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Abstract

In Pointillism and Divisionism, artists moved from tonal to chromatic palettes, as Impressionism

did before them, and relied on what is often called optical mixture instead of stirring paints

together. The so-called optical mixture is actually not an optical mixture, but a mental blend,

because the texture of the paint marks is used as a means to stress the picture plane. The touches

are intended to remain separately visible. These techniques require novel methods of colour

description that have to depart from standard colorimetric conventions. We investigate the

distinctiveness of transitions between regions as defined through such artistic techniques. We

find that the pointillist edges are not primarily defined by luminance contrast but are achieved in

almost purely chromatic ways. A very simple rule suffices to predict transition distinctiveness for

pairs of cardinal colours (yellow, green, cyan, blue, magenta, and red); it is simply distance along the

colour circle or in the RGB cube. Distinctiveness of partition depends mainly on the colours of the

regions, not the sharpness of the transition.
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Introduction

Pointillism and Divisionism (or Chromoluminarism) are artistic techniques that were widely
explored at the end of the 19th century (Blanc, 1891; Clement & Houzé, 1999; Gage, 1987;
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Greene, 2007; Homer, 1964; Lee, 1987; Rewald, 1986; Signac, 1899).1 One often speaks of
Neo-Impressionism (Clement & Houzé, 1999), perhaps an unfortunate term because of the
fundamental artistic convictions involved. From the perspective of vision research, there are a
variety of mutually distinct issues involved, whereas the effects obtained by the artists are not
readily located in the mainstream vision research understanding. The bewildering variety of
approaches explored by the artists and the huge gap between generic stimulus configurations
used in vision science and those that excited the artists at the time are probably reasons that
science has had little more than trivialities to add to the artists’ empirical achievements.

In this study, we explore two technically related aspects that appear of generic importance
to the general area of pointillist and divisionist techniques. One involves the nature of edges,
boundaries, or transitions, or whatever one choses to call them (Koenderink, van Doorn,
Pinna, & Wagemans, 2016), the other the difference between mainly ‘‘chromatic’’ versus
mainly ‘‘tonal’’ distinctions. A primarily chromatic work is almost impossible to reproduce
in a monochrome rendering (see Figure 1).

Although these are indeed important issues, they do by no means exhaust the pointillist–
divisionist toolbox. The sheer variety of effects that play in these art forms defeats simplistic,
abstract scientific approaches.

This study is no more than an initial attempt to explore these matters. We state upfront
that we cannot claim to do more than scratch the surface. Apart from its immediate
application to the theory of the visual arts, this study is of interest to vision research per
se because relatively little is known concerning the saliency of transitions between
chromatically defined textures (Agostini & Galmont, 2000; Gegenfurtner & Kiper, 1992;
Giesel, Hansen, & Gegenfurtner, 2009; Goda & Fujii, 2001; Hansen, Giesel, &
Gegenfurtner, 2008; Ishihara, 1917; Li & Lennie, 1997; McIlhagga, Hine, Cole, & Snyder,
1990; Papathomas, 1997; Pessoa, Beck, & Mingolla, 1996; te Pas & Koenderink, 2004) as
opposed to transitions between uniform (‘‘flat’’) patches of colour (Boynton, 1978; Boynton
& Kaiser, 1968; Chevreul, 1860; Kaiser, 1971; Kaiser, Herzberg, & Boynton, 1971; Kaiser,
Lee, Martini, & Valberg, 1990; Koenderink et al., 2016; Liebmann, 1927; Lindsey & Teller,
1989; von Helmholtz, 1867).

Figure 1. Paul Signac (1863–1935), Auxerre, La Rivière (1902–1903). Oil on canvas, height: 55.5� 46.5 cm,

private collection (image in the public domain). At left, a reproduction in colour; at centre and right, two

attempts at monochromatic rendering. At the centre, the straight luminance image; at right, an interpretation

using the ‘‘max rule’’ (see later); neither is particularly successful in capturing the spirit of the chromatic

version. Alternative translations from hues to tones can do much better (see later) but necessarily involve

idiosyncratic interpretation.
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The dichotomy between textures and boundaries (or abutting patches) is not categorical;
for instance, the studies using grating patterns occupy an intermediate position (Noorlander
& Koenderink, 1983). However, as a coarse dichotomy, the distinction tends to be quite
useful.

Regions, Transitions, Boundaries, and Edges

Patches of a similar nature—tonally, chromatically, texturally, as the case may be—are major
components of many paintings, technically denoted macchie, macchia being Italian for larger
dabs of colour (Boime, 1993; Broude, 1987; Panconi, 1999).

Frequently, patches come with boundaries that naturally belong to the patch, but
especially abutting patches often share a mutual area of transition. An instance of the
former might be an occluding edge (or cutting edge), and an instance of the latter is the
terminator of a body shadow. At an occluding edge, a foreground object occludes a
background that runs on behind the object; thus, this hard edge belongs to the object; it is
one-sided. At the edge of a body shadow, both regions belong to the same object, so
they must naturally share a common boundary; this soft edge is two-sided (Koenderink
et al., 2016).

Sharp transitions tend to be of a linear nature (mainly extended in a single dimension) and
are often named (hard) edges. Transitions are often thought to divide. However, for
compositional reasons in painting, they often need to unite, that is, glue together distinct
regions (Koenderink, van Doorn, & Pinna, 2015; Koenderink et al., 2016). Thus, painting
involves a spectrum of edges from hard to soft or even lost (lost edges are artistically
important because they create passages that are most helpful in composition. Moreover,
the challenge they offer to the eye—Gombrich’s beholder’s share—is considered to be an
important artistic tool; Gombrich, 1960). Notice that such lost (nonexistent) edges are
nevertheless phenomenologically present—think of the Kanizsa triangle (Kanizsa,
1955)—just as an edge may divide or connect nondifferentiated regions—think of the
Cornsweet effect (Cornsweet, 1970). Figure 2 has some examples in a nonpointillist, grey
scale style.

Regions, transitions, boundaries, and edges are major raw materials of the painter. Any
novel technique that allows one to control these entities implies a major step forward in the
technique of the art. Pointillism provides a major instance of that.

In classical painting, predominantly flat areas like a blue sky are rendered as shallow
gradients (Ruskin, 1857). They contain no points, for no part of the gradient contrasts with
its immediate environment. In contradistinction, in Pointillism, the blue sky is composed of
points (separately recognisable dots of paint). However, these have no individual pictorial
meaning but are perceived as elements of a texturally uniform patch. The textural quality
unites the patch, as effectively as a flat tone or colour would. The artistic advantage is that the
sense of the picture plane is retained, thus avoiding the impression that the picture is a
‘‘window’’ or a ‘‘hole in the wall.’’ Such an impression was actually thought of as desirable
in the early 19th century but was considered in the worst of taste at its conclusion.

In classical painting, edges are mainly controlled by blurring (the oil technique being
eminently suitable), or, when the painter has to leave brushstrokes visible as in classical
tempera painting, by some technique of cross-stitching. Pointillism yields a novel
possibility in that its points—again small dots of paint that have no pictorial meaning as
such—may be made to cross borders and invade the adjoining macchie. Such techniques had
long been used by landscape painters, who introduced ‘‘sky-holes’’ in foliage and floating
leaves in the adjoining air space (Ruskin, 1857). This unites what is (and should remain)
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distinct much more effectively than a transitional region of locally mixed colours would.
A similar advantage results from applying only partly mixed paints with a palette knife.

In this study, we address the visual impact of such transitions between regions. These
important entities have hardly been studied in vision science, which is primarily focussed on
(hard) edges between flat areas of colour.

When visual awareness is primarily of a transition, we will use the term (edge) salience.
If the awareness is primarily of different regions, we will use the term (macchia)
distinctiveness (Boime, 1993).

Notice that one may have saliency without distinctiveness (as in the Cornsweet stimulus)
and likewise distinctiveness without saliency as in the case of very soft edges (as often used in
vision science to demonstrate effects of local adaptation).

Thus, salience and distinctiveness are distinct categories.

Chromatic Versus Tonal Contrasts

Up to the advent of French Impressionism, most painting depended upon tonal values. This
implies a rather dark overall tonality and generally subdued chromatism. In
contradistinction, in the novel styles, tonal contrasts were suppressed; the overall tone
became lighter and chromatic modulations took over (Denvir, 1990; Eisenman, 2011;
Moffett, 1986; Rewald, 1973).

In Divisionism, one often used a very limited palette of cardinal colours. (The painter’s
primary colours yellow, red, and blue, and the secondary colours orange, green, and purple,
but for our—slightly different—definition, see later.) Mixtures could be left to the eye, or
became ‘‘optical.’’ The term optical mixture easily leads one astray though. To be artistically
effective, the mixture should be by the mind, not the light. That is to say, the chromatic dots
should remain clearly visible, not be blurred or otherwise mixed.

Figure 2. At top, two uniform areas of stripes abut in a nonexistent edge. At centre, two uniform, but

mutually different areas are connected by way of a smooth transition; there is hardly a notion of an edge. The

areas are perceived as similar. At bottom, two identical uniform areas are divided by a local edge. The areas

are perceived as different.
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For instance, Seurat’s paintings (early Pointillism) look disappointingly drab and greyish
from a distance, whereas the canvas comes to life when seen from close by. This is the reason
why later artists often increased the sizes and spacings of their dots, or even spread them out,
leaving the primed canvas between them visible.

An additional reason for the latter trend is the growing need towards the end of the 19th
century to break free from the notion of a painting as a window (a view into another space
through a virtual aperture) to that of a decorative flat object. In the former case, the picture
surface is downplayed; in the latter, it is emphasised.

In vision science, such decorative surfaces are considered textures and have been mainly
studied for their statistical spatial structure. The properties of mental chromatic mixtures
have hardly been addressed, although their importance has often been acknowledged (Giesel
et al., 2009; te Pas & Koenderink, 2004).

Scope of This Study

In this study, we consider chromatic contrasts for hard versus soft transitions, and two kinds
of colour gamuts. In all cases, the rendering is pointillistic, thus setting the stimuli apart from
the vision science mainstream.

One of our main research questions is whether purely chromatic contrasts can
hold their own against tonal (or luminance) contrasts. This is a major issue, since by the
end of the 19th century artists aimed at uniform overall tonalities so as to stress the
object character of the picture surface. Thus, they had a need for building contrasts in
alternative ways.

From a scientific point of view, one wonders whether these chromatic contrasts were
perhaps not really luminance contrasts (Koenderink, van Doorn, & Gegenfurtner, 2017a,
2017b). For the intrinsic luminances of the primary colours (RGB) are rather different, the
ratio for our display being R:G:B¼ 21:62:17 (see Methods section), or anything close to 3:6:1
perhaps being most typical. However, there are reasons to doubt that luminance contrast
would account for transition saliency, one reason being that monochrome renderings of
chromatic (as opposed to tonal) paintings are generally disappointing (Lee, 1987), even in
cases where the topic as such might well be conveyed in monochrome (example shown in
Figure 1).

To study this, we collect a varied body of empirical data and attempt to account for it in
terms of some simple models. Two of the models involve Commission Internationale de
l’Éclairage (CIE) luminance, either directly or indirectly as in CIEDE2000 (Luo, Cui, &
Rigg, 2001). The third model simply uses Euclidean distance in the display RGB cube for
CIE D65 white and standard gamma 2.2. We are well aware that, from an ‘‘official’’
perspective, the latter choice is a no-go area, but in view of—perhaps surprising—previous
results (Koenderink et al., 2017a, 2017b), we consider it anyway. After all, if really nonsense,
that should immediately cause a clash with the data.

Another research question involves the nature of transitions between regions. Two
opposing views would be to consider transitions primarily as hard edges versus some more
gradual intermediary between two different regions. In the former case, the transition itself
would be the important aspect; in the latter case, it would rather be the distinction between
two mutually nonabutting regions. The transition either divides or unites, and the painting
has a linear (pattern of edges) or a patchy (pattern of macchie) character.

Vision research predominantly considers hard edges—the bipartite aperture being
preferred (Boynton, 1978; Boynton & Kaiser, 1968; Kaiser, 1971; Kaiser et al., 1971,
1990)—rather than patches—the simultaneous comparison of distinct apertures being rare.
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The reason is that in the case of vanishing contrasts, the former method leads to objective
threshold measurements, whereas the latter retains a subjective character.

In this study, we consider supraliminal contrasts throughout. Our present methods are
experimental phenomenology (Albertazzi, 2013) rather than psychophysics proper
(thresholds or just noticeable differences).

This is appropriate enough for the present topic, for painting has nothing to do with either
absolute or increment thresholds. In the arts, only phenomenology counts.2

Methods

Stimuli

The stimuli were designed so as to mimic pointillist/divisionist rendering in a generic way,
mainly aimed at the later phase of these movements. We strive at stimulus structure that also
has a generic relevance to vision science.

The dots are individually visible, the background at various places being visible in
between. The colours are slight variations on the cardinal colours (Koenderink, 2010;
Küppers, 1976; Schopenhauer, 1816; von Goethe, 1810): red, green, and blue (R, G, B, the
primary colours) and turquoise (or cyan), purple (or magenta), and yellow (C, M, Y,
the secondary colours). (Here, we use RGB colour cardinals, RGB and CMY, rather than
the painter’s YRB and OGP, as noticed earlier.)

Of course, one has that cyan is green and blue (C¼G[B), magenta is red and blue
(M¼R[B), and yellow is red and green (Y¼R[G), where the ‘‘and’’ (or [ ) connective
stands for ‘‘union,’’ or additive mixing. Blending of varicoloured texture relies not so much
on optical factors (we neither blur the stimulus patterns nor view them from a distance), but
rather the generalising capacity of visual awareness, sometimes referred to as assimilation in
vision science. In this article, we refer to ‘‘blending’’ in that case, whereas we reserve ‘‘mixing’’
for colorimetric or optical operations.

We use a set of six fiducial hues, the periodic sequence YGCBMR (see Appendix A). This
grain size is in the general ballpark of divisionist practice. For ease of reference, instead of
specifying hue numerically, by cyclical index, we use capital letters (Y, C, B, M, R) or simply
coloured patches to indicate axes ticks.

Spatial structure. The stimuli are made up of two square patches, abutting at a common
transitional strip of some width (Figures 3 and 4).

The pointillist structure is generated as follows: First, locations are defined in the union of
the squares using a uniform random generator. For these points, a Voronoi tessellation
(Aurenhammer, 1991) is prepared. For each (necessarily convex) face of the tessellation,
we determine the barycentre and the shortest distance over all vertices from that centre.
The dots are circular disks, centred at the barycentres, with radius taken as the shortest
distance times a common factor. The common factor is taken such as to achieve a desired
filling factor (fraction of background remaining uncovered).

Two types of transition are implemented, a relatively sharp and a relatively soft one
(examples shown in Figures 3 and 4; various details are explained later). For the sharp
transition, referred to as a hard edge, a dot is classified left or right according to the
location of its centre. For the soft transition, referred to as a soft edge, a boundary width
is defined in which the probability of being designated left or right varies linearly over the
boundary width.
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The following are some numerical data (notice that, e.g., Figure 3 shows four regions):

Chromatic structure. We use three distinct types of colour gamuts (Bouma, 1946; Koenderink,
2010; Ostwald, 1917), namely,

Achromatic: These are greys on a linear scale from black to white;
Monochromatic: These are tints and shades of a single hue. They are naturally parameterised
using the colour content, white and black content;

Number of random points 5000 (ca. 71� 71 dots per region)

Each region size 400� 400 pixels

Frame rate 40 Hz

Transition width 40 pixels

Figure 3. Example of the hard-edge stimulus. On top, the achromatic reference; at bottom, a polychromatic

case. The structure of the colour gamuts and the relevance of the global layout are discussed later.
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Polychromatic: These are shades and tints of a set of distinct hues. They are naturally
parameterised by hue, colour content, white and black content.

These gamuts have different functions in the experiment. Their structures are defined later.
This implementation is at least reminiscent of gamuts seen in many later pointillist/

divisionist works.

Achromatic gamut. In the achromatic case, the dots of the texture are assigned some average
intensity on which a random perturbation intensity on a per dot basis is superimposed.
This dither of tone was determined by a normal distribution of fixed variance (schematic
examples shown in Figure 5). The contrast of the perturbation amounted to a (indeed, fixed)
standard deviation of 20% of the full black–white scale.

In the case of our bipartite stimuli, the contrast, which is the variable used to quantify
responses, is defined as the Michelson contrast (Michelson, 1927) between the averages

Figure 4. Example of the soft-edge stimulus. On top, the achromatic reference; at bottom, a polychromatic

case. The structure of the colour gamuts and the relevance of the global layout are discussed later.
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at both sides of the transition, thus,

c ¼

�
�
�
�

hI1i � hI2i

hI1i þ hI2i

�
�
�
�
,

where hI1i, hI2i denote the two averages.

Monochromatic gamuts. In the monochromatic case, the hue is fixed to one of the cardinal
colours YGCBMR (Quiller, 1989). The colour Q of a dot in the texture is a mixture of the full
colour F, white W, and black K with coefficients {c, w, k} satisfying cþ wþ k ¼ 1
(Koenderink, 2010; Ostwald, 1917), thus,

Q ¼ cF [ wW [ kK:

(Where the last factor may be omitted, making no effective difference. It is formally
added to remind one that this description relies on the existence of a white reference.
Without that the notion of black content cannot even be consistently defined. See also
Appendix A.)

In the texture, we assign the coefficients randomly. The random generator is somewhat
skewed so as to favour saturated colours over weak tints and shades. This is done by
generating triplets of numbers that are uniformly distributed over the unit interval and
then multiplying the first number with a skew factor, after which the triplet is normalised
by dividing by their common sum. In our stimuli, we use a skew factor of four. From an
informal study, we glean that such a distribution mimics the practice often, though of course
only approximately, seen in pointillist paintings. (There appears to be no systematic science
on the topic.)

In Figure 6, we show some samples for red.

Polychromatic gamuts. In this case, the hue is dithered through a triangular probability density
function, centred at the mean and extending one step along the colour circle to each side (see
Appendix A). (Thus, for yellow, the range runs from red to green, strongly favouring yellow;
see Figure 7.) The spread is one step on the six-step colour circle, as artist often call it a
palette of analogous colours (Quiller, 1989). In Figure 7, we illustrate such a distribution of
hues, centred on yellow.

Figure 5. Schematic examples of hard achromatic edges. Notice that the left and right regions are both

nonuniform; yet, the contrast of the overall pattern is well defined.
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Figure 6. Monochromatic colour samples in the CWK (Ostwald) triangle (see Appendix A). Notice that

the distribution is skewed so as to favour saturated colours over tints and shades of the hue.

Figure 7. Polychromatic hue samples from a triangular distribution (see Appendix A). In this example, the

average hue is yellow, and outliers range from red to green. The painter would speak of analogous or related

colours. (Probability density on a linear scale, hue index defined in Appendix A.)
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In the final polychromatic gamuts, we additionally applied the skew dithering in the CWK
triangle (see Appendix A) as discussed in the section on monochromatic gamuts.

Setup and Observers

Implementation. Stimuli were presented on the LCD screen of an Apple MacBook Pro 1500

(mid-2007 model). The colorimetric definitions of the primary cardinal colours are known
from a photospectrometric calibration (Foley, van Dam, Feiner, & Hughes, 1990). The screen
was viewed in a darkened room from a distance of 57 cm, using binocular vision. The screen
subtended 32 � � 20 �. Each square subtended a visual angle of 9 � � 9 �.

The display was linearised using Bergdesign SuperCal 1.2.4. Measurements were done
using gamma 2.2 (Poynton, 1993), results converted to luminance.

Photometric data on the display are (as measured with an X-Rite ColorMunki
photospectrometer) as follows:

Observers. Five observers completed all sessions. This was considered amply sufficient in view
of the excellent concordance of their results and the minor spreads in the observations (see
Results section).

Three of the observers were fully naive to the task and had none or little and unrelated
experience with vision research. Two of the observers were highly experienced in numerous
visual tasks (the authors), although also new to the present one.

All observers were normal trichromats as determined by the conventional Ishihara test
(Ishihara, 1917).

Genders include males (2) and females (3); ages range from 20s to 70s.

Experimental Phenomenology

In this type of research, one needs to rely on eye-measure, or experimental phenomenology
(Albertazzi, 2013), as the research questions cannot possibly be addressed through fully
objective psychophysical techniques.

We displayed achromatic and chromatic stimuli simultaneously and gave observers
control over the contrast of the achromatic one.

The task was to set this contrast such that the pair of squares in achromatic and the pair in
colour (monochromatic or polychromatic as the case may be) appeared ‘‘mutually equally
distinct.’’ Thus, the response is a kind of saliency measure. Of course, we cannot know
whether the observers experience primarily edge salience or region distinctiveness.

The formal task was provided as a printed page to be read by each participant before the
experiment. The wording carefully avoided technical terms such as ‘‘edge,’’ ‘‘luminance,’’
‘‘contrast,’’ and so forth (see Figure 8).

‘‘Mutually equally distinct’’ is what is important pictorially. No participant had any
problem with this; the task appeared natural to them, although it was clear that it had to
be done on the guts, using pure eye-measure. It was pointed out in the formal instruction that
the observer is always right, and there is no ‘‘correct’’ answer.

Red x¼ 0.5995 y¼ 0.3406 L¼ 68.9

Green x¼ 0.3259 y¼ 0.5723 L¼ 197.4

Blue x¼ 0.1534 y¼ 0.1346 L¼ 53.2
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Achromatic or tonal contrast was changed in 10% steps, starting from a random level.
Participants controlled it by way of the up/down arrow keys on the keyboard.

Notice that this is not a psychophysical measurement of contrast. The contrast value set by
the observer is interpreted as a subjective evaluation of the mutual dissimilarity of the left and
right patches. We refer to it as the distinctiveness of the bipartition.

Figure 8. The instruction sheet used in the experiment.
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The achromatic rendering was always presented on top. The right and left patches for both
achromatic and chromatic squares were randomly swapped at quarter second intervals,
independently. Thus, there was no fixed vertical relation between the squares. This implies
that one cannot decide whether ‘‘yellow is brighter than blue’’ or vice versa, but only that the
yellow–blue distinction is of a certain visual importance relative to (say) the cyan–red
distinction. In a session, participants visited all pairs of distinct cardinal colours in
random order. They completed four different conditions (Figure 9) in a single session of
less than an hour (closer to half an hour, see later), in randomly chosen order.

Response times were left free but were recorded. Response times and contrast settings were
written out as the data files on which the analysis is based.

Stimuli Used in the Experiments

The stimulus categories are summarised (very schematically) in Figure 9.
Because this experiment is quite complicated with regard to the stimulus choices, the

reader might find it useful to refer to Figure 9 in case of doubt or confusion. The terms
hard edge and soft edge will be used to denote the spatial configuration, and the terms
monochromatic and polychromatic will be used to denote the chromatic configuration.

The term achromatic will hardly be used; instead, the response will be specified
numerically, as the Michelson contrast of the matching achromatic pattern.

Figure 9. A schematic overview of the stimuli used in each condition. (Impressions of the actual screen

images were presented in Figures 3 and 4.) The columns show monochromatic colour gamuts at left and

polychromatic colour gamuts at right. The rows show hard edges at top and soft edges at bottom. In all these

cases, we test all pairs of cardinal hues, thus YG, YC, YB, YM, YR, GC, GB, GM, GR, CB, CM, CR, BM, BR,

and MR. The reader might find it useful to keep this schematic overview in mind. In referring to any case, we

will specify the colour pair (like YR, say), the nature of the transition (‘‘hard’’ or ‘‘soft’’), and the nature of the

colour gamut (‘‘monochromatic’’ or ‘‘polychromatic’’). In all cases, the response will be the Michelson

contrast of the matching (qua ‘‘distinctiveness of the bipartition’’) achromatic image.
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‘‘Matching’’ will denote equal distinctiveness of bipartition. This may equally well relate to
edge saliency or to the distinctiveness of left/right regions. We do not (and indeed cannot)
know. It may even be different for different observers. Most likely, observers themselves are
not aware of the difference.

Experiments

Median response times varied from 7 s to 12 s, several seconds being needed to arrive at the
desired level starting from the random initial value. Observers typically went up and down a
few times, before setting on their final level. There were no significant differences between the
four conditions.

Observers agree quite well in their settings, as judged by Kendall’s tau rank correlation.
For the pooled data (240 responses per observer), the median rank order correlations is .74
with very little spread. It is more interesting to look at a breakdown in categories (omitted
entries are not significant at the 5% level); see Table 1.

Contrasts are generally in the 36% to 55% range (interquartile range), with outliers in
the 21% to 99% range (total range), the variation over the cardinal colour pairs perhaps
being remarkable limited (see later). The distribution charts shown in Figure 10 show this
global result.

The individual data items for each case are collected in Figures 11 through 14. This shows
that—as indeed expected—observers have idiosyncratic offsets and gain factors, an aspect

Table 1. A Breakdown in Categories of Kendall’s Tau Rank Correlations of Pairwise Observer Responses.

AL AD JK KD ZM

Soft monochromatic

AL 1.00 .28 .41 .45 –

AD .28 1.00 .41 .37 .43

JK .41 .41 1.00 .35 .56

KD .45 .37 .35 1.00 .37

ZM – .43 .56 .37 1.00

Soft polychromatic

AL 1.00 .60 .58 .52 .35

AD .60 1.00 .37 .66 .52

JK .58 .37 1.00 .49 .28

KD .52 .66 .49 1.00 .45

ZM .35 .52 .28 .45 1.00

Hard monochromatic

AL 1.00 .58 – .49 .45

AD .58 1.00 .37 .60 .60

JK – .37 1.00 – .35

KD .49 .60 – 1.00 .43

ZM .45 .60 .35 .43 1.00

Hard polychromatic

AL 1.00 .50 .43 .35 .54

AD .50 1.00 .47 .66 .81

JK .43 .47 1.00 .50 .35

KD .35 .66 .50 1.00 .54

ZM .54 .81 .35 .54 1.00

14 i-Perception 9(4)



Figure 10. Paired histograms of the responses over all observers and colour pairs, differentiated with

respect to the stimulus categories. Notice that the dichotomy monochromatic–polychromatic yields a large

difference and that of soft–hard edge quality rather less so. (All counts marked on the same scale for

convenient comparison.)

Figure 11. Distinctiveness responses are plotted against the median of the distinctiveness response over

observers. Original data plotted at left; observers are distinguished by colour. The lines are fits for each

observer. At right, the same data normalised with respect to idiosyncratic offset and slope of the individual

observers. (SE–MG stands for ‘‘soft-edge, monochromatic gamut’’)
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that is lost in the global view provided by Figure 10. In the remainder of our analysis, we use
normalised data.

The normalisation as illustrated in Figures 11 through 14 proves to be very effective. This
is typical when observer results differ by some idiosyncratic parameter, which is apparently
the case here. Omitting such a normalisation step would seriously misrepresent the results. A
preliminary step like this in the analysis of multiobserver data is almost always called for in
experimental phenomenology and is frequently of crucial importance (Koenderink, van
Doorn, Kappers, & Todd, 2001).

Figure 13. As Figure 11; here, SE–PG stands for ‘‘soft-edge, polychromatic gamut.’’

Figure 12. As Figure 11; here, HE–MG stands for ‘‘hard-edge, monochromatic gamut.’’
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The actual concordance—that is, with respect to the normalised data—between observers
is much better than might naı̈vely have been expected on the basis of the uncorrected data. It
suggests that participants are indeed doing a similar task, albeit with idiosyncratic traits that
show up in the raw results, but are not really related to the actual task. On the basis of this
result, we decided that the initial choice of five observers is to be considered sufficient.

Overall Results

It is difficult to provide an intuitive overall view of all the data because of the many parameters
involved. In Appendix C, we present bar plots of all data (medians and interquartile ranges
over observers) as a function of stimulus category and colour pairs. Appendix B has an
extensive explanation on the stimulus structure as relevant for the understanding of the
results. We do not believe it to be necessary to go into that much detail in the main text.
Here, we present a selection, yielding a more focussed view of the data.

One may differentiate the data with respect to the bipartite differences in the three RGB
colour channels (see Figure 15 and Appendix B). The partition may be in the red, the green,
or the blue, or in any arbitrary combination in these. Moreover, there may be RGB colour
channels that are the same at either side of the transition. These do not contribute to the
distinctiveness. The ‘‘veil’’ might conceivably decrease distinctiveness. Finally, when
transitions are present in several RGB colour channels, their polarity may possibly play
a role. Thus, the structure of chromatic transitions is involved. An extensive discussion is
offered in Appendix B.

From the overview of all data in Appendix C, one may glean various types of systematic
variations due to the various parameters mentioned earlier. However, it is hard to obtain a
coherent overall picture, so it is perhaps more useful to plot partial data in a more intuitive
format.

We refer to the case of the transitions in only a single RGB colour channel as analogous
colour pairs, of those in two of the RGB colour channels as incongruent colour pairs and of
these in all of the three RGB channels as complementary pairs.

Figure 14. As Figure 11; here, HE–PG stands for ‘‘hard-edge, polychromatic gamut.’’
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The array plots presented in Figure 16 allow a quick overview of the data. Notice that the
array plots appear to be roughly structured in bands running parallel to the main diagonal
(which contains identical zeroes because representing comparisons of mutually identical
patches). The plots are trivially symmetrical about the main diagonal, but the full plot
helps visualise the data structure. (Notice that these arrays are double periodic!)

The various stimulus conditions appear to have only minor influence. In most cases, the
distinctiveness of complementary pairs (CR, MG, or YB) is larger than the distinctiveness of
analogous colour pairs (YG, GC, YG, CB, BM, MR, or RY), whereas the incoherent colour
pair transitions appear to be in between. Thus, it makes sense to study the cases of analogous
colour pairs and complementary colour pairs in more detail. Indeed, it is helpful to consider
some special types of transitions that occur frequently in art and design (Chevreul, 1860;
Küppers, 1976; Liebmann, 1927; Quiller, 1989; von Bezold, 1874; von Goethe, 1810).

Figures 17 and 18 show more specific information about transitions involving analogous
colour pairs and those involving complementary colour pairs. Apparently, transitions due to
complementary pairs are more distinctive than those based on analogous colour pairs. (The
interquartile ranges do not overlap, quartiles for the analogous pairs [0.29,0.32,0.40], for the
complementary pairs [0.43,0.52,0.54].)

In the case of the transitions due to complementary colour pairs, one focusses on
simultaneous differences in all RGB colour channels. It is the nature of the relative
polarities of the transitions in the individual RGB colour channels that is relevant here.
The GM transitions appear to be less distinct than either the YB or RC one.

In the case of transitions due to analogous colour pairs, one notices that a step in the green
RGB colour channel appears to contribute relatively much to distinctiveness. Blue veils
appear to less decrease in distinctiveness than either red or green veils.

These examples are only for the case of the soft-edge, monochromatic gamut case.
However, from the full data set (Appendix B), one gleans that the specific cases are
mutually only little different.

As a preliminary conclusion, chromatic transitions are definitely effective in forming
visually effective transitions for all combinations of colour pairs. The distinctiveness differs
relatively little with the various parameters, although there exist certainly systematic
variations. In the Discussion section, we confront such findings with the general
theoretical approaches mentioned earlier.

Figure 15. Some examples of chromatic transition structure. In each case, there is the chromatic transition

shown in the bipartite disk at top; below it is an analysis in terms of the RGB colour channels. The RGB

colour channels are the rows; the two columns represent the left and right regions of the transition. There

are three groups of examples; at left, there is a transition in one, at centre in two, and at right in all three of

the RGB colour channels. The first group illustrates the influence of the colour of the veil; the second group

illustrates the effect of the absence or presence of a veil, whereas the third group illustrated the effect of the

(relative) polarity of transitions in the individual RGB colour channels.
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Discussion

In a discussion of the empirical findings, it is of some interest to have a few prior expectations
in mind. We discuss these first, before entering into a discussion of the data proper.

One major notion is no doubt the fact that the luminances of the cardinal colours are
mutually quite different. From the data given in the Methods section, one gleans that the CIE
luminances of the RGB are in the ratio 69:197:53, implying the following ratios for the six
cardinal colours (see Appendix A):

Figure 16. Array plots of the observations. The response range has been mapped on the full grey scale,

where black represents zero and white represents the maximum response. Notice that the diagonal entries

(self–self comparisons) are trivially zero.

Y 100

G 74

C 94

B 20

M 46

R 26
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Thus, one has a range of a factor of five, implying luminance contrasts up to almost 70%.
One would certainly expect to see this reflected in the observations.

On the other hand, as we have shown in previous work, CIE luminance contrast is often of
little value in predictions of Gestalt properties of images (Koenderink et al., 2017a, 2017b).
Here, a maximum rule fares much better. The strength of a colour according to the maximum
rule is proportional to its maximum RGB coordinate, thus is the same for all cardinal
colours.

In the extreme case, this implies that blue (B¼ {0,0,1}) is of equal strength as yellow
(Y¼ {1,1,0}); in both cases, the maximum coordinate is one. Yet, yellow is 5 times as
luminous as blue! On the other hand, blue manages to counterbalance yellow, for taken
together they make white ({0,0,1}þ {1,1,0}¼ {1,1,1}).

In an equiluminant display of maximum brightness, one would set blue to its maximum
intensity but would have to attenuate yellow by a factor of five. (When trying this on an
electronic display, one should make sure to take the gamma into account.) Such a ‘‘yellow’’
actually looks dark brown. In a display where blue and yellow balance each other, in the
sense of the painter’s rules of composition, yellow and blue are both used in their full
strengths.

These issues evidently play a role in the present case.

Some A Priori Expectations

In Figure 19, bottom-left, we show expected contrast for some colour pairs on the hypothesis
that CIE luminance contrast rules, the empirical data are shown in the same figure at top-left.

Figure 17. Overview of the results for pairs of the analogous colours for the case of the soft-edge,

monochromatic stimuli. The bars show quartile values of the distinctiveness settings for all observers. Below

are schematic representations of the nature of the transition (YR, YG, MR, GC, CB, and BM) in bipartite

disks, and below that an analysis in terms of the individual RGB channels is given.
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This is an alternative way to visualise the data. Such a representation lets one
immediately notice the distinctiveness of transitions defined by two points on the colour
circle. Depicting this for all data would involve several figures. However, the single
example already suffices here. Even a cursory comparison with the observational data
(see Figure 19) reveals that the CIE luminance contrast is a bad predictor for transition
distinctiveness.

Apparently, the CIE luminance function does not fare well as an explicans of the data.
However, one notices that although CIE luminance does a bad job in quantitative prediction,
it gets at least some qualitative trends right. For instance, here, it picks out the YB transition
as particularly distinctive, which is indeed the case at first sight, although far less outspoken
in the empirical data. That luminance is not too important is already evident from the
observation that it fails miserably as a tool to render a divisionist chromatic painting in
grey tones, as demonstrated in Figure 1.

Does the maximum rule fare much better? Well, it is not that easy to use that for
predictions; the most reasonable prediction would probably be to predict that the
distinctiveness would not depend on the particular colour pair at all, although, perhaps,

Figure 18. Results for the complementary colour pairs for the case of the soft-edge, monochromatic

stimuli. The bars show quartile values of the distinctiveness settings for all observers. Below are schematic

representations of the nature of the transition (YB, GM, and CR) in bipartite disks, and below that an analysis

in terms of the individual RGB channels is given.
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on the number of transitions in the RGB colour channels. Now this is indeed a prediction
that fits the observational data much better (in a quantitative sense) than CIE luminance
contrast (Figure 19, top-right), but it is perhaps not fully satisfactory because it loses sight of
the (albeit minor) systematic variations that certainly exist.

To obtain a quantitative prediction, there evidently has to be a differentiation between R,
G, and B colour channels. Because of this, it is of some interest to consider the nature of an
RGB colour transition in some detail. (Appendix B gives additional information.)

For instance, consider the analogous colour pair yellow–green (YG). It can be understood
(see Figure 15, left) as a red–black (RK) transition with a green veil because
(YG¼GG[RK). Likewise, the colour pair magenta–blue (MB) can be understood as a
red–black (RK) contrast with a blue veil, for (MB¼BB[RK). Thus, YG and MB are
really the same transitions as seen in the red colour channel, but with different veils,
namely green in the case of YG transition, or blue in the case of the MB transition.

What does this imply for the distinctiveness? Well, it might depend both upon the nature
of the transition and on the influence of the veil. Similar reasoning applies to the other cases.
The possibilities are limited through the fact that we did not admit white and black as colours
of the left or right patches. However, there still remain many possibilities, so one is faced with
something like a combinatorial explosion. Appendix B gives details. These are indeed
necessary to parse the structure in the full data set provided in Appendix C.

Figure 19. At top-left, an attempt at an overview of some data for the case of monochromatic, soft-edge

stimuli (results for the other cases are quite similar). The hexagon represents the colour circle from the

perspective of a fiducial cardinal colour, here yellow. The connections to each of the other cardinal colours

are drawn in a thickness proportional to the distinctiveness of the corresponding bipartition. To present all

data for a case, one needs to draw five more of this type of plots, but the case of a yellow fiducial is quite

instructive by itself. The three other hexagons show various model predictions: raw RGB cube distance

(top-right), CIE luminance (bottom-left), and CIEDE2000 distance (bottom-right). (Notice that the average

thickness has been normalised to the same value in all cases.)
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We do not discuss the various systematic effects in full detail, but we notice that there exist
effects of the nature of the colour channel transitions (that is, RK, GK, or BK as the case
may be), the number of simultaneous transitions in different colour channels and their
relative transition polarity (such as YB¼RK[GK[KB vs. RC¼RK[KG[KB, which
differ in the polarity of the transition in the green colour channel when compared with that in
the red and blue colour channels).

A model that would treat all RGB colour channel transitions and veils as potentially
distinct would involve at least a dozen free parameters. We consider it far too detailed
given the apparently minor influence of the various parameters relative to the overall
effect, which is simply that the transition distinctiveness varies only little, thus may in the
coarsest approximation be considered independent of the type of chromatic transition.
However, it makes sense to attempt a much simplified description, taking only the number
of transitions in the individual RGB colour channels and the presence or absence of veils into
account. A fit to all data yields

D ¼ 0:406þ 0:025Nt � 0:083Nv,

where D is the distinctiveness, Nt the number of transitions in the individual RGB colour
channels, and Nv the number of veils. The median error is 0.017, the maximum error 0.077. In
view of the fact that the median of the interquartile ranges of the data for specific transitions
is 0.055, the maximum 0.090, the simple description essentially explains the data quite well.
Yet, it is only a phenomenological fit, and it does not take the type of the transitions or the
colour of the veil into account, factors that on inspection certainly have an influence.

As taking all parameters into account seems indeed akin to overkill, we decided to
confront the data with just the following three mutually categorically different models:

� Luminance contrast is an obvious candidate for the prediction of edge contrast (Boynton
& Kaiser, 1968; CIE, 1932; Smith & Guild, 1931–1932) and thus possibly chromatic
transition distinctiveness. It would probably come out as the winner when vision
scientists had to bet. As noted earlier, expectations cannot be high. However, any
contending model should certainly be compared with this obvious candidate.

� CIEDE2000 colour difference might well be the first bet of colour scientists (Alman, 1993;
CIE, 2004; Luo et al., 2001; Moroney et al., 2002; Sharma, Wu, & Dalal, 2005). The
CIEDE2000 distance is nonnegative and symmetric, but violates the triangle inequality,
thus is not a ‘‘distance’’ in the formal sense. For instance, the CIEDE2000 distance for the
detour green–cyan–magenta is less than the CIEDE2000 distance for the direct route
green–magenta. About 3.2% of the random triangles of RGB colours violate the
inequality of the triangle. As one shifts focus from tonal to chromatic palettes, this
model should certainly be considered though.

� as a poor man’s alternative (Koenderink, 2010; Koenderink et al., 2017a, 2017b; Küppers,
1976), we propose Euclidean distance (Deza & Deza, 2009) in the RGB colour cube, where
the RGB are raw coordinates in a gamma 2.2 linearised display. (For the set of cardinal
colours that implies that the mutual distances are either 0, 1,

ffiffiffi

2
p
� 1:4, or

ffiffiffi

3
p
� 1:7.) That

would be the obvious choice of the graphics programmer coding for generic displays,
thinking colour specifications in terms of 3-bytes (or, combined, a 24-bit unsigned
integer specified as hexadecimal). Modern artists and designers using computer graphics
instead of chemical paints would most likely hold similar notions. After all, displays have
evolved to fit human perception in circumstances of generic use.
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Neither of these models does take the transition structure explicitly into account, although
it is very well possible that they will implicitly depend upon transition type, number of colour
channel transitions, veil, or relative transition polarity. For instance, in the case of the RGB
cube model, the distance indeed increases monotonically with the number of colour channel
transitions. Not surprisingly, the predictions of the three proposals are mutually very
significantly correlated; see Table 2.

Thus, a comparison boils down to a detailed quantitative confrontation with the actual
observations. Such a correlation is shown in a later section (Figure 23).

Comparison of Results With Expectations

In Figure 20, we plot the predictions of the three models as array plots, allowing immediate
comparison with the observations as presented in Figure 16. A cursory view reveals that the
CIE luminance contrast and the CIEDE2000 colour distance predictions fail to capture the
overall structure of the data, whereas the RGB cube model appears to do a more creditable
job. A more detailed comparison is discussed in the next section.

In Figure 21, we present the predictions for the analogous colour pairs, the incongruent
colour pairs and for the complementary colour pairs for all three models, together with the
data. This figure shows the case of the hard-edge, monochromatic gamut. A single case is
indeed sufficient because the results are so clear. (The other cases yield very similar
distributions.)

Figure 20. The array plots for the three models. Again, these have been normalised to use the full grey

scale, from black (representing zero) to white (representing the maximum value). Compare Figure 16,

representing the data. Notice again that the diagonal entries are trivially black and merely serve as a

convenient landmark in comparing the patterns.

Table 2. Pairwise Correlations of the Three Proposed Distance Measures.

Kendall’s tau Pearson’s r

CIE luminance contrast–CIEDE2000 colour distance .49 .73

CIE luminance contrast–RGB cube distance .40 .59

CIEDE2000 colour distance–RGB cube distance .67 .78

24 i-Perception 9(4)



Although none of the models predicts the observations in full detail, it is clear that the
prediction from CIE luminance contrast is worst, that from the CIEDE2000 colour distance
metric perhaps somewhat better, whereas the RGB cube distances predictions—although by
no means perfect—at least manage to capture most of the structure of the data. More
especially, the latter seem to do some justice to the qualitative structure of the observations.

This is especially evident from a study of the array plots (Figures 16 and 20).
The first, second, and third secondary diagonals in the array plots correspond to one, two,

and three index-step differences along the colour circle on the (natural) 6-point scale, Y¼ 0,
G¼ 1, C¼ 2, B¼ 3, M¼ 4, R¼ 5 (Bouma, 1946; Koenderink, 2010; Ostwald, 1917). They
also equal the number of simultaneous transitions in the RGB colour channels and the
distances 0, 1,

ffiffiffi

2
p

, and
ffiffiffi

3
p

in the RGB cube. (Remember the doubly periodic structure of
these matrices in checking these claims!)

Notice that the matrices for the cases of CIE luminance contrast or CIEDE2000 colour
distance (Figure 20, left and centre) are quite differently structured from that of the RGB
cube model (Figure 20, right). Both have a pronounced block structure and horizontal and
vertical bands, mainly due to the special nature of blue. The structures of the response data
matrices (Figure 16) are, of course, a bit noisy, but apparently fit the predictions of the

Figure 21. The median data for the hard-edge, monochromatic gamut case (black bars) compared with the

predictions of the RGB cube colour distances (red bars), CIE luminance contrast (cyan bars), and CIE colour

distance (yellow bars). We show the results for the analogous pairs in the top box, the results for the

transitions with two transitions in the individual RGB channels in the centre box, and the results for the

complementary pairs in the bottom box. To make a fair comparison possible, we normalised with respect to

the median over each of the families analogous, incongruous, and complementary colour pairs.
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simple RGB cube model more easily than either the CIE luminance contrast or the
CIE colour distances. This is borne out by a correlation study shown in the following
(Figure 23).

The case of a single transition in the RGB colour channels (the analogous colour pairs;
Figure 21, top box) is perhaps of most analytic relevance. Both CIE luminance contrast and
CIEDE2000 colour distance predict high distinguishability for the green–cyan and magenta–
red transitions and extremely low distinguishability for the red–yellow and yellow–green
transitions. In contradistinction, the RGB cube distances prediction has all transitions
ex equo, as indeed (in view of the empirical spread) the data.

Figure 22. The hard-edge, polychromatic transition at top has zero distinctiveness in the prediction of all

three models. Yet, we find it easy enough to see the distinction between the left- and right-hand areas,

although the edge appears rather soft. In the example at bottom (likewise a polychromatic transition of zero

distinctiveness in the prediction of all three models), one sees a sharp transition. Apparently, ‘‘zero

distinctiveness’’ transitions come in different varieties and are a worthy target for detailed investigation.
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This major qualitative difference is reminiscent of the results we found earlier for
chromatically defined Gestalt configurations (Koenderink et al., 2017a), the maximum rule
had a much stronger predictive power than CIE luminance. Phenomenologically blue is
related to black and yellow to white, a notion originally due to Goethe (von Goethe,
1810). This is indeed reflected in the CIE luminance (although Goethe and the CIE make
strange bedfellows), for yellow has 83% of the luminance of white, but blue only 17% (in the
case of our display unit, the conventional rule of thumb gives 90% and 10%). Yet, when
added, blue cancels out the yellow, for the YB mixture is white, thus hueless. Thus, the blue
has a colour-weight that far outweighs its luminance but is compatible with its equal
brightness to yellow according to the maximum rule.

The case of the incongruent colour pairs yields similar conclusions (Figure 21, centre box).
Both the CIE luminance and the CIEDE2000 distances get some prediction fully wrong. The
predictions for the green–red and green–blue transitions are far too low. Only the RGB cube
model does predict the data reasonably well.

The case of the complementary colour pairs is also of much interest (see Figure 21, bottom
box). Here, only the CIE luminance contrast prediction does a bad job in case of the cyan–red
transition; on the whole, all the other models do a creditable job of accounting for the data.

Obvious Incompleteness of the Models

All three models considered here share the limitation that they base their predictions on the
average colours of the patches at either side of the transition. Simply make the averages equal
and all three models will declare the transition to be invisible to the human observer.
Empirically, this is definitely not the case (te Pas & Koenderink, 2004).

Consider a case where one side will be a texture composed of fifty-fifty white or black
checks and the other side a flat grey patch of matching luminance. Will you spot the

Figure 23. Correlations of the predictions of the three models with the observer settings.
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transition? Obviously, big time! So this is a simple way to prove all three models wrong,
or—perhaps more reasonably—incomplete. It is trivial to construct examples in the chromatic
domain too; Figure 22 presents such examples.

It would be most interesting (te Pas & Koenderink, 2004) to have data from actual
pointillist or divisionist paintings. Do artists intentionally use such ‘‘zero distinctiveness’’
transitions? Unfortunately, such data are not forthcoming. The reproductions found on
the Internet are insufficiently controlled so as to be able to trust (necessarily) smallish
samples. One would have to visit museums (and—in this case—numerous private
collectors) with radiometric equipment to collect such data.

A more complete (we do not believe in ideals) model should take the dither statistics
(for want of a better term) into account. Any model based on colorimetric considerations
of patch averages (essentially ‘‘flat colours’’) is necessarily flawed, or at least incomplete.

Influence of the Stimulus Categories

What about the influence of the type of transition (hard or sharp edge) or the nature of the
colour gamuts (monochromatic vs. polychromatic)? Not much is known about this in the
cases of chromatically textured patches (Hansen et al., 2008; te Pas & Koenderink, 2004). It is

Figure 24. Some mutually very different, but equally valid grey-level interpretations of the Signac painting

(Figure 1).
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evident that the transitions of polychromatic regions are less distinct and give rise to more
uncertainty, than the corresponding monochromatic cases (Figure 10).

Perhaps surprisingly, empirically it makes very little difference whether the edges are hard
or soft. That the difference in the structure of the transition (the artist’s ‘‘edge quality’’;
Koenderink et al., 2016) is only minor might be taken as an indication that the
comparison of regions is certainly not less important than the nature of the transition
between them. Apparently, observers take account of the nature of regions rather than
relying on the nature of the transitions. This implies that pointillist painting implies
painting by macchie, unless the transitions are given special treatment, such as something
chromatically akin to the Craik–O’Brien–Cornsweet illusion (Cornsweet, 1970). Examples of
that are easy to find. The topic of pointillist chromatic macchie and their transitions still has
many aspects that would yield interesting study material.

Of course, ‘‘edge quality’’ has various other uses than merely distinguishing regions; for
instance, they are a primary mean in suggesting pictorial depth and relief.

Conclusions

So what to conclude? We have collected some relevant data pertaining to pointillist–
divisionist edges, but is there any insight to be gained from the perspective of the sciences?
To be perfectly honest, our answer would have to be ‘‘little.’’ But anyway, this study provides
some novel data and a balanced confrontation of the observations with generic expectations.
The quantitative verdict from basic statistics is plotted in Figure 23. The rank correlation
(Kendall’s tau) and the linear product moment correlation (Pearson’s r) coefficients evidently
reflect each other. Apparently, the qualitative and quantitative perspectives on the data are
not that different. One reading is that all models capture at least some of the message encoded
in the data. Thus, the interest is in the details.

The main message is that CIE luminance contrast is not a great predictor of the
distinctiveness of chromatic pointillist transitions. That is hardly a surprise because the
painters were intentionally moving away from tonal contrasts. Apparently, they succeeded
in that. However, the fact that they did and especially the way they achieved their aim
remains perhaps still somewhat surprising from the perspective of generic vision science.

Figure 25. Paul Signac (1890), The Beacons at Saint-Briac, Opus 210, 65� 81 cm, oil on canvas (public

domain). At left, a hard on top and a soft edge below; both cutouts from the image at right. Notice the

treatment of the hard edge; here, Signac modulated the edge in Craik–O’Brien–Cornsweet style.
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Luminance contrast evidently does not figure. This is something we already encountered in
an earlier study (Koenderink et al., 2017a).

Although the CIEDE2000 metric does evidently better than the predictions from
luminance contrast, its performance falls perhaps short of expectations. In view of the
rather extreme complexity of this metric (just compare it with the simple expression fitted
earlier, the CIEDE2000 metric takes half a page!), should one not expect a much better fit to
the data? Indeed, you may very well think so, but—as serious scientists—we are hardly in a
position to comment.

Perhaps surprisingly, the ‘‘poor man’s model,’’ Euclidean distance in the RGB cube as
implemented on generic displays, uncorrected for its gamma of 2.2 apparently does fine. How
can that be? Should not one correct for the nonlinear gamma transfer, convert to colorimetric
coordinates (say CIE XYZ 1962), map to (a very nonlinear transformation) L?a?b?-space,
and use the Euclidean metric in that domain (the CIE1976 metric) perhaps subject to
additional corrections and adjustments? Of course, one should! At least officially (CIE,
1932, 2004; Foley et al., 1990; Moroney et al., 2002; Poynton, 1993; Sharma et al., 2005;
Smith & Guild, 1931–1932).

Here is our perspective on why the RGB cube model works so well, whereas it is obviously
nonsensical, perhaps even in doubtful taste, from the perspective of the colour scientist:
Manufacturers of display units are primarily interested in showing profit to their
shareholders rather than the pursuit of science. They maximise their profits if their display
units sell better than those of their immediate competitors. Their units will sell better (prices
being similar) when they look better. Users expect the widest gamut, but even more
importantly, they want red to look like red, green look like green, blue look like blue, red
plus green look like yellow, green plus blue look as turquoise, blue plus red look as purple,
and finally—but most importantly—red plus green plus blue look as white.

In the final analysis, they want their pictures to look good without much ado. Thus, they
complain that the raw images from their electronic cameras (which are perfectly nice, linear
spectroradiometric records) look so bland, much worse than the JPEGs (Foley et al., 1990)
that are officially so much inferior to ‘‘raw.’’ That is to say, they (intuitively) want gamma
two, or some kind of nonlinearity in that ballpark. Serious photography addicts spend lots of
time and effort to convert their raw files to something close to what the camera’s JPEG’s
renderer would give them by default. What they are doing by trial and error is finding a
nonlinear transformation from the camera’s so called correct, perfectly linear (currently
about 3� 14 bit) spectroradiometric data to some good looking (but only 3� 8 bit) target.
That is exactly what camera and display manufacturers are trying to offer the bulk (not
willing to spend either time, or effort) of their customers by default. Recently, a trend in
photography moves away from ‘‘raw developing’’ to ‘‘Straight-Out-Of-the-Camera’’ JPEGs.
It only makes sense (Laing, 2017).

The upshot is that there is a strong evolutionary force for the generic RGB display to
become intuitive, that is approximately uniform to the generic user. Little wonder then, that
distances in such a ‘‘visually nice’’ (but physically very nonlinear) display space make very
good visual sense; otherwise, the display units would simply fail to sell. It actually happens
through engineering design being primarily driven by generic user demands rather than
formal theory. What is perhaps surprising to the colour scientist is that distances realised
this way manage to outperform the ‘‘official’’ measures.

The rank order of the RGB cube distances predictions comes perhaps surprisingly close to
explaining our observations. It does fine in all cases, hard or soft edge, monochromatic or
polychromatic. Yet, this model, if it deserves to be called a model at all, has essentially
no background in colour science, except perhaps Goethe’s (von Goethe, 1810) and his
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self-assigned pupil Schopenhauer’s (Schopenhauer, 1816) ideas (Küppers colour cube model
has a similar flavour; Küppers, 1976).

The major difference with either physiological models, based on receptor action spectra, or
colorimetric models, based on empirical colour matching functions which are arbitrary linear
combinations of the receptor action spectra, is that the Goethe–Schopenhauer models take
‘‘natural daylight’’ into account as a causal factor. In contradistinction, both physiological
and colorimetric models regard the daylight spectrum as an essentially arbitrary, external
factor. The fact that daylight looks achromatic is very relevant and indeed understandably so
from an evolutionary perspective. The generic RGB system (towards which virtually all
displays naturally evolve) can immediately be computed from the colour matching
functions and the D65 spectrum, but not from the colour matching functions (nor the
receptor action spectra) alone (Koenderink, 2010). Thus, the RGB system stands apart as
the optimum representation for object colours under daylight illumination given the daylight
spectrum and the colour matching functions (or action spectra).

Primitive and scientifically unmotivated as it may be, the trivial RGB cube distances model
is very useful to the artist. It may explain that it is not overly hard to predict transition
distinctiveness on the guts, by applying very simple, intuitive (usually preconscious) rules. It
might be used in a variety of forms. For instance, substituting distance along the colour circle
for distance in the RGB cube serves almost equally well. (Because the distance in the RGB cube
varies monotonically with that along the colour circle for the set of cardinal colours, this is not
surprising. Indeed, a numerical exercise reveals that the colour circle distance rule also beats
CIEDE2000 colour distance predictions.) Distance along the colour circle may well capture the
gist of an artist’s precognitive notion of chromatic difference. Thus, a useful expectation of
impact of chromatic transitions may not be that hard to acquire.

Consequently, these results lead to a number of very useful rules of thumb that have little
or none relation to ‘‘official’’ colorimetry. For instance, purely chromatic contrasts lead to
excellent visual partition of regions. They lead to clear distinctions whereas simultaneously
leaving open various pictorial options. This gives the chromatic artist a head start over the
tonal one. This alone (there exist a number of additional factors) already explains the reason
for the widespread adoption of chromatic over tonal painting during the second half of the
19th century.

That luminance has only a minor influence on the present results has important
consequences for various applications. Chromatic distinctions apparently depend primarily
upon the separation of the participating hues along the locus of cardinal colours, a nonplanar
hexagon lacking a begin or end point and thus implements the colour circle. Because the
colour circle has the topology of S

1, whereas tonal values have the topology of the linear
segment II1, it is formally evident that there can exist no smooth, global map from chromatic
contrasts to luminance contrasts.

This implies that monochrome renderings of chromatically conceived paintings are
necessarily compromises that may perhaps work in cases the chromatic structure of at
least the major compositorial elements is limited—as it often is. In the latter case, an
appropriate mapping from hues to tonal values may turn out to yield an acceptable
monochrome rendering (examples shown in Figure 24). In many common cases, it is not
hard to conceive of schemes that would yield a reasonable first shot at a monochrome
rendering. For instance, consider the common analogous colours with complementary
accent colour scheme (Quiller, 1989). This implies that the colours lie on a diameter of the
colour wheel; thus, a map on a linear scale is immediate. The only choice is whether one
would like to render the accents as light or dark. On the other hand, a rigid transformation
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based on luminance will work only as a random coincidence; there is absolutely no guarantee
for success.

Of course, this is already well known to photographers. Programs such as Adobe’s
Photoshop (perhaps best known, though overkill for most users, explaining the plethora of
simpler equivalents on the market) offer a variety of methods to transform a colour image to
a monochrome one. Rarely will the experienced photographer be satisfied with any one of
these though. More typically, an interpretation specific to the case will be sought. This is done
via the ‘‘Channel Mixer Adjustment,’’ which has no formal structure, but is fully freestyle.
Usually various distinct renderings might be considered suitable and some choice has to be
made, based on aesthetic—not photometric—considerations.

Because black–white transitions are obviously powerful, there is more to distinctiveness
than distance along the colour circle alone. The RGB cube distance model takes that into
account, of course. So does the CIEDE2000 colour metric. (The luminance contrast model
fails because it predicts equiluminant transitions to be invisible.) We have not really
compared achromatic and chromatic transitions directly in this study. Moreover, we did
not study various types of edge modulation, purely chromatic, or involving a luminance
component (Figure 25). These are likely to be rewarding topics for further research.

Another loose end is the so called zero chromatic difference transitions. Such transitions will
be visible through differences in spatial texture and statistics of chromatic dither. So their study
borders on what vision research terms texture discrimination and ensemble discrimination,
although they smoothly merge the type of problems considered here in a colour
discrimination context. This is also a topic that is relatively unknown and invites closer study.

Apart from throwing some light on the technical side of Pointillism and Divisionism, the
present work is of some interest to vision science proper. We show that in the case of
‘‘distemper,’’ that is of variegated and textured patterns, instead of flat colour, the artistic
term for uniform, constant colour, the edges are of lesser importance than the regions
separated by the edge.

Polychromatic colour is seen by area rather than by edge. Apparently, the impression of
distinctiveness is mainly based on larger patches at either side of the transition (but see
Hansen & Gegenfurtner, 2005). Moreover, perhaps surprisingly, such variegated colour
can be treated colorimetrically in much the same way as flat colours, although they look
far more appealing to the artistic eye.
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Notes

1. ‘‘Pointillism’’ refers to the spatial resolution of otherwise uniform areas into dots, whereas
‘‘Divisionism’’ refers to the use of a limited palette of discrete colours, without gradients obtained

by mixture.
2. Here, we use ‘‘art’’ in the contemporary sense. Then, it is useful to distinguish (very roughly) between

‘‘illustration,’’ ‘‘design,’’ and ‘‘art.’’ These are all important, but mutually crucially different.
Illustration and design can also be art, but need not be. Art often uses illustration or design, but

need not, although it is very hard to skip design (in the guise of ‘‘composition’’). In many cases, the
same person might be illustrator, designer, or artist, depending on the current chore. This does in no
way blur the distinctions though, the person would know. In this setting, ‘‘in the arts, only

phenomenology counts’’ might be considered definitional.
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Appendix A. The RGB Representation

In this article, we use the RGB representation throughout. More extensive discussion can be
found in Koenderink (2010) and Koenderink et al. (2017a, 2017b). Reasons are the
immediate relation to basic colorimetry, combined with the close relation to
phenomenology. Some relevant technical points are summarised here.
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One disadvantage of basic colorimetry, say the CIE XYZ basis, is the arbitrariness in the
choice of primaries and as a consequence the awkward match to phenomenology.
Arbitrariness can simply be removed by moving to an invariant basis. This becomes
possible after assuming a standard illuminant; we use CIE D65. It is a very common case,
for instance, display devices are naturally limited by a maximum luminance achromatic
colour (the display white).

In basic colorimetry, the only invariants are ratios of volumes; thus, one may define a
unique basis by defining the primaries as the colours fC1, C2, C3g (say) such that
C1 þ C2 þ C3 ¼ W (the colour of the illuminant), and C1 ^ C2 ^ C3 (the volume of the crate
spanned by the primaries) is maximal. The solution is a spectral tripartition, with cut loci at
482.7 nm and 565.4 nm, defining a short wavelength part B, a medium wavelength part G, and
a long wavelength part R. Any colour for a spectrum dominated by that of the illuminant is
contained in the Schrödinger colour solid, whereas the crate R^ G ^ B is the parallelepiped
of largest volume inscribed in the colour solid. Writing P ¼ rRþ gG þ bB defines the RGB
colour coordinates for colour P. By construction, these coordinates are {1, 1, 1} for
the colour of the illuminant W. One says that the {r, g, b} with 0 � r, g, b � 1 span the
‘‘RGB cube.’’

This construction yields the optimum tricolour display, and indeed, all modern display
units have closely converged to that. For many purposes (like this study), the actual display
coordinates are close enough to the ideal RGB cube that the difference does not matter. (If so
desired and the display unit has been spectrophotometrically calibrated [as here], one may
transform to any desirable system because the RGB system is just a unique invariant
representation of basic colorimetry.)

Any colour with RGB coordinates {r, g, b} can be written as kKþ wW þ cF , where
K ¼ f0, 0, 0g, and F has one coordinate equal to 0, one coordinate equal to 1, and a
third coordinate 0 � a � 1. Thus, any colour in the RGB cube is a linear interpolant
between a primary cardinal colour (R¼ {1, 0, 0}, G¼ {0, 1, 0}, or B¼ {0, 0, 1}) and a
secondary cardinal colour (C¼ {0, 1, 1}, M¼ {1, 0, 1}, or Y¼ {1, 1, 0}), mixed with white
and black.

Here, the interpolations are between YG, GC, CB, BM, MR, or RY, implying a natural
cyclical order YGCBMR. The connection with phenomenology is immediate: To most
normal trichromatic observers, the sequence YGCBMR looks like yellow–green–cyan–
blue–magenta–red, whereas KW looks like black and white. Here, one assumes a simple
setting (say uniformly coloured disk on a grey background). That is why display units
work in the expected way.

In the text, we use a ‘‘hue index’’ such that YGCBMR maps on the range [0. . .6), where 6
may be interpreted as 0 because of the periodicity. We use kKþ wW þ cF to define the
‘‘black content k,’’ the ‘‘white content w,’’ and the ‘‘colour content c,’’ the usual Ostwald-
style parameters. Here, the connection with phenomenology is that observers readily estimate
the black, white, and colour content in simple settings (say a uniformly coloured disk on a
grey background).

Appendix B. The Structure of Chromatic Transitions

The basic notions have already been introduced in the main text, especially Figure 15.
A chromatic transition can be about any pair of cardinal colours, as we do not include
either white or black in the possible patch colours. The analysis involves an analysis in
terms of the transition in each of the RGB colour channels individually.
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Notice that we consider the transitions PQ and QP (where P or Q stands for ‘‘any colour’’)
to be the same transition.

For each of these channels, there are three distinct cases to consider:

� Both sides are black. In that case, we simply ignore this colour channel;
� Both sides are identical, but not black. In that case, there is no transition in that channel,

but there is something that might possibly influence the distinctness of the transition. We
refer to this as a veil;

� One side is black, and the other side is a primary colour. This is a transition in that colour
channel. It has a certain polarity, specified by the presence of the colour in either the left-
or the right-side patch. This is relevant only if there are transitions in all three colour
channels, due to the fact that neither white nor black patches are allowed. We note which
colour channel has a different polarity from the other two. It is this relative polarity that
might be an effective factor.

The transition will be characterised by having one, two, or three transitions in the colour
channels.

If there is one transition in some colour channel, there will be one other colour channel
that contributes a veil (this follows from the constraint that patches are not allowed to be
black or white). Thus, there are six distinct chromatic transitions of this type (Figure B1, left):

� Transitions in the red channel allow YG (veil in the green colour channel) and MB (veil
in the blue colour channel);

� Transitions in the green channel allow CB (veil in the blue colour channel) and YR (veil in
the red colour channel); and

Figure B1. At left, the cases of a transition in a single RGB colour channel with veil in either one of the two

remaining RGB colour channels. At right, the case of simultaneous edges in two RGB colour channels, with or

without a veil in the third one.
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� Transitions in the blue channel allow MR (veil in the red colour channel) and CG (veil
in the green colour channel).

Notice that these involve necessarily analogous colour pairs. Analog colour pairs are very
frequently used in the arts, a very common choice being RY. The colours will be almost
always used in strongly greyed down form, using the pure colours only sparingly (Quiller,
1989).

If there are transitions in two of the colour channels, there will be one other colour channel
that might, or might not, contribute a veil (again, this follows from the constraint that
patches are not allowed to be black or white). The transitions in the two colour channels
are necessarily always of opposite polarity. Thus, there are again six distinct chromatic
transitions of this type (Figure B1, right):

� Transitions in the red and green colour channels allow MC (veil in the blue colour
channel) and RG (no veil);

� Transitions in the green and blue colour channels allow YM (veil in the red colour
channel) and GB (no veil); and

� Transitions in the blue and red colour channels allow CY (veil in the green colour channel)
and BR (no veil).

Such transitions involve neither analogous nor complementary colour pairs. They involve
either a pair of primary or a pair of secondary colours. These are combinations that are
generally frowned upon in classical colour theory because these are considered not
harmonious. You see them used in modern painting, especially RG, but they are not easy
to handle and not generally appreciated. We refer to this family as ‘‘incongruent colour
pairs’’ in the main text.

Finally, we consider the case that there are transitions in all three colour channels. The
transitions involve necessarily a polarity contrast (once again, this follows from the
constraint that patches are not allowed to be black or white). There are three mutually
distinct cases (see Figure B2):

� a cyan–red transition CR¼KR[GK[BK,
� a magenta–green transition MG¼RK[KG[BK, and
� a yellow–blue transition YB¼RK[GK[KB.

Figure B2. The case of simultaneous edges in all three RGB colour channels, in which case there will be no

overlay. Here, the difference is in the polarity of the edges.
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(Here, the cup-operator [ stands for the superposition of colour channels at both sides of
the transition.) These transitions necessarily involve complementary colour pairs, often
considered so called contrast colours. Such pairs work harmonious, but one has to be the
dominant colour, the other used as accent. All combinations find use in the arts; the YB
transition perhaps the most because it is read as ‘‘warm–cool’’ and is an effective tool in the
creation of pictorial depth. One often sees landscape sketches in orange–turquoise blue, which
even better aligns with the warm–cool direction (Albertazzi, Koenderink, & van Doorn, 2015).
The transition MG (‘‘sweet–sour’’; Albertazzi et al., 2015) is orthogonal to this. It can be used
effectively (Quiller, 1989) but more often occurs in more involved colour schemes.

Appendix C. An Overview of All Data Ordered by Transition Type

In Figures C1 through C4, we present bar plots that represent all data in terms of quartiles.
The various transitions have been grouped together on the basis of the number of transitions
in the RGB colour channels. Thus, there are three such groups for each of the
conditions—soft monochromatic, hard monochromatic, soft polychromatic, and hard
polychromatic.

At left, one has the group of six analogous colour pairs; at right, the group of three
complementary colour pairs at the right; and at the centre, the group of incongruent
colour pairs.

In the group of analogous colour pairs, the major effect is due to which RGB colour
channel has the transition, but the influence of the veil, although minor, is certainly
significant in many cases. It appears that a blue veil has the least effect on distinctiveness,
and a green veil has the most effect on distinctiveness.

In the group of six transitions involving incongruent pairs, one may have or not have a
veil. This enables one to judge the influence of the presence of the veil (either there is a veil or
there is none). The presence of the veil tends to decrease the distinctiveness of the transition,
which is precisely what one would a priori expect.

Figure C1. Normalised data for the hard monochromatic condition as quartiles over observers as bar plots

for the various colour pairs. The transition structures are illustrated in Figures B1 and B2. The bars show

quartile values of the distinctiveness settings for all observers.
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Figure C2. Normalised data for the hard polychromatic condition as quartiles over observers as bar plots for

the various colour pairs. The transition structures are illustrated in Figures B1 and B2. The bars show quartile

values of the distinctiveness settings for all observers.

Figure C3. Normalised data for the soft monochromatic condition as quartiles over observers as bar plots

for the various colour pairs. The transition structures are illustrated in Figures B1 and B2. The bars show

quartile values of the distinctiveness settings for all observers.
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In the group of three transitions with transitions in all colour channels, one sees that the
yellow–blue (warm–cool) transition causes the most distinctive transitions, and the green–
magenta (sour–sweet) causes the least distinctive transitions. The differences between these
cases are (though generally significant) rather minor.

Figure C4. Normalised data for the soft polychromatic condition as quartiles over observers as bar plots for

the various colour pairs. The transition structures are illustrated in Figures B1 and B2. The bars show quartile

values of the distinctiveness settings for all observers.
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