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1. Introduction 

 

1.1. Hypoxic pulmonary vasoconstriction (HPV) 

1.1.1. Physiological relevance of HPV 

In order to guarantee optimal pulmonary oxygen (O2) uptake and to supply tissue with sufficient O2, the 

degree of local pulmonary blood perfusion (Q) is matched to the respective level of ventilation (V)1-4. 

When lung ventilation is impaired locally, constriction of small precapillary pulmonary arteries in this 

area serves as a crucial mechanism to maintain the ventilation-perfusion ratio in the normal range (Figure 

1). This mechanism is called hypoxic pulmonary vasoconstriction (HPV) and is an essential physiological 

reaction of the pulmonary vasculature to match pulmonary blood perfusion to alveolar ventilation during 

acute hypoxia1 (Figure 1). Thus, local alveolar hypoxia, for example due to local obstruction of the 

bronchus by a lung tumor or mucus plug, leads to vasoconstriction of precapillary arteries and 

redistributes perfusion from poorly ventilated areas of the lung to better ventilated areas (Figure 1). 

However, global acute hypoxia, as occurring e.g. in exacerbation of lung diseases can lead to the 

vasoconstriction of most pulmonary arteries and may result in an acute prominent increase of the 

pulmonary arterial pressure (PAP). 

 

Pulmonary arterial
blood flow

Pulmonary venous
blood flow

Ventilation Ventilation
a) b)

Ventilation
c)

Pulmonary arterial
blood flow

Pulmonary venous
blood flow

Ventilation Ventilation
a) b)

Ventilation
c)

 
Figure 1. Ventilation-perfusion matching.  

a) Under physiological conditions, the alveolar ventilation (V) is equal to the perfusion (Q), 
V/Q~1. b) Local obstruction of a bronchus decreases the ventilation resulting in reduction of 
V/Q (V/Q less than 1), and enhancement of the ventilation of neighboring areas of the lung 
(redirecting airflow) increasing the V/Q ratio (V/Q higher than 1). c) HPV leads to the decrease 
of the perfusion of poorly ventilated areas in favor of better ventilated areas, thereby improving 
the ventilation-perfusion matching (V/Q~1) and systemic arterial oxygenation1, 3. 
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In contrast to the pulmonary vessels, most systemic arteries dilate in response to local hypoxia in order to 

provide the hypoxic organ with more O2 by an increase of blood flow1. An exception is the fetal 

vasculature in the placenta5. These vessels, like pulmonary arteries, constrict in response to hypoxia 

redirecting the fetal flow from insufficiently oxygenated areas of the placenta toward regions with better 

maternal perfusion5.  

The trigger for a flurry of investigations in the research area of HPV was the publication of one of the 

most important articles about HPV in 1946 by von Euler and Liljestrand6. They found an increase of PAP 

in cats within few seconds during ventilation with 10.5% O2
6. After that initial finding, HPV has been 

confirmed in different animal species7-9 and humans10. The HPV response differs among animal species 

with regard to the sensitivity to the hypoxic stimulus, as well as a magnitude of the response11, e.g. the 

threshold for HPV in isolated lungs of rats is ~60 mmHg12 and around 75 mmHg in isolated lungs of 

rabbits13. In isolated and perfused rabbit lungs, HPV starts after a few seconds of the acute hypoxic 

challenge and has a biphasic shape. The first maximal increase of mean PAP (mPAP) occurs at ~5 

minutes (first phase), called acute hypoxic response, then a small decline in mPAP is observed, and 

afterwards mPAP again gradually increases with the second maximum of mPAP at ~90 minutes (second 

phase), called sustained hypoxic response9. The same biphasic response occurs in human where mPAP 

increases to a first maximum within 15 minutes and to a second maximum at ~2h3. The biphasic HPV 

response is associated with a biphasic rise in cytosolic (intracellular) calcium ([Ca2+]i) in pulmonary 

artery smooth muscle cells (PASMC)14. However, some studies indicate that the second phase is 

dependent on endothelium and activation of Rho-associated protein kinase (ROCK) and not on a rise of 

[Ca2+]i
15. Activation of ROCK plays a key role in the sustained response of the pulmonary vasculature to 

hypoxia by an increase of the sensitization of myosin light chains (MLC) to [Ca2+]i
15. Other studies do not 

demonstrate the second phase of HPV at all16. The explanation for this discrepancy is still unknown3.   

The trigger of HPV is alveolar hypoxia, since inhalation of a hypoxic gas mixture evokes HVP even in 

conditions when the lungs are perfused with normally oxygenated perfusate or blood9, 17. Local arterial 

hypoxia also can be a trigger of HPV in view of the fact that forward perfusion with hypoxic blood 

stimulates the elevation of mPAP in rats18. In contrast, reverse perfusion of the pulmonary circulation 

with hypoxic blood via the left atrium does not trigger HPV, therefore the venous part of the pulmonary 

circulation can be excluded as a sensor of HPV18. Experiments in the isolated perfused lung9, in 

pulmonary arteries isolated from lungs19 or within lung slices20, as well as in isolated PASMC21 have 

demonstrated that the effector and sensor cell type of HPV is located in precapillary PASMC and that 

HPV does not depend on neural or humoral influences from outside the lung1. Additional confirmation 

that HPV is a physiological adaptive mechanism attributed to the lung itself is shown by a study 

presenting that HPV was preserved in patients after the bilateral lung transplantation22.  
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The role of the endothelium in acute HPV is not clear. Early studies in isolated pulmonary arteries 

demonstrated that removal of the endothelium preserved the acute HPV response, however, later studies 

showed that endothelium-denuded arteries lost the vasoconstrictor response to the acute hypoxic stimulus 

while maintaining a contractile response to other antagonists3. Despite this controversy it is clear that the 

endothelium can modulate the acute HPV response via alterations of the release of vasoconstrictors and 

vasodilators3. In contrast to acute HPV (first phase), in which the role of endothelium is not clear, most 

investigations have found that the endothelium plays an essential role during sustained HPV23, 24. 

Removal of the endothelium significantly attenuates sustained HPV, but does not have any effect on 

[Ca2+]i concentration within the PASMC. This finding suggests that the endothelium regulates Ca2+ 

sensitization of precapillary PASMC during sustained hypoxia23. 

 

1.1.2. Mechanisms of HPV 

Despite the intensive research of the mechanism of HPV in the past decades, the exact O2 sensor and the 

underlying signal transduction pathway have not been fully identified and significant controversy 

remains1, 25. Within the molecular mechanism of HPV, three main parts such as O2 sensors, mediators and 

effectors have been distinguished (Figure 2)3. As possible O2 sensors mitochondria13, 26, 27, nicotinamide 

adenine dinucleotide phosphate (NADPH)-oxidases28, 29, cytochrome P45030 and potassium channels31 

have been proposed. The mitochondria or NADPH-oxidases use O2 as substrate; therefore they could 

directly sense the lack of O2
1, 3. On the other hand, O2 can interact with different proteins, e.g. heme-

containing protein32 or can directly modify the sulphur-containing residues of proteins (including 

organelles and proteins described above)31 leading to reversible alteration of their structure and/or 

conformation that may initiate the HPV signaling pathway1. Many potential O2 sensors have been tested 

in experiments during acute hypoxia. Roth et al.33 provided evidence that a deletion of the heme-

oxygenase-2 (HO-2) gene, an enzyme that catalyses heme degradation, does not abolish HPV in mice. 

The studies on the role of NADPH oxidases in genetically modified mice have demonstrated conflicting 

results. Archer et al. published evidence that knockout of gp91phox, the heme-containing protein of the 

NADPH oxidase, did not have any influence on acute HPV29. In contrast, Weissmann et al. demonstrated 

a significant reduction of the hypoxic response in isolated perfused mouse lungs from mice with genetic 

knockout of the cytosolic p47 subunit of NADPH oxidases, whereas the response to a thromboxane 

mimetic was preserved in those mice28.  

Reactive oxygen species (ROS)13, the cellular redox state34, the adenosine monophosphate (AMP) - 

adenosine triphosphate (ATP) ratio35, and Ca2+ homeostasis have been suggested as mediators of HPV21. 

The effectors of HPV are ion channels (e.g. Kv (potassium) channels), intracellular Ca2+ stores and 

different protein kinases3. In particular, increase of [Ca2+]i concentration is a key event in the HPV 



Introduction  19 

response3. [Ca2+]i can be increased by both influx of extracellular Ca2+ via SOCC (store-operated calcium 

channels) and VOCC (voltage operated calcium channels), or release of Ca2+ from intracellular stores 

such as sarcoplasmic reticulum (SR) via RyR (ryanodine-sensitive receptors)36 during acute hypoxia. 

Ultimately, the acute hypoxia-induced increase of cytosolic [Ca2+]i
 concentration activates myosin light 

chain kinase causing actin-myosin interaction and PASMC contraction. Mitochondria can be O2 sensor 

organelles and can mediate HPV via the alteration of the ROS production, [Ca2+]i
 and ATP homeostasis1, 

2, 13, 36-38. One obvious and important conclusion that can be made from the available literature about HPV 

is that PASMC contain all three parts of the HPV mechanism: the initial sensor of hypoxia, its mediator 

and the effector mechanism1, 3.  

 
 

Figure 2. Mechanisms of acute hypoxic pulmonary vasoconstriction (HPV).  
The trigger, acute hypoxia, is sensed by various possible O2 sensors and translated by different 
mediators to effectors ultimately resulting in actin-myosin interaction within PASMC, and 
finally leading to the vasoconstriction of the small precapillary pulmonary arteries1, 3. 
Abbreviations: AMP/ATP ratio - adenosine monophosphate/adenosine triphosphate ratio; 
Ca2+ - calcium; Kv channels - potassium channels; NADPH oxidase - nicotinamide adenine 
dinucleotide phosphate-oxidase; O2 - oxygen; ROS - reactive oxygen species. 

 

1.2. Pulmonary hypertension (PH) 

1.2.1. Definition and characteristics of PH 

In contrast to acute hypoxia, chronic hypoxia results in pathological alterations of the pulmonary 

vasculature and can lead to the development of pulmonary hypertension (PH)1, 25, 39-41 (Figure 3). Chronic 

hypoxia may be the result of respiratory diseases such as COPD (Chronic Obstructive Pulmonary 

Disease), lung fibrosis, or residence in high altitude and etc1. At an altitude of 3000m, which is often 
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encountered in ski resorts, the inspired pO2 (partial pressure of O2) is only about 70% of that at sea level 

and at an altitude of 5000m, the highest point at which humans can live, the inspired pO2 is 50% of that at 

sea level42. By definition, a mean PAP greater than 25 mmHg at rest is considered as PH43. Besides 

chronic hypoxia, a number of different pathological stimuli can lead to the development of PH44. 

Therefore, PH is defined as a severe progressive disorder which is the outcome of different causes and is 

characterized by the extensive narrowing of the pulmonary vascular bed, leading to an increase in 

pulmonary vascular resistance, which ultimately produces compensatory right ventricular (RV) 

hypertrophy and may result in heart failure and premature death45.  

 
 

Figure 3. Effect of acute and chronic hypoxia on the pulmonary vasculature.  
Acute hypoxia is a trigger of HPV for optimization of the ventilation/perfusion ratio. Chronic 
hypoxia leads to pathological thickening of the vascular wall resulting in narrowing of the 
vascular lumen (pulmonary vasculature remodeling), increase of pulmonary pressure and PH25, 

41. HPV is a completely reversible process, whereas pulmonary vasculature remodeling is only 
partially reversible46.  
Green - endothelial cells, red - smooth muscle cells and brown - fibroblasts.  
Abbreviations: HPV – hypoxic pulmonary vasoconstriction; PH – pulmonary hypertension. 

 

Pulmonary arterial hypertension was first described by Romberg in 1881. The term “primary pulmonary 

hypertension” was used to define the clinical features and hemodynamics of patients who had an 

increased PAP without evident etiology of PH47. Primary pulmonary hypertension is now referred to as 

idiopathic pulmonary arterial hypertension (IPAH). IPAH is a very rare disease affecting only a few 

persons per million and most frequently affecting otherwise normal middle aged women48. Prior to the 

development of treatments for PH, IPAH was a fatal disease with a poor prognosis and average survival 

of 2.8 years49. Other forms of PH occur more frequently than IPAH. For example PH can occur in 

50.2%50, 51 of patients with severe COPD which affects approximately 6% of the total population in 



Introduction  21 

USA52. Moreover, PH in COPD is an independent prognostic factor associated with low survival rate53. 

Additionally, 10% of patients with systemic sclerosis which has a rate of approximately about 7-489 

cases per million population, will develop PH54, 55.  

The main histopathological finding in PH is pulmonary vascular remodeling (Figure 4). Pulmonary 

vascular remodeling is an imbalance between proliferation (hyperplasia) and apoptosis, where 

proliferation of endothelial cells (EC), PASMC and fibroblasts is increased, while apoptosis of those cells 

is decreased39, 41. Recently, it has been suggested that in early stages of PH increased apoptosis can be 

initial trigger for the selection of apoptosis-resistant EC56. The impact of different vascular cells on 

pulmonary vasculature remodeling is dependent on the form, severity and stage of PH. In addition, 

pulmonary vascular remodeling is characterized by hypertrophy (increased cell growth) of vascular cells, 

migration of PASMC, as well as recruitment and differentiation of local fibroblasts, pericytes, 

mononuclear cells and EC41. It has been shown that bone marrow-derived cells can be incorporated into 

the pulmonary vasculature (neoplasia)57. Besides these mechanisms, remodeling is aggravated by the loss 

of precapillary vessels58 and in situ thrombosis59. 

 

 
Figure 4. Morphological changes of pulmonary arteries in pulmonary hypertension (PH).  

PH is characterized by pulmonary vasculature remodeling which is a result of thickening of the 
arterial wall. All lung samples are stained by elastic van Gieson where elastic fibres are 
blue/black/brown; nuclei are black/brown; collagen fibers are red; media, epithelia, nerves, 
erythrocytes are yellow. Pictures were made by microscopy with 40x magnification. Blue 
arrows depict medial layer hypertrophy; green arrows depict EC proliferation; red arrows depict 
adventitial layer remodeling. 
Abbreviations: Control - lungs from control (healthy) animals and donor human lung; IPAH - 
idiopathic pulmonary arterial hypertension; Chronic hypoxia - chronic exposure of rats or mice 
to 10% O2 hypoxia; MCT - monocrotaline-induced PH in rats; Hypoxia + SU-5416 - exposure 
of rats to chronic hypoxia combined with SU-5416 injection (VEGF 2 receptor antagonist).  
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Patients with IPAH and other specific forms of PH, e.g. PH associated with left-to-right shunt or human 

immunodeficiency virus (HIV) have a very specific vasculopathy with the appearance of plexiform 

lesions, which consist of a network of vascular channels surfaced by EC that completely obliterate the 

vascular lumen39. 

 

1.2.2 Classification of PH 

The first classification of PH was proposed in 1973 at the international conference on primary PH 

sanctioned by the World Health Organization44, 60, and divided PH only in two categories, primary PH 

with unknown specific causes or risk factors of PH and secondary PH with the presence of specific causes 

or risk factors of PH39. The updated Dana Point classification for PH (2008, the Fourth World 

Symposium on PH) is based on the consensus of an international assembly of experts (Table 1).  

This new classification scheme stratifies PH into 5 groups by considering similarities into 

pathophysiological mechanisms, clinical manifestations, and therapeutic approaches. These groups are: 1st 

- pulmonary arterial hypertension; 2nd - PH associated with left-sided heart diseases; 3rd - PH related with 

hypoxia/lung diseases, 4th - thromboembolic PH and 5th - PH with unclear multifactorial mechanisms44 

(Table 1). In 2013, at the Fifth World Symposium on PH held in Nice (France), a new classification of 

PH was proposed with only minor modifications to the Dana Point classification. However, the exact 

recommendations from this symposium have not yet been published. 
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Table1 Updated Clinical Classification of Pulmonary Hypertension, Dana Point, 200860 

1. Pulmonary arterial hypertension (PAH) 
1.1. Idiopathic PAH 
1.2. Heritable PAH 
1.2.1. BMPR2 
1.2.2. ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia) 
1.2.3. Unknown 
1.3. Drug- and toxin-induced PAH 
1.4. PAH associated with 
1.4.1. Connective tissue diseases 
1.4.2. HIV infection 
1.4.3. Portal hypertension 
1.4.4. Congenital heart diseases 
1.4.5. Schistosomiasis 
1.4.6. Chronic hemolytic anemia 
1.5 Persistent pulmonary hypertension of the newborn 
1’. Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillaryhemangiomatosis (PCH) 
2. Pulmonary hypertension owing to left heart disease 
2.1. Systolic dysfunction 
2.2. Diastolic dysfunction 
2.3. Valvular heart disease 
3. Pulmonary hypertension owing to lung diseases and/or hypoxia 
3.1. Chronic obstructive pulmonary disease 
3.2. Interstitial lung disease 
3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern 
3.4. Sleep-disordered breathing 
3.5. Alveolar hypoventilation disorders 
3.6. Chronic exposure to high altitude 
3.7. Developmental abnormalities 
4. Chronic thromboembolic pulmonary hypertension (CTEPH) 
5. Pulmonary hypertension with unclear multifactorial mechanisms 
5.1. Hematologic disorders: myeloproliferative disorders, splenectomy 
5.2. Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis: 
lymphangioleiomyomatosis, neurofibromatosis, vasculitis 
5.3. Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 
5.4. Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on dialysis 
Abbreviations: BMPR2 - Bone morphogenetic protein receptor 2; ALK1 - activin receptor-like kinase 1 
 

1.2.3. Animal models of PH 

Currently, various techniques are used in different animals to induce experimental PH, including the 

application of pharmacologic and toxic agents [e.g. bleomycin, monocrotaline (MCT), and smoke 

exposure], genetic manipulations, and exposure to environmental factors (e.g. hypoxia) or surgical 

interventions (e.g. closure of the ductus arteriosus)39. All of these approaches are proposed to simulate the 

different groups of PH (Table 2)39.  
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Table 2. Animal models of PH and PH classification* 

PH Group Animal Models 

1. Pulmonary arterial hypertension 

Monocrotaline injection (MCT)61; MCT + 
pneumonectomy62; BMPR2 knockout63; 
IL-6 Tg+mice64; IL-13 Tg mice65, Fawn-
hooded rat34; S100A4 overexpressing 
mice66; SHIV-nef-infected macaques67; 
Chronic hypoxia + SU-541668; 
Schistosomiasis69; Left-to-right shunt70, 
closure of the ductus arteriosus71 

2. Pulmonary hypertension owing to left 
heart disease Congestive heart failure models72 

3. Pulmonary hypertension owing to lung 
diseases and/or hypoxia 

Chronic hypoxia73, chronic hypoxia + SU-
541668; Intermittent hypoxia74; Cigarette 
smoke exposure75; Bleomycin76; 5-HTT 
overexpression77 

4. Chronic thromboembolic pulmonary 
hypertension 

Repeated microembolization with 
microspheres78 

5. Pulmonary hypertension with unclear 
multifactorial mechanisms ? 

*modified from Pak O. et al39. 
 
Abbreviations: BMPR2 - Bone morphogenetic protein receptor 2; IL-6 Tg+ - transgenic mice over-
expressing Interleukin 6; IL-13 Tg - transgenic mice over-expressing Interleukin 13; S100A4 
overexpressing mice - mice over-expressing S100A4, a member of the S100 family of small calcium 
binding proteins; SHIV-nef-infected macaques - macaques infected with a chimeric viral construct 
containing the HIV (Human immunodeficiency virus) nef (Negative Regulatory Factor) gene; SU-5416 - 
VEGF (Vascular Endothelial Growth Factor) 2 receptor antagonist; 5-HTT -5-Hydroxytryptamine 
transporter protein. 
 
The most universally used animal models of PH, the so-called classical animal models of PH, are the 

chronic exposure of different animals to normobaric/hypobaric hypoxia and the injection of MCT in 

rats39. Chronic exposure (usually 4-5 weeks) of animals to hypoxia leads to an elevation in PAP, vascular 

remodeling and RV hypertrophy33 (Figure 4). The MCT model in rat was first suggested more than 50 

years ago by Lalich and Merkow79. MCT is a phytotoxin, which is present in the seed and vegetation of 

the plant Crotalaria spectabilis and is activated by mixed function of oxidases (mostly by the cytochrome 

P450) in the liver to form the reactive compound MCT-pyrrole which affects the pulmonary vasculature 

and triggers the remodeling process in rats39 (Figure 4). In contrast to the hypoxic model that mimics 

group III of the Dana Point classification of PH, the MCT model has some features of group 1 of this 

classification39  

All classical models of PH (MCT injection and chronic hypoxic exposure) lack the specific pathological 

characteristics of IPAH, namely the plexiform lesions and neointima formation39. Therefore, it was 

suggested that the combination of an alteration of VEGF (Vascular Endothelial Growth Factor) signaling 

and exposure to chronic hypoxia might mimic the neointima formation. It was successfully demonstrated 
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that pharmacologic inhibition of the VEGF receptor 2 combined with chronic hypoxia results in severe 

PH, which has, similar to human PH, vasculopathy - neointima formation68 (Figure 4). Inhibition of the 

VEGF receptor 2 in this model serves as the initiating factor leading to apoptosis of EC and therefore to 

selection of apoptosis-resistant EC which can contribute to plexiform lesion formation56.    

Although the animal models described above have been proven to be useful for the investigation of 

signaling pathways which contribute to pulmonary vascular remodeling in PH, there is no “ideal” animal 

model of PH39. All existing animal model of PH lack some important features displayed in the human 

disease39.  

 

1.2.4 Pathogenesis of PH 

The past few decades have witnessed a remarkable increase in the knowledge of the cellular and 

molecular mechanisms that are responsible for pulmonary vascular remodeling in PH, especially after 

Cournand and Richards pioneered right-heart catheterization80. However, the complex picture of PH 

pathogenesis is still not completely resolved25. Despite the diverse etiology of PH and its underlying 

signaling pathways, morphologically all groups of PH share similarities and are characterized by 

abnormal pulmonary vasculature remodeling affecting all three layers of the blood vessel wall: the 

adventitia, the media and the tunica intima, with  maximal impact on the medial layer81, 82 (Figure 4). 

Genetic mutations83-85, an imbalance of vasoconstrictors and vasodilators86-88, growth factors89, cytokines 

and chemokines90, 91 could all be initial triggers of pulmonary vasculature remodeling in PH (Figure 5). 

These initial triggers of PH determine which of the numerous underlying molecular pathways are at play, 

including an activation of various transcriptional factors [e.g. HIF (hypoxia inducible factor)34, FOXO1 

(forkhead box protein O1)92, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)93, 

PPARγ (peroxisome proliferator-activated receptor)94], change of [Ca2+]i concentration40, alterations of 

mitochondrial function34 , etc. For example, various vasoconstrictors increase the concentration of [Ca2+]i 

which is a key regulator of PASMC contraction and proliferation in PH37, 40, 95 (Figure 5). In the 

molecular pathways of pathogenesis of PH the mitochondria can play an important role via inhibition of 

respiration, modification of mitochondrial membrane potential (Δψm), cellular metabolism (control 

anaerobic glycolysis) alteration of ROS production and Ca2+ homeostasis37, 40, 82, 96 (Figure 5).  

It was shown that ~60% of patients with familial pulmonary arterial hypertension (FPAH) and 10-20% of 

patients with sporadic IPAH were heterozygous for a mutation in bone morphogenetic protein receptor 

type II (BMPRII)83, 84. The presence of BMPRII mutations is much less frequent in patients (up to 6-8%) 

with PH due to congenital left-to-right shunt85. BMPRII is a member of the TGF-β (transforming growth 

factor-beta) superfamily and can translate a pathological signal through SMAD (a family of proteins 

related to Drosophila ”mothers against decapentaplegic” (Mad) and Caenorhabditis elegans Sma)97, p38 
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(p38 mitogen-activated protein kinases)98, pERK (phosphorylated extracellular signal-regulated kinase), 

JNK (c-Jun N-terminal kinases) and AKT (protein kinase B)99. Mutations in the activin-receptor-like 

kinase 1 (ALK1) gene that is also a part of the TGF-β superfamily can also trigger PH development in 

association with hereditary hemorrhagic teleangiectasia100. One downstream effector of the BMPRII 

pathway is PPARγ which has anti-proliferative, anti-inflammatory, proapoptotic, and direct vasodilatory 

effects in the vasculature94. Recently, it has been demonstrated that altered PPARγ signaling can 

participate in development of PH94.  

Polymorphisms in genes that differ from normal by a single alternative nucleotide resulting in a change of 

the function/location of the encoded protein (SNPs, single nucleotide polymorphisms) may also explain 

the susceptibility to PH among humans. For example, a correlation between I/D (insertion/deletion) 

polymorphism of ACE (angiotensin converting enzyme) and high altitude PH was shown in the Kyrgyz 

population101. Yu et al. published a study demonstrating that 54(C→G) SNP of TRPC6 (Transient 

receptor potential cation channel, subfamily C, member 6) gene may predispose individuals to an 

increased risk of IPAH by linking the aberrant TRPC6 transcription polymorphism with abnormalities in 

NF-kB and inflammatory pathways93. 

An imbalance between pulmonary artery vasoconstrictors and vasodilators has been suggested as a 

mechanism for PH pathogenesis40. In patients with IPAH the level of vasodilators [prostaglandin I286 and 

nitric oxide (NO)87] was reduced whereas the level of vasoconstrictors (thromboxane86 and endothelin-

188) was increased. Experimental studies in chronic hypoxia-induced PH documented that endothelin-1 

was important for an increase of PASMC proliferation102.  

Several growth factors could play an important role in vascular remodeling in PH such as VEGF103, 

PDGF (platelet-derived growth factor)104, EGF (epidermal growth factor)105, bFGF (insulin-like growth 

factor)106 and IGF-1-( insulin-like growth factor)107. For example, expression of PDGF and its receptor 

(PDGFRs, platelet-derived growth factor receptors) was increased in the pulmonary vasculature of IPAH 

patients89 and application of tyrosine kinase inhibitors reversed the experimental remodeling in chronic 

hypoxia-induced PH and MCT-induced PH in rats89, 104. 

In addition, inflammation appears to play a significant role in the chronic hypoxia-induced remodeling 

process in human disease82 and in experimental models of PH108, 109. Increased circulating levels of 

monocyte chemoattractant protein-1, tumor necrosis factor, IL (interleukin)-1β and IL-6 were discovered 

in IPAH patients82. Overexpression of IL-6 induced severe PH64, while IL-6 deficiency protected mice 

against chronic hypoxic exposure109. Moreover, lung-specific IL-13 over-expressing transgenic (Tg) mice 

demonstrated a spontaneously developing PH phenotype with increased expression and activity of 

arginase 2 (Arg2)65. Arg2 is an enzyme that utilizes the arginine, and therefore decreases NO synthesis by 

the NO synthase in precapillary PASMC (L-arginine is a substrate for nitric oxide synthase). Several 
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chemokines have an impact on PH, e.g. chemokine ligand 2 increases a migration and proliferation of 

PASMC of IPAH patients110.  

Various therapies of PH have become available; however, modern treatments can alleviate the symptoms 

and even revert the characteristic vascular remodeling process, but cannot cure the disease39.  
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Figure 5. Role of pulmonary arterial smooth muscle cells (PASMC) in the pathogenesis of  

pulmonary vasculature remodeling in PH. Pulmonary vasculature remodeling is a result of 
an imbalance between proliferation and apoptosis of all three layers of the pulmonary arterial 
wall25, 39, 41. The most prominent remodeling occurs within the medial layer of pulmonary 
vessels40. Different pathological triggers stimulate the various molecular pathways 
(inflammation, Ca2+ homeostasis, growth factors, disbalance of vasoconstrictors and 
vasodilatators, mitochondria, transcription factors including HIF and etc.) within endothelial 
cells (EC), PASMC and fibroblasts to promote their proliferation and attenuate apoptosis25, 39-

41, 58, 82. Dysregulation (vasoconstriction) of the vascular tone can contribute to the severity of 
PH82. 

 Mitochondria play an important role in pulmonary vasculature remodeling. Factors triggering 
the development of PH may alter the level of mitochondrial ROS and ATP production, 
oxidative phosphorylation and release of proapoptotic proteins37, 38, 40, 95. Ca2+ and ROS can be 
mediators of different molecular pathways linking the alteration of mitochondrial function 
with the increased proliferation of PASMC. For example, alterations in the redox state may 
lead to HIF stabilization which may promote metabolic alterations, including the increase of 
anaerobic glycolysis38, 40, 95.  

 Abbreviations: VEGF - vascular endothelial growth factor; PDGF - platelet-derived growth 
factor; EGF - epidermal growth factor; IGF-1 -insulin-like growth factor; bFGF - basic 
fibroblast growth factor; BMPRII - bone morphogenetic protein receptor type II; CREB - 
cAMP response element-binding protein; Ca2+ - calcium; cGMP - cyclic guanosine 
monophosphate, cAMP - cyclic adenosine monophosphate, FOXO1 - Forkhead box protein 
O1; HIF-1α - alpha subunit of hypoxia inducible factor; NFAT - Nuclear factor of activated 
T-cells , NF-κB - nuclear factor kappa-light-chain-enhancer of activated B cells; NO – nitric 
oxide; pERK - phosphorylated extracellular-signal-regulated kinases; MLC - myosin light 
chain; ROS - reactive oxygen species; Δψm - mitochondrial membrane potential; K+ - 
potassium; Kv - potassium channels; IP3 - Inositol trisphosphate; PPARγ - peroxisome 
proliferator-activated receptor gamma, ROCK - Rho-associated protein kinase. 
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1.3. Role of mitochondria in HPV and PH 

For some time, mitochondria have been suggested to be O2 sensing organelles in hypoxia-dependent 

regulatory processes like HPV and chronic hypoxia-induced PH1, 38. The idea that mitochondria could act 

as O2 sensors arose from the fact that mitochondria consume more than 90% of O2 within the cell111, 112. 

O2 limitation can affect different aspects of mitochondrial function such as respiratory rate, concentration 

of ATP, cytosolic [NADH]/[NAD+] redox state (reduced form of nicotinamide adenine 

dinucleotide/nicotinamide adenine dinucleotide), mitochondrial Ca2+ uptake and alterations in ROS 

production1, 38. An additional argument in favor of the importance of functional mitochondria in O2 

sensing comes from studies of immortalized neonatal adrenomedullary chromatin cells with normal 

functional or impaired mitochondria. Those cells, which lack functional mitochondria, fail to respond to 

the hypoxia113, 114.  

Hence, mitochondria have been considered important factors in non-hypoxia dependent pulmonary 

vascular remodeling because they participate in numerous proliferative and antiapoptotic signaling 

pathways1. Further support for the role of mitochondria comes from the observation of a child with a 

mitochondrial A3243G point mutation exhibiting severe PH115 and from patients with mitochondrial 

respiratory chain abnormalities showing PH116.  

 

1.3.1. Mitochondrial membrane potential (Δψm) 

Mitochondrial respiration and ATP synthesis are two crucial pathways lying at the heart of cellular 

metabolism117. During respiration, energy derived from electrons passing along multi-subunit enzyme 

complexes of the electron transport chain (respiratory chain), which are embedded in the inner 

mitochondrial membrane (IMM), is used to pump the protons (H+) against their concentration gradient 

from the matrix to the intermembrane space across the non-permeable IMM118, 119. Protons extrusion 

generates the electrochemical proton gradient (ΔµH+) across the IMM that results in accumulation of net 

protons within the intramembrane space. Ten protons are extruded for each electron pair passing from 

NADH to O2 by complexes, I, III and IV of the electron transport chain118. In bioenergetics, ΔµH+ is a 

thermodynamic measure of the energy that is necessary to remove a proton gradient from equilibrium and 

is expressed in kilojoule per mole (kj mol-1). The unit of ΔµH+ (kj mol-1) can be transferred into the unit 

of electric potential (mV) which is referred to as proton-motive force (Mitchell’s “proton-motive force”) 

and expressed by the symbol Δp119. Δp consists of an electrical, Δψm (mitochondrial membrane potential, 

∼150-180 mV) and a chemical component, ΔpHm (mitochondrial pH gradient, ~30-60 mV) across the 

IMM. Thus Δp is equal approximately to 180-220 mV117 (Figure 6). Because it is more easily measured 

in various cells, Δψm is often incorrectly used for expression of Δp. As written above, the Δψm is the 

predominant force (or central intermediate) in the oxidative phosphorylation and contributes 
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approximately 80-85% of Δp120, 121. In addition to being the central intermediate of aerobic energy 

production, Δψm is a driving force of other physiological process within mitochondria, including Ca2+ 

uptake and heat production in brown fat122.  
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Figure 6. Mitochondrial membrane potential (Δψm).  

Δψm is the most important part of Mitchell’s “proton motive force” (makes up to 85%) and is 
produced by extrusion of protons (H+) from the mitochondrial matrix to the intermembrane 
space, using an energy gradient from electrons passing along the respiratory chain119-121. The 
proton motive force (Δp) drives the synthesis of ATP by ATP synthase119. Some protons can 
escape the intermembrane space via either uncoupling proteins (UCPs) or passive proton leak 
back to the matrix that decreases Δψm

123. Thus, the proton circuit consist of three modules: 1) 
Complex I-IV, the “substrate oxidation” module, 2) Complex V, the “ATP turnover” module 
and 3) the “Proton leak” module118.   
Abbreviations: I, II, III, IV and V - respiratory chain complexes; Q - coenzyme Q; Cyt C - 
cytochrome c; Δψm - mitochondrial membrane potential; ΔpH - proton gradient; Δp is 
Mitchell’s “proton-motive force”; ADP - adenosine diphosphate; ATP - adenosine 
triphosphate; NAD+ - nicotinamide adenine dinucleotide; NADH - reduced form of NAD+; Pi  
- phosphoric acid; UCPs -uncoupling proteins. 

 

Controlled return of protons along their gradient into the mitochondrial matrix through the F0F1 ATP 

synthase, complex V of the respiratory chain, drives the conversion of adenosine diphosphate (ADP) into 

ATP119. This process is called chemiosmosis and Peter Mitchell who first described this process, was 

awarded by the 1978 Nobel Prize in Chemistry. Some protons can return back into the mitochondrial 

matrix via a proton “leak” [either passive proton leak or through uncoupling proteins (UCPs - 

UnCoupling Protein)] that uncouples mitochondrial respiration from ATP synthesis123 (Figure 6). 
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Complexes I, III and IV of the electron transport chain together with complex V and the proton leak 

create a proton circuit across the IMM that is the center of bioenergetics. 

 

1.3.2. Mitochondria as source of reactive oxygen species (ROS) 

The term ROS describes a family of chemical species that are the result of incomplete reduction of O2
124. 

The first description of ROS was made by Gomberg in 1900125. ROS includes highly reactive free oxygen 

radicals such as superoxide anion (O2•
-), hydroxyl radical (HO•) and non-radicals that are either oxidizing 

agents and/or easily converted into radicals, such as hypochlorous acid (HOCl), ozone (O3), singlet 

oxygen (1O2), and “diffusible” hydrogen peroxide (H2O2). There are numerous potential sources of ROS 

within cells such as NADPH oxidases (Nox 1-5 and Duox 1-2)73, xanthine oxidases126, cyclooxygenases, 

cytochrome P450 enzymes127, lipoxygenases128, NO synthases129 and mitochondria1 (Figure 7).  

 
 

Figure 7. Scheme of possible sources of reactive oxygen species (ROS) within cells.  
The cell has variety of potential sources of ROS and some of them are indicated in the scheme: 
mitochondria, NADPH oxidases (NOX 1, 2 and 4), lipoxygenase (LO), heme oxygenase (HO), 
xanthine oxidases (XO), nitric oxide synthase (NOS) and cytochrome P450 enzymes (Cyto 
P450) 1, 73, 124, 126-129. The ROS-defense systems within cells comprises several enzymes 
specialized on removal of O2•

- or H2O2 including superoxide dismutase 2 (mitochondrial 
SOD2), superoxide dismutase 1 (cytosolic SOD1), catalase (Cat), and glutathione 
peroxidases(Gpx)130, 131. 
Abbreviations: H2O2 - hydrogen peroxide; HO•·- Hydroxyl radical; Fe - ferrum; O2•

- 

superoxide anion; OONO- peroxynitrite; NO - nitric oxide. 
  

Previously, more than 50 years ago, ROS were considered only as toxic substances, but recently, evidence 

has been published suggesting that ROS can participate in a wide range of different physiological cellular 
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processes including maintenance of intracellular homeostasis, adaptation to cellular stress, and 

participation in whole organ function124, 130, 132, 133. In these processes an increase or decrease of ROS can 

ultimately result in enhancement of proliferation or migration of cells instead of their damage73, 124. 

Despite the fact that the research field about ROS as a messenger molecule is rapidly expanding, many 

aspects of cellular ROS metabolism are not yet well understood. Mitochondria are generally considered to 

be the most important source of ROS within a cell1, 38 (Figure 8). In particular, it is a well-known fact that 

one-electron reduction of O2 is thermodynamically favorable for most oxidoreductases132. The first report 

showing that mitochondria can produce ROS was published in 1966134. During energy transduction, a 

small number of electrons “leak” to O2 forming the O2•
- by one-electron reduction of O2. Reduction of 

molecular O2 that has two unpaired electrons with parallel spin in different antibonding orbitals leads to 

transfer of a lone electron to its antibonding orbital. Approximately 90-95% of the O2 consumed by 

mammalians is utilized to supply cellular energy through oxidative phosphorylation111, 112 and ~0.2% to 

1-2% of O2 consumed by the mitochondrial electron transport system is used to produce ROS135. The 

concentration of O2•
- within the mitochondrial matrix is in the range 10-200 pM130. This wide variance in 

the range reported of what percentage of cellular O2 consumption ultimately is used for ROS production 

can be explained by the discrepancy in methodological approaches used to measure these values. The data 

from in vitro experiments based on isolated mitochondria indicate that 1-2% of cellular O2 is used to 

produce ROS, while more physiological experiments in whole cells show that only 0.2% of cellular O2 

consumption results in ROS emission within mitochondria136. This discrepancy may at least in part be 

caused by the presence of ROS detoxifying systems in intact cells and concentration of ROS regulatory 

components like Ca2+, NADH/NAD or the ∆ψm. The specific sites of electron leakage are not known with 

certainty, but most scientific literature suggests that complexes I and III are predominantly responsible for 

O2•
- production within mitochondria131. Complex I (NADH:ubiquinone oxidoreductase, composed of ~45 

subunits) produces O2•
- probably only into the matrix of mitochondria and complex III 

(Ubiquinol:cytochrome c oxidoreductase, composed 11 subunits) can generate O2•
- on both sides of the 

IMM into the matrix and/or into the intermembrane space of mitochondria137. The relative importance of 

these two sites varies in different tissue and species138. In mitochondria isolated from heart and lung, 

complex III is thought to be responsible for most of ROS production, and in mitochondria isolated from 

brain, complex I appears to be the primary source of ROS under normal conditions132. In addition, there 

are some publications showing that complex II of the respiratory chain also can generate O2•
- under 

certain conditions139. There are other sites of ROS production in the mitochondria, beyond the electron 

transport chain including α-ketoglutorate dehydrogenase and dihydroorotate dehydrogenase,130. However, 

their impact on mitochondrial ROS generation is low and their physiological significance unclear. O2•
- 

produced by mitochondria is too highly charged to readily cross the IMM. However, O2•
- that is produced 
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by complex III and released into the intermembrane space may be carried to the cytoplasm via voltage-

dependent anion channels (VDAC)140. The discovery of a specific mitochondrial superoxide dismutase 

(SOD2) confirmed the biological significance of mitochondria in O2•
- production within cells.  

The ROS-defense systems within mitochondria comprise several enzymes specialized in the removal of 

O2•
- or H2O2 and non-enzymatic antioxidants130 (Figure 8). SOD2, a manganese-dependent enzyme in the 

mitochondrial matrix, and superoxide dismutase 1 (SOD1), a copper or zinc-dependent enzyme in the 

cytosol and the intermembrane space convert O2•
- into H2O2 that is further deactivated by catalase to water 

and O2
130, 131. Additionally, H2O2 can be deactivated by the various glutathione peroxidases to reduced 

glutathione and water and by the peroxiredoxins to water131. Thus, O2•
- is the primordial mitochondrial 

ROS. H2O2 is more stable than O2•
- and capable to move across membranes121. Cytochrome c of the 

respiratory chain has antioxidant property itself and it can scavenge O2•
-141.  

With regard to the above described mitochondrial ROS related systems, one should distinguish among the 

amount of ROS generated by mitochondria under specific conditions (physiological, pathological or 

artificially induced conditions), the mitochondrial location of ROS release, ROS removal by antioxidant 

defense systems and finally, ROS emission into different cellular compartments which is the net result of 

ROS production, ROS removal and ROS diffusion capacity across the mitochondrial membranes133. A 

summarized scheme of possible ROS sources and ROS-defense systems in mitochondria is shown in 

Figure 8.  
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Figure 8. ROS and ROS-defense systems in mitochondria.  
Complexes I and III are shown as main source of ROS131, 132. Complex I releases O2•

- into the 
matrix131, 137. Complex III can release O2•

- in both directions into the matrix and into the 
intermembrane space131, 137. Complex II likely also produces O2•

- under certain 
circumstances139. O2•

- produced during oxidative phosphorylation can diffuse via VDAC into 
the cytosol or can be transformed to H2O2 by SOD2 within the intermembrane space and the 
mitochondrial matrix, and by SOD1 within cytosol140. H2O2 is more stable than O2•

- and is  
capable of moving across mitochondrial membranes121. The ROS-defense systems within 
mitochondria comprises several enzymes specialized on removal of O2•

- or H2O2 and non-
enzymatic antioxidants130. Cytochrome c of respiratory chain has antioxidant property itself and 
it can scavenge O2•

-141. 
Abbreviations: I, II, III, IV and V - complexes of respiratory chain; O2•

-- superoxide; H2O2 - 
hydrogen peroxide; Q - coenzyme Q; Cyt C -- cytochrome c; SOD1, 2 -- superoxide dismutase 
1 and 2; Cat - catalase; Gpx glutathione; Prx 1-5 - peroxiredoxins; VDAC - Voltage-dependent 
anion channels.  

 

1.3.3. Δψm and ROS 

Most experimental studies demonstrate a direct relationship between the Δψm and ROS production, and 

show that even a slight increase of the Δψm enhances ROS emission, while a decrease of Δψm attenuates 

ROS release142-144. In 1971, Loschen et al. performed a pioneering experiment leading to the widely 

accepted concept that Δψm control ROS production in isolated mitochondria145. They observed a total 

inhibition of the succinate-induced increase of ROS production after application of an uncoupler 

(pentachlorophenol)145. An increase of Δψm by each 10mV interval doubles the mitochondrial rate of 

ATP production, while the rate of mitochondrial ROS emission rises exponentially in isolated 



Introduction  35 

mitochondria 122. Furthermore, Rottenberg et al. showed that the correlation between Δψm and the O2•
- 

generation rate was much stronger than between O2•
- generation and the proton-motive force (Δp)146. 

More recently, Starkov et al. verified the relationships between ROS production, NADH/NAD+ ratio and 

Δψm in rat brain mitochondria 147. He proposed that the ROS production by mitochondria was regulated 

both by Δψm and by the NADPH redox state147. Δψm can regulate the rate of ROS production in complex 

I147 as well as in complex III of the respiratory chain146. For example, ROS production by complex III 

increases exponentially in yeast mitochondria at a Δψm above 140mV146. Additionally, ROS production 

within complex I caused by reverse electron flow is highly dependent on Δψm 148. It disappears as 

mitochondria are uncoupled, and it cannot occur if Δψm is blocked by an inhibitor148. The same 

connection between a rise of Δψm and the increase of ROS emission was described in intact cells (for 

example, the uncoupler, 2,4-dinitrophenol (DNP) attenuated ROS production in rat cardiomyocytes) 149. 

In summary, most scientific literature suggests that Δp provides the driving force for ATP production, 

while the Δψm provides the charge gradient for mitochondrial Ca2+ sequestration, and regulates ROS, thus 

controlling cellular functions117.  

There are, however, experiments that question the connection between Δψm and ROS150, 151. The main 

problem of this controversial finding is that an increase of Δψm induces the increase of ROS only under 

specific conditions. Under normal physiological conditions, mitochondria are in a state with non-

maximum Δψm (as is always the case when ATP is being synthesized)150. In this scenario, ROS 

production is minimal, but under special conditions, the increase of Δψm can initiate an increase of 

mitochondrial ROS production, as has been shown in vitro142-144 and in vivo152-154 studies. Therefore, an 

increase of Δψm leads to an increase of ROS production by mitochondria most probably only under 

special conditions (e.g. stress)142-144.  

It is interesting that mitochondrial ROS production is more sensitive to uncoupling-induced changes in 

Δψm than the ATP synthesis148. Therefore, the proton leak which uncouples the respiration from ATP 

synthesis may be a defensive mechanism to attenuate O2•
- generation in conditions when the Δψm is 

high132, 155. Skulachev et al. proposed that mitochondria possess a special mechanism that prevents a 

strong increase in electrochemical proton gradient (ΔµH+) when ADP is exhausted123. He called this 

mechanism - “mild” uncoupling. This mechanism is particularly important in state 4 of mitochondrial 

respiration123. State 4 respiration is defined as the amount of O2 consumption that persists during 

inhibition of the ATP synthase, e.g. in the absence of ADP119. During state 4, Δψm is high with 

concomitant high electron pressure which increases the probability of ROS emission. This distinguishes 

the condition from a situation when respiration (electron flow) and ATP synthase activity are high, e.g. in 

metabolic active cells.  Korshunov et al. showed that low concentrations of uncouplers abolished the 

H2O2 production in state 4 respiration in heart muscle mitochondria142. Teleologically it could be 
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concluded for that reason that the proton leak is maximal when the mitochondria are hyperpolarized121. 

Therefore, it is important to keep in mind that the proton leak may be particularly high when the cellular 

ATP level is high or ADP levels are low. The mechanism of the increase of the proton leak is not clear118. 

The total proton leak can be thought of as the sum of two process: basal leak (unregulated proton leak) 

and inducible proton leak (regulated by specific proteins located within IMM)121, 156. Passive proton leak 

was first described in isolated rat liver mitochondria where there was no ATP turnover (state 4, see 

explanation above )157. In this situation, state 4 respiration (O2 consumption) increases disproportionally 

as ∆p rises (Δψm is the main component of ∆p), which can be explained by a passive proton leak across 

the IMM158. This proton leak behaves in a non-ohmic manner, because it is correlated with the driving 

force (Δψm) in a nonlinear fashion, therefore disobeying Ohm’s Law156, 159. Importantly, this non-ohmic 

proton leak is also apparent in intact cells, demonstrating that this process is not caused by damage to the 

IMM during isolation of mitochondria156 and thus is essential for cellular function158. The rate of the basal 

leak accounts for 20-30% of the resting metabolic rate of hepatocytes and up to 50% of the respiration of 

rat skeletal muscle156. The proton leak significantly correlates with the membrane phospholipid content of 

the polyunsaturated fatty acid, docosahexaenoic acid160. Another explanation for the disproportionate 

increase in respiration at high ∆p (state 4) is “electron slip”, whereby electrons are transferred through the 

complexes of the respiratory chain without the pumping of protons across IMM156. However, this process 

(electron slip) has not been persuasively confirmed experimentally to occur under physiological 

condition156.  

On the other hand, the inducible proton leak can occur through special proteins of IMM, such as UCPs158. 

Nowadays, inducible proton leak is considered to be a major mechanism to adjust the Δψm to 

mitochondrial ROS emission155. UCP1, the most studied UCPs, acts as an uncoupler and dissipates Δψm 

in brown fat tissue to generate heat in mammals during non-shivering thermogenesis158
. Dlaskova et al 

found that mitochondria isolated from brown fat tissue of UCP1 knockout mice were characterized by 

increased Δψm as well as by the increased ROS production161. Activity and expression of UCP1 is 

regulated by fatty acid, noradrenaline stimulation, thyroide hormone receptor activation transcriptional 

factors and PPARγ158. As a regulatory mechanism, increased ROS production may induce a proton leak to 

reduce the Δψm in a feedback manner121. ROS-induced oxidative stress has been shown to activate mild 

uncoupling, resulting in dissipation of Δψm without influencing ATP synthesis, but with a significant 

decrease of ROS formation123. The mechanism of ROS-induced mitochondrial depolarization is also not 

yet clear. Skulachev et al. demonstrated that uncoupling proteins can be responsible for this protective 

mechanism in the acute phase of oxidative stress123. Thus, proton leak and ROS generation can correlate 

with each other via a feedback loop159. Additionally, uncoupling of mitochondria prevents dielectric 

breakdown of the mitochondrial membrane118.      
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In conclusion, higher Δψm probably initiates higher ROS production. Therefore, proton leaks are 

analogous to a “pressure valve” in the sense that they decrease Δψm to limit ROS production and 

therefore protect cells against oxidative stress162. However, under pathological conditions or upon stress, 

the alteration of Δψm and therefore the modulation of mitochondrial ROS emission may serve as a sensor 

mechanism to adjust to the new conditions or, if adaptation failed, lead to the development of disease.  

Another mechanism, which may regulate the interaction between Δψm and ROS, is the allosteric 

regulation of the cytochrome c oxidase by phosphorylation163. Under basic (normal) conditions 

cytochrome c oxidases are phosphorylated which reduces their activity163. This decrease of activity results 

in a decrease of Δψm and ROS production163. Different pathological triggers dephosphorylate or 

phosphorylate complex IV, and therefore modulate the level Δψm and ROS production.  

 

1.3.4. Mitochondria and HPV 

As mentioned before, mitochondria are one possible candidate for the O2 sensor that triggers HPV1. In 

our previous study, we showed an increase of Δψm and O2•
- release, most probably by complex III of the 

respiratory chain and inhibition of the mitochondrial electron chain at complex IV (inhibition cytochrome 

c and aa3) during HPV13. These data support the “ROS hypothesis” and contradict the “Redox 

hypothesis” of HPV. The ROS hypothesis (Figure 9c) suggests that acute hypoxia triggers the increased 

mitochondrial ROS production which results in Ca2+ release from the SR possibly via the oxidation of the 

cysteine residues of RyR and opening of IP3 (inositol trisphosphate)-gated calcium store3, 164. The 

hypoxia-induced release of Ca2+ from SR can be a trigger of capacitative Ca2+ entry via SOCC and/or 

VOCC that further increases the [Ca2+]i
24. Alternatively, increased ROS could provoke the influx of 

extracellular Ca2+ through TRPC6 channels21. According to this theory, a paradoxical increase of ROS 

production during acute hypoxia may occur within complex III of the respiratory chain26. In contrast, the 

redox hypothesis proposes an inhibition of the mitochondrial respiratory chain by acute hypoxia which 

may result in a more reduced cytosolic redox state and a decrease of ROS concentration, causing 

inhibition of Kv channels, subsequent PASMC cell membrane depolarization, Ca2+ influx via the VOCC 

and finally vasoconstriction31, 165 (Figure 9a). Kv channels in this model play a key role. In normoxia, 

cysteine residues of Kv channels are oxidized by ROS maintaining them in open state, while reduction of 

these residues by acute hypoxia leads to their closure and subsequent depolarization of cell membrane34, 

165. The discrepancy of these theories remains unclear1, 3, 36. We should keep in mind that existing 

approaches to measure ROS have many pitfalls including lack of specificity and sensitivity that can 

explain difficulties in evaluation of the ROS level upon acute hypoxia1. Application of antioxidants 

during HPV did not reveal the role ROS in HPV36. The lack of antioxidants that specifically act within 

mitochondria can be a reason for these controversial results. The same controversial results have been 
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obtained from studies investigating the influence of mitochondrial inhibitors on vascular tone in normoxia 

and during HPV1.  

Little is known about the role of Δψm in HPV and only a few studies have investigated the effect of acute 

hypoxia on the Δψm. As mentioned above, Sommer et al. descibed a hyperpolarization of mitochondria 

upon an acute hypoxic stimulus in precapillary PASMC isolated from rabbits13. The inhibition of the 

mitochondrial electron chain at complex IV could be the reason for mitochondrial hyperpolarization via a 

yet unknown mechanism. Michelakis et al. described the same effect of acute hypoxia on Δψm in rat 

PASMC 96. He found that hypoxia evoked a mitochondrial hyperpolarization in PASMC, while the 

mitochondria from renal artery smooth muscle cells (SMC) depolarized96. However, Kang et al. proposed 

the opposite theory166, 167. According their theory, acute hypoxia leads to depolarization of mitochondria 

that decreases the mitochondria’s ability to buffer Ca2+ and thereby increases a hypoxic-induced rise of 

[Ca2+]i. This theory reflects his observation from application of FCCP (carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone) to rabbit PASMC during an acute hypoxic stimulus, where an 

administration of FCCP augmented a rise of [Ca2+]i via SR release and capacitative Ca2+ entry. 

Nevertheless, in this study, PASMC from larger pulmonary arteries were used and Δψm was not been 

measured. Additional an argument against Kang’s study is a publication that demonstrated the inhibitory 

effect of chemical uncouplers, DNP and FCCP, on HPV at high concentrations168.  

Another proposal for the HPV mechanism suggests that mitochondria can sense the lack of O2 via 

changes of the intracellular AMP/ATP ratio (Figure 9b) resulting in activation of AMPK (AMP-activated 

protein kinase)169 and subsequently increased concentration of cADPR (cyclic ADP ribose), which causes 

Ca2+ release from the SR through the RyR170. Additionally, it has been shown that AMPK modulates Kv 

channel function in a similar manner to hypoxia171 and the non-selective AMPK antagonist, compound C, 

blocks sustained HPV35. There is a potential link between a hypoxic elevation of ROS and AMPK (Figure 

9b), in which ROS and OONO- (peroxynitrite)172, 173 can activate the AMPK possibly via a change of the 

intracellular AMP/ATP ratio174.  

Mitochondria might not only be a trigger of HPV, but also could be a mediator of the HPV transduction 

pathway3. Alterations in [Ca2+]i concentration act as a main signal for PASMC contraction3. Mitochondria 

have long been known for their role in [Ca2+]i metabolism175. Under normal conditions, the concentration 

of Ca2+ within the mitochondrial matrix [Ca2+]m is equal to the cytosolic [Ca2+]i. Different pathological or 

physiological stimuli lead to mitochondrial uptake of Ca2+ driven electrophoretically by the Δψm from the 

cytosol through the mitochondrial calcium uniporter (MCU). An increase of [Ca2+]m can change activity 

of TCA (tricarboxylic acid cycle) enzymes, respiratory complexes, and opening of the permeability 

transition pore176. Mitochondria release Ca2+ into cytosol through several different routes175. However, the 

contribution of the mitochondria to the Ca2+ homeostasis in PASMC during acute hypoxia is poorly 
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understood177. It was shown that mitochondrial Ca2+ uptake may attenuate the hypoxia-induced rises in 

[Ca2+]i in rabbit PASMC during hypoxia. In contrast, Wang et al. reported that acute hypoxia caused the 

Ca2+ release from mitochondria of rat PASMC178.  
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Figure 9. Possible role of mitochondria in HPV.  

Mitochondria can act as O2 sensor or modulate the course of HPV.  
a) Redox hypothesis. Acute hypoxia leads to a more reduced cytosolic redox state and 
decreases ROS concentration because of impaired mitochondrial respiration. Decreased redox 
state and ROS inhibit Kv channels, causing depolarization of the cellular membrane and the 
activation of voltage-gated calcium channels, influx of Ca2+, and/or release of Ca2+ from the SR. 
b) The role of AMP-activated kinase (AMPK) in HPV. Acute hypoxia increases the AMP/ATP 
ratio that activates the AMPK, which results in an increase of the cADPR concentration and the 
opening of calcium channels of the SR.  
c) ROS hypothesis. Acute hypoxia increases ROS levels resulting in the opening of the Ca2+ 

stores via oxidation of ryanodine-sensitive receptors and/or influx of Ca2+ through the TRPC6 
channels.  
Abbreviations: AMP/ATP ratio - adenosine monophosphate/adenosine triphosphate ratio; 
AMPK - 5' adenosine monophosphate-activated protein kinas; cADPR - cyclic adenosine 
diphosphate ribose; Ca2+ - calcium; L-type VOCC- voltage operated calcium channels; Kv - 
potassium channels; SOCC - store-operated calcium  channels; SR - sarcoplasmic reticulum; 
TRPC6 - transient receptor potential cation channels; RyR - ryanodine-sensitive receptors; ROS 
– reactive oxygen species; Δψm – mitochondrial membrane potential. 
Modified from J. T. Sylvester et al. 
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1.3.5. Mitochondria and PH  

Mitochondria can play an important role in the pathogenesis of PH via the regulation of [Ca2+]i 

homeostasis, mitochondrial ROS production, release of proapoptotic proteins and alteration of cellular 

metabolism37, 38, 40, 82, 96 (Figure 10).  

Modulation of mitochondrial ROS may play an essential role in pulmonary vascular remodeling in PH37, 

179, 180 Similar to mitochondrial ROS in HPV; there are two antithetic opinions about the role of ROS in 

PH development. One group of scientists have found a decrease of ROS emission95 (Figure 10 pathway 

"1a"), whereas other groups have found a large body of evidence suggesting an increase of ROS (Figure 

10 pathway "1b") is a cause of PH development via the alteration of hypoxia-inducible factor 1 (HIF-1α) 

stabilization38, the function of ROS sensitive proteins172, 173 and cellular Ca2+ homeostasis3, 164. Severe 

hypoxia leads to the activation of different transcription factors including (HIF1), which was first 

described by Semenza et al. in 1995181. The importance of HIF in PH was proven using mice with partial 

deficiency of HIF-1α (HIF-1α+/-)182. These mice were characterized by attenuation of the increase of PAP 

and RV hypertrophy upon chronic hypoxic exposure182. HIF1 is a heterodimer of two proteins: HIF-1α 

and HIF-1β (or ARNT - aryl hydrocarbon nuclear trans-locator)181. In well-oxygenated conditions, HIF-

1α is maintained in a hydroxylated state by PHD (prolyl hydroxylase) leading to proteasomal degradation 

of HIF-1α, which is mediated by the E23 ubiquitin ligase von Hippel-Lindau (VHL). Chronic hypoxia 

stabilizes HIF-1α through an alteration of PHD2 function and lack of O2 that is the substrate for PHD2181. 

The exact mechanism of hypoxia-induced stabilization of HIF-1α is under investigation, but it has been 

suggested that mitochondrial ROS can mediate the stabilization of HIF-1α 38, 183. Evidence for increased 

ROS inducing HIF-1α stabilization are the following: overexpression of catalase (which leads to removal 

of H2O2) abolished the HIF-1α protein accumulation in response to hypoxia, and H2O2 application in 

normoxic conditions stabilized HIF-1α38. Arguments for decreased ROS inducing HIF-1α stabilization 

are from a study that demonstrated that downregulation of SOD2 by siRNA, which decreases H2O2 

concentration, activated the HIF-1α translocation to the nucleus183. However, it is possible that an 

increase of O2•
- as the result of SOD2 downregulation is actually responsible for HIF-1α stabilization and 

not the decrease in H2O2 concentration. After stabilization, the HIF1α is translocated into the nucleus, 

binds to HIF-responsive elements (HREs) and turns on various genes to stimulate immediate and long-

term responses to chronic hypoxia including expression of enzymes of the anaerobic glycolysis such as 

pyruvate dehydrogenase kinase isozyme 1 (PDK1)184, lactate dehydrogenase A (LDHA)185, glucose 

transporter (Glut1)186 and etc. Therefore, in hypoxia cellular ATP production is shifted from an oxidative 

(aerobic) to a less efficient glycolytic (anaerobic) metabolism, which is called "metabolic shift" (Figure 

10 pathway 3). A metabolic shift has also been observed in non-hypoxic PH187. MCT-induced PH leads to 
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the same metabolic shift as in chronic hypoxia through stabilization of HIF-1α188. Additionally, vascular 

cells isolated from IPAH patients are also characterized by increased anaerobic glycolysis189. However, 

the mechanism of non-hypoxic stabilization of HIF-1α is still unknown. It is possible that ROS also could 

play a role in this process38, 190. The increased anaerobic glycolysis is linked to increased proliferation and 

attenuated apoptosis by still not completely clear molecular pathways (Figure 10 pathway 3)181, 191, 192. 

The restoration of glucose oxidation by deletion of the gene for malonyl-coenzyme A decarboxylase and 

subsequent blocking of the fatty acid oxidation, leads to prevention of PH development in mice upon 

chronic hypoxia193. Moreover, dichloroacetate (DCA) treatment also prevented the development of PH194, 

195. DCA is an inhibitor of the PDK1 and thus increases glucose substrate supply to the mitochondria, 

which decreases anaerobic glycolysis. The metabolic shift, which was found in PH, shows similarities to 

the metabolic changes occurring in cancer cells (called the "Warburg effect"). In cancer cells a high rate 

of anaerobic glycolysis provides several advantages for proliferating cell: 1) it allows cells to use the most 

abundant extracellular nutrient, glucose, to produce abundant ATP; 2) glucose degradation provides cells 

with the intermediates needed for biosynthetic pathways, including ribose sugars for nucleotides, glycerol 

and citrate for lipids, nonessential amino acids192.  

As written before, mitochondria are a reservoir for excess [Ca2+]i
40, 196 and changes in [Ca2+]i 

concentration play a significant role in remodeling of the pulmonary vasculature via activation of Ca2+ 

dependent enzymes (e.g. PKC197), receptors (e.g. ryanodine-sensitive receptors )3, 164 and transcription 

factors (e.g. CREB198, NFAT199) (Figure 10 pathway 2). Little is known about [Ca2+]m
 and PH and further 

investigations are necessary. The interplay of mitochondria with the endoplasmic reticulum (ER) is an 

important component of mitochondrial Ca2+ regulation. Recently, it has been shown that the disruption of 

the ER-mitochondria contact attenuates apoptosis of PASMC by decreasing the ER-to-mitochondria 

phospholipid transfer and intermitochondrial Ca2+ that leads to an excess of pulmonary vascular 

remodeling in chronic hypoxia-induced PH in mice200. The decrease of [Ca2+]m leads to inhibition of 

Ca2+-sensitive mitochondrial enzymes which decreases mitochondria-dependent apoptosis200. In addition 

to ROS-mediated alteration of HIF-1α stabilization, mitochondrial ROS also can modulate [Ca2+]i 

homeostasis via the oxidation/reduction of different Ca2+ channels and ROS-sensitive enzymes165, 201 

(Figure 10 pathway 2). In this regard downstream targets of ROS may be TRPC3 (transient receptor 

potential cation channel, member 3) channels that have been shown to be activated by ROS in porcine 

aortic EC 201.  

Mitochondria induce cell death by releasing proapoptotic mediators and thus initiating apoptosis37. 

Release of proapoptotic proteins can be dependent on Δψm
37. Mitochondrial depolarization promotes 

apoptosis while mitochondrial hyperpolarization locks cells into an apoptosis-resistance state37 (Figure 10 

pathway 4). Therefore, preserved Δψm can be a sign of higher proliferative and less proapoptotic cells as 
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in the case of cancer cell lines202. The decrease of apoptosis plays an essential role in the vascular 

remodeling of the medial layer in PH; however, the exact mechanism of triggering of apoptosis in PH is 

still not fully understood37, 56, 165. It has been shown that the metabolic shift in PH can suppress Kv1.5 

expression, leading to an attenuation of apoptosis of PASMC165 (Figure 10 pathway 4). Additionally, 

BMPR2 mutations in mice (BMPR2-mutant mice) lead to an increase of ROS of mitochondrial origin and  

a decrease of mitochondria-induced apoptosis which is the cause of pulmonary vasculature remodeling203. 

In contrast, in early stages of experimental PH, EC apoptosis could be an initiating trigger, leading either 

directly to the degeneration of pre-capillary arterioles or to the selection of hyperproliferative, apoptosis-

resistant EC that may contribute to "angioproliferative" plexiform lesions56. Consequently, apoptosis 

could play a dual cellular-specific or course-specific role in pathogenesis of PH165.  

As written above, one of the key characteristics of normal function of “happy” mitochondria is the ∆ψm. 

Studies investigating the contribution of Δψm to PH development have shown controversial results. Some 

investigators find an increase34 (i.e. hyperpolarization) and others a decrease (i.e. depolarization) of 

Δψm
204 in experimental models of PH and IPAH. Chen et al. found significant hyperpolarization of 

human PASMC during chronic hypoxia that was connected with the decrease of mitochondrial 

permeability and attenuated apoptosis205. Conversely, another study that used the same cell line (human 

PASMC), experimental conditions (5% O2 and 24h incubation) as well as the same fluorescent approach 

(Rhodamine-123) for Δψm measurement reported a depolarization of the Δψm during the chronic hypoxic 

exposure concomitant with increased H2O2 production204. These authors found that hypoxia induced an 

opening of mitoKATP channels (mitochondrial ATP-dependent potassium channels) leading to 

depolarization of mitochondria that inhibited the release of cytochrome c into cytosol and the activation 

of caspase-dependent mechanisms, therefore decreased human PASMC apoptosis204. MitoKATP 

depolarizes mitochondria via influx of potassium into mitochondria in the opposite direction to proton 

movement. Increase of mitochondrial H2O2 production is also explained by the opening of mitoKATP 

channels. However, the exact mechanism by which mitoKATP channels affects the production of H2O2 and 

cytochrome release has not been elucidated. Additional evidence for the hyperpolarization in PH comes 

from Bonnet et al and Paulin et al. 34, 206. They also demonstrated the increase of Δψm in experimental PH 

that was associated with simultaneous decrease of ROS, the attenuation of apoptosis34, 206 and the 

decrease of intermitochondrial Ca2+ concentration200, 206. The sequence of these events in PH is 

completely unclear. Even more, it is not certain how an increase of Δψm is connected with a decrease of 

ROS in this model.  

In summary, the role of Δψm in hypoxia- and non-hypoxia dependent molecular pathways of PH needs to 

be further elucidated.  
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Figure 10. Role of mitochondria in the pathogenesis of PH.  
 Mitochondria can play an important role in the pathogenesis of PH by participating in 

different molecular signaling pathways including the regulation of [Ca2+]i homeostasis, 
mitochondrial ROS production, release of proapoptotic proteins and alteration of cellular 
metabolism38.  

 Numbers depict the pathways: 
1)  Mitochondria are the main source of ROS within cells. There are two main theories about 
the role of ROS in PH: 1A) Triggers of PH decrease mitochondrial respiration and thus ROS 
production. Decreased ROS triggers HIF-1α stabilization and Kv 1.5 downregulation95. Kv 1.5 
downregulation leads to decreased apoptosis of PASMC165. 1B) Triggers of PH increase 
mitochondrial ROS production that initiates Ca2+ release from SR201, HIF-1α stabilization38 
and activation of different proteins38 (e.g. Src enzyme172, pERK207, 208). HIF-1α is a 
transcriptional factor that activates expression of various proteins including growth factors 
(e.g. VEGF) and key enzymes for activation of anaerobic glycolysis184-186.  
2) The change in [Ca2+]i concentration, probably, plays an important role in remodeling of the 
pulmonary vasculature via activation of Ca2+ dependent enzymes (e.g. PKC197), receptors 
(e.g. RyR) 3, 164 and transcriptional factors (e.g. CREB198, NFAT199). Mitochondria act as key 
regulator of [Ca2+]i concentration. They uptake Ca2+ via the MCU and release it to cytosol via 
different exchangers (e.g. Na/Ca2+ exchanger)175.  
3) Cellular metabolism in PH is characterized by a metabolic shift from aerobic to anaerobic 
glycolysis187. The stabilization of HIF-1α is an essential initiating event in this process182. The 
increased anaerobic glycolysis is linked to an increased proliferation and attenuated apoptosis 
by still not completely clear molecular pathways181, 191, 192. The restoration of glucose 
oxidation leads to prevention of PH development193-195. 
4). Mitochondria induce cell death by releasing proapoptotic mediators and thus initiating  
apoptosis37. Decrease of apoptosis plays an essential role in pulmonary vasculature 
remodeling of the medial layer in PH165. 
 Abbreviations: ER - endoplasmic reticulum, Kv - potassium channels; HIF-1α - hypoxia 
inducible factor 1a, PDH - pyruvate dehydrogenase, ROS - reactive oxygen species, MCU - 
mitochondrial calcium uniporter, NCX sodium-calcium exchanger, TRPC - transient receptor 
potential cation channels, RyR - ryanodine-sensitive receptors; SERCA - sarco/endoplasmic 
reticulum Ca2+-ATPase, NFAT - nuclear factor of activated T-cells; CREB - cAMP response 
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element-binding protein; PKC - protein kinase C; SRC - v-src sarcoma (Schmidt-Ruppin A-2) 
viral oncogene homolog (avian); pERK - extracellular signal-regulated kinases; HIF-1α - 
hypoxia-inducible factor 1-α; Ca2+ - calcium; ROS – reactive oxygen species; Δψm – 
mitochondrial membrane potential. 

 

1.4. Uncoupling protein 2 (UCP2) 

1.4.1. Definition, molecular structure and tissue distribution 

As stated before, proton leak through the IMM towards the intermembrane space may occur through 

different classes of small mitochondrial membrane proteins, called UCPs209. Thus, UCPs may regulate the 

Δψm and ROS production210. Mammals express five UCPs homologues, UCP1-UCP5211. UCP2, a IMM 

protein, is widely expressed in different organs including the brain, lung, spleen, kidney, liver and heart, 

and was discovered in 1996 through its sequence homology and 59% amino-acid identity to the brown fat 

specific UCP1 that was found in 1976212. It should be remembered that the pattern of mRNA expression 

of UCP2 is not identical to its protein expression pattern211. UCP1 is responsible for heat generation by 

increasing the permeability of the IMM to protons in brown adipose tissue213. In contrast to UCP1, which 

is the only UCP for which a function in increasing proton conductance has been proven211, the role of 

UCP2 is still not clear151. However, UCP1 knockout mice overexpress UCP2 mRNA five-fold in brown 

adipose tissue which suggests that UCP2 can act in a similar fashion to UCP1160. The molecular structure 

of UCP2 is not known. Recently, Berardi et al., suggested that the structure of UCP2 closely resembles 

the bovine ADP/ATP carrier, determined by NMR (nuclear magnet resonance) molecular fragment 

searching214. Structurally, UCPs are homodimers and contain three repeats of approximately 100 amino 

acids that form the alpha helices that are connected with long hydrophilic loops oriented towards the 

matrix side, whereas the amino and carboxyl termini extend into the intermembrane space215. In humans, 

the UCP2 and UCP3 genes are both located on chromosome 11q13 and transcription initiation of UCP2 is 

only 7-8 kb downstream from the UCP3 stop codon216. There are 8 exons in the UCP2 gene and exon 1 

and 2 are untranslated216. In various genetic studies, a relationship between UCP2 and obesity, fatty acid 

metabolism or diabetes mellitus type II216 has been found, but there are no published investigations about 

the role of UCP2 polymorphisms in PH.  

 

1.4.2. Mechanism of action 

Although the precise physiological/pathological functions of UCP2 are still not fully understood, 

scientific evidence has described UCP2 as a negative regulator of Δψm and mitochondria-derived ROS 

emission, especially upon different stimuli. Currently, four different mechanisms of UCP2 function are 

suggested (Figure 11). Historically, UCP2 has been considered to be a pure uncoupling protein that 

mediates a proton leak toward to the intermembrane space and therefore decrease the Δψm
217, 218

 and ROS 

production219-221 (Figure 11, b). Negre-Salvayre et al. first described that inhibition of UCP2 with 
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guanosine diphosphate (GDP) resulted in a sharp increase of mitochondrial ROS219. Recently, attenuation 

of ROS production after overexpression of UCP2 was shown220, 221, and UCP2 knockout results in an 

increase of mitochondrial ROS emission222. Additionally, it has been described that increased ROS could 

activate UCP2 through the oxidation of lipids of the IMM223 or directly increase proton flow through 

UCP2 pores224. In this scenario, UCP2 serves as a counter-regulatory mechanism against the increased 

ROS production within mitochondria.  

However, several publications could not demonstrate the uncoupling effect of UCP2212, 213, mainly 

because they could not find increased respiration by activation of UCP2 which would be expected by its 

uncoupling property. Bouillaud et al. suggested an alternative theory, ”the metabolic hypothesis” 

concerning the physiological function of the UCP2225 (Figure 11c). In this theory, UCP2 plays a role as a 

“metabolic switch” which restrains mitochondrial glucose metabolism via inhibition of pyruvate entry 

into the mitochondrial matrix and compensatory increase of fatty acid metabolism226. The term 

“metabolic switch” should be not confused with the term “metabolic shift” that was described above and 

corresponds to effect of chronic hypoxia on cellular metabolism. Fatty acids stimulate the expression of 

UCP2/3227, and UCP2 promotes the feeding of the TCA cycle with products of fatty acid oxidation226. 

Thereby UCP2 could decrease ROS production by inhibiting the entry of pyruvate into the oxidative 

pathway resulting in attenuation of the enormous redox pressure of pyruvate225. In connection with this 

theory, it was suggested that UCP2 serves as a pyruvate anionic uniporter that pumps the excess pyruvate 

from the mitochondrial matrix into the intermembrane space and therefore restricts the pyruvate 

availability for mitochondrial respiration213, 225 (Figure 11d). Additionally, Hurtaud et al. showed in 

macrophages that UCP2 is mandatory for efficient mitochondrial oxidation of glutamine, an alternative 

fuel for the respiratory chain in absence of glucose228. These articles support the “metabolic theory” and 

suggest that in addition to fatty acids, other molecular pathways feed the respiratory chain in conditions of 

a lack of glucose. In conclusion, the “metabolic theory” suggests that UCP2 activity results in a condition 

similar to the Warburg effect, decreasing pyruvate oxidation and promoting anaerobic glycolysis in 

presence of O2
225.  

One group from Graz, Austria, suggested that UCP2/3 is the conductive subunit of a Ca2+ selective 

mitochondrial ion channel at the IMM229 (Figure 11a). They showed that knockdown of UCP2 by specific 

siRNA or their overexpression dramatically changes the mitochondrial Ca2+ capacity, as well as the 

velocity of mitochondrial Ca2+ sequestration229. The increase of the Ca2+ influx into mitochondria 

associates with a decrease of the Δψm as a result of accumulation of positively charged Ca2+ ions within 

the mitochondrial matrix230. However, these data should be confirmed by other scientific groups225  

especially in light of the fact that the introduction of mammalian UCPs into yeast fails to provide 

evidence of the MCU presence in these eukaryotic microorganisms225. 
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Although the molecular mechanism of UCP2 remains to be resolved, it is widely accepted that UCP2 

decreases ROS production and alters proliferation213. 

 

 
 

 
Figure 11. Hypothetical functions of uncoupling protein (UCP2) and its effects on Δψm and ROS 

production.  
a) UCP2 is a conductive part of the MCU that increases influx of Ca2+ ions into the 
mitochondrial matrix229. 
b) UCP2 acts as protonophore that uncouples Δψm and ATP synthesis resulting in decreased 
Δψm and ROS production219-221.  
c) UCP2 acts as “metabolic switch” between glucose and fatty acid metabolism. The excess 
of fatty acid or lack of glucose activates entry of fatty acid into the mitochondrial matrix and 
causes a compensatory decrease of pyruvate uptake by mitochondria225. These processes 
could decrease electrons entry into the respiratory chain and thus decrease Δψm and ROS 
production225. 
d) UCP2 acts as pyruvate anionic uniporter that pumps pyruvate out of the matrix towards the 
intermembrane space213, 225 .  
Abbreviations: I, II, III; IV and V - complexes of respiratory chain; ADP - adenosine 
diphosphate; ATP - adenosine triphosphate; ANT - adenine nucleotide translocase; CPT1 and 
2 - Carnitine palmitoyltransferase I and II; MCU - mitochondrial calcium uniporter; NADH - 
reduced form of NAD+ (nicotinamide adenine dinucleotide); LDHA - lactate dehydrogenase 
A; Q - coenzyme Q, C - cytochrome c; PDH - Pyruvate dehydrogenase; TCA cycle - 
tricarboxylic acid cycle; Pyr - pyruvate; UCP2 - uncoupling protein 2; Ca2+ - calcium O2•

-- 
superoxide; H+; Δψm – mitochondrial membrane potential. 

 

 

 



Introduction  47 

1.4.3. UCP2 and cellular function 

An increasing number of reports point to the relevance of UCP2 in important physiological and 

pathophysiological pathways, such as insulin secretion, neuronal activity, immune response, obesity, 

diabetes, and cancer210, 213. Therefore, the presence of UCP2 has both favorable and unfavorable effects 

depending on the disease225. For example, the most accepted function of UCP2 in β-cells of the pancreas 

indicates that UCP2 acts as a negative regulator of insulin secretion231. In pancreatic β-cells, fluctuations 

of nutrients cause alterations in both expression and activation of UCP2231. In this context, increase of 

UCP2 expression and/or UCP2 activity decreases the ∆ψm that reduces the generation of ATP and 

subsequently decreases ATP/ADP ratio within β-cells. The decrease of the ATP/ADP ratio attenuates the 

closing of the ATP-sensitive K+ channel in the plasma membrane, which prevents membrane 

depolarization, opening of VDCC, and influx of Ca2+ into the cytosol of β- cells, which subsequently 

stops the exocytosis of granules containing insulin231.  

The role of UCP2 in the signaling pathway of HPV and PH to date has not been investigated. UCP2 could 

influence these processes by interaction with ROS, Ca2+ and ATP regulated pathways, as well as by 

interference with proliferation and apoptosis. In this regard, Derdak et al. described that UCP2-deficient 

mice (UCP-/-) exhibit increased oxidative stress along with enhanced NF-kB activation that induces 

proliferation and decreases apoptosis of intestinal epithelial cells232. In line with this article, Nino Fong et 

al. demonstrated that UCP2-/- mice display increased transactivation of NF-kB which may contribute to 

enhanced expression of antiapoptotic genes such as Tnfaip3 (Tumor necrosis factor, alpha-induced 

protein 3) and pro-proliferative genes such as Ccnd2 (G1/S-specific cyclin-D2) in pancreatic β-cells233. 

Pecqueur and colleagues also showed that UCP2 knockdown is associated with increased proliferation of 

mouse embryonic fibroblasts (MEFs) and T cells226. Possibly, UCP2 knockout increases proliferation via 

activation of p38 and ERK234. In contrast, overexpression of UCP2 in Chinese hamster ovary (CHO-K1) 

cells, cells that normally do not express any of the UCPs, in chick embryo fibroblasts and in HeLa cells 

(cervical cancer cells taken from Henrietta Lacks) decreases their proliferation235. Additionally, UCP2 

can modulate the production of important pro-proliferative cytokines, e.g. mast cells of UCP2 knockout 

mice exhibited higher histamine release and interleukin-6 (IL-6) production while overexpression of 

UCP2 demonstrated an opposite effect236. Furthermore, UCP2 expression is necessary for full 

differentiation of human pluripotent stem cells237. Chen et al. showed that UCP2 downregulation was 

important for myogenic differentiation238.  

On the other hand, the anti-cancer effects of paclitaxel in the melanoma cell line a375 and BLM are 

associated with downregulation of UCP2, increase of mitochondrial ROS production and activation of 

JNK, p38 and ERK239. UCP2 deficiency significantly decreases cell proliferation of progenitor cells from 
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bone marrow at the erythropoietin-dependent phase of erythropoiesis240. A discrepancy of the role of UCP 

in cellular proliferation can be attributed to cell- or trigger-specific effects of UCP2 functions.  

In our laboratory it has been shown that UCP2 knockout (UCP2-/-) magnifies the HPV response in 

isolated lung experiments. However, the exact mechanisms have not been elucidated (unpublished thesis 

of Timm Hoeres, Giessen).  

 

1.5. Aims of this study 

Despite a long history of research, the role of mitochondria in the response of the pulmonary vasculature 

to acute and chronic hypoxia, resulting in HPV and PH, still remains unknown. Alterations in the ∆ψm 

may be crucial in both processes. UCP2, a mitochondrial uncoupling protein, is known to modulate 

several mitochondrial functions including the Δψm, ROS and glucose metabolism, although the exact 

molecular mechanism of its action has not yet been completely elucidated. It was previously shown that 

lungs of UCP2-/- mice exhibit increased HPV and increased pulmonary vascular remodeling under 

baseline conditions.  

 

Against this background, the aims of this study were 1) to identify the role of Δψm in HPV and PH, 2) to 

investigate if increased HPV and pulmonary vascular remodeling in UCP2-/- mice are related to 

alterations in Δψm, and 3) to decipher up- and downstream signaling mechanisms of Δψm alterations 

(Figure 12). In order to answer these questions, the following investigations were performed: 

 

• Alterations of Δψm were investigated in isolated precapillary PASMC during acute hypoxia and in 

animal models of PH, as well as in human PAH. 

• The physiological relevance of Δψm alterations was tested in isolated PASMC of UCP2-/- mice 

and after knockdown of UCP2 by siRNA during acute hypoxia and in PASMC proliferation. 

• Upstream and downstream signaling mechanisms of alterations in Δψm, including ROS 

metabolism, were investigated in models of PH and during UCP2 knockdown on cellular level. 

The effect of a proliferative stimulus (chronic hypoxia) was tested in UCP2-/- cells. 

 

The hypothesis tested is that during acute hypoxia and PH, Δψm is increased, resulting in HPV and 

pulmonary vascular remodeling. Knockout of UCP2 should exhibit augmented Δψm hyperpolarization, 

thus increasing HPV and pulmonary vasculature remodeling. As a downstream mediator for this pathway, 

increased ROS production is proposed. Under a proliferative stimulus (e.g. chronic hypoxia), UCP2-/- 

may additionally exert anti-proliferative functions and attenuate pulmonary vasculature remodeling, as it 

may counteract the metabolic switch by increasing pyruvate metabolism of the mitochondria.  
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Figure 12. Aims of the study.  

A) Is acute hypoxia associated with Δψm alterations and are these alterations of physiological 
significance in these processes? Does the knockout of UCP2 (UCP2-/-) magnify the acute 
hypoxia-induced Δψm alterations and ROS production? 
B) Is PH associated with Δψm alterations and are these alterations of physiological 
significance in PH? Does UCP2-/- augment Δψm /ROS production and therefore increase 
pulmonary vasculature remodeling under baseline conditions? Does UCP2-/- decrease 
pulmonary vasculature remodeling via the attenuation of the metabolic switch in hypoxia-
induced PH?  
Abbreviations: Black arrows depict the hypothetical pathway of HPV and PH, solid lines 
represent proven and dashed lines unproven interactions. Red arrows depict the possible 
mechanism of augmentation of HPV and pulmonary vascular remodeling by UCP2-/-. Blue 
lines depict the possible mechanism of attenuation of pulmonary vascular remodeling by 
UCP2-/-.  
Δψm - mitochondrial membrane potential; UCP2-/- - knockout of uncoupling protein 2; ROS - 
reactive oxygen species; HPV - hypoxic pulmonary vasoconstriction; MCT - induced PH. 
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2. Material and methods 
 

2.1. Reagents 

[3H]-Thymidine  GE Healthcare, Little Chalfont, UK 
2-Mercapto-ethanol  Sigma-Aldrich, St. Louis, USA 
Acetic Acid, Glacial 99%  Sigma-Aldrich, St. Louis, USA 
Acetone 99,5%  Sigma-Aldrich, St. Louis, USA 
ADP  Sigma-Aldrich, St. Louis, USA 
Albumin, Bovine serum  Sigma-Aldrich, St. Louis, USA 
Alexa fluor 488 labeled antibody against DIG 
antigen 

Roche Applied Science, Penzberg, Germany 

Anti-cyclin D1 antibody Cell Signaling Technology, Danvers, USA 
Anti-DDK antibody OriGene, Rockville, USA 
Anti-human von Willebrand factor antibody  Dako, Hamburg, Germany 
Anti-LDHA antibody Cell Signaling Technology, Danvers, USA 
Anti-PDK1 antibody Cell Signaling Technology, Danvers, USA 
Anti-α-smooth muscle actin antibody  Sigma-Aldrich, St. Louis, USA 
Anti-β-actin antibody Sigma-Aldrich, St. Louis, USA 
Anti-UCP2 antibody Santa Cruz Biotechnology, Santa Cruz, USA 
Atimycin A Sigma-Aldrich, St. Louis, USA 
Bongkrek acid Sigma-Aldrich, St. Louis, USA 
CaCl2 Sigma-Aldrich, St. Louis, USA 
CMH (1-Hydroxy-3-methoxycarbonyl-
2,2,5,5-tetramethylpyrrolidine)  

Alexis Corporation, San Diego, USA 

Collagenase type IV  Sigma-Aldrich, St. Louis, USA 
Complete  Roche Applied Science, Penzberg, Germany 
Crystal violet Sigma-Aldrich, St. Louis, USA 
Cy3-labeled α-smooth muscle actin antibody Sigma-Aldrich, St. Louis, USA 
Denhardt’s reagent Sigma-Aldrich, St. Louis, USA 
Dextran sulphate Sigma-Aldrich, St. Louis, USA 
DMSO (Dimethyl Sulfoxide) Sigma-Aldrich, St. Louis, USA 
ECL plus western blot detecting system  GE Healthcare, Little Chalfont, UK 
EDTA (Ethylenediamine-tetraacetic acid) Sigma-Aldrich, St. Louis, USA 
EGTA (Ethylene glycol-bis(ß-amino-
ethylether)-N,N,N',N'tetraacetic acid) 

Sigma-Aldrich, St. Louis, USA 

Ethanol (70%, 95%, 99,6%) SAV LP GmbH, Flintsbach, Germany 
FCCP (Carbonyl cyanide 4-
(trifluoromethoxy)phenylhydrazone) 

Sigma-Aldrich, St. Louis, USA 

FCS (Fetal calf serum) Invitrogen, Carlsbad, USA 
Fe3O4 (Iron particles) Sigma-Aldrich, St. Louis, USA 
Formaldehyd alcohol free 3.7% Otto Fischar GmbH&Co, Saarbrücken, 

Germany 
H2O2 30% Merck, Darmstadt, Germany 
HCl  Sigma-Aldrich, St. Louis, USA 
Heparin  Rathiopharm GmbH, Ulm, Germany 
Hepes (2-(-4-2-hydroxyethyl)-piperazinyl-1-
ethansulfonate) 

Sigma-Aldrich, St. Louis, USA 

HyPer Evrogen Company, Moscow, Russian 
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Federation 
iScript cDNA Synthesis Kit Bio-Rad, Hercules, USA 
Isoflurane Forene® Abbott, Wiesbach, Germany 
Isopropanol (99,8%) Fluka Chemie, Buchs, Swithland 
iTaq SYBR Green supermix with ROX Bio-Rad, Hercules , USA 
JC1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-
tetraethylbenzimidazolylcarbocyanine iodide) 

Sigma-Aldrich, St. Louis, USA 

Ketavet (Ketamin hydrochloride)  Pfizer, Karlsruhe, Germany 
KH2PO4 Sigma-Aldrich, St. Louis, USA 
LB Agar Invitrogen, Carlsbad, USA 
LNA™ mRNA Detection Probes Exiqon, Vedbaek, Denmark 
Low melting agarose  Sigma-Aldrich, St. Louis, USA 
M199 medium  Invitrogen, Carlsbad, USA 
Medetomidin  Pfizer, Karlsruhe, Germany 
Medical X-Ray film  Agfa, Mortsel, Belgium 
Medium for human SMC (smooth muscle 
cells) 

PromoCell, Heidelberg, Germany 

Methanol Fluka Chemie, Buchs, Swithland 
MgCl2 Sigma-Aldrich, St. Louis, USA 
Milk powder Carl ROTH, Karlsruhe, Germany 
Mini-PROTEAN vertical electrophoresis 
system 

Bio-Rad, Hercules, USA 

MitoSox Invitrogen, Carlsbad, USA 
MnTBAP (Mn(III)tetrakis(4-benzoic 
acid)porphyrin Chloride) 

Sigma-Aldrich, St. Louis, USA 

Monocrotaline Sigma-Aldrich, St. Louis, USA 
Myc-DDK-tagged ORF clone of Mus 
musculus UCP1 plasmide 

OriGene, Rockville, USA 

Myc-DDK-tagged ORF clone of Mus 
musculus UCP2 plasmide 

OriGene, Rockville, USA 

NAC (N-acetyl-L-cysteine) Sigma-Aldrich, St. Louis, USA 
NaCl Sigma-Aldrich, St. Louis, USA 
NaH2PO4 Sigma-Aldrich, St. Louis, USA 
NaOH Sigma-Aldrich, St. Louis, USA 
Nuclear Fast Red Sigma-Aldrich, St. Louis, USA 
Oligomycin Sigma-Aldrich, St. Louis, USA 
OPTI-MEM medium  Invitrogen, Carlsbad, USA 
Paraformaldehyde, 4% Merck, Darmstadt, Germany 
pMD2.G Addgene, Boston, USA 
PMSF  Sigma-Aldrich, St. Louis, USA 
Proteinase K Sigma-Aldrich, St. Louis, USA 
pSOD (peg superoxide dismutase)   Sigma-Aldrich, St. Louis, USA 
psPAX2 Addgene, Boston, USA 
PVDF membrane  Pall Corporation, Dreieich, Germany 
pWPXL  Addgene, Boston, USA 
Pyruvate Sigma-Aldrich, St. Louis, USA 
Pyruvate assay kit Cayman, Ann Arbor, USA 
Rhod2 Invitrogen, Carlsbad, USA 
RNeasy RNA extraction kit  Qiagen, Hilden, Germany 
ROCK Rho-associated protein kinase 
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Rotenone Sigma-Aldrich, St. Louis, USA 
Rotiphorese Gel 30 Acrylamide Roth, Karlsruhe, Germany 
Scrambled siRNA Biospring, Frankfurt, Germany 
SDS (Sodium dodecyl sulfate) Sigma-Aldrich, St. Louis, USA 
Sodium vanadate  Sigma-Aldrich, St. Louis, USA 
Succinate Sigma-Aldrich, St. Louis, USA 
SYBR® Safe DNA gel stain Invitrogen, Carlsbad, USA 
Taurine Sigma-Aldrich, St. Louis, USA 
TEMED (N,N,N',N'-Tetramethyl-1-,2-
diaminomethane)  

Sigma-Aldrich, St. Louis, USA 

TEMPO (2,2,6,6-tetramethylpiperidine-N-
oxyl) 

Sigma-Aldrich, St. Louis, USA 

Thromboxane mimetic, U 46619  Sigma-Aldrich, St. Louis, USA 
TMRE (etramethylrhodamine, Ethyl Ester, 
Perchlorate) 

Sigma-Aldrich, St. Louis, USA 

Trypsin PAN, Aidenbach,Germany 
Turbofectin 8 OriGene, Rockville, USA 
Tween-20  Sigma-Aldrich, St. Louis, USA 
UCP2 siRNA (Rat, mouse)  Biospring, Frankfurt, Germany 
WT-ovationTM Pico RNA Amplification 
System 

NuGEN, San Carlos, USA 

Xtreme transfection reagent  Roche Applied Science, Penzberg, Germany 
Xylazine  Bayer Healthcare, Leverkusen, Germany 
Yeast tRNA Sigma-Aldrich, St. Louis, USA 
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2.2. Equipment 

1.4F micromanometer catheter Millar Instruments, Houston, USA 
Autoregulatory control unit (model 4010, O2 
controller) 

Labotect; Göttingen, Germany 

Biemer microvessel clip Aesculap, Tuttlingen, Germany 
Cell culture incubator, Hera Cell Heraeus Thermo Fisher Scientific, Waltham, USA 
Closed perfusion chamber PeCon, Erbach, Germany 
Confocal microscope, Leica TCS SP5X  Leica Microsystems, Manheim, Germany 
Digital camera microscope DC 300F  Leica Microsystems, Wetzlar, Germany 
Electrophoresis chambers Biometra, Göttingen, Germany 
Flattening bath for paraffin sections, HI 1210  Leica Microsystems, Wetzlar, Germany 
Flattening table, HI 1220  Leica Microsystems, Wetzlar, Germany 
Fluid-filled force transducer B. Braun Melsungen AG, Melsungen, 

Germany 
Homeothermic plate control unit AD Instruments, Spechbach, Germany 
Homogenplus   Schuett-biotec GmbH, Göttingen Germany 
Inverted microscope (IX70) Olympus, Hamburg, Germany 
Laser microdissection system, Leica LMD7000 Leica Microsystems, Bernried, Germany 
Makro for muscularization degree, wall 
thickness, septum 

Leica Microsystems, Wetzlar, Germany 

Medical X-Ray film processor (curix 60) Agfa, Mortsel, Belgium 
Microplate reader Infinite m200 Tecan Group Ltd, Männedorf, Switzerland 
Mini-PROTEAN vertical electrophoresis 
system 

Bio-Rad, München, Germany 

MiniVent type 845 Hugo Sachs Elektronik, March-Hugstetten, 
Germany 

MS 100 spectrometer Magnettech, Berlin, Germany 
Mx3000P QPCR Systems Agilent Technologies, Santa Clara, USA 
NanoDrop PeqLab, Erlangen, Germany 
Opened heated chamber PeCon, Erbach, Germany 
Oxygraphy-2K Oroboros Instruments, Innsbruck, Austria 
Peristaltic pump, ISM834A V2.10 Ismatec, Glattbrugg, Switzerland 
Polychrome II monochromator and IMAGO 
CCD camera 

Till Photonics, Munich, Germany 

Precelly®24 homogeniser PeqLab, Erlangen., Germany 
Rectal thermometer Indus Instruments, Houston, USA 
Scintillation counter, TRI-CARB 2000 Canberra-Packard, Meriden, USA 
Software Q Win V3 Leica Microsystems 
Nussloch, Germany 

Leica Microsystems, Wetzlar, Germany 

Stereo light microscope Leica Microsystems, Wetzlar, Germany 
Surgical instruments Martin Medizintechnik, Tuttlingen, Germany 
Table Top Laboratory Animal Anesthesia 
System 

VetEquip Inc, Pleasanton, USA 

Tissue embedding machine, EG 1140H  Leica Microsystems, Wetzlar, Germany 
Tissue processing automated machine, TP 
1050 

Leica Microsystems, Wetzlar, Germany 

Top Laboratory Animal Anesthesia System VetEquip Inc, Pleasanton, USA 
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2.3 Consumable 

48-well cell culture plates Greiner bio-one, Frickenhausen,Germany 
Blotting papers Bio-Rad, München,Germany 
Cover slips 24x36mm Menzel, Germany 
Falcon Tubes 15 and 50 ml Greiner bio-one, Frickenhausen,Germany 
Glass Bottles: 0.1; 0.2; 1L Schott Duran, Germany 
Glass Pipetes  Greiner bio-one, Frickenhausen,Germany 
Medical adhesive bands 3M  Durapore® St. Paul, MN, USA 
Napkins Tork, Mannheim, Germany 
Needle (20G, 11/2",0.9x40mm BD Microlance, Becton Dickinson, Germany 
Neelde (18G,11/2",1.20x38mm) Unolok, Horsham,U.K 
Pipette filter tips, 10µl Eppendorf, Hamburg, Germany 
Plastic Syringe (1,3,5, 10ml and 20ml)  Braun Melsungen,Germany 
Single use gloves Transaflex® Ansell, Surbiton, UK 
Single use syringes Inject Luer®, 1ml, 2ml, 
5ml, 10ml Braun, Melsungen, Germany 
Tissue Culture Dish 100mm  Greiner bio-one, Frickenhausen,Germany 
Tissue Culture Flask 250mm Greiner bio-one, Frickenhausen,Germany 
Feather disposal scalpel Pfmmediacl, Köln, Germany 
Tissue Culture Flask 750mm Greiner bio-one, Frickenhausen,Germany 
Petri dishes Greiner bio-one, Frickenhausen,Germany 
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2.4. Methods: 

2.4.1 Experimental animals  

All animal experiments were approved by the local authorities and ethics committee. Adult male Sprague-

Dawley rats and C57BL/6J mice of either sex were studied. UCP2-/- mice were obtained from the Jackson 

Laboratory241. All animal studies were approved by the local authority for animal research 

(Regierungspräsidium Giessen, reference number - GI 20/10 Nr. 105/2010 and GI 20/10 A34/2011). All 

animal manipulations before the death of the animals by circulatory arrest were performed by Karin Quanz, 

Alexandra Pichl and Prof. Dr. Norbert Weißmann. Afterwards the cell isolation was performed by the 

author of this thesis. The protocol for human tissue donation was approved by the ethics committee at the 

faculty of medicine, Justus-Liebig university of Giessen, in accordance with national legislation and the 

guidelines for good clinical practice / international conference on harmonization under the numbers 31/93 

and 10/06.  

 

2.4.2. Anesthesia 

Mice were deeply anesthetized intraperitoneally by ketamine (100 mg/kg, Pfizer, Karlsruhe, Germany) 

and xylazine (8 mg/kg, Bayer Healthcare, Leverkusen, Germany). Rats were anesthetized 

intraperitoneally by ketamine (50mg/kg) and medetomidin (100µg/kg, Pfizer, Karlsruhe, Germany). In 

vivo cardiac hemodynamic measurement was performed under isoflurane (Forene® Abbott, Wiesbach, 

Germany) anesthesia with an inhalation system (Table Top Laboratory Animal Anesthesia System, 

VetEquip Inc, Pleasanton, USA).  

 

2.4.3. MCT (monocrotaline) injection and chronic hypoxia  

Adult male Sprague-Dawley rats (300-350g in body weight; Charles River Laboratories) were treated 

with injection of saline or 60 mg/kg MCT (Sigma-Aldrich, St. Louis, USA) to induce PH89. All rats were 

examined after 21 days of MCT injection.  

Chronic hypoxic pulmonary vascular remodeling was induced by exposure of mice (C57BL/6J mice or 

UCP2-/- mice) to 28 days of normobaric chronic hypoxia (10% O2) in a ventilated chamber33 (Figure 13). 

The level of hypoxia was held constant by the autoregulatory control unit (model 4010, O2 controller, 

Labotect; Göttingen, Germany) supplying either nitrogen (N2) or O2. Excess humidity in the recirculating 

system was prevented by condensation in a cooling system. CO2 was continuously removed by soda lime. 

Cages were opened for a short time once per day for cleaning as well as for food and water resupply. 
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Figure 13. Hypoxic chamber and oxygen (O2) pressure monitor.  
 Abbreviations: A - gas balloon with nitrogen (N2); B - O2 monitor; C - hypoxic chamber. 

 

2.4.4. Invasive hemodynamic measurements 

In vivo cardiac hemodynamic studies were preformed under isoflurane (Forene® Abbott, Wiesbach, 

Germany) anesthesia with an inhalation system (Table Top Laboratory Animal Anesthesia System, 

VetEquip Inc, Pleasanton, USA)242. Maintenance of anesthesia was provided by continuous inhalation of 

1.5% isoflurane mixed with O2 (Air Liquid, Siegen, Germany). After endotracheal intubation, mice were 

placed supine on a homeothermic plate (AD Instruments, Spechbach, Germany) and connected to a small 

animal ventilator MiniVent type 845 (Hugo Sachs Elektronik, March-Hugstetten, Germany). Body 

temperature was controlled by the rectal probe connected to the control unit (AD Instruments, Spechbach, 

Germany) and was kept at 37°C during the catheterization. 

 

2.4.4.1 Right heart catheterization 

The right external jugular vein was carefully exposed and afterwards, careful removal of the connective 

tissue surrounding the jugular vein was performed242. The tip of a high fidelity 1.4F micromanometer 

catheter (Millar Instruments, Houston, USA), presoaked with physiological saline solution for 30 min, 

was inserted in the caudal direction into the vein. Afterwards, the catheter was quickly moved into the 

right atrium and then right ventricle (RV). After stabilization of the signal, the pressure was recorded. All 

data were collected and analyzed using PowerLab data acquisition systems and LabChart 7 for Windows 

software (MPVS-Ultra Single Segment Foundation System, AD Instruments, Spechbach, Germany). The 

parameters measured were heart rate, right ventricular systolic pressure (RVSP), end-diastolic pressure 

(RVEDP), and the maximal and minimal first derivative of ventricular pressure (dP/dtMax and dP/dtMin, 

respectively). 
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2.4.4.2. Left heart catheterization 

The right carotid artery was carefully exposed. A Biemer microvessel clip (Aesculap, Tuttlingen, 

Germany) was placed on the proximal part of the carotid artery. A tiny incision was made near the distal 

end of the artery. The tip of the 1.4F micromanometer catheter was inserted into the vessel. 

Simultaneously, the clip was released and the catheter was quickly moved into the left ventricle (LV) 

until the typical pressure signal was displayed on the monitor. After stabilization of the signal, the 

pressure was recorded.  

At the end of the experiment, the mice were sacrificed and their hearts were harvested for further 

examination. 

 

2.4.5. Assessment of vascular remodeling and right ventricular hypertrophy 

After systolic arterial pressure and RVSP were recorded, the animals were exsanguinated. Afterwards the 

lungs were flushed with saline solution through the pulmonary artery, and perfused through the 

pulmonary artery and tracheae with a mixture of 3.5-3.7% formaldehyde (Otto Fischar GmbH&Co, 

Germany) with a constant pressure of 22 cm H2O and 11 cm H2O, respectively. The lungs and the heart 

were removed as a block. The lung lobes were embedded in paraffin blocks, and 3 µm sections were cut 

from all lobes.  

For estimation of medial wall thickness (MWT) 3 μm lung sections were stained for elastica using 

common histopathological procedures (Van Gieson's stain) and nuclei were counterstaining by Nuclear 

Fast Red (Sigma-Aldrich, Saint Louis, USA)243. MWT was defined as the distance between the lamina 

elastica interna and lamina elastica externa. Percentage of MWT was examined by light microscopy using 

a computerized morphometric system (Qwin, Leica Microsystems, Wetzlar, Germany) and was calculated 

by the formula: 

 

% MWT = (2 x wall thickness/external diameter) x 100 

 

The muscularization of small peripheral pulmonary vessels was assessed by staining with an Anti-α-

smooth muscle actin antibody (dilution 1:900, clone 1A4, Sigma-Aldrich, St. Louis, USA) and 

counterstaining with methyl green. 

The RV was dissected from the LV and septum (LV+S), and these dissected samples were dried for 3 

days at 50°C and weighed to obtain the right to LV plus septum ratio (RV/LV+S) or RV and LV mass to 

body weight. 
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2.4.6. Isolation of pulmonary artery smooth muscle cells (PASMC) 

PASMC (Figure 14) were isolated from pulmonary precapillary arteries and cultured as described 

previously13. Briefly, the pulmonary artery was cannulated by a handmade cannula and M199 (Medium 

199, Invitrogen, Carlsbad, USA) growth medium containing 5mg/ml glow melting point agarose, 5mg/ml 

Fe3O4, 1% penicillin, and 1% streptomycin was injected into rats (12 ml) and mice (3 ml). In this mixture, 

iron particles do not pass through capillaries and therefore only precapillary arteries were filled with the 

rapidly solidifying agarose and iron. Lung tissue was minced with scissors for 5 min in 1ml PBS 

(phosphate buffered saline). The tissue mixture was then suspended in 10ml PBS in a falcon tube, which 

was placed in a magnetic holder. The pulmonary arteries containing the iron particles and agarose 

accumulate on the tubing walls. The supernatant was aspirated and the arteries, after rinsing 3 times with 

PBS, were transferred into Petri dishes containing 10ml of M199 with 80U/ml collagenase and were then 

incubated at 37°C for 60 min. The tissue mixture was disrupted by drawing it through 15 and 18 gauge 

needles 5-6 times each. The resulting suspension, containing the medial layer of the arteries attached to 

iron particles, was placed in clear plastic tubes and rinsed three times with M199 containing 10% FCS 

(fetal calf serum) in the magnetic holder, as described above. The medial layer of the pulmonary artery 

attached to iron was finally re-suspended in medium, transferred to culture flasks and incubated at 37°C 

in the cell incubator for 4 to 5 days. Upon reaching 80% confluence, the grown cells were trypsinized and 

divided into the fresh culture flasks.  

 

 
Figure 14. Representative picture of PASMC isolated from small precapillary pulmonary vessels of 

the mice.  
Precapillary PASMC were labeled with an antibody against α-smooth muscle actin 
conjugated with Cy3 (red fluorescence) and the nuclei were stained by DAPI (4'-6-
Diamidino-2-phenylindole, blue fluorescence). 

 

Mouse PASMC (2-1 passage) were cultured in human medium for SMC (PromoCell, Heidelberg, 

Germany) with 15% FCS (PromoCell, Heidelberg, Germany) and rat PASMC (2-1 passage) were 

cultured in M199 (Invitrogen, Carlsbad, USA) with 10% FCS. For experimental procedures, the cells 

were incubated with MnTBAP (Manganese (III) tetrakis (4-benzoic acid)porphyrin chloride) and 

bongkrek acid (BA) in a dose of 50.0µM, DCA in a dose of 500.0µM, with FCCP doses of 1.0µM, 

2,5µM, 5.0µM and with a ROS scavengers mixture consisting of 25.0µM NAC (N-acetyl-L-cysteine) and 
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1.0µM TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl). All reagents were purchased from Sigma-

Aldrich, St. Louis, USA. 

 

2.4.7. Measurement of Δψm 

Δψm was investigated by using JC1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcarbocyanine 

iodide)13. JC-1 is a lipophilic, cationic dye that can selectively enter into mitochondria and reversibly 

change the emission spectrum from green (530nm) to red (590nm) upon excitation at 490nm as Δψm 

increases (Figure 15a).  
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Figure 15. Scheme of the effect of mitochondrial depolarization and hyperpolarization on the 
characteristics of JC1 fluorescence (a). Example of Δψm evaluation by FCCP-stimulated 
mitochondrial depolarization (b and c).  
Depolarization of mitochondria leads to release of JC1 into the cytosol in form of JC1 
monomers that emit light at 530nm and hyperpolarization of mitochondria results in 
accumulation of JC1, which aggregate within mitochondria and emit light at 590nm (a). 
Application of 0.5µM FCCP induces mitochondrial depolarization, thereby increasing the 
green fluorescence emission and decreasing the red fluorescence emission (b) and 
subsequently decreases the red/green ration (c). The difference between the baseline Δψm and 
Δψm after FCCP stimulation was calculated in percentage (Figure15 c). Data presented as 
mean±SEM, n=36 of precapillary PASMC.  
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Precapillary PASMC seeded on coverslips were incubated in 50nM JC1 diluted in medium for 20min and 

were then transferred in an opened heated chamber (PeCon, Germany) which was filled with 500µl 

Hepes-Ringer buffer buffer (HRB; 136.4 mM NaCl, 5.6 mM KCl, 1 mM MgCl2, 2.2 mM CaCl2, 10 mM 

Hepes [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid], 5 mM glucose, pH 7.4). FCCP at a dose of 

0.5µM was used to induce the collapse of Δψm (mitochondrial depolarization) that is characterized by an 

increase of green fluorescence emission and decrease of red fluorescence emission (Figure 15 b). As the 

result, the red/green ratio was decreased upon FCCP application (Figure 15c). The difference between the 

baseline Δψm and Δψm after FCCP stimulation was calculated as a percentage and used as additional 

parameter for an evaluation of the Δψm (Figure15 c). 

Fluorescent signal was analyzed using a Polychrome II monochromator and IMAGO CCD camera (Till 

Photonics, Germany) coupled to an inverted microscope (IX70; Olympus, Germany). Ratio of red and 

green fluorescent signals and percent of Δψm drop induced by FCCP compared to baseline was analyzed. 

To study the effect of acute hypoxia, precapillary PASMC loaded with 1µg/ml JC1 were transferred in a 

closed perfusion chamber (PeCon, Germany) and acute hypoxia was induced by switching from normoxic 

perfusion buffer (with a flow of 1 ml/min) to hypoxic buffer, which had been pregassed with N2 (Figure 

16). For control experiments the normoxic perfusion buffer was switched to a second normoxic perfusion 

buffer. All reagents were purchased from Sigma-Aldrich, St. Louis, USA. 
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Figure 16. Set-up of acute hypoxic experiments in isolated PASMC.  

Acute hypoxia was induced by switching the perfusing buffer of the closed perfusion chamber 
from normoxic buffer to hypoxic buffer gassed with N2, resulting in a decrease of pO2 to ~18 
mmHg. 1 -the temperature control of the heating system; 2 - the inverted microscope 
(Olympus IX70) connected to the fluorescent light source and CCD camera; 3 - heated 
perfusion reservoirs with buffer; 4 - tube that connects reservoir with N2 (7); 5 - computer 
with Till Photonics software; 6 - closed perfusion chamber (PeCon); 7 - source of N2.   
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JC1 measurements during acute hypoxia were confirmed by measurements with the fluorescent dye 

TMRE (tetramethylrhodamine, Ethyl Ester, Perchlorate) using confocal microscopy (TCS SP5X, Leica 

Microsystems, Manheim, Germany). TMRE is a lipophilic, cationic fluorescent dye that accumulates 

within mitochondria according to their Δψm in a Nernstian fashion244. There are two alternative 

approaches to measure Δψm in cells by TMRE. One is to use a high concentration of TMRE (quenching 

mode), more than 100nM, to induce quenching of the fluorescent signal upon hyperpolarization of 

mitochondria due to accumulation of TMRE within mitochondria. We used in this study the alternative 

approach, which is measurement with low dose TMRE (non-quenching mode). Cells were loaded with, 

10 nM TMRE for 30 minutes in HRB. Afterwards, buffer was exchanged. Δψm hyperpolarization caused 

an increase of mitochondrial TMRE concentration245, 246, which resulted in increased emission of light at 

580nm, when excited with 550 nm.  

 

2.4.8. Measurement of ROS 

2.4.8.1. Measurement of mitochondrial superoxide (O2•-) release by MitoSOX 

For acute hypoxic experiments, 5µM MitoSOX (Invitrogen, Carlsbad, USA) was used for detection of 

mitochondrial ROS in an experimental setting as described for the JC1 measurements of Δψm
13. Before 

the acute hypoxic exposure precapillary PASMC were incubated for 15 min in 5µM MitoSOX diluted in 

HRB buffer at 37°C. After accumulation in mitochondria, MitoSOX becomes fluorescent upon oxidation 

by O2•
-. Excitation of MitoSOX was 510nm and emission was measured at 580nm. 

 

2.4.8.2. Determination of cytosolic hydrogen peroxide (H2O2) concentration by HyPer 
For intracellular H2O2 detection, the coding information for the H2O2-sensitive, enhanced yellow 

fluorescent protein variant HyPer (Hydrogen Peroxide sensor) from Evrogen Company (Moscow, 

Russian Federation)247 was subcloned under the control of the EF-1α (human elongation factor-1 alpha) 

enhancer/promoter into the pWPXL plasmid (distributed by Addgene, Boston, USA) and packed with a 

second-generation lentivirus transduction system with pMD2.G, as the envelope and psPAX2, as a 

packing vector (Addgene, Boston, USA). Lentiviral transduction was carried out with a titer of at least 

1×107 particles according to established protocols (see http://tronolab.epfl.ch/ for more details). 

Experiments were carried out as outlined for the ∆ψm imaging in precapillary PASMC seeded on 

coverslip 3 days after lentiviral transduction. HyPer has two excitation peaks with maxima at 420 nm and 

500 nm, and one emission peak with a maximum at 516 nm. H2O2 increases the excitation at 500nm and 

decreases the excitations at 420nm of the HyPer construct, thus ratiometric measurements are possible  
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2.4.8.3. Measurement of O2•- release by electron spin resonance (ESR) spectroscopy 

Intracellular and extracellular O2•
- levels in precapillary PASMC were measured by ESR spectroscopy 

(electron spin resonance or electron paramagnetic resonance) using the spin probe 1-Hydroxy-3-

methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH, Alexis Corporation, San Diego, USA) and a MS 

100 spectrometer (Magnettech, Berlin, Germany)248. Precapillary PASMC in passages 2-1 were counted 

and divided in two samples (control and sample with pSOD [polyethylen-glycol conjugated SOD, Sigma-

Aldrich, St. Louis, USA] 100 000 cells each). One sample was incubated with 0.1M pSOD for 2h. After 

pSOD incubation 0.5mM CMH was added to both samples. O2•
- portion was determined as the 

differences of the ESR signal of the samples with and without pSOD. 

 

2.4.9. Laser-assisted microdissection 

Cryosections (8 μm) from lung tissue were mounted on glass slides. After hemalaun staining for 45 

seconds, the sections were subsequently immersed in 70% and 96% ethanol and stored in 100% ethanol 

until used. Intrapulmonary arteries with a diameter of less than 100 μm were selected and microdissected 

under optical control using the Laser Microdissection System (LMD7000, Leica Microsystems, Wetzlar, 

Germany). Vessels were collected by gravity into a reaction tube containing 300 μl of RNA (ribonucleic 

acid) lysis buffer. RNA was isolated using the RNeasy Micro Kit (Qiagen N.V., Hilden, Germany). 

mRNA (messenger RNA) was converted into cDNA (complementary deoxyribonucleic acid) and 

amplified by WT-ovationTM Pico RNA Amplification System (NuGEN, San Carlos, USA ). 

 

2.4.10. RNA isolation and real-time polymerase chain reaction (PCR) 

Total RNA (1µg), extracted from isolated PASMC or lung homogenate by RNeasy Micro Kit (Qiagen 

N.V., Hilden, Germany) was reverse-transcribed using the iScript cDNA Synthesis Kit (Bio-Rad, 

Hercules, USA). Afterwards, total cDNA including the cDNA obtained from laser microdissected vessels 

was used to carry out real-time PCR (polymerase chain reaction) using a master mix for RT PCR (iTaq 

SYBR Green supermix with ROX, Bio-Rad, Hercules, USA) and Mx3000P QPCR Systems (Agilent 

Technologies, Santa Clara, USA). Housekeeping genes were HPRT (Hypoxanthine 

phosphoribosyltransferase) for MCT-induced PH and β2M (β2-microglobulin) for chronic hypoxic 

experiments. A list of primers is provided below in Table 3. 

The cycling protocol was 1×(95°C, 10 min) and 45×(95°C, 5s; 62°C, 5s, 72°C, 10s). The data for the 

amplification curves were acquired after the extension phase at 72°C. The threshold value was set for 

each gene in the middle of the overlapping region of the exponential phases. Each gene was measured in 

duplicate. The formation of the specific products was verified by dissociation curves and by analysis on 

an agarose gel with SYBR® Safe DNA gel stain (Invitrogen, Carlsbad, USA). The ΔCt values were 
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calculated by subtracting the Ct values of the target gene from the endogenous control (ΔCt = Ct[ 

endogenous control] - Ct[ target]) and the fold change 2ΔΔCt comparing experimental and control 

conditions was calculated as described previously249. 

 

Table 3. List of primers for real time PCR. 

Species Primer Orientation Sequence Accessing 
number 

Mice Acot1/2  Sence TGAAGAAGCCGTGAACTACCTG NM_012006.2 
NM_134188.3 Antisence CCTTCAGGAAGGAGGCCATA 

Slc25a20 Sence CCCTGGACACGGTCAAGGTCCG NM_020520.4 
Antisence GGCGCAGCCATGCCCCGATA 

Ehhadh Sence GGCTAGAGCCCTGCAGTACGCC NM_023737.3 
Antisence GCGATGCCTCGGCCCATCGT 

Cpt2 Sence CCTGCCCAGGCTGCCTATCCCTAA NM_009949.2 
Antisence TGCGCATGCAGCTCCTTCCCAAT 

Cpt1b  Sence CCTCCGAAGCAGGAGCCCCCT NM_009948.2 
Antisence TCACGGTCCAGTTTGCGGCGA 

LDHA  Sence CCATCATCTCGCCCTTGAGT NM_010699.1 
Antisence GGCCATCGGCCTGAGCGTGG 

PDK1 Sence CGTCACGCTGGGCGAGGAGG NM_172665.4 
Antisence GGGGCACAGCACGGGACGTT 

Pfkfb3 Sence TTGCATCCTCTGACCTCTCCCGGTG NM_001177757.1 
Antisence  GATTTTGAGCACCGCATGCCCCG 

Pkm Sence AATGTGGCTCGGCTGAATTT NM_011099.3 
Antisence CGCAACAGGACGGTAGAGAA 

Glut1 Sence TGTGGAGCAACTGTGCGGCCC NM_011400.3 
Antisence CTGCCGGAAGCCGGAAGCGA 

UCP2 Sence AAGGGCTCAGAGCATGCAG NM_011671.4 
 Antisence TGGAAGCGGACCTTTACCAC 

β2M Sence AGCCCAAGACCGTCTACTGG NM_009735.3 
 Antisence TTCTTTCTGCGTGCATAAATTG 

Rat LDHA  Sence GATGTGCACAAGCAGGTGGT NM_017025.1 
Antisence TCACGGTCCAGTTTGCGGCGA 

PDK1 Sence ATTGCCCATATCACGCCTCT NM_053826.2   
Antisence TCGATGGACTCCGTTGACAG 

HPRT Sence CTCAGTCCCAGCGTCGTGAT NM_012583.2 
Antisence AGCACACAGAGGGCCACAAT 

β2M Sence 
Antisence 

CGGTGACCGTGATCTTTCTG NM_012512.2 
AGGAAGTTGGGCTTCCCATT 

Abbreviations: pfkfb3 - 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; Pkm - pyruvate kinase, 
muscle form; LDHA - lactate dehydrogenase; Glut1 - glucose transporter 1; PDK1 - pyruvate 
dehydrogenase kinase 1; acot1/2 - acyl-CoA thioesterase 1 and 2; cpt1b - carnitine palmitoyltransferase 
1b; cpt2 - carnitine palmitoyltransferase 2; Slc25a20 - carnitine/acylcarnitine translocase; ehhadh - enoyl-
Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase; UCP2 - uncoupling protein 2; β2M - 
β2-microglobulin; HPRT - hypoxanthine  phosphoribosyltransferase. 
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2.4.11. RNA interference by synthetic siRNA  

Selective targeting of UCP2 was performed using a pool of specific siRNAs (small interfering RNA) 

(Table 4). As a control, a siRNA sequence (scrambled) was employed that does not target any gene in the 

rat and mouse genome. The siRNAs were synthesized commercially (BioSpring GmbH, Frankfurt am 

Main, Germany). Transfection of UCP2 siRNA was performed in low-serum and antibiotic-free medium 

(1% FCS in M199). The medium was changed 4h before transfection. 100 nM of UCP2 siRNA was 

transfected using 1µl X-tremeGENE siRNA Transfection Reagent (Roche Applied Science, Penzberg, 

Germany) per cm2 of the well. Both siRNA and transfection reagent were diluted in OPTI-MEM medium 

(Invitrogen, Carlsbad, USA). After five hours of transfection, the medium was changed to 20% FCS 

human medium for SMC (PromoCell, Heidelberg, Germany) containing antibiotics (1% penicillin and 

streptomycin).  

 

Table 4. List of siRNA sequences against UCP2 

Species siRNA Duplex sense-antisense 
Mice UCP2_1 AA*CA*GU*UC*UA*CA*CC*AA*GG*GC*U- 

A*GC*CC*UU*GG*UG*UA*GA*AC*UG*U 
UCP2_2 AA*AG*AU*AC*UC*UC*CU*GA*AA*GC*C- 

G*GC*UU*UC*AG*GA*GA*GU*AU*CU*U 
UCP2_3 AA*CG*UA*GU*GA*UG*UU*UG*UC*AC*C- 

G*GU*GA*CA*AA*CA*UC*AC*UA*CG*U 
Rat UCP2_1 AA*CU*GU*AC*UG*AG*CU*GG*UG*AC*C- 

G*GU*CA*CC*AG*CU*CA*GU*AC*AG*U 
UCP2_2 AA*AG*AU*AC*UC*UC*CU*GA*AA*GC*C- 

G*GC*UU*UC*AG*GA*GA*GU*AU*CU*U 
UCP2_3 AA*CG*UA*GU*AA*UG*UU*UG*UC*AC*C-

G*GU*GA*CA*AA*CA*UU*AC*UA*CG*U 
* 2’OMe (methylated) nucleotide 

 

2.4.12. UCP1 and UCP2 overexpression in mouse precapillary PASMC  

UCP1 and UCP2 overexpression was performed using the TrueORF vector system250 that over-expressed 

the open reading frame (ORF) of the UCP1 or UCP2 mouse gene with two epitope tags (C-terminal Myc 

(sequence is N-EQKLISEEDL-C) and DDK (sequence is DYKDDDDK epitope) under the strong 

eukaryotic CMV (cytomegalovirus) enhancer/promoter (OriGene, Rockville, USA). Mouse precapillary 

PASMC from passage 2-1 were seeded in 48-well plates at a density of 6 × 103 cells/well for proliferation 

and 40 × 103 cells/well in 6-well plates in 20% FCS/human medium for SMC (PromoCell, Heidelberg, 

Germany) for western blot. Next day cells were transfected with 0.25µg/cm2 plasmid DNA at a 1:3 ration 

with transfection reagent turbofectin 8 (OriGene, Rockville, USA) diluted in OPTI-MEM medium 

(Invitrogen, Carlsbad, USA). After 6h of transfection, the medium was changed to normal cultured 
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medium. Western blot and proliferation assays were performed as described below 2 days after 

transfection.  

 

2.4.13. Western blot analysis  

Tissue extracted by Precelly®24 Homogeniser (Peqlab, Erlangen., Germany), or cell lysates from 

precapillary PASMC were separated on a 10 % SDS (sodium dodecyl sulfate) polyacrylamide gel, 

followed by electrotransfer to a 0.45µm PVDF (polyvinylidene fluoride) membrane (Pall Corporation, 

Dreieich, Germany). After blocking with 5% non-fat dry milk in TBS-T buffer (Tris Buffer Saline + 0.1% 

Tween 20) for 1 hour, the membrane was incubated overnight at room temperature with one of the 

following antibodies: anti-PDK1 (rabbit antibody, dilution 1:1000, Cell Signaling Technology, Inc. 

Danvers, USA), anti-LDHA (rabbit antibody, dilution 1:1000, Cell Signaling Technology, Inc. Danvers, 

USA), anti-DDK (mouse monoclonal antibody, dilution 1:1000, OriGene, Rockville, USA), anti-cyclin 

D1 (rabbit antibody, dilution 1:1000, Cell Signaling Technology, Inc. Danvers, USA), anti-UCP2 (goat 

antibody, dilution 1:200, Santa Cruz Biotechnology, Santa Cruz, USA) and monoclonal mouse anti-β-

actin (dilution 1:50000, Sigma-Aldrich, St. Louis, USA). After washing the membranes in TBS-T buffer, 

specific immunoreactive signals were detected by enhanced chemiluminescence (GE Healthcare, Little 

Chalfont, UK) using a proprietary secondary antibody coupled to horseradish-peroxidase diluted 1:5000.  

 

2.4.14. Measurement of precapillary PASMC proliferation 

2.4.14.1. [3H]-Thymidine proliferation assay of PASMC  

For assessment of proliferation, mouse precapillary PASMC from passage 2 were seeded in 48-well 

plates at a density of 8 × 103 cells/well in 20% FCS/human medium for SMC (PromoCell, Heidelberg, 

Germany). Cells were rendered quiescent by incubation in 5% FCS in human medium for SMC for 24 

hours. Subsequently, they were stimulated with 20% FCS/human medium to induce cell cycle re-entry. 

[3H]-Thymidine (GE Healthcare, Little Chalfont, UK) was used at a concentration of 0.5 μCi per well. 

Subsequently, cells were washed 3x with ice-cold PBS and lysed with 0.5M NaOH (sodium hydroxide) 

on a shaker for 4 h. The [3H]-Thymidine concentration of the cell lysates was assessed by a scintillation 

counter (Canberra-Packard, TRI-CARB 2000, Meriden, USA).  

 

2.4.14.2. Evaluation of PASMC growth rate based on crystal violet staining 

Mouse precapillary PASMC from passage 2-1 were seeded in 48 well plates at a density of 10 x 103 

cell/well in 20% FCS/human medium for SMC (PromoCell, Heidelberg, Germany). Cells were rendered 

quiescent by incubation in 5% FCS in human medium for SMC for 24 hours. Subsequently, they were 

stimulated with 20% FCS/human medium for SMC to induce cell cycle re-entry for 24h. Seeded cells 
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were washed with PBS and fixed in 4% paraformaldehyde (Merck, Whitehouse Station, USA) for 15 min, 

then stained with 0.1% crystal violet (Sigma-Aldrich, St. Louis, USA) for 20 min. After removing the 

supernatant, plates were dried and 10% acetic acid (Sigma-Aldrich, St. Louis, USA) was added to each 

well for 20 min incubation with shaking. Absorbance was measured at 590 nm by multimode plate reader 

Infinite m200 (Tecan Group Ltd, Männedorf, Switzerland).  

 

2.4.15. Non-isotopic in situ hybridization on mouse lung sections 

Non-isotopic in situ hybridization was performed on 8μm thick TissueTek®-embedded mouse lung 

cryostat sections from wild type and UCP2-/- mice as described previously73. The sections were incubated 

with DIG-labeled (digoxigenin-labeled) UCP2 probes (LNA™ mRNA Detection Probes, Exiqon, 

Vedbaek, Denmark) in 2x hybridization solution [1M NaCl, 0.02M Tris,pH7.5, 2 x Denhardt’s reagent, 

2mM EDTA (ethylenediamine-tetraacetic acid), 2g dextran sulphate, 0.2mg/ml yeast tRNA (transfer 

RNA)] at 55°C for overnight. The following day, slides were washed with buffer ranging from low to 

very highly stringent conditions as follows: on shaking platform 2x SSC (saline-sodium citrate buffer) for 

1h at room temperature, 0.1x SSC at 60°C. The sections were treated with blocking buffer (2% Blocking 

reagent, Roche Applied Science, Penzberg, Germany) for 30 min, followed by incubation with a Alexa 

fluor 488 labeled antibody against DIG antigen (Roche Applied Science, Penzberg, Germany) in a 

dilution of 1:20 for 2h at room temperature. After antibody incubation, sections were washed in TBT 

buffer (50mM, 1M Tris-HCl,pH 7.5, 150mM NaCl and 0.1% Triton X-100) three times for 15min each. 

Afterwards, slides were incubated with a mouse monoclonal Cy3-labeled α-smooth muscle actin antibody 

(Sigma, Hamburg, Germany) at a dilution of 1:500 in PBS, for 1h. After washing (3 x 3min) in PBS, 

sections were mounted in carbonate-buffered glycerol (pH-8.6). In situ hybridization was evaluated with 

appropriate filter sets for Cy3 and Alexa fluor 488 with Leica microscope (Leica Microsystems, Wetzlar, 

Germany).  

 

2.4.16. Isolation of pulmonary mitochondria 

Lung mitochondria were isolated as described previously with some modifications251. Briefly, after deep 

anesthesia with ketamine/xylazine, as described above, the thorax of the mouse was opened and the lung 

washed with ice-cold PBS buffer via the pulmonary artery. The lung was removed from the thoracic 

cavity together with the heart as one bloc and transferred to a dish with medium A (250mM sucrose, 

0.5mM Na2EDTA, 10mM Tris, pH7.4). The lung was separated from the heart and mediastinum and 

moved into a homogenizer tube (inner diameter 1.9 cm and distance between tube and pestle 0.5-1.0mm). 

Lung tissue was homogenized using the "schütt homogenplus" homogenizer  (Schuett-biotec GmbH, 

Göttingen Germany) with 200-300rpm. The homogenate was centrifuged at 660g for 10min at 4°C. The 
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supernatant was centrifuged at 10000g for 10 min at 4°C and the pellet resuspended in medium A with 

1g/l BSA (bovine serum albumin). After centrifugation, the pellet was resuspended in medium MiRO5 

(0.5mM EGTA, 3mM MgCl2, 60mM K-lactobionate, 20mM Taurine, 10mM KH2PO4, 20mM Hepes, 

110mM sucrose and 1g/l BSA). 

 

2.4.17. Evaluation of intracellular pyruvate concentration and in lung mitochondria 

Pyruvate concentration in precapillary PASMC (48well plates with a density of 10 x 1010) was measured 

after 24h 20% FCS stimulation. Mitochondria were isolated as described before and stimulated with 5mM 

pyruvate for 2min. Pyruvate was oxidized by pyruvate oxidase to acetyl phosphate. The product of this 

reaction, H2O2, reacts with 10-acetyl-3,7,-dihydroxyphenoxazine in presence of horseradish peroxidase to 

produce the fluorescent resorufin. Resorufin fluorescence was measured with excitation 535nm and 

emission 590nm by Infinite m200 (Tecan Group Ltd, Männedorf, Switzerland) microplate reader. 

 

2.4.18. Evaluation of mitochondrial calcium ([Ca2+]m) concentration 

[Ca2+]m concentration was measured by fluorescent microscopy using 5µM Rhod2 AM (cell-permeant 

acetoxymethyl (AM) ester form of rhod2 (1-[2-Amino-5-(3-dimethylamino-6-dimethylammonio-9-

xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid) from Invitrogen, 

(Carlsbad, USA). Experiments were performed as described for the JC1 measurements of Δψm. Rhod 2 is 

a derivative of rhodamine 123 that accumulates into mitochondria electrophoretically. Once inside the 

matrix, mitochondrial esterases cleave the AM ester to liberate Rhod 2 free acid. Rhod2 is non-

fluorescent before Ca2+ binding, but becomes fluorescent with increasing Ca2+ concentrations exhibiting 

an emission maximum at 580nm when excited at 590nm252. 

Additionally, [Ca2+]m was measured with the multimode microplate reader, Infinite m200 (Tecan Group 

Ltd, Männedorf, Switzerland). Precapillary PASMC from passages 2-1 were seeded in 48well plates at a 

density of 10 x 1010. After loading precapillary PASMC with 5µM Rhod2 for 20 min, fluorescence was 

measured by the reader.  

 

2.4.19. High-resolution respirometry 

O2 consumption was determined at 37°C using Oxygraphy-2K (Oroboros Instruments, Innsbruck, 

Austria)13. Rat precapillary PASMC from passage 2 were trypsinized and resuspended in M199 

(Invitrogen, Carlsbad, USA). A standard protocol using oligomycin (2.0 μg/ml), FCCP (0.45 μM), 

rotenone (0.5 μM) and antimycin A (2.5 μM) was used for measurement of cellular respiration. To check 

the effect of pyruvate on mitochondrial respiration, the following protocol was chosen: 1) for isolated 

mitochondria – 1.0mM ADP, 5.0mM pyruvate, 1.0µM rotenone, 10.0mM succinate, 0.5µM FCCP and 
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2.5µM antymicin A; 2) for rat precapillary PASMC after transfection with siRNA against UCP2 – 1.0mM 

ADP, 5.0mM pyruvate, 1.0µM rotenone, 10.0mM succinate, 2.0µg/ml oligomycin, 0.5µM FCCP, and 

2.5µM antimycin A. O2 consumption was calculated from the recorded data as the time derivative of the 

O2 content in the chamber, using DatLab software (Oroboros Instruments, Innsbruck, Austria). 

 

2.4.20. Statistics 

Values are given as means ± SEM. Statistical significance of the data was calculated by Student's t test 

with Welsh's correction or analysis of variance (one way ANOVA) with Bonferroni post hoc test as 

appropriate. For a multiple comparison of more than four groups, ANOVA with Tukey post hoc test was 

performed. A p value less than 0.05 was considered to be significant. 
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3. Results 

 

3.1. Δψm and HPV 

3.1.1. Effect of acute hypoxia on Δψm and ROS release in precapillary PASMC 

Δψm was increased during perfusion with hypoxic buffer (“acute hypoxia”) in precapillary PASMC 

isolated from wild type (WT) mice (Figure 17). Δψm was measured by fluorescence microscopy with JC1 

fluorescent dye. Figure 17a depicts a representative measurement of the JC1 fluorescent signal during an 

acute hypoxic challenge in mouse precapillary PASMC, where the green line depicts the 530nm 

fluorescence signal, the red line depicts the 590nm fluorescence signal of JC1 fluorescent dye and the 

blue line depicts the red/green ratio. Figure 17b demonstrates a time course of hypoxia-induced increase 

of Δψm in mouse precapillary PASMC.  

 
Figure 17. Δψm alteration upon acute hypoxia in mouse precapillary PASMC measured by JC1.  

Representative picture of the JC1 fluorescent signal. Intensity of light emission of JC1 
calculated relative to the baseline value: green line represents light emission at 530nm 
corresponding to JC1 monomers in depolarized mitochondria, red line represents light 
emission at 590nm corresponding to JC1 aggregates in hyperpolarized mitochondria and blue 
line depicts the 590/530 ratio. b) Δψm hyperpolarization upon acute hypoxia in wild type 
precapillary PASMC. Data are presented as the change of 590/530 ratio compared to baseline. 
Acute hypoxia was applied by switching the normoxic perfusion buffer to the hypoxic (pre-
bubbled by N2) buffer at 1 min. Data were obtained from ≥4 independent precapillary 
PASMC cell isolations. n=51 PASMC.  
* p<0.05, compared to baseline with Student's t test. 
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To confirm that acute hypoxia led to hyperpolarization of mitochondria in precapillary PASMC, data 

from JC1 experiments were compared to measurements of Δψm by TMRE fluorescence staining and 

confocal microscopy. The acute hypoxic challenge caused an increase of TMRE accumulation within 

mitochondria measured by a rise of the TMRE fluorescent emission signal at 580 nm corresponding to 

hyperpolarization of mitochondria (Figure 18).  

 

 
Figure 18. Δψm alteration upon acute hypoxia in mouse precapillary PASMC measured by TMRE.  

Data are given as percent of Δψm change during acute hypoxic perfusion compared to 
normoxic control. Acute hypoxia was applied by switching the normoxic perfusion buffer to 
the hypoxic (pre-bubbled by N2) buffer at 1 min. Data were obtained from ≥4 independent 
precapillary PASMC cell isolations. n=25 PASMC.  
*** p <0.001 with Student's t test.  

 

Mouse precapillary PASMC showed an increase of O2•
- concentration within the mitochondrial matrix 

after changing the perfusion from normoxic buffer to hypoxic buffer. O2•
- concentration was measured by 

the fluorescent dye MitoSOX (Figure 19).  

 
Figure 19. Alteration in mitochondrial superoxide (O2•-) concentration upon acute hypoxia in 

mouse precapillary PASMC measured by MitoSOX.  
The intensity of light emitted by MitoSOX at 580nm corresponds to an increase of 
fluorescence upon O2•

- induced oxidation of MitoSOX during acute hypoxia. Data are 
presented as the change of MitoSOX fluorescence compared to baseline. Data were obtained 
from ≥4 independent precapillary PASMC cell isolations. n=19 PASMC.  
* p<0.05 compared to baseline with Student's t test. 
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Furthermore, acute hypoxia stimulated the increase of H2O2 concentration within the cytosol of 

precapillary PASMC isolated from WT mice (Figure 20) measured by the HyPer construct.  

 

 
Figure 20. Alteration in intracellular hydrogen peroxide (H2O2) concentration upon acute hypoxia 

in mouse precapillary PASMC measured by HyPer.  
H2O2 increases excitation at 500nm and decreases excitation at 420nm of the HyPer construct. 
The level of cellular H2O2 is presented as the change in the ratio of excitation intensity at 
500nm and 420nm of HyPer compared to baseline. Data were obtained from ≥4 independent 
precapillary PASMC cell isolations. n=31 PASMC. 
*** p<0.001 compared to baseline with Student's t test. 

 

The same results were obtained from rat precapillary PASMC (Figure 21). Both rat and mouse 

precapillary PASMC responded with an increase of Δψm and ROS (both mitochondrial O2•
- and 

intracellular H2O2) to the acute hypoxic challenge compared to normoxic control, measured by 

fluorescence microscopy (Figure 21).  
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Figure 21. Increase of Δψm (a), mitochondrial O2•- (b), and cytosolic H2O2 concentration (c) in 

precapillary PASMC isolated from different animal species upon acute hypoxia.  
Data were obtained from ≥4 independent precapillary PASMC cell isolations and ≥15 
individual cells each. Data are presented as percent of change compared to normoxic value. 
* p<0.05; ** p<0.01; *** p<0.001 compared to normoxic control with Student's t test. 
 

To elucidate if increased ROS was upstream of Δψm alterations and possibly causing Δψm alterations 

during the acute hypoxic challenge, Δψm was measured during acute hypoxia in the presence of the 

unspecific ROS scavengers 25µM NAC (N-acetyl-L-cysteine) and 1µM TEMPO (2,2,6,6-

tetramethylpiperidine-N-oxyl) in mouse precapillary PASMC. The ROS scavengers did not alter the acute 

hypoxia-induced hyperpolarization of mitochondria in precapillary PASMC isolated from WT mice 

(Figure 22).  
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Figure 22. Effect of ROS scavengers on hyperpolarization of Δψm during acute hypoxia in mouse 
precapillary PASMC.  
JC1 measurement of Δψm during acute hypoxia in the precapillary PASMC isolated from WT 
mice in the absence (Control) or presence of ROS scavengers (NAC, TEMPO). Data are 
given as percent of Δψm change during acute hypoxic superfusion compared to normoxic 
control. Data were obtained from ≥4 independent precapillary PASMC cell isolations and 
≥50 individual cells each.  
* p<0.05 compared to normoxic control with Student's t test. 
 

3.1.2. Effect of UCP2 knockout (UCP2-/-) on acute hypoxic responses of precapillary PASMC 

To investigate the role of Δψm and ROS in HPV we studied genetically modified UCP2-/- mice in which 

full length UCP2 mRNA was not expressed241. It has been shown before that acute HPV was significantly 

higher in isolated perfused lungs of UCP2-/- mice compared to WT mice. In contrast, the vasoconstrictor 

response to the thromboxane mimetic U46619 did not differ between UCP2-/- and WT mice (unpublished 

thesis of Timm Hoeres, Giessen). The hypothesis that the increase of acute HPV in UCP2-/- mice was 

caused by increased Δψm during acute hypoxia was tested.  

 

3.1.2.1. Effect of UCP2-/- on Δψm and O2•- emission in precapillary PASMC during acute hypoxia  

First, the mRNA expression pattern of UCP2 in mouse lungs was investigated by in-situ hybridization. In 

figure 23, representative pictures of mRNA UCP2 expression in mouse lungs are shown. PASMC of 

small pulmonary arteries show the prominent expression of mRNA of UCP2. Lungs of UCP2-/- mice 

show no sign of expression of mRNA of UCP2. 
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Figure 23. mRNA expression of UCP2 in mouse lung.  
Representative pictures of in situ hybridization of mouse lungs of wild type (WT) and UCP2 
knockout mice (UCP2-/-).  
I) Staining of mouse lung cryosections with Cy3-labelled antibody directed against α-smooth 
muscle actin (green fluorescence).  
II) Hybridization of the UCP2 specific probe to the same mouse lung cryosections (red 
fluorescence).  
III) Overlay of the images I) and II) is depicting the predominant co-localization of UCP2 
transcripts within the smooth muscle cell layer of the pulmonary artery (yellow fluorescence). 
The pulmonary artery is depicted by arrow.  

 
Gene deletion of UCP2 amplified the effect of 5 min acute hypoxic superfusion on the acute hypoxia-

induced hyperpolarization as measured by JC1 fluorescent dye (Figure 24a), as well as by the increase of 

mitochondrial O2•
- release measured by MitoSOX fluorescent dye in isolated precapillary PASMC 

compared to WT PASMC (Figure 24b).  
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Figure 24. Δψm and O2•- release in precapillary PASMC from wild type (WT) and UCP2 knockout 
(UCP2-/-) mice upon acute hypoxia compared to normoxic control.  
a) Δψm hyperpolarization in percent in precapillary PASMC from UCP2 knockout (UCP2-/-) 
and wild type (WT) mice during acute hypoxia. Data are given as percent of Δψm change 
during hypoxic superfusion compared to the normoxic control. b) Increase of O2•

- release in 
% in precapillary PASMC from UCP2-/- and WT mice during acute hypoxia. Data are given 
as percent MitoSOX fluorescence of normoxic control. Data were obtained from ≥4 
independent precapillary PASMC cell isolations and ≥13 individual cells each.  
* p <0.05 compared to normoxic control and ## p<0.01 compared to acute hypoxic WT 
precapillary PASMC with Student's t test. 
 

Alterations of Δψm in precapillary WT PASMC during acute hypoxia were not influenced by ROS 

scavengers (figure 22). In line with result from precapillary WT PASMC, the presence of ROS 

scavengers (25µM NAC and 1µM TEMPO) in the hypoxic perfusion buffer did not alter the acute 

hypoxia-induced hyperpolarization of mitochondria in precapillary PASMC isolated from UCP2-/- mice 

(Figure 25).  



Results  76 

 
Figure 25. Effect of ROS scavengers on mitochondrial hyperpolarization during acute hypoxia.  

JC1 measurement of Δψm in precapillary PASMC isolated from UCP2 deficient mice in the 
absence (UCP2-/-) and in the presence of ROS scavengers (NAC, TEMPO). Data are given as 
percent of Δψm change during hypoxic superfusion compared to normoxic control. Data are 
obtained from ≥4 independent precapillary PASMC cell isolations and ≥31 individual cells 
each.   
* p <0.05 compared to appropriate normoxic control with Student's t test.  
 

3.2. Δψm and PH 

3.2.1. Evaluation of Δψm in IPAH and in animal models of PH  

In order to investigate the role of Δψm in PH, Δψm was measured in PASMC isolated from animals with 

different forms of experimental PH and from patients with IPAH. Mitochondria were found to be 

hyperpolarized in PASMC isolated from IPAH patients compared to PASMC isolated from healthy 

(donor lungs) controls (Figure 26a). PH induced either by MCT injection in rats or by chronic hypoxia in 

mice (10% O2, 28 days) resulted in an increase of Δψm in precapillary PASMC isolated from such 

animals (Figure 26a). In addition, in vitro exposure of rat precapillary PASMC to an atmosphere of 1% 

O2 for 48h (chronic hypoxia) increased ∆ψm (Figure 26a). To prove that mitochondria were 

hyperpolarized, 0.5µM of the uncoupling agent FCCP was applied to stimulate a Δψm collapse. The 

FCCP-stimulated decrease of Δψm (maximal uncoupling) in PASMC was significantly higher in IPAH 

patients and experimental PH models than in respective controls, which corresponded to a higher ∆ψm 

(Figure 26b).  
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Figure 26. Δψm of precapillary PASMC in PH.  

a) 590/530 nm ratio of JC1 during measurement of basal Δψm in PASMC isolated from 
patients with idiopathic pulmonary arterial hypertension (IPAH) or healthy donor controls 
(Donor), from rats with MCT-induced PH (MCT) or untreated rats (Control), from mice with 
chronic hypoxia-induced PH (4w Chr. Hypoxia) or normoxic mice (Normoxia), and from 
untreated rats after exposure of the precapillary PASMC to 1% O2 chronic hypoxia (48h 
Hypoxia) or normoxia (Normoxia). b) Δψm presented as percent of maximal FCCP-induced 
drop of Δψm in those cells. Data were obtained from ≥4 independent precapillary PASMC cell 
isolations and 4 human samples, respectively. n ≥23 individual cells in each group.* p<0.05, 
**p<0.01, ***p<0.001, compared to respective controls with Student's t test.  

 
3.2.2. Mechanism of mitochondrial hyperpolarization in PH  

3.2.2.1. Correlation of respiration and glucose metabolism with mitochondrial hyperpolarization in 

PH 

To evaluate, if changes in Δψm could be related to the alteration of cellular metabolism, mitochondrial 

respiration was measured using high-resolution respirometry, and the level of key metabolic enzymes was 

studied by the determination of mRNA and protein quantities in animal models of PH. Furthermore, the 

Δψm and the cellular metabolism was tested in rat precapillary PASMC after exposure to 48 h 1% O2 

hypoxia and MCT-induced PH after treatments that can reverse PH in animal models (re-exposure to 

normoxia and DCA, respectively). Following in vitro exposure to 1% O2 hypoxia for 48h, rat PASMC 

were used in these experiments for the following reasons: 1) exposure to 48h 1% O2 is an accepted model 

of chronic hypoxia-induced PH and leads to similar alterations of Δψm in rat precapillary PASMC and in 

precapillary PASMC isolated from mice exposed to 4 weeks of chronic hypoxia (Figure 26a-b); 2) for 

measurement of mitochondrial respiration a critical amount of cells is needed that can be more easily 

obtained from rats than from mice. Unstimulated mitochondrial respiration, oligomycin-inhibited 

respiration and maximal respiratory capacity after FCCP stimulation (given as pmol of O2 consumed per 
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minute per million cells) were significantly reduced in rat precapillary PASMC after 48h exposure to 1% 

O2 hypoxia (Figure 27a). Comparable results were found in precapillary PASMC isolated from rats with 

MCT-induced PH (Figure 27b).  

In parallel, mRNA and protein levels of LDHA, the key enzyme for anaerobic glycolysis, and PDK1, the 

key enzyme to inhibit mitochondrial pyruvate metabolism, were increased in precapillary PASMC from 

both models of PH, chronic hypoxia-induced PH in mice and MCT-induced PH in rats (Figure 27 c-g). 

Re-exposure of hypoxic precapillary PASMC (48h, 1%O2) to normoxia (Figure 27a), or treatment of 

precapillary PASMC isolated from MCT injected rats with 500.0 µM DCA restored endogenous 

mitochondrial respiration (Figure 27b). DCA is an inhibitor of the pyruvate dehydrogenase kinase194. 

Additionally, protein levels of PDK1 and LDHA returned to normal after re-exposure to normoxia for 24 

hours in precapillary PASMC (Figure 27 d-g). 
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Figure 27. Mitochondrial respiration and markers of anaerobic glycolysis in precapillary PASMC.  

a) Mitochondrial respiration after exposure of rat precapillary PASMC to 48h 1% O2 (48h 
Hypoxia) and after re-exposure of PASMC to 24h 21% O2 (48h Hypoxia-24h Normoxia) 
compared to normoxic controls (Normoxia). Data are given as respiration in pmol of O2 
consumed per minute per million cells where Routine is endogenous, unstimulated 
respiration; Oligomycin is oligomycin-inhibited respiration; FCCP represents respiration in 
the presence of FCCP. b) mRNA expression of key metabolic enzymes in precapillary 
PASMC isolated from mice (Mouse PASMC, 48h Hypoxia) and rat (Rat PASMC, 48h 
Hypoxia) after exposure to 48h 1% O2 and in precapillary PASMC isolated from rats with 
MCT-induced PH (Rat PASMC, MCT). Data are presented as fold change compared to 
appropriate controls. c and d) Protein expression of PDK1 (Pyruvate dehydrogenase, isoforme 
1) and LDHA (Lactate dehydrogenase A) in rat precapillary PASMC after exposure to 48h 
1% O2 (48h Hypoxia) and after re-exposure of PASMC to 24h normoxia (48h Hypoxia-24h 
Normoxia) compared to normoxic controls (Normoxia). e and f) Representative pictures of 
PDK1 and LDHA western blots from rat precapillary PASMC after exposure to 48h 1% O2 
(48h Hypoxia) and re-exposure to normoxia (48h Hypoxia-24h Normoxia). Data were 
obtained from ≥4 independent precapillary PASMC cell isolations. Mitochondrial respiration 
measurements were performed with 2.5-5.0 million cells per measurement. 
* p<0.05, ** p<0.01, ***p<0.001 compared to respective controls (Normoxia and Control) 
and # p<0.05, ## p<0.01 compared to 48h Hypoxia or MCT-induced PH, one-way ANOVA 
with Bonferroni post hoc test. 
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Re-exposure to 24h normoxia (21% O2) and treatment with 500µM DCA also reversed mitochondrial 

hyperpolarization found in precapillary PASMC isolated from rats with MCT-induced PH and after 

exposure of precapillary rat PASMC to 1% O2 for 48h, respectively (Figure 28a-b). 

 

 
Figure 28. Effect of re-exposure to normoxia on mitochondrial hyperpolarization in precapillary 

PASMC exposed to 48h 1% O2 and in precapillary PASMC isolated from rats with 
MCT-induced PH after DCA treatment.  
a) Δψm presented as percent of maximal FCCP-induced drop of Δψm in precapillary PASMC 
after 48h exposure to 1% O2 a (48h Hypoxia) and re-exposure to 24h normoxia (48h 
Hypoxia-24h Normoxia) compared to the FCCP-induced drop of Δψm in precapillary 
PASMC exposed to normoxia (Normoxia). b) Δψm presented as percent of maximal FCCP-
induced drop of Δψm in precapillary PASMC isolated from rats with MCT-induced PH in the 
absence (MCT) or in the presence of DCA (MCT+DCA) compared to the FCCP-induced 
drop of Δψm in precapillary PASMC isolated from healthy rats (Control). Data were obtained 
from ≥4 independent precapillary PASMC cell isolations and ≥24 individual cells each.  
** p<0.01, *** p<0.001 compared to respective control (Normoxia and Control) and # 
p<0.05 compared untreated cells (48h Hypoxia and MCT), one-way ANOVA with 
Bonferroni post hoc test. 

 

To test if the increase in Δψm in precapillary PASMC of the experimental models of PH was related to 

glycolytically produced ATP, an inhibitor of the ATP/ADP translocase, 50.0 µM BA, was applied. BA 

inhibited the increase of Δψm in precapillary PASMC induced by exposure to hypoxia (48h, 1% O2), as 

well as the increase of Δψm in PASMC isolated from rats with MCT-induced PH (Figure 29 a-b).  
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Figure 29. Effect of bongkrek acid, an inhibitor of the ADT/ATP translocase, on mitochondrial 

hyperpolarization in precapillary PASMC from experimental models of PH.  
a) Δψm presented as percent of maximal FCCP-induced drop of Δψm in precapillary PASMC 
in normoxia (Normoxia) or after exposure to 48h 1% O2 in the absence (48h Hypoxia) or in 
the presence of bongkrek acid (48h Hypoxia+BA). b) Δψm presented as percent of maximal 
FCCP-induced drop of Δψm in precapillary PASMC isolated from healthy control rats 
(Control) and from rats with MCT-induced PH in the absence (MCT) or in the presence of 
BA (MCT+BA). Data were obtained from ≥4 independent precapillary PASMC cell 
isolations and ≥15 individual cells each.  
** p<0.01, *** p<0.001 compared to appropriate controls (Normoxia and Control) and # 
p<0.05, ### p<0.001 compared untreated groups (48h Hypoxia and MCT), one-way ANOVA 
with Bonferroni post hoc test. 

 

3.2.2.2. Application of ROS scavengers and mitochondrial hyperpolarization in PH 

To elucidate the effect of ROS scavengers on mitochondrial hyperpolarization of precapillary PASMC in 

experimental PH, ROS scavengers (25µM NAC and 1µM TEMPO) were applied in precapillary PASMC 

exposed for 48 h to 1% O2 or precapillary PASMC isolated from rats with MCT-induced PH. In contrast 

to the effect of the ROS scavengers on acute hypoxia-induced mitochondrial hyperpolarization, where 

mitochondrial hyperpolarization was preserved in the presence of ROS scavengers, in experimental 

models of PH such as chronic hypoxic PH, as well as MCT-induced PH, treatment of PASMC with the 

ROS scavengers reversed the hyperpolarization of mitochondria (Figure 30 a-b).  
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Figure 30. Effect of ROS scavengers on mitochondrial hyperpolarization in precapillary PASMC 

from experimental models of PH.  
a) Δψm presented as percent of maximal FCCP-induced drop of Δψm in precapillary PASMC 
exposed to normoxia (Normoxia) or to 48h 1% O2 in the absence (48h Hypoxia) or in the 
presence of ROS scavengers (48h Hypoxia + NAC, TEMPO). b) Δψm presented as percent of 
maximal FCCP-induced drop of Δψm in precapillary PASMC isolated from healthy control 
rats (Control) and rats with MCT-induced PH in the absence (MCT) or in the presence of 
ROS scavengers (MCT + NAC, TEMPO). Data were obtained from ≥4 independent 
precapillary PASMC cell isolations and ≥30 individual cells each.  
* p<0.05, *** p<0.001 compared to appropriate controls (Normoxia and Control) and ### 
p<0.001 compared to untreated groups (48h Hypoxia and MCT), one-way ANOVA with 
Bonferroni post hoc test. 
 

3.2.2.3. mRNA and protein expression of UCP2 in PH 

To investigate the role of UCP2 in mitochondrial hyperpolarization in PH, the level of expression of 

mRNA of UCP2 was studied in chronic hypoxia-induced PH. Exposure of WT mice to four weeks of 

chronic hypoxia (10% O2) decreased mRNA expression of UCP2 determined in lung tissue homogenate 

and microdissected precapillary pulmonary arteries (Figure 31). 
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Figure 31. Effect of exposure of WT mice to 4 weeks of 10% O2 (chronic hypoxia) on UCP2 mRNA 

expression. 
UCP2 mRNA expression in mouse lung tissue (homogenate) and in laser microdissected 
small pulmonary vessels upon 4 weeks of 10% O2 (chronic hypoxia). Data are given as fold 
change compared to normoxic controls (n=4).  
* p<0.05 compared to normoxic controls with Student's t test.  
 

Additionally, the level of UCP2 protein expression in lung homogenate in chronic hypoxia-induced PH, 

MCT-induced PH and human IPAH was investigated. The exposure of WT mice to four weeks of chronic 

hypoxia (10% O2) and MCT injection in rats decreased the protein level of UCP2 determined in lung 

tissue homogenate (Figure 32 a-d). UCP2 protein expression was also decreased in lung homogenate of 

IPAH patients compared to donor (healthy) lung (Figure 32 e-f). 
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Figure 32. UCP2 protein expression in lungs of experimental models of PH and idiopathic 

pulmonary arterial hypertension (IPAH) patients.  
UCP2 protein expression in lung tissue (homogenate) of WT (wild type) mice exposed to 4 
weeks of 10% O2 (4w hypoxia, a-b, n=6 in each group), from rats with MCT-induced PH (c-
d, n=6 in each group) and from IPAH patients (e and f, n=5 in each group). Data presented 
as ratio of UCP2 to β-actin expression. Lung homogenate from UCP2-/- (knockout) mice 
served as negative control.  
* p<0.05 and ** p<0.001 compared to respective controls (lung tissue from control mice, 
control rats and human donor) with Student's t test.  
 

3.3. UCP2 and pulmonary vascular remodeling 

3.3.1. Effect of UCP2-/- on the pulmonary vasculature and right ventricle 

The increase of Δψm in animal models of PH and IPAH was associated with UCP2 downregulation; 

therefore, the effect of UCP2-/- on the pulmonary vasculature was determined. Under normoxic conditions 

UCP2-/- mice exhibited mild PH characterized by a slightly increased RVSP (Table 5) and higher ratio of 

RV mass to LV mass plus septum and RV mass to body weight compared to WT animals (Figure 33a-b). 

In contrast, systemic systolic pressure (Table 5) and ratio of LV mass to body weight was similar in both 

groups (Figure 33c). The heart rate was also similar in both animal groups (Table 5). 
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Table 5. Hemodynamics of the right ventricle.  

 WT UCP2-/- 
n 6 6 
Heart rate, BPM 592.5±11.7 570.4±11.3 
Systemic systolic pressure, 
mmHg 

102.5±8.7 99.6±2.1 

RVSP, mmHg 29.5±0.4 35.5±0.9*** 
RVEDP, mmHg 1.4±0.4 2.1±0.4 
Max dP/dt, mmHg/s 3297.0±58.1 3309.0±200.5 
Min dP/dt, mmHg/s -3347.0±160.7 -2727.0±159.4* 

 
Abbreviations: WT - wild type mice; UCP2-/- - UCP2 deficiency mice; PAP - pulmonary arterial 
pressure; RVSP - right ventricular systolic pressure, RVEDP - right ventricular end-diastolic pressure; 
Max dP/dt and Min dP/dt - minimum and maximum rate of pressure change in the RV.  
* p<0.05, *** p<0.001 compared to WT control with Student's t test. 
 

Furthermore, UCP2-/- mice were characterized by an increase of the minimum rate of pressure change in 

the RV (Min dp/dt WT: -3347.0±160.7; UCP2-/-: -2727.0±159.4).  

 

 
Figure 33. Effect of UCP2-/- on the right ventricle. 

Ratio of right ventricle (RV) to left ventricle (LV) + septum (a), RV mass to body weight (b) 
and LV mass to body weight (c) in wild type (WT) and UCP2 knockout (UCP2-/-) mice.  
* p<0.05 compared to WT with Student's t test. n=9 each  
 

It was shown before, that lungs of UCP2-/- mice have an increased ratio of muscularized to non-

muscularized vessel (unpublished thesis of Timm Hoeres, Giessen). Morphometric analysis of the MWT 

of pulmonary vessels now also showed that gene deletion of UCP2 resulted in a prominent remodeling of 
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the pulmonary vasculature, mainly medial layer as indicated by the increase of MWT of small pulmonary 

arteries with a diameter of less that 100µm (Figure 34 a-b) compared to these arteries in WT mice.  

 
Figure 34. Effect of UCP2-/- on pulmonary vasculature remodeling.  

Representative pictures of pulmonary arteries of wild type (WT) and UCP2 knockout (UCP2-/-

) mice lungs stained for elastica according to common histopathological procedures (Van 
Gieson's stain). Nuclei were counterstaining by Nuclear Fast Red. MWT (medial wall 
thickness) was defined as the distance between the lamina elastica interna and lamina elastica 
externa. b) Increased MWT given as percentage of MWT that was examined by light 
microscopy using a computerized morphometric system calculated by the formula MWT = (2 
x wall thickness/external diameter) x 100. n=4 in each group.  
***p<0.001 compared to WT with Student's t test. 

 
α-smooth muscle actin staining of lung slides demonstrated that excessive pulmonary vascular 

remodeling in UCP2-/- mice was caused by the increase of the SMC layer (Figure35). 

 

 
Figure 35. Representative pictures of pulmonary arteries of WT and UCP2-/- mice.  

Mouse lung sections from wild type (WT) and UCP2 knockout (UCP2-/-) mice were stained 
with an anti-α-smooth muscle actin antibody (Purple color) and counterstained with methyl 
green (Greenishcolor). Arrow depicts the small pulmonary arteries 

 

3.3.2. Proliferation of precapillary PASMC isolated from UCP2-/- mice  

3.3.2.1. Effect of UCP2-/- on Δψm and O2•- release in precapillary PASMC  

Under normoxic conditions precapillary PASMC isolated from UCP2-/- mice showed a significantly 

higher Δψm than those from WT mice (Figure 36a). FCCP stimulation induced a significantly higher drop 
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of Δψm in precapillary PASMC isolated from UCP2-/- mice than in precapillary PASMC isolated from 

WT mice, which corresponded to a higher Δψm in UCP2-/- mice compared to WT mice (Figure 36b). 

Increased Δψm in precapillary PASMC was accompanied by enhanced O2•
- levels in precapillary PASMC 

of UCP2-/- mice as measured by ESR spectroscopy (Figure 36c).  

 
Figure 36. Δψm and O2•

- release in precapillary PASMC isolated from WT and UCP2-/- mice. 
a) 590/530 nm ratio of JC1 during measurement of Δψm in precapillary PASMC from wild 
type (WT) and UCP2 knockout (UCP2-/-) mice. b) Δψm presented as percent of maximal 
FCCP-induced drop of Δψm in precapillary PASMC from mice WT and UCP2-/- mice. c) O2•

- 

production in precapillary PASMC from WT and UCP2-/- mice. Data were assessed by ESR 
spectroscopy. Data were obtained from ≥4 independent precapillary PASMC cell isolations. 
Δψm was measured ≥18 individual cells each.  O2•

-  concentration is given in arbitrary units 
(AU) for 100 000 cells. 
** p<0.01, *** p<0.001 compared to WT with Student's t test. 

 

To verify the impact of precapillary PASMC in pulmonary vascular remodeling in UCP2-/- mice, the 

proliferation rate of precapillary PASMC isolated from UCP2-/- mice was studied. Precapillary PASMC 

isolated from UCP2-/- mice were characterized by a more prominent proliferation after FCS stimulation 

compared to precapillary PASMC isolated from WT mice (Figure 37). The proliferation rate was 

investigated by two different approaches: [3H]-Thymidine incorporation (Figure 37a) and colorimetric 

growth assay with 0.1% crystal violet staining (Figure 37b).   
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Figure 37. Proliferation of precapillary PASMC isolated from WT and UCP2-/- mice.  

Proliferation of precapillary PASMC isolated from wild type (WT) and UCP2 knockout 
(UCP2-/-) mice measured by [3H]-Thymidine incorporation (a) and by the colorimetric growth 
assay with 0.1% crystal violet staining of 4% paraformaldehyde fixed cells (b) upon FCS (fetal 
calf serum) stimulation. Data were obtained from ≥4 independent precapillary PASMC cell 
isolations. [3H]-Thymidine incorporation is displayed in counts per minute (CPM) per 8000 
cells. Crystal violet staining was evaluated in 10000 cells. 
*p<0.05, ** p<0.01 compared to corresponded WT. For Figure a one-way ANOVA with 
Tukey post hoc test was performed, for figure b, the Student's t test. 
 

3.3.2.2. Role of Δψm in proliferation of precapillary PASMC isolated from UCP2-/- mice  

Incubation with different doses of FCCP, 1.0 µM, 2.5 µM and 5.0 µM for 3 days resulted in a significant 

decrease of Δψm in precapillary PASMC isolated from UCP2-/- mice (38a). FCCP  doses of 2.5 and 5.0 

µM decreased ∆ψm in precapillary PASMC isolated from UCP2-/- mice to the level of Δψm in precapillary 

PASMC isolated from WT mice (Figure 38a). Incubation with the same concentrations of FCCP 

decreased the proliferation of precapillary PASMC isolated from UCP2-/- mice upon 20% FCS 

stimulation to the similar level as those measured in precapillary PASMC isolated from WT mice (Figure 

38b).  
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Figure 38. Effect of FCCP on Δψm and proliferation of precapillary PASMC isolated from UCP2-/- 

mice.  
a) Δψm in percent of maximal FCCP-induced uncoupling compared to the baseline values in 
the absence of FCCP (Control) and after 72h treatment with 1.0µM, 2.5µM and 5.0µM FCCP 
in precapillary PASMC isolated from wild type (WT) and UCP2 knockout (UCP2-/-) mice. b) 
Proliferation of precapillary PASMC from WT and UCP2-/- mice in the absence of FCCP 
(Control) and after 72h treatment with 1.0µM, 2.5µM and 5.0µM FCCP. Data were obtained 
from ≥4 independent precapillary PASMC cell isolations. Δψm was measured ≥19 individual 
cells each. Proliferation is displayed in counts per minute (CPM) per 8000 cells. 
*** p<0.001 compared to precapillary PASMC from WT mice without treatment and # 
p<0.05, ## p<0.01, ### p<0.001 compared to UCP2-/- untreated group with one-way ANOVA 
with Tukey post hoc test. 
 

3.3.2.3. Effect of UCP1 and UCP2 overexpression on proliferation of precapillary PASMC isolated 

from UCP2-/- mice 

Proliferation of precapillary PASMC after overexpression of UCP2 and UCP1, which is known to act 

solely via uncoupling, was determined. Overexpression of UCP1 and UCP2 decreased the proliferation of 

precapillary PASMC isolated from UCP2-/- mice upon 20% FCS stimulation (Figure 39). Overexpression 

of UCP1 and UCP2 were confirmed by a western blot (Figure 39b). 
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Figure 39. Effect of UCP1 and UCP2 overexpression on the proliferation of precapillary PASMC 

isolated from UCP2-/- mice.  
a) Proliferation of precapillary PASMC from UCP2 knockout (UCP2-/-) mice after 72h 
transfection with UCP1 or UCP2 over-expressing plasmids. b) Western blot with anti-DDK 
(plasmids contain UCP1 and UCP2 protein with c-terminal DDK tag) and anti β-actin 
(loading control) antibody. Data were obtained from ≥4 independent precapillary PASMC cell 
isolations. Proliferation is displayed in counts per minute (CPM) per 8000 cells. 
*** p<0.001 compared to UCP2-/- PASMC, ## p<0.05, ### p<0.001 compare empty plasmid 
group with one-way ANOVA with Tukey post hoc test. 

 

3.3.2.4. Role of ROS in proliferation of precapillary PASMC isolated from UCP2-/- mice. 

ROS scavenging by 25µM NAC and 1µM TEMPO inhibited the increased O2•
- production (Figure 40a) 

and the enhanced proliferation (Figure 40b) in precapillary PASMC isolated from UCP2-/- mice compared 

to precapillary PASMC isolated from WT mice. Additionally, MnTBAP inhibited the increased 

proliferation of precapillary PASMC isolated from UCP2-/- mice (Figure 40c).  
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Figure 40. Effect of ROS scavengers on O2•- generation and proliferation of precapillary PASMC 

isolated from UCP2-/- mice.  
a) O2•

- production in precapillary PASMC from wild type (WT) and UCP2 knockout (UCP2-/-

) mice in the absence (Control) or in presence of the unspecific radical scavengers NAC and 
TEMPO. Data were assessed by ESR spectroscopy. b) Proliferation of precapillary PASMC 
from UCP2-/- mice and WT mice in the absence (Control) or in presence of the unspecific 
radical scavengers NAC and TEMPO. c) Proliferation of precapillary PASMC isolated from 
UCP2-/- mice and WT mice in the absence (Control) or presence of MnTBAP. Data were 
obtained from ≥4 independent precapillary PASMC cell isolations. Proliferation is displayed 
as counts per minute (CPM) per 8000 cells. O2•

-  concentration is given in arbitrary units (AU) 
for 100 000 cells. 
**p<0.01, ***p<0.001, ***p<0.001 compared to WT and †p<0.05, ††p<0.01, †††p<0.001 
compared to untreated UCP2-/- PASMC, one-way ANOVA with Tukey post hoc test.   

 

To support the hypothesis that increased Δψm in precapillary PASMC isolated from UCP2-/- mice was not 

a secondary effect of increased ROS in those cells, Δψm was measured after the application of ROS 

scavengers. No alterations in Δψm could be detected under these conditions (Figure 41). 
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Figure 41. Effect of ROS scavengers on Δψm in precapillary PASMC isolated from WT and UCP2-/- 

mice.  
Δψm presented as percent of maximal FCCP-induced drop of Δψm after 48h treatment of 
precapillary PASMC with ROS scavengers (NAC and TEMPO) or untreated precapillary 
PASMC of wild type (WT) and UCP2 knockout (UCP2-/-) mice (Control).  
Data were obtained from ≥4 independent precapillary PASMC cell isolations and ≥31 
individual cells each.   
**p<0.01 compared to WT without ROS scavengers with one-way ANOVA with Tukey post 
hoc test. 

 
3.3.2.5. Δψm, ROS release and proliferation of precapillary PASMC after UCP2 knockdown by 

siRNA  

Knockdown of UCP2 by specific siRNA in precapillary PASMC isolated from WT mice had the same 

effect as UCP2-/- and led to an increase of Δψm (Figure 42a-b), O2•
- production (Figure 42c), and 

enhanced proliferation (Figure 42b). Success of siRNA transfection was confirmed by real-time PCR 

(Figure 42d).  
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Figure 42. Effect of UCP2 downregulation on Δψm and O2•

- release in precapillary PASMC.  
590/530 nm ratio of JC1 during measurement of Δψm in precapillary PASMC transfected with 
scr (scr siRNA) or siRNA against UCP2 (siRNA UCP2). b) Δψm presented as percent of 
maximal FCCP-induced drop of Δψm in precapillary PASMC after transfection with scr (scr 
siRNA) or siRNA against UCP2 (siRNA UCP2). c) O2•

- production of precapillary PASMC 
transfected by scr (scr siRNA) or siRNA against UCP2 (siRNA UCP2). Data were assessed 
by ESR spectroscopy. d) Real time PCR control of efficiency of UCP2 knockdown by 
specific siRNA. Data were obtained from ≥4 independent precapillary PASMC cell isolations. 
Δψm was measured ≥21 individual cells each. O2•

- concentration is given in arbitrary units 
(AU) for 100 000 cells. 
**p<0.01, ***p<0.001, ***p<0.001 compared to scr siRNA with Student's t test. 

 
FCCP at a dose of 1.0 µM reversed the hyperpolarization of mitochondria in precapillary PASMC 

transfected with siRNA against UCP2 (Figure 43a) to the level of Δψm in precapillary PASMC 

transfected with scr siRNA. Incubation with the same dose, 1.0µM FCCP, decreased the enhanced 

proliferation of precapillary PASMC transfected with UCP2 siRNA (Figure 43b) to a similar level as in 

precapillary PASMC transfected with scr siRNA. FCCP in doses of 2.5 µM and 5.0 µM demonstrated an 

unspecific effect of FCCP on the proliferation of precapillary PASMC transfected with scr siRNA (Figure 

43b). 
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Figure 43. Effect of FCCP on Δψm and proliferation of precapillary PASMC after UCP2 

knockdown by siRNA.  
a) Δψm in percent of maximal FCCP-induced uncoupling compared to the baseline values in 
the absence of FCCP (Control) and after 72h treatment with 1.0µM, 2.5µM and 5.0µM FCCP 
in precapillary PASMC transfected with scr siRNA or siRNA UCP2. b) Proliferation of 
precapillary PASMC after 72h transfection with siRNA against UCP2 (siRNA UCP2) or scr 
siRNA in the absence (Control) of FCCP and after 72h treatment with 1.0µM, 2.5µM and 
5.0µM FCCP. Data were obtained from ≥4 independent precapillary PASMC cell isolations. 
Δψm was measured ≥12 individual cells each. Proliferation is displayed as counts per minute 
(CPM) per 8000 cells. 
*p<0.05, *** p<0.001 compared to PASMC after scr siRNA transfection without treatment 
and # p<0.05, ## p<0.01, ### p<0.001 compared siRNA UCP2 untreated group with one-way 
ANOVA with Tukey post hoc test. 

 

In line with the data obtained from precapillary UCP2-/- PASMC, ROS scavenging by 25µM NAC and 

1µM TEMPO inhibited the increased O2•
- production (Figure 44a) and the enhanced proliferation (Figure 

44d) of precapillary PASMC after knockdown of UCP2 with siRNA. MnTBAP also inhibited the 

increased proliferation of precapillary PASMC after transfection with siRNA against UCP2 (Figure 44c). 
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Figure 44. Effect of ROS scavengers on O2•- release and proliferation of precapillary PASMC after 

UCP2 knockdown by siRNA.  
a) O2•

- production in precapillary PASMC treated with scr siRNA or siRNA against UCP2 in 
the absence (Control) or in the presence of the unspecific radical scavengers NAC and 
TEMPO. Data were assessed by ESR spectroscopy. b) Proliferation of precapillary PASMC 
after transfection with scr siRNA or siRNA against UCP2 in the absence (Control) or in the 
presence of the unspecific radical scavengers NAC and TEMPO. c) Proliferation of 
precapillary PASMC after transfection with scr siRNA or siRNA4 against UCP2 in the 
absence (Control) or presence of MnTBAP. Data were obtained from ≥4 independent 
precapillary PASMC cell isolations. Proliferation is displayed in counts per minute (CPM) per 
8000 cells. O2•

-  concentration is given in arbitrary units (AU) for 100 000 cells. 
**p<0.01 compared to scr siRNA and # p<0.05, ## p<0.01 compared to siRNA UCP2 
transfected precapillary PASMC without treatment, one-way ANOVA with Tukey post hoc 
test. 

 
3.3.2.6. Effect of UCP2 knockout or knockdown on cyclin D1 expression in precapillary PASMC  

Cyclin D1, a well-known proliferative marker, builds a complex with the cyclin-dependent kinase (CDK) 

that activates DNA replication and cell division253. Knockdown of UCP2 by siRNA or knockout of UCP2 

in precapillary PASMC resulted in the increase of cyclin D1 expression (Figure 45). 
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Figure 45. Effect of UCP2 on cyclin D1 expression in precapillary PASMC. 

a) Cyclin D1 expression in precapillary PASMC after 72 h transfection with scr (scr siRNA) 
or siRNA against UCP2 (siRNA UCP2). b) Cyclin D1 expression in precapillary PASMC 
isolated from wild type (WT) and UCP2 knockout (UCP2-/-) mice. Data are obtained from at 
least four independent precapillary PASMC cell isolations and presented as ratio of cyclin D1 
to β-actin expression. n=3 each. 
*p<0.05, ** p<0.01 compared control with Student's t test. 
 

3.3.2.7. Effect of UCP2 on mitochondrial respiration, [Ca2+]m, glucose and fatty acid metabolism in 

precapillary PASMC  

To investigate the role of UCP2 in pyruvate metabolism of precapillary PASMC, the effect of application 

of pyruvate on cellular respiration after transfection of precapillary PASMC with scr siRNA or siRNA 

against UCP2 and in isolated lung mitochondria from WT and UCP2-/- mice was studied. Both basal 

(routine) cellular respiration after transfection of siRNA against UCP2 (Figure 46b) and routine 

respiration of isolated mitochondria from UCP2-/- mice (Figure 46a) were similar to the level of cellular 

respiration after transfection with scr siRNA and in precapillary PASMC isolated from WT mice, 

respectively. Application of pyruvate did not result in any changes of mitochondrial respiration in 

precapillary PASMC after transfection of siRNA against UCP2 or in isolated mitochondria from UCP2-/- 

mice. Additionally, intracellular baseline levels of pyruvate in precapillary PASMC (Figure 46d) and after 

pyruvate stimulation in mitochondria (Figure 46e) were similar in both animal groups.  

The mRNA expression level of key components of the cellular fatty acid metabolism such as acyl-CoA 

thioesterase 1 (acot1), carnitine palmitoyltransferase 1a (cpt1b), carnitine palmitoyltransferase 2 (cpt2), 

carnitine/acylcarnitine translocase (Slc25a20), and hydratase/3-hydroxyacyl Coenzyme A dehydrogenase 

(ehhadh) was studied, to investigate the role of UCP2 in fatty acid metabolism. Their expression in 

precapillary PASMC isolated from UCP2-/- was similar to the level of their expression in WT mice 

(Figure 46c).  
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Figure 46. Effect of UCP2 on mitochondrial respiration, mitochondrial pyruvate and fatty acid 

metabolism.  
a) Respiration of isolated lung mitochondria from wild type (WT) and UCP2 knockout 
(UCP2-/-) mice (n=8 each group). Data are shown as the respiration in pmol of O2 consumed 
per minute per mg of mitochondria where Routine is endogenous, unstimulated respiration, 
and ADP (adenosine diphosphate,), Pyr (pyruvate), Rot (rotenone), suc (succinate), FCCP 
and Ant (antimycin A) are respiration after addition of those respective substances. b) 
Cellular respiration of precapillary PASMC after transfection with scr siRNA or siRNA 
UCP2 (n=7 each group). Data are given as respiration in pmol of O2 consumed per minute 
per million of cells. Cellular respiration measurements were performed with 2.5-5.0 million 
cells per measurement. c) mRNA expression of key components of fatty acid metabolism in 
precapillary PASMC isolated from WT and UCP2-/- mice where acot1/2 is acyl-CoA 
thioesterase 1 and 2, cpt1b is carnitine palmitoyltransferase 1b, cpt2 is carnitine 
palmitoyltransferase 2, Slc25a20 is carnitine/acylcarnitine translocase, ehhadh is enoyl-
Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase. Pyruvate concentration 
in precapillary PASMC (d) and in mitochondria after pyruvate stimulation (e) from WT and 
UCP2-/- mice (n=3, mitochondrial isolation). Cellular pyruvate concentration was measured 
in 10000 per measement. Data were obtained from ≥4 four independent precapillary 
precapillary PASMC cell isolations. No significant changes with Student's t test. 
 

To investigate the possibility that UCP2 acts as MCU, [Ca2+]m
 concentration in precapillary PASMC 

isolated from WT and UCP2-/- mice was studied by Rhod2 fluorescent dye. [Ca2+]m
 were in similar range 

in both animal groups measured by fluorescent microscopy, as well as by the microplate reader (Figure 

47a-b). 
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Figure 47. Effect of UCP2 on mitochondrial calcium concentration ([Ca2+]m).  

[Ca2+]m measured by fluorescence microscopy (a, n≥49 cells each) and multimode microplate 
reader (b, 10000 cells per measement measement) in precapillary PASMC isolated from wild 
type (WT) and UCP2 knockout (UCP2-/-) mice. Data were obtained from ≥4 four independent 
precapillary precapillary PASMC cell isolations.  
No significant changes with Student's t test. 

 

3.3.3. Effect of UCP2 on Δψm, respiration and glucose metabolism in PASMC during chronic 

hypoxia 

The level of Δψm of precapillary PASMC isolated from UCP2-/- mice with hypoxia-induced PH was 

similar to the level of Δψm in WT mice with chronic hypoxia-induced PH (Figure 48a). The decrease of 

mitochondrial respiration because of chronic hypoxic exposure was similar in precapillary PASMC 

transfected with scr siRNA or siRNA against UCP2 (Figure 48b). Additionally, hypoxic (48h, 1% O2) 

exposure of precapillary PASMC transfected with siRNA against UCP2 increased the mRNA expression 

of LDHA and PDK1 to the same levels as in precapillary PASMC transfected with scr siRNA (Figure 

48c). The same was true for precapillary PASMC isolated from UCP2-/- mice, where hypoxia (48h 1% 

O2) induced the same degree of anaerobic glucose pathway activation as in hypoxic WT precapillary 

PASMC (Figure 48 d-f) represented by higher levels of mRNA and protein expression of key components 

of anaerobic glycolysis metabolism within cells.  
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Figure 48. Effect of chronic hypoxic exposure on Δψm, mitochondrial respiration, and glucose 

metabolism in WT and UCP2-/- mice.  
a) Δψm presented as percent of maximal FCCP-induced drop of Δψm in precapillary PASMC 
isolated from wild type (WT) and UCP2 knockout (UCP2-/-) mice exposed to 4 weeks of 10% 
O2 (4w hypoxia) compared to maximal FCCP-induced drop of Δψm in precapillary PASMC 
isolated from normoxic animals (Normoxia). Δψm was measured ≥18 individual cells each. b) 
Cellular respiration of precapillary PASMC transfected with scr siRNA or siRNA UCP2 after 
exposure to 48h, 1% O2 (48h, 1% hypoxia) compared to normoxic control. Data are given as 
respiration in pmol of O2 consumed per minute per million cells where Routine is 
endogenous, unstimulated respiration; Oligomycin is oligomycin-inhibited respiration; FCCP 
represents respiration in the presence of FCCP. Cellular respiration measurements were 
performed with 2.5-5.0 million cells per measurement, n=3. c) mRNA expression of PDK1 
and LDHA in precapillary PASMC transfected with scr siRNA or siRNA against UCP2 after 
exposure to 48h, 1% O2. Data are presented as fold change compared to normoxic value. n=4. 
d) mRNA expression of enzymes of the anaerobic glycolysis in precapillary PASMC isolated 
from WT and UCP2-/- mice after exposure to 48h, 1% O2. Data are presented as a fold change 
compared to normoxic value where pfkfb3 is 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3, Pkm is pyruvate kinase, muscle form, LDHA - lactate dehydrogenase, Glut1 
is glucose transporter 1 and PDK1 is pyruvate dehydrogenase kinase 1. n=4 e) Protein 
expression of LDHA and PDK1 in WT and UCP2-/- precapillary PASMC after exposure to 
48h, 1% O2. Data are presented as a fold change compared to normoxic value. n=3 f) 
Representative pictures of protein expression of LDHA and PDK1 in WT and UCP2-/- 
precapillary PASMC after exposure to 48h, 1% O2 (48h HOX) compared to normoxia 
(NOX). Data were obtained from ≥4 independent precapillary precapillary PASMC cell 
isolations. 
*p<0.05, **p<0.01, *** p<0.001 compared to normoxic value; # p<0.05 compared to WT 
with one-way ANOVA with Tukey post hoc test. 
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4. Discussion 

Mitochondria have long been considered to be O2 sensing organelles taking part in the signaling cascade 

underlying HPV, as well as important factors in hypoxia and non-hypoxia dependent pulmonary vascular 

remodeling processes by participating in numerous proliferative and antiapoptotic/ proapoptotic signaling 

pathways1, 38. Nevertheless, the exact impact of mitochondria in these processes is still not clear1, 82. In 

particular, the role of Δψm, the most important portion of the proton-motive force that drives ATP 

synthesis and is coupled with the degree of mitochondrial ROS release, is still controversial in HPV and 

PH development. Evidences exist for and against a role of Δψm and ROS in these processes, as well as for 

an increase or a decrease of these factors in HPV and PH.  UCP2 is thought to be a negative regulator of 

Δψm and mitochondria-derived ROS219-221. UCP deficient mice have been shown to exhibit increased 

acute HPV and pulmonary vascular remodeling in baseline conditions179. Against this background, this 

studied aimed to investigate the role of Δψm in HPV and PH development and the effect of UCP2 

knockout on these processes. 

The following results were demonstrated by this study: 

• Acute hypoxia increased Δψm and ROS emission in isolated mouse and rat precapillary PASMC. 

• Potentiated HPV in UCP2 knockout mice was associated with augmented mitochondrial 

hyperpolarization and ROS emission in isolated precapillary PASMC during acute hypoxic 

exposure. 

• In animal models of PH, as well as human IPAH, Δψm was increased when compared to controls. 

• Factors that may promote mitochondrial hyperpolarization in PH are glycolytically produced ATP 

and UCP2 downregulation. 

• UCP2 knockout resulted in pulmonary vasculature remodeling and RV hypertrophy under 

normoxic baseline conditions. Pulmonary vascular remodeling was at least in part caused by 

increased proliferation of precapillary PASMC induced by increased Δψm and partially by 

increased ROS release of these cells. UCP2-/- mice may be used as an experimental model of 

moderate PH. 

• Increase of pulmonary vascular remodeling in UCP2-/- mice after chronic hypoxic exposure may 

be induced by additional metabolic alterations in PASMC of these mice. 

Our findings suggest that increases of Δψm and mitochondrial ROS regulate HPV and pulmonary vascular 

remodeling leading to PH. Additionally, metabolic alterations play a role in animal models of PH. 
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4.1. Role of Δψm in HPV 

4.1.1. Increase of Δψm and HPV 

Previously, it was shown by the Weissmann group that acute hypoxia induced a hyperpolarization of 

mitochondria, an increase of mitochondrial ROS emission and a rise of [Ca2+]i concentration in small 

precapillary PASMC isolated from pulmonary arteries of rabbits13. These effects were specific for 

precapillary PASMC and did not occur in renal or aortic SMC during acute hypoxia13. As a potential 

mechanism for the increased ROS, it was proposed that the complex IV sensed the lack of O2, initiating 

the increase of ROS emission by complex III of the respiratory chain13. The current study confirms the 

reaction of precapillary PASMC to acute hypoxia in other rodents. Acute hypoxic exposure of 

precapillary PASMC isolated from mice and rats induced the increase of Δψm and ROS emission. In line 

with our findings, previously published results demonstrated the inhibitory effect of chemical uncouplers, 

DNP and FCCP on HPV at high concentrations168. The effect of DNP was specific for HPV, as 100µM 

DNP did not inhibit the thromboxan mimetic U46619 induced vasoconstriction.  

Mitochondrial hyperpolarization as a response to acute hypoxia in precapillary PASMC was proven by 

measurement with two different fluorescent dyes, JC1 and TMRE (Figures 17 and 18). Several 

fluorescent membrane-permanent cationic dyes such as Rhod123 (rhodamine 123), Rhod123 derivatives 

(TMRE and TMRM [tetraethylrhodamine methyl]), DiOC6(3) (3,3´ - dihexyloxacarbocyanine iodide) and 

JC1 have been suggested for directly measuring the Δψm by fluorescent microscopy117. These positively 

charged dyes accumulate within negatively charged mitochondria in an inverse proportion to Δψm 

according to the Nernst equation117. Hyperpolarization of mitochondria evokes the increase of 

accumulation of cationic dyes within the mitochondrial matrix, and depolarized mitochondria accumulate 

less dye. There are merits and pitfalls of each of these dyes254. The main disadvantage of Rhod123 is its 

ability to form putative adducts with some components of the IMM that can lead to misleading results255. 

DiOC6(3), in addition to measurement of Δψm, is used to study the plasma membrane potential. Therefore, 

changes in the plasma membrane potential can mask the change of Δψm. The most commonly used dyes 

are TMRE or TMRM and JC1. TMRE and TMRM can be used in quenching or non-quenching modes118. 

In the quenching mode, an increased concentration of the dye leads to quenching of the fluorescent signal 

upon mitochondrial hyperpolarization. In the non-quenching mode a low concentration of these dyes 

accumulates in the mitochondria during hyperpolarization and their fluorescent signal increases118. Laser 

illumination of TMRM loaded in mitochondria at high concentrations (quenching mode) generates 

ROS256. Moreover, high concentrations of TMRE exhibit mitochondrial toxicity244. Therefore, the non-

quenching mode for TMRE with lower concentrations of the dye (10 nM TMRE) was used to study Δψm 

in precapillary PASMC during acute hypoxia. Although the quenching mode is very sensitive to changes 

in Δψm, it cannot be used to compare changes in baseline Δψm
118

. Additionally, TMRE distribution within 
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cells is dependent on plasma membrane potential. Changes in plasma membrane potential can lead to 

release of TMRE into extracellular buffer, even though Δψm remains unchanged257. Therefore, JC1 

fluorescence was used as an additional method to determine Δψm. It was shown that JC1 can measure 

Δψm with greater accuracy in intact cells compared to other cationic dyes255, 258. The advantage of JC1 is a 

ratiometric measurement of Δψm by monitoring the ratio of green/red (530/590nm) emission 

fluorescence257. Hyperpolarization of mitochondria increases the red fluorescence (590nm emission) and 

depolarization raises the green fluorescence (530nm emission). Both reactions are reversible. As a result, 

JC1 measurement is less sensitive to loss of staining, organelle swelling and dye bleaching259. However, 

JC1 used in doses greater than 1µM can be toxic for mitochondria257, and some publications demonstrated 

that JC1 can be a cause of artifacts in Δψm studies118.  

The mechanism for the increase of Δψm in acute hypoxia remains unclear, but the mitochondrial 

hyperpolarization may be induced by different factors. In principle at least, four mechanisms are possible: 

1) inhibition of ATP synthase, 2) modulation of mitochondrial membrane channels (e.g. UCPs, Ca2+ 

channels, ion exchangers), 3) improvement of H+/e- stoichiometry and 4) increase of mitochondrial 

respiration. In possibilities 1-3, additionally, the increased Δψm must not be compensated completely by a 

decreased electron flow through the respiratory chain. These possibilities are described in detail below. 1) 

As mitochondrial hyperpolarization was associated with slight inhibition of mitochondrial respiration13, a 

mechanism similar to the effect of NO on Δψm
260 was suggested. In this scenario, inhibition of NO at 

complex IV would be mirrored by the lack of O2 inhibiting complex IV, resulting in increased glycolytic 

ATP production, which inhibits ATP synthase and increases Δψm. In this regard, it is a well known effect 

of inhibitors of ATP synthase to increase Δψm and consecutively decrease respiration according to the 

classical Mitchell theory, where there is a feedback mechanism of Δψm on electron flow119, 225, 261. 

Consequently, acute hypoxia could not only act via complex IV inhibition, but also have a direct effect on 

Δψm, and decreased respiration could be a result of mitochondrial hyperpolarization. Both hypotheses 

could explain why the decreased respiration in acute hypoxia was not associated with decreased Δψm, as 

could be expected. Additionally, mitochondrial respiration in acute hypoxia was only reduced by up to 

~10% in the range where Δψm was increased13. This is in line with many publications showing preserved 

cellular ATP levels during HPV, which argues against a substantial mitochondrial inhibition1. Thus, the 

slight decrease of respiration (and proton pumping across the membrane) may easily be counteracted by 

other mechanisms increasing Δψm such as inhibition of ATP synthase by glycolytic ATP as discussed 

above. 2) Keeping in mind that the reaction of acute O2 sensing must be very fast, another potential 

mechanism can account for mitochondrial hyperpolarization - the fine tuning of the proton leak by acute 

hypoxia, e.g. via modulation of UCP function. Changes of Δψm in the measurements of the current study 

were small (about 7-10% of basal Δψm). Therefore, the functional alterations of the proton leak may be 
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small, considering a high basal proton leak in resting cellular metabolic conditions, which is responsible 

for ∼20-30% of respiration (up to 50% in skeletal muscle156). The proton leak shuttles protons from the 

intermembrane space to the mitochondrial matrix, reducing the number of protons passing through ATP 

synthase. In fact, Gnaiger et al. described a decrease of the proton leak and uncoupled respiration in 

isolated mitochondria by unknown mechanisms during hypoxia262. Other possibilities for increasing Δψm 

are the modulation of mitochondrial channels including Ca2+ channels and VDAC230. Mitochondrial 

channels could change the Δψm by modulation of the activity of the respiratory chain or by use of a 

proton gradient to transfer ions across IMM230. Little is known about their function in acute hypoxia. 3) 

Another mechanism to increase Δψm despite decreased electron flow is to enhance the number of protons 

that are pumped per electron (called H+/e- stoichiometry)263. In this regard, Kwast et al. showed that in 

yeast cytochrome c oxidase subunit 5B (COX5b), the hypoxic isoform of COX5, is capable of pumping 

more protons across the IMM despite utilizing fewer O2 molecules, thereby producing a stable Δψm in 

hypoxia264. 4) An increase of mitochondrial respiration as the underlying mechanism for mitochondrial 

hyperpolarization seems unlikely, as a decrease of mitochondrial respiration in acute hypoxia was 

measured in Sommer’s study13. 

 

4.1.2. Increase of ROS and HPV 

In addition to the increase of Δψm, acute hypoxia also induced the increase of mitochondrial ROS 

production (Figures 19 and 21). The increase of ROS measured in this study supports the hypothesis of 

increased ROS as the underlying mechanism of HPV (“ROS hypothesis”) and questions the hypothesis 

that a decrease in the redox state (“redox hypothesis”) causes HPV3. The latter suggests that a reduced 

level of ROS elicits PASMC contraction through decreased Kv channel currents with subsequent plasma 

membrane depolarization and influx of Ca2+ into the cytosol37. Conversely, the concept of increased ROS 

proposes that an increase in ROS originating from mitochondria or other cellular sources orchestrates the 

[Ca2+]i increase in acute hypoxia1. In favor of this hypothesis, Weissmann et al. found an increase of O2•
- 

release during acute hypoxia13, 248 and an inhibition of HPV by the O2•
- scavenger, nitro blue tetrazolium 

in isolated perfused rabbit lungs265. In addition there are numerous reports of increased ROS 

concentrations in acute hypoxic signaling26, 77, 248, 266-269. Limitations of techniques for ROS measurements 

in vivo may be one of the reasons for the discrepancy in the models of ROS in HPV. To overcome this 

problem, ROS measurements were conducted by two different approaches: 1) MitoSOX for real-time 

measurements of O2•
- in precapillary PASMC during acute hypoxia (Figure 21b), and 2) measurements 

with the HyPer plasmid for real-time investigation of H2O2 (Figure 21c). All of these measurements 

consistently provided evidence for an increase in ROS emission during acute hypoxia. 
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Numerous methods have been used for ROS detection such as cytochrome c reduction, 

chemiluminescence-based techniques, electron spin resonance [ESR or electron paramagnetic resonance 

(EPR)] spectroscopy], detection of products of the interaction of intracellular O2•
- with dihydroethidium 

by high-performance liquid chromatography (HPLC), and fluorescent microscopy with ROS-sensitive 

fluorescent dyes270. Each of these approaches has potential pitfalls and benefits and there is no “ideal” 

approach or “gold standard” to measure intracellular ROS1, 270. Therefore, the choice of method for ROS 

detection depends on experimental conditions. Cytochrome c reduction and chemiluminescence-based 

techniques are not sensitive enough to detect small changes and are not capable of verifying a source of 

ROS. Additionally, measurement of ROS by cytochrome c reduction and HPLC-based detection of 

products of the interaction of intracellular O2•
- with dihydroethidium cannot detect real-time changes of 

ROS in live precapillary PASMC270. Fluorescence microscopy with ROS-sensitive fluorescent dyes 

allows real-time monitoring of changes in intracellular ROS level and ESR spectroscopy is an elegant 

approach for quantitative detection of ROS in baseline conditions that overcomes the limitations of 

fluorescence based dyes265. Thus, fluorescence microscopy with ROS-sensitive fluorescent dyes was used 

in acute hypoxic experiments and ESR spectroscopy was used to detect the baseline level of ROS in 

precapillary PASMC. A variety of ROS fluorescent indicators are used nowadays including 

dihydroethidium (hydroethidine, HEt), dichlorofluorescein (DCF) with its derivatives, dihydrorhodamine 

123 (DHR123) and redox-sensitive recombinant proteins such as reduction-oxidation sensitive green 

fluorescent protein (roGFP), yellow fluorescent protein-based redox sensor (rxYFP), redox-sensitive 

FRET (Fluorescence resonance energy transfer) protein sensor and HyPer. They can detect different ROS 

species. For example, HEt and MitoSOX sense O2•
- while DCF, DHR123, HyPer, and roGFP detect 

H2O2. However, their sensitivity for specific ROS species is very questionable259. As in the case of 

fluorescent dyes for Δψm measurement, ROS sensitive dyes have their benefits and limitations. For 

example, limitations of one of the most popular ROS fluorescent sensors, DCF includes the production of 

ROS upon exposure to light, detection of multiple types of ROS and irreversible nature of the reaction257. 

The aim of this study was to identify the real-time change of mitochondrial ROS production during acute 

hypoxia in precapillary PASMC. Due to this fact, MitoSOX was chosen to detect the O2•
- in 

mitochondria271. MitoSOX is a mitochondrial targeted HEt, where the positively charged 

triphenylphosphonium moiety is conjugated to HEt to increase accumulation within mitochondrial 

matrix271. MitoSOX is oxidized by O2•
- to form the hydroxylated product that becomes fluorescent257. 

MitoSOX has numerous pitfalls including mitochondrial toxicity, binding to DNA, reaction with ONOO- 

and HOCl271. Additionally, MitoSOX loading is dependent on Δψm
272. Thus, change in Δψm can confound 

the MitoSOX data. O2•
- produced by mitochondria can be dismutated by mitochondrial SOD2 to H2O2 

that can be released into the cytosol130. Therefore, a second fluorescent approach was used in this study to 
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confirm the MitoSOX data. The cellular level of H2O2 was measured by HyPer. HyPer consist of the 

circularly permuted yellow fluorescent protein and OxyR that is the H2O2 sensitive regulatory domain of 

Escherichia coli273. The cellular level of H2O2 was increased upon the acute hypoxic stimulus in 

precapillary PASMC isolated from different rodents (Figures 20 and 21). However, it is possible that the 

increased level of cytosolic H2O2 during the acute hypoxic challenge is a result of higher activity of other 

sources of H2O2 within cells such as NADPH oxidases1.  

The mechanism for the increase of mitochondrial ROS upon the acute hypoxic stimulus is not clear. Δψm 

hyperpolarization that was discussed above can be the reason for increased ROS production during acute 

hypoxia in precapillary PASMC. The mitochondrial electron transport chain is an inherent source of ROS 

and most experimental studies demonstrate that ROS production is directly coupled to Δψm
142, 143. 

Application of an uncoupler decreased ROS production145 while a chemical that augments Δψm, also 

increased the rate of O2•
- production146. Consequently, at higher Δψm the probability of increased ROS 

generation is also high,144, 274 and it is known that mitochondrial production of O2•
- is disproportionately 

enhanced by the increase of ∆ψm
275, 276. In addition, ROS production is more sensitive to uncoupling-

induced changes in ∆ψm than ATP synthesis148; Even a slight decrease of Δψm may lead to a marked 

decrease of ROS production in isolated mitochondria after succinate application123. The same is true for 

whole organ. Okuda et al. showed that infusion of an uncoupler decreased the H2O2 level in the perfused 

liver277. Therefore, an inducible proton leak (mild uncoupling) which could be reduced during acute 

hypoxia could be one possible mechanism of mitochondrial ROS production155. Another possibility for a 

hypoxia induced ROS increase may be that low O2 concentration leads to cytochrome c reduction and so 

limits its capability to scavenge O2•
-121. In agreement with the concept that ROS increase is a trigger for 

HPV, exogenous O2•
- and H2O2 initiate HPV in isolated pulmonary arteries278-281 and induce an increase 

in [Ca2+]i in cultured rat PASMC164 as well as in pulmonary rat arteries282. Additional evidence 

supporting our findings comes from a publication which demonstrated that overexpression of glutathione 

peroxidase (Gpx1)283 or mitochondrial catalase27, 283 augmented ROS removal and simultaneously 

attenuated the acute hypoxia induced ROS increase, whereas Gpx1 deletion had the opposite effect283. 

Gpx1 and catalase are essential parts of the ROS removal system within mitochondria and whole cells. 

Additionally, overexpression of Gpx1 and catalase attenuated the acute hypoxic increase of [Ca2+]i and 

contraction of freshly isolated mouse PASMC283. Furthermore, this study showed that the increase of Δψm 

is upstream of hypoxia-induced ROS release, based on the finding that application of ROS scavengers did 

not reverse mitochondrial hyperpolarization during acute hypoxia (Figure 22). 
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4.1.3. UCP2-/- and HPV 

The functional relevance of increased Δψm and ROS for HPV was supported by experiments in mice 

deficient for UCP2. Gene deficiency of UCP2 resulted in a higher increase of ROS and Δψm during acute 

hypoxia in PASMC isolated from UCP2-/- animals compared to WT animals (Figure 24). It was shown in 

a different study that UCP2-/- animals exhibited an increased HPV starting from similar normoxic 

pressures in the isolated ventilated and perfused lung (unpublished thesis of Timm Hoeres, Giessen). This 

effect of UCP2-/- on the pulmonary vasculature was specific for HPV as the thromboxan mimetic, U46619 

induced the same level of vasoconstriction in WT and UCP2-/- mice. 

Despite the controversy about the possible molecular mechanisms underlying the function of UCP2, there 

is a broad consensus that UCP2 negatively regulates ∆ψm and ROS production, at least when activated by 

certain stimuli210. Negre-Salvayre et al. first described a steep increase of mitochondrial ROS as a result 

of inhibition of UCP2 with guanosine diphosphate (GDP)219. Recently, it was shown that overexpression 

of UCP2 attenuated ROS production220, 221, and in conversely, UCP2 knockout resulted in an increase of 

mitochondrial ROS emission222. UCP2 gene transfer in the right tibialis anterior muscles of rats led to a 

significant reduction of Δψm
284. It has been suggested that UCP2 alters ∆ψm and ROS emission via 

uncoupling (increase of the proton leak), due to the fact that its amino acid sequence is 59% identical to 

UCP1, which is a pure uncoupling protein285. However, there are some experiments that could not show 

an increase of ∆ψm in UCP2-/- mice210. Other possible mechanisms for UCP2 function have been 

suggested such as acting as a metabolic switch225 and regulating mitochondrial Ca2+ handling (see 

introduction for more details)229. Under these scenarios, UCP2 could decrease ROS production by 

inhibiting the entry of pyruvate into the oxidative pathway resulting in attenuation of the enormous redox 

pressure of pyruvate225. The increase of Ca2+ influx into mitochondria via UCP2 (if UCP2 is indeed a 

MCU) is also associated with a decrease of ∆ψm via the alteration of mitochondrial function286; however 

in that study the effects of acute hypoxia on pyruvate and fatty acid metabolism and [Ca2+]m were not 

tested. The discrepancy of the theories regarding UCP2 function can be explained by the fact that UCP2 

functions may change in tissue-specific or stimulus-dependent manners.  

Along these lines, it is possible that in UCP2-/- mice the essential mechanism to regulate excess ROS 

production during acute hypoxia by tuning of ∆ψm was absent. The enhanced ROS emission in these mice 

induced by acute hypoxia may be responsible for the higher response of the pulmonary vasculature to the 

hypoxic stimulus compared to WT mice. The mechanism by which acute hypoxia alters UCP2 functions 

and thus magnifies the increase of mitochondrial hyperpolarization in UCP2-/- mice remains unclear. It 

may be either a direct activation of UCP2 in WT cells during acute hypoxia which is inhibited in UCP2-/- 

precapillary PASMC, or a passive effect of Δψm properties. The first could be achieved via O2•
- or its by-

products, especially 4-HNE (4-hydroxynonenal), which seems improbable, as ROS scavengers did not 
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affect the acute hypoxia-induced hyperpolarization in PASMC. However, Echtay et al. demonstrated that 

only matrix-targeted antioxidants, such as mitoQ (mitoquinone mesylate: [10-(4,5-dimethoxy-2-methyl-

3,6-dioxo-1,4-cycloheexadienl-yl) and mitoE [2-(2-(triphenylphosphonio)ethyl)-3,4-dihydro-2,5,7,8-

tetramethyl-2H-1-benzopyran-6-ol bromide] could prevent the UCP2 activation by O2•
- released into the 

mitochondrial matrix, while non-mitochondrial antioxidants were unable to prevent the UCP2-induced 

proton leak287. The authors concluded that O2•
- released into the mitochondrial matrix is responsible for 

UCP2 activation287. Therefore, further investigation should be conducted to explore the effect of O2•
- 

released into the mitochondrial matrix on UCP2 activity and mitochondrial hyperpolarization during 

acute hypoxia. Recently Mailloux et al. have suggested another mechanism of UCP2 activation288. They 

showed that glutathionylation of UCP2 by H2O2 can play a key role in controlling the ROS-induced 

proton leak through UCP2. H2O2-induced glutathionylation of UCP2 in this model serves as trigger of an 

increase of the proton leak that decreases ∆ψm and ROS production.  

On the other hand the enhanced increase of Δψm can be the result of the non-ohmic behavior of the 

mitochondrial proton conductance, which states that the mitochondrial proton leak rises exponentially 

with increasing Δψm 156. In conditions of decreased proton conductance, e.g. in UCP2-/- mice, the same 

increase of the Δψm can result in a lower increase of the proton leak and thus higher final Δψm than under 

conditions of a relatively high proton conductance. In case of the UCP2-/- mice the lower proton leak 

would attenuate the increased Δψm in acute hypoxia less than in WT cells. In conclusion, acute hypoxia 

evokes an increase of ∆ψm and ROS emission in precapillary PASMC, probably via alteration of the 

proton leak. Therefore, UCP2-/- mice, which have higher Δψm hyperpolarization and ROS emission 

during acute hypoxia in PASMC, have higher HPV response in the isolated lung experiment.  

 

4.2. Role of Δψm in PH 

This study provided evidence that mitochondrial hyperpolarization in precapillary PASMC may act as a 

novel mechanism for development of PH. Furthermore, possible up- and downstream signaling 

mechanisms were identified. This finding was supported by the fact that 1) PASMC from two different 

animal models of PH (experimental PH) and PASMC from IPAH patients showed hyperpolarized 

mitochondria (Figure 26), 2) reversal of mitochondrial hyperpolarization by re-exposure to normoxia in 

precapillary PASMC exposed to chronic hypoxia and by application of 500µM DCA in PASMC isolated 

from rats with MCT-induced PH was associated with reversal of PH194 (Figure 28), and 3) UCP2-/- mice, 

that had hyperpolarized mitochondria in their PASMC, showed increased PASMC proliferation and 

pulmonary vascular remodeling (Figures 37-44). As a possible mechanism for the increase of Δψm in PH 

our own study identified ATP produced by enhanced anaerobic glycolysis (Figure 29), and 

downregulation of UCP2 (Figures 31 and 32). 
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Δψm was increased in PASMC isolated from patients with IPAH, in precapillary PASMC of rats with 

MCT-induced PH and mice with chronic hypoxia-induced PH. Additionally, isolated precapillary 

PASMC that were incubated in hypoxia for 48 hours showed hyperpolarized mitochondria. This model 

can be used to simulate effects occurring under chronic hypoxia in pulmonary vascular cells25. Δψm was 

measured in the presence and absence of a mitochondrial uncoupler, FCCP, to attain maximum 

depolarization of mitochondria (Figure 15). The change of Δψm upon FCCP stimulation can be used as a 

measure of  Δψm to avoid artifacts, e.g. from loading of the cells with the fluorescent dye289. These data 

are in accordance with a previous study showing mitochondrial hyperpolarization in animal models of 

PH13, 34. Recently, Chen et al. published data that exposure to 24h of 5% O2 leads to a significant 

hyperpolarization of human PASMC and the authors linked this finding to the decrease of mitochondrial 

permeability and attenuated apoptosis205. Conversely, another study conducted by Hu et al. that used the 

same cell lines purchased from PromoCell GmbH (Heidelberg, Germany) and the same approach for Δψm 

measurement, rhodamine-123 fluorescence, reported a depolarization of the Δψm during chronic hypoxic 

exposure of isolated human PASMC concomitant with increased H2O2 production204. Hu et al. found the 

opening mitoKATP was responsible for the depolarization of Δψm and the inhibition of human PASMC 

apoptosis through the attenuation of the release of cytochrome c from mitochondria and the activation of 

caspase-dependent mechanisms204. The reason for this discrepancy remains to be elucidated, however, in 

our own study, PASMC isolated from small precapillary arteries were used (that is main site of 

pulmonary vascular remodeling290), while both Chen et al. 205 and Hu et al. 204 used PASMC from bigger 

vessels. Despite the fact that Hu et al. demonstrated the opposite result concerning the chronic hypoxia-

induced change in Δψm, they also found an increase of ROS, as in this study204.  

The increase of ∆ψm in chronic hypoxia could be a characteristic of metabolic adaptation (metabolic shift) 

due to the lack of O2. Therefore, one possible mechanism of Δψm increase could be the inhibition of ATP 

synthase induced by an increased production of anaerobic ATP as discussed for acute hypoxia. Moncada 

et al. showed that NO could inhibit mitochondrial respiration and simultaneously increase Δψm by 

reversal of the function of the ATP synthase that was associated with the increased glycolytic ATP 

production291. Furthermore, glycolytically produced ATP was necessary for Δψm hyperpolarization during 

application of NO in astrocytes260. Along these lines, it has been shown that chronic hypoxia292 as well as 

MCT-induced PH293 and IPAH190 led to a metabolic shift in favor of anaerobic glycolysis. Furthermore, 

normalization of mitochondrial metabolism can reverse PH195, 293. In addition, chronic hypoxia caused a 

metabolic shift characterized by decreased mitochondrial respiration and increased glycolytic activity in 

pulmonary EC294. It seems that HIF-1α stabilization plays a key role in metabolic shift induced either by 

chronic hypoxia26 or MCT188 and IPAH190. However, the impact of the metabolic shift in precapillary 

PASMC that occurs during the pathological changes in PH is not yet fully resolved. The current study 
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also showed that precapillary PASMC incubated for 48h of hypoxia as well as precapillary PASMC 

isolated from rats with MCT-induced PH showed signs of a metabolic shift (Figure 27). Such precapillary 

PASMC exhibited decreased mitochondrial respiration and increased expression of glycolytic enzymes, 

including increased expression of PDK1, which negatively regulates the conversion of pyruvate to acetyl-

CoA by inhibiting the enzyme pyruvate dehydrogenase, and increased expression of LDHA that 

metabolizes pyruvate anaerobically. Thus, glycolytically produced ATP, might also promote 

mitochondrial hyperpolarization under conditions of chronic hypoxia or other stimuli of PH. In line with 

this hypothesis, inhibition of the ATP/ADP translocase in precapillary PASMC by BA inhibited the 

increase of Δψm induced by chronic hypoxic incubation and in MCT-induced PH (Figure 29). ATP/ADP 

translocase can exchange mitochondrial matrix ADP for cytosolic ATP which is necessary for inhibition 

of ATP synthase260, 291. It was shown that Adenine nucleotide translocator (ANT2) imported 

glycolytically produced ATP into the mitochondrial matrix in cancer cells, when oxidative 

phosphorylation was impaired295. Additionally, it was shown that human pluripotent cells hydrolyzed 

glycolytic ATP to maintain ∆ψm that was required for their proliferation and survival237. Nevertheless, it 

remains to be elucidated, if glycolytically produced ATP is responsible for ∆ψm hyperpolarization by 

interaction with the ATP synthase or other mitochondrial membrane channels. The data here presented 

suggest that alterations in mitochondrial respiration and metabolism are directly linked to increased Δψm, 

as restoration of mitochondrial metabolism by re-exposure to normoxia of precapillary PASMC exposed 

to chronic hypoxia, and DCA treatment of precapillary PASMC isolated from rats with MCT-induced 

PH, reversed mitochondrial respiration as well as the Δψm to control values. The data further suggest that 

the increase of Δψm is downstream of repressed mitochondrial respiration, because mitochondrial 

respiration was not altered during chronic hypoxia in rat precapillary PASMC treated with siRNA for 

UCP2, which showed increased Δψm (Figure 46). 

As another factor promoting mitochondrial hyperpolarization during chronic hypoxia, namely, 

downregulation of UCP2 mRNA in lung homogenate and laser microdissected small precapillary vessel 

with a diameter less than 100µm from WT mice exposed to 4 weeks of normobaric hypoxia (10% O2), 

was found (Figure 31). Western blot confirmed results from real-time PCR (Figure 32a-b). 

Downregulation of UCP2 may be a second mechanism to increase ∆ψm in WT mice in chronic hypoxic 

conditions, as UCP2 was suggested to decrease Δψm, as discussed above. This finding is in line with the 

effect of hypoxia in adipose cells where hypoxia is a cause of UCP2 downregulation296. Furthermore, 

UCP2 is highly expressed in the lung compared to other tissue212, and its expression in lungs increases 

after birth297 which may be evidence of O2 dependent expression of UCP2. In our own study proton leak 

was lower in precapillary PASMC after 48h 1% hypoxia (oligomycin-stimulated respiration, Figure 27) 

which suggests that decrease of a proton leak may occur via UCP2 downregulation. Additionally, UCP2 
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protein expression was decreased in lung homogenate of rats with MCT-induced PH as well as in lung 

homogenate of IPAH patients compared to control rats and donor lungs, respectively (Figure 32 c-f). This 

finding can be explained by the fact that despite discrepancies in the pathogenesis of different forms of 

PH, they shared similar molecular pathways. As discussed above, in chronic hypoxia-induced PH in mice, 

in MCT-induced PH in rats, and in IPAH the HIF-1α dependent metabolic shift in favor of the anaerobic 

glycolysis has been found26, 190, 292, 293. 

Although the experiments described in this thesis with isolated precapillary PASMC support the 

conclusion that increased Δψm in experimental models of PH is maintained by ATP produced via 

anaerobic glycolysis and UCP2 downregulation, it cannot be excluded that other mechanisms participate 

in mitochondrial hyperpolarization. In this regard, it has been shown that chronic hypoxia causes an 

alteration in expression of proteins located in the mitochondrial membrane including VDAC298-300. There 

is a large body of evidence that alterations in VDAC function can cause depolarization and swelling of 

mitochondria, and lead to apoptosis/cell death301. Furthermore, hypoxia-induced alteration in expression 

of F1FO-ATP synthase may also contribute to hypoxic Δψm hyperpolarization302. 

In contrast to mitochondrial hyperpolarization induced by acute hypoxia where the ROS scavengers did 

not have any influence on hyperpolarization, the increase of Δψm during chronic hypoxia was negatively 

regulated by application of ROS scavengers. Δψm hyperpolarization of precapillary PASMC due to MCT-

induced PH was also reversed by the application of ROS scavengers (Figure 30). These findings suggest 

that ROS modulates Δψm in chronic hypoxic PH and MCT-induced PH in a different manner than during 

acute hypoxia. It is possible that ROS produced during chronic hypoxia can interfere with diverse 

pathways that may regulate Δψm in this condition. Numerous experiments showed the interaction between 

the induction of ROS emission and the Warburg effect26, 38, 181 or HIF-1α expression and stability38, both 

pathways which may regulate the metabolic shift and thus hyperpolarization of Δψm caused by 

glycolytically produced ATP. In line with these findings, Bell et al. demonstrated that ROS regulates 

HIF-1α protein stabilization in cancer cell lines and the antioxidant, NAC, abolishes the effect of ROS-

induced HIF-1α protein stabilization on increased tumorgenesis303. In summary, our own findings suggest 

that ROS regulates the metabolic shift, which in turn regulates mitochondrial hyperpolarization. However, 

the exact mechanism needs to be elucidated in further studies. 

In contrast to acute hypoxia where increased Δψm was specifically found in precapillary PASMC but not 

in SMC from systemic vessels13, chronic hypoxia caused mitochondrial hyperpolarization also in other 

cell types such as rat skeletal muscle cells298. Interestingly, in cell cancer lines chronic hypoxia can evoke 

either hyperpolarization299, 300 or depolarization304 of mitochondria.  
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4.2.1 Effect of UCP2 downregulation on the pulmonary vasculature and PASMC proliferation. 

In our own study, MCT injection as well as chronic hypoxic exposure resulted in the downregulation of 

UCP2. Therefore, we investigated the effect of UCP2 knockout on the pulmonary vasculature. Gene 

deficiency of UCP2, in addition to increased HPV, resulted in development of mild PH and moderate 

pulmonary vascular remodeling179. Both phenomena are connected by the fact that they can be induced by 

chronic exposure to hypoxia. In this study both, increased HPV and PH in UCP2-/- mice were associated 

with increased Δψm and ROS production. Thus, UCP2-/- mice may serve as a new experimental model of 

PH. 

UCP2-/- mice demonstrated signs of PH under normoxic baseline conditions179. UCP2-/- mice had a slight 

increase of RVSP, hypertrophy of the RV and prominent vasculature remodeling compared to WT mice 

(Table 5, Figures 33-35). Echocardiography confirmed the findings of this study on the right heart, 

showing an increase of RV wall thickness179. The discrepancy between prominent pulmonary vascular 

remodeling and only a slight increase of RVSP may be resolved by RV dysfunction in UCP2-/- mice179. 

As pulmonary vascular resistance is determined by the quotient of PAP and cardiac output, an increase of 

RVSP or unchanged or reduced RVSP concomitant with a decrease of cardiac output can result in 

increased vascular resistance179. Indeed, RV dysfunction represented by increased Tei index and 

decreased cardiac output was found in UCP2-/- mice, both parameters measured by echocardiography179. 

Additionally, Min dP/dt was increased in UCP2-/- mice indicating the impairment of diastolic function of 

the RV (Table 5)305. However, it cannot be excluded that the manifestations of RV dysfunction was the 

result of a direct effect of UCP2 knockout on the heart. It was shown, for example, that alterations in 

UCP2 function have a direct effect on rat cardiomyocyte function306.  

In view of the fact that the most prominent remodeling in UCP2 knockout mice was found in the medial 

layer (Figures 34-35), the current study focused on the proliferation of precapillary PASMC isolated from 

these mice. UCP2 knockout or knockdown increased Δψm, mitochondrial O2•
- generation and 

subsequently precapillary PASMC proliferation (Figures 37, 38, 40, 43, 44). Additionally, UCP2 

knockout or knockdown increased the expression of the pro-proliferative marker, cyclin D1253 in 

precapillary PASMC. In line with the findings of the current study, modulation of UCP2 expression 

affected the proliferation of different cells types226, 232, 233, 307, 308. Derdak et al.232 and Nino Fong et al.233 

described that UCP2-deficient mice had increased oxidative stress along with enhanced NF-kB activation 

that induced proliferation and decreased apoptosis in intestinal epithelial cells and pancreatic β-cells, 

respectively. Additionally, Chen et al. showed that UCP2 downregulation was important for myogenic 

differentiation238. In contrast, overexpression of UCP2-GFP in chick embryo fibroblasts and HeLa cells 

decreased their proliferation235.  
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Increased ROS in UCP2-deficient precapillary PASMC were responsible for enhanced proliferation of 

these cells, as application of unspecific ROS scavengers consisting of NAC and TEMPO or MnTBAP 

that act as a SOD mimetic, catalase mimetic309 and OONO-  scavenger310 partially inhibited the increased 

proliferation of precapillary PASMC isolated from UCP2-/- mice or precapillary PASMC isolated from 

WT mice after siRNA UCP2 knockdown. To estimate the influence of ROS on precapillary PASMC 

proliferation, ESR spectroscopy with the spin probe CMH (that stabilizes unstable ROS) was used 

(Figures 40 and 44). ESR is based on absorption of microwave radiation by unpaired electrons in an 

electromagnetic field 121. Absorption of microwave energy occurs by transition of unpaired electrons 

(ROS molecules have unpaired electrons) to a higher energetic state in an applied magnetic field and the 

number of unpaired electrons presented in the sample is proportional to the amplitude of the ESR 

signal270. The ESR signal was measured in precapillary PASMC with or without cell-permeable pSOD 

that revealed the ESR signal that comes from O2•
-.  

As in case of HPV there are two contrary opinions about the role ROS in PH development. The redox 

hypothesis suggests that a similar sequence of events to that which is responsible for HPV, is involved in 

pulmonary vasculature remodeling in PH164. According to this theory, the trigger of pulmonary 

vasculature remodeling is the decrease of ROS that is the consequence of a hypoxia-induced decline of 

mitochondrial respiration and evokes downregulation of Kv 1.5 channels and HIF-1α stabilization34, 95, 165. 

The opposite theory has more supportive evidences311 that demonstrate: 1) increased oxidative status in 

patients with PH including enhanced lipid312, DNA313 and protein311 oxidations in PH patients; 2) 

decreased expression of lung antioxidants including SOD and GPx314; 3) beneficial effect of antioxidant 

treatment such as NAC315, Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl)316, erdosteine [2- ((2-

oxothiolan-3-yl)carbamoylmethyl-sulfanyl)acetic acid]317 and EUK-134318 in experimental PH. However, 

it is still not completely verified which downstream signaling pathways in PH are depended on increased 

ROS. The importance of ROS was shown in HIF-1α stabilization38, regulation of cytosolic Ca2+ 

concentration201, mitochondrial function and protein modifications311. In line with the results of this 

study, publications demonstrated: 1) that mild elevation of O2•
- and H2O2 stimulates growth responses in 

a variety of cell types via an activation of early growth-related genes, an alteration in the activity of 

protein kinases, and an oxidative inactivation of phosphatases, 2) the ability of O2•
- and other O2 radicals 

to promote a cellular transformation to a cancer cell type, and 3) the direct or indirect inhibitory effect of 

a mild increase in intracellular ROS on apoptosis in tumor cells319, 320. Additionally, the data of this study 

are in accordance with studies showing a decrease of proliferation after SOD2 overexpression in cancer 

cells, including breast cancer, prostate cancer, pancreatic carcinoma cell lines, myeloma321-323 and cardiac 

fibroblasts324. These studies prove the importance of O2•
- in proliferative cellular processes. The 

discrepancy of the studies investigating the role of ROS in PH can be attributed to the methodological 
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problem of ROS measurement (there is no “ideal” method for intracellular ROS detection) and to the 

probability of different PH-induced alterations in ROS expression depending on the cellular 

compartment38, 165.  

To support the hypothesis that UCP2 acted via the increased Δψm and that the increased Δψm was not a 

secondary effect of increased ROS in these mice, Δψm was measured after application of ROS 

scavengers. In the experiments of this study, no alterations in Δψm could be detected under these 

conditions (Figure 41). However, as discussed above, Echtay et al. demonstrated that only matrix-targeted 

antioxidants could prevent the UCP2 activation by the O2•
- released into the mitochondrial matrix, while 

the non-mitochondrial antioxidants were unable to prevent the UCP2-induced proton leak287. Therefore, 

further investigations are necessary.  

To prove that mitochondrial hyperpolarization was the trigger of increased proliferation of precapillary 

PASMC after UCP2 knockout or knockdown, precapillary PASMC were incubated with different doses 

of FCCP for 3 days. Application of FCCP resulted in a significant decrease of Δψm and proliferation in 

those cells (Figures 38 and 43). Interestly, in contrast to ROS scavengers that only partially reversed the 

enhanced proliferation of precapillary PASMC isolated from UCP2-/- mice, FCCP application completely 

reversed the abnormal proliferation in those cells suggesting the probability of yet to be discovered 

signaling mechanisms activated by mitochondrial hyperpolarization. However, the interpretation of these 

results may be limited, as FCCP application has some unspecific effects such as modulation of 

mitochondrial respiration and alteration of ROS production325. Stockl et al. demonstrated that FCCP 

decreased the proliferation of human fibroblasts in a dose dependent manner and simultaneously 

increased ROS levels325. In contrast, Guimaraes et al. found that FCCP decreased ROS production and at 

the same time decreased the proliferation of hepatic stellate cells326. Carriere et al. established that other 

chemical uncoupler, CCCP (Carbonyl cyanide 3-chlorophenylhydrazone) induced an attenuation of 

preadipocytes proliferation and simultaneously decreased ROS generation327. This discrepancy can be 

attributed to cell-type-specific effects of uncouplers on regulation of ROS. However, further 

investigations remain to be conducted to finally resolve these discrepancies. Additionally, FCCP 

application leads to quantitative modifications of mitochondrial protein content328. All of these factors 

could influence the effects of FCCP application on proliferation that were observed in precapillary 

PASMC isolated from WT mice. To overcome the limitations of FCCP application, overexpression of 

UCP1 and UCP2 proteins in precapillary PASMC isolated from UCP2-/- mice was performed (Figure 39). 

UCP2 overexpression decreased the enhanced proliferation of UCP2-/- precapillary PASMC to the same 

degree as UCP1 overexpression, which is known to act solely via uncoupling225. Thus, UCP2 may act by 

a similar mechanism to UCP1 on proliferation of precapillary PASMC, i.e., via Δψm. 
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Although the experiments with isolated precapillary PASMC support the conclusion that increased 

vascular remodeling of UCP2 deficient mice was caused by alterations of precapillary PASMC, it cannot 

be excluded that other cell types contributed to the development of pulmonary vascular remodeling in 

these animals. In this regard, it has been shown that UCP2 located in pulmonary vascular cells as well as 

in immune cells, contributes to the pulmonary UCP2 expression329. Furthermore, recently a study was 

published that showed a decrease of the bioavailability of NO in endothelium probably via an increase of 

ROS production in UCP2-/- mice330. Therefore, decrease of NO release can contribute to increased PAP in 

UCP2-/- mice.  

In summary the data of our own study suggests that increased pulmonary vascular remodeling in UCP2 

deficient mice is due to increased PASMC proliferation , which is caused by increased Δψm and partially 

byROS production, which is in accordance with UCP2 acting as a regulator of  Δψm, e.g. via uncoupling 

as suggest by the literature. 

 

4.2.2. Effect of UCP2 downregulation on [Ca2+]m, glucose and fatty acid metabolism. 

As discussed above, the molecular mechanism by which UCP2 regulates Δψm and ROS is still under 

debate (see introduction, Figure 11), and functions of UCP2 in addition to its role as an uncoupler were 

also investigated in this study. 

Trenker et al. showed that UCP2 can act as a MCU and it increased the mitochondrial sequestration of 

Ca2+, thus serving as carrier for Ca2+ from the cytosol into the mitochondrial matrix in response to a 

histamine stimulus229. However, in contrast, Mattiasson et al. demonstrated that UCP2 overexpression in 

brain protected against ischemic stress probably via a decrease of [Ca2+]m overload. This challenges the 

theory suggesting that UCP2 acts as a Ca2+ uniporter331. In order to investigate the effect of UCP2 

downregulation on mitochondrial calcium, [Ca2+]m was measured by Rhod2 fluorescent dye in 

precapillary PASMC isolated from WT and UCP2-/- mice (Figure 47). Rhod2 is a high affinity fluorescent 

Ca2+ probe that selectively targets mitochondria332. Similar levels of [Ca2+]m in both animal groups were 

found which makes changes in mitochondrial Ca2+ metabolism as reason for increased proliferation in 

UCP2 deficient precapillary PASMC unlikely. However, Rhod2 has many pitfalls including direct effects 

on mitochondrial structure333. Therefore, the result of the Rhod2 experiments should be evaluated with 

care, and additional experiments should be performed in future studies. An additional argument that 

UCP2 is not a MCU has been recently revealed: two independent groups of scientists have discovered the 

molecular bases of MCU334, 335. Thus, the data from Trenker et al. have been ascribed to an indirect effect 

on ATP production and hence ER Ca2+ loading336. 

Another possible mechanism of UCP2 may be that UCP2 is a key regulator of substrate supply for 

mitochondrial ATP production337. According to this theory, UCP2 increases fatty acid based and 
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decreases pyruvate based mitochondrial respiration225 upon different stimuli. A decrease of consumption 

of pyruvate by mitochondria leads to its accumulation within the cytosol and activation of anaerobic 

glycolysis225, 226, 288. In terms of PH development, decreased mitochondrial pyruvate consumption may 

either result in a) a "metabolic switch" similar to that which has been shown in PH, and thus promote 

pulmonary vascular remodeling or b) reduced substrate pressure on the respiratory chain and thus 

decreased ROS production and PH development. In this study, downregulation of UCP2 was found in 

experimental models of PH, as well as in IPAH patients, which according to the metabolic hypothesis of 

UCP2 function could either act as positive or negative factor in PH. However, in this study, no evidence 

for UCP2 acting as a metabolic regulator in PASMC in normoxia could be found (Figure 46). Basal 

(routine respiration) and the pyruvate-stimulated mitochondrial respiration was similar in mitochondria 

isolated from UCP2-/- mice, as well as in precapillary PASMC after transfection with siRNA against 

UCP2 compared to WT mitochondria and precapillary PASMC transfected with scr siRNA, respectively 

(Figure 46a-b). Also, the intracellular pyruvate concentration was not different in precapillary PASMC 

isolated from WT and UCP-/- mice (Figure 46 d). Furthermore, pyruvate concentration was similar in 

isolated mitochondria from those mice after pyruvate stimulation for 2 min (Figure 46e). In addition, key 

components of the fatty acid metabolism were studied. Real time PCR of gene expression of key 

components of fatty acid metabolism did not show any significant differences in their expression in 

precapillary PASMC isolated from UCP2-/- compared to WT mice (Figure 46c). Crucial components of 

anaerobic glycolysis such as Ldha and Pdk1 also were not upregulated in precapillary PASMC from 

UCP2-/- compared to WT (Figure 48f). Thus, in precapillary PASMC and isolated pulmonary 

mitochondria, UCP2 could not be shown to be the “metabolic switch” or pyruvate uniporter, at least not 

under baseline conditions. In addition, Herzig S. et al. recently identified the DNA/protein sequence of a 

mitochondrial pyruvate carrier that differs from the UCP2 DNA/protein sequence338. Therefore, it seems 

unlikely that UCP2 acts as a pyruvate carrier.  

Despite these findings, it cannot be excluded that UCP2 indeed acts as “metabolic switch” or MCU upon 

different pathological stimuli or in different cell types. Additionally, UCP2 may play a dual role as an 

uncoupling protein and a “metabolic switch”, depending on the circumstances213. In this regard, it has to 

be pointed out, that the respiration experiments were performed either in isolated mitochondria or 

permeabilized PASMC, in order to be able to apply pyruvate as a mitochondrial substrate. These 

experimental conditions may have resulted in loss of cellular factors activating UCP2, such as O2•
- or 

fatty acids. However, even in intact cells, respiration without stimulation by any substrate was not 

different in PASMC isolated from UCP2-/- and WT or in PASMC transfected with siRNA against UCP2. 

Thus, it is highly unlikely that differences in respiration contributed to increased PASMC proliferation in 

UCP2-/- PASMC. This finding is in accordance with studies that did not show a decrease of mitochondrial 
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respiration in UCP2-/- mice339. Even an opposite effect was observed in murine embryonic fibroblasts 

where UCP2 knockout lead to an increase of mitochondrial respiration226.  

 

4.3. UCP2-/- and chronic hypoxia 

UCP2-/- mice exposed to 4 weeks of 10% O2 did not display any differences in mitochondrial 

hyperpolarization (Figure 48), degree of right heart hypertrophy or  severity of pulmonary vascular 

remodeling compared to WT controls (unpublished thesis of Timm Hoeres, Giessen). These findings can 

be explained by downregulation of UCP2 in precapillary PASMC during chronic hypoxia in WT mice 

resulting in an increased Δψm as in UCP2-/- mice. Precapillary PASMC isolated from UCP2-/- mice 

already had hyperpolarized mitochondria, therefore they could not be further hyperpolarized by 

downregulation of UCP2 during chronic hypoxia (Figure 48a). This explanation was supported by the 

finding that chronic hypoxia decreases UCP2 mRNA in precapillary arteries of mice as well as UCP2 

protein expression. As UCP2-/- mice still developed hypoxia-induced PH, a mechanism in addition to 

mitochondrial hyperpolarization had to be active in these mice. Indeed, in precapillary PASMC from 

UCP2-/- mice the metabolic shift was observed to the same level as in precapillary PASMC isolated from 

WT mice. This observation could explain chronic hypoxia-induced remodeling in UCP2-/-, despite 

unchanged Δψm and be additional evidence against the “metabolic theory” of UCP2 action (Figure 48c-f). 

If UCP2 is responsible for the metabolic switch from pyruvate to fatty acid metabolism, hypoxia- 

stimulated expression of key enzymes of anaerobic glycolysis should be less in UCP2-/- mice exposed to 

chronic hypoxia compared to WT mice.   

 
4.4. Conclusion 

This study provides evidence for mitochondrial hyperpolarization as a novel mechanism for regulation of 

HPV and development of vascular remodeling in PH, and deciphered possible up- and downstream 

signaling mechanisms. A short summary is presented in Figure 49. Acute hypoxia increased Δψm and 

ROS emission (O2•
- and H2O2) in precapillary PASMC (Figure 49a). UCP2 knockout potentiated this 

process by further increase of Δψm and ROS, probably through a lack of fine tuning of Δψm (Figure 49a). 

Different triggers of PH increased Δψm in precapillary PASMC (Figure 49b). This increase was probably 

promoted by glycolytically produced ATP as a result of increased anaerobic glycolysis and decreased 

mitochondrial respiration. Additionally, experimental PH (4 weeks chronic hypoxic exposure of mice and 

MCT injection in rats) as well as IPAH increased Δψm hyperpolarization at least partially via UCP2 

downregulation (Figure 49b). Increased ROS may be a link between the activation of anaerobic glycolysis 

and the increase of Δψm, as ROS scavengers inhibited mitochondrial hyperpolarization. However, in acute 

hypoxia Δψm was not influenced by not mitochondrially targeted ROS scavengers. Gene deficiency of 

UCP2 mimicked the development of PH under normoxic conditions by an increase of proliferation of 
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precapillary PASMC caused by enhanced Δψm and partially caused by increased ROS in those cells. 

Alteration of the pulmonary vasculature in UCP2-/- mice, thus can be suggested as a new model of 

moderate PH. The increase of PH in UCP2-/- mice in chronic hypoxia was probably due to the preserved 

change of cellular metabolism characterized by decreased mitochondrial respiration and increased 

anaerobic glycolysis. 
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Figure 49. Proposed role of Δψm and UCP2 in HPV and in pulmonary vasculature remodeling 

during PH.  
a) Acute hypoxia sensed by mitochondria causes an increase of Δψm and mitochondrial ROS 
emission which may trigger or regulate HPV. UCP2-/- potentiates HPV by enhancement of 
the increase of Δψm and mitochondrial ROS emission probably due to the lack of regulation 
of Δψm by UCP2. 
b) Triggers of PH including chronic hypoxia in mice and MCT injection in rats, cause an 
metabolic switch that is characterized by a decrease of mitochondrial respiration and increase 
of glycolytic enzymes. Δψm hyperpolarization in PH can be a result of increased 
glycolytically produced ATP and increased ROS production. Additionally, experimental PH 
(4 weeks chronic hypoxic exposure of mice and MCT injection in rats) as well as IPAH were 
associated with downregulation of UCP2. 
UCP2-/- mice exhibited PH under normoxic conditions promoted by proliferation of 
precapillary PASMC due to the Δψm hyperpolarization and partially to the increased 
mitochondrial ROS emission. In chronic hypoxia UCP2-/- developed PH to a similar degree 
as WT mice, probably via sustained metabolic alterations. 
Abbreviations: ATP - Adenosine-5'-triphosphate; Δψm - mitochondrial membrane potential; 
UCP2-/- - knockout of uncoupling protein 2; MCT - monocrotaline-induced pulmonary 
hypertension; ROS - reactive oxygen species. 
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5. Summary 

The pulmonary vasculature constricts in response to acute alveolar hypoxia to redirect blood from poorly 

to better ventilated areas of the lung, which is an essential self-regulatory physiological response of the 

pulmonary vessels termed hypoxic pulmonary vasoconstriction (HPV). In contrast, different triggers of 

pulmonary hypertension (PH), including chronic hypoxia, lead to pathological reactions of the pulmonary 

vasculature, resulting in pulmonary vasculature remodeling that is characterized by excessive 

proliferation and attenuated apoptosis of vascular cells concomitant with reduction in the vascular lumen 

area. Despite intensive research in the last decades, the underlying mechanisms of HPV and vascular 

proliferation in PH have not yet been fully elucidated. It has been suggested that mitochondria play a key 

role in HPV, as well as in hypoxia and non-hypoxia dependent pathways that underlie pulmonary 

vascular remodeling. In both processes the mitochondrial membrane potential (Δψm), which is an 

important characteristic of mitochondrial function and the main factor regulating the release of 

mitochondrial reactive oxygen species (ROS), could play a crucial role. It was hypothesized that 

knockout of the mitochondrial uncoupling protein 2 (UCP2) results in an increase of Δψm and ROS 

emission that can regulate HPV and vascular remodeling in PH. 

Acute hypoxia induced an increase of Δψm and ROS emission (O2•
-, as well as H2O2) in pulmonary artery 

smooth muscle cells (PASMC) isolated from small precapillary arteries of rats and mice. Δψm was also 

increased in precapillary PASMC isolated from experimental models of PH (chronic hypoxia-induced PH 

and monocrotaline [MCT]-induced PH) and from patients with idiopathic pulmonary arterial hypertension 

(IPAH) compared to respective controls. The increase of Δψm in PH could have been the result of the 

utilization of increased glycolytically produced ATP, while concomitantly mitochondrial respiration was 

decreased in precapillary PASMC. Additionally, mitochondrial hyperpolarization could have also been 

mediated by UCP2 downregulation. UCP2 deficiency (UCP2-/-) caused an increase of Δψm and ROS in 

small precapillary PASMC during normoxic baseline conditions and potentiated the increase of Δψm and 

ROS in acute hypoxia. In parallel, UCP2 deficiency potentiated HPV and showed an increase of right 

ventricular systolic pressure (RVSP), right ventricle (RV) hypertrophy and vascular remodeling, thus 

mimicking PH in normoxic baseline conditions. The latter effect can at least partially be attributed to 

enhanced precapillary PASMC proliferation in UCP2 deficient mice that could be completely reversed by 

the application of the mitochondrial uncoupler, FCCP and partially by the treatment with ROS 

scavengers. These findings indicate a crucial role for mitochondrial hyperpolarization and increase of 

mitochondrial ROS emission in the development of PH. UCP2-/- mice exposed to 4 weeks of hypoxia did 

not display any differences in Δψm compared to wild type (WT) controls. This finding can be explained 

by downregulation of UCP2 during chronic hypoxia as possible mechanisms to increase Δψm in WT 

mice, which could not be activated in UCP2-/- mice during chronic hypoxia.  
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The data of the current study thus suggest that an increase of Δψm and ROS release could regulate HPV 

and vascular remodeling in PH. The mechanism for mitochondrial hyperpolarization in PH may be 

metabolic alterations and downregulation of UCP2 and was regulated by ROS. UCP2-/- deficiency lead to 

the development of the PH phenotype in mice via increase of Δψm and partially via enhance of ROS 

emission in precapillary PASMC. 
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6. Zusammenfassung 

  

Die pulmonalvaskuläre Vasokonstriktion als Reaktion auf akute alveoläre Hypoxie dient der 

Umverteilung der pulmonalen Durchblutung von schlecht zu besser ventilierten Arealen der Lunge und 

ist ein essentieller selbstregulatorischer Prozess der Lungengefäße, der „hypoxische pulmonale 

Vasokonstriktion (HPV)“ genannt wird. Im Gegensatz dazu führen verschiedene Auslöser, inklusive 

akuter Hypoxie, zu pulmonaler Hypertonie (PH), einer pathologischen Reaktion der Lungengefäße, die 

durch exzessive Proliferation und verminderte Apoptose von Gefäßzellen charakterisiert ist. Trotz 

intensiver Forschung in den letzten Jahrzehnten konnte der zugrundeliegende Mechanismus der HPV und 

der vaskulären Proliferation bei der PH noch nicht vollständig geklärt werden. Mitochondrien wurden als 

Schlüsselfaktor sowohl bei der Entstehung der HPV, als auch in Hypoxie-abhängigen und -unabhängigen 

Signalwegen des pulmonalvaskulären Gefäßumbauprozesses vorgeschlagen. Bei beiden Vorgängen 

könnte das mitochondriale Membranpotential (Δψm), das eine wichtige Charakteristik der 

mitochondrialen Funktion und ein Hauptfaktor bei der Regulation der Freisetzung von mitochondrialen 

reactive Sauerstoffspesies (ROS) ist, eine wichtige Rolle spielen. Es wurde daher die Hypothese 

aufgestellt, dass die Ausschaltung des mitochondrialen Entkopplungsproteins „uncoupling protein 2 

(UCP2)“ zu einem Anstieg des Δψm und der ROS Freisetzung führt, die die HPV und den vaskulären 

Gefäßumbau in der PH regulieren kann.    

Akute Hypoxie induzierte einen Anstieg des Δψm und der ROS Freisetzung [Superoxid (O2•
-), sowie 

Wasserstoffperoxid (H2O2)] in pulmonalen glatten Gefäßmuskelzellen (PASMC), die von kleinen 

präkapillären Arterien aus Ratten und Mäusen isoliert worden waren. Das Δψm war auch in präkapillären 

PASMC isoliert aus experimentellen Modellen der PH [chronisch Hypoxie-induzierte PH und 

Monocrotalin (MCT)-induzierte PH] und von Patienten mit idiopathischer pulmonal-arterieller 

Hypertonie im Vergleich zu den entsprechenden Kontrollen erhöht. Der Anstieg des Δψm in der PH 

könnte das Ergebnis einer Nutzung von vermehrt glykolytisch produziertem ATP gewesen sein, bei 

gleichzeitig verminderter mitochondrialer Respiration in präkapillären PASMC. Zusätzlich war die 

mitochondriale Hyperpolarisation möglicherweise auch durch eine UCP2 Herunterregulierung verursacht. 

UCP2 Gendefizienz bewirkte einen Anstieg des Δψm und der ROS Konzentration in kleinen präkapillären 

PASMC während basaler, normoxischer Bedingungen und verstärkte den Anstieg des Δψm und der 

mitochondrialen ROS Konzentration während akuter Hypoxie. Parallel dazu erhöhte die UCP2 

Gendefizienz die HPV und UCP2-gendefiziente Tiere zeigten einen erhöhten rechtsventrikulären 

systolischen Druck, rechtsventrikuläre Hypertrophie und pulmonalvaskulären Gefäßumbau. Somit wurde 

durch die UCP2 Gendefizienz eine PH unter basalen, normoxischen Bedingungen imitiert. Dieses konnte 

wenigstens teilweise auf eine erhöhte präkapilläre PASMC Proliferation bei UCP2 defizienten Mäusen 
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zurückgeführt werden, die komplett durch die Applikation des mitochondrialen Entkopplers, FCCP, und 

teilweise durch die Behandlung mit ROS Fängern rückgängig gemacht werden konnte. Dies spricht für 

eine entscheidene Rolle der mitochondrialen Hyperpolarisation und des Anstiegs der ROS Freisetzung bei 

der Entstehung der PH. Nach 4 Wochen Hypoxieexposition zeigten UCP2-/- Mäuse keinen Unterschied 

im Δψm verglichen mit den Wildtyp (WT) Kontrollen. Dies kann durch die Herunterregulierung von 

UCP2 während chronischer Hypoxie als möglichem Mechanismus für die Δψm Erhöhung in WT Mäusen 

erklärt werden, so daß dieser Mechanismus nicht bei den UCP2-/- Mäusen während chronischer Hypoxie 

aktiviert werden konnte.        

Die Daten dieser Studie legen daher nahe, dass ein Anstieg des Δψm und der ROS Freisetzung die HPV 

und den vaskuläre Gefäßumbau bei der PH regulieren können. Der Mechanismus, der die mitochondriale 

Hyperpolarisation im Falle des vaskulären Gefäßumbaus verursacht, ist möglicherweise in metabolischen 

Veränderungen und einer Herunterregulierung von UCP2 begründet und wird durch ROS reguliert. Der 

Phänotyp der PH in UCP2-/- defizienten Mäusen wird durch ein erhöhtes Δψm und teilweise durch eine 

erhöhte ROS Freisetzung in präkapillären PASMC unabhängig von metabolischen Veränderungen 

begünstigt.    

 



References  122 

 
7. References: 
1. Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, Weissmann 

N. Regulation of hypoxic pulmonary vasoconstriction: Basic mechanisms. Eur Respir J. 2008;32:1639-1651 
2. Weissmann N, Sommer N, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F. Oxygen sensors in hypoxic 

pulmonary vasoconstriction. Cardiovasc Res. 2006;71:620-629 
3. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367-

520 
4. Gupte SA, Wolin MS. Relationships between vascular oxygen sensing mechanisms and hypertensive disease 

processes. Hypertension. 2012;60:269-275 
5. Myatt L. Control of vascular resistance in the human placenta. Placenta. 1992;13:329-341 
6. Von Euler US, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 

1946;12 301–332 
7. Peake MD, Harabin AL, Brennan NJ, Sylvester JT. Steady-state vascular responses to graded hypoxia in isolated 

lungs of five species. J Appl Physiol. 1981;51:1214-1219 
8. Weissmann N, Akkayagil E, Quanz K, Schermuly RT, Ghofrani HA, Fink L, Hanze J, Rose F, Seeger W, 

Grimminger F. Basic features of hypoxic pulmonary vasoconstriction in mice. Respir Physiol Neurobiol. 
2004;139:191-202 

9. Weissmann N, Grimminger F, Walmrath D, Seeger W. Hypoxic vasoconstriction in buffer-perfused rabbit lungs. 
Respir Physiol. 1995;100:159-169 

10. Westcott RN, Fowler NO, Scott RC, Hauenstein VD, Mc GJ. Anoxia and human pulmonary vascular resistance. J 
Clin Invest. 1951;30:957-970 

11. Barer GR, Howard P, Shaw JW. Stimulus-response curves for the pulmonary vascular bed to hypoxia and 
hypercapnia. J Physiol. 1970;211:139-155 

12. Dipp M, Evans AM. Cyclic adp-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in 
situ. Circ Res. 2001;89:77-83 

13. Sommer N, Pak O, Schorner S, Derfuss T, Krug A, Gnaiger E, Ghofrani HA, Schermuly RT, Huckstorf C, Seeger W, 
Grimminger F, Weissmann N. Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen 
sensing. Eur Respir J. 2010;36:1056-1066 

14. Robertson TP, Aaronson PI, Ward JP. Hypoxic vasoconstriction and intracellular ca2+ in pulmonary arteries: 
Evidence for pkc-independent Ca2+ sensitization. Am J Physiol. 1995;268:H301-307 

15. Robertson TP, Dipp M, Ward JP, Aaronson PI, Evans AM. Inhibition of sustained hypoxic vasoconstriction by y-
27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br J Pharmacol. 2000;131:5-9 

16. Kovitz KL, Aleskowitch TD, Sylvester JT, Flavahan NA. Endothelium-derived contracting and relaxing factors 
contribute to hypoxic responses of pulmonary arteries. Am J Physiol. 1993;265:H1139-1148 

17. Duke HN. The site of action of anoxia on the pulmonary blood vessels of the cat. J Physiol. 1954;125:373-382 
18. Marshall C, Marshall BE. Influence of perfusate pO2 on hypoxic pulmonary vasoconstriction in rats. Circ Res. 

1983;52:691-696 
19. Savineau JP, Gonzalez de la Fuente P, Marthan R. Cellular mechanisms of hypoxia-induced contraction in human and 

rat pulmonary arteries. Respir Physiol. 1995;99:191-198 
20. Paddenberg R, Tiefenbach M, Faulhammer P, Goldenberg A, Gries B, Pfeil U, Lips KS, Piruat JI, Lopez-Barneo J, 

Schermuly RT, Weissmann N, Kummer W. Mitochondrial complex ii is essential for hypoxia-induced pulmonary 
vasoconstriction of intra- but not of pre-acinar arteries. Cardiovasc Res. 2012;93:702-710 

21. Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos y Schnitzler 
M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T. Classical transient receptor 
potential channel 6 (trpc6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl 
Acad Sci U S A. 2006;103:19093-19098 

22. Robin ED, Theodore J, Burke CM, Oesterle SN, Fowler MB, Jamieson SW, Baldwin JC, Morris AJ, Hunt SA, 
Vankessel A, et al. Hypoxic pulmonary vasoconstriction persists in the human transplanted lung. Clin Sci (Lond). 
1987;72:283-287 

23. Robertson TP, Aaronson PI, Ward JP. Ca2+ sensitization during sustained hypoxic pulmonary vasoconstriction is 
endothelium dependent. Am J Physiol Lung Cell Mol Physiol. 2003;284:L1121-1126 

24. Waypa GB, Schumacker PT. Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing. J Appl Physiol. 
2005;98:404-414 

25. Pak O, Aldashev A, Welsh D, Peacock A. The effects of hypoxia on the cells of the pulmonary vasculature. Eur 
Respir J. 2007;30:364-372 

26. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive 
oxygen species generated at mitochondrial complex iii stabilize hypoxia-inducible factor-1alpha during hypoxia: A 
mechanism of O2 sensing. J Biol Chem. 2000;275:25130-25138 



References  123 

27. Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT. Increases in mitochondrial 
reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ 
Res. 2006;99:970-978 

28. Weissmann N, Zeller S, Schafer RU, Turowski C, Ay M, Quanz K, Ghofrani HA, Schermuly RT, Fink L, Seeger W, 
Grimminger F. Impact of mitochondria and nadph oxidases on acute and sustained hypoxic pulmonary 
vasoconstriction. Am J Respir Cell Mol Biol. 2006;34:505-513 

29. Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, Weir EK. O2 sensing is 
preserved in mice lacking the gp91 phox subunit of nadph oxidase. Proc Natl Acad Sci U S A. 1999;96:7944-7949 

30. Harder DR, Narayanan J, Birks EK, Liard JF, Imig JD, Lombard JH, Lange AR, Roman RJ. Identification of a 
putative microvascular oxygen sensor. Circ Res. 1996;79:54-61 

31. Osipenko ON, Tate RJ, Gurney AM. Potential role for kv3.1b channels as oxygen sensors. Circ Res. 2000;86:534-540 
32. Gunsalus IC, Sligar SG, Nordlund T, Frauenfelder H. Oxygen sensing heme proteins: Monoxygenases, myoglobin 

and hemoglobin. Adv Exp Med Biol. 1977;78:37-50 
33. Roth M, Rupp M, Hofmann S, Mittal M, Fuchs B, Sommer N, Parajuli N, Quanz K, Schubert D, Dony E, Schermuly 

RT, Ghofrani HA, Sausbier U, Rutschmann K, Wilhelm S, Seeger W, Ruth P, Grimminger F, Sausbier M, 
Weissmann N. Heme oxygenase-2 and large-conductance Ca2+-activated K+ channels: Lung vascular effects of 
hypoxia. Am J Respir Crit Care Med. 2009;180:353-364 

34. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, 
McMurtry MS, Weir EK, Archer SL. An abnormal mitochondrial-hypoxia inducible factor-1alpha-kv channel 
pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to 
human pulmonary arterial hypertension. Circulation. 2006;113:2630-2641 

35. Robertson TP, Mustard KJ, Lewis TH, Clark JH, Wyatt CN, Blanco EA, Peers C, Hardie DG, Evans AM. Amp-
activated protein kinase and hypoxic pulmonary vasoconstriction. Eur J Pharmacol. 2008;595:39-43 

36. Fuchs B, Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Grimminger F, Seeger W, Gudermann T, Weissmann 
N. Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 
2010;174:282-291 

37. Dromparis P, Michelakis ED. Mitochondria in vascular health and disease. Annu Rev Physiol. 2013;75:95-126 
38. Chandel NS. Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol. 2010;661:339-354 
39. Pak O, Janssen W, Ghofrani HA, Seeger W, Grimminger F, Schermuly RT, Weissmann N. Animal models of 

pulmonary hypertension: Role in translational research. Drug Discovery Today: Disease Models. 2010;7:89-97 
40. Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite 

PA, Weissmann N, Yuan JX, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll 
Cardiol. 2009;54:S20-31 

41. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: The 
hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013-1032 

42. West JB, American College of P, American Physiological S. The physiologic basis of high-altitude diseases. Ann 
Intern Med. 2004;141:789-800 

43. Ghofrani HA, Barst RJ, Benza RL, Champion HC, Fagan KA, Grimminger F, Humbert M, Simonneau G, Stewart DJ, 
Ventura C, Rubin LJ. Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol. 
2009;54:S108-117 

44. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, 
Rosenson RS, Rubin LJ, Tapson VF, Varga J, American College of Cardiology Foundation Task Force on Expert 
Consensus D, American Heart A, American College of Chest P, American Thoracic Society I, Pulmonary 
Hypertension A. Accf/aha 2009 expert consensus document on pulmonary hypertension a report of the american 
college of cardiology foundation task force on expert consensus documents and the american heart association 
developed in collaboration with the american college of chest physicians; american thoracic society, inc.; and the 
pulmonary hypertension association. J Am Coll Cardiol. 2009;53:1573-1619 

45. Nef HM, Mollmann H, Hamm C, Grimminger F, Ghofrani HA. Pulmonary hypertension: Updated classification and 
management of pulmonary hypertension. Heart. 2010;96:552-559 

46. Wagenvoort CA. Morphological substrate for the reversibility and irreversibility of pulmonary hypertension. Eur 
Heart J. 1988;9 Suppl J:7-12 

47. Dresdale DT, Schultz M, Michtom RJ. Primary pulmonary hypertension. I. Clinical and hemodynamic study. Am J 
Med. 1951;11:686-705 

48. Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, 
Koerner SK, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987;107:216-223 

49. D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves 
BM, Kernis JT, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective 
registry. Ann Intern Med. 1991;115:343-349 

50. Thabut G, Dauriat G, Stern JB, Logeart D, Levy A, Marrash-Chahla R, Mal H. Pulmonary hemodynamics in 
advanced copd candidates for lung volume reduction surgery or lung transplantation. Chest. 2005;127:1531-1536 

51. Elwing J, Panos RJ. Pulmonary hypertension associated with copd. Int J Chron Obstruct Pulmon Dis. 2008;3:55-70 



References  124 

52. Mannino DM. Copd: Epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest. 
2002;121:121S-126S 

53. Chaouat A, Naeije R, Weitzenblum E. Pulmonary hypertension in copd. Eur Respir J. 2008;32:1371-1385 
54. Chifflot H, Fautrel B, Sordet C, Chatelus E, Sibilia J. Incidence and prevalence of systemic sclerosis: A systematic 

literature review. Semin Arthritis Rheum. 2008;37:223-235 
55. Hachulla E, Gressin V, Guillevin L, Carpentier P, Diot E, Sibilia J, Kahan A, Cabane J, Frances C, Launay D, 

Mouthon L, Allanore Y, Tiev KP, Clerson P, de Groote P, Humbert M. Early detection of pulmonary arterial 
hypertension in systemic sclerosis: A french nationwide prospective multicenter study. Arthritis Rheum. 
2005;52:3792-3800 

56. Jurasz P, Courtman D, Babaie S, Stewart DJ. Role of apoptosis in pulmonary hypertension: From experimental 
models to clinical trials. Pharmacol Ther. 2010;126:1-8 

57. Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR. Lung vascular cell heterogeneity: Endothelium, 
smooth muscle, and fibroblasts. Proc Am Thorac Soc. 2008;5:783-791 

58. Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2008;118:2372-2379 
59. Firth AL, Mandel J, Yuan JX. Idiopathic pulmonary arterial hypertension. Dis Model Mech. 2010;3:268-273 
60. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, 

Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary 
hypertension. J Am Coll Cardiol. 2009;54:S43-54 

61. Schermuly RT, Pullamsetti SS, Kwapiszewska G, Dumitrascu R, Tian X, Weissmann N, Ghofrani HA, Kaulen C, 
Dunkern T, Schudt C, Voswinckel R, Zhou J, Samidurai A, Klepetko W, Paddenberg R, Kummer W, Seeger W, 
Grimminger F. Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: Target for reverse-remodeling 
therapy. Circulation. 2007;115:2331-2339 

62. Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD. Pulmonary hemodynamics modify the rat 
pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol. 1997;151:1019-
1025 

63. Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM, Miyazono K, Li E, Bloch KD. Bmpr-ii heterozygous 
mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged 
hypoxia. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1241-1247 

64. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces 
pulmonary hypertension. Circ Res. 2009;104:236-244, 228p following 244 

65. Cho WK, Lee CM, Kang MJ, Huang Y, Giordano FJ, Lee PJ, Trow TK, Homer RJ, Sessa WC, Elias JA, Lee CG. Il-
13 receptor alpha2-arginase 2 pathway mediates il-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol 
Physiol. 2013;304:L112-124 

66. Greenway S, van Suylen RJ, Du Marchie Sarvaas G, Kwan E, Ambartsumian N, Lukanidin E, Rabinovitch M. 
S100a4/mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in 
human plexogenic arteriopathy. Am J Pathol. 2004;164:253-262 

67. Sehgal PB, Mukhopadhyay S, Patel K, Xu F, Almodovar S, Tuder RM, Flores SC. Golgi dysfunction is a common 
feature in idiopathic human pulmonary hypertension and vascular lesions in shiv-nef-infected macaques. Am J Physiol 
Lung Cell Mol Physiol. 2009;297:L729-737 

68. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM. 
Inhibition of the vegf receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial 
cell proliferation and severe pulmonary hypertension. FASEB J. 2001;15:427-438 

69. Crosby A, Jones FM, Southwood M, Stewart S, Schermuly R, Butrous G, Dunne DW, Morrell NW. Pulmonary 
vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med. 
2010;181:279-288 

70. Rondelet B, Kerbaul F, Motte S, van Beneden R, Remmelink M, Brimioulle S, McEntee K, Wauthy P, Salmon I, 
Ketelslegers JM, Naeije R. Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial 
hypertension. Circulation. 2003;107:1329-1335 

71. Steinhorn RH, Morin FC, 3rd, Fineman JR. Models of persistent pulmonary hypertension of the newborn (pphn) and 
the role of cyclic guanosine monophosphate (gmp) in pulmonary vasorelaxation. Semin Perinatol. 1997;21:393-408 

72. Jasmin JF, Calderone A, Leung TK, Villeneuve L, Dupuis J. Lung structural remodeling and pulmonary hypertension 
after myocardial infarction: Complete reversal with irbesartan. Cardiovasc Res. 2003;58:621-631 

73. Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska 
G, Kummer W, Klepetko W, Hoda MA, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N. 
Hypoxia-dependent regulation of nonphagocytic nadph oxidase subunit nox4 in the pulmonary vasculature. Circ Res. 
2007;101:258-267 

74. McGuire M, Bradford A. Chronic intermittent hypercapnic hypoxia increases pulmonary arterial pressure and 
haematocrit in rats. Eur Respir J. 2001;18:279-285 

75. Wright JL, Tai H, Churg A. Vasoactive mediators and pulmonary hypertension after cigarette smoke exposure in the 
guinea pig. J Appl Physiol. 2006;100:672-678 



References  125 

76. Schroll S, Arzt M, Sebah D, Nuchterlein M, Blumberg F, Pfeifer M. Improvement of bleomycin-induced pulmonary 
hypertension and pulmonary fibrosis by the endothelin receptor antagonist bosentan. Respir Physiol Neurobiol. 
2010;170:32-36 

77. Guignabert C, Izikki M, Tu LI, Li Z, Zadigue P, Barlier-Mur AM, Hanoun N, Rodman D, Hamon M, Adnot S, 
Eddahibi S. Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop 
pulmonary hypertension. Circ Res. 2006;98:1323-1330 

78. Zagorski J, Debelak J, Gellar M, Watts JA, Kline JA. Chemokines accumulate in the lungs of rats with severe 
pulmonary embolism induced by polystyrene microspheres. J Immunol. 2003;171:5529-5536 

79. Lalich JJ, Merkow L. Pulmonary arteritis produced in rat by feeding crotalaria spectabilis. Lab Invest. 1961;10:744-
750 

80. Motley HL, Cournand A, et al. The influence of short periods of induced acute anoxia upon pulmonary artery 
pressures in man. Am J Physiol. 1947;150:315-320 

81. Weissmann N, Grimminger F, Seeger W. Hypoxia in lung vascular biology and disease. Cardiovasc Res. 
2006;71:618-619 

82. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: Pulmonary arterial hypertension. 
Nat Rev Cardiol. 2011;8:443-455 

83. Machado RD, Pauciulo MW, Thomson JR, Lane KB, Morgan NV, Wheeler L, Phillips JA, 3rd, Newman J, Williams 
D, Galie N, Manes A, McNeil K, Yacoub M, Mikhail G, Rogers P, Corris P, Humbert M, Donnai D, Martensson G, 
Tranebjaerg L, Loyd JE, Trembath RC, Nichols WC. Bmpr2 haploinsufficiency as the inherited molecular mechanism 
for primary pulmonary hypertension. Am J Hum Genet. 2001;68:92-102 

84. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, 
Hodge SE, Knowles JA. Familial primary pulmonary hypertension (gene pph1) is caused by mutations in the bone 
morphogenetic protein receptor-ii gene. Am J Hum Genet. 2000;67:737-744 

85. Roberts KE, McElroy JJ, Wong WP, Yen E, Widlitz A, Barst RJ, Knowles JA, Morse JH. Bmpr2 mutations in 
pulmonary arterial hypertension with congenital heart disease. Eur Respir J. 2004;24:371-374 

86. Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, Loyd JE. An imbalance between 
the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med. 1992;327:70-
75 

87. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary 
hypertension. N Engl J Med. 1995;333:214-221 

88. Stewart DJ, Levy RD, Cernacek P, Langleben D. Increased plasma endothelin-1 in pulmonary hypertension: Marker 
or mediator of disease? Ann Intern Med. 1991;114:464-469 

89. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, 
Grimminger F. Reversal of experimental pulmonary hypertension by pdgf inhibition. J Clin Invest. 2005;115:2811-
2821 

90. Hecker M, Zaslona Z, Kwapiszewska G, Niess G, Zakrzewicz A, Hergenreider E, Wilhelm J, Marsh LM, Sedding D, 
Klepetko W, Lohmeyer J, Dimmeler S, Seeger W, Weissmann N, Schermuly RT, Kneidinger N, Eickelberg O, Morty 
RE. Dysregulation of the il-13 receptor system: A novel pathomechanism in pulmonary arterial hypertension. Am J 
Respir Crit Care Med. 2010;182:805-818 

91. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie 
D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J 
Respir Crit Care Med. 1995;151:1628-1631 

92. Piao L, Sidhu VK, Fang YH, Ryan JJ, Parikh KS, Hong Z, Toth PT, Morrow E, Kutty S, Lopaschuk GD, Archer SL. 
Foxo1-mediated upregulation of pyruvate dehydrogenase kinase-4 (pdk4) decreases glucose oxidation and impairs 
right ventricular function in pulmonary hypertension: Therapeutic benefits of dichloroacetate. J Mol Med (Berl). 
2013;91:333-346 

93. Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY, 
Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, 
Rubin LJ, Yuan JX. A functional single-nucleotide polymorphism in the trpc6 gene promoter associated with 
idiopathic pulmonary arterial hypertension. Circulation. 2009;119:2313-2322 

94. Hansmann G, Zamanian RT. Ppargamma activation: A potential treatment for pulmonary hypertension. Sci Transl 
Med. 2009;1:12ps14 

95. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK. Mitochondrial metabolism, redox 
signaling, and fusion: A mitochondria-ros-hif-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary 
hypertension and cancer. Am J Physiol Heart Circ Physiol. 2008;294:H570-578 

96. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, Archer SL. Diversity in mitochondrial 
function explains differences in vascular oxygen sensing. Circ Res. 2002;90:1307-1315 

97. Nohe A, Keating E, Knaus P, Petersen NO. Signal transduction of bone morphogenetic protein receptors. Cell Signal. 
2004;16:291-299 

98. Rudarakanchana N, Flanagan JA, Chen H, Upton PD, Machado R, Patel D, Trembath RC, Morrell NW. Functional 
analysis of bone morphogenetic protein type ii receptor mutations underlying primary pulmonary hypertension. Hum 
Mol Genet. 2002;11:1517-1525 



References  126 

99. Grijelmo C, Rodrigue C, Svrcek M, Bruyneel E, Hendrix A, de Wever O, Gespach C. Proinvasive activity of bmp-7 
through smad4/src-independent and erk/rac/jnk-dependent signaling pathways in colon cancer cells. Cell Signal. 
2007;19:1722-1732 

100. Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, Simonneau G, Galie N, Loyd JE, 
Humbert M, Nichols WC, Morrell NW, Berg J, Manes A, McGaughran J, Pauciulo M, Wheeler L. Clinical and 
molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J 
Med. 2001;345:325-334 

101. Aldashev AA, Sarybaev AS, Sydykov AS, Kalmyrzaev BB, Kim EV, Mamanova LB, Maripov R, Kojonazarov BK, 
Mirrakhimov MM, Wilkins MR, Morrell NW. Characterization of high-altitude pulmonary hypertension in the 
kyrgyz: Association with angiotensin-converting enzyme genotype. Am J Respir Crit Care Med. 2002;166:1396-1402 

102. Eddahibi S, Guignabert C, Barlier-Mur AM, Dewachter L, Fadel E, Dartevelle P, Humbert M, Simonneau G, Hanoun 
N, Saurini F, Hamon M, Adnot S. Cross talk between endothelial and smooth muscle cells in pulmonary 
hypertension: Critical role for serotonin-induced smooth muscle hyperplasia. Circulation. 2006;113:1857-1864 

103. Tuder RM, Chacon M, Alger L, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci M, 
Semenza GL, Yacoub M, Polak JM, Voelkel NF. Expression of angiogenesis-related molecules in plexiform lesions 
in severe pulmonary hypertension: Evidence for a process of disordered angiogenesis. J Pathol. 2001;195:367-374 

104. Grimminger F, Schermuly RT. Pdgf receptor and its antagonists: Role in treatment of pah. Adv Exp Med Biol. 
2010;661:435-446 

105. Le Cras TD, Hardie WD, Fagan K, Whitsett JA, Korfhagen TR. Disrupted pulmonary vascular development and 
pulmonary hypertension in transgenic mice overexpressing transforming growth factor-alpha. Am J Physiol Lung Cell 
Mol Physiol. 2003;285:L1046-1054 

106. Benisty JI, McLaughlin VV, Landzberg MJ, Rich JD, Newburger JW, Rich S, Folkman J. Elevated basic fibroblast 
growth factor levels in patients with pulmonary arterial hypertension. Chest. 2004;126:1255-1261 

107. Iioka Y, Tatsumi K, Sugito K, Moriya T, Kuriyama T. Effects of insulin-like growth factor on nitrogen balance during 
hypoxic exposure. Eur Respir J. 2002;20:293-299 

108. Dahal BK, Kosanovic D, Kaulen C, Cornitescu T, Savai R, Hoffmann J, Reiss I, Ghofrani HA, Weissmann N, 
Kuebler WM, Seeger W, Grimminger F, Schermuly RT. Involvement of mast cells in monocrotaline-induced 
pulmonary hypertension in rats. Respir Res. 2011;12:60 

109. Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, Eddahibi S. Impact of interleukin-6 on hypoxia-induced 
pulmonary hypertension and lung inflammation in mice. Respir Res. 2009;10:6 

110. Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S. Role of 
endothelium-derived cc chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care 
Med. 2007;176:1041-1047 

111. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. 
Physiol Rev. 1997;77:731-758 

112. Babcock GT. How oxygen is activated and reduced in respiration. Proc Natl Acad Sci U S A. 1999;96:12971-12973 
113. Thompson RJ, Farragher SM, Cutz E, Nurse CA. Developmental regulation of O2 sensing in neonatal adrenal 

chromaffin cells from wild-type and nadph-oxidase-deficient mice. Pflugers Arch. 2002;444:539-548 
114. Buttigieg J, Brown ST, Lowe M, Zhang M, Nurse CA. Functional mitochondria are required for O2 but not CO2 

sensing in immortalized adrenomedullary chromaffin cells. Am J Physiol Cell Physiol. 2008;294:C945-956 
115. Hung PC, Wang HS, Chung HT, Hwang MS, Ro LS. Pulmonary hypertension in a child with mitochondrial a3243g 

point mutation. Brain Dev. 2012;34:866-868 
116. Barclay AR, Sholler G, Christodolou J, Shun A, Arbuckle S, Dorney S, Stormon MO. Pulmonary hypertension--a 

new manifestation of mitochondrial disease. J Inherit Metab Dis. 2005;28:1081-1089 
117. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton 

gradient: A practical usage guide. Biotechniques. 2011;50:98-115 
118. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435:297-312 
119. Nicholls DG, Ferguson SJ. Bioenergetics 3. San Diego, Calif.: Academic Press; 2002. 
120. Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart 

failure. Mitochondrion. 2011;11:700-706 
121. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: Modulators of 

mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373-1414 
122. Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD. Quantitative measurement 

of mitochondrial membrane potential in cultured cells: Calcium-induced de- and hyperpolarization of neuronal 
mitochondria. J Physiol. 2012;590:2845-2871 

123. Skulachev VP. Uncoupling: New approaches to an old problem of bioenergetics. Biochim Biophys Acta. 
1998;1363:100-124 

124. D'Autreaux B, Toledano MB. Ros as signalling molecules: Mechanisms that generate specificity in ros homeostasis. 
Nat Rev Mol Cell Biol. 2007;8:813-824 

125. Chen AF, Chen DD, Daiber A, Faraci FM, Li H, Rembold CM, Laher I. Free radical biology of the cardiovascular 
system. Clin Sci (Lond). 2012;123:73-91 



References  127 

126. Hartney T, Birari R, Venkataraman S, Villegas L, Martinez M, Black SM, Stenmark KR, Nozik-Grayck E. Xanthine 
oxidase-derived ros upregulate egr-1 via erk1/2 in pa smooth muscle cells; model to test impact of extracellular ros in 
chronic hypoxia. PLoS One. 2011;6:e27531 

127. Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of reactive oxygen species by cytochrome 
p450. Toxicol Appl Pharmacol. 2004;199:316-331 

128. Cho KJ, Seo JM, Kim JH. Bioactive lipoxygenase metabolites stimulation of nadph oxidases and reactive oxygen 
species. Mol Cells. 2011;32:1-5 

129. Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N, Sasaki T, Tsujioka K, Makino H, Kashihara N. 
Nad(p)h oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with 
experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2005;288:F1144-1152 

130. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1-13 
131. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483-495 
132. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335-344 
133. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 

2008;1147:37-52 
134. Jensen PK. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-

transport particles. I. Ph dependency and hydrogen peroxide formation. Biochim Biophys Acta. 1966;122:157-166 
135. Bartz RR, Piantadosi CA. Clinical review: Oxygen as a signaling molecule. Crit Care. 2010;14:234 
136. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the 

mitochondrial electron transport chain. J Biol Chem. 2002;277:44784-44790 
137. Muller FL, Liu Y, Van Remmen H. Complex iii releases superoxide to both sides of the inner mitochondrial 

membrane. J Biol Chem. 2004;279:49064-49073 
138. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci. 1998;854:224-

238 
139. Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier AL, Grimm S. Specific disintegration of complex ii 

succinate:Ubiquinone oxidoreductase links ph changes to oxidative stress for apoptosis induction. Cell Death Differ. 
2011;18:338-349 

140. Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the 
superoxide anion from mitochondria to cytosol. J Biol Chem. 2003;278:5557-5563 

141. Korshunov SS, Krasnikov BF, Pereverzev MO, Skulachev VP. The antioxidant functions of cytochrome c. FEBS Lett. 
1999;462:192-198 

142. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive 
oxygen species in mitochondria. FEBS Lett. 1997;416:15-18 

143. Lambert AJ, Brand MD. Superoxide production by nadh:Ubiquinone oxidoreductase (complex i) depends on the ph 
gradient across the mitochondrial inner membrane. Biochem J. 2004;382:511-517 

144. Seifert EL, Estey C, Xuan JY, Harper ME. Electron transport chain-dependent and -independent mechanisms of 
mitochondrial h2o2 emission during long-chain fatty acid oxidation. J Biol Chem. 2010;285:5748-5758 

145. Loschen G, Flohe L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett. 
1971;18:261-264 

146. Rottenberg H, Covian R, Trumpower BL. Membrane potential greatly enhances superoxide generation by the 
cytochrome bc1 complex reconstituted into phospholipid vesicles. J Biol Chem. 2009;284:19203-19210 

147. Starkov AA, Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and nad(p)h redox 
state. J Neurochem. 2003;86:1101-1107 

148. Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. 
Biochem Soc Trans. 2003;31:1300-1301 

149. Sedlic F, Sepac A, Pravdic D, Camara AK, Bienengraeber M, Brzezinska AK, Wakatsuki T, Bosnjak ZJ. 
Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: Roles of 
ros and Ca2+. Am J Physiol Cell Physiol. 2010;299:C506-515 

150. Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J. Uncoupling proteins: A role in protection against 
reactive oxygen species--or not? Biochim Biophys Acta. 2006;1757:449-458 

151. Shabalina IG, Nedergaard J. Mitochondrial ('mild') uncoupling and ros production: Physiologically relevant or not? 
Biochem Soc Trans. 2011;39:1305-1309 

152. Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ. Mitochondrial uncoupling, with 
low concentration fccp, induces ros-dependent cardioprotection independent of katp channel activation. Cardiovasc 
Res. 2006;72:313-321 

153. Park J, Lee J, Choi C. Mitochondrial network determines intracellular ros dynamics and sensitivity to oxidative stress 
through switching inter-mitochondrial messengers. PLoS One. 2011;6:e23211 

154. Mashimo K, Ohno Y. Ethanol hyperpolarizes mitochondrial membrane potential and increases mitochondrial fraction 
in cultured mouse myocardial cells. Arch Toxicol. 2006;80:421-428 

155. Mailloux RJ, Harper ME. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. 
Free Radic Biol Med. 2011;51:1106-1115 



References  128 

156. Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD. Mitochondrial proton and electron leaks. Essays 
Biochem. 2010;47:53-67 

157. Nicholls DG. The non-ohmic proton leak--25 years on. Biosci Rep. 1997;17:251-257 
158. Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 

2011;26:192-205 
159. Brookes PS. Mitochondrial h(+) leak and ros generation: An odd couple. Free Radic Biol Med. 2005;38:12-23 
160. Brand MD, Brindle KM, Buckingham JA, Harper JA, Rolfe DF, Stuart JA. The significance and mechanism of 

mitochondrial proton conductance. Int J Obes Relat Metab Disord. 1999;23 Suppl 6:S4-11 
161. Dlaskova A, Clarke KJ, Porter RK. The role of ucp 1 in production of reactive oxygen species by mitochondria 

isolated from brown adipose tissue. Biochim Biophys Acta. 2010;1797:1470-1476 
162. Mailloux RJ, Harper ME. Mitochondrial proticity and ros signaling: Lessons from the uncoupling proteins. Trends 

Endocrinol Metab. 2012;23:451-458 
163. Huttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, 

Vogt S, Grossman LI, Doan JW, Marcus K, Lee I. Regulation of mitochondrial respiration and apoptosis through cell 
signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim 
Biophys Acta. 2012;1817:598-609 

164. Lin MJ, Yang XR, Cao YN, Sham JS. Hydrogen peroxide-induced ca2+ mobilization in pulmonary arterial smooth 
muscle cells. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1598-1608 

165. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: New concepts and 
experimental therapies. Circulation. 2010;121:2045-2066 

166. Kang TM, Park MK, Uhm DY. Effects of hypoxia and mitochondrial inhibition on the capacitative calcium entry in 
rabbit pulmonary arterial smooth muscle cells. Life Sci. 2003;72:1467-1479 

167. Kang TM, Park MK, Uhm DY. Characterization of hypoxia-induced [Ca2+]i rise in rabbit pulmonary arterial smooth 
muscle cells. Life Sci. 2002;70:2321-2333 

168. Weissmann N, Ebert N, Ahrens M, Ghofrani HA, Schermuly RT, Hanze J, Fink L, Rose F, Conzen J, Seeger W, 
Grimminger F. Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs. Am J 
Respir Cell Mol Biol. 2003;29:721-732 

169. Evans AM, Hardie DG, Peers C, Mahmoud A. Hypoxic pulmonary vasoconstriction: Mechanisms of oxygen-sensing. 
Curr Opin Anaesthesiol. 2011;24:13-20 

170. Aley PK, Murray HJ, Boyle JP, Pearson HA, Peers C. Hypoxia stimulates Ca2+ release from intracellular stores in 
astrocytes via cyclic adp ribose-mediated activation of ryanodine receptors. Cell Calcium. 2006;39:95-100 

171. Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN, David JA, Suman R, Peers C, Hardie DG, Evans AM. 
Phosphorylation of the voltage-gated potassium channel kv2.1 by amp-activated protein kinase regulates membrane 
excitability. Proc Natl Acad Sci U S A. 2011;108:18132-18137 

172. Zou MH, Hou XY, Shi CM, Kirkpatick S, Liu F, Goldman MH, Cohen RA. Activation of 5'-amp-activated kinase is 
mediated through c-src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic 
endothelial cells. Role of peroxynitrite. J Biol Chem. 2003;278:34003-34010 

173. Toyoda T, Hayashi T, Miyamoto L, Yonemitsu S, Nakano M, Tanaka S, Ebihara K, Masuzaki H, Hosoda K, Inoue G, 
Otaka A, Sato K, Fushiki T, Nakao K. Possible involvement of the alpha1 isoform of 5'amp-activated protein kinase 
in oxidative stress-stimulated glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E166-
173 

174. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans 
AM, Hardie DG. Use of cells expressing gamma subunit variants to identify diverse mechanisms of ampk activation. 
Cell Metab. 2010;11:554-565 

175. Carafoli E. Calcium signaling: A tale for all seasons. Proc Natl Acad Sci U S A. 2002;99:1115-1122 
176. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and ca2+ 

signaling. Am J Physiol Cell Physiol. 2006;291:C1082-1088 
177. Ward JP, Snetkov VA, Aaronson PI. Calcium, mitochondria and oxygen sensing in the pulmonary circulation. Cell 

Calcium. 2004;36:209-220 
178. Wang YX, Zheng YM, Abdullaev I, Kotlikoff MI. Metabolic inhibition with cyanide induces calcium release in 

pulmonary artery myocytes and xenopus oocytes. Am J Physiol Cell Physiol. 2003;284:C378-388 
179. Pak O, Sommer N, Hoeres T, Bakr A, Waisbrod S, Sydykov A, Haag D, Esfandiary A, Kojonazarov B, Veit F, Fuchs 

B, Weisel FC, Hecker M, Schermuly RT, Grimminger F, Ghofrani HA, Seeger W, Weissmann N. Mitochondrial 
hyperpolarization in pulmonary vascular remodeling - ucp2 deficiency as disease model. Am J Respir Cell Mol Biol. 
2013 

180. Schumacker PT. Lung cell hypoxia: Role of mitochondrial reactive oxygen species signaling in triggering responses. 
Proc Am Thorac Soc. 2011;8:477-484 

181. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399-408 
182. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT, 

Semenza GL. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible 
factor 1alpha. J Clin Invest. 1999;103:691-696 



References  129 

183. Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, 
Husain AN, Cipriani N, Rehman J. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary 
arterial hypertension: A basis for excessive cell proliferation and a new therapeutic target. Circulation. 
2010;121:2661-2671 

184. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. Hif-1-mediated expression of pyruvate dehydrogenase kinase: A 
metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177-185 

185. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements 
in the aldolase a, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-
inducible factor 1. J Biol Chem. 1996;271:32529-32537 

186. Ebert BL, Firth JD, Ratcliffe PJ. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 
via distinct cis-acting sequences. J Biol Chem. 1995;270:29083-29089 

187. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE. Hypoxia-inducible factor-1 activation in 
nonhypoxic conditions: The essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell. 
2010;21:3247-3257 

188. Lai YL, Law TC. Chronic hypoxia- and monocrotaline-induced elevation of hypoxia-inducible factor-1 alpha levels 
and pulmonary hypertension. J Biomed Sci. 2004;11:315-321 

189. McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis ED. Gene 
therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial 
hypertension. J Clin Invest. 2005;115:1479-1491 

190. Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, 
Erzurum SC, Tuder RM. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive 
endothelial cells. Am J Pathol. 2010;176:1130-1138 

191. Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P. Anticancer targets in the glycolytic metabolism of 
tumors: A comprehensive review. Front Pharmacol. 2011;2:49 

192. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: Metabolic reprogramming fuels 
cell growth and proliferation. Cell Metab. 2008;7:11-20 

193. Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED. Fatty acid 
oxidation and malonyl-coa decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med. 
2010;2:44ra58 

194. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED. Dichloroacetate prevents and 
reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res. 2004;95:830-
840 

195. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, 
Archer SL. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in 
rats: Role of increased expression and activity of voltage-gated potassium channels. Circulation. 2002;105:244-250 

196. Mattson MP, Chan SL. Calcium orchestrates apoptosis. Nat Cell Biol. 2003;5:1041-1043 
197. Paffett ML, Riddle MA, Kanagy NL, Resta TC, Walker BR. Altered protein kinase c regulation of pulmonary 

endothelial store- and receptor-operated ca2+ entry after chronic hypoxia. J Pharmacol Exp Ther. 2010;334:753-760 
198. Leonard MO, Howell K, Madden SF, Costello CM, Higgins DG, Taylor CT, McLoughlin P. Hypoxia selectively 

activates the creb family of transcription factors in the in vivo lung. Am J Respir Crit Care Med. 2008;178:977-983 
199. Ramiro-Diaz JM, Nitta CH, Maston LD, Codianni S, Giermakowska W, Resta TC, Bosc LV. Nfat is required for 

spontaneous pulmonary hypertension in superoxide dismutase 1 knockout mice. Am J Physiol Lung Cell Mol Physiol. 
2013;304:L613-625 

200. Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, McMurtry MS, Michalak M, Vance JE, Sessa WC, 
Michelakis ED. The role of nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci 
Transl Med. 2011;3:88ra55 

201. Song MY, Makino A, Yuan JX. Role of reactive oxygen species and redox in regulating the function of transient 
receptor potential channels. Antioxid Redox Signal. 2011;15:1549-1565 

202. Kroemer G, Pouyssegur J. Tumor cell metabolism: Cancer's achilles' heel. Cancer Cell. 2008;13:472-482 
203. Lane KL, Talati M, Austin E, Hemnes AR, Johnson JA, Fessel JP, Blackwell T, Mernaugh RL, Robinson L, Fike C, 

Roberts LJ, 2nd, West J. Oxidative injury is a common consequence of bmpr2 mutations. Pulm Circ. 2011;1:72-83 
204. Hu HL, Zhang ZX, Chen CS, Cai C, Zhao JP, Wang X. Effects of mitochondrial potassium channel and membrane 

potential on hypoxic human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2010;42:661-666 
205. Chen C, Chen C, Wang Z, Wang L, Yang L, Ding M, Ding C, Sun Y, Lin Q, Huang X, Du X, Zhao X, Wang C. 

Puerarin induces mitochondria-dependent apoptosis in hypoxic human pulmonary arterial smooth muscle cells. PLoS 
One. 2012;7:e34181 

206. Paulin R, Meloche J, Jacob MH, Bisserier M, Courboulin A, Bonnet S. Dehydroepiandrosterone inhibits the src/stat3 
constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2011;301:H1798-1809 

207. Lee SL, Simon AR, Wang WW, Fanburg BL. H2O2 signals 5-ht-induced erk map kinase activation and mitogenesis of 
smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2001;281:L646-652 

208. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 
2000;279:L1005-1028 



References  130 

209. Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK. The causes and functions of mitochondrial proton leak. 
Biochim Biophys Acta. 1994;1187:132-139 

210. Emre Y, Nubel T. Uncoupling protein ucp2: When mitochondrial activity meets immunity. FEBS Lett. 
2010;584:1437-1442 

211. Nedergaard J, Cannon B. The 'novel' 'uncoupling' proteins ucp2 and ucp3: What do they really do? Pros and cons for 
suggested functions. Exp Physiol. 2003;88:65-84 

212. Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B. 
Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J 
Biol Chem. 2001;276:8705-8712 

213. Baffy G. Uncoupling protein-2 and cancer. Mitochondrion. 2010;10:243-252 
214. Berardi MJ, Shih WM, Harrison SC, Chou JJ. Mitochondrial uncoupling protein 2 structure determined by nmr 

molecular fragment searching. Nature. 2011;476:109-113 
215. Miroux B, Frossard V, Raimbault S, Ricquier D, Bouillaud F. The topology of the brown adipose tissue mitochondrial 

uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. 
EMBO J. 1993;12:3739-3745 

216. Jia JJ, Zhang X, Ge CR, Jois M. The polymorphisms of ucp2 and ucp3 genes associated with fat metabolism, obesity 
and diabetes. Obes Rev. 2009;10:519-526 

217. Fink BD, Hong YS, Mathahs MM, Scholz TD, Dillon JS, Sivitz WI. Ucp2-dependent proton leak in isolated 
mammalian mitochondria. J Biol Chem. 2002;277:3918-3925 

218. Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 
2005;6:248-261 

219. Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, Casteilla L. A role for 
uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 1997;11:809-815 

220. Lee KU, Lee IK, Han J, Song DK, Kim YM, Song HS, Kim HS, Lee WJ, Koh EH, Song KH, Han SM, Kim MS, Park 
IS, Park JY. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function 
and apoptosis. Circ Res. 2005;96:1200-1207 

221. Teshima Y, Akao M, Jones SP, Marban E. Uncoupling protein-2 overexpression inhibits mitochondrial death pathway 
in cardiomyocytes. Circ Res. 2003;93:192-200 

222. Lee SC, Robson-Doucette CA, Wheeler MB. Uncoupling protein 2 regulates reactive oxygen species formation in 
islets and influences susceptibility to diabetogenic action of streptozotocin. J Endocrinol. 2009;203:33-43 

223. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang 
S, Roebuck SJ, Brand MD. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. 
EMBO J. 2003;22:4103-4110 

224. Diano S, Horvath TL. Mitochondrial uncoupling protein 2 (ucp2) in glucose and lipid metabolism. Trends Mol Med. 
2012;18:52-58 

225. Bouillaud F. Ucp2, not a physiologically relevant uncoupler but a glucose sparing switch impacting ros production 
and glucose sensing. Biochim Biophys Acta. 2009;1787:377-383 

226. Pecqueur C, Bui T, Gelly C, Hauchard J, Barbot C, Bouillaud F, Ricquier D, Miroux B, Thompson CB. Uncoupling 
protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization. 
FASEB J. 2008;22:9-18 

227. Millet L, Vidal H, Andreelli F, Larrouy D, Riou JP, Ricquier D, Laville M, Langin D. Increased uncoupling protein-2 
and -3 mrna expression during fasting in obese and lean humans. J Clin Invest. 1997;100:2665-2670 

228. Hurtaud C, Gelly C, Chen Z, Levi-Meyrueis C, Bouillaud F. Glutamine stimulates translation of uncoupling protein 
2mrna. Cell Mol Life Sci. 2007;64:1853-1860 

229. Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF. Uncoupling proteins 2 and 3 are fundamental for 
mitochondrial ca2+ uniport. Nat Cell Biol. 2007;9:445-452 

230. O'Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: Gatekeepers of life and death. Physiology (Bethesda). 
2005;20:303-315 

231. Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 
2012;2012:703538 

232. Derdak Z, Fulop P, Sabo E, Tavares R, Berthiaume EP, Resnick MB, Paragh G, Wands JR, Baffy G. Enhanced colon 
tumor induction in uncoupling protein-2 deficient mice is associated with nf-kappab activation and oxidative stress. 
Carcinogenesis. 2006;27:956-961 

233. Nino Fong R, Fatehi-Hassanabad Z, Lee SC, Lu H, Wheeler MB, Chan CB. Uncoupling protein-2 increases nitric 
oxide production and tnfaip3 pathway activation in pancreatic islets. J Mol Endocrinol. 2011;46:193-204 

234. Emre Y, Hurtaud C, Nubel T, Criscuolo F, Ricquier D, Cassard-Doulcier AM. Mitochondria contribute to lps-induced 
mapk activation via uncoupling protein ucp2 in macrophages. Biochem J. 2007;402:271-278 

235. Dikov D, Aulbach A, Muster B, Drose S, Jendrach M, Bereiter-Hahn J. Do ucp2 and mild uncoupling improve 
longevity? Exp Gerontol. 2010;45:586-595 

236. Horvath TL, Diano S, Miyamoto S, Barry S, Gatti S, Alberati D, Livak F, Lombardi A, Moreno M, Goglia F, Mor G, 
Hamilton J, Kachinskas D, Horwitz B, Warden CH. Uncoupling proteins-2 and 3 influence obesity and inflammation 
in transgenic mice. Int J Obes Relat Metab Disord. 2003;27:433-442 



References  131 

237. Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A, Jung HJ, 
McCaffery JM, Kurland IJ, Reue K, Lee WN, Koehler CM, Teitell MA. Ucp2 regulates energy metabolism and 
differentiation potential of human pluripotent stem cells. EMBO J. 2011;30:4860-4873 

238. Chen X, Wang K, Chen J, Guo J, Yin Y, Cai X, Guo X, Wang G, Yang R, Zhu L, Zhang Y, Wang J, Xiang Y, Weng 
C, Zen K, Zhang J, Zhang CY. In vitro evidence suggests that mir-133a-mediated regulation of uncoupling protein 2 
(ucp2) is an indispensable step in myogenic differentiation. J Biol Chem. 2009;284:5362-5369 

239. Selimovic D, Hassan M, Haikel Y, Hengge UR. Taxol-induced mitochondrial stress in melanoma cells is mediated by 
activation of c-jun n-terminal kinase (jnk) and p38 pathways via uncoupling protein 2. Cell Signal. 2008;20:311-322 

240. Elorza A, Hyde B, Mikkola HK, Collins S, Shirihai OS. Ucp2 modulates cell proliferation through the mapk/erk 
pathway during erythropoiesis and has no effect on heme biosynthesis. J Biol Chem. 2008;283:30461-30470 

241. Dietrich MO, Antunes C, Geliang G, Liu ZW, Borok E, Nie Y, Xu AW, Souza DO, Gao Q, Diano S, Gao XB, 
Horvath TL. Agrp neurons mediate sirt1's action on the melanocortin system and energy balance: Roles for sirt1 in 
neuronal firing and synaptic plasticity. J Neurosci. 2010;30:11815-11825 

242. Kojonazarov B, Sydykov A, Pullamsetti SS, Luitel H, Dahal BK, Kosanovic D, Tian X, Majewski M, Baumann C, 
Evans S, Phillips P, Fairman D, Davie N, Wayman C, Kilty I, Weissmann N, Grimminger F, Seeger W, Ghofrani HA, 
Schermuly RT. Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling. Int J 
Cardiol. 2012 

243. Dahal BK, Kosanovic D, Pamarthi PK, Sydykov A, Lai YJ, Kast R, Schirok H, Stasch JP, Ghofrani HA, Weissmann 
N, Grimminger F, Seeger W, Schermuly RT. Therapeutic efficacy of azaindole-1 in experimental pulmonary 
hypertension. Eur Respir J. 2010;36:808-818 

244. Scaduto RC, Jr., Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine 
derivatives. Biophys J. 1999;76:469-477 

245. Ward MW, Rego AC, Frenguelli BG, Nicholls DG. Mitochondrial membrane potential and glutamate excitotoxicity 
in cultured cerebellar granule cells. J Neurosci. 2000;20:7208-7219 

246. Chalmers S, McCarron JG. The mitochondrial membrane potential and ca2+ oscillations in smooth muscle. J Cell Sci. 
2008;121:75-85 

247. Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, 
Meissner M, Freichel M, Offermanns S, Veit F, Pak O, Krause KH, Schermuly RT, Brewer AC, Schmidt HH, Seeger 
W, Shah AM, Gudermann T, Ghofrani HA, Dietrich A. Activation of trpc6 channels is essential for lung ischaemia-
reperfusion induced oedema in mice. Nat Commun. 2012;3:649 

248. Weissmann N, Kuzkaya N, Fuchs B, Tiyerili V, Schafer RU, Schutte H, Ghofrani HA, Schermuly RT, Schudt C, 
Sydykov A, Egemnazarow B, Seeger W, Grimminger F. Detection of reactive oxygen species in isolated, perfused 
lungs by electron spin resonance spectroscopy. Respir Res. 2005;6:86 

249. Fink L, Kohlhoff S, Stein MM, Hanze J, Weissmann N, Rose F, Akkayagil E, Manz D, Grimminger F, Seeger W, 
Bohle RM. Cdna array hybridization after laser-assisted microdissection from nonneoplastic tissue. Am J Pathol. 
2002;160:81-90 

250. Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, White FM. Large-scale discovery of 
erk2 substrates identifies erk-mediated transcriptional regulation by etv3. Sci Signal. 2011;4:rs11 

251. Gnaiger E, Lassnig B, Kuznetsov AV, Margreiter R. Mitochondrial respiration in the low oxygen environment of the 
cell. Effect of adp on oxygen kinetics. Biochim Biophys Acta. 1998;1365:249-254 

252. Trollinger DR, Cascio WE, Lemasters JJ. Selective loading of rhod 2 into mitochondria shows mitochondrial ca2+ 
transients during the contractile cycle in adult rabbit cardiac myocytes. Biochem Biophys Res Commun. 
1997;236:738-742 

253. Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18:2699-2711 
254. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes 

for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with 
sperm motility. Hum Reprod. 2004;19:2267-2276 

255. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. Jc-1, but not dioc6(3) or rhodamine 123, is a reliable fluorescent 
probe to assess delta psi changes in intact cells: Implications for studies on mitochondrial functionality during 
apoptosis. FEBS Lett. 1997;411:77-82 

256. Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR. Preconditioning protects by inhibiting the mitochondrial 
permeability transition. Am J Physiol Heart Circ Physiol. 2004;287:H841-849 

257. Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol. 
2012;52:48-61 

258. Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD. Evaluation of fluorescent dyes for the detection of 
mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46:126-138 

259. Foster KA, Galeffi F, Gerich FJ, Turner DA, Muller M. Optical and pharmacological tools to investigate the role of 
mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol. 2006;79:136-171 

260. Almeida A, Almeida J, Bolanos JP, Moncada S. Different responses of astrocytes and neurons to nitric oxide: The 
role of glycolytically generated atp in astrocyte protection. Proc Natl Acad Sci U S A. 2001;98:15294-15299 



References  132 

261. Kalbacova M, Vrbacky M, Drahota Z, Melkova Z. Comparison of the effect of mitochondrial inhibitors on 
mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry. Cytometry 
A. 2003;52:110-116 

262. Gnaiger E, Mendez G, Hand SC. High phosphorylation efficiency and depression of uncoupled respiration in 
mitochondria under hypoxia. Proc Natl Acad Sci U S A. 2000;97:11080-11085 

263. Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 2003;1604:77-
94 

264. Kwast KE, Burke PV, Staahl BT, Poyton RO. Oxygen sensing in yeast: Evidence for the involvement of the 
respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc Natl Acad Sci U S A. 
1999;96:5446-5451 

265. Weissmann N, Grimminger F, Voswinckel R, Conzen J, Seeger W. Nitro blue tetrazolium inhibits but does not mimic 
hypoxic vasoconstriction in isolated rabbit lungs. Am J Physiol. 1998;274:L721-727 

266. Desireddi JR, Farrow KN, Marks JD, Waypa GB, Schumacker PT. Hypoxia increases ros signaling and cytosolic 
ca(2+) in pulmonary artery smooth muscle cells of mouse lungs slices. Antioxid Redox Signal. 2010;12:595-602 

267. de Frutos S, Nitta CH, Caldwell E, Friedman J, Gonzalez Bosc LV. Regulation of soluble guanylyl cyclase-alpha1 
expression in chronic hypoxia-induced pulmonary hypertension: Role of nfatc3 and hur. Am J Physiol Lung Cell Mol 
Physiol. 2009;297:L475-486 

268. Paddenberg R, Ishaq B, Goldenberg A, Faulhammer P, Rose F, Weissmann N, Braun-Dullaeus RC, Kummer W. 
Essential role of complex ii of the respiratory chain in hypoxia-induced ros generation in the pulmonary vasculature. 
Am J Physiol Lung Cell Mol Physiol. 2003;284:L710-719 

269. Weerackody RP, Welsh DJ, Wadsworth RM, Peacock AJ. Inhibition of p38 mapk reverses hypoxia-induced 
pulmonary artery endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296:H1312-1320 

270. Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. 
Hypertension. 2007;49:717-727 

271. Zielonka J, Kalyanaraman B. Hydroethidine- and mitosox-derived red fluorescence is not a reliable indicator of 
intracellular superoxide formation: Another inconvenient truth. Free Radic Biol Med. 2010;48:983-1001 

272. Mukhopadhyay P, Rajesh M, Hasko G, Hawkins BJ, Madesh M, Pacher P. Simultaneous detection of apoptosis and 
mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc. 
2007;2:2295-2301 

273. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S. Genetically 
encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods. 2006;3:281-286 

274. Mailloux RJ, Beriault R, Lemire J, Singh R, Chenier DR, Hamel RD, Appanna VD. The tricarboxylic acid cycle, an 
ancient metabolic network with a novel twist. PLoS One. 2007;2:e690 

275. Solaini G, Sgarbi G, Lenaz G, Baracca A. Evaluating mitochondrial membrane potential in cells. Biosci Rep. 
2007;27:11-21 

276. Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation in cancer cells. Biochim Biophys Acta. 2011;1807:534-
542 

277. Okuda M, Lee HC, Kumar C, Chance B. Comparison of the effect of a mitochondrial uncoupler, 2,4-dinitrophenol 
and adrenaline on oxygen radical production in the isolated perfused rat liver. Acta Physiol Scand. 1992;145:159-168 

278. Burghuber OC, Strife R, Zirolli J, Mathias MM, Murphy RC, Reeves JT, Voelkel NF. Hydrogen peroxide induced 
pulmonary vasoconstriction in isolated rat lungs is attenuated by u60,257, a leucotriene synthesis blocker. Wien Klin 
Wochenschr. 1986;98:117-119 

279. Jones RD, Thompson JS, Morice AH. The effect of hydrogen peroxide on hypoxia, prostaglandin f2 alpha and 
potassium chloride induced contractions in isolated rat pulmonary arteries. Pulm Pharmacol Ther. 1997;10:37-42 

280. Rhoades RA, Packer CS, Roepke DA, Jin N, Meiss RA. Reactive oxygen species alter contractile properties of 
pulmonary arterial smooth muscle. Can J Physiol Pharmacol. 1990;68:1581-1589 

281. Wilhelm J, Herget J. Role of ion fluxes in hydrogen peroxide pulmonary vasoconstriction. Physiol Res. 1995;44:31-
37 

282. Pourmahram GE, Snetkov VA, Shaifta Y, Drndarski S, Knock GA, Aaronson PI, Ward JP. Constriction of pulmonary 
artery by peroxide: Role of ca2+ release and pkc. Free Radic Biol Med. 2008;45:1468-1476 

283. Wang QS, Zheng YM, Dong L, Ho YS, Guo Z, Wang YX. Role of mitochondrial reactive oxygen species in hypoxia-
dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radic Biol Med. 2007;42:642-653 

284. Marti A, Larrarte E, Novo FJ, Garcia M, Martinez JA. Ucp2 muscle gene transfer modifies mitochondrial membrane 
potential. Int J Obes Relat Metab Disord. 2001;25:68-74 

285. Andrews ZB, Horvath TL. Uncoupling protein-2 regulates lifespan in mice. Am J Physiol Endocrinol Metab. 
2009;296:E621-627 

286. Duchen MR. Mitochondria and calcium: From cell signalling to cell death. J Physiol. 2000;529 Pt 1:57-68 
287. Echtay KS, Murphy MP, Smith RA, Talbot DA, Brand MD. Superoxide activates mitochondrial uncoupling protein 2 

from the matrix side. Studies using targeted antioxidants. J Biol Chem. 2002;277:47129-47135 
288. Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S, Harper ME. Glutathionylation acts as a control switch for 

uncoupling proteins ucp2 and ucp3. J Biol Chem. 2011;286:21865-21875 
289. Skarka L, Ostadal B. Mitochondrial membrane potential in cardiac myocytes. Physiol Res. 2002;51:425-434 



References  133 

290. Hales CA, Kradin RL, Brandstetter RD, Zhu YJ. Impairment of hypoxic pulmonary artery remodeling by heparin in 
mice. Am Rev Respir Dis. 1983;128:747-751 

291. Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S. The effect of nitric oxide on cell respiration: A key 
to understanding its role in cell survival or death. Proc Natl Acad Sci U S A. 2000;97:14602-14607 

292. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97-
106 

293. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J, 
Lopaschuk GD, Archer SL. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and 
electrical remodeling in two models of right ventricular hypertrophy: Resuscitating the hibernating right ventricle. J 
Mol Med (Berl). 2010;88:47-60 

294. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, 
Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC. Alterations of cellular bioenergetics in pulmonary artery endothelial 
cells. Proc Natl Acad Sci U S A. 2007;104:1342-1347 

295. Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in 
cancer metabolism. Biochim Biophys Acta. 2011;1807:562-567 

296. Grosfeld A, Zilberfarb V, Turban S, Andre J, Guerre-Millo M, Issad T. Hypoxia increases leptin expression in human 
paz6 adipose cells. Diabetologia. 2002;45:527-530 

297. Mostyn A, Wilson V, Dandrea J, Yakubu DP, Budge H, Alves-Guerra MC, Pecqueur C, Miroux B, Symonds ME, 
Stephenson T. Ontogeny and nutritional manipulation of mitochondrial protein abundance in adipose tissue and the 
lungs of postnatal sheep. Br J Nutr. 2003;90:323-328 

298. Chen J, Gao Y, Liao W, Huang J, Gao W. Hypoxia affects mitochondrial protein expression in rat skeletal muscle. 
OMICS. 2012;16:98-104 

299. Turcotte ML, Parliament M, Franko A, Allalunis-Turner J. Variation in mitochondrial function in hypoxia-sensitive 
and hypoxia-tolerant human glioma cells. Br J Cancer. 2002;86:619-624 

300. Heerdt BG, Houston MA, Augenlicht LH. Growth properties of colonic tumor cells are a function of the intrinsic 
mitochondrial membrane potential. Cancer Res. 2006;66:1591-1596 

301. Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Regulation and pharmacology of the mitochondrial 
permeability transition pore. Cardiovasc Res. 2009;83:213-225 

302. Campanella M, Parker N, Tan CH, Hall AM, Duchen MR. If(1): Setting the pace of the f(1)f(o)-atp synthase. Trends 
Biochem Sci. 2009;34:343-350 

303. Bell EL, Emerling BM, Ricoult SJ, Guarente L. Sirt3 suppresses hypoxia inducible factor 1alpha and tumor growth by 
inhibiting mitochondrial ros production. Oncogene. 2011;30:2986-2996 

304. Frezza C, Zheng L, Tennant DA, Papkovsky DB, Hedley BA, Kalna G, Watson DG, Gottlieb E. Metabolic profiling 
of hypoxic cells revealed a catabolic signature required for cell survival. PLoS One. 2011;6:e24411 

305. Burns AT, La Gerche A, Prior DL, Macisaac AI. Left ventricular untwisting is an important determinant of early 
diastolic function. JACC Cardiovasc Imaging. 2009;2:709-716 

306. Turner JD, Gaspers LD, Wang G, Thomas AP. Uncoupling protein-2 modulates myocardial excitation-contraction 
coupling. Circ Res. 2010;106:730-738 

307. Li N, Wang J, Gao F, Tian Y, Song R, Zhu SJ. The role of uncoupling protein 2 in the apoptosis induced by free fatty 
acid in rat cardiomyocytes. J Cardiovasc Pharmacol. 2010;55:161-167 

308. Sastre-Serra J, Valle A, Company MM, Garau I, Oliver J, Roca P. Estrogen down-regulates uncoupling proteins and 
increases oxidative stress in breast cancer. Free Radic Biol Med. 2010;48:506-512 

309. Day BJ, Fridovich I, Crapo JD. Manganic porphyrins possess catalase activity and protect endothelial cells against 
hydrogen peroxide-mediated injury. Arch Biochem Biophys. 1997;347:256-262 

310. Batinic-Haberle I, Cuzzocrea S, Reboucas JS, Ferrer-Sueta G, Mazzon E, Di Paola R, Radi R, Spasojevic I, Benov L, 
Salvemini D. Pure mntbap selectively scavenges peroxynitrite over superoxide: Comparison of pure and commercial 
mntbap samples to mnte-2-pyp in two models of oxidative stress injury, an sod-specific escherichia coli model and 
carrageenan-induced pleurisy. Free Radic Biol Med. 2009;46:192-201 

311. Wong CM, Bansal G, Pavlickova L, Marcocci L, Suzuki YJ. Reactive oxygen species and antioxidants in pulmonary 
hypertension. Antioxid Redox Signal. 2012 

312. Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, Stanke-Labesque F, Pison C. Increased 
lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med. 2001;164:1038-1042 

313. Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF. Oxidative stress in severe 
pulmonary hypertension. Am J Respir Crit Care Med. 2004;169:764-769 

314. Masri FA, Comhair SA, Dostanic-Larson I, Kaneko FT, Dweik RA, Arroliga AC, Erzurum SC. Deficiency of lung 
antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci. 2008;1:99-106 

315. Lachmanova V, Hnilickova O, Povysilova V, Hampl V, Herget J. N-acetylcysteine inhibits hypoxic pulmonary 
hypertension most effectively in the initial phase of chronic hypoxia. Life Sci. 2005;77:175-182 

316. Jankov RP, Kantores C, Pan J, Belik J. Contribution of xanthine oxidase-derived superoxide to chronic hypoxic 
pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2008;294:L233-245 

317. Uzun O, Balbay O, Comunoglu NU, Yavuz O, Nihat Annakkaya A, Guler S, Silan C, Erbas M, Arbak P. Hypobaric-
hypoxia-induced pulmonary damage in rats ameliorated by antioxidant erdosteine. Acta Histochem. 2006;108:59-68 



References  134 

318. Redout EM, van der Toorn A, Zuidwijk MJ, van de Kolk CW, van Echteld CJ, Musters RJ, van Hardeveld C, Paulus 
WJ, Simonides WS. Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J 
Physiol Heart Circ Physiol. 2010;298:H1038-1047 

319. Pervaiz S, Clement MV. Superoxide anion: Oncogenic reactive oxygen species? Int J Biochem Cell Biol. 
2007;39:1297-1304 

320. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95 
321. Hurt EM, Thomas SB, Peng B, Farrar WL. Integrated molecular profiling of sod2 expression in multiple myeloma. 

Blood. 2007;109:3953-3962 
322. Oberley LW. Mechanism of the tumor suppressive effect of mnsod overexpression. Biomed Pharmacother. 

2005;59:143-148 
323. Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, Huang P. Mitochondrial manganese-superoxide dismutase 

expression in ovarian cancer: Role in cell proliferation and response to oxidative stress. J Biol Chem. 
2005;280:39485-39492 

324. Li PF, Dietz R, von Harsdorf R. Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of 
transforming growth factor-beta1 in cardiac fibroblasts. FEBS Lett. 1999;448:206-210 

325. Stockl P, Zankl C, Hutter E, Unterluggauer H, Laun P, Heeren G, Bogengruber E, Herndler-Brandstetter D, 
Breitenbach M, Jansen-Durr P. Partial uncoupling of oxidative phosphorylation induces premature senescence in 
human fibroblasts and yeast mother cells. Free Radic Biol Med. 2007;43:947-958 

326. Guimaraes EL, Best J, Dolle L, Najimi M, Sokal E, van Grunsven LA. Mitochondrial uncouplers inhibit hepatic 
stellate cell activation. BMC Gastroenterol. 2012;12:68 

327. Carriere A, Fernandez Y, Rigoulet M, Penicaud L, Casteilla L. Inhibition of preadipocyte proliferation by 
mitochondrial reactive oxygen species. FEBS Lett. 2003;550:163-167 

328. De Pauw A, Demine S, Tejerina S, Dieu M, Delaive E, Kel A, Renard P, Raes M, Arnould T. Mild mitochondrial 
uncoupling does not affect mitochondrial biogenesis but downregulates pyruvate carboxylase in adipocytes: Role for 
triglyceride content reduction. Am J Physiol Endocrinol Metab. 2012;302:E1123-1141 

329. Alves-Guerra MC, Rousset S, Pecqueur C, Mallat Z, Blanc J, Tedgui A, Bouillaud F, Cassard-Doulcier AM, Ricquier 
D, Miroux B. Bone marrow transplantation reveals the in vivo expression of the mitochondrial uncoupling protein 2 
in immune and nonimmune cells during inflammation. J Biol Chem. 2003;278:42307-42312 

330. Tian XY, Wong WT, Xu A, Lu Y, Zhang Y, Wang L, Cheang WS, Wang Y, Yao X, Huang Y. Uncoupling protein-2 
protects endothelial function in diet-induced obese mice. Circ Res. 2012;110:1211-1216 

331. Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-
Zulueta M, Nikolich K, Wieloch T. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction 
after stroke and brain trauma. Nat Med. 2003;9:1062-1068 

332. Eisner V, Parra V, Lavandero S, Hidalgo C, Jaimovich E. Mitochondria fine-tune the slow ca(2+) transients induced 
by electrical stimulation of skeletal myotubes. Cell Calcium. 2010;48:358-370 

333. Fonteriz RI, de la Fuente S, Moreno A, Lobaton CD, Montero M, Alvarez J. Monitoring mitochondrial [ca(2+)] 
dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium. 2010;48:61-69 

334. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, 
Goldberger O, Bogorad RL, Koteliansky V, Mootha VK. Integrative genomics identifies mcu as an essential 
component of the mitochondrial calcium uniporter. Nature. 2011;476:341-345 

335. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the 
mitochondrial calcium uniporter. Nature. 2011;476:336-340 

336. Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, 
Mammucari C, Rizzuto R. The mitochondrial calcium uniporter (mcu): Molecular identity and physiological roles. J 
Biol Chem. 2013;288:10750-10758 

337. Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: A novel therapeutic strategy for cancer? Br J Cancer. 
2011;105:469-474 

338. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ER, Martinou JC. Identification 
and functional expression of the mitochondrial pyruvate carrier. Science. 2012;337:93-96 

339. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, 
Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S. Ucp2 mediates ghrelin's action on npy/agrp neurons by 
lowering free radicals. Nature. 2008;454:846-851 

 



Acknowledgements  135 

8. Acknowledgements 

 

I would like to reveal my sincere acknowledgment to my supervisor Professor Norbert Weissmann for 

providing me the opportunity to work in his excellent research group. His friendly personality, patience, 

guidance and support throughout my doctoral studies helped me to finish my doctoral thesis.  

 

I am extremely grateful to my Postdoc, Dr. Natascha Sommer for all her help, motivation and support 

whenever I needed. I would never have been able to finish my dissertation without her guidance. 

 

I would like to express deep sense of full respect and gratitude to Prof. Dr. Werner Seeger for this 

wonderful opportunity to learn science in an international environment of a graduate college.  

 

I would like to thank all GGL and all International Graduate Program MBML team members for their 

constant adequate pressure that makes my scientific knowledge more complete.  

 

I want to say special thanks to Timm, Adel, Sharon, Phillipe, Bedjan and Azadeh for the wonderful work. 

 

Thanks to all of the Weissmann group members for your friendship, help and for warm atmosphere in the 

lab every day. I want to specially thank to Karin, Carmen, Liza and Ingrid for a lot of help.  

Special thank for my friends in ECCPS building; you make my days in the lab easy and wonderful. So, 

even on a nice, warm, sunny day I feel better inside of ECCPS, than on the green lawn. Florian, you are 

the best.  

 

I would like to thank my best friend Djuro for all of his support and love. Хвала пријатељу за све! 

Thanks to all my friends in Giessen: Diya, Aleksandra, Lukasz, Katarzyna, Sylwia, Daria; Stefan for a lot 

of fun and the best antidepressant ever created - grill party in Unterhoff.  

 

I would like to say thank to my Kyrgyz friends in Gratz, Austria: Gulsina, Bakyt, Uluk and Djamilya. 

You are always in my heart. Thanks a lot to Bakyt and Akyl in Giessen, your help mean a lot for me. 

 

Finally, nothing would have been possible without my family. I want to thank my mother Elizaveta, 

father Aphonasij, my brothers Aleksandr and Sergej for their love, support and existence in my life.  


