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Abstract

Single long-chain omega-3 fatty acids (e.g. docosahexaenoic acid (DHA) or eicosapentae-

noic acid (EPA)) are known for their neuroprotective properties associated with ischemic

stroke. This pilot study aimed to test the effectiveness of an acute treatment with a long-

chain omega-3 lipid emulsion (Omegaven 10%®, OGV) that contains fish oil (DHA 18 mg/

ml; EPA 21 mg/ml) and α-tocopherol (0.2 mg/ml) in a transient middle cerebral artery occlu-

sion (MCAO) model of ischemic stroke in mice. For this purpose, female CD-1 mice were

anesthetized and subjected to 90 minutes of MCAO. To reflect a clinically relevant situation

for an acute treatment, either after induction of stroke or after reperfusion, a single dose of

OGV was injected intravenously into the tail vein (5 ml/kg b.w.). A neurological severity

score was used to assess motor function and neurological outcome. Stroke-related parame-

ters were determined 24 hours after MCAO. Microdialysis was used to collect samples from

extracellular space of the striatum. Mitochondrial function was determined in isolated mito-

chondria or dissociated brain cells. Inflammation markers were measured in brain homoge-

nate. According to control experiments, neuroprotective effects could be attributed to the

long-chain omega-3 content of the emulsion. Intravenous injection of OGV reduced size and

severity of stroke, restored mitochondrial function, and prevented excitotoxic glutamate

release. Increases of pro-inflammatory markers (COX-2 and IL-6) were attenuated. Neuro-

logical severity scoring and neurochemical data demonstrated that acute OGV treatment

shortly after induction of stroke was most efficient and able to improve short-term neurologi-

cal outcome, reflecting the importance of an acute treatment to improve the outcome. Sum-

marising, acute treatment of stroke with a single intravenous dose of OGV provided strong

neuroprotective effects and was most effective when given immediately after onset of ische-

mia. As OGV is an approved fishoil emulsion for parenteral nutrition in humans, our results

may provide first translational data for a possible early management of ischemic stroke with

administration of OGV to prevent further brain damage.
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Introduction

Ischemic stroke is a major cause of death worldwide and responsible for serious long-time dis-

ability in adults. Thrombolytic treatment provides benefits but only for a small subset of

patients who are suitable for lysis therapy. Neuroprotective treatments are aimed at preserving

neurons and preventing neurodegeneration but have not been proven effective in humans yet.

[1] However, neuroprotection remains a prominent goal for stroke therapy and ischemia-

related damage.[2] Ischemia induces changes in mitochondrial respiration and increased

mitochondria-related oxidative stress.[3] Thus, mitochondria are an important target for neu-

roprotection in ischemic stroke.[4] Experimental studies identified intravenous administration

of the long-chain omega-3 fatty acid docosahexaenoic acid (DHA)—a major component of

fish oil—at least in the next 3 hours following initiation of stroke and 1 hour post-reperfusion

as a potent neuroprotective agent in ischemic stroke.[5] It was concluded that DHA has the

potential for treating focal ischemic stroke in a clinical setting and that acute administration of

DHA enriched lipid emulsions may be an effective intervention in pathogenesis of human

stroke.[6] Early discovery and prevention of long-term sequelae is the primary task in treating

patients with acute ischemic stroke.[7] Therefore, we aimed to test the effectiveness of an intra-

venous injection (5 ml/kg b.w.) of OGV shortly after onset of ischemic stroke or after reperfu-

sion in a transient MCAO mouse model. This situation should reflect two clinically relevant

points in time or situations: First, an early neuroprotective treatment in patients arriving at the

hospital with a suspected ischemic stroke (at stroke). Secondly, a neuroprotective treatment in

patients with diagnosed ischemic stroke after lysis or removal of the thrombus (at reperfusion).

The quantity of OGV used in this study corresponds to a human dose of 0.41 ml/kg.[8] This

dose is in the lower range for human use because OGV is approved for doses up to 2 mL/kg

body weight. OGV is an iso-osmolar lipid emulsion already in clinical use for parenteral nutri-

tion and contains fish oil (DHA 18 mg/ml; EPA 21 mg/ml) and α-tocopherol (0.2 mg/ml). We

decided to use OGV in a transient MCAO mouse model because our findings would be trans-

ferable to a clinical setting, giving a potentially translational outcome. In comparison, earlier

studies used free DHA dissolved in saline which is less suitable for the intended human use.

[9–11] Stroke related parameters were investigated 24 hours after reperfusion and showed

reduced infarct size and infarct severity, improved neurological outcome and behavior,

improved mitochondrial function, enhanced glucose levels, prevention of excitotoxic gluta-

mate release and decreased neuroinflammation.

Materials and Methods

Animals and experimental stroke model

Female CD-1 mice (27-29g) were purchased from Charles River (Sulzbach, Germany) and

kept under standardized conditions: 12 h light/dark cycle, temperature (22˚C), humidity

(70%) and access to food and water ad libitum. All animal procedures were carried out in

order to minimize animal suffering according to German and European law. This study was

registered and approved by local authorities (Regierungspräsidium Darmstadt, Antrag F8/21)

and performed by experienced persons with adequate training conforming to the require-

ments of the Federation of European Laboratory Animal Science Associations and the Euro-

pean Communities Council Directive (Directive 2010/63/EU). Omegaven 10%1 (Lot.

16GH0062, containing 18.1 mg/mL DHA and 21.3 mg/mL EPA) was provided by Fresenius

Kabi Deutschland GmbH, Bad Homburg, Germany.

Transient in vivo-ischemia was provoked by occluding the middle cerebral artery (MCAO)

in the left hemisphere of mice. Mice were anesthetized with isoflurane (Forene1, AbbVie
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Deutschland GmbH & Co. KG, Germany) and maintained at 37˚C and received 0.1 mg/kg

buprenorphine as intraperitoneal injection (Temgesic1, Reckitt Benckiser Healthcare Ltd.,

UK) for analgesia. External carotid artery (ECA) and internal carotid artery (ICA) were dis-

sected and a silicon coated suture (Doccol Corp., Redlands, Ca; USA) was introduced and

pushed forward through the ICA until the coated top sealed the source of the middle cerebral

artery (MCA). Proper positioning of the suture was verified by laser Doppler flowmetry.[12]

Mice then recovered in their specified cage. After 90 minutes of occlusion, mice were re-anes-

thetized for suture withdrawal to allow reperfusion. For Sham group, surgery protocol ended

after dissecting the ICA, thus no suture was inserted. In the acute post-operative phase (6

hours after surgery), animals were monitored hourly and every 6–8 hours subsequently. If

signs of pain increased during this time, animals were eligible for additional analgesia of 0.1

mg/kg buprenorphine given intraperitoneally every 6–8 hours. 24 hours after reperfusion, ani-

mals were deeply anesthetized with isoflurane and euthanized by decapitation. In total, 146

mice underwent surgery, of which 28 died during the induction of the stroke and 7 during the

recovery phase. No evidence of adverse effects was identified. The 35 animals who died during

surgery or recovery phase were evenly distributed between the groups. Experiments have been

repeated accordingly.

Treatments

First experiments were carried out to prove potential neuroprotective effects of OGV related

to its content of long-chain omega-3 fatty acids. A control medium-chain lipid emulsion Lipo-

fundin MCT 10%1 (LPF, B Braun, Germany) and d-α-tocopheryl polyethylene glycol 1000

succinate (TPGS1, Sigma-Aldrich, Germany) were tested against saline and OGV in corre-

sponding doses. LPF is also an approved lipid emulsion for parenteral nutrition but lacks long-

chain omega-3 fatty acids whereas TPGS is a water-soluble derivative of α-tocopherol. A com-

parison of the average main ingredients of the two lipid emulsions OGV and LPF is summa-

rized in Table 1.

Throughout the experiments, OGV from a single batch was used to assure constant and

comparable concentrations of its ingredients. Subsequently, mice were randomly divided

and tested in two subprojects: In subproject 1 treatment took place 5 minutes after comple-

tion of the surgical procedures of transient MCAO (a.s., at stroke). In subproject 2 treat-

ment took place after 90 minutes of transient MCAO (a.r., at reperfusion). Each subproject

consisted of three groups: (1) Sham, (2) stroke control and (3) stroke OGV. Control and

verum groups received a single bolus injection of approximately 150 μL (5 ml/kg b.w.)

saline or OGV into the tail vein. According to earlier studies on long-chain omega-3 fatty

acids and to exclude possible aggravating effects of other fatty acids such as n-6 fatty acids

or saturated fatty acids, we chose saline as a control throughout the experiments.[9–11,13–

16]

Table 1. Comparison of average main-ingredients of Omegaven 10% and Lipofundin 10% MCT.

per 100 mL Omegaven 10% Lipofundin 10% MCT

Fishoil 10,00g -

Soybean oil - 5,00

Medium-chain-triglycerides (MCT) - 5,00

Glycerol 2,50g 2,50g

α-Tocopherol 0,02g 0,01g

(3-sn-Phosphatidyl-)choline from egg 1,20g 0,8g

doi:10.1371/journal.pone.0167329.t001
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Neurobehavioral Assessment

Behavioral tests were performed 1 hour before stroke surgery and 24 hours after reperfusion.

Neurological impact was scored using a neurological severity score (NSS) adapted from pub-

lished scores.[17,18] The NSS combines different measures of innate reflex, alertness, physio-

logical behavior and motor ability to score neurological behavior. Neurological performance

was scored on a scale of 0 to 16 (most healthy score = 0, most severe score = 16; refer to S1

Table).

Infarct area and infarct severity

Infarct area was measured 24 hours after reperfusion. Brain slices were stained with a solution

of 1% 2,3,5-triphenyl-tetrazolium chloride (TTC, Sigma-Aldrich, Germany) in phosphate buff-

ered saline (PBS). Striatal brain slices from core region of ischemic stroke (due to MCAO)

were used to determine the infarct areas and infarct severity as measured by differences in

grayscales. Infarct volumes were determined by whole brain slices.

Stroke severity or amount of living tissue was determined by a grayscale analysis of TTC

stained brain slices. The coloring agent allows to differentiate between metabolic active and

inactive tissue in a continuous way, as density and intensity which is measured by grayscale

varies depending on severity of stroke.[19] The colorless compound is transformed to a red

dye by metabolic active tissue whilst metabolic inactive tissue remains white. The difference

between the mean grayscale of impacted and healthy contralateral brain hemisphere was calcu-

lated for each animal. The lower the value, the more healthy tissue in the analyzed area, as a

value of zero implies that there is no difference in the TTC stained color of impacted and con-

tralateral brain hemisphere. Stroke area and grayscale analysis were achieved by Image J soft-

ware (National Institutes of Health, USA. Version 1.46r).[20]

Preparation of dissociated brain cells (DBC) for ex vivo studies

DBC were prepared according to a previously published method using separated hemispheres

of brains.[21] Briefly, brain was washed and homogenized in a buffered medium, chopped and

pressed through a nylon mesh for separation followed by several centrifugation steps. Subse-

quently on receipt of the pellet, DBCs were diluted in Dulbecco’s Modified Eagle Medium

(DMEM) and seeded into 24 well plates or 96 well plates. Cells were cultured at 37˚C under

5% CO2. DBCs were used for analysis of MMP and ATP levels 24 hours after reperfusion.

Mitochondrial function

For Mitochondrial isolation, separated hemispheres of brains were homogenized as previously

decribed.[22] Briefly, the sample passes through different centrifugal steps after homogeniza-

tion to isolate mitochondria which were finally injected into a respirometer (Oxygraph-2k,

Oroboros, Innsbruck, Austria).

Mitochondrial respiratory function was assessed by measuring consumption of oxygen in an

Oxygraph-2k respirometer. Titrations of substrates and inhibitors induced different respira-

tory states. Mitochondrial respiration was normalized to protein content and citrate synthase

(CS) activity., respectively. CS activity and protein content were assessed in isolated

mitochondria.

Mitochondrial Membrane Potential (MMP) measurement was assessed in DBCs using the

fluorescence colorant rhodamine-123 (R123) for analysis. DBCs were incubated for 15 min

(37˚C, 5% CO2) with 0.4 μM R123. DBC were centrifuged (3000 rpm, 5 min) and washed with

HBSS buffer (supplemented with Mg2+, Ca2+, and HEPES; pH 7.4; 37˚C). After adding fresh
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HBSS to the DBCs, MMP was obtained by measuring the fluorescence of the colorant at an

excitation wavelength of 490 nm and at an emission wavelength of 535 nm on a Victor X3

2030 multilabel counter (Perkin Elmer, Rodgau-Jügesheim, Germany). The fluorescence was

recorded in four sequential runs and normalized to corresponding protein concentrations.

ATP levels were determined in DBCs using a ViaLight1 Plus bioluminescence kit (Lonza,

Walkersville, USA). Briefly, DBCs were incubated with lysis reagent followed by incubation

with monitoring reagent for additional 5 min. Bioluminescence (linearly associated to ATP

concentration) was obtained by a luminescence reader (Victor X3 2030 multilabel counter,

Perkin Elmer, Rodgau-Jügesheim, Germany). Concentrations were recorded in two sequential

runs and normalized to corresponding protein concentrations.

Microdialysis

Microdialysis was performed as previously described.[23] Briefly, self-made dialysis probe was

implanted into mouse striatum one day prior to MCAO. Anesthesia was induced by 2.4% iso-

flurane with synthetic air and fixed in a stereotaxic framework. The probe (exchange length

2.5mm) was implanted AP +0.5mm; L +2.2mm; DV -3.8mm from bregma and fixed at this

position with dental cement (Ivoclar Vivadent AG, Schaan, Liechtenstein). Mice recovered

from surgery in their specified cages for 24 hours. Microdialysis was initiated 30min before

MCAO and continued until 30min after reperfusion. Fractions were collected separately

(before, during and after occlusion). Perfusion liquid was artificial cerebrospinal fluid (aCSF:

147 mmol/LNaCl; 4 mmol/LKCl; 1.2 mmol/L CaCl2 and 1.2 mmol/L MgCl2), the perfusion

rate was 2 μL/min. After completion of the microdialysis, animals were sacrificed by decapita-

tion. Metabolites were determined using a CMA-600 microanalyzer (CMA Microdialysis,

Stockholm, Sweden).

Protein quantification and Western blot analysis

Protein levels were determined by using Pierce BCA Protein Assay Kit (Thermo Scientific,

USA). Brain homogenate of separated hemispheres was used for Western blot experiments.

Samples were incubated with primary antibodies [(Cox-2 (sc-1745), Santa Cruz Biotechnology,

USA; IL-6 (PP012P2), IL10 (PP007P2), Acris Antibodies, USA] and corresponding secondary

antibodies (#401515, #401353 and #401253, Calbiochem, Germany) conjugated to horseradish

peroxidase and visualized by ECLplusTM Reagent (Amersham Biosciences, USA). Glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) detected with antibody (MAB374, Chemicon,

Germany) and Tubulin detected with antibody (ab6160, Abcam, GB) served as loading control.

Band detection and evaluation was achieved with BioRad’s Quantity One software.

Statistics

All data are presented as means ± SEM. Statistical analysis was performed by applying t-test

and Mann-Whitney test for groups of two and One-Way ANOVA with Tukey post test for

groups of more than three (Prism 5.03, GraphPad Software, USA). A P value of< 0.05 was

considered statistically significant. If not declared differently, significances always refer to con-

trol values.

Results

Neuroprotection by intravenous infusion of OGV at reperfusion

Transient MCAO for 90 minutes disrupted blood flow and caused ischemia in striatal and cor-

tical areas of the brain as detected by laser Doppler (data not shown) and striatal glucose levels.

Long-Chain Omega-3 Lipid Emulsion as Acute Treatment of Ischemic Stroke
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LPF and TPGS, control items both lacking long-chain omega-3 fatty acids (refer to Table 1 for

a list of main ingredients) neither affect stroke area (Fig 1A and 1C) nor stroke severity as mea-

sured by grayscale analysis (Fig 1B and 1C). OGV injection at reperfusion (a.r.) reduced the

infarcted area by 21% and severity of stroke by 50% (Fig 1A, 1B and 1C).

Compared to the stroke control group, OGV a.r. increased the mitochondrial membrane

potential by 20% (MMP; Fig 2A), and ATP levels by 63% (Fig 2B) which were significantly

reduced in dissociated brain cells 24 hours after reperfusion. Protective effects of OGV on

cerebral mitochondrial dysfunction were further investigated in isolated mitochondria.

Stroke significantly impaired the activity of OXPHOS and complex IV (cytochrome c oxi-

dase) of the mitochondrial respiration chain (Fig 2C) and reduced the respiratory control ratio

(RCR) and citrate synthase activity (Fig 2D). OGV improved the RCR by 31% (Fig 2D),

Fig 1. Effects of OGV and control emulsions when applied at reperfusion. Saline, Lipofundin® (LPF) and d-α-tocopheryl polyethylene glycol 1000

succinate (TPGS) in doses equal to OGV when injected at reperfusion (a.r.). (A) Infarct areas and (B) differences in grayscale for LPF, TPGS, and Omegaven

10% (OGV) vs. Saline; n = 6. Mean ± SEM, p*<0.05; p**<0.01; p***<0.001; One-Way ANOVA with Tukey post-test. (C) Representative striatal brain slices

for determination of differences in grayscale for each group. Density of grayscale in a representative area from core of infarction (solid circle) was subtracted

from corresponding grayscale of contralateral control area (dashed circle).

doi:10.1371/journal.pone.0167329.g001
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indicating enhanced coupling of the respiratory system.[22,24] OGV also increased citrate

synthase activity by 71% after stroke (Fig 2D), indicating enhanced mitochondrial mass.[25]

Although mitochondrial function as well as stroke area and severity of stroke were

improved, OGV treatment at reperfusion resulted only in marginally improved neurological

severity scores as early as 24 hours after reperfusion (data not shown).

Superior effects of an acute OGV administration

Severe behavioral limitations (score 10 or 11) were manifest in all animals tested 24 h after 90

minutes of MCAO (Fig 3A). Significant improvement was observed when OGV was injected

immediately after onset of MCAO (a.s.) (Fig 3A), resulting in a significant improved motor

function.

MCAO led to steady necrotic lesions including both cortical and subcortical areas of the

impacted, left hemisphere (Fig 3B). OGV injection a.s. reduced infarct volume by 56% as well

as severity of stroke by 60% (Fig 3B and 3C) and restored mitochondrial function to basal val-

ues (Fig 4A and 4B).

Glucose and glutamate levels were determined before (PRE), during (Stroke) and after

stroke (POST) in extracellular microdialysates collected in the striatum of the ischemic hemi-

sphere (Fig 4C and 4D). Glucose levels dropped by 86% during stroke and increased after

reperfusion (Fig 4C). Elevated glutamate levels by 740% of basal values were observed during

MCAO (Fig 4D). OGV suppressed the release of glutamate during stroke (Fig 4D) and

enhanced glucose levels in the impacted area (Fig 4C). Although, the OGV-induced rise in glu-

cose levels was statistically not significant, the data indicate an improved blood supply into the

affected tissue.

MCAO significantly increased pro-inflammatory protein levels of cyclooxygenase 2 (COX-

2, Fig 5A) by 540% and interleukin-6 (IL-6 Fig 5B) by 220% as well as the anti-inflammatory

marker Interleukin-10 (IL-10, Fig 5C) by 160%.

Compared to stroke, OGV a.s. significantly reduced the pro-inflammatory marker IL-6 by

49% (Fig 5B), but had no influence on IL-10 levels. All protein levels were measured 24h post-

stroke.

Discussion

The demand for long-chain omega-3 fatty acids escalates dramatically after ischemic stroke to

limit the cellular damage by restoring destroyed neuronal membranes. During ischemia, poly-

unsaturated species from phospholipids (especially arachidonic acid and DHA) undergo sig-

nificant hydrolysis which was not inversed through reperfusion.[26] We confirmed recent

data demonstrating neuroprotective effects of DHA in experimental stroke models when

applied at reperfusion.[5,11] Moreover, we report the novel finding that OGV injections

shortly after onset of stroke provided superior neuroprotective actions (compared to treatment

at reperfusion) on stroke volume, tissue health (as measured by grayscale analysis), mitochon-

drial function and development of inflammation in a murine MCAO model, emphasizing the

Fig 2. Marker of mitochondrial function after treatment at reperfusion. Sham-operated mice. (Control)

versus stroke control group that received saline (Stroke) and stroke treatment group that received OGV at

reperfusion (a.r.). (A) Mitochondrial membrane potential (MMP)- and (B) Adenosine triphosphate (ATP)-levels

as measured 24 hours after reperfusion in dissociated brain cells, n = 8; (C) Respiration [pmol oxygen/(s* mg

protein)] of different complexes of the respiratory chain were determined in isolated mitochondria, n = 6; (D)

Respiratory control ratio (RCR) that indicates the coupling of mitochondrial respiration chain and citrate

synthase activity that represents a quantitative marker for mitochondrial mass, n = 6. Mean ± SEM, p*<0.05;

p**<0.01; p***<0.001; One-Way ANOVA with Tukey post-test.

doi:10.1371/journal.pone.0167329.g002
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Fig 3. Effects of OGV when given at stroke (a.s.). (A) Neurobehavioral assessment (refer to S1 Table) for sham-operated mice (Control) versus control

group that received saline (Stroke) and treatment group that received OGV at stroke (a.s.), (B) Representative brain slices for determination of infarct volume

and differences in grayscale. (C) Effect on infarct volume and grayscale levels, n = 8. Mean ± SEM, p*<0.05; p**<0.01; p***<0.001; (A) One-Way ANOVA

with Tukey post-test, (C) t-test.

doi:10.1371/journal.pone.0167329.g003
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importance of an earliest intervention to improve the outcome. OGV is an approved fish oil

emulsion for parenteral nutrition containing long-chain omega-3 fatty acids (DHA 18 mg/ml;

EPA 21 mg/,ml) and α-tocopherol (0.2 mg/ml). Thus, findings might be translated into a clini-

cal setting. The dosing rationale for this study was based on recommendations of the GV-SO-

LAS (Gesellschaft für Versuchstierkunde–Society for Laboratory Animal Science) regarding

the maximum feasible volume for intravenous substance application in the mouse, which is

Fig 4. Marker of mitochondrial function after treatment at stroke. Sham mice (Control) versus stroke control group that received saline (Stroke) and

stroke treatment group that received OGV at stroke (a.s.). (A) Mitochondrial membrane potential (MMP)- and (B) Adenosine triphosphate (ATP)-levels as

measured in dissociated brain cells 24 hours after reperfusion. Energy metabolite levels in striatal core region of stroke for (C) glucose and (D) glutamate as

determined by microdialysis 30 minutes before (PRE), 90 minutes during (Stroke) and 30 minutes after (POST) stroke surgery, n = 8. Mean ± SEM, p*<0.05;

p**<0.01;p***<0.001; One-Way ANOVA with Tukey post-test.

doi:10.1371/journal.pone.0167329.g004
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5 ml/kg and is equal to our bolus injection of 150 μL in a mouse of approximately 30g weight.

[27] This dose is 5 times below the accepted range of OGV in human. Belayev et al. reported

toxic effects of 70 mg/kg DHA in rats. Doses of 3.5, 7, 14 and 35 mg/kg DHA showed equal

beneficial effects.[11] Taking into account the conversion factor for doses from rats to mice,

3.5, 7, 14, 35 and 70 mg/kg in rats as reported by Belayev et al. correspond to doses of 7, 14, 28,

70 and 140 mg/kg in mice.[28] The bolus injection used in this pilot study contained 90 mg/kg

DHA, which is below the dose that showed detrimental effects and within the beneficial dose

that was reported by Belayev et al., thus reflecting a maximum non-toxic dose. This study was

designed as a pilot study and should test a potentially translational treatment with long-chain

omega-3 fatty acid emulsion approved for parenteral nutrition in humans. We identified two

time points when treatment could take place in the best case: First, after induction of stroke

but before diagnosis, and second, after diagnosis of stroke and lysis/removal of the thrombus.

These points reflect the two earliest time points when treatment with OGV would be feasible

and could potentially exert maximum effects. As patients with suspected or diagnosed ische-

mic stroke would receive a central venous access, we chose an intravenous injection as acute

way of treatment. As stated above, we carefully chose one dose that should represent a maxi-

mum non-toxic dose based on earlier findings in the literature.[11] Beneficial effects of OGV

can largely be assigned to their content of long-chain omega-3 fatty acids since experiments

using comparable emulsions containing soy oil and medium-chain triglycerides (100 mg/ml)

and α-tocopherol (0.2 mg/ml) (LPF or TPGS) in equivalent concentration showed no effects

on stroke outcome. Beside DHA, OGV also contains the long-chain omega-3 fatty acid eicosa-

pentaenoic acid (EPA) which also provides beneficial effects.[29] EPA also exerts anti-inflam-

matory as well as mild vasodilatory effects.[30,31] Exclusive treatment with EPA was shown to

be ineffective in a model of hypoxic-ischemic brain injury, thus its neuroprotective potency

seems to be lower than that of DHA which mediated strong neuroprotection in the same

model.[6] EPA showed additional effects like vasodilatation and improved membrane fluidity

that, in combination with DHA, may potentiate neuroprotective actions.[31] The biological

precursor of long-chain omega-3 fatty acids DHA and EPA is the shorter-chain fatty acid

Fig 5. Western Blot analysis of brain homogenates. Sham-operated mice (Control) versus control group that received saline (Stroke) and treatment group

that received OGV at stroke (a.s.). (A) COX-2-, (B) IL-6-, and (C) IL-10 protein levels, n = 8. Mean ± SEM, p*<0.05; p**<0.01; p***<0.001; One-Way ANOVA

with Tukey post-test.

doi:10.1371/journal.pone.0167329.g005
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alpha-linolenic acid (ALA). In the body, ALA is converted to DHA and EPA, but this conver-

sion is ineffective. For example, conversion from ALA to DHA is only about 0–4%.[32] A

recent study showed that acute intravenous injection of ALA was insufficient in improving

motor recovery after ischemic stroke in mice, whilst dietary long-term supplementation with

ALA was able to exert significant protective effects, emphasizing the importance and possibil-

ity of nutritional intervention in order to improve outcome in the critically post-stroke recov-

ery phase.[33] Other studies claim that neuroprotective effects are widely attributed to

conversion of ALA to DHA and that ALA seems not to be useful for an acute intervention of

ischemic stroke.[34] Respective levels of ALA and EPA in the brain are 200–500 fold lower

than of DHA, which might be attributed to a rapid metabolism via beta-oxidation and subse-

quently underline the brain’s need for DHA.[35] Otherwise, Bourourou et al. revealed that

protective effects of ALA treatment are linked to an intrinsic effect rather than bioconversation

of ALA to DHA as indicated by unchanged DHA levels of the brain after subchronic ALA

injections.[33] As OGV also contains certain amounts of ALA, this might also contribute to

the observed protective effects in addition to those mediated by e.g. DHA or EPA.[36] Addi-

tional data for ALA supplementation and its protective effects are also given by Blondeau et al.

who summarizes that potential benefits of ALA are supported by animal studies as well as epi-

demiologic studies. He also supports the idea of an intravenous therapy targeting neurological

conditions and speculates that this may offer significant benefits for patients suffering ischemic

conditions.[37] The proposed intervention with OGV goes well with the supposed approach

communicated by Blondeau et al. and supports this idea with first data.

In line with earlier reports, microdialysis showed significantly increased glutamate levels in

the striatum of control mice which returned to basal levels at reperfusion.[38] Excessive gluta-

mate release during ischemia leads to excitotoxicity that triggers apoptosis and finally neurode-

generation.[39,40] The excessive glutamate release peaks within minutes after ischemia and

then slowly decreases within hours, emphasizing the importance of an early treatment if the

glutamate mediated excitotoxicity should be targeted effectively to prevent further neuronal

death.[12,23,41] We recently showed that the inhibition of the excessive release of glutamate

triggered by ischemia results in a reduction of infarct area and enhances motor function.[20]

Similarly, OGV treatment shortly after induction of MCAO abolished the release of extracellu-

lar glutamate levels and reduced the infarct area which might help to explain why only an

acute treatment improved neurological outcome. Presumably, due to the fact that also treat-

ment at reperfusion preserved significant amounts of viable brain tissue, long-term rehabilita-

tion is expected to be better. Supplementation with fish oil was recently shown to be related to

reduced cellular damage and enhanced cellular proliferation 6 weeks after ischemic stroke in

the rat.[42] OGV numerically enhanced glucose levels. OGV enhances erythrocyte membrane

fluidity and thus potently modulates endothelial cell integrity and exert vasodilatory effects

which might explain an improved blood supply into the affected tissue, thus leading to slightly

improved glucose levels obtained during microdialysis at stroke.[30,31,43] As a consequence,

this mechanism might evoke concern about influences on bleeding times. Wachira et al. inves-

tigated the influence of (highly concentrated) long-chain omega-3 fatty acids on hemostasis

and concluded that bleeding times did not exceed normal limits nor did produce clinically sig-

nificant bleeding episodes and are rendered safe in monotherapy as well as combination ther-

apy settings, although DHA and EPA exert a mild inhibition of platelet function that was often

under detection limits. No support for discontinuing long-chain omega-3 fatty acid supple-

mentation before invasive procedures was found. In contrast, their use improved clinical out-

comes in several settings or reduced the risk of bleeding.[30] This finding is supported by a

meta-analysis of clinical studies regarding relation of intake of long-chain omega-3 fatty acids

and stroke by Larsson et al. who showed that no higher risks nor occurrences of hemorrhagic
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stroke could be stated, but a statistically significant reduction in stroke risk in relation to long-

chain omega-3 fatty acid intake could be found for ischemic stroke that was only significant

for ischemic but not hemorrhagic stroke. Larsson et al. attributed this statistical difference to

the higher patient counts for ischemic stroke, resulting in higher statistical power.[44] A recent

study focused on the concern of hemorrhagic transformation and tested whether DHA

increases or decreases the risk of hemorrhagic transformation as a feared complication of cere-

bral ischemic infarction.[45] The results of this study showed that DHA attenuated hemor-

rhagic transformation and preserved integrity of the blood-brain-barrier whilst reducing

inflammation.

Mitochondrial dysfunction is a major consequence of stroke that impacts brain tissue and

causes elevated levels of reactive oxygen species (ROS) in the affected tissue.[46] Ischemia pro-

vokes negative alterations in mitochondrial respiration in animal models.[3] In mitochondria,

efficacy of cellular respiration was significantly decreased. In contrast, the degree of lipid per-

oxidation mediated through increased formation of free radicals was significantly increased

during ischemia and reperfusion.[20,26,47] In line with recent findings we report on impaired

mitochondrial function after MCAO.[41] Intravenous treatment with OGV compensated for

stroke-related decrease of mitochondrial respiration and significantly enhanced OXPHOS and

cytochrome C oxidase activity. The OXPHOS system is the final biochemical pathway for the

production of ATP. Thus, improved respiration led to an enhanced MMP that represents the

propulsive power for ATP formation through F0/F1-ATPase (complex V) activity.[48]

Accordingly, OGV significantly improved MMP and ATP levels as measured 24 hours after

reperfusion.

Inflammation represents a severe and detrimental consequence of stroke that is character-

ized by an accumulation of inflammatory mediators.[49] Pro-inflammatory mediators such as

COX-2 impair mitochondrial activity by inducing accumulation of distinct amounts of ROS

through impairing OXPHOS activity.[50] Pro-inflammatory IL-6 is known to be elevated in

the acute phase of stroke and high levels of IL-6 are associated with increased stroke volume

and less favorable prognosis.[51] Its opponent IL-10 exerts anti-inflammatory effects, provides

neuroprotection in ischemic stroke and reduced infarct volume at raised levels.[52] Levels of

IL-6 (as part of the pro-inflammatory answer) and IL-10 (as part of the physiological repair

mechanism to control the inflammatory answer) were significantly increased after transient

MCAO which may involve inhibition of nuclear factor κB activation and an ERK mediated

pro-survival cascade.[53] Several studies reported that treatment with anti-inflammatory

drugs reduced infarct size and brain edema.[54] Long-chain omega-3 fatty acids are consid-

ered to be suppressors of neuroinflammation with several mechanisms of action.[35] Long-

chain omega-3 fatty acids are actively biosynthesized to specialized pro-resolving mediators

(SPM), a family of neuroprotective mediators that are involved in the resolution of inflamma-

tion.[55] This family is comprised of lipoxins, resolvins, protectins and maresins. Classic lipid

mediators are formed from arachidonic acid and can exert pro-inflammatory (leukotrienes) or

anti-inflammatory (lipoxins) actions. EPA can be biosynthesized to a class of resolvins (e-series

resolvins) and DHA to several classes of resolvins (d-series resolvins), protectins and maresins

which are all actively involved in the resolution of inflammation.[30,55–57] Resolution of

inflammation by SPMs involves several mechanisms like neutrophil recruitment, stimulation

of clearance mediated by macrophages, counterregulation of pro-inflammatory mediators

such as COX-2 or IL-6 and tissue remodeling.[56] Neuroprotectin D1 (NPD-1) represents one

of the first and most prominent neuroprotective metabolites of DHA which was identified by

Bazan et al. earlier.[58,59] NPD-1 is a protectin that attenuates leukocyte infiltration, inhibits

pro-inflammatory signaling and reduces infarct size in animal models of ischemic stroke via

inhibition of Nf-κB pathway activation, increased expression of anti-apoptotic proteins like
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Bcl-2 and decreased expression of pro-apoptotic protein such as Bax.[5,60,61] Since DHA can

be converted to several different classes of SPMs which each of them individually exert potent

neuroprotective and anti-inflammatory effects, it is one of the most important members of

long-chain omega-3 fatty acids.[56] OGV treatment significantly decreased protein levels of

IL-6 confirming its anti-inflammatory properties.[62] Our experiments indicate that transient

MCAO induced inflammatory and anti-inflammatory proteins and that OGV diminished the

pro-inflammatory response only. A crucial point in time for inflammation is the moment of

reperfusion. Paradoxically, reperfusion after removal of the thrombus does not improve the

overall situation of the brain. As mitochondria experience dysfunction due to previously

restricted supply with blood, glucose and oxygen, complexes of the respiratory chain do not

work as intended: Components of the oxidative phosphorylation (OxPhos) are phosphorylized

under physiological conditions and stabilize mitochondrial membrane potential in a range

between 80–140 mV what is advantageous for the production of energy.[63] Following ische-

mia, several enzymes get activated that mediates dephosphorylation of components of the

OxPhos which triggers a hyperactive state with a membrane potential above 150 mV. This

hyperactivation does not result in consequences during ischemia due to the lack of oxygen.

But after reperfusion, hyperactivated OxPhos components are supplied with oxygen, resulting

in exponentially increased production of reactive oxygen species triggering further inflamma-

tion and apoptosis.[63] This detrimental phenomenon is called reperfusion-injury, emphasiz-

ing the need of an early intervention.[64]

Our data identified intravenous injection of OGV shortly after onset of transient MCAO as

possible early medical management which could play a crucial role in inhibiting further brain

damage mediated by ischemic stroke.[65] As literature did not reveal any concerns about pos-

sible influences of long-chain omega-3 fatty acids on bleeding times, treatment could also be

started precautionary when stroke diagnosis is not fully performed yet. [30,44] Earliest neuro-

protective treatment of ischemic stroke even before removal of thrombus showed best effects

in our pilot study and was able to improve functional short-term outcome. This may be related

to the reperfusion-injury that could be targeted by anti-inflammatory and anti-apoptotic long-

chain omega-3 fatty acids and their neuroprotective metabolites when given during onset of

ischemia. Although this pilot study showed short term effects only, it proved effectiveness of

the proposed treatment. Further studies are needed to investigate the long-term effects of the

proposed treatment and possibly further dosing regimens. Nevertheless, our results provide a

translational approach that might contribute to a new and acute treatment of ischemic stroke

in the clinics.

Conclusion

In summary, treatment provided distinct neuroprotective properties in acute focal cerebral

ischemia in mice by attenuating mitochondrial dysfunction as well as neuroinflammation and

excitotoxicity. Neuroprotective effects were associated with the long-chain omega-3 fatty acid

content of the lipid emulsion. Thus, intravenous administration of OGV might be an early and

safe option for interventions even before diagnosis of ischemic stroke has been established.

The results of this study might provide first translational data for an early clinical management

of ischemic stroke with OGV which is pivotal to prevent further brain damage.
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