carried out, since PTP1B was one of the critical genes, detected by microarray 

analysis. Moreover PTP1B represents one powerful enzyme contributing to insulin 

resistance and obesity, and PTP1B inhibition is discussed as one promising aim in 

the therapy of the disorders mentioned. Another reason for the examination of PTP1B 

regulation by Se was its physiological regulation by H2O2 and glutathione, 

representing these critical metabolites which are also influenced by glutathione 

peroxidase and intermediary Se metabolism. Due to its position at the top of the 

insulin signalling pathway PTP1B is finally an interesting target protein, since it can 

influence the regulation of a number of downstream genes of glucose and lipid 

metabolism. 

For both rat trials the experimental design was comparable. Weaned albino rats of the 

institutes own strain HK51 (initial mean body weight in trial 1: 62.8±3.95 g; in trial 2: 

61.0±2.96) were fed diets based on Torula yeast for eight weeks. In both trials one group 

received a Se deficient basal diet, and the diets of the further 6 groups were supplemented 

with both sodium selenite and sodium selenate to obtain final Se concentrations of 0.2, 1.0 

and 2.0 mg Se/kg diet. 

 

Trial 1 served as the basis to obtain information on the differential regulation of genes by 

both inorganic Se compounds (selenite or selenate) in comparison to a group with a short 

term Se deficiency. Therefore a microarray screening (MWG Rat 10k Array) with pooled liver 

RNA samples from 5 animals of the groups 0Se, 0.2 Selenite, 0.2 Selenate, 1.0 Selenate 

and 1.0 Selenate was carried out. With this microarray technology expression changes in 

nearly 10,000 rat genes can be examined simultaneously. 

 

• One main result of the microarray screening revealed that the influence of selenate 

on differential gene expression was by far higher than that of selenite. 
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Table 3 outlines an overview of the expression data. The influence of selenite- and selenate-

feeding at the two levels (0.2, and 1.0 mg Se/kg diet) compared to a short term Se deficiency 

(0Se) is displayed at different factors for the expression differences combined with different 

significance levels for gene regulation. 

 

Table 3: Summary of the impact of selenite and selenate at two different dietary 

concentrations (0.2 and 1.0 mg Se) on differential gene expression in rat 

liver compared to short term Se deficiency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The second central finding of the microarray experiment was that a number of genes 

involved in the regulation of intermediary metabolism signalling processes of the 

insulin pathway, and genes of neuropeptides participating in the regulation of appetite 

and energy homeostasis showed a changed expression due to Se supplementation 

[259]. 

 

A selection of these genes was published in a review presenting also the latest findings from 

the first rat study [257]. Table 4 gives a more comprehensive outline of genes regulated by 

selenate supplementation which could be critical for the development of insulin resistant 

diabetes and obesity. The selected genes may represent starting points for future research 

investigating the critical role of moderate supranutritional Se supplementation, exceeding the 

needs for selenoprotein synthesis. The literature sources given in Table 4 substantiate the 

coherence between the genes regulated as well as the direction of regulation (up-or down-
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regulation) and their critical role in the development of insulin resistant diabetes and/or 

obesity. 

As can be seen in Table 4 the expression changes measured for the functional 

selenoproteins are in accordance with literature. The low rank of GPx1 and the high rank of 

GPx4 in the hierarchy of functional selenoproteins due to a lack in dietary Se supply were 

clearly reflected by the microarray data [37, 126, 128]. 

Contrary to the application of high supranutritional selenate doses which reduced the mRNA 

concentrations of gluconeogenic enzymes of type II diabetic animals to the level of non-

diabetic controls [256, 257], selenate feeding at the recommended dietary level (0.2 mg 

Se/kg diet) and at slightly supranutritional doses (1.0 mg Se/kg diet) led to an up-regulation 

of the mRNA-levels of the gluconeogenic enzymes glucose-6-phosphatase, fructose-1,6-

bisphosphatase, phosphoenolpyruvate carboxykinase and pyruvate carboxylase compared 

to group 0Se with a short term Se deficiency. Thus long term Se supplementation above the 

needs may redound to endogenous glucose synthesis and an increase in blood glucose 

levels. 

The distinct up-regulation of the mRNA´s for protein tyrosine phosphatase εC, protein 

tyrosine phsophatase 1B and for the regulatory subunit of protein tyrosine phosphatase 2A 

[275-279, 335-337], as an assembly of genes participating in the counter-regulation of insulin 

signalling and triglyceride synthesis could explain the development of insulin resistance and 

obesity due to long term Se supply above the needs. Coherences and molecular 

mechanisms by which an up-regulation of this mentioned gene assembly can contribute to 

the development of insulin resistance and obesity are explained in detail in Figure 11. 

 

Table 4: Influence of selenate at two different dietary levels (0.2 and 1.0 mg Se/kg 

diet) on the expression of genes critical for the development of insulin 

resistant diabetes and obesity compared to short term Se deficiency 

(Table legend) 
 

 

 

Factors for gene regulation ≥ 1.5 and an error probability < 0.05 are displayed in bold font
Genes displayed in black writing are up-regulated ↑

Genes displayed in red writing are down-regulated ↓

 

 

Genes displayed on a white background belong to the functional selenoproteins as reference genes, or they represent genes regulated with a 

factor < 1.5 or an error probability > 0.05

 

Genes displayed on a yellow background represent genes associated with intermediary metabolism

Genes displayed ona green background are phosphatases or kinases involved in the regulation of metabolic processes

 

 

Genes displayed on a blue background represent neuropeptides and other factors involved in the regulation of appetite, satiation and other
endocrine functions

Genes displayed on a pink background represent cytokines involved in the regulation of metabolic processes
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Table 4: Influence of selenate at two different dietary levels (0.2 and 1.0 mg Se/kg 

diet) on the expression of genes critical for the development of insulin 

resistant diabetes and obesity compared to short term Se deficiency 
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Table 4 (continuation): Influence of selenate at two different dietary levels (0.2 and 

1.0 mg Se/kg diet) on the expression of genes critical for 

the development of insulin resistant diabetes and obesity 

compared to short term Se deficiency 
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Table 4 (continuation): Influence of selenate at two different dietary levels (0.2 and 

1.0 mg Se/kg diet) on the expression of genes critical for 

the development of insulin resistant diabetes and obesity 

compared to short term Se deficiency 
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Table 4 (continuation): Influence of selenate at two different dietary levels (0.2 and 

1.0 mg Se/kg diet) on the expression of genes critical for 

the development of insulin resistant diabetes and obesity 

compared to short term Se deficiency 
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Table 4 (continuation): Influence of selenate at two different dietary levels (0.2 and 

1.0 mg Se/kg diet) on the expression of genes critical for 

the development of insulin resistant diabetes and obesity 

compared to short term Se deficiency 
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As mentioned above the aim of the second trial with growing rats consequently was to 

examine if PTP1B may be one part of the puzzle explaining undesirable effects of Se in the 

development of insulin resistant diabetes and obesity. Due to the fact that a distinct up-

regulation of PTP1B mRNA was found in microarray analysis and that GPx1 participates in 

the regulation of cellular H2O2- and glutathione-levels, it could be assumed that PTP1B may 

be one promising molecular target explaining undesirable effects of dispensable Se on 

metabolic disorders. 

In the second rat trial a distinct loss of GPx1 and GPx3 activity was measured in short term 

Se deficient rats (0Se) compared to their companions supplied with selenite and selenate at 

the recommended dietary level (0.2 mg Se/kg diet) and at two supranutritional levels (1.0 and 

2.0 mg Se/kg diet). These results reflect the powerful effect of a lack in dietary Se supply on 

GPx1 and GPx3 activity, as intended by the experimental design. Simultaneously the low 

rank of these selenoproteins could be confirmed [37, 55]. That a dietary concentration of 0.2 

mg Se/kg diet already meets the requirements for an abundant selenoprotein synthesis was 

also in agreement with literature [349].  

 

• The first central finding of the second rat trial was the highly positive correlation that 

existed between dispensable Se supply and the activity of insulin antagonistic PTPs 

[258]. 

 

Supranutritional supply with both Se compounds (selenite and selenate) led to a dose 

dependent Se accumulation in liver and plasma, and it did not result in additional 

selenoprotein synthesis, but instead it caused a dose dependent increase in liver PTP 

activity [Figure 8]. The coherence between dispensable Se and PTP activity could be 

depicted by means of linear regression and square regression for liver (Figure 8 A, B) and 

plasma (Figure 8 C, D), respectively.  

Since a clear coherence between a high Se status and the activity of the insulin antagonistic 

PTP could be pointed out in the second rat trial (Figure 8) the data may be helpful for further 

analysis of recent human studies showing a correlation between serum Se and diabetes 

incidence [264, 265]. 
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Regression for glutathionylation:
y = -3 x 10-6 x2 + 0.0014x + 0.63; R2 = 0.98

Regression for glutathionylation:
y = -3 x 10-6 x2 + 0.0013x + 0.64; R2 = 0.99

Regression for PTP activity:
y = 6 x 10-6 x2 - 0.0031x + 0.66; R2 = 0.96

Regression for PTP activity:
y = 9 x 10-6 x2 - 0.0042x + 0.68; R2 = 1.0
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Regression for glutathionylation:
y = -0.0001x + 0.70; R2 = 0.91 

Regression for glutathionylation:
y = -0.0002x + 0.68; R2 = 0.97

Regression for PTP activity:
y = 0.0003x + 0.55; R2 = 0.92

Regression for PTP activity:
y = 0.0005x + 0.55; R2 = 0.94A B

C D

 

Figure 8:  Regression analyses between liver Se concentration (A, B) or plasma Se 

concentration (C, D) and native liver PTP activity and PTP 

glutathionylation due to increasing Se supplementation as selenite (Se 

IV) [A, C] or selenate (Se VI) [B, D] 
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• The second central finding consisted in the comprehension of the molecular 

mechanism by which GPx1 and supranutritional Se supplements modulate PTP1B 

activity [258] 

 

In contrast to the mouse trial in which GPx1 overexpression promoted the development of 

obesity and insulin resistance [219, 220] the physiological approach of the second rat trial 

provides explanations by which Se supplements, exceeding the needs, can accelerate these 

diseases besides a high GPx1 activity. In the mouse trial a decreased tyrosine 

phosphorylation of the β subunit of the insulin receptor and a decreased phosphorylation of 

the downstream signalling protein Akt at Thr 308 and Ser 473 indicated the increased insulin 

resistance due to GPx1 overexpression [219, 220]. The data of the current rat trial however 

suggest that the decreased phosphorylation measured in the above mentioned trial more 

likely reflects an influence of the manipulated Se- and glutathione-dependent redox system 

on PTP1B than displaying a direct effect of GPx1 on protein phosphorylation. According to 

the results of the data from the current rat trial and to Figure 9 a lower dietary Se 

concentration and the resulting higher peroxide concentration due to a lack of GPx1 activity 

lead to a higher PTP1B inactivation by glutathionylation. Optimised activities of GPx1 by 

dietary Se (present study) [258] or an increase in GPx1 expression (mouse study) [219, 220] 

however remove H2O2 and disable PTP1B inhibition through glutathionylation [237-240, 242, 

243]. These aspects therefore provide a plausible explanation for the development of insulin 

resistance and obesity due to a high GPx1 expression and activity via nutritional Se 

manipulation. Data of an above mentioned human study support this hypothesis by the 

finding that a high erythrocyte GPx1 corresponded to an increased incidence of gestational 

diabetes [221]. An up-regulation of PTP1B expression and with this an increase in intrinsic 

insulin resistance could also be found for mice overexpressing catalase, the second central 

enzyme in H2O2 detoxification [222]. Both the data of the first rat trial (microarray analysis 

and RT-PCR) as well as the data of the second rat trial could confirm an up-regulation of 

PTP1B mRNA expression through a high expression of GPx1 [257, 258] as another H2O2 

detoxifying enzyme [Fig.1]. In physiological models, like the second rat trial, no 

overexpression of GPx1 could be obtained by increasing dietary Se concentration beyond 

the needs. Instead through this physiological model a way of PTP1B regulation, manipulating 

GPx1 expression and activity via a short term Se deficiency could be displayed. 

 

Besides PTP1B regulation by H2O2 via GPx1 activity in the second rat trial two further 

important aspects of PTP1B regulation were found: 
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1. As discussed above the height of dispensable Se supply strongly influenced PTP 

activity. 

2. Selenate (Se oxidation state +VI) led to a distinctly faster rise in PTP activity and 

corresponded to a stronger loss of PTP glutathionylation, compared to selenite.  

 

These aspects of PTP regulation can be seen from the slopes of linear regression analyses 

(Figure 8 A, B) and could be visualized by Western Blot analysis [258]. As likewise found for 

the antidiabetic properties of high supranutritional selenate doses the latter aspect regarding 

a higher influence of selenate on PTP1B regulation presumably derives from fundamental 

differences in mammalian Se metabolism (Figure 9). The following physiological model 

seems to be plausible: Se from selenite (+IV) and selenate (+VI) is absorbed by individual 

mechanisms [13]. Selenite reacts with thiols like glutathione prior to its absorption and enters 

the peripheral organs in the form of selenotrisulfides (oxidation state: - I) or it is reduced in 

the erythrocytes to the selenide oxidation state –II and delivered to peripheral organs bound 

to albumin [15, 16]. In contrast unmodified selenate can be detected in the bloodstream and 

in peripheral tissues [18, 19, 20]. During successive selenate reduction the thiol reactive 

oxidation states (selenite: +IV, and selenotrisulfides: –I) can be formed and require 

glutathione for their further reduction to the selenide oxidation state (-II).  

 Thus glutathione detraction from glutathionylated proteins could be one target for 

glutathione acquirement (Figure 9). Moreover our data suggest that in vitro effects of 

selenite (+IV) match selenate (+VI) feeding. 

This particular aspect of mammalian Se metabolism could be visualized using an in vitro 

assay (Figure 10). Incubation of liver cytosol from group 0Se with increasing selenite or 

selenate concentrations, representing approximately the Se concentrations in the livers of 

rats receiving diets with 1.0 and 2.0 mg Se/kg, showed that unreactive selenate (+VI) did not 

influence PTP1B glutathionylation. In contrast selenite (+IV), matching selenate feeding, 

effected a dose-dependent loss of PTP1B glutathionylation. 
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Figure 9: Current understanding of physiological PTP1B regulation and interfaces 

with mammalian Se metabolism 
 

 

 
Figure 10:  Glutathionylation of PTP1B after in vitro incubation of liver cytosol with 

increasing selenite or selenate concentrations – demonstrating that 

selenate feeding matches in vitro effects of selenite 
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A manipulation of PTP1B activity causes changes in a number of physiological parameters. 

In a mouse trial it could be shown that PTP1B deficient mice had a significantly higher 

energy expenditure than WT mice [232]. Despite a reduced feed intake in groups 2.0 

Selenite and 2.0 Selenate of our trial, possibly deriving from an impaired palatability of high 

Se diets [350], the feed conversion ratio (= g feed intake : g body weight gain) was however 

significantly better in all Se supplemented groups  

3.71±0.05 : 1 (0.2 Selenite), 3.73±0.02 : 1 (0.2 Selenate), 

3.71±0.03 : 1 (1.0 Selenite), 3.81±0.04 : 1 (1.0 Selenate), 

3.80±0.06 : 1 (2.0 Selenite), 3.74±0.03 : 1 (2.0 Selenate) 

compared to group 0Se (4.00±0.10 : 1). According to the above mentioned mouse trial [232] 

the lower feed conversion in group 0Se could be an indicator for a higher energy expenditure 

due to a reduced PTP1B activity. In human studies and in animal trials PTP1B was 

demonstrated as one factor increasing body weight gain and the development of obesity 

[230-233, 235]. GPx1 overexpressing mice showed a significantly higher body weight and 

body fat gain [219, 220] whereas mice with a selenoprotein P (SeP) knockout and 

consequential lack of peripheral GPx1 synthesis were emaciated [138]. Thus our 

physiological study was in line with both trials [138, 219, 220], demonstrating that 

dispensable Se supply and high GPx1 activities are involved in body weight and fat gain and 

PTP1B regulation may be one factor mediating these effects. 

Results from two rat studies dealing with the influence of PTP1B [259] and Se [351] on fatty 

acid metabolism give an idea how dispensable Se may promote the development of insulin 

resistance and obesity coevally. 

In the first of the above mentioned trials insulin resistance and obesity in rats was induced by 

feeding diets with a high fructose content. Fructose fed rats showed a 3-fold elevated 

expression and activity of PTP1B. Due to the fact that a high PTP1B activity per se increases 

insulin resistance and additionally induces triglyceride synthesis via protein phosphatase 2A 

(PP2A) and sterol regulatory element binding protein 1c (SREBP1c), the genesis of both 

insulin resistance and obesity could be attributed to an elevated PTP1B activity [259]. 

In the second of the trials mentioned feeding a diet sufficient in Se (0.3 mg Se/kg) to rats for 

12 weeks yielded a distinctly higher body weight, significantly higher concentrations of total 

liver lipids, liver triglycerides and liver cholesterol compared with rats kept on a Se deficient 

diet [351]. The authors of this study did not suggest a molecular mechanism for their data, 

but from the results of the present studies it can be assumed that the up-regulation of PTP1B 

by a high GPx1 activity and dispensable Se contributes to an accelerated development of 

insulin resistance and obesity (Figure 11). The underlying molecular mechanism thereby 

seems to be similar to that involved in fructose feeding (Figure 11). 
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Figure 11: Molecular pathways by which nutrients increasing PTP1B activity can 

contribute to the accelerated development of insulin resistance and 

obesity 

 

This hypothesis is substantiated by the fact that in the present studies beside an up-

regulation of PTP1B due to increasing Se supplementation also a strongly increased 

expression of the regulatory subunit of PP2A could be measured. Thus one likely molecular 

mechanism by which dispensable Se supplementation can accelerate the development of 

both insulin resistance and obesity involves triggering the expression and activity of PTP1B 

and PP2A, representing a mating gene assembly [259, 275-279, 335-337], as discussed 

above. 
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Figure 12: Molecular pathways by which Se can contribute to the accelerated 

development of insulin resistance and obesity 
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 A high GPx1 activity, as well as a high Se concentration in organs and plasma, 
leads to an activation of the insulin-antagonistic PTP1B which again can 

increase the risk for insulin resistance and obesity. 

 

In conclusion the present studies could help in uncovering possible mechanisms by which a 

long term supranutritional Se supply may have undesirable effects on the development of 

insulin resistant diabetes and obesity: The regulation of PTP1B expression and activity by Se 

may be one part of this puzzle and the underlying molecular mechanism is summarized in 

the concluding Figure 12. 

 

5.2.3 Future perspectives for research investigating the permanent supply of 
dispensable Se on an accelerated development of insulin resistant diabetes and 
obesity 

Long term Se supply above the recommendations may be helpful in the therapy of prostate 

cancer [352] and with regard to some toxicological aspects where a decreased 

phosphorylation of critical signalling proteins due to Se supply is desirable [352, 353]. 

Concerning insulin resistance and obesity a retardation of phosphorylation signals via an 

increased PTP1B activity may be counterproductive and accelerate the development of 
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these diseases. In humans a saturated selenoprotein synthesis and therefore a sufficient 

antioxidant protection can be obtained by following the current recommendations (up to 70 

µg Se/day, depending on age and physiological status) and result in serum plasma Se levels 

of 90 - 110 ng/mL. A permanent surplus of Se should not be recommended, since it will not 

redound to an increased biosynthesis of functional selenoproteins [354-356], but instead 

even accelerate the development of insulin resistant diabetes and obesity [219-221, 257, 

258, 264, 265, 357-359].  

This position was also defined in a “rapid response letter” to Annals of Internal Medicine 

[360] which is shown under 5.2.4. 

Future studies in humans investigating the coherence between Se and diabetes should 

however include the examination of functional selenoproteins, of proteins involved in the 

development of insulin resistance and the state of the disease. Moreover future 

investigations focussing on the influence of Se in metabolic processes should consider 

interactions of Se with other antioxidants, with secondary plant substances, as well as the 

particular nutrition (carbohydrates, sugars, fat, fiber) in order to obtain a better risk 

assessment [361-363]. 
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5.2.4 “Rapid response letter” to Annals of Internal Medicine 
 

 
Selenium and diseases: Cancer or Diabetes? A few 
micrograms make a difference! 

20 July 
2007

Andreas S. Mueller,  
PhD, nutrition physiology  
Justus Liebig University Giessen, Department of Nutritional Physiology,  
Astrid C. Bosse and Josef Pallauf  

Send rapid response to journal: 
Re: Selenium and diseases: Cancer or Diabetes? A few micrograms make a difference! 

Email andreas.s.mueller@agrar.uni-giessen.de 

Selenium and diseases: Cancer or Diabetes? A few micrograms make a difference! 
Presently a controversial and partially somewhat emotional discussion regarding benefits 
and disadvantages of selenium (Se) supplements for human health is in progress. Most 
recent data obtained from the NPC trial (1) as well as data from the NHANES III trial (2) 
however indicate a distinct correlation between a long-term high selenium status 
(measured by serum Se) and the incidence of diabetes in humans. We share the author’s 
concluding remarks “that in populations with an adequate selenium supply an increased 
selenium intake should not be recommended for the prevention of diabetes. Quite the 
contrary long-term selenium supplementation above the current recommendations (50 – 
70 µg Se daily) should be avoided because it may accelerate the development of obesity, 
insulin resistance and type II diabetes. This point of view can be substantiated on the 
basis of the facts from biochemical basic research on selenium:  

1. Only in a very narrow therapeutic range selenium acts as an antioxidant. Antioxidant 
properties of selenium are only achieved by its biochemical functions in glutathione 
peroxidases and thioredoxin reductases whose maximum expression and activity is 
obtained already with relatively low selenium supply (3). The current recommendations 
(4) are absolutely sufficient for an optimum selenoprotein synthesis. A permanent 
surplus of selenium reverses its antioxidant effects, since selenium is a highly thiol 
reactive element.  

2. Selenate (selenium oxidation state +VI) is the only selenium compound with proved 
antidiabetic effects (5, 6). An increased insulin signalling (phosphorylation) and can be 
obtained only with very high supranutritional doses through the intermediary formation 
of the selenium oxidation state +IV and the inhibition of insulin antagonistic protein 
tyrosine phosphatases. Selenate doses for the realization of antidiabetic effects are 
however by far too high for humans, and they were tested only in animal models and in 
tissue cultures so far (5, 6).  

3. Both a permanent moderate surplus of selenium (7) as well as high activities of 
glutathione peroxidase (8) (shown by ~ 1.5-fold GPx1 overexpression in mice) can lead 
to a higher activity of the insulin antagonistic protein tyrosine phosphatase 1B (PTP1B) 
and therefore contribute to the development of obesity, insulin resistance and type II 
diabetes. In the mice study GPx1 overexpression reduced the β subunit of the insulin 
receptor as well as ofβphosphorylation of the downstream signalling protein Akt (at 
Thr308 and Ser473) indicating the insulin resistance (8).  

4. Tragically one crucial mechanism by which a surplus of selenium may inhibit the 
progression of prostate cancer also involves Akt phosphorylation at Thr308 and Ser473 
(9) With regard to the prevention of prostate cancer (10) a reduction of Akt 
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phosphorylation therefore is desirable (9). By its powerful influence on cellular signalling 
processes selenium is at the interface of two diseases (cancer and diabetes) which seem 
to be regulated in a contrary manner (Schema). 

Level 1 Se↑ GPx1↑ 
Protein phosphatases (e.g. PTEN, PTP1B)↑

Level 2 
Obesity, insulin resistance↑ 

Level 3 Akt phosphorylation↓ 

Level 4 Tumor progression↓ 
Glucose uptake↓ 
Glycolysis↓ 
Gluconeogenesis↑ 

Schema: Interactions between selenium and cellular signalling processes influencing 
metabolic disorders (obesity, insulin resistance, diabetes) and cancer  

In conclusion a permanent use of selenium supplements should be reconsidered well. The 
evidence that a few micrograms of selenium may determine the accelerated or slowed 
development of diabetes and/or cancer demonstrates the necessity for intensified 
research in this field. Until then selenium supplements should not be recommended in 
populations with a sufficient intake by common nutrition.  
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6. Summary 
At present a controversial discussion regarding benefits and risks of selenium (Se) 

supplements on insulin resistant diabetes and obesity is in progress. 

When starting the present studies with type II diabetic dbdb mice insulinomimetic properties 

of selenate (Se +VI) had been reported only for type I diabetic animal models and for tissue 

cultures. An increased phosphorylation of single proteins of the insulin signalling pathway 

was hypothesized to mediate the antidiabetic effects of selenate. 

• No information was available if selenate has insulinomimetic properties also in type II 

diabetic species with insulin resistance. 

• Moreover information was lacking whether the antidiabetic potential is restricted to high 

supranutritional selenate doses or if other inorganic Se compounds like selenite (Se IV) 

also act as antidiabetic agents. 

 

In recent literature however opposite effects of Se on the development of insulin resistance 

and obesity have been reported both for animal models and human populations with a 

permanently high Se supply. In this context a supraphysiological activity of the peroxide 

detoxifying selenoenzyme glutathione peroxidase 1 (GPx1) has been demonstrated as 

diminishing insulin signalling and increasing intrinsic insulin resistance. 

• The few results published regarding this undesirable aspect of Se were obtained however 

either from a non-physiological animal model with an overexpression of the selenoprotein 

GPx1 or they represented a merely statistical data analysis.  

• Moreover these investigations did not provide sufficient explanations on mechanisms by 

which Se may develop undesirable influences on insulin resistant diabetes and obesity. 

• A physiological model examining the effects of a permanent moderate surplus of Se on 

molecular pathways linked to insulin resistant diabetes and obesity was lacking. 

 

The aim of the present studies consequently was to examine molecular coherences and 

mechanisms behind both aspects of the effects of Se on metabolic processes in different 

rodent species. 

 

Two animal trials of the present studies focussed on the examination of antidiabetic effects of 

high supranutritional selenate doses in dbdb mice, representing an animal model suffering 

from severe insulin resistant diabetes and obesity. In these experiments it was also tested if 

antidiabetic effects of Se are restricted to selenate. In both trials three experimental groups of 

dbdb mice were fed a Se deficient basal diet for eight weeks. In each trial two of those 
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groups received high supranutritional Se doses (15 – 35 % of their individual half lethal dose) 

as selenite (Se +IV) or selenate (Se +VI). 

 

Two further animal trials of the present studies with healthy growing rats investigated 

undesirable effects of Se on the development of insulin resistant diabetes and obesity. In 

these experiments one group of healthy growing rats was fed a Se deficient diet for eight 

weeks. Six further groups received diets containing Se at the recommended dietary level (0.2 

mg Se/kg diet) and at two moderately supranutritional levels (1.0 and 2.0 mg Se/kg diet) as 

sodium selenite or sodium selenate. 

 

• The oral application of high supranutritional selenate doses also clearly produced 

antidiabetic effects in type II diabetic dbdb mice with insulin resistance. 

• In contrast selenite application was inefficient for diabetes therapy in dbdb mice. 

• In the present work novel findings on the particular molecular mechanism behind the 

antidiabetic effects of selenate could be pointed out from the fact that selenate treatment 

effected a distinct amelioration of insulin resistance, followed by changes in the 

expression and activity of glycolytic and gluconeogenic key enzymes. 

• Prior studies with type I diabetic animals have linked an increased phosphorylation of 

downstream proteins in the insulin signalling pathway (β subunit of the insulin receptor, 

MAPK, ribosomal S6 kinase) to the antidiabetic virtues of selenate. In the present work it 

could demonstrated that an increased phosphorylation of insulin signalling proteins and 

therefore antidiabetic virtues of selenate are based on the inhibition of protein tyrosine 

phosphatases (PTPs) rather than representing a direct influence of selenate on protein 

phosphorylation. 

• In this context another original finding of the present work was that selenate’s antidiabetic 

properties are keenly linked to mammalian Se metabolism. The results of an in vitro 

inhibition test for PTPs showed that PTP inhibition of orally applied selenate (Se +VI) 

derives from its intermediary reduction to the thiol-reactive selenite oxidation state +IV, 

acting as the actual PTP inhibitor. On this account it could be concluded that selenate 

feeding can be matched by the in vitro use of selenite. 

 

• In the rat trials a number of candidate genes, which may mediate undesirable effects of 

Se on insulin resistant diabetes and obesity, could be evaluated by means of a 

microarray screening. 

• In this screening the insulin antagonistic protein tyrosine phosphatase 1B (PTP1B) 

thereby represented one of the promising genes. 
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• The detailed study of PTP1B regulation revealed that the enzyme was up-regulated by 

both an optimization of GPx1 activity and by dietary Se supply. Thus dispensable Se 

supplementation led to a dose-dependent increase in PTP1B activity. The results of the 

present rat studies therefore could point out for the first time a plausible physiological 

mechanism by which a permanent surplus of Se can promote the development of insulin 

resistant diabetes and obesity. 

 

In conclusion the present studies could contribute to a considerably better understanding of 

the molecular mechanisms by which high supranutritional selenate doses attain antidiabetic 

effects concerning insulin resistant type II diabetes. The safety of high supranutritional 

selenate doses, as required for antidiabetic effects, however has so far only been tested in 

tissue cultures and in animal models, and it is still questionable if selenate application in 

therapeutical and thus non-physiological doses can be relevant for diabetes treatment in 

humans. 

Secondly the present studies with growing rats could find new aspects how the permanent 

use of Se supplements, moderately beyond the recommended amounts, may promote the 

development of insulin resistant diabetes and obesity. In conclusion these results 

demonstrate the need for future investigations focussing on the influence of Se in metabolic 

processes. Those investigations should also consider interactions of Se with other 

antioxidants, with secondary plant substances, as well as the particular nutrition 

(carbohydrates, sugars, fat, fiber) in order to obtain a better risk assessment. Since the 

permanent uptake of Se supplements seems to involve risks strict compliance with the 

current recommendations in human and animal nutrition should be ensured. 
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7. Zusammenfassung 
Derzeit wird eine kontroverse wissenschaftliche Diskussion über Nutzen und Risiken einer 

zusätzlichen Supplementierung mit Selen (Se) bezüglich ihres Einflusses auf Typ II-Diabetes 

und Fettleibigkeit geführt. 

Zum Zeitpunkt des Beginns der vorliegenden Untersuchungen existierten nur einige wenige 

Erkenntnisse bezüglich einer antidiabetischen Wirkung von Selenat (Se+VI). Diese 

Untersuchungen beschränkten sich außerdem auf typ I-diabetische Tiermodelle und 

Zellkulturmodelle. Als Grund für die „insulinomimetische“ Wirkung von Selenat wurde eine 

Erhöhung der Phosphorylierung bestimmter Proteine der Insulinsignalkaskade vermutet. 

 

• Keine Informationen existierten, bezüglich einer antidiabetischen Wirkung hoch-

supranutritiver Selenatdosierungen in typ II-diabetischen Modellorganismen mit einer 

hohen Insulinresistenz. 

• Weiterhin bestand ein Informationsdefizit darüber, ob das antidiabetische Potenzial von 

Se nur auf Selenat begrenzt ist, oder ob andere anorganische Se Verbindungen wie 

Selenit ebenfalls als antidiabetische Agenzien anzusehen sind. 

 

Im Gegensatz zu diesen antidiabetischen Eigenschaften des Selens wurden in neuesten 

Tier- und Humanstudien auch mögliche negative Auswirkungen einer 

bedarfsüberschreitenden Se Supplementierung auf die Entwicklung von Typ II-Diabetes und 

Fettleibigkeit aufgezeigt. In diesem Zusammenhang konnte in einem der angesprochenen 

Tierexperimente gezeigt werden, dass eine hohe Aktivität des Selenoenzyms 

Glutathionperoxidase 1 (GPx1) zu einer Verminderung des Insulin-Phosphorylierungssignals 

führte und somit eine erhöhte intrinsische Insulinresistenz auslöste. 

 

• Die wenigen Untersuchungen, welche sich mit diesen unerwünschten Eigenschaften des 

Selens beschäftigten, besaßen jedoch aus zwei Gründen bislang nur eine 

eingeschränkte Aussagekraft: Entweder resultierten die Daten aus unphysiologischen 

Tiermodellen, in denen die Überexpression der GPx1 eine hohe diätetische Selenzufuhr 

repräsentieren soll, oder die Ergebnisse basierten auf einer rein statistischen 

Datenauswertung. 

• Darüber hinaus gaben die bisher vorliegenden Untersuchungen noch keine 

ausreichenden mechanistischen Erklärungen bezüglich unerwünschter Effekte des 

Selens im Bezug auf Diabetes und Fettleibigkeit.  

• Studien mit physiologischen Erklärungsansätzen existierten bis dato nicht. 
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Die Ziele der vorliegenden Arbeit bestanden somit einerseits darin molekulare 

Wirkungsmechanismen hinter antidiabetischen Effekten hoher Selenatdosierungen in Bezug 

auf Typ II-Diabetes zu untersuchen und andererseits mögliche physiologische 

Erklärungsansätze für eine beschleunigte Entwicklung von Typ II-Diabetes und Fettleibigkeit 

durch eine permanente Einnahme von Selensupplementen zu finden. 

 

Zwei Tierversuche der vorliegenden Arbeit dienten der Untersuchung der antidiabetischen 

Wirkung hoher Selenatdosierungen auf Typ II-Diabetes. Diese Versuche wurden mit dbdb 

Mäusen durchgeführt, welche ein geeignetes Tiermodell für einen ausgeprägten Typ II-

Diabetes mit Insulinresistenz sowie für Fettleibigkeit repräsentieren. In beiden Versuchen 

wurden jeweils alle drei Versuchsgruppen für acht Wochen mit einer Se armen Diät gefüttert. 

Den Tieren zweier Versuchsgruppen wurden in beiden Versuchen täglich hoch-supranutritive 

Mengen an Selenit oder Selenat per Schlundsonde verabreicht. Die verabreichten Mengen 

betrugen dabei 15-35% der halbletalen Dosis (LD50). 

 

Zwei weitere Tierexperimente der vorliegenden Arbeit waren der Untersuchung 

unerwünschter Eigenschaften von Selen in Bezug auf die Entwicklung von Typ II-Diabetes 

und Fettleibigkeit gewidmet. In diesen Versuchen wurde jeweils eine Se arme Diät für acht 

Wochen an eine Gruppe von gesunden heranwachsenden Albinoratten verfüttert. Sechs 

weitere Versuchsgruppen erhielten eine vergleichbare Diät, die jedoch mit Selenit oder mit 

Selenat in Höhe der derzeitigen Empfehlung (0.2 mg Se/kg Diät) bzw. in moderat 

supranutritiven Dosierungen (1.0 und 2.0 mg Se/kg Diät) supplementiert war. 

 

• Die orale Applikation hoch-supranutritiver Selenatdosierungen hatte auch bei typ II-

diabetischen dbdb Mäusen eine deutliches antidiabetisches Potenzial. 

• Die Verabreichung von Selenit hingegen zeigte keinen therapeutischen Effekt. 

• Die vorliegende Arbeit konnte neue Erkenntnisse bezüglich des antidiabetischen 

Wirkungsmechanismus von Selenat aufzeigen. In früheren Studien an typ I-diabetischen 

Tiermodellen wurde postuliert, dass die insulinomimetische Wirkung des Selenats auf 

einer Erhöhung der Phosphorylierung bestimmter Proteine in der Insulinsignalkaskade (β 

Untereinheit des Insulinrezeptors, MAPK, ribosomale S6 Kinase) basiert. Im Gegensatz 

zu diesen Erkenntnissen konnte in der vorliegenden Arbeit aufgezeigt werden, dass die 

erhöhte Phosphorylierung von Insulinsignalproteinen die Folge einer Inhibierung insulin-

antagonistischer Protein Tyrosin Phosphatasen (PTPs) darstellt und nicht auf einem 

direkten Einfluss des Selenats auf die Proteinphosphorylierung beruht. 

 63



• Darüber hinaus konnte in der vorliegenden Arbeit zum ersten Mal dargestellt werden, 

dass die antidiabetische Wirkung des Selenats eng mit dem Se Metabolismus von 

Säugetieren verknüpft ist. Durch einen in vitro Inhibierungstest für PTPs konnte gezeigt 

werden, dass die inhibierende Wirkung von oral verabreichtem Selenat auf der 

intermediären Bildung der thiol-reaktiven Selenitoxidationsstufe +IV beruht, welche eine 

stark inhibierende Wirkung gegenüber PTPs zeigt. Daraus konnte geschlossen werden, 

dass die orale Selenatverabreichung mit der in vitro Wirkung von Selenit vergleichbar ist. 

 

• In den Rattenversuchen konnte eine große Anzahl von Kandidatengenen, welche für 

unerwünschte Wirkungen des Selens bezogen auf die Entwicklung von Typ II-Diabetes 

und Fettleibigkeit verantwortlich sein könnten, mittels eines Microarray Screenings 

ermittelt werden.  

• Die insulin-antagonistische Protein Tyrosin Phosphatase 1B (PTP1B), die in der Literatur 

als ein herausragendes Zielgen im Zusammenhang mit der Entwicklung von 

Insulinresistenz und Fettleibigkeit beschrieben wird, stellte ein Gen dar, welches durch 

Se deutlich heraufreguliert wurde. 

• Die detaillierte Untersuchung der PTP1B Regulation zeigte, dass die Enzymaktivität der 

PTP1B sowohl durch eine Optimierung der GPx1 Aktivität als auch durch die diätetische 

Selenzufuhr heraufreguliert wird. Eine über den Bedarf hinausgehende Selenversorgung 

zog eine dosisabhängige Zunahme der PTP1B Aktivität nach sich. 

• Die Ergebnisse der vorliegenden Arbeit konnten somit über die Regulation der PTP1B 

zum ersten Mal eine plausible physiologische Erklärung für eine begünstigte Entwicklung 

von Typ II-Diabetes und Fettleibigkeit durch eine permanente bedarfsübersteigende Se-

Supplementierung aufzeigen. 

 

Zusammenfassend konnte die vorliegende Arbeit neue Beiträge zum besseren Verständnis 

der molekularen Mechanismen hinter der antidiabetischen Wirkung hoch-supranutritiver 

Selenatdosierungen leisten. Ob die Anwendung solch hoher Selenatdosen in der 

Diabetestherapie beim Menschen von Relevanz sein könnte, bleibt jedoch bislang fraglich, 

da bisherige Erkenntnisse nur in Tiermodellen und in Zellkulturen ermittelt wurden. 

Bezüglich der permanenten Einnahme von bedarfsübersteigenden Se Mengen, konnte die 

vorliegende Arbeit eine plausible Erklärung für eine fördernde Wirkung von Se auf die 

Genese von Typ II-Diabetes und Fettsucht geben, welche auf der Regulierung der PTP1B 

beruht. Die Ergebnisse der vorliegenden Arbeit machen einen zukünftigen Forschungsbedarf 

hinsichtlich der differenzierten Wirkung von Antioxidanzien wie Se auf metabolische 

Prozesse des Intermediärstoffwechsels deutlich. Solche zukünftigen Untersuchungen sollten 
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auch die Interaktion von Se mit anderen Antioxidanzien, mit sekundären 

Pflanzeninhaltstoffen sowie mit der spezifischen Ernährungsweise (Kohlenhydrat-lastig, 

Zucker- und Fett-betont, Faserreichtum) berücksichtigen, um eine noch bessere 

Risikobewertung vornehmen zu können. Da nach dem derzeitigen Kenntnisstand die 

permanente Einnahme von Selensupplementen auch deutliche Risiken zu beinhalten 

scheint, sollte die Selenzufuhr sowohl in der Humanernährung als auch in der Tierernährung 

die derzeitigen Empfehlungen nicht wesentlich übersteigen. 
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Abstract

The objective of the present study was to investigate the effects of oral selenate application in comparison to selenium deficiency and
selenite treatment on the development of the diabetic status (glucose tolerance, insulin resistance and activities of glycolytic and
gluconeogenic marker enzymes) in dbdb mice, representing a type II diabetic animal model. Therefore 21 adult male dbdb mice were
assigned to 3 experimental groups of 7 animals each and put on a selenium deficient diet (� 0.03 mg/kg diet) based on torula yeast. Group
0Se was kept on selenium deficiency for 10 weeks while the mice of the groups SeIV and SeVI were supplemented daily with 15% of their
individual LD50 of sodium selenite or sodium selenate in addition to the diet. After 10 weeks a distinct melioration of the diabetic status
indicated by a corrected glucose tolerance and a lowered insulin resistance was measured in selenate treated mice (group SeVI) in
comparison to their selenium deficient and selenite treated companions and to their initial status. Activities of the glycolytic marker enzymes
hexokinase, phosphofructokinase and pyruvate kinase were increased 1.7 to 3-fold in liver and/or adipose tissue by selenate treatment as
compared to mice on selenium deficiency and mice with selenite administration. In contrast selenate treatment (SeVI) repressed the activity
of liver pyruvate carboxylase the first enzyme in gluconeogenesis by about 33% in comparison to the selenium deficient (0Se) and selenite
treated mice (SeIV). However the current study revealed an insulinomimetic role for selenate (selenium VI) also in type II diabetic animals
due to a melioration of insulin resistance. In contrast selenium deficiency and especially selenite (selenium IV) impaired the diabetic status
of dbdb mice, demonstrating the need for investigations on the insulinomimetic action of selenium due to the metabolism of different
selenium compounds. © 2003 Elsevier Inc. All rights reserved.

Keywords: Selenium; Insulinomimetic properties; Type II diabetes

1. Introduction

Selenium is largely known to develop its biological activity
as an integral part of functional selenoproteins. The incorpo-
ration of the trace element into the redox-active selenocysteine
residue of glutathione peroxidases, iodothyronine deiodinases
and thioredoxin reductases is the basis for the physiological
abilities of these proteins concerning the detoxification of hy-
drogen peroxide and lipid hydroperoxides, the equilibration
of thyroid hormone metabolites and the reduction of cellular
disulfides and ascorbate, respectively [1–3].

Selenium from varying chemical entities is absorbed by
different intestinal mechanisms and both the storage in
diverse organs and the extent of incorporation by the co-

translational mechanism into functional selenoproteins de-
pend on the chemical form of selenium [4–8].

For selenate (selenium VI) a further interesting physio-
logical aspect with regard to diabetes was found. In type I
diabetic rats and in tissue cultures insulinomimetic proper-
ties have been shown to evolve from selenate (selenium VI).
During 10 weeks of oral treatment with selenate via drink-
ing water the elevated blood glucose levels in rats with
streptozotocin induced diabetes I (IDDM) could be reduced
by 50 to 80% as compared to untreated rats. Especially
during oral glucose challenge tests the insulinomimetic
properties of selenate became vitally important. Blood glu-
cose response to an oral glucose challenge was 40 to 50%
lower in selenate treated diabetic rats in comparison to
untreated controls [9]. Comparable results for insulinomi-
metic properties of selenate were also reported for type I
diabetic rats receiving a daily intraperitoneal selenate injec-
tion [10,11]. In the type I diabetic rat model not only was a

* Corresponding author.
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ler).
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higher disappearance rate of glucose and an enhanced glu-
cose tolerance the outcome of selenate treatment but also a
correction of the abnormally expressed glycolytic and glu-
coneogenic marker enzymes glucokinase, pyruvate kinase,
phosphoenolpyruvate carboxykinase was observed as a
consequence of selenate administration, indicating the in-
volvement of selenate in major insulin dependent signaling
pathways [9]. Findings on an influence of selenate admin-
istration on the expression and the activity of glucose-6-
phosphate dehydrogenase and fatty acid synthetase con-
firmed this hypothesis [12]. Different results were found
from experiments in rat adipocytes and rat hepatocytes on
the cellular events triggered by selenate treatment as the
cause of the insulinomimetic properties. In rat adipocytes
treatment of the cells with selenate alone led to an increase
in the phosphorylation of cAMP phosphodiesterase, S6 ki-
nase and 210-, 170-, 120-, 95-, and 60 kDa proteins,
whereas phosphorylation of the insulin receptor was not
affected [13]. In a study with rat hepatocytes selenate could
be demonstrated to enhance the phosphorylation of the
�-subunit of the insulin receptor and of IRS1. Moreover in
this trial the phosphorylation of the p42 and the p44 sub-
units of MAP kinase was raised by treatment of the hepa-
tocytes with 500 �M selenate [14]. In conclusion the en-
hanced phosphorylation of diverse cellular proteins is
believed to be responsible for an elevated translocation of
glucose transporters, an increased glucose uptake and a
modified gene expression of metabolic enzymes [15].

In the literature no information is available so far on a
possible insulinomimetic role of selenate in animals with
type II diabetes (NIDDM). Further no investigations on a
distinct differentiation of the insulinomimetic properties of
selenate in comparison to other selenium derivatives on glu-
cose metabolism in diabetic animal models could be found.

The purpose of the present study was to investigate possible
insulinomimetic properties of selenate in C57BL/KsOlaHsd-
Leprdb mice with a defective leptin receptor, featuring severe
symptoms of NIDDM such as hyperglycaemia, hyperinsulin-
aemia and high resistance to insulin [16,17]. Further the
present study examines whether insulinomimetic properties are
only derived from selenate or if other selenium compounds like
selenite which are often used as selenium supplements for diets
of laboratory animals also have insulinomimetic effects.

2. Materials and methods

2.1. Animals and experimental design

21 adult male dbdb mice (obtained from Harlan/Winkel-
mann), weighing 45.8 � 1.57 g, individually housed in
plastic cages with shavings as bedding material at 22°C,
12h:12h light dark cycle and fed a standard chow (Altromin
1320) containing 0.25 mg selenium as sodium selenite per
kilogram diet, were put on a Se deficient diet (�0.03 mg
Se/kg diet) based on torula yeast (Table 1). Except for the

low Se content the Se deficient diet was formulated in
accordance with the current NRC recommendations for
mice [18]. The animals were randomly assigned to 3 groups
of 7 animals each (group 0Se, group SeIV and group SeVI).
Group 0Se was kept on selenium deficiency for 10 weeks
and served to examine of the development of glucose tol-
erance and insulin resistance in type II diabetes during an
alimentary selenium deficiency. Mice of the groups SeIV
and SeVI were also fed the Se deficient diet over the 10
week experimental period but additionally these animals
were supplemented with a daily dose of the �IV-selenium-
derivative sodium selenite (group SeIV) or of the �VI-
selenium-derivative sodium selenate (group SeVI) equiva-
lent to 15% of their individual LD50 of both selenium

Table 1
Composition of the selenium deficient basal diet (�0.03 mg selenium/
kg) for dbdb mice

Dietary components Content
(g/kg diet)

Torula yeast 300.0
Cellulose FTC 200 50.0
Glucose 50.0
Sucrose 50.0
Soybean oil 25.0
Coconut oil 25.0
DL-Methionin 3.0
Premix of minerals and trace elements (without selenium) [1] 66.6
Premix of vitamins [2] 10.0
Choline chloride 2.0
Maize grits 209.2
Maize meal 209.2
Total 1000

1 Minerals and trace elements added per kg diet:
CaCO3: 12.5 g � 5.090 mg Ca/kg diet
KH2PO4: 15.0 g � 2.650 mg P/kg diet
Na2HPO4: 7.5 g � 1.630 mg P/kg diet
MgSO4 � 7 H2O: 5.0 g � 508 mg Mg/kg diet
NaCl: 4.0 g � 1.56 g Na/kg diet
CuSO4 � 5 H2O: 20 mg � 5.10 mg Cu/kg diet
FeSO4 � 7 H2O: 250 mg � 50.2 mg Fe/kg diet
ZnSO4 � H2O: 150 mg � 34.1 mg Zn/kg diet
MnSO4 � H2O: 130 mg � 47.4 mg Mn/kg diet
CrCl3: 7.5 mg � 2.47 mg Cr/kg diet
NaF: 2.2 mg � 0.99 mg F/kg diet
KJ: 0.3 mg � 0.25 mg J/kg diet
CoSO4 � 7 H2O: 1.2 mg � 0.25 mg Co/kg diet
Na2MoO4 � 2 H2O: 0.5 mg � 0.2 mg Mo/kg diet
2 Vitamins added per kg diet:
Vitamin A: 15.000 I.U.
Vitamin D: 1.500 I.U.
Vitamin E: 50 I.U.
Vitamin K3: 5 mg
Vitamin B1: 10 mg
Vitamin B2: 10 mg
Vitamin B6: 10 mg
Vitamin B12: 0.02 mg
Niacin: 50 mg
Pantothenic acid: 10 mg
Biotin: 0.3 mg
Vitamin C: 150 mg
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compounds (LD50 of sodium selenite and sodium selenate
for mice: 3250 to 3600 �g/kg body weight [19]. The aque-
ous solutions of sodium selenite (96 �g/mL) and sodium
selenate (105 �g/mL) were administerd by tube feeding.
Thus the mice of group SeIV represented animals obtaining
a selenium rich standard chow. The daily selenite dose
given corresponded to the 10-fold daily requirement and it
was therefore far below the acute toxic level. The mice of
group SeVI served to examine the insulinomimetic proper-
ties of doses of selenate below the acute toxic level for the
treatment of type II diabetes. Except for the special feeding
of sodium selenite in group SeIV and sodium selenate in
group SeVI the mice of the three experimental groups had
free access to the selenium deficient basal diet and water.

During the experiment the current diabetic status in mice
of all experimental groups was monitored by assessment of
their glucose tolerance (OGCT) and their resistance to in-
sulin (IR) before subjecting the mice to specified dietary
conditions (initial status) and after 4, 6, 8 and 10 weeks of
special feeding. The activities of glycolytic and gluconeo-
genic marker enzymes in the liver, hind limb muscle and
adipose tissue served as parameters of the final diabetic
status. Development of selenium status during the experi-
ment was determined by measurement of GPx3 activity in
plasma prepared before subjecting the mice to specified
dietary conditions (initial status) and after 4, 6, 8 and 10
weeks of special feeding. The final selenium status of the
mice was assayed by measurement of GPx1 activity in the
liver and hind limb muscle.

All experimental procedures were approved by the An-
imal Care Authorities of Heidelberg University.

2.2. Performance of oral glucose challenge tests (OGCT)
and test of insulin resistance (IR)

Oral glucose challenge tests (OGCT) were performed in
mice fasted overnight. Therefore 2 g glucose per kg body
weight were given to the mice by tube feeding using an
aqueous glucose solution (100 mg D[�] glucose/mL). Glu-
cose concentration was registered in blood samples taken
from the tail vein before the glucose challenge and 20, 40,
60, 90, 120, 180, and 240 min after glucose administration.

Insulin resistance (IR) in mice fasted overnight was
tested by subcutaneous injection of 2 I.U. insulin/kg body
weight (Insuman ® Infusat 100 I.U./mL from AVENTIS
Pharma Deutschland GmbH, Frankfurt/Main). Glucose con-
centration in blood sampled from the tail vein was recorded
before starting the test and 30, 60, 90, 120, 180 and 240 min
after insulin injection.

2.3. Analytical methods

2.3.1. Collection of samples and tissue preparation
During OGCT and IR blood from tail vein was sampled

in heparinized hematocrit capillaries and glucose concen-
tration was immediately determined.

Plasma for the determination of GPx3 activity was sep-
arated by sampling blood from the tail vein in heparinized
hematocrit capillaries and centrifugation at 7.500g for 10
min.

After 10 weeks of special feeding the mice of the exper-
imental groups 0Se, SeIV and SeVI were anesthesized in a
carbon dioxide atmosphere and subsequently killed by de-
capitation. Liver, hind limb muscle and adipose tissue were
removed immediately and 1:5 (w/v) homogenates of the
above mentioned tissues were instantly prepared in 20 mM
TRIS-HCl, 1 mM EDTA, pH 7.4 using a glass-glass ho-
mogenizer.

2.3.2. Enzymatic determinations

2.3.2.1. Determination of glucose concentration: Glucose
concentration in blood samples was measured enzymati-
cally using the glucose dehydrogenase assay [20].

2.4. Assessment of selenium status by determination of
cellular glutathione peroxidase activity (GPx1) and
activity of plasma glutathione peroxidase (GPx3)

Activity of GPx1 in the 10.000g cytosolic supernatant of
crude homogenates from the liver and hind limb muscle and
activity of GPx 3 in blood plasma were estimated by the
indirect spectrophotometric procedure coupled to glutathi-
one reductase [21]. NADPH oxidation was recorded for 5
min at 340 nm. A blank without added plasma or cytosolic
supernatant was carried out for each sample. Activities of
GPx1 and GPx3 were calculated from the absorption dif-
ference of both determinations. One unit of GPx1 and GPx3
activity was defined as one micromole NADPH oxidized
per minute under the described conditions.

2.5. Assessment of the final diabetic status by the
determination of marker enzymes of glycolysis
(hexokinase, phophofructokinase, pyruvate kinase) and
gluconeogenesis (glucose-6-phosphatase, fructose-1,6-
diphosphatase, pyruvate carboxylase)

The activity of the glycolytic marker enzymes (hexoki-
nase, phosphofructokinase, pyruvate kinase) and of the glu-
coneogenic marker enzymes (glucose-6-phosphatase, fruc-
tose-1,6-diphosphatase, pyruvate carboxylase) was
measured photometrically by standard assays coupled to
NAD/NADP – NADH/NADPH [22–27].

2.6. Determination of the selenium concentration in the
basal diet

The selenium concentration in the selenium deficient
basal diet was determined by Hydride Generation Atomic
Absorption at the Institute of Animal Nutrition and Nutri-
tion Physiology of the Justus Liebig University, Giessen.

Certified samples of compound feed (Mischfutter En-
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quete of the VDLUFA) served as reference material for
selenium determination [28,29].

2.6.1. Statistical analysis
Statistical analysis of the experimental data was per-

formed using the statistical package “SPSS 8.0 for Win-
dows”. A one way analysis of variance (ANOVA) was
performed after ascertainment of the normality of distribu-
tion (Kolmogorov-Smirnov-Test or Shapiro-Wilk-Test) and
the homogeneity of variance (Levene-Test) of the experi-
mental data. If both conditions were fulfilled differences
between means were evaluated using the Tukey-Test. If
homogeneity of variance could not be ensured differences
between means were examined using the Dunnett-T3-Test.
Differences between means were assumed as significant at
an error probability less than 5% (P � 0.05).

3. Results

During the experiment mice of all experimental groups
lost body weight. The final body weights of the mice were
40.4 � 2.65 g (group 0Se), 38.6 � 3.10 g (group SeIV) and
39.6 � 3.63 (group SeVI).

A differential development of plasma glutathione perox-
idase activity (GPx3) was measured as a consequence of the
diverse dietary conditions (Fig. 1). Starting from a mean
activity of 8.65 � 1.39 U/mL GPx3 activity consistently
decreased in the selenium deficient mice of group 0Se to a
final value of 2.68 � 0.38 U/mL at week 10, whereas a
continuous rise of GPx3 activity to final values of 14.6 �

0.59 and 12.7 � 0.66 was measured in the selenium treated
mice of the groups SeIV and SeVI, respectively. Significant
differences in GPx3 activity (P � 0.05) between the sele-
nium deficient mice and the selenium treated mice of groups
SeIV and SeVI already occurred after 4 weeks under the
various experimental conditions.

Selenium deficiency and treatment with selenite or
selenate were also reflected by the activity of cellular glu-
tathione peroxidase (GPx1) in the liver and in the hind limb
muscle of the mice (Table 2). After 10 weeks of selenium
deficiency GPx1 activity in the liver was reduced to 23%
and 25% as compared to the values measured in mice
treated with selenite and selenate for 10 weeks. Likewise in
the hind limb muscle of selenium deficient mice of group
0Se, GPx1 activity was decreased to about 54% and 48% in
comparison with selenium supplied mice of groups SeIV
and SeVI.

Fig. 2A summarizes how glucose tolerance of dbdb mice
in the three experimental groups was affected after 10
weeks under the various dietary conditions in comparison to
the initial status.

Mice of the initial status and of the three experimental
groups exhibited exceedingly high fasting blood glucose
concentrations (24.9 � 0.7 mmol/L) which are typical for
diabetic dbdb mice.

The extreme peak values in blood glucose concentration
obtained 20 and 40 min after glucose administration which
were already observed for the initial status group were
significantly exceeded in mice kept on selenium deficiency
for 10 weeks (0Se) and in mice treated with selenite for 10
weeks (SeIV). In contrast to this observation in mice treated
with selenate for 10 weeks the peak values registered 20 and
40 min after the glucose challenge were slightly lower when
compared to the initial status and significantly lower in
comparison to selenium deficient mice and to mice treated
with selenite. After a glucose challenge, recurrence of blood
glucose concentration to the fasting level in mice with
selenate administration for 10 weeks was comparably as fast
as in the initial status, whereas the recovery from a glucose
challenge in selenite treated mice and in selenium deficient
mice was distinctly delayed. Thus in selenium deficient
mice blood glucose concentration 240 min after a glucose
challenge remained 41% above the fasting level. In mice
treated with selenite for 10 weeks blood glucose concentra-

Fig. 1. Significant differences (p�0.05, Tukey test) between groups are
indicated by different small letters. Each data point represents the
mean�SD of 7 mice per group.

Table 2
Activity of GPx1 (mU/mg protein) in the liver and in the hind limb
muscle of dbdb mice kept on selenium deficiency for 10 weeks (0Se)
and of dbdb mice treated with selenite (SeIV) or selenate (SeVI) for 10
weeks

Group Organ 0Se SeIV SeVI

Liver 396 � 139a 1741 � 205b 1599 � 129b

Hind limb muscle 26.8 � 3.87a 49.7 � 10.2b 56.2 � 12.4b

Significant differences (p � 0.05, Turkey test / Dunett-T3 test) between
groups are indicated by different superscripts within a line.

640 A.S. Mueller et al. / Journal of Nutritional Biochemistry 14 (2003) 637–647



tion 4 hr after glucose administration even exceeded the
fasting value by about 20%.

Fig. 2B compares the impact of 10 weeks of varying
dietary conditions on insulin resistance in dbdb mice. The
fasting blood glucose concentration prior to IR (0 min
value: 24.5 � 1.6 mmol/L) between the initial status and the
three experimental groups did not differ significantly. 10
weeks of selenium deficiency (0Se) clearly diminished the
properties of insulin. On the one hand the acute diminishing
effect of an insulin challenge on blood glucose concentra-
tion (30 min: 3% reduction of the fasting blood glucose
concentration, 60 min: 55%, 90 min: 65%) was comparably
as strong as in the initial status, but on the other hand the
return of blood glucose concentration towards the fasting
level was significantly faster in the selenium deficient mice
(120 min: 48% reduction of the fasting blood glucose con-
centration, 180 min: 15%) than in mice of the initial status
(120 min: 52%, 180 min: 46%, 240 min: 35%). 240 min
after the insulin challenge in mice kept on selenium defi-
ciency for 10 weeks the fasting glucose value was even
exceeded by 2%. Unexpectedly the daily administration of
selenite (SeIV) for 10 weeks caused the most distinct im-
pairment of insulin action associated with a markedly in-

creased insulin resistance. 30, 60 and 90 min after the
insulin challenge the reduction of the fasting blood glucose
concentration was only 10%, 28% and 32%, respectively.
Thus the acute reducing activity of insulin on blood glucose
concentration in mice treated with selenite for 10 weeks was
only one half of that obtained in mice of the initial status
and in selenium deficient mice. Moreover the return of the
blood glucose concentration to the fasting level was most
rapid. 120 min and 180 min after the insulin challenge the
reduction of the fasting level was only 16% and 6%. 240
min after the challenge the original fasting level was even
exceeded by about 22%. Dbdb mice treated with the insu-
linomimetic selenium derivative selenate for 10 weeks fea-
tured the highest response to an insulin challenge. The
reduction of the fasting blood glucose level in selenate
treated mice was most distinct (30 min: 33% reduction of
the fasting blood glucose concentration, 60 min: 62%, 90
min: 75%). Furthermore the insulin performance was sig-
nificantly prolonged by selenate treatment and the return
towards the fasting level was extremely slow (120 min:
82%, 180 min: 77%, 240 min: 62%). Insulin is involved in
the gene expression of glycolytic and gluconeogenic marker
enzymes. Therefore the relative insulin deficiency in type II

Fig. 2A. Significant differences (p�0.05, Tukey test/Dunnett-T3 test) between groups during OGCT are indicated by different small letters in the legend table.
Each data point represents the mean � SEM of 7 mice per group.
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diabetes leads to a repression of glycolytic marker enzymes
and to an enhanced expression of gluconeogenic marker
enzymes. Thus in the present study the altered sensitivity to
insulin was also reflected by the activity of some glycolytic
and gluconeogenic marker enzymes in various tissues of the

dbdb mice (Table 3). Selenate treatment led to a 3-fold
increase in liver hexokinase activity as compared to sele-
nium deficient and selenite treated mice. The activity of
phosphofructokinase in liver and adipose tissue was ele-
vated 2-fold and 1.7-fold in selenate treated mice in com-

Fig. 2B. Significant differences (p�0.05, Tukey test/Dunnett-T3 test) between groups during IR are indicated by different small letters in the legend table.
Each data point represents the mean � SEM of 7 mice per group.

Table 3
Activity of glycolytic and gluconeogenic marker enzymes (U/mg protein) in various tissues of dbdb mice kept on selenium deficiency for 10 weeks or
treated with selenite (Se IV) or selenate (Se VI) for 10 weeks

Glycolytic/glyconeogenic
marker enzyme

Organ 0 Se Se IV Se VI

Hexokinase ● Liver 0.08 � 0.05a 0.07 � 0.05a 0.26 � 0.06b

Phosphofructokinase ● Liver 9.25 � 2.74a 12.2 � 0.51a 18.5 � 1.22b

● Skeletal muscle 5.61 � 0.86b 3.13 � 0.86b 4.74 � 1.20ab

● Adipose tissue 0.22 � 0.07a 0.19 � 0.08a 0.38 � 0.07b

Pyruvate kinase ● Liver 5.20 � 1.58a 5.21 � 0.69a 6.25 � 0.84a

● Skeletal muscle 13.0 � 1.67a 9.29 � 1.19a 10.8 � 2.45a

● Adipose tissue 0.12 � 0.05a 0.09 � 0.03a 0.21 � 0.03b

Glucose-6-phosphatase ● Liver 2.62 � 0.92a 3.60 � 0.72a 3.89 � 0.51a

Fructose-1,6-bisphosphatase ● Liver 0.65 � 0.24a 1.00 � 0.36a 0.99 � 0.38a

Pyruvate carboxylase ● Liver 90.9 � 16.8b 103 � 14.9b 66.3 � 11.6a

Significant differences (p � 0.05, Tukey test / Dunnett-T3 test) between groups are indicated by different superscripts within a line.
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parison to their selenium deficient and selenite treated com-
panions. Within the glycolytic marker enzymes a 2-fold
higher activity of pyruvate kinase was measured in the
adipose tissue of selenate treated mice as compared to
selenium deficient and selenite treated mice. In contrast to
the observations for the above mentioned glycolytic en-
zymes 10 weeks of selenate treatment repressed the activity
of liver pyruvate carboxylase the first enzyme in glucone-
ogenesis by the factor 1.5 in comparison to selenium defi-
cient and selenite treated dbdb mice.

4. Discussion

4.1. Animal performance

A loss of body weight during the experiment (6.25 �
1.82 g) occurred in all experimental groups and therefore
could not be attributed to selenium deficiency or treatment
with selenite and/or selenate. This fact is important in order
to compare the diabetic status of the mice and to distinguish
between genuine effects of the different dietary conditions
and effects secondary to a reduction of body weight [9].
Possibly the changeover to the torula yeast diet was respon-
sible for the weight reduction, although the diet contained
sufficient amounts of gross energy (19.5 � 1.31 MJ/kg diet)
and crude protein (16.2 � 1.24 g/100g diet) according to the
recommendations [18].

4.2. Parameters of selenium status

During the experiment an efficient selenium depletion in
group 0Se and a further improvement of selenium status in
groups SeIV and SeVI, according to the experimental de-
sign, was reflected by the development of GPx3 activity in
the plasma. Comparable results for the extent of loss of
GPx3 activity during a 13 week selenium depletion period
were reported for conventional black 6 mice and GPx1
knock out mice [30,31]. Since plasma glutathione peroxi-
dase (GPx3) is synthesized predominantly in kidney, liver
and lung its activity therefore provides evidence of the
selenium status in these organs. Selenium deficiency leads
to an immediate decrease in GPx3 expression and vice versa
a rapid saturation in GPx3 expression is attained by sele-
nium replenishment and continuous selenium administra-
tion [30]. In the present study the useful role for GPx3
activity as a sensitive parameter of the current body sele-
nium status could be confirmed [29]. At the end of the
experiment the efficacy of treatment under the various di-
etary conditions on selenium status was also reflected by the
activity of cellular glutathione peroxidase in the liver and
hind limb muscle. Comparable results for GPx1 activity in
the liver (approx. 300 mU/mg protein) and hind limb muscle
(approx. 20 mU/mg protein) were reported in a trial with
mice kept on selenium deficiency for 8 weeks in comparison
to mice with overexpression of GPx1 activity or mice fed

with a diet containing 0.51 mg selenium/kg diet (GPx1 in
the liver: approx. 1100 mU/mg protein, GPx1 in hind limb
muscle: approx. 60 mU/mg protein) [32]. In a further report
on the necessity of selenium supplementation for mice in
addition to vitamin E supplementation comparable values
for GPx1 activity in diverse tissues of mice were achieved
[33].

4.3. Influences of selenium deficiency and administration
of selenate and selenite on glucose tolerance and insulin
resistance

Hitherto investigations on in vivo insulinomimetic prop-
erties of selenate were made exclusively in streptozotocin
treated type I diabetic rats and in tissue cultures of hepato-
cytes and adipocytes. In the above mentioned studies in type
I diabetic rats very high daily selenate doses close to the
LD50 (3.5 mg/kg body weight x day [10], 3.2 mg/kg body
weight x day [9], 4.5 mg/kg body weight x day [11]) were
applied orally or by intraperitoneal injection to obtain a
melioration of the diabetic status. Thereby type I diabetic
streptozotocin treated rats show the following characteris-
tics of IDDM:

● Markedly reduced insulin production with maximum
levels of 20.0 � 3.00 �U/mL [10,11,34]

● High starved blood glucose concentrations in the
range of 15.0 � 5.0 mmol/L [10,11,34]

● Low glucose tolerance: Recovery from a glucose chal-
lenge is distinctly delayed [10,11]

● High sensitivity to insulin: Insulin treatment reverses
the diabetic symptoms completely [10,11]

The present study differs in three major points from
previous investigations in rats:

1. Dbdb mice were used as a type II diabetic animal
model displaying the following typical symptoms of
NIDDM:

● Massive obesity [17,35]
● High starved glucose levels in adult animals in the

range of 25.0 � 5.0 mmol/L ([17,35], current study)
● Low glucose tolerance: after a glucose challenge re-

currence of blood glucose concentration to the initial
value is noticeably delayed

● High basal insulin levels (394 to 698 �U/mL) and
pronounced insulin resistance: very high insulin doses
are needed to reduce blood glucose concentration [17]

2. On account of the tremendous insulin secretion in
dbdb mice, selenate treatment in the present study
was carried out with lower doses of the selenium
compounds to examine insulinomimetic properties
(15% of the LD50: 0.52 mg selenate or selenite/kg
body weight x day). Lower selenium doses were fur-
ther employed in order to check the practicability of
selenium treatment in type II diabetes with regard to
the toxicity of selenium compounds.
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3. In the present study the insulinomimetic properties of
selenate were examined in relation to the effects of
selenium deficiency and selenite treatment on the di-
abetic status of dbdb mice.

The diabetic status of dbdb mice is subject to permanent
aggravation during their lives [35]. With regard to their
glucose tolerance the present study could prove a distinct
insulinomimetic effect of selenate in type II diabetic dbdb
mice in comparison to selenium deficient animals and mice
treated with the frequently used feed additive selenite. In
comparison to the initial status the present data suggest an
insulinomimetic role for selenate concerning the advanced
age of the selenate treated mice.

The insulinomimetic role of selenate due to an improve-
ment of glucose tolerance after a glucose challenge is in
accordance with previous studies in type I diabetic rats.

In contrast to reports from studies with type I diabetic
rats [9–11] in the present study no lowering effect of
selenate treatment on the starved blood glucose concentra-
tion, obtained prior to the glucose tolerance tests and the
insulin resistance tests, could be observed. Possibly the
advanced diabetic state of the dbdb mice, indicated by
2-fold higher starved blood glucose levels in comparison to
the rats in the above mentioned studies and the distinctly
lower daily selenate dose used in the current study are
responsible for this fact.

In comparison to the studies in type I diabetic rats in the
present study with type II diabetic dbdb mice the insulin
resistance of the animals was checked in addition to their
glucose tolerance. Thereby selenate treatment meliorated
insulin resistance of dbdb mice in contrast to their sele-
nium deficient and selenite treated companions, indicated
by a more intensive and prolonged effect of a defined
single insulin dose. Thus selenate was proved as acting as
an insulin sensitizing agent in type II diabetic animals. It
can be speculated that two independent physiological
mechanisms are involved in the insulin sensitizing prop-
erties of selenate. In a trial with type I diabetic rats the
selenate treated non diabetic control animals showed a
lowered insulin release in response to a glucose chal-
lenge, suggesting for the current model that selenate on
the one hand helps to break through the insulin resistance
by a downregulation of the immense pancreatic insulin
production in dbdb mice. On the other hand selenate was
demonstrated to evolve a direct insulinlike effect by
stimulating phosphorylation reactions of the �-subunit of
the insulin receptor and other downstream components of
the insulin signaling pathway like IRS 1, IRS 2, S6 kinase
and MAPK [13,14,36]. Downstream the insulin receptor
substrates 1 and 2 insulin signaling spreads into three
pathways. The RAS-RAF-MEK-MAPK pathway triggers
the expression of GLUT 3. The activation of the protein
kinase B pathway is involved in the regulation of GLUT
1 synthesis and GLUT 4 translocation, while the activa-
tion of PI3 kinase is the second main stimulus for GLUT

4 activation [37,38]. As a whole these processes effect a
stimulation of glucose uptake, especially in muscle and
adipose tissue by an enhanced recruitment of the GLUT
4 transporter. In the current type II diabetic model the
hypothesis of selenate intervention in the insulin secre-
tory process and insulin mimicking processes is under-
lined by the unexpected adverse effect of selenite treat-
ment on insulin resistance. 6 weeks of selenite
administration (2.5 mg/kg body weight) to mice, made
type I diabetic with streptozotocin led to a virtually
complete normalization of plasma glucose levels and a
melioration of glucose tolerance due to a glucose chal-
lenge. These effects were observed as a consequence of a
nearly complete restoration of the beta cells and a nor-
malization of insulin secretion to levels observed in non
diabetic control mice. Thereby the restoration of beta cell
mass was explained by the antioxidative effects of selen-
ite treatment [39]. Otherwise no investigations on direct
insulin mimicking effects of selenite as a consequence of
enhanced cellular phosphorylation signals in peripheral
tissues could be found in the literature.

For the current type II diabetic model the application of
this hypothesis means that on the one hand the tremendous
pancreatic insulin secretion is augmented by selenite treat-
ment. But on the other hand the vicious circle of peripheral
insulin resistance is stimulated by selenite treatment, assum-
ing that selenite possesses no peripheral insulin mimicking
properties.

Recently several new hypotheses have been discussed as
being responsible for peripheral insulin resistance.

In obese rodents the enhanced expression of the protein
resistin in adipose tissue is discussed as being an important
factor of peripheral insulin resistance [40]. Treatment with
thiazolidinediones a class of antidiabetic drugs led to a
marked downregulation of resistin and a melioration of
glucose tolerance and insulin resistance via the nuclear
PPAR� receptor [41]. The exact mechanism of resistin
action is not yet understood.

Better understood mechanisms of insulin resistance sug-
gest a weakening of the phosphorylation reactions of the
insulin signaling pathway as being responsible for periph-
eral insulin resistance [42].

Thereby enhanced activities of several protein phospha-
tases like protein tyrosine phosphatase 1B (PTP1B) or SH
containing inositol phosphatase 2 (SHIP2) are discussed as
being responsible factors impairing insulin signaling at dif-
ferent levels of the insulin signaling pathway [43–45]. In
addition to previous investigations on insulinomimetic
properties of selenate which concentrated on the examina-
tion of phosphorylated cellular compounds it would be
recommendable to examine if enhancement of cellular
phosphorylation reactions by selenate and melioration of
insulin resistance in the current type II diabetic model could
be attributed to an inhibition of protein tyrosine phospha-
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tases as recently demonstrated for vanadate another trace
element with insulinomimetic properties [46,47].

4.4. Influences of selenium deficiency and administration
of selenate and selenite on the activity of glycolytic and
gluconeogenic key enzymes

Metabolic abnormalities of glucose metabolism in ge-
netically obese dbdb mice begin to develop at an average
age of 4 weeks. Onset of massive obesity occurs in
combination with an abnormally high insulin production
and hyperglycaemia. These processes lead to severe
changes especially in hepatic glycolysis and gluconeo-
genesis. Initially the activities of both pathways show
enhanced activities. With increasing age and elevated
insulin resistance enzyme activities of the glycolytic
pathway tend to decrease in relation to gluconeogenic
marker enzymes which are accented. In the current
study for some glycolytic and gluconeogenic marker en-
zymes changes in their activity in various tissues were
achieved. 10 weeks of selenate treatment led to an aug-
mentation of the glycolytic pathway, indicated by en-
hanced activities of hexokinase in the liver, phosphofruc-
tokinase in the liver, skeletal muscle and adipose tissue
and of pyruvate kinase in adipose tissue in comparison to
the activities of these enzymes in selenium deficient mice
and selenite treated mice. With regard to the gluconeo-
genic pathway a suppression of liver pyruvate carboxy-
lase activity in the selenate treated dbdb mice was mea-
sured as compared to the selenium deficient and selenite
treated mice.

Since the hormone insulin is involved in the enhance-
ment of glucose transport in skeletal muscle and adipose
tissue, the amelioration of glucose breakdown by enhancing
the expression and activity of glycolytic enzymes in the
liver, skeletal muscle and adipose tissue and the suppression
of gluconeogenesis in the liver [38], the changes observed in
the activities of the glycolytic and gluconeogenic enzymes
could be interpreted as a consequence of the insulin sensi-
tizing effect of selenate and of the lowered insulin resistance
caused by selenate in the current type II diabetic animal
model.

Comparable influences of selenate treatment on the ex-
pression of glycolytic and gluconeogenic marker enzymes
were also described for type I diabetic rats. Streptozotocin
treatment caused a 90% loss of pancreatic insulin secretion,
a distinct downregulation of the liver glycolytic marker
enzymes glucokinase and pyruvate kinase and a significant
upregulation of the liver gluconeogenic marker enzyme
phosphoenolpyruvate carboxykinase [9]. 10 weeks of oral
selenate administration effected a restoration of the en-
zymes’ activities to 40 to 65% of the values in non diabetic
control rats [9]. Alternative treatment with selenate or van-
adate was also reported to normalize the decreased expres-
sion and activity of glucose-6-phosphate dehydrogenase and

fatty acid synthetase, two major enzymes of lipid metabo-
lism [12].

4.5. Conclusions and future aspects

In conclusion the present study revealed insulinomimetic
properties of selenate (selenium VI) also in type II diabetic
animals, as indicated by enhanced glucose tolerance and
changes in the activity of some major glycolytic and glu-
coneogenic marker enzymes.

In contrast selenium deficiency and especially selenite
impaired insulin resistance and led to an aggravation of
glucose tolerance and glucose metabolism.

Future investigations on the insulinomimetic properties
of selenate in type II diabetic animals in comparison to other
selenium compounds should be focused on the biochemical
pathways of selenate and selenite [48] and their effects on
reducing cellular thiols like glutathione. Long term lowered
concentrations of GSH were demonstrated to enhance insu-
lin sensitivity [49], whereas treatment with N-acetylcysteine
reversed this effect [50]. Selenite is known to be reduced
more rapidly than selenate by glutathione [48,51] suggest-
ing that selenate is able to lower cellular GSH concentra-
tions in insulin sensitive organs more sustainedly. Due to
these facts perhaps there is an analogy to vanadate metab-
olism. In insulin resistant glutathione depleted adipocytes
the reduction of vanadate (vanadium V) was delayed in
comparison to the reduction of vanadyl (vanadium IV).
Simultaneously vanadate (vanadium V) was demonstrated
to be a stronger inhibitor of protein tyrosine phosphatase
1B, a negative regulator of insulin signaling [50].

If this hypothesis is applied to the effects observed for
selenate two independent mechanisms are imaginable:

1. Selenate leads to a long term reduction of cellular
thiols, especially reduced glutathione

2. Selenate acts as a strong inhibitor of protein tyrosine
phosphatases

In addition to metabolic aspects of selenium compounds
in the insulin sensitive organs the effect of different sele-
nium compounds on pancreatic insulin production should be
examined against the background of the concentration of
reduced thiols [52]. In vivo studies in type II diabetic spe-
cies or cultures of pancreatic beta cells would be convenient
models for such examinations.
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ORIGINAL ARTICLE

Effects of a supranutritional dose of selenate compared with
selenite on insulin sensitivity in type II diabetic dbdb mice
A. S. Müller, E. Most and J. Pallauf

Institute of Animal Nutrition and Nutritional Physiology, Justus Liebig University Giessen, Giessen, Germany

Introduction

The trace element selenium develops its biological

functions through the redox-active selenocysteine

residue as an integral part of glutathione peroxid-

ases, iodothyronine deiodinases and thioredoxin

reductases. Depending on the physiological state,

supplementing 0.1–0.3 mg selenium/kg diet to

laboratory, companion and farm animals is normally

sufficient to achieve optimum activities for the

above-mentioned selenoproteins, which are involved

in the regulation of the antioxidative balance of

tissues (Brigelius-Flohé, 1999), the equilibrium of the

thyroid hormones T4 and T3 (Koehrle, 1996) and the

reduction of cellular disulphides and ascorbate (May

et al., 1997).

In animals, selenium from various chemical com-

pounds is absorbed by different mechanisms and dis-

tributed to peripheral tissues in a specific manner.

Selenomethionine is absorbed in the small intestine

by the same mechanism as its sulphur analogue

methionine. Selenate, representing the hexavalent

selenium oxidation state, is absorbed unmodified

either by a sodium symporter or by an anion
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Summary

The present study was performed to examine the mechanism by which

selenate ameliorates the insulin sensitivity in type II diabetic dbdb mice.

Therefore, 21-adult female dbdb mice were randomly assigned to three

experimental groups (0Se, SeIV and SeVI) with seven animals per group.

Mice of group 0Se were fed with a selenium-deficient diet (<0.02 mg

Se/kg) based on wheat and torula yeast for 8 weeks whereas the mice of

groups SeIV (selenite) and SeVI (selenate) were fed with sodium selenite

and sodium selenate (up to 35% of the LD50 for mice in eighth week), in

addition to the diet by daily tube feeding. Eight weeks of selenate applica-

tion led to significantly elevated insulin sensitivity in comparison with

selenium deficiency and selenite application. The activity of cytosolic pro-

tein tyrosine phosphatases (PTPs) as important negative regulators of

insulin signalling was reduced from 53.8% to 22.5% in the liver and skel-

etal muscle of selenate-treated mice in comparison with the selenium

deficient and selenite-treated controls, suggesting an inhibition of PTPs by

intermediary selenate metabolites. In an additional in vitro inhibition

study, selenate (oxidation state +VI) did not inhibit PTP activity. Selenium

metabolites in the oxidation state +IV were found to be the actual inhibi-

tors of PTP activity. In conclusion, the results of the present study show

that one possible mechanism by which supranutritional selenate doses

enhance insulin sensitivity in type II diabetic dbdb mice is based on the

inhibition of PTPS as negative regulators of insulin signalling. Moreover

the cellular metabolism of selenate including its intermediary reduction to

the oxidation state +IV seems to play a crucial role during this process.
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exchange mechanism, while selenite representing

the tetravalent selenium oxidation state, might form

selenotrisulphides and selenopersulphides from the

reaction with thiols or cysteine prior to its absorption

(Wolffram et al., 1985, 1989).

After uptake into tissues, selenium is reduced to

the selenide oxidation state (Behne et al., 1991;

Shiobara et al., 1999; Suzuki and Ogra, 2002), from

which selenium can be incorporated into the seleno-

cyteine residues of functional selenoproteins by a

cotranslational mechanism using a modified serine

tRNA (Sunde and Evenson, 1987; Walczak et al.,

1997).

In recent years, a specific function has been inves-

tigated for selenate with regard to diabetes. The

application of supranutritive doses of sodium sele-

nate (up to the individual LD50) to type I diabetic

rats was found to ameliorate the diabetic status of

the rats including the reduction of their enhanced

blood glucose concentration and the normalization

of abnormally expressed glycolytic and gluconeogenic

marker enzymes (McNeill et al., 1991; Berg et al.,

1995; Becker et al., 1996; Battell et al., 1998; Staple-

ton, 2000). Experiments with tissue cultures showed

that an enhanced phosphorylation of the b-subunit

of the insulin receptor and further downstream

components of the insulin-signalling pathway are

presumably responsible for the antidiabetic charac-

teristics also referred to as insulinomimetic properties

of selenate (Stapleton et al., 1997; Hei et al., 1998).

In dbdb mice displaying symptoms of obesity and

severe insulin-resistant type II diabetes, selenate

treatment led to an enhanced insulin sensitivity and

a modification in the activity of glycolytic and

gluconeogenic marker enzymes, while selenium defi-

ciency and selenite application did not alter the age-

dependent diabetic status (Müller et al., 2003).

In particular, the results for insulin sensitivity led

to the assumption that the inhibition of protein tyro-

sine phosphatases (PTPs) may play a key role with

regard to the antidiabetic action of selenate.

In the present study with young female dbdb

mice, the effect of a supranutritional dose of selenate

compared with selenite and selenium deficiency on

insulin sensitivity and the activity of protein tyrosine

phosphatases was therefore examined.

Materials and methods

Experimental design and feeding experiment

with dbdb mice

Twenty-one 6-week-old female dbdb mice (obtained

from Harlan Winkelmann, Borchen, Germany) with

a mean live weight of 43.7 ± 2.0 g were randomly

assigned to three groups of seven animals each

(0Se, selenium-deficient group, SeIV, selenite-treated

group, SeVI, selenate-treated group). All groups

received a peletted selenium-deficient diet

(<0.02 mg Se/kg diet) containing 45% wheat, 30%

torula yeast, 5% cellulose, 2.5% coconut oil, 2.5%

soya bean oil, 6.7% mineral premix, 1.0% vitamin

premix 0.3% dl-methionine, 0.2% choline chloride

and 6.8% maize starch. With the exception of selen-

ium (<0.02 mg/kg diet), the composition of the diet

met the recommendations for mice (NRC, 1995) and

was fed for 8 weeks.

The animals of the groups SeIV and SeVI were

supplemented with weekly increasing doses of

sodium selenite and sodium selenate (starting with

15% of the LD50 for mice and reaching 35% of the

LD50 in eighth week, LD50 selenite and selenate ¼
3.5 mg/kg body weight) by tube feeding. During the

experiment, the animals were kept individually in

plastic cages with shavings as bedding material at

22 �C and a 12 h:12 h light:dark cycle. The animals

had ad libitum access to the diet and bidistilled

water.

Before subjecting the mice to the defined dietary

conditions and after 8 weeks of special feeding, the

glucose tolerance and the insulin sensitivity of the

animals were tested. Feed consumption and body

weight gain of the mice were recorded daily.

Performance insulin sensitivity tests

Insulin sensitivity in mice that fasted overnight was

tested by subcutaneous injection of 2 I.U. insulin/kg

body weight (Insuman� Infusat 100 I.U./ml; AVEN-

TIS Pharma Deutschland GmbH, Frankfurt/Main

Germany). Glucose concentration in blood, sampled

from the tail vein was recorded before starting the

test and 30, 60, 90, 120, 180 and 240 and 300 min

after insulin injection.

For blood sampling from the tail vein, the tail tip

was abscised and the blood flow was stimulated by

gently massaging the tail. The blood was collected in

heparinized haematocrit capillaries.

Analytical methods

Determination of the selenium concentration in the

basal diet

The selenium concentration in the selenium-defici-

ent diet was determined by hydride generation

atomic absorption as described previously (Most and

Pallauf, 1999; Müller et al., 2002). Certified samples
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of compound feed (Ring test from the Verband

Deutscher Landwirtschaftlicher Untersuchungs- und

Forschungsanstalten) served as reference material for

selenium determination.

Assessment of the selenium status by measurement of

plasma glutathione peroxidase and liver cellular

glutathione peroxidase

The development of selenium status was determined

by measurement of glutathione peroxidase (GPx3)

before subjecting the mice to the specified dietary

conditions and at the end of the experiment. The

final selenium status was assayed by measurement

of glutathione peroxidase (GPx1) activity in the

liver. Activity of both glutathione peroxidases was

measured using the indirect spectrophotometric pro-

cedure coupled with glutathione reductase (Tappel

et al., 1982). NADPH oxidation was recorded for

3 min at 340 nm. A blank without adding plasma or

cytosolic supernatant was carried out for each sam-

ple. Activities of GPx1 and GPx3 were calculated

from the absorption difference. One unit of GPx1 or

GPx3 activity was defined as 1 lmol of NADPH oxid-

ized per minute under the described conditions. The

activity of GPx1 was normalized to 1 mg protein.

Determination of the activity of cytosolic protein tyrosine

phosphatases in the liver and skeletal muscle

Activity of PTPs was determined with modifications

according to a method which is based on the hydro-

lysis of paranitrophenyl phosphate (pNPP) (Zhu and

Goldstein, 2002). For the analysis of PTP activity, 1:5

(w/v) homogenates of liver and skeletal muscle were

prepared in a buffer consisting of 50 mmol/l 4-(-2-

hydroxyethylpiperazine-1-ethanesulphonic acid (HE-

PES), 50 mmol/l NaCl, 1 mmol/l EDTA and

0.1 mmol/l phenylmethylsulphonylfluoride (PMSF)

with pH 6.0. The cytosolic fraction was obtained by

centrifugation at 60 000 g for 30 min at 2 �C. Subse-

quently, 10 ll liver cytosol or 20 ll muscle cytosol

were pre-incubated at 25 �C in 240 ll (liver) or

230 ll (skeletal muscle) of a buffer containing

50 mmol/l 2-morpholinoethanesulfonic acid (MES),

50 mmol/l NaCl, 2 mmol/l EDTA and 0.1 mmol/l

PMSF with a pH of 6.5 for 3 min. In addition to

250 ll of the same buffer, 20 mmol/l of the substrate

pNPP was added and the mixture was further incu-

bated at 25 �C for 10 min (liver) or 15 min (muscle).

The reaction was terminated by the addition of

500 ll 2 m NaOH and the absorption was read in a

Beckman DU 64 spectrophotometer (Beckman,

Fullerton, CA, USA) at a wavelength of 410 nm. A

blank without cytosol was carried out for all deter-

minations. The activity of PTPs was calculated using

an extinction coefficient of 0.0166/lm/cm for the

resulting paranitrophenolate ion and normalized to

1 mg protein.

In vitro inhibition of cytosolic protein tyrosine

phosphatases by selenium compounds in dbdb mouse liver

The activity of PTPs was measured in pooled liver

cytosol from three age-matched adult female dbdb

mice fed with a standard chow containing 0.25 mg

Se/kg diet. Cytosol was prepared as described for

activity determination of PTPs. The activity of PTPs

was assessed as described above for liver homogen-

ates obtained from the in vivo trial. In addition to the

above procedure, 10 ll of aqueous solutions of

sodium selenate (oxidation state +IV), non-enzymati-

cally reduced selenate (using 37% HCl as the redu-

cing agent, oxidation state +IV), sodium selenite

(oxidation state +IV), selenious acid (oxidation state

+IV) and freshly synthesized selenotrisulphides from

the reaction of reduced glutathione and selenite in a

molar ratio of 4:1 (synthesized according to a stand-

ard protocol [Ganther, 1968; Self et al., 2000], oxida-

tion state 0), reaching final selenium concentrations

of 25–5000 lmol/l were added before incubating the

reaction mixtures with pNPP for 10 min. The reac-

tion was terminated by the addition of 500 ll of 2 m

NaOH and the absorption was read in a Beckman DU

64 spectrophotometer at a wavelength of 410 nm. A

blank without cytosol was carried out for all determi-

nations. The activity of PTPs was calculated using an

extinction coefficient of 0.0166/lm/cm for the result-

ing paranitrophenolate ion. The inhibition of PTPs

was expressed as a percent inhibition in comparison

with the PTP activity reached in liver cytosol without

addition of selenium compounds.

Determination of protein content in homogenates of liver

and skeletal muscle

The protein content of the cytosolic fraction of liver,

kidney and skeletal muscle was determined using a

standard method (Bradford, 1976).

Statistical analysis

Statistical analysis of the experimental data was per-

formed using the statistical package ‘SPSS 8.0 for

Windows’. For the parameters glutathione peroxi-

dase and protein tyrosine phosphatase a one-way

analysis of variance (anova) was performed. After

ascertaining the normality of distribution (Kolmogo-

rov–Smirnov test and Shapiro–Wilk test) and the

homogeneity of variance (Levene test) of the

Effects of selenate on insulin sensitivity A. S. Müller, E. Most and J. Pallauf
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experimental data differences between means were

evaluated using the Tukey test. Differences between

mean values were assumed as significant at an error

probability <5% (p < 0.05).

Differences between the mean values of blood glu-

cose concentration for the single points in time dur-

ing insulin sensitivity test (IST) were evaluated using

the Dunnett T3 test as homogeneity of variance was

partially not fulfilled.

Results

Animal performance, feed consumption and

development of body weight

The course of the experiment was without complica-

tions and considering their adiposity caused by the

genetic leptin receptor defect, the mice of all experi-

mental groups were in good condition. One mouse

in the selenate group died 8 h after the final insulin

sensitivity test, possibly as a consequence of a long-

lasting fall of the blood glucose concentration

beyond a value of 2 mmol/l.

The average body weight of 43.7 ± 2.0 g with

mean of 44.7 ± 2.5 in group 0Se, 43.4 ± 2.3 in

group SeIV and 43.0 ± 1.3 in group SeVI was not

significantly different at the beginning of the experi-

ment. At a constant and similar feed intake over the

whole experiment of 7.53 ± 0.24 g (Fig. 1a) the ani-

mals of groups 0Se and SeIV reached slightly differ-

ent final body weights of 52.3 ± 3.1 and 49.6 ± 4.9,

respectively (Fig. 1b). Especially in the second half

of the experiment the feed-efficiency ratio in the sel-

enite-treated mice was lower in tendency compared

with selenium-deficient mice. Selenate-treated mice

had a significantly lower average feed consumption

during the whole experiment. In the first 2 weeks of

the trial feed consumption in selenate-treated ani-

mals (6.81 ± 0.13 g/day) was lower in tendency

(p £ 0.1) in comparison with groups 0Se

(7.56 ± 0.19) and SeIV (7.47 ± 0.47). From the third

week onwards feed consumption in selenate-treated

mice was significantly lower (p < 0.01) in compari-

son with their selenium-deficient and selenite-

treated companions and fell further to a level of

4.75 ± 0.08 g from sixth week onwards. In accor-

dance with the lower feed consumption, the final

body weight of these animals (46.3 ± 2.7 g) was

significantly lower (p < 0.01) compared with sele-

nium-deficient animals (52.3 ± 3.1). The final body

weight of selenite-treated animals lay in a range

between the body weight of selenium-deficient

mice and selenate-treated mice and did not differ

significantly.

Development of selenium status as indicated

by plasma glutathione peroxidase and cellular

glutathione peroxidase in the liver

Plasma glutathione peroxidase is a sensitive and rap-

idly determinable indicator of whole body selenium

status as the enzyme is predominantly synthesized

in the kidney and subsequently released into plasma.

The initial GPx3 activity (4.74 ± 1.43 U/ml), meas-

ured before subjecting the mice to specified dietary

conditions indicated a relatively low selenium status

of the mice at the beginning of the study, which was

further diminished by 8 weeks of selenium defici-

ency (group 0Se) in tendency (p £ 0.1) and signifi-

cantly (p < 0.01) improved in mice treated with

selenite (SeIV) or selenate (SeVI) for 8 weeks

(Table 1). GPx1 activity in the liver, as a parameter

for the final selenium status, also reflected the differ-

ent dietary conditions. Mice kept on selenium-defici-

ent diet for 8 weeks showed a significantly lower

GPx1 activity compared with the selenite and sele-

nate-treated controls (p < 0.01).
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Fig. 1 Development of feed consumption (mean ± SD) (a) and body

weight (Mean ± SE) (b) of dbdb mice treated with selenate for 8 weeks

(SeVI) in comparison with selenium-deficient (OSe) and selenite-treated

mice (SeIV). [significant differences (P-minimum < 0.05) between mean

values in a column (Tukey test) are indicated by different letters] n ¼
7 animals per group.
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Development of insulin sensitivity

Fig. 2 compares the effect of 8 weeks of the vary-

ing dietary conditions on insulin sensitivity in dbdb

mice. The fasting blood glucose concentration prior

to IST was significantly (p < 0.01) lower in sele-

nate-treated mice (SeVI: 9.19 ± 1.89) in compar-

ison with selenium-deficient (0Se: 19.5 ± 1.35)

and selenite-treated mice (SeIV: 25.8 ± 1.41) as

well as in comparison with their initial status

(13.9 ± 1.56). In selenate-treated mice (SeVI), the

development of blood glucose concentration after

the insulin challenge was very similar to the data

collected 8 weeks earlier for the initial status, indi-

cating that the insulin sensitivity in dbdb mice was

kept high by selenate treatment. The most distinct

reduction of blood glucose concentration in rela-

tion to the respective fasting value was observed

120 min after the insulin challenge in mice of the

initial status and in selenate-treated mice (initial:

79.6% reduction of the respective fasting value;

SeVI: 80.2%). In selenite-treated and selenium-

deficient mice 120 min after the insulin challenge,

the reduction of the respective fasting blood glu-

cose value was only 40.1% and 72.8% respect-

ively. Furthermore insulin properties were most

sustained in selenate-treated mice (180 min: 72.0%

reduction of the respective fasting blood glucose

value, 240 min: 48.8% and 300 min: 51.5%) and

in the initial status (180 min: 68.8%, 240 min:

49.9% and 300 min: 60.9%). In selenium-deficient

mice the return of blood glucose concentration to

the fasting value was the most rapid (180 min:

26.3% reduction of the respective fasting value,

240 min: 8.7% and 300 min: even exceeding the

fasting value by 12.7%), indicating a significantly

impaired insulin sensitivity. In comparison with

selenate treatment and with the initial status

8 weeks of selenite treatment also led to a signifi-

cant reduction of insulin properties (180 min:

56.4% reduction of the respective fasting blood

glucose value, 240 min: 40.6% and 300 min:

24.7%).

Activity of PTPs in liver and skeletal muscle

The activity of PTPs in the liver cytosol of sele-

nate-treated dbdb mice (group SeVI) was reduced

significantly (p < 0.01) by 34.7% and 44.5% in

comparison with the activities of selenium-deficient

mice (group 0Se) and mice with selenite treatment

Table 1 GPx1 activity (U/mg protein, mean ± SD) in the liver of dbdb

mice kept on selenium deficiency for 8 weeks (0Se) or treated with

selenite (SeIV) or selenate (SeVI) for 8 weeks and GPx3 activity (U/ml)

in plasma at beginning and end of experiment (n ¼ 7 animals per

group)

Organ

Group

Initial (0 weeks) 0Se (8 weeks) SeIV (8 weeks) SeVI (8 weeks)

GPx1

Liver – 171 ± 25.9a 703 ± 150c 369 ± 43.1b

GPx3

Plasma 4.74 ± 1.43a 3.59 ± 1.18a 11.86 ± 2.46b 8.67 ± 3.27b

Significant differences (p < 0.01, Tukey test) between groups are indi-

cated by different superscripts within a row.
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treated mice and to their initial status. Signifi-

cant differences (P-minimum < 0.05) between

mean values in a column (Dunnett T3 test) are

indicated by different letters (n ¼ 7 animals

per group).
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(group SeIV) (Fig. 3). The overall physiological PTP

activity in the cytosol of skeletal muscle was about

half of the activity measured in the liver cytosol.

Eight weeks of selenate treatment significantly

(p < 0.05) reduced PTP activity to 77.6% and

75.1% of that measured in selenium-deficient and

selenite-treated mice, respectively indicating that

the ameliorated insulin sensitivity in selenate-

treated dbdb mice presumably was related to the

reduction (inhibition) of PTP activity.

In vitro inhibitory effect of different selenium

compounds on the activity of PTPs

To confirm the results from the in vivo trial, an

in vitro inhibition assay carried out with dbdb mouse

liver cytosol was developed to study the inhibition

of PTPs by different selenium metabolites (Fig. 4a–e).

The addition of selenate (oxidation state +VI) to the

reaction mixture, reaching final selenium concentra-

tions of 25, 50, 100, 250, 500, 1000, 2500 and

5000 lmol/l left PTP activity unchanged (Fig. 4a).

Adding selenium compounds of the oxidation state

+IV, either obtained from the non-enzymatic

reduction of selenate with 37% HCl or by the addi-

tion of pure selenite or selenious acid to the reaction

mixture strongly inhibited the activity of PTPs in a

concentration-dependent manner (Fig. 4b–d). A

50% inhibition of PTP activity was obtained with all

the above-mentioned selenium compounds of the

oxidation state +IV when their final concentration in

the assay mixture ranged between 500 and

1000 lmol/l. The inhibition of PTPs by tetravalent

selenium compounds steadily increased up to the

highest concentration examined in the test

(5000 lmol/l Se), reaching a 65% inhibition by

non-enzymatically reduced selenate and an 85%

and 76% inhibition by the addition of pure selenite

and selenious acid respectively. Selenotrisulphides

(oxidation state 0), synthesized from selenite and

reduced glutathione effected a significantly lower

inhibition of PTPs in comparison with the tetravalent

selenium compounds (Fig. 4e). 100, 250, 500 and

1000 lmol/l of selenotrisulphides inhibited PTP

activity only by 9, 17, 18 and 24%. Even with

5000 lmol/l selenotrisulphides the inhibition of PTPs

remained below 50%.

Discussion

Feed consumption and development of body weight

In contrast to our observations (Müller et al.,

2003) for older male dbdb mice treated with lower

selenate doses (15% of the LD50 for mice), in the

present study selenate treatment led to a marked

reduction of feed consumption and a significantly

reduced weight gain.

In dbdb mice, the major abnormalities with

regard to obesity and diabetes are mediated by

deficient expression of the long form of the leptin

receptor (LRb). Impaired signalling through the

LRb cascade further influences the expression of

neuropeptide Y (NPY), responsible for the regula-

tion of fertility, growth and glycaemic control and

of a-melanocortin, responsible for the regulation of

body weight and energy expenditure (Bates et al.,

2003). Studies with tissue cultures showed that the

above-mentioned signalling processes can be addi-

tionally impaired by the action of protein tyrosine

phosphatase 1B (PTP1B). Therefore, it can be spe-

culated that the lower feed consumption and body

weight in selenate-treated mice and some of the

antidiabetic effects are the consequence of PTP

inhibition in the hypothalamus (Kaszubska et al.,

2002). To confirm this hypothesis further in vivo

studies on effects of selenate in the brain and

studies in hypothalamic cell lines are necessary.
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Selenium status

Plasma glutathione peroxidase is a sensitive and rap-

idly determinable indicator of whole body selenium

status as the enzyme is predominantly synthesized

in the kidney and subsequently released into plasma

(Cheng et al., 1997; Schwaab et al., 1998; Müller

et al., 2002). In the present study, the initial value

for GPx3 of 4.74 ± 1.43 U/ml indicated a relatively

low selenium status of the mice. Reflecting the low

dietary selenium concentration GPx3 declined fur-

ther in the selenium deficient mice and its activity

was markedly improved in mice with selenite and

selenate supplementation. Final GPx1 activity in the

liver clearly indicated a marked selenium depletion

in group 0Se. GPx1 activity in the selenium supple-

mented groups SeIV and SeVI reflected a high selen-

ium status in these organs despite evidence for a

different bioavailability, distribution and excretion

profile of selenate and selenite metabolites.

Activity of PTPs in the liver and skeletal muscle

and inhibition of PTPs by SeIV compounds

In the current study, a significant decrease of PTP

activity in the liver and skeletal muscle could be

obtained by oral selenate administration. Within

PTPs a 230 amino acid domain, which includes the

active centre of the enzymes, is a highly conserved

region in the protein structure. A cysteine residue in

this region is involved in the hydrolysis of protein

phosphotyrosine residues by the formation of a

cysteinyl–phosphate intermediate (Denu and Dixon,

1998; Barrett et al., 1999; Salmeen et al., 2003; Van

Montfort et al., 2003). In recent years of particular

interest is PTP1B, which is involved in the negative

regulation of insulin signalling. At present, the

expression and activity of PTP1B in rodents and

other mammalian species is controversially discussed

(Harley and Levens, 2003; Ramachandran and Ken-

nedy, 2003; Tonks, 2003). However, there is no
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doubt that diabetic symptoms can be efficiently

reduced by treatment with PTP1B enzyme inhibitors

or antisense oligonucleotides, which reduce the

mRNA expression and the protein synthesis of the

enzyme (Zinker et al., 2002; Asante-Appiah and

Kennedy, 2003; Gum et al., 2003; Lam et al., 2004).

An explanation of a mechanism for the reversible

and irreversible PTP1B inhibition has been recently

suggested and is based on the stepwise oxidation of

the active site cysteine SH group (Van Montfort et al.

2003; Denu and Dixon, 1998; Barrett et al., 1999).

In the present study, the in vitro inhibition assay

was performed to investigate whether the observed

PTP reduction by selenate in vivo is based on the

inhibition of these enzymes. Initially surprising and

contrary to the in vivo results, the incubation of dbdb

mouse liver cytosol with increasing selenate concen-

trations (Se oxidation state +VI) effected no inhibi-

tion of PTPs, whereas the incubation with SeIV

compounds either obtained by non-enzymatic reduc-

tion of selenate or by the addition of pure SeIV-

derivatives (selenite and selenious acid) led to a

concentration-dependent inhibition of PTP activity.

A possible explanation for this observation is that

free SeIV compounds act as the actual inhibitors of

PTPs. These compounds can derive from the different

metabolism of selenate and selenite (Fig. 5). In

mammals, selenate is absorbed unmodified by a

sodium-dependent co-transport-system, which is also

involved in sulphate absorption and by an anion

exchange mechanism. Further, there is evidence that

selenate is distributed unmodified to peripheral

tissues, where it is reduced stepwise to oxidation

state )II. Details of the final selenate metabolism in

mammalian tissues are not yet clear. Either selenate

is metabolized in a similar manner as sulphate or it

undergoes reduction during which the oxidation

state +IV is formed as an intermediate. As a result of

the reduction in PTP activity observed in selenate-

treated mice, the last mentioned pathway seems to

play an important role.

In contrast to selenate most of the selenite does

not reach the peripheral tissues in the oxidation

state +IV as selenite forms selenotrisulphides (oxida-

tion state 0) during its intestinal absorption. These

selenotrisulphides are distributed to organs on the

periphery and undergo reduction to the oxidation

state )II, from which they can be utilized for the

Intestinal
brush border
membrane

SeO4
2–

SeO4
2– (SO4

2–) SeO4
2– (SO4

2–)

SeO4
2–

Na+ Na +

OH– OH–

selenite

Na + Na +

amino acids

peripheral organs (e.g. liver)  

selenate
(+VI)

Selenide
(-II)

Ser–Sec
functional

selenoproteins

GSH

GSSG

glutathione
reductase

selenious acid oxidation state
(+IV)

thiols, SH-groups
of enzymes 

?

?

se
le

ni
te

 +
cy

st
ei

nt
e

se
le

no
di

cy
st

ei
ne

 +
cy

st
ei

nt
e–

se
le

pe
rs

ul
ph

id
e

se
le

ni
te

se
le

ni
te

 +
cy

st
ei

nt
e

gl
ut

at
hi

ne

se
le

no
tr

is
ul

ph
id

e
se

le
no

pe
rs

ul
ph

id
e

se
le

ni
de

se
le

no
tr

is
ul

ph
id

e
se

le
no

pe
rs

ul
ph

id
e

Fig. 5 Selenium absorption and metabolism according to Wolffram et al. (1985) and Behne et al. (1991).

A. S. Müller, E. Most and J. Pallauf Effects of selenate on insulin sensitivity

Journal of Animal Physiology and Animal Nutrition 89 (2005) 94–104 ª 2005 Blackwell Publishing Ltd 101



synthesis of functional selenoproteins. This is sup-

ported by the results from the in vitro inhibition test.

When selenite and GSH were converted to selenotri-

sulphides prior to their use in the in vitro inhibition

test, the inhibition of PTPs is decreased significantly.

The remaining inhibition may have derived from not

fully completed synthesis of selenotrisulphides in the

model investigated. This must be examined in future

investigations with purified selenotrisulphides and

pure preparations of PTP1B. Further, the examina-

tion of the precise inhibition mechanism of SeIV

compounds on PTPs in general and on PTP1B in par-

ticular seems to be an interesting subject for future

investigations using mass spectrometry. From the

knowledge of selenium biochemistry, it can be spe-

culated that selenious acid and its derivatives react

with the active site cysteine residue of PTPs. More-

over, changes in the cellular status of reduced and

oxidized thiols must be the subject of future investi-

gations, as these compounds are known to be

involved in the redox regulation and inactivation of

PTPS.

Moreover, investigations with type I diabetic rats

or tissue cultures would be of interest in order to

examine if the insulinomimetic effects of selenate

including an increase in phosphorylation of the

b-subunit of the insulin receptor and of downstream

components are the result of PTP inhibition.

Toxicological aspects of the selenium doses given

in the present study

Both the data from the in vivo study and from the

in vitro inhibition assay suggest that the inhibition of

PTPs needs supranutritive doses of selenium. The

consumption of 5 g feed per day, containing the

recommended selenium amount for mice (0.2 mg/kg

diet, NRC, 1995), would result in a daily uptake of

1 lg selenium. The LD50 of selenate and selenite for

mice is 3500 lg/kg body weight (Hall et al., 1951;

Wilber, 1980; Olson, 1986). Derived from the

molecular weight in the case of selenate selenium

accounts for 42% of this amount (1470 lg/kg body

weight). In the in vivo study, 15–35% of the LD50

of selenate was administered to the mice daily.

This amounts to an absolute selenium uptake of

10–25 lg (10–25-fold of the recommended dietary

amount) at a mean body weight of 50 g.

In the in vitro trial, the onset of an effective inhibi-

tion of PTPs ranged between 50 and 100 lmol/Lol

Se/l (3.95–7.9 lg Se/l), thus it can be assumed that

with the oral application of selenate at regular inter-

vals in the doses used in our present study, sufficient

selenium concentrations for the inhibition of PTPs

can be obtained.

The possibility of chronic selenium toxicity cannot

be excluded for the doses applied in the present

study. The results from a long-term study on selen-

ium toxicity in rats, however suggest that selenium

concentrations up to 4 mg/kg diet (20-fold of the

recommended amount) do not affect animal health

(Jacobs and Forst, 1981). In this study, the mortality

rate after 2 years (survival rate >90%) in the group

which received 4 mg selenium/kg diet was not

higher than in the group fed with 1 mg selenium/kg

diet. In general, information on selenium toxicity is

limited. Further investigations into the precise

amount of selenium needed for the treatment of dia-

betes and on the long-term toxicity in different ani-

mal species are needed.

Conclusion

The results of the present study suggest that the

insulin sensitizing role of selenate in vivo is partially

based on the inhibition of PTPS by SeIV compounds,

which seem to be generated during selenate metabo-

lism. This can be concluded from the results of the

in vitro inhibition test, where selenate showed no

inhibition of PTPs, whereas selenious acid derivatives

were found to be the actual inhibitors of PTPs.
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Abstract

In recent years, a number of investigations on the antidiabetic effects of supranutritional selenate doses have been carried out. Selenate

(selenium oxidation state +VI) was shown to possess regulatory effects on glycolysis, gluconeogenesis and fatty acid metabolism, metabolic

pathways which are disturbed in diabetic disorders. An enhanced phosphorylation of single components of the insulin signalling pathway

could be shown to be one molecular mechanism responsible for the insulinomimetic properties of selenate. In type II diabetic animals, a

reduction of insulin resistance could be shown as an outcome of selenate treatment. The present study with db/db mice was performed to

investigate the antidiabetic mechanisms of selenate in type II diabetic animals.

Twenty-one young adult female db/db mice were randomly assigned to three experimental groups (selenium deficient=0Se, selenite-

treated group=SeIV and selenate-treated group=SeVI) with seven animals each. Mice of all groups were fed a selenium-deficient diet for

8 weeks. The animals of the groups SeIV and SeVI were supplemented with increasing amounts of sodium selenite or sodium selenate up to

35% of the LD50 in week 8 in addition to the diet by tube feeding.

Selenate treatment reduced insulin resistance significantly and reduced the activity of liver cytosolic protein tyrosine phosphatases (PTPs)

as negative regulators of insulin signalling by about 50%. In an in vitro inhibition test selenate (oxidation state +VI) per se did not inhibit PTP

activity. In this test, however, selenium compounds of the oxidation state +IV were found to be the actual inhibitors of PTP activity.

Selenate administration in vivo further led to characteristic changes in the selenium-dependent redox system, which could be mimicked

in an in vitro assay and provided further evidence for the intermediary formation of SeIV metabolites. The expression of peroxisome

proliferator-activated receptor gamma (PPARg), another important factor in the context of insulin resistance and lipid metabolism,

was significantly increased by selenate application. In particular, liver gluconeogenesis and lipid metabolism were influenced strongly by

selenate treatment.

In conclusion, our results showed that supranutritional selenate doses influenced two important mechanisms involved in insulin-resistant

diabetes, namely, PTPs and PPARg, which, in turn, can be assumed as being responsible for the changes in intermediary metabolism, e.g.,

gluconeogenesis and lipid metabolism. The initiation of these mechanisms thereby seems to be coupled to the intermediary formation of the

selenium oxidation state +IV (selenite state) from selenate.

D 2006 Elsevier Inc. All rights reserved.

Keywords: Antidiabetic effects; Selenate; Protein tyrosine phosphatase
1. Introduction

When taken up at the recommended level (animals:

0.15–0.30 mg Se/kg dietary dry matter; humans: 50–70 Ag
Se daily), selenium performs its physiological functions in

the body of animals and humans as an integral part of the

redox-active centre of functional selenoproteins [1–5]. The
0955-2863/$ – see front matter D 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jnutbio.2005.10.006
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detoxification of peroxides, the involvement in the regula-

tion of thyroid hormone metabolism and the participation in

the reduction of disulfides and ascorbate are the most

important functions fulfilled by the functional selenopro-

teins, glutathione peroxidase, iodothyronine deiodinase and

thioredoxin reductase [6–8].

In human food, selenium is present in two major forms.

Feedstuffs derived from animal sources mainly contain

selenium in the form of selenocysteine from functional

selenoproteins, whereas selenium from plant-derived food-

stuffs is present predominantly as selenomethionine. In
chemistry 17 (2006) 548–560
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trace element supplements, selenium is frequently added in

the form of inorganic salt, sodium selenite (selenium

oxidation state +IV and sodium selenate +VI). Selenium

from various dietary sources is absorbed in the jejunum and

in the ileum of mammals. The amino acid derivatives

selenomethionine and selenocysteine use the same carriers

as their sulphur analogues methionine and cysteine [9].

Selenate uses a sodium-sulphate cotransporter for its

absorption, which is driven by the activity of Na+/K+-

ATPase at the basolateral enterocyte membrane [10]. In

contrast, selenite prior to its absorption partially reacts

with glutathione and other thiols in the lumen to form

selenotrisulfides, which are presumably taken up into the

enterocytes by amino acid transporters. Another part of

selenite diffuses through the apical membrane and reacts

with thiols in the cytosol of enterocytes [10]. The sele-

nium compounds mentioned above are absorbed, to a high

extent (N 85%), from dietary sources, but differences exist

in the absorption time. As a result of the upstream

selenotrisulfide synthesis, selenite absorption is slower than

selenate and selenomethionine absorption [10]. Subsequent-

ly, the selenocompounds are released into the blood stream

at the basolateral enterocyte membrane and distributed to

the various peripheral tissues. The exact transport mecha-

nism for the various selenium compounds is not fully

understood yet. Selenomethionine associates with hemo-

globin, while selenate and the remaining free selenite were

found to be transported with a- and g-globulins [11,12].

Thus, orally administered selenite presumably enters the

peripheral organs in the form of selenotrisulfides, or it

is reduced in the erythrocytes. Selenate is metabolised

during and after its unmodified uptake by the peripheral

tissues (Fig. 1).

This hypothesis of a distinctly different cellular

metabolism for selenite and selenate is supported by an

investigation into intermediary selenium metabolites after

intravenous injection of rats with both compounds

[13,14]. Selenite was rapidly taken up by red blood cells,

reduced in the erythrocytes to the selenide oxidation state
Fig. 1. Current comprehension of mammalian selenium absorption

and metabolism.
�II and delivered to peripheral organs (liver) in an

albumin-bound form. In contrast, unmodified selenate

could be detected in the bloodstream, and the successive

reduction to the oxidation state �II takes place during

selenate uptake from plasma to peripheral organs. A

fraction of bacid labile selenium Q consisting of selenium

bound unspecifically to proteins (presumably via the

formation of Se-S bonds) could be detected. After

intravenous injection with both compounds, the main

excretion products detected in urine consisted of the

methylated forms of selenium (monomethylselenol and

trimethylselenonium ion). Injection of selenite (SeIV) led

to a major peak of these methylated metabolites in urine

after 0–6 h in comparison to a selenate (SeVI) injection,

which showed high metabolite concentrations after 6–12 h.

Additionally, unmodified selenate was excreted after sele-

nate injection [14].

Selenomethionine is the only selenium compound that

can be incorporated unspecifically into proteins instead of

its sulphur analogue methionine. The ongoing cellular

metabolism of all selenium compounds requires a step-

by-step glutathione-dependent reduction to the selenide

oxidation state �II, which is the physiological basis for the

incorporation of the trace element into the selenocysteine

residue of functional selenoproteins by a cotranslational

mechanism [15–17].

In recent years, a fascinating new physiological aspect

has been found for selenate. Selenate administration in

supranutritive doses (daily administration of amounts up to

the individual LD50 for about 8 weeks) to rats with

streptocotozin-induced type I diabetes led to a sustained

correction of their diabetic status including the decrease of

the elevated blood glucose concentration and considerable

changes in the expression of abnormally expressed

glycolytic and gluconeogenic marker enzymes [18–24].

From in vivo experiments and in vitro studies with tissue

cultures, it was concluded that enhanced phosphorylation

reactions at the h subunit of the insulin receptor and

further components of the insulin signalling cascade are

responsible for the so-called insulinomimetic properties of

selenate [25,26].

Oral treatment of mice with alloxan-induced type I

diabetes with a high dose of selenite (4 mg/kg body weight

per day) failed to reduce hyperglycemia in these animals,

which seems to be based on differences in the intermediary

metabolism of selenite and selenate [27].

Insulinomimetic properties of selenate could also be

found in type II diabetic db/db mice. In this animal model

featuring severe symptoms of type II diabetes [28,29], the

antidiabetic effect of selenate could be attributed to the

reduction of insulin resistance, whereas the in vivo

administration of selenite did not result in a significant

amelioration of insulin resistance and diabetes [28].

Besides the influence of insulin and therefore of insulin

sensitising agents on glucose metabolism, hormones also

play a crucial role in fatty acid metabolism.



Table 1

Composition of the selenium-deficient basal diet, based on torula yeast

Dietary components Content (g/kg diet)

Torula yeast 300.0

Cellulose BWW 40 50.0

Soybean oil 25.0

Coconut oil 25.0

dl-Methionine 3.0
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Peroxisome proliferator-activated receptors (PPARs) are

originally transcription factors belonging to the superfam-

ily of nuclear receptors, discussed as acting as master

regulators of fatty acid metabolism and displaying an

important link between fatty acid metabolism and insulin

sensitivity. Three isoforms (a, h and g) have been

described. They act on DNA response elements as

heterodimers with the nuclear retinoic acid receptor. Their

natural activating ligands are fatty acids and lipid-derived

substrates. PPARa is present predominantly in the liver

and heart and, to a lesser extent, in skeletal muscle. When

activated, it promotes fatty acid oxidation, ketone body

synthesis and glucose sparing. Peroxisome proliferator-

activated receptor gamma (PPARg) is considered to be one

of the master regulators of adipocyte differentiation. The

isoform PPARg2 is abundantly expressed in mature

adipocytes and is elevated in animals with fatty livers.

Thiazolidinediones were developed as antidiabetic

drugs acting as synthetic ligands of PPARs. They in-

crease peripheral glucose utilisation and reduce insulin

resistance [30,31]. The whole complex of tissue-specific

actions and interactions of PPARs is not yet fully un-

derstood. In a study with transgenic mice, animals with-

out liver PPARg but with adipose tissue developed fat

intolerance, increased adiposity, hyperlipidemia and insulin

resistance. Thus, it was concluded that liver PPARg

regulates triglyceride homeostasis, contributing to hepatic

steatosis, but protecting other tissues from triglyceride

accumulation and insulin resistance [32,33]. Moreover, it

was shown that the treatment of db/db mice with

thiazolidinediones induced expression in the liver of

adipose tissue PPARg target genes, such as adipocyte

FABP [34], which foretells that hepatic lipid accumula-

tion (steatosis) could occur during long-term administra-

tion [35,36].

The present study with young female db/db mice was

therefore carried out to investigate the mechanisms by

which selenate influences insulin resistance and metabolic

pathways in type II diabetic mice.

Premix of minerals and

trace elements (without selenium)a
66.6

Premix of vitaminsb 10.0

Choline chloride 2.0

Wheat (low in selenium) 450.0

Maize starch 68.4

Total 1000

a Minerals and trace elements added per kg diet: CaCO3: 12.5 g=

5.090 mg Ca/kg diet; KH2PO4: 15.0 g=2.650 mg P/kg diet; Na2HPO4:

7.5 g=1.630 mg P/kg diet; MgSO4�7 H2O: 5.0 g=508 mg Mg/kg diet;

NaCl: 4.0 g=1.56 g Na/kg diet; CuSO4�5 H2O: 20 mg=5.10 mg Cu/kg

diet; FeSO4�7 H2O: 250 mg=50.2 mg Fe/kg diet; ZnSO4�7 H2O:

150 mg=34.1 mg Zn/kg diet; MnSO4�H2O: 130 mg=47.4 mg Mn/kg diet;

CrCl3: 7.5 mg=2.47 mg Cr/kg diet; NaF: 2.2 mg=0.99 mg F/kg diet; KJ:

0.3 mg=0.23 mg J/kg diet; CoSO4�7 H2O: 1.2 mg=0.25 mg Co/kg diet;

Na2MoO4�2 H2O: 0.5 mg=0.20 mg Mo/kg diet.
b Vitamins added per kilogram diet: vitamin A: 15000 IU; vitamin D:

1500 IU; vitamin E: 15 IU; vitamin K3: 5 mg; vitamin B1: 10 mg; vitamin

B2: 10 mg; vitamin B6: 10 mg; vitamin B12: 0.02 mg; niacin: 50 mg;

pantothenic acid: 10 mg; biotin: 0.3 mg; vitamin C: 150 mg.
2. Materials and methods

2.1. Animals and diets

Twenty-one young female db/db mice (C57BL/KsO-

laHsd-Leprdb) aged 6 weeks with an average body weight

of 43.7F2.03 g were obtained from Harlan/Winkelmann

(Borchen, Germany). The animals had previously been fed

a standard chow for mice containing 0.25 mg selenium as

sodium selenite per kilogram diet. The mice were

randomly assigned to three groups of seven animals each

(selenium deficient=0Se, selenite-treated group=SeIV and

selenate-treated group=SeVI) and individually housed in

plastic cages with shavings as bedding material at 228C
room temperature and a 12:12-h light/dark cycle. The

animals of all groups were fed a selenium-deficient
experimental diet (b0.02 mg Se/kg diet) based on torula

yeast (Table 1).

With the exception of Se, the diet was formulated to

meet the current recommendations for mice [1]. Mice of

the group 0Se were kept on a selenium-deficient diet for

8 weeks. The animals of groups SeIV and SeVI were sup-

plemented with amounts increasing from 15% up to 35% of

the LD50 of sodium selenite and sodium selenate by week 8 in

addition to the diet by tube feeding (LD50 of sodium selenite

and sodium selenate ~3.5 mg/kg body weight).

After 2 days of recovery from the final insulin resistance

test (IRT), the mice of all experimental groups were

anaesthetised in a carbon dioxide atmosphere and subse-

quently decapitated. Organs were immediately removed,

frozen in liquid nitrogen and stored at �808C until analysis.

Small pieces from all organs were placed in RNA later and

frozen at �208C for RNA extraction.

The protocol of the animal experiment was approved by

the regional council of Giessen.

2.2. Performance of a whole-body insulin sensitivity test

Before subjecting the mice to the specified dietary

conditions (initial status) and after 8 weeks under experi-

mental conditions, their whole-body insulin resistance

was evaluated.

Insulin sensitivity tests (ISTs) in mice fasted over-

night were performed by subcutaneous injection of

2 IU insulin/kg body weight (Insuman Infusat 100 IU/ml

from AVENTIS Pharma Deutschland, Frankfurt/Main,

Germany). Glucose concentration in blood sampled from
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the tail vein was recorded before starting the test and 30, 60,

90, 120, 180, 240 and 300 min after insulin injection. Blood

glucose concentration during IRT was determined using a

glucometer (Bayer Elite).

The protocol of the animal experiment was approved by

the regional council of Giessen.

2.3. Determination of biochemical and

physiological parameters

2.3.1. Measurement of parameters of the

selenium-dependent redox system in the liver

2.3.1.1. Glutathione peroxidase 1 and test of the influence of

different selenium compounds on GPx1 activity in vitro.

Glutathione peroxidase 1 was measured in the cytosol of

1:10 (w/v) liver homogenates by the indirect spectropho-

tometric procedure coupled to glutathione reductase [37].

NADPH oxidation was recorded for 3 min at 340 nm. A

blank without added liver cytosol was carried out for each

sample. The activity of GPx1 was calculated from the ab-

sorption difference. One unit of GPx1 was defined

as 1 Amol NADPH oxidized per minute under the

described conditions. The activity of GPx1 was normalized

to 1 mg protein.

To test the influence of the inorganic selenium com-

pounds selenate (oxidation state +VI) and selenite (oxida-

tion state +IV) on the glutathione peroxidase and glutathione

reductase–redox system, final selenium concentrations of

up to 1000 Amol/L as selenate and selenite were added to

the glutathione peroxidase assay (which contains all

components of the glutathione peroxidase redox system:

reduced glutathione, glutathione reductase, NADPH and

glutathione peroxidase from the sample) as described above,

replacing 10 Al of the assay buffer by selenate and selenite

dissolved in bidistilled water.

2.3.1.2. Glutathione reductase. The activity of glutathione

reductase in the liver of the db/db mice was determined

using a standard procedure that is coupled to NADPH

oxidation [38].

2.3.1.3. Total glutathione and oxidized glutathione. The

concentration of total glutathione and oxidized glutathione

was analysed according to the standard protocol coupled to

glutathione reductase and DTNB [39]. Sample concentra-

tions were calculated from a standard curve prepared with

pure glutathione disulfide (GSSG) (concentration range:

0–0.066 Amol GSSG/ml).

2.3.1.4. Thioredoxin reductase. The activity of thioredoxin

reductase was determined by the NADPH and DTNB-

coupled procedure [40]. Prior to the measurement of

thioredoxin reductase activity, the 1:10 (w/v) liver homo-

genates were dialysed against PBS in order to remove the

interfering glutathione. DTNB reduction was measured for

3 min at 412 nm. One unit of thioredoxin reductase activity
was defined as 1 Amol DTNB reduced per minute. Enzyme

activity was normalised to 1 mg protein.

2.3.2. Determination of the activity of cytosolic protein

tyrosine phosphatases (PTPs) in the liver and assay of

the bin vitro inhibition Q of PTPs by different

selenium compounds

Protein tyrosine phosphatase activity was determined

with modifications according to a method based on the

hydrolysis of paranitrophenyl phosphate (pNPP) [41,42] as

published earlier. The inhibition of PTP activity by different

selenium compounds was developed using pooled liver

cytosol from three adult female db/db mice fed a standard

chow containing 0.25 mg Se/kg diet.

The activity of PTPs was assessed as described above for

liver homogenates obtained from the in vivo trial. In addition

to the above procedure, 10 Al of aqueous solutions of

sodium selenate (oxidation state: +VI), nonenzymatically

reduced selenate (using 37% HCl as the reducing agent;

oxidation state: +IV), sodium selenite (oxidation state: +IV),

selenious acid (oxidation state: +IV) and freshly synthesized

selenotrisulfides from the reaction of reduced glutathione

and selenite in a molar ratio of 4:1 (synthesized according

to a standard protocol [43]; oxidation state: +II), reaching final

selenium concentrations of 25–5000 Amol/L, were added

before incubation of the reaction mixtures with pNPP for

10 min. A blank without cytosol was carried out for all deter-

minations. The inhibition of PTPs was expressed as the

percent inhibition in comparison with the PTP activity obtained

in liver cytosol without addition of selenium compounds.

2.3.3. RT-PCR analysis to examine the expression of

protein tyrosine phosphatase 1B (PTP1B), PPARc,
fructose-1,6-diphosphatase (F-1,6-Dptase) and

phosphoenolpyruvate carboxykinase (PEPCK)

For the RT-PCR analysis of PTP1B expression in the

liver, total RNA was prepared using the acid guanidinium

thiocyanate extraction method as described previously [44].

The extracted RNA was dissolved in DEPC-treated water,

and the concentration and purity were determined in an UV

visible photometer at 260 and 280 nm. To check the quality

of the RNA preparations, 10 Ag of total RNA from each

preparation was separated electrophoretically in 1.5%

formaldehyde containing agarose gels. The RNA solutions

were diluted with DEPC-treated water to a final concentra-

tion of 2 Ag/Al. From the diluted RNA solutions for each

experimental group (0Se, SeIV and SeVI), three RNA pools

from two animals were prepared. Five micrograms (2.5 Al)
of the RNA pools was used for reverse transcription with a

cDNA synthesis kit (RevertAID H Minus First Strand

cDNA Synthesis Kit, #K1631 from MBI Fermentas). For

this purpose, the procedure using the oligo (dT18) primers

was chosen. The cDNA was diluted 1:3 with DEPC-treated

water. The use of 2 Al of this diluted cDNA for the

amplification of gene-specific fragments was optimal to

obtain the linear range of amplification.



Gene Length of

amplificate

Forward and reverse primer Annealing

temperature

Number of amplification

cycles (x times)

PTP1B 701 5V-GAT GGA GAA GGA GTT CGA GGA G-3V 59.2 30

5V-CCA TCA GTA AGA GGC AGG TGT C-3V
PPARg 348 5V-GAG TCT GTG GGG ATA AAG CAT C-3V 57.6 31

5V-CTC CAG GAC TCC TGC ACA T-3V
PEPCK 700 5V-AGC CTT TGG TCA ACA ACT GG-3V 54.3 27

5V-CTA CGG CCA CCA AAG ATG AT-3V
F-1,

6-Dptase

447 5V-GTC AAC TGC TTC ATG CTG GA-3V 57.0 26

5V-CCA CCA CCC TGT TGC TGT AG-3V
GAPDH 303 5V-ACG GGA AGC TCA CTG GCA TG-3V cf. gene-specific

temperatures

26

5V-CCA CCA CCC TGT TGC TGT AG-3V
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The PCR reactions for the amplification of fragments

from the coding sequence of the genes examined were

carried out in a reaction volume of 50 Al with a standard

program for the single cycles. The standard program was as

follows: initial denaturation: (958C, 3 min) 1�; amplifica-

tion cycles: (denaturation: 958C, 45 s; annealing: primer-

specific temperature, 40 s; extension: 728C, 55 s) x times;

final extension: (728C, 5 min) 1�.

The further conditions in a typical 50-Al reaction were

as follows:
10� PCR buffer (20 mM MgCL

from MBI Fermentas)

5.00 Al

Taq Polymerase (Invitek) 0.04 U/Al
Mixed dNTPs (2 mM) 3.80 Al
Primer forward (10 pmol/Al) 2.50 Al
Primer reverse (10 pmol/Al) 2.50 Al
Nuclease free water 36.20 Al
The GAPDH fragment was amplified for 26 cycles.

Six microlitres of the amplification products was

separated by electrophoresis in 1.5% agarose gels contain-

ing 0.1 Ag ethidium bromide per millilitre. A molecular

weight marker (Gene Ruler 100-bp DNA Ladder Plus

#SM0321 from MBI Fermentas) was carried along in the

gels. Additionally, the expression of the abovementioned

genes was also examined in RNA samples obtained from

three age- and sex-matched nondiabetic Black 6 mice. The

gels were photographed under UV light with a gel imager

(Gene Flash from Syngene), and optical density was

evaluated using the software for the Syngene Imager. The

expression of the genes examined was normalised to

GAPDH expression.

2.3.4. Determination of the gluconeogenic marker

enzymes F-1,6-Dptase, pyruvate carboxylase,

phosphoenolpyruvate caboxykinase

The activity of the gluconeogenic marker enzymes

F-1,6-Dptase, pyruvate carboxylase (PC) and PEPCK was

measured photometrically by standard assays coupled to

NAD/NADP–NADH/NADPH [45–47].
2.3.5. Measurement of parameters of lipid metabolism

2.3.5.1. Extraction of crude lipids from the liver. For the

extraction of crude lipids, firstly, 1:10 (w/v) homogenates

were prepared in 0.154 mol/L NaCl under a N2 atmosphere

using 0.25 g of liver per sample. To each sample, 2.5 ml of a

hexane/isopropanol (3:2) mixture containing 0.005% butyl-

ated hydroxytoluene was then added. The samples were

vortexed for 1 min and incubated at room temperature for

1 h after gassing with N2. After centrifugation at

4500 U/min for 15 min, the upper lipid-containing phase

was collected in a dried and tared sealable glass tube. The

remaining pellet and the lower aqueous phase were then

extracted for a further hour using 2 ml of the hexane/

isopropanol (3:2) mixture. After centrifugation at

4500 U/min for 15 min, the upper phase was also collected

into the first lipid extract. Then the solvent was evaporated

in a N2 atmosphere at 458C, and, finally, the samples were

dried in a vacuum dryer for 2 h.

Lipid concentration was determined gravimetrically, and

the lipids were resolved in 1 ml hexane and frozen at �208C
until further analysis.

2.3.5.2. Determination of triglyceride concentration

in plasma and liver. The concentration of triglycerides

in plasma and in liver lipid extracts was determined with

a test kit (Fluitest TG) from Biocon (Bangalore, India).

The accuracy of the method was checked with Qualitrol.

2.3.5.3. Determination of cholesterol concentration in

plasma and liver lipid extracts. Cholesterol concentration

in plasma and in liver lipid extracts was measured with a

test kit (Fluitest CHOL) from Biocon (Bangalore, India).

The accuracy of the method was checked with Qualitrol.

2.3.5.4. Determination of phospholipid concentration in the

liver. The concentration of phospholipids in liver lipid

extracts was measured with a test kit from Boehringer

(Mannheim, Germany) after digestion of the samples and

liberation of the phospholipid phosphorus in a mixture of

70% perchloric acid and 30% H2O2.



Table 2

Parameters of the selenium- and glutathione-dependent cellular redox

system: glutathione peroxidase 1 (mU/mg protein), thioredoxin reductase

(mU/mg protein), glutathione reductase (mU/mg protein) and concentra-

tions of total, oxidized and reduced glutathione in the liver of db/db mice

treated with selenate for 8 weeks in comparison to selenium-deficient mice

and selenite-treated mice (meanFS.D.)

Parameter of the

selenium-and

glutathione-dependent

antioxidative system

0Se SeIV SeVI

Glutathione

peroxidase 1

171F25.9a 703F150c 369F43.1b

Glutathione

reductase

21.3F2.27a 17.2F1.86a 25.6F4.54b

Thioredoxin

reductase

17.2F9.77a 53.1F9.71b 76.9F24.9b

Total glutathione 5.50F0.49a 6.69F0.81b 6.24F0.97ab(b 0.1)

Reduced

glutathione

2.64F0.32b 2.13F0.51a 2.37F0.51ab

Oxidized

glutathione

2.85F0.27a 4.56F0.58b 3.87F0.49b

% Reduced of total 48.03 31.67 37.71
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2.3.6. Determination of the protein concentration in

liver homogenates

The protein content in liver homogenates was determined

using a standard protocol [48].

2.3.7. Statistical analysis

Statistical analysis of the experimental data was

performed using the statistical package SPSS 12.0 for

Windows. A one-way analysis of variance was performed

after ascertaining the normality of distribution (Kolmo-

gorov–Smirnov test or Shapiro–Wilk test) and the

homogeneity of variance (Levene test) of the experimental

data. If both conditions were fulfilled, differences between

means were evaluated using the Tukey test. If homogene-

ity of variance could not be ensured, differences between

means were examined using the Dunnett T3 test. Differ-

ences between means were assumed as significant at an

error probability of less than 5% (Pb.05). For some

results, a trend is shown when error probability was less

than 10% (Pb.1).

% Oxidized of total 51.97 68.33 62.29

Significant differences ( P b.05) within a row are indicated by different

superscripts, b(b0.1)Q shows a trend; n =7 animals per group considered for

glutathione peroxidase and glutathione reductase; n =6 animals per group

considered for glutathione- and thioredoxin reductase.
3. Results

3.1. Whole-body insulin sensitivity

Fig. 2 shows the results of the whole-body IST. The

blood glucose concentrations after the insulin challenge in

the experimental groups are given as a percentage obtained

in the initial status before putting the mice on special dietary

conditions. Selenate treatment kept insulin sensitivity at a

comparable level as in the initial status.

In selenium-deficient mice, initial blood glucose con-

centration (time: 0 min) before insulin injection was 1.5 to

2 times higher than in the initial status and in the selenate-

treated mice. The lowering of blood glucose concentration

in these groups takes place at significantly higher mean

blood glucose concentrations. The higher insulin resistance

in selenium-deficient and selenite-treated mice is indicated
Fig. 2. Whole-body insulin sensitivity of db/db mice treated with selenate

for 8 weeks in comparison to selenium-deficient and selenite-treated mice

and to their initial status, obtained before putting the mice on defined

dietary conditions. Each data point represents the meanFS.E.M. of seven

animals per group.
by a steep rise in the blood glucose response curve towards

the initial values after 120 min.

3.2. Selenium- and glutathione-dependent redox system

Eight weeks of supranutritional supplementation with

selenite and selenate resulted in a significantly higher

activity of liver GPx1 in selenite-treated and selenate-treated

mice than in selenium-deficient mice. Thereby, it is

noticeable that the selenate-treated mice had a significantly

lower GPx1 activity than the mice with selenite applica-

tion (Table 2).

The activity of both glutathione- and thioredoxin

reductase was significantly increased by selenate treatment

in comparison to the two other groups. With regard to the

glutathione redox pair, the following measurements were

made. Total glutathione concentration was slightly increased

in the livers of both selenium-treated groups in comparison

to the selenium-deficient group. This effect was significant

between the selenite-treated group and the selenium-

deficient group and in tendency between selenate-treated

mice and selenium-deficient animals. The concentration of

oxidized glutathione and the ratio of oxidized to total

glutathione were increased by selenium treatment with both

selenite and selenate; thus, the glutathione redox pair shifted

to a more oxidized state. An attempt to mimic these

characteristic changes of glutathione peroxidase and gluta-

thione reductase activity in selenate-treated mice was made

in vitro. As also found in the in vitro inhibition assay for

PTPs (cf. Section 4.2), this in vitro assay provided evidence

that in the intermediary metabolism of selenium compounds



Fig. 3. Influence of different selenate (A) and selenite concentrations (B) on glutathione peroxidase activity in vitro. Each bar represents the meanFS.D. of

three independent replications.
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the selenite oxidation state +IV must be formed from

selenate (oxidation state +VI) and is the actual biologically

active metabolite.
Fig. 4. Effect of 8 weeks of selenate treatment (SeVI) on the activity of

PTPs (meanFS.D.) in the liver of db/db mice in comparison to selenium-

deficient mice and selenite-treated mice.
The addition of increasing concentrations of selenate

(0–1000 Amol/L) to the glutathione peroxidase assay

(containing all components of the glutathione-dependent
Fig. 5. In vitro test on the inhibition of PTPs by different selenium

compounds and concentrations. Each data point represents the mean of

three independent replications.



Fig. 6. Triglyceride concentration (mg/100 ml) (A) and cholesterol

concentration (mg/100 ml) (B) in plasma of db/db mice treated with

selenate for 8 weeks in comparison to selenium-deficient and selenite-

treated mice (meanFS.D.).
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redox system) showed no overall influence on the activity of

glutathione peroxidase activity (Fig. 3A). In contrast, the

addition of selenite led to a reduction of glutathione

peroxidase activity while the blank activity (glutathione

reductase-dependent NADPH activity) increased. The addi-

tion of selenite concentrations above 62.5 Amol/L led to a

total breakdown of the reaction (Fig. 3B).

3.3. Activity of PTPs as important antagonists of

insulin signaling

Selenate treatment for 8 weeks inhibited the activity of

PTPs as important antagonists of insulin signalling by about

50% as compared to selenium-deficient and selenite-treated

animals (Fig. 4).

To ascertain the inhibitory effect of selenium compounds

in different oxidation states on the activity of PTPs, an in

vitro inhibition test was performed.

The addition of selenate (selenium oxidation state: +VI)

to the reaction mixture reaching final selenium concentra-

tions of 25, 50, 100, 250, 500, 1000, 2500 and 5000 Amol/L

produced no inhibition of PTP activity. Adding selenium

compounds of the oxidation state +IV, obtained either by

nonenzymatic reduction of selenate with 37% HCl or by

the addition of pure selenite or selenious acid to the

reaction mixture, led to a strong inhibition of PTPs in a

concentration-dependent manner (Fig. 5). A 50% inhibition

of PTP activity was obtained with all the abovementioned

selenium compounds of the oxidation state +IV when their

final concentration in the assay mixture ranged between

500 and 1000 Amol/L. The inhibition of PTPs by tetra-

valent selenium compounds steadily increased up to the

highest concentration examined in the test (5000 Amol/L

Se), reaching a 65% inhibition by nonenzymatically

reduced selenate and an 85% and 76% inhibition by the

addition of pure selenite and selenious acid, respectively.

Selenotrisulfides (oxidation state: �I), synthesized from

selenite and reduced glutathione, effected a significantly

lower inhibition of PTPs in comparison with the tetrava-

lent selenium compounds. One hundred, 250, 500 and

1000 Amol/L of selenotrisulfides inhibited PTP activity

only by 9%, 17%, 18% and 24%, respectively. Even
Table 3

Activity of F-1,6-Dptase (U/mg protein), PC (U/mg protein) and PEPCK

(U/mg protein) in the liver of db/db mice treated with selenate for 8 weeks

in comparison to selenium-deficient and selenite-treated mice (meanFS.D.)

Gluconeogenic

marker enzyme

0Se SeIV SeVI

Fructose-1,6-Dptase 0.640F0.065b 0.574F0.014b 0.237F0.061a

Pyruvate

carboxylase

0.646F0.059ab 0.846F0.220b 0.595F0.045a

Phosphoenolpyruvate

carboxykinase

0.306F0.066b 0.261F0.069ab 0.196F0.051a

Significant differences ( P b.05) within a row are indicated by different

superscripts; n =6 animals per group considered for the activities of F-1,6-

Dptase, PC and PEPCK.
with the addition of 5000 Amol/L selenotrisulfides to

the reaction mixture the inhibition of PTPs remained

below 50%.

The results of the PTP in vitro inhibition test provided

further evidence that selenium compounds of the selenite

oxidation state +IV must be formed intermediarily from

selenate and actually mediate the biological properties of

selenate in vivo.

Selenate administration to db/db mice led to a reduction

of the activity of the gluconeogenic enzymes F-1,6-Dptase,

PC and PEPCK in comparison to selenium-deficient mice

and selenite-treated mice (Table 3).

3.4. Parameters of lipid metabolism

In comparison to selenium deficiency, plasma triglycer-

ide concentration was significantly lowered by administra-

tion of both selenium compounds to db/db mice (Fig. 6A).

Selenate treatment additionally lowered plasma cholesterol

concentration in comparison to the two other experimental

groups (Fig. 6B).



Fig. 7. Expression of PTP1B (A), PEPCK, F-1.6-Dptase and PPARg (B) in

the liver of db/db mice treated with selenate for 8 weeks in comparison to

mice on selenium-deficient diet, mice treated with selenite and nondiabetic

Black 6 control mice relative to their respective GAPDH expression.

A.S. Mueller, J. Pallauf / Journal of Nutritional Biochemistry 17 (2006) 548–560556
Treatment of db/db mice with selenite increased total

liver lipid content per gram fresh matter in tendency,

whereas treatment with selenate led to a significant increase

in total liver lipids as compared to feeding with selenium-

deficient diet (Table 4). No changes could be found for

the content of phospholipids. A significantly higher

cholesterol concentration was evident in selenite-treated

mice than in selenium-deficient and selenate-treated mice.

When the lipid parameters were referred to 1 g of total

lipids, all parameters measured were significantly lower in

selenate-treated mice than in selenium-deficient and sele-

nite-treated animals, whereas the remnant to 1 g of total

lipids was significantly increased by selenate treatment,

presumably indicating an increased concentration of free

fatty acids.

3.5. Expression of genes related to insulin resistance,

glucose metabolism and fatty acid metabolism

With regard to expression of genes related to insulin

resistance, glucose metabolism and fatty acid metabolism,

some marked changes could be measured. Selenium

supplementation with selenite or selenate increased the

expression of PTP1B, an important tyrosine phosphatase

discussed in the context of insulin resistance, by about 2- or

2.5-fold in comparison to selenium deficiency (Fig. 7A).

Selenate administration to the db/db mice led to a marked

down-regulation of the gluconeogenic marker enzymes

F-1.6-Dptase and PEPCK in comparison to selenium-

deficient and selenite-treated mice. The expression reached
Table 4

Parameters of lipid metabolism: total lipids, triglycerides, phospholipids

and cholesterol in the liver of db/db mice treated with selenate for 8 weeks

in comparison to selenium-deficient mice and selenite-treated mice based

on 1 g of liver fresh matter and 1 g of total lipids, respectively (meanFS.D.)

Parameter of liver

fatty acid metabolism

0 Se Se IV Se VI

Parameters referring to 1 g of liver fresh matter

Total lipids (mg/g

fresh matter)

79.6F7.14a( b .1) 99.4F16.4b 145F26.9c

Triglycerides (mg/g

fresh matter)

36.3F22.1a 62.7F10.6b(b .1) 71.0F24.0b(b .1)

Phospholipids (mg/g

fresh matter)

18.7F1.19a 18.6F2.16a 19.0F1.32a

Cholesterol (mg/g

fresh matter)

3.30F0.64a 4.87F1.00b 3.35F1.13a

Parameters referring to 1 g of liver lipids

Triglycerides

(mg/g lipids)

633F80.9a 639F97.4a 491F150b( b .1)

Phospholipids

(mg/g lipids)

236F20.8c 190F31.5b 138F35.7a

Cholesterol

(mg/g lipids)

43.6F7.25b 50.3F11.91b 24.1F10.24a

Rest to 1 g

lipids (mg)

87.4 120.7 346.9

Significant differences ( P b.05) within a row are indicated by different

superscripts; b(b0.1) Q shows a trend; n =6 animals per group considered

for liver lipid parameters.
a level almost as low as in nondiabetic Black 6 mice. The

expression of the PPARg as an efficient target in the

treatment of obesity and insulin resistance, which is mainly

expressed in adipose tissue, but also in the liver of obese

rodents, was about 2.5-fold increased in the liver of

selenate-treated mice in comparison to their selenium-

deficient and selenite-treated companions. Under the con-

ditions examined (up to 31 amplification cycles), no

expression of PPARg could be detected in nondiabetic

Black 6 mice (Fig. 7B).
4. Discussion

In the present study, treatment of the db/db mice with

supranutritional selenate doses effected an improvement of

whole-body insulin sensitivity in comparison to selenium-

deficient and selenite-treated mice by maintaining insulin

sensitivity on a comparably low level as at the beginning of

the trial.

4.1. Selenium- and glutathione-dependent redox system

Final GPx1 activity in the liver clearly indicated an

efficient selenium depletion in group 0Se. GPx1 activity in

the selenium-supplemented groups SeIV and SeVI, on the

one hand, reflected a high selenium status in these organs,

but, on the other hand, the distinctly lower GPx1 activity in

the liver of selenate-treated mice demonstrates that funda-

mental differences exist in the absorption and the interme-

diary metabolism of selenite and selenate. The results of the

in vitro assay on the influence of selenite and selenate on

GPx1 activity strongly suggest that the selenite oxidation

state +IV is intermediarily formed from selenate and acts as

an inhibitor of GPx1.

Our results with regard to a distinctly different

metabolism for selenite and selenate are confirmed by
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prior investigations on selenium absorption and by

studies characterising intermediary selenium metabolites

[9,10,13,14].

From the higher activity of both glutathione reductase and

thioredoxin reductase, in particular with selenate treatment,

it can be concluded that these reductases are of significance

in the reduction of selenate, since selenate must be reduced

from the oxidation state +VI to the oxidation state �II, while

selenite metabolites (selenotrisulfides) depend only on

one reduction step from �I to �II (cf. Fig. 1).

In the present study, the administration of both selenite

and selenate further effected a moderate increase in total

glutathione concentration and a significant change in the ra-

tio of oxidized to reduced glutathione. Similar findings were

reported for a feeding trial with rats and ducklings and could

be caused by the enhanced need for reduced glutathione for

selenium reduction to the oxidation state �II and a limited

capacity of glutathione reductase when supranutritive sele-

nium concentrations are administered to animals [49,50].

Moreover, an increase in oxidized glutathione was reported

for rats fed fish oil-enriched diets supplemented with

selenium in accordance with dietary recommendations and

for rats fed selenium from different compounds in various

concentrations [51]. The effects of changes in cellular redox

status on insulin resistance have been controversially

discussed. On the one hand, a decrease in tissue GSH

concentrations by treating rats with the g-glutamyl cysteinyl

synthetase inhibitor buthionine sulfoximine led to a signif-

icant impairment of insulin sensitivity of cultured adipocytes

from these animals [52]. On the other hand, results from

tissue culture studies with a-lipoic acid showed that the

short-term enhancement of intracellular oxidant levels led to

an enhanced glucose uptake [53]. Further, the effectiveness

of pentavalent vanadium, acting as a PTP1B inhibitor on

insulin sensitivity, was enhanced in the presence of higher

oxidant levels in cells, because under these conditions the

reduction of the more effective pentavalent vanadium to

less efficient tetravalent vanadium was delayed [54].

4.2. Activity and expression of PTPs as important

antagonists of insulin signalling and particular

changes in glucose metabolism

A significant decrease of PTP activity in the liver was

obtained by oral selenate administration alone. Supranutri-

tional doses of both selenite and selenate increased the

expression of PTP1B.

Within the PTPs, a 230-amino acid domain, which

includes the active centre of the enzymes, is a highly

conserved region in the protein structure. A cysteine residue

in this region is involved in the hydrolysis of protein

phosphotyrosine residues by the formation of a cysteinyl-

phosphate intermediate [55]. In recent years, PTP1B, which

is involved in the negative regulation of insulin signalling,

has been of particular interest. At present, the expression

and activity of PTP1B in rodents and other mammalian

species are controversially discussed. However, there is no
doubt that diabetic symptoms can be efficiently reduced by

treatment with PTP1B enzyme inhibitors or antisense

oligonucleotides, which reduce the mRNA expression and

the protein synthesis of the enzyme [56–59]. Explanations

of the mechanism for reversible and irreversible PTP1B

inhibition by glutathionylation in the presence of high

concentrations of oxidized glutathione or formation of

sulphenic, sulphinic and sulphonic acid derivatives in the

presence of hydrogen peroxide have been given involving

the blocking as well as the stepwise oxidation of the active

site cysteine SH group. Even in vivo, an insulin-dependent

release of hydrogen peroxide in tissues leads to an oxidation

of PTP1B and an increase in insulin signalling [60–63].

Furthermore, the results of a recent study in mice with GPx1

overexpression support the hypothesis of a differentiated

regulation of PTPs by pro- and antioxidative metabolites. In

this study, mice with GPx1 overexpression showed a

diminished phosphorylation of the h subunit of the insulin

receptor [64]. This effect can be explained by a reduced

oxidation (inactivation) of the active site of PTPs by

reduced hydrogen peroxide levels; thus, the enzymes

possess a higher activity towards the phosphorylated h
subunit of the insulin receptor, and, therefore, insulin

resistance increases. An increased concentration of oxidized

glutathione as a result of the increased GPx1 activity,

however, may produce higher amounts of glutathionylated

PTPs (inactive), leading to an up-regulation of their mRNA

and activity, and, finally, effecting an enhanced dephos-

phorylation of the h subunit of the insulin receptor [64].

From the results of this study and from further unpublished

results, we conclude that glutathionylation of PTPs due to a

high GPx1 activity and a shift of the glutathione redox pair

to a more oxidized state is the driving force for the increased

expression of PTP1B.

The in vitro inhibition assay was performed to

investigate whether the observed PTP reduction by

selenate in vivo is based on the inhibition of these

enzymes. Initially, surprisingly and contrary to the in vivo

results, the incubation of db/db mouse liver cytosol with

increasing selenate concentrations (Se oxidation state +VI)

effected no inhibition of PTPs, whereas the incubation

with SeIV compounds obtained either by nonenzymatic

reduction of selenate or by the addition of pure SeIV

derivatives (selenite and selenious acid) led to a concen-

tration-dependent inhibition of PTP activity (Fig. 5). As for

glutathione peroxidase activity (cf. Section 4.1), a possible

explanation for this observation that free SeIV compounds

act as the actual inhibitors of PTPs could be derived from

the differences in the metabolism of selenate and selenite in

vivo (Fig. 1).

In mammals, selenate is absorbed unmodified by a

sodium-dependent cotransport system, which is also in-

volved in sulphate absorption [10]. Furthermore, there

is evidence that selenate is distributed unmodified

to peripheral tissues, where it is stepwise reduced to the

oxidation state �II (Fig. 1). The exact effect of selenate
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metabolism in mammalian tissues is not clear yet [14]. Either

selenate is metabolised in a similar manner to sulfate or it

undergoes reduction during which the oxidation state +IV is

formed as an intermediate. Due to the reduction of PTP

activity observed in selenate-treated mice, the latter men-

tioned pathway seems to play an important role.

In contrast to selenate, most of the selenite does not

reach the peripheral tissues in the oxidation state +IV

since selenite forms selenotrisulfides (oxidation state: �I)

during its intestinal absorption. These selenotrisulfides are

distributed to organs on the periphery and undergo

reduction to the oxidation state �II, from which they

can be utilized for the synthesis of functional selenopro-

teins [10,13]. This hypothesis is supported by the results

from the in vitro inhibition test. When selenite and GSH

were converted to selenotrisulfides prior to their use in

the in vitro inhibition test, the inhibition of PTPs

decreased significantly. The remaining inhibition may

have derived from a not fully completed synthesis of

selenotrisulfides in the model investigated. This must be

examined in future investigations with purified seleno-

trisulfides and pure preparations of PTP1B. The precise

inhibition mechanism of SeIV compounds on PTPs in

general and on PTP1B in particular seems to be an

interesting subject for future investigations using mass

spectrometry.

In conclusion, our results on PTP activity and expression

can be interpreted as shown in Fig. 8.

High supranutritional selenium doses effect a shift in the

glutathione–redox system to a more oxidized state. An

enhanced glutathionylation of PTPs is presumably the

stimulus for an increase in gene expression.

In the case of very high selenate doses, the inhibitory

effect of intermediary selenate metabolites compensates for

the increased expression, which, in turn, leads to a

correction of insulin signalling and particular changes in

the intermediary glucose metabolism. In particular, a

reduction of the activity and the expression of gluconeo-

genic marker enzymes was obtained (Fig. 8). In prior studies

with type I diabetic rats, the regulatory effect of selenate on
GPx1 ↑

GSSG ↑

Up regulation
of PTP1B expression

PTP activity ↓

Insulin sensitivity ↑

Gluconeogenesis

* PEPCK↓
* F-1,6-DPtase ↓

Selenate VI

intermediate
selenium IV

Acts in high doses as

a strong inhibitor of PTP activity
and compensates for the increased

expression

Activation of
PPARγ
expression

PTPSH PTPSSG
(protected / inactive)

Fig. 8. Possible links between the selenium-dependent redox system, the

regulation of PTPs and the resulting influence on glucose metabolism.
glycolysis and gluconeogenesis was attributed to an increase

in the phosphorylation of single components of the insulin

signalling pathway. From our present results, we now

conclude that the inhibition of PTPs is the cause of the

modification of insulin signalling.

Future investigations into the precise regulation of

PTP1B mRNA expression and PTP1B protein expression

should focus on the role of cellular redox status during

these processes.

4.3. Influence on fatty acid metabolism

With regard to fatty acid metabolism, supranutritional

selenate led to a significant decrease in plasma cholesterol

and triglycerides. Concomitantly, a significant increase

in total liver lipid concentration, liver triglyceride concen-

tration and expression of PPARg was measured.

The main functions of PPARg consist of adipocyte

differentiation and the redistribution of adipose tissue.

Furthermore, PPARg seems to be involved in the distribu-

tion of body fat stores. These hypotheses were confirmed by

a study with transgenic mice with an ablation of liver

PPARg but with adipose tissues. However, these animals

developed fat intolerance, increased adiposity, hyperlipid-

emia and insulin resistance. It could be concluded that liver

PPARg regulates triglyceride homeostasis, contributing

to hepatic steatosis, but protecting other tissues from

triglyceride accumulation and insulin resistance [32,33].

Results of other trials in which db/db mice were long-term

treated with thiazolidinediones showed that these insulin-

sensitising pharmaceuticals induced liver PPARg and its

target genes (adipocyte FABP) [34], finally resulting in

hepatic steatosis [35,36].

Our study shows that a similar mechanism seems to be

activated by selenate. Selenate-treated db/db mice gained far

less body weight than their selenium-deficient and selenite-

treated companions [29]; they showed reduced plasma lipids

and a distinct increase in liver lipids. The lipid fractions per

gram of total lipids indicate that in selenate-treated db/db

mice the brest Q to 1 g of total lipids is significantly higher

than in the two other groups and therefore demonstrate a

higher amount of nonesterified fatty acids. These nonester-

ified fatty acids in turn can act as natural ligands of PPARg

and therefore contribute to an increase in whole-body

insulin sensitivity (Fig. 8).
5. Conclusion

The results of our study with type II diabetic db/db

mice give some new insight into the mechanisms by which

the administration of supranutritional selenate can influ-

ence diabetes and insulin resistance. One mechanism of

interest is the inhibition of PTPs by intermediary selenate

metabolites. This aspect of an antidiabetic action is closely

linked to selenium metabolism, since selenium metabolites

in the oxidation state +IV are the actual inhibitors of PTPs

and they can be generated only from the stepwise
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reduction of selenate. This is likewise the reason why

selenite fails to develop strong antidiabetic properties,

because this selenium compound enters peripheral organs

in the selenotrisulfide oxidation state �I. Furthermore, we

could demonstrate that the system of PPARs is also

initiated by supranutritional selenate. The increased ex-

pression of liver PPARg presumably led to a redistribution

of whole-body lipid stores resulting in an increase in liver

lipids. In turn, the concentration of lipids in the liver can

provide natural ligands of PPARg and therefore contribute

to the increase in insulin sensitivity.
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Abstract: It is widely known that selenium develops its biological activity via an active selenocysteine residue in the
catalytically active centre of functional selenoproteins. By its function in glutathione peroxidases and thioredoxin
reductases selenium contributes to a remarkable extent to the maintenance of the cellular antioxidative balance when taken
up at the recommended dietary level (animals: 0.1 - 0.3 mg/kg diet, humans: 50 - 150 µg Se daily). In recent years an
interesting physiological aspect has been found for selenate (selenium oxidation state +VI). High doses of selenate
displayed antidiabetic properties when applied to diabetic animals or added to the media of tissue cultures. Thus selenate
treatment could be shown to normalise hyperglycaemia as well as changed activities of glycolytic and gluconeogenic
marker enzymes. Mechanistically an increased phosphorylation of single proteins of the insulin signalling cascade could
be attributed to the insulinomimetic action of selenate.

The examination of the antidiabetic features of selenate in type II diabetic animals revealed that the increase in
phosphorylation is presumably based on the inhibition of protein tyrosine phosphatases, which act as negative regulators
of insulin signalling.

In contrast to the antidiabetic features of high selenate doses, selenite administration to diabetic animals showed no effect
on diabetes. In a recent study it could even be demonstrated that the overexpression of glutathione peroxidase 1 (the best
characterized selenoprotein) in healthy mice led to an increase in insulin resistance and obesity.

These results could partially be confirmed by the data of our most recent investigation in which a high expression and
activity of glutathione peroxidase, obtained by feeding selenium at the nutritionally recommended level and at a
moderately supranutritive level corresponded to an up-regulated expression of proteins whose expression is increased in
insulin resistant type 2 diabetes.

From studies on the role of selenium in diabetes carried out so far it can be concluded that selenium plays an ambivalent
role with regard to diabetes depending on the compound and on the applied concentration. Thus only high doses of
selenate evolve antidiabetic properties. Investigations into an even negative influence of moderate supranutritive doses of
selenium on diabetes and the molecular events linked to this are necessary.

The review summarizes the information currently available on the ambivalent role of selenium in diabetes which seems to
depend on the chemical form and the applied concentration. Established facts, recent findings of our own studies using
microarray analysis and RT-PCR and perspectives of the role of selenium in diabetes are presented and discussed against
the background of selenium metabolism.

Keywords: Selenium, selenate, selenite, antidiabetic effects and insulin resistance.

1. SELENIUM AND SELENIUM COMPOUNDS IN
MAMMALS

Selenium belongs to the chalcogens and many of its
chemical properties (outer valence shell electronic
configuration, atomic size, bond energy, ionisation potential,
electronegativity) are similar to those of sulphur. As in the
case of sulphur selenium occurs in the oxidation states –II
(selenide), 0 (elemental selenium), +IV (selenite), +VI
(selenate). In its elemental oxidation state (0) selenium forms
red crystals with a hexagonal ring structure [1]. Besides

*Address correspondence to this author at the Institute of Animal Nutrition
and Nutrition Physiology, Justus Liebig University Giessen, Heinrich Buff
Ring 26 - 32, D-35392 Giessen, Germany; E-mail: Josef.Pallauf@
ernaehrung.uni-giessen.de

these similarities there exist nevertheless some important
differences between the two elements with regard to the
chemistry of their oxyanions and in the acid strengths of
their hydrides. Since Se compounds tend to be metabolised
to more reduced states and sulphur compounds tend to be
metabolised to more oxidized states, the following reaction
between quadrivalent selenium and quadrivalent sulphur is
the basis for many reactions in biological systems:

H2SeO3 + H2SO3 -à Se + 2 H2SO4 + H2O [2, 3].

When taken up at the recommended level (animals: 0.15
– 0.30 mg Se/kg dietary dry matter, humans: 50 – 150 µg Se
daily) [4, 5, 6, 7, 8, 9] selenium performs its physiological
functions in the body of animals and humans as an integral
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part of the redox-active centre of functional selenoproteins.
The detoxification of peroxides, the involvement in the
regulation of thyroid hormone metabolism and the
participation in the reduction of disulfides and ascorbate are
the most important functions fulfilled by at least four
different glutathione peroxidases, three iodothyronine
deiodinases and two thioredoxin reductases [10, 11, 12].
Within the glutathione peroxidases GPx1 is the glutathione
peroxidase which normally exhibits the highest activity and
is expressed in all mammalian tissues. Presumably GPx1
makes a large contribution to the maintenance of cellular
antioxidant balance by the detoxification of a broad variety
of peroxides and hydroperoxides as shown in Fig. (1) [13].

GPx2, the gastrointestinal form, has been assumed to
protect the organism against food borne hydroperoxides
though without convincing evidence. Its peculiar cellular and
subcellular distribution indicate more specific functions such
as regulating proliferation and apoptosis of the
gastrointestinal epithelium [14]. GPx3 detoxifies peroxides
using glutaredoxin and thioredoxin caused by a lack of
reduced glutathione in blood plasma [15]. GPx4 has been
discovered to be an enzyme protecting biomembranes
against oxidative destruction. More recent studies suggest an
important role of GPx4 in the regulation of the synthesis of
leukotrienes which act as mediators in immune reactions.
Moreover GPx4 plays an interesting role with regard to male
fertility. During spermatogenesis GPx4 changes from an
active enzyme in spermatids into a major structural protein
of the mitochondria capsule of mature spermatozoa [16].

In human food selenium is present in two major forms.
Feedstuffs derived from animal sources mainly contain
selenium in the form of selenocysteine from functional
selenoproteins, while selenium from plant derived foodstuffs
is present predominantly as selenomethionine. In mineral
and trace element supplements selenium is frequently added
in the form of the inorganic salts sodium selenite (selenium

oxidation state +IV) and sodium selenate +VI) [9]. Selenium
from various dietary sources is absorbed by individual
mechanisms in the jejunum and in the ileum of mammals.
The amino acid derivatives selenomethionine and
selenocysteine use the same carriers as their sulphur
analogues methionine and cysteine [17]. Selenate uses a
sodium- sulphate cotransporter for its absorption, which is
driven by the activity of Na+/K+-ATPase at the basolateral
enterocyte membrane [18]. Prior to its absorption selenite
partially reacts with glutathione and other thiols in the lumen
to form selenotrisulfides, which are presumably taken up
into the enterocytes by amino acid transporters. Another part
of selenite diffuses through the apical membrane and reacts
with thiols in the cytosol of enterocytes. The selenium
compounds mentioned above are absorbed to a high extent
(> 85%) from dietary sources, but differences exist in the
absorption time. As a result of the upstream selenotrisulfide
synthesis selenite absorption is slower than selenate and
selenomethionine absorption [18]. Subsequently the
selenocompounds are liberated into the blood stream at the
basolateral enterocyte membrane and distributed to the
various peripheral tissues. The exact transport mechanism
for the various selenium compounds is still not fully
understood. Selenomethionine associates with haemoglobin,
while selenate and the remaining free selenite was found to
be transported with α- and γ-globulins [19, 20, 21]. Thus
orally administered selenite presumably enters the peripheral
organs in the form of selenotrisulfides or it is reduced in the
erythrocytes. Selenate is metabolised during and after its
unmodified uptake by the peripheral tissues. This hypothesis
of a distinctly different cellular metabolism for selenite and
selenate is supported by results of an investigation into
intermediary selenium metabolites after intravenous
injection of rats with both compounds [22]. Selenite was
rapidly taken up by red blood cells, reduced in the
erythrocytes to the selenide oxidation state –II and delivered
to peripheral organs (liver) in an albumin bound form. In

Fig. (1). Reaction mechanism of glutathione peroxidases [13].
At a physiological pH value selenium in glutathione peroxidases is present as a selenolate anion. The reduction of a peroxide effects the
oxidation to the selenol oxidation state (selenenic acid). Starting from the selenol oxidation state either the glutathione coupled two step
regeneration (reduction) to the selenolate anion or detoxification of a further peroxide and oxidation of the selenol to the oxidation state of
seleninic acid can occur.
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contrast unmodified selenate could be detected in the
bloodstream, and the successive reduction to the oxidation
state –II takes place during selenate uptake from plasma to
peripheral organs. A fraction of “so-called” acid labile
selenium consisting of selenium bound unspecifically to
proteins (presumably via the formation of Se-S bonds) could
be detected. After the intravenous injection with both
compounds the main excretion products detected in urine
consisted of the methylated forms of selenium [mono-
methylselenol (MMS) and trimethylselenonium ion (TMS)].
Injection of selenite (Se IV) led to a major peak of these
methylated metabolites in urine after 0 – 6 h in comparison
to a selenate (Se VI) injection which showed high metabolite
concentrations after 6 – 12 hours. Additionally unmodified
selenate was excreted after selenate injection.

Selenomethionine is the only selenium compound which
can be incorporated unspecifically into proteins instead of its
sulphur analogue methionine. The ongoing cellular
metabolism of all selenium compounds requires a step by
step glutathione-dependent reduction to the selenide
oxidation state –II which is the physiological basis for the
incorporation of the trace element into the selenocysteine
residue of functional selenoproteins by a cotranslational
mechanism. Unusually selenocysteine is encoded by the
UGA-STOP-codon in the messenger RNA (mRNA) of the
functional selenoproteins and synthesised by a cotransla-
tional reaction mechanism starting from a specific serine
transfer RNA population (tRNA Ser Sec) and selenium,
reduced to the selenide oxidation state (–II) [23, 24, 25]. The
regulation of these complex processes is implemented by the
SECIS element (selenocysteine incorporating structure)
located in the 3´ untranslated mRNA region of functional
selenoproteins [26, 27]. Selenium deficiency leads to a
down-regulation of the transcript levels of the functional
selenoproteins in a tissue and selenoprotein specific manner
[28, 29, 30]. Whereas during selenium deficiency the
expression of GPx1 and its activity decrease most rapidly the
expression level and the activities of GPx4 and GPx2 are
altered to a considerably lesser extent. The activity of GPx3
is affected similarly to GPx1 activity during selenium
deficiency [31, 32, 33]. Recent molecular biological
investigations with rats using the microarray technique have
shown that selenium deficiency does not only affect the
expression of functional selenoproteins, but also the
expression of further genes involved in hepatic xenobiotic
metabolism [34, 35]. Microarray technology may provide a
helpful tool for the discovery of both positive and critical
functions of single nutrients.

2. TYPE 2 DIABETES, INSULIN SIGNALLING AND
INSULIN RESISTANCE

Type 2 diabetes is one of the most common metabolic
disorders worldwide. In this context peripheral insulin
resistance is discussed as an important factor preceding the
onset of the disease and promoting its course. “Syndrome X”
which includes a cluster of risk factors (hyperglycaemia,
hypertriglyceridemia, hyperinsulinaemia) for the develop-
ment of atherosclerosis and several types of heart diseases is
discussed as developing from untreated insulin resistance.
The pathophysiology of type 2 diabetes involves
impairments of both insulin action and insulin secretion.

Insulin sensitivity is determined by the ability of insulin to
promote glucose uptake and utilization. Thus, under insulin-
resistant conditions, glucose clearance is decreased in
response to an insulin challenge [36, 37]. Insulin regulates
glucose homeostasis primarily by suppression of hepatic
glucose production and stimulation of peripheral glucose
uptake [38, 39, 40]. Thus, extensive research on the
development of type 2 diabetes has focused on cellular and
molecular processes of insulin signalling. In obese rodent
models, especially dbdb mice, and in humans the insulin
secretion increases with progressive insulin resistance. The
relationship is both hyperbolic and tightly  coupled. Failure of
pancreatic ß-cells to compensate for insulin resistance is
critical in the pathogenesis of type 2 diabetes. Factors
limiting the ability of ß-cells to respond to an increasing
demand remain largely unknown, but probably involve
genetic factors as well as glucotoxicity and lipotoxicity. In
addition, diminished insulin secretion could be mediated in
part by abnormal glucose metabolism. Within the ß-cell
glucose metabolism is coupled to insulin biosynthesis and
secretion, as well as to ß-cell mass by hypertrophy,
hyperplasia, and neogenesis. Moreover, recent studies have
shown that the ß-cell itself is an insulin-responsive tissue,
demonstrating an additional potential link between peripheral
insulin resistance and ß-cell failure [41, 42, 43, 44].

The principal features of insulin action in the organism of
healthy mammals at the molecular level have been
elucidated during the last two decades (Fig. (2)). After
binding of insulin to the extracellular α-subunit of its
heterotetrameric receptor a conformational change of the
protein subsequently activates its intrinsic tyrosine kinase
activity. The cytoplasmic kinase domains of the activated
receptor transphosphorylate the tyrosines 1158, 1162 and
1163 in the catalytic loop of the kinase domain (β-subunit of
the receptor) and subsequently the C-terminal tyrosines 1328
and 1334. The phosphorylation of tyrosine 972 in the
juxtamembrane represents the major docking site for
downstream interacting proteins. Insulin receptor interacting
proteins including the insulin receptor substrates 1 – 6 (IRS 1
– 6) are in turn phosphorylated on tyrosines providing
docking sites for SH2 domain containing proteins [46, 47,
48]. The three major pathways emanating from the activated
IRS are the PI3K, the CAP-Cbl and the MAPK pathway with
the first two pathways mainly involved in the positive
control of insulin action [45, 48, 49]. Upon recruitment of
IRS1 to the activated IR, IRS1 becomes heavily tyrosine
phosphorylated and serves as a large scaffolding protein by
binding to several SH2 containing proteins. The most
prominent example is the p85 regulatory subunit of
phosphatidylinositol 3-kinase (PI3-kinase). Binding to p85
recruits the p110 catalytic subunit of PI3-kinase. This
interaction positions PI3K in close contact with its substrate
phosphatidyl inositol-4,5-bisphosphate (PtdIns-4,5-P2)-
which is then phosphorylated on the 3´-position of the
inositol ring yielding the second messenger phosphatidyl
inositol-3,4,5-triphosphate (PtdIns-3,4,5-P 3). PtdIns-3,4,5-
P3 recruits the phosphorylation domain-containing protein
serine kinases PDK-1, PKB and the atypical PKCλ at the
plasma membrane. The activation of this pathway mediates a
number of characteristic insulin-induced responses,
including translocation of GLUT4 vesicles to the plasma
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membrane, activation of glycogen synthesis by the protein
kinase B mediated phosphorylation of glycogen synthase
kinase 3 (GSK3) which regulates glycogen synthase
negatively. Furthermore lipogenesis is up-regulated by
increasing the expression of the fatty acid synthase gene [50,
51, 52, 53, 54]. Recent investigations suggest that a parallel
pathway cooperates with the PI3K pathway to fully induce
glucose uptake. This pathway is initiated by the recruitment
of the protooncogene Cbl to the activated insulin receptor via
the adapter protein CAP [55].

Moreover the mitogen activated protein kinase pathway
(MAPK) is also induced by insulin via Shc and Grb2
association with the insulin receptor as well as IRS
molecules triggering an unknown number of transcriptional
processes. These processes are partly involved in the growth
and differentiation of cells and tissues [56].

Insulin resistance is characterised by a diminished
responsiveness to the action of insulin at its multiple target
organs. The insulin receptor itself is therefore a primary
candidate molecule. Its down-regulation might contribute to
the decreased hormone action. Cases of insulin resistance or
diabetes have been linked to mutations of the insulin
receptor gene [56, 57]. In addition to these rare genetically
determined cases, earlier studies showed that the IR tyrosine
kinase activity was reduced in insulin-resistant obese mice
[58] and in Type 2 diabetic patients [59]. These results were
independent of genetic variants of the insulin receptor. A
large number of other processes are also discussed as
reducing the insulin signal downstream of the receptor
during insulin resistance.

Downstream components of the β subunit of the insulin
receptor also seem to play a crucial role in the development

of insulin resistance. Nearly every signalling protein
downstream the insulin receptor was investigated for its
involvement in insulin resistance. In obese rodents both a
decreased phosphorylation and a reduced protein concen-
tration of insulin receptor substrate 1 (IRS-1) were
associated with an increased insulin resistance. Moreover
phosphorylation reactions at serine and threonine residues
instead of tyrosine residues could be a further cause of a
diminished insulin signal transduction. An increased activity
and expression of protein kinase c intensifies this mechanism
of insulin resistance [60, 61, 62].

Furthermore a connection seems to exist between
signalling pathways originally responsible for other
physiological processes (e.g. immunological functions,
mediation of inflammatory processes, tumour growth and
differentiation and apoptosis) and the insulin signalling
pathway. In this context it could be demonstrated that the
overexpression of Janus kinase in the liver of mice promotes
insulin resistance in these animals [63]. The organism of
humans and animals also possesses a class of proteins which
act as negative regulators of insulin signalling, so-called
protein tyrosine phosphatases (PTPs). Their functions
include the adjustment of a balanced insulin action and other
signalling processes propagated by phosphorylation
reactions in cells. In association with type 2 diabetes, obesity
and syndrome X an enhanced expression and activity of
PTPs is discussed as one possible mechanism for the
development and existence of insulin resistance. A
mathematical model was also applied which calculates the
total insulin action in a cell as the function of concentration,
substrate affinity and reaction constant of all known
components in the insulin signalling cascade [64]. This
theoretical approach allows calculations of the effect of

Fig. (2). Major routes of the insulin signalling pathway.



Selenium, an Ambivalent Factor in Diabetes? Current Nutrition & Food Science, 2006, Vol. 2, No. 2    155

changes in any component of the insulin signalling pathway,
e.g. which effect the increase in PTP activity can have. The
large family of protein tyrosine phosphatase proteins can be
divided into non-receptor (cytosolic) and receptor PTPs. In
particular PTP1B is discussed as acting as an important
antagonist of insulin signalling. Therefore the enzyme seems
to play a crucial role in the treatment of type 2 diabetes and
obesity [64]. Both the specific inhibition of the enzyme by
chemical compounds, such as vanadium and the selective
reduction of its transcription as well as its translation by
antisense oligonucleotides (ASOs) were investigated in order
to reduce PTP1B activity and therefore to reduce insulin
resistance [65, 66, 67].

The intracellular oxidative and antioxidative balance and
especially the concentrations of H2O2 and oxidized
glutathione (GSSG) possess a pivotal influence on the
differentiated regulation of the activity of the enzymes.
Stepwise oxidation of the catalytic active Cys215 to
sulphenic-, sulphinic- and finally sulphonic acid derivatives
by H2O2 or formation of glutathionylated intermediates with
reduced and/or oxidized glutathione leads to the reversible or
irreversible inactivation of the enzyme depending on the
oxidation state of the cysteine-sulphur [68, 69, 70].

There are a large number of recent investigations on the
influence of cellular antioxidative balance on insulin
sensitivity. The conclusions of these investigations are
however partially inconsistent.

On the one hand an elevated extra- and intra-cellular
glucose concentration as is present in diabetes results in
oxidative stress. A large number of cell culture studies
demonstrated that the incubation of various cell types with
high glucose concentrations (up to 30 mmol/L) increases
oxidative stress. The basic mechanism for this increase in
oxidative stress is an increased production of superoxide
anion radicals generated from glucose autoxidation in the
presence of transition metals. Superoxide anion can
disproportionate into hydrogen peroxide, which produces the
extremely reactive hydroxyl radicals (.OH) in the presence of
transition metals. Hydrogen peroxide could be demonstrated
as reducing insulin signalling directly. Furthermore protein
glycation of proteins with a long half life (>10 weeks) leads
to the formation of so called ACEs (advanced glycation
endproducts) which are able to cause further prooxidative
processes and to activate redox sensitive transcription factors
like NFkappaB. An increased lipid peroxidation and damage
to DNA are further consequences of persistently high
glucose concentrations. These results imply that a sufficient
supply of antioxidants is necessary to support an efficient
therapy for diabetes [71, 72].

On the other hand prooxidative agents of endogenous
sources are necessary for an integral function of the insulin
signalling pathway and the subsequently triggered metabolic
reactions of insulin. Thus insulin per se liberates a burst of
hydrogen peroxide in insulin sensitive tissues. This hydrogen
peroxide is needed for a coordinated and efficient insulin
action [73, 74, 75]. In this context the mechanism is not yet
known in detail, but it partly depends on the inhibition of
PTPs (antagonists of insulin signalling) by hydrogen
peroxide. Furthermore the reduced and oxidized glutathione

system seems to play a crucial role for insulin resistance
[76, 77].

Two recent investigations in which high activities of
glutathione peroxidase and the overexpression of glutathione
peroxidase 1 were associated with an increased insulin
resistance support this hypothesis and lead to the assumption
that a supranutritional supply with antioxidants could cause
adverse effects with regard to diabetes [78, 79].

3. THE ANTIDIABETIC ACTION OF HIGH SELE-
NATE DOSES (SELENIUM IN ITS OXIDATION
STATE +VI) IN TYPE 1 DIABETIC ANIMALS AND IN
TISSUE CULTURES

The Insulinomimetic Action of Trace Elements in the
Case of Vanadate

Observations on the antidiabetic properties of trace
elements and ultra trace elements were originally made for
vanadate. The incubation of hepatocytes with vanadyl
sulphate led to an increased glycogen synthesis in these cells
[80]. For other cell types (adipocytes, skeletal muscle cells
and fibroblasts) positive effects of vanadium compounds on
glucose metabolism such as the stimulation of glucose
uptake and oxidation and the induction of GLUT1 mRNA
could be confirmed [81, 82, 83, 84]. These effects could be
attributed to an enhanced phosphorylation of signalling
proteins downstream the insulin receptor like protein kinase
c (PKC), phosphatidyl inositol-3-kinae (PI3K) and mitogen
activated protein kinase (MAPK) [85, 86]. Insulinomimetic
properties of vanadate could also be found in vivo in type 1-
and type 2-diabetic rats and mice when high doses (up to 5
mg per animal and day) of different vanadium compounds
(vanadyl, vanadate bis[maltolato]oxovanadium) were
administered to the animals for several weeks [87, 88, 89,
90]. In more recent investigations it could be demonstrated
that the insulinomimetic action of vanadium as the result of
an enhanced phosphorylation of certain major proteins of the
insulin signalling pathway is caused indirectly by an
inhibition of PTPs (including PTP1B) rather than by a direct
influence on phosphorylation. Vanadium compounds seem
to bind to the catalytic active centre of PTP1B and therefore
inhibit the enzyme activity [90, 91].

Effects of High Selenate Concentrations on Glucose
Transport and Uptake

In the literature similar findings were made with regard
to the insulinomimetic role of selenium or more precisely
that of selenate (selenium oxidation state +VI). The first
investigation into an insulin-like effect of selenate was made
in an experiment with rat adipocytes [92]. Incubation of
these cells with 100 µmol/L selenate resulted in a stimulation
of glucose transport which was equipotent to that of 1nmol/L
insulin. In contrast the incubation of adipocytes with selenite
(selenium oxidation state +IV) showed a distinctly lower
stimulation of glucose transport. In this study the increase in
glucose transport activity by selenate could be attributed to
the translocation of the glucose transporters (GLUT-1 and
GLUT-2) to the membrane surface. This insulin-like effect
of selenate on glucose uptake could also be confirmed in the
rat soleus muscle. Incubation of the muscle with either
sodium selenite or sodium selenate in increasing
concentrations resulted in a markedly stimulated glucose
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uptake. A maximum stimulation was reached with a
concentration of 100 mmol/L [93].

Antidiabetic effects of selenate could also be observed
for its in vivo application to type 1 diabetic animals. When
selenate was administered to rats and mice with
streptozotocin induced type 1 diabetes orally or by
intraperitoneal injection for 3 to 8 weeks in daily doses up to
half the lethal dose (half lethal dose for selenite and selenate
in rats ≈ 3.5 mg/kg body weight) it lowered the elevated
blood glucose to nearly the level of non diabetic control
animals [94, 95].

The oral treatment of mice with alloxan induced type 1
diabetes with a high dose of selenite (4 mg/kg body weight
and day) failed to reduce hyperglycaemia in these animals.
This observation is in accordance with our own results (c.v.
4.) and can be interpreted from differences in the
intermediary metabolism of selenite and selenate [96].

Insulinomimetic Effects of High Selenate Concentrations
on Gene Expression Related to Glucose and Fatty Acid
Metabolism

In addition to glucose uptake into insulin sensitive tissues
followed by glycolysis and glycogen synthesis insulin fulfils
a broad spectrum of other metabolic roles including
facilitating the entry of amino acids into cells for the
production of cellular protein. Moreover insulin controls the
expression of a number of genes. Some insulin responsible
genes are key enzymes associated with both carbohydrate
and fatty acid metabolism, e.g. glycogen synthase,
glucokinase, phosphoenolpyruvate carboxykinase (PEPCK),
fructose-1,6-diphosphatase (F-1,6-Dptase), fatty acid synthase
(FAS) and glucose-6-phosphate-dehydrogenase (G6PDH)
[51, 53]. Several studies have shown that both vanadate and
selenate also possess insulinomimetic properties with regard
to glycolysis, gluconeogenesis, fatty acid synthesis and the
pentose phosphate pathway. Vanadate was found to inhibit
the expression of transfected chimeras of PEPCK in both
FTO-2B and H4IIE rat hepatoma cells [96]. Similarly for
selenate the oral administration of high doses to type 1
diabetic rats partly normalized the changed expression of
glycolytic and gluconeogenic marker enzymes (in diabetes
the expression of glycolytic enzymes is down-regulated and
gluconeogenic enzymes are up-regulated) to the level of non-
diabetic animals. An up-regulation of glycolytic enzymes in
particular L-type pyruvate kinase and for gluconeogenesis a
down-regulation of PEPCK could be observed. Regulation of
the expression of lipogenic enzymes by selenate was also
found to be similar to that of insulin. FAS and G6PDH
activity were normalized in the livers of type 1 diabetic rats
and hepatocytes. Treatment of the diabetic animals or rat
hepatocytes in a culture with selenate restored the expression
of both FAS and G6PDH, demonstrating that selenate was
capable of stimulating lipogenesis in the liver [97, 98, 99,
100].

Further Physiological Effects of High Selenate Doses

A changed lipid metabolism in diabetic humans and
animals with syndrome X is assumed to be a factor
contributing to a higher risk of heart disease and apoplectic
stroke. Against this background a study evaluated cardiac
performance in streptozotocin induced type 1 diabetic rats.

The treatment of the animals of one group with
supranutritional selenate doses improved glucose tolerance
in these animals and normalized postprandial plasma glucose
levels. Besides high blood glucose concentration the
untreated diabetic rats developed increased left ventricular
pressure. Treatment with selenate normalized the heart
function. Moreover plasma lipid levels, triglycerides,
cholesterol and free fatty acids were improved in selenate
treated rats. Lowered plasma lipid levels by selenate
administration show another potent medical effect of this
treatment [95].

Cellular Mechanism Behind the Antidiabetic =
“Insulinomimetic” Action of High Selenate Doses

All effects of insulin at the cellular level as described
above are initiated by insulin binding to its plasma
membrane receptor. Following insulin binding to the α-
subunit of the insulin receptor the protein changes its
conformation and undergoes a multi-site phosphorylation in
the cytosolic β-subunit. By a subsequent phosphorylation of
a number of endogenous substrates the insulin signal is
spread and amplified by transmission to other signalling
proteins. The insulin receptor substrate (IRS) family which
includes IRS1, IRS2 and IRS3 (p60) is responsible for a
number of insulin effects [102]. In contrast to insulin the
insulinomimetics do not bind to the insulin receptor.
Nevertheless the results of some studies show an increased
phosphorylation of the β-subunit of the insulin receptor and
of its substrate IRS1. An increased tyrosine phosphorylation
of the insulin receptor’s β-subunit has been observed when
cells in culture were incubated with vanadate. The
insulinomimetic effect of selenate also seems to derive from
an enhanced phosphorylation of certain compounds of the
insulin signalling pathway. In the above mentioned early
study with rat adipocytes not only could a stimulation of
glucose transport be attributed to the incubation of these
cells with selenate, but also important insight into the
mechanism by which selenate develops its antidiabetic
properties was given. After incubation of adipocytes the
analysis of the whole cell lysate showed an enhanced
phosphorylation of several cellular proteins with molecular
weights of 170-, 95-, and 60 kDa. Thereby the 170 kDa
protein presumably represented IRS1 and the 95 kDa protein
was related to the β-subunit of the insulin receptor. In the
same study selenite also stimulated glucose transport and
therefore intracellular phosphorylation reactions of the
insulin signalling pathway. The hypothesis that selenate
achieves the increase in phosphorylation reactions by an
inhibition of phosphotyrosine phosphatases rather than by an
activation of phosphorylation was not supported in this study
since selenate showed no inhibitory effect on
phosphotyrosine phosphatases in a cell free system. That the
opposite seems to be true and that the intermediary selenium
metabolism of the intact tissues or cells seems to play a
crucial role with regard to the insulinomimetic properties of
selenate could be concluded from our recent results (c.v. 4.)
[92]. In a study with NIH3T3 HIR 3.5 cells the effect of
selenate on IRS1 phosphorylation could be confirmed [103].
In further experiments with 3T3 L1 adipocytes and
hepatocytes it could be demonstrated that beside IRS1 and
the β-subunit of the insulin receptor the p42 and p44-subunit
of MAPK were also affected by an increased



Selenium, an Ambivalent Factor in Diabetes? Current Nutrition & Food Science, 2006, Vol. 2, No. 2    157

phosphorylation due to incubation with selenate in
concentrations up to 1 mmol/L. Studies on general effects of
insulin signalling proteins confirmed the the crucial role of
PI 3-kinase for stimulation of DNA synthesis, glucose
transporter translocation, regulation of glycogen synthase,
glycogen synthase kinase-3, the expression of PEPCK and
G6PDH expression as well as GLUT-4-mediated glucose
transport and membrane ruffling. One protein that has been
identified as lying downstream of PI3-kinase is p70 S6
kinase. Both S6 kinase and ribosomal S6 protein play an
important role in the initiation of protein synthesis. In a
study with primary adipocytes the incubation of these cells
with selenate (100 µmol/L – 10 mmol/L) resulted in an
increased phosphorylation of S6 kinase. In this study and in
the above mentioned early study the insulinomimetic effects
of selenate (glucose uptake, increase in the phosphorylation
of the β-subunit of the insulin receptor and of S6 kinase)
needed a certain incubation time until the onset of the
reaction and an even longer period until a maximum
response was achieved [104, 105, 106].

On the whole the results of the studies mentioned so far
have shown that selenate in high doses (in vivo : application
of doses up to half the lethal dose = up to 3.5 mg selenium as
selenate/kg body weight, in vitro: incubation of living cells
with 100 µmol/L – 10 mmol/L) has a distinct insulinomi-
metic property which could be attributed to an increase in the
phosphorylation of some major proteins of the insulin
signalling pathway.

The most recent investigation regarding the link between
selenium and diabetes was carried out in mice in which
GPx1, the best characterized selenoprotein was overexpre-
ssed. In comparison to control mice with a normal GPx1
expression the overexpression of GPx1 led to a decreased
phosphorylation of the β subunit of the insulin receptor and
of IRS1 accompanied by an early onset of insulin resistance
and obesity [78].

So far in vivo investigations have not been carried out on
the role of selenite in contrast to selenate with regard to
diabetes and there is only little information on the
antidiabetic effects of selenium in type 2 diabetic animal
models [107].

4. THE ANTIDIABETIC ACTION OF HIGH
SELENATE DOSES IN CONTRAST TO SELENITE
AND SELENIUM DEFICIENCY IN TYPE 2 DIABETIC
MICE AND HEALTHY ANIMALS AND EVIDENCE
FOR AN AMBIVALENT ACTION OF SELENIUM
WITH REGARD TO DIABETES

Two studies with type 2 diabetic dbdb mice and with
healthy growing rats were carried out to investigate the
differentiated role of high doses of selenite (selenium
oxidation state +IV) and selenate (selenium oxidation state
+VI) in type 2 diabetes. In particular the influence of
selenium from both compounds applied at the recommended
level (0.2 mg/kg diet) and at a moderate supranutritional
level (1.0 mg/kg diet) on the expression of diabetes
associated genes in healthy animals was examined. Both
experiments and their main results are described below.

4.1. Experiment 1 with Type 2 Diabetic dbdb Mice

Twenty-one six week old female dbdb mice (obtained
from Harlan Winkelmann, Borchen, Germany) with a mean
live weight of 43.7±2.0 g were randomly assigned to 3
groups of 7 animals each (0Se = selenium deficient group,
SeIV = selenite-treated group, Se VI = selenate-treated
group). All groups received a paletted selenium deficient diet
(<0.02 mg Se/kg diet) based on Torula yeast. With the
exception of selenium the composition of the diet met the
recommendations for mice (4) and was fed for 8 weeks.

The mice of the groups SeIV and SeVI were daily
supplemented with sodium selenite and sodium selenate in
doses increased weekly, starting with 15% of the LD50 for
mice and reaching 35% of the LD50 in week 8 equivalent to
25-fold the recommended daily intake (LD50 selenite and
selenate ≈ 3.5 mg/kg body weight) by tube feeding. The
animals had ad libitum access to the diet and bidistilled
water. Before subjecting the mice to the defined dietary
conditions and after 8 weeks of special feeding the insulin
sensitivity of the animals was tested. After 8 weeks the mice
were decapitated following anaesthetisation with carbon
dioxide. The livers were immediately removed, deep frozen
in liquid nitrogen and stored at –80°C until further analysis.

4.2. Experiment 2 with Growing Rats

Forty-five growing male albino rats from the strain HK51
weighing 62.8±3.97g were randomly assigned to five
experimental groups. The rats were fed a diet for 8 weeks
based on Torula yeast composed according to the current
recommendations for laboratory rats (NRC 1995) with the
exception of selenium. The selenium concentration of the
basal diet (group Se0) was below the detection limit of 0.02
mg Se/kg diet. The diets for groups Selenite 0.2, Selenate 0.2
(recommended level), Selenite 1.0 and Selenate 1.0
(supranutritive level) were supplemented with either sodium
selenite or sodium selenate in order to obtain final selenium
concentrations of 0.2 and 1.0 mg Se/kg diet. The animals had
free access to the individual diets and deionised water. After
8 weeks the rats were anaesthetised in a carbon dioxide
atmosphere and subsequently decapitated. The livers were
excised immediately, deep frozen in liquid nitrogen and
stored at -80°C until further analysis.

4.3. Parameters Measured in Both Experiments

• GPx1 activity in liver cytosol from dbdb mice and rats
was assayed using the indirect spectrophotometric
procedure coupled to glutathione reductase [108].

• Reduced and oxidized glutathione in the liver of dbdb
mice and rats was analysed according to the standard
protocol coupled to glutathione reductase and DTNB
[109]. Sample concentrations were calculated from a
standard curve prepared with pure GSSG
(concentration range: 0 – 0.066 µmol GSSG/mL).

• The activity of protein tyrosine phosphatases (PTPs)
was determined in liver cytosol from dbdb mice and
rats according to a modified method which is based on
the hydrolysis of paranitrophenyl phosphate (pNPP)
[110].
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• Additionally the inhibitory effect of different
selenium compounds on PTP activity was tested in an
in vitro system. Liver cytosol was pooled from 3 age-
matched adult female dbdb mice fed a standard chow
containing 0.25 mg Se/kg diet. PTP inhibition was
tested for selenate (oxidation state: +VI), non-
enzymatically reduced selenate (using 37% HCl as the
reducing agent, oxidation state: +IV), sodium selenite
(oxidation state: +IV), selenious acid (oxidation state:
+IV) and freshly synthesized selenotrisulfides from
the reaction of reduced glutathione and selenite at
final selenium concentrations of 25 – 5000 µmol/L.
The inhibition of PTPs was expressed as a percent
inhibition in comparison with the PTP activity
reached in liver cytosol without addition of selenium
compounds.

• The expression of PTP1B, the major cytosolic protein
tyrosine phosphatase involved in the development and
mediation of insulin resistance as well as of glycolytic
and gluconeogenic marker enzymes was studied by
two step reverse transcriptase PCR (2-step RT-PCR)
in the mouse study and by Microarray-Analysis
(MWG Rat 10k Array) in the rat study. For both
analyses total RNA from liver tissue of dbdb mice and
rats was prepared using the acid guanidinium-
thiocyanate phenol chloroform extraction [111]. To
study gene expression in the dbdb mouse trial by 2-
step RT-PCR the extracted RNA was diluted to a final
concentration of 2 µg/µL. Three RNA-pools from 2
animals were prepared for each experimental group
(0Se, SeIV and SeVI) from the diluted RNA
solutions. After reverse transcription of 5 µg (2.5µL)
RNA from each pool (RevertAIDTM H Minus First
Strand cDNA Synthesis Kit, #K1631 from MBI
Fermentas) the fragments from the coding sequence of
the murine PTP1B, Fructose-1,6-Dptase, PEPCK and
GAPDH were amplified by PCR (Table 1).

After gel electrophoresis in ethidium bromide containing
agarose gels the amplification bands were evaluated by
measurement of the optical density. Information on gene
expression in the rat trial was obtained by the use of
Oligoarrays (Rat 10k Array from MWG-Biotech). To
compare the effect of the different inorganic Se compounds
(selenite and selenate) and concentrations (0.2 and 1.0 mg/kg
diet) on gene expression the reverse transcribed RNA
extracted from the Se-deficient treatment group was labelled
with cyanine 3-dUTP (Cy3) and used as a control sample.
Reverse transcribed RNA from the remaining groups was
labelled with cyanine 5-dUTP (Cy5). Genes differentially
expressed among treatment groups were selected according
to the degree of differences in background corrected
Cy3/Cy5 hybridisation ratios.

4.4. Results

4.4.1. Glutathione Peroxidase 1

Both in the dbdb mouse study and in the rat study 8
weeks of selenium deficiency led to significantly lower (p <
0.01) activities of GPx1 in the liver as compared to selenium
supplemented animals (Table 2).

4.4.2. Glutathione

Thereby the following specific observations could be
made: In the dbdb mouse trial the inducing effect of selenate
supplementation by daily tube feeding (up to 25-fold the
recommended level in week 8) on GPx1 activity was
significantly lower (p < 0.01) as compared to selenite
feeding. In the rat trial the addition of 1.0 mg selenium as
selenite or selenate (5-fold the recommended level) led to
significantly lower GPx1 activities (p<0.05) as compared to
rats supplemented according to the recommended dietary
level (0.2 mg/kg diet).

Table 1. Oligonucleotide Primers Used for the Amplification of Various Sequences From the Coding Sequence of Murine PTP1B,
Fructose-1,6-Dptase, PEPCK and GAPDH Obtained From the Reverse Transcription of mRNA

Examined Gene Amplified Region From the Coding Sequence Forward Primer (Tm) Reverse Primer (Tm)

GPx1 116 - 503 tcattgagaatgtcgcgtct

(55.3°C)

tttgagaagttcctggtggg

(57.3°C)

PTP1B (mouse) 6 - 706 gatggagaaggagttcgaggag

(61.2°C)

acacctgcctcttactgatgg

(61.2°C)

PTP1B

(rat)

279 - 728 gcacttctgggagatggtgt

(59.4°C)

aagaggaaagacccgtcctc

(59.4°C)

Fructose-1,6-
Dptase

544 - 990 gtcaactgcttcatgctgga

(57.3°C)

atgtgcaggagttcctggag

(57.3°C)

PEPCK 611 - 1311 agcctttggtcaacaactgg

(57.3°C)

atcatctttggtggccgtag

(57.3°C)

GAPDH
(control)

668 - 971 acgggaagctcactggcatg

(61.4°C)

ctacagcaacagggtggtgg

(61.4°C)
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4.4.2. Glutathione

In both trials selenium supplementation with high
supranutritive doses (25-fold the recommended level in the
dbdb mouse trial) and at the recommended level (0.2 mg/kg
diet) and at a moderately supranutritive level (1.0 mg/kg
diet) effected an increase in total liver glutathione
concentration (Table 2). The ratio of oxidized to reduced
glutathione also significantly shifted to the oxidized state in
both trials.

4.4.3. Protein Tyrosine Phosphatases (PTPs)

In both trials a differentiated effect of selenium
supplementation on the activity of cytosolic protein
phosphatases in the liver could be observed (Table 3). In the
dbdb mouse study the daily administration of a
supranutritive selenate dose effected a significant reduction
(inhibition) of PTP activity in comparison to selenite
treatment and selenium deficiency. This effect presumably
could be attributed to the inhibition of PTPs by Se IV, which
is generated during intermediary selenium metabolism. The
results of the in vitro  inhibition test (Fig. (3)) indicated that
selenate per se did not inhibit PTP activity but that selenium
compounds of the oxidation state +IV act as the actual
inhibitors of PTP activity. In the rat study both the
supplementation of selenite and selenate at the recommended
level (0.2 mg/kg diet) and at the supranutritional level (1.0

mg/kg diet) effected a significantly higher PTP activity in
comparison to selenium deficiency.

4.4.4. Protein Tyrosine Phosphatase 1B (PTP1B)
Expression

Both in the dbdb mouse trial and in the rat trial a
significant induction of PTP1B expression (representing the
major cytosolic protein tyrosine phosphatase involved in the
development and progression of insulin resistance) in the
liver was associated with selenium supplementation from
both compounds (Fig. (4) and Table 4).

4.4.5. Expression of Gluconeogenic Marker Enzymes (dbdb
Mouse Trial and rat Trial) and Expression of Further
Genes Associated with Type 2 Diabetes

Differentiated results for both trials were also obtained
for the expression of the gluconeogenic marker enzymes F-
1,6-DPtase and PEPCK. In the dbdb mouse trial the
application of the very high selenate dose significantly
reduced the expression of both enzymes in comparison to
selenite treated and selenium deficient animals, indicating an
amelioration of their diabetes. In the rat trial the expression
of both enzymes was higher in all selenium treated groups in
comparison to selenium deficiency (Table 5). Our results
further confirmed changes in the expression of genes related
to glucose metabolism, insulin resistance and obesity
(Table 5).

Table 2. Activity of GPx 1 (mU/mg Protein, Mean±SD) and Concentration of Total, Reduced and Oxidized Glutathione (nmol/mg
Protein, M±SD) in the Liver of dbdb Mice and Rats Kept on Selenium Deficiency for 8 Weeks in Comparison to Animals
with Supplementation of Selenite- and Selenate

Parameter Dbdb Mouse Trial

0Se Se IV Se VI

GPx1 171±25.9a 703±150c 369±43.1b

total glutathione 5.50±0.49a 6.69±0.81b 6.24±0.97ab

reduced glutathione 2.64±0.32b 2.13±0.51a 2.37±0.51ab

oxidized glutathione 2.85±0.27a 4.56±0.58b 3.87±0.49b

% reduced of total 48.03 31.67 37.71

% oxidized of total 51.97 68.33 62.29

Parameter Rat Trial

0Se Selenite

0.2 mgSe/kg

Selenate

0.2 mgSe/kg

Selenite

1.0 mgSe/kg

Selenate

1.0 mgSe/kg

GPx1 13.4±75.53a 1230±227c 1148±170c 998±73.3b 920±140b

total glutathione 2.89±0.91a 4.39±1.43ab 6.25±1.86b 5.43±1.24b 4.87±1.17b

reduced glutathione 2.33±0.61a 3.09±1.27ab 4.27±1.20b 3.52±0.71b 3.38±0.92ab

oxidized glutathione 0.55±0.35a 1.30±0.34b 1.98±0.70b 1.91±0.58b 1.49±0.38b

% reduced of total 80.9 70.4 68.3 64.8 69.4

% oxidized of total 19.1 29.6 31.7 35.2 30.6

Significant differences between means (p minimum < 0.05) are indicated by different superscripts within the line.
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4.5. Discussion of our Recent Results and General
Discussion

The results from both studies lead to the following
hypotheses with regard to the role of selenium in diabetes:
As evident from the results of the rat study selenium
supplementation at the recommended level (0.2 mg/kg diet)
and at a moderately supranutritive level (1.0 mg/kg diet)
independent of the selenium compound (selenite or selenate)
leads to a high expression and activity of glutathione
peroxidase 1 (GPx1). As a consequence of the maximized
GPx1 activity the reduced- and oxidized glutathione redox
pair shifts to the more oxidized state. The increase in total
glutathione concentration and the shift to the more oxidized
state presumably triggers an increased glutathionylation of
the active site cysteine of PTP1B and a rise in the expression
of the enzyme resulting in a higher PTP activity [69].

Experiments with 3T3-L1 adipocytes showed clearly that
inhibition of PTP1B activity results in an increased
expression of the enzyme [73]. In comparison to the
selenium deficient group in our rat study the enhanced PTP
activity in selenium supplemented groups may cause a
reduction in insulin signalling and the up-regulation of the
mRNA of gluconeogenic enzymes and other factors which
are increased in type 2 diabetes (Fig. (6A)). As is obvious
from the dbdb mouse study only selenate supplementation in
very high doses seems to evolve antidiabetic properties.
Thereby fundamental differences in the metabolism of
selenite and selenate play an important role for the
antidiabetic effect of selenate in vivo.

In contrast to selenite which forms selenotrisulfides
during its absorption, selenate is absorbed unmodified and
distributed to the tissues in the oxidation state +VI. During
and/or after entry into the cells selenate is stepwise reduced

Fig. (3). Inhibition of protein tyrosine phosphatases (PTPs) by different selenium compounds and concentrations.

Table 3. Activity of Protein Tyrosine Phosphatases (U/mg Protein, Mean+SD) in the Liver of dbdb Mice and Rats Kept on Selenium
Deficiency for 8 Weeks in Comparison to Animals with Selenite and Selenate Supplementation at Various Concentrations

Dbdb Mouse Trial

0Se Se IV Se VI

0.93±0.23b 1.20±0.36b 0.58±0.15a

Rat Trial

0Se Selenite

0.2 mgSe/kg

Selenate

0.2 mgSe/kg

  Selenite

1.0 mgSe/kg

Selenate

1.0 mgSe/kg

1.99±0.40a 2.44±0.44b 2.93±0.29c 4.27±0.47e 3.28±0.38cd

Significant differences between means (p minimum < 0.05) are indicated by different superscripts within the line.
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Fig. (4A). Expression of PTP1B in selenium deficient dbdb mice (0Se) compared to dbdb mice after 8 weeks of selenite application (SeIV) or
selenate application (SeVI) in relation to their respective GAPDH expression.

Fig. (4B). Expression of glutathione peroxidase 1 (GPx1) and PTP1B in selenium deficient growing rats (0Se) compared to rats after 8 weeks
of selenium supplementation as selenite or selenate in relation to their respective GAPDH expression (Results obtained by 2-step RT-PCR).

Table 4. Expression of PTP1B in Selenium Deficient Growing Rats (0Se, Expression Factor= 1.0) Compared to Rats Receiving
Diets Supplemented Either with Sodium Selenite or Sodium Selenate at Two Levels (0.2 mg/kg Diet and 1.0 mg/kg Diet) -
Results Obtained by Microarray Analysis (Obtained from Normalised Data of Single Two Channel Microarrays)

Rat Trial

0Se Selenite

0.2 mgSe/kg

Selenate

0.2 mgSe/kg

Selenite

1.0 mgSe/kg

Selenate

1.0 mgSe/kg

Expression against selenium deficiency 1.91 3.81 2.57 5.42
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Table 5. Differential Expression of Genes of Functional Selenoproteins, Proteins of Carbohydrate Metabolism and of
Phosphatases Associated with Diabetes and Obesity in Selenium Deficient Growing Rats Compared to Rats with
Selenium Supplementation Obtained by Microarray Analysis

Regulation against 0Se = 1.0

Gene 0Se Selenite

0.2 mg Se/kg

Selenate

0.2 mg Se/kg

Selenite

1.0 mg Se/kg

Selenate

1.0 mg Se/kg

Selenite

0.2

Selenate

0.2

Selenite

1.0

Selenate

1.0

Functional selenoproteins

Glutathione peroxidase1 1.76±0.11a 12.31±4.27b 11.67±0.92b 9.65±2.49b 10.36±0.17b 6.99 6.62 5.48 5.88

Glutathione peroxidase4 2.71±0.24a 3.60±0.70ab 3.58±0.02b 3.34±0.56ab 3.54±0.02b 1.33 1.32 1.24 1.31

Selenoprotein P 78.8±3.39a 162.1±35.3b 166.1±0.77b 134.9±26.0b 153.2±7.71b 2.06 2.11 1.71 1.94

Enzymes of glycolysis and

glycogen synthesis

Glucokinase 0.80±0.11a 1.01±0.01a 0.79±0.12a 0.92±0.02a 0.92±0.12a 1.27 0.99 1.16 1.15

Pyruvate kinase 1.28±0.11b 0.89±0.28ab 0.54±0.12a 0.78±0.10a 0.97±0.04ab 0.70 0.42 0.61 0.76

Glycogen synthase 1.33±0.09a 1.47±0.19a 1.26±0.08a 1.64±0.14a 2.25±0.04b 1.11 0.95 1.23 1.69

Enzymes of gluconeogenesis and

glycogen breakdown

Glucose-6-phosphatase 2.26±0.15a 2.54±0.75a 5.01±0.17b 4.55±1.82b 5.15±0.43b 1.12 2.21 2.01 2.28

Fructose-1,6-diphosphatase 11.4±0.48a 13.1±3.19a 20.8±1.95b 17.1±4.21ab 15.6±1.13b 1.15 1.82 1.50 1.37

Pyruvate carboxylase 1.59±0.09a 2.04±0.46b 2.35±0.15b 2.32±0.40b 2.76±0.16b 1.28 1.48 1.45 1.73

Phosphoenolpyruvate

carboxykinase

5.73±0.61a 5.82±1.40ab 8.90±0.03b 6.26±2.39ab 9.72±1.54b 1.01 1.55 1.09 1.70

Glycogenphosphorylase kinase 0.05±0.05a 0.18±0.09b 0.20±0.01b 0.18±0.05b 0.30±0.03b 3.25 3.60 3.36 5.48

Glycogen phosphorylase 0.05±0.01a 0.18±0.12ab 0.16±0.01b 0.14±0.05b 0.21±0.02b 3.94 3.42 3.01 4.59

Phosphatases and kinases

involved in insulin signalling

Protein tyrosine phosphatase 1B 0.15±0.06a 0.27±0.17ab 0.47±0.15b 0.24±0.10b 0.38±0.05b 1.85 3.14 1.60 2.53

Protein tyrosine phosphatase εc 0.04±0.03a 0.13±0.09ab 0.19±0.06b 0.10±0.03b 0.18±0.01b 2.90 4.19 2.07 4.09

Protein phosphatase 2A 0.06±0.03a 0.16±0.09ab 0.33±0.02b 0.27±0.10b 0.26±0.02b 2.58 5.40 4.45 4.26

MAP kinase phosphatase 12.2±1.05a 15.2±4.77ab 18.8±1.46b 15.0±1.49b 15.4±0.02b 1.25 1.54 1.23 1.26

Serine threonine kinase 46.5±1.48a 59.4±20.4a 96.8±4.33b 71.8±19.3b 62.7±2.15b 1.28 2.08 1.54 1.35

Values represent mean±SD of expression of four replicates for each experimental group. Significant differences (p<0.05, Students t-test) between means are indicated by different
superscripts within a line.

to the oxidation state –II from which selenium can be
incorporated into the selenocysteine moiety of the functional
selenoproteins (Fig. (7)) [17, 18, 19, 20, 22]. The
intermediary formation of the oxidation state +IV could
thereby play a crucial role for the inhibition of PTP activity
as is evident from the results of the in vitro inhibition test
(Fig. (3)).

In the dbdb mouse study the application of both selenite
and selenate in very high doses (25-fold the recommended
amount) also led to an increase in the expression of PTP1B
in comparison to selenium deficiency. But in the case of
selenate application in very high doses the inhibitory effect

of intermediary selenate metabolites seems to compensate
for the increased expression.

Thereby the following changes in the “chain of cause and
effect” (Fig. (6B)) may happen. Selenate in high doses
increases GPx1 activity and shifts the glutathione redox
system to a more oxidized state triggering the formation of
the glutathionylated (protected) form of PTPs which seems
to be the stimulus for the increase in expression. In contrast
to the findings for lower selenate doses (rat trial) and selenite
treatment (rat trial and dbdb mouse trial) only intermediary
selenate metabolites inhibit PTP activity very efficiently
when selenate is applied in high doses. Thereby the
inhibitory effect seems to compensate for the increased
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expression. The reduced (inhibited) PTP activity in turn
leads to a correction of insulin resistance and a down-
regulation of gluconeogenic marker enzymes.

In both studies one common major result with regard to
PTP1B expression could be observed:

Both in selenite and in selenate treated dbdb mice and
rats the expression of PTP1B was elevated in comparison to
their selenium deficient companions.

The regulation of PTP1B expression as a negative
regulator of insulin signalling is not yet fully understood. On
the one hand the reduction of PTP1B expression by
treatment with antisense oligonucleotides led to increased
insulin signalling [65]. On the other hand an increased
insulin sensitivity in obob mice could be observed with
leptin treatment despite a concomitant surprisingly up-
regulated PTP1B expression [112]. Another study performed
with adipocytes reports that the inhibition of PTP1B by
hydrogen peroxide led to an increased expression of PTP1B
[74].

Due to a high expression and activity of glutathione
peroxidase 1 in our studies it seems less likely that hydrogen
peroxide was the driving force for the up-regulation of
PTP1B expression since this enzyme is involved in the
detoxification of hydrogen peroxide. In fact the increase in

oxidised glutathione could play an important role triggering
an increase in PTP1B expression as evident from the
literature [69, 117] and from the results of both studies. Only
in the case of administration of very high selenate doses does
the inhibitory effect of intermediary selenate metabolites
compensate for the increased expression. Future investi-
gations into the precise regulation of PTP1B mRNA
expression and PTP1B protein expression should focus on
the role of the cellular redox status during these processes.

Furthermore there is evidence for a direct regulation of
glycolytic and gluoneogenic enzymes by glutathionylation
[118, 119].

Both the data from the dbdb mouse study and from the in
vitro inhibition assay suggest that the inhibition of PTPs
needs high supranutritive doses of selenium. If it is assumed
that dbdb mice consume an average of 5 g feed per day,
containing the recommended selenium amount for mice (0.2
mg/kg diet, NRC 1985), this would result in a daily uptake
of 1 µg selenium. The LD50 of selenate and selenite for mice
is 3500 µg/kg body weight [113, 114, 115]. Derived from the
molecular weight in the case of selenate, selenium accounts
for 42% of this amount (1470 µg/kg body weight). In the
dbdb mouse trial 15 – 35% of the LD50 of selenate were
administered to the animals daily. This amounts to an
absolute selenium uptake of 10 – 25 µg (10- to 25-fold the

A

B

Fig. (5A, B). Expression of Phosphoenol Pyruvate Carboxykinase (PEPCK) [A] and Fructose-1,6-Diphosphatase (F-1,6-Dptase) [B] in
selenium deficient dbdb mice (0Se) compared to dbdb mice after 8 weeks of selenite application (SeIV) or selenate application (SeVI) in
relation to their respective GAPDH expression.
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recommended dietary amount) at an assumed mean body
weight of 50 g.

In the in vitro inhibition trial the onset of an effective
inhibition of PTPs ranged between 50 – 100 µmol/L Se (3.95
to 7.9 µg Se/L). Thus it can be hypothesized that with the
oral administration of selenate at regular intervals in the
doses used in our present study sufficient selenium
concentrations for the inhibition of PTPs were obtained.

The possibility of chronic selenium toxicity cannot be
excluded for the doses applied in the dbdb mouse trial. The
results from a long-term study on selenium toxicity in rats
however suggest that selenium concentrations up to 4 mg/kg
diet (20-fold the recommended amount) do not affect animal
health [116]. In this study the mortality rate after 2 years
(survival rate > 90%) in the group which received 4 mg
selenium/kg diet was not higher than in the group fed 1 mg
selenium/kg diet. In general information on selenium toxicity
is limited. Further investigations into the precise amount of
selenium needed for the treatment of diabetes and on the
long-term toxicity in different animal species are needed.

5. Conclusions and Perspectives

From the information currently available it is evident that
the trace element selenium plays an ambivalent role with
regard to diabetes, depending on the chemical form and the
applied concentration.

5.1. The One Aspect of Selenium with Regard to Diabetes

Only High Supranutritive Concentrations of Selenate
Evolve Antidiabetic Properties

In studies on the antidiabetic effect of selenium which
were carried out both in living cells and in type 1- or type 2-
diabetic animals an amelioration of the diabetic status by
means of a reduced blood glucose concentration and changes
in the expression and activity of glycolytic and gluconeo-
genic marker enzymes could normally be demonstrated as
the consequence of selenium supplementation in the form of
selenate (selenium oxidation state +VI). Thereby in all
experiments high concentrations of selenate were used
(animal experiments: daily application of selenate in doses
up to half the lethal dose, tissue culture experiments:

A

B

Fig. (6A, B). Chain of cause and effect to explain the ambivalent action of selenium in diabetes.
A: Sufficient selenium supplementation could play a critical role in the development of type 2 diabetes and obesity and needs further
investigation.
B: Only extremely high doses of selenate possess insulinomimetic properties due to characteristic changes in the chain of cause and effect.
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selenium concentrations in the range of 250 – 5000 µmol/L).
In contrast no antidiabetic effect could be obtained by the
application of selenite to diabetic animals in comparable
concentrations. The insulinomimetic effect of selenate could
be attributed to an increase in the phosphorylation of single
components of the insulin signalling pathway. In the
majority of the studies the increase in phosphorylation was
directly measured. From the results of our investigation with
dbdb mice and from the in vitro inhibition assay with regard
to the activity of protein tyrosine phosphatases we concluded
that the increase in the phosphorylation is the consequence
of protein tyrosine phosphatase inhibition rather than a direct
effect of selenate on tyrosine phosphorylation. As is evident
from results in cell homogenates and in liver cytosol,
selenate (selenium oxidation state: +VI) per se does not
inhibit protein tyrosine phosphatase activity. In fact the
inhibitory effect of selenate on protein tyrosine phosphatases
and with it its insulinomimetic properties seems to derive
from the intermediary formation of the oxidation state +IV
during and shortly after entering the peripheral tissues [107].

5.2. The Other Aspect of Selenium with Regard to
Diabetes

Selenium Supplementation in Moderately Supranutritive
Doses Must be Judged Critically with Regard to the Onset
and Development of Diabetes and Needs Further
Investigation

As recently shown in mice, the overexpression of the
best-characterized selenoprotein glutathione peroxidase 1 led
to a faster onset of insulin resistance and obesity in
comparison with animals in which the enzyme was
expressed normally. At the molecular level a decreased
phosphorylation of the β subunit of the insulin receptor and

of insulin receptor substrate 1 was observed as triggering
these effects. The results of this study point in the same
direction as our results from the rat study in which an
increased expression of PTP1B and an increased activity of
general PTP activity could be attributed to selenium
supplementation of both selenite and selenate. This increase
in PTP expression and activity can also be assumed to
weaken the insulin signal and to influence insulin sensitivity
and obesity negatively. Enhanced glutathionylation of
proteins as the consequence of maximum glutathione peroxi-
dase activity and with it the shift in the glutathione redox
pair to the more oxidized state may have an important
influence on the differential expression of genes involved in
glucose metabolism and genes discussed as relevant factors
in the genesis of insulin resistance and obesity [78, 117, 118,
119].

This aspect of selenium, involving a somewhat critical
role of the trace element in the context of obesity and insulin
resistance needs further intensive investigation.
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Abstract 

Despite incontestable antioxidant functions mediated by glutathione peroxidases (GPx) Se 

has hit the headlines as being involved in the development of obesity and insulin resistant 

diabetes. Our nutrition physiological study with 7 x 7 growing rats was carried out to 

investigate mechanisms behind these undesirable effects of Se. One group of rats was fed a 

Se deficient diet for 8 weeks. The diets of the other 6 groups contained Se as selenite or 

selenate according to the recommendations (0.20 mg/kg diet) and at two supranutritional 

levels (1.00 and 2.00 mg/kg diet). A low GPx1 activity in the liver of Se deficient rats 

corresponded to a low native activity of protein tyrosine phosphatases (PTPs). Augmentation 

of dietary Se increased GPx1- and PTP-activity. Independent of the effects on PTPs 

mediated by GPx1 selenate effected a stronger PTP activation compared to selenite. The 

results for enzymatic PTP analysis could be depicted by Western Blotting with an antibody 

against protein glutathionylation. In conclusion we assume that supranutritional Se may 

increase the risk for insulin resistant diabetes by an activation of the insulin antagonistic 

PTP1B lowering its inhibition through glutathionylation. 
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1. Introduction 

In industrial countries the number of patients suffering from obesity, insulin resistant diabetes 

and the metabolic syndrome increases permanently [1]. Concomitant in these countries the 

fortification of foodstuffs derived from plants and animals with vitamins, minerals and trace 

elements including Se by fertilization and animal nutrition is practised intensified [2 – 5]. 

Health-conscious individuals frequently consume multivitamin and/or Se supplements in 

order to optimize their antioxidant defense and to obtain a better protection against several 

cancer types [6]. Benefits and risks of selenium (Se) supplements for the prevention of type II 

diabetes are currently subject of a controversial disussion. Antidiabetic effects of Se were 

reported for animal models and tissue cultures, but they are restricted to very high selenate 

doses (Se oxidation state +VI), and safety for for humans has not been tested as yet [7, 8]. 

Oral selenite application however failed to ameliorate diabetes [8, 9]. Opposite effects of Se 

regarding the development of obesity and insulin resistant diabetes have been shown in 

transgenic mice overexpressing the peroxide detoxifying selenoprotein GPx1 [10]. Most 

recent results from two independent U.S. studies with sizable human populations (NHANES 

III and NPC) have shown independently a distinct correlation between a high Se status and 

the incidence of type II diabetes [11, 12]. In recent years a number of studies have focussed 

on the insulin antagonistic protein tyrosine phosphatase 1B (PTP1B) as a molecular target 

for therapy of obesity and insulin resistant diabetes [13]. In studies with humans [14] and 

animals it could be shown that PTP1B deficiency, obtained by a lowered expression [15] or 

enzyme inhibition [8, 16], protects from obesity and insulin resistance whereas high PTP1B 

activities can accelerate these diseases. In contrast to PTP1B regulation by exogenously 

applied agents the enzyme underlies a physiological regulation via oxidation of the active site 

cysteine residue, Cys215 [Fig. 4]. In the presence of H2O2 initially a reversibly oxidized 

sulphenic acid intermediate (PTP1B-SOH) is formed whose further oxidation can be 

prevented by the formation of a cyclic sulphenyl amide, followed by the reaction with 

glutathione (GSH/GSSG) to a mixed disulfide with Cys-215, termed glutathionylation. The 

activity of reversibly oxidized PTP1B and of glutathionylated enzyme can be partially 

recovered by the addition of dithiothreitol (DTT) or thiol-transferase [17]. The direct reaction 
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of the reduced Cys-215 SH-group in the presence of high GSSG concentrations (>25 mM) 

may also lead to glutathionylated PTP1B [18]. Via GPx1 and metabolism of inorganic Se 

compounds Se influences both intracellular H2O2 and GSH/GSSG concentration, the critical 

metabolites in physiological PTP1B regulation. The aim of our physiological trial with growing 

rats consequently was to examine if PTP1B may be one part of the puzzle explaining 

undesirable effects of Se on the development insulin resistant diabetes. 

 

2. Material and methods 

2.1 Feeding trial with healthy growing rats 

49 healthy growing male albino rats from the institutes own strain HK51 were randomly 

assigned to 7 experimental groups of 7 animals each. The Se deficient basal diet (group 

0Se; <0.02 mg Se/kg diet) was based on Torula yeast (30% Torula yeast, 5% cellulose, 5% 

glucose, 5% sucrose, 5% soybean oil, 0.6% DL methionine, 0.05% tryptophan, 3.5% mineral 

premix, 1.0% vitamin premix 0.2% cholinechloride 44.65% maize starch) and composed 

according to the recommendations for laboratory rats [19]. The diets for groups 0.2 Selenite, 

0.2 Selenate (recommended dietary level), 1.0 Selenite, 1.0 Selenate, 2.0 Selenite and 2.0 

Selenate (supranutritional levels) were supplemented with either sodium selenite or sodium 

selenate to obtain final Se concentrations of 0.2, 1.0, and 2.0 mg Se/kg diet. The animals 

were kept individually and had ad libitum access to the diet and bidistilled water. After 8 

weeks the rats were decapitated under anaesthesia and livers were excised and stored at –

80°C until further analysis. The protocol of the animal study was approved by the regional 

council of Giessen. 

 

2.2 Determination of Se concentration 

Se concentration in the diets, the livers and plasma was determined by hydride generation 

atomic absorption spectrometry (HGAAS) as reported previously [20]. Certified samples from 

the “National Institute of Standard and Technology” (soft winter flour, NIST No. 8438), 

(bovine liver, NIST No. 1577 b), and from “Medichem” (control serum, Metalle S) served as 

reference material for Se determination in the different matrices. 
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2.3 Liver GPx1 and plasma GPx3 

Glutathione peroxidases 1 and 3 were measured in the 10,000 x g cytosolic supernatant of 

1:10 (w/v) liver homogenates or undiluted plasma by the indirect spectrophotometric 

procedure coupled to glutathione reductase and NADPH consumption [21]. One unit of GPx1 

or 3 activity was defined as one micromole NADPH oxidized per minute and normalized to 1 

mg protein. 

 

2.4 Total glutathione and oxidized glutathione 

The concentration of total glutathione (GSH + reduced GSSG) and oxidized glutathione 

(GSSG) in rat liver was analyzed in the 10,000 x g cytosolic supernatant according to the 

standard protocol coupled to glutathione reductase and DTNB [22]. Sample concentrations 

were calculated from a standard curve prepared with pure GSSG (concentration range: 0 – 

0.066 µmol GSSG/mL). 

 

2.5 Liver protein tyrosine phosphatase activity (PTP) under native and reducing 

conditions 

Differentiated measurement of (PTPs) was carried out using a modified protocol basing on 

paranitrophenyl phosphate (pNPP) hydrolysis [23, 24]. 

Step 1: For the analysis of PTP activity 1:5 (w/v) liver homogenates were prepared 

under nitrogen gassing in a non-reducing HEPES buffer [50 mmol/L 4-(-2-

Hydroxyethylpiperazine-1-ethanesulphonic acid (HEPES), 50 mmol/L NaCl, 1 mmol/L EDTA 

and 0.1 mmol/L Phenylmethylsulphonylfluoride (PMSF) pH = 7.4]. Cytosol was obtained by 

centrifugation at 10,000 x g for 30 min at 2°C and brought to a final dilution of 1:25 (w/v). 

Step2:  10 µL of diluted liver cytosol were preincubated at 25°C in 240 µL of the DTT-

free HEPES buffer for 3 minutes. Then 250 µL HEPES-buffer containing 20 mmol/L pNPP 

were added and further incubated for 5 min. The reaction was terminated by the addition of 

500 µL 2M NaOH and absorption was read in a spectrophotometer (Beckmann DU 50) at 

410 nm. A blank without cytosol was carried along. Native PTP activity was calculated using 

an extinction coefficient of 0.0166 µM-1 x cm–1 for the paranitrophenolate ion and normalized 
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to 1 mg protein. To determine the percentage of glutathionylation, reversible by DTT, 

enzymatic measurement was repeated as described, but HEPES buffer containing 2.5 

mmol/L DTT was used. 

 

2.6 Western Blot analysis of PTP1B-glutathionylation 

For analysis of PTP1B glutathionylation 1:10 (w/v) liver homogenates were prepared in a 

non-reducing RIPA lysis buffer [50 mmol/L TRIS-HCl, 150 mmol/L NaCl, 1 mM 

Phenylmethylsulphonylfluoride (PMSF), 1 mM EDTA, 1.0 % sodium desoxycholate, 0.1 % 

sodiumdodecylsulphate (SDS) and 1% TritonX-100, pH = 7.4]. After centrifugation (10,000 x 

g, 30 min, 2°C) the cytosol was diluted to 1:50 (w/v). 40 µg of protein were separated 

according to the standard method [25] but under non-reducing conditions on 15% SDS-

polyacrylamide gels (50 mA, 4°C, 2h). Separated proteins were transferred onto a PVDF 

membrane (PALL Biotrace 0.45 µmTM) by semi-dry blotting [25 min at constant 6V (~ 60 

mA)]. After blocking membranes overnight at 4°C in TBST (20 mmol/L Tris-HCl, 150 mmol/L 

NaCl, 0.1% Tween 20, pH = 7.6) containing 5% non-fat dry milk and 0.2% bovine serum 

albumine (BSA) analysis was continued by a 2h incubation with the Anti Glutathione 

Antibody (Virogen 101-A-100) in TBS (1:1500) buffer and a 1h incubation with the secondary 

antibody (1:3000) linked to alkaline phosphatase (Goat Anti-Mouse IgG-h+I). Membranes 

were stained in reaction buffer (0.1 mol/L TRIS, 0.1 mol/L NaCl, 0.05 mol/L MgCl2) containing 

0.00375% Nitro-Blue Tetrazolium (NBT)-and 0.0025% 5-bromo-4-chloro-3-indoylphosphate 

(BCIP). Optical density of the ~50 kDA PTP1B-band was evaluated (Gene Tools, Syngene) 

on scanned membranes (CanoScan LiDe 500F). To examine the in vitro effect of selenite 

and selenate on PTP1B glutathionylation a pooled liver sample from the Se deficient group 

was homogenized 1:5 (w/v) in TRIS-HCl buffer [50 mmol/L TRIS-HCl, 150 mmol/L NaCl, 1 

mM Phenylmethylsulphonylfluoride (PMSF) 1 mM EDTA, pH = 7.4] and cytosol was prepared 

as described above. 50 µL of cytosol were incubated with 50 µL of selenite or selenate 

solutions obtaining final Se concentrations of 25, 50, 75 and 100 µmol/L for 10 min. Then 400 

µL of the RIPA buffer were added [final dilution 1:50 (w/v)] and an aliquot was subjected to 

Western Blot analysis as decribed. 

 86



  Se and PTP1B 

2.7 Protein content 

The protein content of liver cytosol, including samples for Western Blotting, was determined 

using a standard method [26]. 

 

2.8 GPx1 and PTP1B mRNA expression 

RNA isolation was carried out using the acid guanidine thiocyanate phenol chloroform 

method [27]. Reverse transcription (RT) of RNA followed by PCR reactions for the 

examination of GPx1 and PTP1B expression in the liver was carried out as described 

detailed previously [8]. Using 2.5 µg of cDNA (obtained from reverse transcribed RNA) the 

PCR reactions for the amplification of specific fragments within the open reading frame 

(ORF) of GPx1, PTP1B and β Actin (control) were carried out in a reaction volume of 50 µL 

with a standard program for the single cycles. 

Gene 
(Gene bank 
accession number) 

Amplified region 
within the ORF 

Forward Primer (Tm) Reverse Primer (Tm) 

Rat GPx1 
(NM 030826_1) 
 

116 – 503 
(396 bp) 

tcattgagaatgtcgcgtct 
(55.3°C) 

tttgagaagttcctggtggg 
(57.3°C) 

Rat PTP1B 
(NM 012637_1) 

279 – 728 
(449) 

gcacttctgggagatggtgt 
(59.4°C) 

aagaggaaagacccgtcctc 
(59.4°C) 

Rat β Actin 
(NM 031144_1) 
 

301 – 696 
(395) 

tgttaccaactgggacgaca 
(59.4°C) 

tctcagctgtggtggtgaag 
(59.4°C) 

 

The standard program was as follows: Initial denaturation: (95°C: 3 min) 1x ; Amplification 

cycles: [Denaturation: 95°C: 45 sec, Annealing: primer specific temperature: 40 sec, 

Extension: 72°C: 55 sec] x-times, Final Extension: (72°C: 5 min) 1x. 

 

2.9 Statistical Analysis 

A one way analysis of variance (ANOVA) was performed using “SPSS 14.0 for Windows”. If 

homogeneity of variance was given the LSD-test was used to examine differences of means, 

if not the Games Howell test was utilized. Values in the tables are given as M±SD (n=7 

animals per group) and include 3 repetitions per parameter. Error probabilities and tests used 

are indicated in the table-legends. Correlation- and regression analyses were also performed 

with “SPSS 14.0 for Windows”. 
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3. Results 

3.1 Zootechnical parameters 

The Se concentration of the Se deficient basal diet was below our detection limit of 20.0 µg 

Se/kg. The analysed dietary Se concentrations (µg/kg) for the Se supplemented groups were 

in accordance with the amounts scheduled in the experimental design: 0.2 Selenite: 

201±11.7; 0.2 Selenate: 187±9.80; 1.0 Selenite: 934±71.4; 1.0 Selenate: 961±25.4; 2.0 

Selenite: 1932±69.7; 2.0 Selenate: 1904±77.4. 

Initial body weight in all experimental groups was not different (61.0±2.96). At the end of the 

trial mean body weights of rats from all Se supplemented groups (0.2 Selenite: 352.3±20.9; 

0.2 Selenate: 357.0±22.0; 1.0 Selenite: 336.6±9.83; 1.0 Selenate: 330.9±13.1; 2.0 Selenite: 

327.5±17.1; 2.0 Selenate: 326.6±13.3) were significantly higher compared to group 0Se 

(307.0±11.3). Feed intake in group 0Se was lowest within the experimental groups 

(992.8±49.6) and comparably as high as in the groups supplemented with 2.0 mg Se/kg diet 

(2.0 Selenite: 1013±27.0; 2.0 Selenate: 993.0±43.0). Rats supplemented at the 

recommended level had a significantly higher feed intake compared to the above mentioned 

groups (0.2 Selenite: 1080±61.8; 0.2 Selenate: 1084±55.7). Feed intake in the groups 

supplemented with 1.0 mg Se/kg diet (1.0 Selenite: 1024±26.5: 1.0 Selenate: 1031±54.2) 

ranged between the groups supplemented with 0.2 and 2.0 mg Se/kg. 

 

3.2 Se status and Se- and glutathione dependent redox system in liver and plasma 

Expression of GPx1 mRNA in the liver of selenite or selenate supplemented rats at all three 

levels was 8 to 10-fold higher compared to Se deficient rats (Fig.1). 

Liver Se concentration clearly indicated the Se depletion in group 0Se (Table 1). Se supply 

led to a dose dependent increase in liver Se content. Thus in the groups supplemented with 

0.2, 1.0, and 2.0 mg Se/kg diet 65,-125,-and 167-fold higher Se concentrations could be 

measured compared to group 0Se. GPx1 activity in group 0Se reached only 1.10 to 1.27% of 

the activities measured in the Se supplemented groups (Table 1). 
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Data indicated that a plateau in GPx1 activity was already achieved with 0.2 mgSe/kg diet, 

and additional Se supply did neither produce an increase in liver GPx1 nor was there any 

negative influence on GPx1 activity. Both total glutathione and the portion of oxidized 

glutathione were significantly higher in all Se supplemented groups compared to group 0Se, 

with the highest values for total glutathione in groups 2.0 Selenite and 2.0 Selenate (Table 

1). Se deprivation was also reflected by plasma Se concentration in group 0Se. 

Augmentation of dietary Se supply to the recommended level and to supranutritional 

concentrations led to a dose dependent increase in plasma Se which was however not as 

distinctive as analyzed in the livers (Table 1). GPx3 activity in group 0Se reached only 1.11 

to 1.50% compared to the Se supplemented groups (Table 1). As found for liver GPx1, Se 

supplementation to supranutritional levels (1.0 and 2.0 mg Se/kg diet) did neither increase 

GPx3 activity nor show a negative influence on the enzyme´s activity. 

 

Table 1: Se status and Se- and glutathione dependent redox system in the liver and 
plasma of rats fed diets with different selenite or selenate amounts compared to Se 
deficient companions 
          Group 
Parameter 

0 Se 0.2 
Selenite 

0.2 
Selenate

1.0 
Selenite 

1.0 
Selenate 

2.0 
Selenite 

2.0 
Selenate 

Liver 
Se conc. 
(µg/kg FM) 

18.4±2.0 
(a) 

1054±73 
(b) 

1343±104 
(c) 

2469±123 
(d) 

2292±130 
(d) 

3010±113 
(e) 

3060±180 
(e) 

GPx1 
(mU/mg prot.) 

9.96±6.21 
(a) 

851±93.1 
(c) 

909±184 
(bc) 

910±87.5 
(c) 

781±81.1 
(bc) 

612±86.2 
(bc) 

905±134 
(c) 

Total GSH 
(nmol/mg prot.) 

27.9±4.11 
(a) 

34.5±5.12 
(b) 

40.1±4.94 
(bc) 

42.0±5.78 
(bc) 

37.8±4.51 
(b) 

45.1±5.25 
(c) 

47.9±5.06 
(c) 

Oxidized 
GSSG 
(nmol/mg prot.) 

1.70±0.26 
(a) 

13.5±1.66 
(b) 

11.8±3.21 
(b) 

14.1±2.17 
(b) 

12.6±2.04 
(b) 

15.6±2.35 
(b) 

14.9±4.40 
(b) 

% oxidized of 
total 
glutathione 

6.15±0.82 
(a) 

39.4±2.55 
(c) 

29.7±8.66 
(bc) 

33.8±3.93 
(bc) 

33.9±5.94 
(bc) 

34.6±2.02 
(b) 

31.7±9.84 
(bc) 

Plasma 
Se conc. 
(µg/L) 

22.9±3.10 
(a) 

544±20.1 
(b) 

571±31.8 
(b) 

648±21.4 
(c) 

610±44.4 
(bc) 

706±30.8 
(d) 

707±37.8 
(d) 

GPx3  
(mU/mg prot.) 

1.80±0.85 
(a) 

119±10.9 
(b) 

149±22.6 
(bc) 

161±24.8 
(c) 

133±14.1 
(bc) 

137±15.9 
(bc) 

141±18.0 
(bc) 

Liver Se (p<0.001, LSD-test); GPx1 (p<0.001, LSD-test); Total glutathione, Oxidized glutathione 
(p<0.05, LSD-test); % oxidized of total glutathione (p<0.01, Games-Howell-test); Plasma Se (p<0.001, 
LSD-test); GPx3 (p<0.001, LSD-test) 
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3.3 Regulation of liver PTP1B 

The expression of PTP1B mRNA was 2.5 to 3.5-fold reduced in group 0Se compared to rats 

with Se supplementation as selenite or selenate at all dietary levels examined (Fig.1). 

 

 

Fig. 1.  mRNA expression of GPx1 and PTP1B in the liver of rats fed diets with different 
selenite or selenate amounts compared to Se deficient companions 

 

Native liver PTP activity measured without DTT was 1.48 to 3.68-fold higher in rats fed Se 

supplemented diets compared to their Se deficient littermates (Table 2). The lowest activity 

difference in comparison to goup 0Se was achieved in group 0.2 Selenite. From group 0.2 

Selenate onwards the difference in PTP activity compared to group 0Se was distinctly higher. 

The highest native PTP activity was reached in group 2.0 Selenate. PTP measurement with 

DTT addition increased PTP activity in all groups, indicating the regeneration of PTP enzyme 

inhibited by reversible glutathionylation. PTP activity measured with DTT addition was still 

the lowest in group 0Se compared to all groups with Se supply, but the factors for activity 

difference were diminished and ranged only from 1.18 to 1.37-fold. The remaining difference 

in PTP activity can be explained by a higher expression due to Se supplementation (Fig. 1). 

The highest percentage of glutathionylation and therefore inactivation of PTPs was 

measured in group 0Se (Table 2). An increase in dietary Se concentration led to a dose-

dependent loss of PTP glutathionylation. A comparison of the groups supplemented with 

selenite and selenate at the same dietary level (0.2, 1.0, and 2.0) revealed a significantly 

lower PTP glutathionylation for selenate supplementation in each case (Table 2). 
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Table 2: PTP activity under native and reducing conditions and calculated ratio of PTP 
glutathionylation in the liver of rats fed diets with different selenite or selenate 
amounts compared to Se deficient companions 
 
          Group 
Parameter 

0 Se 0.2 
Selenite 

0.2 
Selenate

1.0 
Selenite 

1.0 
Selenate 

2.0 
Selenite 

2.0 
Selenate 

PTP activity 
-native- 

(U/mg prot.) 

 
0.59±0.13 

(a) 

 
0.88±0.16 

(b) 

 
1.22±0.18 

(cd) 

 
1.15±0.09 

(c) 

 
1.41±0.18 

(d) 

 
1.66±0.14 

(e) 

 
2.18±0.29 

(f) 

PTP activity 
-2.5 mM DTT- 
(U/mg prot.) 

 
1.78±0.08 

(a) 

 
2.23±0.21 

(bc) 

 
2.21±0.35 

(ac) 

 
2.17±0.16 

(bc) 

 
2.10±0.26 

(ac) 

 
2.34±0.10 

(bc) 

 
2.45±0.24 

(bc) 

PTP 
glutathionylation 

(%) 

 
66.7±7.89 

(a) 

 
60.7±4.73 

(a) 

 
44.4±4.87 

(bcd) 

 
46.8±2.23 

(bd) 

 
33.27±7.91 

(cef) 

 
29.0±4.67 

(eg) 

 
10.2±13.9 

(fg) 

Significant differences within a line are indicated by different small letters (n=7 animals per group) PTP 
activity native (p<0.01, LSD-test); PTP activity -2.5 mM DTT- (p<0.01, LSD-test); PTP glutathionylation 
in % (p<0.05, Games-Howell-test) 
 

The coherence between liver and plasma Se concentration (resulting from dietary Se 

supplementation at different levels) and the Se compound used (selenite or selenate) and 

PTP activity as well as PTP glutathionylation was pointed out by correlation- and regression-

analyses (Fig. 2A-D). A highly positive correlation between liver Se concentration and native 

PTP activity could be demonstrated for selenite (r = 0.88; p<0.001) and selenate (r = 0.91; 

p<0.001), whereas the correlation between liver Se concentration and glutathionylation was 

strongly inverse for both Se compounds (selenite: r = -0.87; p<0.001; selenate: r = -0.88; p< 

0.001). Slopes of linear regression indicated a faster rise in native PTP activity and a more 

distinct loss of PTP glutathionylation due to selenate supply compared to selenite supply 

(Fig. 2A, B). These results are in accordance with enzymatic PTP measurement where 

selenate fed rats had a higher native PTP activity and a lower PTP glutathionylation 

compared to selenite fed rats (Table 2). By correlation analyses and square regression 

comparable coherences could be also shown for the relations between plasma Se 

concentration and liver PTP activity- and glutathionylation (Fig. 2C, D). 

The results obtained by measurement of PTP activity could be visualized by Western Blot 

analysis using an antibody detecting “Protein Glutathionylation”. PTP1B glutathionylation was 

1.5 to 3.5-fold lower in Se supplemented rats compared to their littermates of group 0Se [Fig. 
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3A]. An increase in dietary Se supply led to a decrease in PTP1B glutathionylation. As found 

for enzymatic PTP measurement Western Blotting of liver cytosol from rats fed selenite 

versus rats fed selenate at the same dietary level (0.2, 1.0 and 2.0) revealed a lower PTP1B 

glutathionylation for animals receiving selenate [Fig. 3B]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression for glutathionylation:
y = -3 x 10-6 x2 + 0.0014x + 0.63; R2 = 0.98

Regression for glutathionylation:
y = -3 x 10-6 x2 + 0.0013x + 0.64; R2 = 0.99

Regression for PTP activity:
y = 6 x 10-6 x2 - 0.0031x + 0.66; R2 = 0.96

Regression for PTP activity:
y = 9 x 10-6 x2 - 0.0042x + 0.68; R2 = 1.0
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Regression for glutathionylation:
y = -0.0001x + 0.70; R2 = 0.91 

Regression for glutathionylation:
y = -0.0002x + 0.68; R2 = 0.97

Regression for PTP activity:
y = 0.0003x + 0.55; R2 = 0.92

Regression for PTP activity:
y = 0.0005x + 0.55; R2 = 0.94A B

C D

Fig. 2. Regression analyses between liver Se concentration (A, B) or plasma Se 
concentration (C, D) and native liver PTP activity and PTP glutathionylation due to 
increasing Se supplementation as selenite (Se IV) [A, C] or selenate (Se VI) [B, D] 
 

 

 

 

 

 92



  Se and PTP1B 

A) 

 

 

B) 

 

 

 

 

 

 

C) 

 

 

Fig. 3. 
A) PTP1B glutathionylation in liver cytosol of rats fed diets containing different 

amounts of selenite or selenate in comparison to their companions kept on a 
selenium deficient diet 

B)  Comparison of PTP1B glutathionylation in liver cytosol of rats fed diets 
containing selenite or selenate at three dietary levels  

C) Glutathionylation of PTP1B after in vitro incubation of liver cytosol with 
increasing selenite or selenate concentrations – demonstrating that selenate 
feeding matches in vitro effects of selenite 
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4. Discussion 

By the distinct loss of GPx1 and GPx3 activity due to a lack in Se supply the low rank of 

these selenoproteins was confirmed by our data [28]. That a Se supply of growing rats with 

0.2 mg/kg diet meets their requirements for an abundant selenoprotein synthesis is also in 

agreement with literature [29]. The fact that an increase in dietary Se concentration effected 

a dose dependent Se storage in the liver [30] and did not gain in additional selenoprotein 

synthesis deserves further study into the influence of dispensable Se. Regarding undesirable 

effects of Se on the development insulin resistant diabetes and obesity our data yield new 

mechanistic explanations, and the physiological regulation of the insulin antagonistic PTP1B 

thereby seems to play a central role. In contrast to the mouse trial in which GPx1 

overexpression has promoted the development of obesity and insulin resistance [10] our 

nutrition physiological trial provides explanations by which Se supplements, exceeding the 

needs, can accelerate these diseases besides a high GPx1 activity. In the mouse trial a 

decreased tyrosine phosphorylation of the β subunit of the insulin receptor and a decreased 

phosphorylation of the downstream signalling protein AKT at Thr 308 and Ser 473 has 

indicated the increased insulin resistance due to GPx1 overexpression [10]. Our current data 

suggest that the decreased phosphorylation measured in the above mentioned trial reflects 

more likely an influence of the manipulated Se- and glutathione-dependent redox system on 

PTP1B than displaying a direct effect of GPx1 on protein phosphorylation. According to our 

data and to Fig. 4 a lower dietary Se concentration and the resulting higher peroxide 

concentration due to a lack of GPx1 activity lead to a higher PTP1B inactivation by 

glutathionylation. Optimised activities of GPx1 by dietary Se (our present study) or an 

increase in GPx1 expression (mouse study) however remove H2O2 and disable PTP1B 

inhibition [17, 31]. The mentioned aspects therefore provide a plausible explanation for the 

development of insulin resistance and obesity due to a high GPx1 expression and activity via 

nutritional Se manipulation. Data of a human study support this hypothesis by the finding that 

a high erythrocyte GPx1 corresponded to an increased incidence of gestational diabetes 

[32]. An up-regulation of PTP1B expression and with it an increase in intrinsic insulin 

resistance could also be found for mice overexpressing catalase, the second central enzyme 
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in H2O2 detoxification [33]. Our data confirm an up-regulation of PTP1B mRNA expression 

through a high expression of GPx1 as another H2O2 detoxifying enzyme [Fig. 1]. In 

physiological models, like our trial, no overexpression of GPx1 can be obtained by increasing 

dietary Se concentration beyond the needs. Instead a physiological model of PTP1B 

regulation manipulating GPx1 expression and activity via a short term Se deficiency could be 

displayed. Moreover our trial provides information on the influence of Se supply exceeding 

physiological needs on PTP1B regulation as well as information on the influence of different 

Se compounds (selenite and selenate) on PTP1B regulation. Since we could show a highly 

positive correlation between liver- and plasma Se concentration and PTP activity (Fig. 2A-D) 

our data may be helpful for further analysis of the recent human studies showing a 

correlation between serum Se and diabetes incidence [11, 12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Current understanding of physiological PTP1B regulation and interfaces with 
mammalian Se metabolism [according to 8, 17, 30, 31, 34, 35] 
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In our trial an increase in dietary Se concentration led to a dose dependent increase in PTP 

activity, corresponding to a loss of PTP1B glutathionylation. Feeding selenate (SeVI) effected 

a lower PTP1B glutathionylation than feeding selenite (SeIV) (Table 2, Fig. 2, Fig 3B).  

This effect presumably derives from fundamental differences in mammalian Se metabolism 

(Fig. 3). Se from selenite (+IV) and selenate (+VI) is absorbed by individual mechanisms [34] 

Selenite reacts with thiols like glutathione prior to its absorption and enters the peripheral 

organs in the form of selenotrisulfides (oxidation state: - I) or it is reduced in the erythrocytes 

to the selenide oxidation state –II and delivered to peripheral organs bound to albumin [34, 

35]. In contrast unmodified selenate can be detected in the bloodstream and in peripheral 

tissues [35]. During successive selenate reduction the thiol reactive oxidation states 

(selenite: +IV, and selenotrisulfides: –I) can be formed and require glutathione for their 

further reduction to the selenide oxidation state (- II) (Fig. 4). Thus glutathione detraction 

from glutathionylated proteins could be one mechanism for glutathione acquirement. 

Moreover our data suggest that in vitro effects of selenite (+IV) match selenate (+VI) feeding. 

This particular aspect of mammalian Se metabolism could be visualized using an in vitro 

assay (Fig. 3C). Incubation of liver cytosol from group 0Se with increasing selenite or 

selenate concentrations, representing approximately the Se concentrations in the livers of 

rats receiving diets with 1.0 and 2.0 mg Se/kg, showed that unreactive selenate (+VI) did not 

influence PTP1B glutathionylation. In contrast selenite (+IV), matching selenate feeding, 

effected a dose-dependent loss of PTP1B glutathionylation (Fig. 3C). Thus PTP1B regulation 

by different Se compounds represents a further important finding of our trial, exceeding the 

enzymes´ reactions with H2O2, reactive oxygen species and glutathione investigated so far 

[17, 31, 36]. Despite a higher GSSG concentration in the livers of Se supplemented rats in 

our study a direct PTP1B glutathionylation in the presence of a high GSSG concentration (> 

25 mmol/L) [18] could not be confirmed by our data, since millimolar GSSG amounts 

represent a non-physiological in vitro situation. A manipulation of PTP1B activity causes 

changes in a number of physiological parameters. In a mouse trial it could be shown, that 

PTP1B deficient mice had a significantly higher energy expenditure than WT mice [15]. 

Despite a reduced feed intake in groups 2.0 Selenite and 2.0 Selenate of our trial, possibly 
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deriving from an impaired palatability of high Se diets [37], the feed conversion ratio (= g feed 

intake : g body weight gain) was however significantly better in all Se supplemented groups  

3.71±0.05 : 1 (0.2 Selenite), 3.73±0.02 : 1 (0.2 Selenate), 

3.71±0.03 : 1 (1.0 Selenite), 3.81±0.04 : 1 (1.0 Selenate), 

3.80±0.06 : 1 (2.0 Selenite), 3.74±0.03 : 1 (2.0 Selenate) 

compared to group 0Se (4.00±0.10 : 1). According to the above mentioned mouse trial [15] 

the higher feed expense in group 0Se could be an indicator for a higher energy expenditure 

due to a reduced PTP1B activity. In human studies and in animal trials PTP1B was 

demonstrated as one factor increasing body weight gain and the development of obesity [13 

- 16]. GPx1 overexpressing mice showed a significantly higher body weight and body fat gain 

[10] whereas mice with a selenoprotein P (SeP) knockout and consequential lacking of 

peripheral GPx1 synthesis were emaciated [38]. Thus our physiological study was in line with 

both trials [10, 38], demonstrating that Se supply and high GPx1 activities are involved in 

body weight and fat gain, and PTP1B regulation may be one factor mediating these effects. 

Moreover PTP1B and Se were shown as being involved in triglyceride synthesis and storage 

[39, 40], thus increasing PTP1B activity by a high GPx1 activity and dispensable Se provides 

a further plausible explanation for the development insulin resistant diabetes and obesity. In 

conclusion our data could help uncovering mechanisms by which a long-term supranutritional 

Se supply may have undesirable effects on the development of insulin resistant diabetes and 

obesity: The regulation of PTP1B expression and activity by Se may be one part of this 

puzzle. Long term Se supply above the recommendations may be helpful in therapy of 

prostate cancer [41] and regarding some toxicological aspects where a decreased 

phosphorylation of critical signalling proteins due to Se supply is desirable [41, 42]. 

Concerning the development of insulin resistance and obesity a retardation of 

phosphorylation signals via an increased PTP1B activity is counterproductive and 

demonstrates the need for future investigations into the differentiated role of antioxidants in 

metabolic processes. 
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