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1 Introduction

In modern electronic structure theory of solid state materials, large focus is put on the description of optical
properties. This often implies optical absorption spectra of semiconducting/insulating materials and related
quantities such as Raman scattering intensities. A reliable description of optical properties of materials is
invaluable for a wide field of practical applications such as optoelectronics and solar cell fabrication.

In recent years, density functional theory (DFT) has become the “workhorse“ for ab initio calculations in
the field of solid state theory.1–4 While traditional formulations were limited to a static quantum mechanical
description of a solid, more recently time-dependent DFT (TDDFT) has emerged as an accurate formulation
of time-dependent quantum mechanics.5,6

The description of the interaction of light with a solid boils down to the calculation of the dielectric
susceptibility χ(ω), or likewise the dielectric function ε(ω). The accuracy of the theoretical description is
demonstrated by the “correctness” of the calculated dielectric functions in comparision to experiment. A large
pool of methods exists for describing dielectric properties of a material, ranging from computationally rather
cheap to very sophisticated methods, all of which differ by their predictive power. The simplest conceivable
method for calculating ε within the DFT framework is the independent particle approximation (IPA). In
order to overcome the well-documented band gap problem, many body perturbation theory is included by
the so-called GW approximation.7,8 The inclusion of electron-hole pairs for the optical absorption spectra is
achieved by means of the Bethe-Salpeter equation (BSE).9

From a physical point of view, Raman scattering combines the optical absorption properties governed
by the electronic subsystem and the vibrational properties of a solid as described by quasiparticles called
“phonons”. It therefore is a very versatile tool for the analysis of material properties. As a result, this technique
lends itself nicely for, e.g., (i) identifying materials by their Raman spectroscopic “fingerprint“, (ii) analysing
defect structures10,11 or crystal surfaces, (iii) clinical diagnostics of cells, tissues, or foreign matter present in
the human body.i

A schematic representation for an experimental Raman scattering setup is shown in fig. 1.1: A monochro-
matic light beam (in many cases a laser in the visible part of the electromagnetic spectrum) is sent on a
material sample. While a large amount of the incident light beam will be scattered elastically, a tiny fraction
will penetrate the crystal and is scattered inelastically by elementary excitations of the material such as
phonons. The scattered light with its energy changed by the scattering process is amplified by an appropriate
setup of optical devices. The data is analysed by a computer yielding the Raman spectrum which gives a
detailed account of the energy of the scattering phonons (the phonon frequency is measured by the so-called
“Raman shift”).12
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Figure 1: Pictorial representation of (a) the Stokes, and (b) the anti-Stokes first-order
Raman process. | gsi is the (electronic) groundstate, | gsi |!mi , | gsi |!m0 i are states
of the system that di�er by their vibrational parts. Vibrational states are bound states
of the potential generated by the groundstate electronic configuration. The transitions
involved in both scattering processes occur solely within the vibrational (phononic)
subsystem. This assumption is satisfied by Born-Oppenheimer’s approximation.
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Figure 3: Schematic representation of the measurement setup used for collecting Raman
spectra. A laser beam of frequency !I impinges on the surface of a material sample.
A tiny portion penetrates the sample and is scattered by elementary excitations of the
material such as phonons. The light is backscattered inelastically with frequency !S
(!S , !I ) and is amplified by an appropriate set of optical devices. The signal is
analysed by a computer to give the Raman spectrum (intensity vs frequency of the
phonons).
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FIGURE 1.1: Schematic representation of the
measurement setup used for collecting Raman
spectra. A laser beam of frequencyωI impinges
on the surface of a material sample. A tiny por-
tion penetrates the sample and is scattered by
elementary excitations of the material such as
phonons. The light is backscattered inelastically
with frequency ωS (ωS , ωI ) and is amplified
by an appropriate set of optical devices. The sig-
nal is analysed by a computer to give the Raman
spectrum (intensity vs frequency of the phonons).

i See for example https://www.raman4clinics.eu
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1 Introduction

The measured intensity in a Raman experiment is proportional to λ−4
L (λL: laser wavelength); therefore,

intensities are generally increased when the laser energy is increased. Measured intensities can vary drastically
when changing the laser excitation energy, depending on whether the optical excitation is resonant or
non-resonant with an electronic transition. Briefly, non-resonant Raman scattering involves electrons being
promoted to “virtual states“, while in case of resonant Raman scattering real electronic transitions between
(eigen)states of the solid occur. These transitions may eventually lead to the formation of electron-hole pairs
(excitons).

Obviously, for an accurate theoretical description of Raman scattering, the correct calculation of the optical
absorption gap and the inclusion of excitons appear to be very important. However, standard DFT methods
like the local density approximation (LDA) or the generalised gradient approximation (GGA) oftentimes
poorly describe the electronic band gap and do not account for excitonic effects. Approaches like hybrid
functionals13–16 or LDA+U in many cases can remedy the shortcomings of the standard methods in terms of
the accuracy of the calculated band gap. Due to the evaluation of an additional non-local term (exchange
kernel), hybrid calculations usually involve a very large computational effort (. 10× larger than standard
DFT calculations). Nevertheless, in order to obtain a good description of the Raman scattering properties
of a material, the vibrational as well as the electronic properties need to be accurately described. Luckily,
calculations based on the LDA(+U)/GGA(+U) often result in a good description of the vibrational properties
of semiconducting materials (as will become obvious in this work).
Apart from the dielectric function, the other key ingredient for the calculation of Raman scattering

intensities are (zone-centre) phonons. Many physical phenomena of solids such as thermal conductivity
and the related field of thermoelectrics, thermodynamic properties (especially the heat capacity), and of
course Raman and infra-red spectroscopy are connected to phonons. Being able to reliably calculate lattice
vibrational properties therefore is desireable, indeed. The quantity of interest in phonon calculations are the
interatomic force constants (FCs) which, loosely speaking, are generalised spring constants connecting atoms.
Within the framework of ab initio approaches, FCs are either calculated from density functional perturbation
theory (DFPT),17–19 or from numerical derivatives (frozen phonon approach). However, DFPT generally is
not implemented for more “advanced” methods such as hybrid functionals,13–16 making the finite difference
approach a welcome alternative. Recent developments concerning this method have made it competitive with
DFPT calculations.20

A central quantity related to Raman scattering is the so-called Raman susceptibility αm which essentially
is the derivative of the dielectric susceptibity χ along a phonon displacement pattern um:

αm ∝ lim
h→0

χ({x(0)} + hum) − χ({x(0)})
h

, (1.1)

where {x(0)} are atomic equilibrium positions. In order to obtain a full Raman spectrum, this derivative must
be evaluated for all phonon modes of the crystal that allow for Raman scattering (indeed, not all modes are
“Raman active”). Therefore, the computational complexity and the respective effort are largely enhanced in
comparison to “common” electronic structure calculations. Raman susceptibilities can be calculated from
DFPT, however, within this formalism only the static limit of the dielectric function (ε∞) can be obtained.
Therefore, the dependence of the Raman intensities on the laser frequency cannot be assessed. Another
possibility is to calculate the derivative from eq. (1.1) with a suitable finite difference stencil. This can be done
in conjunction with any method used for the calculation ε(ω) (IPA, GW , BSE, ...). Indeed, a theoretically
accurate description of the Raman scattering properties of a solid is (contrary to some people’s unsophisticated
conviction) beyond state of the art.

An example comparing the usage of both the IPA and the BSE approach for the calculation of the Raman
susceptibility is shown in fig. 1.2.12 In the special case of Si, in comparison to experiment, the computationally
very demanding BSE approach yields much better results than the conceptually rather simple IPA. Indeed, this
points towards the necessity of including excitonic effects in the calculation of Raman spectra. However, in
case of more complicated materials (indeed, these are the particularly interesting cases in many applications)
possessing lower symmetry and different kinds of atoms, employing methods as demanding as BSE results in
a very large computational effort. For example, Gillet [12] has estimated the (maximal) storage demand for
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FIGURE 1.2: Comparison of the theoreti-
cal (BSE and IPA) and experimental Raman
susceptibility of silicon.12,21 The scale of the
ordinate in arbitrary units.

the calculation of a converged dielectric function of Si (2 atoms per unit cell) using BSE to ∼34 TB, and
computational time on (sequential) computers is assumed to range from days to years.12 Requirements for the
computation of Raman scattering intensities should even be larger. Even for modern computer architectures
that are combined to powerful supercomputers this provides an exceptional challenge. For comparison, the
groundstate structure of CuO22 has 16 atoms in the magnetic unit cell and “only” monoclinic symmetry. In
effect, required computational resources are accordingly higher for calculations of optical properties from
BSE.

In the present work, lattice dynamical calculations as well as calculations of the Raman scattering intensities
will be carried out for the material system of copper oxides, consisting of cubic Cu2O, tetragonal Cu4O3, and
monoclinic CuO. This system of binary oxides has recieved recent attention due to its potential applications
in solar cell fabrication.23 These sustainable materials provide a unique possibility to tune the optical and
electronic properties from insulating to metallic conduction.

Cu2O exhibits an unusual Raman spectrum which appears to be dominated by point defects such as certain
types of Cu-vacancies.10,11 While CuO is rather well-studied in terms of its Raman scattering properties at
room temperature, its low-temperature Raman spectrum is considerably different.24 CuO exhibits a change in
structure at 213 K (an antiferromagnetic phase change to be more precise),22 and the resulting changes in
vibrational properties are worthwhile investigating. Cu4O3, which is a phase to be considered intermediate to
Cu2O and CuO, indeed is not too extensively studied in terms of its vibrational as well as electronic properties.
In particular, Raman spectra so far have only been measured and not calculated.

In view of this, it shall be the main purpose of the work to investigate the vibrational properties of copper
oxides in detail. The calculations will involve phonon dispersions and derived quantities of all three phases
based on the finite difference approach for the FCs (section 3.3). Special attention will also be paid to the
Raman scattering properties of CuO and Cu4O3 (section 3.4).
This thesis is structured as follows: In chapter 2 the theoretical foundations needed for the calculation

of vibrational properties of solids from ab initio methods are summarised. The chapter 3 is devoted to
(1) the description of the phonon dispersions of the copper oxides. Special emphasis is put on the treatment
of dipole-dipole interactions that arise for long-wavelength vibrations in polar materials. (2) The Raman
scattering properties of CuO and Cu4O3. In this context the room temperature and the low temperature
phases of CuO are compared. Raman spectra are compared to experiment and explanations for the differences
found for the room temperature and the low temperature Raman spectrum are outlined. Additionally, the
dependence of the Raman properties of Cu4O3 under equilibrium conditions and hydrostatic pressure are
examined. Calculations are compared to recent experimental results, yielding rather good accordance for the
Raman scattering intensities.

v





2 Theoretical Foundations

This chapter contains the theoretical methods upon which the calculations in this work rely. Above all, this is
density functional theory (DFT) which is the state-of-the-art method for calculating the electronic structure of
materials within the field of solid state theory (section 2.1). DFT gives access to all “ingredients” needed for
the calculation of material properties such as the phonon dispersion and Raman scattering intensities.
The fundamentals of the (classical) theory of lattice dynamics are outlined in section 2.2. Particular

emphasis is put on the role of the treatment of lattice vibrations in polar semiconducting/insulating materials
which is more complicated than in the case of elemental materials due to the presence of long-ranged
dipole-dipole interactions. Apart from that, a rather qualitative account on the theory of Raman scattering
is given. Within this scope, some remarks on the lattice dynamical applications of group theory are made,
which in my view is one the most beautiful methods in the field of theoretical solid state science.

2.1 The electronic structure

2.1.1 The electronic many-body problem

Calculations within the field of solid state science often deal with an electronic many-body problem. The
general physics of a solid state system may be described through Schrödinger’s equation, in particular through
an appropriate Hamiltonian operator H. In case of periodic bulk systems—as they are considered within this
work—this requires the treatment of atomic nuclei and their electrons. The non-relativistic, time-independent
Hamiltonian operator is of the form:

H = Tnucl + Te + ve−e + vnucl−e + vnucl−nucl, (2.1)

with
• Tnucl . . . kinetic energy of nuclei
• Te . . . kinetic energy of electrons
• ve−e . . . potential for electron-electron interaction
• vnucl−e . . . potential for nuclei-electron interaction
• vnucl−nucl . . . potential for nuclei-nuclei interaction.

The resulting eigenvalue equation is
H |Φ〉 = E |Φ〉 . (2.2)

The wavefunction for a system governed by this Hamiltonian operator will depend on electron coordinates and
the positions of the nuclei, Φ ≡ Φ(r1, . . . , rNe ; R1, . . .RNnucl), Ne/nucl being the number of electrons/nuclei.
Thence, the above eigenvalue equation (2.2) can only be solved within very drastic approximations. The most
common one is the so-called Born-Oppenheimer approximation.25 The assumption of this approximation
scheme is that, due to the large difference in masses, the reaction of the electronic system to a movement of
the nuclei essentially is instantaneous. As a consequence, the potential felt by the electrons due to the nuclei
is approximately quasi-static. Therefore, for the further treatment, the only terms retained from the above
expression for the Hamiltonian, eq. (2.1), are

He = Te + ve−e + vnucl−e. (2.3)

From Born-Oppenheimer approximation it follows that the interaction of the electrons with the nuclei is to be
viewed as an external potential, vext. The interaction of the electrons amongst each other is purely coulombic.

1



2 Theoretical Foundations

Then, the eigenvalue equation for the purely electronic part of the Hamiltonian reads (atomic Hartree units
used: ~ = me = 1)(

− 1
2

Ne∑
k=1

∂2

∂r2
k

+ 1
2

Ne∑
k,k′

1
|rk − rk′ |

+

Ne∑
k=1

vext(rk)
)
Ψ({rk′}) = Ee({xs})Ψ({rk′}), (2.4)

where the electron eigenenergy parametrically depends on the coordinates of the nuclei {xs}s=1,...,Nnucl .
Unfortunately, the wavefunction |Ψ〉 still depends on all electronic coordinates which – for a typical number
of 1023 electrons in a solid – renders infeasible a direct solution of the latter equation.

2.1.2 Density functional theory (DFT)

Instead of aiming at directly solving for the many-particle wavefunction |Ψ〉 resorting to the electron density,
n(r), given by

n(r) = Ne

∫
d3r2 · · ·

∫
d3rNe

��Ψ(r, r2, . . . , rNe)
��2 , (2.5)

has proven to be an adjuvant approach. The key ideas behind this approach have been formulated by
Hohenberg and Kohn [1] (HK) in 1964 and later were generalised by Levy3. The based-upon theory has
become known as density functional theory (DFT).

Density as a basic variable The statements of the above-mentioned approach are contained in the following
theorem:

Theorem (Hohenberg-Kohn theorem). For a given non-degenerate groundstate the density n(r) uniquely
specifies the external potential vext(r) up to a constant. Particularly,

(i) The total energy is a functional of the electron density:

EHK[n] :=
∫

d3r vext(r)n(r) + FHK[n], (2.6a)

FHK[n] := min
|Ψ〉→n

〈Ψ|Te + vee |Ψ〉 . (2.6b)

The minimisation is to be carried out over all wavefunctions |Ψ〉 that give rise to the electron density
n(r). FHK[n] is a universal functional in the sense that, for a particular system, it does not depend on
the external potential vext.

(ii) The energy functional obeys a variational principle,

EHK[n] ≥ EHK[ngs], (2.7a)
δEHK[n]|ngs = 0, (2.7b)

where ngs is the groundstate density.

(iii) The energy functional assumes the groundstate energy Egs when the density equals the groundstate
density,

EHK[ngs] = Egs. (2.8)

The rather formidable endeavour of finding the minimum of 〈Ψ|He |Ψ〉 with respect to the 3Ne-dimensional
wavefunction |Ψ〉 has been converted into finding the minimum of EHK[n] with respect to the 3-dimensional
quantity n(r).

2



2.1 The electronic structure

Kohn-Shamequations TheHohenberg-Kohn theorem rigorously identifies the energy as a unique functional
of the electron density. However, it does not offer any concrete procedure for finding the universal functional
FHK. From the formally exact HK variational principle Kohn and Sham2 (KS) extracted a practical scheme
involving non-interacting particles |ϕk〉 moving in an effective potential that mimics the influence of the other
electrons. The clue is that this system of non-interacting particles produces the same electron density as the
interacting one.
For non-interacting particles the density is easily calculated:

n(r) =
Ne∑
k=1
|ϕk(r)|2 , (2.9)

while the kinetic energy functional of the interacting system, T[n], is replaced by a non-interacting kinetic
energy functional

Ts[n] = − 1
2

Ne∑
k=1

∫
d3r ϕ∗k(r)

∂2

∂r2 ϕk(r). (2.10)

Then, let the energy functional assume the form

EKS[n] = Ts[n] +
∫

d3r vext(r)n(r)

+ 1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′ | + Exc[n](r). (2.11)

This expression defines the exchange-correlation energy Exc that accounts for particle interactions. Variation
of the total energy function with respect to 〈ϕk | and enforcing normalisation of the KS-orbitals |ϕk〉 with
Lagrangian parameters εk :

δ

δ 〈ϕk′ |

[
EKS[n](r) −

Ne∑
k=1

εk (〈ϕk |ϕk〉 − 1)
]
= 0, (2.12)

which, with the aid of eq. (2.9), results in a set of self-consistent (SCF) Schrödinger-like equations known as
KS-equations: (

−1
2
∂2

∂r2 − vKS[n](r) − εk
)
ϕk(r) = 0, (2.13)

with the previously mentioned (effective) KS-potential

vKS[n](r) = vext(r) +
∫

d3r′
n(r′)
|r − r′ | +

δ

δn(r′)Exc[n](r)
����
n=ngs

. (2.14)

A schematic representation of the self-consistent solution procedure is presented in Fig. 2.1. The essential
details of this section may be summarized as follows:4

• The task of calculating the groundstate of an interacting many-particle system has been transferred
to solving for the groundstate of a non-interacting single particle system with an effective potential.
This fictitious local potential, vKS(r), for non-interacting particles as represented by the orbitals |ϕk〉,
produces the interacting particle density n(r) of the fully interacting system.

• Neither the KS-orbitals |ϕk〉 nor the Lagrangian multipliers εk—although commonly interpreted
as (eigen)energies—bear a direct physical meaning. The connection to physics is given by (i) the
connection to the correct particle density n(r), and (ii) that the eigenvalues εk deliver correct ionisation
energies (see Almbladh and Barth [26]).

3



2 Theoretical Foundations

Initialize vKS

Construct HKS = − 1
2
∂2

∂r2 + vKS(r)
Solve HKSϕk(r) = εkϕk(r)

n(r) = ∑Ne
k=1 |ϕk(r)|2

v
(new)
KS (r) = vext(r) +

∫
d3r′ n(r

′)
|r−r′ | +

δExc[n]
δn(r)

Convergence,���vKS − v(new)
KS

��� < δtol ∀r?

NO
vKS ← v

(new)
KS

YES

vKS found

SCF loop

FIGURE 2.1: Schematic representation of the self-consistent procedure for the solution of the Kohn-Sham equations. δtol is a numerical tolerance
value used to quantify the level of convergence of the KS-potential between consecutive iterations within the self-consistent loop.
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2.2 Lattice dynamics

2.2 Lattice dynamics

2.2.1 Equations of motion of a crystal lattice

In the following I shall consider an infinitely extended crystal generated by unit cells containing a certain
number of atoms. The lattice points are obtained as integer linear combinations of some generating lattice
vectors a1, a2, a3,

Rl =

3∑
µ=1

lµaµ, lµ ∈ Z and l = {lµ}µ=1,2,3 (2.15)

while the equilibrium position of the sth atom in the lth unit cell is given by

x(0)
l,s
= Rl + x(0)s . (2.16)

The total potential energy U of the crystal within Born-Oppenheimer approximation is given by U =
Ee + vnucl−nucl and may be considered as a function of the instantaneous atomic positions, U ≡ U({xl,s}),
with xl,s = x(0)

l,s
+ ul,s. As such it may be expanded about the equilibrium positions of the atoms in powers of

atomic displacements ul,s:

U({xl,s}) = U({x(0)
l,s
}) +

∑
l,s,µ

U(1)
l,s,µ

ul,s,µ + 1
2

∑
ll′,ss′,µµ′

U(2)
ll′,ss′,µµ′ul,s,µul′,s′,µ′ + · · · , (2.17)

where in the so-called harmonic approximation higher-order terms than the second are neglected. The
derivatives U(1)

l,s,µ
, U(2)

ll′,ss′,µµ′, ... are evaluated at the equilibrium positions:

U(1)
l,s,µ

=
∂U({xl,s})
∂ul,s,µ

����
{x(0)

l,s
}

(2.18a)

U(2)
ll′,ss′,µµ′ =

∂2U({xl,s})
∂ul,s,µ∂ul′,s′,µ′

����
{x(0)

l,s
}
. (2.18b)

The first-order coefficients simply represent the forces on the atoms which for the equilibrium positions must
vanish, U(1)

l,s,µ
= −Fl,s,µ = 0 ∀l, s, µ if {xl,s} = {x(0)l,s } ∀l, s. The second-order coefficients, henceforth denoted

as Cl s µ
l′s′µ′ , are called interatomic force constants (FCs). These coefficients are symmetric in the indices (l, s, µ)

and (l ′, s′, µ′),
Cl s µ
l′s′µ′ = Cl′s′µ′

l s µ
, (2.19)

which, assuming the crystal potential to be at least twice continuously differentiable, follows from the fact that
the mixed second-order derivative is independent of the order in which the derivatives are taken. Further, due
to the translational invariance of the crystal, the FCs must depend on the lattice vectors Rl , Rl′ only through
their difference:

Cl s µ
l′s′µ′ = Cl−l′s µ

0 s′µ′ = C0 s µ
l′−ls′µ′ . (2.20)

The equations of motion of the atoms in the crystal,

Ms Üul,s,µ = Fl,s,µ = −
∂U

∂ul,s,µ
= −

∑
l′,s′,µ′

Cl s µ
l′s′µ′ul′,s′,µ′, (2.21)

by making the substitution
ul,s,µ ≡ ul,s,µ(t) = ws,µ/

√
Mseiq

T Rl−iωt (2.22)
may be transformed into a hermitian eigenvalue problem∑

s′,µ′
Cs µ
s′µ′ (q)

/ (MsMs′)1/2 ws′,µ′
m,q = ω

2
m,qw

s,µ
m,q (2.23)

of the dynamical matrix Cs µ
s′µ′ (q) which is the lattice Fourier transform of the FCs

Cs µ
s′µ′ (q) =

∑
l′

C0 s µ
l′s′µ′ e

iqT Rl′ . (2.24)

5



2 Theoretical Foundations

2.2.2 Properties of the dynamical matrix

Since the dynamical matrix Cs µ
s′µ′ (q) is hermitian, the squared mode frequencies ω2

m,q are purely real and the
eigenvectors {ws,µ(q)} obey the orthonormality and closure conditions:∑

s,µ

[ws,µ
m,q]∗ws,µ

m′,q = δmm′ (2.25a)∑
m

w
s,µ
m,q[ws′,µ′

m,q ]∗ = δss′δµµ′ . (2.25b)

Further, from eq. (2.24) it follows that Cs µ
s′µ′ (−q) = [Cs µ

s′µ′ (q)]∗, such that, using the eigenvalue equation
(2.23), the dispersion relation has the property that ω2

mq = ω
2
m,−q.

From the demand of the forces Fl,s,µ being invariant under a rigid body translation it follows that the
condition on the FCs reads ∑

l′,s′
C0 s µ
l′s′µ′ =

∑
s′

Cs µ
s′µ′ (q = 0) = 0 ∀s, µ, µ′. (2.26)

Using the eigenvalue equation, eq. (2.23), and setting q = 0 and w
s,µ
m,q=0 =

√
Msu

s,µ
m,q=0:∑

s′µ′
Cs µ
s′µ′ (q = 0)us′,µ′

m,q=0 = ω
2
m,q=0Msu

s,µ
m,q=0. (2.27)

If now ∀µ′ the displacement vector us′,µ′

m,q=0 is independent of the atomic index s′, us′,µ′

m,q=0 ≡ uµ
′

m , the left-hand
side vanishes due to the property expressed in eq. (2.26). The trivial solution uµm ≡ 0 shall be excluded and
hence the only conclusion is that ω2

mq=0 = 0 for each of the three values of µ. Such modes are referred to as
acoustic modes, and therefore the condition formulated through eq. (2.26) is called “acoustic sum rule”. The
remaining 3Nnucl − 3 modes are called “optical modes”, where Nnucl denotes the number of atoms per unit
cell.

Under symmetry operations of the spacegroup of the crystal, {S |v(S) +Rp}i, atomic positions transform as
xl+p,s′,µ′ =

∑
µ Sµ′µxl,s,µ + v

(S)
µ′ + Rp,µ′. The FCs transform according to27

Cl1 s1 µ1
l1′s1′µ1′

=
∑
µµ′

Sµ1µSµ1′µ′C
l s µ
l′s′µ′ l1, l1′ = l + p, l ′ + p. (2.28)

The resulting transformation law for the dynamical matrix is

C(Sq) = Γ(S; q)C(q) [Γ(S; q)]−1 , (2.29)

where
Γ
s µ
s′µ′ (S; q) = Sµµ′δs,F(s′;S) exp[iqT ({S |v(S) + Rp}−1xs − xs′)], (2.30)

and F(s, S) is an atom transformation table that tells which atom s′ is reached from atom s upon applying the
spacegroup operation with rotational part S.27 The eigenvalue equation (2.23) at the rotated wavevector Sq∑

s′,µ′
Cs µ
s′µ′ (Sq)/ (MsMs′)1/2 ws′,µ′

m,Sq = ω
2
m,Sqw

s,µ
m,Sq, (2.31)

upon operating with [Γ(q; S)]−1 from the left and with the aid of equation (2.29) becomes27∑
s′,µ′

Cs µ
s′µ′ (q)

/ (MsMs′)1/2 [[Γ(S; q)]−1wm,Sq]s′,µ′ = ω2
m,Sq[[Γ(S; q)]−1wm,Sq]s,µ . (2.32)

iNote that the spacegroup (let me call it G) is infinite dimensional since the translations Rp of the infinite lattice are included.
A finite dimensional group is obtained by considering the quotient group G/T, where I denote by T the group of all lattice
translations. Loosely speaking this amounts to dropping Rp and just considering the action of {S |v(S)} within one unit cell and
applying periodic boundary conditions whenever such an operation sends an atom outside the unit cell.
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2.2 Lattice dynamics

Comparing the latter equation and equation (2.23), it is obvious that the {ω2
m,Sq} are also eigenvalues of the

dynamical matrix at the unrotated q-vector, Cs µ
s′µ′ (q), leading to the conclusion that

ω2
m,Sq = ω

2
m,q. (2.33)

Indeed, the matrices Γ(S; q) can be used to determine the independent elements of the dynamical matrix
C(q). In case the wavevector q is left invariant by the rotational part S of a spacegroup operation, Sq = q+G
(G: reciprocal lattice vector), the above transformation law (2.29) becomes:27

C(q) = Γ(S; q)C(q) [Γ(S; q)]−1 . (2.34)

In combination with the property C(−q) = [C(q)]∗,27 additional constraints on the elements of the dynamical
matrix can be formulated. If an operation S− of the rotational parts of the spacegroup operations is such that
S−q = −q +G−, then27

C(q) = [Γ(S−; q)C(q) [Γ(S−; q)]−1]∗. (2.35)

Even if no such element is amongst the rotational parts of the space group operations, the latter relation can be
used to determine the independent elements of C(q). Letting S be such that (−S)q = q+G, then it is true that

C(q) = [Γ(S; q)C(q)[Γ(S; q)]−1]∗. (2.36)

Conversely, if S is such that (−S)q = q′ +G′:

C(q′) = [Γ(S; q)C(q)[Γ(S; q)]−1]∗. (2.37)

All relations just mentioned can, for example, be used to symmetrise dynamical matrices obtained from
numerical calculations like the direct method described in the next section.

2.2.3 Thermodynamic functions from the phonon dispersion

Within the harmonic approximation the thermodynamic functions can be computed from simple summations
over functions of the phonon eigenfrequencies. The vibrational entropy Sph and the lattice specific heat at
constant volume Cph

v are of most interest in this work. The expressions for these quantities are (~→ 1, kB:
Boltzmann constant)28

Sph(T) = kB/Nq
∑
q,m

{
ωmq

2kBT
coth

(
ωmq

2kBT

)
− ln

[
2 sinh

(
ωmq

2kBT

)]}
(2.38)

Cph
v (T) = kB/Nq

∑
q,m

(
ωmq
2kBT

)2

sinh2
(
ωmq
2kBT

) . (2.39)

Within Debye theory the constant-volume heat capacity per unit cell is28

Cph
v,D(T) = 9NnuclkB

(
T
ΘD

)3 ∫ ΘD
T

0
dξ

ξ4eξ

(eξ − 1)2
. (2.40)

In this expression ΘD is the Debye characteristic temperature. The Debye temperature as a function of T
is calculated by minimising with respect to ΘD the residual of calculated (measured) specific heat and eq.
(2.40),

min
ΘD

���Cph
v (T) − Cph

v,D(T)
���2 . (2.41)
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2 Theoretical Foundations

2.2.4 Dynamical matrices from the direct method

Theoretical approaches based on ab initio methods for calculating vibrational properties of solid are either
based on density functional perturbation theory (DFPT) (see e.g. Giannozzi et al. [17], Baroni et al. [18],
Gonze and Lee [19], and Gonze [29]) or the direct method (see e.g. Kresse et al. [30], Parlinski et al. [31],
and Walle and Ceder [32]).

In DFPT-based calculations dynamical matrices are computed in reciprocal space on a grid of wavevectors
from first-order changes of the wavefunctions due to atomic displacements. Starting from these dynamical
matrices FCs in real space are calculated by means of the discrete Fourier transform. In order to have access
to dynamical matrices at arbitrary q-vectors in the first BZ, Fourier interpolation is used. Within the direct
method the workflow proceeds in the other direction: forces on atoms due to finite atomic displacements are
calculated in supercells. The size of the supercell must be chosen according to the desired interaction range to
be covered by the FCs. FCs are evaluated from the forces through a finite difference scheme and dynamical
matrices follow from a lattice Fourier transform from real to reciprocal space. Both methods—at least in
principle—deliver the same information, however, they differ in complexity and applicability. For example,
the implementation of the perturbative treatment of atomic displacement can be quite intricate for approaches
to the electronic problem such as the projector augmented-wave method33,34 (PAW). The direct method, on
the other hand, is comparatively easy to implement and should be more feasible for systems requiring, e.g.,
spin-polarised calculations since only self-consistent calculations for the forces have to be performed. The
drawback clearly is the necessity to compute numerical derivatives using forces.

In the work at hand the direct method is used for calculating vibrational properties of oxide semiconductors.
Based on a unit cell with real space translations {a(j)p }j=1,2,3 a supercell with generating translations
a(j)s =

∑3
j′=1 a(j

′)
p Mj′ j is constructed, where M ∈ Z3×3, such that the volume of the supercell is det M × Ω0.

For the reciprocal lattices corresponding to the real space lattices the relations is g(j)s =
∑3

j′=1 g(j
′)

p [M−T ]j′ j ,
where M−T is the inverse of the transpose of M . Within these supercells one atom s′ at a time is displaced
by u(µ

′)
l′,s′ (µ

′ indicates the displacement direction) and forces on the other atoms {Fl,s(u(µ
′)

l′,s′)}
l=1,...,det M
s=1,...,Nnucl

are
calculated from DFT in a self-consistent calculation. The FCs are assessed from a 2-point finite difference
stencil (Cl s µ

l′s′µ′ =
∂2EKS

∂ul,s,µ∂ul′,s′,µ′
= −∂Fl′,s′,µ′

∂ul,s,µ
=

∂2EKS
∂ul′,s′,µ′∂ul,s,µ

= − ∂Fl,s,µ

∂ul′,s′,µ′
):

Cl s µ
l′s′µ′ ≈ −

Fl,s,µ(+u(µ
′)

l′,s′) − Fl,s,µ(−u(µ
′)

l′,s′)
2u(µ

′)
l′,s′

, (2.42)

where displacements in positive and negative directions have to be considered, and l, l ′ label primitive
translations contained in the supercell. A 3 × 3 sub-matrix reads

Cl s
l′s′ = −


1

2u∆Fl,s,x(u(x)l′,s′) 1
2u∆Fl,s,x(u(y)l′,s′) 1

2u∆Fl,s,x(u(z)l′,s′)
1

2u∆Fl,s,y(u(x)l′,s′) 1
2u∆Fl,s,y(u(y)l′,s′) 1

2u∆Fl,s,y(u(z)l′,s′)
1

2u∆Fl,s,z(u(x)l′,s′) 1
2u∆Fl,s,z(u(y)l′,s′) 1

2u∆Fl,s,z(u(z)l′,s′)

 , (2.43)

with ∆Fl,s,µ(u(µ
′)

l′,s′) = Fl,s,µ(+u(µ
′)

l′,s′) − Fl,s,µ(−u(µ
′)

l′,s′), and, since the displacement length is the same for each
direction, it is simply called u.
The peculiarity about forces obtained from most DFT codes35–40 is the imposition of periodic boundary

conditions. As a result, the forces contain the influence of all displaced atoms in the periodic images of the
supercell. Through these forces the periodic contributions enter the FCs, which is the reason why these are
often termed cumulative FCs:31 Cl s µ

l′s′µ′ =
∑

L′ Cphy l s µ
l′+L′s′µ′ ( Cphy l s µ

l′s′µ′ : true physical FCs), and the summation
extends over all periodic images of the supercell. At this point it is adjuvant to consider the equations of
motion eq. (2.21). Partitioning the sum over lattice points and noting that—upon imposing periodic boundary
conditions—the displacement is the same in all periodic images of the supercell it is immediate that41

Fl,s,µ = −
∑
L′

∑
l,′s′,µ′

Cl s µ
l′+L′s′µ′uL′+l,s′,µ′ = −

∑
l′,s′,µ′

ul′,s′,µ′

[∑
L′

Cl s µ
l′+L′s′µ′

]
.
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2.2 Lattice dynamics

As a matter of fact, it follows that the FCs have contributions from periodic repetitions of the supercell.
At wavevectors qc that are reciprocal lattice vectors of the direct super-lattice the dynamical matrix can be

obtained exactly without any further approximation31,42 (of course approximations through the numerical
parameters etc. still are present). For these wavevectors commensurable with the supercell it holds that
exp(+iqT

c R(L)s ) = 1 since qT
c R(L)s = 2π × integer, with R(L)s a lattice vector of the direct super-lattice. Thence,

using the FCs Cl s µ
l′s′µ′ in eq. (2.24),

31,41

Cs µ
s′µ′ (qc)

!
= Cphy s µ

s′µ′ (qc) =
∑
L′

∑
l′

Cphy l s µ
l′+L′s′µ′ exp[+iqT

c (R(L
′)

s + R(l
′)

p − R(l)p )], (2.44)

exact dynamical matrices Cs µ
s′µ′ (qc) at the commensurable wavevectors may be obtained because interactions

are summed to infinity.
The commensurable qc-vectors are determined from the matrix M relating the basis vectors of the primitive

lattice and the superlattice in real space. The columns Q(p) (i)c of its reciprocal M−T ∈ Q3×3 can be taken
as generating vectors of a grid of commensurate wavevectors referring to the translations of the reciprocal
lattice corresponding to the primitive real space lattice.ii In this basis the commensurable wavevectors are
constructed according to

q(p) c =

3∑
i=1

mi Q(p) (i)c with mi ∈ Z chosen such that q(p) µc ∈ [0, 1) ∀µ, (2.45)

and with respect to the Cartesian basis

qc = q(p) 1
c g(1)p + q(p) 2

c g(2)p + q(p) 3
c g(3)p = [g(1)p , g(2)p , g(3)p ]M−T︸                  ︷︷                  ︸

=[g(1)s ,g
(2)
s ,g

(3)
s ]

m with m ∈ Z3.

Reviewing the relation qT
c R(L)s = 2π × integer, since R(L)s = a(1)s L1 + a(2)s L2 + a(3)s L3 with Lµ ∈ Z ∀µ:

qT
c R(L)s = mT [g(1)s g(2)s g(3)s ]T [a(1)s a(2)s a(3)s ]L = 2π ×mT13L︸  ︷︷  ︸

∈Z

, (2.46)

it is found that wavevectors constructed according to eq. (2.45) indeed have the demanded property.

2.2.5 Dynamical matrices for polar insulating materials

In non-polar materials such as elemental semiconductors Si, Ge etc. the FCs are sufficiently short-ranged in
order to assure convergence of the lattice Fourier transform eq. (2.24) after having summed over a decent
number of real space vectors Rl . However, in insulating materials with polar chemical bonding (e.g. GaAs or
NaCl) atomic displacements are accompanied by electric dipoles.iii These electric dipoles are mediated at
linear order through Born effective charges, Z∗s,µµ′, which are the coefficient of proportionality between the
macroscopic polarisation Pmac,µ and the atomic displacements us,µ′:19

Z∗s,µµ′ = Ω0
∂Pmac,µ

∂us,µ′
q=0

, (2.47)

where Ω0 = det(a1, a2, a3) is the unit cell volume. The FCs therefore have a contribution from dipole-dipole
interactions (coulombic part) and a non-coulombic (short-ranged) part.

ii The relation between the generating vectors of the primitive and the super-lattice is [a(1)p , a(2)p , a(3)p ]M = [a(1)s , a(2)s , a(3)s ]. Taking
the inverse-transpose of both sides and multiplying by 2π leads to [g(1)p , g(2)p , g(3)p ]M−T = [g(1)s , g(2)s , g(3)s ].

iiiIn fact, formally also quadrupole or octupole moments are possible19 but shall not be treated here.
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2 Theoretical Foundations

In recent years two approaches have emerged that address the difficulties related to the long-range nature
of the dipole-dipole interactions: The first is due to Gonze and Lee [19] (henceforth referred to as Gonze’s
method) and the second was introduced by Wang et al. [43] (henceforth referred to as Wang’s method).
Gonze’s scheme is based on Ewald summation techniques and so far has only been implemented within
codes treating phonons by DFPT.39,40,44 Wang’s approach is to add a constant term, which is non-analytic for
q→ 0, to the FCs in real space in order to account for the vibration-induced dipole-dipole interactions. Lately
Wang’s method has often been used in conjunction with the direct method,43,45–53 and has been implemented
into many phonon codes.40,52,54–57

2.2.5.1 Gonze’s method

The method of Gonze and Lee [19] starts with the observation that in polar semiconducting or insulating
materials the dynamical matrices at wavevector q can be split into a short-ranged (non-Coulomb) and a
long-ranged (Coulomb) part:

Cs µ
s′µ′ (q) = Csr s µ

s′µ′ (q) + Cdd s µ
s′µ′ (q). (2.48)

A similar separation is also valid for the FCs in real space ( Csr 0 s µ
l′s′µ′ + Cdd 0 s µ

l′s′µ′ ) and the dipole-dipole
contribution to the FCs is of the form

Cdd 0 s µ
l′s′µ′ = 1

/√
det ε∞ ×

∑
νν′

Z∗s,νµ Z∗s′,ν′µ′

×
[
[D0 s

l′s′]2(ε∞)−1
νν′ − [(ε∞)−1d0 s

l′s′]ν[(ε∞)−1d0 s
l′s′]ν′

[D0 s
l′s′]5

]
, (2.49)

with d0 s
l′s′ = Rl′ + xs′ − xs, and the inverse of the dielectric permittivity tensor, (ε∞)−1, acts as a metric

tensor in real space, D0 s
l′s′ =

√
[d0 s

l′s′]T (ε∞)−1d0 s
l′s′ . The important result here is that the dipole-dipole part—as

represented through eq. (2.49)—decreases only as the inverse of the third power of the interatomic distance,
Cdd 0 s µ
l′s′µ′ ∝

��d0 s
l′s′

��−3, making the series eq. (2.24) converge slowly for these FCs. Note that the onsite term
with Rl′ = 0, and s = s′ even is divergent. Indeed, if in practical calculations for a polar material the Fourier
sum from eq. (2.24) is used to calculate the dynamical matrices from the FCs, this may result in unphysical
results for the phonon frequencies near the BZ centre. The reason is that in practise the FCs generally are
only known at a rather limited number of points Rl′ in real space (e.g., if only a “small” supercell is used in
the direct method for the calculation of the FCs). Therefore, not enough terms might be included in eq. (2.24)
as to make the series converge. The goal must therefore be to map the problem to a more quickly convergent
series, and to account for the long-ranged part of the FCs in a different manner.

The treatment of the poorly convergent series becomes feasible in the following way: The dynamical matrix
at wavevector q is obtained as the sum of a rapidly convergent lattice Fourier transform of some short-ranged
FCs Csr 0 s µ

l′s′µ′ (which are assumed to decay as
��d0 s

l′s′
��−4 or faster), and a dipole-dipole part as computed using

Ewald summation techniques:19

Cs µ
s′µ′ (q) =

∑
l′

Csr 0 s µ
l′s′µ′ e

iqT Rl′ + Cdd s µ
s′µ′ (q), (2.50)

which is a partitioning scheme in accordance with eq. (2.48). The dipole-dipole part is derived from the

10



2.2 Lattice dynamics

following set of equations:19

Cdd s µ
s′µ′ (q) =

∑
νν′

Z∗s,νµ Z∗s′,ν′µ′ C
dd s ν

s′ν′(q)

−δss′
∑
s′′

∑
νν′

Z∗s,νµ Z∗s′′,ν′µ′ C
dd s ν

s′′ν′(q = 0) (2.51a)

C
dd s µ

s′µ′(q) =
4π
Ω0

∑
If |q |,0: G

If |q |=0: G,0

(qµ + Gµ)(qµ′ + Gµ′)F0(q +G)ei(q+G)T (xs−xs′ )

−
∑
l′

D0 s
l′s′,0

η3Hµµ′(η[(ε∞)−1d0 s
l′s′], ηD0 s

l′s′)eiq
T Rl′

/√
det ε∞

− 4
3
√
π
η3δss′(ε∞)−1

µµ′
/√

det ε∞, (2.51b)

where η is the Ewald-parameter and

F0(q +G) = e−ε
∞(q+G)/4η2/ε∞(q +G) (2.52)

Hµµ′(x, y) =
xµxµ′

y2

[
3 erfc y

y3 +
2e−y

2

√
π

(
3
y2 + 2

)]
−(ε∞)−1

µµ′

(
erfc y
y3 +

2√
π

e−y
2

y2

)
, (2.53)

with ε∞(q +G) = (q +G)T ε∞(q +G). The Born effective charges and the dielectric permittivity tensor are
calculated from DFPT from a response to atomic displacements/an electric field, leaving the short-ranged
FCs as the only unknown quantities.

Therefore, the slow convergence of the Fourier series is bypassed because only the short-ranged part of the
FCs are used to calculate it. The dipole-dipole part also does not pose a problem: For a suitable choice of the
Ewald paramater η, sums in real (sum over l ′-index), reciprocal space (sum over G-vectors) can be carried
out until convergence by including enough shells of vectors.
For practical calculations the key issue clearly is to obtain the short-ranged FCs in order to compute the

first term of equation (2.50). Since Gonze’s method is commonly used for phonon calculations based on
dynamical matrices from DFPT,39,40,44 the starting point is a set of dynamical matrices Cs µ

s′µ′ (qj1 j2 j3) on a
grid of wavevectors Gq that homogeneously samples the BZ:

Gq =

{
qj1 j2 j3

�����qj1 j2 j3 =

3∑
r=1

jrgr/Nr with 0 ≤ jr < Nr ; Nr ∈ N>0 ∀r

}
, (2.54)

where g1, g2, g3 shall denote the reciprocal lattice vectors of the crystal at hand. DFPT directly provides the
required dynamical matrices by computing the response of the electronic system to atomic displacements
characterised by a wavevector qj1 j2 j3 .
Based on these ingredients it is now easy to formulate a recipe for an efficient interpolation of dynamical

matrices over the entire BZ. Interpolation in this context means that dynamical matrices at arbitrary wavevectors
q (i.e., particularly at points not contained in the original grid Gq) can be computed based on the dynamical
matrices on the grid Gq:

(I) ∀qj1 j2 j3 ∈ Gq: Calculate the dipole-dipole part Cdd s µ
s′µ′ (qj1 j2 j3) with eqs. (2.51).

(II) ∀qj1 j2 j3 ∈ Gq: Isolate the short-ranged part of the dynamical matrix:

Csr s µ
s′µ′ (qj1 j2 j2) = Cs µ

s′µ′ (qj1 j2 j3) − Cdd s µ
s′µ′ (qj1 j2 j3).

11



2 Theoretical Foundations

(III) Determine the short-ranged FCs in a box in real space with volume N1N2N3 ×Ω0 (centred around
atoms s at Rl ≡ 0) by inverse Fourier transform:

Csr 0 s µ
l′s′µ′ =

∑
q j1 j2 j3 ∈Gq

Csr s µ
s′µ′ (qj1 j2 j3)e

−i[q j1 j2 j3 ]
T Rl′ /N1N2N3, if d0 s

l′s′ ∈ box

= 0, if d0 s
l′s′ < box.

The number of real space lattice points Rl′ contained in the box equals N1N2N3.
(IV) Interpolate to arbitrary wavevectors q using eq. (2.50) after having calculated the dipole-dipole part

(eqs. (2.51)) at this q-vector (Fourier interpolation).
Since the approach just reviewed “corrects” the short- comings of the Fourier interpolation based on the full
FCs (C0 s µ

l′s′µ′ and not Csr 0 s µ
l′s′µ′ ), it will be referred to as dipole-dipole corrections.

I close this section with some remarks on eqs. (2.51): Care needs to be taken in the limit q→ 0. In order
to see this consider again the first term in eq. (2.51b) and include explicitly the G = 0 term:

lim
q→0

4π
Ω0

qµqµ′

ε∞(q) + lim
q→0

4π
Ω0

qµqµ′

ε∞(q)
(
eiq

T (xs−xs′ )e−ε
∞(q)/4η2 − 1

)
+ lim

q→0

∑
G,0
(G–terms with well-defined limit for q→ 0). (2.55)

Expanding the exponentials in the second term in powers of q = ‖q‖,

exp(iqT∆xss′ − ε∞(q)/4η2) = 1 + iq̂T∆xss′q − 1
2 (q̂T∆xss′)2q2

− ε∞(q̂)q2/4η2 + · · · ,

it is obvious that the q−2 denominator is compensated such that the single terms go to zero as ∝ q, and ∝ q2,
respectively. Therefore, only the first and the third term of eq. (2.55) remain in this limit implying that in
the G-sum in eq. (2.51b) the G = 0 term is to be skipped. Note that in eq. (2.51b) Cs µ

s′µ′ (q = 0) is defined
without the term 4π

Ω0
qµqµ′/ε∞(q). As a consequence, when computing the dynamical matrix at the Brillouin

zone (BZ) center q = 0, this term must be added explicitly:

lim
q→0

Cs µ
s′µ′ (q) = Csr s µ

s′µ′ (q = 0) + Cdd s µ
s′µ′ (q = 0) + Cna s µ

s′µ′ (q̂)

= Cana s µ
s′µ′ (q = 0) + Cna s µ

s′µ′ (q̂), (2.56)

with

Cna s µ
s′µ′ (q̂) =

4π
Ω0

∑
ν q̂νZ∗s,νµ

∑
ν′ q̂ν′Z∗s′,ν′µ′

ε∞(q̂) . (2.57)

In fact, the first and the second term of the former equation comprise the analytical part of the dynamical
matrix at the BZ centre, therefore motivating the notation Cana s µ

s′µ′ (q = 0). For the third term, however, the
limiting value depends on the direction q̂ along which the limit is taken implying that the limit is non-unique.
It is therefore commonly referred to as non-analytical (note the superscript “na”) term. As a result, there
is a directionality introduced for phonon mode frequencies depending on which direction is used in the
non-analytical term. This will not be the case for modes for which

∑
ν′ q̂ν′

∑
s′µ′ Z∗s′,ν′µ′w

s′,µ′

m,q=0/
√

Ms = 0,
i.e., for those modes that lie in a subspace orthogonal to the subspace in which the non-analytical term
acts. Eigenvectors fulfilling the former condition are common to Cana s µ

s′µ′ (q = 0)/√MsMs′ and ( Cana s µ
s′µ′ (q =

0) + Cna s µ
s′µ′ (q̂))/

√
MsMs′.

Modes for which q̂ ‖ ∑s′ Z∗s′w
s′
m,q=0/

√
Ms are called longitudinal optic (LO), since they have components

along the direction q̂, and wm,q=0 is an eigenvector of ( Cana s µ
s′µ′ (q = 0) + Cna s µ

s′µ′ (q̂))/
√

MsMs′. Obviously,
frequencies of these modes will depend on the direction according to eq. (2.56). Conversely, if q̂ ⊥∑

s′ Z∗s′w
s′
m,q=0/

√
Ms a phonon mode is termed transversal optic (TO), if it does not couple to the direction

q̂. Phonons in the long-wavelength limit that couple to the limiting direction may be associated with a
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2.2 Lattice dynamics

macroscopic polarization, and thus a homogeneous electric field. From Maxwell’s equations, the polarization
induced by a longitudinal phonon in the q→ 0 limit generates a macroscopic electric field which exerts a
force on the atoms, hence affecting the phonon frequency. In particular, this frequency will be different from
the purely transversal case. This (direction-dependent) difference in frequency of LO and TO modes is known
as “LO-TO splitting”. In case of degenerate phonon modes (2-fold or 3-fold degenerate), the degeneracy
will be lifted, if the direction q̂ is such that one of the degenerate modes has longitudinal character, i.e., if∑
ν′ q̂ν′

∑
s′µ′ Z∗s′,ν′µ′w

s′,µ′

m,q=0/
√

Ms , 0.

2.2.5.2 Wang’s method

Wang et al. [43] compute the Fourier transform with the full FCs from the direct method for an arbitray
q-vector and add the non-analytic term from eq. (2.57) with the result that:43,50

C̃s µ
s′µ′ (q) = Cs µ

s′µ′ (q) + Cna s µ
s′µ′ (q̂)χ(q), (2.58)

where χ(q) = 1
|det M |

∑
l eiq

T Rl is a geometrical factor. For this factor the following cases are to be
considered:43,50

(i) q = 0: In this case χ(q) = 1 and the limiting contribution to the dynamical matrix of eq. (2.57) is
recovered.

(ii) q = qc: In this case χ(q) = 0 and the non-analytical term does not play a role. The dynamical matrices
are exactly described through the FCs obtained from the direct method.

(iii) q , 0 ∧ q , qc: In this case χ(q) , 0 and lattice waves with wavevector not captured by the supercell
must be treated. The dynamical matrix from eq. (2.58) then is approximately constructed by Fourier
interpolation. For small wavevectors the vibrational pattern might result in macroscopic electric fields
complicating the interpolation procedure.

2.2.6 Raman scattering

When light travels through a semiconducting/isolating solid, most of it is either reflected or transmitted; a tiny
amount, however, will be scattered. The scattering may, for example, occur through the presence of defects
(point defects, dislocations, ...), that generally scatter light elastically (i.e., without a change in energy). Apart
from that, light can also be scattered inelastically by elementary excitations of the crystal such as lattice
vibrations (phonons), which was first observed by Raman [58, 59].

Generalities In case of inelastic scattering of light by phonons, the scattering process is characterised by a
scattering frequency ωm (also termed “Raman shift”) which amounts to the energy absorbed by the crystal
(Stokes scattering), or emitted by the crystal (anti-Stokes scattering). Energy absorption involves “creation”
of a phonon, while emission means a phonon is “annihilated”. The incident and scattered frequencies
are related by ωS = ωI ± ωm, where “+” is for anti-Stokes scattering, and “−” is for Stokes scattering.
In case of a Stokes scattering process, a quantum mechanical treatment reveals that the probability for
the creation of a photon (and hence the intensity of this scattering event) is proportional to (nm + 1),60
where nm ≡ nm(T) = [exp(ωm/kBT) − 1]−1 is the Bose-Einstein occupation factor. The additional term +1
corresponds to spontaneous emission of a phonon, while the nm term describes stimulated phonon emission.
Similarly, an anti-Stokes scattering event is proportional to the number of available states nm. The ratio of
intensities is given by

Ianti−Stokes/IStokes ∝ nm/(nm + 1) = e−ωm/kBT , (2.59)

indicating that the scattered intensity of an anti-Stokes process is much smaller than that of the Stokes process
if ωm � kBT . Another possibility, however, is that the light is backscattered elastically such that ωI = ωS .
This scenario is called Rayleigh scattering, and indeed, this is the most probable scattering event.

Furthermore, momentum conservation demands kS = kI ± q. Assuming visible light for the incident
radiation, it is a good approximation to assume ωI ≈ ωS � ωm (visible light: ∼1.6 eV to 3.2 eV; (optical)
phonons: ∼40 meV to 120 meV), and hence |kI | ≈ |kS | with a magnitude of ∼105 cm−1, much lower than
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2 Theoretical Foundations

those of reciprocal-lattice vectors (|G| ∼ 108 cm−1). Therefore, |q| ≈ 0, meaning that only Γ phonons will
contribute to the first-order Raman process.iv
At linear order, the quantity describing the interaction of a solid with electromagnetic radiation (light) is

the linear dielectric susceptibility χ, which is a second-rank Cartesian tensor. It is related to the dielectric
tensor εµµ′ by εµµ′ = δµµ′ + 4πχµµ′. The susceptibility relates the polarisation P induced by the incident
light beam and its electric field vector, P = χEI , where the incident/scattered electric field vectors can be
described by plane waves with wavevectors kI,S and frequencies ωI,S: EI,S(r, t) = EI,S exp(ikT

I,Sr − iωI,St).
The effect of the phonons is to modulate the wavefunctions and energy levels of the solid. As a result,

the atomic vibrations contribute an additional term to χ, the so-called “transition susceptibility” δχ. Let
χ→ χ + δχ, and61

δχ =
∑
q,m

χm(q)Qm,q +
1
2

∑
qq′,mm′

χmm′(q, q′)Qm,qQm′,q′ + · · · , (2.60)

with χm(q) = ∂χ
∂Qm,q

��
0, χ

mm′(q, q′) = ∂2χ
∂Qm,q∂Qm′,q′

��
0, . . . The {Qm,q} are the “normal coordinates” of the

lattice vibrations and relate an arbitrary atomic displacement and the eigenvectors of the phonon spectrum:28,61
ul,s,µ = 1/

√
N

∑
q,m Qm,qw

s,µ
m,q/
√

Ms exp(iqTRl). Since only Γ phonons are considered, the lattice index l can
be dropped and the normal coordinate merely is a scaling constant of the displacement related with the mth
mode at the Brillouin zone centre. The derivative ∂χ

∂Qm,Γ

��
0 must be viewed as a directional derivative along the

displacement vector us,µ
m = w

s,µ
m /
√

Ms:12 ∂χ
∂Qm,Γ

��
0 ≡ d

dt χ({x
(0)
s } + tum,Γ)

��
t=0 =

∑
s,γ

∂χ
∂us,γ

��
0us,γ

m,Γ, and
∂χ
∂us,γ

is
the gradient of χ with respect to atomic displacements.
The central quantity in the description of Raman scattering is the scattering efficiency (cgs-units; Stokes

process):12,62

Sm
eff =

��[eS]TRmeI
��2 = (ωI − ωm)4

c4

��[eS]TαmeI
��2 ~

2ωm
(nm + 1), (2.61)

which introduces the Raman susceptibilities12,62

αm
µµ′ ≡ αm

µµ′ (ωL) = (4π)−1
√
Ω0

∑
s,γ

∂εµµ′(ωL)
∂us,γ

����
0

us,γ
m,q=0, (2.62)

where ωI → ωL to indicate that the incoming light usually is a laser (hence the subscript “L”), and Rm is the
Raman tensor.
Indeed, the rather heuristic and qualitative discussion the Raman effect above is unsatisfactory from a

mathematical and a physical point of view. In order to embrace the full complexity of the phenomenon of
inelastic light scattering from a solid in the presence of excitations such as phonons, a quantum mechanical
treatment is indispensable. A detailed outline of the complete microscopic theory will, however, not be given.
In what follows, only a summary of the excitations and interactions will be outlined.
Following Yu and Cardona [60], in order to give an account of the microscopic processes involved in

phonon Raman scattering, the state of three “systems” involved must be specified:
• Incident/scattered photons with frequencies ωI,S ,
• electrons in the semiconductor/insulator,
• and the phonon involved in the scattering.

The involved interactions are (i) electron-photon interaction (interaction Hamiltonian He−R; subscript “R” is
for radiation), (ii) and electron-phonon interaction (interaction Hamiltonian He−ph).

Generally, it must be distinguished between resonant and non-resonant Raman scattering. In non-resonant
Raman scattering, an electron is excited into a so-called “virtual state”, which essentially is a very short-lived,
non-observable quantum state. In particular, this state is not “an eigenstate of anything”, and therefore cannot
really be reconciled with the (static) electronic picture based on eigensolutions of the many-body system
predominant in computational solid state physics. The electronic virtual state then couples to the phonon
iv In case of multi-phonon Raman scattering, more than just one q-point is involved. Therefore, the proper generalisation is that the

sum over all involved phonon wavevectors q vanishes,
∑
i qi = 0.
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Energy

|Ψgs 〉 initial

|Ψgs 〉 |ωm 〉 final

|Ψgs 〉 |ωm′ 〉

“virtual state”

ωI ωS = ωI −ωm

(a) Stokes process.

Energy

|Ψgs 〉 final

|Ψgs 〉 |ωm 〉 initial

|Ψgs 〉 |ωm′ 〉

“virtual state”

ωI ωS = ωI +ωm

(b) Anti-Stokes process.

FIGURE 2.2: Pictorial representation of (a) the Stokes, and (b) the anti-Stokes first-order Raman process. |Ψgs 〉 is the (electronic) groundstate,
|Ψgs 〉 |ωm 〉 , |Ψgs 〉 |ωm′ 〉 are states of the system that differ by their vibrational parts. Vibrational states are bound states of the potential generated
by the groundstate electronic configuration. The transitions involved in both scattering processes occur solely within the vibrational (phononic)
subsystem. This assumption is satisfied by Born-Oppenheimer’s approximation.

subsystem to re-emit the scattered photon. A pictorial representation of non-resonant Stokes/anti-Stokes
scattering is given in fig. 2.2. In resonant Raman scattering, ωI fits an electronic transition energy, be it
an interband transition from valence to conduction band or an excitonic excitation (both are electron-hole
pairs correlated by Coulomb interaction). The resulting electron-hole pair then scatters from phonons via
the electron-phonon interaction, and recombines to give the final-state photon (the scattered photon with
frequency ωS). It should be remarked that the just-described processes occur instantaneously. That is, there
is no “chronology” in the processes between photon absorption an re-emission.

The complete expression of the first-order scattering probability for the case involving electron-hole pairs
is given by Yu and Cardona [60] and consists of six terms, where the energies ωI, ωm are combined in several
denominators, leading to resonant and anti-resonant terms. In the Born-Oppenheimer approximation (which
is generally used in first principles calculations), i.e., letting the electrons respond immediately to the atomic
motion, it is possible to show that this expression60 is equivalent to the derivative of the dielectric function
with respect to atomic displacements.12

Group theoretical considerations It is expedient to consider the symmetry properties of the Raman tensor
Rm. In deriving the symmetry properties of the Raman tensor, it is inevitable to investigate its transformation
properties under the symmetry operations of the space group G of the crystal. Since |q| ≈ 0, it is possible to
analyse the symmetry of Rm based on the factor group which is isomorphic to the point group of the crystal
(the set of rotational parts of the space group operations). The factor group is the quotient group G/T, T
being the group of (primitive) lattice translations. In this context it must be appreciated that the space group
itself is infinite dimensional because it includes in the infinite group of lattice translations.

The Raman tensor derives from the dielectric susceptibilities χ that is a second-rank polar tensor, because
it relates two polar vectors being, e.g., P and EI . That means, Rm transforms under the elements {S(j)}
( j = 1, . . . ,

��Gp
��) of the point group of the crystal (let it be denoted by Gp;

��Gp
�� is the order of the group)

like a rank-two polar tensor: Rm
µµ′ →

∑
νν′[D(j)(S)]µν[D(j)(S)]µ′ν′Rm

νν′ , i.e., each component of the
second-rank tensor transforms like the component of a “vector” (a rank-one tensor, whose components
transform like Tµ →

∑
µ′[D(j)(S)]µµ′Tµ′). [D(j)(S)]µµ′ is a real-valued unitary 3 × 3 matrix representation of

the jth symmetry element S(j) ∈ Gp.
Given the point group of the crystal, group theory is essentially about finding the smallest possible

matrix representations of the elements S(j) ∈ Gp; these representations are called “irreducible” (irreducible
representation→irrep).63 The 3Nnucl-dimensional eigenspace VΓ of the dynamical matrix at Γ can be shown to
decompose into subspaces whose elements transform according to some of the irreps Λ(1),Λ(2), . . . of Gp:27
VΓ = m(p)V(Λ(p)) ⊕m(q)V(Λ(q)) ⊕ · · · . Indeed, not all irreps existent for Gp must occur in the decomposition;
some irreps may also occur more than just once (m(p),m(q), . . . times). Eventually, it must hold that the
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2 Theoretical Foundations

character tr D( j)(Λ)
Symbol dimΛ E Cn I σh C2 ⊥ Cn or σv

A 1 +1 +1
B 1 +1 −1
E 2 +2

T/F 3 +3
Xg +1
Xu −1
X′ +1
X′′ −1
Y1 +1
Y2 −1

TABLE 2.1: Symbols introduced by Mulliken [64, 65] for the irreps Λ of
the crystallographic point groups. The character of a matrix representation
D(Λ) of the irrep equals its trace. The labels for the symmetry elements
have the following meaning: E → identity; Cn → principal rotation; I →
inversion; σh → horizontal mirror plane; C2 → 2-fold rotation; σv →
vertical mirror plane. A detailed explanation of these symbols as well as
their geometrical meaning can be found in Dresselhaus et al. [63]. The
symbol X can be any Mulliken symbol, while Y is limited to A, B. The
table is reproduced with slight adjustments from Sander [11].

dimensions of all subspaces add up to the total number of modes per unit cell:
∑

V (Λ)∈VΓ dim V(Λ) = 3Nnucl.
The dimensions of the subspaces are in accord with the level of degeneracy of the corresponding phonon mode:
(i) dim V(Λ) = 1 means the eigenvalue ω2

m is 1-fold degenerate, (ii) dim V(Λ) = 2 means the eigenvalue is
2-fold degenerate, and (iii) dim V(Λ) = 3 means the eigenvalue is 3-fold degenerate. What irreps appear in
the decomposition as well as their number of occurrence depends on the space group and the crystal structure.
If a phonon mode represented by an eigenvector wm ∈ V(Λ(p)) transforms “according to the irrep Λ(p)”,
this means that it transforms under the space group operations in a certain manner. For example, in case
of the three dimensional irrep T1u of the cubic point group Oh the transformation behaviour is that of a
vector (x, y, z). In case of the inversion operation, this means that the eigenvectors change sign (subscript u:
“ungerade”) upon application of the respective space group operation (see eq. (2.30)). The irreps of Gp are
labelled according to the symbols introduced by Mulliken [64, 65]. Their meaning is summarised in table 2.1.
For a detailed explanation of the symbols used for the point symmetry elements as well as their geometrical
meaning, the reader is referred to Dresselhaus et al. [63].

As seen above, the components of the Raman tensor obviously transform like the product of two polar vectors
(rank-one tensors) TµTµ′ →

∑
νν′([D(j)(S)]µνTν)([D(j)(S)]µ′ν′Tν′); indeed, the product TµTµ′ ≡ (T ⊗ T)µµ′

defines a rank-two (polar) tensor (via the dyadic/outer/tensor product). Within the scope of the point group Gp,
a first-rank tensor transforms according to the (irreducible) representation of a polar vector Λvec. Inasmuch as
{D(j)(Λvec)} ( j = 1, . . . ,

��Gp
��) is a (irreducible) matrix representation of Λvec, {D(j)(Λvec) ⊗ D(j)(Λvec)} is a,

generally reducible,63 matrix representation of the product representation Λvec ⊗ Λvec (via the Kronecker
matrix product).v The (reducible) product representation can be decomposed into irreps of Gp by a suitable
similarity transformation like Λvec ⊗ Λvec = c(s)Λ(s) ⊕ c(t)Λ(t) ⊕ · · · , with multiplicities c(s), c(t), . . . 61,63 It
can be shown that if the irrep Λ(p) is contained in the product representation at least once, Λ(p) ⊂ Λvec ⊗Λvec,
the phonon modes transforming according to this irrep are Raman active,61,63 i.e., their Raman tensors exhibit
non-vanishing elements. An equivalent formulation is that the phonon mode transforms like a rank-two
polar tensor, since evidently its irrep contributes to the product representation Λvec ⊗ Λvec that describes the
transformation properties of a rank-two polar tensor under the elements of Gp.
It is important to appreciate that the Raman tensor Rm generally is not invariant under the rotations of

the point group Gp. This is only valid for the totally symmetric irrep. This is best illustrated by an example:
Consider the monoclinic point group Gp = C2h (2/m) with the four symmetry elements E,C2y, I, σy(≡ IC2y).
The irreps are Ag, Bg, Au, Bu, but only Ag, Bg allow for Raman activity, and its character table is shown in
table 2.2. The corresponding Raman tensors are

RAg =
(
a 0 d
0 b 0
d 0 c

)
, (2.63a)

RBg =

(
0 e 0
e 0 f
0 f 0

)
, (2.63b)

and the 3 × 3 unitary representation of the C2y symmetry element is

D(C2y) =
( −1 0 0

0 1 0
0 0 −1

)
,

v A representation Λ′ of a group is reducible if the corresponding matrix representations of all group operations can be brought to
block-diagonal form by the same unitary matrix via a similarity transform. This amounts to finding another basis, thereby making
the matrix representations as simple as possible.
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2.2 Lattice dynamics

symmetry element
irrep E C2y I σy

Ag 1 1 1 1
Bg 1 −1 1 −1
Au 1 1 −1 −1
Bu 1 −1 −1 1

TABLE 2.2: Character table of the C2h point group (http://www.cryst.ehu.es/cgi-bin/rep/programs/sam/point.py?sg=10&num=5).
The representation of a three dimensional vector is Λvec = Au ⊕ 2Bu .

yielding ∑
νν′
[D(C2y)]µν[D(C2y)]µ′ν′RAg

νν′ → D(C2y)RAg [D(C2y)]T=RAg (2.64a)∑
νν′
[D(C2y)]µν[D(C2y)]µ′ν′RBg

νν′ → D(C2y)RBg [D(C2y)]T= −RBg . (2.64b)

Evidently, in accordance with table 2.1, the Raman tensor of the Bg irrep transforms unevenly upon application
of the principal rotation Cn ≡ C2y . Indeed, this can also be directly inferred from table 2.2. The totally
symmetric irrep is Ag, since upon application of all corresponding symmetry elements the respective modes
transform evenly.
A connection between the matrix irreps and the character table 2.2 can be established in the following

way: Recall the 3Nnucl × 3Nnucl dimensional matrix representations of the space group operations given by
eq. (2.30). A reducible matrix representation of the point group Gp can be constructed by27,28,61

U (S(j); q = 0) = exp[iqT (v(S( j)) + Rl)]Γ({S(j) |v(S(j)) + Rl}; q = 0). (2.65)

It should be noted that the representation established by the set of matrices {U (S(j))} is not a group
representation in the ordinary sense, but a so-called “multiplier representation”.27,28,61 These matrices
commute with the dynamical matrix, U (S(j))C(q = 0)[U (S(j))]−1 = C(q = 0). Operating from the left with
U (S(j)) on the eigenvalue equation eq. (2.23), it follows that (D s µ

s′µ′ (q = 0) = Cs µ
s′µ′ (q = 0)/(MsMs′)1/2):

D(q = 0)[U (S(j))wm,q=0] = ω2
m,q=0[U (S(j))wm,q=0], (2.66)

implying that [U (S(j))wm,q=0] also is an eigenvector with eigenvalue ω2
m,q=0 of the dynamical matrix at q = 0,

i.e., [U (S(j))wm,q=0] ∈ V (ωm). V (ωm) denotes the subspace of VΓ corresponding to the eigenvalue(s) ω2
m,q=0

(possibly degenerate). The most that can be inferred from this information is that the rotated eigenvector is
some linear combination of the w(λ)m ∈ V (ωm):

U (S(j))w(λ)m =

dimV (ωm )∑
λ′=1

w(λ
′)

m τ
(m)
λ′λ (S(j)), (2.67)

with τ(m)λ′λ (S(j)) = [w
(λ′)
m ]HU (S(j))w(λ)m , where [w(λ′)m ]H is the conjugate-transpose of this vector. Evidently,

the {w(λ)m } span a vector space that is invariant with respect to all symmetry operations of the point group
Gp. Indeed, since D(q = 0) is hermitian, all other eigenvectors with eigenvalues different from ωm lie in
the orthogonal complement V (ωm)

⊥ = VΓ \ V (ωm) of V (ωm), from which immediately follows that V (ωm) has
no proper invariant subspacesvi and hence is irreducible. In other words, the {τ(m)λ′λ (S(j))} provide a unitary
(multiplier) irrep of Gp.27,28,61

Returning to table 2.2, it is evident that all irreps are one-dimensional; that is, phonon modes are non-
degenerate. This means the irrep matrices τ(m)λ′λ (S(j)) are simple scalars and therefore equal their trace/character.

vi This means that there are no subspaces of smaller dimension which are invariant under the symmetry operations of the point
group of the crystal. “Invariant” means that application of U (S(j)) to an eigenvector corresponding to eigenvalue ω2

m maps that
eigenvector to the same subspace. The subspace then may be called “closed” with respect to the operations of Gp.
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2 Theoretical Foundations

As a matter of fact, in this special case, the transformation properties of the eigenvectors wm (and of the
Raman tensors!) under the symmetry operations of Gp are directly visible form the character table 2.2.
However, if degeneracies larger than one occur, the character table may no longer be sufficient and an explicit
form of the irrep matrices τ(m)λ′λ (S(j)) is required.
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3 Results and Discussion

In the first part of this chapter (section 3.1) some theoretical methods developed/extended/adapted in the
course work are outlined. The materials treated in this work are introduced in section 3.2. Based on the
methods from section 3.1, in section 3.3, phonon dispersions and derived quantities such as phonon density
of states and the thermodynamic functions are calculated. The investigated material systems are the three
copper-oxide phases and, for demonstrative purposes, the wide-gap insulator CaF2. In the last section
(section 3.4), the focus shall be on the Raman scattering properties of monoclinic CuO and tetragonal Cu4O3.
Special emphasis is put on the comparison of two phases of CuO existent a different temperatures that differ
by their anti-ferromagnetic ordering. At last, the behaviour of the Raman active modes of Cu4O3 under
exertion of hydrostatic pressure will be examined.

3.1 Theoretical contributions

In this section I will state my own contributions to theoretical methods employed in this work. This mainly
contains extensions to already existent ideas and formulations to the theory of lattice dynamics. Further, the
details of the implementation for calculating FCs/dynamical matrices and first-order Raman susceptibilities
from first principle data are given.

3.1.1 Inclusion of dipole-dipole corrections into dynamical matrices from the direct method

In the preceeding section the direct method for obtaining FCs has been reviewed. The central cognisance of
this chapter is that within this approach dynamical matrices at wavevectors commensurable with the chosen
supercell can be calculated exactly.31,42
The goal of the present section is to outline how Gonze’s method19 for the treatment of dipole-dipole

corrections in the dynamical matrices can be applied within the framework of the direct method. In fact, once
the Cs µ

s′ν (qc) are determined, the technical treatment proceeds along similar lines as in the case of dynamical
matrices obtained from DFPT (see section 2.2.5.1: steps (I) to (IV)).
The procedure to be adopted can be summarised in the following way:
(i) Based on a (primitive) crystal structure determine a supercell by specifiying the matrix M from section

2.2.4.
(ii) Calculate the full (cummulative) FCs C0 s µ

l′s′ν′ with eq. (2.42) using forces from DFT.
(iii) Determine the grid of commensurable wavevectors (Gqc) through the columns of M−T (see again

section 2.2.4). Calculate the exact dynamical matrices Cs µ
s′µ′ (qc) ∀qc ∈ Gqc with the cummulative FCs

using eq. (2.24).
(iv) Now the starting position is the same as with dynamical matrices from DFPT: To interpolate dynamical

matrices across the BZ (e.g., to compute the phonon frequency spectrum) follow section 2.2.5.1, steps
(I) to (IV). The commensurable wavevectors qc here replace the qj1 j2 j3 from section 2.2.5.1.

3.1.2 Using symmetries for finding a minimum set of displacements and forces

The FCs are calculated with the aid of eq. (2.42). In order to obtain all FCs for a supercell with det M × Nnucl
atoms 3 × 2 × det M × Nnucl self-consistent DFT calculations are necessary. For large supercells the
corresponding computational effort is prohibitively large. Using the symmetry of the space group of the
crystal not only tremendously reduces the computational load but also minimises numerical inaccuracies in
the FCs.
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Utilising symmetry for finding the independent set of displacements needed to calculate the FCs reduces
to finding the independent displacements for a minimal set of atoms from which the rest of atoms in the
supercell can be generated by applying all symmetry operations. Let {{P |v(P) +R(l)p }} be the set of symmetry
operations that map the atoms indexed by l, s onto itself. Successive application (of the rotational part P) of
these symmetry operations to an initial test displacement u(ν)

l,s
in general rotates it to a new displacement,

possibly linearly independent of the old one. If from this initial displacement three linearly independent
displacements can be created, it is taken as the independent set of displacement(s) needed for this atom. If one
displacement does not suffice to generate three linearly independent displacements, another test displacement
u(ν

′)
l,s

is considered to which—in order to complete the set—again all symmetry operations are applied. This
procedure is repeated until three displacements have been generated, and the underlying test displacements
form the set of independent displacements.
However, eq. (2.42) demands usage of displacements in positive and negative directions. Therefore, the

signs of the independent displacements generated previously are inverted and it is checked which displacements
from the sign-inverted set can be generated from the initial set. The full set of displacements for atom l, s
follows from the conjunction of the initial set and the displacements from the sign-inverted set not related to
any displacement of the initial set. This procedure is to be executed for all symmetrically independent atoms
in the supercell.

Once the forces for the required number of displacements have been calculated from a DFT self-consistency
the above-mentioned approach is inverted in order to generate the remaining forces. If two atoms l ′, s′ and
l ′1, s

′
1 are linked through symmetry operation {S |v(S) + R(l)p }, their displacements are related by u(ν

′)
l′1,s
′
1
= Su(ν)

l,s
,

and the respective forces due to displacement u(ν
′)

l′1,s
′
1
can be computed from the forces due to u(ν)

l′,s′ through
30,41

Fl′′,s′′(u(ν
′)

l′1,s
′
1
) = SFl,s(u(ν)l′,s′) with l, l ′′ = 1, . . . , det M, s, s′′ = 1, . . . , Nnucl, (3.1)

and xl′′,s′′ = {S |v(S) + R(l)p }xl,s.
As a final point it should be mentioned that application of symmetries to a set of independent displacements

not necessarily results in three orthogonal displacements (still linearly independent though) oriented along
the Cartesian axes. Three such displacements {u(λ)

l′,s′} can be generated from the linearly independent ones by
performing a transformation30,41

u(λ)
l′,s′ =

3∑
ν=1

u(ν)
l′,s′Aνλ, (3.2)

where A is the solution of the linear system of equations

[û(1)
l,′s′, û

(2)
l′,s′, û

(3)
l′,s′]±A =

{
+13×3 for the set of positive displacements (+),
−13×3 for the set of negative displacements (−), (3.3)

and the same transformation is applied to the forces:

Fl,s(u(λ)l′,s′) =
3∑
ν=1

Fl,s(u(ν)l′,s′)Aνλ, (3.4)

which are then to be used in eq. (2.42) to make the components of Cl s µ
l′s′µ′ refer to the Cartesian axes.

3.1.3 Perturbation-like approach to first-order changes in phonon mode frequencies in the
limit q→ 0 for polar semiconductors

In this section a perturbation-like approach for the calculations of first-order changes of the phonon mode
frequencies with q from in the limit of q→ 0 along direction q̂ is outlined. Note that this method is not limited
to dynamical matrices from the direct method but can also be used in conjunction with DFPT-calculated
dynamical matrices. Further, the approach discussed in the following is not entirely new (see Born and Huang
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[66] (chap. V), and Maradudin et al. [28] (chap. 6)) but has merely been generalised to the case of anisotropic
Born effective charges by making use of the method of Gonze and Lee [19].
I shall consider the following change-of-phase for the dynamical matrix:28

C s µ
s′µ′ (q) = e+iq

T xs′Cs µ
s′µ′ (q)e−iq

T xs, (3.5)

where xs denotes an atomic position in the unit cell.
In order to develop the equations governing the q→ 0 limit of the phonon mode frequencies I will work with

the mass-reduced dynamical matrix D s µ
s′µ′ (q) = C s µ

s′µ′ (q)
/ (MsMs′)1/2 whose eigenvalues and eigenvectors

shall be denoted by (ωmq)2 and bs,µmq, respectively. Next, expand the single parts of the corresponding
eigenvalue equation for fixed direction q̂ around q = 0 (ξ = |q|):

D s µ
s′µ′ = D s µ

0,s′µ′ + Dna s µ
s′µ′ + iD s µ

1,s′µ′ ξ +
1
2D s µ

2,s′µ′ ξ
2 + · · · (3.6a)

bs,µm,q = b s,µ
0,m + ib s,µ

1,m ξ + 1
2 b s,µ

2,m ξ2 + · · · (3.6b)

ωmq = ω1,m,q̂ξ +
1
2ω2,m,q̂ξ

2 + · · · , (3.6c)

wherein Dna s µ
s′µ′ ≡ Dna s µ

s′µ′ (q̂) = Cna s µ
s′µ′ (q̂)

/ (MsMs′)1/2, and the q = 0 label has been suppressed in favor of
a concise notation.
The parts of the set of equations (3.6) needed in the following are:

D s µ
0,s′µ′ = Dsr s µ

0,s′µ′ + Ddd s µ
0,s′µ′ (3.7a)

D s µ
1,s′µ′ =

∑
γ

(
Dsr s µ

1,s′µ′,γ + Ddd s µ
1,s′µ′,γ

)
q̂γ (3.7b)

D s µ
2,s′µ′ =

∑
γλ

(
Dsr s µ

2,s′µ′,γλ + Ddd s µ
2,s′µ′,γλ

)
q̂γ q̂λ, (3.7c)

and

ω1,m,q̂ =
∑
γ

∂ωm,q

∂qγ

����
q=0

q̂γ, (3.8a)

b s,µ
n,m =

∑
γ1 · · ·γn

∂nbs,µm,q
∂qγ1 · · · ∂qγn

�����
q=0

q̂γ1 · · · q̂γn, (3.8b)

while the derivatives with respect to the wavevector of the short-ranged part of the dynamical matrix at q = 0
read

Dsr s µ
1,s′µ′,γ =

∑
l′

Csr 0 s µ
l′s′µ′

/ (MsMs′)1/2 d0 s
l′s′γ (3.9a)

Dsr s µ
2,s′µ′,γλ = −

∑
l′

Csr 0 s µ
l′s′µ′

/ (MsMs′)1/2 d0 s
l′s′γ d0 s

l′s′λ . (3.9b)

The derivatives of the dipole-dipole part require a careful treatment. Starting from a phase-changed version
of eq. (2.51b), consider for the further treatment an expression of the form:

C
dd s µ

s′µ′(q) =
4π
Ω0

qµqµ′

ε∞(q)
(
e−ε

∞(q)/4η2 − 1
)

+
4π
Ω0

∑
|G |,0

K=q+G

KµKµ′F0(K)eiG
T (xs−xs′ )

−
∑
l′

D0 s
l′s′,0

η3
√

det ε∞
eiq

T d0 s
l′s′Hµµ′(η∆0 s

l′s′, ηD0 s
l′s′)

− 4
3
√
π

η3
√

det ε∞
δss′ (ε∞)−1

µµ′ , (3.10)
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which possesses a unique limiting value at vanishing wavevector. I use the abbreviations ∆0 s
l′s′µ =∑

µ′ (ε∞)−1
µµ′ d0 s

l′s′µ′ , and D0 s
l′s′ =

√∑
µ d0 s

l′s′µ∆
0 s
l′s′µ, and further define for equation (3.10)

F0(K) =
e−ε

∞(K)/4η2

ε∞(K) with K = q +G, (3.11)

with ε∞(K) = ∑
µµ′ Kµε∞µµ′Kµ′.

The Born effective charges must be included in the first- and second-order changes in q of the dipole-dipole
part:

Ddd s µ
1,s′µ′,γ =

∑
νν′

Z∗s,νµ Z∗s′,ν′µ′

(MsMs′)1/2
lim
q→0

C
dd s ν

1,s′ν′,γ(q) (3.12a)

Ddd s µ
2,s′µ′,γλ =

∑
νν′

Z∗s,νµ Z∗s′,ν′µ′

(MsMs′)1/2
lim
q→0

C
dd s ν

2,s′ν′,γλ(q). (3.12b)

The limits are related to the first and second derivatives of eq. (3.10):

lim
q→0

∂

∂qγ
C

dd s µ

s′µ′(q) =
4π
Ω0

∑
|G |,0

eiG
T (xs−xs′ )

× [(δµγGµ′ + Gµδµ′γ
)

F0(G) + GµGµ′ (ε∞G)γ F1(G)]

− i
∑

l,D0s
l s′,0

η3
√

det ε∞
Hµµ′(η∆0s

l s′, ηD0s
l s′)d0s

l s′γ, (3.13a)

lim
q→0

∂2

∂qλ∂qγ
C

dd s µ

s′µ′(q) = −
4π
Ω0
(4η2)−1(δµγδµ′λ + δµλδµ′γ)

+
4π
Ω0

∑
|G |,0

eiG
T (xs−xs′ )[(δµγδµ′λ + δµλδµ′γ ) F0(G)

+
(
δµλGµ′ + Gµδµ′λ

) (ε∞G)γ F1(G)
+

(
δµγGµ′ + Gµδµ′γ

) (ε∞G)λ F1(G)
+ GµGµ′ε

∞
γλF1(G) + GµGµ′ (ε∞G)γ (ε∞G)λ F2(G)]

+
∑

l,D0s
l s′,0

η3
√

det ε∞
Hµµ′(η∆0s

l s′, ηD0s
l s′)d0s

l s′γ d0s
l s′λ, (3.13b)

wherein

F1(K) = −
2F0(K)

4η2 − 2F0(K)
ε∞(K) (3.14a)

F2(K) = −
2F1(K)

4η2 − 2F1(K)
ε∞(K) +

4F0(K)
(ε∞(K))2

, (3.14b)

such that

lim
q→0

C
dd s µ

1,s′µ′,γ(q) = −i lim
q→0

∂

∂qγ
C

dd s µ

s′µ′(q) (3.15a)

lim
q→0

C
dd s µ

2,s′µ′,γλ(q) = lim
q→0

∂2

∂qλ∂qγ
C

dd s µ

s′µ′(q). (3.15b)

Mind that the factor −i in the first derivative has been included because a factor +i was introduced in the term
linear in ξ of eq. (3.6a).
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I now return to the expansions in eqs. (3.6) and equate terms of like power in ξ up to order ξ2 to arrive at
the following set of equations: ∑

s′µ′
D s µ

0,s′µ′ b
s′,µ′

0,m = −
∑
s′µ′

Dna s µ
0,s′µ′ b

s′,µ′
0,m (3.16a)

i
∑
s′µ′

D s µ
0,s′µ′ b

s′,µ′
1,m = − i

∑
s′µ′

Dna s µ
s′µ′ b

s′,µ′
1,m

− i
∑
s′µ′

D s µ
1,s′µ′ b

s′,µ′
0,m (3.16b)

1
2

∑
s′µ′

D s µ
0,s′µ′ b

s′,µ′
2,m =

(
ω1,m,q̂

)2 b s,µ
0,m

− 1
2

∑
s′µ′

Dna s µ
s′µ′ b

s′,µ′
2,m

+
∑
s′µ′

D s µ
1,s′µ′ b

s′,µ′
1,m

− 1
2

∑
s′µ′

D s µ
2,s′µ′ b

s′,µ′
0,m . (3.16c)

Noting that the displacements of the acoustic modes are just a rigid displacement of all atoms, b s,µ
0,m =√

Msu
µ

0,m, these equations may now be solved for the first-order changes in the phonon mode frequencies
ω1,m,q̂. From eq. (3.16b) I get for the first-order eigenvector:

b sµ
1,m = −

∑
s′s′′
µ′µ′′

[ (
1⊥ + G ⊥ Dna ⊥)−1

G ⊥
] s µ

s′′µ′′
D s′′µ′′

1,s′ µ′
√

Ms′u
µ′

0,m, (3.17)

where I defined the Green’s function of the subspace of optical modes V⊥,

G ⊥s µs′µ′ =
∑

m∈V⊥
b s,µ

0,m [b
s′,µ′

0,m ]∗
/ (
ωm,q=0

)2
, (3.18)

and the subspace-projected non-analytical part:

Dna ⊥s µ
s′µ′ =

∑
mm′∈V⊥

b s,µ
0,m

∑
s1s1′
µ1µ1′

[b s1,µ1
0,m ]∗ Dna s1 µ1

s1′µ1′ b
s1′,µ1′

0,m′ [b s′,µ′
0,m′ ]∗, (3.19)

and
(
ωm,q=0

)2
, b s,µ

0,m in this context denote the eigenvalues, eigenvectors of the dynamical matrix from (3.7a)
(the analytical part).

The solvability condition of eq. (3.16c) is that the right-hand side is orthogonal to the subspace of acoustic
modes:28,66

0 =
∑
sµ

√
Msu

µ
0,m

∑
s′µ′

[(
−1

2D s µ
2,s′µ′ + δss′δµµ′

(
ω1,m,q̂

)2
) √

Ms′u
µ′

0,m

]
+

∑
sµ

√
Msu

µ
0,m

∑
s′µ′

[
D s µ

1,s′µ′ b
s′µ′

1,m − 1
2 Dna s µ

s′µ′ b
s′µ′

2,m

]
. (3.20)

The last term featuring Dna s µ
s′µ′ vanishes because of the charge neutrality condition

∑
s Z∗s,µµ′ = 0 ∀µµ′ (cf.

equation (2.57)). Since the displacements u µ
0,m are arbitrary, it must hold ∀µ:[∑

s

Ms

]
u µ

0,m
(
ω1,m,q̂

)2
=

∑
ss′µ′

[√
MsMs′

1
2D s µ

2,s′µ′ u
µ′

0,m −
√

MsD
s µ

1,s′µ′ b
s′µ′

1,m

]
, (3.21)
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which in combination with eq. (3.17) leads to the 3 × 3 eigenvalue problem∑
µ′

(
Ξµµ′ − δµµ′

(
ω1,m,q̂

)2
)

u µ′
0,m = 0, (3.22)

with Ξµµ′ =
∑

ss′ (MsMs′)1/2 Ξs µs′µ′
/ [∑s Ms], and

Ξ
s µ
s′µ′ =

1
2D s µ

2,s′µ′ +
∑
s1s1′
µ1µ1′

D s µ
1,s1µ1

[ (
1⊥ + G ⊥ Dna ⊥)−1

G ⊥
] s1 µ1

s1′µ1′
D s1′µ1′

1,s′ µ′ . (3.23)

3.1.4 Calculation of Raman spectra from first principles data

In this section I will briefly outline the methods that were implemented in order to compute Raman
spectroscopic properties of semiconducting solids from data extracted first principles calculations. First,
the procedure for the computation of Raman spectra is described wherein the central quantity is the Raman
susceptibility αm

µµ′ . This quantity requires the calculation of the dielectric susceptibility χµµ′ (or the dielectric
tensor εµµ′ ) at distorted geometries, similarly as in the case of the dynamical matrices obtained within the
framework of the direct method.

The equation for the Raman susceptibility is governed by the derivative of the dielectric susceptibility with
respect to atomic displacements67–69

αm
µµ′(ω) =

√
Ω0

∑
sν

[
∂

∂us,ν
χµµ′ (ω)

]
us=0

ws,ν
m,q=0√
Ms

, (3.24)

where the eigenvectors ws,ν
m,q=0 are those from eq. (2.23). The susceptibility χµµ′(ω) generally is frequency-

dependent, and for Raman spectroscopic applications particulary frequencies in the near infrared to ultra-violet
part of the spectrum are of interest. As an alternative to the susceptibility the derivative in eq. (3.24) can
be calculated using the dielectric tensor εµµ′. Both are related by εµµ′(ω) = δµµ′ + 4πχµµ′(ω), such that
∂

∂us,ν
χµµ′ (ω) = 1

4π
∂

∂us,ν
εµµ′ (ω). Several schemes and levels of approximation exist for calculating εµµ′

ranging from the independent particle approximation (IPA) to more involved methods based on many-body
perturbation theory.6,9,69–76 In this work, the calculation of the (frequency-dependent) dielectric tensor is
limited to IPA based on the PAW method.75 Following Gajdos et al. [75] the expression for the imaginary part
reads

ε
(2)
µµ′(ω) =

4π2

Ω0
lim
q→0

1
q2

∑
s=↑,↓

∑
c,v,k

wkδ(E (s)c,k − E (s)
v,k − ω)

× 〈u(s)
c,k+qêµ | u

(s)
v,k〉 〈u

(s)
c,k+qêµ′

| u(s)
v,k〉
∗
, (3.25)

wherein the summation extends over vertical transitions—the so-called optical limit (limq→0) for which
∆k = 0—between valence bands (v) and conduction bands (c). The band energies are E (s)

v,k and E (s)
c,k,

respectively, and the integral representation of the scalar products of the cell-periodic part of the Bloch
functions is:75

〈u(s)
c,k+qêµ | u

(s)
v,k〉 =

∫
Ω0

d3r [u(s)
c,k+qêµ (r)]

∗ u(s)
v,k(r). (3.26)

The unit vectors êµ, êµ′ are oriented along the Cartesian directions.
Since eq. (3.25) is evaluated in the limit q → 0, the Bloch functions |u(s)

n,k+q〉 are expanded up to linear
order in q, |u(s)

n,k+q〉 = |u
(s)
n,k〉 +

∑
ν qν ∂

∂kν
|u(s)

n,k〉 + O(q2), and the first-order change in k of the cell-periodic
part of the Bloch functions comes from second-order perturbation theory:75

∂

∂kν
|u(s)

n,k〉 =
∑
n,n′

|u(s)
n′,k〉 〈u

(s)
n′,k | ∂∂kν (Hk − E (s)

n,kSk)|u(s)n,k〉
E (s)
n,k − E (s)

n′,k

, (3.27)
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wherein Hk is the Hamiltonian for the cell-periodic part of the Bloch function, and Sk is the corresponding
overlap operator.
The real part of the dielectric function ε (1)µµ′(ω) is related to the imaginary part through Kramers-Kronig

relations

Re εµµ′(ω + iζ)
��
ζ→0+ = δµµ′ + Re

[
∞∫
0

dω′
π

(
Im ε

µµ′ (ω′)
ω′−ω−iζ +

Im ε
µµ′ (ω′)

ω′+ω+iζ

)] �����
ζ→0+

(3.28a)

Im εµµ′(ω + iζ)
��
ζ→0+ = Im

[
∞∫
0

dω′
π

(
Im ε

µµ′ (ω′)
ω′−ω−iζ +

Im ε
µµ′ (ω′)

ω′+ω+iζ

)] �����
ζ→0+

, (3.28b)

with ζ being positive infinitesimal.
The idea now is to approximate the derivative in eq. (3.24) through a finite difference scheme. For this to

be accomplished the dielectric tensor must be evaluated at distorted atomic configurations. That is, a fully
self-consistent calculation is carried out with one atom displaced (by a finite amount) from its equilibrium
position. The resultant wavefunction in conjunction with its k-derivative (cf. eq. (3.27)) is then used to
determine the imaginary part of the dielectric tensor which in turn determines the real part through eq. (3.28).
For the atomic displacements positive and negative (Cartesian) directions are used, allowing to write an
approximation for the derivative 1

4π
∂

∂us,ν
εµµ′ (ω) based on central differences

1
4π

∂

∂us,ν
εµµ′ (ω) ≈

1
4π

εµµ′ (ω;+u(ν)s ) − εµµ′ (ω;−u(ν)s )
2u(ν)s

, (3.29)

and εµµ′(ω;±u(ν)s ) = [Re εµµ′ + i Im εµµ′](ω;±u(ν)s ) means that the dielectric tensor is evaluated at distorted
geometries with an atom displaced by ±u(ν)s .

Altogether, the total number of calculations to be performed is 3× 2× Nnucl. In order to reduce this number,
symmetry operations of the space group can be used to lessen the workload. On the one hand, they determine
the number of inequivalent atoms and on the other hand, they reduce the number of displacements to be
accounted for per atomic site.
Let me address the latter point first. The number of displacements needed to determine ∂

∂us,ν
εµµ′ (ω) the

sth atom in the unit cell is related to the set of symmetry operations that leave the atomic site invariant. The
elements comprising this set will be called {P |v(P)}. The algorithm is to generate an initial displacement u(ν)s
and to apply the rotational part P of the aforementioned operations to this displacement vector thus generating
another displacement, u(ν

′)
s = Pu(ν)s . New displacements are created until two sets of linearly independent

vectors are created, one associated with positive and the other associated with negative directions. Positive
and negative in this context means that all vectors forming the positive set have an associated vector with
opposite sign in the negative set.
For each of the independent displacements the real and the imaginary part of the dielectric tensor are

calculated. Now, let u(ν)s be one of these displacements to which the associated dielectric tensor is εµµ′ (ω; u(ν)s ),
and further consider the primed displacement from above. Then, the tensor associated with the primed
displacement is calculated from the one computed for the unprimed displacement by

εµµ′ (ω; u(ν
′)

s ) =
∑
γγ′

PµγPµ′γ′εγγ′ (ω; u(ν)s ). (3.30)

Note that the direction indexed by ν′ may also be the negative of the one index by ν. The symmetry operations
are applied until the previously mentioned sets are rebuilt.
It is, however, not generally the case that applications of all symmetry operations lead to two sets where

one contains positive and the other negative Cartesian directions. A set of orthogonal displacements oriented
along the Cartesian directions (positive and negative) can be constructed by performing corresponding linear
combinations u(λ)s =

∑
ν u(ν)s Aνλ with λ ∈ {x, y, z}, and A is determined from eq. (3.3). The same linear

transformation is applied to the dielectric tensor

εµµ′ (ω; u(λ)s ) =
∑
ν

εµµ′ (ω; u(ν)s )Aνλ, (3.31)
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with A to be determined for each of the two linearly independent sets of displacements (positive and negative).
The procedure just described gives ∂

∂us,ν
εµµ′ (ω) for atom s in the unit cell. This derivative defines a

third-rank tensor associated with atom s and it must be invariant under application of all rotational parts of the
symmetry operations that map the atom onto itself, ∂

∂us,γ
εηη′ (ω)

!
=

∑
µµ′ν PηµPη′µ′Pγν[ ∂

∂us,ν
εµµ′ (ω)] ∀P. If

now the inversion operation is amongst these rotational parts, the formerly-stated transformation law reduces
to ∂

∂us,ν
εµµ′ (ω)

!
= (−1)3 ∂

∂us,ν
εµµ′ (ω) from which it immediately follows that ∂

∂us,ν
εµµ′ (ω) = 0 ∀µµ′ν. As a

result it is not necessary to consider the sth atom for the displacements.
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3.2 Material systems

In this section the structural properties of the material systems treated in this work are referred to. Most of the
work covers the copper-oxide phases. A detailed review on this material system can be found in Meyer et al.
[23].

3.2.1 Copper-oxide phases

Copper-oxides are known to exist in three modifications: cubic Cu2O (cuprite; cf Fig. 3.1a), monoclinic CuO
(tenorite; cf. Fig. 3.1c), and tetragonal Cu4O3 (paramelaconite; cf. Fig. 3.1b). Amongst these, the natural
p-type77–79 conducting Cu2O is currently of interest for solar cell applications and therefore appears to be
well-studied, experimentally23,80–88 as well as theoretically88–101, over the last decades.

The monoclinic tenorite phase is a promising candidate for solar cell applications,23 and high-TC
superconductors.102 Density functional theory based investigations within the framework LDA+U100,103,
hybrid functionals,100,104 and many-body perturbation theory88,105 focused on the electronic structure which
is governed by the interaction of the O 2p and Cu 3d states.103,105 Experimental investigations considered the
magnetic and related structural properties.22,106–112 There exist two antiferromagnetic (AFM) orderings22,108
with differing Néel temperatures T (1)N = 231K (incommensurable phase), and T (2)N = 213K (commensurable
phase).22,107–110 In the low-temperature (T < T (2)N ) AFM phase with eight formula units per magnetic unit
cell, apart from the Cu2+ ions (magnetic moment of ∼0.65µB), the oxygen ions also carry non-zero magnetic
moments of ∼0.14µB.22
Tetragonal, antiferromagnetically ordered Cu4O3 is a phase considered to be intermediate to Cu2O and

CuO as it contains Cu atoms in two oxidation states, Cu+ [Cu(I)] and Cu2+ [Cu(II)],113 and the magnetic
moments are located on the Cu2+ atoms. In recent years, efforts have been made to explore the electronic
properties experimentally as well as computationally.23,88,100,114–116

This work Literature
Phase Parameter Theory Experiment
Cu2O a (Å) 4.303 4.2675100 4.269623

Cu–O (Å) 1.86 1.85100 1.8523

Ω0 (Å3) 79.7 77.72100 77.8323
Cu4O3 a (Å) 5.873 5.8392100,5.595118 5.837119

c (Å) 9.990 9.8966100,9.650118 9.932119
z 0.1146 0.1142100,0.115118 0.1173119
Cu(I)–O(1) (Å) 1.86 1.85100 1.87119
Cu(II)–O(2) (Å) 1.93 1.91100 1.92119
Cu(II)–O(1) (Å) 2.00 1.98100 1.97119

Ω0 (Å3) 344.6 337.44100,302.08118 338.38119
CuO a (Å) 4.6837106 4.5130100,4.548118 4.6837106

b (Å) 3.4226106 3.6121100, 3.305118 3.4226106
c (Å) 5.1288106 5.1408100, 4.903118 5.1288106
β (degree) 99.54106 97.06100, 99.652118 99.54106
Cu–O (Å) 1.93, 1.97 1.94100 1.96106

Ω0 (Å3) 81.08106 83.49100, 72.65118 81.08106

TABLE 3.1: Structural parameters for Cu2O (GGA), and
Cu4O3 (GGA+U117) compared to experimental and calcu-
lated values from the literature (Heinemann et al. [100]:
HSE06, Debbichi et al. [118]: LDA+U). As mentioned in
the text, the experimental lattice parameters from Åsbrink
and Norrby [106] (fig. 3.2a) are used for CuO. The values
listed for the lattice parameters, the β-angle, and the volume
refer to their cell.106 Based on these structural constants, the
structure for the AFM groundstate22 from fig. 3.2 is con-
structed. Only the atomic positions are relaxed resulting in
two different interatomic distances (for a discussion of the
symmetry breaking compared to the structure from Åsbrink
and Norrby [106] see section 3.4.2.2). Ω0 refers to the unit
cell volume.

For all calculations for the copper-oxides phases I use the VASP35–38 code. Calculations are based on the
projector augmented-wave method33,34 (PAW). The copper PAW potentials treat the Cu 3p63d104s1 electrons,
and the O 2s22p4 electrons as valence states. For Cu2O and Cu4O3 I use the GGA parametrisation for the
exchange correlation functional. Additionally, for Cu4O3 the rotationally invariant Hubbard U corrections
as suggested by Liechtenstein et al. [120] are employed. For monoclinic CuO the LDA+U method is used.
Any calculation involving Hubbard U corrections is conducted with the ab initio values of U = 7.5 eV and
J = 0.98 eV that have been determined for a copper-oxide system.117
I only relax the structural parameters for cubic Cu2O and tetragonal Cu4O3. Calculated values are listed in

table 3.1 together with calculated and experimental data from the literature. For the structural relaxation a
cut-off energy of 1200 eV and an energy tolerance of 10−8 eV for the self-consistency are used. In case of
Cu2O 12 k-points in each direction are selected for the BZ integration while for Cu4O3 83 k-points are chosen.
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3 Results and Discussion

(a) Cu2O (6 atoms) (b) Cu4O3 (14 atoms) (c) CuO (16 atoms)

FIGURE 3.1: Crystal structure of the three copper-oxide phases. Cu-atoms: blue; O-atoms: red. Black arrows indicate magnetic moments on
the Cu2+ atoms. Cu2O : Crystal lattice type: simple cubic. Choice of lattice vectors: a = (a, 0, 0), b = (0, a, 0), c = (0, 0, a), with a being the

cubic lattice constant. Cu4O3 : Crystal lattice type: body-centred tetragonal. Choice of lattice vectors: a = (−a, a, c)/2, b = (a, −a, c)/2, c =

(a, a, −c)/2,121 with a, b being the lattice constants of a simple tetragonal lattice. CuO (AFM groundstate22): Crystal lattice type: simple
monoclinic (unique axis b). The structure of CuO can be downloaded from http://webbdcrista1.ehu.es/magndata/index.php?this_
label=1.62 and follows Forsyth et al. [22]. The structure shown can be obtained by applying the linear combinations (a − c)/2, b, (a + c)/2 to the
lattice vectors a, b, c found on the webpage. The magnetic moments of the O-atoms are not shown.

(a) CuO from Åsbrink and Norrby [106]
(conventional cell choice; 8 atoms) (b) CuO (superstructure; 16 atoms)

(c) CuO (primitive cell projected along con-
ventional b-axis; 4 atoms)

FIGURE 3.2: Relation between the crystallographic cell of Åsbrink and Norrby [106] (conventional cell choice) and the superstructure necessary
for the magnetic unit cell (cf. Fig. 3.1c). The lattice vectors of the conventional cell of Åsbrink and Norrby [106] (a, b, c: lattice constants) can be
chosen as a = (a, 0, 0), b = (0, b, 0), c = (c cos β, 0, c sin β) such that the superstructure (magnetic unit cell) follows from the linear combinations
a − c, b, a + c. Note that a primitive crystallographic cell is obtained with the conventional lattice vectors as: (a + b)/2, (−a + b)/2, c. Magnetic
moments have been omitted in the figures.

The GGA(+U) approach for these phases reproduces experimental values for structural parameters23,119 very
well and also gives values in good agreement with recent theoretical investigations100 based on hybrid-DFT
(HSE06) methods.

Literature values for the lattice parameters of CuO based on LDA+U100,118 calculations show deviations
of about 2% to 4% from experiment. I therefore use the experimental lattice parameters a = 4.6837Å,
b = 3.4226Å, c = 5.1288Å and β = 99.54° from Åsbrink and Norrby [106]. From these the magnetic unit
cell for temperatures below T (2)N with eight formula units (16 atoms) is constructed (cf. Fig. 3.2).

Apart from theAFMgroundstate structure of CuO, the primitive crystal structure related to the (conventional)
crystallographic cell from Åsbrink and Norrby [106] will be considered. It has half the volume of the
conventional cell, contains 4 atoms, and has a monoclinic base-centred lattice type (contrary to the simple
monoclinic lattice of the conventional unit cell with 8 atoms). In the context of this work this structure will be
referred to as the room temperature (RT) structure of CuO. The relation of both choices of the unit cells is
summarised in fig. 3.2.

The Brillouin zones (BZs) of all phases are shown in fig. 3.3.
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3.2 Material systems
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FIGURE 3.3: Brillouin zones of the copper-oxide phases. Cu2O : Γ = (0, 0, 0), X = (0, 1/2, 0), M = (1/2, 1/2, 0), R = (1/2, 1/2, 1/2).
Cu4O3 :121 Γ = (0, 0, 0), N = (0, 1/2, 0), X = (0, 0, 1/2), Z = (1/2, 1/2, −1/2), P = (1/4, 1/4, 1/4). CuO (Fig. 3.1c) 121: Γ = (0, 0, 0),
Y = (1/2, 0, 0), E = (1/2, 1/2, −1/2), A = (1/2, 0, −1/2), B = (0, 0, −1/2), D = (0, 1/2, −1/2), Z = (0, 1/2, 0). CuO (Fig. 3.2c) : Γ = (0, 0, 0),
Y = (1/2, 1/2, 0), (−1/2, 1/2, 0), A = (0, 0, 1/2), M = (1/2, 1/2, 1/2), (−1/2, 1/2, 1/2), V = (1/2, 0, 0), L = (1/2, 0, 1/2), (−1/2, 0, 1/2). These
points can be found at http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-kv-list when choosing space group No. 15 (C6

2h ) with
unique axis b.

29

http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-kv-list


3 Results and Discussion

3.2.2 Calcium fluoride (CaF2)

CaF2 (fluorite) is a cubic compound containing three atoms in its primitive face-centred cubic (fcc) unit cell.
The atoms are located at (0, 0, 0) (Ca), and ±(1/4, 1/4, 1/4) (F).

(a) (b)

FIGURE 3.4: (a) Conventional cubic unit cell of CaF2 (Ca: blue; F: grey). The primitive lattice vectors can be chosen as a1, a2, a3 =
(0, a, a)/2, (a, 0, a)/2, (a, a, 0)/2, where a is the cubic lattice constant. (b) Brillouin zone corresponding to the primitive real space fcc unit cell.
Possible choices of the high-symmetry points in reciprocal space are: Γ = (0, 0, 0), X = (1/2, 0, 1/2), L = (1/2, 1/2, 1/2), W = (1/2, 1/4, 3/4),
U = (5/8, 1/4, 5/8), K = (3/8, 3/8, 3/4). These points can be constructed by pre-multiplying the points given on the webpage http://lampx.
tugraz.at/~hadley/ss1/bzones/fcc.php by the permutation matrix (to be read row-wise) P = ((0, 0, 1), (1, 0, 0), (0, 1, 0))(= P−T ). The
reason is the following: The choice of lattice vectors on the webpage is a′1, a′2, a′3 = (a, 0, a)/2, (a, a, 0)/2, (0, a, a)/2. The primed and unprimed
lattices can be related by a permutation a′j =

∑
i aiPi j , while the relation for the reciprocal lattices is g′j =

∑
i gi [P−T ]i j (P−T : inverse-transpose

of P). Since q =
∑

i gi q̃i =
∑

i g′i q̃
′
i (q̃i, q̃

′
i : components of the wavevectors with respect to the (un)primed reciprocal lattice bases), the relation

between the components is q̃i =
∑

j [P−T ]i j q̃′j .

Experimentally, CaF2 is found to be a wide-gap insulator with an direct band gap of 12.1 eV and the indirect
gap (X → Γ) is estimated to be 11.8 eV,122 and the lattice constant is 5.4630Å.123 While first principles
calculations based on the local density/generalised gradient approximation (LDA/GGA) fail to match the
experimental gaps (e.g. 7.11 eV and 6.85 eV (direct and indirect gap) by Ma and Rohlfing [124]),124,125
quasi-particle calculations based on the GW-scheme by Ma and Rohlfing [124] yield 11.8 eV (direct gap) and
11.5 eV (indirect gap).

Experimental analysis of the phonon spectrum was provided by Elcombe and Pryor [126] and Schmalzl
et al. [127]. The stress-dependence of the phonon modes was investigated in the early 1980’s,128,129 and even
earlier the Raman and infrared properties,130,131 while (first-principles) calculations on vibrational properties
have been carried out more recently.51,125,127,132,133
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3.3 Phonon dispersions and derived quantities

3.3 Phonon dispersions and derived quantities

This section is concerned with vibrational properties of polar semiconducting materials. Phonon dispersions
and derived quantities (phonon density of states (PDOS), thermodynamic functions, ...) are computed with
the direct method that has been introduced in section 2.2.4.
A lot of emphasis is put on the influence of the dipole-dipole corrections on the phonon dispersion. It is

argued that these corrections are necessary in order to obtain a correct description of the phonon dispersion
(also to allow for a decent comparison with experiment). It will also become apparent that changes in the
dispersions due to these corrections are not solely limited to the direct vicinity of the BZ centre.

Most parts will deal with copper-oxide phases (section 3.3.2) for which calculated results will be compared
to experimental data where available.
Before assessing the phonon properties of the copper-oxides in more detail, the focus will be on CaF2

(section 3.3.1). Although this is not an oxide semiconductor, this compound is well-suited for carving out the
differences of the two methods (Gonze and Lee [19] and Wang et al. [43]) for the inclusion of dipole-dipole
corrections into dynamical matrices from the direct method.

3.3.1 Comparison of Gonze’s and Wang’s method for the treatment of dipole-dipole
corrections in dynamical matrices obtained from the direct method

In this section I will compare the methods of Gonze and Lee [19] and Wang et al. [43] for treating the
long-range dipole-dipole corrections in polar solids within the framework of the direct approach. Effects
related to these methods will be illustrated for the insulator CaF2 (cf. fig. 3.4a) which, due to its structural
simplicity, lends itself nicely as prototype material.
For the current investigations rather large supercell sizes (large grids of commensurable wavevectors) are

required. Since standard supercell calculations become more and more difficult as the number of atoms
increases (& 1000 atoms), a recently developed method for so-called non-diagonal supercells20 is used. This
approach greatly eases the endeavours undertaken to investigate the long-range nature of the FCs.

The method of non-diagonal supercells For this comparative study I use a recently proposed scheme
by Lloyd-Williams and Monserrat [20] for so-called non-diagonal supercells. Non-diagonal in this context
means that off-diagonal elements are allowed in the matrix M from section 2.2.4. What actually has been
proven by Lloyd-Williams and Monserrat [20] is that a supercell describing a perturbation with wavevector
(m1/N1,m2/N2,m3/N3) (reduced fractional coordinates) contains a number of primitive cells equal to the
least common multiple of N1,N2,N3.
This procedure allows to choose a grid with division N1 ×N2 ×N3 of reciprocal space which can be

symmetry-reduced (spatial operations of symmetry, as well as time-reversal symmetry; cf. section 2.2.2).
Supercells (more precisely the matrices M) covering the commensurable wavevectors are conveniently
constructed with the aid of the Fortran 90 programme offered in Supplemental Material of the article of
Lloyd-Williams and Monserrat [20]. From forces calculated within each of these supercells exact dynamical
matrices for all irreducible qc-points are constructed from eqs. (2.42) and (2.44). Crystal and time-reversal
symmetry give access to dynamical matrices at the remaining commensurable wavevectors.27

Since generally the non-diagonal supercells are much smaller than the supercells that capture a full grid of
qc-points at once, the computational load is tremendously reduced.20 For example, in case of CaF2 for a grid
of wavevectors with Ni = 12 ∀i the largest supercell to be considered contains 12 primitive cells (36 atoms).
However, a diagonal supercell with 123 × 3 = 5184 atoms would scarcely be feasible using standard DFT
methods.

Phonon dispersion of CaF2 from Gonze’s and Wang’s method Calculations for CaF2 presented in this
section have been carried out with the experimental lattice parameter 5.4630Å.123 The pseudopotentials for
the calculations presented here treat the Ca 3s23p64s2 and F 2s22p5 electrons as valence states, and I use the
GGA-PBE134 exchange-correlation functional. Like in Wang et al. [51] Born effective charge tensors and the
dielectric permittivity tensor are calculated with an energy cut-off of 500 eV and 153 k-points.
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FIGURE 3.5: Phonon dispersion for CaF2 from dynamical matri-
ces evaluated on a 43 qc-grid. Dipole-dipole corrections have been
accounted for through Gonze’s (black solid line) and Wang’s method
(red solid line). Neutron scattering data from Elcombe and Pryor
[126] and Schmalzl et al. [127] are shown. Calculated data from
Wang et al. [51] and Verstraete and Gonze [125] are also included
(extracted from Wang et al. [51, fig. 1]). From the dispersion of Ver-
straete and Gonze [125] only the high-frequency branches are shown
for clarity (these branches are sufficient for the following discussion).
Directions listed along the paths refer to the conventional choice of
the unit cell for a fcc-type lattice. In the primitive basis (for the
choice of the lattice vectors see fig. 3.4) the coordinates of the vectors
become: (1, 0, 0)conv → (0, 1/2, 1/2), (1, 1, 0)conv → (1/2, 1/2, 1),
and (1/2, 1/2, 1/2)conv → (1/2, 1/2, 1/2). The labels of the phonon
branches follow Elcombe and Pryor [126]. Parameters for calculations:
Plane-wave cut-off of 400 eV, k-point density of 0.3Å−1, displacement
length of 0.02Å.
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FIGURE 3.6: Same as fig. 3.5 but now: dipole-dipole corrections with
Wang’s method (black solid line) and without dipole-dipole corrections
(black dashed line). Parameters for calculations: See fig. 3.5.

Fig. 3.5 displays the phonon dispersions for CaF2 from dynamical matrices calculated on a 43 qc-grid
together with neutron scattering data by Elcombe and Pryor [126] and Schmalzl et al. [127]. Therein I
compare both approaches for the inclusion of dipole-dipole corrections. Although the dispersions coincide
in most parts, essential differences are observed in the regions where the dipole-dipole corrections cause
the splitting of the longitudinal optic (LO) and the transversal optic (TO) modes (these are the branches
forming the T1u(Γ15, Γ

−
4 )modes at the Γ-point). This becomes particularly obvious along the Γ→ X direction

(splitting between ∼7.5 THz to 14 THz). Contrary to Gonze’s method, dispersions computed using Wang’s
method show a non-monotonic, somewhat artificial, evolution of the LO/TO branches along that direction. In
fact, particularly for the ∆1 and ∆5 branches along the Γ→ X direction, where experimental datapoints are
very dense, measured phonon branches do not reflect that behaviour.

Wang et al. [51] claim their description of the phonon dispersion for CaF2 (obtained using 4 × 4 × 4
superstructure of the primitive unit cell with 192 atoms) based on Wang’s method to be superior to DFPT
calculations by Verstraete and Gonze [125] when comparing to experiment. Firstly, an overall worse
description of the measured data (e.g., in the range of ∼10 THz to 15 THz) by the linear response results125
most likely traces back to the use of a different pseudopotential method (Troullier-Martins used by Verstraete
and Gonze [125] vs. PAW used by Wang et al. [51]). Moreover, a different lattice parameter of 5.49Å
(Verstraete and Gonze [125]) is used, opposed a value of 5.4630Å (Wang et al. [51]) from experiment123.
Secondly, and even more importantly, the same comments hold for the description of the ∆1 and ∆5 branches
already mentioned above: Experimental phonon frequencies of the ∆1 branch are overestimated by the DFPT
calculations by essentially the same amount as they are underestimated by the direct method in conjunction
with Wang’s method (see fig. 3.5).51,125 However, the linear response calculations combined with Gonze’s
method capture the correct evolution of the ∆1 branch (The calculations by Verstraete and Gonze [125] have
been carried out with the ABINIT code39 which has Gonze’s method implemented according to Gonze and

32



3.3 Phonon dispersions and derived quantities

FIGURE 3.7: 1 × 1 × 11 elongated conventional supercell (Ca: grey; F: black). This cell can be constructed from the primitive lattice
vectors a1, a2, a3 = (0, a, a)/2, (a, 0, a)/2, (a, a, 0)/2 with the linear combinations a j,conv =

∑
i aiMi j , where (to be read row-wise) M =

((−1, 1, 11), (1, −1, 11), (1, 1, −11)). The result is a1,conv, a2,conv, a3,conv = (a, 0, 0), (0, a, 0), (0, 0, 11a).

Γ X

6

8

10

12

14

fr
eq

u
en

cy
/

T
H

z

∆5

∆1

Gonze’s method

{~q}: 23

{~q}: 43

{~q}: 63

{~q}: 83

{~q}: 123

Γ X

∆5

∆1

Wang’s method

Γ X

∆5

∆1

no dipole-dipole
corrections

FIGURE 3.8: Phonon dispersion of
CaF2 along the Γ → X direction. Differ-
ent qc-grids are shown. Dispersions have
been calculated with Gonze’s method
(left panel), Wang’s method (middle
panel), and without dipole-dipole correc-
tions (right panel). Exact frequencies
from dynamical matrices obtained from
a 1 × 1 × 11 elongated conventional su-
percell are shown as crosses. Parameters
for calculations: For the dynamical ma-
trices computed on the different grids see
fig. 3.5; 1×1×11 elongated conventional
supercell: Plane-wave cut-off of 400 eV,
4× 4× 1-grid of k-points (equivalent to a
k-point density of 0.3Å−1), displacement
length of 0.03Å.

Lee [19].).
Referring to fig. 3.6 it is clear that Wang’s method nevertheless provides a tremendous improvement of

the phonon bandstructure compared to the case of exclusion of dipole-dipole corrections. Ignoring the
corrections results in an blemished description of the high-frequency branch that comprises the T1u(LO)
mode at the Γ-point. Note that the differences between the corrected and uncorrected dispersion is limited not
only to the vicinity of the Γ-point. For example, the uppermost phonon branch of the Γ→ L direction is not
captured by the dashed line (representing the case without dipole-dipole corrections) along the full path. The
frequencies only coincide at the BZ boundary (L-point) which is a qc-point commensurable with the 43-grid
of wavevectors used for the Fourier interpolation.

I now shall discuss the differences between Gonze’s and Wang’s method more specifically. The dispersion
of CaF2 along the Γ→ X direction will be considered in more detail. In fig. 3.8 the dispersions computed
with Gonze’s method (left panel), Wang’s method (middle panel), and without any dipole-dipole corrections
to the dynamical matrices (right panel) are displayed. These calculations have been carried out for different
qc-grid sizes ranging from 23 to 123 points inside the first BZ (for details see table 3.2). Exact frequencies
from an elongated 1 × 1 × 11 conventional supercell (cf. fig. 3.7) are also included in order to assess the
quality of the Fourier interpolation starting from different equidistant qc-grids. At wavevectors along Γ→ X
the 1 × 1 × 11 supercell gives exact frequencies because through the imposed periodic boundary conditions
interactions leading to the respective dynamical matrices are summed to infinity.

From fig. 3.8 the following is observed: Dispersions computed from Gonze’s method quickly convergence
to the exact frequencies for all grids of wavevectors containing more than 23 points. This is related to this
method calculating the Fourier interpolation only for the short-ranged part of the FCs which is rapidly
convergent with the number of interaction shells in real space (or likewise the size of the underlying qc-grid).

grid data supercell data
N1N2N3 NIBZ Ωmax

sc /Ω0 N sc
calc N

diag−sc
atom

8 3 2 3 24
64 8 4 8 192
216 16 6 16 648
512 29 8 25 1536
1728 72 12 66 5184

TABLE 3.2: Information about the qc-grids used in the calculations for CaF2 with
the method from Lloyd-Williams and Monserrat [20] (fig. 3.8). Ni is the grid di-
mension along each generating vector of the reciprocal lattice (due to cubic symmetry:
N1 = N2 = N3 = N ), NIBZ is the number of points in the irreducible BZ. Ωmax

sc /Ω0
describes the ratio of the supercell with the maximal volume used in the calculations
and the unit cell volume, and N sc

calc is the number of atoms contained in this super-
cell. Ndiag−sc

atom refers to the number of atoms contained in the corresponding diagonal
supercell with volume N 3 ×Ω0.
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FIGURE 3.9: Phonon dispersion of CaF2 along the
Γ → X direction. (Left panel) Dispersions from
Gonze’s method (solid line) andWang’s method (dashed
line) by Fourier interpolation based on the exact dynam-
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trices of the same supercell calculated without dipole-
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shown as crosses. Parameters for calculations: See
fig. 3.8

Wang’s method, however, fails to smoothly interpolate the exact frequencies of the ∆1 and the ∆5 branch
for grid sizes for which Gonze’s method is already converged. Instead, Fourier interpolation based on this
method keeps introducing artificial features even for very dense wavevector grids.

In fact, the convergence behaviour is very much similar to that observable for the dispersion obtained from
Fourier interpolation based on the full FCs as extracted from the forces of the direct method (cf. eq. (2.42)).
With increasing qc-grid sizes—i.e., increasing interaction ranges in real space—frequencies calculated from
these FCs slowly converge towards the exact frequencies but nevertheless fail to reach the correct limiting
value for q → 0. The latter is, of course, correctly reproduced by Wang’s method because in the limit of
vanishing wavevector this method contains the correct non-analytic term (eq. (2.57)) introduced by Cochran
and Cowley [135].43 Nevertheless, Fourier interpolation with Wang’s methods produces oscillations in regions
where branches from Fourier interpolation based on the full FCs bend down towards the TO frequencies (the
limiting value of ∆5 branch for q→ 0; cf. fig. 3.5).
I may therefore conclude that Fourier interpolation in conjuction with Wang’s method suffers from

convergence issues due to the long-rangedness of the FCs in real space. In Gonze’s method this is
circumvented by considering the Fourier transform only for short-ranged FCs and separately treating the
dipole-dipole part of the dynamical matrix. Indeed, Verstraete and Gonze125 have investigated the decay
of the FCs in real space for CaF2 and found a decay proportional to the inverse of the third power of the
interatomic distance, thereby confirming the long-range nature of the FCs.

Nevertheless, the question remains, if—apart from frequencies at commensurable qc-points—both methods
can interpolate to the same results. Indeed, fig. 3.9 (left panel) demands the conclusion that, if the q-grids are
sufficiently dense, both methods must yield the same result. This is the case for the elongated 1 × 1 × 11
supercell (fig. 3.7) which gives 12 qc-points along the Γ → X path. Actually, this finding is supported by
the result from Wang et al. [50] where it is shown that including the dipole-dipole corrections as suggested
by Wang’s method correctly interpolates the phonon dispersions of MgO when considering an elongated
conventional supercell.
As shown in fig. 3.9 (right panel) carrying out the Fourier interpolation with the dynamical matrices of

the elongated supercell without dipole-dipole corrections results in oscillations between the commensurable
qc-points along the Γ→ X path (exact frequencies are, of course, reproduced correctly). This in particular
holds for the high-frequency ∆1 branch. Including a cubic spline interpolation of the frequencies of the ∆1
branch that explicitly includes/excludes the Γ-point frequencies suggests that the oscillatory features result
from the inclusion of the q = 0 dynamical matrix for the Fourier interpolation. The Fourier interpolation
appears to amplify the resulting oscillations compared to the cubic spline interpolation.
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3.3.2 Phonon dispersion and related quantities for copper-oxide phases

As far as lattice dynamics are concerned, experimental studies of the past decades involving, for example,
inelastic neutron scattering, Raman spectroscopy, and IR measurements, in particular focused on the cubic
Cu2O10,136–159 and the monoclinic CuO23,24,112,118,160–176 phase. For the latter, additional modes apart from
those expected from a factor group analysis of the C6

2h space group have been observed in the low temperature
regime (T < T (2)N ).24,112,161,164,166 This indicates the formation of a magnetic superlattice below the Néel
temperature.24 Some modes show a strong dependence on temperature below T (2)N which was attributed
to a strong coupling of the respective phonon modes to the magnetic ordering.24 In very recent studies
Raman spectra of the intermediate phase of Cu4O3 have been reported for samples grown by magnetron
sputtering.23,118

Only a few calculations deal with vibrational properties of copper-oxide phases. Recent investigations use
ab initio methods to describe the phonon structures within the harmonic approximation.116,118,159,176–178 For
cubic Cu2O the direct method as well as DFPT have been employed.159,177,178 For CuO and Cu4O3 recent
calculations are solely based on the direct method.116,118,176 However, apart from the case of Cu2O (Bohnen
et al. [159] and Rimmer et al. [178]), the polar nature of the chemical bonding has not been considered in the
calculations of the phonon properties of copper-oxide phases. For monoclinic CuO, the correct groundstate
magnetic order22 has not been investigated yet.118,176 I will therefore discuss the influence of the dipole-dipole
corrections on the phonon dispersion of the copper-oxide phases and I will show calculations involving the
magnetic groundstate structure22 of CuO (see fig. 3.1c). Parts of this chapter have been published in Ref.
[179].

Phonon bandstructure and density of states In fig. 3.10 I show the phonon bandstructure and the
(atom-projected) PDOS of all three copper-oxide phases (for details on the calculation see the figure caption).
In all cases the dipole-dipole corrections according to Gonze’s method have been invoked. Their particular
influence on the phonon dispersion will be discussed in more detail below.
The PDOS for cubic Cu2O, tetragonal Cu4O3, and monoclinic CuO are quite different. The PDOS of

Cu2O is dominated by the large gap between the copper and the oxygen states. Sharp features are observable
in PDOS of the low-lying (below ∼ 120 cm−1) Cu-related modes in Cu2O and Cu4O3. Monoclinic CuO,
however, shows a smoothly increasing PDOS below 100 cm−1 originating from a steep dispersion of the
acoustic modes. A (moderately) peaked structure in the PDOS can be found at higher frequencies than in
cases of Cu2O and Cu4O3. As also discussed in Ref. [116], the difference in magnitude of the FCs for Cu(I)
and Cu(II) atoms in the paramelaconite phase becomes very obvious from the different frequency regions the
magnetic (Cu(II)) and non-magnetic (Cu(I)) copper atoms contribute to the PDOS.
In fig. 3.10a, for Cu2O, I have included experimental phonon frequencies from the literature.153,159,180 In

particular for the low-lying Cu-driven modes agreement between calculated and measured values is excellent.
Oxygen-related modes, on the contrary, are placed systematically too low (∼ 10 cm−1 to 20 cm−1) compared
to experiment. This has also been observed for GGA calculations.159,178

The influence of the dipole-dipole corrections on the phonon dispersion will now be assessed in more
detail. Fig. 3.11 displays the phonon bandstructure of Cu2O for different supercell/commensurable qc-grid
sizes with and without the dipole-dipole corrections according to Gonze’s method. Comparing particularly
the upper panels of fig. 3.11 it is obvious that the size of the grid of commensurable wavevectors (or the
interaction range in real space) influences the phonon dispersion quite strongly. This is especially true for the
case without dipole-dipole corrections where the convergence of the high-frequency region with the size of
the interaction range in real space is rather slow along Γ→ X → M → Γ→ R. If, however, dipole-dipole
corrections are used, the dispersion for grid sizes larger than 33 are essentially indistinguishable. Note that
the dipole-dipole corrections not only influence the dispersion in the direct vicinity of the Γ-point but also
away from the BZ-centre (cf. e.g. the X-point).

The best way to estimate the quality of the Fourier interpolation is to compare interpolated frequencies to
frequencies from dynamical matrices at commensurable wavevectors that are not in the grid of wavevectors
used for the interpolation.
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FIGURE 3.11: Phonon bandstructure of Cu2O for different sizes of commensurable wavevector grids with/without dipole-dipole corrections
following Gonze’s method. Parameters for calculations: Plane-wave cut-off of 800 eV, k-point density of 0.2Å−1, displacement length of 0.01Å;
Born effective charges and dielectric tensor: See fig. 3.10 . Dynamical matrices on a 23-grid are obtained from a 2 × 2 × 2 supercell. Dynamical
matrices on grids of size 33, 43, and 53 have been calculated with the method of Lloyd-Williams and Monserrat [20].
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FIGURE 3.12: Phonon bandstructure of Cu2O along Γ→ X without/with dipole-dipole corrections based on Gonze’s/Wang’s method, compared
to exact frequencies from an elongated 13 × 1 × 1 supercell. For the details on the different qc-grids see fig. 3.11. Note that the topmost frequency
from the 13 × 1 × 1 supercell (∼630 cm−1) is not missing but coincides with the frequency directly below (between 600 cm−1 and 625 cm−1). The
reason is that the highest-frequency Γ phonon mode is accompanied by a macroscopic electric field which is incompliant with periodic boundary
conditions imposed in DFT calculations. It should be emphasised that the (exact) frequencies from the 13×1×1 are calculated without dipole-dipole
corrections. Parameters for calculations: See fig. 3.11 with the exception that the displacement length for the 13 × 1 × 1 supercell is 0.02Å.

In fig. 3.12 I compare interpolated phonon frequencies for Cu2O with and without dipole-dipole corrections
from Gonze’s/Wang’s method with frequencies from an elongated 13 × 1 × 1-supercell. While in the case
without any dipole-dipole corrections the high-frequency phonon branches are poorly described, inclusion of
the corrections results in a smooth interpolation of the exact frequencies at the commensurable qc-points.
This holds for Gonze’s (middle panel) as well as for Wang’s method (right panel), while both methods result
in virtually identical phonon bandstructures. It should be pointed out that even interpolated frequencies from
the 23-grid adequately describe the phonon dispersion along that direction. Indeed, for this grid size the only
commensurable wavevectors along Γ→ X are the Γ- and the X-point.
Fig. 3.13 displays the the phonon dispersion of tetragonal Cu4O3 for different supercell/qc-grid sizes

with (right panel) and without (left panel) dipole-dipole corrections following Gonze’s method. Similar
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conclusions can be drawn as in the case of cubic Cu2O. The dipole-dipole corrections tremendously improve
the convergence of the phonon frequencies with respect to the interaction range in real space due to usage of
the short-ranged part of the FCs for the Fourier interpolation. As a result, the comparatively small 2 × 2 × 2
supercell (23 × 14 = 112 atoms) already gives a phonon dispersion which is comparable to that of the 8-times
larger 4 × 4 × 4 supercell (43 × 14 = 896 atoms).

When comparing Gonze’s and Wang’s method for Cu4O3, differences are comparable to the case of Cu2O
which are quite small, indeed. Therefore, this will not be subject to a further analysis.
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FIGURE 3.14: Phonon bandstructures of the primitive structure of CuO (cf. fig. 3.2c) along different directions in reciprocal space. Calculations
without (left panel) and with (right panel) dipole-dipole corrections followingGonze’s method are shown for qc-grids (Lloyd-Williams andMonserrat
[20]) of sizes 4 × 4 × 2 (solid black line), 6 × 6 × 3 (dashed black line), and 8 × 8 × 4 (dotted black line). Additionally, for the Γ → A direction
exact frequencies from an elongated 1 × 1 × 13 supercell (grey diamonds) are shown, and for the Γ → V, L directions exact frequencies from a
9 × 1 × 9 qc-grid are included (grey crosses). The sudden drop of some mode frequencies at the Γ-point (infra-red active modes) for the case with
dipole-dipole corrections comes about because, in order to avoid division by zero, in the Ewald summation from eq. (2.51) the G = 0 term is skipped
if q = 0. The frequencies present at q = 0 are those of the purely transversal modes (the eigenfrequencies of the analytical part of the dynamical
matrix). Parameters for calculations: Plane-wave cut-off of 600 eV, k-point density of 0.45Å−1, displacement length of 0.02Å; Born effective
charges and dielectric tensor: Plane-wave cut-off of 600 eV and k-point density of 0.15Å−1.

Referring to fig. 3.14, similar considerations can be undertaken for CuO as just made for Cu2O and Cu4O3.
Therein I assess the influence of the dipole-dipole corrections on the phonon dispersion along different
directions in reciprocal space for the room temperature (RT) primitive structure of CuO106 (cf. fig. 3.2c).
Commensurable qc-grids of the form ndiv × ndiv × 1

2 ndiv with ndiv = 4, 6, 8 are considered. The reason for
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as fig. 3.3d) shown for convenience in con-
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is used because its translational equivalent
(as indicated below the bandstructure in
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of the BZ. Since this point is equivalent by
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using the primitive structure instead of the magnetic groundstate (fig. 3.1c) is that Reichardt et al. [163]
have performed room-temperature measurements of the phonon bandstructure (inelastic neutron scattering)
assuming the primitive four-atom unit cell. At room temperature the low-temperature magnetic phase is no
longer valid, since additional phonon modes are only observed for T < T (2)N .24,112,161,164,166

A detailed look at the phonon bandstructure along the Γ→ A direction (fig. 3.14a) shows that the course
of the bands in the high-frequency region (∼520 cm−1 to 620 cm−1) is strongly dependent on the size of the
qc-grids used for the Fourier interpolation. This indicates that this part of the bandstructure is eminently
governed by the long-ranged contributions to the FCs in real space. Indeed, spurious effects are introduced in
the bandstructure when the full FCs (short-ranged+dipole-dipole) are used for the Fourier interpolation. This
becomes clear from the left panel in fig. 3.14a when comparing the interpolated phonon dispersion to the exact
frequencies from an elongated 1× 1× 13 supercell (diamonds). The inclusion of the dipole-dipole corrections
(right panel), however, results in phonon dispersions with scarcely any visible differences for all qc-grid sizes,
and the exact frequencies are nicely interpolated. While the influence of the dipole-dipole corrections in
figs. 3.14a and 3.14b mainly manifests itself in changes of the dispersion of the optical (infra-red active) modes,
an additional feature is discovered in fig. 3.14c. In the left panel the lowest acoustic mode as described through
the full FCs exhibits negative frequencies.i This clearly is an unphysical behaviour as follows immediately
from a comparison with the exact phonon frequencies from a 9 × 1 × 9 qc-grid which suggest a smooth
(linear) increase of the frequencies of the acoustic modes. With the aid of the dipole-dipole corrections
(right panel) this erroneous feature is obliterated, resulting in essentially indistinguishable dispersions for the
acoustic branches for all wavevector grids considered for the Fourier interpolation. As a matter of fact, the
exact frequencies are correctly interpolated. This suggests that, at least for certain directions, the long-ranged
nature of the FCs in polar semiconducturs may also influence the small-wavevector acoustic modes and not
only the optical modes.
Reichardt et al. [163] have measured the phonon dispersion along several directions in reciprocal space

by inelastic neutron scattering. Their dispersions are shown in fig. 3.16 together with computed phonon
dispersions along these directions. The calculated phonon branches provide a decent description of the
measured frequency values. This is particularly true for the acoustic branches. It only appears that the
calculated high frequency branches (at ∼600 cm−1) are positioned systematically too low with respect to
experiment.

Special attention should be paid to fig. 3.16c where the dispersion along the Γ→ A direction [0, 0, ζ], [0, 0, η]
(cf. fig. 3.3d) is shown. Recalling fig. 3.14a it is true that dipole-dipole corrections are needed in order to
correctly assess the course of the high-frequency branches. Through the corrections these bands are described
as being very close in frequency (< 20 cm−1) and not far apart (∼100 cm−1 without dipole-dipole corrections).
This trend is clearly found in experiment. This underlines the importance of the inclusion of the dipole-dipole
corrections for the calculation of phonon dispersions of polar semiconductors.
As a final point let me revisit the discussion from section 3.3.1. In fig. 3.17 the phonon dispersions

with dipole-dipole corrections from Gonze’s and Wang’s method along the Γ→ A, L directions are shown.

iMore precisely, there are negative eigenvalues of the dynamical matrices at these wavevectors. This means that the frequencies are
purely imaginary. However, for the visualisation they are just given a negative sign.
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FIGURE 3.16: Phonon bandstructures of the primitive structure of CuO (cf. fig. 3.2c) along different directions in reciprocal space compared to
experimental data from Reichardt et al. [163] (grey crosses). Dynamical matrices from the 8 × 8 × 4 qc-grid have been used. The directions are
given in the basis of the conventional monoclinic cell (label ζ ; fig. 3.2a) and with respect to the primitive base-centred monoclinic cell (label η;
fig. 3.2c). In order to avoid confusion when comparing to experiment, in contrast to fig. 3.14 the point q = 0 is excluded. Instead, frequencies
are computed up to a point very close to the Γ-point such that the correct limiting value for q → 0 of the infra-red active mode frequencies still is
obtained. Parameters for calculations: See fig. 3.14.

While for the Γ→ A direction both methods yield almost indistinguishable bandstructures, discrepancies for
the Γ → L direction are more obvious. Wang’s method retains artifacts found in the uncorrected phonon
dispersion (meaning without dipole-dipole corrections) for some branches along the Γ→ L path. As a result,
the exact frequencies are not correctly interpolated for the lowest acoustic branches and some optical branches.
Nonetheless, Wang’s method correctly describes the phonon bandstructure along the Γ → A direction in
relation to experiment (see fig. 3.16c).
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FIGURE 3.17: Phonon bandstructures of
the primitive structure of CuO (cf. fig. 3.2c)
with dynamical matrices from the 8 × 8 ×
4 qc-grid. Dipole-dipole corrections with
Gonze’s/Wang’s method: black solid/dashed
line; without dipole-dipole corrections: grey
solid line. Additionally, for the Γ → A di-
rection exact frequencies from an elongated
1 × 1 × 13 supercell (grey diamonds) are
shown, and for the Γ→ L direction exact fre-
quencies from a 9×1×9 qc-grid are included
(grey crosses). Parameters for calculations:
See fig. 3.14.
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Acoustic phonon group velocities as derivatives of the phonon dispersion relation In this section the
results for the group velocities of the acoustic phonon branches will be shown and compared to experiment.
In order to directly compute vsound

m,q̂ =
∑
γ q̂γ[ ∂∂qγωm,q]q=0 the perturbation method introduced in section 3.1.3

will be used and compared to finite difference calculations of the derivatives of the dispersion relation.
In order to quantify the mode polarisation the center-of-mass displacement uµm,q =

∑
s Msu

s,µ
m,q (Ms =

Ms/[
∑

s Ms] and us,µ
m,q = w

s,µ
m,q/
√

Ms) of each phonon mode is used:

mode polarisation =
���q̂T ûm,q

��� ∈ [0, 1] with û
µ

m,q = uµm,q/|um,q |. (3.32)

Based on this projection the acoustic modes are classified as being (mainly) transversal (t) or (mainly)
longitudinal (l).

The results from eq. (3.22) and finite difference calculations are compared table 3.3. The good agreement
of both methods validates the technically quite involved procedure from section 3.1.3. Despite its complexity
the perturbation method is to be preferred to the finite difference method since it naturally includes the q→ 0
limit. It therefore can be readily used for any direction q̂ whereas a calculation of the derivative by finite
differences requires the choice of a numerical step width which, at least in principle, has to be chosen anew
for each direction.
Agreement with experiment is reasonably good for Cu2O and CuO, only for the [001], [101], and the
[101]-direction in case of CuO the computed longitudinal velocity of sound is vastly too small. However, the
results by Reichardt et al. [163] have been determined at room temperature (296 K) whereas I have considered
the AFM groundstate.22

While for many directions values for the velocities of sound obtained with/without dipole-dipole corrections
are close, the dipole-dipole corrections can non-negligibly influence the phonon dispersion (see e.g. the
smallest transversal velocities along the [100], [111]-directions for CuO, and along the [111]-direction for
Cu4O3) for certain directions. Differences between the averaged velocities of sound (S2: unit sphere),
vsoundav = 1

3
∑3

m=1
∫
S2

dq̂
4π vsound

mq̂ , calculated without/with dipole-dipole corrections are ∼5 % for Cu2O, ∼2 %
for Cu4O3, and ∼3 % for CuO.

Dipole-dipole corrections can alter the slope of the acoustic branches for small values of |q| because such
long-wavelength vibrations couple atoms at large distances, thereby depending on long-ranged FCs. Since the
method of Gonze and Lee [19] is meant to correct the long-ranged interactions, differences in the acoustic
branches (at least for certain directions q̂) appear plausible. Indeed, as discussed by Gaál-Nagy [181], an
insufficient description of the long-ranged interactions can lead to artificial negative modes (also for non-polar
semiconductors) if the grid of wavevectors on which full dynamical matrices initially are obtained is not
dense enough around q = 0. Indeed, this was noted already in the preceding discussion of Fig. 3.14c.

Lattice entropy and lattice heat capacity Based on the equations introduced in section 2.2.3 the vibrational
contributions to the crystal entropy and heat capacity at constant volume can be calculated. Fig. 3.19 shows
results for the constant-volume lattice heat capacity (eq. eq. (2.39)) and the vibrational contribution to the
entropy (eq. (2.38)). To the best of my knowledge experimental data are only available for Cu2O (Hu and
Johnston [184]) and CuO (Junod et al. [162] and Hu and Johnston [187]).
For Cu2O (fig. 3.19a) good agreement is found with experiment. The small overestimate of Cph

v and
Sph for most temperatures might be due to the slightly overestimated lattice constant through the GGA
exchange-correlation functional.
Experimentally, the heat capacity of monoclinic CuO has been studied extensively. Within these studies

also the magnetic contributions to the heat capacity have been assessed.162,187–191 The crystal structure of
CuO in combination with the magnetic ordering is only valid in the low-temperature region. Therefore,
comparison is limited to the temperatures below the antiferromagnetic commensurate to incommensurate
transition at T (2)N = 213K.22

Fig. 3.19d is meant to verify Dulong-Petit’s law according to which the heat capacity (per atom) assumes
the constant value 3R (R: universal gas constant) for all solids. The data is normalised in such a manner (i.e.,
divided by the number of formula units per unit cell) that it approaches the number of atoms per formula unit:
3 for Cu2O, 7 for Cu4O3, and 2 for CuO.
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vsound
m, q̂ (km s−1)

Phase q̂ m Dipole-dipole corrections Experiment
with without

Cu2O [100] l 4.571 (4.571) 4.687 (4.687) 4.48a, 4.49b
t 1.150 (1.150), 1.150 (1.150) 1.150 (1.150), 1.150 (1.150) 1.41a, 1.42b

[110] l 4.554 (4.554) 4.527 (4.527) 4.55a, 4.55b
t 1.150 (1.150), 1.216 (1.216) 1.150 (1.150), 1.671 (1.671) 1.14a,1.14b, 1.41b

[111] l 4.549 (4.549) 4.473 (4.473) -
t 1.194 (1.194), 1.194 (1.194) 1.517 (1.517), 1.517 (1.517) -

CuO [100] l 5.979 (5.979) 5.647 (5.647) 6.4c
t 2.427 (2.428), 3.834 (3.834) 1.549 (1.551), 3.900 (3.900) -

[010] l 3.941 (3.942) 4.518 (4.519) 4.1c
t 1.760 (1.761), 3.863 (3.863) 1.759 (1.760), 3.859 (3.860) -

[001] l 7.070 (7.071) 7.360 (7.360) 7.8c
t 1.971 (1.972), 2.366 (2.367) 2.082 (2.083), 3.199 (3.199) -

[101] l 4.830 (4.831) 4.830 (4.831) 5.4c
t 2.748 (2.749), 3.685 (3.685) 2.873 (2.874), 3.685 (3.685) -

[101] l 7.012 (7.012) 7.012 (7.012) 9.1c
t 3.590 (3.591), 3.777 (3.778) 3.614 (3.615), 3.777 (3.778) -

[111] l 6.205 (6.205) 6.182 (6.182) 6.8c
t 1.605 (1.606), 3.466 (3.466) 2.338 (2.339), 3.481 (3.482) -

Cu4O3 [010] l 5.328 (5.328) 5.372 (5.372) -
t 1.225 (1.226), 2.794 (2.794) 1.254 (1.255), 2.891 (2.891) -

[111] l 6.420 (6.420) 6.538 (6.538) -
t 1.575 (1.576), 1.575 (1.576) 1.988 (1.989), 1.988 (1.989) -

[001] l 4.538 (4.538) 4.531 (4.531) -
t 1.540 (1.541), 3.435 (3.435) 1.377 (1.378), 3.503 (3.503) -

[111] l 4.637 (4.638) 4.620 (4.620) -
t 2.125 (2.126), 3.229 (3.229) 2.159 (2.159), 3.323 (3.323) -

a Berger [182]
b Manghnani et al. [183]
c Reichardt et al. [163]

TABLE 3.3: Velocities of sound vsound
m, q̂ along direction q̂ of phononmodes with mainly longitudinal (l) or transversal (t) polarisation (m). Velocities

are listed with (eq. (3.22)) and without dipole-dipole corrections. For reference, values for the derivative of the phonon dispersion from finite
differences (step width ∆q = 10−4 Bohr−1) are given in braces. Where available, experimental data is shown for comparison. For monoclinic CuO
the direction labels follow Reichardt et al. [163]. For Cu4O3 the directions refer to a body-centred tetragonal lattice,121 not to the conventional
choice of the unit cell. The estimated accuracy for the velocities is ∼ 10−2 km s−1. More digits, however, are given to capture the differences between
values from numerical differentiation and values from the perturbation-like treatment. Parameters for calculations: See fig. 3.10.
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FIGURE 3.19: (a)-(c) Lattice heat capacity at constant volume (Cph
v ), Debye characteristic temperature (ΘD), and lattice entropy (Sph) for all

copper-oxide phases. ΘD is calculated with eq. (2.41). Cu2O : Experimental values for the constant-pressure heat capacity (Cp ) and the entropy
of Cu2O have been taken from Hu and Johnston [184]. This data is also used to determine ΘD. Constant-volume heat capacities (Cv ) are obtained
from the relation Cp −Cv = VmolarTα

2/βT (Vmolar: molar volume; α: coefficient of thermal expansion; βT : isothermal compressibility) using
the data of Manghnani et al. [183], Madelung et al. [185], and White [186]. In particular: Vmolar = Mmolar/ρ with the molar mass Mmolar =

2×M (Cu)
molar+M

(O)
molar = 143.0914 g

mol (M
(Cu)
molar = 63.546 g

mol, M
(O)
molar = 15.9994 g

mol ) andρ = 6.1 g/cm3;183 βT=298 K = 8.93 × 10−11 m2 N−1;185 and
α(2 K ≤ T ≤ 30 K) = interpolated data from White [186], α(30 K < T < 55 K) = −2 × 10−6 K−1,185 α(55 K ≤ T ≤ 90 K) = −3 × 10−6 K−1,185

and α(T > 90 K) = 23 × 10−8 K−1.185 The resulting data points are shown as grey crosses. CuO : In order to getCv , experimentalCp -vs-T data
for CuO from Junod et al. [162] and Hu and Johnston [187] is modified following the procedure of Loram et al. [188]. They useCp −Cv = A C2

vT

with A = 1.35 × 10−6 (J/mol)−1. Values for ΘD are taken from the figures in Loram et al. [188] and Gmelin et al. [189]. (d) Lattice heat capacity
at constant volume C

ph
v divided by 3kBNA = 3R (kB: Boltzmann constant, NA: Avogadro constant, and R ≈ 24.94 J/(mol K): universal gas

constant) for all phases in the (very) high-T region to verify Dulong-Petit’s law. Cph
v has been normalised such that it tends to the number of atoms

per formula unit. Number of atoms and formula units per unit cell: Cu2O : 6 atoms, 2 formula units; Cu4O3 : 14 atoms, 2 formula units; CuO :
16 atoms, 8 formula units. Parameters for calculations: See fig. 3.10.
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3 Results and Discussion

Fig. 3.19c shows calculated results for the lattice heat capacity and entropy compared to experimental data
from Junod et al. [162] and Hu and Johnston [187]. Agreement between calculated and measured values
for the heat capacity is excellent up to the anomaly in the experimental curve that coincides with the first
antiferromagnetic phase transition.162,187–189,191 For the entropy the agreement prevails up to even higher
temperatures.
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3.4 Raman spectroscopic properties of CuO and Cu4O3

3.4 Raman spectroscopic properties of CuO and Cu4O3

In this section the Raman scattering properties of the binary oxides CuO and Cu4O3 are considered. While
the previous investigations from sections 3.3.1 and 3.3.2 featured phonons at wavevectors in the entire BZ,
phonons involved in Raman scattering are solely from the Γ-point.
The case of cubic Cu2O is not investigated in the present context. It has been shown that the Raman

spectrum of Cu2O is dominated by defects.10,11 A detailed analysis of the Raman scattering properties would
require to consider the different possible defect structures, indeed. Clearly, in order to account for sufficiently
small defect concentrations, the calculations for the defect structures have to be carried out with supercells.
Since DFT calculations are “plagued” with periodic boundary conditions, the chosen size of the supercells
is a critical issue and too small supercell sizes can lead to unreasonable results for the calculated Raman
scattering intensities. It might also happen that—depending on the size of the chosen supercell—the number
of Raman active modes found in the Raman spectrum varies. This comes about because different non-zero
q-points from the BZ of the primitive unit cell of Cu2O “fold” to the Γ-point of the superstructure and become
Raman active due to a change in symmetry induced through the defect. Indeed, the question concerning a
physically decent as well as computationally efficient modelling of Raman scattering properties of defect
structures is yet unsettled.

Firstly, a method used for the BZ integration needed in the calculation of the dielectric tensor is discussed
(section 3.4.1). Based on this method, the Raman spectroscopic properties of monoclinic CuO and tetragonal
Cu4O3 are investigated. In section 3.4.2 for CuO, the room-temperature structure and the AFM groundstate
structure are compared concerning their electronic and Raman scattering features. In case of Cu4O3
(section 3.4.3), in addition to the phonon and Raman scattering properties of the equilibrium structure, the
influence of hydrostatic pressure is considered.

3.4.1 Sampling the BZ

Referring to eq. (3.25), the essential parameters that influence the accuracy of the results are:
• The plane-wave cut-off that determines the accuracy of |u(s)

n,k〉 (and therefore ∂
∂k |u

(s)
n,k〉).

• The total number of bands (valence+conduction) over which the summation is carried out.
• The size of the grid of k-points |K | = N1 × N2 × N3 (Nj ∈ N>0, j = 1, 2, 3).

Particularly the summation over the BZ is a very critical point for the accuracy of the components of ε(ω).
Generally, the number of k-points to be summed over in eq. (3.25) must be chosen quite large in order to

obtain a decent accuracy. For αm the convergence with respect to |K | in principle is even harder to achieve
(see also the discussion in Gillet [12, section 3.4.3]). The calculation of Raman susceptibilities αm involves
the calculation of ε(ω) for distorted atomic geometries (cf. eq. (3.24)). As a result, the symmetry of the
crystal will be lowered accordingly and the number of k-points in the calculation increases compared to the
equilibrium structure. The larger |K | the higher the required memory and the higher the computational cost.
Therefore, it is desirable to have a method that allows to treat large k-point grids with a reduced memory

requirement. In the following a scheme from Gillet [12] is adopted which is sketched in fig. 3.20. This
method will be referred to as “multigrid method” because a fine grid of k-points K ≡ K (N1 × N2 × N3)
is subdivided into ns coarse grids Kp(M1 × M2 × M3) with 1 ≤ p ≤ ns and Mj ≤ Nj ∀ j, each having a
different shift vector sp by which it is offset from the Γ-point:

K1 =


3∑
j=1

k j−1+bs, j
Mj

gj + s1

 , 1 ≤ k j ≤ Mj

K2 = K1 + s2

...

Kns = K1 + sns, (3.33)
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3 Results and Discussion

g1

g2 FIGURE 3.20: Schematic illustration of the multi-
grid method in 2D: The fine grid K (8×8) (all points)
is generated through the coarse grids Kp (4 × 4) by
ns = 4 shifts s1 = (0, 0) (black), s2 = (1/2, 0) (red),
s3 = (0, 1/2) (green), s4 = (1/2, 1/2) (blue). The co-
ordinates of these points refer to the blue-shaded box
at the origin. Note that no additional shift bs is applied
to the fine grid (and accordingly to the coarse grids).
The shift vectors sp are indicated by the (coloured) ar-
rows (apart from s1) and are given by all points located
completely inside the shaded box at the origin. The
box is bounded by grid lines of the unshifted coarse
grid (shift vector s1).

where g1, g2, g3 are the reciprocal lattice vectors of the cystal structure, s1 = 0, and

K =

ns⋃
p=1

Kp . (3.34)

The vector bs in this case denotes an additional shift vector by which the fine grid is offset from the Γ-point
and which accordingly is applied to the coarse grids. The shift is such that the point bs,1/N1g1 + bs,2/N2g2 +

bs,3/N3g3 is contained in the fine grid K .
Writing the number of shifts as ns = n3

div, the fine grid is expressed by

K (N1 × N2 × N3) = K ((ndivM1) × (ndivM2) × (ndivM3)).

This means that the summation in eq. (3.25) is split up like (using a generic function fk with summation
weights wk ∈ N>0 with the condition

∑
k∈K wk = |K |)

∑
k∈K

wk
|K | fk =

1
n3

div

∑
k∈K

wk��Kp

�� fk =
1

n3
div

n3
div∑

p=1

∑
k∈Kp

w
(p)
k��Kp

�� f (p)k , (3.35)

with
∑

k∈Kp
w
(p)
k =

��Kp

�� and |K | = ∑n3
div

p=1

��Kp

�� = n3
div

��Kp

�� since |K1 | = · · · =
��Kns

�� = M1 × M2 × M3. The
superscript “(p)” is added to the generic function fk to indicate that the summation is carried out first over the
k contained in Kp for fixed p and then the contributions from the coarse grids are summed. For each Kp the
dielectric tensor ε(sp) is calculated by summing over k ∈ Kp in eq. (3.25), and eventually all ε(sp)’s are
summed to the full ε for the fine grid,

εav
µµ′ (ω) =

1
ns

ns∑
p=1

εµµ′(ω; sp). (3.36)

Indeed, in practical calculations, the summation from eq. (3.36) only is a good approximation for the full
expression eq. (3.25) (hence the superscript “av”). When ε(sp) is calculated by summing over Kp (eq. (3.25)),
a frequency grid G (p)ω is set up according to the energy eigenvalues E (s)

n,k with k ∈ Kp (furthermore, the Fermi
energy will be different from grid to grid). Therefore, each ε(sp) is obtained on a slightly different grid of
frequencies. These are in general different from the grid resulting from a calculation of ε on the fine grid
K . As a result, the technical implementation of the multigrid method requires to “interpolate” to a common
frequency grid on which the ε(sp)’s can be added. This is achieved by means of the Kramers-Kronig relations
eq. (3.28).

The procedure of the multigrid method for calculating the dielectric tensor εav therefore is:
(i) Choose a fine grid K (N1 × N2 × N3) and a set of coarse grids {Kp(M1 × M2 × M3)} with associated

shift vectors {sp}, and p = 1, . . . , ns.
(ii) Calculate the groundstate density (e.g., VASP’s “CHGCAR”) of the system at hand in a self-consistent

(SCF) calculation.
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FIGURE 3.21: Dielectric tensor for the primitive structure of CuO (fig. 3.2c): (a) Frobenius norm of real, imaginary part of ε, ε av vs energy
calculated directly with VASP (ε ) and using the multigrid method (ε av). Two different fine grids are chosen: K (8 × 8 × 4) (left; coarse grid
Kp (4 × 4 × 2) with ns = 23 = 8) and K (20 × 20 × 10) with an additional shift of bs = (1/2, 1/2, 1/2) (right; coarse grid Kp (4 × 4 × 2) with
ns = 53 = 125). (b) Frobenius norm of real, imaginary part of ε av vs energy calculated for different sizes M1 ×M2 ×M3 of the coarse grid Kp .
A fine grid K (24 × 24 × 12) is obtained by choosing the number of shifts ns as indicated in the figure. Parameters for the relaxation of atomic
positions: Plane-wave cut-off: 800 eV, k-point density 0.25Å−1. Parameters for the SCF calculation (density): plane-wave cut-off: 450 eV, k-point
density 0.25Å−1. Parameters for the calculation of the dielectric tensor (non-SCF): 200 bands (valence+conduction), 18 001 points in the energy
grid, shift in eq. (3.28): η = 0.1 eV.

(iii) Compute Im ε(sp) (eq. (3.25)) on the frequency grid G (p)ω by summing over k ∈ Kp for p = 1, . . . , ns
at fixed density (non self-consistent calculation).

(iv) Set up a common frequency grid Gω to which all ε(sp) are interpolated.
(v) Use eq. (3.28) to implement the interpolation of the Re ε(sp)’s and Im ε(sp)’s and add up according to

eq. (3.36) to obtain εav(ω), ω ∈ Gω.
(vi) Eventually: Compare to a calculation with eq. (3.25) for an “affordable” grid K .
In fig. 3.21a the accuracy of the multigrid method is exemplified: εav from eq. (3.36) is compared to ε (more

precisely their Frobenius norm) calculated by VASP using eq. (3.25). The chosen fine grids are K (8 × 8 × 4)
and K (20 × 20 × 10) with an additional shift of bs = (1/2, 1/2, 1/2). For the multigrid method these grids
are constructed with a coarse grid Kp(4 × 4 × 2) and ns = 8 and 125, respectively. Indeed, independently of
the size of the fine grid |K |, the multigrid method yields the same results as the calculation based on the
summation over all k ∈ K (eq. (3.25)).
In fig. 3.21b the dependence of the multigrid method on the divisions M1 × M2 × M3 used for the coarse

grid is investigated. εav is calculated on a fine grid K (24 × 24 × 12) while two different coarse grids
Kp(4 × 4 × 2) (ns = 63 = 216) and Kp(12 × 12 × 6) (ns = 23 = 8) are employed. Obviously, the results
from both choices of the division M1 × M2 × M3 yield the same result for Re εav, Im εav.

Based on the multigrid method the convergence of the dielectric tensor with respect to the size of the grid
of k-vectors will now be investigated. A typical convergence graph is shown in fig. 3.22. The size of the
fine grid |K | is increased based on a coarse grid Kp(4 × 4 × 2) with ns = 64, 125, 216 and 343 (ndiv = 4,
5, 6 and 7). A rather characteristic feature of εav (as well as for ε) is to display oscillations in case the
summation is carried out over too few k-points in the BZ. In order to amplify these oscillations, the energy
derivative (d/dω) is also shown in fig. 3.22. Increasing the size of K from left to right in fig. 3.22, it is
obvious that the oscillations clearly visible in the region of 2 eV and for energies larger than 4 eV for ns = 64
(K (16 × 16 × 8)) are continuously damped out. Re εav, Im εav are essentially indistinguishable when going
from K (24 × 24 × 12) to K (28 × 28 × 14), indicating convergence of εav.

It should be noted that the complex shift η from eq. (3.28) broadens the structure of εav thereby making it
appear smooth. In general, the larger the chosen value of η the fewer oscillations of εav are expected to be
visible for a chosen size of the fine grid of k-vectors K . The significance and the role of the broadening
parameter η will be discussed in the next section when comparing calculated results for the optical absorption
spectra to experiment.
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FIGURE 3.22: Dielectric tensor for the primitive structure of CuO (fig. 3.2c): Frobenius norm of real, imaginary part of ε av (upper row) and
their energy derivative (d/dω; lower row) for different sizes of the fine grid K . The coarse grid is Kp (4 × 4 × 2) with ns = 64, 125, 216 and
343 (ndiv = 4, 5, 6 and 7) corresponding to K (16 × 16 × 8), K (20 × 20 × 10), K (24 × 24 × 12), and K (28 × 28 × 14). Parameters for the
calculations: See fig. 3.21a.

3.4.2 Raman scattering in monoclinic CuO

In this section the focus is on the Raman scattering properties of CuO. Before the room temperature structure
(fig. 3.2c) and the AFM groundstate structure (fig. 3.1c; valid below 213 K) are compared, some general
features of the structures are unrolled. This includes optical absorption spectra and a (preliminary) analysis of
the Raman active modes.

3.4.2.1 Room temperature structure

Determination of the optical absorption gap Eg,abs In many cases, the optical properties of solids are
analysed in terms of the optical absorption coefficient αabs

f ≡ αabs
f (ω). It is related to one of the “optical

coefficients“ of a crystal, the extinction coefficient k̃f(ω), by (the other coefficient being the refractive index
ñf(ω)):23

αabs
f (ω) =

2ω
c

k̃f(ω) =
4π
λ

k̃f(ω). (3.37)

The connection between components of the dielectric functionii Re εf = ε
(1)
f , Im εf = ε

(2)
f and the optical

coefficients is
ε
(1)
f + iε (2)f = (ñf + i k̃f)2, (3.38)

ii The subscript “f” is introduced to emphasise that the currently discussed quantities are not tensors of rank two (e.g., εµµ′) but
simply scalar-valued functions. Particularly, εf : R→ C, whereas ε : R→ C3×3.
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leading to the set of equations

ε
(1)
f = ñ2

f − k̃2
f (3.39a)

ε
(2)
f = 2ñf k̃f, (3.39b)

which eventually leads to

ñf =

√
1
2 (|εf | + Re εf) (3.40a)

k̃f =

√
1
2 (|εf | − Re εf), (3.40b)

where |εf | =
√
[Re εf]2 + [Im εf]2 is the absolute value of the complex-valued dielectric function.

The dielectric tensor εµµ′ can be related to a scalar-valued function depending on the direction q̂ through192

εf(ω; q̂) = q̂T ε(ω)q̂ =
∑
µµ′

q̂µεµµ′(ω)q̂µ′ . (3.41)

Integrating out the directional dependence over the unit sphere S2 gives a direction-averaged (”avd“) dielectric
function

εf,avd(ω) =
1

4π

∫
S2

dq̂ εf(ω; q̂). (3.42)

Numerically, this integral is evaluated on a grid that homogeneously samples the surface of the unit sphere.
Here, grids from Lebedev and Laikov [193] are used which allow the approximation of the integral of a
generic function f over the unit sphereiii∫

S2
dx̂ f (x̂) ≈ 4π

|L |∑
j=1

wj f (x̂j), (3.43)

where L is the grid from Lebedev and Laikov [193], and
∑ |L |

j=1 wj = 1. In relation to eq. (3.42) this means

εf,avd(ω) ≈
1

4π

|L |∑
j=1
(4πwj)εf(ω; q̂j). (3.44)

Since ε is a second-rank tensor, so is the absorption coefficient αabs. In case of an isotropic dielectric
tensor (εµµ′ = εµδµµ′ and hence [αabs]µµ′ = [αabs]µδµµ′), the above relation eq. (3.37) (which is derived for
scalars) can can be directly applied since the tensor elements do not couple:

[αabs]µµ′(ω) =
4π
λ

k̃µµ′(ω) =
4π
λ

√
1
2
(��εµ(ω)�� − Re εµ(ω)

)
δµµ′ . (3.45)

If, however, the dielectric tensor is non-isotropic (i.e., it possess non-zero diagonal elements), eq. (3.37)
must be calculated with the matrix square root. That is, ε(ω) is brought to diagonal form by diagonalisation:
V −1
ω ε(ω)Vω, where Vω contains the eigenvectors of ε(ω) as columns. The absorption coefficient is then

calculated in the eigenbasis:

[αabs
diag]µµ′(ω) =

4π
λ
[k̃diag]µµ′(ω) =

4π
λ

√
1
2

(���εdiag
µ (ω)

��� − Re εdiag
µ (ω)

)
δµµ′, (3.46)

where εdiag
µ (ω) are the eigenvalues of ε(ω), and eventually the tensor is transformed back to the original

coordinate system by αabs(ω) = Vωαabs
diag(ω)V −1

ω . Finally, as for eq. (3.44) in case of ε , the direction average
for αabs is calculated according to

αabs
f,avd(ω) =

1
4π

|L |∑
j=1
(4πwj)(q̂T

j α
abs(ω)q̂j). (3.47)

iii The Fortran routines for the generation of these grids can be downloaded from http://www.ccl.net/cca/software/
SOURCES/FORTRAN/Lebedev-Laikov-Grids/index.shtml.
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FIGURE 3.23: Absorption coefficient (upper row) and dielectric function (lower row). Experimental data from Meyer et al. [23] and Tahir and
Tougaard [194] are shown. The annotations at the dielectric function in the lower left figure mark electronic transitions as listed in Meyer et al.
[23, tab. 6]. The horizontal dashed line in the upper row marks an absorption value of 1 × 105 cm−1 and the respective energy value is indicated
in the plot. The calculated absorption coefficient as well as the real and the imaginary part of the dielectric function (right side) are averaged over
directions according to eqs. (3.44) and (3.47). The size |L | of the grid from Lebedev and Laikov [193] is 4802 points (grid-ID: 30). In case of the
absorption coefficient, several values for the broadening parameter η used in eq. (3.28) are given, while for the dielectric function η = 0.1 eV is used.
Parameters for the relaxation of atomic positions: See fig. 3.21a. Parameters for the SCF calculation (density): Plane-wave cut-off: 550 eV, k-point
density 0.25Å−1. Parameters for the calculation of the dielectric tensor (non-SCF): 200 bands (valence+conduction), 18 001 points in the energy
grid. The k-summation is based on a fine grid K (24 × 24 × 12) generated with a coarse grid Kp (8 × 8 × 4) and ns = 27 = 33 shifts (ndiv = 3).

In fig. 3.23 the calculated direction-averaged absorption coefficient (upper row) and the calculated direction-
average dielectric function (lower row) are shown together with experimental data from Meyer et al. [23] and
Tahir and Tougaard [194]. Obviously, experimental results are quite different: The absorption coefficient
from Meyer et al. [23] increases almost linearly up to 3 eV whereas data from Tahir and Tougaard [194]
displays clearly visible curvature in this energy range. In order to illustrate this difference, the energy where
the absorption coefficient crosses 1 × 105 cm−1 is annotated. Indeed, the differences in the absorption curves
from both experiments can be understood by looking at the experimental dielectric functions from the lower
row. For Meyer et al. [23]’s data, several electronic transitions below 3 eV that either correspond to interband
transitions or excitons23 are observed (see annotated arrows in fig. 3.23). Clearly, no such transitions are
present in the absorption curve from Tahir and Tougaard [194]. These transitions enhance absorption and
most likely cause the differences in absorption behaviour observed in experiment.

The calculated curves for αabs,av
f,avd ,Re εav

f,avd, Im εav
f,avd

iv are in quite good agreement with the measurements of
Tahir and Tougaard [194] below 4 eV. The energy values at which calculated and measured absorption curves
cross 1 × 105 cm−1 (2.5 eV and 2.54 eV, respectively) are very close. An additional shoulder at about 2.9 eV
is present in case of the calculated absorption coefficient. The larger the value of the broadening parameter η
used in eq. (3.28) the more this feature vanishes.

As a matter of fact, the good agreement with Tahir and Tougaard [194] motivates to use a finite value for η
in eq. (3.28). From fig. 3.23, experimental curves do not show sharp absorption onsets but rather show a
soft increase in the absorption coefficient (or likewise Im ε , the absorptive part of the dielectric function).
The optical absorption gap determined in experiment never equals the smallest direct (meaning “vertical”
transitions in reciprocal space for which ∆k = 0) energy difference between valence and conduction bands.
The main reasons for this presumably are:

• Excitons: Depending on the properties of the electron-hole coupling, excitons will introduce additional
iv The calculated absorption coefficient as well as the calculated dielectric functions are labelled as αabs,av

f,avd , ε
av
f,avd because (i) they

are calculated with the multigrid method (superscript “av”), and (ii) they are averaged over directions according to eqs. (3.44)
and (3.47) (subscript “avd”).
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“absorption channels” (not necessarily only in the sub-gap region). Thereby, the absorption spectrum
is red-shifted (compared to, e.g., calculations based on the independent-particle approximation), and
additional “spectral weight” is shuffled to lower energies. This is observed for oxide-semiconductors
from Bethe-Salpeter (BSE) calculations by Rödl [195, p. 74 in fig. 5.1].

• Finite temperature effects: A finite lifetime of electronic states is introduced at finite temperature
because electron-phonon interaction gets enhanced with increasing temperature. The effect on the
absorption spectra (e.g, Im ε) of a solid will be a softening/broadening of the peaks corresponding to
optical transitions. Furthermore, an enlarged “absorption tail” is introduced in the sub-gap region (see
Gillet [12, p. 123 in fig. 46]).

Indeed, from a theoretical point of view, the inclusion of excitonic as well as temperature induced effects is
desirable but also very challenging and computationally demanding. The influence of excitons and finite
temperature effects on the optical and Raman spectroscopic properties of some solids is studied by Gillet [12].
In summary, choosing a finite value for η in eq. (3.28) appears appropriate. Reviewing eq. (3.28), the

expression replacing the usual Cauchy principal value

π−1 pv
∫
R

dω′ Im ε(ω′)/(ω′ − ω) (3.48)

involved in the Kramers-Kronig relations is an expression of the form

π−1
∫
R

dω′ Im ε(ω′)/(ω′ − ω − iη). (3.49)

This corresponds to the convolution of Im ε with a Lorentzian. Therefore, at most the effect of temperature
broadening (finite lifetime effects) can be mimicked to some extent. However, since η is a simple parameter,
its usage should by no means be exaggerated. In what follows, a value of η = 0.1 eV is used which actually
corresponds to the standard choice in VASP for linear response calculations (see the variable CSHIFTv).
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FIGURE 3.24: Determination of the optical absorption gap Eg,abs. The gap is determined from (a) data of Meyer et al. [23], (b) data of Tahir
and Tougaard [194], and (c) calculated data.. In (c) the calculated absorption coefficient is labelled as αabs,av

f,avd because (i) it is calculated with the
multigrid method (superscript “av”), and (ii) it is averaged over directions according to eq. (3.47) (subscript “avd”). Eg,abs is determined from the
intersection of the linear fits as shown in the figures. The energy regions used for the linear approximation of the absorption coefficient are indicated
by the grey-shaded regions and are given as numbers in the legend of the plot. Parameters for the calculations: See fig. 3.23

Optical absorption gaps Eg,abs for the calculated and the experimental absorption coefficients23,194 are
determined in fig. 3.24. The gaps are taken as the intersection of two linear fits: (1) A linear fit of the subgap
absorption tail, and (2) a linear fit of the region of strong absorption beyond Eg,abs. The thus determined values
for the optical absorption gaps are 1.34 eV, 1.44 eV and 1.33 eV from the calculated and the experimental
absorption coefficients from Meyer et al. [23] and Tahir and Tougaard [194], respectively. It should probably
be noted that Tahir and Tougaard [194] determine an optical absorption gap of 1.0 eV by considering the
inelastic cross section from REELS measurements. Nonetheless, these values are in reasonable agreement
with reflectance and transmittance data from Marabelli et al. [196] where Eg,abs(300 K) = 1.34 eV,vi and with
a value of Eg,abs(300 K) = 1.44 eV from Wang et al. [88, tab. I].

vThe manual can be found at http://cms.mpi.univie.ac.at/wiki/index.php/The_VASP_Manual
vi This value is not explicitly listed in the paper but can be found in Rödl et al. [105, tab. II].
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From the electronic eigenvalues at the k-points used for the BZ integration the smallest direct transition
energy from valence to conduction band is 1.41 eV (direct bandgap). This value (slightly) differs from the
above determined value of 1.34 eV because the curve in fig. 3.24 is calculated with a broadening value of
η = 0.1 eV.

Calculation of the Raman susceptibilities αm Recalling eq. (3.24), the Raman susceptibility αm(ω) is
the directional derivative of the (linear) susceptibility tensor χ(ω), where the direction is the displacement
vector us,ν

m,q=0 = ws,ν
m,q=0/

√
Ms of the mth phonon mode (see eq. (2.23)).

Numerically, one way to determine this derivative is to first calculate the gradient ∂
∂us,ν

χ(ω) (eq. (3.29)),
and then to project the gradient on the displacement vector like in eq. (3.24). Another approach is to
directly evaluate the directional derivative. This is accomplished by displacing the atoms in the unit cell by a
finite amount along the displacement vector um and to calculate χ(ω) (or rather Im ε(ω), and then Re ε(ω)
by eq. (3.28)) for this distorted atomic geometry. If different displacement directions are considered, the
directional derivative can be evaluated in a similar manner as in case of eq. (3.29).

Both methods for computing the directional derivative can be summarised as follows:
(I) Using equation eq. (3.29):

(1) Solve eq. (2.23) for q = 0 by diagonalising the dynamical matrix, yielding the displacement
vectors um.

(2) For each atoms s at a time: Displace it from its equilibrium position x(0)s → x(0)s ± u(ν)s with
u(ν)s = dscaleêν and calculate the groundstate density in a self-consistent manner (dscale ≡ d(s)scale:
finite scaling length used for the displacement).

(3) For all displacements ±u(ν)s : Calculate Im ε(ω;±u(ν)s ) with eq. (3.25) from the SCF density
(non-SCF calculation) and then Re ε(ω;±u(ν)s ) with eq. (3.28).

(4) Gather the ε(ω;±u(ν)s )’s and calculate ∂
∂us,ν

χ(ω) from eq. (3.29).
(5) Calculate the directional derivative for eq. (3.24) to obtain αm.

(II) Direct evaluation of the directional derivative for a Raman active mode m:
(1) Normalise ûm = um/|um | and add the scaled displacement vector to the atomic equilibrium

position x(0)s → x(0)s ± dscaleûs
m and calculate the groundstate density for this distorted geometry.

(2) Calculate Im ε(ω;±um) with eq. (3.25) from the SCF density (non-SCF calculation) and then
Re ε(ω;±um) with eq. (3.28).

(3) Calculate the directional derivative to obtain αm:

αm(ω) ≡
√
Ω0

∂ χ(ω)
∂um

=

√
Ω0

4π
d
dt
ε(ω; {x(0)s } + tum)

���
t=0

≈
√
Ω0

4π
ε (ω;+dscaleûm) − ε (ω;−dscaleûm)

2dscale
|um | . (3.50)

Note that, in order to obtain the same result as with eq. (3.29), it is indeed necessary to scale by
the norm |um |.

Beyond doubt, both methods must yield the same result for αm within the accuracy of the numerical
derivative. The approach based on eq. (3.29) appears to be more versatile, but a direct calculation of the
directional derivative can be the method of choice if only a few Raman active modes of a crystal are of interest
(e.g., in case the unit cell contains many atoms).

Based on the C6
2h space group (C2/c, No. 15) symmetry of CuO at room temperature, a factor group

analysis with the isomorphic point group C2h reveals the irreducible representations (irreps) of the Raman
active modes Ag ⊕ 2Bg.23,106 Choosing the 2-fold rotation axis of the C2h point group along the y-axis of an
orthogonal (x, y, z) coordinate system, yields Raman tensors of the generic form23

RAg =
(
a 0 d
0 b 0
d 0 c

)
, RBg =

(
0 e 0
e 0 f
0 f 0

)
, (3.51)

where it is understood that Rm
µµ′ : R≥0 → C.
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FIGURE 3.25: Convergence of αav,m (in arbitrary units) with respect to the number of k-points. Raman active modes Ag, Bg,1, Bg,2 are shown
from left to right. Based on a coarse grid Kp (6 × 6 × 3), different sizes of the fine k-point grid K are considered: The respective fine grids are
K (18 × 18 × 9) (ns = 27 = 33), K (24 × 24 × 12) (ns = 64 = 43), K (30 × 30 × 15) (ns = 125 = 53), and K (36 × 36 × 18) (ns = 216 = 63).
Parameters for the relaxation of atomic positions/calculation of the dynamical matrix at Γ: See fig. 3.21a and a displacement length of 0.01Å.
Parameters for the SCF calculation (density): See fig. 3.23 with a displacement length of 0.01Å. Parameters for the calculation of the dielectric
tensor (non-SCF): 150 bands (valence+conduction), 18 001 points in the energy grid, the broadening parameter for eq. (3.28) is η = 0.1 eV.

The k-point convergence of αav,m for modes Ag, Bg,1, Bg,2 is analysed in fig. 3.25. Fine grids are
K (18 × 18 × 9) (ns = 27 = 33), K (24 × 24 × 12) (ns = 64 = 43), K (30 × 30 × 15) (ns = 125 = 53), and
K (36 × 36 × 18) (ns = 216 = 63) based on a coarse grid Kp(6 × 6 × 3) are employed. All sizes |K | give
(essentially) converged results for energies below 3 eV. Beyond 3 eV results fromK (18 × 18 × 9) significantly
deviate from the larger grids and convergence appears to be very hard to achieve above 4 eV. However,
“typical” laser energies used in Raman scattering experiments are in the visible range of the electromagnetic
spectrum.vii This part contains energies from ∼1.59 eV to 3.26 eVviii which is a well-described region by all
K -grids larger than K (18 × 18 × 9).
The decomposition of the mode displacement vectors um of the Raman active modes in terms of atomic

contributions is shown in fig. 3.26a. Themodes Ag, Bg,1, Bg,2 are solely oxygen drivenwithout any contribution
from the copper sublattice. The Ag mode is “totally symmetric” which means that the mode displacement
pattern does not alter the crystal symmetry. For this mode αm from eqs. (3.29) and (3.50) is compared in
fig. 3.26b. Obviously, both methods yield the same result for αm, but the difficulty lies in the choice of the
scaling length dscale to be used for the mode displacement vector in eq. (3.50). The key issue is that multiple
atoms are displaced at once in um. Since the scaling length is used for the whole vector, atoms in general
have different displacement lengths. The displacement lengths need to be large enough to cause a change

vii “Typical” laser energies used in Raman scattering experiments are:
• Ultra-violet (UV-A,B): 244 eV, 257 eV, 325 eV and 364 eV;
• Visible: 457 nm, 473 nm, 488 nm, 514 nm, 532 nm, 633 nm and 660 nm;
• Near infra-red (IR-A): 785 nm, 830 nm, 980 nm and 1064 nm.

See http://www.horiba.com/scientific/products/raman-spectroscopy/raman-academy/raman-faqs/
what-laser-wavelengths-are-used-for-raman-spectroscopy/.

viii Following http://halas.rice.edu/conversions, the energies bounding the relevant part of the electromagnetic spectrum
are:

• Mid UV (UV-B): 3.94 eV to 4.43 eV;
• Near UV (UA-A): 3.26 eV to 3.94 eV;
• Visible: 1.59 eV to 3.26 eV;
• Near infra-red (IR-A): 0.886 eV to 1.58 eV.
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FIGURE 3.26: (a) Decomposition of the (squared) norm of the mode displacement vectors ( |um |2) in terms of contributions from Cu and O atoms.
Only Raman active modes Ag, Bg,1, Bg,2 are shown. The frequencies (in cm−1) are listed with the symbols of the irreps. (b) Raman susceptibility
αav,m (in arbitrary units) of the Ag mode by (i) using eq. (3.29) (∂χ/∂us,ν ), and (ii) by using eq. (3.50) (∂χ/∂um). Parameters for the relaxation
of atomic positions/calculation of the dynamical matrix at Γ: See fig. 3.25. Parameters for the SCF calculation (density): See fig. 3.23 with a
displacement length of 0.01Å for eq. (3.29) and 0.0075Å for eq. (3.50). Parameters for the calculation of the dielectric tensor (non-SCF): See
fig. 3.25, and a fine grid K (30 × 30 × 15) is used based on a coarse grid Kp (6 × 6 × 3) with ns = 125 = 53.

in ε(ω) that is traceable with the chosen set of numerical parameters but small enough not to invalidate the
linear approximation eq. (3.50).

3.4.2.2 Antiferromagnetic groundstate structure below T (2)N = 213 K

Raman active phonon modes and experimental results Following Perez-Mato et al. [197] and Gallego
et al. [198, 199],ix the AFM groundstate phase has the magnetic spacegroup BNS:Pa21/c (No. 14.80;
Shubnikov type IV) which is based on the monoclinic Fedorov spacegroup P21/c (C5

2h, No. 14). The factor
group of the C5

2h space group is isomorphic to the C2h point group. Therefore, the Raman tensors of the AFM
groundstate structure from fig. 3.1c have the generic form given by eq. (3.51) and the irreps of the Raman
active modes are 6Ag ⊕ 6Bg.

When CuO undergoes the AFM phase transition at T (2)N , the local symmetry of the atoms changes: While
in the structure described by Åsbrink and Norrby [106] Cu and O atoms are at Wyckoff 4c (Ci symmetry) and
Wyckoff 4e (C2 symmetry) positions, the atoms in the structure from Forsyth et al. [22] (Cu as well as O) are
located at symmetry-free positions with crystallographic C1 symmetry (meaning irrespective of the magnetic
symmetry group), i.e., they are in “general position”.
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The decomposition of the mode displacement vectors um of the Raman active modes in terms of atomic
contributions is shown in fig. 3.27. The situation is more complicated than in fig. 3.26a: Instead of only three
ix See also http://webbdcrista1.ehu.es/magndata/index.php?this_label=1.62
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FIGURE 3.28: (a) Raman intensities extracted from of CuO from Chen et al. [24, fig. 1]. The peaks are normalised to the maximal peak
height. Principal (red; peaks also present at room temperature) and extra Raman active modes (black; peaks that arise below T

(2)
N = 213 K) are

distinguished. (b) Fit of the major peaks in the 40 K Raman spectrum of Chen et al. [24]. The fit is performed with a Lorentzian of the form
Iγ (ω) = I0 + 2A/π ×γ/(4(ω −ω0)2 +γ2) (http://www.qtiplot.com). The centringω0 and the broadening γ of the peaks are given in the plot.
These values are additionally compiled in table 3.4 and compared to the peak positions from Chen et al. [24].

Raman active modes, there now are twelve. In particular, for the low-frequency modes also copper atoms
contribute to the mode displacement vectors. Nevertheless, the modes from fig. 3.26a are easily identified as
those only consisting of oxygen vibrations. The modes are slightly shifted in frequency compared to the RT
structure: 300 cm−1, 341 cm−1 and 607 cm−1 opposed to 299 cm−1, 336 cm−1 and 615 cm−1.
Obviously, as a consequence of the AFM phase transition at T (2)N , additional modes will be visible in the

Raman spectrum. Indeed, this is what is observed in experiment when cooling below T (2)N : Chen et al. [24]
find five new modes at 175 cm−1, 218 cm−1, 240 cm−1, 331 cm−1 and 508 cm−1 in the Raman spectrum when
cooling to 40 K (see fig. 3.28a). The mode at 240 cm−1 is identified to be a Ag mode which is mainly driven by
vibrations of the copper sublattice.24 This is verified by Chen et al. [24] where 63Cu is changed to 65Cu which
shifts the peak to smaller frequencies. Indeed, the irrep for the mode with calculated frequency 241 cm−1 is
Ag (see fig. 3.27). Furthermore, a strong dependence on temperature is documented for this mode.24,166
In fig. 3.28b the major peaks of the Raman spectrum from Chen et al. [24] are fitted in order to obtain their

broadening. The thus obtained values for the peak broadening and the peak positions are summarised in
table 3.4.

peak position ω0 / cm−1 peak broadening / cm−1

Peak fitted Ref. [24] γ ζ = γ/2
1 238 240 4.7 2.35
2 302 303 5.0 2.5
3 350 350 5.2 2.6
4 637 636 8.3 4.15

TABLE 3.4: Values from the fit of the
40 K Raman spectrum of Chen et al. [24]
in fig. 3.28b. Each peak is fitted with a
Lorentzian of the form Iγ(ζ )(ω) = I0 +

2A/π ×γ/(4(ω −ω0)2 +γ2) = I0 + 2A/π ×
(2ζ )/(4(ω −ω0)2 + (2ζ )2). The relation be-
tween the broadening parameters is γ = 2ζ .
The mean value of ζ is ζ = 2.9 cm−1.

Concerning the emergence of new phonon modes compared to the RT structure, Chen et al. [24] argue
that appearance of these modes is related to a folding of the X-point from the BZ of the (conventional)
RT structure to the BZ centre of the AFM groundstate structure. Referring to Güntherodt et al. [200] and
Bauhofer et al. [201], they assume that a modulation of the magnetic exchange constant(s) by the vibrational
pattern of some phonon modes related to the zone-folding makes these modes appear in the Raman spectrum
below T (2)N . It is neglected, however, that Bauhofer et al. [201] explicitly mention a symmetry lowering
due to the formation of a magnetic superstructure (D3d → C2h for vanadium dihalides), making additional
modes Raman active.x A further constraint placed on additional modes to contribute to Raman scattering is

x “The magnetic ordering reduces the original D3d point group symmetry of the crystallographic unit cell to a rhombohedral
prism formed by the eight metal sites represented schematically in Fig. 11(c). [...] forming a C2h subgroup of the original D3d
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FIGURE 3.29: (a) Determination of the optical absorption gap Eg,abs from the calculated direction-averaged absorption coefficient αabs,av
f,avd (cf.

eq. (3.47)). Eg,abs is obtained from the intersection of two linear fits of (i) the sub-gap absorption tail, and (ii) the region just beyond the absorption
gap. The resulting value of 2.13 eV annotates the vertical dashed line. (b) Experimental and calculated absorption coefficients extracted fromWang
et al. [88, fig. 2b]. Calculations presented in Ref. [88] are based on the PBE+U method with a value ofU = 5 eV. The AFM groundstate structure22
with 16 atoms is assumed. The calculated absorption gap from the GW calculations is 1.46 eV and the experimental value is 1.44 eV (determined
at room temperature). Parameters for the relaxation of atomic positions: See fig. 3.27. Parameters for the SCF calculation (density): Plane-wave
cut-off: 550 eV, a 6 × 12 × 6 k-point grid. Parameters for the calculation of the dielectric tensor (non-SCF): 350 bands (valence+conduction),
18 001 points in the energy grid, the broadening parameter for eq. (3.28) is η = 0.1 eV. The k-summation is based on a fine grid K (12 × 24 × 12)
(shifted by bs = (0, 1/2, 0)) generated with a coarse grid Kp (4 × 8 × 4) and ns = 27 = 33 shifts (ndiv = 3).

that they modulate the magnetic exchange.200,201 That implies that even if a phonon mode of the magnetic
superstructure transforms according to some irrep that allows for Raman activity (that would be the “gerade”
(g) modes in case of monoclinic CuO), it must additionally modulate the magnetic exchange in order to be
visible in the Raman spectrum. And indeed, when the transformation properties of the phonon modes under
the symmetry operations are investigated, more than just the modes shown in fig. 3.27 are found to transform
like Ag, Bg. A detailed analysis if the modes that actually are Raman active modulate the magnetic exchange
is not provided at this point.

Determination of the optical absorption gap Eg,abs The optical absorption gap Eg,abs for the AFM
groundstate structure of CuO is determined from the direction-averaged optical absorption coefficient in
fig. 3.29a. The procedure is the same as in fig. 3.24 with a result of Eg,abs = 2.13 eV.

In fig. 3.29b literature results from Wang et al. [88] are shown. They employ GW and time-dependent DFT
(TDDFT) calculations as well as experimental techniques to determine Eg,abs from the optical absorption
coefficient. It should be remarked that the experimental value of 1.44 eV is the result of a room temperature
measurement, while the calculations assume the 16-atom AFM groundstate structure which is valid only
below T (2)N .22,88 The GW value Eg,abs = 1.46 eV is in very good agreement with their experimental value.
However, based on the thoughts from section 3.4.2.1, the question indeed is, if the GW calculation is very
predictive in terms of the optical absorption spectrum. A more realistic approach in this context appears to be
the TDDFT calculation which naturally incorporates excitonic effects. The typical red-shift of the absorption
spectrum due to the inclusion of excitons is very obvious. However, the absorption spectrum compares worse
to the experimental one than in the GW case. This indicates that CuO indeed is a complicated system which
remains a crucial test case for electronic structure theory.88
From the electronic eigenvalues at the k-points used for the BZ integration the smallest direct transition

energy from valence to conduction band is 2.06 eV (direct bandgap). This value (slightly) differs from the
above determined value of 2.13 eV because the curve in fig. 3.29a is calculated with a broadening value of
η = 0.1 eV.
The calculated value of Eg,abs = 2.13 eV must ultimately be compared to the absorption gaps of Masumi

symmetry group. The projection of the inversion centre onto the xy plane is indicated by a (∗) in Fig. 12. The Au modes now
have even symmetry with respect to this inversion centre and are, therefore, Raman active.” (from Bauhofer et al. [201, p. 5881,
2nd paragraph])
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FIGURE 3.30: (a) Raman susceptibilities vs energy (in arb. units) for the Raman active modes from figs. 3.26a and 3.27 that are common to
the RT and LT structure of CuO. (b) Direction-averaged absorption coefficients of the RT and the LT structure of CuO. Vertical dashed lines show
the optical absorption gaps from figs. 3.24 and 3.29a. The horizontal dashed line indicates an absorption value of 1 × 105 cm−1. Parameters for
the calculation of Raman susceptibilities in (a) for the RT structure: See fig. 3.26b; Parameters for the calculation of the absorption coefficient
in (b) for the RT structure: See fig. 3.24. Parameters for the calculation of Raman susceptibilities in (a) for the LT structure: Relaxation of
atomic positions/calculation of the dynamical matrix at Γ: See fig. 3.27; Parameters for the SCF calculation (density): A plane-wave cut-off of
550 eV, a 6 × 12 × 6 k-point grid, a displacement length of 0.01Å; Parameters for the calculation of the dielectric tensor (non-SCF): 350 bands
(valence+conduction), 18 001 points in the energy grid, the broadening parameter for eq. (3.28) is η = 0.1 eV. The k-summation is based on a fine
grid K (12 × 24 × 12) (shifted by bs = (0, 1/2, 0)) generated with a coarse grid Kp (4 × 8 × 4) and ns = 27 = 33 shifts (ndiv = 3). Parameters for
the calculation of the absorption coefficient in (b) for the LT structure: See fig. 3.29a.

et al. [202] (1.6 eV from optical absorption at 7 K), and Marabelli et al. [196] (1.67 eV from reflectance and
transmittance, extrapolated to 0 K). The deviations of 0.53 eV and 0.46 eV are quite large and must be used
as correction values for the calculated optical absorption gap when Raman spectra at different laser excitation
energies are considered.
When Raman scattering intensities are computed for different laser excitation energies ωL, the difference
∆Eg,abs is used to “map” the calculated energy scale to the experimental one. Defining an “effective” laser
excitation energyωeff

L = ωL+∆Eg,abs, the Raman susceptibilities are evaluated at corrected energies (αm(ωeff
L ))

in order to closer resemble the real absorption properties of the material.

3.4.2.3 Comparison of the room temperature and the low temperature structure

In the preceding sections some properties of the room temperature (RT) and the low temperature (LT) structure
(AFM groundstate structure22) of monoclinic CuO have been discussed. In the following, the differences
observed in the Raman scattering properties of both phases are studied.
As remarked earlier, the Raman active modes of the RT structure from fig. 3.26a can be identified as the

oxygen-only modes in fig. 3.27 at frequencies 300 cm−1, 341 cm−1 and 607 cm−1 (compared to 299 cm−1,
336 cm−1 and 615 cm−1 for the RT structure).

Indeed, when comparing the determined absorption gaps of both structures (1.34 eV for the RT structure vs
2.13 eV for the LT structure) to the relevant experiments, obviously the RT structures compares nicely while
the LT structures yields rather poor results. Apart from Eg,abs, the absorption coefficient of the RT structures
is in reasonable agreement with the measurements from Tahir and Tougaard [194]. Nevertheless, since results
from LDA+U generally show a large dependence on the choice of the U parameter,100,105 the quality of the
agreement should not be overrated but rather considered a convenient incident.

The differences in the electronic structure are obvious from fig. 3.30b, where the absorption coefficients of
the RT and the LT structures are shown. As the differences in frequencies are only between 1 cm−1 to 8 cm−1,
deviations present in the Raman susceptibilities of both structures (see fig. 3.30a) are most likely due to
differing light absorption properties as expressed through, e.g., the absorption coefficient. Obviously, distinct
dependencies of αm on energy of both structures do not necessarily scale with the difference in frequency:
Albeit ωAg = 299 cm−1 (RT structure) and ωAg,4 = 300 cm−1 (LT structure), their Raman susceptibilities are
very diverse, not only in terms of absolute value but particularly in terms of dependence on energy. In contrast,
differences observable for Bg,1, Bg,4 and Bg,2, Bg,6 are smaller although their differences in frequency are
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FIGURE 3.31: Visualisation of the
phonon modes common to the RT and
the LT structure. The displacement pat-
tern of the RT structure (fig. 3.2c) is trans-
formed to the unit cell describing the LT
structure (fig. 3.1c). Since here only Γ-
modes are considered, thismerely implies
a translation of the atomic displacement
vectors. Based on the lattice vectors for
the primitive unit cell (ap, bp, cp) from
fig. 3.2c, the lattice vectors of theLT struc-
ture are obtained from the linear combi-
nations ap −bp − cp, ap +bp, ap −bp + cp,
yielding a unit cell with 4 times the vol-
ume of the primitive cell. The frequen-
cies of the modes are printed below the
images. The displacement patterns in the
middle only differ by a sign which comes
from the diagonalisation routine.203

larger. A visualisation of the Raman active modes common to both structures (“principal modes”) can be
found in fig. 3.31.
It was seen in fig. 3.27 that, apart from the modes common to the RT structure, additional modes arise in

the LT phase. This is in accordance with experimental measurements below T (2)N ;24 however, the number
of additional modes in the calculation is larger than the number of new modes detected in experiment: 9
calculated vs 5 measured.

In order to capture all Raman active modes at once, Raman powder spectra are used in the further discussion.
Powder spectra are based on invariants of the Raman tensor (Raman susceptibilities) and are calculated
according to (considering only Stokes processes, i.e., creation of a phonon):204

I m
powder(ωL) =

(ωL − ωm)4
c4

nm(T) + 1
30ωm

× {[10gm0 (ωL) + 4gm2 (ωL)] + [5gm1 (ωL) + 3gm2 (ωL)]
}
, (3.52)

with the “tensor invariants”204

gm0 =
1
3 |αm

xx + α
m
yy + α

m
zz |2 (3.53a)

gm1 =
1
2 [|αm

xy − αm
yx |2 + |αm

xz − αm
zx |2 + |αm

zy − αm
yz |2] (3.53b)

gm2 =
1
2 [|αm

xy + α
m
yx |2 + |αm

xz + α
m
zx |2 + |αm

zy + α
m
yz |2]

+ 1
3 [|αm

xx − αm
yy |2 + |αm

xx − αm
zz |2 + |αm

yy − αm
zz |2], (3.53c)

and the Bose-Einstein distribution function nm(T) = [exp(ωm/kBT) − 1]−1. A “Raman spectrum” is obtained
by introducing a broadening function δζ (ω −ω0) = Im{π[(ω −ω0) + iζ]}−1 = π−1ζ/[(ω −ω0)2 + ζ2] that is
normalised like

∫
R

dx δζ (x) = 1:

Ipowder(ω;ωL) =
∑
m

I m
powder(ωL)δζ (ω − ωm). (3.54)

In fig. 3.32 (normalised) powder spectra Ipowder are shown for the RT (left) and the LT (right) structure.
Calculated and experimental24 peak positions are indicated for comparison. Obviously, all additional
experimental frequencies that emerge in the Raman spectrum at low temperatures24 have a calculated
counterpart from the LT structure: 175 cm−1 and 178 cm−1, 218 cm−1 and 213 cm−1, 240 cm−1 and 241 cm−1,
331 cm−1 and 313 cm−1, 508 cm−1 and 500 cm−1. Even though the calculated Bg,3 mode at 313 cm−1 is
18 cm−1 away from the measured frequency at 331 cm−1, it is located (see the small shoulder for λL = 568 nm
in the right plot) directly between the Ag,4, Bg,4 modes (which are also common to the RT structure). Indeed,
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FIGURE 3.32: Raman powder spectra for the RT (left) and the LT (right) structure. Each spectrum is normalised to the maximum intensity such
that the change in relative intensities with the laser wavelengths is the only relevant quantity. Different laser wavelengths λL are used as indicated
in the plots. For the LT structure an absorption gap correction of 0.46 eV196 is used and the corresponding values of λeff

L are listed below those
of λL in the right plot (slanted font). Calculated mode frequencies (in cm−1) of the main peaks are shown by arrows in the plots. Experimental
frequencies (in cm−1) are indicated by annotated vertical lines (bold face numbers).24 The frequencies of modes that appear at low temperatures
(below T

(2)
N ) are printed in blue, while those already present at RT are printed in black. Parameters for the calculations: See fig. 3.30. Parameters

for the calculation of the Raman intensities: Temperature T = 298 K, broadening for the spectra ζ = 2.9 cm−1 (mean value from table 3.4).

from fig. 3.28a, this obviously is also the case in the measured spectrum, thereby justifying the assignment of
the calculated and the measured mode.
The main peaks in the experimental spectrum from fig. 3.28a are related to the modes at 240 cm−1,

303 cm−1, 350 cm−1 and 636 cm−1. The corresponding calculated modes also have the largest intensities in
the calculated powder spectra. However, since the experimental measurements are for a single crystal, the
relative intensities cannot be directly compared. The additional peaks from the calculations produce quite
small peaks in the powder spectra, irrespective of the applied laser wavelengths. It therefore appears that
this might be the reason why they are not detected in experiment. It is true, nonetheless, that the intensities
found for modes at 175 cm−1 and 500 cm−1 (which have an experimental counterpart) are of the same order
as for the peaks not visible in experiment. Taking into account the number of approximations involved in the
calculations [e.g., neglect of excitons, neglect of resonant terms in the equation of the Raman susceptibilities
(see, e.g. Gillet [12, Appendix A])], these “irregularities” can be considered to be within the error of the
methods at use.
The Raman powder spectra of the RT structure are dominated by the Bg,2 mode at 615 cm−1 for all laser

wavelengths. The modes at frequencies 299 cm−1 and 336 cm−1 only have . 10 % of the maximal peak
height, and their intensities are interchanged when the laser wavelength is decreased (from bottom to top).

Although the powder spectra of the LT structure as well are dominated by the Bg,6 mode at 607 cm−1, more
variation of the relative peak heights is observable below 350 cm−1: The relative peak heights of the modes
at 300 cm−1 and 341 cm−1 (the modes also found for the RT structure) systematically change in favour of
the 300 cm−1 mode when λL is increased. The Ag,3 mode at 241 cm−1 shows the opposite behaviour upon
decreasing λL, and considerably gains intensity compared to the other Raman active modes.
As a final point of this section, the nature of the extra modes found in the Raman spectrum is elucidated

in more detail. Obviously, the unit cell describing the LT structure (fig. 3.2b) has four times the volume of
the RT structure (fig. 3.2c). Based on the AFM ordering used for the RT structure (one atom “spin up”, the
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FIGURE 3.33: Relation between the (primitive) RT
structure from fig. 3.2c and a supercell with the same
volume as the LT structure from fig. 3.2b. Magnetic
moments are shown as black arrows and are taken along
themonoclinic b-axis (‖ y). Note that theAFMordering
necessarily is the same as in case of the RT structure and
as such is different from the AFM groundstate ordering.
The connection between the generating lattice vectors
(in real space) of the structures is given in fig. 3.31.

other “spin down”), a unit cell with the same volume as the unit cell of the LT structure but with a magnetic
ordering different from that of the AFM groundstate can be constructed. This scenario is shown in fig. 3.33
Since the superstructure is a periodic repetition of the RT structure, several (3 in this case) non-zero

wavevectors will “fold” to the Γ-point of the superstructure in reciprocal space. The two generating
lattices in real space of the RT structure and its superstructure are related by the linear combination
matrix ((1,−1,−1), (1, 1, 0), (1,−1, 1)) (to be read row-wise; see caption of fig. 3.31). It follows that
the four wavevectors commensurable with the superstructure are q1 = (0, 0, 0), q2 = (1/2, 1/2, 0), q3 =

(1/4, 3/4, 1/2), q4 = (3/4, 1/4, 1/2), where the components of the wavevectors refer to the reciprocal lattice
vectors of the RT structure (primitive unit cell). The wavevectors q3, q4 are related by a 2-fold rotation
about the y-axis and therefore deliver the same phonon frequencies. In some cases it is rather common to
express the wavevectors in terms of the reciprocal lattice vectors of a conventional unit cell in real space. For
monoclinic CuO this cell is given by Åsbrink and Norrby [106] and is depicted in fig. 3.2a. With respect to
this reciprocal basis, the wavevectors q2, q3 read (0, 1, 0), (−1/2, 1, 1/2). Since the translational equivalents
of the wavevectors q2, q3 can equally well be chosen as commensurable wavevectors (particularly, in the
primitive basis: q2 = (1/2, 1/2, 0) ≡ (±1/2,±1/2, 0)), the components with respect to the conventional basis
can also be written X = (1, 0, 0), A = (±1/2, 0,±1/2), where the labelling from Kuz’menko et al. [174, tab.
III] is adopted.xi These are the candidate wavevectors which may give rise to the additional Raman active
modes.

In table 3.5 the Raman and infra-red active modes of the LT structure of CuO are correlated with phonon
modes form the Γ, X points of the RT structure. Indeed, all additional (“extra”) Raman and infra-red active
modes found for the LT structure originate from the X-point. The twelve vibrational modes introduced at
the Γ-point of the LT structure split into nine extra Raman modes and three extra infra-red active modes,
leading to the irreps [Ag ⊕ 2Bg]principal ⊕ [5Ag ⊕ 4Bg]extra (Raman), and [3Au ⊕ 3Bu]principal ⊕ [2Au ⊕ Bu]extra
(infra-red). Chen et al. [24] and Kuz’menko et al. [174] suggested that the extra Raman active modes closely
resemble frequencies from the X-point measured with inelastic neutron scattering by Reichardt et al. [163].
Kuz’menko et al. [174] have measured extra infra-red active modes. Most of these were correlated with
phonon frequencies from the A-point of the RT structure. However, calculated mode frequencies of the
LT structure related to the A-point are neither Raman active nor infra-red active. The measurements of
Kuz’menko et al. [174] have further revealed that some extra infra-red active modes are also present at 300 K
and all the way down to low temperatures (7 K). This is clearly not the case for the Raman active modes.
Therefore, measurements of Raman and infra-red activities cannot be fully reconciled.

Generally, agreement between calculated and measured mode frequencies is reasonably good. This
particularly holds in case of the Raman active modes, for the principal as well as for the extra modes.
Differences are larger for the high-frequency infra-red active modes. However, experimental frequencies for
the Au,3, Bu,2, Bu,3 (irrep labels refer to the RT structure) have spreads of at least 60 cm−1, and the calculated
frequencies are either within the measured frequency range or ∼10 cm−1 to 15 cm−1 away from the lower
bound.

xi The components (1/2,−1/2, 0) in the primitive basis lead to the components (1, 0, 0) in the conventional basis.

60



3.4 Raman spectroscopic properties of CuO and Cu4O3

LT structure RT (super)structure (fig. 3.33) Literature (ωm)
irrep activity ωm irrep ωm wavevector calculated measured

Ag,4 (p) Raman 300 Ag 299 Γ 319a 296a, 303b,e
Bg,4 (p) 341 Bg,1 336 Γ 382a 346a, 350b,e
Bg,6 (p) 607 Bg,2 615 Γ 639a 631a, 636b,e
Ag,1 (e) 127 128 X (Y) − −
Ag,2 (e) 213 211 X (Y) − 218b, 220f
Ag,3 (e) 241 249 X (Y) − 240b, 243f
Ag,5 (e) 500 496 X (Y) − 508b, 513f
Ag,6 (e) 586 587 X (Y) − −
Bg,1 (e) 178 174 X (Y) − 175b, 177f
Bg,2 (e) 188 185 X (Y) − −
Bg,3 (e) 313 314 X (Y) − 331b, 330f
Bg,5 (e) 435 420 X (Y) − −
Au,1 (p) infra-red 166 Au,1 162 Γ 164a 160−168c, 163d
Au,2 (p) 304 Au,2 303 Γ 327a 321−326c, 324d
Au,4 (p) 438 Au,3 428 Γ 457a 409−478c, 379d
Bu,1 (p) 150 Bu,1 148 Γ 141a 142−150c, 147d
Bu,3 (p) 471 Bu,2 459 Γ 503a 470−530c, 481d
Bu,4 (p) 505 Bu,3 511 Γ 568a 520−590c, 536d
Au,3 (e) 367 362 X (Y) − −
Au,5 (e) 521 522 X (Y) − −
Bu,2 (e) 393 391 X (Y) − −
a Debbichi et al. [118]
b Chen et al. [24]
c Reichardt et al. [163], Kliche and Popovic [168], Guha et al. [170, 171], Narang et al. [172],
Homes et al. [173], and Kuz’menko et al. [174] (77 K172 and 300 K)

d Kuz’menko et al. [174] at 7 K
e Chrzanowski and Irwin [161]
f Reichardt et al. [163] (neutron scattering at X; see Kuz’menko et al. [174, tab. III])

TABLE 3.5: Correlation of the Raman and infra-red active modes (TO only) of the LT structure with the AFM groundstate ordering (fig. 3.1c)
with modes from the supercell of the RT structure (fig. 3.33). Frequencies (in cm−1) are ordered according to their activity (Raman or infra-red)
and their irreps. The label in braces behind the irreps of the LT structure indicates whether the respective mode also is a Γ mode of the RT structure
(“principal mode”), or if it occurs at a non-zero wavevector (“extra mode”). In case of the RT structure, only irreps for the principal modes are given.
Since the X(Y)-point also has C2h symmetry, the irreps of the extra modes originating from this wavevector necessarily are the same as that of the
corresponding Γ modes of the LT structure. The Y-point refers to (±1/2, ±1/2, 0) in the basis of the reciprocal lattice of the primitive RT structure.
The coordinates of the X-point are (1, 0, 0) in the basis of the reciprocal lattice of the conventional unit cell.106 Parameters for the calculation of the
phonon frequencies of the RT superstructure: See fig. 3.26a.

As an example, the calculated extra Raman active modes of the LT structure and related modes from the
X-point of the RT structure are shown in fig. 3.34.
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FIGURE 3.34: Visualisation of the (calculated) extra Raman active modes of the LT structure and related modes from the RT superstructure (see
fig. 3.33) at the X-point. For a complete listing of the modes of the LT structure and their relation to modes of the RT structure see table 3.5.
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3.4.3 Raman scattering in Cu4O3

While the monoclinic CuO phase of copper oxides is rather well studied in terms of its Raman spectroscopic
properties,xii only few articles deal with Raman scattering in tetragonal Cu4O3.23,118 This section is dedicated
to the analysis of the Raman active modes and their light scattering properties.

Experimentally grown Cu4O3 samples Cu4O3 (paramelaconite) was discovered in 1870 as a mineral in
the Copper Queen mine located at Bisbee (Arizona, US).23 A first crystallographic determination of its
structure was done by Frondel [205], and another by O’Keeffe and Bovin [119]. In recent years the method of
choice for producing thin films of Cu4O3 has been sputter deposition (see Meyer et al. [23], Pierson et al.
[114, 115], and Debbichi et al. [118]). The preferential orientations of these films are (i) (110) (Meyer et al.

FIGURE 3.35: Lattice planes of the conventional cell of Cu4O3 corresponding to the preferential orientations found in Refs. [23, 114].

[23]), (ii) (100) and (001) (Pierson et al. [114]). The corresponding lattice planes are depicted in fig. 3.35.

Determination of the optical absorption gap Eg,abs In fig. 3.36a the calculated optical absorption gap of
Cu4O3 is determined to be Eg,abs = 1.74 eV. Compared to 1.5 eV and 1.37 eV form Meyer et al. [23] and
Wang et al. [88], this implies differences of ∆Eg,abs = 0.24 eV and 0.37 eV, respectively (see figs. 3.36b
and 3.36c). Therefore, agreement is slightly better than in case of the AFM groundstate structure of CuO
(fig. 3.29a). The unbroadened, direction-averaged absorption coefficient is depicted in fig. 3.37: Two energies,
1.45 eV and 1.85 eV, are indicated by vertical lines. The first energy corresponds to the smallest direct
transition energy between valence and conduction band as determined from the k-points used for the BZ
integration. Absorption indeed is very small directly above this energy while it is much larger (103 to 104

times) beyond 1.85 eV. Therefore, the energy value of 1.85 eV is interpreted as a “true” absorption threshold.
The value of 1.74 eV determined for Eg,abs in fig. 3.36a closely resembles the second absorption threshold;
the values differ because the curve in fig. 3.36a is broadened. The first absorption onset at 1.45 eV is smeared
out through the broadening of η = 0.1 eV.
Effective laser excitation energies corresponding to some “typical” laser energies are summarised in

table 3.6.
From the scales in figs. 3.36b and 3.36c it is inferred that the measured optical absorption of Wang et al.

[88] is much larger in the sub-gap region than the optical absorption of Meyer et al. [23]. Phonon-assisted
absorption via a small indirect band gap (particularly at finite temperatures) as well as excitons are considered
as likely reasons for such large absorption at low energies.88 Compared to experiment,88 the GW method
performs worse than the TDDFT calculation which naturally includes excitonic effects. This causes a red-shift
of about 150 meV88 (compared to GW) and brings the thus determined absorption coefficient quite close to the
measured values. Indeed, this might suggest the necessity of accounting for excitonic effects in calculations
of optical spectra for Cu4O3.
xii23, 24, 112, 118, 161, 164, 166, 169–171, 176.
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FIGURE 3.36: (a) Determination of the optical absorption gap Eg,abs from the calculated direction-averaged absorption coefficient αabs,av
f,avd (cf.

eq. (3.47)). Eg,abs is obtained from the intersection of two linear fits of (i) the sub-gap absorption tail, and (ii) the region just beyond the absorption
gap. The resulting value of 1.74 eV annotates the vertical dashed line. (b) Determination of the optical absorption gap Eg,abs from the absorption
coefficient of Meyer et al. [23]. The procedure is the same as in (a). The resulting value of 1.50 eV annotates the vertical dashed line.
(c) Experimental and calculated absorption coefficients from Wang et al. [88, fig. 2a]. Calculations presented in Ref. [88] are based on the PBE+U
method with a value ofU = 5 eV. The experimental absorption gap of 1.37 eV is derived from the intersection of the linear fits of the two absorption
regimes. Eg,abs = 1.61 eV from the GW calculation. Parameters for the relaxation of atomic positions: See fig. 3.38. Parameters for the SCF
calculation (density): Plane-wave cut-off: 550 eV, a 8 × 8 × 8 k-point grid. Parameters for the calculation of the dielectric tensor (non-SCF): 350
bands (valence+conduction), 18 001 points in the energy grid, the broadening parameter for eq. (3.28) is η = 0.1 eV. The k-summation is based on
a fine grid K (16 × 16 × 16) generated with a coarse grid Kp (4 × 4 × 4) and ns = 64 = 43 shifts (ndiv = 4).
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λeff
L (ωeff

L )
Spectral range λL (ωL) ∆Eg,abs(exp) = 0.24 eV23 ∆Eg,abs(exp) = 0.37 eV88

UV 244 (5.08) 233 (5.32) 227 (5.45)
257 (4.82) 245 (5.06) 239 (5.19)
325 (3.81) 306 (4.05) 296 (4.18)
364 (3.41) 340 (3.65) 328 (3.78)

Visible 457 (2.71) 420 (2.95) 402 (3.08)
473 (2.62) 433 (2.86) 414 (2.99)
488 (2.54) 446 (2.78) 426 (2.91)
514 (2.41) 467 (2.65) 446 (2.78)
532 (2.33) 482 (2.57) 459 (2.70)
633 (1.96) 564 (2.20) 532 (2.33)
660 (1.88) 585 (2.12) 551 (2.25)

Near IR 785 (1.58) 681 (1.82) 636 (1.95)
830 (1.49) 715 (1.73) 665 (1.86)
980 (1.27) 824 (1.51) 758 (1.64)
1064 (1.17) 882 (1.41) 808 (1.54)

TABLE 3.6: Typical Raman laser wavelengths (λL) in the UV/visible/near infra-red (IR) range of the electromag-
netic spectrum (http://www.horiba.com/scientific/products/raman-spectroscopy/raman-academy/raman-faqs/
what-laser-wavelengths-are-used-for-raman-spectroscopy/). The “effective laser energy” ωeff

L = ωL + ∆Eg,abs is calculated
with ∆Eg,abs = Eg,abs(η = 0.1 eV) − Eg,abs(exp) and Eg,abs(η = 0.1 eV) = 1.74 eV (see fig. 3.36b). The experimental values for Eg,abs are 1.5 eV
and 1.37 eV for Meyer et al. [23] and Wang et al. [88], respectively. Units for λL (λeff

L ): nm; units for ωL (ωeff
L ): eV.

Raman active modes The decomposition of Raman active modes in tetragonal Cu4O3 in terms of the
contribution of certain “types” of atoms is shown in fig. 3.38. Cu4O3 has space group symmetry D19

4h and
four different types of atoms in the unit cell: Cu(I) at Wyckhoff 8c (C2h symmetry), Cu(II) at Wyckhoff 8d
(C2h symmetry), O(1) at Wyckhoff 8e (C2v symmetry), and O(2) at Wyckhoff 4b (D2d symmetry).206 The
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contribution due to each atom type is given in fig. 3.38. Obviously, only oxygen atoms are involved in the
atomic vibration patterns that allow for Raman activity. Which kind of oxygen atom dominates (O(1) or
O(2)), depends on the respective mode. Only in case of the totally symmetric A1g mode solely the O(1) atoms
constitute the vibrational pattern.
The D4h point group is isomorphic to the factor group of the D19

4h space group. A factor group analysis
yields the Raman active modes A1g ⊕ 2B1g ⊕ 3Eg.23 Choosing the 4-fold rotation axis of the D4h point group
along the z-axis of an orthogonal (x, y, z) coordinate system, yields Raman tensors of the generic form23

RA1g =
(
a 0 0
0 a 0
0 0 b

)
, RB1g =

(
c 0 0
0 −c 0
0 0 0

)
, REg(1) =

( 0 0 e
0 0 0
e 0 0

)
, REg(2) =

( 0 0 0
0 0 e
0 e 0

)
. (3.55)

Since the Eg modes are 2-fold degenerate, the eigenvectors wEg(1),wEg(2) can be chosen arbitrarily in the
degenerate subspace belonging to the respective eigenvalue. In a numerical calculation, the eigenvalue
routine203 will generally not return the eigenvectors in a form suitable for the above (eq. (3.55)) generic
Raman tensors. Then, suitable linear combinations γ1wEg(1) + γ2wEg(2) (γ1,2 ∈ C) must be found in order to
get the tabulated form of the REg ’s.

Energy dependence of the Raman scattering intensity Before addressing Raman scattering properties
of particular crystal surfaces (crystal orientations) of Cu4O3, the general energy dependence of the Raman
intensities will be discussed.
In order not to limit the discussion to a specific mode of A1g ⊕ 2B1g ⊕ 3Eg, Raman powder intensities

I m
powder, that include averages over all possible orientations of the crystal, are adducted for the discussion.

Irrespective of the relative intensities, all modes allowing for Raman activity in principle are visible in the
Raman spectrum.

The dependence of the Raman powder spectrum on λL is portrayed in fig. 3.39a. The laser wavelengths are
λL = 660 nm, 633 nm, 532 nm, 514 nm and 488 nm with an absorption gap correction of 0.37 eV.88 In the
figure, each spectrum is normalised to its maximum intensity, so that the only relevant quantities in this case
are the relative mode intensities. For the two smallest laser wavelengths the totally symmetric Ag mode at
511 cm−1 clearly dominates the Raman spectrum. The only mode visible apart from the Ag mode is the 2-fold
degenerate Eg,3 mode at 483 cm−1. At larger values of λL the Eg,1, Eg,3 modes have intensities comparable
to that of the A1g mode. This observation can be understood from fig. 3.39b. Therein, the Raman powder
intensity I m

powder for the Raman active modes from fig. 3.38 is shown as a function of energy. The (effective)
laser wavelengths used in fig. 3.39a are indicated by vertical lines. For smaller energies (below 2.2 eV), the
powder intensities of the A1g mode and the Eg modes are well separated. While I m

powder increases rather
monotonically for Eg,1, Eg,3 between 2 eV to 3 eV, the Ag intensity assumes a local minimum in this energy
range. At λL = 532 nm, 514 nm and 488 nm the intensities of Eg,1, Eg,3 are very close and only slightly below
that of the A1g mode. However, since I m

powder is the same for Eg(1) and Eg(2) (see eq. (3.55)), and since
the intensity of the 2-fold degenerate Eg counts twice in the Raman spectrum at 310 cm−1, 478 cm−1 and
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FIGURE 3.39: (a) Raman powder spectra for laser wavelengths λL = 660 nm, 633 nm, 532 nm, 514 nm and 488 nm. An absorption gap correction
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L are given in braces. Each spectrum is normalised to the maximum intensity.
Therefore, the relative intensity is the only relevant quantity in this case. (b) Raman powder intensities I m

powder for the Raman active mode from
fig. 3.38 as a function of energy. The effective laser wavelengths from (a) are indicated by the vertical dashed lines and the values are annotated at the
top of the figure. Since for each 2-fold degenerate Eg mode the intensity for Eg(1) and Eg(2) is the same for all energies, only one graph is shown for
each of the three Eg modes. Parameters for the relaxation of atomic positions/calculation of the dynamical matrix at Γ: See fig. 3.38. Parameters
for the SCF calculation (density): A plane-wave cut-off of 550 eV, a 8 × 8 × 8 k-point grid, a displacement length of 0.01Å. Parameters for the
calculation of the dielectric tensor (non-SCF): 350 bands (valence+conduction), 18 001 points in the energy grid, the broadening parameter for
eq. (3.28) is η = 0.1 eV. The k-summation is based on a fine grid K (16 × 16 × 16) generated with a coarse grid Kp (4 × 4 × 4) and ns = 64 = 43

shifts (ndiv = 4). Parameters for the calculation of the Raman intensities: Temperature T = 298 K, broadening for the spectra in (a) ζ = 0.5 cm−1.

483 cm−1, the intensities of some Eg modes indeed can exceed that of the Ag mode (or at least can be of
comparable magnitude). This is the case for λL = 532 nm in fig. 3.39a, although admittedly the difference is
very small.

Angular dependence of the Raman scattering intensity Owing to the tensor nature of the Rm’s, the
Raman scattering intensity of each mode in general depends on the orientation of the crystal (characterised by
Miller’s indices (hkl)) with respect to the incoming laser beam.
Each crystal surface (or likewise lattice plane) is characterised by a surface normal vector n̂surf which is

orthogonal to any vector lying in the surface. Therefore, this normal vector can be constructed from the
indices (hkl) according to

n̂surf ≡ n̂(hkl)surf = (hg1 + kg2 + lg3)/|hg1 + kg2 + lg3 | , (3.56)

where {gi}i=1,2,3 are reciprocal lattice vectors of the crystal structure. Based on the surface normal vector,
each crystal surface can be assigned a local, orthonormal coordinate system xloc, yloc, zloc with xloc ‖ n̂surf:

xloc = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (3.57a)
yloc = (cos θ cos ϕ, cos θ sin ϕ,− sin θ) (3.57b)
zloc = (− sin ϕ, cos ϕ, 0), (3.57c)

with θ = arccos(x(3)loc), ϕ = atan2(x(2)loc, x(1)loc).
The polarisation vectors ein, eout (“in”: ingoing, “out”: outgoing) are constructed with their components

referring to xloc, yloc, zloc (cf. fig. 3.40):

ein = cos φinyloc + sin φinzloc, (3.58a)
eout = cos φoutyloc + sin φoutzloc. (3.58b)
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FIGURE 3.40: Schematic drawing
of the polarisation vectors ein,out and
their relation to the local coordinate
system spanned by xloc, yloc, zloc
with n̂surf ‖ xloc. The angles φin,out
are measured from the yloc-axis.

With this choice of the polarisation vectors, their projection on Rm becomes

I m ≡ I m
hkl(ωL, φin, φout) =

��� [Alocesurf
out

]T
Rm(ωL)

[
Alocesurf

in
] ���2

=

��� [esurf
out

]T [
A T

locR
m(ωL)Aloc

]
esurf

in

���2 , (3.59)

i.e., the tensor Rm(ωL) = (ωL − ωm)4c−4(nm + 1)(2ωm)−1αm(ωL) can be transformed from the global
to the local coordinate system by A T

locR
mAloc, with Aloc = (xloc, yloc, zloc).xiii The polarisation vectors

are chosen in the local coordinate system and, since n̂surf ‖ xloc, these vectors are of the form esurf
in,out =

(0, cos φin,out, sin φin,out), where the angle φin,out is measured from the yloc-axis.
In summary, the procedure for calculating I m

hkl
is:

(i) Determine the Miller indices (hkl) of the crystal orientation of interest.
(ii) Determine the surface normal n̂surf from eq. (3.56).
(iii) Based on n̂surf , obtain the local coordinate system xloc, yloc, zloc through eq. (3.57).
(iv) Choose the polarisation angles φin, φout and deduce the polarisation vectors ein, eout using eq. (3.58).
(v) Use the polarisation vectors to project out the desired elements from the Rm’s.
A common practise is to choose the polarisation vectors either collinear (ein ‖ eout) or orthogonal

(ein ⊥ eout). Letting φ = φin = φout, the φ-dependence of I m
hkl
= |[eout]TRmein |2 can be parametrised for

some surface orientation (hkl). In the parallel scattering configuration the polarisation vectors are ein = eout =

cos φyloc + sin φzloc, while in the perpendicular scattering configuration eout = − sin φyloc + cos φzloc ⊥ ein,
such that [eout]T ein = 0 ∀φ. The dependence on the “polarisation angle” φ of I m

hkl
for the surface orientations

from fig. 3.35 is collected in table 3.7. It is emphasised that the Miller indices (hkl) refer to the reciprocal
lattice of the conventional tetragonal unit cell.
The expressions for the angular dependence of I m

hkl
in table 3.7 is obtained from (using Dirac’s notation

for the moment)207

I m
hkl(φin, φout) = 〈eout |Rm |ein〉 〈eout |Rm |ein〉∗

= 〈eout |Rm |ein〉 〈ein |[Rm]H |eout〉 = 〈eout |Rm |ein〉 〈ein |[Rm]∗ |eout〉
=

[[eout]TRmein
] [[ein]T [Rm]∗eout

]
,

which follows from the conjugate symmetry of the inner product 〈 f |g〉 = 〈 f |g〉∗, [Rm]H = [Rm]∗ because
[Rm]T = Rm,xiv and the fact the the polarisation vectors are real-valued.
The equations for the A1g mode are particularly interesting because they depend on the relative phase

χab = χa − χb (see caption of table 3.7) of the tensor elements a, b from eq. (3.55). Since generally
χab ≡ χab(λL), it appears instructive to investigate the laser excitation energy dependence. This is done in
fig. 3.41 where I m

hkl
is displayed for (hkl) = (100) (ein ‖ eout) and (hkl) = (110) (ein ⊥ eout). From table 3.7,

for (hkl) = (110) and ein ⊥ eout (right part of fig. 3.41), the influence of changes in χab due to λL is simply a
xiii The vectors xloc, yloc, zloc form the columns of the matrix (xloc, yloc, zloc).
xiv [Rm]H is the hermitian conjugate of Rm, i.e., its conjugate-transpose.
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FIGURE 3.41: I m
hkl

of the A1g mode for several laser wavelengths λL. An absorption gap correction ∆Eg,abs = 0.37 eV88 is used and the
effective laser wavelengths λeff

L are given in braces behind λL (see table 3.7). Parameters for the calculations: See fig. 3.39.

scaling of the total intensity, since the 2 |a| |b| cos χab factor only occurs in the braces and has no separate
φ-dependence. The φ-dependence in case of (hkl) = (100) and ein ‖ eout, however, is more intricate. The
term containing cos χab itself depends on φ and is additive to |a|2 sin4 φ+ |b|2 cos4 φ. Therefore, its influence
is not just an overall scaling, but a modification of the intensity for certain angles, which is readily observed
in the left part of fig. 3.41. Indeed, considerable influence of λL on the overall shape of I m

hkl
as a function of

φ is observable.
In fig. 3.42 the angle dependence of I m

hkl
is shown for all Raman active modes form fig. 3.38. The same

scattering configurations as in fig. 3.41 are used. A laser wavelength of 633 nm is assumed and an absorption
gap correction of ∆Eg,abs = 0.37 eV88 is applied (λeff

L = 532 nm). I m
hkl

is calculated for a finite number of
angles and, in order to verify the correctness of the expressions listed in table 3.7, the resulting data points are
fitted with the suitable equations.

68



3.4 Raman spectroscopic properties of CuO and Cu4O3

0 120 240 360
0.5

0.0

0.5
×10 1 Eg, 1(1) @ 310 cm 1

0 120 240 360
0

2

4

×10 1 Eg, 1(2) @ 310 cm 1

0 120 240 360
0.0

0.5

×10 1 B1g, 1 @ 433 cm 1

0 120 240 360
0.5

0.0

0.5

in
te

ns
ity

 / 
ar

b.
 u

ni
ts ×10 1 Eg, 2(1) @ 478 cm 1

0 120 240 360
0

1

2

×10 2 Eg, 2(2) @ 478 cm 1

0 120 240 360
0.5

0.0

0.5
×10 1 Eg, 3(1) @ 483 cm 1

0 120 240 360
angle / degree

0.0

0.5

1.0
Eg, 3(2) @ 483 cm 1

0 120 240 360
angle / degree

3

4

A1g @ 511 cm 1

0 120 240 360
angle / degree

0

2

×10 1 B1g, 2 @ 628 cm 1

L = 633 nm  eff
L = 532 nm  @ (100)

(a) (hkl) = (100) and ein ‖ eout.

0 120 240 360
0

1

2

×10 1 Eg, 1(1) @ 310 cm 1

0 120 240 360
0

1

2

×10 1 Eg, 1(2) @ 310 cm 1

0 120 240 360
0.5

0.0

0.5
×10 1 B1g, 1 @ 433 cm 1

0 120 240 360
0.0

0.5

1.0

in
te

ns
ity

 / 
ar

b.
 u

ni
ts ×10 2 Eg, 2(1) @ 478 cm 1

0 120 240 360
0.0

0.5

1.0

×10 2 Eg, 2(2) @ 478 cm 1

0 120 240 360
0.0

2.5

5.0
×10 1 Eg, 3(1) @ 483 cm 1

0 120 240 360
angle / degree

0.0

2.5

5.0
×10 1 Eg, 3(2) @ 483 cm 1

0 120 240 360
angle / degree

0.0

0.5

1.0
A1g @ 511 cm 1

0 120 240 360
angle / degree

0.5

0.0

0.5
×10 1 B1g, 2 @ 628 cm 1

L = 633 nm  eff
L = 532 nm  @ (110)

(b) (hkl) = (110) and ein ⊥ eout.

FIGURE 3.42: I m
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for (a) (hkl) = (100) and a parallel (ein ‖ eout) scattering configuration, (b) (hkl) = (110) and a perpendicular (ein ⊥ eout)
scattering configuration. An absorption gap correction ∆Eg,abs = 0.37 eV88 is used yielding λeff

L = 532 nm for λL = 633 nm (table 3.6). The black
circles are calculated data points that are fitted (solid black lines) with the adequate expressions from table 3.7. Parameters for the calculations: See
fig. 3.39.
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Raman peak detection: Cu4O3 [Debbichi (2012)]
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FIGURE 3.43: Fit of (some) peaks in the
Raman spectrum from Debbichi et al. [118]
(the laser wavelength is λL = 514 nm). Re-
sults for centring and broadening values of
the peaks are compiled in table 3.8. In order
to get similar values for the centring position
of the peaks like Debbichi et al. [118], it is
necessary to start the fit at 400 cm−1 and to
neglect the small shoulder at ∼460 cm−1.

Comparison to experiment—semi-polarised Raman spectra Experimental measurements for the Raman
scattering intensities have been carried out by Debbichi et al. [118]. A fit of (some) peaks of the experimental
Raman spectrum is given in fig. 3.43 and the values of the peak positions and their broadening are gathered in
table 3.8. In particular the broadening of the peaks is of interest when comparing calculated and measured
Raman spectra. For the calculation of the spectra the broadening value of the A1g mode (ζ = 7.8 eV) will be
used.

peak position ω0 / cm−1 peak broadening / cm−1

peak irrep fitted Ref. [118] γ ζ = γ/2
− Eg,1 − 318 − −
1 Eg,3 510.8 510 53.1 26.6
2 A1g 541.1 541 15.6 7.8
3 B1g,2 650.0 651 14.2 7.1

TABLE 3.8: Determination of (some) experimental Raman peak
positions and broadening parameters from Debbichi et al. [118] (see
fig. 3.43). Each peak is fittedwith a Lorentzian of the from Iγ(ζ )(ω) =
I0 +2A/π ×γ/(4(ω−ω0)2 +γ2) = I0 +2A/π ×(2ζ )/(4(ω−ω0)2 +
(2ζ )2). The relation between the broadening parameters is γ = 2ζ .

In Ref. [118] Cu4O3 samples are grown by magnetron sputtering and for details about the growth the
reader is referred to Pierson et al. [114]. However, no detailed information is given about the orientation
of the sputtered samples. Since sputter deposition in case of Cu4O3 is known to deliver well-orientated
samples,23,114,115 a well-defined orientation can be assumed in case of Debbichi et al. [118]. It will therefore
be supposed that the orientations are the same as in Pierson et al. [114] ((hkl) = (100), (001)).
Since apart from that, no specific choices for the polarisation vectors ein, eout are given,118 it shall be

assumed that only the ingoing laser beam is polarised and the outgoing beam is completely unpolarised.208 In
order to calculate this, the Raman scattering intensity must be averaged over the polarisation angle φout for a
fixed choice of φin. An equation describing this would be

I m,av
hkl
(ωL, φin) =

∫ 2π

0

dφout
2π

I m
hkl(ωL, φin, φout), (3.60)

where the factor (2π)−1 is for normalisation. As the thus obtained intensity I m,av
hkl
(φin) is solely dependent

on the polarisation of the ingoing photon (and not on that of the outgoing photon), the resulting spectra
will be referred to as “semi-polarised”. A schematic drawing of the averaging can be found in fig. 3.44.
Similarly, as in table 3.7, the Raman scattering intensity averaged according to eq. (3.60) can be parametrised
in terms of the polarisation angle φin. For the surfaces with Miller indices (hkl) = (100), (001), (110)23,114
the corresponding expressions for the irreps A1g, B1g, Eg(1), Eg(2) are listed in table 3.9.
Obviously, the (001) surface can be ruled out, because the Eg modes are not detectable for any choice

of the polarisation vectors ein, eout (cf. eq. (3.55) and table 3.7). However, these modes clearly occur in
the experimental spectrum as follows from, e.g., fig. 3.43 and tables 3.8 to 3.10.118 Furthermore, the (110)
surface found by Meyer et al. [23] is also out of question, since the B1g modes are not visible for this surface
orientation. From tables 3.8 and 3.10, the B1g modes are measured by Debbichi et al. [118], indeed.

In table 3.9 the φin dependence of eq. (3.60) is compiled for surface orientations (hkl) = (100), (001), (110).
In what follows, Raman spectra for different choices of the φin polarisation angle will be computed for the
(100) surface. The goal is to investigate if the spectrum presented in Ref. [118] can be obtained based on the
assumptions made about the experimental conditions in this paragraph.
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φin

yloc

zloc

ein

FIGURE 3.44: Schematic drawing of the
averaging over the outgoing polarisation (red-
coloured arrows) vectors for fixed ingoing po-
larisation (eq. (3.60)).

I m,av
hkl
(φin)

irrep (100) (001) (110)
A1g

1
2 [ |a |2 sin2 φin + |b |2 cos2 φin] 1

2 |a |2 1
2 [ |a |2 sin2 φin + |b |2 cos2 φin]

B1g
1
2 |c |2 sin2 φin

1
2 |c |2 0

Eg(1) 0 0 1
4 |e |2

Eg(2) 1
2 |e |2 0 1

4 |e |2

TABLE 3.9: φin dependence of eq. (3.60) for some surface orientations (hkl). For the choice of the local coordinate system xloc, yloc, zloc the
reader is referred to table 3.7. The ingoing and outgoing polarisation vectors are written as ein,out = cosφin,outyloc + sinφin,outzloc.
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FIGURE 3.45: Semi-polarised Raman spectra (black solid line) for the surface orientation (hkl) = (100). All spectra are renormalized with
respect to the highest peak. Different polarisation angles of the ingoing photon (φin) are considered. The angle is measured from the yloc-axis (see
table 3.7). The experimental spectrum from Debbichi et al. [118] is also included (red solid line). Additionally, the calculated spectrum is shifted
by 30 cm−1 (green solid line). The Raman intensity is expressed in arbitrary units. Parameters for the calculations: See fig. 3.39.
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In fig. 3.45 semi-polarised Raman spectra for a (100) surface are compared to the experimental spectrum
from Debbichi et al. [118]. Different polarisation angles of the ingoing photon (φin) are considered, where
the angle is measured from the yloc-axis (see table 3.7). Only angles in the range [0, π) are considered, since
the functions describing the φin dependence in table 3.9 for (hkl) = (100) are π-periodic. Indeed, for some
angles φin agreement with respect to the relative intensities is reasonable (e.g., below 60° and above 120°).
This particularly obvious when considering the spectra shifted by 30 cm−1 (this is the difference between the
calculated and the measured frequency118 of the A1g mode; see table 3.10).
From table 3.9 it follows that the intensities of the A1g, B1g modes depend on the angle φin, while that

of the Eg modes is constant. Therefore, the relative intensities may change significantly when varying
the polarisation angle of the ingoing photon. This particularly can “spoil” the dominance of the A1g
mode found in experiment. Obviously, it would be of great value to have measured data available for the
orientation/polarisation dependence of the Raman scattering intensity of Cu4O3.

3.4.4 Raman scattering in Cu4O3 under hydrostatic pressure

While so far Raman scattering properties of Cu4O3 have been investigated for the equilibrium lattice constants
(table 3.1), in this section their behaviour under hydrostatic pressure will be discussed.

Pressure dependence of the phonon modes At first, the evolution of the Raman and infra-red active
modes with increasing values of the hydrostatic pressure P exerted on the unit cell will be studied. In fig. 3.46a
the pressure dependence of the Raman active modes will be assessed. For the functional relationship between
ωm and P its is assumed that ωm(P) ≈ ωm(P = 0) + [∂Pωm |P=0]P + 1

2 [∂2
Pωm |P=0]P2, which is found to

provide a decent description. Values obtained for the linear coefficients are compiled in table 3.10.
Introducing the (dimensionless) reduced volumeΩ′P = ΩP/ΩP=0, where the subscript “P” merely indicates

that a volume compression results in non-zero pressure (Ω′
P=0: equilibrium volume), a similar parametrisation

is: ωm(Ω′P) ≈ ωm(Ω′P = 1) + [∂Ω′Pωm |Ω′P=1]Ω′P + 1
2 [∂2
Ω′P
ωm |Ω′P=1]Ω′2P. This form will be useful when

discussing the differences of calculated and measured frequencies.
The highest pressure considered for Cu4O3 is 7.6 GPa. For higher values of P the structure is found to be

unstable.

ωm(Ω) ωm (Ref. [118])
irrep ΩP=0 Ωexp

∂ωm
∂P calculated measured

Raman active modes
A1g 511 527 7.1 521 541
B1g,1 433 450 7.6 448 −
B1g,2 628 644 6.9 627 651
Eg,1 310 320 5.4 321 318
Eg,2 478 491 3.7 484 −
Eg,3 483 494 5.5 506 510

infra-red active modes
A2u,2 126 125 <0.5 127 −
A2u,3 230 234 1.4 224 −
A2u,4 308 318 4.5 309 322
A2u,5 564 583 8.4 576 −
A2u,6 638 657 7.6 649 −
Eu,2 52 51 <0.5 50 −
Eu,3 101 100 <0.5 99 −
Eu,4 120 120 <0.5 121 −
Eu,5 160 159 <0.5 168 164
Eu,6 206 208 1.0 214 212
Eu,7 436 449 6.9 454 463
Eu,8 515 530 6.8 538 548
Eu,9 578 594 5.5 603 607

TABLE 3.10: Phonon mode frequencies
ωm at P = 0 GPa (in cm−1) and their first-
order changewith pressure (slope) ∂ωm/∂P
(in cm−1/GPa; see fig. 3.46a). Addition-
ally, the frequencies for the experimental
volume119 (Ωexp) are given. From the ac-
curacy of the calculation (. 1 cm−1 forωm),
only slopes with absolute values well above
0.5 cm−1/GPa are reliable. These values
are indicated by “< 0.5”, irrespective of the
sign of the slope. Frequencies from Deb-
bichi et al. [118] (calculatedwith theLDA+U
method with U, J=7.5 eV and 0.98 eV, and
measured) are listed for comparison.

In table 3.10 frequencies and slopes ∂ωm/∂P (form fig. 3.46a) are summarised. For comparison, calculated
and measured frequencies from Debbichi et al. [118] are also listed. The frequencies of all Raman active
modes shift upwards with increasing pressure p with slopes ∂ωm/∂P of at least 3.7 cm−1/GPa (Eg,2). In case
of the infra-red active A2u modes all but one increase in frequency with rising pressure values. While the
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FIGURE 3.46: (a) Raman active modes A1g, B1g, Eg as a function of pressure. (b) Raman active modes A1g, B1g, Eg as a function of the
volume ratio Ω′P = ΩP/ΩP=0 (reduced volume). For each frequency a fit with a second-order polynomial is performed. The unit of the linear
coefficient ∂ωm/∂P is cm−1/GPa, and that of the quadratic coefficient 1

2∂
2ωm/∂P2 is cm−1/GPa2. The unit of the coefficients ∂ωm/∂Ω′P and

1
2∂

2ωm/∂Ω′2P is cm−1. Parameters for the calculations: See fig. 3.38.

A2u,1 mode displays negligible change with pressure, higher frequency modes have slopes ≥ 1.4 cm−1/GPa.
Eu modes with frequencies smaller than 160 cm−1 (Eu,5) have slopes below 0.5 cm−1/GPa. Only modes with
frequencies larger than that of the Eu,6 mode (206 cm−1) have slopes well above 5 cm−1/GPa.
Indeed, calculated frequencies from Ref. [118] (see table 3.10) in many cases compare better to their

measured frequency values than the frequencies obtained in this work with the GGA+U method (U, J=7.5 eV
and 0.98 eV). However, their lattice parameters underestimate experimental valuesxv by 4.1 % and 2.6 % for
a, c, which on the one hand is large, but on the other hand is a typical result (concerning the trend) for the
LDA which tends to overbind. On the contrary, the GGA+U method results in differences of < 1 % (see
table 3.1). These observations do not qualify any method over the other. It seems that a decent description
of the vibrational properties of a solid does not necessarily presuppose a pre-eminent description of its
structural parameters, and vice versa. Altogether, this underlines the complexity of Cu4O3 in terms of a
decent theoretical description.

Remembering fig. 3.45, the experimental peak positions in the Raman spectrum can (partly) be reproduced
by shifting the calculated spectrum by 30 cm−1 (this amounts to the difference of the calculated A1g mode
frequency at 511 cm−1 and the measured frequency at 541 cm−1). Obviously, from fig. 3.46a, the Raman

xv Experimental values for the lattice parameters are:119,205: a = 5.837Å and 5.83Å, c = 9.932Å and 9.88Å.
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3.4 Raman spectroscopic properties of CuO and Cu4O3

active modes are very sensitive to the external pressure, or likewise to a change in volume due to compression
of the unit cell in accordance with an isotropic stress tensor. The ratio between the experimental volume and
the calculated equilibrium volume is 0.982.xvi Based on the fitting result from fig. 3.46b, this means that
for this volume the frequency of the A1g mode is 526 cm−1, which halves the difference between calculated
measured frequency. Indeed, this number can only be a rough estimate because most likely the experimental
structure from O’Keeffe and Bovin [119], when used as input for a DFT calculation (with GGA+U and
U, J = 7.5 eV and 0.98 eV), will not result in an isotropic stress tensor (meaning that the pressure acting on
the unit cell is not hydrostatic). In any case, this suggests that the strong underestimate of the measured
frequencies118 (at least for the Raman active modes) results from an overestimate of the lattice parameters
(the unit cell volume by roughly 2 %) compared to experiment.119

Equilibrium volume vs experimental119 volume Before investigating the influence of hydrostatic pressure
on the Raman scattering intensities, the difference between the equilibrium structure (P = 0 GPa) and a
structure based on the experimental lattice constants119 are discussed.
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FIGURE 3.47: (a) Same as fig. 3.38, but the experimental lattice parameters from O’Keeffe and Bovin [119] are used for the calculation. (b) Same
as (a), but for the equilibrium structure with P = 0 GPa (reproduced from fig. 3.38). Parameters for the calculations: See fig. 3.38.

In fig. 3.47 the displacements of the Raman active modes are decomposed into contributions from the
different “types” of atoms (see fig. 3.38). This is done for (a) the experimental lattice parameters,119 and
(b) the P = 0 GPa structure (reproduction of fig. 3.38). Indeed, contributions of the different atom types to
the mode displacement vectors are virtually the same for both calculations. Solely in case of the Eg,2 modes a
larger contribution through the O(2) atoms may be stated for the calculation featuring the experimental lattice
parameters from O’Keeffe and Bovin [119]. On the contrary, frequencies obtained for both volumes differ by
at least 10 cm−1 (for the Eg,1 modes) and at most by 17 cm−1 (for the B1g,1 mode).
Frequencies computed with the experimental lattice parameters on average differ by ∼10 cm−1 from the

measured frequencies of the Raman active modes in table 3.10. This can be taken as an error bar for the
frequencies and may serve as an estimate of the “physical accuracy” of the method in terms of a description
of the vibrational properties of Cu4O3.xvii The frequencies of the Raman active as well as of the infra-red
active modes of both volumes are listed in table 3.10.
In style of fig. 3.45, for φin = 30°, the Raman spectra for both the P = 0 GPa structure and the structure

with the experimental lattice parameters119 are compared to the measured one from Debbichi et al. [116]
in fig. 3.48a. Using the experimental lattice parameters instead of the equilibrium structure, indeed results

xvi For the conventional unit cell the volume is Ω = a2c. With the values from table 3.1 it follows that Ωexp/ΩP=0 =
(5.837Å)2×9.932Å
(5.873Å)2×9.990Å

= 0.982.
xvii This interpretation was brought to me in discussions with Prof. Simone Sanna and Prof. Christian Heiliger.
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FIGURE 3.48: (a) Semi-polarised Raman spectrum in style of fig. 3.45 for (left) the P = 0 GPa structure and (right) the structure with experimental
lattice parameters.119 All spectra are renormalized with respect to the highest peak. The polarisation angle of the ingoing photon is φin = 30°.
The laser wavelength is λL = 514 nm with absorption gap corrections of 0.37 eV (left; λeff

L = 446 nm), and 0.4 eV (right; Eg,abs = 1.77 eV;
λeff

L = 441 nm).88 The experimental spectrum from Debbichi et al. [118] is also included. Vertical dashed lines indicate the measured Raman
frequencies from table 3.10. The grey-shaded regions in the right panel are “error regions” of width ±10 cm−1 and illustrate the “physical accuracy”
of the method. (b) Raman powder intensities I m

powder vs energy for the P = 0 GPa structure and the structure with experimental lattice parameters.
The frequencies of the modes from both structures are annotated in the figures. Since for each 2-fold degenerate Eg mode the intensity for Eg(1)
and Eg(2) is the same for all energies, only one graph is shown for each of the three Eg modes. Parameters for the calculations: See fig. 3.39.

in a considerable improvement of the peak positions in relation to experiment. For the Eg,1, B1g,2 modes
the experimental frequencies fall into the error regions (grey-shaded areas in fig. 3.48a) bounded by the
just-mentioned ±10 cm−1.
The differences in energy dependence of I m

powder of both structures are shown in fig. 3.48b. Generally
speaking, the curves resulting from the calculation with the experimental lattice parameters are essentially
offset along the energy axes compared to those from the equilibrium structure.
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3.4 Raman spectroscopic properties of CuO and Cu4O3
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L are given in braces. Each spectrum is normalised to the maximum
intensity of the spectrum at p = 0 GPa. Parameters for the calculations: See fig. 3.39.

Raman scattering intensities under hydrostatic pressure For pressures in the range 0 GPa to 7.6 GPa
Raman powder spectra are shown in fig. 3.49. The laser wavelengths λL = 633 nm, 532 nm and 514 nm with
an absorption gap correction of 0.37 eV88 are considered. The underlying assumption is that the optical
absorption gap for higher pressures is overestimated by the same amount (see figs. 3.36a and 3.36c), as it is
the case for the equilibrium (P = 0 GPa) structure. In order to follow the changes in the relative intensities,
each powder spectrum is normalised to the highest peak in the spectrum at P = 0 GPa.

Quite different features of the Raman spectra are observed at different laser wavelengths: For λL = 633 nm,
the A1g mode has the highest peak and its Raman intensity increases with rising P-values, while the Eg,1, Eg,3
modes lose intensity. Indeed, the Eg,1 mode is barely visible for P = 0 GPa and is completely absent at
higher pressures. In case of λL = 532 nm, the modes Eg,1, A1g start with almost equal intensity. When
increasing the pressure, the Eg,1, A1g mode intensities are gradually lowered, thereby essentially maintaining
relative intensities up to P = 4.5 GPa. For larger pressures, the A1g mode gains intensity while the Eg,1 mode
intensity keeps shrinking. As a result, for pressures ≥ 5.6 GPa, the A1g mode dominates the Raman powder
spectrum. Finally, for λL = 514 nm, the order of peaks with the major intensities at vanishing pressure is
I

Eg,1
powder ≈ I

Eg,3
powder < I

A1g
powder. The relative intensities are essentially unchanged when increasing the pressure,

but intensities compared to the P = 0 GPa case are lowered.
A more detailed view on the Raman powder intensities I m

powder vs energy is provided in fig. 3.50. The
effective laser wavelengths used in fig. 3.49 are indicated by vertical dashed lines. For many modes, the
change of I m

powder with pressure is anything but trivial (e.g., many crossings of the curves) and strongly
depends on energy. In some selected cases definite trends can be observed: From 2.25 eV to 3.25 eV the
intensity of the Eg,1 mode clearly decreases with increasing pressure. The same holds below 2.25 eV for the
Eg,3 mode. The order of intensities can be the same as that of the pressure values (meaning that if pressure
increases, the intensity increases as well); indeed, for the A1g this is the case for the energy range bounded by
the wavelengths 532 nm and 459 nm, while intensities are ordered contrariwise to the pressure values just
below 532 nm.
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3 Results and Discussion
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4 Conclusion

In the present work the vibrational properties of all copper oxide phases (Cu2O, Cu4O3, and CuO) are
investigated by ab initio methods. Furthermore, the Raman scattering properties of Cu4O3 and CuO are
subject to a detailed analysis.
Throughout the analysis of the phonon dispersions in sections 3.3.1 and 3.3.2 (which indeed comprises a

rather technical part of this work) special attention is paid to the treatment of the dipole-dipole contributions
to the FCs/dynamical matrices present for polar semiconductors/insulators. In the long wavelength limit,
dipoles created by atomic displacements induce macroscopic electric fields that alter the phonon frequencies
of some modes (infra-red active modes) near the BZ centre. The inclusion of dipole-dipole effects is called
“dipole-dipole corrections” in this work. In order to treat this effect, two methods have emerged in the
literature.19,43 While Gonze’s method19 is traditionally used in conjunction with dynamical matrices from
DFPT,39,40,44 Wang’s method43 is the usual technique used within the framework of the direct method in the
literature.43,45–53 It is therefore shown that the method due to Gonze and Lee [19] can also be used together
with dynamical matrices from the direct method. This actually is not too surprising: The direct method gives
exact dynamical matrices (within the numerical accuracy of the method) at wavevectors that are reciprocal
lattice vectors of the chosen supercell.30,31 In the basis of the unit cell, these wavevectors comprise a grid that
(homogeneously) samples the BZ. From a technical point of view, this puts me in the same positions as in the
case of DFPT calculations for dynamical matrices. With DFPT, dynamical matrices are directly determined
for a predefined set of q-vectors.17–19 Therefore, from this point on, the technicalities are the same for both
methods.
Gonze’s method19 and Wang’s method43 are compared in terms of their description of the phonon

dispersion of the prototype material CaF2 (section 3.3.1). In this study, extensive use is made of the method
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FIGURE 4.1: Phonon dispersion
of CaF2 from dynamical matrices
evaluated on a 43 qc-grid. Com-
parison of Gonze’s19 and Wang’s43
method for the inclusion of dipole-
dipole corrections and experimental
data from Elcombe and Pryor [126]
and Schmalzl et al. [127]. Repro-
duced from fig. 3.5.

of Lloyd-Williams and Monserrat [20]. Their approach allows to calculate dynamical matrices on a grid of
wavevectors from rather small supercells using the direct method.

Indeed, Gonze’s method is superior in terms of the convergence of the optical phonon bands with respect
to the number q-points used in the Fourier interpolation (cf. fig. 4.1). The key to this observation is that
Gonze’s method circumvents the issue of slow convergence of the Fourier transform of the FCs by only
calculating it for some “sufficiently short-ranged” FCs and treating the long-ranged part in a different way
(Ewald summations).19 Wang’s method can introduce artificial features in the phonon bandstructure along
some directions in reciprocal space. This is exceptionally obvious when interpolated phonon frequencies are
compared to exact frequencies at wavevectors not in the q-grid used for the Fourier interpolation.

Similar considerations are also made for the copper oxides (section 3.3.2). Reasonable agreement between
calculated and measured (Reichardt et al. [163]) phonon bandstructures is achieved for the room temperature
structure of monoclinic CuO. In some cases, it is overwhelmingly obvious that dipole-dipole interactions
indeed must be included in the calculation of the phonon dispersion in order to achieve agreement with
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experiment (cf. fig. 4.2). Otherwise, some bands will be deficiently described. While generally only some
optical branches are influenced by the dipole-dipole corrections, it may happen (although these cases are
rare) that also acoustic phonon branches are affected by the corrections. For the anisotropic material CuO,
neglecting the dipole-dipole corrections or using Wang’s method, can lead to negative eigenvalues of the
dynamical matrix for some acoustic branches near the Γ point. By contrast, Gonze’s method yields correct
frequencies of these phonon modes because it correctly accounts for the long-rangedness of the interactions
included in the FCs for polar materials.

The full phonon dispersion of the copper oxides is calculated on the basis of the direct method. In case of
monoclinic CuO, the antiferromagnetic groundstate structure22 is also considered for the phonon calculations
which so far has not been the case in literature. Particularly good agreement is found for the lattice contribution
to the heat capacity and entropy for Cu2O and CuO in comparison to experiment.
The second objective of this work is to investigate the Raman scattering properties of CuO and Cu4O3

(sections 3.4.2 and 3.4.3). In its room temperature phase CuO is quite extensively studied. In the low
temperature regime (T < 213 K),22 additional peaks arise in the Raman spectrum compared to room
temperature.24 Only one of the extra Raman active modes (at ∼240 cm−1) is well documented in the literature,
presumably because it exhibits the largest intensity of all extra modes.24 In order to contribute to the
understanding of the observed phenomena for CuO, the Raman spectra and corresponding phonon modes of
the room temperature phase and the low temperature structure (that constitutes the AFM groundstate22) are
analysed (section 3.4.2). According to the calculations, more additional modes than observed in experiment
arise in the Raman spectrum of the low temperature structure. The extra modes from the measurements,24
however, can be assigned to calculated phonon modes, indeed. It is further shown that the additional Raman
active modes (and some additional infra-red active modes) trace back to the X-point of the room temperature
structure.i The modes become Raman active due to a change in symmetry resulting from a change in magnetic
ordering when temperature passes below 213 K.
Experimental Raman spectroscopic investigations of Cu4O3 have only recently been carried out.23,118 So

far no calculations involving Raman spectroscopy appear to be present in the literature. In this context, angle
dependent Raman intensities are considered for surface orientations found for samples grown by sputter
deposition.23,114 By considering specific scattering geometries, calculations can essentially reproduce the
relative peak intensities observed in the measured Raman spectrum (see section 3.4.3).118

As a further point (section 3.4.4), the dependence on hydrostatic pressure P of the Raman active modes is
investigated. All Raman active modes display changes in frequency of at least ∂ωm/∂P = 3.7 cm−1/GPa.
Therefore, differences of calculated and measured lattice parameters < 1 % can lead to rather large differences
between calculated andmeasured phonon frequencies. Indeed, agreement between calculated and experimental
frequencies is best, if the experimental lattice parameters119 are used in the calculations (fig. 4.3). While
ab initio calculations can give a decent account of the vibrational properties of materials (in particular, if
experimental lattice parameters are used in the calculations), the much more difficult part is the description of

i The label of the q-point is adopted from by Kuz’menko et al. [174] and refers to the conventional cell choice for the monoclinic
unit cell of the room temperature structure.106

80



200 400 600

Raman shift / cm
-1

In
te

n
si

ty
 /

 a
rb

. 
u

n
it

s

30 deg (446 nm)
exp. (smoothed)

Equilibrium volume (P=0 GPa)

200 400 600

Raman shift / cm
-1

30 deg (441 nm)
exp. (smoothed)

Exp. volume  [O'Keeffe (1978)]

error
regions

E g,
1

 (3
20

)

E g,
3

 (4
94

)

A
1g

 (527)

B
1g,2

 (644) FIGURE 4.3: Semi-polarised Ra-
man spectra of Cu4O3 for (left)
the P = 0 GPa structure and
(right) the structure with experi-
mental lattice parameters.119 Repro-
duced form fig. 3.48a.

the optical absorption spectra. This directly transfers to the calculation of the Raman scattering intensities.
The independent particle approximation used in this work really neglects many contributions to the dielectric
function: Neither does it include local field effects (loosely speaking, these are changes in the density on a
microscopic scale due to an applied external electric field) nor does it account for excitons. Both effects might
be important for a physically adequate description of optical absorption. However, not many theoretical studies
involving Raman spectroscopy include the laser frequency dependence of the Raman intensities,12,209–212
and even fewer consider excitonic effects.12 Since the dependence of Raman intensities on the laser energy
can be substantial, the IPA offers a convenient method which comes with a maintainable computational
effort. Indeed, if the number of atoms to be considered for the physical system at hand is rather large (&100?)
it presumably is the only feasible method. Generally, the independent particle framework gives a good
“first-order impression” of the frequency dependence of the Raman intensities, but inclusion of excitonic
effects might lead to improved comparability to experiment.12 The calculation of Raman spectra is rather
demanding because dielectric functions must be evaluated for several distorted atomic geometries. Inclusion
of local field effects, for instance, would require to resort to the GW method, making the computational effort
“explode”.

Finally, it must be appreciated that a good theoretical description of Raman scattering is based on (a) a good
description of the phonon structure, and (b) a good description of optical absorption. To my mind, the first
point is slightly more essential: The phonon frequencies determine the position of the peaks in the Raman
spectrum, while the peak intensities are driven by optical absorption and the phonon eigendisplacements. In
particular, if the crystal structure is complicated (e.g., many atoms and low symmetry) many peaks will be
visible in the Raman spectrum. If the phonon frequencies compare to within let’s say ∼5 cm−1 to 10 cm−1 to
experiment (and the number of Raman active modes is correct) a valuable contribution to the understanding
of measured Raman spectra is achieved. In case the relative intensities of the modes are also well described,
this can serve as a beautiful example of a combined theoretical and experimental study. Science, like it should
be ...
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