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Abstract

Basic bovine behavior is a crucial parameter influencing cattle domestication. In addition,

behavior has an impact on cattle productivity, welfare and adaptation. The aim of the pres-

ent study was to infer quantitative genetic and genomic mechanisms contributing to natural

dual-purpose cow behavior in grazing systems. In this regard, we genotyped five dual-pur-

pose breeds for a dense SNP marker panel from four different European countries. All cows

from the across-country study were equipped with the same electronic recording devices. In

this regard, we analyzed 97,049 longitudinal sensor behavior observations from 319 local

dual-purpose cows for rumination, feeding, basic activity, high active, not active and ear

temperature. According to the specific sensor behaviors and following a welfare protocol,

we computed two different welfare indices. For genomic breed characterizations and multi-

breed genome-wide association studies, sensor traits and test-day production records were

merged with 35,826 SNP markers per cow. For the estimation of variance components, we

used the pedigree relationship matrix and a combined similarity matrix that simultaneously

included both pedigree and genotypes. Heritabilities for feeding, high active and not active

were in a moderate range from 0.16 to 0.20. Estimates were very similar from both relation-

ship matrix-modeling approaches and had quite small standard errors. Heritabilities for the

remaining sensor traits (feeding, basic activity, ear temperature) and welfare indices were

lower than 0.09. Five significant SNPs on chromosomes 11, 17, 27 and 29 were associated

with rumination, and two different SNPs significantly influenced the sensor traits “not active”

(chromosome 13) and “feeding” (chromosome 23). Gene annotation analyses inferred 22

potential candidate genes with a false discovery rate lower than 20%, mostly associated

with rumination (13 genes) and feeding (8 genes). Mendelian randomization based on geno-

mic variants (i.e., the instrumental variables) was used to infer causal inference between an

exposure and an outcome. Significant regression coefficients among behavior traits indicate

that all specific behavioral mechanisms contribute to similar physiological processes. The

regression coefficients of rumination and feeding on milk yield were 0.10 kg/% and 0.12 kg/
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%, respectively, indicating their positive influence on dual-purpose cow productivity. Geno-

mically, an improved welfare behavior of grazing cattle, i.e., a higher score for welfare indi-

ces, was significantly associated with increased fat and protein percentages.

Introduction

The current fundamental interest in dairy cattle research addresses a deeper understanding of

the role of genetics in phenotypic expressions of behavior traits. Behavior is an essential part of

biological regulations and influences the production and welfare of farm animals. However,

the underlying genetic mechanisms explaining the relationships between cattle behavior and

productivity are unclear. Currently, consumer demands strongly influence animal husbandry

and management decisions, e.g., a wish towards the utilization of natural and cow friendly pro-

duction systems. Furthermore, there are increasing concerns, critically addressing the high

yielding Holstein Friesian breed and suggesting local dual-purpose cattle as a breed alternative.

Against this background, a better understanding of the genetic mechanisms of animal behavior

allows for the implementation of local dual-purpose cattle selection strategies for specific envi-

ronments, e.g., for specific grazing conditions. Hohenboken [1] listed behavior traits in cattle

under genetic control, such as feeding and reproductive behavior, social interactions and tem-

perament. In addition, especially in grazing systems, a proportion of variation in foraging

behavior is genetically inherited [2,3]. In addition to feeding, rumination time and rumination

intervals are defined as novel traits that influence milk yield and butterfat production [4]. Nev-

ertheless, subjectively scored cattle behavior traits are low to moderate heritability traits, with

heritabilities ranging from 0.01 to 0.44 [5,6]. Despite a few quantitative genetic studies based

on pedigree relationship matrices, there is a gap in knowledge addressing genomic mecha-

nisms of behavior trait expressions [4]. Dense longitudinal phenotypic data and dense single

nucleotide polymorphism (SNP) marker information are required to perform genome-wide

association studies (GWAS) and to unravel the genetic architectures of complex traits. Conse-

quently, only a limited number of potential candidate genes significantly associated with cattle

behavior traits were identified [7]. Alam et al. [8] detected polymorphisms of the bovine neu-

ropeptide Y5 receptor gene (NPY5R), which regulates appetite and feeding behavior in beef

cattle. Similar mechanisms for polymorphisms of the melanocortin 4 receptor gene (MC4R),

i.e., influences on feed intake capacity and feeding behavior, were reported in Korean Hanwoo

cattle [9]. Nevertheless, a strong environmental component influences behavior trait expres-

sions, suggesting a detailed recording of environmental effects for a broad pattern of behavior

characteristics [4].

In the process of animal husbandry system intensifications, domestication and artificial

selection via specific mating plans were major driving components contributing to extensive

linkage disequilibrium (LD) across the bovine genome [10,11]. Consequently, broad confi-

dence intervals for significant SNP were identified, implying difficulties in precisely mapping

potential candidate genes [10]. Raven et al. [10] hypothesized that lower levels of long-range

LD across bovine breeds, and thus, a multi-breed GWAS, could accurately pinpoint the loca-

tion of well-conserved functional mutations. When considering several breeds simultaneously,

LD over short distances (5–10 kb for Bos taurus) already reached r2 > 0.3 [12], while long-

range LD decreased. Hence, with higher probability compared to a single-breed GWAS, a sig-

nificant SNP from a multi-breed GWAS is located in close distance to a quantitative trait locus

(QTL), which has an effect on the same trait across breeds. Significant across-breed SNP effects
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are mainly due to LD with the QTL and are independent of pedigree relationship influences

[11,13]. This phenomenon is well exploited in refining QTL regions in dogs, but the methodol-

ogy only contributed to a limited number of identified potential candidate genes [14]. In detail,

in the dog study, identification of QTLs was based on a single dog breed with extensive LD. In

a second step, multiple dog breeds and dense SNP chips were used to precisely map causal var-

iants [10,14]. Hence, with regard to QTLs segregating in multiple breeds, a multi-breed

GWAS implies more precise mapping, while within-breed analyses contribute to improved

detection power for breed-specific QTLs. Hence, a multi-breed GWAS might increase the

probability of detecting older conserved mutations, but it is less efficient in identifying recently

diverged mutations [10]. With the aim of inferring the causes of general and well-conserved

genetic mechanisms in basic bovine behavior traits, a multi-breed GWAS seems to be a prom-

ising method.

The current study is based on SNP data from five dual-purpose cattle breeds located in Ger-

many (DE_DSN = black and white dual-purpose cattle), Poland (PL_BS = Brown Swiss,

PL_DSN = black and white dual-purpose cattle), Slovenia (Sl_BS = Brown Swiss,

Sl_Si = Simmental) and Switzerland (CH_OBV = dual-purpose Original Braunvieh,

CH_Si = Simmental). Genotyped cows were phenotyped based on 24 hours of continuously

recorded behavior data in grazing systems. The overall hypothesis is that electronically recorded

natural behavior of cows for feeding (FEED), ruminating (RUM), resting / non-active (NACT),

basic activity (BACT) and high activity (HACT) and digital ear surface temperature (ET) con-

tributes to the detection of significant SNP markers and associated potential candidate genes

across the bovine genome. Additionally, for population structure analyses, we considered geno-

types from the dual-purpose Red and White breed from Germany (DE_DN) and from German

Holstein (DE_HF) and Slovenian Holstein (Sl_HF) subpopulations. We assume that different

breeds with a similar breeding history share ancestral mutations and recombination events.

Accordingly, Gutiérrez-Gil et al. [15] identified selection signatures influencing metabolic

homeostasis and disease resistance across breeds with different production trait characteristics.

The present study is based on dense genomic marker data and longitudinal behavior traits

from different dual-purpose cows across European country borders. Such unique data can be

used i) to infer the population structure for European dual-purpose and dairy cattle breeds; ii)

to estimate genetic parameters for behavior traits based on pedigree and genomic information;

iii) to detect associated SNP and potential candidate genes significantly influencing cattle

behavior; and iv) to infer causal trait associations.

Results

Population structure and breed assignment

Principal component analyses. When plotting the first and the second principal compo-

nents (explaining 4.71% and 3.05% of the variation in genomic relationships, respectively),

two distinctly diverged clusters of genetic origin were detected (Fig 1A). The Holstein lines

and DSN showed obvious genetic differentiation from the other breeds (Sl_Si, Sl_BS, PL_BS,

CH_OBV, and CH_Si). Depicting the first and third (explaining 2.38% of variation) principal

components, three clusters were formed in a triangle-like 2-dimensional form (Fig 1B). Each

cluster was positioned at the three apexes of the triangle, with the admixed populations of

Sl_Si in an intermediate position. The first cluster includes DE_HF, DE_DSN, DE_DN, Sl_HF

and PL_DSN; the second cluster consists of PL_BS, Sl_BS and CH_OBV; and CH_Si and Sl_Si

(but in slight distance) are represented in cluster 3. The three clusters were also identified

when plotting the second and third principal components (Fig 1C). However, the second prin-

cipal component illustrates the diversity within the Holstein lines and DSN.
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Breed assignment. The breed assignment (Fig 2) identified ten cattle breeds with the larg-

est ancestry proportions from the world reference dataset in Web-Interfaced Next Generation

Database (WIDDE) [16] for the populations in this study. All populations from our study

shared at least 57.83% of alleles with European breeds, affirming their European origin. The

predominant genetic ancestry consisted of Holstein, Hereford, French Red Pied Lowland and

Fig 1. Plot of principal components 1 versus 2 (A), 1 versus 3 (B) and 2 versus 3 for the genomic relationship matrix based on 615 genotyped cows.

DE_DSN = black and white dual-purpose (Germany); DE_DN = red and white dual-purpose (Germany); DE_HF = Holstein Friesian (Germany);

PL_BS = Brown Swiss (Poland); PL_DSN = black and white dual-purpose (Poland); Sl_Si = Simmental (Slovenia); Sl_BS = Brown Swiss (Slovenia);

Sl_HF = Holstein Friesian (Slovenia); CH_OBV = dual-purpose Original Braunvieh (Switzerland); CH_Si = Simmental (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.g001

Fig 2. Ancestry composition of the genotyped cows considering the ten reference populations in WIDDE [16]. DE_DSN = black and white dual-purpose

(Germany); DE_DN = red and white dual-purpose (Germany); DE_HF = Holstein Friesian (Germany); PL_DSN = black and white dual-purpose (Poland);

Sl_Si = Simmental (Slovenia); CH_OBV = dual-purpose Original Braunvieh (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.g002
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French Brown Swiss breeds. However, aside from European ancestors, exotic ancestral propor-

tions from Sheko, Zebu Bororo, Gir or Arabic Zebu appeared.

Genetic parameters for sensor traits

Heritabilities and corresponding standard errors or sensor traits were on a low to moderate

level but very similar for the estimations based on either the pedigree relationship matrix (A)

or the combined relationship matrix (H) matrices (Table 1). Heritabilities for FEED, HACT

and NACT ranged from 0.16 to 0.20 due to moderate additive genetic and small residual vari-

ances. The low heritable traits RUM, BACT, ET, welfare index points (WEL-IP) and welfare

index classes (WEL-IC) had small additive genetic variances. Repeatabilities were moderate

(0.24–0.34) for sensor traits but ranged on a lower level from 0.10 to 0.13 for the two welfare

indices. Standard errors of repeatabilities from the multi-breed estimation were quite small

(0.01–0.02).

Multi-breed genome-wide association study

Overall, according to the 20% false discovery rate (FDR) threshold, seven SNP markers were

significantly associated with behavior traits (Table 2). One of these SNPs was also significant

considering the more stringent Bonferroni threshold. Significant SNPs were located on six dif-

ferent chromosomes and associated with the behavior traits NACT, RUM and FEED. The

most significant SNP influencing NACT is located on Bos taurus autosome 13 (BTA13, P-
value = 2.36E-08) (S1 Fig). Five SNPs on BTA11, 17, 27, and 29 were significantly associated

with RUM (S2 Fig), and another SNP on BTA23 was significantly associated with FEED (S3

Fig). A more significant SNP was detected for the dependent variable de-regressed proof

(DRP) in comparison to the means of repeated sensor traits (MEAN). Only for NACT, the

same SNP on BTA13 (Hapmap60738-rs29023086) significantly influenced both dependent

variables MEAN and DRP. The inflation factors for all GWAS runs ranged from 1.00 to 1.04

for DRP, and from 0.88 to 0.99 for MEAN, indicating restricted false positives from population

stratification.

The SNP coverage was examined by counting the number of SNPs in consecutive windows

of 1 Mb on each chromosome. The mean SNP coverage per Mb considering the 29 autosomes

was 14.2, ranging from zero to 27 SNP per Mb. At least one Mb window without a SNP was

identified on ten chromosomes (BTA6, 7, 10, 12, 14, 15, 18, 21, 24 and 26).

Table 1. Heritabilties (h2) and reliabilities (r) with standard errors (SE) for sensor behavior traits.

Pedigree Combined pedigree and genomic data

Trait h2 SE r SE h2 SE r SE

RUM 0.02 0.04 0.28 0.02 0.02 0.04 0.28 0.02

FEED 0.19 0.05 0.26 0.02 0.20 0.05 0.27 0.02

BACT 0.08 0.05 0.26 0.02 0.06 0.05 0.26 0.02

HACT 0.19 0.05 0.27 0.02 0.20 0.05 0.29 0.02

NACT 0.16 0.06 0.33 0.02 0.18 0.06 0.34 0.02

ET 0.07 0.04 0.24 0.02 0.07 0.04 0.25 0.02

WEL-IP 0.03 0.02 0.12 0.01 0.04 0.02 0.13 0.01

WEL-IC 0.03 0.02 0.10 0.01 0.04 0.02 0.10 0.01

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not active; ET = ear temperature; WEL-IP = welfare index point;

WEL-IC = welfare index class.

https://doi.org/10.1371/journal.pone.0221973.t001
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With regard to the GWAS for fat percentage (Fat%), two significant SNPs above the Bonfer-

roni corrected threshold on BTA14 (S4 Fig) were identified. This is the chromosomal segment

for the DGAT1 gene. Hence, the multi-breed GWAS identified the most prominent candidate

gene in dairy and dual-purpose cattle.

Potential candidate genes

Based on the P-values of all SNPs, i.e., GWAS output, 22 potential candidate genes were identi-

fied (S1 Table). All of the inferred potential candidate genes might play a role in the expression

of bovine behavior in dual-purpose cattle populations. The 13 potential candidate genes on

BAT21, 27, and 29 are associated with RUM. For RUM, one potential candidate gene (BTBD1)

is located on BAT21, and two are on at BAT27 (THAP1 and RNF170). The remaining ten

potential candidate genes are located on at BAT29. Both dependent variables for RUM (DRP

and MEAN) were associated with eight putative candidate genes (RPS6KB2, PTPRCAP,

CORO1B, GPR152, CABP4, TMEM134, AIP, and PITPNM1). With regard to the DRP for

RUM, we identified two potential candidate genes without clear biological functions on

BTA29 (the novel gene ENSBTAG00000000776 andMRGPRG). The SNP Hap-

map48998-BTA-104140 (P-value = 6.55E-06 on BAT19) suggested PPM1E as a potential can-

didate gene for BACT. With regard to the DRP of FEED, we identified seven potential

candidate genes on BAT11 (STXBP1, CFAP157, PTRH1, TOR2A, LCN8, LCN15 and

PPP1R26). The two neighboring SNPs ARS-BFGL-NGS-80066 and ARS-BFGL-NGS-111955

on BTA23 indicated one putative candidate gene (SLC25A27) for FEED.

Causal associations

The regression coefficients for the variety of trait associations are summarized in Table 3. The

values in bold indicate significance according to FDR< 0.05. Behavior related to feed intake,

i.e., RUM and FEED, had a significantly negative impact on behavior reflecting locomotion

(BACT and HACT) and vice versa. Associations were positive between traits from the same

behavior category, i.e., between FEED and RUM, and between HACT and BACT. For exam-

ple, for an increase of 1% in FEED, RUM increased by 0.12%. The regression coefficient of

HACT on BACT was 0.18%. Sleeping and resting (NACT) negatively influenced RUM, FEED,

and HACT. When NACT was the exposure and BACT was the outcome, the slope was 0.10%.

The impact of behavior traits on ET was generally weak and not significant. For example, a 1%

increase in HACT was associated with an increase of 0.11 degrees Celsius for ET. Apart from

HACT, behavior traits responded significantly to alterations of welfare indices because

Table 2. List of SNP markers significantly associated with sensor behavior traits (significance threshold: False discovery rate of 20%).

Trait Chr. SNP bp P-value Method Prop.

RUM 11 BTB-01638234 55229674 2.04E-05 DRP 2.73%

RUM 17 ARS-BFGL-NGS-104430 68187177 1.79E-05 DRP 3.38%

RUM 27 ARS-BFGL-NGS-13449 37283994 1.36E-05 DRP 3.03%

RUM 29 ARS-BFGL-NGS-24800 46014507 9.07E-06 DRP 2.91%

RUM 29 ARS-BFGL-NGS-81862 49036580 2.01E-05 DRP 3.43%

FEED 23 ARS-BFGL-NGS-80066 19834215 5.13E-06 DRP 4.41%

NACT 13 Hapmap60738-rs29023086 79178395 2.36E-08

1.08E-06

DRP

MEAN

5.51%

3.63%

RUM = rumination; FEED = feeding; NACT = not active; Chr. = chromosome number; bp = base pair; DRP = de-regressed proof; MEAN = mean of observations; Prop.

= proportion of phenotypic variance explained by SNP markers.

https://doi.org/10.1371/journal.pone.0221973.t002
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behavior traits are components of the indices. An increase in feeding behavior (RUM and

FEED) had favorable effects on milk yield (MY) but impaired udder health (increase of

somatic cell score; SCS). A regression coefficient of -0.14 kg/% was estimated for the response

of MY on NACT. Welfare indices were significantly associated with Fat% and protein percent-

age (Pro%).

Discussion

Population structure analyses

The identified breed clusters from the principal component analysis (PCA) reflect the geo-

graphical origin of the European cattle breeds. The optimization criterion for PCA is the maxi-

mization of variation in the genomic relationship matrix considering the first principal

components [17], which also contribute to geographic differentiation. The PCA clearly differ-

entiated between the Holstein lines and DSN with the Simmental and Brown Swiss breeds (Fig

1A), regardless of geographic distance. Hence, these breeds have different ancestors and do

not share the same founder alleles. Due to their pronounced genetic relationships, Sl_HF,

PL_DSN, DE_HF, DE_DSN, and DE_DN were allocated to the same cluster. The other two

distinct clusters represent Simmental and Brown Swiss breeds (Fig 1B and 1C). The origin of

genotypes certainly contributed to cluster formation. Furthermore, breed-specific breeding

goals or country and farm specificities influenced breed differentiations [18]. Interestingly,

only the second principal component presented genetic diversity within the cluster containing

Holstein lines and DSN. Because of different breeding goal definitions [19], commercial Hol-

stein lines (DE_HF and Sl_HF) were separated from black and white dual-purpose cattle

(DE_DSN and DE_DN) during selection. The PL_DSN, reflecting an intermediate breeding

goal “between” classical dual-purpose cattle and modern HF, is consequently grouped between

Holstein lines and DSN. Nevertheless, DSN is the dominant founder population for modern

HF [20], and similar breeding schemes and an identical herdbook were used before officially

separating the two breeds in 1997 [21]. Differentiations between the Holstein lines and DSN

underline the footprints of artificial selection in the last two decades [22]. Although DE_DN

and DE_DSN are dual-purpose breeds, they share ancestors with Holstein Friesian cattle more

than 50 years ago, explaining their rather close relationship. As a consequence, the PCA results

reflect these breed origins and separate endogamous breeding units for Holstein, DSN, Brown

Swiss and Simmental cattle, emphasizing the historical ‘genetic isolation’ by the absence of

admixture.

Table 3. Regression coefficients among sensor behavior traits and between sensor behavior traits and production traits.

Trait RUM FEED BACT HACT NACT ET WEL-IP WEL-IC MY Fat% Pro% SCS

RUM 0.14 -0.40 -0.09 -0.51 0.02 0.02 0.00 0.10 0.00 0.00 0.05

FEED 0.12 -0.34 -0.06 -0.48 0.00 -0.05 0.01 0.12 0.00 0.00 0.02

BACT -0.77 -0.78 0.18 0.19 -0.01 0.05 -0.02 -0.14 0.00 0.00 -0.05

HACT -0.51 -0.29 0.59 -0.78 0.11 0.07 -0.01 0.04 0.02 0.01 -0.05

NACT -0.41 -0.59 0.10 -0.10 -0.01 -0.03 0.01 -0.14 0.00 0.00 -0.02

WEL-IP 1.60 -0.97 0.80 0.29 -1.72 0.44 -0.23 -0.10 0.07 0.05 0.12

WEL-IC -5.00 1.74 -4.67 -0.61 7.99 -1.44 -3.56 1.40 -0.57 -0.30 -0.65

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not active; ET = ear temperature; WEL-IP = welfare index point;

WEL-IC = welfare index class; MY = milk yield (in kg); Fat% = fat percentage; Pro% = protein percentage; SCS = somatic cell score; the bold values represent significant

regression coefficients.

https://doi.org/10.1371/journal.pone.0221973.t003
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Breed assignment results gave deeper insights into the pattern of genetic diversity and prin-

ciples of historical evolutionary processes in dual-purpose cattle populations. All breeds

depicted at least 57.83% of ancestral allele proportion to European cattle breeds, affirming

their European origin. Nevertheless, for the European dual-purpose cattle genotypes, exotic

ancestral allele proportions from Sheko, Zebu Bororo, Gir or Arabic Zebu were identified.

Despite the fact that cattle are ascribed to two major geographic types, i.e., taurine (humpless-

European, African, Asian) and indicine (humped- South Asian, East African), the same ances-

tors were identified more than 250,000 years ago [12]. Ancient genetic ties to a common ances-

tor as well as interbreeding [12] explain a proportion of up to 7.09% shared alleles between

Sheko with DE_DSN, DE_DN, DE_HF, PL_DSN and Sl_Si. In this regard, the Bovine Hap-

Map Consortium [12] specified five unique endogamous breeding units (Holstein, Jersey, Her-

eford, Romagnola, and Guernsey) and one closed endogamous breeding unit (Brown Swiss,

Norwegian Red, Limousin, Charolais, and Piedmontese) for ten European breeds. Further-

more, they [12] identified indicine and taurine crosses, such as Beefmaster, Santa Gertrudis

and Sheko. Accordingly, in the present study, low proportions of common ancestry between

populations from our study and indicine breeds were identified.

Early breeders who spread from the Fertile Crescent towards North-West Europe used two

different migration routes [23]. One route to northern Europe followed the Balkan rivers

(Danubian route) to Germany and the Netherlands, while the second route (Mediterranean

route) to western Europe (Italy, Spain and France) crossed the Mediterranean Sea [23]. During

these migration waves, potential interbreeding between wild European aurochs and already

domesticated populations explain the exotic breed footprints within the European bovine

genome [17]. These findings are in agreement with the known shared ancestry between Hol-

stein and Norwegian Red [12]. Consequently, we also detected genetic relations between

DE_DSN, DE_DN, DE_HF and PL_DSN with Norwegian Red. Gautier et al. [17] affirmed the

Northern European origin of Angus, Red Angus, French and American Holstein, French Red

Pied Lowland and Norwegian Red cattle via Reynolds genetic distances (computation based

on allele frequencies at 44,706 SNP loci). Hence, these results [17] support the identified ances-

try proportions, as illustrated in Fig 2. Close genetic proximity between French Red Pied Low-

land with DE_DSN, DE_DN, and DE_HF is due to the Red Pied Lowland’s recent derivation

from Red Holstein and Meuse-Rhin-Yssel breeds [17]. Relatively high proportions of ancestry

between Hereford with Sl_Si (8.87%), CH_OBV (10.58%), DE_DN (10.92%), PL_DSN

(11.37%), DE_DSN (11.69%) and DE_HF (12.39%) were identified. Accordingly, Gautier et al.

[17] allocated Hereford, Holstein and Brown Swiss to one major cluster. The genetic influence

of Hereford on Holstein, DSN, Brown Swiss and Simmental genomes is due to historical inter-

breeding events [24], which occurred before the establishment of the Hereford breed herd in

1846 [25].

The PCA results as well as the breed assignment analyses indicate the European origin of

dairy (DE_HF) and dual-purpose breeds (DE_DSN, DE_DN, PL_DSN, Sl_Si, and CH_OBV)

and reflect selection according to geographic and breeding goal characteristics. The evolution-

ary formative events contributed to the establishment of different genetic variants in cattle

breeds in different regions. Moreover, they influenced the differentiation of allele frequencies

among populations [12] and the associations between phenotypes and genotypes.

Genetic parameters for sensor behavior traits

Apart from BACT, genetic parameter estimates from the pedigree-based approach (A matrix)

were very similar or slightly smaller compared to the H matrix approach (i.e., additionally con-

sidering genomic marker data). This result is in agreement with other studies focusing on
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genetic parameter estimations based on different genetic relationship matrices [26,27]. Basic

dairy cattle habits (e.g., HACT, NACT and FEED) underlie moderate genetic control. For

RUM, BACT, ET, WEL-IP and WEL-IC, the small heritabilities indicate pronounced environ-

mental influence and challenges for genetic improvements. Nevertheless, the recording tech-

nique might also explain the lower heritabilities for sensor-recorded RUM and BACT. As a

recording alternative, microphone-monitored rumination time contributed to heritability esti-

mates for RUM in the range from 0.14 to 0.44 in Holstein cows [6]. Another reason for the

smaller RUM heritability in the current study addresses characteristic differences in the pro-

duction system. In grazing systems, with a higher percentage of fresh fibrous grass in the feed-

ing ratio, rumination mechanisms might differ from total mixed rations fed in indoor systems.

Hence, the genetic mechanisms for rumination might differ and influence additive genetic var-

iances. A strong impact of food characteristics on rumination time was identified in previous

studies, e.g., the influence of forage neutral detergent fiber [28], physical effective fiber [29], or

long-particle alfalfa silage [30]. Nevertheless, rumination time is an interesting trait for geno-

mic selection because of the moderate to strong association with feed efficiency [6,31]. Feeding

costs are the dominant cost component in dairy and dual-purpose cattle farming systems [32].

Consequently, the selection of RUM also contributes to high feed efficiency and profitable

milk production [33].

The heritability for FEED behavior is in agreement with estimates from other studies using

alternative recording techniques. Løvendahl and Munksgaard [5] estimated a heritability of

0.20 for pooled eating time (hour/day) considering early and late lactation stages. Eating time

was recorded via focal scanning in batches at 10-minute intervals for 24 hours. Robinson and

Oddy [34] reported a heritability of 0.36 for time spent feeding, measured in automatic feeder

pens. Hence, feeding time has a moderate genetic component, but the open question addresses

the optimal breeding and selection strategy. A breeding goal with a focus on increasing feeding

time (FEED) implies an antagonistic impact on other types of behavior, e.g., reduced lying

time (NACT) [35,36].

Heritabilities for daily BACT reflect estimates based on accelerometer recordings (0.03–

0.12) [37,38]. Schöpke and Weigel [37] considered 1,171 postpartum HF cows with at least 100

days of consecutive accelerometer measurements, and the HACT accelerometer heritabilities

support the HACT sensor heritabilties from our study. Furthermore, in agreement with our

results, variance components and heritabilities were different for different levels of activity,

i.e., during nonestrus periods in the range of 0.03–0.05 and 0.12 during estrus [37]. Coinci-

dently, in our study, heritabilities for HACT were larger than for other behavior activities.

Nevertheless, the NACT heritability from the cows in the outdoor grazing system was larger

than the heritability estimates of dairy cattle for lying time indoors (0.01) [5]. Even in humans,

genetic parameters for active and non-active behavior traits have been estimated. Our herita-

bility estimate for lying or sleeping is in agreement with the heritability for children sleeping

duration [39]. A quite larger heritability was estimated for total daily sleep duration (daytime

sleep duration plus nighttime sleep duration), considering 53 pairs of monozygotic and dizy-

gotic female twins [40]. However, such an estimate might be biased due to a large proportion

of common environmental effects in twins’ samples.

The low heritability estimates for ET indicate partial genetic control of temperature regula-

tion mechanisms but a stronger impact due to environmental effects and production levels

[41]. Heritabilities for rectal temperature were larger in the range from 0.15 to 0.17 [41,42].

Nevertheless, regarding trait definition, there is a difference when measuring surface or rectal

temperature [42]. Environmental temperature had a stronger impact on surface ET than on

rectal and core body temperature [42,43]. Hence, heritabilities for rectal temperature were

larger in the range from 0.15 to 0.17 [41,44]. The complex definition of welfare indices and the
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inclusion of several antagonistic related traits might explain the quite small heritabilities and

repeatabilities for WEL-IP and WEL-IC. In conclusion, we suggest the utilization of welfare

indices as a novel management tool and not as a selection instrument to improve an animal’s

welfare status via breeding.

Multi-breed genome-wide association study

To our knowledge, this is the first study considering dense sequences of longitudinal behavior

measurements of dual-purpose cows from grazing systems across countries, combined with

high-throughput genomic marker data. On the basis of a multi-breed GWAS, we gained new

insights into the genetic control of dual-purpose cattle behavior under grazing conditions, and

we located some interesting chromosomal segments. Nevertheless, for the detection of causal

functional mutations in ongoing studies, it is imperative to use denser SNP data or even

sequence data and a larger sample of genotyped cows [45,46]. Regarding the response traits,

DRP reflected the daily behavior expression more accurately than one single MEAN value. In

the statistical models for DRP, all important environmental (fixed) effects influencing bovine

behavior [47] were considered. For the dependent variable MEAN, pre-correction of the data

only accounted for the ‘breed-farm’ effect. Consequently, we suppose that the MEAN from an

extended observation period does not fully reflect the genetic variation of bovine behavior due

to confounding environmental effects. Additionally, when referring to the multi-breed

GWAS, only one significant SNP was detected via the MEAN approach, but seven significant

SNPs were discovered using DRP.

The identification of the DGAT1 gene on BTA14 supported our a priori hypothesis that

(despite the small sample size) the multi-breed GWAS is an appropriate approach to identify

putative causative variants and candidate genes. Using an FDR of 20%, the number of identi-

fied significant genetic variants, including SNP and potential candidate genes, was larger com-

pared to the stricter Bonferroni correction. However, the risk of detecting false positive SNPs

also increased. The consideration of accumulated effects from a set of SNPs ±50 Kb of a gene

(set-based association) was very powerful for detecting potential candidate genes, as suggested

in previous studies [48]. Some of the discovered potential candidate genes are linked to behav-

ior traits or diseases in cattle [49], humans [50], pigs [51] or mice [52].

Rumination. Based on the five significant SNPs with FDR < 20%, we detected 13 poten-

tial candidate genes for RUM. Mutations of the identified potential candidate gene RNF170
were associated with autosomal dominant sensory ataxia in humans [53]. The putative candi-

date gene RPS6KB2 is involved in innate immune response mechanisms in indigenous and

crossbred cattle [54]. In addition, the gene RPS6KB2 was differentially expressed in Angus cat-

tle selected for low and high residual feed intake [49] and in bovine tuberculosis-infected and

control cattle [55]. Other findings suggest an association of RPS6KB2 with embryonic develop-

ment in cattle [56]. The PTPRCAP gene is an additional identified potential candidate gene

that is associated with RUM behavior. In humans, PTPRCAP is involved in defense response

mechanisms and is a key regulator of lymphocyte activation [50].

The putative candidate gene CaBP4, coding for a neuronal Ca2+-binding protein, was

expressed in photoreceptors in mice and regulated synaptic terminals [52]. Haeseleer et al.

[52] concluded that CaBP4−/− mice have behaviors similar to those in patients with incom-

plete congenital stationary night blindness. Generally, CaBP4 is involved in the process of sig-

nal transduction [57] and visual perception [58].

The identified potential candidate gene TMEM134 influences obesity and atherosclerosis in

adults [59]. Furthermore, TMEM134 is involved in the prototypical inflammatory nuclear fac-

tor-κB (NF-κB) signaling pathway [59]. The modulation of downstream NF-κB signaling is
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the most important characteristic for innate immune programming in chronic inflammation

[60]. The identified potential candidate gene PITPNM1 is associated with retinal degeneration

and hypopyon in humans and is involved in pathways of metabolism and glycerophospholipid

biosynthesis [61].

Feeding. The potential candidate gene LCN15 for FEED is involved in the transport of

glucose and other sugars, bile salts and organic acids, metal ions and amine compounds as well

as the transport of vitamins and nucleosides [61]. As a member of the lipocalin gene family,

LCN2 influences obesity and diabetes in humans [62]. Furthermore, LCN15 physiologically

interacted with high glucose levels in enterocytes [62]. Extended periods for FEED indicate an

increase in feed intake [34], implying higher levels of sugars, fatty acids, amino acids, and vita-

mins. Hence, cows with different FEED levels might differ regarding specific expression pro-

files for the potential candidate gene (LCN15).

The potential candidate gene SLC25A27 is part of a recently identified genetic network

associated with economically important traits in Wagyu x Limousin crossbred cattle [63].

Additionally, SLC25A27 contributes to long chain fatty acid uptake [63] and controls several

diseases in humans, such as Alzheimer’s disease [64], oxidative stress [65], and fasting [66].

The mitochondrial uncoupling protein 4 encoded by the SLC25A27 gene is involved in

thermoregulatory heat production and metabolism in the brain [67].

Basic activity. Only one potential candidate gene (PPM1E) influenced BACT behavior in

dual-purpose cattle. Accordingly, the dephosphorylation gene (PPM1E) was associated with

feeding behavior in Danish Duroc boars [51]. Do et al. [51] assumed that PPM1E is mediated

by 5’AMP-activated protein kinase (AMPK), which plays a key role in controlling energy bal-

ances. The enzyme AMPK is involved in hypothalamic glucose and nutrient sensing. Hence,

due to the identified impact of PPM1E on activity traits in dual-purpose cattle and due to the

strong correlation between feeding and activity (S2 Table), behavior across species is based on

the same genetic mechanisms.

Associations among behavior traits and between behavior and productivity

The behavior traits RUM, FEED, BACT, HACT and NACT were interdependent, implying

that the expression of basic behavior is involved in similar physiological processes. Addition-

ally, from a practical perspective, some strong associations were expected. For example, an

increase of feed intake (FEED) implies intensification of rumination time (RUM). Behavior-

related feed intake had negative genetic impacts on BACT, enhanced BACT (HACT), and rest-

ing/sleeping (NACT) [68]. An increase in rumination and feeding contributes to improved

milk production [69], but intensification of “production behavior” implies less time for BACT,

HACT and NACT. “Normal” daily BACT behavior of dual-purpose cows was in balance with

sleeping behavior (NACT). However, during estrus or parturition, cows express excessive

walking, mounting and overall restlessness behavior (HACT), while the usual resting habits

decrease [70] and body temperature increases [71,72]. Interestingly, welfare indices were also

associated with ET.

Cows with 1% higher levels for RUM and FEED produced 0.10 kg and 0.12 kg more milk

[68], respectively, along with increased somatic cell count. A simultaneous increase of SCS is

due to the antagonistic relationship between MY and SCS [73]. High levels of daily BACT posi-

tively correlated with body condition loss, implying a reduction in MY [74]. The positive

impact of BACT on NACT might explain the negative regression coefficient of NACT on MY.

In general, daily bovine behaviors, including RUM, FEED, BACT, HACT, and NACT, do not

have a significant impact on Fat% and Pro%. However, improved welfare indices were associ-

ated with higher values for Fat% and Pro%. Currently, in practical breeding schemes, Fat%
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and Pro% are used as indicators to assess the cows’ energy status [75]. Additionally, based on

the results from the present study, Fat% and Pro% might be suitable indicator traits for cattle

welfare.

Materials and methods

Animal ethics statement

Genotype data were provided from the national breeding organizations. Phenotypes reflect the

standard trait pattern from official milk recording schemes. Behavior recording was non-

invasive.

Breeds and herd location

The five dual-purpose cattle breeds with phenotypic sensor behavior data were from Germany

(DE_DSN), Poland (PL_BS, PL_DSN), Slovenia (Sl_BS, Sl_Si) and Switzerland (CH_OBV,

CH_Si) (Table 4). In Germany and Poland, dual-purpose cows were kept in organic university

research herds. The German research farm belongs to the federal state of Hesse in the center of

Germany, and the farm in Poland is close to the Baltic Sea. In Slovenia, data recording consid-

ered three commercial grazing herds located in mountainous regions in the western part of the

country, at 920 m to 970 m above sea level. In Switzerland, one original Braunvieh near

Lucerne and one Simmental herd in the region around Basel were chosen for the across-coun-

try analyses. All farming conditions reflect pasture-based production systems, allowing grazing

for at least 6 hours per day from May until November. Herd sizes ranged from 24 to 250 cows.

Phenotypic data

Sensor traits. For the electronic recording of behavior traits, dual-purpose cows were

equipped with sensors implemented in ear tags (Dutch CowManager system Agis Automati-

sering BV). The validation and testing phase of ear tag sensors under grazing conditions cov-

ered a period from 1 May 2016 until 31 June 2016 [68]. After one month of adaptation,

ongoing analyses considered sensor data from July 2016 until March 2018 from 319 cows.

Only cows with at least 30 consecutive days of sensor recording were included in the overall

database. Once implemented in the cow’s left ear, the sensor system uses a 3-dimensional

accelerometer to identify behavior categories based on location coordinates. The behavior cat-

egories were RMU, FEED, NACT, BACT, and HACT. In addition, the sensor systems use a

Table 4. Data structure for the cattle breeds included in multi-breed GWAS and genetic parameter estimations.

Country Breed No. of cows with sensor

behavior data

No. of genotyped cows with sensor

behavior data

No. of longitudinal sensor

behavior records

No. of sensor behavior records

per cow

DE DE_DSN 69 46 22,718 329.25

PL PL_BS 49 28 17,332 353.71

PL_DSN 66 51 24,386 369.49

Sl SI_Si 17 14 2,973 174.88

SI_BS1 20 20 3,617 180.85

SI_BS2 8 8 1,633 204.13

CH CH_OBV 45 36 11,944 265.42

CH_Si 45 43 12,446 276.58

DE_DSN = black and white dual-purpose (Germany); PL_BS = Brown Swiss (Poland); PL_DSN = black and white dual-purpose (Poland); Sl_Si = Simmental (Slovenia);

Sl_BS = Brown Swiss (Slovenia); CH_OBV = dual-purpose Original Braunvieh (Switzerland); CH_Si = Simmental (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.t004
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digital surface temperature monitor to measure the mean hourly ET. The system detects RUM

based on the typical repetitive ear movement due to chewing and regurgitation. Feeding is

related to food intake, expressed through masticatory movement. The activity parameters are

subcategorized into BACT, HACT and NACT. The state of BACT describes any kind of mod-

erate ear movement resulting from walking, head shaking or other movements, which cannot

be associated with the specific repetitive ear movement during RUM or FEED. High activity is

due to increased BACT, e.g., during estrus periods and including mounting behavior. No

activity refers to minimal ear movements, while sleeping or resting. The hourly percentage of

time spent for every behavior category is transmitted through a wireless connection to a router.

Afterwards, the hourly percentages for behavior traits were transformed into daily time per-

centages. Whenever the sensor records a certain behavior, such as RUM, it does not assign this

time to another behavior trait. Additionally, to evaluate the five sensor behavior categories,

two welfare indices (WEL-IP and WEL-IC) were created following the welfare quality assess-

ment protocol1 [76] (Table 5). In this regard, sensor traits were assigned a score of 0, 1 or 2

according to physiological thresholds. WEL-IP was the sum of the scores from the different

sensor traits. WEL-IC based on WEL-IP, but considering additional constraints as described

in Table 6.

Production traits. Test-day records were from lactations 1 to 12 and considered the calv-

ing years from August 2015 until February 2018. Test-day MY, Fat%, Pro% and the log-trans-

formed somatic cell count (SCS) were available for 329 cows from Germany, Poland and

Switzerland. Descriptive statistics of the sensor traits, welfare indices and test-day traits are

listed in Table 7.

Genotypes

The five dual-purpose breeds, two additional breeds from Germany (DE_DN and DE_HF)

and one from Slovenia (Sl_HF) were genotyped with the Illumina Bovine 50K Bead chip ver-

sion 2, with the Illumina Bovine 50K Bead chip version 3, and with a customized bovine 50K

SNP chip (IDB V3), according to the Illumina Infinium assay protocol (Illumina Inc., San

Diego, CA, USA). Quality controls of the genotype data were conducted using PLINK software

[77], defining a minor allele frequency of 0.01 and a deviation from Hardy–Weinberg equilib-

rium of p< 0.00001. All SNPs had a call rate larger than 85%, and SNPs located on sex chro-

mosomes were excluded. Cows with a call rate lower than 80% for all loci were excluded.

Whenever the genomic relation between two animals was larger than 0.95, one animal was

excluded. Sporadic missing SNPs were imputed by the BEAGLE version 3.3.2 [78]. After SNP

data editing and imputation, 35,826 SNPs from 615 cows were available (Table 8), and 246

genotyped cows had sensor records.

The data used in the present study is available as supplementary file S1 File.

Table 5. Point assignment for welfare indices using the welfare quality assessment protocol1 [76].

Rumination Feeding Basic Active High Active Not Active

Min Opt Max Min Opt Max Min Opt Max Min Opt Max Min Opt Max

Range, %/d < 29.2 29.2–41.7 > 41.7 < 12.5 12.5–20.8 > 20.8 < 8.3 8.3–12.5 > 12.5 < 8.3 8.3–12.5 > 12.5 < 16.7 16.7–41.7 > 41.7

Range, h/d < 7 7–10 > 10 < 3 3–5 > 5 < 2 2–3 > 3 < 2 2–3 > 3 < 4 4–10 > 10

Points 0 2 1 0 2 1 0 2 1 1 2 0 1 2 0

Meaning Al Norm OK Al Norm OK Al Norm i.h. - Norm i.h. Al Norm Al

Opt = optimum (normal) behavior range; Al = alarming (check animal or management); Norm = normal; OK = harmless, but not as good as Norm; i.h. = possibly in

heat; the welfare index point of every observation can be calculated by summing the points for rumination, feeding, basic active, high active, and not active.

https://doi.org/10.1371/journal.pone.0221973.t005
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Population structure and breed assignment

PCA was conducted to account for potential population stratification prior to GWAS and to

explore the genetic diversity of the European cow dataset. PCA based on the genomic relation-

ship matrix was generated in GCTA [79]. In a second step, a breed assignment analysis was

conducted using the WIDDE program [16]. The WIDDE cattle database contained over

750,000 SNPs from 3,951 individuals, which belong to 129 different populations [16]. The

broad variety of local cattle populations in WIDDE represents the bovine genetic diversity and

covers the three main cattle groups, i.e., European and African taurine (Bos taurus) as well as

zebus (Bos indicus) [16]. The allele proximity between the genotyped populations from this

study and the populations represented in the world reference dataset in WIDDE were esti-

mated using supervised clustering [16]. A convergence criterion of 0.01 for log-likelihood val-

ues was defined when calculating the percentage of ancestry proportions between each

genotyped cow and the 129 populations from the WIDDE world reference dataset.

Genetic parameter estimations

For the estimation of genetic parameters, genomic and pedigree relationship matrices were

combined. In additional analyses, only the pedigree relationship matrix was considered. The

pedigree consisted of 8,798 animals and was traced back as far as possible. The oldest ancestors

in the pedigree were born in 1944 for Germany, in 1981 for Poland, in 1990 for Slovenia, and

Table 6. Composed welfare index classes based on the welfare quality assessment protocol1 [76].

Welfare index

classes

Meaning Pointsa Criteria

1 Excellent > 6 (7–

10)

1) at least 1 point in every sensor trait category; 2) rumination and feeding should have 2 points

according to Table 5.

2 Acceptable 5–9

3 Poor (health/welfare

impairment)

< 5

a Sum of welfare points across rumination, feeding, basic active, high active, and not active for each observation according to Table 5.

https://doi.org/10.1371/journal.pone.0221973.t006

Table 7. Descriptive statistics for sensor behavior and production traits.

Trait No. of observations No. of cows Mean SD Min. Max.

RUM 97,049 319 34.13 7.07 5.94 81.36

FEED 97,049 319 23.87 8.47 0.19 66.32

BACT 97,049 319 8.45 5.28 0.16 50.75

HACT 97,049 319 7.76 3.22 0.18 33.78

NACT 97,049 319 25.79 7.51 4.58 72.83

ET 97,049 319 24.66 4.59 2.23 38.28

WEL-IP 97,049 319 6.27 1.49 0 10

WEL-IC 97,049 319 2.04 0.42 1 3

MY 6,571 329 19.33 6.3 1.6 47.2

Fat% 6,546 329 4.1 0.67 1.84 7.98

Pro% 6,546 329 3.43 0.41 2.12 5.5

SCS 6,546 329 2.43 1.54 -1.32 10.5

RUM = rumination; FEED = feeding; BACT = basic active; HACT = high active; NACT = not active; ET = ear temperature; WEL-IP = welfare index point;

WEL-IC = welfare index class; MY = milk yield (in kg); Fat% = fat percentage; Pro% = protein percentage; SCS = somatic cell score.

https://doi.org/10.1371/journal.pone.0221973.t007
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in 1917 for Switzerland. Variance components of sensor traits were estimated via univariate

animal models using the AIREML procedure, as implemented in the DMU software package

[80]. The statistical model (1) in matrix notation was defined as follows:

y ¼ Xbþ Z1aþ Z2pþ e ð1Þ

where y was the observation vector for sensor traits and indices (RUM, FEED, NACT, BACT,

HACT, ET, WEL-IP and WEL-IC); b was the vector of fixed effects including the combined

breed-farm effect, the year-month effect for the measuring date, and the age of cows as a fixed

linear regression; a was the vector for additive genetic effects; p was the vector for permanent

environmental effects for the cows with repeated measurements; e was the vector of random

residual effects, and X, Z1, and Z2 were incidence matrices for b, a, and p, respectively. The

assumed variance-covariance structure was a ~ N (0, Ks2
a), where s2

u was the genetic variance,

K was the A matrix, or the combined H matrix when blending A and the weighted genomic

relationship matrix (Gw) [81]. Gw was calculated as follows:

Gw ¼ ð0:95� Gþ 0:05� A22Þ

where A22 is the submatrix of the pedigree-based relationship matrix for genotyped animals.

Estimated breeding values (EBV) from model 1 and consideration of the A matrix were the

databases for the calculation of DRP according to Garrick et al. [82]. Only animals with a DRP

weight larger than 0.2 were considered for the ongoing GWAS [83].

The genetic-statistical model (2) used for test-day production traits and SCS based on the A

matrix was defined as follows:

y ¼ Xbþ Z1aþ Z2pþ e ð2Þ

where y was the observation vector for MY, Fat%, Pro%, and SCS; b was the vector of fixed

effects including the breed-farm and calving-year-season effects, and the lactation curve mod-

eled via Legendre polynomials of order three for days in milk; a was the vector for additive

genetic effects based on the A matrix; p was the vector for permanent environmental effects

for the cows with repeated measurements; e was the vector of random residual effects, and X,

Table 8. Genotype data of five cattle breeds included in PCA, WIDDE and multi-breed GWAS.

Country Breed No. of cows No. of cows after SNP quality control

DE DE_DSN 266 266

DE_DN 20 20

DE_HF 50 50

PL PL_BS 34 34

PL_DSN 59 59

Sl Sl_Si 46 44

Sl_BS 36 36

Sl_HF 14 14

CH CH_OBV 48 46

CH_Si 48 46

DE_DSN = black and white dual-purpose (Germany); DE_DN = red and white dual-purpose (Germany);

DE_HF = Holstein Friesian (Germany); PL_BS = Brown Swiss (Poland); PL_DSN = black and white dual-purpose

(Poland); Sl_Si = Simmental (Slovenia); Sl_BS = Brown Swiss (Slovenia); Sl_HF = Holstein Friesian (Slovenia);

CH_OBV = dual-purpose Original Braunvieh (Switzerland); CH_Si = Simmental (Switzerland).

https://doi.org/10.1371/journal.pone.0221973.t008
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Z1, and Z2 were the incidence matrices for b, a, and p, respectively. Again, EBV were de-

regressed to obtain DRP for test-day production traits and SCS.

Multi-breed GWAS

Single-trait multi-breed GWAS was performed using the software package GCTA [79]. In this

regard, we considered the leave-one-chromosome-out (loco) option. Dependent variables (i.e.,

our phenotypes) were MEAN and DRP. For testing single-locus SNP effects, the following sta-

tistical model (3) was used:

y ¼ XbþWgþ Zuþ e ð3Þ

where y was the vector of DRP or MEAN for RUM, FEED, NACT, BACT, HACT, ET,

WEL-IP, and WEL-IC, as well as DRP for production traits; b was a vector of fixed effects con-

sidering only the overall mean for DRP and additionally the breed-farm effect for MEAN; g
was the vector for additive fixed effects of the candidate SNP; u was the vector for polygenic

effects considering all SNPs but excluding SNPs from the chromosome where the candidate

SNP was located; and e was the vector of random residual effects; X, W, and Z were incidence

matrices for b, g, and u, respectively. The Bonferroni threshold for SNP associations was pBonf

= 0.05/(number of SNP) = 0.05/35,826 = 4.47 x 10−7. The FDR as introduced by Benjamini

and Hochberg [84] was a further significance threshold for genome-wide associations. The

FDR to detect candidate SNPs for behavior traits and test-day production traits was set to 20%.

Candidate gene annotation

The associated potential candidate genes were identified via a gene-based test in GCTA and

applying the fastBAT option [48]. The database (version UMD3.1), including gene locations

and start and end positions for the bovine genes, was downloaded from Ensembl [50]. A total

of 24,616 gene ID entries were originally available in the database, but only 17,545 genes on

chromosomes 1 to 29 were included in further analyses (i.e., exclusion of pseudogenes accord-

ing to [76,85,86]). In the first step, all SNPs from the GWAS were mapped to the genes, consid-

ering a window of 50 kb upstream and 50 kb downstream from the genes. Subsequently, P-
values considering the set of SNPs within the window were used simultaneously for candidate

gene detection. The P-values of genes were adjusted according to FDR (significance

threshold < 20%). In the last step, physiological functions and positions of candidate genes

were inferred based on information from the Ensembl [50], NCBI [87], UniProt [88] and Gen-

ecard [61] databases.

Causal associations

In epidemiology, Mendelian randomization uses genetic variants as instrumental variables to

test for the causal inference between an exposure and an outcome [89]. Hence, we assume an

instrumental variable z, representing the SNP genotype. The exposure x considered one of the

behavior traits, and the outcome y was the test-day productivity or SCS. Assuming uncorre-

lated z and uncorrelated residuals when regressing y on x and covðz; xÞ 6¼ 0, the regression

coefficient of b̂yx was [90]:

b̂yx ¼
covðz; yÞ
covðz; xÞ

¼

covðz;yÞ
varðzÞ
covðz;xÞ
varðzÞ

¼
b̂yz
b̂xz

ð4Þ

where b̂yz and b̂xz were the estimated SNP effects from GWAS when using y and x as
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phenotypes, respectively. The variance of b̂yx was:

varðb̂yxÞ ¼
varðeyxÞ

n � varðxÞ � R2
xz

¼
varðyÞ � ð1 � r2

xyÞ

n � varðxÞ � 2�p�ð1� pÞ�b̂2
xz

varðxÞ

¼
varðyÞ � ð1 � r2

xyÞ

n � 2 � p � ð1 � pÞ � b̂2
xz

ð5Þ

where varðexyÞ was the residual variance when fitting x as a fixed regression to explain y; n was

the sample size; varðxÞ was variance of trait x; and R2
xz was the proportion of variance x

explained by z, which equaled
2�p� 1� pð Þ�b̂2

xz
varðxÞ . In Eq (5), varðyÞ was the variance of trait y; r2

xy was the

squared correlation between trait x and trait y; p was the allele frequency, and b̂2
xz was the

squared SNP effect estimate from GWAS for trait x. The test statistic
TMR ¼ b̂2

yx

varðb̂yxÞ
followed w2

1
[91],

which was used to test the significance of b̂yx.
To fulfill the precondition of covðz; xÞ 6¼ 0, 445 homologous genes in the human and

bovine genome that were involved in the biological process of behavior were searched and

downloaded from AmiGO2, a Gene Ontology database [85,86]. A total of 1,011 SNPs within a

window of 50 kb up- and downstream of the 445 homologous genes were considered.

Afterwards, the GWAS estimates for the 1,011 SNP were transmitted into a self-modified

version of the GSMR package [92] in R to calculate the variance of b̂yx for a small sample size.

The aforementioned SNP was filtered according to the following criteria: 1) P-value of the

SNP lower than 0.05 to meet the assumption of covðz; xÞ 6¼ 0; and 2) LD between SNP lower

than 0.25 to prune highly correlated SNPs. After filtering, the number of SNPs for behavior

traits and welfare indices varied between 36 (for BACT) and 64 (for RUM).

Supporting information

S1 Fig. Manhattan plot and Q-Q plot from GWAS based on the mean (MEAN) and de-

regressed proofs (DRP) of daily not active time. The red line is the significance threshold

line for the Bonferroni correction of 5%, and the green dots represent significant SNP accord-

ing to the false discovery rate of 20%.

(PDF)

S2 Fig. Manhattan plot and Q-Q plot from GWAS based on de-regressed proof of daily

rumination time. The red line is the significance threshold line for the Bonferroni correction

of 5%, and the green dots represent significant SNP according to the false discovery rate of

20%.

(PDF)

S3 Fig. Manhattan plot and Q-Q plot from GWAS based on de-regressed proof of daily

feeding time. The red line is the significance threshold line for the Bonferroni correction of

5%, and the green dots represent significant SNP according to the false discovery rate of 20%.

(PDF)

S4 Fig. Manhattan plot and Q-Q plot from GWAS based on de-regressed proof of test-day

fat percentage. The red line is the significance threshold line for the Bonferroni correction of

5%, and the green dots represent significant SNP according to the false discovery rate of 20%.

(PDF)

S1 Table. Potential candidate genes associated with animal behavior traits.

RUM = rumination; FEED = feeding; BACT = basic active; BTA = Bos taurus chromosome;

DRP = de-regressed proof; MEAN = mean of observations; functions derived from Ensembl1,
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NCBI2, UNIPROT3, and GeneCard4.

(DOCX)

S2 Table. Genetic (above diagonal) and phenotypic (below diagonal) correlations among

sensor behavior. Correlations estimated from bivariate models with the same fixed and ran-

dom effects as model (1) and standard errors in brackets. RUM = rumination;

FEED = feeding; BACT = basic active; HACT = high active; NACT = not active; ET = ear tem-

perature; WEL-IP = welfare index point; WEL-IC = welfare index class; nc = did not converge.
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S1 File. Raw phenotypes, genotypes, pedigrees, and values to build Figs 1 and 2 are avail-

able in the compressed file.
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