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Introduction

Meson spectrum and the Quark model While the word "meson" often refers
to quark-antiquark states, one can define the meson spectrum in a more general
manner as all colorless QCD bound states with baryon number zero, which
implies integer spin. The meson spectrum contains states built from one or
multiple quark-antiquark pairs, as well as hybrids and glueballs. The former
consist out of a quark-antiquark pair and a gluon, whereas the latter are bound
states of gluons.
Many observed states in the meson spectrum can be identified with qq̄ states

calculated from the Quark model (QM), see [1] and references therein. It ex-
plains some important features of the spectrum, for example:

• The nonet structure of the light meson multiplets arises, because
of the SU(3) flavor symmetry for the light u, d and s quarks. Since the
s quark has a higher constituent mass than u and d quark, the strange
multiplet members have a higher mass. The SU(3) flavor symmetry also
introduces the isospin and hypercharge quantum numbers, which can ex-
plain many decay properties of the meson states.

• The charmonium-and bottomonium spectrum can be described ac-
curately by the (relativistic) QM as we will see in section 1.1.

• The appearance of distinct quantum numbers, such as JPC =
(0−+, 1−−) for s waves and JPC = (0++, 1+±, 2++) for p waves , whereas
JPC = (0+−, 1−+, 2+−, 3−+) for instance cannot be accessed by QM qq̄
states. We will call them "QM exotic" quantum numbers, since they
are in principle possible for qq̄ structures in other approaches, such as
the Dyson-Schwinger and Bethe-Salpeter approach. An example is the
π1(1400) with JPC = 1−+; a candidate for a hybrid.

Other types of exotic states were found, that call for an extension of the QM
qq̄ picture: Type I exotic states could be qq̄ QM states from their quantum
numbers, but have different properties, such as their mass, width, or decays.
Type II exotic states cannot be qq̄ states, even outside the QM (where the
"Quark model exotic" quantum numbers would be possible). Some of these
states are likely to be of four-quark nature:

Exotics I: the light scalar nonet One example are the light scalar nonet states,
which are exotics of type I. As qq̄ states, they should be p waves and therefore
the QM predicts masses around 1-1.5 GeV. A multiplet exists in this mass
range that could be assigned to the QM states, but what is then the light scalar
multiplet? As qqq̄q̄ states, the nonet structure and many properties of the
states can be explained. But even if the four-quark structure is assumed, it is
an open question how the light quarks cluster inside the four-quark state and
what binding mechanism occurs.
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Introduction

An old idea is the binding of a colored diquark and a colored antidiquark [2].
The word "tetraquark" is often reserved for this type of state in the literature,
but we will use it synonymous to "four-quark state" throughout this thesis.
Calculations from Dyson-Schwinger equations (DSEs) and Bethe-Salpeter

equations (BSEs) for the light scalar tetraquarks paint a different picture [3].
They also find a light nonet, but a different binding mechanism. By construc-
tion, the four quarks are bound by gluon exchange alone. The interaction leads
to intermediate meson-meson and diquark-antidiquark components. The for-
mer however are solely responsible for the light mass of the resulting tetraquark
states. We will come back to the light scalar states in chapter 2.

Exotics II: spectrum in the charmonium energy region Other highly inter-
esting examples are exotic states in the charmonium energy region and
chapter 1 will be dedicated to this topic. The first discovery of an exotic state
in the charmonium energy region is that of the X(3872) in 2003. It is neutral,
has quantum numbers I(JPC) = 0(1++) and could therefore be a cc̄ state. How-
ever, its decay properties are unexpected for a cc̄ structure and one is tempted
to identify it with a four-quark state with hidden charm (quark content cqq̄c̄).
Other examples in the charmonium energy region are the Z states. Because of
their charges, they are exotic states of type II and consequently their existence
is a smoking gun argument for non-cc̄ structures in the charmonium energy
region. They are also prime candidates for tetraquarks. Many more exotics are
discovered and will be discussed in section 1.1.

The structure of four-quark states, in particular the binding mechanisms
and dominant sub-clusters for cqq̄c̄ tetraquarks are subject to current research.
Three possible sub-clusters can emerge:

• (cc̄)(qq̄): charmonium couples to a light meson, we will call this "hadro-
charmonium" (HC).

• (cq̄)(qc̄): a heavy-light meson couples to a heavy-light antimeson. We will
call this "heavy-light meson meson" (HLM).

• (cc)(q̄q̄): a heavy diquark couples to a light antidiquark. We will call this
"diquark-antidiquark" (DI).

As the word "tetraquark" is often reserved for a bound state of colored diquark
and antidiquark, the word "molecule" is often reserved for a bound heavy-light
meson and heavy-light antimeson pair with a small binding energy, see [4] for a
rigorous definition in the effective field theory context. It is not to be confused
with our HLM components of the four-quark amplitude.
Four-quark states are discussed in many different theoretical approaches that

often assume a particular sub-cluster and binding mechanism is dominant,
which leads to very different predictions for the spectrum of four-quark states.
Therefore, it is important to answer the following questions, which are the
main motivation of this thesis: Which of the many discovered exotics are
four-quark states? If there is a dominant sub-cluster in the formation of four-
quark states, which one is it? Are the observed states a mixture of different
sub-clusters?
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Chapter one: tetraquarks in the charmonium energy region We try to an-
swer these questions for the hidden-charm tetraquarks in chapter 1. The theo-
retical tool we use is the DSE-BSE framework in the rainbow-ladder (RL) trun-
cation. It is fully relativistic, non-perturbative and respects important QCD
symmetries. It has been successful in describing various hadronic observables.
In the following we will solve a genuine four-body BSE where quarks and

antiquarks interact via gluon exchange, as done in [3]. Although the binding
mechanism is due to gluon exchange, we would like to identify sub-clusters in the
tetraquark amplitude. We achieve this by expanding it in terms of the relevant
physical components: HC, HLM, DI and call the amplitude expanded in that
way the "physical" amplitude. While all components are potentially present in
our approach, the four-body BSE will dynamically decide which components are
dominant. That allows us not only to determine masses for a variety of states,
but also to make a statement about the four-quark substructure of every state
individually.
This method will be applied to ground states for scalar and axialvector cuūc̄

tetraquarks. We directly compare to experiment and make predictions for new
states. Our framework can consistently describe open-charm tetraquarks as
well, and we will calculate ccq̄q̄ and ccs̄s̄ states in the scalar-and axialvector
channel. Parts of this work are already published, see [5] and [6].
For the curious reader it is possible to skip the technical parts of chapter 1

and focus only on sections 1.1, 1.5 and subsection 1.4.5.

Resonances in the DSE-BSE framework In the DSE-BSE framework, phys-
ical states show up as poles in the scattering matrix in the total momentum
squared variable. While bound states appear on the real axes, resonances ap-
pear in the complex plane in higher Riemann sheets. Most physical states are
resonances. A description and correct treatment of resonances in the BSE-DSE
framework fulfills the following criteria: A decay channel needs to be present;
a proper path deformation to respect the singularity structure of the system
has to be applied and analytic continuation or direct calculation in the second
Riemann sheet needs to be performed, as recently done in [7, 8].
The tetraquark four-body equation exhibits a decay channel. However, we

have not applied a path deformation and analytic continuation due to the com-
plexity of the four-body equation so far. In chapter 2 we investigate a DSE-BSE
system where the steps above can be applied.

Chapter two: qq̄ resonances and the light scalar states Chapter 2 is about
the light scalar mesons and the technical tools for solving resonant BSE-DSE
problems. We describe the scalar qq̄ states with a two-body BSE in a truncation
scheme beyond the simpler RL truncation that is used in chapter 1. A two-
pion decay channel is thereby introduced into the two-body BSE’s scattering
kernel. We apply a path deformation and analytic continuation to find the pole
position in the second Riemann sheet. The ρ meson will serve us as an example
to investigate the method, before we turn to the scalar qq̄ state.

Although this chapter is focused on the development of the method to de-
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scribe resonances in the BSE-DSE framework, the technical section 2.2 can be
left out if the reader is only interested in the physics parts.
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1. Heavy-light tetraquarks

1.1. Physics overview

1.1.1. Experimental status

The experimental spectrum in the charmonium energy region is shown in figure
1.1. States with black solid lines are those that can be described very well as
cc̄ states by simple quark potential models with a Cornell like potential [9,10],
which includes a Coulomb and a linear rising term. More advanced models
including spin-spin interactions and relativistic corrections can reproduce the
charmonium states (without exotics) quite accurately, see [11]. Another way
to obtain these potentials is extraction via lattice QCD. The general form of
Coulomb therm plus linear rising plus spin-spin interactions can be used to fit
these potentials, see [12, 13]. Also, direct lattice calculations for the spectrum
have been done [14,15].

Despite the great success of describing the pure charmonium states, there is
definitely more than charmonium in the spectrum shown in figure 1.1. Dashed
lines with 3 dashes stand for exotics with I = 0, dashed lines with four dashes
for exotics with I = 1, that are listed in the PDG. We will call these states
exotics within this context and we listed the most promising ones in table 1.1.
From 2003 onwards, new states in the charmonium region were found, that

had not been predicted by Quark models. There are a number of reasons why
some may not be qq̄ states: A lot of them are relatively narrow although they lie
above open-charm decay thresholds. All of these states decay into charmonium
and some light meson, some were found to decay into open-charm mesons as
well, see table 1.1.
There are many exotic candidates found in the vector channel. This channel

is naturally accessed in e+e− collisions, however, this "overpopulation" of states
can also not be explained in a charmonium picture. Possible explanations will
be discussed in subsection 1.1.2. While the "Y " states found so far are neu-
tral states, a smoking gun for non-charmonium states is the appearance of the
charged Z states, which is not possible for a cc̄ object, because it is always
neutral.
In this thesis we calculated the 0++ and 1+± ground states, including two

charm quarks. In contrast to the vector states, these states cannot be produced
directly from e+e− collisions, which makes the experimental determination of
their properties a bit trickier. Among those collected in table 1.1 we there-
fore focus on the X(3872), X(3915), Z(3900) and the X(4140), which contains
strangeness in its decay to J/Ψφ. Therefore, it could be a separate ground state
that we have access to in our framework. Let us take a closer look at them:
The X(3872) is the first exotic state that was found in the charmonium

region in 2003 by Belle in the B± → K±π+π−J/Ψ decay as a peak in the
J/ψπ+π− invariant mass spectrum [16] and later other experiments confirmed
the state [17–20]. The quantum numbers were determined as JPC = 1++,
which was later confirmed by LHCb [21]. The state has isospin zero but its
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1. Heavy-light tetraquarks

Figure 1.1.: Experimental spectrum in the charmonium energy region with
Quark-model-like cc̄ states (black solid lines), together with ex-
otic states with I = 0 (red lines with 3 dashes) and I = 1 (blue
lines with 4 dashes).
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1.1. Physics overview

I(JPC) width [MeV] seen hadronic decays (%)

X(3872) 0(1++) <1.2

ωJ/Ψ (> 2.3)
D0D̄∗0 (> 30)
D0D̄0π0 (> 40)
π+π−J/Ψ (> 3.2)

X(4140) 0(1++) 22 φJ/Ψ

X(3915) 0(0++/2++) 20 ωJ/Ψ

Zc(3900) 1(1+−) 28.2 πJ/Ψ
DD̄∗

Zc(4430) 1(1+−) 181 π+J/Ψ
π+Ψ(2S)

Y (4260) 0−(1−−) 55 J/Ψππ
J/ΨKK

Y (4360) 0−(1−−) 96 Ψ(2S)π+π−

Y (4660) 0−(1−−) 72 Ψ(2S)π+π−

X(4020)/Z(4020) 1+(??−) 13 hc(1P )π±
(D∗D̄∗)±

Zc(4200) 1+(1+−) 370 J/Ψπ+

Y (4230) 0−(1−−) 59
hcπ

+π−

hcπ
+π−

ωχc0

Y (4390) 0−(1−−) 140 hcπ
+π−

Table 1.1.: Collection of exotic candidates in the charmonium mass region. The
states above the line are listed in the PDG, the ones below are listed
but "omitted from summary table".
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1. Heavy-light tetraquarks

branching ratio in J/Ψπ+π− with possible intermediate ρ resonances is quite
large compared to the known isospin violating decays in the charmonium region,
see [22] and references in there. Possible explanations could be the u− d quark
mass difference, electromagnetic effects due to their different charges as well
as strong ω-ρ mixing. The X(3872) lies close to the DD̄∗ threshold, probably
below. That would indicate a positive binding energy, which is expected for a
DD̄∗ molecule. A detailed line shape analysis will be possible at PANDA at
FAIR [23].
The X(4140) was first discovered in B− → J/ΨφK− in 2009 by the CDF

collaboration [24] in pp̄ collisions. We will later identify it with the strange
partner of the X(3872). Towards this end an analysis in J/Ψφ and DsD̄

∗
s

with Belle and BaBar data will hopefully shed more light on the nature of the
X(4140), as well as other hidden strangeness candidates [25].
The Z states carry JP = 1+. The authors of [22] distinguish between states

of type I (that were found in B-meson decays and have a larger width) which
would be the Z(4430) and Z(4200). A type II state (lies closely above threshold,
has a small width) is for example the Z(3900). This distinguishes them from
the X(3872) which is very narrow and probably below threshold and therefore
a perfect candidate for a molecule, as we will discuss in subsection 1.1.2.

These isotriplet states are candidates for hidden-charm tetraquarks, since
they come in isospin multiplets. A molecular interpretation is unlikely, since
most Z states do not appear slightly below decay thresholds. We are interested
especially in the ground state, which would be the Z(3900). It was found in
Y (4260) decays in the J/Ψπ subsystem and firstly discovered by BESIII [26] in
e+e→π+π−J/Ψ at 4.26 GeV, which is the production threshold of the Y (4260).
The mass was obtained from a fit to the π±J/Ψ invariant mass spectrum. Later
it was confirmed by BELLE [27] with a different technique.
No experimental candidate for open-charm tetraquarks has been found

yet, but we can adjust our theoretical setup and predict their masses. They
have quark content ccq̄q̄ and therefore, as the name suggests, carry a charm
quantum number which is not 0. They can be made out of:

• two heavy-light mesons cq̄ and cq̄. We also call this heavy-light meson
meson (HLM),

• a heavy diquark cc and a light antidiquark q̄q̄. We also call this diquark-
antidiquark (DI).

They should be detectable in meson-meson decays, not in meson antimeson as
the hidden-charm tetraquarks. Also, a decay into charmonia is not possible.
These states come in "unusual" diquark-like isospin multiplets (because the
isospin is carried by a diquark), where for example the charges are (0,+,++)
for the isospin triplet. We will return to this point in section 1.4 when we
construct explicit tetraquark amplitudes.

1.1.2. Interpretation of exotics as four-quark states
The interpretation of exotic states as tetraquarks is an active research area, for
recent reviews see [4,22,28–31]. These tetraquarks are bound states of the strong
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1.1. Physics overview

interaction and could therefore be one (or a mixture) of the following: hybrids,
glueballs, two, four or even higher quark states. Four-quark components might
be dominant for the states we have discussed so far, because their decays into
charmonium plus light mesons, or two open-charm mesons. This would be
a direct "falling apart" of the four-quark components. Also, some states are
charged and suggest a cc̄ and a light charged qq̄ as building blogs.

An important question remains: What is the internal structure of these four-
quark states? As already mentioned, there are three possible sub-clusters:
hadro-charmonium (HC), heavy-light meson meson (HLM) and
diquark-antidiquark (DI). Consequently, there mainly exist three classes of dif-
ferent approaches, that assume one of these structures is dominant within the
four-quark state:

• mesonic molecules are narrow and they describe a loose binding of
narrow, heavy-light constituents via short range interactions and light-
meson exchange. The resulting molecule lies close to the respective two-
particle threshold. A prominent candidate is the X(3872), see [4] for
details.

• diquark-antidiquark states are reviewed for example in [28]. This de-
scribes the binding of two colored objects.

• hadro-quarkonium [32]: Some exotic states in table 1.1 were so far
only found in charmonium + light meson systems, which triggers this
idea. The picture related to hadro-charmonium (HC) is a heavy-quark
core surrounded by a cloud of light mesons.

Another approach that can distinguish between different sub-clusters is lat-
tice QCD, where one can combine different operators that correspond to the
scenarios mentioned above. Also, in our approach all components are poten-
tially present and the system decides dynamically which ones dominate. All
approaches have a different resulting spectrum and mass hierarchy and we will
discuss them in more detail next.

Lattice QCD

We give a short introduction to lattice QCD hadron spectroscopy based on [33].
The object of interest when computing hadron properties in lattice QCD are
Euclidean correlators of the form:

Cij = 〈0|Oi(t)O†j(0)|0〉 =
∑
n

Zni Z
∗n
j e−Ent, (1.1)

where Zni = 〈0|O|n〉, O and O† are creation and annihilation operators. From
the eigenvalues λn ∝ e−Ent of the correlation matrix C one can extract all
finite-volume energies with the quantum numbers of the operator, while the
relations to the infinite-volume states are non-trivial. Given the energy lev-
els Ei, several methods exists to extract the infinite volume scattering matrix.
Lüscher’s method [34, 35] is the most rigorous one. Another approach is to
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1. Heavy-light tetraquarks

JPC state

1−− Y (4260), Y (4360)

1−+ ηc(4310)

0−+ ηc(4140), ηc(4320)

2−+ ηc2(4350)

Table 1.2.: Predicted spectrum of the hadro-charmonium model in [43].

extract a potential and obtain the phase shift from solving a Schrödinger equa-
tion, as already mentioned in section 1.1. Lattice QCD can primarily determine
finite-volume energies, but can also provide a qualitative understanding of the
states nature by examining overlaps of certain states to certain operators.

When it comes to hadron spectroscopy current studies are plagued by a num-
ber of problems, some of which are: small volumes and the continuum limit,
coarse lattices and a large pion mass. Furthermore, the rigorous Lüscher for-
malism is not yet known for all systems and also far from being applied in every
study.
As for exotics, the first lattice study of the X(3872) was done in 2013 [36],

where a candidate for the X(3872) was found in the 0(1++) channel. No state
was found for I = 1, which was also confirmed in [37,38]. The non-existence of
the Z(3900) is further supported by [38,39]. This is confirmed by a later study
[40], where a large base of operators including diquark-antidiquark operators
was used. It was found that including a cc̄ operator is crucial for the X(3872)
to be seen. A charmed partner for the X(3872) (possibly the X(4140)) was
not found, neither was a candidate for the Z(3900). The non-existence of the
X(4140) in J/Ψφ is also supported by [41]. A recent study [15] investigated
the charmonium energy region including meson-meson and diquark-antidiquark
operators, which were found to have a small impact on the resulting energy
levels. The study does not support the overall existence of narrow or bound
diquark-antidiquark states in the charmonium region at all. However, all of
these studies are plagued with one or multiple of the problems mentioned above.
Therefore, it is safe to say that none of the statements above are final and further
studies have to be conducted.

Models of four-quark states assuming a dominating structure

In the following we give an overview of some models that are frequently dis-
cussed in the literature for describing the exotics discussed in the previous
section. We base this discussion on [42].

Hadro-charmonium A number of states, for example the Y (4260), Z(4430),
Y (4360) and Y (4660) were found in J/Ψππ,Ψ(2S)π,Ψ(2S)ππ, respectively,
but not in decays to open-charm mesons. In the hadro-charmonium picture
introduced in [44] these decays seem quite natural. The states are described
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1.1. Physics overview

I(JPC) M [MeV ] Γ[GeV ]

D 0− 1865 0

D∗ 1− 2007 0.1

D1 1+ 2420 30

D∗2 2+ 2460 50

JPC lowest threshold

0−+ D∗D1

1−− DD̄1

0++/1+±/2++ DD̄∗

Table 1.3.: Left: candidates for constituents of hadronic molecules. right: low-
est lying threshold in each channel. The 0++ channel does not allow
a DD̄ molecule bound by one-π exchange due to parity.

as a heavy-quark core surrounded by a light-quark cloud. Heavy-quark spin
symmetry (HQSS) [45] (which is exact in the limit of infinitely heavy quarks)
should approximately be conserved in these type of processes. The consequence
is that the spin of the heavy-quark system is conserved in its decays. This
means that a four-quark state with given spin Scc̄ of the subsystem of the cc̄
charmonium should decay only into a charmonium plus light meson pair with
the same spin Scc̄ of the resulting charmonium. The Y (4260) is found in J/Ψππ
for example, which means its core should be a Ψ ∝ 1−−cc̄ ⊗ 0++

qq̄ . However, its
appearance in the hcπ+π− cross section alongside the Y(4360) calls for another
component Ψ′ ∝ 1+−

cc̄ ⊗ 0−+
qq̄ [43] and a mixing between those two states. Via

the spin partners of the states due to HQSS this picture leads to a number of
predictions listed in table 1.2. ηc(4140) and ηc(4320) are also mixed states.

Molecule The molecular interpretation assumes a binding between two color-
neutral objects and is originally inspired by the proton-neutron binding inside
the deuteron. Often, one-pion exchange potentials combined with some short
range part are employed, where the latter allows for either isospin I = 0 or
I = 1 for the resulting molecular state [42]. For such a bound state to be
formed, the constituents themselves need to be narrow. Intuitively the state
cannot be bound if the range of the interaction is short compared to the decay
width of the constituents. That limits the available D mesons to the ones shown
in table 1.3. That immediately explains some of the features of the states: The
1++ state as DD̄∗ should be narrow and at the DD̄∗ threshold just like the
X(3872). The Y (4260) sits at the D1D̄∗ threshold and has much larger width,
which could be due to replacing the D∗ with a D1 meson that itself has a
larger width. It also explains the mass gap between the 1+, the 1− and the
0−+ channels (see figure 1.1), since the lowest lying possible molecule with the
constituents listed in table 1.3 for each channel are: DD̄∗, DD̄1, D∗D̄1. Further
testable predictions for this scenario are the non-appearance of states in the
0−+ channel below D∗D1 as well as a J = 3 state close to the D2D̄∗ threshold.

Tetraquark models Some tetraquark models consider interactions between
quarks and antiquarks in all combinations [46,47], whereas others assume diquark-
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1. Heavy-light tetraquarks

M0(1+) [MeV ] M1(1+) [MeV ] M1(0+) [MeV ]

Karliner [52] 3882(12)

Junnarkar [53] 3849(11) -

Eichten [54] 3978 4167 4146

Table 1.4.: We compare open-charm states from references [52–54]. "-" means
that an investigation was performed and no binding occured.

and anti-diquark constituents. As mentioned in the introduction, in the liter-
ature the word "tetraquark" often stands for this type of bound state. We use
it as a synonym for "four-quark state". The idea of bound diquark and antidi-
quark has already been applied to the light scalar mesons in the 70’s [2] and
gained a revival with the discoveries of the exotics in the charmonium energy
region. In [48] potentials between quarks and between diquarks are constructed
and the resulting equations for diquarks and diquark-antidiquarks are solved.
A simple and often discussed model was introduced in [49] and introduces

an effective hamiltonian with spin-spin interactions and couplings and yields
a mass formula that consequently depends on spin and angular momentum of
the diquarks as well as the coupling parameters. It was later extended [50] to
include a quark-spin interaction within the diquarks. A feature of this model
is a very rich spectrum. Every state in principle appears as an isosinglet and
triplet with degenerate masses. The model predicts 4 · 6 = 24 s-wave states
with (2)0++, 1++, (2)1+−, 2++ quantum numbers and 4 · 14 = 56 p waves with
quantum numbers (2)0−+, 0−−, (4)1−−, (2)1−+, (2)2−−, (2)2−+, 3−−. The
numbers in parenthesis indicates how many states with this quantum number
exist and it is only written down, if it is unequal to one. Recently the same
model was reconsidered with a tensor force term added that changes the mass
formula and seems to resolve the unexpected feature of decreasing tetraquark
mass for increasing total spin [51]. With the right parameters some of the
known states, such as Z(3900), Z(4020), X(3872), as well as possibly four Y
states and the X(3915) and X(3940) can be identified with the states predicted
by the model. However, there are many more states predicted that have not
been found so far.

The open-charm states

The open-charm and open-bottom states should predominantly be seen in de-
cays to a heavy-light meson and another heavy-light meson in experiment, not
to a heavy-light meson and a heavy-light antimeson pair, where one finds the
hidden-charm and hidden-bottom states.
Especially the heavy-light bottom tetraquarks with quark content bbq̄q̄ re-

ceived a lot of attention in recent years, since they are promising candidates
for deeply bound and narrow states. See for example [55–58]. However, some
studies about open-charm tetraquarks exist:
Open-charm tetraquarks should be stable in the heavy-quark limit as laid out

16



1.1. Physics overview

in [54]. In this reference the open-charm tetraquarks are related to the masses
of QQq and Qqq baryons and Qq̄ mesons, where Q and q stand for a heavy-and
light quark, respectively. Model calculations are used for the masses of QQq,
whereas the others are taken from experiment. A feature of this phenomeno-
logical approach is that the isospin I = 1 state is heavier then the I = 0 state
in the axialvector channel; another is that the spin triplet of 0+, 1+, 2+ states
are very close in mass.
Within a study using QCD sum rules [59] no current describing open-charm

tetraquarks with quark content ccq̄q̄ with JP = 0+ or JP = 1+ lead to a bound
state. In contrast, the authors find several ccs̄s̄ states.
Some lattice studies exist [60], where evidence for an attractive interaction

in the 0(1+) channel, but probably not in the I = 1 channel, is found. A recent
work [53] suggests no binding for spin zero states, but energies below threshold
for spin one states, which indicates binding. We compile some results in table
1.4 for an overview of these different approaches.

Tetraquarks in the DSE BSE approach

Throughout this chapter we work with the DSE-BSE framework in the rainbow-
ladder (RL) truncation. The framework is fully relativistic, non-perturbative
and can (together with a truncation scheme) be derived from QCD, as is shown
in sections 1.2 and 1.3. We solve a genuine four-body BSE where quarks and
antiquarks interact via the exchange of gluons [3]. So, a priori we have no
information about HLM, HC or DI components. However, the tensor basis
for the tetraquark amplitude carries that information. In the following we ex-
pand it with respect to meson-meson and diquark-antidiquark components and
the equation will determine dynamically which components are important dur-
ing the solution process. For the hidden-charm tetraquarks all three clusters:
HLM, HC and DI are present in the tetraquark amplitude and we can succes-
sively switch on and off sub-clusters to investigate their impact on the resulting
tetraquark mass. Furthermore, different terms within one sub-cluster can ap-
pear. The 0(0++) cqq̄c̄ state, for example, contains DD̄ and D∗D̄∗ terms in its
amplitude and their impact can be investigated.
The possible terms in a tetraquark amplitude are determined by its quan-

tum numbers I(JP (C)) and symmetry constraints. The cqq̄c̄ tetraquarks obey
charge-conjugation symmetry, whereas the ccq̄q̄ tetraquarks respect the Pauli
principle, which will lead to different terms in their amplitude. We discuss this
in detail in section B.1.1.
In the following we will start with the QCD lagrangian and build up the

DSE-BSE framework step by step.
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1. Heavy-light tetraquarks

1.2. General concepts in QCD

QCD is the theory of the strong interaction, for a pedagogical introduction see
for example [61]. Its basic fields carry a color charge and are the massive quarks
and massless gluon fields that mediate the interaction. Although quarks carry
a mass, it is quite small in comparison to their "constituent" mass in hadrons.
This is a consequence of chiral symmetry breaking: Chiral symmetry appears
in the limit of vanishing quark masses and is therefore broken explicitly by the
quark masses but is broken spontaneously as well. This leads to dynamical
mass generation of quarks within hadrons.
These hadrons are, in contrast to the fundamental fields, color neutral and

quarks and gluons only appear confined into these colorless bound states. One
possible implementation of confinement is a linear rising potential. In such a
scenario one needs to add more and more energy to drag a quark-antiquark pair
apart from each other, until eventually there is enough energy for the creation of
another quark-antiquark pair out of the vacuum, which results in two colorless
bound states instead of a spatially separated quark-antiquark pair.
QCD is a strongly coupled theory, which means the coupling is small only for

large momenta which leads to the notion of asymptotic freedom. In contrast to
QED, for example, a perturbative expansion in the coupling at small momenta
can therefore not be meaningful and one needs other tools to extract hadron
properties from QCD. One such tool are the DSEs. They are the exact equa-
tions of motions of a field theory and can be used for investigating fundamental
phenomena as well as phenomenology. They are an infinite set of coupled inte-
gral equations that connect all n-point functions of the theory. Together with a
truncation of the infinite tower of equations they can be used to self-consistently
calculate fundamental propagators and vertices. These can afterwards serve as
input into BSEs that themselves deliver a variety of information about the
bound states and resonances of the theory at hand.

1.2.1. Generating functionals

Generating functionals are a useful tool and the DSEs can be derived from them.
An introduction to the path integral formalism and generating functionals can
be found in [62]. Given the action S(φ) for a set of fields φ of a field theory, we
can define the generating functional Z:

Z[J ] =
ˆ
Dφ e−S+

´
x J(x)φ(x), (1.2)

where J(x) is the set of corresponding sources to those fields. We use Euclidean
conventions analoguous to [63] (see equation 3.10 therein). The physics is en-
coded in the n-point functions of the theory, which are vacuum expectation
values of time ordered products of fields. Those can be obtained from the gen-
erating functional by functional derivatives with respect to the sources J(x)
via

18



1.2. General concepts in QCD

〈f〉 = 〈0|Tf(φ)|0〉 = f

(
δ

δJ

) ∣∣∣∣∣
J=0

Z[J ]
Z[0] . (1.3)

T stands for the time ordering and f is a general polynomial of the set of fields
φ. Z[J ] as we have defined it so far creates the connected n-point functions.
One can now define the effective action Γ via a Legendre transformation from
the functional W:

W [J ] = ln(Z[J ]), Γ[φ̃] =
ˆ
x
J(x)φ̃−W [J ]. (1.4)

By definition the "average field" φ̃ =< φ(x) >J is the vacuum expectation
value of φ in the presence of the source J . The derivatives of Γ produce one-
particle irreducible (1PI) n-point functions. One can now calculate the vacuum
expectation value in the presence of a source J :

〈f(φ)〉J = f

(
δW [J ]
δJ

+ δ

δJ

)
= f

(
φ̃+
ˆ
y

∆xy[φ̃] δ

δφ̃(y)

)
. (1.5)

This formula should be read in the following way: replace every occurrence of
φ in f with the expression in parentheses1. We used the abbreviation:

∆xy[φ̃] =
(

δ2Γ[φ̃]
δφ̃(x)δφ̃(y)

)−1

.

1.2.2. QCD Lagrangian
The QCD lagrangian L is constructed via imposing local SU(3) color symmetry
on the quark fields Ψ and Ψ̄, which transform according to

Ψ′ = UΨ, Ψ̄′ = Ψ̄U †. (1.6)

U stands for a SU(3) color transformation. Thereby the massless color octet
gluon field, Aµ(x) =

∑
aA

µ
ata with ta = λa/2 and λa the Gell-Mann matrices,

is introduced. It transforms according to:

A′µ = UAµU
† + i

g
U∂µU

†, F ′µν = UFµνU
†, (1.7)

where we have defined the gluon field strength tensor Fµν = ∂µAν − ∂νAµ −
ig[Aµ, Aν ], with the coupling g. It can be rewritten as

Fµν = F aµνta = (∂µAaν − ∂νAaµ + gfabcA
b
µA

c
ν)ta,

1See [64] for a pedagogical derivation and further details.
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1. Heavy-light tetraquarks

where fabc are the structure constants of SU(3). With this definition, the QCD
Lagrangian in Minkowski space is

LM = Ψ̄(x)(i /D −m)Ψ(x)− 1
4F

a
µνF

µν
a . (1.8)

We suppressed the color and Dirac indices of Ψ and a sum over different quark
flavors is implied. Dµ = ∂µ − igAµ is the covariant derivative and m the quark
mass.
In the QCD path integral we integrate over all field configurations φ, however,

some configurations are related by gauge transformations and hence are phys-
ically equivalent. The Faddeev-Popov method [65] removes that redundancy.
As a consequence unphysical ghost fields and a gauge parameter ζ are intro-
duced. Physical observables have to be independent of the gauge parameter,
but n-point functions are in general not independent. In our calculations we
will work in Landau gauge, where ζ → ∞. Furthermore, we introduce renor-
malization constants for the quark, gluon and ghost fields, as well as mass and
vertex renormalization:

Ψ =
√
Z2ΨR, A =

√
Z3AR, c =

√
Zc cR,

m = ZmmR, g = ZggR,
(1.9)

where the subscript R stands for renormalized quantities. After the transfor-
mation to Euclidean space we finally arrive at the Lagrangian:

L = Z2Ψ̄(/∂ + Zmm)Ψ− iZgZ2
√
Z3gΨ̄ /AΨ + Z3

2 Aaµ(−∂2δµν + ∂µ∂ν)Aaν+

ZgZ
3/2
3 gfabcA

µ
bA

ν
c∂

µAνa + Z2
gZ

2
3
g2

4 f
abef cdeAµaA

ν
bA

µ
cA

ν
d+

Zcc̄∂
2c2 + ZcZg

√
Z3gf

abcc̄a∂µ(Ac,µcb),
(1.10)

where c is the ghost field and we have dropped the subscript R for convenience.
From this form of the Lagrangian we can read off the tree level QCD propagators
and vertices: The quark, gluon and ghost propagator together with the ghost,
three and four-gluon vertices.

1.2.3. DSEs

The DSEs were introduced by Dyson and Schwinger already in 1950 [66, 67].
A pedagogical derivation for the quark, gluon and ghost DSEs can be found
in [68], see also [69]. QCD applications are reviewed among others in [70–73]
and in Minkowski space in [74]. One way to derive DSEs is via a master DSE
that follows from the invariance of the path integral under a shift of the fields:
〈 δS[φ]
δφ(x)〉J = J(x). In connection with (1.5) one obtains the master DSE:

Γ′x[φ̃] = δS

δφ

(
φ̃+
ˆ
y

∆xy[φ̃] δ

δφ̃(y)

)
. (1.11)
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1.2. General concepts in QCD

Figure 1.2.: The quark DSE is shown. The blue dot stands for the full quark-
gluon vertex and the white dots for dressed quark and gluon prop-
agators.

The notation again means replacing the field φ with the content of the paren-
theses. The quark propagator for example now is defined as W ′′xy[J ]. From the
master-DSE (1.11) and

ˆ
y
W ′′xy[J ]Γ′′yz[φ̃] = δ4(x− z) (1.12)

we can now derive the DSE for the inverse quark propagator via a second deriva-
tive. After a transformation to momentum space the result is schematically:

S−1(p) = S−1
0 (p) + Σ(p),

or in more detail:

S−1(p) = Z2(−i/p+ Zmm) + g2Z1fCf

ˆ
q
Dµν(p− q)Γµ(q, p)S(q)γν , (1.13)

where we defined Z1f = ZgZ2Z
1/2
3 . We present the equation graphically in

figure 1.2. The full inverse quark propagator is given by the bare inverse prop-
agator plus a self-energy term. We drag an additional factor of i · g out of the
dressed quark-gluon vertex so that we can later model a renormalization point
independent quantity2 and take the color trace resulting in Cf = 4/3. S stands
for the dressed renormalized quark propagator, Dµν for the dressed renormal-
ized gluon propagator, and Γµ for the derivative of the effective action with
respect to Ψ, Ψ̄ and Aaµ and the shorthand

´
q is written out in the appendix,

see A.1.
The quark propagator is an important ingredient for the bound state calcu-

lations in this thesis and we will come back to it in section 1.3, where we will
later introduce a model for the unknown quantities Γµ and Dµν to solve for S.

1.2.4. BSEs and T-matrices
In the following we will introduce the BSEs for n-particle bound states. There-
fore, we introduce first G(n), which is the n-point function with n incoming and
n outgoing quarks. It fulfills the Bethe-Salpeter equation [75]:

G(n) = G
(n)
0 +G

(n)
0 K(n)G(n). (1.14)

2See equation 3.22 in [63].
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1. Heavy-light tetraquarks

K(n) stands for the scattering kernel, G(n)
0 is the direct product of n dressed

quark propagators. K(n)G
(n)
0 for example implies loop integrals and contrac-

tion of Dirac-and color indices. The amputated connected counterpart T (n) is
defined as:

G(n) ≡ G(n)
0 +G

(n)
0 T (n)G

(n)
0 (1.15)

and it obeys a scattering or Dyson equation:

T (n) = K(n) +K(n)G
(n)
0 T (n). (1.16)

One can recursively plug the right hand side of the equation into itself to receive
an infinite summation of the scattering kernelK(n) with propagators in between.
As mentioned before, the physics of the theory is encoded in these n-point

functions: Poles of G(n) or T (n) in the squared total momentum variable P 2

correspond to bound states for P 2 ∈ R and resonances for P 2 ∈ C. It is
for that reason desirable to determine these pole locations, since they provide
information about the mass and width of the physical states. For a given
scattering kernel one could now go ahead and calculate the quantities G or T
directly and this has been done, see [8] for a recent example. It is, however,
more convenient to calculate only the properties at the poles and not the whole
quantity in practice. If one evaluates equation (1.16) near the pole location

T (n) P 2→−M2
−−−−−−→ Γ(n)Γ̄(n)

P 2 +M2 ,

one arrives at the homogeneous BSE [76]:

Γ(n) = K(n)G
(n)
0 Γ(n). (1.17)

Γ(n) stands for the residue of T (n) at the pole location. An extensive review
including a derivation and early applications is [77].
We are in this thesis interested in solving two and four-body BSEs for mesons

and tetraquarks, respectively. The solution technique for these type of equations
is simply explained: We transform the equation into an eigenvalue problem, see
appendix 1 for details, and find the point P 2

phys where the eigenvalue λi(P 2 =
P 2
phys) = 1, where P is the total momentum of the bound state. The mass

and possibly the width can then be extracted from the real and imaginary
part of P 2

phys. While the above condition is fulfilled for real P 2 for a bound
state, a resonances has a pole in higher Riemann sheets and lies above some
decay threshold. Therefore, one needs advanced methods including contour
deformation and a suitable analytic continuation to access the eigenvalue curve
on higher sheets. We will do this for the ρ and σ resonance in chapter 2.

An alternative way to obtain the pole location is to look directly for its
position using an inhomogeneous BSE. It is easily constructed from equation
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1.2. General concepts in QCD

(1.14) after projecting with a Dirac-flavor tensor Γ0 representing the desired
quantum numbers [78]. If we define Γ̂(n) = G(n)Γ(n)

0 we can solve for the pole
of Γ̂(n) in the inhomogeneous BSE:

Γ̂(n) = Γ(n)
0 +K(n)G

(n)
0 Γ̂(n). (1.18)

Γ̂(n) has a pole whenever KG0 has unit eigenvalue, which can be seen in the
symbolic solution:

Γ̂(n) = Γ(n)
0

1− (KG0)(n)
, (1.19)

which confirms what we already know from the homogeneous BSE.

Consistent kernel and self-energy We know now what BSEs look like. How-
ever, it is still unclear how a suitable kernel can be constructed. A connection
to the DSEs we discussed in the last section can be made via the nPI formalism.
It goes back to [79] and is similar to introducing sources and derivatives we used
in the path integral to derive vacuum-expectation values for n-point functions.
However, one introduces bilocal and trilocal sources etc. and derivatives for
terms with higher field order. The connection between 2PI and quark-antiquark
BSEs is pedagogically explained in [78]: The kernel is the double derivative of
the interacting part of the 2PI effective action and consequently the derivative
of the self-energy, which we schematically write down as:

δΣ
δS

= K(2), (1.20)

where K(2) is the two-body kernel, S the quark propagator and Σ again the
self-energy that appeared in equation (1.13). In the rainbow-ladder truncation
we will introduce in section 1.3, the scattering kernel can be constructed in
that way and it automatically fulfills the axial-vector Ward-Takahashi identity
(AVWTI):

(
γ5Σ(p−) + Σ(p+)γ5

)
αβ

= −
ˆ
q
K

(2)
αγ,δβ(p, q, P )

(
γ5S(q−) + S(q+)γ5

)
γδ
.

(1.21)
Here q± = q ± P/2, where q and p are relative momenta and P is the total
momentum. The AVWTI in its original form can be found for example in
equation 4.27 in [80]. One can recast it into the form given here by use of the
quark DSE and the inhomogeneous meson BSE (1.18) for the pseudoscalar and
axialvector vertex.
This way, the correct properties in the chiral limit are ensured as we will see

in the example of the pion in section 1.3. The full four-body kernel K(4) we will
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1. Heavy-light tetraquarks

use for the tetraquark equation consists of irreducible two, three and four-body
interactions denoted by K ′(i) i = 2, 3, 4:

K(4) = K ′(4) +K ′(3) +K ′(2). (1.22)

We will come back to its exact form in section 1.4.

Previous work The method of using DSEs and BSEs for calculating bound
state properties (see [81,82] for detailed reviews on the technique) is an old idea
and has been applied to baryons and mesons, see [80] and references therein.
(We will discuss mesons in particular in sections 1.3.3 and 2.1.2.) The frame-
work has also been applied to glueballs [83], tetraquarks [3,84] and hybrids [85].
We will in the following discuss a common truncation scheme, the rainbow-
ladder truncation (RL).
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1.3. Rainbow-ladder truncation and Maris-Tandy model

1.3. Rainbow-ladder truncation and Maris-Tandy model

1.3.1. Kernel and self-energy

Earlier in this section we have presented the quark DSE (1.13), which is up
to this point an exact equation of QCD. However, the gluon propagator Dµν

and the quark-gluon vertex Γµ fulfill their own DSEs, which couple to higher
derivatives of the effective action themselves. This leads to an infinite set of
coupled equations. The RL framework we use in the following was introduced
in [86] and models the combination of quark-gluon vertex and dressed-gluon
propagator in Landau gauge to obtain a decoupled quark DSE that can be
solved for the quark propagator. With the approximation Γµ(p, k)→ γµΓ(k2),
the gluon-dressing function Z, the coupling g and the renormalization constants
Z2 and Zc from equation (1.9), the Maris-Tandy model reads:

g2Z(k2)Γ(k2)
ZcZ2

≡ G(k2) = 4π2


x2η7e−η

2x +

2γm

1− e
−k2

4m2
t


ln
[
τ +

(
1 + k2

Λ2
QCD

)2
]

, (1.23)

where x = k2/Λ2, γm = (12/(11Nc − 2Nf )), Nc = 3, Nf = 4, mt = 0.5
GeV, τ = e2 − 1 and ΛQCD = 0.234 GeV as well as the parameter η and
scale parameter Λ. The first term on the right hand side of equation (1.23)
determines the infrared behavior while the second term ensures the one-loop
renormalization group structure of QCD [87].
The combination on the left hand side of the equation is renormalization

point (µ) independent and therefore a good quantity to model and it absorbs
all unknowns in the Quark DSE, as we can see after using the Landau gauge re-
lation 1 = ZgZc

√
Z3 and plugging the gluon propagator Dµν(k) = Tµν(k)Z(k2)

k2

into equation (1.13):

S−1(p, µ) =Z2(µ2,Λ2)(−i/p+mZm(Λ2))+ (1.24)

Z2
2 (µ2,Λ2)Cf

ˆ Λ

q

G(k2)
k2 Tµνk γµS(q, µ)γν ,

where

k = p− q, Tµνk = δµν − kµkν

k2

and m is the renormalized quark mass. We explicitly showed the dependence
of the renormalization constants on the scale µ and the cutoff Λ that is used
for the q2 integral above, see A.1.

The equation comes with two renormalization conditions A(µ) = 1 and
B(µ) = mq, where mq is the quark mass. Therefore, the parameters in the
model are η,Λ and the quark masses mu,ms and mc, which are fixed from
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1. Heavy-light tetraquarks

experimental input. In our case we use mπ, fπ,mD + m∗D and mDs + mD∗s to
reproduce the experimental values. Cf evaluates to 4/3.
As discussed before we need a consistent scattering kernel with this approxi-

mation of the quark self-energy. The field independence of the vertex makes it
easy to impose (1.20). Graphically one can cut the self-energy with respect to
the quark line, since the vertex is quark propagator independent in our trun-
cation. The result is the scattering kernel which is guaranteed to preserve the
AVWTI (1.21). This procedure ensures chiral-symmetry breaking is present.
The resulting kernel is a dressed one-gluon exchange:

K(2)(k) = −Z2
2
G(k2)
k2 Tµνk

[(
λi

2 γ
µ

)
⊗
(
λi

2 γ
ν

)]
, (1.25)

where λ stands for the Gell-Mann matrices. A pedagogical treatment of the
connection of Σ and K(2) from the 2PI formalism can be found in [80] around
Eq. (3.101). The scattering kernel K(2) is the two-body interaction of quarks
within mesons and tetraquarks.

1.3.2. Quark propagator
The quark propagator is now the only unknown in the quark DSE of equation
(1.24) that is shown graphically in figure 1.2. In general, the inverse dressed
quark propagator has two dressing functions that depend on the squared mo-
mentum σv(p2), σs(p2) and can be defined in terms of these two dressing func-
tions:

S−1(p, µ) = −i/p σv(p2, µ2) + σs(p2, µ2). (1.26)

In terms of the widely used A,B dressing functions, they are given by:

σv(p2, µ2) = A(p2, µ2)
A2(p2, µ2)p2 +B2(p2, µ2) , σs(p

2, µ2) = B(p2, µ2)
A2(p2, µ2)p2 +B2(p2, µ2) .

One can now solve (1.24) by iteration with the renormalization conditions men-
tioned above, to obtain A(p2), B(p2), Z2 and Zm at the renormalization point
µ, which we choose as µ = 19 GeV.
In the RL truncation, the quark propagator develops complex conjugated

poles, as can be seen from the absolute value of σv, which is shown in the left
panel of figure 1.3. The analytic structure within different models has been
investigated in [88]. In the right panel one can see different solutions for the
quark-mass function which is defined as M(p2) = B(p2)/A(p2). The results
show a strong enhancement of the mass in the infrared, which is a consequence
of dynamical chiral symmetry breaking. This effect is particularly strong for
the chiral and light quarks, which have zero and a very small current-quark
mass for large momenta, respectively.

1.3.3. Mesons and diquarks
qq̄ states have been investiagated in the bottomonium [89–91], light [92–94],
charmonium [89, 90] as well as the heavy-light sector [95–97] in the BSE-DSE
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1.3. Rainbow-ladder truncation and Maris-Tandy model
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Figure 1.3.: Left: The quark propagator is shown for complex values of p2. One
can see complex conjugated poles. Right: The solution for the
quark-mass function M = B/A is shown as a function of p2.

framework. While the spectra can be described quite well for bottomonium and
reasonably for charmonium, the situation gets worse for the light-light sector.
However, there seems to be a common pattern for all the systems above: The
(isotriplet) pseudoscalar and vector mesons come out reasonably well, whereas
especially the axialvector and scalar states do not. As we will see in detail
in section 2.1, the pseudoscalar and vector states are the Quark-model s-wave
states, whereas the scalar and axialvectors are p waves in the Quark model.
The defficiency of the RL model in the latter channels is also seen in other
studies [98] and is probably due to the oversimplification of the quark-gluon
vertex, where other structures beyond the γµ component are neglected in the
RL truncation.
Diquarks also appear as bound states in the RL truncation [99], which will

later be crucial for our diquark-antidiquark components in the tetraquark, be-
cause we calculate the diquark masses consistently from the qq BSE without
the need for additional model input.
Important for our purpose are mainly pseudoscalar and vector cq̄, qq̄, cc̄ states

as well as scalar and axialvector qq, cq, cc diquarks, since they are part of our
tetraquark scalar and axialvector amplitudes in the form of intermediate meson-
meson components. The calculation of heavy-light states containing c and q
quarks is plagued by some technical difficulties, which we will explain after
introducing the BSE.

BSE We have presented the homogeneous BSE in equation (1.17) and the RL
kernel for quark-antiquark interactions in (1.25). The homogeneous BSE for
J = 0 (J = 1) qq̄ states consequently reads:

Γ(µ)
αβ (p, P ) =

ˆ
q
K

(2)
αα′β′β(q − p)Sα′α′′(q+)Γ(µ)

α′′β′′(q, P )Sβ′′β′(q−), (1.27)

where S is the quark propagator, K(2) the two-body kernel, p, q are relative
momenta and P is the total momentum. Also, we have suppressed all color
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Figure 1.4.: The homogeneous (left) and inhomogeneous (right) solutions for
the RL 0(0++) state are shown. The eigenvalue curve hits λ(M =
Mqq̄) = 1 and v(P 2) = f1(p2 = 0, z = 0, P 2) has a pole at M =
Mqq̄, where z = p̂ · P̂ and p, P stand for the relative and total
momentum, respectively. The hat denotes unit vectors.

indices. The other momenta are:

q+ = q + σP, q− = q − (1− σ)P.

We introduced the momentum partitioning parameter σ. The amplitude Γ(µ)

can be written as:

Γ(µ)(p, P ) =
∑
i

fi(Ω)τ (µ)
i ⊗ ΓC ⊗ ΓF . (1.28)

The explicit structure of the flavor ΓF and Dirac part τ (µ)
i depend on the

quantum numbers of the state. For qq̄ states a general construction is given
in [100] and a pedagogical discussion can be found in [101]. With respect to
color, quarks and antiquarks combine via 3⊗ 3̄ = 1⊕ 8 and the color part ΓC
is proportional to 1 for physical qq̄ states. Neutral equal-mass mesons carry
definite charge conjugation property while diquarks obey the Pauli principle.
As a consequence of the flavor-blind RL kernel of equation (1.25), the flavor

amplitude drops out after taking the flavor trace. For the ρ and σ meson we
discuss in chapter 2, as well as for the tetraquark calculations we perform later
in this chapter, we need a scalar, pseudoscalar and vector-Dirac basis and we
collect them all in table 1.5.
The Dirac basis elements τi depend on two quark momenta or equivalently

on a relative and total momentum q and P . The dressing functions depend on
the set of Lorentz invariants Ω = {q2, q ·P, P 2}. We work in the rest frame and
can accordingly choose the four-momenta as:
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1.3. Rainbow-ladder truncation and Maris-Tandy model

τµ1 τµ2 τµ3 τµ4 τµ5 τµ6 τµ7 τµ8

1−− Gµ3 τµ1 /t iGµ1 −izτµ3 /t (3Gµ2 −G
µ
3 ) zτµ5 /t z(Gµ4 −G

µ
1 ) τµ7 /tz

−1

τ1 τ2 τ3 τ4

0−+ γ5 γ5 /̂P z/̂p⊥γ5 i/̂p⊥ /̂Pγ5

0++ 1 z /̂P /̂p⊥ i/̂p⊥ /̂P

Table 1.5.: Dirac basis for mesons with quantum numbers JPC = 0−+ and 0++

with γµ⊥ = TµνP γν , /̂p⊥ = tαβP p̂αγβ and Dirac basis for the 1−− vector
meson. Gµ1 = (p̂µ)⊥, Gµ2 = Gµ1 ./̂p⊥, G

µ
3 = γµ⊥, G

µ
4 = γµ⊥/̂p⊥, /t = /̂P and

z = p̂ · P̂ .

pµ =
√
p2


0
0
z̄
z

 , qµ =
√
q2


0
z̄qȳq
z̄qyq
zq

 , Pµ =


0
0
0
iM

 . (1.29)

We introduced the angles z, zq, yq ∈ [−1, 1], with x̄ =
√

1− x2. M is the mass
of the bound state.

Quarks in the BSE The quark propagators dressing functions in (1.27) are
sampled at q2

± ∈ C, which is a parabola in the complex plane for fixed M . This
parabola is limited by the poles in the quark propagators’ dressing functions
that we have seen earlier in figure 1.3. The situation is shown in figure 1.5:
The apex is at −M2σ2 and the width of the parabola is proportional to σ. The
optimal σ for equal mass quarks is 1

2 . σ can be varied for unequal quark mases
to optimize for a maximal M that one can put into the BSE.

Solutions As already mentioned, we use the Nystrom method [102] to solve
the integral equation (1.27) as an eigenvalue problem. Details can be found in
the appendix A.2.2. We employ a Gauss-Legendre quadrature in all variables
except the angle zq, where a Gauss Tschebychev quadrature (see section A.2.1)
is more suitable because of the factor

√
1− z2

q from the spherical coordinates of
equation (A.1). We can alternatively solve the inhomogeneous equation (1.18)
for a pole in the amplitude, which we will also do in chapter 2. We use the
biconjugate gradient stabilized algorithm (bicgstab) from [103], since it is more
stable and shows better convergence properties then power iteration [81]. The
comparison of the methods is shown for a σ calculation in figure 1.4. In the
left panel we see that the eigenvalue curve crosses one at the same point Mσ,
where a pole emerges in the amplitude v(M) = f1(p2 = 0, z = 0,M) when we
solve the inhomogeneous equation.
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Figure 1.5.: Left: The quark propagator dressing functions A and B are sam-
pled within a parabola (grey shaded area) during a bound state
calculation. The dots are the quark-propagator poles shown in fig-
ure 1.3 for a heavy and light quark Q and q, respectively. A clever
choice of the partitioning parameter σ can allow a bigger Mmax.
Two parabolas with different partitioning parameters are shown.
Right: We show the squared pion mass as a function of the quark
mass.

For any realistic truncation of QCD it is of great importance that chiral
symmetry breaking is implemented. The Gell Mann-Oakes-Renner relation

f2
πm

2
π = mu +md

2
〈
ūu+ d̄d

〉
shows, how the pion mass and decay constant mπ and fπ relate to the quark
masses mu,md and the quark condensate 〈q̄q〉 ∝

´
p TrS(p), where S(p) is the

quark propagator. One can see that the pion acquires mass by explicit chiral
symmetry breaking, due to the non zero quark masses, in combination with
dynamical chiral symmetry breaking, due to the non vanishing trace of the
quark propagator. For vanishing quark masses mu and md the pion should
become massless, which it does in the RL truncation, see the right panel of
figure 1.5.

Heavy-light mesons and diquarks

Heavy-light meson systems have been investigated in the RL framework and
beyond within certain approximations [95–97]. The discriptions share two com-
mon problems:
Firstly, one can not directly access the physical D meson masses where the

eigenvalue λ(M = MD) = 1 in the RL truncated BSE of equation (1.27). Let
us understand why: The BSE involves two quark propagators that are sampled
in the complex plane during the solution process. For two quarks q and c the
pole positions in the complex plane are different, as indicated in the left panel
of figure 1.5. Due to those poles, there is a maximal Mu and Mc that the quark
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1.3. Rainbow-ladder truncation and Maris-Tandy model

parabolas can access, before hitting the quark poles:

q2
± = q2 − σ2

±M
2
u,c + 2i

√
q2σ±Mu,c,

where σ+ = σ and σ− = 1 − σ. Since the quark poles are calculated from the
DSE in our case, Mq and Mc are an inherent property of the RL truncated
system. These conditions translate into conditions for the maximal mass Mmax

of the meson whose BSE is solved:

Mmax ≤
Mu

σ
, Mmax ≤

Mc

(1− σ) ,

where Mc � Mu and the choice σ = 1/2 that was optimal for equal-mass
mesons, produces a very small Mmax in this case. We improve the situation by
the following technique: We choose an optimal momentum partitioning param-
eter σ that maximizes Mmax:

σ = Mq

Mu +Mc
, 1− σ = Mc

Mu +Mc
, (1.30)

which results in the condition Mmax ≤Mu +Mc. Effectively, we assign a large
fraction of the complex momentum P to the c quark and a small fraction to
the q quark, which allows for an overall higher Mmax. The situation is shown
in the left panel of figure 1.5. Both parabolas are as close as possible to their
respective poles, which means each one absorbs a maximum amount of the total
momentum P .
Although Mmax is now closer to the physical D meson mass, λ(M) = 1

can still not be reached for M < Mmax. Therefore, we calculate a mass curve
Mcq̄(mq) with optimal partitioning for every point on the curve. For sufficiently
large mq we will find the point where the eigenvalue curve λ(mq)(M) = 1 for
M < Mmax. We perform a fit to those points and evaluate it at the point
M

(fit)
cq̄ (mq = mu) to obtain the heavy-light meson mass at the physical point

Mcū, which is not accessible directly.
A second obstacle lies in the simultaneous description of light and charm

quantities, which involves physics at different scales and is not trivial without
further adjustment of our model parameters Λ and η, which we would like to
avoid. Therefore, we use the typical value Λ = 0.72 GeV for the scale parameter,
matched to reproduce the experimental value of the pion decay constant fπ,
and η = 1.8, throughout all the calculations (including the tetraquarks) in this
chapter. It is then however not possible to describe the D,D∗, Ds and D∗s
mesons correctly individually and we compromise in the following way: The
charm quark mass mc is determined by the condition that the sum mD +mD∗

equals the sum of the experimental masses [1]. The strange quark mass ms is
determined analogously for mDs +mD∗s . The results for cq̄, cc̄, qq̄ 0−+ and 1−−
states, as well as the scalar and axialvector diquarks are collected in table 1.6.
We work in the isospin symmetric limit, where mu = md and the RL kernel
applied in equation (1.27) is flavor independent. That leads to the light meson
and diquark masses being independent of the flavor structure (for example
mρ = mω = mV ), as well as mD+ = mD− = mD0 and so on.
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1. Heavy-light tetraquarks

mq̄ mPS mV mS mA

qq̄ 3.7 138(3) 732(1) 802(77) 999(60)

cq̄ 3.7 1802(2) 2068(16) 2532(90) 2572(8)

cs̄ 91 1911(3) 2169(14) 2627(82) 2666(7)

cc̄ 795 2792(6) 2980(6) 3382(15) 3423(8)

Table 1.6.: RL results for qq̄, cq̄, cs̄ and cc̄ meson and diquark masses (in MeV).
mq̄ is the input current-quark mass The column mPS contains the
masses of π, D, Ds and ηc, the columnmV those of ρ/ω, D∗, D∗s and
J/ψ, and the columns mS and mA list the corresponding diquark
masses. The errors quoted are obtained by varying η = 1.8± 0.2.

Figure 1.6.: The full four-body BSE is scatched. Half-circles and boxes repre-
sent the tetraquark amplitude and irreducible two, three and four-
body interactions of the Bethe-Salpeter kernel, respectively. The
white dots indicate dressed quark propagators.

1.4. Tetraquark BSE and amplitude

1.4.1. Tetraquark BSE

The full tetraquark kernel K(4) was defined in equation (1.22) and it contains
irreducible two, three and four-body interactions as shown in figure 1.6. The
equation we will solve in the following is obtained by keeping the two-body part
K ′(2) from (1.22) only, as previously done in [3]. This further approximation is
made to reduce complexity. The non-inclusion of three-body forces is well jus-
tified in the baryon sector [80] and one could argue that the neglection of three
and four-body forces in the tetraquark case is justified a posteriori considering
the importance of the emerging two-body sub-clusters in [3].

In the following we will abbreviate the four-body Bethe-Salpeter amplitude
Γ = Γ(4), the product of four dressed-quark propagators by G0 = G

(4)
0 and

K ′ = K ′(2), where K ′(2) was defined in equation (1.22) and stands for the
irreducible two-body part of the full four-body kernel. The tetraquark BSE we
work with is:

K ′G0Γ = λΓ, (1.31)
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1.4. Tetraquark BSE and amplitude
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Figure 1.7.: Four-quark BSE for a cqq̄c̄ system in the (12)(34) configuration;
the remaining (13)(24) and (14)(23) permutations are not shown.
The half-circles and boxes represent the tetraquark amplitude and
Bethe-Salpeter kernel, respectively. White dots indicate dressed
quark propagators. Figure published in [5].

where the eigenvalue of the K ′G0 operator appears after the application of
the Nystrom method, see section A.2.2, analogous to the two-body BSE we
discussed in the previous section. K ′ is given by:

K ′ = K ′12,34 +K ′13,24 +K ′14,23 (1.32)

K ′a,a′ = K(2)
a (G(2)

0 )−1
a′ +K

(2)
a′ (G(2)

0 )−1
a −K(2)

a K
(2)
a′ , (1.33)

where a, a′ denote qq, q̄q̄ or qq̄ pairs. K ′(2)
13 for example stands for the rainbow-

ladder (RL) truncated two-body kernel in equation (1.25) connecting quark one
and antiquark three. The equation is given graphically in figure 1.7, where we
show only K ′12,34. The equation can be rewritten as a Faddeev-Yakubovsky
equation [104]. We use the explicit form of (1.32) to avoid overcounting and
to ensure separability of the four-body correlation function obtained from one
channel aa′ only and thus the absence of residual color forces between widely
separated clusters [84,105,106].

1.4.2. General tetraquark amplitude
Tetraquark amplitude and symmetries Before solving the tetraquark BSE
that we discussed in the last section, one needs to specify the quantum numbers
and set up a basis for the tetraquark amplitude. The most general amplitude
for a J = 0 (J = 1) tetraquarks is:

Γ(µ)(p, q, k, P ) = Γ(µ)
D (p, q, k, P )⊗ ΓC ⊗ ΓF, (1.34)

where ΓC ,ΓF and ΓD stand for the color-, flavor-and Dirac parts, p, q, k and P
for the relative-and the total momentum, respectively. The Dirac part

Γ(µ)
D (p, q, k, P ) =

N∑
i=1

fi(Ω) τ (µ)
i (p, q, k, P ) (1.35)

has dressing functions fi(Ω) that depend on all Lorentz invariant combinations
of the four-vectors p, q, k, P , which we abbreviate Ω = {p2, q2, k2, p · q, p · k, q ·
k, p · P, q · P, k · P}. N depends on the quantum numbers. N = 768(48) for
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1. Heavy-light tetraquarks

the axialvector and N = 256(16) for the scalar tetraquark, where the number
in parenthesis indicates the momentum-independent s-wave tensors. For more
details on the partial-wave decomposition see the appendix B.1.3. τ (µ)

i are Dirac
tensors and will be specified in the following.

A tetraquark amplitude has definite spin and parity, dictated by the under-
lying Poincare group structure. The relevant operator is the Pauli-Lubanski
operator:

Wµ = 1
2ε

µναβP̂ νJαβ, (1.36)

where the eigenvalue of W 2 is j(j + 1) and j is the total spin. Details for the
similar case of the nucleon can be found in appendix 3 of [107]. The parity
operators for the J = 0 and J = 1 tetraquarks are

P(τ1 ⊗ τ2)ab,cd = (γ4τ1 ⊗ γ4τ2)ab,cd(Λp1,Λp2,Λp3,Λp4),
P (τ1 ⊗ τ2)µab,cd = Λµν (γ4τ1 ⊗ γ4τ2)νab,cd (Λp1,Λp2,Λp3,Λp4),

(1.37)

respectively. Λ = diag(−1,−1,−1, 1), γ4 is the Euclidean gamma matrix de-
fined in section A.1, (τ1 ⊗ τ2)(µ)

ab,cd(p1, p2, p3, p4) is one of the tetraquark-basis
elements τ (µ)

i (p, q, k, P ) from equation (1.35) and p1...p4 are the momenta of
quark 1...4. The relation between the quark momenta p1...p4 and the relative
momenta p, q, k and the total momentum P will be given in equation (1.47).

Like for mesons and diquarks, there are two different symmetries for hidden
and open-charm tetraquarks, respectively. Neutral hidden-charm tetraquarks
have a definite charge conjugation quantum number. We abbreviate the charge-
conjugation operator for hidden-charm tetraquarks with quark content cuūc̄,
with CC. Its action on a tetraquark amplitude Ψ, is

CCΨabcd
αβγδ(p1, p2, p3, p4) = Cαα′Cββ′Cγγ′Cδδ′P14P23Ψabcd

α′β′γ′δ′(p1, p2, p3, p4)
= Cαα′Cββ′Cγγ′Cδδ′Ψdcba

δ′γ′β′α′(p4, p3, p2, p1),
(1.38)

where we denote Dirac indices with Greek letters and combine color-and flavor
indices into the super indices a, b, c, d for better readability. Pij stands for a per-
mutation of all indices: color, Dirac, flavor and momentum. This is graphically
a permutation of the quark legs. C is the charge conjugation matrix.
For open-charm tetraquarks with quark content ccq̄q̄, particles one and two

are identical, as well as particles three and four. Therefore, Pauli symmetry
has to be imposed on both identical-particle pairs:

P12Ψ = P34Ψ = −Ψ. (1.39)

If one of the Pauli or charge-conjugation symmetries is present, all parts of the
amplitude have a definite transformation property under this symmetry. The
flavor quantum numbers depend on the symmetry group, which is SU(2) plus
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1.4. Tetraquark BSE and amplitude

M1 M2 D

(cqq̄c̄)αβγδ (cq̄)αγ(qc̄)βδ (cc̄)αδ(qq̄)βδ (cq)αβ(q̄c̄)γδ
(ccq̄q̄)αβγδ (cq̄)αγ(cq̄)βδ (cq̄)αδ(cq̄)βδ (cc)αβ(q̄q̄)γδ

Table 1.7.: The different ways of pairing up the quarks to a tetraquark ampli-
tude are shown. The indices α, β, γ, δ in this case stand for Dirac,
color and flavor space.

charm in our case. That introduces the isospin quantum number I. However,
our tetraquark kernel is flavor blind. Therefore, the main purpose of the flavor
part is to set the quark masses and dictate how the ΓD ⊗ ΓC part has to
transform under Pauli and charge-conjugation symmetry. We will see that this
will have important consequences for open-charm tetraquarks.

Dirac basis After we discussed the relevant symmetries we will now present
explicit bases for the tetraquark amplitudes. For now we need a JP = 0+ and
1+ Dirac basis. Throughout this work we restrict the Dirac part to s waves
only, which requires a partial wave decomposition. We define:

Λ± =
1± /n4

2 , Ωω ⊗ Ωω′ ∈ {1, εγ5},

where n4 is the normalized total momentum and ε ∈ {−1, 1} a contraction of
transverse orthonormal four-vectors, defined in the references given in appendix
B.1.3. Therewith the resulting basis for JP = 0+ can be cast into a compact
form:

τn(p, q, k, P ) = Γj Λλ Ωω γ5C ⊗ CTγ5 Ωω′ Λλ′ Γk. (1.40)

It contains 256 elements from Γj ∈ {1, /n2, /n3, /n4}, where n1...n3 are orthonor-
malized relative momenta, which are also defined in the references given in
appendix B.1.3. In the following we restrict ourselves to s waves only. In that
case, the remaining bases for JP = 0+ and JP = 1+ follow from the replace-
ments:

0+ : Γj ⊗ Γk ∈ {1⊗ 1,
√

1/3γµT ⊗ γ
µ
T }, (1.41)

1+ : Γj ⊗ Γk ∈ {γµ⊥ ⊗ 1, 1⊗ γ
µ
⊥, ε ε

µαβγ nγ4 γ
α ⊗ γβ}, (1.42)

where γµ⊥ = TµνP γν and TµνP is the transverse-momentum projector with respect
to the total momentum P of the tetraquark.

We are equipped with a basis for the tetraquark now, however, there are 3
possibilities of combining the two quarks and two antiquarks to a tetraquark
tensors, that we call D,M1 and M2. We present them for the hidden and
open-charm tetraquark in table 1.7.
Each way of combining quarks makes one of the three classes of diagrams of

the kernel (1.32) look like a meson or diquark with two spectator quarks, which
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1. Heavy-light tetraquarks

is desirable. We will call this the "home basis" of this class of diagrams and we
choose the basis for τ (d)

αβγδ(p, q, k, P ) in the decomposition d ∈ {D,M1,M2} as
follows:

D : (Γj Λλ Ωω γ5C)αβ(CTγ5 Ωω′ Λλ′ Γk)γδ,
M1 : (Γj Λλ Ωω γ5)αδ(γ5 Ωω′ Λλ′ Γk)βδ, (1.43)
M2 : (Γj Λλ Ωω γ5)αδγ5 Ωω′ Λλ′ Γk)βγ ,

with the replacements of (1.41) for the J = 0 tetraquark and the replacements
of (1.42) for the J = 1 tetraquark. For the home bases of the "meson-like"
diagrams we do not need the C matrices. We can transform between these
bases via the Fierz transformations defined in the appendix B.1.4 and are free
to use the basis that is most suitable for a given class of diagrams from equation
(1.32).

With the home bases for D,M1 and M2 set up, our strategy for solving the
tetraquark BSE will be the following: Calculate each of the 9 diagrams in (1.32)
in its home basis, transform back to a common basis and add up the 9 diagrams
in this common basis. We will come back to this in section 1.4.4.

Color basis In terms of color we demand that the physical states form a color
singlet, obtained from 3 ⊗ 3 ⊗ 3̄ ⊗ 3̄ = (3̄ ⊕ 6) ⊗ (3 ⊕ 6̄) = 1 ⊕ 1 ⊕ .... In
contrast to the meson case one gets two color singlets. They depend on the
way of spanning the basis. In the diquark-antidiquark configuration one gets
the singlets from 3̄⊗ 3 and 6⊗ 6̄, whereas in the meson-meson decompositions
they follow from: 1⊗ 1 and 8⊗ 8. The color bases in M1,M2, D are given by
{C11, C88}, {C′11, C′88}, {C3̄3, C66̄}, where

(C11)ABCD = 1
3 δAC δBD, (C′11)ABCD = 1

3 δAD δBC (1.44)

and the other singlets are related to them by Fierz transformations:

C3̄3 = −
√

3
2 (C11 − C′11), C66̄ =

√
3
8 (C11 + C′11), (1.45)

C88 = C11 − 3 C′11
2
√

2
, C′88 = C

′
11 − 3 C11

2
√

2
. (1.46)

The relevant color traces for our calculations are given in appendix B.1.2.

Momenta and partitioning As we have seen, the tetraquark amplitude of
equation (1.34) depends on four momenta p1...p4, one for each (anti-) quark.
It is convenient to work with three relative momenta and the total momentum
instead:
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1.4. Tetraquark BSE and amplitude

p = p23 − p14
2 +

(1
2 − σ14

)
P,

q = p13 − p24
2 +

(1
2 − σ24

)
P,

k = p12 − p34
2 +

(1
2 − σ34

)
P,

P =
∑
i pi.

(1.47)

Above we introduced the shorthand xij = xi + xj . We have introduced mo-
mentum partitioning parameters σi for each quark and antiquark momentum.
If the full basis is included, the result should be independent of the choice of
partitioning parameters. Note that they sum to unity:

∑4
i σi = 1. The pa-

rameters will be useful for heavy-light calculations since that shifts the probed
parabolas that are sampled by the quarks in the complex plane and can there-
fore allow one to go to higher bound state masses, just as in the meson case we
showed in figure 1.5. We will also use it to avoid the singularities introduced
by intermediate meson-meson and diquark-antidiquark poles.
The shorthand notation pij makes the meaning of the relative momenta quite

clear. For example q is the relative momentum between the two meson sub-
clusters (13) and (24). P is the total momentum of the tetraquark amplitude.
The inverse mapping reads:

p1 = k + q − p
2 + σ1P,

p2 = k − q + p

2 + σ2P,

p3 = −k + q + p

2 + σ3P,

p4 = −k − q − p2 + σ4P

(1.48)

and we choose the four-vectors to be:

P =
√
P 2


0
0
0
1

 , k =
√
k2


0
0
z̄k
zk

 , q =
√
q2


sin(α)ȳq z̄q
cos(α)ȳq z̄q

z̄qyq
zq

 , p =
√
p2


0

ȳpz̄p
z̄pyp
zp

 ,
(1.49)

where we again used ā =
√

1− a2, zi, yi ∈ [−1, 1], α ∈ [0, 2π]. P is chosen to be
in the rest frame which is equivalent to having only a fourth component. We
introduced six angles and four length variables, which correspond to the ten
Lorentz invariants we need to describe the set Ω that the dressing functions
depend on. For given P 2 the nine remaining ones are:

Ω = {p2, q2, k2, p · q, p · k, q · k, p · P, q · P, k · P} (1.50)
= {p2, q2, k2, ω3, ω2, ω1, η1, η2, η3}.

Since one needs to setup a grid in all these variables, the solution of the full
tetraquark amplitude is a numerically extremely demanding task. A strategy
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1. Heavy-light tetraquarks

to simplify the system without the loss of information is to introduce variables,
which form multiplets of the permutation group S4 [108]. One obtains a singlet,
a doublet and two triplets:

S0 ≡
p2 + q2 + k2

4 , D0 ≡ S0

(
a
s

)
, T0 ≡ S0

uv
w

 T1 ≡
√
S0P 2

u′v′
w′

 ,
(1.51)

where the entries of the multiplet vectors are:

a =
√

3q
2 − p2

4S0
, s = p2 + q2 + k2

4S0
, (1.52)

u = −ω1 + ω2 + ω3
4S0

, v = −
√

2ω1 + ω2 − 2ω3
4S0

, ω =
√

6ω1 − ω2
4S0

,

u′ = −η1 + η2 + η3√
12S0P 2 , v′ = −η1 + η2 − 2η3√

24S0P 2 , ω′ = η1 − η2√
8S0P 2 .

An advantage of these variables is that a multiplet transforms only into itself
under S4 transformations, which also encodes the Pauli and charge-conjugation
symmetry we discussed earlier. The amplitudes in (1.34) can then be written
as fi(S0, D, T0, T1), consequently one can switch off groups of variables without
destroying these symmetries.
Using S4 variables it was found in [3] that the scalar tetraquarks depend

mainly on S0 and D. When retaining S0 only, the mass of the σ was found to
be roughly 1500 MeV. When the doublet variables were allowed to dynamically
contribute also, the four-quark BSE dynamically generates meson-meson and
diquark-antidiquark poles in the fi(S0, D) in all theD,M1,M2 topologies. Since
one needs to integrate over the dressing functions this effectively introduces
decay thresholds, which is a mechanism that ensures the tetraquark to be a
resonance, which is naturally built into equation (1.31). These dynamically
generated intermediate pion poles bring the mass down from 1500 to 400− 500
MeV.

Solution with the general tetraquark amplitude In principle, one can go on
and solve the tetraquark BSE from here. Details of the solution algorithm are
described in [109]. However, the method introduces some obstacles:

• the number of grid points necessary for the nine-dimensional dressing
functions fi(Ω) is huge,

• complications arise due to the dynamically generated two-body poles in
the fi,

• poles appear in the integration domain as soon as M > 2mπ or whatever
the lowest-lying threshold is. Therefore, one can obtain the eigenvalue
curve λ(M) of equation (1.31) only for M < 2mπ on the real axis.

In addition, we would like to identify physical components in the tetraquark
amplitude to understand their contributions, as we laid out in the introduction.
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1.4. Tetraquark BSE and amplitude

1.4.3. Physical tetraquark amplitude

The idea of this section is now to anticipate the dynamically generated two-
body poles and approximate the dressing functions by a residue that depends
only on S0 times a product of those two-body poles:

f(S0, D, T0, T1)→ f(S0)P1P2,

where the two-body poles P1 and P2 depend on S0, D and the respective pole
masses m1 and m2. This approximation will not allow other poles to be dy-
namically generated in the remaining residue f(S0), because a pole term would
depend on the doublet variables a and s from equation (1.51) and the residue
does not depend on them anymore. On the other hand, the findings of [3]
provide confidence, that the equation would produce these poles dynamically
anyway and that important physics should be governed by our ansatz.
The remaining question is which poles will appear in which tensor structures

of the tetraquark amplitude. It can be answered by solving the relevant meson
and diquark BSEs. For example, a pion will have poles in the γ5

αβ ⊗ 1AB
component (and the three other components from table 1.5). Therefore, a π⊗π
component in the tetraquark would have a pole in (γ5⊗γ5)αγ,βδ⊗ (1⊗1)AC,BD
component and the pole would be P (mπ,mπ)13,24, with

P (m1,m2)ab,cd = 1
(pa + pb)2 +m2

1

1
(pc + pd)2 +m2

2
(1.53)

for a qα,Aqβ,B q̄γ,C q̄δ,D tetraquark. Note also that the pole appears in the total
momenta of the quark-antiquark pairs. Since we thereby assume that this pole-
residue structure captures the relevant momentum dependences of the dressing
functions, we have the freedom to choose the external grid in the variables on
which the dressing functions do not depend on. To do so, we choose

{kµ, pµ, qµ} = 2§0√
3
{eµ1 , e

µ
2 , e

µ
3} , Pµ = iM eµ4 , (ei)µ = δiµ. (1.54)

This simplifies the system and reduces the computational effort while preserv-
ing the structure of the otherwise dynamically generated intermediate particle
poles, which produce the decay channels and the resonance structure of the
states we investigate. Once again, our goal here is to mimic the behavior of the
full equation as good as we can by putting in only those terms that would arise
dynamically based on the findings in [109].
There are now two types of tetraquarks we want to describe:

• The hidden-charm tetraquarks (cqq̄c̄) obey charge-conjugation symmetry.
They contain heavy-light diquark and antidiquark, HLM and HC compo-
nents.
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1. Heavy-light tetraquarks

• The open-charm tetraquarks ccq̄q̄, by contrast, are Pauli-symmetric in
both, the quark and the antiquark pair. They carry a different diquark-
antidiquark component, that is made out of a heavy-heavy diquark and a
light-light antidiquark. Furthermore, they contain HLM components. A
separate HC component is not possible anymore, since there is no c̄ and
no q quark present.

Flavor basis for open and hidden-charm tetraquarks The flavor structures
for hidden-charm tetraquarks are constructed from pairing a light quark with
a light antiquark SU(2) ⊗ SU(2) = 1 ⊕ 3 resulting in {uū − dd̄, ud̄, dū} and
uū+ dd̄. These are the usual "mesonic" isospin multiplets.

Similarly for the open-charm tetraquarks and SU(2)⊗SU(2) provides {ūd̄+
d̄ū}, ūū, d̄d̄ and an isosinglet ūd̄ − d̄ū. The charges for these open-charm
tetraquarks are: (+,0,++) for the I = 1 and (+) for the I = 0 states, respec-
tively. Although the ccūū has charge zero it does not fulfill charge conjugation
symmetry because of the charm quantum number. The flavor amplitudes for
isospin I = 0 and I = 1 tetraquarks, are:

F0 = 1√
2

(uū+ dd̄)c̄, F1 =


ud̄

1√
2c(uū− dd̄)c̄

dū

 , (1.55)

F̃0 = 1√
2
cc[ū, d̄], F̃1 =


d̄d̄

1√
2cc{ū, d̄}
ūū

 , (1.56)

where the tilde marks the open-charm tetraquarks and [.. , ..], {.. , ..} denote
antisymmetrization and symmetrization, respectively.

Dirac and color basis expansion: meson-meson and diquark-antidiquark In
practice, we systematically write down all possible terms in an amplitude with
quantum numbers JPC given our pole residue structure. Furthermore, we only
include the lightest intermediate meson and diquark terms from the RL spec-
trum with their leading tensor structure, because they will have the highest im-
pact on the tetraquark mass. Those are the pseudoscalar and vector mesons (in
both meson channels) and we will build up the tetraquark meson-meson parts
from combinations of those. The lightest diquark-antidiquark components are
scalar and axialvector diquarks. We discussed the calculation of heavy-light
meson and diquark states in section 1.3.3 and their masses are given in table
1.6. Now we proceed in the following way:
1) Write down all possible combinations. The terms that arise when the

leading components of pseudoscalar and vector mesons (scalar-and axialvec-
tor diquarks) are coupled are collected in table 1.8. Take for example the
0+ tetraquark term built from pseudoscalar-pseudoscalar mesons. The lead-
ing pseudoscalar structure is γ5. Consequently we get γ5 ⊗ γ5 as the leading
tetraquark structure.
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1.4. Tetraquark BSE and amplitude

JP meson-meson diquark-antidiquark

0+ ps-ps γ5 ⊗ γ5 sc-sc γ5C ⊗ CTγ5

0+ v-v γµ⊥ ⊗ γ
µ
⊥ ax-ax γµ⊥C ⊗ CTγ

µ
⊥

1+ ps-v γ5 ⊗ γµ⊥ sc-ax γ5C ⊗ CTγµ⊥
1+ v-v γµ⊥ ⊗ γν⊥P̂ σεµνρσ ax-ax γµ⊥C ⊗ CTγν⊥P̂ σεµνρσ

Table 1.8.: Collection of possible elements in the tetraquark amplitude in each
channel.

2) For a given JP (C) we take all meson-meson components in the M1 and M2
decomposition from the table and all diquark-antidiquark components that can
combine to the given spin. If we for example describe a 0++ tetraquark we take
the first two rows into account. We include the meson terms in both M1 and
M2 which for the ps-ps would be: γ5

αγγ
5
βδ and γ5

αδγ
5
βγ .

3) We symmetrize the Dirac part to have the correct symmetry under charge
conjugation (or Pauli symmetry for the open-charm tetraquarks). Because the
symmetry properties of the flavor-and color part, as well as those of the dressing
functions are fixed, we know for a given state what symmetry we have to impose
on the Dirac part. For our 0++ example the flavor structure F0 (isospin zero)
has positive charge conjugation symmetry, as does the dressing function f(S0).
That means the combination of Dirac-and color part needs positive charge con-
jugation. In the M1 channel, for example, the color structure C11 has positive
charge conjugation which requires positive charge conjugation for the Dirac
part. We generally achieve this by symmetrising the tensor structure with the
operator 1 + CC. It is not necessary in our example, but we can nevertheless
apply the operator:

(1 + CC) γ5
αδγ

5
βγ = 2γ5

αδγ
5
βγ .

The charge conjugation operator above was defined in equation (1.38).
4) Now each structure comes with the product of two-body poles in this chan-

nel just as we discussed in the example. Thus, we multiply each tensor structure
with the correct pole of equation (1.53) with the pole mass we calculated from
the two-body equation (1.27). The relevant pole masses are collected in table
1.6. The parameters of the Maris-Tandy model we introduced in equation (1.23)
are Λ = 0.72 GeV and η = 1.8 ± 0.2. We work in the isospin symmetric limit.
Therefore, for example mD+ = mD− = mD0 = 1802 MeV. The charm quark
mass is fixed by mD+mD∗ = 3870 MeV, which is the sum of their experimental
masses [1]. The strange quark mass is likewise fixed from mDs + mD∗s = 4080
MeV.
In our example the pole would be: P (mps,mps)13,24. We end up with the

pseudoscalar-pseudoscalar tensor structure in the M1 decomposition:
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2γ5
αδγ

5
βγP (mps,mps)13,24C11F0f(S0).

We now go on and do this for all the other couplings within the M1 decom-
position and afterwards for all couplings in M2 and D. It is not possible to
symmetrize every structure for every quantum number. A D∗D̄∗ component
for example is possible in the 1+− but not in the 1++ channel, because of the
symmetry constraints. We thereby obtain an amplitude for every quantum
number we are interested in, that we call Γphys. The resulting amplitudes are
collected in "human-readable" form in table 1.9 and in full glory in the appendix
B.2. A detailed derivation can be found in the appendix of [6].
Note that this is just a different way of spanning the basis compared to the

general amplitude we used in equation (1.34). If one added enough components,
the full basis would be retrieved. When we solve the tetraquark BSE, we project
Γphys onto the s-wave basis we selected in the previous chapter in equations
(1.41) and (1.42).

1.4.4. Solution technique of the four-body equation
Calculating eigenvalue curves from the BSE We solve the four-body equation
(1.31) in the RL truncation as an eigenvalue problem as described in section
1.3. As a result we obtain the eigenvalue curve λ(M) as we have already
demonstrated for the two-body case in figure 1.4.
Firstly, we fix the index ordering of all tensor structures of Γphys that is given

for the different quantum numbers in table B.2, to a common one. That can be
done by the Fierz transformations given in appendix B.1.4. Which ordering we
pick (αβγδ for example) does not matter, the result will be independent of that
choice. Afterwards we project Γphys onto the s-wave basis given in equation
(1.41) and (1.42), project on the dressing functions and use Feyncalc [110] to
precalculate the traces that are necessary to set up the kernel matrix. To solve
the eigenvalue problem

Kij(M)Γj = λ(M)Γj ,

where i and j are super indices, we use an iterative Krylov Schur solver which is
implemented in the SLEPc library [111]3 in a highly efficient and user friendly
manner. It is necessary to use improved algorithms compared to the simple
power iteration for instance, which will not converge in the tetraquark case.
Now we can calculate the eigenvalue curve λ(M) as a function of the tetraquark
mass.
Unfortunately, just as in prior tetraquark calculations of [3, 84] the range of

M is limited. M appears in all four-quark propagators as well as all interme-
diate meson-meson and diquark-antidiquark poles that are part of our physical

3One constructs the action of the kernel matrix on the amplitude Γnj → Γ(n+1)
j . That means

the matrix never has to be constructed explicitly. We use spline interpolation from alglib
for the necessary interpolation in the S0 variable [112].
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1.4. Tetraquark BSE and amplitude

I(JPC) HLM HC DI

cqq̄c̄ 0(0++) DD, D∗D∗ J/Ψω, ηcη SS, AA

1(0++) DD̄, D∗D̄∗ J/Ψρ, ηcπ SS, AA

0(1++) DD̄∗ −D∗D̄ J/Ψω SA−AS

1(1++) DD̄∗ −D∗D̄ J/Ψρ SA−AS

0(1+−) DD̄∗ +D∗D̄, D∗D̄∗ J/Ψη, ηcω SA+AS,AA

1(1+−) DD̄∗ +D∗D̄, D∗D̄∗ J/Ψπ, ηcρ SA+AS,AA

I(JP ) HLM DI

ccq̄q̄ 0(0+) - -

1(0+) DD, D∗D∗ AA

0(1+) DD∗ −D∗D, D∗D∗ AS

1(1+) DD∗ +D∗D AA

Table 1.9.: cqq̄c̄ and ccq̄q̄ amplitudes and their physical content, where for the
cqq̄c̄ states DD̄ = D0D̄0 ±D+D− (and analogously for D∗D̄∗ and
DD̄∗) with "+" for the I = 0 state and "−" for the I = 1 states. For
the ccq̄q̄ states DD = D0D0 ± D+D− (and analogously for D∗D∗
and DD∗) with "−" for the I = 0 state and "+" for the I = 1 states.
The difference between open and hidden-charm tetraquarks is due
to their different flavor tensors, that were given in equation (1.55):
F0,1 for the cqq̄c̄ I = 0, 1 states, and F̃0,1 for the I = 0, 1 ccq̄q̄ states,
respectively. The full amplitudes in mathematical form are given in
section B.1.1 in the appendix.
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amplitude. That poses a set of conditions that depend on the intermediate
states, M and the partitioning parameters. An example for a system with only
one meson-meson threshold in the M1 channel, is:

M <
Mc

2σ1
, M <

Mq

2σ2
, M <

Mq

2σ3
, M <

Mc

2(1−
∑3
i σi)

,

M <
m13
σ13

, M <
m24
σ24

,

(1.57)

where we used σij = σi +σj . Mq and Mc are the light and charm-quark masses
that describe the apex of the parabola in figure 1.5.
For equal quark masses the optimal choice of the partitioning parameters is

σi = 1/4. Since we do not have four equal quark masses in the system, we
are looking for a new optimal partitioning. Given all the thresholds, one can
formulate conditions for the quark poles and for the intermediate meson poles
and optimize the set of equations with respect to σ1, σ2, σ3 to obtain Mmax.

Usually it is sufficient to introduce just one partitioning parameter ζ = 1
2 −

σ1 = σ2 = σ3 to reach Mmax. In that case we can interpret ζ as the fraction
of the complex momentum P from equation (1.49) that goes through the light
quarks, while 1 − ζ is the fraction going through the charm quarks. In that
case the solution might generally be non-unique. We use the resulting plateau
of Mmax(ζ) to estimate the error from the momentum partitioning in section
1.5.
Whenever the tetraquark mass Mtetra < Mmax we explicitly find the point

where the eigenvalue curve crosses one: λ(Mtetra) = 1. If that is not the case
we need to extrapolate the eigenvalue curve to the point where λ(M) = 1.
For consistency we always use a quadratic fit wherever the eigenvalue curve
cannot be obtained at the physical point, consult figure B.1 in the appendix
for an example. The extrapolation range can potentially be large, depending
on how low the lowest threshold is. We are aware that naive extrapolation over
decay thresholds is dangerous [113] and we try to minimize the extrapolation
dependence with the procedure described in the following.

Evaluating the eigenvalue curves If we find a bound state at the physical
point, as for the hidden-charm scalar for example, we do not need any kind
of fitting4. For all other cases we extrapolate down the quark mass curve
Mtetra(mq). We start from the point Mccc̄c̄ where we usually find a bound
state pole, and go down in mq until the eigenvalue curve λ(mq)(M) does not
hit λ(mq)(M) = 1 for M ≤ Mmax anymore. Then we apply a linear fit to
these points5 and evaluate the fit at the light-quark mass to obtain the physical
result6.

4Since the error when varying the partitioning parameter is large and we prefer a consistent
approach to all channels, we still apply the method described here as well as the direct
calculation

5If for a given mq we need to extrapolate only a short distance we include these points as
well.

6 mq can directly be related to mπ and thereby our procedure is very similar to the one
sometimes applied for lattice calculations at unphysical pion masses.
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1.4. Tetraquark BSE and amplitude

For the whole mass curve we use the amplitudes given in table 1.9, which
means we do not change the symmetry for the all-charm state for example.
That is why Mccc̄c̄ does not coincide with the mass of the physical all charm
ccc̄c̄ tetraquark that would require a different symmetrization of the amplitude,
namely charge conjugation in the (13)(24) and (14)(23) quark pairs, as well
as Pauli symmetry in both the quark and antiquark pairs. The hidden-strange
partner can, however, be read off from the curve if the underlying symmetry for
the light and strange tetraquark is the same, which it is for the I = 0 hidden-
charm tetraquarks. Naturally, this does not work for the I = 1 tetraquarks,
since there are no light quarks in the css̄c̄ and ccs̄s̄ amplitude, respectively, and
therefore the isospin has to be I = 0.

A peculiar thing happens for the open-charm open-strange tetraquarks: Due
to the symmetry constraints we can read off the open strange 0(1+) and 0(0+)
from the quark mass curves of the 1(1+) and 1(0+) states. One can easily verify
this by looking at the flavor tensors in equation (1.55) and replacing the light
quarks u, d with two strange qaurks. This leads to a mass gap, as we will discuss
in the next section.

1.4.5. Influence on the spectrum
Since our interaction kernel of equation (1.32) is flavor blind, the flavor tensor
traces out completely. The only purpose of the flavor part here is dictating the
symmetry of the color times Dirac part of the tetraquark amplitude. As can
be seen in table 1.9, for hidden-charm tetraquarks, we have exactly the same
content for both isospins. The only difference lies in the M2 channel, which is
the HC channel in this case. For isospin one we need to replace ω → ρ and
η → π. However, since the RL kernel does not know about the U(1) anomaly, all
pseudoscalar mesons are treated in the same manner and π and η have the same
mass. The same is true for ρ and ω, see table 1.6. This means that the hidden-
charm tetraquarks with isospin I = 0 and I = 1 are degenerate. Consequently
every state in our hidden-charm spectrum appears with multiplicity four, which
means we should find two neutral and two charged states with charges +,−.
Again, this is a consequence of the applied RL truncation in combination with
the approximated amplitude, and might not be a general feature. Furthermore,
electromagnetic isospin effects will also lift the degeneracy [114], however, they
are not considered here.
The situation is different in the open-charm sector: Comparing the 0(1+)

and 1(1+) states, we see that there are different signs between the DD∗ terms
and there is also an additional D∗D∗ component present in the I = 0 case.
Furthermore, different diquarks need to be considered: In the former we have
a light-scalar antidiquark and a light-axialvector antidiquark in the latter case.
That is due to the different transformation properties of the flavor tensors
F̃0,1 from equation (1.55) under Pauli transformations. While one is odd, the
other is even in the light quarks and therefore needs a different diquark tensor
structure. The situation is even more dramatic for the 0(0+) state, where we
cannot construct a single component starting with the tensors from table 1.8.
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1.4.6. Further approximations
We have systematically constructed the physical amplitudes for the tetraquark
in the previous section and arrived at the physical content listed in 1.9. We
drop the ηc{η, π} component in the (0/1)0++ and the ηc{ρ, ω} components in
the 1+− channel for now. We do this for two reasons: Firstly the decay modes
are not seen in experiment, even though they have been searched for [115] and
secondly, the RL description of the η is unrealistic7. Furthermore, we neglect
the AA component that should be present in the 1+− state by construction.
This is by far the highest threshold in the system and in all hidden-charm
channels we found the diquarks to be subleading.

7Due to the missing U(1) anomaly in our framework π and η have the same mass, which is
not realistic. Therefore, we cannot provide a realistic η mass Mη(mq) from a two-body
calculation which we would need for the tetraquark calculation.
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Figure 1.8.: left/right: 0(1++)/1(1+−) variation of the partitioning parameter
away from its optimum in the symmetric limit.

mq [MeV] 3.7 20 50 85 210 340 470 600 730 795
∆M
M [%] 4.4 7.0 10.4 5.5 5.1 1.9 1.8 0.2 0.1 0.01

∆M
M [%] 10.8 11.0 12.7 8.0 5.6 1.9 2.1 0.2 0.2 0.1

Table 1.10.: Error estimates from the momentum partitioning for one parameter
ζ (row 1) and without restricting the σi (row 2). We show the
results for the 0(1++) state, all other states can be found in section
B.1.6 in the appendix.

1.5. Results

1.5.1. Error estimates

There is a systematic error that we cannot quantify when we introduce our
truncation of the quark DSE and the BSE kernel. However, within this approx-
imation of QCD we can try to quantify errors. Here we only look at the error
introduced by the momentum partitioning and its effect on our results.
As discussed, we try to minimize the extrapolation error by choosing optimal

partitioning parameters that were introduced in equation (1.48). We simplify
the situation by choosing 1/2−σ1 = σ3 = σ2 = ζ, which means the light quark
and antiquark get the same fraction of the momentum P and so do the heavy
quark and antiquark. This leaves one parameter that quantifies the portion of
P that is assigned to the light-light and the heavy-heavy quark-antiquark pair,
respectively. We call this the symmetric limit. The optimal ζ is not unique in
that case. Therefore, we vary it around its optimal value ζopt ± 0.02. We show
an example for the 0(1++) and 1(1+−) HLM-only calculation in figure 1.8.

One can clearly see that the error gets much larger the bigger the mass
difference of the light-quark mass compared to the charm-quark mass gets.
From the variation around the optimal parameter we obtain an error estimate,
which is shown for the 0(1++) case in the first row of table 1.10. The errors
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I(JP (C)) cqq̄c̄ exp. candidate css̄c̄ candidate

0/1(0++) 3195(107)
3503(422) X(3915) / ? 3362(95)

3592(295) ?

0/1(1++) 3916(74) X(3872) / ? 4068(61) X(4140)
0/1(1+−) 3741(91) ? / Z(3900) 3892(81) ?

ccq̄q̄ ccs̄s̄

0(0+) - 3951(?)
1(0+) 3795(?) -
0(1+) 3899(82) 4360(387)
1(1+) 4216(440) -

Table 1.11.: Results of our calculations and experimental candidates are shown,
"-" means we do not have a state in this channel. The two results
for the hidden-charm scalar stem from the two different methods
we used to calculate it: a fit of M(mq) and direct calculation via
λ(M) = 1. The css̄c̄ states in the upper right corner of the table
naturally carry isospin I = 0, since no light quarks are present.

from going away from the symmetric limit were obtained by comparison of the
symmetric calculations and the difference to another set of optimal parameters
obtained by optimizing for maximum P 2 without restricting the σi. The results
are shown in the second row of the error table. In contrast to the symmetric
case, the variation can be quite strong for the points for bigger mq as well.
However, we only use the "unrestricted" optimization if it is necessary because
we cannot reach Mmax in the symmetric limit.
For the results at the physical point we calculate a confidence band to the fit

that we apply to Mtetra(mq) to extract Mtetra(mu) at the physical point. The
errors that go into that fit are the ones in the second row of the error table.
The error from this confidence band at mq is given in table 1.11.

1.5.2. The spectrum

The situation is summarized in table 1.11. As discussed before we already know
that we find four degenerate states coming from isosinglet and isotriplet in all
hidden-charm channels, namely the 0++, 1++, 1+− and for each channel one
hidden-strange partner with a higher mass. For the open-charm channels this
degeneracy is lifted because of the different relative signs and components of
the 0(1+) and 1(1+) states, as shown in table 1.9. Again the (0)1+ state comes
with a hidden-strange partner. In the 0+ channel we find a ground state only
for isospin one, since we cannot construct an appropriately symmetrized state
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Figure 1.9.: Mass of the I(JPC) = 0(1++) four-quark state as a function of the
current-quark mass. Left: Solutions for the individual DD∗, J/ψ ω
and diquark-antidiquark components together with their respective
thresholds. Right: results obtained from including one (DD∗), two
and all three channels. The error bars combine the extrapolation
error with the error obtained by varying the momentum partition-
ing parameter ζ. The black line is a fit to the data points together
with an error band. Figure published in [5].

for isospin zero8. This state also comes with an open-strange partner (with
isospin 0) and strangeness of minus one. In table 1.11 we have also listed the
experimental candidate for our calculated tetraquark state. We found for all
calculations that the D∗D̄∗ component is subleading whenever lighter D-meson
combinations are considered. Therefore, we do not discuss them separately
within each section. We will now go through the hidden-charm channels:

The 0(1++) channel In our setup the state includes a combination of DD̄∗,
J/Ψω and SA components, as listed in table 1.9. The results for the full
calculation and selected subcomponents are shown in figure 1.9. We plot the
cqq̄c̄ tetraquark mass as a function of the light-quark mass mq. We obtain
the points in this plot by calculating the eigenvalue curve for the input mass
mq, λ(mq)(M) of equation (1.31) as a function of the tetraquark mass M up
to the maximal value we determine as described in the last subsection. If the
eigenvalue curve λ(M) = 1, we have found a bound state and consequently
Mcqq̄c̄, which is shown in the plot. If λ(M) 6= 1 for M ≤ Mmax we fit the data
points and solve λ(mq)

fit (Mcqq̄c̄) = 1. The black line is a fit through the last 7
points on the curve and the shaded area is the confidence band of the fit given
the black errorbars. The fit at mq = mu = md is the result we get for our
X(3872) candidate. We obtain a mass of 3916(74)MeV, whose central value is
slightly above the experimental value. For the hidden-strange partner we find

8Again, this is due to our construction principle and is in principle possible if we include
more momentum dependence in the dressing functions fi, which are currently only S0
dependent, so that they have even Pauli and CC symmetry. However, higher components
would stem from "excited" meson-meson components and are most likely suppressed.
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1. Heavy-light tetraquarks

a mass of 4068(61)MeV and we identify it with the X(4140).
The left panel of figure 1.9 shows the results if we consider only one sin-

gle component. We see that the heavy-light diquark-antidiquark component
alone produces a heavy state with a mass in the region of 4.5 GeV, similar
to the hadro-charmonium-only calculation. The corresponding thresholds are
also shown in the left panel. The diquark threshold lies roughly 1 GeV above
the other two thresholds, which naturally explains the high mass, although the
diquark-antidiquark component itself lies below the threshold.
In the right panel the mass curve for the different setups is shown. One

can clearly see that the diquarks hardly contribute and that to a satisfactory
degree one can reproduce the result of the full calculation including all three
components with the HLM component only (red points).
The small HC component we find is in line with the experimental expectations

for the X(3872) as shown in table 1.1, since the branching fraction into hadro-
charmonium like states is rather small compared to the decays into open-charm
mesons. Our result lies slightly above threshold. Due to the error we obtain,
one should however be careful with this statement and a proper treatment of
the resonant system would give more insight. At this stage we can only with
confidence say that the state is close to the threshold, which is also in line with
experiment. The X(4140) was only found in a hadro-charmonium-like decay
mode so far. From our calculations we would expect a strong HLM mode into
open charm and open-strange Ds, D̄

∗
s mesons.

Theory comparison: Our result of a dominant HLM component is in line
with the molecular picture9 we discussed in section 1.1. The findings, how-
ever, contradict the diquark-antidiquark picture somewhat, since we find the
diquark-antidiquark component to be subleading and producing a much heav-
ier state if considered individually. Our identification of the X(4140) with the
strange partner of the X(3872) is consistent with the Quark-model four-quark
calculation of [117]. We predict (almost) degenerate isospin partners of the
X(3872) in the same channel, which is a prediction that also the tetraquark
model in reference [50] makes.

The 0(0++) channel This state has DD̄,D∗D̄∗, J/Ψω, SS as well as ηcη and
AA components, we neglect the last two. The results in this channel are shown
in the left panel of figure 1.10 and follow a similar pattern as the 1++ channel:
The HLM component is once again clearly dominant. The influence of the
diquarks is almost negligible and the HC component is again well above the
threshold. However, there seems to be some admixture of hadro-charmonium
for the full calculation. A natural candidate in this channel would be the
X(3915). The quantum numbers of this state are not yet settled. They could
be 0++ or 2++. It is found in the ωJ/Ψ system in experiment. However, our
result of 3503(422)MeV is relatively light compared to the X(3915). Although
the RL D mesons are lighter then the experimentally observed ones, which
could explain some "missing" mass in the scalar channel in our approach, we

9It is also possible to construct a hidden strange molecule from Ds mesons, see [116]. Al-
though π exchange is not possible, η exchange in principle is.
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Figure 1.10.: Masses of the I(JPC) = 0(0++) and 1(1+−) four-quark states as
a function of the current-quark mass. Left: I(JPC) = 0(0++)
solutions for the individual DD, J/ψ ω, as well as DD + J/ψ ω
and the full calculation including diquark-antidiquark, together
with the relevant thresholds are shown. Right: I(JPC) = 1(1+−)
solutions for the individual DD∗, J/ψ π, as well as DD∗ + J/ψ π
and the full calculation including diquark-antidiquark, together
with the relevant thresholds are shown.

naively expect additive contributions of the order of only 100 MeV if we had
used the correct experimental masses. Once again we also predict a strange
part at 3592(295)MeV and another degenerate isospin triplet.

Theory comparison: The light scalar is also compatible with the diquark-
antidiquark model [50]. The molecular picture does not find a low lying scalar
because D0D̄0 cannot exchange a pion, but it also does not exclude it.

The 1(1+−) channel This state is a combination of DD̄∗,D∗D̄∗,J/Ψπ,AS,
as well as ηcρ and AA. We neglected the last two. The results for different
individual setups are shown in the right panel of figure 1.10. The picture is
different compared to the 0(1++) channel: While the diquarks again seem to
be subleading, we find a non-negligible hadro-charmonium component, which
is also lighter in mass compared to the 1++ as shown in the right panel. This
seems natural due to the lower lying πJ/Ψ threshold compared to ωJ/Ψ.
We find a mass of 3741(91)MeV and 3892(81)MeV for the light and strange

state, respectively. We identify the light state with the Z(3900), which is seen
in both hadro-charmonium and open-charm meson states in experiment, with
a factor of six higher branching fraction into the latter one. There is no ex-
perimental candidate for the strange state. Again, we predict three degenerate
isospin partners for the Z(3900) as well as a zero isospin state that is also
degenerate.

Theory comparison: Interestingly we confirm the prediction of the molec-
ular picture that (including only HLM components) we find the same mass in
the 1+± channels, as shown in the left panel of figure 1.11. However, in addition
we find the presence of a non-negligible HC component. Our identification with
the Z(3900) is consistent with [50], however, in that model there is another s-
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Figure 1.11.: Mass of the I(JPC) = 1(1+−), 0(1++) and I(JP ) = 1(0+) four-
quark states as a function of the current-quark mass. Left: The
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the 0(1++) and 1(1+−) state (blue) and the HLM components
for both channels are compared. The latter have the same mass.
Right: The full calculation for the I(JP ) = 1(0+) open-charm
tetraquark is shown.

wave state in the channel that is identified with the Z(4020). Since we calculate
only ground states we cannot say anything about the excited states except that
they must be higher in mass.

Open charm Our results for the open-charm region are also summarized in
table 1.11.
The results for the 1(0+) state are shown in the right panel of figure 1.11.

Similar to the hidden-charm tetraquarks, the scalar 1(0+) state is also the
lightest of the ones we consider. It contains DD,D∗D∗ and AA components
and we need both, the HLM and DI components, to obtain a smoothMccq̄q̄(mq)
curve. It is not possible to construct a 0(0+) state in our approach.
In the axialvector channel we find that the 1(1+) state is heavier than the

0(1+) state. There are two main differences: Firstly, the 0(1+) state includes
D∗D∗ components, whereas the 1(1+) state does not, see table 1.9. Since
we found in our calculations that this component is subleading and can be
neglected, the mass difference is due to the second difference, the diquarks:
The 1(1+) state contains a heavy-axialvector diquark and a light-axialvector
antidiquark, while the 0(1+) state contains a light scalar antidiquark. In the
1(1+) case the diquarks seem to bring down the mass a little, see figure 1.12,
whereas in the 0(1+) case the diquarks seem to increase the mass. In contrast
to the hidden-charm states we also find that the "meson-only" calculations do
not yield identical results. Here the 0(1+) meson component is even a little
heavier than for the 1(1+).

The open-charm open-strangeness tetraquarks show another particularly in-
teresting feature. Our results for a 1(1+) ccq̄q̄ tetraquark are shown in the
right panel of figure 1.12. Its mass curve at the strange quark mass is precisely
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Figure 1.12.: Mass of the I(JP ) = 0(1+) (left) and 1(1+) (right) four-quark
state as a function of the current-quark mass. Red points include
only DD∗ components, black points include also diquarks. The
DD∗ is the lowest lying threshold, since the diquarks are heavier.

describing a 0(1+) ccs̄s̄ tetraquark. One can verify this by looking at the flavor
tensors in equation (1.55) and replacing the light quarks u, d with two strange
qaurks. Since our I = 1 axialvector mass curve lies above the I = 0 we obtain a
relatively large mass gap of almost 500 MeV between the 0(1+) ccq̄q̄ and 0(1+)
ccs̄s̄ states.

Theory comparison: There are no experimental candidates yet but we
compare with other theory predictions that we collected earlier in table 1.4.
First of all our result for the 0(1+) mass is in the ballpark of other theory
predictions. While it is roughly 200 MeV lower then the one calculated in [54],
we do confirm the mass ordering M1(1+) > M0(1+) with a mass difference of
roughly 300 MeV compared to the 200 MeV that were found in [54] based on
heavy-quark spin symmetry. A further similarity is the the non-existence of a
0(0+) tetraquark state. The 1(0+) tetraquark in [54] is part of a spin triplet
with 0+, 1+, 2+ states with almost equal masses of 4146 MeV, which is roughly
150 MeV heavier than the 0(1+) state. This is different in our calculations,
where the scalar is lighter than both, the I = 0 and I = 1 axialvector state by
roughly 100 and 400 MeV, respectively.

Channel comparison We can now compare the channels in various ways. Let
us first look at the internal components at the physical point where mq = mu =
md. This is shown in figure 1.13.

It seems that we find a HLM dominated state both in the 0++ and 1++

channels, which we conclude because the inclusion of HC and DI components
does not influence the results much. The HLM component is also important
in the 1+− channel. However, in contrast to the former channels, the HC
component is also important and the J/Ψπ-only state is much lighter than
the J/Ψω-only state. The inclusion of the ηcρ component could magnify the
importance of the HC component.
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extracted by evaluating a linear fit to the Mccq̄q̄(mq) curve at
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The effect of the diquarks is small in all hidden-charm channels, whereas it
is non-negligible for the open-charm states. In this sector there is no separate
HC component possible, but the diquark takes this part from the heavy-quark
perspective: For hidden charm the HC component consists of a heavy cc̄ and
a light qq̄ meson, whereas for open-charm the diquark-antidiquark component
consists of a heavy cc diquark and a light q̄q̄ antidiquark. From this point
of view the situation in the open-charm sector is comparable to the hidden-
charm sector: The (0)1+ state is again HLM-dominated like the 1++ state, the
(1)1+ has an important DI component like the important HC component of the
1+−. It is interesting that the mass hierarchy in this identification is, however,
inverted.
As we have discussed before, the high mass of the 1(1+) state also causes the

high mass of the 0(1+) ccs̄s̄ state, as can be seen in figure 1.14, because they
share the same symmetry.
Although the 0(1+) state is in the same mass range as the 0(1++) its strange

partner is therefore much heavier then the one of the 0(1++) that we identified
with the X(4140). That leads to a "mass gap" in that channel of roughly 460
MeV compared to roughly 150 MeV in the 1++ channel, which is almost the
same as for the 1+− state. It should be stressed again that these numbers come
with large errors and our predictions should be seen as qualitative features.

We see that in both open-and hidden charm the scalars are lighter than
the axialvector states. However, a lighter scalar candidate than the X(3915)
is currently not found. Interestingly, the lightest open-charm tetraquark has
I = 1 and no I = 0 partner, except the one with open strangeness. In the
axialvector channel we find the lightest state to be the I = 0 state, whereas the
I = 1 state is much higher in mass, as is the open-strangeness state.
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Figure 1.14.: The masses we calculated for the tetraquark are compared to ex-
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1.6. Summary

We managed to answer the questions we posed about the internal structure of
the states and their dominant subcomponents in various channels. The "phys-
ical construction" of the amplitude made this possible. By using the physical
basis in connection with our pole residue structure we avoided dynamical pole
generation and the complexity was reduced, which made a treatment of differ-
ent states possible. Imposing symmetries on the tetraquark amplitudes allowed
us to see the physical content before even starting the calculations, as shown
in table 1.9 and during the calculations we found which parts of the amplitude
were dominant in a given channel.

1.6.1. Physics

We have found that in our approach the importance of internal sub-clusters
varies from channel to channel. For the hidden-charm tetraquarks we observed
the general trend of negligible diquark but strong HLM components, eventually
accompanied by hadro-charmonium. We find degenerate isospin triplet and
singlet states for every quantum number. The X(3872) and Z(3900) can be
identified with our cuūc̄ 0(1++) and 1(1+−) states, respectively, whereas our
scalar state is lighter than the experimental candidate X(3915). All channels
come with an I = 0 css̄c̄ state in our approach and we identify the 0(1++) state,
which carries a strong HLM compoenent, with the X(4140). Future analyses
of the DsD

(∗)
s as well as J/Ψφ data such as the one in [25] will be highly

interesting to compare against our predictions for the hidden-charm hidden-
strangeness states, especially since we predict a strong HLM component, but
the X(4140) for instance has only been found in J/Ψφ so far.
In the open-charm sector we find that the diquark components are non-
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negligible. We predict a light scalar state, an I = 0 axialvector in the mass
range of the X(3872) and a heavier I = 1 axialvector. Furthermore, we see
a large "mass gap" between the 0(1+) ccq̄q̄ and ccs̄s̄ states in the axialvector
channel.

1.6.2. Remaining problems and connection to the next chapter
While we could calculate the real part of the mass of heavy-light tetraquarks
by extrapolating the quark-mass curve down from ccc̄c̄ (where our states are
bound), the question about the resonance properties of the tetraquark states
we calculated could not yet be answered. In the introduction we stated three
criteria for the proper description of a resonance in the BSE-DSE framework:
The presence of a decay channel; the proper treatment of the singularity struc-
tures (by means of a path deformation) and analytic continuation to (or direct
calculation in) the second Riemann sheet. Although decay channels in the form
of intermediate two-body poles are present in the tetraquark BSE, we did not
perform a path deformation and, consequently, could not perform an analytic
continuation to look for resonance poles in the second Riemann sheet.
We want to lay the foundation for addressing these issues and investigate a

method to extract resonance poles properly. This sets clear goals for the next
chapter:

• construct a simpler, yet similar system with a built in decay channel and
a similar singularity structure,

• take the singularity structure into account properly,

• find the resonance pole in the second Riemann sheet.

With these goals in mind, the qq̄ sector beyond the RL truncation serves as the
best learning example.
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2.Beyond RL: ρ and σ as dynamical
resonances

2.1. Motivation
The main motivation of this chapter is to explore a technique for treating res-
onances in the DSE-BSE framework, which can be applied to tetraquarks in
the future. In terms of physics, we want to investigate the light scalar meson
sector, especially the 0(0++) state. Although the lightest scalar qq̄ states are
p waves in the quark model, the mass of the σ as listed in the PDG is only
between 400-550 MeV. This is just one of the reasons that make the light scalars
interesting; we will discuss the physics in depth in the next section.
Technically, mesons are bound states in the rainbow-ladder (RL) truncation,

which is due to missing decay terms in the meson BSE kernel. The gluon
exchange alone does not provide a decay channel. However, almost all light
meson states lie above strong decay thresholds and hence this description cannot
be realistic. By contrast, in the tetraquark equation the gluon exchange is
sufficient to produce decay thresholds due to resummation in the quark-quark
and quark-antiquark pairs.
A method of extending the RL description of the ρ meson in a consistent

way has recently been introduced [7]. A ππ decay term was introduced in the
scattering kernel of the meson BSE and the resonance properties were extracted
from the pole location in the second Riemann sheet in the complex P 2 plane,
where P is the total momentum of the resonance. This "extended" ρ meson will
serve as a playground to test and further improve the method as well as lay
the foundation for a description of the similarly extended description of the qq̄
scalar state. We develop an improved method that is necessary to describe the
latter. Equipped with this method, the application to (light scalar) tetraquarks
should be straightforward in future works.

2.1.1. Light mesons
Spectrum Although the light meson spectrum has been known for quite some
years, it is still subject to intense debate. It is shown for selected quantum
numbers in the left panel of figure 2.1. The grey boxes are the multiplets. The
pseudoscalar states contain the light pions, the strange kaons and the η mesons,
which are heavy due to the U(1) anomaly. The vector states are relatively light,
which is in line with their s-wave assignment in the non-relativistic quark model.
For mesonic states the quantum numbers of a state JPC are given by:

P = (−1)L+1, C = (−1)L+S , J = |L− S|, ... , L+ S.

This implies that the positive parity scalar, axialvector and tensor ground states
with JPC = 0++, 1++, 2++ have angular momentum L = 1, which puts their
expected masses in the same area. This would be true experimentally if the
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Figure 2.1.: light meson spectrum from the PDG [118]; the bars show the ex-
perimental mass range. The light scalar mesons are magnified on
the right. Figure published in [119].

lowest-lying scalar multiplet was in the mass range of the first excited multi-
plet. However, that makes it hard to explain the properties of the lowest lying
multiplet in the qq̄ picture. Instead, one is rather tempted to identify the first
excited multiplet in the scalar channel with the qq̄ ground states.

The σ or f0(500) Let us take a closer look at the most prominent member
of the multiplet, the σ. Combining new data with dispersive approaches to ππ
scattering using Roy equations1 [121,122], the σ is now again listed in the PDG
with a pole position of (400 . . . 550) − i(200 . . . 350) MeV [118]. An extensive
review on the history of the σ can be found in [123]. As a 0(0++) state it can in
principle be a mixture of qq̄, glueball, qq̄qq̄ and even higher components. The
composition is a priori unknown; however, some arguments exist:
Firstly, the scalar glueballs should be heavier, with masses of around 1.5-1.8

GeV, see [123] and references in there. Furthermore, a pure glueball does not
provide a multiplet and therefore the strange multiplet members (κ) would not
exist if the glueball component was the dominant one.
Secondly, large-Nc QCD predicts the behavior of qq̄ states for increasing Nc.

For Nc → ∞, they should become stable. Their mass should become constant
and their width should scale with 1/Nc. The dynamically generated vector-
meson poles in unitarized-chiral perturbation theory follow this behavior, but it
is not seen for the σ and κ resonances whose width rather grows with Nc [124].
This could hint towards a qqq̄q̄ (or two-meson) state, which becomes a two-
meson continuum with increasing Nc. It should be mentioned however, that a
recent argument by Weinberg says that qqq̄q̄ states in the large Nc limit can be
either narrow (1/Nc scaling) just like normal qq̄ states, or broad and scale with
Nc [125]2.

1Roy equations [120] relate partial wave amplitudes in the physical region to the ππ s-wave
scattering length.

2Weinberg suggested that one should actually look at the decay amplitude which consists of
two parts, one proportional to Nc and the other proportional to 1/Nc, where the former
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us̄

}{
sū

sd̄

}
ss̄

(qq)(q̄q̄)
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dss̄ū

s(uū− dd̄)s̄
uss̄d̄

 udd̄ū

{
dus̄ū

uds̄d̄

}
,

{
sdūd̄

sud̄ū

}
s(uū+ dd̄)s̄

Table 2.1.: The quark content of a qq̄ octett is compared to the quark content of
a diquark antidiquark from [2]. We left out the normalization factor

1√
2 in front of the a0, σ in the first row and a0, f0 in the second row.

The non-qq̄ nature of the σ is supported by many studies in different frame-
works: unitarized ChPT [126], quark models [48], the extended linear sigma
model [127] and QCD sum rules [128], just to name some.

Are the light scalars tetraquarks? The idea of considering the light scalar
mesons as tetraquarks is quite old [2]. Lets review some of the arguments that
support this hypothesis: As mentioned, the scalars are p waves and therefore
their masses are expected to be in the range of axialvector and tensor states
around 1 − 1.5 GeV. There is indeed a multiplet in this mass range, where
members could predominantly be qq̄. However, the properties of the lowest-
lying multiplet including the σ are different. Their masses are between 0.5− 1
GeV. Furthermore, their decays are peculiar. The σ decays into ππ and is
very broad, while the κ which decays into Kπ is also quite broad and carries
strangeness. The isospin I = 0 f0(980) and I = 1 a0(980) lie at the KK̄
threshold and are quite narrow.
As one can infer directly from comparing the mass ordering of the states

within the various "mesonic" multiplets in figure 2.1 to each other, the mass
ordering is also different for the light scalar states and especially the near de-
generacy of a0 and f0 cannot be explained in a qq̄ picture. The solution proposed
by Jaffe [2] combines (color-and flavor antitriplet) scalar diquarks and antidi-
quarks. The resulting flavor wave functions are collected in row two of 2.1. This
assignment would explain the mass ordering considering the strange quark con-
tent of the states: The σ has no strange quark, the κ has one, whereas the f0
and a0 contain two strange quarks, as listed in table 2.1. Also, the decays can
be explained better: The a0 can decay to a0 → πη and couple to KK̄ with its
internal ss̄ pair. The broad σ and κ can fall apart into ππ and Kπ, respectively,
through the OZI-superallowed mechanism.

part is zero if the tetraquark decay into any pair of light mesons is forbidden by its quantum
numbers.
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2. Beyond RL: ρ and σ as dynamical resonances

2.1.2. Scalars in RL and beyond
As we have discussed already in the first chapter the binding mechanism of
colored diquark degrees of freedom is quite different to the one in a BSE cal-
culation, where quarks interact via the exchange of gluons. However, one can
reformulate the four-body BSE to Fadeev-Yakubovsky equations and afterwards
reduce them to coupled two-body equations [84] which are similar in spirit to
the diquark-antidiquark model for baryons. These equations however, contain
not only diquark-antidiquark components but also meson-meson components.
The four-quark interpretation of the light scalars has been investigated in

the BSE-DSE approach in such approximated equations, as well as with the
four-body equation itself in the rainbow ladder approximation [3, 84]. It turns
out that both produced a light σ with a mass of about 350-400 MeV. The
latter approach also reproduced the mass ordering within the scalar multiplet
that is found experimentally. For the σ, the authors found a four-quark state
with a strong ππ component. The system exhibits dynamically generated two-
body thresholds and is in principle resonant, however, the width was not yet
extracted.

The picture in the qq̄ scalar-meson channel is different in the RL approxi-
mation. Here the σ has a mass of roughly 660 MeV, which is too heavy to
interpret it as a member of the lowest multiplet and too light to assign it to the
higher multiplet. However, recent beyond-rainbow ladder calculations push up
the mass of the qq̄ scalar to roughly 1.1 GeV [129]. The higher σ mass seems
to be a general trend in other works as well [130, 131]. This behavior is some-
what in line with the quark model expectations that we discussed earlier and
might indicate an identification of the first "excited" scalar multiplet with a qq̄
dominated nonet that could itself mix with the lowest-lying scalar glueball [83].
Despite these findings it is still an open and interesting question what the

width of these states would be. There is a way to extract a width even for the RL
bound states in a static way. For vector mesons and scalar (and vector mesons)
this has been done in [132,133] and [134], respectively. We will compare against
these results later. However, in the following we will describe the σ meson (and
the ρ as a test case) in the spirit of [7] as a dynamically calculated qq̄ state with
RL gluon exchange and beyond rainbow-ladder pion-exchange corrections.
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2.2. qq̄ resonances: going beyond RL

Figure 2.2.: The quark DSE and a consistent two-body kernel are shown in
the first and second row respectively. Solid dots stand for bare
quark-gluon vertices, white dots indicate dressed quantities. The
approximation in the third row assumes that the relevant part of
the T-matrix is given by one-pion exchange and leads to the ap-
proximated kernel in the second row. The approximated DSE in the
first row further neglects the pion contribution to the self-energy.

2.2. qq̄ resonances: going beyond RL

Resonances are poles in unphysical (higher) Riemann sheets of the scattering
matrix [123, 135]. Light mesonic resonances have been studied in other frame-
works, like the quark model [136,137] and chiral-perturbation theory [138,139].
In lattice QCD the ρ resonance has been studied in [140–143] and recently the
light I = 0 scalars have been pioneered as well [144,145].

Because in RL qq̄ states are bound, a realistic description of the QCD spec-
trum calls for beyond-RL corrections. Recently a method was proposed to
dynamically incorporate decays into the BSE-DSE formalism and gain access
to the pole structure in the second Riemann sheet for the ρ meson in [7]. It is
based on [146, 147] and the idea is diagrammatically shown in figure 2.2. The
kernel and self-energy are still related via the AVWTI and therefore preserve
chiral symmetry for the BSE and DSE in the first and second row. We make
two further assumptions, namely that the T-matrix is dominated by π exchange
(3rd row) and that the beyond RL term arising in the quark DSE can be ne-
glected. This is mainly for convenience and methods exist to solve the DSE
also with this term included. One can now graphically see that the resulting
two-body RL kernel includes explicit ππ intermediate states and is similar to
the tetraquark meson-meson kernel that was used in [84].
Finding the complex pole position of the ρ in [7] was accomplished by ana-

lytically continuing the dressing functions of the inhomogeneous vertex, which
contains the resonance pole in the second Riemann sheet according to equation
(1.18), with the Schlessinger point method. Recently, it was shown in [8] how
to directly continue the T-matrix to the second sheet via analyticity relations in
the BSE-DSE framework. In the following we will set up the equations for the

61



2. Beyond RL: ρ and σ as dynamical resonances

Figure 2.3.: The approximated beyond RL BSE is shown. In addition to the
RL-gluon exchange kernel, a two-pion decay term arises.

R.L ρ σ

Cππ
4
3 1 1

Fππ 1 4 6

Table 2.2.: Prefactors of the different diagrams.

ρ and σ mesons and explain the method we use for the analytic continuation
of the inhomogeneous amplitude and the eigenvalue curve of the homogeneous
BSE.

2.2.1. Kernel and self-energy

The BSE with pion exchange is shown diagrammatically in figure 2.3. We
approximate the T-matrix as done in [87]3. The leading amplitude of the Dirac
part of the off-shell π amplitude is approximated by B/fπ, where B is the
quark propagator’s dressing function of a chiral quark and fπ the pion decay
constant. This relation is exact in the chiral limit [87]. This off-shell description
of the meson amplitudes is a crucial input to this approach. Details of the
approximation are summarized in the appendix C.1. We present the resulting
color and flavor factors in table 2.2. The approximation yields a flavor factor
of 4 for the ρ and 6 for the σ. Therefore, already at this stage we can expect a
larger width for the latter state. The resulting matrix element for the ππ kernel
is:

fi(p, P ) = CππFππ

ˆ
l
Tr
[
τ̂

(α)
i (p, P )Γ1S(p− l)Γ2

]
D(l+)D(l−) (2.1)

·
ˆ
k

Tr
[
Γ̄1χ

(α)(k, P )Γ̄2S(k − l)
]

= CππFππ

ˆ
l
D(l+)D(l−)J (α)

i (p, l, P )T (α)(l, P ) (2.2)

= CππFππ

ˆ
l
D(l+)D(l−)Ii(p, l, P )T (l, P ), (2.3)

where S stands for the quark propagator, D for the free pion propagator
3See equation 20 therein.
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2.2. qq̄ resonances: going beyond RL

D(p) =
(
p2 +m2

π

)−1
,

χ(α) is the Bethe-Salpeter wave function of the state we describe (ρ or σ):

χ(α)(k, P ) = S(k+)Γ(α)(k, P )S(k−)

and the momenta q± were defined in (1.27). The projectors onto the Dirac
basis are denoted with a hat and the fi are the dressing functions for the ρ or
σ amplitude. The π amplitudes are defined as:

Γ1 = Γ(p− l−
2 , l+), Γ2 = Γ(p− l+

2 ,−l−),

Γ̄1 = Γ̄(k − l−
2 , l+), Γ̄2 = Γ̄(k − l+

2 ,−l−).

We have defined two auxiliary quantities J (α)
i and T (α). The index α, that is

present for the ρ case only, can be contracted, as we will see in section 2.2.3.
Consequently, we can also work with the quantities I and T without the index
α, that are used in the last line of equation (2.3). We define the four-vectors in
the BSE to be:

Pµ =


0
0
0

iM + Γ
2

 , pµ = p


0
0
z̄p
zp

 , lµ = l


0
ȳlz̄l
ylz̄l
zl

 , kµ = k


0

ȳkz̄k
ykz̄k
zk

 , (2.4)

where we introduced the resonance mass M and width Γ in Pµ.

2.2.2. Singularity structure and path deformation
The decay term we have introduced in equation (2.3) depends on T and I as
well as the two pion propagators D(l±). They are singular at l2± = m2

π, or

0 =
[
m2
π +

(
P

2 + l

)2] [
m2
π +

(
P

2 − l
)2]

⇒ l21,2 = −M
2z2

2 + M2

4 −m2
π ± iMz

√
(1− z2)M

2

4 −m2
π (2.5)

and therefore the singularity moves into the integration domain in l2 whenever
M > 2mπ. The singularity structure in the complex l2 plane is shown in figure
2.4 for fixed M and Γ.
One has to apply a suitable path deformation that avoids the singularity

structure, as was done for similar problems in [88,148–151]. We investigate the
different parameterizations:
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2. Beyond RL: ρ and σ as dynamical resonances

-0.04 0.04
Re(l2)

-0.04

0.04

Im(l2)

Figure 2.4.: We show the two-pion branch cut (solid line) and two possible paths
avoiding the singularities in the complex l2 plane for fixedM = 0.44
GeV and Γ = 0.065 GeV.

l2(z) = e−iπ(z+1)√1 + z|m2
π + t| z ∈ [−1, 1] (2.6)

l2(z) =
{
t(z + 1) z ∈ [−1, 0)
|t|ei arg(t)(1−z) z ∈ [0, 1]

, (2.7)

where we have used the shorthands

t = P 2/4, |x|ei arg(x) = x.

The path is not unique and we compared the spiral and the straight line plus
arc that was also used in [8]. The cut (solid line) and deformed paths are shown
in figure 2.4.

2.2.3. Solving the system

As we have seen in section 1.3 there are two ways of obtaining the pole position
from solving the homogeneous or inhomogeneous BSEs from equations (1.17)
and (1.18) for a given scattering kernel. We adopt our solution algorithm for
these cases:
1) For the homogeneous BSE we use an iterative solver. We use T (µ)(l, P ) =

(lµT )T (l2, zl) for the k integral of equation (2.3) and define lµT into I = J (µ)(lµT ).
We obtain the eigenvalue of the homogeneous equation and solve for a pole in its
inverse λ′ = 1

1−λ . One has to be careful at this point: for the σ, the eigenvalue
with the biggest absolute value (as obtained by naive power iteration) is not a
smooth surface. This is due to crossing eigenvalue surfaces as shown in figure
2.5. The plot shows the comparison of the results of the two biggest eigenvalues
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2.2. qq̄ resonances: going beyond RL

Figure 2.5.: The biggest eigenvalues λ1 > λ2 by real part and absolute value for
the σ calculation are shown in the first and second row, respectively.
Within each row the first plot shows the real parts of the two biggest
eigenvalues, the second plot shows the imaginary parts.
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2. Beyond RL: ρ and σ as dynamical resonances

Figure 2.6.: The solutions of the ρ BSE in the first Riemann sheet are shown
in the M -Γ plane with the real part in red and imaginary part
in blue. The solutions are complex conjugated and it is therefore
sufficient to show it in one half plane. Left: solution v(P 2) =
f(p2 = 0, z = 0, P 2) of the inhomogeneous BSE. Right: Solution λ
of the homogeneous BSE. We show the solution in both half planes
to demonstrate the appearance of a branch cut.

sorted by their real part (first row) and the two biggest eigenvalues sorted by
their absolute value (second row). One can see that two eigenvalue curves
overlap when the second criterion is used and we consequently identify the
biggest eigenvalue by real part with the σ ground state.

2) For the inhomogeneous BSE we precalculate the whole decay kernel once
and use a matrix solver to obtain the eigenvalues. In this particular case we
pick the bi-conjugate gradient stabilized algorithm, which proved most efficient
in [78]. In the following we calculate the quantity v(P 2) = f1(p2 = 0), which
exhibits the pole structure directly.
We show the result for the eigenvalue λ(M,Γ) and v(M,Γ) in the first Rie-

mann sheet for the ρ case in figure 2.6. One can see the branch cut opening
in the imaginary part above the ππ threshold. The values left and right are
related via complex conjugation and we need analytic continuation to access
the second Riemann sheet and find the pole position. In the following we will
discuss the method we use with the ρ meson as an example.

2.2.4. Analytic continuation of the solution

The method was introduced in the context of analytically continuing scattering
amplitudes by Schlessinger in 1968 [152]. An efficient implementation of eval-
uating the resulting continued fraction is described in [153]. The idea is the
following: Approximate a function by the fraction of two rational polynomials
R(x) = P (x)/Q(x) and use the resulting functional form for analytic contin-
uation. Well written examples for different problems can be found in [154], a
comparison to other methods of analytic continuation in [155], an application
in hadron physics to problems with simple poles and branch cuts can be found
in [156], as well as an enlightening application to scalar theory in [8].
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2.2. qq̄ resonances: going beyond RL

Figure 2.7.: Upper panel: real (orange) and imaginary part (blue) of the
√
x

function are shown. The points for Im(x) ∈ [0.01, 0.1] and Re(x) ∈
[−0.5,−1] are used as an input to analytically continue through the
branch cut to the second sheet. The real part is exactly on top of
the expected result. Lower panel, left: A free particle propagator’s
real (orange) and imaginary (blue) part with a pole in the complex
plane are shown. right: The result on the right is obtained by
fitting a Pade approximant to the shaded region for Γ > 0 and
searching for a pole in the fit. The resulting radius is only chosen
for visibility, the Pade fit perfectly finds the pole position.
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2. Beyond RL: ρ and σ as dynamical resonances

We show two simple examples in figure 2.7. The first one is the sqrt function.
It has a branch cut for x < 0, which can be seen as a discontinuity in the blue
imaginary part. We analytically continue via the Schlessinger point method to
the second sheet for Im(x) < 0, where the orange real part and blue imaginary
part are smoothly connected to their partners on the first Riemann sheet for
Im(x) > 0 through the branch cut. The second example is shown in the second
row of the figure: The reconstruction of a free particle 1/(p2 + m2) pole with
m2 = (M−iΓ/2)2 at (M,Γ) = (0.25,−0.2) from data with Γ > 0. This example
mimics the challenge we face when solving the BSE. One can obtain information
in the first sheet in the whole plane by direct calculation, but the eigenvalue
(or v in the inhomogeneous case) shows a discontinuity in the imaginary part
above threshold, compare figure 2.6. So the strategy will be equivalent to this
example: Calculate data on one half plane in the first sheet (Γ > 0 in the
following) and analytically continue the results to the Γ < 0 half plane, which
corresponds to the second Riemann sheet in our BSE calculation. The results
for the free particle example are shown in the right column of the second row.
On the right hand side we show the selected input points in a box and on the
left hand side we show the resulting pole position from analytic continuation as
a small circle.
Despite its advantages, the Schlessinger-point method is comparable to a

fitting procedure and we would like to find out how stable the method is and
ideally provide an error estimate. Furthermore, the method approximates the
function with a rational approximant

f(x) ≈ R(x) = P (x)
Q(x)

whose poles we would like to find. With increasing N , the degree of the polyn-
molials P and Q and therefore the number of their (not necessarily distinct)
roots increases. It is now possible, that poles are created in the fitting proce-
dure, that are not "true" poles of the function f(x) but a sheer artifact of the
rational approximation.
To do both, check the stability of the fit and get an error estimate, as

well as to identify the true poles of f(x) we modify the method to what we
call the "statistical" approach in the following.

2.2.5. Stability: statistical approach

We fit the rational function R(x) to the given data points for Γ > 0 for the ρ
meson and afterwards extract the polynomial coefficients for P (x) and Q(x),
which allows us to visualize the fit in a pole-zero plot, where the poles are given
by the roots of R’s denominator via Q(x) = 0 and the zeros by P (x) = 0. We
will use the words "pole candidates" and "zeros" in the following for roots of Q
and P , respectively. They should however not be confused with actual poles
and zeros of the function f that we have approximated, nor necessarily with
those of R, since "pole candidates" and "zeros" could still cancel each other in
R.
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2.2. qq̄ resonances: going beyond RL

Figure 2.8.: The ten panels show ten runs with different, randomly selected
input points (grey dots) in the first Riemann sheet for Γ > 0,
together with the resulting pole candidates given by Q(x) = 0 (red
boxes) and zeros given by P (x) = 0 (black crosses) in the first
(Γ > 0) and second (Γ < 0) Riemann sheet.

An example for a pole-zero plot for the ρ meson is shown in figure 2.8: 10
different fits are shown in the 10 panels of the figure, with increasing number of
points from left to right (N = 16 to N = 25). Within each panel the small grey
points are the fit’s randomly selected input points for Γ > 0 on the first Riemann
sheet. Red boxes denote zeros of the denominator (zeros), black crosses those
of the numerator (pole candidates). Note, that the plot shows the first sheet
for Γ > 0 and the second sheet for Γ < 0.
There seems to be one "true" pole that appears to be more or less independent

of the input points in every of the 10 plots. While most of the other pole
candidates have zeros very close by and therefore cancel out of R, we can see
in the fifth and tenth panel that a "fake" pole is created on the second sheet. It
seems that these "fake" poles appear in random positions, while the "true" pole
always appears in more or less the same spot. Now three questions emerge:

• How can "fake" poles be identified?

• What is a suitable algorithm, that can somehow average only over the
"true" poles of all the (10) runs?

• How can we get an error estimate?
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2. Beyond RL: ρ and σ as dynamical resonances

Figure 2.9.: The log of the absolute value of the residues is shown for all poles.
Different symbols stand for the ten runs conducted in figure 2.8.

Let us look at figure 2.9 for that purpose. It shows the absolute value of the
residue for the pole candidates. One can see, that the pole candidates’ residues
vary over several orders of magnitude in absolute value. To understand how
that can be the case, we need to look at the residue of R(x) = P (x)/Q(x). It
is given by:

res(R)(x0) = P (x0)
Q′(x0) .

Therefore, closeby zeros (P (x0) = 0) create a small residue if Q′(x0) is not
singular. Consequently, poles that should actually be canceled out by a "zero"
but are nevertheless present (see again the "fake" pole in figure 2.8) are likely to
have a very small residue. That is exactly what we see by comparing the plots
from 2.8 to 2.9: There is a cluster with fairly big residues that contains all 10
different symbols (each symbol stands for one of the 10 runs in this example).
The poles within this cluster are exactly the 10 red boxes (one in each panel
of 2.8) that we assumed to be "true" poles, while almost all other pole residues
are orders of magnitude smaller.
Analogously to this example we will define a "true" pole as a pole that has a

sizeable residue (compared to the other residues) and appears in all runs, while
all other poles are "fake" poles. By run we mean the N = 10 independent fits we
performed in figure 2.8 in our example. Once this is established, our problem
of finding the true pole can be reformulated as finding the cluster of N = 10
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2.2. qq̄ resonances: going beyond RL

pole candidates with one pole candidate from each run (with sufficiently high
residue) that has minimal radius4. This procedure makes it possible to find an
algorithm for the determination of the pole position and also provides us with
an error estimate, related to the radius of the cluster, and provides confidence
that our fit finds an actual pole, which is what we wanted to achieve.
Algorithmically we do the following: Choose N runs with increasing number

of points and randomly selected input from a predefined region. Then calculate
poles and zeros for each run. The mass is then calculated as

M =

∑N
j C

(i)
j

N


σ(C(i))=min

, (2.8)

where σ is the standard deviation

σ(C(i)) =

√√√√ 1
N

N∑
j=1
|C̄(i) − C(i)

j |2 .

We define p(j) to be the vector of pole candidates (Q(x) = 0) of the Pade
approximant of run j, sorted by absolute value of the residue. From there we
define the i-th cluster C(i) as a set of N pole candidates p(i)

j , one from each run
and the total set C as the collection of all 2N clusters:

C = p
(1)
j1
⊗ p(2)

j2
⊗ ...⊗ p(N)

jN
, jk ∈ {1, 2}.

Since p(j) is ordered after absolute value of the residue, only the the two poles
with biggest residue of each run will be allowed as candidates for the true pole.
We identify the true pole as the average of the cluster that has the lowest
standard deviation σ as we already pointed out in equation (2.8)5.
Graphically, this is the circle with smallest radius including one of each sym-

bol in figure 2.10. The circles calculated in this manner are what we will plot
as a result in the following section. Since we are looking for sufficiently big
residues from each run we accepted only the two biggest residue poles6. Con-
sequently the algorithm scales with 2N , which is already quite slow and can
certainly be improved in the future. There is a number of clustering algorithms
implemented and ready to use for example in [157], however, our naive imple-
mentation proved to be best since we can directly implement the condition of
accepting exactly one pole from each run in that way.

4Perfect data without errors as shown in our example in figure 2.7 might produce the exact
same pole position independent of the randomly selected points. Our numerical data,
however, are contaminated with errors and therefore we have to look for a cluster, not a
single point.

5This naturally identifies one "true pole" only, could, however, be easily applied multiple
times after throwing the poles of the dominant cluster out, to find all "true poles" if there
were multiple, which is not the case here.

6Usually the biggest one is sufficient but as shown in the third panel of 2.8, sometimes a zero
doesn’t perfectly cancel out a fake pole, which leads to a sizeable residue.
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2. Beyond RL: ρ and σ as dynamical resonances

Figure 2.10.: Poles with sizeable residue of the runs 1...10, with the number of
input points N = 16...25 are shown. The subscript 1 stands for
the biggest residue, while 2 stands for the second biggest residue.
The circle has its midpoint at the average value of the optimal
cluster and the radius is the standard deviation of the cluster.
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A typical example for the best cluster is shown in figure 2.10. We can see
that all runs produced a pole in the region we show and that it was the one
with either biggest or second biggest residue.
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2. Beyond RL: ρ and σ as dynamical resonances

Figure 2.11.: ρ meson. Both plots show the Γ < 0 half plane of the second
Riemann sheet on the left and the Γ > 0 half plane in the first
Riemann sheet on the right. Boxes on the right of each plot stand
for data calculated from the BSE on the first Riemann sheet for
Γ > 0, circles on the left are the results obtained from analytic
continuation to the second Riemann sheet for Γ < 0. Left: re-
sults from the homogeneous BSE and analytic continuation of the
eigenvalue curve. Right: results from the inhomogeneous BSE.

2.3. Results

2.3.1. Result for the ρ test case

The resonance mass can be calculated from the homogeneous and inhomoge-
neous BSE, as we have already demonstrated for the σ in the RL truncation in
figure 1.4 of section 1.3. We present the results for the ρ-meson calculation for
both methods in figure 2.11. They are provided in the same manner as in the
free particle case in the example of figure 2.7. In the right-hand sides of both
panels in figure 2.11 we show the input region in the Γ > 0 plane of the first
Riemann sheet and on the left the resulting pole position as a circle, where the
radius is the standard deviation of the points in the circle. We obtain almost
identical results from the homogeneous and inhomogeneous equation. Also, the
choice of the input region has a small effect on the result as long as it is above
threshold (grey and red boxes). Once we go below threshold, both methods can,
at best, estimate the pole position and the error increases significantly. We can
conclude that the information above threshold, which can only be accessed with
the path deformation we performed, is crucial.
All in all we find a stable result for the ρ. To determine a final value for the

calculation we perform 30 runs, each one with a fixed number of input points
within the region M ∈ [0.5, 0.68] GeV and Γ ∈ [0, 0.1] GeV. We do this N = 10
times, each time with the method we have described in the last section, and
obtain a ρ pole mi = Mi− iΓi/2 and an error in form of a standard deviation σi
for i = 1...10. We calculate the average m of the N = 10 resulting mi. From m
we determine the ρ mass Mρ and width Γρ from the relation m = Mρ − iΓρ/2.
The error ∆m is given by
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Figure 2.12.: σ meson. Both plots show the Γ < 0 half plane of the second
Riemann sheet on the left and the Γ > 0 half plane in the first
Riemann sheet on the right. Boxes on the right of each plot stand
for data calculated from the BSE on the first Riemann sheet for
Γ > 0, circles on the left are the results obtained from analytic
continuation to the second Riemann sheet for Γ < 0. Left: results
from the homogeneous BSE. Right: results from the inhomoge-
neous BSE.

∆m =

√∑N
i=1 σ

2
i

N
, (2.9)

where the σi stand for the standard deviations of the 10 runs. For the ρ mass
and width we finally obtain:

Mρ = 638(2) MeV, Γρ = 108(4) MeV.

Since we calculate the error ∆m for the pole position m = Mρ− iΓρ/2 the error
for Γρ is twice as big as the error for Mρ.

Our result agrees quite well with the calculation done in [7]. Compared to
the experimental values our mass is too small by roughly 130 MeV, the width
by roughly 50 MeV, which is quite significant. For further discussions see [7].

2.3.2. Results for the qq̄ scalar
The results for the scalar 0++ state are calculated with the same method as
described in the last section. We explore the stability and the results from the
two different methods in figure 2.12. The shaded region on the right shows
the selected region where we calculate data from the BSE on the first Riemann
sheet. Circles on the left stand for the results in the second sheet obtained
from our analytic continuation procedure, where errors are proportional to the
radius of the circle. The results are fairly stable considering that the pole
is much further out in the complex plane compared to the ρ. Input regions
below threshold do not work well though. The final result is again obtained by
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2. Beyond RL: ρ and σ as dynamical resonances

M [MeV] Γ [MeV]

RL ρ [134] 741 104

This work 736 -

σ [134] 670 172

This work 666 -

BRL ρ [7] 640 100

This work 638(2) 108(4)

σ This work 587(12) 186(24)

EXP ρ [1] 775 148

σ 400-550 200-350

Table 2.3.: Results for the ρ and σ masses and width in this work in compari-
son to previous RL and beyond RL calculations [7, 134], as well as
experiment [1].

performing 30 runs, each one with a fixed number of input points within the
region M ∈ [0.45, 0.68] GeV and Γ ∈ [0.1, 0.2] GeV. We do this 10 times and
obtain a σ mass and an error in form of a standard deviation each time. We
take the average of the ten resulting σ masses and calculate the final error with
the standard deviations of the 10 results as an input via equation (2.9). We
obtain:

Mσ = 587(12) MeV, Γσ = 186(24) MeV.

For comparison, all results (including RL and experimental data) are gathered
in table 2.3.
We see that the scalar naturally comes out broader than the vector state in

our approach, which might be due to the larger flavor factor in front of the decay
diagram in equation (2.3). Let us compare the RL and beyond RL calculations.
We find a decrease of the RL mass if we include the ππ decay diagram in the
order of 10 − 15% for the ρ and σ states. In absolute terms, the RL masses
decrease by roughly 120 and 130 MeV in the σ and ρ case, respectively. Also,
a width that is about 15% of the RL mass in the ρ case and about 30% of the
RL mass in the σ case, is acquired.
We compare our results against the calculations from ππ scattering in RL

from [134] in table 2.3. As expected, the masses are (almost) identical to our RL
results. Furthermore, a width was calculated in [134] in a "static" way, that we
can compare to our beyond RL results. We could alternatively have compared
to the RL calculations of [133], where the "static" widths were obtained from
triangle diagrams. In the static case the widths are related to the residues of
the ρ and σ pole, respectively. Although in our calculation it is obtained from
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2.3. Results

the pole location rather than the residue at the pole, we can see that the widths
compare quite well. The differences of the RL and beyond RL widths are less
then 10 MeV for ρ and σ. This might be an indication that the decay term we
introduced in the scattering kernel does not influence the residue by much, but
just shifts the pole position out into the complex plane and lowers the resulting
resonance mass.
In comparison to experiment we find a σ mass at the upper limit and a width

at the lower limit of the PDG value. The result for the mass seems to improve
compared to the 666 MeV in RL if the decay term is included. However, the
lowering of the mass also appears in the ρ case, which is definitely not an
improvement, since the ρ mass is already too low in RL. Considering that the
qq̄ scalars obtain significantly higher masses from other beyond RL corrections
and much hints towards an interpretation of the first excited scalar multiplet as
the qq̄ states, it seems that the ππ term we included might take a step into the
wrong direction and will have to be combined with other beyond RL corrections
to obtain a more realistic description of the masses of light mesons. In contrast,
the width of both the f0(500) and its excited partner f0(1370) are both higher
then the width we have calculated. Our width could however be increased by
adding more decay channels in future calculations.
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2. Beyond RL: ρ and σ as dynamical resonances

2.4. Summary and outlook
The main motivation of this chapter was to explore the method from [7], extend
it to the scalar qq̄ states and make a future treatment of similar tetraquark
systems possible.

We reached the former and calculated the lowest lying scalar qq̄ state for the
first time in the BSE-DSE approach with a built in decay channel. Because
of the decay channel, we made the state resonant and thereby overcame a ma-
jor problem of the RL qq̄ sector. To extract the pole position in the second
Riemann sheet, we successfully implemented a path deformation and analytic
continuation. For the latter, we made some necessary improvements to the
Schlessinger point method. Therefore, despite the larger width of the σ com-
pared to the ρ, we could determine its pole position in the compolex plane and
found a relatively stable result with the improved method, also when comparing
the two different methods of calculating the resonance mass: homogeneous and
inhomogeneous BSE.
We finally confirmed previous results for the ρ and found the mass of the

putative σ to be between the experimentally observed states in that channel.
Its width, however, is in line with similar static calculations in the rainbow-
ladder approximation. We showed how to included the two-pion decay channel
into the BSE scattering kernel for ρ and σ in a consistent way. This could in
the future be done for other mesons as well.
Also, an application to tetraquarks should be straightforward. In particular

the tetraquark two-body approximation, that was solved in [84], but also to the
four-body equation of chapter 1 are similar in structure to the equations we
have solved in this chapter.

78



Summary & outlook

Summary
In this thesis we have addressed two main physics topics: The internal structure
and properties of heavy-light tetraquarks and the properties of the I(JPC) =
0(0++) qq̄ scalar with special focus on its description as a resonance.

Heavy-light tetraquarks Concerning heavy-light tetraquarks we calculated:

• the masses of the I(JPC) = 0(0++), 0(1++) and 1(1+−) cqq̄c̄ states and
their I = 0 css̄c̄ partners. We identified the 0(1++) cqq̄c̄ and css̄c̄ states
with the X(3872) and the X(4140), respectively. Furthermore, we iden-
tified the 1(1+−) cqq̄c̄ tetraquark with the Z(3900).

• the masses of the I(JP ) = 1(0+), 0(1+) and 1(1+) ccq̄q̄ tetraquarks and
their I = 0 ccs̄s̄ partners.

We achieved this by solving a genuine four-body Bethe-Salpeter equation (BSE).
Due to a new expansion scheme for the tetraquark amplitude we could identify
the impact of different four-quark components on the tetraquark mass. The
possible components are:

• (cc̄)(qq̄): charmonium coupled to a light meson. We will call this "hadro-
charmonium" (HC).

• (cq̄)(qc̄): a heavy-light meson coupled to a heavy-light antimeson. We
will call this "heavy-light meson meson" (HLM).

• (cq)(q̄c̄). a heavy-light diquark coupled to a heavy-light antidiquark. We
will call this "diquark-antidiquark" (DI).

For the ccq̄q̄ tetraquark, a HC component is not possible and the diquark-
antidiquark component contains a heavy diquark and a light antidiquark: (cc)(q̄q̄).
We found that the impact of the different components on the tetraquark mass

varied from channel to channel. For the hidden-charm tetraquarks we found a
strong HLM and a negligible DI component in all channels. The results are:

• 0(0++): The scalar state is the lightest hidden-charm tetraquark of the
ones we have investigated. It contains a dominant HLM component and
is too light to be identified with the X(3915).

• 0(1++): The putative X(3872) (with quark content cqq̄c̄) and X(4140)
(css̄c̄) states have a dominant HLM component.

• 1(1+−): The putative Z(3900) has a strong HLM and a non-negligible
HC component.

For the open-charm tetraquarks we found non-negligible DI components. The
results are:
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• 1(0+): The scalar is again the lightest state and we need both, HLM and
DI components to calculate its mass.

• 0(1+): The state has a strong HLM component and the inclusion of DI
terms decreases its mass slightly.

• 1(1+): The state has a strong HLM component and the inclusion of DI
terms increases its mass. It is the heaviest ccq̄q̄ state of the three we have
investigated.

Furthermore, we found a mass gap between the 0(1+) ccq̄q̄ and ccs̄s̄ of roughly
500 MeV.

Light scalars We investigated the lowest-lying qq̄ state with quantum num-
bers I(JPC) = 0(0++) and calculated its resonance pole for the first time in a
beyond rainbow-ladder calculation. We have demonstrated how to consistently
introduce a decay channel and how to obtain the resonance pole by solving
the resulting BSE. It involves path deformation and analytic continuation to
the second Riemann sheet via an improved version of the Schlessinger point
method. We call this the BSE-resonance method (BRM) in the following.

Outlook

Resonance properties of tetraquarks We have made some technical progress
and came up with a new method to calculate tetraquark properties. There are at
present three variations for calculating tetraquarks in the BSE-DSE framework
that could be combined with the BRM method, each with their own advantages:

• 4BE: The most fundamental method is the direct solution of the tetraquark
four-body equation (1.31). The drawbacks are the unknown pole positions
of the intermediate two-body poles, that are dynamically generated dur-
ing the solution process.

• 2BE: The approximated two-body equation was solved in [84]. Advan-
tages are the simpler equation, the known pole positions of the interme-
diate two-body states and the possibility to determine the importance of
physical components, as we did in this thesis. A drawback is the necessity
of off-shell meson amplitudes.

• pole-assisted 4BE The third method is the "physical" construction of
the amplitude and solution of the four-body equation, which we have
developed in this thesis. The known pole positions of the intermediate
two-body states and the simpler tetraquark amplitudes while still solving
the four-body equation are advantageous. Furthermore, one can identify
physical components in the amplitude. A drawback is that the error of the
further approximations we introduced in comparison to the 4BE method
is not quantifiable.
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• kernel-free 4BE There is also a fourth method, which has not been
applied yet. The idea is to eliminate the scattering kernels in the four-
body equation by introducing T -matrices, see appendix B.2 for details.
This approach avoids the problem of dynamically generated poles if the T -
matrices are expanded in two-body poles. The complexity of this coupled
set of equations is its main disadvantage.

Extracting resonance properties with the BRM is possible right now for
tetraquarks in combination with the 2BE method and first tests have been
conducted.

Also, a clear path exists in combination with the pole-assisted 4BE method.
The singularity structure of the tetraquark amplitude can be analysed and a
suitable path deformation for unequal mass particles can be found in analogy
to [8]. The equations however are slightly different in their structure compared
to the qq̄ equations we analyzed in chapter 2. As a consequence, one will need
to solve for the tetraquark amplitude for complex relative momenta.
The BRM method in combination with beyond RL two-body BSEs, as well

as the methods for tetraquarks we pointed out above, open up a path to further
investigate interesting physics:

Light qq̄ and qqq̄q̄ scalars In terms of the light qq̄ scalar states a possibility
is to combine other beyond-RL corrections with a built in decay channel and a
solution via the BRM. As discussed we expect a larger scalar qq̄ ground state
mass, probably above 1 GeV with more elaborate beyond-RL corrections. We
naively expect a similar mechanism that pushes the mass down a bit while
acquiring a width if a two-pion decay and other beyond-RL corrections are
combined. If again the width is in the order of 30% of the mass of the calculation
without decay channel, we might end up with a width of roughly 300 MeV. In
that case, much speaks for the proposed identification of the qq̄ scalar with the
first "excited" σ, the f0(1370), which is also a very broad state (200-500 MeV).
This assignment would leave the lowest multiplet for the tetraquark states.
In this context one could look at other multiplet members and other quantum

numbers. It would further be an interesting application to investigate the large-
Nc behavior for the ρ and σ mesons in analogy to [124]. This would be a good
crosscheck but could also be used as a guideline for improvements in the Maris-
Tandy model if the large-Nc scaling was found to be different.

The lightest scalar multiplet could be reanalysed with the 2BE and pole-
assisted 4BE methods in combination with the BRM. We would expect a sim-
ilarly light qqq̄q̄ component around 400 MeV as was found in [3, 84] for the σ
and one could make a statement about the width as well.
In an extension one could couple qq̄ and qqq̄q̄ components and describe mixing

dynamically. This has been attempted in various works for the σ, see [123] and
references therein.

Heavy-light tetraquarks There are several interesting future directions in this
area.
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Firstly, the combination of the 2BE and pole-assisted (and possibly the
kernel-free 4BE) method with the BRM allows us to investigate the widths’
of the tetraquark states, which will be interesting for the cqq̄c̄ tetraquarks in
particular. As we have discussed in section 1.1, the narrow width seems to be
a defining characteristic of many exotic states, especially the X(3872).

The open charm tetraquarks have very different decay channels and it is an
open question whether their widths will be comparable to the hidden-charm
tetraquarks or quite different. In this context an analysis of which decay chan-
nels will create which percentage of the width is of great interest. Especially
since many open charm states seem to decay into hadro-charmonium compo-
nents only it will be interesting whether there is a mechanism that suppresses
HLM decays built into our equations, or if the HLM components dominate the
decay width as they dominate the mass in many of our calculations.
Secondly, an extended analysis of other quantum numbers, especially in the

vector channel would prove valuable. Despite the deficiencies of the qq̄ RL
axialvector, which would necessarily appear as an intermediate bound state
pole, it will be interesting whether the Y states can be interpreted as four-
quark states in our approach. This would make a direct comparison with the
predictions of the HC model discussed in section 1.1 possible. From what we
have learned so far, we would expect a strong HLM component in this channel
as well, but there might also be a mechanism favoring HC.
Last but not least it would be important to check the validity of the pole-

assisted 4BE method by comparing results also with the other methods: 4BE,
2BE and possibly the kernel-free 4BE as well. Since we constructed this ap-
proach as an approximation to the dynamically emerging tetraquark amplitudes
of the 4BE method, only further investigations of those systems can provide
confidence that the mechanisms we assumed indeed apply.

Other tetraquarks It is straightforward to extend the pole-assisted 4BE method
to similar systems, where the charm quarks are replaced by strange or light
quarks. Although this will describe different physics, namely states in the
light meson sector, it would be interesting to see whether one obtains light
tetraquarks as well in other channels than the scalar one.
Another straightforward extension are the heavy-heavy tetraquarks, espe-

cially the ccc̄c̄ states. These states are characterized by Pauli and charge-
conjugation symmetry. This distinguishes the structure of its wave function
from the ccq̄q̄ and cqq̄c̄ tetraqurks, that only obey the Pauli principle and
charge-conjugation, respectively and it would be interesting to see how the
results compare.

In summary, we have extended the arsenal of describing tetraquarks in the
BSE-DSE framework with the pole-assisted 4BE method and put forward the
BRM that allows future studies to extract resonance properties of mesons and
tetraquarks. In particular, the foundation has been laid for further studies in
the light-light, heavy-heavy as well as the heavy-light tetraquark sectors.
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A.Utilities

In this appendix we collect a couple of useful definitions and further explana-
tions in terms of numerics. Euclidean gamma matrices and integral definitions
are provided in section A.1, details on quadrature and the method for solving
homogeneous BSEs that we need in sections 1.3 and 1.4.4 but also throughout
chapter 2, are described in section A.2.

A.1. Euclidean integrals and γ-matrices

Four integrals in spherical coordinates are given by:

ˆ
q

= 1
(2π)4

ˆ
d4q = 1

(2π)4

ˆ ∞
0

dq2 q
2

2

ˆ 1

−1
dz
√

1− z2
ˆ 1

−1
dy

ˆ 2π

0
dφ. (A.1)

In the DSE and BSE a cutoff is applied to the integrals:

ˆ Λ

q
= 1

(2π)4

ˆ Λ2

0
dq2 q

2

2

ˆ 1

−1
dz
√

1− z2
ˆ 1

−1
dy

ˆ 2π

0
dφ. (A.2)

The Euclidean γ-matrices are:

γj =
(

0 −iσk
iσk 0

)
γ4 =

(
1 0
0 −1

)
, γ5 =

(
0 1
1 0

)
, (A.3)

where σk are the Pauli matrices. Further:

C = γ4γ2, (A.4)

where C is the charge conjugation matrix.

A.2. Numerics

A.2.1. Gauss quadrature

The relation
ˆ b

a
dxW (x)f(x) =

N−1∑
j=0

wjf(xj) (A.5)

is exact if f(x) is a polynomial. The xj are the roots of the orthogonal polyno-
mial pN :

pN (xj) = 0
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and wj the corresponding weights. The weights for the weight functions:

ˆ 1

−1
dx (1− x)α(1 + x)βf(x) =

N−1∑
j=0

wjf(xj) (A.6)

are called Gauss Jacobi and include: Gauss Tschebychev (α = β = −1/2) and
Gauss Legendre (α = β = 0). For the former abscissas and weights are given
by:

xj = cos

(
π(j + 1/2)

N

)
, wj = π

N
.

A.2.2. Nystrom method
To transform an integral equation

f(x) =
ˆ
K(x, y)f(y)dy + g(x)︸︷︷︸

=0

into an eigenvalue problem one can apply quadrature (first row) and evaluate
the function on the same points yi as the internal f(yi), namely the zeroes of
the interpolating polynomial:

f(x) =
∑
i

K(x, yi)wif(yi),

f(xj) =
∑
i

K(xj , yi)wif(yi).

Then one can absorb the weights into the kernel and arrive at an eigenvalue
equation with unit eigenvalue:

fjλ =
∑
i

Kjifi, λ = 1.

For details see [102].
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In this part of the appendix we provide further details on the tetraquark ampli-
tude in the "physical" construction from section 1.4.3 in section B.1.1. Further-
more, we provide explicit color traces in section B.1.2 and useful relations for
Firz transformations in section B.1.4. Both are important during the solution
process of the four-body equation, which is described in section 1.4.4. Further
references for details on the L-S decomposition for tetraquarks, which we have
presented in section 1.4.2, are provided in section B.1.3. Section B.1.6 lists the
errors from the momentum partitioning for all tetraquark states. In section B.2
we show a sketch of the "kernel-free" method for solving the four-body equation.

B.1. Tetraquark amplitude
B.1.1. Physical amplitudes
We provide in table B.2 the explicit expressions for the "physical" tetraquark
amplitudes that we gathered in a more compact notation in table 1.9. The
shorthands we used are listed in table B.1. We do not write the pole that hides
in each tensor structure explicitly, but it can easily be recaptured. For example:

φ5 = Φ5P12,34(mcq
S ,m

cq
S ),

φ̃5 = Φ5P12,34(mcc
S ,m

qq
S ),

or:

Ψ3 = ψ3P14,23(mcc̄
v ,m

qq̄
v ),

Ψ̃3 = ψ3P14,23(mcq̄
v ,m

qc̄
v ).

The masses are given in table 1.6.
Color, flavor and Dirac tensors are given in equations (1.44), (1.55) and (B.1).

We construct the state by writing down all possible components (in all channels)
that were gathered in table 1.8 and preserve the relevant symmetries. For an
example see section 1.4.3.

B.1.2. Color kernels
The relevant color kernels for this work are

KD =
(
−1

6
1
21

2 −1
6

)
, KM1 =

(
4
3

1
2

0 −1
6

)
, KM2 =

(
−1

6 0
1
2

4
3

)
.

(B.1)

Here KD,KM1 ,KM2 are the kernels in the diquark, meson one and meson
two decomposition evaluated in the (C11, C′11) basis, for example (KD)12 =
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0+ 1+

ps-ps Φ1 = γ5
αγγ

5
βδ ps - v ψ±1 =

(
γ5
αγγ

µ
βδ ± γµαγγ5

βδ

)
C11

Φ2 = γ5
αδγ

5
βγ ψ±2 =

(
γ5
αδγ

µ
βγ ± γ

µ
αδγ

5
βγ

)
C11′

v-v Φ3 = γµαγγ
µ
βδ v - v ψ3 =

(
γραγγ

σ
βδP̂

νεµνρσ
)
C11

Φ4 = γµαδγ
µ
βγ ψ4 =

(
γραδγ

σ
βγP̂

νεµνρσ
)
C11′

SS Φ5 = (γ5C)αβ(CTγ5)γδC3̄3 SA ψ5 = (γ5C)αβ(CTγµ)γδC3̄3

AA Φ6 = (γµC)αβ(CTγµ)γδC3̄3 AS ψ6 = (γµC)αβ(CTγ5)γδC3̄3

AA ψ7 = (γρ)αβ(CTγσ)γδP̂ νεµνρσC3̄3

Table B.1.: Tetraquark tensor structures for scalar and axialvector by coupling
of mesons and diquarks.

JPC Γ(µ)

0/1(0++) [
∑
i φifi]F0/1

0/1(1++)
[
Ψ−1 f1 + Ψ4f2 + (Ψ5 −Ψ6)f3

]
F0/1

0/1(1+−)
[
Ψ+

1 f1 + (Ψ+
2 + Ψ−2 )f2 + (Ψ+

2 −Ψ−2 )f3+
Ψ3f4 + (Ψ5 + Ψ6)f5 + Ψ7f6

]
F0/1

0(1+)
[
(Ψ̃−1 + Ψ̃−2 )f1 + (Ψ̃3 + Ψ̃4)f2 + Ψ̃6f3

]
F̃0

1(1+)
[
(Ψ̃+

1 − Ψ̃+
2 )f1 + Ψ̃7f2

]
F̃1

1(0+)
[
(φ̃1 − φ̃2)f1 + (φ̃3 − φ̃4)f2 + φ̃6f3

]
F̃1

Table B.2.: Explicit physical tetraquark amplitudes. Shorthands are explained
in table B.1.
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Tr(C11K12C′11) = Tr(C11K34C′11). The Kij stand for the color part of the kernels
of equation (1.33). In combination with the Fierz relations of (1.44) every color
trace can be written as a combination of the ones stated above.

B.1.3. Dirac basis and L-S decomposition

The L − S decompositions for the scalar tetraquarks are provided in great
detail in [109] and in more compact notation in [3]. The axialvector L − S
decomposition is given in the appendix of [5].

B.1.4. Fierz transformations

In this work we use Fierz transformations mainly to simplify matrix elements.
The following lines, however, are kept general, as long as the basis τ has or-
thonormal projectors P with respect to the scalar product: 〈|〉. We suppress the
range of the indices, in the scalar case with s waves the range is 1...16, whereas
it is 1...48 for the axialvector case. A basis element τdi in the basis d can be
expressed in another basis τd′j as:

τdi =
∑
j

Tdd′,ijτ
d′
j , Tdd′,ij = 〈P d′j |τdi 〉

P di =
∑
j

T̂dd′,ijP
d′
j , T̂dd′,ij = 〈P di |τd′j 〉 = Td′d,ji.

(B.2)

We are interested in the transformation of amplitudes of the form:

Ψd =
∑
i

fdi τ
d
i =

∑
j

∑
i

fdi Tdd′,ijτ
d′
j =

∑
j

fd′j τ
d′
j

fd′j =
∑
i

Tdd′,ijf
d
i

and transformations of matrix elements of the form:

〈P di |K|τdj 〉fdj =
∑
i′,j′

T̂dd′,ii′〈P d′i′ |K|τd′j′ 〉
∑
j

Tdd′,jj′f
d
j

=
∑
i′
T̂dd′,ii′

∑
j′
〈P d′i′ |K|τd′j′ 〉fd′j′

=
∑
i′
Td′d,i′if

K,d′
i′

= fK,di ,

where K is a generic kernel. The last lines are useful: We can calculate the
kernel in its home basis d′ and transform back to d with T . In our case the
T ’s are momentum independent and therefore one can always calculate the
complicated loop integrals in the most suitable basis and transform back after
the integration is done.
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1 2 3 4
M [GeV]

0.50

0.75

1.00

1.25
quadratic fit
1

Figure B.1.: Example eigenvalue curve from the 0(0++) tetraquark calculation.

B.1.5. Fitting the eigenvalue curves
We perform a quadratic fit in λ(M) for all results presented in this thesis from
chapter 1, if the eigenvalue one is unaccessible. An example is shown in figure
B.1.

B.1.6. Error tables
The results for the errors of all tetraquark calculations are shown in table B.3.

mq [MeV] 3.7 20 50 85 210 340 470 600 730 795
∆M
M [%] 5.6 4.7 3.7 2.9 1.7 0.1 0.4 0.3 0.01 0.02

∆M
M [%] 11.7 8.9 8.8 5.5 4.4 3.5 0.9 0.5 0.1 0.08
mq [MeV] 3.7 20 50 85 210 340 470 600 730 795

∆M
M [%] 3.8 4.5 2.8 2.2 1.4 0.9 0.4 2.6 0.2 0.1

∆M
M [%] 5.3 9.6 14.2 4.4 8.4 1.6 0.4 4.5 3.4 0.8
mq [MeV] 3.7 20 50 85 210 340 470 600 730 795

∆M
M [%] 4.2 4.1 3.1 3.1 2.6 1.6 2.1 2.8 1.0 0.4

∆M
M [%] 8.2 8.1 6.8 7.2 4.0 2.9 2.2 2.5 1.0 0.6

Table B.3.: Error estimates from the momentum partitioning for one parameter
ζ (row 1) and without restricting the σi (row 2). We show the results
for the 0++, 1+−, 1(1+) from top to bottom. The results for the
1++ state, can be found in table 1.10 in the main text.
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B.2. The "kernel-free" four-body BSE
There is another method for tackling the four-body BSE. The idea is to elim-
inate the scattering kernels in the four-body equation with the exact relation
1.16. This comes at the cost of introducing the two-body T-matrix connecting
a quark and an (anti) quark Tij :

Ψ̄12 = T12(Ψ̄13 + Ψ̄24 + Ψ̄1324 + Ψ̄14 + Ψ̄23 + Ψ̄1423),
Ψ̄34 = T34(Ψ̄13 + Ψ̄24 + Ψ̄1324 + Ψ̄14 + Ψ̄23 + Ψ̄1423),

Ψ̄1234 = T34T12(Ψ̄13 + Ψ̄24 + Ψ̄1324 + Ψ̄14 + Ψ̄23 + Ψ̄1423),

Ψ̄13 = T13(Ψ̄12 + Ψ̄34 + Ψ̄1234 + Ψ̄14 + Ψ̄23 + Ψ̄1423),
...,

where we have used the shorthands

Ψ̄12 = (K12 −K12K34)Ψ, Ψ̄1234 = K12K34Ψ.

Kij stand for the two-body kernels in equation (1.25), Ψ for the tetraquark
amplitude.
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C.Beyond RL ρ and σ

C.1. T-matrix and π-amplitude
The amplitude for the relevant qq̄ mesons are given by:

Γρ = τµi (q, P )fi(q2, z)⊗ 1⊗ σ = Γµi fi(q
2, z),

Γσ = τi(q, P )fi(q2, z)⊗ 1⊗ 1 = Γifi(q2, z),

where σ are the Pauli matrices. We construct projectors P (µ)
i (q, P ) = Γ̂i(q, P )

where the hat denotes normalization such that

Tr(P (µ)
i (p, P )Γ(µ)

j (p, P )) = δij

and the charge conjugation is defined as:

Γj(p, P ) = (Cτµi (−q, P )CT )T ⊗ δAB ⊗ (σ)†. (C.1)

The equation for the decay diagram includes the T-matrix which is given by:

T (q, k, P ) = Γπ
l (q,−P )⊗ Γπ

l (k, P )
P 2 +m2

π

+R,

with Γπ
l = τi(q, P )fi(q2, z)⊗ δAB⊗σl. With the approximation for the off-shell

pion amplitude:

Γπ = δAB ⊗ (iEγ5 + ...)⊗ σj ≈ δAB ⊗ i
B

fπ
γ5 ⊗ σj ,

where fπ = 92.4 MeV. Projecting now onto the dressing functions with 〈Pi|Γ〉 =
fi, we can evaluate the flavor and color factors for the decay diagram:

RL : Tr[1λa1λa] 1
12 = 4

3 ,

ρ : Tr[σ3σ3]12 = 1,

σ : Tr[11]12 = 1

and

RL : Tr[1]13Tr[1] = 3,

ρ :
∑
s,l

Tr[σ3
2 σlσs]Tr[σ3σsσl] = 4,

σ :
∑
s,l

Tr[12σlσs]Tr[1σsσl] = 6.

They are collected in 2.2.
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