Hochauflösende Fourier-Transform-Infrarot-Spektroskopie an Molekularstrahlen von Ketten- und Ringmolekülen

Die Rotations-Schwingungsspektren des Cyanofulminats (NCCNO), des Oxetans (C_3H_6O) und des Kohlensuboxides (OC_5O) im mittleren Infrarot

 $In a ugural \hbox{-} Dissertation$

zur

Erlangung des Doktorgrades der Naturwissenschaften der Justus-Liebig-Universität Gießen Fachbereich 08 (Biologie, Chemie und Geowissenschaften)

vorgelegt von

Diplom-Chemiker Ralf Petry

Physikalisch-Chemisches Institut der Justus-Liebig-Universität Gießen, 2000

D26

Dekan: I. Berichterstatter: II. Berichterstatter: Prof. Dr. Rainer Renkawitz Prof. Dr. Manfred Winnewisser Prof. Dr. Günther Maier

INHALTSVERZEICHNIS

1	\mathbf{Ein}	nleitung					
	1.1	Themenstellung und Motivation					
		1.1.1 Apparativer Beitrag der vorliegenden Arbeit					
		1.1.2 Spektroskopischer Beitrag der vorliegenden Arbeit					
	1.2	Literaturverzeichnis					
2	Fou	rier-Transform-Spektroskopie im infraroten Spektralbereich 15					
	2.1	Die Entstehung des Interferogramms					
		2.1.1 Das Michelson-Interferometer					
		2.1.2 Berechnung des Spektrums aus dem Interferogramm					
		2.1.3 Die Entstehung der instrumentellen Linienform					
		2.1.4 Apodisierung und Selbstapodisierung					
	2.2	Die Diskrete Fourier-Transformation (DFT)					
		2.2.1 Digitalisierung und Aliasing					
		2.2.2 Der Picket-Fence (Lattenzaun)-Effekt und Zerofilling					
	2.3	Die Phasenkorrektur					
	2.4	Vorteile der FTIR-Spektroskopie					
	2.5	Das hochauflösende FT-Spektrometer Bruker IFS 120 HR 28					
	2.6	Literaturverzeichnis					
3	Asp	oekte der Spektroskopie an kalten Molekülen in der Gasphase 33					
	3.1^{-1}	Kühlbare Absorptionszellen					
	3.2	Die Stoßkühlungs- und Hüllstromtechnik					
	3.3	Grundlagen der Molekularstrahltechnik					
		3.3.1 Einfluß der Verwendung verschiedener Düsentypen auf den					
		Molekülstrahl					
		3.3.2 Die Verwendung von inerten Trägergasen zur Expansion					
		3.3.3 Die Entwicklung der Spektroskopie von Molekülstrahlen					
	3.4	Literaturverzeichnis					
4	\mathbf{Ein}	e Mehrfachreflexionsanordnung für die FTIR-Jet-Spektroskopie 51					
	4.1	Entwicklung der FTIR-Spektroskopie von Molekülstrahlen					
	4.2	Das Empfindlichkeitsproblem der FTIR-Jet-Spektroskopie					
		4.2.1 Apparativer Aufbau der Molekülstrahlanlage					
		4.2.2 Die sphärische Mehrfachreflexionsoptik					
		4.2.2.1 Die Justage der Mehrfachreflexionsoptik					
		4.2.2.2 Bestimmung der Empfindlichkeitssteigerung durch die Mehrfach-					
		reflexionsoptik					

		4.2.2.3 Diagnostische Testmessungen zur Optimierung der experimen-	
		tellen Bedingungen	75
		4.2.2.4 Bau und Erprobung einer heizbaren Kapillardüse	84
	4.3	Literaturverzeichnis	87
5	Hoc	hauflösende Rotations-Vibrations-Spektroskopie am Cyanofulminat	91
	5.1	Theorie der Molekülspektren eines linearen Moleküls	91
		5.1.1 Der Hamilton-Operator eines linearen Moleküls	92
		5.1.2 Die Entwicklung des Hamiltonoperators	95
		5.1.3 Korrektur der Eigenwerte eines linearen Moleküls: Der effektive	
		Hamiltonoperator von YAMADA, BIRSS und ALIEV	98
		5.1.4 Resonanzen beim linearen Molekül	100
		5.1.5 Die Bestimmung von Reihenentwicklungskonstanten	102
	5.2	Gängige quantenchemische <i>ab initio</i> -Berechnungen	104
		5.2.1 Das Hartree-Fock-Verfahren (HF)	105
		5.2.2 Störungsrechnungen n -ter Ordnung nach Møller-Plesset (MP n)	106
		5.2.3 Die Dichtefunktionalberechnungen	107
		5.2.4 Konfigurationswechselwirkung (CI)- und Coupled-Cluster (CC)	
		-Berechnungen	107
		5.2.5 Die Basissätze	108
	5.3	Überblick über bisherige Arbeiten am Cyanofulminat	109
		5.3.1 Spektroskopische und theoretische Untersuchungen	109
	5.4	Präparation des Pyrolysevorläufers	114
	5.5	Messung des FTIR-Spektrums von NCCNO im mittleren Infrarot	114
		5.5.1 Durchführung der Messungen des MIR-Spektrums von NCCNO in der 3	
		m-Absorptionszelle	115
		5.5.2 Durchführung der Messungen des MIR-Spektrums eines	
		NCCNO-Molekülstrahles	119
	5.6	Zuordnung der Rotations-Vibrations-Übergänge	121
	5.7	Analyse des Bandensystems der NO-Streckschwingung ν_3	124
	·	5.7.1 Das $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ -Resonanzsystem von NCCNO	133
		5.7.2 Das $(\nu_3 + 2\nu_7)/(2\nu_4 + 2\nu_7)$ -Resonanzsystem von NCCNO	141
	5.8	Die Bandensysteme der NC- und CN-Streckschwingungen ν_2 und ν_1	145
	5.9	Zusammenfassung der Ergebnisse und Ausblick	155
	5.10	Literaturverzeichnis	158
6	Rot	ations-Vibrations-Spektroskopie am Oxetan-Molekül	161
	6.1	Theorie der Molekülspektren eines asymmetrischen Kreisels	162
	-	6.1.1 Der symmetrische Kreisel	162
		6.1.2 Qualitative Beschreibung des asymmetrischen Kreisels	162
		6.1.3 Die Näherung nach RAY	164
		6.1.4 Die Reduktion nach WANG	165
		6.1.5 Zentrifugalverzerrung im asymmetrischen Kreisel	166
		6.1.6 Die Symmetrieeigenschaften der Gesamtwellenfunktionen des Ovetans	168
		6.1.6.1 Symmetricklassifizierung der Gesamtwellenfunktion	170
		6.1.6.2 Symmetrieklassifizierung der Kernspinwellenfunktion	170
		6.1.6.3 Symmetrieklassifizierung der Rotationswellenfunktion	172
		6.1.6.4 Symmetrieklassifizierung der Ring-Puckering-Schwingung	172
		oriori opinineerreadoonizier ung der tung-1 dekering-benwingdig	114

	6.1.6.5 Ableitung der Auswahlregeln für die Oxetan-Spektren	173
	6.2 Bisherige spektroskopische und theoretische Arbeiten am Oxetan	175
	6.3 Messung des FTIR-Spektrums von Oxetan im mittleren Infrarot	181
	6.4 Zuordnung der Rotations-Vibrationsübergänge	183
	6.5 Zusammenfassung der Ergebnisse und Ausblick	200
	6.6 Literaturverzeichnis	201
7	Rotations-Vibrations-Spektroskopie an OC_5O	205
	7.1 Überblick über bisherige Arbeiten an OC_5O	205
	7.2 Präparation des Pyrolysevorläufers	208
	7.3 Messung des FTIR-Spektrums von OC_5O im mittleren Infrarot	209
	7.3.1 Messung des MIR-Spektrums von OC ₅ O in der 3 m-Absorptionszelle.	210
	7.3.2 Messung des MIR-Spektrums eines OC_5O -Molekularstrahles	211
	7.4 Zuordnung der Rotations-Vibrationsübergänge	213
	7.5 Zusammenfassung und Ausblick	219
	7.6 Literaturverzeichnis	226
8	Versuche zur Charakterisierung anderer Moleküle mit besonderer Dynami	nik 229
	8.1 Das Propadienon	229
	8.2 Das Diisocyanat	232
	8.3 Weitere untersuchte Moleküle	234
	8.4 Literaturverzeichnis	234
9	Zusammenfassung und Ausblick	237
۸.	hann	941
A	inang	241
Α	Danksagung	243
в	Lebenslauf	245
\mathbf{C}	Experimentelle Daten zu Kapitel 4	247
D	Experimentelle Daten zu Kapitel 5	251
-		
Е	Experimentelle Daten zu Kapitel 6	289
F	Experimentelle Daten zu Kapitel 7	299
\mathbf{G}	Veröffentlichungen	305
	G.1 Tagungsbeiträge	305

Abbildungsverzeichnis

1.1	Das Oxetan-Molekül I	3
2.1	Schematischer Aufbau eines Michelson-Interferometers	16
2.2	Das Interferogramm einer polychromatischen Strahlungsquelle	17
2.3	Fourier-Transformations-Paare.	20
2.4	Die sinc-Funktion als Linienform	21
2.5	Eine Übersicht verschiedener Apodisierungsfunktionen	22
2.6	Die Selbstapodisierung.	23
2.7	Darstellung des Picket-Fence- und Zerofilling-Effektes.	25
2.8	Aufbau des FTIR-Spektrometers mit externer Absorptionszelle	29
2.9	Blockschaltbild des Bruker IFS 120 HR Spektrometers	30
3.1	Darstellung der Temperaturregelung der 3m-Absorptionszelle	35
3.2	Prinzip des Collisional Cooling.	36
3.3	Verschiedene Molekülstrahltypen	38
4.1	Strahlengang der Mehrfachreflexionsanordnung von GOUGH und MILLER.	53
4.2	Optischer Strahlengang in der Molekularstrahlapparatur.	57
4.3	Strahlengang in der Mehrfachreflexionsanordnung aus sphärischen Spiegeln.	59
4.4	Eingangs- und Ausgangsstrahlen eines optischen Systems.	60
4.5	Translation eines Strahlenbündels.	61
4.6	Lichtausbreitung in der Mehrfachreflexionsanordnung aus zwei sphärischen Spie-	
	geln für fünf Durchgänge	64
4.7	Dimensionierung der verwendeten sphärischen Spiegel.	66
4.8	$\label{eq:constraint} \ensuremath{Die}\xspace{1.5} \ensuremath{o}\xspace{1.5} \ensuremath{Die}\xspace{1.5} \ensuremath{o}\xspace{1.5} \ensurem$	66
4.9	Bild der gesamten Molekularstrahlapparatur.	68
4.10	Bild der Expansionskammer.	68
4.11	Vergrößertes Bild der Expansionskammer.	69
4.12	Der Raumwinkelanteil Ω_1/Ω_2 als Maß für die transmittierte Intensität nach der	
	ersten Reflexion.	70
4.13	Ausschnitt aus dem $\rm CO_2$ -Jet-Spektrum mit und ohne Vielfachreflexionsoptik	73
4.14	Linienprofile von 13 CO $_2$ mit Loch- und Schlitzdüse	76
4.15	Boltzmann-Plot der Übergänge (001) – (000), $P(2)-P(12)$ und $R(0)-R(14)$, von	
	$^{13}\mathrm{CO}_2$	78
4.16	Definition der Düsenposition	78
4.17	Die Rotationstemperatur von 13 CO ₂ als Funktion des Abstandes $x. \ldots \ldots$	80
4.18	Die Absorbanz von P(10) bis R(10) von 13 CO ₂ als Funktion des Abstandes x .	80
4.19	Die Rotationstemperatur von 13 CO ₂ als Funktion des Abstandes y	81
4.20	Die Absorbanz von P(10) bis R(10) von ${}^{13}\mathrm{CO}_2$ als Funktion des Abstandes y .	81

4.21	Die Rotationstemperatur von ${}^{13}CO_2$ als Funktion des Abstandes z	82
4.22	Die Absorbanz von P(10) bis R(10) von 13 CO ₂ als Funktion des Abstandes z	82
4.23	Die Rotationstemperatur von N_2O in Abhängigkeit des Argondruckes	83
4.24	Schematische Darstellung der Pyrolysedüse.	85
4.25	Darstellung der N ₂ O-Rotationstemperatur in Abhängigkeit der Düsentemperatur.	86
5.1	Das raum- und das molekülfeste Koordinatensystem	93
5.2	Kopplung der Normalschwingungen in einem rotierenden Molekül.	103
5.3	Fortrat-Diagramm von NCCNO im Schwingungszustand $(2\nu_7)$	112
5.4	Angepaßte Potentialfunktion für die CCN-Knickschwingung ν_7 von NCCNO	113
5.5	Transmissionsspektrum von NCCNO zwischen 2050 cm ⁻¹ und 2450 cm ⁻¹	116
5.6	Transmissionsspektrum von NCCNO zwischen 1400 cm ^{-1} und 1500 cm ^{-1}	117
5.7	Schematische Darstellung der NCCNO-Pyrolyseapparatur.	119
5.8	Jet-Spektrum von ¹³ CO ₂ . Expansion von CO ₂ durch Kapillar- und Lochdüse	121
5.9	Die bis zu dieser Arbeit analysierten Normalschwingungen des NCCNO-Moleküls.	122
5.10	Loomis-Wood-Diagramm des ν_1 -Bandensystems von NCCNO	123
5.11	Ausschnitte aus dem Bandensystem der NO-Streckschwingung ν_3 von NCCNO.	125
5.12	Vergrößerter Ausschnitt aus dem Bandensystem der NO-Streckschwingung ν_3 von NCCNO I	196
5 1 2	Vergrößerter Ausschnitt aus dem Bandensystem der NO-Streckschwingung u_0 von	120
0.10	NCCNO II.	127
5.14	Vergrößerter Ausschnitt aus dem Bandensystem der NO-Streckschwingung ν_3 von	
	NCCNO III.	128
5.15	Ausschnitt der $2\nu_4$ -Bande von NCCNO.	129
5.16	Differenzen $\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$ der zweifach angeregten CC-Streckschwingung $2\nu_4$	130
5.17	Übergänge im Bandensystem der NO-Streckschwingung von NCCNO.	131
5.18	Das Termwerteschema von NCCNO zwischen 1400 cm^{-1} und 1700 cm^{-1}	132
5.19	Einfluß einer Resonanz auf die Rotations-Vibrationstermwerte $T(J)$	134
5.20	Berechnete reduzierte Termwerte der $(\nu_3 + \nu_7)^{1e}$ und $(2\nu_4 + \nu_7)^{1e}$ Rotations-	
	Vibrations-Niveaus von NCCNO nach Modell 1 und Modell 3	135
5.21	Einige Rotations-Schwingungsübergänge von (ν_7) in die gestörten Zustände $(\nu_3 + $	
	ν_7) und $(2\nu_4 + \nu_7)$ von NCCNO	136
5.22	Differenzen $\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$ für das Resonanzpaar $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ von NCCNO.	137
5.23	Effekt der <i>Fermi</i> -Resonanz auf die Vibrationstermwerte der Kombinationszustände	
	$(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ von NCCNO	139
5.24	Berechnetes Fortrat-Diagramm der Kombinationszustände $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$	
	von NCCNO.	140
5.25	Berechnete reduzierte Termwerte der $(\nu_3 + 2\nu_7)^{0e,2e,2f}$ und $(2\nu_4 + 2\nu_7)^{0e,2e,2f}$	
	Subzustände von NCCNO nach Modell 1 und Modell 3	142
5.26	Energiedifferenzen der $l_7 = 2/l_7 = 0$ -Subzustände der Schwingungszustände ($\nu_3 +$	
	$2\nu_7$), $(2\nu_4 + 2\nu_7)$ und $(2\nu_7)$ des NCCNO-Moleküls	143
5.27	Ausschnitt aus dem Bandensystem der NC-Streckschwingung ν_2 von NCCNO.	144
5.28	Vergrößerter Ausschnitt des NC-Streckschwingungsbandensystems ν_2 von NCCNO.	146
5.29	Ausschnitt aus dem P-Zweig der NC-Streckschwingungsbande ν_2 von NCCNO.	147
5.30	Ausschnitt aus dem Bandensystem der CN-Streckschwingung ν_1 von NCCNO.	148
5.31	Ausschnitt aus der CN-Streckschwingungsbande ν_1 von NCCNO	149
5.32	Ausschnitt aus dem P-Zweig der CN-Streckschwingungsbande ν_1 von NCCNO.	150
5.33	Die Bande $(2\nu_2 + 2\nu_7)^{\circ} - (GS)$ von NCCNO.	151

5.34	Vergrößerter Ausschnit der Bande $(2\nu_2 + 2\nu_7)^0 - (GS)$ von NCCNO	152
5.35	Energiedifferenzen der $l_7 = 2/l_7 = 0$ Subzustände der Schwingungszustände ($\nu_1 + $	
	$(2\nu_7)$ und $(2\nu_7)$ des NCCNO-Moleküls.	154
5.36	Oberton-Übergänge $\{\nu_1 + (n+1)v_7\} - (nv_7)$ mit $\Delta l_7 = \pm 1$ von NCCNO	155
5.37	Die Normalschwingungen des NCCNO-Moleküls.	156
5.38	Das zur Zeit bekannte Vibrationstermschema des NCCNO-Moleküls	157
6.1	Das Oxetan-Molekül II.	161
6.2	Energieniveaus eines asymmetrischen Kreisels	163
6.3	Numerierung der Atome des Oxetans.	170
6.4	Die Ring-Puckering-Schwingung des Oxetans.	172
6.5	Definition der Ring-Puckering-Koordinate des Oxetan-Moleküls.	176
6.6	Raumtemperatur-Spektrum des Oxetans zwischen 2750 $\rm cm^{-1}$ und 3150 $\rm cm^{-1}.$.	181
6.7	Jet-Spektrum von Oxetan.	184
6.8	Ausschnitt der Bande $(\nu_{14}) - (GS)$ von Oxetan.	185
6.9	Ausschnitt der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan.	186
6.10	Ausschnitt aus dem P-Zweig der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan	188
6.11	Vergrößerter Ausschnitt des P-Zweiges der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan.	189
6.12	Ausschnitt der Banden $(\nu_{19}) - (GS)$ und $(\nu_{20}) - (GS)$ von Oxetan	190
6.13	Ausschnitt aus dem Bereich der Q-Zweige der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan.	192
6.14	Jet-Spektrum der $(\nu_8 + \nu_{rp}) - (GS)$ -Bande von Oxetan.	193
6.15	Das Loomis-Wood-Diagramm des P-Zweiges der $(\nu_8 + \nu_{rp}) - (GS)$ -Bande von	
	Oxetan.	194
6.16	Zugeordnete Rotations-Puckering-Schwingungsübergänge im Bereich der Q-Zweige	
	des Überganges $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan.	196
6.17	Berechnetes Fortrat-Diagramm der Q-Zweige des Überganges $(\nu_8 + \nu_{rp}) - (GS)$	105
a 10	von Oxetan. \dots	197
6.18	Berechnetes Fortrat-Diagramm der Q-Zweige des Überganges (ν_{rp}) – (GS) von	100
C 10	$\mathbf{Oxetan.} \qquad \mathbf{Oxetan.} \qquad O$	198
6.19	P-Zweig-Ubergange $J = 9 \leftarrow J = 10$ der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan .	199
7.1	Darstellung und Reaktionen von $OC_5O.$	206
7.2	Spektrum der Pyrolyse-Produkte des OC ₅ O-Vorläufers.	212
7.3	Schematische Darstellung der OC_5O -Pyrolyseapparatur	213
7.4	Jet-Spektrum von OC_5O	214
7.5	Vergleich der ν_4 -Bande von OC ₅ O bei Raumtemperatur und unter den Bedingun-	
	gen einer Überschallexpansion.	215
7.6	Vergrößerter Ausschnitt des R-Zweiges der ν_4 -Bande von OC ₅ O	216
7.7	Loomis-Wood-Diagramm des ν_4 -Bandensystems eines $\mathrm{OC}_5\mathrm{O}$ Molekular strahles	217
7.8	Loomis-Wood-Diagramm des ν_4 -Bandensystems des Raumtemperatur-Spektrums	
	von OC_5O	219
7.9	Ausschnitt aus dem ν_5 -Bandensystem von OC ₅ O	220
7.10	Ausschnitt aus dem P-Zweig der ν_5 -Bande von OC ₅ O	221
7.11	Vergrößerter Ausschnitt des P-Zweiges der ν_5 -Bande von OC ₅ O	222
7.12	Einige Normalschwingungen des OC_5O -Moleküls	224
7.13	Einige Resonanzstrukturen zur Beschreibung der Elektronenkonfiguration des	
	OC_3O -Moleküls	225
7.14	Die zweifach entarteten π -Orbitale des OC ₅ O-Moleküls.	226

- 8.1 Das Bandensystem der intensiv
sten Streckschwingung ν_3 von Propadienon.
. . . 231
- 8.2 Transmissionsspektrum der Pyrolyseprodukte von Azidoformylisocyanat. 233

TABELLENVERZEICHNIS

1.1	Die bisher bekannten Heterokumulene	2
1.2	Knickschwingungstermwerte G_v und Barrieren einiger Ketten- und Ringverbin- dungen	4
2.1	Einteilung des Infraroten Spektralbereiches (IR).	15
4.1	Die erlaubten d/f -Werte der Mehrfachreflexionsanordnung aus zwei sphärischen Spiegeln.	63
4.2	Berechnete Spiegelabstände d und Abbildungsdurchmesser ϕ für die sphärische Vielfachreflexionsoptik.	65
4.3	Berechnete Spiegelabstände d und Abstandsänderungen Δd für die Vielfachrefle- xionsoptik.	67
4.4	Radien der Abbildungen auf den Spiegeloberflächen r_{n_M} und berechnete Anteile der Transmission nach jeder Reflexion f_{n_M} .	71
4.5	Meßparameter der CO ₂ -Jet-Messungen zur Bestimmung eines experimentellen Verstärkungsfaktors.	73
4.6	Die Linienpositionen $\tilde{\nu}$, die maximale und die integrale Napier-Absorbanz zur Bestimmung der experimentellen Verstärkungsfaktoren G_H und G_F	74
4.7 4.8	Transmissions dateien der verschiedenen Testmessungen an CO_2 und $N_2O.$ Meßparameter der Testmessungen mit CO_2	75 79
5.1	Der Rotations-Vibrations-Hamilton-Operators nach der Größenordnung L	96
$5.2 \\ 5.3$	Die Koordinatenachsen x, y, z und die Hauptträgheitsachsen a, b und $c. \ldots$ Korrelationskonsistente polarisierte Basissätze für die Elemente der zweiten Periode.	97 109
$5.4 \\ 5.5$	Experimentelle und berechnete Bandenlagen von NCCNO	110
5.0	zustand (GS) und die Zustände (ν_4), ($\nu_5 + \nu_6$), (ν_6) und ($\nu_6 + \nu_7$)	110
5.0 5.7	Experimentelle und berechnete Kernabstände des NCCNO-Moleküls.	111
5.8	Meßparameter zur Aufnahme der NCCNO Infrarot-Spektren	118
5.9	Parameter zur Kalibration der Transmissionsfiles ZTJETBGS.1 und ZTJETBDS.1	118
5.10	Parameter zur Kalibration der Transmissionsfiles ZTJETBBS.1 und ZTJETADF.1	120
5.11	Reihenentwicklungskonstanten verschiedener Niveaus der Knickschwingung ν_7 von NCCNO.	123
5.12	Reihenentwicklungskonstanten verschiedener Zustände der Streckschwingungen ν_3 und ν_4 von NCCNO.	130
5.13	Effektive Konstanten für den Schwingungsgrundzustand und die Schwingungs-	
	zustände (ν_7) und $(2\nu_7)$ von NCCNO	137

5.14	Berechnete effektive Konstanten für die Kombinationszustände $(\nu_3 + \nu_7)$ und	100
5.15	$(2\nu_4 + \nu_7)$ von NCCNO	139
	zuständen.	141
5.16	Reihenentwicklungskonstanten verschiedener Subzustände der Streckschwingung-	149
517	ell ν_3 und ν_4 von NCCNO	143
0.17	en ν_1 und ν_2 von NCCNO	153
5.18	Zentren der zugeordneten ν_1 -Subbanden im Vergleich zu den von LICHAU ermit- telten ν_7 -Subbandenzentren von NCCNO.	154
6.1	Die Koeffizienten F , G und H des reduzierten Hamilton-Operator H_{κ} in Abhangig- keit der Wahl der Achsen	165
6 2	Charakteren Tafel der MS Gruppe C_{0} (M) von Ovetan	160
0.2 6.2	Invariante Kernspinverteilungen der Protonon in α Position im Oveten	103
0.3 6.4	Invariante Keinspinvertenungen der Frotonen im α -rosition im Oxetan	171
0.4	Symmetrieoperationen und aquivalente Kotationen der C_{2v} (M)-Gruppe	172
0.0	ble aus der Symmetrieregel des asymmetrischen Kreisels resultierende Symme-	170
<i>c</i> . <i>c</i>	trierassen der Rotationswenenfunktionen.	174
0.0	Auswaniregein für Rotations-vibrationsubergange des Oxetan-Molekuls.	174
6.7	Auswahlregeln für Rotations-Puckering-Vibrationsubergange im Oxetan	174
6.8	Spin-Statistik des Oxetans.	175
6.9	Die berechneten Termwerte der Schwingungsmoden von Oxetan.	177
6.10	Bandenpositionen der Ring-Puckering-Ubergange des Oxetans und einiger Isoto-	4 50
	pomere von Oxetan.	178
6.11	IR-Banden von Oxetan im CH-Streckschwinungsbereich.	178
6.12	Rotationskonstanten von Oxetan als Funktion der Ring-Puckering-Quantenzahl.	179
6.13	Die Strukturparameter des Oxetan-Moleküls.	179
6.14	Spektroskopische Konstanten für den Grundzustand und die beiden ersten ange-	
	regten Puckering-Zustände von Oxetan.	180
6.15	Instrumentelle Parameter zur Aufnahme der Infrarot-Spektren von Oxetan	182
6.16	Parameter zur Kalibration der Transmissionsfiles ZTJETAIS.1 und ZTJETALS.1 .	183
6.17	Ermittelte Bandenlagen von Oxetan im CH-Streckschwingungsbereich	187
6.18	Peaklisten der $(\nu_8 + \nu_{rp}) - (GS)$ -Bande von Oxetan.	191
6.19	Ermittelte spektroskopische Konstanten für den Kombinationszustand $(\nu_8 + \nu_{rp})$	
	von Oxetan.	195
6.20	Ermittelte Asymmetrieaufspaltungen bei den P-Zweig-Ubergängen $J = 9 \leftarrow 10$	
	von Oxetan.	200
71	Lage der Fundamentalbanden von OC=O	207
7.2	Berechnete effektive Konstanten für den Grundzustand (GS) und den (ν_4)-Zustand	201
	von OC_5O .	207
7.3	Berechnete Bindungslängen und Schwingungswellenzahlen von OC ₅ O.	208
7.4	Instrumentelle Parameter zur Aufnahme der OC₅O Infrarot-Spektren	211
7.5	Berechnete effektive Konstanten für den Grundzustand (GS), den (ν_4)- und (ν_5)-	
	Zustand von OC_5O .	218
	<u> </u>	
C.1	Zusammenfassung der Meßblöcke der Testmessungen an CO_2 und $N_2O.$	248
D.1	Die verschiedenen Meßblöcke der FTIR-Messungen an NCCNO	252

252D.3 Die Rotations-Vibrations-Übergänge $(\nu_1) - (GS)$ von NCCNO. 254D.4 Die Rotations-Vibrations-Übergänge $(\nu_1 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO. 255D.5 Die Rotations-Vibrations-Übergänge $(\nu_1 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO. 256D.6 Die Rotations-Vibrations-Übergänge $(\nu_1 + \nu_7)^{1f} - (GS)$ von NCCNO. 257D.7 Die Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{0e} - (2\nu_7)^{0e}$ von NCCNO. 259D.8 Die Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{0e} - (\nu_7)^{1f}$ von NCCNO. 260D.9 Die Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2e} - (2\nu_7)^{2e}$ von NCCNO. 262D.10 Die Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2f} - (2\nu_7)^{2f}$ von NCCNO. 263D.11 Die Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2e} - (\nu_7)^{1f}$ von NCCNO. 264D.12 Die Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2f} - (\nu_7)^{1e}$ von NCCNO. 265D.13 Die Rotations-Vibrations-Übergänge $(\nu_2) - (GS)$ von NCCNO. 266D.14 Die Rotations-Vibrations-Übergänge $(\nu_2 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO. 267D.15 Die Rotations-Vibrations-Übergänge $(\nu_2 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO 268D.16 Die Rotations-Vibrations-Übergänge $(\nu_2 + 2\nu_7)^{0e} - (GS)$ von NCCNO 269D.17 Die Rotations-Vibrations-Übergänge $(\nu_3) - (GS)$ von NCCNO. 270D.18 Die Rotations-Vibrations-Übergänge $(\nu_3 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO. 270D.19 Die Rotations-Vibrations-Übergänge $(\nu_3 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO. 272D.20 Die Rotations-Vibrations-Übergänge $(\nu_3 + 2\nu_7)^{0e} - (2\nu_7)^{0e}$ von NCCNO. 274D.21 Die Rotations-Vibrations-Übergänge $(\nu_3 + 2\nu_7)^{2e} - (2\nu_7)^{2e}$ von NCCNO. 275D.22 Die Rotations-Vibrations-Übergänge $(\nu_3 + 2\nu_7)^{2f} - (2\nu_7)^{2f}$ von NCCNO. 277D.23 Die Rotations-Vibrations-Übergänge $(2\nu_4) - (GS)$ von NCCNO. 279D.24 Die Rotations-Vibrations-Übergänge $(2\nu_4 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO. 281D.25 Die Rotations-Vibrations-Übergänge $(2\nu_4 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO. 282D.26 Die Rotations-Vibrations-Übergänge $(2\nu_4 + 2\nu_7)^{0e} - (2\nu_7)^{0e}$ von NCCNO. 284D.27 Die Rotations-Vibrations-Übergänge $(2\nu_4 + 2\nu_7)^{2e} - (2\nu_7)^{2e}$ von NCCNO. 286D.28 Die Rotations-Vibrations-Übergänge $(2\nu_4 + 2\nu_7)^{\rm f} - (2\nu_7)^{\rm 2f}$ von NCCNO. 287Die verschiedenen Meßblöcke der FTIR-Messungen an Oxetan. E.1289E.2Zusammenstellung der Transmissionsfiles von Oxetan. 290Ermittelte Rotations-Puckering-Vibrations-Übergänge von $(\nu_8 + \nu_{rp}) - (GS)$ des E.3291F.1 Die verschiedenen Meßblöcke der FTIR-Messungen an OC_5O 299F.2 Zusammenstellung der Transmissionsfiles von $OC_5O....$ 300 F.3 Die Rotations-Vibrations-Übergänge $(\nu_4) - (GS)$ von OC₅O, entnommen dem Spektrum des OC₅O-Molekularstrahls. 301Die Rotations-Vibrations-Übergänge $(\nu_4) - (GS)$ von OC₅O, entnommen dem F.4 Spektrum das mit OC_5O in der 3 m Zelle erhalten wurde. 301F.5Die Rotations-Vibrations-Übergänge $(\nu_5) - (GS)$ von OC₅O, entnommen dem 303

Kapitel 1

EINLEITUNG

Gegenstand der hochauflösenden Molekülspektroskopie ist die Untersuchung der Wechselwirkung zwischen Molekülen und elektromagnetischer Strahlung. In einem Molekülspektrum werden daher die wellenzahlabhängigen Absorptions- oder Emissionseigenschaften eines Molekülensembles dargestellt. Solch ein Spektrum setzt sich im allgemeinen aus diskreten Absorptions- oder Emissionslinien zusammen, die bedingt durch die unterschiedlichen Übergangswahrscheinlichkeiten zwischen den beteiligten Energieniveaus sowie den verschiedenen Zustandspopulationen dieser Niveaus unterschiedliche Intensitäten besitzen. Die Intensität, die Übergangswellenzahl und auch die Struktur der Absorptionslinien stellt somit eine kodierte Information der an dem Übergang beteiligten Energieniveaus, der Übergangswahrscheinlichkeit, der Population dieser Niveaus und der Struktur des Moleküls dar. Die Aufgabe des Molekülspektroskopikers ist es daher, durch die Annahme geeigneter Startwerte der genannten Größen und unter Berücksichtigung der theoretisch abzuleitenden quantenmechanischen Auswahlregeln diese Information zu dekodieren. Dies eröffnet dem Spektroskopiker die Möglichkeit, genaue Aussagen über die Struktur, die interne Dynamik und die Dynamik chemischer Prozesse von Molekülen zu machen [1–5].

Eine vom moleküldynamischen Standpunkt interessante Klasse stellen die langkettigen Kohlenstoffmoleküle (long-chain carbon-molecules) dar, die von besonderem astrophysikalischen und astronomischen Interesse sind [6,7]. Zu dieser Gruppe von Molekülen gehören auf der einen Seite die Polyine der allgemeinen Form H-($C\equiv C$)_n- $C\equiv N$ mit alternierenden Einfach- und Dreifachbindungen. Das einfachste Polyin, 2-Propinnitril, wurde erstmals im Jahre 1950 mittels Mikrowellenspektroskopie im Labor charakterisiert [8]. Rund 20 Jahre später konnte dieses Molekül radioastronomisch nachgewiesen werden [9,10], wodurch eine intensive Suche nach höheren Homologen initiiert wurde. Das bisher längste nachgewiesene Polyin ist das 2,4,6,8,10-Undecapentainnitril mit n = 5, das von BELL *et al.* [11] detektiert wurde.

Auf der anderen Seite existieren die Heterokumulene, die sich durch kumulierte Doppelbindungen auszeichnen. Man kann die Kumulene wiederum in vier Klassen unterteilen:

Chalkogenide	$\mathbf{Y}=\mathbf{C}_{n}=\mathbf{Y}$	mit	Y = O, S oder NX
Allene	$X_2C=C_{n-2}=CX_2$	mit	X = H, Alkyl oder Halogen
Ketene	$X_2C=C_{n-1}=Y$		
Carbene	$X_2C = C_{n-1}$	Y = 0	$\mathbf{C}_{\mathbf{n}}$

Die Chalkogenide YC_nY und Carbene C_nY zeichnen sich dadurch aus, daß sie sowohl in ihren elektronischen Grundzuständen als auch in niedrigliegenden elektronisch angeregten Zuständen lineare Gleichgewichtsgeometrien aufweisen. Unter dieser Voraussetzung sind die π -Orbitale

n	1	2	3	4	5	6	7
C_n		\otimes	\otimes	×	\otimes	×	×
C_nO	\otimes	\otimes	\otimes	×		×	
$C_n S$	\otimes	\otimes	\otimes				
OC_nO	×		×	×	×		×
OC_nS	\otimes	×	×	×	×		
SC_nS	×	×	×	×	×	×	

Tabelle 1.1 Die bisher bekannten Heterokumulene. Entnommen aus [12].

paarweise entartet, und die HOMOs, die höchsten besetzten Molekülorbitale, werden bei gradzahligem n mit zwei Elektronen besetzt. Nach der *Hund*schen Regel ergibt sich ein Triplett-Grundzustand für diese Moleküle, was die erhöhte Reaktivität dieser Spezies erklärt. Heterokumulene mit einer ungeraden Zahl an Kohlenstoffatomen weisen hingegen einen Singulett-Grundzustand auf. In der Tabelle 1.1 ist eine Übersicht der bisher bekannten Heterokumulene aufgeführt. Die mit × gekennzeichneten Moleküle sind bisher im Laboratorium nachgewiesen worden, die mit \otimes markierten auch im interstellaren Raum.

Einige der aufgeführten Kettenmoleküle zeichnen sich durch eine besondere Moleküldynamik aus. Das Kohlenstoffsuboxid (OC₃O) besitzt beispielsweise eine Schwingung mit großer Amplitude (*large amplitude motion*), die Knickschwingung ν_7 um das zentrale Kohlenstoffatom, die eine zeitlich gemittelte nicht-lineare Struktur des Moleküls hervorruft. Die Potentialfunktion dieser Schwingung zeichnet sich durch eine starke Anharmonizität aus. Sie stellt einen Übergang zwischen der Potentialfunktion eines linearen Moleküls und der eines asymmetrischen Moleküls dar [13–19]. Folglich existiert eine kleine Barriere zur Linearität, deren Betrag im Bereich der quantenmechanischen Nullpunktsenergie liegt. THORSON und NAKAGAWA [20] führten im Jahre 1960 den Begriff *Quasilinearität* für Moleküle diesen Typs ein. Die Dynamik solcher Moleküls in einen Rotationsfreiheitsgrad eines asymmetrischen Moleküls veranschaulichen. Rotation und Schwingung sind folglich sehr stark gekoppelt, so daß sie nicht mehr voneinander separiert werden können. Im Jahre 1976 führten YAMADA und M. WINNEWISSER [21] einen Quasilinearitätsparameter γ_0 zur Quantifizierung der Quasilinearität ein,

$$\gamma_0 = 1 - 4 \frac{E_1}{E_0} \tag{1.1}$$

wobei E_1 für die Energie des niedrigsten Zustandes mit $K_a = 1$ bzw. l = 1 und E_0 für die Energie des niedrigsten angeregten Zustandes mit $K_a = 0$ bzw. l = 0 steht. Dieser Parameter kann Werte von -1 für ein regulär lineares bis +1 für ein gewinkeltes Molekül annehmen. Das OC₃O-Molekül besitzt einen Wert von -0.2 und liegt praktisch genau zwischen den beiden Grenzfällen.

Das Konzept der *Quasilinearität* kann auf andere Kettenmoleküle übertragen werden [22]. So findet man beispielsweise unter den Fulminaten der allgemeinen Formel XCNO mit X=H,Br,Cl ein ausgeprägt quasilineares Verhalten [23, 24]. Das BrCNO-Molekül weist einen Quasilinearitätsparameter von $\gamma_0 = +0.36$ auf und ClCNO von $\gamma_0 = +0.42$. Demgegenüber verhält sich das Cyanofulminat (NCCNO) fast wie ein regulär lineares Molekül. Der Wert von γ_0 beträgt -0.94.

Abbildung 1.1 Das Oxetan-Molekül.

Eine vom moleküldynamischen Standpunkt vergleichbare Klasse stellen die viergliedrigen gesättigten Ringverbindungen dar. Diese Ringe weisen charakteristische Schwingungsbewegungen mit großer Amplitude auf, die zu einer Abweichung der Ringkonformation bezüglich der Ringebene führt. Die Knickbewegung aus dieser Ebene heraus bezeichnet man als *Ring-Puckering-Schwingung*. Sie wird durch eine meist stark anharmonische Potentialfunktion beschrieben. Das Grundgerüst dieser Verbindungsklasse stellt das Cyclobutan dar, dessen *Ring-Puckering-Schwingung* jedoch nicht IR-aktiv ist. EGAWA *et al.* [25] bestimmten aus Elektronenbeugungsmessungen und FTIR-Messungen von Kombinationsbanden einer Pendel- und der Puckeringschwingung die Potentialfunktion der *Ring-Puckering-Schwingung* indirekt. Zur Anpassung verwendeten sie eine sextische Potentialfunktion V(x) mit geradzahligen Potenzen des Typs

$$V(x) = ax^2 + bx^4 + cx^6, (1.2)$$

wobei x für die Puckering-Koordinate steht. Die Autoren ermittelten ein Doppel-Minimum-Potential mit einer nicht-planaren Gleichgewichtskonfiguration, bei der der Ring 27.5 (11)° aus der Ebene heraussteht. Die Barriere zur planaren Form wurde zu rund 500 cm⁻¹ bestimmt, wobei der Schwingungsgrundzustand rund 400 cm⁻¹ unterhalb der Barriere liegt.

BLACKWELL *et al.* [26] untersuchten hingegen eine Reihe substituierter Cyclobutanringe. So fanden sie beispielsweise heraus, daß sowohl das Cyanocyclobutan als auch das Bromcyclobutan durch eine einzige Gleichgewichtsgeometrie beschrieben werden können. Offensichtlich sind diese Ringe konformativ stabil. Zur Anpassung der Potentialfunktion an die beobachteten Schwingungsübergänge verwendeten sie eine quartische Funktion. Auffallend ist die Asymmetrie der Potentialfunktion, die die Stabilitätsunterschiede der axialen und äquatorialen Stellung der Substituenten widerspiegelt. Chlorcyclobutan weist im Gegensatz dazu ein asymmetrisches Doppel-Minimum-Potential auf, wobei das relative Potential-Minimum der ungünstigeren Konformation rund 750 cm⁻¹ oberhalb des globalen Minimums liegt.

Im Gegensatz zu den genannten Ringverbindungen zeichnet sich sowohl das Cyclobutanon- als auch das Oxetanmolekül, das in der Abbildung 1.1 schematisch dargestellt ist, durch eine fluktuierende Konformation aus. Diese Ringe sind weder planar noch nicht-planar. BORGERS und STRAUSS [27] paßten eine Potentialfunktion analog zur Gleichung (1.2) mit einem zusätzlichen Term achter Ordnung an die experimentell im fernen Infrarot erhaltenen Puckering-Übergänge

	G_v	Barriere	Referenz
	$/\mathrm{cm}^{-1}$	in $\rm cm^{-1}$	
OC ₃ O	18.26	28.68(80)	[19, 29]
HCNO	224.11	11.49(19)	[23, 30]
Oxetan	52.92	15.52(5)	[28, 31]
$\operatorname{Cyclobutanon}$	35.85	5	[27]

Tabelle 1.2 Knickschwingungstermwerte G_v und Barrieren einiger Ketten- und Ringverbindungen.

des Cyclobutanons an. Aus dieser Anpassung erhielten sie ein Doppel-Minimum-Potential mit einer Barriere von nur rund 5 cm⁻¹ zur planaren Form.

Das Oxetan-Molekül zeichnet sich hingegen durch eine etwas höhere Barriere zur planaren Form aus. Sie wurde von JOKISAARI und KAUPPINEN [28] zu 15.52(5) cm⁻¹ bestimmt, wobei der Grundzustand 11.86(5) cm⁻¹ oberhalb dieser Barriere liegt.

Die bisher vorgestellten Ketten- und Ringmoleküle weisen, bedingt durch die charakteristische Potentialfunktion ihrer Knickbewegung, energetisch sehr niedrigliegende Knickschwingungen auf, deren Energieniveaus im spektralen Bereich des fernen Infrarots anzusiedeln sind. In der Tabelle 1.2 sind die Termwerte G_v der Knickschwingungen einiger Ketten- und Ringmoleküle samt ihrer Barriere zur Linearität bzw. Planarität exemplarisch aufgeführt.

Die energetisch sehr niedrige Lage der Knickschwingungsniveaus führt zu einer besonders hohen Zustandsdichte schon bei sehr niedriger Energie. Als Konsequenz daraus sind die Energieniveaus dieser Moleküle im mittleren Infrarot durch die Wechselwirkung mit anderen Energieniveaus vergleichbarer Energie und gleichen Symmetrieeigenschaften gestört. Die durch den Energieaustausch zwischen diesen Niveaus verursachte Störung bezeichnet man auch als Resonanz. Verantwortlich für diese Resonanzen ist die Anharmonizität der Schwingungen, d. h. die Kopplung der verschiedenen Schwingungsmoden, wobei das Ausmaß der Kopplung durch die Energiedifferenz der beteiligten Schwingungen bestimmt wird. Über die Charakterisierung der *Resonanzen* bzw. der an solchen Resonanzen beteiligten Partner können somit Informationen über die internen Energieverteilungswege erhalten werden, die wiederum eine wichtige Rolle bei unimolekularen Reaktionen dieser Moleküle spielen. Neben der Charakterisierung der FIR-Spektren der angesprochenen Ketten- und Ringmoleküle ist es daher genauso wichtig, Informationen über die Bandensysteme im spektralen Bereich des MIR zu erhalten. Insbesondere eröffnen diese Banden die Möglichkeit, indirekt Informationen zur Charakterisierung der tiefliegenden Knickschwingungen zu erhalten. Dies kann durch die Analyse von heißen Banden (hot bands), das sind Ubergänge aus thermisch angeregten Knickschwingungsniveaus in energetisch höher gelegene Kombinationszustände der Knickschwingung und einer Streckschwingung, und Kombinationsbanden, dabei handelt es sich um Übergänge vom Grundzustand in einen Kombinationszustand der Knickschwingung und einer Streckschwingung, gelingen. Des weiteren können Aussagen über den Einfluß der betrachteten Streckschwingung auf das Potential der Knickschwingung getroffen werden.

Voraussetzung für die Zuordnung solcher Banden ist die genaue Kenntnis der Fundamentalbanden der Streckschwingungen. Aufgrund der geschilderten besonderen internen Dynamik der Ketten- und Ringmoleküle kann die Analyse der MIR-Spektren unter gewöhnlichen experimentellen Bedingungen ein sehr komplexes Unterfangen sein, da diese Spektren sehr stark überlagert sind, oftmals sogar nicht vollkommen aufgelöst. Anhand des *Boltzmann*schen Verteilungsgesetzes [32]

$$N_{i} = N_{j} \exp[-(E_{i} - E_{j})/kT], \qquad (1.3)$$

 $\begin{array}{rcl} N_i, \, N_j & : & {\rm Anzahl \ der \ Moleküle \ in \ den \ Zuständen \ i \ bzw. \ j,} \\ E_i, \, E_j & : & {\rm Energie \ des \ Zustandes \ i \ bzw. \ j,} \\ T & : & {\rm Temperatur}, \\ k & = & 1.380 \ 658 \ \times \ 10^{-23} \ {\rm J \ K^{-1} \ [33]}. \end{array}$

ist erkennbar, daß es nötig ist, das zu untersuchende Probengas abzukühlen, um die Banden aufzulösen bzw. die sehr komplexen Absorptionsmuster entscheidend zu vereinfachen. Nur dann können mit den modernen spektroskopischen Methoden wie FTIR- oder Diodenlaserspektroskopie hochaufgelöste Informationen über solche Bandensysteme gewonnen werden. Durch die Kühlung wird die Population des Grundzustandes erhöht und somit die Intensität der hot bands herabgesetzt. Darüberhinaus werden die Breiten der Absorptionslinien verringert. Als in vielen Fällen besonders zweckmäßig hat sich die hochauflösende Spektroskopie an Molekularstrahlen herausgestellt. Bei einem Molekularstrahl wird die Energie der internen Freiheitsgrade durch eine adiabatische Expansion in gerichtete kinetische Energie konvertiert und somit eine Abkühlung erzielt. Seit den grundlegenden Arbeiten von KANTROWITZ und GREY [34], KISTIAKOWSKY und SLICHTER [35] sowie BECKER und BIER [36] wurden Molekularstrahlen umfassend untersucht und ihre Anwendung für molekülspektroskopisch relevante Fragestellungen studiert. Die frühen Studien von Molekularstrahlen beschränkten sich auf die Anwendung der sehr sensitiven laserinduzierten Fluoreszenz (LIF) [37-41] im Bereich des ultravioletten und sichtbaren Spektralbereiches oder der Multiphotonen-Ionisierung (MPI) [42]. Erste Messungen im IR-Bereich an Molekularstrahlen wurden ebenfalls mit Lasern durchgeführt, so kamen und kommen CO_2 -Laser [43], Diodenlaser [44–47], sowie Intracavity- [48] und auch Cavity Ringdown-Methoden [49–52] zum Einsatz.

Die große spektrale Bandbreite und die Möglichkeit, durch den einfachen Austausch von Spektrometerkomponenten einen Spektralbereich vom fernen Infrarot bis zum fernen Ultraviolett abdecken zu können, macht die FT-Spektroskopie besonders geeignet für die Untersuchung von Molekularstrahlen. Zu Beginn der 80er Jahre etablierten SNAVELY *et al.* [53–55] die FTIR-Spektroskopie an Molekularstrahlen, worauf eine enorme Verbreitung und ein starker Entwicklungsschub dieser Technik einsetzte. Den vielfältigen Vorteilen der FTIR-Technik steht jedoch ein großer Nachteil gegenüber: aufgrund der, verglichen mit entsprechenden Lasersystemen, recht unempfindlichen spektroskopische Methode und der Tatsache, daß bei Molekularstrahlen nur sehr kleine Absorptionsweglängen realisiert werden, beschränken sich Untersuchungen an solchen Überschallexpansionen bisher meist auf stabile, starke Absorber, die in großen Mengen verfügbar sind.

1.1 Themenstellung und Motivation

Basierend auf den bisher aufgeführten Fragestellungen wurde geplant, im Rahmen dieser Arbeit FTIR-Untersuchungen an den interessanten, instabilen bzw. semi-stabilen Kettenmolekülen 1,2,3,4-Pentatetraen-1,5-dion (OC₅O), und Cyanofulminat (NCCNO) sowie dem Ringmolekül Oxetan (C_3H_6O) im Bereich des mittleren Infrarot durchzuführen. Aus den bereits geschilderten Gründen sollten neben den klassischen Absorptionsexperimenten in Absorptionszellen auch die FTIR-Spektroskopie an Molekularstrahlen dieser Substanzen eingesetzt werden vor dem Hintergrund, durch eine grundlegende apparative Weiterentwicklung die Nachweisempfindlichkeit der FTIR-Molekularstrahltechnik entscheidend zu verbessern, um die Streckschwingungs-Bandensysteme der aufgeführten Moleküle analysieren zu können.

1.1.1 Apparativer Beitrag der vorliegenden Arbeit

Die Nachweisempfindlichkeit von Rotations-Vibrations-Übergängen eines durch Überschallexpansion abgekühlten Molekülensembles stellt das zentrale Problem der FTIR-Spektroskopie dar. Bis zum heutigen Zeitpunkt existieren im wesentlichen zwei Konzepte, das Problem der Nachweisempfindlichkeit dieser Technik zumindest abzumildern. Einerseits besteht die Möglichkeit, die Absorptionsweglänge durch den Gebrauch von langen Schlitzdüsen oder Mehrfachlochdüsen entscheidend zu vergrößern, wie es in einigen Arbeitsgruppen realisiert wurde [56–58]. Da in der Mehrzahl dieser Systeme eine kontinuierliche Expansion während der spektroskopischen Datenakquisition erfolgt, benötigen diese Techniken meist sehr große Substanzmengen, die bei Experimenten mit instabilen und sehr schwer darstellbaren oder aber sehr teueren Substanzen nicht realisierbar sind. Es stellte sich somit sehr schnell heraus, daß zur geplanten Untersuchung der NCCNO-, OC_5O - und Oxetan-Molekularstrahlen eine Mehrfachreflexionsoptik zur Steigerung der Empfindlichkeit entwickelt werden mußte, die an die seit dem Jahre 1990 im Molekülspektroskopischen Laboratorium der Justus-Liebig-Universität bestehende Molekularstrahlanlage [59] adaptiert werden sollte.

Bis zu diesem Zeitpunkt existierten überhaupt erst zwei Mehrfachreflexionskonzepte zur Mehrfachkreuzung von Molekularstrahlen durch die IR-Strahlung eines Fourier-Transform-Spektrometers. Auf der einen Seite wurde über eine Anordnung aus zehn ringförmig plazierten Planspiegeln [60] berichtet, die jedoch nur sehr schwer justierbar ist und bei der ein großer Teil der Strahlenbündel mit wärmeren Zonen des Molekülstrahls wechselwirkt, auf der anderen Seite wurde ein White-System [61] realisiert, das jedoch eine spezielle und teure abbildende Optik benötigt. Es wurde daher ein völlig anderer Weg gegangen und ein neuartiges optisches System geplant, das bereits aus anderen Bereichen der Spektroskopie bekannt war [62, 63] und bei dem durch zwei parallel gegenüberstehende sphärische Spiegel mindestens zehn Kreuzungen des Molekularstrahls möglich sein sollten. Dies sollte eine Steigerung der Nachweisempfindlichkeit um eine Größenordnung im Vergleich zu Anordnungen mit einfachem Durchgang ermöglichen. Das System sollte intern in die Molekularstrahlanlage eingebaut werden, um Transmissionsverluste durch Fenstermaterialien minimal zu halten. Diese Anordnung sollte es dann ermöglichen, erstmals Molekularstrahlspektren sowohl der Kettenmoleküle NCCNO und OC₅O als auch der Ringverbindung Oxetan zu erhalten. Vor den eigentlichen spektroskopischen Messungen an diesen Zielsubstanzen sollten explizite diagnostische Testmessungen Aufschluß über die Leistungsfähigkeit des neuen optischen Systems und Aussagen über geeignete mögliche Versuchsbedingungen liefern.

1.1.2 Spektroskopischer Beitrag der vorliegenden Arbeit

Das Cyanofulminat-Molekül (NCCNO) ist schon seit über 30 Jahren in der organischen Chemie als Reagenz bekannt [64, 65]. Der erstmalige direkte spektroskopische Nachweis gelang MAI-ER und TELES [66] im Jahre 1987 durch die Anwendung der Matrix-Isolationsspektroskopie. Es gelang ihnen, NCCNO durch Pyrolyse darzustellen, dieses zusammen mit Argon auf einem 10 K kalten Fenster zu kondensieren und zwischen 400 cm⁻¹ und 4000 cm⁻¹ mittels niedrig-auflösender FTIR-Spektroskopie zu charakterisieren. In den Jahren 1994 bis 1997 führten PASINSZKI und WESTWOOD- neben theoretischen Untersuchungen- spektroskopische Arbeiten an BrCNO, ClCNO, ONCCNO und auch NCCNO in der Gasphase durch [67–71]. Neben der Photoionisations-Massenspektroskopie und der niedrigauflösenden Infrarotspektroskopie wurde auch die Photoelektronenspektroskopie angewendet, die den Schluß zuließ, daß diese Moleküle eine lineare oder fast lineare Gleichgewichtsgeometrie haben sollten. Die ab initio -Berechnungen zeigten im Falle des NCCNO, daß es eine lineare Gleichgewichtsgeometrie besitzen sollte mit einem sehr flachen CCN-Knickschwingungspotential. Ließen die Ergebnisse der Fourier-Transform-Mikrowellen-Messungen von BRUPBACHER et al. [72] noch keinen eindeutigen Schluß darüber zu, ob das NCCNO-Molekül eine lineare Gleichgewichtskonfiguration besitzt oder aber quasilineares Verhalten zeigt, so konnte LICHAU im Rahmen seiner Dissertation [24] durch Messungen des Rotationsspektrums im Bereich der Millimeterwellen und durch die FTIR-Messung der niedrigstliegenden Knickschwingung ν_7 um 80 cm⁻¹ die Dynamik der Knickbewegung klären. LICHAU konnte zeigen, daß das NCCNO-Molekül ein sehr schwach ausgeprägtes quasilineares Verhalten zeigt mit einem Quasilinearitätsparameter von $\gamma_0 = -0.939$. Das Potential der Knickschwingung ist sehr flach und leicht anharmonisch. Es weist einen großen quartischen Beitrag auf. Im Jahre 1996 wurde die bis dato einzige hochauflösende FTIR-Messung im MIR an NCCNO von GUO et al. [73] im Laboratorium von BERNATH durchgeführt. Die Autoren konnten zwar die CC-Streckschwingungsfundamentale um 714 $\rm cm^{-1}$ und auch die NCC-Knickschwingungsfundamentale um 406 cm^{-1} identifizieren und teilweise analysieren, eine explizite Analyse der NO-, NC- und CN-Streckschwingungsbandensysteme zwischen 1400 und 2400 $\rm cm^{-1}$ blieb ihnen aufgrund der enormen Dichte an Rotations-Vibrations-Linien jedoch verwehrt. Vor diesem Hintergrund wurde im Oktober 1998 versucht, durch FTIR-Molekularstrahlexperimente an pyrolytisch erzeugtem NCCNO ein vollständig aufgelöstes Rotations-Vibrations-Spektrum dieser Spezies zu bekommen, und bereits kurz nach den ersten Experimenten konnten die ersten Spektren aufgenommen werden. Zusammen mit den unter langsamen Flußbedingungen bei Raumtemperatur erhaltenen Zellenspektren konnte eine Vielzahl von Energiezuständen und einige Resonanzsysteme in diesem energetischen Bereich aufgeklärt werden.

Startpunkt der Forschung an 1,2,3,4-Pentatetraen-1,5-dion OC_5O bildeten die Arbeiten von MAIER *et al.* [74] im Jahre 1988. Ihnen gelang es, OC_5O in einer 12 K kalten Argon-Matrix mittels FTIR-Spektroskopie zu charakterisieren. Die Darstellung des OC_5O -Moleküls erfolgte durch Bestrahlung von 2,3,6-Trisdiazo-1,3,5-cyclohexatrion, dem bis zum heutigen Zeitpunkt geeignetsten Vorläufer [75], bei 254 nm. Die postulierte Kettenstruktur konnte durch verschiedene chemische und spektroskopische Experimente untermauert werden.

Motiviert durch die Frage, inwieweit das OC₅O-Molekül ein längerkettiges Analogon zum quasilinearen Kohlenstoffsuboxid (OC₃O) darstellt, folgte nur ein Jahr später die erste hochaufgelöste IR-Untersuchung an gasförmigem OC₅O von HOLLAND *et al.* [76, 77]. Es gelang ihnen, bis auf das Zentrum der niedrigstliegenden Knickschwingung ν_{11} die Bandenzentren aller infrarotaktiven Schwingungen zu bestimmen und die Fundamentalbande der intensivsten Streckschwingung ν_4 um 2 240 cm⁻¹ vorläufig zuzuordnen. Diese Arbeit lieferte jedoch keinerlei Informationen, die für die Abschätzung der Lage und der Dynamik der niedrigstliegenden, potentiell quasilinearen Knickschwingungen ν_8 und ν_{11} nützlich sind. In den darauffolgenden zehn Jahren konzentrierte sich die Forschung an OC₅O auf theoretische *ab initio* -Berechnungen.

Die Arbeiten von HOLLAND et al. [76, 77] bilden die Grundlage der im Rahmen dieser Arbeit

durchgeführten Untersuchungen. Durch die Anwendung der FTIR-Molekularstrahltechnik sollte erstmals ein vollständig aufgelöstes Spektrum des durch *hot bands* aus Zuständen der thermisch angeregten niedrigliegenden Knickschwingungen ν_8 und ν_{11} praktisch kaum aufgelösten, intensivsten Bandensystems der Streckschwingungs ν_4 erhalten werden und möglicherweise auch des weitaus weniger intensiven ν_5 -Streckschwingungs-Bandensystems, um zunächst einmal die Zuordnungen von HOLLAND zu überprüfen und zusätzlich die ν_5 -Fundamentale zuzuordnen. Darüberhinaus bestand die Hoffnung, daß das erhaltene Spektrum neben der Fundamentalbande von ν_4 auch eine *hot band* und eine Kombinationsbande von ν_4 mit ν_8 oder ν_{11} enthält, um die Lage und die Dynamik dieser möglicherweise quasilinearen Knickschwingungen abschätzen zu können.

Die Dynamik der Ring-Puckering-Bewegung des Oxetan-Moleküls ist hingegen schon seit 40 Jahren Gegenstand spektroskopischer Untersuchungen. Im Jahre 1960 untersuchten DANTI et al. [78] das FIR-Spektrum von Oxetan. Es folgten weitere Untersuchungen von CHAN et al. [79], die die Fundamentalbande zweifelsfrei um 53 cm $^{-1}$ zuordnen konnten, KYDD *et al.* [80] sowie JOKISAARI und KAUPPINEN [28], die erstmals ein mäßig aufgelöstes FTIR-Spektrum in diesem Bereich aufnehmen konnten. Ihnen gelang es, durch die Anpassung einer quadratisch-guartisch-sextischen Potentialfunktion die Barriere zur linearen Form zu 15.52(5) cm⁻¹ zu bestimmen, wobei der Schwingungsgrundzustand 11.86 (5) $\rm cm^{-1}$ oberhalb dieser Barriere liegt. Das erste vollständig aufgelöste FTIR-Spektrum der Ring-Puckering-Schwingung-Bandensysteme wurde von KUNZ-MANN [31] im Jahre 1998 aufgenommen und analysiert. Im CH-Streckschwingungsbereich um $2\,900 \,\mathrm{cm}^{-1}$ existierten bis zur vorliegende Dissertation erst zwei niedrigaufgelöste IR-Messungen. Im Jahre 1967 führten UEDA und SHIMANOUCHI [81] Messungen zwischen 2600 und 2900 cm⁻¹ durch, die zur Zuordnung der symmetrischen α -CH-Streckschwingung um 2 894.3 cm⁻¹ und einer Reihe von Differenzbanden mit der Puckering-Schwingung führte. WIESER et al. [82] erweiterten diese Messungen auf einen Bereich zwischen 2 700 und $3\,200$ cm⁻¹ und konnten weitere Banden zuordnen.

Bis zu Beginn dieser Arbeit gab es keine hochauflösenden Messungen in dem Spektralbereich der CH-Streckschwingungen. Dies ist nicht sehr verwunderlich, da aufgrund der energetisch sehr tiefen Lage der Puckering-Schwingung um 53 cm⁻¹ dieser Bereich sehr starke Überlagerungen von Rotations-Schwingungs-Übergängen aus dem Grundzustand und aus angeregten Zuständen der Puckering-Schwingung aufweist. In Anbetracht der von BÁNHEGY *et al.* [83] aus *ab initio* - Berechnungen gewonnen Intensitäten verschiedener CH-Streckschwingungsmoden zwischen 10 km/mol und 100 km/mol erschien es daher erfolgversprechend, hochaufgelöste FTIR-Spektren eines Oxetan-Molekularstrahles aufzunehmen, um damit einen ersten Beitrag zur expliziten spektroskopischen Analyse der CH-Streckschwingungen zu leisten.

Zusammenfassend kann also festgehalten werden, daß es auf der einen Seite das Ziel der vorliegenden Arbeit ist, einen wichtigen apparativen Beitrag zur Verbesserung der Leistungsfähigkeit von FTIR-Molekularstrahl-Systemen durch Konzeption einer neuartigen Mehrfachreflexionsoptik zu leisten, um breitbandige MIR-Messungen an instabilen, pyrolytisch darzustellenden Kettenmolekülen oder aber Ringmolekülen mit sehr komplexen Spektren zu ermöglichen. Diese Messungen sollen ein Bild darüber vermitteln, inwieweit die interne Dynamik dieser Moleküle (Knickbewegung oder Puckeringschwingung) eingefroren werden kann. Die Molekularstrahlmessungen an einfachen Probemolekülen sollen zunächst Aufschluß über die Leistungsfähigkeit der neuen Optik geben und zudem Informationen über geeignete Meßparameter liefern. Darüberhinaus werden auch Versuche mit einer entwickelten heizbaren Expansionsdüse vorgestellt, die zur Darstellung des semi-stabilen und pyrolytisch zu erzeugenden NCCNO-Moleküls verwendet werden soll. Auf der anderen Seite soll die Auswertung der durch Molekularstrahl- und Absorptionszellenmessungen erhaltenen Spektren im MIR Informationen über die Streckschwingungsbandensysteme der möglicherweise astrochemisch relevanten Moleküle NCCNO, OC₅O und Oxetan liefern. Neben der Lage der Streckschwinugungs-Fundamentalbanden, dem Einfluß der Streckschwingungen auf die Potentialfunktion der niedrigliegenden Knick- oder Puckeringschwingungen sollten auch die resonanzbedingten Wechselwirkungen der in diesem Bereich liegenden Energieniveaus beleuchtet werden. Für das OC₅O sollten darüberhinaus Hinweise auf die Lage und das Verhalten der niedrigliegenden Knickschwingungen.

1.2 Literaturverzeichnis

- [1] G. HERZBERG, Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules, van Nostrand, Toronto (1950).
- [2] G. HERZBERG, Molecular Spectra and Molecular Structure: II. Infrared and Raman Spectra of Polyatomic Molecules, van Nostrand Toronto (1945).
- [3] G. HERZBERG, Molecular Spectra and Molecular Structure: III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, van Nostrand Toronto, (1966).
- [4] W. GORDY AND R. L. COOK, Microwave Molecular Spectra, 3rd edition, John Wiley & Sons, New York (1984).
- [5] M. QUACK AND W. KUTZELNIGG, Molecular Spectroscopy and Molecular Dynamics: Theory and Experiment, Ber. Bunsenges. Phys. Chem. 99, 231–245 (1995).
- [6] H. W. KROTO, C₆₀: Buckminsterfulleren, die Himmelssphäre, die zur Erde fiel, Angew. Chem. 104, 113–133 (1992).
- [7] M. WINNEWISSER, Interstellare Moleküle und Mikrowellenspektroskopie I, ChiuZ 18, 1–18 (1984).
- [8] A. A. WESTENBERG AND E. B. WILSON JR., The Microwave Spectrum and Molecular Structure of Cyanoacetylene, J. Am. Chem. Soc. 72, 199–200 (1950).
- [9] B. E. TURNER, Detection of Interstellar Cyanoacetylene, Astrophys. J. 163, L38– L39 (1971).
- [10] L. E. SNYDER AND D. BRUHL, Observations of Radio Emission from Interstellar Hydrogen Cyanide, Astrophys. J. 163, L47 (1971).
- [11] M. B. BELL, P. A. FELDMAN, S. KWOK, AND H. E. MATTHEWS, Detection of HC₁₁N in IRC+10°216, Nature (London 389, 295 (1982).
- [12] H. LICHAU, Millimeterwellenspektroskopie am Heterokumulen Trikohlenstoffoxidsulfid C₃OS, *Diplomarbeit*, Justus-Liebig-Universität, Gießen (1996).
- [13] H. D. RIX, The Infrared and Raman Spectra of Carbon Suboxide, J. Chem. Phy. 22, 429–433 (1954).
- [14] W. J. LAFFERTY, A. G. MAKI, AND E. K. PLYLER, High-Resolution Infrared Determination of the Structure of Carbon Suboxide, J. Chem. Phys. 40, 224–229 (1964).
- [15] L. A. CARREIRA, R. O. CARTER, J. R. DURIG, R. C. LORD, AND C. C. MILIONIS, Far Infrared and Raman Spectra of Gaseous Carbon Suboxide and the Potential Function for the low Frequency Bending Mode, J. Chem. Phys. 59, 1028–1037 (1973).

- [16] A. W. MANTZ, P. CONNES, G. GUELACHVILI, AND C. AMIOT, High Resolution Vibration-Rotation Spectra of Carbon Suboxide: Molecular Constants for the Ground State and $2\nu_7^0$, J. Mol. Spectrosc. 54, 45–53 (1975).
- [17] A. V. BURENIN, E. N. KARYAKIN, A. F. KRUPNOV, AND S. M. SHAPIN, Microwave Observation of the Vibration-Rotation Spectrum of the Nonpolar C₃O₂ Molecule, J. Mol. Spectrosc. 78, 181–184 (1979).
- [18] E. N. KARYAKIN, A. F. KRUPNOV, AND S. M. SHAPIN, Microwave Study of Vibration-Rotation Spectrum of Carbon Suboxide C₃O₂ in the 300- to 1000-GHZ Frequency Range, J. Mol. Spectrosc. 94, 283–301 (1982).
- [19] J. V. AUWERA, J. W. C. JOHNS, AND O. L. POLYANSKY, The Far Infrared Spectrum of C₃O₂, J. Chem. Phys. 95, 2299–2316 (1991).
- [20] W. R. THORSON AND I. NAKAGAWA, Dynamics of the Quasilinear Molecule, J. Chem. Phys. 33, 994-1004 (1960).
- [21] K. YAMADA AND M. WINNEWISSER, A Parameter to Quantify Molecular Quasilinearity, Z. Naturforsch. 31a, 139–144 (1976).
- [22] B. P. WINNEWISSER, The Spectra, Structure and Dynamics of Quasi-Linear Molecules with Four or More Atoms, in K. N. RAO (Editor), Molecular Spectroscopy: Modern Research, Volume III, Academic Press, Orlando (1985).
- [23] B. P. WINNEWISSER, M. WINNEWISSER, AND FLEMMING WINTHER, The Bending-Rotation Spectrum of Fulminic Acid and Deuterofulminic Acid, J. Mol. Spectrosc. 51, 65-96 (1974).
- [24] H. LICHAU, Spektroskopische und theoretische Untersuchungen zur Struktur und Dynamik von kovalenten Fulminaten und Heterokumulenen, Dissertation, Justus-Liebig-Universität, Gießen (1999).
- [25] T. EGAWA, T. FUKUYAMA, S. YAMAMOTO, F. TAKABAYASHI, H. KAMBARA, T. UEDA, AND K. KUCHITSU, Molecular Structure and Puckering Potential Function of Cyclobutane Studied by Gas Electron Diffraction and Infrared Spectroscopy, J. Chem. Phys. 86, 6018-6026 (1987).
- [26] C. S. BLACKWELL, L. A. CARREIRA, J. R. DURIG, J. M. KARRIKER, AND R. C. LORD, Far-Infrared Spectra of Ring Compounds. VII. The Ring-Puckering Vibration in Chlorocyclobutane, Bromocyclobutane, and Cyanocyclobutane, J. Chem. Phys. 56, 1706–1711 (1972).
- [27] T. R. BORGERS AND H. STRAUSS, Far-Infrared Spectra of Trimethylene Sulfide and Cyclobutanone, J. Chem. Phys. 45, 947–955 (1966).
- [28] J. JOKISAARI AND J. KAUPPINEN, Vapor-Phase Far-Infrared Spectrum and Double Minimum Potential Function of Trimethylene Oxide, J. Chem. Phys. 59, 2260– 2263 (1973).
- [29] P. R. BUNKER, Carbon Suboxide as a Semirigid Bender, J. Mol. Spectrosc. 80, 422-437 (1980).
- [30] P. R. BUNKER, B. M. LANDSBERG, AND B. P. WINNEWISSER, HCNO as a Semirigid Bender, J. Mol. Spectrosc. 74, 9–25 (1979).
- [31] M. KUNZMANN, Hochaufgelöste Infrarot-Spektroskopie an Oxetan Aufnahme und Auswertung der Ring-Puckering-Fundamentalbande, *Diplomarbeit*, Justus-Liebig-Universität, Gießen (1998).
- [32] P. W. ATKINS, **Physikalische Chemie**, VCH, Weinheim, 1. Auflage (1987).
- [33] I. MILLS, T. CVITĂS, K. HOMANN, N. KALLAY, K. KUCHITSU, Quantities, Units and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford, (1993).

- [34] A. KANTROWITZ AND J. GREY, A High Intensity Source for the Molecular Beam. Part I. Theoretical, Rev. Sci. Instrum. 22, 328–332 (1951).
- [35] G. B. KISTIAKOWSKY AND W. P. SLICHTER, A High Intensity Source for the Molecular Beam. Part II. Experimental, Rev. Sci. Instrum. 22, 333-337 (1951).
- [36] E. W. BECKER AND K. BIER, Die Erzeugung eines intensiven, teilweise monochromatisierten Wasserstoff-Molekularstrahles mit einer Laval-Düse, Z. Naturforsch. 9a, 975–986 (1954).
- [37] G. M. MCCLELLAND, K. L. SAENGER, J. J. VALENTINI, AND D. R. HERSCHBACH, Vibrational an Rotational Relaxation of Iodine in Seeded Supersonic Beams, J. Phys. Chem. 83, 947–959 (1979).
- [38] A. AMIRAV, U. EVEN, AND J. JORTNER, Cooling of Large and Heavy Molecules in Seeded Supersonic Beams, Chem. Phys. 51, 31–42 (1980).
- [39] M. HEAVEN, T. A. MILLER, V. E. BONDYBEY, Production and Characterization of Temperature-Controlled Free Radicals in a Free Jet Expansion, Chem. Phys. Lett. 84, 1-5 (1981).
- [40] R. HOWELL, E. M. JOSLIN, A. G. TAYLOR, AND D. PHILLIPS, Laser-Induced Fluorescence of Jet-cooled 3-Aminobenzonitrile: The Onset of Intramolecular Vibrational Redistribution, J. Chem. Soc. Faraday Trans. 88, 1605–1609 (1992).
- [41] S. XU, K. A. BERAN, AND M. D. HARMONY, Production of Halomethylenes in Free-Jet Expansion from a Hot Nozzle: Identification and Characterisation of HCBr and DCBr by Laser-Induced Fluorescence Spectroscopy, J. Phys. Chem. 98, 2742-2743 (1994).
- [42] D. ZAKHEIM AND P. JOHNSON, Two- and Three-Photon Resonances in the Four-Photon Ionization Spectrum of Nitric Oxide at Low Temperature, J. Chem. Phys. 68, 3644–3653 (1978).
- [43] F. Y. CHU AND T. OKA, Laser Absorption Spectroscopy Using a Molecular Beam, J. Appl. Phys. 46, 1204–1205 (1975).
- [44] A. S. PINE AND K. W. NILL, Molecular-Beam-Tunable-Diode-Laser Sub-Doppler Spectroscopy of Λ-Doubling in Nitric Oxide, J. Mol. Spectrosc. 74, 43–51 (1979).
- [45] G. BALDACCHINI, S. MARCHETTI, AND V. MONTELACITI, Diagnostics of a Supersonic Jet in a High-Pressure Background by Infrared Absorption, Chem. Phys. Lett. 91, 423–426 (1982).
- [46] P. B. DAVIES AND A. J. MORTON-JONES, Evaluation of Jet-Cooled Laser Spectroscopy for Simplifying Infrared Spectra, Appl. Phys. B 42, 35–40 (1987).
- [47] T. VAN ORDEN, T. F. GIESEN, R. A. PROVENCAL, H. J. HWANG, AND R. J. SAYKALLY, Characterisation of Silicon-Carbon Clusters by Infrared Laser Spectroscopy: The $\nu_3(\sigma_u)$ Band of Linear Si₂C₃, J. Chem. Phys. 101, 10237–10241 (1994).
- [48] N. GOLDSTEIN, T. L. BRACK, AND G. H. ATKINSON, Quantitative Absorption Spectroscopy of NO₂ in a Supersonically Cooled Jet by Inracavity Laser Techniques, *Chem. Phys. Lett.* **116**, 223–230 (1985)
- [49] A. O. O'KEEFE, J. J. SCHERER, H. L. COOKSY, R. SHEEKS, J. R. HEATH, AND R. J. SAYKALLY, Cavity Ringdown Dye Laser Spectroscopy of Jet Cooled Metal Clusters: Cu₂ and Cu₃, Chem. Phys. Lett. 172, 214 (1990).
- [50] T. MOTYLEWSKI AND H. LINNARTZ, Cavity Ring Down Spectroscopy on Radicals in a Supersonic Slit Nozzle Discharge, Rev. Sci. Instrum. 70, 1305–1312 (1999).
- [51] A. A. RUTH, T. FERNHOLZ, R. P. BRINT, AND M. W. D. MANSFIELD, The Cavity Ring-Down Absorption Spectrum of the $S_0 \rightarrow T_1$ and $S_0 \rightarrow S_1$ Transition of Jet-

Cooled 4-H-1-Benzopyrane-4-thione, Chem. Phys. Lett. 287, 403-411 (1998).

- [52] Y. HE, M. HIPPLER, AND M. QUACK, High-Resolution Cavity Ring-Down Absorption Spectroscopy of Nitrous Oxide And Chloroform Using a Near-Infrared CW Diode Laser, Chem. Phys. Lett. 289, 527–534 (1998).
- [53] D. L. SNAVELY, S. D. COLSON, AND K. B. WIBERG, Rotational Cooling in a Supersonic Expansion of Ammonia, J. Chem. Phys. 74, 6975-6976 (1981).
- [54] D. L. SNAVELY, K. B. WIBERG, AND S. D. COLSON, The Infrared Absorption Spectrum of a Supersonic Expansion of Methylchloride, Chem. Phys. Lett. 96, 319–323 (1983).
- [55] D. L. SNAVELY, V. A. WALTERS, S. D. COLSON, AND K. B. WIBERG, FTIR Spectrum of Benzene in a Supersonic Expansion, *Chem. Phys. Lett.* 103, 423–429 (1984).
- [56] R. GEORGES, G. DURRY, M. BACH, R. PÉTRISSE, R. JOST, AND M. HERMAN, Multinozzle Supersonic Expansion for Fourier Transform Absorption Spectroscopy, *Chem. Phys. Lett.* 246, 601–606 (1995).
- [57] M. HEPP, F. HERREGODTS, AND M. HERMAN, Fourier Transorm Infrared Jet Spectroscopy Using a Heated Slit Source, Chem. Phy. Lett. 294, 528-532 (1998).
- [58] C. L. HARTZ, B. A. WOFFORD, A. L. MCINTOSH, R. F. MEADS, R. R. LUCCHESE, AND J. W. BEVAN, Recent Advances in Rovibrationally Resolved FTIR Supersonic Jet Spectroscopy of Transients, Weakly Bound Dimers and Trimers, Ber. Bunsenges. Phys. Chem. 99, 447-457 (1995).
- [59] A. D. WALTERS, M. WINNEWISSER, K. LATTNER, AND B. P. WINNEWISSER, A Supersonic Molecular Jet for a Fourier Transform Interferometer: The ν_3 Band Of OCCCO, J. Mol. Spectrosc. 149, 542–556 (1991).
- [60] D. MCNAUGHTON, D. MCGILVERY, AND E. G. ROBERTSON, High-Resolution FTIR-Jet Spectroscopy of CCl₂F₂, J. Chem. Soc. Faraday Trans. 90, 1055–1060 (1994).
- [61] P. ASSELIN, P. SOULARD, G. TARRAGO, N. LACOME AND L. MANCERON, High Resolution Fourier Transform Infrared Spectroscopy of the ν_6 and ν_{10} Bands of Jet-Cooled Fe(CO)₅, J. Chem. Phys. 104, 4427–4433 (1996).
- [62] M. GROSS, G. HERMANN, AND A. SCHARMANN, Use of an On-Axis Multipass System to Improve the Detection Limits of Coherent Forward Scattering Spectroscopy and Flame Atomization, Spectrochim. Acta 44B, 597–608 (1989).
- [63] R. A. STEINHOFF, B. P. WINNEWISSER, AND M. WINNEWISSER, Fourier Transform Spectroscopy with Long Absorption Path Length in Solid Hydrogen: Measurement of $\Delta J = 6$ and $\Delta J = 8$ Transitions, *Phys. Rev. Lett.* **73**, 2833–2836 (1994).
- [64] C. GRUNDMANN AND H. D. FROMMELD, Nitrile Oxides. VIII. Cyanogen-N-Oxide, J. Org. Chem. 31, 4235–4237 (1966).
- [65] M. CHRISTL AND R. HUISGEN, Alte und neue Cycloadditionen der Nitriloxide, Tetrahedron Lett. 50, 5209–5213 (1968).
- [66] G. MAIER AND J. H. TELES, Isolierung und Photoisomerisierung von einfach substituierten Nitriloxiden, Angew. Chem. 99, 152–153 (1987).
- [67] T. PASINSZKI AND N. P. C. WESTWOOD, Gas-phase Generation of the Unstable BrCNO Molecule and Its Stable Dibromofuroxan Dimer. HeI Photoelectron, Photoionization Mass Spectroscopy, Mid-Infrared, and *ab initio* Studies, J. Phys. Chem. 99, 6401–6409 (1995).
- [68] T. PASINSZKI AND N. P. C. WESTWOOD, Cyanogen di-N-oxide (ONCCNO): Gas Phase Generation and a HeI Photoelectron, Photoionization Mass Spectroscopy, Midinfrared, and *ab initio* Study, J. Am. Chem. Soc. 117, 8425–8430 (1995).

- [69] T. PASINSZKI AND N. P. C. WESTWOOD, Gas-phase Generation and Spectroscopy of the Unstable NCCNO Molecule, J. Chem. Soc. Chem. Commun. 1995, 1901–1902 (1995).
- [70] T. PASINSZKI AND N. P. C. WESTWOOD, Ground, Excited, and Ionic States of the NCCNO Molecule: A HeI Photoelectron, Infrared, Ultraviolett, and *ab initio* Investigation, J. Phys. Chem. 100, 16856–16863 (1996).
- [71] T. PASINSZKI AND N. P. C. WESTWOOD, Unstable Chlornitrile Oxide, ClCNO, and Its Stable Ring Dimer: Generation, Spectroscopy, and Structure, J. Phys. Chem. A 102, 4939–4947 (1998).
- [72] T. BRUPBACHER, R. K. BOHN, W. JÄGER, M. C. L. GERRY, T. PASINSZKI, AND N. P. C. WESTWOOD, Microwave Spectrum and Geometry of Cyanogen N-Oxide, NCCNO, J. Mol. Spectrosc. 181, 316–322 (1997).
- [73] B. GUO, T. PASINSZKI, N. P. C. WESTWOOD, K. ZHANG, AND P. F. BER-NATH, High Resolution Infrared Spectroscopy of Cyanogen N-Oxide, NCCNO, J. Chem. Phys. 105, 4457-4460 (1996).
- [74] G. MAIER, H. P. REISENAUER, U. SCHÄFER, AND H. BALLI, C₅O₂ (1,2,3,4-Pentatetraen-1,5-dion), ein neues Oxid des Kohlenstoffs, Angew. Chem. 100, 590-592 (1988).
- [75] A. ULRICH, Neue Oxide des Kohlenstoffs, *Dissertation*, Justus-Liebig-Universität, Gießen (1992).
- [76] F. HOLLAND, Hochauflösende Fourier-Transform-Infrarotspektroskopie an einigen für die Astrophysik interessanten Molekülen mit kumulierten Doppelbindungen, Dissertation, Justus-Liebig-Universität, Gießen (1989).
- [77] F. HOLLAND, M. WINNEWISSER, G. MAIER, H. P. REISENAUER, AND A. ULRICH, The High-Resolution Fourier Transform Infrared Spectrum of the ν_4 Band System of OCCCCCO, J. Mol. Spectrosc. 130, 470–474 (1988).
- [78] A. DANTI, W. J. LAFFERTY AND R. C. LORD, Far Infrared Spectrum of Trimethylene Oxide, J. Chem. Phys. 33, 294–295 (1960).
- [79] S. I. CHAN, J. ZINN AND W. GWINN, Trimethylene Oxide. III. Far-Infrared Spectrum and Double Minimum Potential Function, J. Chem. Phys. 44, 1103–111 (1966).
- [80] R. A. KYDD, H. WIESER AND M. DANYLUK, Ring Puckering Potential Functions for Normal and Deuterated Trimethylene Oxides, J. Mol. Spectrosc. 44, 14–17 (1972).
- [81] T. UEDA AND T. SHIMANOUCHI, Near-Infrared Band Progressions of Ring Molecules and Ring-Puckering Motion, J. Phys. Chem. 47, 5018–5030 (1967).
- [82] H. WIESER, M. DANYLUK, R. A. KYDD, W. KIEFER, AND H. J. BERNSTEIN, Vibrational Spectra and Ring Puckering Progressions in the C-H Stretching Region of Trimethylene Oxide and Several Deuterated Analogs, J. Chem. Phys. 61, 4380– 4393 (1974).
- [83] G. BÁNHEGYI, P. PULAY AND G. FOGARASI, Ab Initio Study of the Vibrational Spectrum and Geometry of Oxetane -I. Interpretation of the Spectra, Spectrochim. Acta 39A, 761–769 (1983).

Kapitel 2

FOURIER-TRANSFORM-SPEKTROSKOPIE IM INFRAROTEN SPEKTRALBEREICH

Die Fourier-Transform (FT)-Technik hat mit der Entwicklung leistungsfähiger Computer und schneller Algorithmen in den letzten 30 Jahren in der gesamten Spektroskopie Einzug gehalten und wird mittlerweile in fast allen spektralen Bereichen verwendet. So findet die FT-Technik in der Kernresonanz- (FT-NMR), der Mikrowellen- (FT-MW), der Infrarot- (FTIR) und der UV/VIS (FT-UV/VIS)-Spektroskopie Verwendung.

Im Rahmen der vorliegenden Arbeit wurden Rotations-Vibrations-Spektren im mittleren Infrarot mit dem am Molekülspektroskopischen Laboratorium des Physikalisch-Chemischen-Instituts der Justus-Liebig Universität befindlichen Bruker IFS 120 HR FT-Spektrometer aufgenommen. In der Tabelle 2.1 sind die verschiedenen Bereiche des infraroten Spektralbereiches, geordnet nach der Frequenz ν , der Wellenzahl $\tilde{\nu}$ und der Wellenlänge λ , aufgeführt:

	$\nu /{ m THz}$	$\tilde{\nu} / \mathrm{cm}^{-1}$	$\lambda /\mu{ m m}$
Fernes Infrarot	0.6 - 6	20- 200	500 - 50
Mittleres Infrarot	6 - 120	200 - 4000	50 - 2.5
Nahes Infrarot	120 - 360	4000 - 12000	2.5 - 0.8

 Tabelle 2.1 Einteilung des Infraroten Spektralbereiches (IR).

In den folgenden Kapiteln werden die grundlegenden apparativen und theoretischen Konzepte der Fourier-Transform-Technik vorgestellt. Sie orientieren sich an den Darstellungen von HERRES und GRONHOLZ [1], GRONHOLZ und HERRES [2,3] sowie den Doktorarbeiten von SCHERMAUL [4] und LICHAU [5].

2.1 Die Entstehung des Interferogramms

2.1.1 Das Michelson-Interferometer

Im Falle der FTIR-Spektroskopie wird nicht direkt das Spektrum der absorbierenden Spezies gemessen, sondern ein Interferogramm, das eine Art kodiertes Spektrum darstellt, aus dem sich durch eine Fourier-Transformation das eigentliche Spektrum berechnen läßt. Wie solch ein Interferogramm erzeugt wird und was bei Berechnung des Spektrums aus diesem berücksichtigt werden muß, wird im folgenden erläutert. Der wesentliche Teil der Optik eines FTIR-Spektrometers bildet das Interferometer. Im Bruker IFS 120 HR Spektrometer befindet sich ein sogenanntes

Abbildung 2.1 Schematischer Aufbau eines *Michelson*-Interferometers. Die Mitte des Strahls wird durch eine durchgezogene, die Ränder des Strahlenbündels durch gestrichelte Linien dargestellt. Entnommen aus [4].

Michelson-Interferometer. *Michelson* entwickelte diese Anordnung Ende des letzten Jahrhunderts, um die Lichtäthertheorie zu widerlegen. In der Abbildung 2.1 ist schematisch der Aufbau solch eines Interferometers dargestellt, das sich aus einem Strahlenteiler, einem festen Spiegel und einem beweglichen Spiegel zusammensetzt.

Von einer polychromatischen Lichtquelle fällt ein kollimiertes Strahlenbündel auf einen Strahlenteiler, der im Idealfall die Hälfte des Strahlenbündels durchläßt und die andere Hälfte unter einem Winkel von 90° reflektiert. Der reflektierte Anteil trifft nach einer konstanten Wegstrecke d_1 auf einen festen Spiegel, wohingegen der durchgelassene Teilstrahl auf einen beweglichen Spiegel trifft, dessen Abstand d_2 vom Strahlenteiler beträgt. Nach den Reflexionen an den Spiegeln treffen die beiden Teilstrahlen wieder auf den Strahlenteiler, wobei wieder im Idealfall 50 % durchgelassen werden und 50 % unter einem Winkel von 90° reflektiert werden. Somit gelangen 50 % (zweimal 25 %) der einfallenden Strahlung über die Meßzelle zum Detektor, wohingegen die restlichen 50 % auf die Strahlungsquelle zurückfallen.

Wie bereits erwähnt, wird die Position eines Spiegels verändert. Prinzipiell wird dieser entweder mit konstanter Geschwindigkeit (langsam beim *low-scanning-* oder schnell beim *rapid-scanning-* Modus) bewegt oder in festen Abständen kurz angehalten und dann so schnell wie möglich zum nächsten Punkt bewegt (*stepped-scanning-*Verfahren). Das Gießener Bruker IFS 120 HR Spektrometer arbeitet im Standardbetrieb mit konstanten Spiegelgeschwindigkeiten von 0.07 cm/s bis 2.5 cm/s. Durch die Änderung des Abstandes des beweglichen Spiegels wird ein Gangunterschied δ

$$\delta = 2d_2 - 2d_1, \tag{2.1}$$

zwischen den interferierenden Teilstrahlen erzeugt, so daß bei gegebener Wellenlänge λ im Fall von $\delta = n\lambda$ zur konstruktiven, im Fall von $\delta = \frac{(n+1)}{2}\lambda$ hingegen zur destruktiven Interferenz kommt. Für das am Detektor detektierte Signal $I'(\delta)$ als Funktion des Gangunterschieds kann man in Wellenzahleinheiten schreiben:

$$I'(\delta) = \int_{\tilde{\nu}=0}^{\tilde{\nu}=\infty} \frac{1}{2} B(\tilde{\nu}) \left[1 + \cos\left(2\pi\tilde{\nu}\delta\right)\right] d\tilde{\nu}.$$
 (2.2)

 $I'(\delta)$ stellt die vom Gangunterschied abhängige Intensität dar, welche vom Detektor gemessen wird. Die Funktion $B(\tilde{\nu})$ hängt von der Leistung der Strahlungsquelle, der Effektivität des Strahlenteilers, der Reflektivität der Spiegel und der Empfindlichkeit des Detektors ab. Alle diese Größen sind wellenzahlabhängig. Wechselwirkt die Strahlung vor der Detektion mit einem Absorber, so repräsentiert $B(\tilde{\nu})$ auch die wellenzahlabhängige Absorption dieser Substanz. $B(\tilde{\nu})$ repräsentiert somit das Spektrum, also die Intensität als Funktion der Wellenzahl. Das Interferogramm $I'(\delta)$ setzt sich aus einem konstanten Term

$$\int_{\tilde{\nu}=0}^{\tilde{\nu}=\infty} \frac{1}{2} B(\tilde{\nu}) \tag{2.3}$$

und einem modulierten Term

$$\int_{\tilde{\nu}=0}^{\tilde{\nu}=\infty} \frac{1}{2} B(\tilde{\nu}) \cos\left(2\pi\tilde{\nu}\delta\right) d\tilde{\nu}$$
(2.4)

zusammen. Für die Spektrenakquisition ist lediglich der δ -abhängige Teil wichtig, der als Inter-

Abbildung 2.2 Das Interferogramm einer polychromatischen Strahlungsquelle. Bedingt durch die Datenakquisition bei negativem Gangunterschied entsteht ein zum Centerburst symmetrisches Interferogramm.

ferogramm $I(\delta)$ einer polychromatischen Quelle bezeichnet wird:

$$I(\delta) = \int_{\tilde{\nu}=0}^{\tilde{\nu}=\infty} \frac{1}{2} B(\tilde{\nu}) \cos\left(2\pi\tilde{\nu}\delta\right) d\tilde{\nu}.$$
(2.5)

Wie man sehr leicht erkennt, findet konstruktive Interferenz für alle Wellenlängen im Falle von $\delta = 0$ statt, so daß an diesem Punkt maximale Intensität im Interferogramm auftritt. Das ausgeprägte Maximum wird auch als *Centerburst* bezeichnet. Es ist ein Maß für die gesamte im Spektrum enthaltene Energie. Da sich der Spiegel mit der Geschwindigkeit v_m bewegt, ist das am Detektor gemessene Signal mit der Frequenz $\nu_i = v_m \tilde{\nu}$ cosinusförmig moduliert.

In der Abbildung 2.2 ist das Interferogramm einer polychromatischen Strahlungsquelle dargestellt. Da die Spiegelbewegung aus praktischen Gründen auf einige Meter beschränkt ist, bedeutet dies, daß das unendlich lange Interferogramm abgeschnitten wird. Wie nun aus dem Interferogramm das Spektrum berechnet wird und welchen Einfluß die endliche Länge des Interferogramms auf das Spektrum besitzt, wird in den nächsten Kapiteln beschrieben.

2.1.2 Berechnung des Spektrums aus dem Interferogramm

Zentraler Bestandteil der Berechnung des Spektrums aus dem Interferogramm ist das Fourier-Theorem, das zu Beginn des 19-ten Jahrhunderts von J. B. FOURIER entwickelt wurde. Dieses Theorem besagt, daß jede periodische und auch nicht periodische Funktion f(x) als Summe bzw. Integral von Sinus- und Cosinustermen dargestellt werden kann, sofern diese Funktion überall beschränkt und stückweise monoton ist:

$$f(x) = \frac{1}{\sqrt{\pi}} \int_0^\infty \left[a(k) \sin(kx) + b(k) \cos(kx) \right] dk , \qquad (2.6)$$

 mit

$$a(k) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f(x) \sin(kx) \, dx \,, \qquad (2.7)$$

und

$$b(k) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f(x) \cos(kx) \, dx \,.$$
 (2.8)

In komplexer Form lautet das Integral:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} c(k) e^{ikx} dk , \qquad (2.9)$$

 mit

$$c(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx .$$
 (2.10)

k und x sind die Integrationsvariablen. Gemäß des Theorems ist f(x) eindeutig durch die Koeffizienten a(k) und b(k) bzw. c(k) bestimmt. Handelt es sich bei der Funktion f(x) um eine periodische Funktion, so kann das Integral durch eine Summe über diskrete Werte von k ersetzt werden. Vergleicht man nun die Gleichungen (2.6) und (2.5), so entsprechen sich diese, wenn der Koeffizient a(k) gleich Null ist. Ersetzt man also f(x) durch $I(\delta)$ und b(k) durch $B(\tilde{\nu})$, so ergibt dies:

$$B(\tilde{\nu}) = \int_{\delta = -\infty}^{\delta = +\infty} I(\delta) \cos\left(2\pi\tilde{\nu}\delta\right) d\delta , \qquad (2.11)$$

und aus Symmetriegründen folgt weiter:

$$B(\tilde{\nu}) = 2 \int_{\delta=0}^{\delta=\infty} I(\delta) \cos\left(2\pi\tilde{\nu}\delta\right) d\delta .$$
(2.12)

Wie man erkennt, ist das Interferogramm $I(\delta)$ und das Spektrum $B(\tilde{\nu})$ über eine Fourier-Transformation miteinander verknüpft. Gleichung (2.12) zeigt außerdem, daß es theoretisch genügt, ein einseitiges Interferogramm aufzunehemen, was eine Halbierung des Spiegelweges und der Meßzeit mit sich bringt.

2.1.3 Die Entstehung der instrumentellen Linienform

Wie bereits erwähnt, wird durch die endliche Bewegung des Spiegels das Interferogramm an einem bestimmten Punkt abgeschnitten, was durch eine Multiplikation des Interferogramms mit der Boxcar-Funktion¹ mathematisch beschrieben werden kann. Der maximal mögliche optische Gangunterschied (MOPD) ergibt sich dann als:

$$MOPD = \delta_{max} = 2d_{max} - 2d_1. \tag{2.13}$$

Die Multiplikation des Interferogramms mit der Boxcar-Funktion entspricht der Faltung ihrer Transformierten in der Spektraldomäne. Das Faltungsprodukt zweier Funktionen g(x) und h(x)wird als g(x) * h(x) dargestellt und ist folgendermaßen definiert:

$$g(x) * h(x) = \int_{-\infty}^{+\infty} g(z) h(x-z) dz.$$
 (2.14)

Die Funktion g(x) entspricht somit dem Spektrum $B(\tilde{\nu})$ und h(x) der Fourier-Transformierten der Boxcar-Funktion. Die Fourier-Transformation der Boxcar-Funktion, $F[Boxc(\delta)]$ liefert die sogenannte sinc-Funktion:

$$F[Boxc(\delta)] = 2\delta_{max} \operatorname{sinc}(2\pi\tilde{\nu}\delta_{max}) = 2\delta_{max} \frac{\sin(2\pi\tilde{\nu}\delta_{max})}{2\pi\tilde{\nu}\delta_{max}}.$$
(2.15)

Die mathematischen Zusammenhänge sind graphisch in der Abbildung 2.3 dargestellt. Dort findet man einige wichtige Fourier-Paare. Die Fourier-Transformierte der Boxcar-Funktion ist hingegen in der Abbildung 2.4 gezeigt. Sie besteht aus einem zentralen Peak, der zu beiden Seiten hin abnehmende Oszillationen aufweist. Als Folge des endlichen Interferogramms besitzt eine infinitesimale schmale Linie eine endliche Breite und die Form einer sinc-Funktion. Diese Linienprofilfunktion wird als instrumentelle Linienform (ILS, engl., Instrumental Line Shape) bezeichnet.

Die Linienbreite in halber Höhe (FWHH, engl., Full Width at Half height), der sinc-Funktion beträgt

$$FWHH \approx \frac{0.605}{\delta_{max}} = \frac{0.605}{MOPD}.$$
(2.16)

Wie man sieht, bestimmt der maximale Spiegelweg die Linienbreite der sinc-Funktion. Damit limitiert dieser natürlich auch das Auflösungsvermögen des Spektrometers. Unter der Auflösung

$$\begin{array}{lll} Boxc(\delta) & = & 1 \ , \ \delta_{max} \ge \delta \ge 0 \\ Boxc(\delta) & = & 0 \ , \ \delta_{max} \le \delta \end{array}$$

¹Definition der Boxcar Funktion:

Abbildung 2.3 Wichtige Fourier-Transform Paare: links die Interferogramm-, rechts die dazugehörige Spektraldomäne. (A) Cosinusform des Interferogramms einer monochromatischen Strahlungsquelle und das korrespondierende Spektrum. (B) Die Boxcar-Funktion als Interferogramm und die Fourier-Transformierte. (C) Auswirkung der Boxcarfunktion auf das Interferogramm und Spektrum einer monochromatischen Strahlungsquelle. (D) Die Shah-Funktion und deren Fourier-Transformierte. (E) Auswirkung der Shah-Funktion auf das Interferogramm und Spektrum einer Muelle. Entnommen aus [6].

Abbildung 2.4 Die sinc-Funktion als Linienform. Sie ist das Resultat der Fourier-Transformation der Boxcar-Funktion. Entnommen aus [6].

 $\Delta \tilde{\nu}$ versteht man den minimalen Abstand zweier Spektrallinien, unter dem diese noch getrennt zu erkennen sind. Nach dem Rayleigh-Kriterium sind zwei Linien noch aufgelöst, wenn das Maximum der einen Linie in das erste Minimum der anderen Linie fällt. Die Auflösung ist dann gegeben durch

$$\Delta \tilde{\nu} = \frac{1}{\delta_{max}}.$$
(2.17)

Die Firma Bruker gibt hingegen eine Auflösung von $\Delta \tilde{\nu} = 0.9/\delta_{max}$ für das IFS 120 HR Spektrometer an.

Die ausgeprägten Füße der sinc-Funktion können schwache Linien in diesem Bereich überdecken oder vortäuschen, zudem enthalten sie einen nicht zu vernachlässigenden Anteil der Intensität der Spektrallinie. Eine als Apodisierung bezeichnete Prozedur, bei der das Interferogramm mit einer anderen Funktion als der Boxcar-Funktion multipliziert wird, kann das Problem beheben.

2.1.4 Apodisierung und Selbstapodisierung

Wie man deutlich anhand der Abbildung 2.4 erkennt, weist das sinc-Linienprofil mehrere Nebenminima- und maxima auf, die beispielsweise bei einer Intensitätsauswertung erhebliche Probleme verursachen können. Aus diesem Grund wird das Interferogramm mit einer anderen Funktion, der sogenannten Apodisierungsfunktion, multipliziert und dann erst die Fourier-Transformation durchführt. In der Abbildung 2.5 sind einige Apodisierungsfunktionen und deren Auswirkungen auf die Linienform dargestellt. Der Nachteil dieser Prozedur ist, daß die Fourier-Transformierte

Abbildung 2.5 Eine Übersicht verschiedener Apodisierungsfunktionen. Entnommen aus [6].

dieser Funktionen größere Linienbreiten aufweisen als die sinc-Funktion, so gilt beispielsweise

$$FWHH_{sinc^2} \approx 1.3 \times FWHH_{sinc}.$$
 (2.18)

Die sinc²-Funktion ist die Transformierte der Dreiecksfunktion. Die instrumentelle Auflösung des Spektrometers wird somit deutlich verschlechtert. Letztendlich muß man also einen Kompromiß zwischen Auflösung und Linienform eingehen. Bei sämtlichen im Rahmen dieser Arbeit gemessenen Spektren wurde auf eine Apodisierung verzichtet, da die Linienform hauptsächlich durch die Dopplerverbreiterung dominiert war. Sämtliche Spektren wurden mit einer etwas höheren Auflösung als die Dopplerbreite gemessen. Ein weiterer Effekt, der die maximal erreichbare instrumentelle Auflösung limitiert, wird Selbstapodisierung genannt. Dieser Effekt kommt wie folgt zustande: Aufgrund der räumlichen Ausdehnung der Strahlungsquelle und der endlichen Öffnung der Apertur nach dieser Quelle, gelangt kein wirklich perfekt paralleles Strahlenbündel in das Interferometer. Die Situation ist in der Abbildung 2.6 schematisch gezeigt. Der Zentrahlstrahl und der Randstrahl bilden zusammen den Divergenzwinkel α . In Abhängigkeit der Auslenkung

Abbildung 2.6 Mechanismus der Selbstapodisierung eines divergenten Strahlenbündels. Entnommen aus [6].

l des beweglichen Spiegels resultiert somit ein relativer Gangunterschied δ' :

$$\delta' = \frac{2l}{\cos\alpha} - 2l = 2l \frac{1 - \cos\alpha}{\cos\alpha} \,. \tag{2.19}$$

Entwickelt man die Cosinus-Funktion in einer Taylorreihe, bricht diese nach dem ersten Glied ab

$$\cos \alpha \approx 1 - \frac{\alpha^2}{2} \tag{2.20}$$

und legt die Bedingung $\alpha \ll 1$ zugrunde, so vereinfacht sich die Beziehung zu

$$\delta' = 2l\frac{\alpha^2}{2} = l\alpha^2 . \tag{2.21}$$

Beträgt nun der Gangunterschied zwischen dem Rand- und Zentralstrahl eine halbe Wellenlänge, so kommt es zu deren Auslöschung. Mit zunehmenden Spiegelweg treten immer mehr Randstrahlen in destruktive Interferenz mit den Zentralstrahlen, bis schließlich die am Detektor detektierte Intensität gänzlich verschwindet. Eine weitere Verlängerung des Spiegelweges bringt somit natürlich keinen weiteren Auflösungsgewinn. Je kleiner die Wellenlänge wird, desto kleiner muß der Divergenzwinkel sein, um eine bestimmte Auflösung $\Delta \tilde{\nu}$ zu erreichen. Soll eine maximale Auflösung $\Delta \tilde{\nu}$ bei einer maximalen Wellenlänge λ_{max} bzw. Wellenzahl $\tilde{\nu}_{max} = 1/\lambda_{max}$ erreicht werden, so berechnet sich der maximale Divergenzwinkel α_{max} zu:

$$l\alpha_{max}^2 = \frac{\alpha_{max}^2}{2\Delta\tilde{\nu}} = \frac{1}{2\tilde{\nu}_{max}},$$
(2.22)

$$\alpha_{max} = \sqrt{\frac{\Delta \tilde{\nu}}{\tilde{\nu}_{max}}}.$$
(2.23)

Durch ausreichend kleine Aperturen kann man dem Effekt der Selbstapodisierung entgegenwirken. Es muß dabei allerdings berücksichtigt werden, daß somit auch Intensität verloren geht und das Signal-zu-Rausch-Verhältnis (S/N, engl., Signal to Noise) sich verschlechtert.

Neben der Selbstapodisierung hat auch die vorhandene Strahlendivergenz einen kleinen Einfluß auf die Position der Absorptionslinien. Diesen Einfluß kann man sich wie folgt vorstellen: Geht man von monochromatischer Strahlung einer Lichtquelle aus, so erzeugen, bedingt durch den zusätzlichen Gangunterschied δ' , Rand- und Zentralstrahlen unterschiedliche Interferogramme, wodurch in der Spektraldomäne eine Wellenzahlverschiebung entsteht.

2.2 Die Diskrete Fourier-Transformation (DFT)

2.2.1 Digitalisierung und Aliasing

Um das am Detektor gemessene kontinuierliche Interferogramm mittels eines Computer auswerten zu können, muß dieses digitalisiert werden. Dazu wird nach kleinen Intervallen der konstanten Länge *d* jeweils ein Meßwert eingelesen. Dieser Prozeß entspricht mathematisch der Multiplikation des kontinuierlichen Interferogramms mit der Shah-Funktion (vgl. Abbildung 2.3). Die Digitalisierung darf natürlich nur so erfolgen, daß keinerlei Information verlorengeht. Das Nyquist-Theorem besagt, daß jede sinusartige zeit- oder frequenzabhängige Funktion ohne Informationsverlust digitalisiert werden kann, wenn die Digitalisierungsfrequenz mindestens doppelt so groß wie die Bandbreite ist. Die Bandbreite entspricht der Differenz aus maximaler und minimaler Wellenzahl des Meßbereiches.

Eine Folge der Digitalisierung des Interferogrammes ist, daß bei der Fourier-Transformation von einem Integral zu einer Summe übergegangen werden muß. Das bedeutet, daß die kontinuierlichen Größen δ im Interferogramm und $\tilde{\nu}$ im Spektrum durch die diskreten Stützpunkte n d bzw. $k \tilde{\omega}$ ersetzt werden müssen. Die Gleichung (2.12) ist somit zu ersetzen durch:

$$B(k\widetilde{\omega}) = 2\sum_{n=0}^{N-1} I(nd) \cos(2\pi kn/N) .$$
 (2.24)

N : Zahl der digitalisierten Meßpunkte, $n, d = 0, 1, 2, 3, \dots, N-1.$

Im Bruker IFS 120 HR Spektrometer befindet sich ein Helium-Neon-Laser der monochromatischen Wellenzahl $\tilde{\nu} = 15\,798.002\,5\,\,\mathrm{cm}^{-1}$, der das *Michelson*-Interferometer durchläuft. Anhand des cosinusförmigen Interferogrammes dieser Laserstrahlung erfolgt die Digitalisierung (Sampling), die bei ganzzahligen Vielfachen der Nulldurchgänge erfolgt. Der freie spektrale Bereich, das auf einmal meßbare Intervall in Wellenzahlen, beträgt somit rund 7900 cm⁻¹.

Die Multiplikation des kontinuierlichen Interferogrammes mit der Shah-Funktion entspricht in der Spektraldomäne der Faltung des Spektrums mit der Shah-Funktion im Intervall 1/d, so daß sich das Spektrum in den Abständen 1/d unendlich oft wiederholt. Wird die Digitalisierungsfrequenz kleiner gewählt als es gemäß dem Nyquist-Theorem erforderlich ist, so tritt das Aliasing Phänomen auf, bei dem sich zwei wiederholende Spektren überlagern und somit Artefakte im Spektrum auftauchen. Dies kann man sich wie folgt verdeutlichen: wenn bei einer Digitalisierungsfrequenz $2\nu_{max}$ Strahlung der Wellenzahl $\tilde{\nu}_{max} + \tilde{\nu}_1$ in das Interferometer und auf den Detektor gelangt, so taucht diese Wellenzahl zusätzlich bei $\tilde{\nu}_{max} - \tilde{\nu}_1$ im Spektrum auf. Dieses Signal wird also durch Faltung in dem betrachteten Spektralbereich vorgetäuscht. Aus

Abbildung 2.7 Darstellung des Picket-Fence- und Zerofilling-Effektes. Das linke Spektrum wurde mit einem Zerofillingfaktor ZFF = 2 erzeugt, wohingegen das rechte mit ZFF = 16 erzeugt wurde. Die aus der Messung erhaltenen Stützpunkte sind durch dicke Punkte, die durch Zerofilling erzeugten durch kleine Kreuze gekennzeichnet. Entnommen aus [4].

diesem Grund müssen entsprechende optische und elektronische Filter zur Spektrenakquisition verwendet werden.

2.2.2 Der Picket-Fence (Lattenzaun)-Effekt und Zerofilling

Ein weiteres Problem der Fourier-Transform Spektroskopie stellt der sogenannte Zaunlatteneffekt (Picket-Fence-Effekt) dar. Befinden sich im kontinuierlichen Interferogramm Frequenzen, die genau zwischen zwei Stützstellen liegen, so kann in der Spektraldomäne deren Intensität deutlich unterbewertet werden, zudem erscheinen diese oft mit seltsamen Formen. Durch die Digitalisierung erscheint das Spektrum somit wie durch einen Lattenzaun betrachtet (Picket-Fence). Dieser Effekt kann durch das Zerofilling kompensiert werden. Dabei werden an das Interferogramm Nullen angehängt und somit eine Erhöhung der Punkte pro Wellenzahl im Spektrum erzielt. Das Zerofilling entspricht somit einer Interpolation in der Spektraldomäne, hat aber keinen Einfluß auf Linienform oder Auflösung. In der Abbildung 2.7 ist der Effekt graphisch dargestellt.

Im allgemeinen werden an ein Interferogramm mit N Punkten $(2^{m-1} - 1)N$ Nullen angehängt. Der Zerofillingsfaktor ZFF ist dann durch

$$ZFF = 2^{m-1} (2.25)$$

gegeben. Das Zerofilling kann auch nachträglich durchgeführt werden. Das sogenannte Postzerofilling wird direkt in der Spektraldomäne durchgeführt. Nach Gleichung (2.25) benötigt die diskrete Fourier-Transformation für jede Wellenzahl N Multiplikationen und N - 1 Additionen. Definiert man eine Rechenoperation als ein Multiplikation gefolgt von einer Addition, so müssen N^2 Rechenoperationen für jeden Datenpunkt durchgeführt werden. Durch die rasante Computerentwicklung und die Entwicklung schnell durchfuehrbarer Algorithmen in den letzten 30 Jahren ist die Rechenzeit für eine Fourier-Transformation um rund zwei Größenordnungen gesunken. Entscheidend für die zunehmend schnellere Berechnung der Fourier-Transformation, der sogenannten Fast-Fourier-Transformation (FFT), ist die Entwicklung des COOLEY-TUKEY-Algorithmus Mitte der sechziger Jahre dieses Jahrhunderts, mit dem die Anzahl an Rechenoperationen auf $N \log_2 N$ reduziert werden konnte [7].

2.3 Die Phasenkorrektur

Durch verschiedene instrumentelle Einflüße, die den sogenannten Phasenfehler verursachen, ist ein reales zweiseitiges Interferogramm nicht mehr exakt spiegelsymmetrisch zu $\delta = 0$. Die Asymmetrie eines Interferogramms wird im wesentlich durch zwei Effekte verursacht:

• Der erste Datenpunkt wird nicht beim Gangunterschied $\delta = 0$ sondern im Abstand ϵ digitalisiert, da der Spiegel niemals so genau positioniert werden kann, daß $\delta = 0$ ist. Wird der erste Datenpunkt etwa bei $\delta = -\epsilon$ aufgenommen, so gilt für das Interferogramm:

$$I(\delta) = \int_{\delta=0}^{\delta=+\infty} \frac{1}{2} B(\tilde{\nu}) \cos[2\pi\tilde{\nu}(\delta-\epsilon)].$$
(2.26)

• Optische und elektronische Bauteile rufen wellenzahlabhängige Phasenverschiebungen $\theta(\tilde{\nu})$ hervor, so daß für das Interferogramm geschrieben werden kann:

$$I(\delta) = \int_{\delta=0}^{\delta=+\infty} \frac{1}{2} B(\tilde{\nu}) \cos[2\pi\tilde{\nu}(\delta-\epsilon) - \theta(\tilde{\nu})].$$
 (2.27)

Berücksichtigt man nun das Additionstheorem der trigonometrischen Funktionen, so wird deutlich, daß bedingt durch die zusätzlichen Phasenwinkel Sinusterme im Interferogramm auftreten. Die Fourier-Transformation der Cosinus- und Sinus-Terme in die Spektraldomäne führt zu einem komplexen Spektrum $C(k\widetilde{\omega})$, das sich aus einem Realtteil $\mathcal{R}[C(k\widetilde{\omega})]$ und einem Imaginärteil $\mathcal{F}[C(k\widetilde{\omega})]$ zusammensetzt:

$$C(k\widetilde{\omega}) = \mathcal{R}[C(k\widetilde{\omega})] + i\mathcal{F}[C(k\widetilde{\omega})] = B(k\widetilde{\omega})\exp\,i\Theta(k\widetilde{\omega}),\tag{2.28}$$

wobei für den Phasenwinkel $\Theta(k\widetilde{\omega})$ gilt:

$$\Theta(k\widetilde{\omega}) = \epsilon + \theta(k\widetilde{\omega}). \tag{2.29}$$

Für die spektrale Information $B(k\tilde{\omega})$ ergibt sich nach Gleichung (2.24) in komplexer Form:

$$B(k\tilde{\omega}) = 2\sum_{n=0}^{N-1} I(nd) \exp(-(i 2\pi kn/N)), \qquad (2.30)$$

so daß für das komplexe Spektrum gilt:

$$C(k\widetilde{\omega}) = 2\sum_{n=0}^{N-1} I(nd) \exp -(i2\pi kn/N) \exp i\Theta(k\widetilde{\omega}).$$
(2.31)

Um $B(k\tilde{\omega})$ aus $C(k\tilde{\omega})$ zu berechnen, wird eine Phasenkorrektur durchgeführt. Dazu wird das Interferogramm in einem kleinen Bereich zusätzlich bei negativem Gangunterschied δ aufgenommen. Aus dem kurzen zweiseitigen Interferogramm kann nun also der Real- und Imaginärteil berechnet werden. Das Phasenspektrum ergibt sich somit zu:

$$\Theta(k\widetilde{\omega}) = \arctan \frac{\mathcal{F}[C(k\widetilde{\omega})]}{\mathcal{R}[C(k\widetilde{\omega})]}.$$
(2.32)

Somit erhält man $B(k\widetilde{\omega})$ bei bekanntem Phasenspektrum nach Gleichung (2.28). Eine andere Methode stellt die Berechnung von $B(k\widetilde{\omega})$ aus dem Powerspektrum $P(k\widetilde{\omega})$ dar. Beide Größen sind wie folgt miteinander verknüpft:

$$B(k\widetilde{\omega}) = \sqrt{P(k\widetilde{\omega})} = \sqrt{\mathcal{R}^2[C(k\widetilde{\omega})] + \mathcal{F}^2[C(k\widetilde{\omega})]}.$$
(2.33)

Das reelle Spektrum ergibt sich also als Wurzel des Powerspektrums. Der gesamte Vorgang der Spektrenakquisition kann wie folgt zusammengefaßt werden:

- Aufnahme des Interferogramms.
- Multiplikation des Interferogrammes mit einer Apodisierungsfunktion.
- Zerofilling.
- Diskrete Fourier-Transformation als Fast-Fourier-Transformation.
- Phasenkorrektur.

Anschließend hat man ein sogenanntes Einkanalspektrum vorliegen, aus dem mittels Divison mit dem Einkanalspektrum der leeren Meßzelle [Background, $BGR(\tilde{\nu})$] das Transmissionsspektrum $T(\tilde{\nu})$ erhalten wird:

$$T(\tilde{\nu}) = \frac{B(\tilde{\nu})}{BGR(\tilde{\nu})}$$
(2.34)

Die Genauigkeit der aus FTIR-Spektren ermittelten Linienpositionen gibt an, inwieweit diese Linienpositionen mit den wahren Linienpositionen übereinstimmen (Eine Definition des Begriffes Genauigkeit findet man bei [8]). Eine hohe Genauigkeit der Linienpositionen ist nur dann gewährleistet, wenn eine externe Kalibration der Spektren durchgeführt wird. Die endliche Divergenz des IR-Strahles der Strahlungsquelle, ein nicht exakt justierter Helium-Neon-Laser oder Schwankungen der Laserfrequenz können diese Ungenauigkeiten verursachen. Daher werden parallel zur eigentlichen Messung, die Spektren von Substanzen aufgenommen, deren Linienpositionen sehr genau aus anderen Meßverfahren bekannt sind. Aus dem Vergleich der gemessenen mit den theoretischen Linienpositionen wird ein Kalibrationsfaktor bestimmt, mit dem das Spektrum kalibriert wird.

2.4 Vorteile der FTIR-Spektroskopie

Die FTIR-Spektroskopie zeichnet sich durch eine Reihe von Vorteilen gegenüber anderen IRspektroskopischen Methoden aus. Diese sind im folgenden kurz aufgelistet:

- Jaquinot-Vorteil: Da zur gleichen Zeit der gesamte Bereich des Spektrums gemessen wird entfällt der Monochromator, daher ist die Ausgangsleistung und die Empfindlichkeit wesentlich höher.
- Felgett-Vorteil: Da alle Wellenzahlen auf einmal gemessen werden hat man einen Zeitvorteil; in der gleichen Meßzeit kann somit ein besseres Signal-zu-Rausch-Verhältnis erzielt werden.
- Connes-Vorteil: Mit dem integrierten Helium-Neon-Laser wird eine interne Kalibration erzielt, die bis zu einer Genauigkeit von 0.01 cm⁻¹ eine weitere Kalibration überflüssig macht.
- Alle instrumentellen Einflüsse auf das Spektrum können vorausberechnet werden, da die Theorie der FT-Spektrometer sehr genau untersucht ist.

2.5 Das hochauflösende FT-Spektrometer Bruker IFS 120 HR

Für die im Rahmen dieser Arbeit durchgeführten Messungen im MIR-Bereich wurde das hochauflösende IFS 120 HR-Spektrometer der Firma Bruker verwendet [9]. Mit dem Bruker-Spektrometer sind Messungen im Bereich von 5 cm⁻¹ bis 45 000 cm⁻¹, also dem Bereich der Millimeterwellen bis zum nahen Ultraviolett, möglich. Der maximal mögliche Gangunterschied des Spektrometers beträgt rund 5.42 m. Nach dem Rayleigh-Kriterium entspricht dies einer maximalen Auflösung von rund 0.001 85 cm⁻¹. Die Firma Bruker gibt die maximale Auflösung mit 0.001 66 cm⁻¹ an.

Das gesamte Spektrometer ist modular aus insgesamt sechs Kammern aufgebaut, die mittels einer Rotationspumpe evakuiert werden, um störende Hintergrund-Absorptionen zu minimieren. Im folgenden werden die einzelnen Module näher beschrieben:

- A Die Quellenkammer mit einem Eingang für Emissionsexperimente (EP). Für die verschiedenen Wellenzahlenbereiche existieren insgesamt vier Strahlungsquellen (S1-S4), die rechnergesteuert über einen drehbaren Spiegel ausgewählt werden. Die Wahl einer geeigeneten Apertur (AP) erfolgt ebenfalls mittels des Rechners.
 - Eine Quecksilber-Hochdrucklampe für den Fern-Infrarot Bereich (FIR) zwischen rund 5 cm⁻¹ und 400 cm⁻¹.
 - Einen Globar, ein durch Anlegen einer elektrischen Spannung zum Glühen gebrachter Siliciumcarbid Stab, für das ferne Infrarot (FIR) und den mittleren Infrarot Bereich (MIR) zwischen 100 cm⁻¹ und 5 000 cm⁻¹.
 - Eine Wolfram-Lampe für den Nah-Infrarot (NIR) und sichtbaren Bereich (VIS) zwischen 3000 cm $^{-1}$ und 25000 cm $^{-1}$.
 - Eine Xenon-Lampe für den VIS und nahen ultravioletten (UV) Bereich zwischen $10\,000 \text{ cm}^{-1}$ und $45\,000 \text{ cm}^{-1}$.
- **B** In der Interferometerkammer wird die divergente Strahlung zunächst kollimiert und trifft dann auf einen geeigenten Strahlenteiler (BS). Zudem befindet sich ein Filterwechsler (FC) für optische Filter, die den Meßbereich eingrenzen, sowie der Helium-Neon-Laser samt Photodioden und zwei Ausgänge für externe Meßzellen in dieser Kammer.

C Die Scannerkammer mit dem beweglichen Spiegel.

- **D Die Probenkammer** für Messungen mit kleinen Absorptionszellen bis zu 30 cm Länge sowie weiteren Ausgängen für externe Meßzellen.
- **E Die Detektorkammer** kann bis zu vier interne Detektoren aufnehmen (D1-D4), darüberhinaus existieren zwei Ausgänge für externe Detektoren (EP).

F Die Absorptionszelle.

G Die externe Detektorkammer wurde nachträglich in Gießen angefertigt und kann entweder mit internen (D6) oder externen Detektoren (D5) benutzt werden.

Als Detektoren werden im FIR Bereich Halbleiter-Bolometer auf Silicium- oder Germanium-Basis verwendet. Diese Bolometer werden mittles flüssigem Helium gekühlt. Die auftreffende Infrarotstrahlung bringt eine geringfügige Erwärmung des Halbleiters mit sich, die zu einer Veränderung der Leitfähigkeit führt, was gemessen wird.

Abbildung 2.9 Blockschaltbild des Bruker IFS 120 HR Spektrometers. Entnommen aus [4].

Im mittleren Infrarot unterhalb von 2000 cm⁻¹ werden GeCu-Halbleiterdetekoren verwendet, die ebenfalls mit flüssigem Helium gekühlt werden. Oberhalb dieses Bereiches werden InSb-Halbleiter verwendet. Durch das Auftreffen der Infrarotstrahlung wird bei diesen Halbleitern Elektronen in das Leitungsband überführt, wodurch wiederum eine Änderung der Leitfähigkeit einhergeht. Oberhalb von rund 10000 cm⁻¹ werden Siliciumhalbleiter-Detektoren verwendet. Ein Blockschaltbild der Spektrometers und dessen Peripherie ist in der Abbildung 2.9 dargestellt. Das Detektorsignal wird vorverstärkt, elektronisch gefiltert und nochmals vorverstärkt, bevor es zu einer Analog-Digital(A/D)-Wandlerkarte gelangt. Die Auflösung dieser Karte beträgt 2¹⁶ bit. Das von dieser Karte kommende Signal wurde ursprünglich mit einem ASPECT 3000 Computer unter dem Betriebssystem ADAKOS weiterverarbeitet. Dieser Computer ist mittlerweile durch einen 486-PC ersetzt, der mit einem Bruker Vektorprozessor ausgestattet ist. Mit dem Programm OPUS wird die A/D-Wandlerkarte ausgelesen und anschließend das Spektrum berechnet. Darüberhinaus bietet die Software eine Vielzahl von Rechenoperationen zur Bearbeitung der Spektren.

2.6 Literaturverzeichnis

- W. HERRES AND J. GRONHOLZ, Datenverarbeitung in der FT-IR-Spektroskopie. Teil 1: Datenaufnahme und Fourier-Transformation, Comp. Anw. Lab. 5, 352–356 (1984).
- [2] J. GRONHOLZ AND W. HERRES, Datenverarbeitung in der FT-IR-Spektroskopie.

Teil 2: Einzelheiten der Spektrenberechnung, Comp. Anw. Lab. 6, 418–425 (1984).

- [3] J. GRONHOLZ AND W. HERRES, Datenverarbeitung in der FT-IR-Spektroskopie. Teil 3: Über einige nützliche Operationen im Interferogramm- und Zeitbereich, Comp. Anw. Lab. 5, 230-240 (1985).
- [4] R. SCHERMAUL, Hochauflösende Fourier-Transform-Infrarot-Spektroskopie an Knallsäure und H₂O₂, Dissertation, Justus-Liebig-Universität, Gießen (1996).
- [5] H. LICHAU, Spektroskopische und theoretische Untersuchungen zur Struktur und Dynamik von kovalenten Fulminaten und Heterokumulenen, Dissertation, Justus-Liebig-Universität, Gießen (1999).
- [6] J. W. G. SEIBERT, Computerunterstützte hochauflösende Spektroskopie instabiler Moleküle: Beiträge zu Struktur und Dynamik von C¹⁵NC¹⁵N und zur Bestimmung von N₂O₅ in der Atmosphäre, Dissertation, Justus-Liebig-Universität, Gießen (1995).
- [7] J. W. COOLEY AND J. W. TUKEY, An Algorithm for the Machine Calculation of Complex Fourier Series, Math. Comp. 19, 297–301 (1965).
- [8] P. R. BEVINGTON, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book Company, New York (1969).
- [9] IFS 120 HR User's Manual, Bruker Analytische Meßtechnik GmbH, Karlsruhe (1989).
- [10] R. SCHERMAUL, J. W. G. SEIBERT, G. CH. MELLAU, AND M. WINNEWISSER, Variable-Temperature 3-m Absorption Cell developed for Spectroscopic Measurements of Gases, Appl. Optics 35, 2884–2890 (1996).

Kapitel 3

ASPEKTE DER SPEKTROSKOPIE AN KALTEN MOLEKÜLEN IN DER GASPHASE

Die Molekülspektroskopie in der Gasphase eröffnet dem Physiko-Chemiker die Möglichkeit, Aussagen über die Struktur, die interne Dynamik und die Dynamik chemischer Prozesse von Molekülen machen zu können. Unter gewöhnlichen experimentellen Bedingungen können diese Molekülspektren sehr komplex und daher schwer oder gar nicht interpretierbar sein. Die Komplexität der erhaltenen Spektren kann durch die Molekülgröße oder durch eine besondere interne Dynamik, wie beispielsweise dem Vorhandensein einer energetisch tiefliegenden Knickschwingungs-, Torsions- oder Puckeringbewegung, bedingt sein. Die Population solcher energetisch niedrigliegender Zustände führt zum Auftreten heißer Banden, den sogenannten *hot bands*. Die Abkühlung eines zu untersuchenden Probegases bietet jedoch die Möglichkeit, sehr komplexe Spektren entscheidend zu vereinfachen, da die Temperatur die Verteilung der Moleküle auf die Energiezustände beeinflußt. Dies läßt sich anhand des *Boltzmann*schen Verteilungsgesetzes [1]

$$N_{i} = N_{j} \exp[-(E_{i} - E_{j})/kT], \qquad (3.1)$$

 N_i, N_j : Anzahl der Moleküle in den Zuständen *i* bzw. *j*, E_i, E_j : Energie des Zustandes *i* bzw. *j*, T : Temperatur, k = 1.380 658 × 10⁻²³ JK⁻¹ [2].

erkennen. Durch die Kühlung wird die Population des Grundzustandes erhöht, die Intensität von Fundamentalübergängen nimmt zu, wohingegen durch die Absenkung der Besetzungszahl der angeregten Zustände die Intensität der *hot bands* herabgesetzt wird. Durch die erzielte Rotationskühlung werden sich überlagernde Banden separiert, zudem nimmt die Dopplerverbreiterung der Absorptionslinien mit der Wurzel der Temperatur ab [1]:

$$\Delta \nu = \frac{2\nu}{c} \sqrt{\frac{2 \ln 2RT}{M}},\tag{3.2}$$

 $\Delta \nu$: Doppler-Verbreiterung,

- ν : Übergangsfrequenz,
- c : Lichtgeschwindigkeit ($c = 299792458 \text{ m s}^{-1}$) [2],
- R : Gaskonstante ($R = 8.314510 \text{ J K}^{-1}$) [2],
- T : Temperatur,
- M : Molmasse.

Die Reduzierung der Linienbreiten ermöglicht wiederum Messungen mit höherer instrumenteller Auflösung, wodurch unter Umständen verborgene Strukturen im Spektrum hervorgebracht werden können. Darüberhinaus kann durch das Absenken der Meßtemperatur die Lebensdauer reaktiver oder instabiler Verbindungen erhöht werden und somit überhaupt erst eine spektroskopische Beobachtung dieser Spezies ermöglicht werden.

Die Kühlung eines spektroskopisch zu untersuchenden Gases kann je nach Problemstellung in gekühlten Absorptionszellen, in Stoßkühlungs- oder Hüllstromzellen oder aber in Überschallstrahlen bzw. Molekularstrahlen erfolgen. Die erwähnten Kühlungstechniken werden im folgenden kurz vorgestellt. Weiterhin kennt man ebenfalls Kühlungsprozesse, die durch Laserstrahlung induziert werden. Darauf soll jedoch nicht näher eingegangen werden; es wird auf die einschlägige Literatur verwiesen [3].

3.1 Kühlbare Absorptionszellen

Das Kühlungsprinzip kühlbarer Absorptionszellen ist recht simpel. Das zu kühlende Probengas wird über Zuleitungen in die Zelle eingebracht, wo es sich durch inelastische Stöße mit der kalten Zellenwand und in nachfolgenden Stößen untereinander abkühlt. Eine Vielzahl von Absorptionszellen, die unterhalb von Raumtemperatur arbeiten, sind bisher beschrieben worden. Auf der einen Seite existieren Meßzellen, die je nach Siedepunkt des Kryogens nur bei bestimmten Temperaturen betrieben werden können, wie beispielsweise die Absorptionszellen von WATANABE und WELSH [4] sowie MCKELLAR et al. [5]. Als Kryogene wurden verflüssigte Gase wie Stickstoff oder Argon verwendet. Auf der anderen Seite existieren Meßzellen, die in einem weiten Temperaturbereich arbeiten, wobei der Zellkörper entweder von einem Kühlmantel umgeben oder mit Kühlrohren umwickelt ist, durch die die Kühlflüssigkeit, beispielsweise ein ausgesuchtes Silikonöl, gepumpt wird [6–10]. Sowohl die Kühlmantel-Absorptionszellen als auch die durch Kühlrohre gekühlten Zellen ohne Heizsystem weisen oftmals Temperaturinhomogenitäten über die Länge der Zelle auf. SCHERMAUL [11, 12] entwickelte daher eine temperaturvariable 3 m-Absorptionszelle aus einem Pyrex-Rohr, das von Kühlrohren und einem Heizsystem umgeben ist. Das Heizsystem besteht aus 16 computergesteuerten Heizelementen und Thermoelementen. die über die ganze Zelle verteilt sind. Die Grundidee der Temperaturregulierung der in einem Sandbad gelagerten Zelle besteht in der Kühlung durch flüssigen oder gasförmigen Stickstoff, während die 16 voneinander unabhängigen Heizelemente einen vorgegebenen Wert durch Gegenheizen realisieren. Kupferleitungen verteilen den Stickstoff entlang der Zelle und um diese herum. Die praktikablen Meßtemperaturen liegen zwischen 123 K und 423 K mit Abweichungen von rund ±0.5 K über die gesamte Zellenlänge. Der schematische Aufbau des gesamten Systems, das auch im Rahmen dieser Arbeit verwendet wurde, ist in der Abbildung 3.1 wiedergegeben. Ein schönes Beispiel, das den möglichen Kühlungseffekt der Zelle zeigt, ist das von KUNZ-MANN [13] im FIR -Bereich erhaltene Ring-Puckering-Bandensystem des Oxetanmoleküls. Die bei Zimmertemperatur praktisch nicht aufgelösten Q-Zweige sind bei 200 K weitestgehend rotationsaufgelöst zu sehen.

Generell ist die Temperaturlimitierung gekühlter Absorptionszellen durch den Dampfdruck des spektroskopisch zu charakterisierenden Gases bestimmt, da auch Helium als Kryogen verwendet werden kann. Es zeigt sich jedoch, daß zum einen die meisten Probengase bei der Temperatur des flüssigen Stickstoffs ausfrieren, zum anderen oberhalb dieser Temperatur oftmals keine entscheidende Vereinfachung der Spektren erzielt wird. Es ist daher eine Notwendigkeit, Kühlungs-

Abbildung 3.1 Schematische Darstellung der Temperaturregelung der Gießener 3 m-Absorptionszelle [11].

techniken zu finden, die es erlauben, Moleküle voneinander zu isolieren, um Kondensation zu vermeiden, oder gar Gase abseits des thermodynamischen Gleichgewichtes abzukühlen.

3.2 Die Stoßkühlungs- und Hüllstromtechnik

Im Falle der Stoßkühlungstechnik (*Collisional Cooling*) strömt die zu untersuchende Substanz über eine meist geheizte Düse in eine gekühlte Zelle, die ein auch bei sehr tiefen Temperaturen nicht kondensierbares Puffergas enthält (meist Helium, aber auch Stickstoff). Durch Stöße mit dem kalten Puffergas verlieren die zu untersuchenden Moleküle Energie und weisen schließlich nahezu die gleiche Temperatur wie das Kryogen-Gas auf. Während der Diffusion durch das kalte Puffergas können die Moleküle dann spektroskopisch charakterisiert werden, bevor sie die Zellwand erreichen und dort kondensieren. Erstmals wurde die Stoßkühlungstechnik von MESSER und DELUCIA [14] angewandt, die für das System CO-He Rotationstemperaturen von einigen Kelvin erreichten. Die Stoßkühlungsmethode ermöglicht das Erreichen sehr niedriger Temperaturen, da das Probengas sich nicht im thermodynamischen Gleichgewicht befindet und somit der Gleichgewichtsdampfdruck, der bei den meisten Substanzen unterhalb der Temperatur des flüssigen Stickstoffs sehr klein ist, keine Limitierung darstellt.

BARNES *et al.* [15] kombinierten ein FTIR-Spektrometer mit einer flüssig Stickstoff gekühlten Stoßkühlungszelle. Die erzielte Temperatur betrug 95 K, wohingegen die Rotationstemperatur der gemessenen CO_2 -Moleküle zu 110 K bestimmt wurde. Weitere Arbeiten auf diesem Gebiet wurden von BALL *et al.* [16] an C_2H_2 , N_2O und $CCIF_3$ im Gießener Molekülspektroskopischen

Abbildung 3.2 Schematische Darstellung des Collisional Cooling Prinzips.

Laboratorium durchgeführt. Zu Beginn der 90er Jahre wurde erstmals das Konzept der sogenannten Hüllstromtechnik (*Enclosive Flow Cooling*) vorgestellt [17]. Dabei strömt sowohl das zu untersuchende Probengas als auch das kalte Puffergas in die Meßzelle ein. Das Puffergas wird von der Zellwand in die Zelle eingebracht und strömt zunächst senkrecht zur Zellachse, der Gasfluß knickt dann in Richtung der Zellachse ab, wobei das Puffergas das über eine Düse eingeführte Probengas umschließt. Dadurch wird die Diffusion und die Kondensation des zu untersuchenden Gases an der Zellwand nahezu verhindert. Es ergibt sich schließlich ein axialsymmetrisches Flußprofil. Im Vergleich zur Stoßkühlungstechnik werden höhere Teilchenzahldichten in der kalten Zone erreicht und auch die Absorptionsweglänge ist- bedingt durch die für die Strömung benötigten Zelldimensionen- größer. Allerdings existieren bisher überwiegende Hüllstromzellen, die mit flüssigem Stickstoff gekühlt werden, da aufgrund der verwendeten Zellendimensionen eine Kühlung mit Helium sehr aufwendig und teuer ist. Die Charakterisierung der gemessenen Probengase erfolgte sowohl FTIR-spektroskopisch [18] als auch mittels Diodenlaserspektroskopie (TDL) [19]. Dabei wurden für verschiedene Probengase (CO₂, CH₄ und CHF₃) Rotationstemperaturen von rund 100 K erzielt.

3.3 Grundlagen der Molekularstrahltechnik

Die mannigfaltigen Aspekte der Spektroskopie von Molekularstrahlen spiegeln sich in einer Vielzahl von Review-Artikeln, wie beispielsweise den von ANDERSON *et al.* [20], LEVY [21–23] und QUACK [24], wider. Seit den Arbeiten von KANTROWITZ und GREY [25], KISTIAKOWSKY und SLICHTER [26] und BECKER und BIER [27] wurden theoretische und experimentelle Aspekte von Molekularstrahlen umfassend untersucht und ihre Anwendung für physikalisch-chemische Experimente, insbesondere im Rahmen der Molekülspektroskopie, studiert.

Die Moleküle eines Gases besitzen im thermodynamischen Gleichgewicht eine Energieverteilung, die durch die *Boltzmann*-Verteilung beschrieben werden kann. Spektroskopische Untersuchungen an solchen Gasen ergeben somit immer Informationen von molekularen Ensembles, die sich über die erreichbaren Energiezustände verteilen. Aus den in Kapitel 3.1 genannten Gründen ist es aber oftmals wünschenswert, Spektroskopie an zumindest nahezu isoenergetischen Molekülen zu betreiben. Mit Hilfe der Molekularstrahltechnik gelingt es, solche näherungsweise isoenergetischen Moleküle in hoher Teilchenzahldichte zu erzeugen, da durch die Molekularstrahlexpansion die ungeordnete thermische Bewegung der Teilchen teilweise in eine gerichtete Bewegungsform überführt wird. Prinzipiell werden drei Arten von Molekularstrahlen unterschieden:

- Effusiver Molekularstrahl (thermischer Strahl): Die mittlere freie Weglänge λ_0 der Moleküle in der Expansionsquelle ist wesentlich größer als der Durchmesser D der Expansionsöffnung (Düse). Die Austrittswahrscheinlichkeit der einzelnen Teilchen nimmt mit der Geschwindigkeitskomponente in Strahlrichtung zu, so daß die kinetische Energie der Teilchen im Strahl gegenüber denen in der Quelle erhöht ist. Die typischen Teilchengeschwindigkeiten im Strahl entsprechen ungefähr der Schallgeschwindigkeit. Die Abkühlung der Moleküle und die Teilchenzahldichte im Strahl sind vergleichsweise gering, eine sphärische räumliche Molekülverteilung im Strahl wird erzielt.
- Freier Überschallstrahl (supersonic free jet): Bei der freien Expansion ist die mittlere freie Weglänge λ_0 des zu expandierenden Gases wesentlich kleiner als der Düsendurchmesser D. Durch die adiabatische Expansion wird das Gas so lange abgekühlt, bis eine molekulare Bewegung ohne Stöße erreicht wird. Die Teilchen erreichen dabei sehr hohe Molekulargeschwindigkeiten. Eine starke Abkühlung wird erreicht. Die freie Expansion führt zu einem sehr divergenten Molekularstrahl, dessen Querschnitt eine ellipsoide Verteilung der Moleküle aufweist.
- Molekularstrahl (supersonic molecular beam): Ein Molekularstrahl im eigentlichen Sinne ist ein kollimierter freier Überschallstrahl, also ein freier Überschallstrahl, bei dem die divergenten Molekülstrahlanteile durch geeignete Aperturen ausgeblendet werden.

Im folgenden wird sowohl eine freie Expansion als auch eine freie kollimierte Expansion mit dem Begriff *Molekülstrahl* bzw. *Molekularstrahl* beschrieben.

In der Abbildung 3.3 sind die Expansionsmethoden schematisch dargestelt. Tund E beschreiben die Temperatur und die thermische Energie der Teilchen im Strahl. Die mit 0 indizierten Größen beschreiben die Eigenschaften des Gases im Reservoir . \bar{u} stellt die mittlere Strömungsgeschwindigkeit des Molekularstrahls dar. Die Erzeugung eines Molekülstrahls erfordert ein Reservoir, in dem sich ein zu untersuchendes Probengas unter einem relativ hohen Druck P_0 befindet, ein Expansionsvolumen, in dem ein relativ niedriger Druck P_1 herrscht, eine Düse mit einer kleinen Öffnung des Durchmesser D und Pumpen ausreichender Pumpleistung, um einen hinreichend hohen Druckgradienten aufrechtzuerhalten. Wird nun das zu untersuchende Probengas in das Expansionsvolumen expandiert, so erfolgt eine adiabatische Kühlung der internen Freiheitsgrade der Gasmoleküle. Dies bedeutet, daß die Energie der internen Freiheitsgrade zu einem gewissen Teil in Translationsenergie in die Expansionsrichtung, die im folgenden mit x bezeichnet wird, transferiert wird. Die Enthalpiebilanz dieses Expansionsprozesses lautet:

$$H_0 = H_1 + \frac{1}{2} m v_x^2, (3.3)$$

- H_0 : Enthalpie des Gases vor der Expansion,
- H_1 : Enthalpie des Gases nach der Expansion,
- $\frac{1}{2}mv_x^2$: kinetische Energie des Gases in Richtung der Expansion.

Abbildung 3.3 Vergleich eines effusiven thermischen Molekülstrahls mit einem freien und einem kollimierten Überschallstrahl. Sämtliche mit 0 indizierten Variablen sind Meßgrößen des Reservoirs. T_0 ist die Temperatur des Gases im Reservoir, E_0 stellt die mittlere kinetische Energie der Moleküle im Reservoir dar, λ_0 ist die mittlere freie Weglänge der Moleküle, wohingegen \bar{v}_0 für die mittlere Teilchengeschwindigkeit im Reservoir steht. D repräsentiert den Durchmesser der Expansionsöffnung. T steht für die Temperatur, E für die mittlere kinetische Energie und \bar{u} für die mittlere Flußgeschwindigkeit der Moleküle in der Expansionszone. M_A repräsentiert die Machzahl der Expansion. Nach [28]

Der Expansionsprozeß ist dabei nahezu isentropisch. Die Voraussetzung für einen merklichen Kühlungseffekt ist, daß die mittlere freie Weglänge der Moleküle im Reservoir λ_0 viel kleiner als der Lochdurchmesser der Düse D ist:

$$\lambda_0 \ll D. \tag{3.4}$$

In diesem Fall ist die Stoßhäufigkeit in der Nähe der Düsenöffnung hoch, wobei die Wahrscheinlichkeit für Moleküle das Reservoir zu verlassen mit der Größe der Geschwindigkeitskomponente ihrer Stoßpartner in Richtung der Expansion zunimmt. Dies führt zu einer Monochromatisierung der Geschwindigkeitsverteilung im Molekülstrahl. Auf molekularer Ebene wird ein zusätzlicher Kühlungseffekt durch Stoßprozesse, die gleichzeitig interne Energie in Translationsenergie überführen, erzielt. Ein weiterer Kühlungsmechanismus stellt die geometrische Kühlung der translatorischen Freiheitsgrade dar [21]. Im Verlauf einer Überschallexpansion versammeln sich Moleküle mit kleiner Geschwindigkeitskomponente senkrecht zur Ausbreitungsrichtung in der Nähe der Jet-Achse, wohingegen die Moleküle, die eine große Geschwindigkeitskomponente senkrecht zur Expansionsrichtung besitzen, sich weiter entfernt von dem Zentrum des Molekularstrahls anhäufen. Daher wird mit zunehemden Abstand x von der Düse die Verteilung der senkrechten Geschwindigkeitskomponenten bezogen auf ein Volumenelement verkleinert und diese Freiheitsgrade gekühlt. Durch Zweierstöße werden die verschiedenen Freiheitsgrade dann ins Gleichgewicht gebracht; somit weisen die senkrechten und parallelen Geschwindigkeitskomponenten die gleichen Temperaturen auf. Ab einem gewissen Punkt wird die Dichte im Jet jedoch so gering, so daß praktisch keine Stöße mehr stattfinden und die parallele Geschwindigkeitskomponente konstant bleibt und sich nur die hierzu senkrechten translatorischen Freiheitsgrade weiter abkühlen.

Entscheidend für die Abkühlung der verschiedenen Freiheistgrade sind die Stoß- bzw. Wirkungsquerschnitte σ_i . Da die Wirkungsquerschnitte der Vibration und Translation $\sigma_{vib-trans}$ sowie der Vibration und Rotation $\sigma_{vib-rot}$ wesentlich kleiner sind als die der Rotation und Translation $\sigma_{rot-trans}$, erfolgt die Depopulation der Schwingungsniveaus weit weniger effektiv als die der Rotationsniveaus. Da im allgemeinen die Wirkungsquerschnitte für die Energieübertragung von Rotationsenergie in Translationsenergie kleiner sind als die für elastische Stöße, kann die Rotationsenergie während der Expansion nicht vollständig abgegeben werden. Dies hat zur Konsequenz, daß nach der Expansion Rotation und Translation nicht mehr miteinander im thermischen Gleichgewicht stehen. Da aber im allgemeinen die Wirkungsquerschnitte der verschiedenen Rotationen $\sigma_{rot-rot}$ gößer sind als $\sigma_{rot-trans}$, kann man die Verteilung der Rotationszustände näherungsweise durch eine Boltzmann-Verteilung beschreiben und ihr eine Rotationstemperatur T_{rot} zuordnen (vgl. Kapitel 4.2.2.3).

Der Überschallstrahl bildet durch Stöße mit warmen Hintergrundgasmolekülen, das sind Probengasmoleküle, die sich durch Wandstöße aufheizen, eine Schockwelle aus. Diese konzentrische Schockwelle umgibt den axialsymmetrischen isentropen Molekülstrahl und schützt ihn vor dem Eindringen warmer Hintergrundgasmoleküle [29]. Die Schockwelle senkrecht zur Ausbreitungsrichtung x nennt man *Mach-Scheibe*. Die Lage der *Mach-Scheibe* läßt sich näherungsweise berechnen zu [30]:

$$x_m = 0.67 D \sqrt{\frac{P_0}{P_1}},\tag{3.5}$$

 x_M : Abstand der Mach-Scheibe von der Düsenöffnung,

- D : Durchmesser der Düsenöffnung,
- P_0 : Druck des Gases im Reservoir,
- P_1 : Druck im Expansionsvolumen.

Im Verlauf der Expansion nimmt sowohl die Temperatur als auch die Dichte des Gases mit zunehmendem Abstand x von der Düse ab. Ab einem gewissen Punkt geht die kontinuierliche Expansion (isentropisch) in eine molekulare Expansion (nicht-isentropisch) über. Ab diesem Punkt sind die axiale Geschwindigkeitsverteilung und die Machzahl M_A

$$M_A = \frac{\bar{u}}{v_s},\tag{3.6}$$

 \bar{u} : mittlere Strömungsgeschwindigkeit der Moleküle,

 v_s : lokale Schallgeschwindigkeit

eingefroren. Die lokale Schallgeschwindigkeit und die mittlere Strömungsgeschwindigkeit werden durch

$$v_s = \sqrt{\frac{C_p}{C_v} \frac{RT}{M}},\tag{3.7}$$

$$\bar{u} = \sqrt{\frac{5 R T_0}{M}},\tag{3.8}$$

- C_p : Molwärme bei konstantem Druck,
- C_v : Molwärme bei konstantem Volumen,
- R : allgemeine Gaskonstante, R=8.314510 JK⁻¹ [2],
- T : lokale Temperatur im Jet,
- T_0 : Reservoirtemperatur,
- M : Molmasse,

definiert [28]. Die sogenannte terminale Machzahl M_{AT} wird also bei $x \gg D$ erreicht, für ein einatomiges Gas kann sie näherungsweise berechnet werden zu [30]:

$$M_{AT} = 133 \ (P_0 \ D)^{0.4} \,, \tag{3.9}$$

wobei der Druck in der Einheit Atmosphäre und der Düsendurchmesser in der Einheit Zentimeter einzusetzen ist. Für die Abhängigkeit der Machzahl M_A vom Abstand x zur Düse findet sich die empirisch ermittelte Beziehung [31]:

$$M_A = M_A(0) - \frac{1}{2} \frac{\gamma + 1}{\left[(\gamma - 1) M_A(0)\right]},$$
(3.10)

 mit

$$M_A(0) = A \left(\frac{x}{D}\right)^{\gamma - 1},\tag{3.11}$$

 $\gamma = \frac{C_p}{C_v}$, das Verhältnis aus Molwärme bei konstantem Druck und Molwärme bei konstantem Volumen,

- $A = A(\gamma), A = 3.26$ für einatomige Gase,
- x : Abstand zur Düse, bei dem M_A bestimmt wird,

D : Durchmesser der Düse.

Prinzipiell werden drei charakteristische Zonen in einem Molekülstrahl unterschieden [29], die kurz stichwortartig beschrieben werden:

- Bereich der kontinuierlichen Strömung: Isentropischer Bereich der Expansion, hohe Stoßraten, Gleichgewicht der internen Freiheitsgrade, beschreibbar durch die Methoden der Strömungsdynamik.
- *Übergangsbereich der Strömung*: Verlust des Gleichgewichtes der Freiheitsgrade, Depopulation energetisch angeregter Zustände.
- Freie molekulare Strömung: Die Stoßrate der Moleküle geht gegen Null, daher kann nach Gleichung (3.3) $H_1 = 0$ nicht erreicht werden, die Population der Energiezustände ist eingefroren.

Die Abhängigkeit der Temperatur T des Molekularstrahles vom Abstand x zur Düse kann nach KANTROWITZ und GREY [25] unter Berücksichtigung der Gleichungen (3.10) und (3.11) beschrieben werden als

$$T = T_0 \times \left[1 + \frac{1}{2} (\gamma - 1) M_A^2 \right]^{-1}.$$
 (3.12)

wobei die einzelnen Größen die folgende Bedeutung besitzen:

- T : Temperatur des Molekularstrahles, T_0 : Temperatur des Reservoirgases, M_A : Machzahl des Molekularstrahles,
 - $\gamma = \frac{C_p}{C_v}.$

Kontinuierlich durchgeführte Expansionen werden wiederum unterschieden: Im Falle einer sogenannten Fenn-Typ-Expansion wird für einen konstant sehr niedrigen Druck P_1 in der Expansionskammer gesorgt, um Stöße mit warmen Hintergrundgasmolekülen zu verhindern und somit ein mögliches Aufheizen des Molekülstrahls zu vermeiden. Da sehr kleine Drücke in der Expansionskammer realisiert werden müssen, ist die Fenn-Typ-Expansion nur für gut pumpbare Gase mit mittlerem oder hohem Molekulargewicht geeignet. Damit wiederum ist die minimal erreichbare Jet-Temperatur durch Komplexbildung limitiert und nicht durch die Pumpleistung. Bei der sogenannten Campargue-Typ-Expansion liegt der Druck in dem Expansionsvolumen typischerweise zwischen 10^{-2} Torr und 1 Torr, also rund zwei bis drei Größenordnungen höher als bei der Fenn-Typ-Expansion. Die Machscheibe befindet sich somit wesentlich dichter an der Düsenöffnung und die sich ausbildende Schockwelle schützt die kalte isentropische Zone vor Stößen mit warmen Hintergrundgasmolekülen. Für die Campargue-Typ-Expansion sind geringere Pumpleistungen nötig und die Dimension der Expansionskammer kann kleiner gewählt werden.

Die Abschätzung von Stoßhäufigkeiten sowohl in der Expansionsdüse als auch innerhalb des Molekülstrahls selbst ist gerade in Hinblick auf die Untersuchung instabiler oder reaktiver Moleküle von besonderer Bedeutung. Zum einen kann ein Eindruck darüber gewonnen werden, wieviele Stöße solche Molekül erleiden müssen, bevor sie spektroskopisch erfaßt werden können; somit können unter Umständen Rückschlüsse auf die Mischungsverhältnisse mit inerten Gasen gezogen werden. Zum anderen kann im Falle einer- beispielsweise pyrolytischen- Herstellung der reaktiven Moleküle innerhalb der Düse Düsenform und -dimension abgeschätzt werden. Wie bereits erwähnt, nimmt mit zunehmendem Abstand x von der Düse sowohl die Temperatur als auch die Dichte des expandierenden Gases rapide ab. Daher muß ebenfalls die Stoßhäufigkeit stark abnehmen. Als Grundlage zur Berechnung solcher Stoßzahlen dient eine modifizierte dreidimensionale *Maxwellsche* Geschwindigkeitsverteilung f(v) [32]:

$$f(v) = \left(\frac{m}{2\pi kT}\right)^{3/2} exp\left(-\frac{m(v_x - \bar{u})^2}{2kT}\right) exp\left(-\frac{mv_y^2}{2kT}\right) exp\left(-\frac{mv_z^2}{2kT}\right)$$
(3.13)

m : Molekülmasse, k : Boltzmann-Konstante, k=1.380658 × 10⁻²³ J K⁻¹ [2], v_x, v_y, v_z : Geschwindigkeitskomponenten in x-, y- und z-Richtung, \bar{u} : mittlere Strömungsgeschwindigkeit.

Die Anzahl der Stöße eines Moleküls pro Zeiteinheit im isentropischen Kernbereich eines freien Jets Z_{ssfj} kann nach LUBMAN *et al.* [30] recht einfach aus der Stoßzahl Z_b eines kalten, in einem abgeschlossenen Volumen befindlichen Gases (*bulk gas*) beschrieben werden. Diese Stoßzahl ist gegeben durch:

$$Z_b = \sqrt{2} n_i \,\sigma_i \,\bar{v}_0. \tag{3.14}$$

 Z_b : Zahl der Molekülstöße eines Reservoir-Gases pro Zeiteinheit,

- n_i : Zahl der Moleküle pro Volumeneinheit,
- σ_i : mittlerer Stoßquerschnitt,
- \bar{v}_0 : mittlere Molekulargeschwindigkeit im Reservoir.

Unter Berücksichtigung von Gleichung (3.12) ergibt sich nach LUBMAN *et al.* für die Stoßzahl im Molekularstrahl

$$Z_{ssfj} = \sqrt{2} n_i \sigma_i \bar{v}_0 \left[1 + \frac{1}{2} (\gamma - 1) M_A^2 \right]^{-\frac{1}{2}}.$$
 (3.15)

Nach SMALLEY *et al.* [33] kann die Dichte n_i des Gases im Jet als Funktion der Gasdichte im Reservoir ausgedrückt werden als

$$n_i = n_{i0} \left[1 + \frac{1}{2} (\gamma - 1) M_A^2 \right]^{-1/(\gamma - 1)}, \qquad (3.16)$$

 n_i : Teilchenzahldichte im Molekularstrahl, n_{i0} : Teilchenzahldichte im Reservoir, M_A : Machzahl des Molekularstrahles, $\gamma = C_p/C_v$.

was zusammengenommen den folgenden Ausdruck für die Stoßhäufigkeit eines Moleküls im isentropen Kernbereich des freien Molekularstrahles liefert:

$$Z_{ssfj} = \sqrt{2} n_{i0} \sigma_i \bar{v}_0 \left[1 + \frac{1}{2} (\gamma - 1) M_A^2 \right]^{(-1/2) [(\gamma + 1)/(\gamma - 1)]}.$$
(3.17)

Interessant in diesem Zusammenhang ist der von LUBMAN *et al.* [30] durchgeführte Vergleich der Stoßzahlen eines Reservoir-Gases Z_b , eines effusiven Molekualrstrahles Z_{eb} , eines freien Molekularstrahles Z_{ssfj} und eines kollimierten Molekularstrahles Z_{ssmj} . Für die gleiche Dichte und lokale Temperatur ermittelten sie Stoßzahlen, die sich maximal um einen Faktor drei unterscheiden:

$$Z_{eb}: Z_{ssmj}: Z_{ssfj}: Z_b \simeq 1: (3/2): 3: 3.$$

Sie kommen daher zu dem Schluß, daß selbst in Molekularstrahlen Moleküle niemals völlig isoliert sind. Die Verweilzeit eines Gases in einer Lochdüse kann mit Hilfe der von BEIJERINCK *et al.* [34] gegeben Beziehung

$$\dot{N}_i = g\left(\gamma\right) n_{i0} \,\bar{v}_0 \,\pi \,\left(\frac{D}{2}\right)^2,\tag{3.18}$$

N_i	:	Zahl der strömenden Teilchen pro s^{-1} ,
$g\left(\gamma ight)$:	Konstante, für monoatomare Gase ist $g(\gamma) = 0.513$,
D	:	Durchmesser der Düse,
n_{i0}	:	Teilchenzahldichte im Reservoir,
\overline{v}_0	:	mittlere Teilchengeschwindigkeit im Reservoir,

näherungsweise aus den Bedingungen im Reservoir berechnet werden. Typische Verweilzeiten bei Experimenten mit Kapillardüsen, die auch als Pyrolysedüsen verwendet werden, liegen im Millisekunden-Bereich.

3.3.1 Einfluß der Verwendung verschiedener Düsentypen auf den Molekülstrahl

In den allermeisten Veröffentlichungen über Molekülstrahlarbeiten zu primär spektroskopischen Zwecken wird von der Verwendung von Lochdüsen ohne Skimmer oder Kollimator berichtet. Eine solche Expansion besteht aus einem hydrodynamischen Fluß im Unterschallbereich auf der Hochdruckseite der Düse. Innerhalb der Düse erreicht dieser Fluß Schallgeschwindigkeit, um dann während der Vakuumexpansion Überschallgeschwindigkeit zu erreichen. Ein paar Düsendurchmesser von der Düse entfernt erfolgt eine radiale Expansion des Molekülstrahles. Die Dichte $n_i(x, \theta)$ ist entlang der Molekülstrahlachse am größten, sie kann näherungsweise beschrieben werden als [35]:

$$n_i(x,\theta) = n_i(x,\theta=0)\cos^2(s\,\theta),\tag{3.19}$$

- x : Abstand zur Düse,
- $\theta~$: Winkel zur zentralen Achse des Molekülstrahles,
- s : Skalierungsfaktor.

Entlang der Molekülstrahlachse sinkt die Dichte $n_i(x, \theta = 0)$ quadratisch mit dem Abstand x:

$$n_i(x,0) = f(\gamma) \left(\frac{D}{x}\right)^2, \qquad (3.20)$$

- $f(\gamma)$: Skalierungsparameter, $\gamma = C_p/C_v$, C_p : Molwärme bei konstantem Druck,
- C_v : Molwärme bei konstantem Volumen,
- D : Düsendurchmesser,
- x : Abstand zur Düse.

Die Gleichungen (3.19) und (3.20) stellen lediglich Näherungen der tatsächlichen Situation dar, da der Expansionsfluß und die Dichte des Jets stark von der Düsenform abhängen. MURPHY und MILLER [36] unterscheiden prinzipiell drei Typen von Lochdüsen:

- Scharfkantige Lochdüse: Starke Krümmung der Strömungslinien beim Austritt aus der Düse, $M_A = 1$ wird ungefähr bei x = 0.25 D erreicht.
- *Konische Lochdüse*: Kurze, konisch geformte Öffnung in der Düse. Diese Expansion stellt den Idealfall dar, da der Expansionsfluß aus den Reservoir-Bedingungen durch thermodynamisch-isentropische Beziehungen berechnet werden kann.
- *Kapillardüse*: Innerhalb der Kapillare wird der Teilchenfluß mit Unterschallgeschwindigkeit durch den Druckgradienten beschleunigt. Diese Beschleunigung ist stärker als Viskositätseffekte der Kapillarwand. Der Fluß innerhalb der Kapillare ist adiabatisch und wird als *Fanno*-Fluß bezeichnet.

Im Falle einer Expansion durch eine Lochdüse ist sowohl die Abkühlung als auch die Komplexbildung abhängig von dem Düsendurchmesser D und dem Expansionsdruck P_0 . Nach LEVY *et al.* [21] gilt in guter Näherung für das Maß der Abkühlung c_k und das der Komplexbildung k_k :

$$c_k \propto P_0 D, \tag{3.21}$$

$$k_k \propto P_0^2 D. \tag{3.22}$$

Experimente, die auf eine effektive Abkühlung des zu untersuchenden Gases abzielen, werden daher mit mittelgroßen Düsendurchmessern bei mittleren Expansiondrucken durchgeführt, wohingegen Experimentatoren, die Komplexe in Molekularstrahlen untersuchen, mit hohen Expansiondrucken und kleinen Düsendurchmessern arbeiten werden. Die Geometrie der Düse muß jedoch nicht notwendigerweise zylindersymmetrisch um die Flußrichtungsachse des Molekülstrahls sein. Gerade in Hinblick auf spektroskopische Anwendungen ist die Verwendung von Schlitzdüsen, also Düsen, die eine nahezu zweidimensionale Expansion ermöglichen, interessant. Der eigentliche Vorteil einer Schlitzdüse liegt darin, daß die Geschwindigkeitskomponenten der Moleküle parallel zur Schlitzöffnung wesentlich kleiner sind als die radialen Geschwindigkeitskomponenten der Moleküle nach einer Expansion durch eine Lochdüse. Daher ist die resultierende Dopplerverbreiterung wesentlich geringer, was sich bei Experimenten mit Sub-Doppler-Auflösung in wesentlich kleineren Linienbreiten äußert. Die Teilchenzahldichte n_i einer Schlitzdüsenexpansion fällt im Gegensatz zur Lochdüsenexpansion allerdings nur mit dem reziproken Abstand xzur Düse ab, daher erfolgt der Kühlungsprozeß langsamer und erstreckt sich über eine längere Distanz. Zunächst würde man annehmen, daß durch die Verwendung von Schlitzdüsen wesentlich längere Absorptionsweglängen im Molekülstrahl realisiert werden können. K. VEEKEN und J. REUSS [37] zeigten jedoch, daß bei gleichem Massenfluß die Säulendichte entlang des Schlitzes einer Schlitzdüse lediglich 17 % größer ist als bei einer Lochdüse. Die verstärkte Absorption bei Schlitzdüsen-Expansionen ist somit lediglich Konsequenz der Reduzierung der Linienbreiten. Generell wird die Linienverbreiterung von Molekülstrahlexperimenten durch die Dopplerverbreiterung und die Druckverbreiterung bestimmt.

3.3.2 Die Verwendung von inerten Trägergasen zur Expansion

Gerade hinsichtlich der Molekülstrahl-Untersuchung großer Moleküle, die meist schwer verdampfbar sind und große interne Energien aufweisen, ist die Verwendung von leichten, inerten Trägergasen wichtig. Eine Expansion solcher Gasmischungen bezeichnet man als *seeded beams*, da das Probengas meist einem großen Überschuß eines Trägergases zugesetzt wird. Mit Hilfe eines Trägergases kann beispielsweise ein hinreichend hoher Staudruck im Reservoir erzeugt werden, zudem können die leichteren Trägergasmoleküle Probengasmoleküle mitreißen. Eine theoretische Beschreibung der Expansion von Gasmischungen findet sich bei DEPAUL *et al.* [38].

Im Verlauf solch einer Expansion nehmen die schwereren Probengasmoleküle die gleiche Translationsenergie wie die Trägergasmoleküle an, das heißt, daß die Probenmoleküle eine wesentlich höhere Machzahl erreichen als bei einer reinen Probengas-Expansion. Die schwereren Proben-Moleküle werden gemäß ihres Molekulargewichtes im Kern der Expansionszone fokussiert. Nach AMIRAV *et al.* [39] nimmt die Effektivität des Trägergases, innere Freiheitsgrade zu kühlen, in der Reihe

${\rm Xe}{>}{\rm Kr}{>}{\rm Ar}{>}{\rm Ne}{>}{\rm He}$

ab. Als Grund dafür führen sie den sogenannten velocity slip effect an. Dieser Effekt wird durch die unzureichende Beschleunigung schwerer Probemoleküle durch ein leichtes Trägergas erzeugt. Die Beschleunigung auf nahezu gleiche Translations-Geschwindigkeiten ist jedoch gerade die Voraussetzung für Stoßprozesse, bei denen niedrige Energiebeträge ausgetauscht werden, da nur auf diesem Wege die Übertragung innerer Energie und eine damit verbundene rovibronische Abkühlung erzielt werden kann. Es ist zu beachten, daß die oben angegebene Reihenfolge keine Allgemeingültigkeit besitzt. So kennt man beispielsweise Stoßprozesse von Helium mit Probengasen, die zur Bildung von Quasi-van-der-Waals-Komplexen führt, die eine sehr Effektive Übertragung von innerer Energie auf das Helium ermöglichen.

3.3.3 Die Entwicklung der Spektroskopie von Molekülstrahlen

Eine umfassende Darstellung der Entwicklung der Spektroskopie an Molekülstrahlen findet man in den Übersichtsartikeln von LEVY [23] und QUACK [24]. Die ersten spektroskopischen Experimente mit Molekülstrahlen beschränkten sich hauptsächlich auf die Anwendung der sehr sensitiven UV-VIS-Fluoreszenz-Techniken, der sogenannten laserinduzierten Fluoreszenz (LIF). Grundsätzlich werden zwei Arten von Fluoreszenz-Spektren unterschieden. Zum einen die gewöhnlichen, nicht-dispersiven Fluoreszenz-Spektren, bei denen die Wellenlänge des Anregungslasers durchgestimmt wird und das gesamte Fluoreszenzlicht gesammelt wird. Das Spektrum ergibt sich dann als das integral emittierte Licht der Moleküle als Funktion der Anregungswellenlänge, es stellt das Produkt aus Absorptionsspektrum und der Fluoreszenz-Quantenausbeute dar.

Zum anderen wird darüberhinaus die dispersive Fluoreszenz-Spektroskopie angewandt. Dabei wird der Anregungslaser bei einer bestimmten Absorptionswellenlänge des zu untersuchenden Moleküls fixiert und das emittierte Licht mit einem Monochromator dispersiv getrennt. Das auf diesem Wege erhaltene Spektrum stellt die Intensität der Emission als Funktion der Wellenlänge des emittierten Lichtes dar. Die Untersuchung von Molekülstrahlen mittels LIF ist eine weit verbreitete Technik, und es existiert eine Vielzahl von Arbeiten auf diesem Gebiet. McCLELLAND *et al.* [40] bestimmten beispielsweise die Rotations-Vibrations-Verteilung von molekularem Iod in einem Trägergasstrahl und konnten Vibrations-Relaxations-Stoßquerschnitte sehr genau bestimmen. Neben molekularem Iod untersuchten AMIRAV *et al.* [39] die Molekularstrahlen von großen Molekülen wie Anthracen und Tetracen mit der LIF-Methode. Insbesondere konnte sie den Einfluß verschiedener Trägergase auf die Kühlung interner Freiheitsgrade ermitteln und erklären. 3-Aminobenzonitril wurde ebenfalls mittels LIF charakterisiert [41].

Neben der Charakterisierung mittelgroßer und großer Moleküle mit LIF gelang auch der Nachweis kleiner, instabiler Spezies. HEAVEN *et al.* [42] konnten beispielsweise die instabilen CNund SH-Radikale, die mit einem ArF-Excimer-Laser produziert wurden, mittels eines Farbstofflasers detektieren. XU *et al.* [43] verwendeten eine Pyrolyse-Expansionsdüse zur Darstellung der instabilen Halogenmethylene HCBr und DCBr, die ebenfalls mittels LIF detektiert wurden. Ein Vorteil der LIF-Spektroskopie liegt vor allem darin, daß durch räumliches Filtern des Fluoreszenzlichtes die Dopplerverbreiterung der Absorptionslinien erheblich reduziert werden kann. Damit können hochaufgelöste Spektren gemessen werden, ohne daß der Molekülstrahl kollimiert werden muß, da nur die Moleküle im Jet detektiert werden, die eine genau passende Dopplerverschiebung aufweisen. Die Detektion von Fluoreszenzlicht ist zudem eine sehr empfindliche spektroskopische Methode. Sie ist für Moleküle mit hoher Fluoreszenz-Quantenausbeute geeignet.

Im Falle von nicht-fluoreszierenden Molekülen mußten und müssen andere spektroskopische Verfahren angewandt werden. Hierzu gehört die Multiphotonen-Ionisierung (MPI) und ihre resonante Variante (REMPI), bei der entweder die entstehenden Photoelektronen oder Molekülionen als Funktion der Anregungswellenlänge detektiert werden [44]. Zusätzliche Massenselektion der Molekülionen erbringen weitere Informationen über die absorbierende Molekülspezies. Ebenso kann die kohärente Anti-Stokes Raman Spektroskopie (CARS) zur Charakterisierung von Molekülstrahlen herangezogen werden. HUISKEN und PERTSCH [45] gelang es beispielsweise, mit CARS Methan in einem Molekülstrahl zu analysieren, HUBER-WÄLCHLI und NIBLER untersuchten die Rotationsrelaxation von N₂, O₂, H₂, D₂ und C₂H₄ [46].

Fortschritte bei der Untersuchung rovibronischer Molekülstrahlspektren im infraroten Spektralbereich (IR) beschränkten sich zunächst auf laserspektroskopische Absorptionsmessungen, da die Fluoreszenz im IR-Bereich schwierig zu untersuchen ist (geringere Fluoreszenzeffektivität, schwächere Quellen und weniger empfindliche Detektoren). CHU und OKA [47] demonstrierten wohl als erste, daß IR-Absorptionsspektren von Molekülstrahlen erhalten werden können. Sie un-

tersuchten NH₃- und ¹³CH₃F-Molekülstrahlen mittels N₂O- und CO₂-Laser. GOUGH et al. [48] sowie PINE und NILL [49] verwendeten hingegen Diodenlaser auf Bleisalz-Basis (PbS_xSe_{1-x}) und erhielten Sub-Doppler-Spektren der zweiatomigen Moleküle CO und NO. PINE und NILL konnten auf diese Weise die Λ -Aufspaltung von NO sehr präzise bestimmen. Größere Moleküle wie beispielsweise PF₅, ³⁴SF₆ und ¹⁸²WF₆ sowie PF₃, CF₃Cl, Cyclopropan, Vinylfluorid und Methylacetylen wurden Gegenstand der Arbeiten von MIZUGAI et al. [50] sowie DAVIES und MORTON-JONES [51], die ebenfalls durchstimmbare Diodenlaser mit phasenempfindlicher Detektion benutzten. Selbst größere Ringverbindungen, wie beispielsweise das biologisch relevante Uracil-Molekül, eine der fünf natürlichen Nucleotidbasen, konnten mittels Diodenlaserspektroskopie und Überschallexpansion charakterisiert werden. VIANT et al. [52] verwendeten eine gepulste Expansion durch eine 10 cm lange, planare Düse mit einer Spaltbreite von 0.1 mm, die auf rund 480 K erhitzt wurde, um einen ausreichenden Dampfdruck der Substanz zu gewährleisten. Verschiedene Gruppen beschränkten sich in ihren Untersuchungen auf recht einfache Moleküle, wie beispielsweise NH_3 , um im Detail Überschallexpansionen bezüglich räumlicher und energetischer Verteilungen der Moleküle zu charakterisieren. BALDACCHINI et al. [53] benutzten NH₃ und CF₂Cl₂, um den Kühlungseffekt einer bei relativ hohem Druck durchgeführten Expansion zu bestimmen. VEEKEN und REUSS [54] verwendeten einen Farbzentrenlaser, um die Rotationstemperatur und Teilchenzahldichte eines NH₃-Molekülstrahls zu bestimmen. Insbesondere konnten sie die in den rovibronischen Spektren auftretenden anomalen Linienprofilformen erklären.

Daneben existiert eine Vielzahl an Untersuchungen instabiler Moleküle mittels Laserspektroskopie, die entweder vor oder während der Expansion pyrolytisch, via Entladung oder photolytisch erzeugt werden. DUNLOP et al. [55] entwickelten basierend auf den Arbeiten von CHEN et al. [56] eine Pyrolysedüse, bei der der Vorläufer kurz vor der Expansion auf Pyrolysetemperatur gebracht wird, wobei die Düsenspitze unabhängig beheizt werden kann. Die LIF-Spektren der instabilen Moleküle Thioformaldehyd, Benzylradikal und Thioketylradikal konnten erhalten werden. CURL und Mitarbeiter [57] erzeugten hingegen NH₂-Radikale via Excimerlaser-Photolyse, die sie mit einem Farbzentrenlaser spektroskopisch messen konnten. Interessant erscheint auch die Entwicklung eines bolometrischen Detektors von GOUGH et al. [58], der sowohl gegenüber der kinetischen Energie als auch der internen Energie der Jet-Moleküle empfindlich ist. Der Molekülstrahl trifft dabei direkt auf das Bolometer, und es können spektroskopische Übergänge, die sowohl die kinetische als auch die innere Energie der Jet-Moleküle verändern, detektiert werden. Die Anwendung der Intracavity-Laser-Absorptions-Spektroskopie (ICLAS) auf Molekülstrahlen wurde erstmals von GOLDSTEIN und Mitarbeitern berichtet [59].

Insgesamt betrachtet existiert eine Vielzahl laserspektroskopischer Arbeiten an Molekülstrahlen, von denen nur ein kleiner Bruchteil in diesem Kapitel erwähnt wurde. Es fällt jedoch auf, daß die Zahl der mit FTIR-Spektrometern durchgeführten Absorptions-Messungen durchaus überschaubar ist, besonders wenn es um die Untersuchung der rovibronischen Spektren instabiler Substanzen geht. Die Gründe hierfür sind naheliegend und werden in Kapitel 4 näher erläutert.

3.4 Literaturverzeichnis

- [1] P. W. ATKINS, Physikalische Chemie, VCH, Weinheim, 1. Auflage (1987).
- [2] I. MILLS, T. CVITĂS, K. HOMANN, N. KALLAY, K. KUCHITSU, Quantities, Units and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford, (1993).
- [3] W. DEMTRÖDER, Laserspektroskopie Grundlagen und Techniken, Springer-

Verlag, Berlin (1993).

- [4] A. WATANABE AND H. L. WELSH, Pressure Induced Infrared Absorption of Gaseous Hydrogen and Deuterium at Low Temperatures. I. The Integrated Absorption Coefficients, Can. J. Phys. 43, 818–828 (1965).
- [5] A. R. W. MCKELLAR, N. RICH, AND V. SOOTS, An Optical Cell for Long Pathlengths at Low Temperatures, Appl. Opt. 9, 222–223 (1970).
- [6] D. HORN AND G. C. PIMENTLE, 2.5-km Low-Temperature Multiple-Reflection Cell, Appl. Opt. 10, 1892–1898 (1971).
- [7] K. C. KIM, E. GRIGGS, AND W. B. PEARSON, Kilometer-Path Low-Temperature Multiple-Reflection Cell for Laser Spectroscopy using Tunable Semiconducter Diodes, Appl. Opt. 17, 2511–2515 (1978).
- [8] R. A. BRIESMEISTER, G. W. READ, K. C. KIM, AND J. R. FITZPATRICK, Long Path Length Temperature-Controlled Absorption Cell for Spectroscopic Studies of Radioactive Compounds, Appl. Spectrosc. 38, 35–38 (1984).
- [9] R. LEDOUCEN, J. P. HOUDEAU, C. COUSIN, AND V. MENOUX, Variable Path-Length, Low-Temperature Cells for Absorption Spectroscopy, J. Phys. E 18, 199–200 (1985).
- [10] R. E. SHETTER, J. A. DAVIDSON, C. A. CANTRELL, AND J. G. CALVERT, Temperature Variable Long Path Cell for Absorption Measurements, *Rev. Sci. Instrum.* 58, 1427–1428 (1987).
- [11] R. SCHERMAUL, Hochauflösende Fourier-Transform-Infrarot-Spektroskopie an Knallsäure und Wasserstoffperoxid, Dissertation, Justus-Liebig-Universität, Gießen (1996).
- [12] R. SCHERMAUL, J. W. G. SEIBERT, G. CH. MELLAU, AND M. WINNEWISSER, Variable-Temperature-3-m Absorption Cell Developed for Spectroscopic Measurements of Gases, Appl. Opt. 35, 2884–2890 (1996).
- [13] M. KUNZMANN, Hochaufgelöste Infrarot-Spektroskopie an Oxetan Aufnahme und Auswertung der Ring-Puckering-Fundamentalbande, Diplomarbeit, Justus-Liebig-Universität, Gießen (1998).
- [14] J. K. MESSER AND F. C. DELUCIA, Measurement of Pressure-Broadening Parameters for the CO-He System at 4 K, Phys. Rev. Lett. 53, 2555-2558 (1984).
- [15] J. A. BARNES, T. E. GOUGH, AND M. STOER, Diffusive Trapping: An Alternative to Supersonic Jet Cooling for Spectroscopic Experiments?, *Rev. Sci. Instrum.* 60, 406–409 (1989).
- [16] C. D. BALL, F. C. DELUCIA, M. MENGEL, M. LOCK, B. P. WINNEWISSER, AND M. WINNEWISSER, Diagnostic Tests of a Collisional Cooling Cell in a FTIR Spectrometer, 52nd Ohio State University International Symposium on Molecular Spectroscopy, Columbus/Ohio, 16-20 Juni 1997. Vortrag FC12.
- [17] S. BAUERECKER, F. TAUCHER, C. WEITKAMP, W. MICHAELIS, AND H. K. CAMEN-GA, Enclosive Flow Cooling: Concept of a New Method for Simplifying Complex Molecular Spectra, in *Monitoring of Gaseous Pollutants by Tunable Diode Lasers*, R. Grisar, H. Böttner, M. Tacke, and G. Restelli (Editors), Kluwer Academic Publishers, London, 291–300 (1992).
- [18] S. BAUERECKER, F. TAUCHER, C. WEITKAMP, W. MICHAELIS, AND H. K. CAMENGA, Spectral Simplification by Enclosive Flow Cooling I - FT-IR Spectroscopy of Supercooled Gases at 100 K, J. Mol. Struc. 348, 237-242 (1995).
- [19] F. TAUCHER, C. WEITKAMP, W. MICHAELIS, H. K. CAMENGA, AND S. BAUERECKER,

Spectral Simplification by Enclosive Flow Cooling II - Diode Laser Spectroscopy of Complex Molecules, J. Mol. Struc. 348, 243–248 (1995).

- [20] J. B. ANDERSON, R. P. ANDRES, AND J. B. FENN, Supersonic Nozzle Beams, Adv. Chem. Phys. 10, 275–317 (1966).
- [21] D. H. LEVY, L. WHARTON, AND R. E. SMALLEY, Laser Spectroscopy in Supersonic Jets, in *Chemical and Biochemical Applications of Lasers* 2, C. B. Moore (Editor),1–41 (1977).
- [22] D. H. LEVY, Laser Spectroscopy of Cold Gas-Phase Molecules, Ann. Rev. Phys. Chem. 31, 197–225 (1980).
- [23] D. H. LEVY, The Spectroscopy of Very Cold Gases, Science 214, 263-269 (1981).
- [24] M. QUACK, Spectra and Dynamics of Coupled Vibrations in Polyatomic Molecules, Annu. Rev. Phys. Chem. 41, 839–874 (1990).
- [25] A. KANTROWITZ AND J. GREY, A High Intensity Source for the Molecular Beam. Part I. Theoretical, Rev. Sci. Instrum. 22, 328–332 (1951).
- [26] G. B. KISTIAKOWSKY AND W. P. SLICHTER, A High Intensity Source for the Molecular Beam. Part II. Experimental, Rev. Sci. Instrum. 22, 333-337 (1951).
- [27] E. W. BECKER AND K. BIER, Die Erzeugung eines intensiven, teilweise monochromatisierten Wasserstoff-Molekularstrahles mit einer Laval-Düse, Z. Naturforsch. 9a, 975–986 (1954).
- [28] H. STAFAST UND J. R. HUBER, Kalte Moleküle und schmalbandige Laser, Chimia 38, 1–8 (1984).
- [29] J. M. HAYES, Analytical Spectroscopy in Supersonic Expansions, Chem. Rev. 87, 745-760 (1987).
- [30] D. M. LUBMAN, CH. T. RETTNER, AND R. N. ZARE, How Isolated are Molecules in a Molecular Beam?, J. Phys. Chem. 86, 1129–1135 (1982).
- [31] A. AMREIN, M. QUACK, AND U. SCHMITT, High-Resolution Interferometric Fourier Transform Infrared Absorption Spectroscopy in Supersonic Free Jet Expansions: Carbon Monoxide, Nitric Oxide, Methane, Ethyne, Propyne, and Trifluoromethane, J. Phys. Chem. 92, 5455-5466 (1988).
- [32] B. R. CAMERON AND P. W. HARLAND, Flow Dynamics of Supersonic Molecular Beams and the Measurement of Rotational-Translational Coupling Parameters for N₂ and H₂, J. Chem. Soc. Faraday Trans. 87(8), 1069–1073 (1991).
- [33] R. E. SMALLEY, L. WHARTON, D. H. LEVY, Molecular Optical Spectroscopy with Supersonic Beams and Jets, Acc. Chem. Res. 10, 139 (1977).
- [34] H. C. W. BEIJERINCK, R. J. F. VAN GERWEN, E. R. T. KERSTEL, J. F. M. MARTENS, E. J. W. VAN VLIEMBERGEN, M. R. TH. SMITS, AND G. H. KAASHOEK, Campargue-Type Supersonic Beam Sources: Absolute Intensities, Skimmer Transmission and Scaling Laws for Mono-Atomic Gases He, Ne and Ar, Chem. Phys. 96, 153– 173 (1985).
- [35] P. C. ENGELKING, Spectroscopy of Jet-Cooled Ions and Radiacals, Chem. Rev. 91, 399-414 (1991).
- [36] H. R. MURPHY AND D. R. MILLER, Effects of Nozzle Geometry on Kinetics in Free-Jet Expansions, J. Phys. Chem. 88, 4474–4478 (1984).
- [37] K. VEEKEN AND J. REUSS, Infrared Line Narrowing and Cluster Absorption in a Planar Jet, Appl. Phys. B 38, 117–124 (1985).
- [38] S. DEPAUL, D. PULLMAN, AND B. FRIEDRICH, A Pocket Model of Seeded Supersonic Beams, J. Phys. Chem. 97, 2167–2171 (1993).

- [39] A. AMIRAV, U. EVEN, AND J. JORTNER, Cooling of Large and Heavy Molecules in Seeded Supersonic Beams, Chem. Phys. 51, 31–42 (1980).
- [40] G. M. MCCLELLAND, K. L. SAENGER, J. J. VALENTINI, AND D. R. HERSCHBACH, Vibrational an Rotational Relaxation of Iodine in Seeded Supersonic Beams, J. Phys. Chem. 83, 947–959 (1979).
- [41] R. HOWELL, E. M. JOSLIN, A. G. TAYLOR, AND D. PHILLIPS, Laser-Induced Fluorescence of Jet-cooled 3-Aminobenzonitrile: The Onset of Intramolecular Vibrational Redistribution, J. Chem. Soc. Faraday Trans. 88, 1605–1609 (1992).
- [42] M. HEAVEN, T. A. MILLER, V. E. BONDYBEY, Production and Characterization of Temperature-Controlled Free Radicals in a Free Jet Expansion, Chem. Phys. Lett. 84, 1-5 (1981).
- [43] S. XU, K. A. BERAN, AND M. D. HARMONY, Production of Halomethylenes in Free-Jet Expansion from a Hot Nozzle: Identification and Characterisation of HCBr and DCBr by Laser-Induced Fluorescence Spectroscopy, J. Phys. Chem. 98, 2742-2743 (1994).
- [44] D. ZAKHEIM AND P. JOHNSON, Two- and Three-Photon Resonances in the Four-Photon Ionization Spectrum of Nitric Oxide at Low Temperature, J. Chem. Phys. 68, 3644–3653 (1978).
- [45] F. HUISKEN AND T. PERTSCH Coherent Anti-Stokes Raman Spectroscopy (CARS) of the ν_3 Band of Methane in Supersonic Molecular Beams, Appl. Phys. B 41, 173–178 (1986).
- [46] P. HUBER-WÄLCHLI AND J. W. NIBLER, CARS Spectroscopy of Molecules in Supersonic Free Jets, J. Chem. Phys. 76, 273–284 (1982).
- [47] F. Y. CHU AND T. OKA, Laser Absorption Spectroscopy Using a Molecular Beam, J. Appl. Phys. 46, 1204–1205 (1975).
- [48] T. E. GOUGH, R. E. MILLER, AND G. SCOLES, Infrared Laser Spectroscopy of Molecular Beams, Appl. Phys. Lett. 30, 338-340 (1977).
- [49] A. S. PINE AND K. W. NILL, Molecular-Beam-Tunable-Diode-Laser Sub-Doppler Spectroscopy of Λ-Doubling in Nitric Oxide, J. Mol. Spectrosc. 74, 43-51 (1979).
- [50] Y. MIZUGAI, H. KUZE, H. JONES, AND M. TAKAMI, Diode-Laser Spectroscopy of Supersonic Free Jets, Appl. Phys. B 32, 43-47 (1983).
- [51] P. B. DAVIES AND A. J. MORTON-JONES, Evaluation of Jet-Cooled Laser Spectroscopy for Simplifying Infrared Spectra, Appl. Phys. B 42, 35–40 (1987).
- [52] M. R. VIANT, R. S. FELLERS, R. P. MCLAUGHLIN, AND R. J. SAYKALLY, Infrared Laser Spectroscopy of Uracil in a Pulsed Slit Jet, J. Chem. Phys. 103, 9503-9505 (1995).
- [53] G. BALDACCHINI, S. MARCHETTI, AND V. MONTELACITI, Diagnostics of a Supersonic Jet in a High-Pressure Background by Infrared Absorption, Chem. Phys. Lett. 91, 423–426 (1982).
- [54] K. VEEKEN AND J. REUSS, Determination of the Rotational Temperature and the Molecular Density in an Expanding NH₃ Jet by Infrared Absorption, Appl. Phys. B 34, 149–159 (1984).
- [55] J. R. DUNLOP, J. KAROLCZAK, AND D. J. CLOUTHIER, Pyrolysis Jet Spectroscopy, Chem. Phys. Lett 151, 362–368 (1988).
- [56] P. CHEN, S. D. COLSON, AND W. A. BERSON, Flash Pyrolytic Production of Rotationally Cold Free Radicals in a Supersonic Jet. $3p^2A'_2 \leftarrow X^2A''_2$ Origin Band of CH₃, J. Phys. Chem. 90, 2319–2321 (1986).

- [57] R. F. CURL, K. K. MURRAY, M. PETRI, M. L. RICHNOW, AND F. K. TITTEL, Infrared Spectroscopy of Jet-Cooled Transient Molecules, Chem. Phys. Lett. 161, 98–102 (1989).
- [58] T. E. GOUGH, R. E. MILLER, AND G. SCOLES, Photo-Induced Vibrational Predissociation of the van der Waals Molecule (N₂O)₂, J. Chem. Phys. 69, 1588–1590 (1978).
- [59] N. GOLDSTEIN, T. L. BRACK, AND G. H. ATKINSON, Quantitative Absorption Spectroscopy of NO₂ in a Supersonically Cooled Jet by Intracavity Laser Techniques, Chem. Phys. Lett. 116, 223–230 (1985).

Kapitel 5

Hochauflösende Rotations-Vibrations-Spektroskopie am Cyanofulminat

Als es LICHAU im Rahmen seiner Disseration im Molekülspektroskopischen Laboratorium der Justus-Liebig Universität Gießen gelang [1], das a-Typ Rotationsspektrum und das rotationsaufgelöste Vibrationsspektrum der niedrigstliegenden CCN-Knickschwingung des Cyanofulminat-Moleküls (NCCNO) zu messen, erschien es erfolgversprechend, die bis dato noch nicht analysierten, sehr komplexen Streckschwingungs-Bandensysteme im mittleren Infrarot zwischen 1 400 cm⁻¹ und 2 500 cm⁻¹ zu messen und zu analysieren. Insbesondere die Erweiterung der Gießener Molekularstrahlanlage um eine leistungsfähige Mehrfachreflexionsanordnung (vgl. Kapitel 4) erschien erfolgversprechende FTIR-Experimente an Molekularstrahlen von Cyanofulminat zu ermöglichen. Diese Messungen sollten zumindest Aufschluß über die Lage der Fundamentalbanden, möglicherweise auch über die einiger *hot bands*, der in diesem Bereich liegenden Streckschwingungen liefern und somit einen Startpunkt zur Analyse der komplexen Raumtemperatur-Spektren bilden.

In den folgenden Kapiteln werden zunächst einige Aspekte der Theorie der Molekülspektren eines linearen Moleküls beschrieben sowie eine Beschreibung der bisherigen spektroskopischen und theoretischen Arbeiten am Cyanofulminat (NCCNO) gegeben. Anschließend wird die Präparation des Pyrolysevorläufers 3,4-Dicyanofuroxan (NCCNO)₂ und die Aufzeichnung der Molekularstrahl- und Absorptionszellenspektren erläutert, bevor abschließend eine qualitative und quantitative Interpretation der Spektren folgt.

5.1 Theorie der Molekülspektren eines linearen Moleküls

In diesem Kapitel wird in Grundzügen die theoretische Beschreibung der Molekülspektren eines linearen Moleküls aufgezeigt werden. Die Ableitung des Rotations-Vibrations-Hamilton-Operators linearer Moleküle orientiert sich im wesentlichen an den Darstellungen von JENSEN [2], GORDY und COOK [3] sowie PAPOUŠEK und ALIEV [4]. Im Anschluß an dieses Kapitel folgt eine kurze Übersicht über die gängigen quantenchemischen *ab initio* -Rechenmethoden, auf die in folgenden Kapiteln Bezug genommen wird. **92** HOCHAUFLOSENDE ROTATIONS-VIBRATIONS-SPEKTROSKOPIE AM CYANOFULMINAT

5.1.1 Der Hamilton-Operator eines linearen Moleküls

Nachdem durch Parallelachsentransformation das raumfeste Koordinatensystem in den Ursprung eines mitrotierenden molekülfesten Koordinatensystems überführt worden ist und dieses so gewählt wurde, daß es für den Trägheitstensor ein Hauptachsensystem bildet, kann die klassische kinetische Gesamtenergie eines N-atomigen Moleküls ganz allgemein formuliert werden zu

$$2T = \sum_{n=1}^{N} m_n (\boldsymbol{\omega} \times \mathbf{r_n}) (\boldsymbol{\omega} \times \mathbf{r_n}) + \sum_{n=1}^{N} m_n \dot{\mathbf{r_n}} + 2\boldsymbol{\omega} \sum_{n=1}^{N} m_n \mathbf{r_n} \times \dot{\mathbf{r_n}} .$$
(5.1)

 m_n : Masse des *n*-ten Kernes (Massepunkt),

- $n \quad : \quad \mbox{Laufzahl der Atomkerne bzw. Massepunkte,}$
- $\boldsymbol{\omega}$: Vektor der Winkelgeschwindigkeit,
- $\mathbf{r_n}$: momentaner Ortsvektor des *n*-ten Kernes im molekülfesten Koordinatensystem,
- $\dot{\mathbf{r}}_{\mathbf{n}}$: Schwingungsgeschwindigkeit des *n*-ten Kernes .

Der erste Term dieser Gleichung repräsentiert die kinetische Energie der Rotationsbewegung. Dieser Term kann nach der Einsteinschen Summationskonvention ausgedrückt werden als

$$T_{Rot} = \frac{1}{2} \sum_{\alpha,\beta} I_{\alpha\beta} \omega_{\alpha} \omega_{\beta} , \qquad (5.2)$$

oder in Matrixschreibweise:

$$T_{Rot} = \frac{1}{2} \boldsymbol{\omega}^t \mathbf{I} \boldsymbol{\omega} \tag{5.3}$$

 $I_{\alpha\beta}$ sind die momentanen Trägheits- und Deviationsmomente. Da sich, wie anhand der Abbildung 5.1 zu erkennen ist, die Vektoren $\mathbf{r}_{\mathbf{n}}$ und $\mathbf{d}_{\mathbf{n}}$ nur durch den konstanten Vektor $\mathbf{a}_{\mathbf{n}}$ unterscheiden, gilt unter Berücksichtigung von $\dot{\mathbf{r}}_{\mathbf{n}} = \dot{\mathbf{d}}_{\mathbf{n}}$:

$$2T = \frac{1}{2}\boldsymbol{\omega}^{t}\mathbf{I}\boldsymbol{\omega} + \sum_{n=1}^{N} m_{n}\dot{\mathbf{d}}_{n}\dot{\mathbf{d}}_{n} + 2\boldsymbol{\omega}\sum_{n=1}^{N} m_{n}\mathbf{d}_{n}\times\dot{\mathbf{d}}_{n} .$$
(5.4)

 $\mathbf{d_n}$: momentane Schwingungsauslenkung des n-ten Kernes aus der Gleichgewichtslage .

Der zweite Term in der obigen Gleichung stellt die kinetische Energie der Schwingung dar, wohingegen der dritte Term den *Coriolis*-Wechselwirkungsterm, also die Wechselwirkung von Rotation und Schwingung, repräsentiert. Transformiert man nun im folgenden Schritt sämtliche Energiebeiträge in geeignete Normalkoordinaten, so gilt für die klassische kinetische Energie der Rotation und Schwingung:

$$2T = \sum_{\alpha,\beta} I_{\alpha\beta}\omega_{\alpha}\omega_{\beta} + \sum_{k} \dot{Q}_{k}^{2} + 2\boldsymbol{\omega} \sum_{k,l} \zeta_{kl}^{\alpha} Q_{k} \dot{Q}_{l}.$$
(5.5)

 Q_k stellt die Normalkoordinate der k-ten Schwingung und Q_l die Normalkoordinate der l-ten Schwingung dar. Die Bezeichnungen Normalschwingung und Normalkoordinate kann man wie

Abbildung 5.1 Das raum- und das molekülfeste Koordinatensystem. SP steht für den Schwerpunkt des Moleküls, m_n für den *n*-ten Massepunkt. Nach [2].

folgt verstehen: betrachtet man ein schwingungsfähiges Vielteilchensystem (N Massepunkte) von harmonischen Oszillatoren, so existiert ein Satz von 3N - 6 bzw. 3N - 5 Schwingungen, die völlig unabhängig voneinander sind, zwischen denen demzufolge kein Energiefluß stattfindet. Diese Klasse von Schwingungen werden als Normalschwingungen, die dazugehörigen Koordinaten als Normalkoordinaten bezeichnet.

Um nun im folgenden die klassische kinetische Energie eines Moleküls in einen Hamiltonoperator umzuformen, ist es notwendig, einen Ausdruck der kinetischen Energie als Funktion des linearen Impulses und des Drehimpulses zu finden. In der klassischen Mechanik wird der Drehimpuls L eines rotierenden System durch das Vektorprodukt

$$\mathbf{L} = \mathbf{r} \times \mathbf{P} \tag{5.6}$$

beschrieben.
r repräsentiert den Abstandsvektor zur Drehachse, ${\bf P}$
den linearen Impuls. Der Vektor r
 kann in seine Komponenten

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \tag{5.7}$$

zerlegt werden, wobe
ix,y,zmolekülfeste kartesische Koordinaten darstellen.
i, j, k sind Einheitsvektoren, die die momentane Richtung des molekülfesten Koordinaten
systems festlegen. Der lineare Impuls **P** kann ebenfalls in seine Komponenten zerlegt werden

$$\mathbf{P} = P_x \mathbf{i} + P_y \mathbf{j} + P_z \mathbf{k} \,, \tag{5.8}$$

und analog gilt:

$$\mathbf{L} = L_x \mathbf{i} + L_y \mathbf{j} + L_z \mathbf{k} . \tag{5.9}$$

Benutzt man nun die Definition des Vektorprodukts als Determinante

i.

$$\mathbf{L} = \mathbf{r} \times \mathbf{P} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ P_x & P_y & P_z \end{vmatrix} = (yP_z - yP_y)\mathbf{i} + (zP_x - xP_z)\mathbf{j} + (xP_y - yP_x)\mathbf{k}, \qquad (5.10)$$

so ergeben sich durch Vergleich mit Gleichung (5.9) die einzelnen Komponenten des Drehimpulses zu:

$$L_x = yP_z - zP_y ,$$

$$L_y = zP_x - xP_z ,$$

$$L_z = xP_y - yP_x .$$
(5.11)

Die verschiedenen Komponenten des Drehimpulses werden in korrespondierende Drehimpulsoperatoren durch Berücksichtigung des linearen Impuls
operators \hat{P}_x

$$\hat{P}_x = \frac{\hbar}{i} \frac{\partial}{\partial x} \tag{5.12}$$

überführt:

$$\hat{L}_{x} = \left(\frac{\hbar}{i}\right) \left\{ y\left(\frac{\partial}{\partial z}\right) - z\left(\frac{\partial}{\partial y}\right) \right\} ,$$

$$\hat{L}_{y} = \left(\frac{\hbar}{i}\right) \left\{ z\left(\frac{\partial}{\partial x}\right) - x\left(\frac{\partial}{\partial z}\right) \right\} ,$$

$$\hat{L}_{z} = \left(\frac{\hbar}{i}\right) \left\{ x\left(\frac{\partial}{\partial y}\right) - y\left(\frac{\partial}{\partial x}\right) \right\} .$$
(5.13)

$$\hbar = h/2 \pi = 1.05457266(63) \times 10^{-34} \text{ Js} [5],$$

x, y, z : kartesische Koordinaten im molekülfesten Koordinatensystem.

Die Drehimpulsoperatoren besitzen zwei wichtige Eigenschaften: Die Komponenten des Drehimpulsoperators kommutieren nicht untereinander:

$$\left[\hat{L}_j, \hat{L}_k\right] = i\hbar \hat{L}_l , \qquad (5.14)$$

$$j,k,l = x,y,z$$

dies bedeutet, daß nur eine Komponente des Drehimpulses exakt bestimmbar ist, die anderen Komponenten bleiben unbestimmt. Das Quadrat des Gesamtdrehimpulsoperators \hat{L} kommutiert mit allen Drehimpulsoperatorkomponenten j

$$\left[\hat{L}^2, \hat{L}_j\right] = 0.$$
 (5.15)

Der Betrag des Gesamtdrehimpulses kann somit zusammen mit einer Komponente j exakt bestimmt werden; im allgemeinen wird die z-Komponente gewählt. Für die klassische kinetische Energie eines linearen Moleküls kann durch weiteres Umformen und Vereinfachen die folgende Beziehung abgeleitet werden:

$$2T = \sum_{k=1}^{3N-5} P_k^2 + \mu \left[(L_x - P_x)^2 + (L_y - P_y)^2 \right] , \qquad (5.16)$$

 P_k : linearer Impuls der Schwingungsbewegung,

 μ = $(I)^{-1}$, inverser Trägheitstensor,

 P_x, P_y : durch Schwingungen entlang den Achsen x und y induzierter Drehimpuls,

 L_x, L_y : Rotationsdrehimpulse entlang der Achsen x und y.

Aus dieser Beziehung leitete WATSON [6] den Hamilton-Operator der Kernbewegung ab:

$$\hat{H}_{\text{Rot-Vib}} = \frac{\mu}{2} \left[\left(\hat{L}_x - \hat{P}_x \right)^2 + \left(\hat{L}_y - \hat{P}_y \right)^2 \right] + \frac{1}{2} \sum_{k=1}^{3N-5} \hat{P}_k^2 + V(Q) .$$
(5.17)

V(Q) stellt die in Normalkoordinaten formulierte Potentialfunktion dar, sie kann in einer Taylor-Reihe in den dimensionslosen Normalkoordinaten q_k ausgedrückt werden:

$$V(q) = \frac{1}{2} \sum_{k=1}^{3N-5} \omega_k q_k^2 + \frac{1}{6} \sum_{k=1}^{3N-5} \sum_{l=1}^{3N-5} \sum_{m=1}^{3N-5} \phi_{klm} q_k q_l q_m + \dots$$
 (5.18)

 ϕ_{klm} ist die sogenannte kubisch-anharmonische Potentialkonstante, sie ist definiert als

$$\phi_{klm} = \left(\frac{\partial^3 V(q)}{\partial q_k \partial q_l \partial q_m}\right)_0 . \tag{5.19}$$

 ω_k ist die harmonische Schwingungswellenzahl der k-ten Schwingung. Die dimensionslose Normalkoordinate q_k erhält man durch

$$q_k = \sqrt{\frac{2\pi c \,\omega_k}{\hbar}} \,Q_k,\tag{5.20}$$

 q_k : dimensionslose Normalkoordinate der k-ten Schwingung,

 Q_k : Normalkoordinate der k-ten Schwingung,

c : Vakuum-Lichtgeschwindigkeit, $c = 299792458 \text{ ms}^{-1}[5]$,

aus der Normalkoordinate Q_k [2].

5.1.2 Die Entwicklung des Hamiltonoperators

Entwickelt man die Matrixelemente $\mu_{\alpha\beta}$ und die potentielle Energie V(Q) in einer Taylor-Reihe um die Gleichgewichtskonfiguration, so kann der Rotations-Vibrations-Hamiltonoperator $\hat{H}_{\text{Rot-Vib}}$ als Summe unendlich vieler Teiloperatoren dargestellt werden. Die verschiedenen Terme werden in bestimmte Teiloperatoren $\hat{h}_{n,m}$ zusammengefaßt, wobei n für die Potenz des Vibrationsoperators und m für die Ordnung des Rotationsoperators steht. Es gilt somit:

$$\hat{H}_{Rot-Vib} = \sum_{m=0}^{2} \sum_{n=0}^{\infty} \hat{h}_{n,m} , \qquad (5.21)$$

Der gesamte Rotations-Schwingungs-Hamiltonoperator setzt sich aus Schwingungs-, *Coriolis*und Rotationstermen zusammen:

$$\hat{H}_{Rot-Vib} = \hat{h}_{2,0} + \hat{h}_{3,0} + \hat{h}_{4,0} + \dots$$
 Vibrationsterme
+ $\hat{h}_{2,1} + \hat{h}_{3,1} + \hat{h}_{4,1} + \dots$ Coriolisterme
+ $\hat{h}_{0,2} + \hat{h}_{1,2} + \hat{h}_{2,2} + \dots$ Rotationsterme (5.22)

Operatoren gleicher Größenordnung werden nun wiederum zu einem Teiloperator H_L zusammengefaßt. Die Größenordnung L eines Operators kann nach zwei unterschiedlichen Konventionen, den Konventionen von GOLDSMITH *et al.* [7]

$$L = n + m - 2, (5.23)$$

Ordnung L	Konvention nach OKA [8]	Konvention nach GOLDSMITH et al. [7]
0	$\hat{H}_0 = \hat{h}_{2,0}$	$\hat{H}_0 = \hat{h}_{2,0} + \hat{h}_{0,2}$
1	$\hat{H}_1 = \hat{h}_{3,0}$	$\hat{H}_1 = \hat{h}_{3,0} + \hat{h}_{2,1} + \hat{h}_{1,2}$
2	$\hat{H}_2 = \hat{h}_{4,0} + \hat{h}_{2,1} + \hat{h}_{0,2}$	$\hat{H}_2 = \hat{h}_{4,0} + \hat{h}_{3,1} + \hat{h}_{+2,2}$
÷		1
L	$\hat{H}_L = \hat{h}_{L+2,0} + \hat{h}_{L,1} + \hat{h}_{L-2,2}$	$\hat{H}_L = \hat{h}_{L+2,-0} + \hat{h}_{L+1,1} + \hat{h}_{L,2}$

Tabelle 5.1 Die Entwicklung des Rotations-Vibrations-Hamilton-Operators nach der
Größenordnung L.

und Oka [8]

$$L = n + 2m - 2, \tag{5.24}$$

bestimmt werden. In der Tabelle 5.1 sind die verschiedenen Teiloperatoren \hat{H}_L aufgeführt. Der gesamte Rotations-Vibrations-Hamiltonoperator kann somit formuliert werden als:

$$\hat{H}_{Rot-Vib} = \hat{H}_0 + \hat{H}_1 + \hat{H}_2 + \ldots = \sum_{L=0}^{\infty} \hat{H}_L .$$
(5.25)

Der Hamiltonoperator des starren Rotators und harmonischen Oszillators ergibt sich nach GOLDSMITH als Hamiltonoperator nullter Ordnung:

$$\hat{H}_{0} = \hat{h}_{2,0} + \hat{h}_{0,2} = \hat{H}_{Vib}^{0} + \hat{H}_{Rot}^{0}$$
(5.26)

$$= \frac{1}{2}hc\sum_{k=1}^{3N-6}\omega_k\left(\hat{p}_k^2 + \hat{q}_k^2\right) + \frac{1}{2}\left(\frac{\hat{L}_a^2}{I_a} + \frac{\hat{L}_b^2}{I_b} + \frac{\hat{L}_c^2}{I_c}\right) .$$
(5.27)

 I_a , I_b und I_c stellen die Hauptträgheitsmomente des Moleküls dar. Es existieren insgesamt sechs Möglichkeiten, die mitrotierenden Koordinatenachsen x, y und z mit den Hauptträgheitsachsen a, b und c zu bezeichnen. Diese sind in der Tabelle 5.2 aufgeführt. Der Hamiltonoperator eines harmonischen Oszillators lautet also:

$$\hat{H}_{Vib}^{0} = \frac{1}{2}hc\sum_{k=1}^{3N-6}\omega_k \left(\hat{p}_k^2 + \hat{q}_k^2\right) , \qquad (5.28)$$

wohingegen der eines starren Rotators sich als

$$\hat{H}_{Rot}^{0} = \frac{1}{2} \left(\frac{\hat{L}_{a}^{2}}{I_{a}} + \frac{\hat{L}_{b}^{2}}{I_{b}} + \frac{\hat{L}_{c}^{2}}{I_{c}} \right)$$
(5.29)

darstellt. q_k ist die dimensionslose Kordinate der k-ten Schwingung, \hat{p}_k stellt den Impulsoperator der k-ten Schwingung dar, und \hat{L}_j sind die Operatoren der verschiedenen Komponenten des Drehimpulses. I_a , I_b und I_c sind die auf die Hauptträgheitsachsen a, b und c bezogenen Trägheitsmomente, wenn die betrachteten Massepunkte sich in der Gleichgewichtslage befinden. Die Eigenwertgleichungen der Drehimpulsoperatoren sind gegeben durch [3]:

$$\hat{L}^{2} |J, K, M\rangle = \hbar^{2} J (J+1) |J, K, M\rangle , \qquad (5.30)$$

$$\hat{L}_z | J, K, M \rangle = \hbar K | J, K, M \rangle , \qquad (5.31)$$

$$\hat{L}_Z |J, K, M\rangle = \hbar M |J, K, M\rangle .$$
(5.32)

Tabelle 5.2 Zuordnung der Koordinatenachsen x, y und z zu den Hauptträgheitsachsen a, b und c.

	\mathbf{I}^r	II^r	III^r	I^l	II^l	III^l
x	b	c	a	c	a	b
y	c	a	b	b	c	a
z	a	b	c	a	b	c

Mit J wird die Rotationsquantenzahl bezeichnet, K stellt die Quantenzahl des auf die z-Achse projezierten Drehimpulses dar, wohingegen M die Projektion des Drehimpulses auf die Z-Achse des raumfesten Koordinatensystems beschreibt. Für die verschiedenen Quantenzahlen gilt nun:

$$J = 0, 1, 2, \dots, \qquad (5.33)$$

$$K = J, J - 1, J - 2, \dots, -J,$$

$$M = J, J - 1, J - 2, \dots, -J, \qquad (5.34)$$

$$J, K, M \rangle = \psi_{J,K,M}$$
.

 $\psi_{J,K,M}$ steht für die gemeinsame Eigenfunktion der verschiedenen vertauschbaren Drehimpulsoperatoren. Die Matrixelemente der Operatoren lassen sich berechnen zu

$$\langle J, K, M | \hat{L}^2 | J, K, M \rangle = \hbar^2 J (J+1) , \qquad (5.35)$$

$$\langle J, K, M | \hat{L}_z | J, K, M \rangle = \hbar K , \qquad (5.36)$$

$$\langle J, K, M | \hat{L}_Z | J, K, M \rangle = \hbar M .$$
(5.37)

 \hat{L}^2 setzt sich aus den Quadraten der verschiedenen Drehimpulsoperatorkomponenten zusammen:

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 . ag{5.38}$$

 \hat{L}_z^2 besitzt nur Diagonal
elemente der Form

$$\langle J, K, M | \hat{L}_z^2 | J, K, M \rangle = \hbar^2 K^2 , \qquad (5.39)$$

wohingegen \hat{L}_x^2 und \hat{L}_y^2 so
wohl endliche Diagonal- als auch Außerdiagonalelemente aufweisen. Für die Diagonalelemente gilt

$$\langle J, K, M | \hat{L}_x^2 | J, K, M \rangle = \langle J, K, M | \hat{L}_y^2 | J, K, M \rangle$$

$$= \frac{\hbar^2}{2} \left[J \left(J + 1 \right) - K^2 \right] ,$$

$$(5.40)$$

wohingegen man für die Nebendiagonalelemente

$$\langle J, K, M | \hat{L}_x^2 | J, K \pm 2, M \rangle = \langle J, K, M | \hat{L}_y^2 | J, K \pm 2, M \rangle$$

$$= \frac{\hbar^2}{2} \left[J \left(J + 1 \right) - K \left(K \pm 1 \right) \right]^{\frac{1}{2}} \left[J \left(J + 1 \right) - \left(K \pm 1 \right) \left(K \pm 2 \right) \right]^{\frac{1}{2}}$$

$$(5.41)$$

findet. Identifiziert man die mitrotierenden Koordinatenachsen x, y, z mit den Hauptträgheitsachsen a, b, c des starren Rotators, so ergeben sich für den Hamiltonoperator des starren Rotators die folgenden Matrixelemente:

$$\langle J, K, M | \hat{H}_{Rot}^0 | J, K, M \rangle = \frac{\hbar^2}{4} \left\{ \left(\frac{1}{I_a} + \frac{1}{I_b} \right) \left[J \left(J + 1 \right) - K^2 \right] + \frac{2K^2}{I_c} \right\}, \quad (5.42)$$

$$\langle J, K, M | \hat{H}_{Rot}^{0} | J, K \pm 2, M \rangle = \frac{\hbar^{2}}{8} \left(\frac{1}{I_{a}} - \frac{1}{I_{b}} \right) \left[J \left(J + 1 \right) - K \left(K \pm 1 \right) \right]^{\frac{1}{2}}$$

$$\times \left[J \left(J + 1 \right) - \left(K \pm 1 \right) \left(K \pm 2 \right) \right]^{\frac{1}{2}} .$$
(5.43)

Im Falle eines linearen Kreisels wäre das Trägheitsmoment entlang der c-Achse Null. Damit muß folglich auch die Quantenzahl K den Wert Null annehmen. Die Rotationsenergie E_{Rot} in Wellenzahleinheiten eines linearen starren Rotators ergibt sich folglich zu:

98

$$\frac{E_{Rot}}{hc} = B_v \left[J \left(J + 1 \right) \right] \,, \tag{5.44}$$

wobei B_v die vom Schwingungszustand abhängige Rotationskonstante des Moleküls beschreibt.

5.1.3 Korrektur der Eigenwerte eines linearen Moleküls: Der effektive Hamiltonoperator von YAMADA, BIRSS und ALIEV

Wenn bei der im letzten Abschnitt erläuterten Beschreibung des Rotations-Vibrations-Hamiltonoperators auf störungstheoretischer Basis und dessen Entwicklung nach der Größenordnung L, Störungsterme höherer Ordnung berücksichtigt werden, um das reale Verhalten der Moleküle, wie beispielsweise den Einfluß der Zentrifugalverzerrung oder der Anharmonizität der Schwingungen auf die Gesamtenergie des Moleküls, besser beschreiben zu können, wird die explizite Behandlung sehr aufwendig. YAMADA, BIRSS und ALIEV [9] wählten daher einen abstrakteren Ansatz zur Beschreibung des Rotations-Vibrations-Hamiltonoperators eines linearen Moleküls, bei der der effektive Hamiltonoperator nicht auf die physikalischen Größen des Moleküls zurückgeführt wird, sondern aus bestimmten Symmetriebedingungen abgeleitet wird. Dieser effektive Hamiltonoperator ist besonders geeignet für die Beschreibung hoch angeregter Knickschwingungen und Kombinationszustände. Es werden Operatorterme bis zu einer Größenordnung von L = 10 nach der Definition von OKA berücksichtigt. Der effektive Hamiltonoperator eines linearen Moleküls muß die folgenden Bedingungen erfüllen:

- reine Vibrationsoperatoren, die nur von einer Knickschwingung t abhängen, sind diagonal in der Quantenzahl l_t^{1} .
- vibratorische Operatoren, die mehr als eine Knickschwingung beinhalten, besitzen Außerdiagonalelemente bezüglich l_t , sie sind jedoch immer diagonal bezüglich deren Summe K.
- reine Rotationsoperatoren sind diagonal bezüglich K.
- Vibrationsterme, die Knickschwingungsoperatoren ungerader Potenz enthalten, verschwinden, ebenso Rotations-Schwingungs-Terme, die Knickschwingungs- und Rotationsterme ungerader Potenz aufweisen.

Der Operator \hat{H}_d , der alle in l_t diagonalen Beiträge enthält, ist gegeben durch:

$$\begin{aligned} \hat{H}_{d} &= G_{v} + \sum_{t \leq t'} x_{l(tt')} \hat{p}_{z(t)} \hat{p}_{z(t')} \\ &+ \left[B_{v} + \sum_{t \leq t'} d_{Jl(tt')} \hat{p}_{z(t)} \hat{p}_{z(t')} \right] (\hat{J}^{2} - \hat{J}_{z}^{2}) \\ &- \left[D_{v} + \sum_{t \leq t'} h_{Jl(tt')} \hat{p}_{z(t)} \hat{p}_{z(t')} \right] (\hat{J}^{2} - \hat{J}_{z}^{2})^{2} \\ &+ H_{v} (\hat{J}^{2} - \hat{J}_{z}^{2})^{3} . \end{aligned}$$

$$(5.45)$$

¹Da der Drehimpuls in Richtung der Molekülachse eines linearen Moleküls schwingungsinduziert ist, entspricht in einem linearen Molekül die Quantenzahl K der Summe aller Quantenzahlen l_t .
G_v	:	Schwingungstermwert,
$x_{l(tt')}$:	Beitrag der schwingungsinduzierten Drehimpulse zur Vibrationsenergie,
$d_{Jl(tt')}, h_{Jl(tt')}$:	Terme, die die l -Abhängigkeit der Rotationskonstanten beschreiben,
$\hat{p}_{z(t)},\hat{p}_{z(t')}$:	Operatoren der durch die Knickschwingungen induzierten Drehimpulse,
\hat{J}^2	:	Operator des Gesamtdrehimpulses,
\hat{J}_z^2	:	Summe aller Operatoren $\hat{p}_{z(t,t')}$.

Der Operator \hat{H}_0 der vibratorischen *l*-Typ Verdopplung wird beschreiben durch:

$$\hat{H}_{0} = \sum_{t < t'} \left(r_{tt'} + r_{tt'J} \hat{J}^{2} + r_{tt'JJ} \hat{J}^{4} \right) \left(\hat{L}_{++(i)} \hat{L}_{--(j)} + \hat{L}_{--(i)} \hat{L}_{++(j)} \right),$$
(5.46)

wohingegen für den Operator \hat{H}_2 der rotatorischen *l*-Typ-Aufspaltung mit $\Delta K = \pm 2$ gilt:

$$\hat{H}_{2} = \frac{1}{2} \sum_{t} \left(q_{t} + q_{tJ} \hat{J}^{2} \right) \left(\hat{L}_{++(t)} \hat{J}_{-}^{2} + \hat{L}_{--(t)} \hat{J}_{+}^{2} \right)
+ \sum_{t,t'} q_{tt'} \left[\hat{L}_{++(t)} (\hat{L}_{--(t')})^{2} \hat{J}_{+}^{2} + \hat{L}_{--(t)} (\hat{L}_{++(t')})^{2} \hat{J}_{-}^{2} \right]
+ \frac{1}{4} \sum_{t} \left[\sum_{t' \leq t''} q_{tl(t't'')} \hat{p}_{z(t')} \hat{p}_{z(t')}, \hat{L}_{++(t)} \hat{J}_{-}^{2} + \hat{L}_{--(t)} \hat{J}_{+}^{2} \right]_{+},$$
(5.47)

Der Operator der $\Delta K = \pm 4$ -Wechselwirkung ist gegeben durch:

$$\hat{H}_{4} = \sum_{t \leq t'} u_{tt'} \left(\hat{L}_{++(t)} \hat{L}_{++(t')} \hat{J}_{-}^{4} + \hat{L}_{--(t)} \hat{L}_{--(t')} \hat{J}_{+}^{4} \right).$$
(5.48)

Die Operatoren $\hat{p}_z(t)$ beschreiben den schwingungsinduzierten Drehimpuls des Moleküls, die Operatoren \hat{J} sind Operatoren des Gesamtdrehimpulses, wobei für die Operatoren \hat{J}_{\pm} gilt:

$$\hat{J}_{\pm} = \hat{J}_x + i\hat{J}_y. \tag{5.49}$$

Die Operatoren \hat{L}_{++} und \hat{L}_{--} ergeben sich aus den Koordinaten q_x und q_y des isotropen Potentials des zweidimensionalen Oszillators:

$$\hat{L}_{++} = \frac{(q_x + iq_y)^2 + (\hat{p}_x + i\hat{p}_y)^2}{4}, \qquad (5.50)$$

$$\hat{L}_{--} = \frac{(q_x - iq_y)^2 + (\hat{p}_x - i\hat{p}_y)^2}{4}.$$
(5.51)

Wird das Produkt aus der Wellenfunktion eines symmetrischen Kreisels und eines isotropharmonischen Oszillators als Basis gewählt, so gilt im Falle einer angeregten Knickschwingung t für die von Null verschiedenen Matrixelemente, wenn man $K = l_t = l$ berücksichtigt:

$$E_{l,l} = \langle v_t, l_t | \hat{H} | v_t, l_t \rangle = G_v + x_l l^2 + y_l l^4 + z_l l^6 + [B_v + d_{Jl} l^2 + h_{lJ} l^4] f(l,l) - [D_v + h_{Jl} l^2] f(l,l)^2 + H_v f(l,l)^3.$$
(5.52)

Für die Außerdiagonalelemente der rotatorischen *l*-Typ-Aufspaltung findet man hingegen:

$$U_{l,l+2} = \langle v_t, l_t | \hat{H} | v_t, l_t \pm 2 \rangle = \frac{1}{4} [q_t + q_{tJ} J (J+1) + q_{tl} (l \pm 1)^2] \\ \times \sqrt{(v_t \mp l) (v_t \pm l + 2)} f(l, l \pm 2) ,$$
(5.53)

Die Matrixelemente der $\Delta l = \pm 4$ -Wechselwirkung lauten:

$$U_{l,l+4} = \langle v_t, l_t | \hat{H} | v_t, l_t \pm 4 \rangle = \frac{1}{4} u_{tt} \\ \times \sqrt{(v_t \mp l - 2) (v_t \mp l) (v_t \pm l + 2) (v_t + l \pm 4)} f(l, l \pm 4) .$$
(5.54)

Die Variablen f sind im einzelnen gegeben durch:

$$f(l,l) = J (J+1) - l^{2}$$

$$f(l,l \pm 2) = \sqrt{[J (J+1) - l (l \pm 1)] \times [J (J+1) - (l \pm 1) (l \pm 2)]}$$

$$f(l,l \pm 4) = f(l,l \pm 2) \times f(l \pm 2, l \pm 4) .$$
(5.55)

Die verschiedenen Terme besitzen folgende Bedeutung:

G_v	:	$\operatorname{Schwingungstermwert}$,
B_v	:	Rotationskonstante,
D_v, H_v	:	${\rm Zentrifugalver zerrungs konstanten}\ ,$
x_l, y_l, z_l	:	Beiträge erster und höherer Ordnung des schwingungsinduzierten
		Drehimpulses zur Vibrationsenergie,
d_{Jl},h_{lJ}	:	Terme, die die l -Abhängigkeit der Rotationskonstanten beschreiben,
h_{Jl}	:	Term, der die l -Abhängigkeit der Zentrifugalverzerrungskonstanten beschreibt,
u_{tt}	:	Konstante zur Beschreibung der $\Delta l = \pm 4$ -Wechselwirkung,
q_t	:	l-Typ-Aufspaltungskonstante ,
q_{tJ}, q_{tl}	:	Korrekturkonstanten zur Beschreibung des J - und l -
		abhängigen Teils der l-Typ-Aufspaltung,
v_t	:	Quantenzahl der t-ten Knickschwingung,
l	:	Quantenzahl des schwingungsinduzierten Drehimpulses.

An dieser Stelle ist anzumerken, daß im Falle quasilinearer Moleküle mit Knickschwingungen großer Amplitude die Reihenentwicklungen von $\mu_{\alpha\beta}$ und V(q) um die Gleichgewichtskonfiguration nur sehr langsam oder aber gar nicht konvergieren. Solche Moleküle lassen sich zwar zum Teil auch durch den oben genannten effektiven Hamiltonoperator beschreiben, wenn geeignete Terme höherer Ordnung zugefügt werden, eine physikalische Bedeutung dieser Konstanten ist jedoch dann oft nicht mehr gegeben. In solchen Fällen ist es daher nötig, das molekülfeste Koordinatensystem an die Knickbewegung großer Amplitude zu koppeln. Explizit wird dieser Ansatz in der Arbeit von LICHAU [1] vorgestellt.

5.1.4 Resonanzen beim linearen Molekül

Bei der Rotation eines linearen Moleküls muß im Falle der Anregung einer Knickschwingung ein schwingungsinduzierter Drehimpuls entlang der Molekülachse berücksichtigt werden. Dieser Drehimpuls wird durch die Quantenzahl l_t charakterisiert. Die Rotations-Schwingungsenergie eines isotrop-harmonischen Oszillators ist bezüglich l_t entartet. Geht man jedoch zu einem anharmonischen Oszillator und unstarren Rotator über, so müssen Rotations-Schwingungs-Wechselwirkungen berücksichtigt werden (*Coriolis*-Kraft), die zu einer Aufhebung der Entartung führen. Für $|l_t| = 1$ führt eine Resonanz der Energieniveaus zur sogenannten l-Typ-Verdopplung, für $|l_t| \geq 2$ spricht man von einer l-Typ-Resonanz. Auf Grundlage einer Störungsrechnung zweiter Ordnung stellt die l-Typ-Aufspaltungskonstante q_t eine vibrationsunabhängige Größe dar:

$$q_{t} = 2\frac{B_{e}^{2}}{\nu_{t}} \left[1 + 4\sum_{j} \zeta_{tj} \left(\frac{\nu_{t}^{2}}{\nu_{j}^{2} - \nu_{t}^{2}} \right) \right] , \qquad (5.56)$$

- q_t : *l*-Typ-Aufspaltungskonstante,
- ν_t : Frequenz der *t*-ten Knickschwingung,
- ν_j : Frequenzen der anderen *j*-ten Normalschwingungen,
- ζ_{tj} : Coriolis-Wechselwirkungs-Konstante,
- B_e : Rotationskonstante im Gleichgewichtszustand.

Für die Aufspaltung der verschiedenen $|l_t|$ -Subzustände kann man näherungsweise ableiten [1]:

$$\Delta^{(|l_t|=1)} = \frac{q_t \left(v_t + 1\right)}{2} \times J \left(J + 1\right) \,. \tag{5.57}$$

Auf gleichem Wege erhält man für die Aufspaltung der $|l_t| = 2$ -Niveaus:

$$\Delta^{(|l_t|=2)} = \frac{q_t^2 (v_t + 0) (v_t + 2)}{32x_l} \times [J (J+1)]^2$$
(5.58)

und analog für die Aufspaltung der $|l_t| = 3$ -Niveaus:

$$\Delta^{(|l_t|=3)} = \frac{q_t^3 (v_t - 1) (v_t + 1) (v_t + 3)}{2 (32x_l)^2} \times [J (J + 1)]^3 .$$
(5.59)

Wie man anhand der Gleichungen (5.57) bis (5.59) erkennt, wirkt sich die l-Typ-Verdopplung aufgrund ihrer J-Abhängigkeit direkt auf die effektive Rotationskonstante eines Subzustandes aus, wohingegen die l-Typ-Resonanz sich nur bei den Zentrifugalverzerrungskonstanten bemerkbar macht. Diese Abhängigkeit bildet eine wichtige Hilfe für die Zuordnung der Serien verschiedener Subzustände des NCCNO Moleküls.

Fallen in einem Molekül die Frequenz ν_i einer Grundschwingung und die Frequenz $\nu_j + \nu_t$ einer Kombinationsschwingung zufällig näherungsweise zusammen, so kommt es bei übereinstimmenden Symmetrien zu einer Aufspaltung der beteiligten Energieniveaus. Dies bezeichnet man als *Fermi*-Resonanz. Sie wurde erstmals 1931 im Ramanspektrum des CO₂-Moleküls beobachtet [10]. Verantwortlich für diese Resonanz ist Anharmonizität der Normalschwingungen. Das Auftreten einer *Fermi*-Resonanz äußert sich in einem Beitrag erster Ordnung zur Energie des Moleküls. Mittels einer störungstheoretischen Näherung erster Ordnung können die Eigenwerte der gestörten Zustände ϵ_{kn} aus den Energien $E_k^{(0)}$ und $E_n^{(0)}$ der ungestörten Zustände berechnet werden. Dies erfolgt durch das Lösen der Säkulargleichung

$$\begin{vmatrix} E_k^{(0)} - \epsilon & W_F \\ W_F & E_n^{(0)} - \epsilon \end{vmatrix} = 0.$$
 (5.60)

Die Eigenwerte der gestörten Zustände berechnen sich somit zu:

$$\epsilon_{kn} = \frac{E_k^{(0)} + E_n^{(0)}}{2} \pm \sqrt{4W_F^2 + \Delta E_{kn}^2}, \qquad (5.61)$$

mit $\Delta E_{kn} = E_k^{(0)} - E_n^{(0)}$. Das Matrixelement W_F bezeichnet man als den sogenannten Fermi-Parameter. Eine Streckschwingung ν_i kann in Resonanz mit einer Knickschwingung ν_t treten, wenn ein Matrixelement

$$W_F = \left\langle v_i, v_t^{l_t} \middle| \hat{H} \middle| v_i - 1, (v_t + 2)^{l_t} \right\rangle$$
(5.62)

$$= W_e \sqrt{(v_t+2)^2 - l_t^2} \frac{\sqrt{v_i}}{2}$$
(5.63)

$$= -\frac{\phi_{itt}}{\sqrt{2}}\sqrt{(v_t+2)^2 - l_t^2} \frac{\sqrt{v_i}}{2}$$
(5.64)

existiert [11]. ϕ_{itt} ist die kubische Kraftkonstante, über die die Normalschwingungen gekoppelt sind. Wechselwirken zwei Schwingungen zufällig miteinander, die keinerlei Entartung aufweisen, so gilt für das Matrixelement:

$$W_F = \langle v_i, v_t | \hat{H} | v_i - 1, v_t + 2 \rangle$$
(5.65)

$$= \frac{\phi_{itt}}{2} \left[(v_t + 1)(v_t + 2)(\frac{v_i}{2}) \right].$$
 (5.66)

Es ist darauf hinzuweisen, daß die Matrixelemente in erster Näherung keine Abhängigkeit von der Rotationsquantenzahl J zeigen, somit vom Rotationszustand des Moleküls unabhängig sind. Aufgrund der unterschiedlichen Zentrifugalverzerrung in den an der Resonanz beteiligten Schwingungszuständen ist somit die *Fermi*-Wechselwirkung abhängig vom Rotationszustand. Die Stärke der Wechselwirkung hängt von der energetischen Separation der beteiligten Energieniveaus und der Größe des Matrixelementes W_F ab. Treten zwei Energieniveaus in Resonanz zueinander, so bezeichnet man dies auch als *Fermi*-Diade, bei mehreren Energieniveaus spricht man hingegen von einer *Fermi*-Polyade.

Coriolis-Resonanzen können dann auftreten, wenn durch die während einer Streckschwingung wirkenden Coriolis-Kräfte eine Knickbewegung gleicher Frequenz induziert wird. Die Coriolis-Kraft \mathbf{F}_{c} ergibt sich aus dem Vektorprodukt des Vektors der Winkelgeschwindigkeit und des Vektors der durch die Schwingungsverrückung der Kerne erzielten Geschwindigkeit:

$$\mathbf{F_c} = 2 \, m_n (\boldsymbol{\omega} \, \times \dot{\mathbf{r}}_n), \tag{5.67}$$

 $\mathbf{F_c}$: *Coriolis*-Kraft,

 m_n : Masse des n-ten Massepunktes,

 $\boldsymbol{\omega}$: Vektor der Winkelgeschwindigkeit,

 $\dot{\mathbf{r}}_{\mathbf{n}}$: Schwingungsgeschwindigkeit des n-ten Massepunktes.

Diese induzierte Knickbewegung kann nun mit der in der Rotationsebene liegenden Knickschwingung wechselwirken, so daß die Entartung der Knickschwingungsniveaus aufgehoben wird. Der Aufspaltungseffekt ist jedoch nur dann groß, wenn sich die Schwingungsfrequenzen der Streckund Knickschwingung nicht sehr stark unterscheiden. Die *Coriolis*-Resonanz-Matrixelemente sind rotationsabhängig und koppeln lediglich $\Delta l = \pm 1$ -Zustände. In der Abbildung 5.2 ist die Wechselwirkung einer asymmetrischen Streckschwingung und einer Knickschwingung eines dreiatomigen linearen Moleküls dargestellt. Die Pfeile geben die mit der Streckschwingung verbundenen Bewegungsrichtungen an, die nicht ausgefüllten Kreise deuten die durch die *Coriolis*-Kraft induzierten Verrückungen an. Die Matrixelemente des Resonanzoperators lauten [4]:

$$\left\langle v_{i}-1, v_{t}^{l_{t}}, l \right| \hat{H} \left| v_{i}, (v_{t}-1)^{\pm l_{t}}, l \pm 1 \right\rangle = -\Omega_{it} B_{y} \zeta_{i,t}^{y} \left[v_{i}(v_{t} \mp l_{t}) \right]^{\frac{1}{2}} \left[(J \mp l) \left(J \pm l \pm 1 \right) \right]^{\frac{1}{2}}, \quad (5.68)$$

wobei für Ω_{it} gilt:

$$\Omega_{it} = \left[(\omega_i + \omega_t)/2(\omega_i \, \omega_t)^{\frac{1}{2}} \right].$$
(5.69)

 $\zeta_{i,t}^{y}$ repräsentiert die *Coriolis*-Kopplungskonstante der beiden Normalschwingungen, B_{y} die Rotationskonstante und ω die Wellenzahl der Schwingung.

5.1.5 Die Bestimmung von Reihenentwicklungskonstanten

Bevor im Detail auf die Bestimmung von Reihenentwicklungskonstanten der verschiedenen Subbanden eines linearen Moleküls eingegangen wird, sollen zunächst einige wichtige Begriffe zur

Abbildung 5.2 Coriolis-Wechselwirkung zwischen einer asymmetrischen Streckschwingung und einer Knickschwingung eines dreiatomigen linearen Moleküls. Die Pfeile geben die mit der Streckschwingung verbundenen Verrückungen der Atome an. Die durch die Coriolis-Kräfte induzierten Verrückungen sind durch die nicht ausgefüllten Kugeln angedeutet.

Beschreibung linearer Moleküle erläutert werden. Die durch die Schwingungsquantenzahlen v_i gekennnzeichneten Zustände eines Moleküls bezeichnet man als Schwingungszustände, wohingegen die durch die Schwingungsquantenzahlen v_i und vibratorische Drehimpulsquantenzahlen l_t , mit den dazugehörigen Paritäten e oder f, bezeichneten Zustände als Schwingungs-Subzustände benannt werden. Nach BROWN *et al.* [12] werden die Rotations-Schwingungsniveaus eines Schwingungs-Subzustandes zu Niveaus der Symmetrie e oder f zusammengefaßt. Niveaus der Parität $+(-J)^J$ erhalten die Kennzeichnung e wohingegen Niveaus der Parität $-(-J)^J$ die Bezeichnung f erhalten.

Unter einer Bande soll im folgenden alle Übergänge zwischen zwei Schwingungszuständen und unter einer Subbande die Übergänge zwischen zwei Schwingungs-Subzuständen verstanden werden. Als Fundamentalbande bezeichnet man Übergänge zwischen einem Grundzustand und einem einfach angeregten Zustand, heiße Banden (*hot bands*) sind Übergänge von einem angeregten Zustand in einen höher angeregten. Einzelne Rotations-Vibrations-Linien werden als P(J)-, Q(J)- oder R(J)-Zweig-Linie bezeichnet. Die Rotationsquantenzahl J bezieht sich jeweils auf das untere Vibrations-Niveau.

Nachdem eine NCCNO-Subbande zugeordnet war, wurden Reihenentwicklungskonstanten mittels

$$\tilde{\nu} = \tilde{\nu}_{c} + B'_{ps} J' (J'+1) - B''_{ps} J'' (J''+1) - D'_{ps} [J' (J'+1)]^{2}$$

$$+ D''_{ps} [J'' (J''+1)]^{2} + H'_{ps} [J' (J'+1)]^{3} + H''_{ps} [J'' (J''+1)]^{3} + \dots$$
(5.70)

bestimmt. $\tilde{\nu}$ repräsentiert die gemessene Übergangswellenzahl, $\tilde{\nu}_c$ das Zentrum der Subbande und B_{ps} die Rotationskonstante. D_{ps} und H_{ps} sind die Zentrifugalverzerrungskonstanten. Die Bezeichnung ps steht für Reihenentwicklung (engl., power series). Die einfach gestrichenen Größen repräsentieren Konstanten des oberen Zustandes, wohingegen die doppelt gestrichenen Größen Konstanten des unteren Zustandes darstellen. Für den Rotations-Schwingungstermwert T(J) eines Subzustandes gilt somit:

$$T(J) = G_c + B_{ps} J (J+1) - D_{ps} [J (J+1)]^2 + H_{ps} [J (J+1)]^3 + \dots$$
(5.71)

 G_c stellt den Schwingungstermwert des Subzustandes dar. Die Reihenentwicklungskonstanten sind physikalisch nur bedingt aussagekräftig, da weder notwendige Resonanzen, wie die *l*-Typ-

Verdopplung und die *l*-Typ-Resonanz, noch zufällige Resonanzen wie *Fermi*- oder *Coriolis*-Resonanzen bei der Anpassung berücksichtigt werden. Das Ziel der Bestimmung von Reihenentwicklungskonstanten ist die einfache und schnelle Reproduktion von Lineinpositionen bekannter bzw. die Extrapolation noch zu identifizierender Rotations-Vibrations-Übergänge.

Durch die Verwendung von Reihenentwicklungskonstanten höherer Ordnung kann es unter Umständen gelingen, die Linienpositionen von global gestörten Subbanden befriedigend zu reproduzieren. Von einer globalen Störung spricht man, wenn alle Rotations-Schwingungs-Übergänge einer Bande gestört sind. Im Falle von lokalen Störungen, bei denen nur einige Rotations-Schwingungs-Übergänge einer Subbande gestört sind, ergibt eine Anspassung von Reihenentwicklungskonstanten meist ein nur sehr unbefriedigendes Ergebnis. Um dennoch Konstanten ausreichender Güte bestimmen zu können, wurden Übergänge im Bereich dieser lokalen Störungen im Fit mit Null gewichtet.

Von sämtlichen NCCNO-Subbanden im mittleren Infrarot wurden auf diesem Wege Reihenentwicklungskonstanten bestimmt, da praktisch sämtliche Vibrationszustände *lokal* und *global* gestört sind. Dies ist in Anbetracht des Vorhandenseins einer niedrigliegenden Knickschwingung, der CCN-Knickschwingung ν_7 , nicht sehr verwunderlich, führt diese doch zu einer sehr hohen Zustandsdichte und damit zu einer sehr großen Zahl potentieller Resonanzpartner in den untersuchten Wellenzahlenbereichen.

5.2 Gängige quantenchemische ab initio -Berechnungen

Im Zuge der stark wachsenden Rechenleistung moderner Computer, werden in zunehmenden Maße *ab initio*-Berechnungen zur Voraussage einer Vielzahl von Moleküleigenschaften wie beispielsweise Molekülstrukturen, harmonischen Schwingungsfrequenzen oder Schwingungspotentialfunktionen herangezogen. Mit diesen Informationen kann der moderne Chemiker in die Lage versetzt werden, unbekannte Moleküle durch Vergleich der experimentellen Eigenschaften mit den theoretisch berechneten zu identifizieren. Da im Rahmen dieser Arbeit immer wieder auf quantenchemische Molekülberechnungen Bezug genommen wird, soll im folgenden kurz auf wichtige Konzepte und Begriffe von *ab initio*-Berechnungen eingegangen werden. Die Darstellung orientiert sich an dem Skriptum von JENSEN [13] und der Arbeit von LICHAU [1].

Durch die Anwendung der Born-Oppenheimer-Näherung erfolgt zunächst eine Separation der elektronischen Schrödinger-Gleichung und der Kern-Schrödinger-Gleichung. Die elektronische Schrödinger-Gleichung beschreibt die Bewegung von U Elektronen im elektrischen Feld von W Kernen. Diese Annahme erscheint sinnvoll, da sich die sehr leichten Elektronen sehr viel schneller als die schwereren Kerne bewegen. Die Elektronen folgen praktisch trägheitslos der Kernbewegung. Das Ziel von *ab initio*-Berechnungen ist die Lösung der elektronischen Schrödinger-Gleichung

$$\left[\hat{T}_e + V(\mathbf{R}_{\mathbf{n}}^{(\mathbf{0})}, \mathbf{r}_{\mathbf{e}})\right] \psi_e(\mathbf{R}^{(\mathbf{0})}, \mathbf{r}_{\mathbf{e}}) = V_e(\mathbf{R}_{\mathbf{n}}^{(\mathbf{0})}) \psi_e(\mathbf{R}_{\mathbf{n}}^{(\mathbf{0})}, \mathbf{r}_{\mathbf{e}})$$
(5.72)

oder anders formuliert

$$\hat{H}_e \,\psi_e(\mathbf{R}^{(0)}, \mathbf{r_e}) = V_e(\mathbf{R}_n^{(0)})\psi_e(\mathbf{R}_n^{(0)}, \mathbf{r_e}).$$
(5.73)

\hat{T}_e	:	Operator der kinetischen Energie der Elektronen,
\hat{H}_e	:	elektronischer Hamiltonoperator,
$V(\mathbf{R_n^{(0)}},\mathbf{r_e})$:	potentielle Energie der Coulomb-Wechselwirkung,
$\mathbf{R_n^{(0)}}$:	festgehaltene Kernkoordinaten,
$\mathbf{r_e}$:	Elektronenkoordinaten,
$V_e(\mathbf{R_n^{(0)}})$:	Energie-Eigenwerte der Elektronen,
$\psi_e(\mathbf{R_n^{(0)}}, \mathbf{r_e})$:	elektronische Wellenfunktion.

Drückt man den gesamten elektronischen Hamilton-Operator \hat{H}_e in atomaren Einheit aus, so gilt:

$$\hat{H}_e = -\sum_{i=1}^U \frac{1}{2} \nabla^2 - \sum_{i=1}^U \sum_{n=1}^W \frac{Z_n}{r_{in}} + \sum_{i=1}^U \sum_{j>1}^U \frac{1}{r_{ij}}.$$
(5.74)

- ∇^2 : Quadrat des Nabla-Operators, Bildung der zweiten Ableitungen nach den Elektronenkoordinaten,
- Z_n : Ladungszahl des Kernes n, $r_{i\alpha}$: Abstand des *i*-ten Elektrons vom α -ten Kern, r_{ij} : Abstand zwischen dem *i*-ten und *j*-ten Elektron, i, j : Laufzahl der Elektronen, n : Laufindex der Kerne.

Der erste Term in Gleichung (5.74) beschreibt die kinetische Energie der Elektronen, der zweite die anziehende Wechselwirkung zwischen Elektronen und Kernen und der dritte die Abstoßungsenergie der Elektronen. Um die Gesamtenergie für eine feste Kerngeometrie zu berechnen, muß zusätzlich ein Term

$$\hat{H}_{NNI} = \sum_{n=1}^{W} \sum_{n'>n}^{W} \frac{Z_n Z_{n'}}{R_{nn'}}$$
(5.75)

berücksichtigt werden, der die Kern-Kern-Wechselwirkung beschreibt. Die Berechnung der Energieeigenwerte der elektronischen Schrödingergleichung (5.73) für verschiedene Kerngeometrien liefert die Potentialfunktion des Moleküls. Am Minimum dieser Funktion besitzt das Molekül die sogenannte r_e -Struktur.

Da die Gleichung (5.73) für Moleküle nicht explizit gelöst werden kann, müssen Verfahren zur näherungsweisen Lösung verwendet werden, die im einzelnen kurz vorgestellt werden.

5.2.1 Das Hartree-Fock-Verfahren (HF)

Bei der Hartree-Fock-Methode wird als Modellfunktion der exakten Wellenfunktion des elektronischen Grundzustandes eines Moleküls eine einzige Slater-Determinante Ψ^{HF} verwendet:

$$\Psi^{\rm HF}(\mathbf{r}) = \frac{1}{\sqrt{U}} \begin{vmatrix} \phi_1(\mathbf{r}_1)\alpha(1) & \phi_1(\mathbf{r}_1)\beta(1) & \phi_2(\mathbf{r}_1)\alpha(1) & \cdots & \phi_U(\mathbf{r}_1)\beta(1) \\ \phi_1(\mathbf{r}_2)\alpha(2) & \phi_1(\mathbf{r}_2)\beta(2) & \phi_2(\mathbf{r}_2)\alpha(2) & \cdots & \phi_U(\mathbf{r}_2)\beta(2) \\ \phi_1(\mathbf{r}_3)\alpha(3) & \phi_1(\mathbf{r}_3)\beta(3) & \phi_2(\mathbf{r}_3)\alpha(3) & \cdots & \phi_U(\mathbf{r}_3)\beta(3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{r}_U)\alpha(U) & \phi_1(\mathbf{r}_U)\beta(U) & \phi_2(\mathbf{r}_U)\alpha(U) & \cdots & \phi_U(\mathbf{r}_U)\beta(U) \end{vmatrix} .$$
(5.76)

Dies ist die einfachste Beschreibung eines U-Elektronensystems durch Einelektronenfunktionen $\phi_a(r_i)\alpha$ bzw. $\phi_a(r_i)\beta$, die das Pauli-Prinzip erfüllen. α und β sind die Elektronenspinfunktionen. Die sogenannten Raumfunktionen $\phi_a(r_i)$ beschreibt man als Linearkombinationen von bekannten orthogonalen Funktionen $\chi_{\mu}(r_i)$ mit den Linearkoeffizienten $C_{\mu a}$:

$$\phi_a(r_i) = \sum_{\mu=1}^k C_{\mu a} \, \chi_\mu(r_i). \tag{5.77}$$

Die k Funktionen $\chi_{\mu}(r_i)$ bezeichnet man auch als sogenannten Basissatz. Ziel des Hartree-Fock-Verfahrens ist es, bei einem gegebenen Satz von Basisfunktionen die Koeffizienten $C_{\mu a}$ so zu variieren, daß der Erwartungswert der Slater-Determinante minimal wird. Der Erwartungswert wird dabei umso kleiner sein, je mehr Basisfunktionen k verwendet werden. Da es jedoch prinzipiell nicht möglich ist, die exakte Wellenfunktion durch eine Slater-Determinante zu beschreiben, wird der Erwartungswert der Energie immer größer sein als der tatsächliche Wert.

Die Hartree-Fock-Theorie beschreibt die Elektronenwechselwirkung als die Wechselwirkung eines Elektrons mit einer diffusen Ladungswolke, durch die die gemittelte Verteilung der anderen Elektronen beschrieben wird. Die Bewegungen der verschiedenen Elektronen werden somit als unabhängig, d. h. nicht korreliert, angesehen, was nicht der tatsächlichen physikalischen Situation entspricht. Sämtliche aufwendigeren Näherungslösungen der Schrödingergleichung versuchen auf unterschiedlichem Wege, diese Elektronenkorrelation zu beschreiben.

5.2.2 Störungsrechnungen *n*-ter Ordnung nach Møller-Plesset (MPn)

Die Berechnungen nach Møller-Plesset basieren auf einer störungstheoretischen Beschreibung *n*ter Ordnung der Elektronen-Korrelationsenergie. Der elektronische Hamiltonoperator \hat{H}_e kann geschrieben werden als:

$$\hat{H}_e = \hat{H}_e^{(0)} + \lambda \,\hat{H}_e^{(1)} + \lambda^2 \,\hat{H}_e^{(2)} + \dots \,, \tag{5.78}$$

wobei λ ein Störparameter zwischen Null und Eins ist und $\hat{H}_e^{(n)}$ Störoperatoren *n*-ter Ordnung des ungestörten elektronischen Hamiltonoperators $\hat{H}_e^{(0)}$ darstellen. Analog kann man für die Energieeigenwerte E_m ableiten

$$E_m = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots$$
(5.79)

Die Eigenfunktionen ψ_m des Hamilton-Operators lassen sich als Linearkombinationen der Wellenfunktionen des ungestörten Zustandes $\psi_k^{(0)}$ darstellen:

$$\psi_m = \sum_k c_{km}(\lambda) \,\psi_k^{(0)}.$$
(5.80)

Analog zu den Eigenwerten können auch die Entwicklungskoeffizienten in einer Taylor-Reihe entwickelt werden:

$$c_{km} = c_{km}^{(0)} + c_{km}^{(1)} \lambda + c_{km}^{(2)} \lambda^2 + \dots$$
 (5.81)

Für den Beitrag des Störterms erster Ordnung kann man

$$E_m^{(1)} = \left\langle \psi_m^{(0)} \middle| \hat{H}_e^{(1)} \middle| \psi_m^{(0)} \right\rangle$$
(5.82)

ableiten, wohingegen die Korrekturen zweiter Ordnung durch

$$E_m^{(2)} = \left\langle \psi_m^{(0)} \middle| \hat{H}_e^{(2)} \middle| \psi_m^{(0)} \right\rangle + \sum_{k \neq m} \frac{\left\langle \psi_m^{(0)} \middle| \hat{H}_e^{(1)} \middle| \psi_k^{(0)} \right\rangle \left\langle \psi_k^{(0)} \middle| \hat{H}_e^{(1)} \middle| \psi_m^{(0)} \right\rangle}{E_m^{(0)} - E_k^{(0)}} \tag{5.83}$$

gegeben sind. Bei der Störungsrechnung nach Møller-Plesset wird nun $\hat{H}_e^{(0)}$ so gewählt, daß die Slater-Determinante des elektronischen Grundzustandes und der angeregten Zustände Eigenfunktionen dieses Operators sind; somit beschreiben die Störoperatoren $\hat{H}_e^{(n)}$ die Elektronenkorrelation. Häufig oszillieren die berechneten Energien von MP*n*-Rechnungen um den tatsächlichen Wert und konvergieren erst langsam mit zunehmender Ordnung *n*.

5.2.3 Die Dichtefunktionalberechnungen

Im Falle der Dichtefunktionaltheorie wird die Energie eines Moleküls als Funktional der Elektronendichte formuliert. Die elektronische Energie E wird in vier Terme aufgegliedert:

$$E = E^T + E^N + E^R + E^{XC}.$$
 (5.84)

 E^T : kinetische Energie der Elektronen,

 E^N : Coulomb-Wechselwirkung zwischen den Kernen

und zwischen den Elektronen und den Kernen,

 E^R : Coulomb-Wechselwirkung eines Elektrons mit den restlichen Elektronen,

 E^{XC} : Beiträge zur Energie durch den Elektronenspin und die Elektronenkorrelation.

Der Energiebeitrag E^{XC} kann in einen Austauschterm E^X und einen Korrelationsterm E^C aufgeteilt werden:

$$E^{XC} = E^X + E^C. (5.85)$$

Im Jahre 1988 publizierte BECKE [14] einen Ansatz für den Austauschterm auf Grundlage der Elektronendichte ρ , im gleichen Jahr wurde von LEE, YANG und PARR [15] eine Beziehung für die Elektronenkorrelation entwickelt. Man spricht daher auch von sogenannten *BLYP*-Berechnungen:

$$E^{X} = -\frac{3}{2} \left(\frac{3}{4\pi}\right)^{1/3} \int \rho^{4/3} d\mathbf{r} - \gamma \int \frac{\rho^{4/3} x^2}{\left(1 + 6\gamma \sinh^{-1} x\right)} d\mathbf{r} , \qquad (5.86)$$

$$E^{C} = -a \int \frac{\rho + b\rho^{-2/3} \left(t_{\rm HF} - 2t_{\rm W}\right) e^{-c\rho^{-1/3}}}{1 + d\rho^{-1/3}} \, d\mathbf{r} \,.$$
(5.87)

x steht für den Gradienten der Elektronendichte, γ ist eine Konstante, t_W steht für die lokale Weizäcker-Dichte, t_{HF} für die lokale Hartree-Fock-Dichte der kinetischen Energie. Mit der *BLYP*-Methode sind auch relativ große Moleküle berechenbar geworden, allerdings stellt sie kein echtes *ab initio* -Verfahren dar, da einige empirisch bestimmte Parameter in die Berechnungen mit eingehen.

5.2.4 Konfigurationswechselwirkung (CI)- und Coupled-Cluster (CC) -Berechnungen

Bei der Theorie der Konfigurationswechselwirkung (CI) wird die Modell-Wellenfunktion Ψ^{CI} als Linearkombination von Slater-Determinaten $\Psi^{HF}_i(r)$ formuliert:

$$\Psi^{CI} = c_0 \Psi^{HF} + \sum_i c_i \Psi^{HF}_i + \sum_{i''} c_{i''} \Psi^{HF}_{i''} + \sum_{i'''} c_{i'''} \Psi^{HF}_{i'''} + \dots$$
 (5.88)

Die Koeffizienten c_i werden so optimniert, daß der Erwartungswert der Modellfunktion möglichst klein wird. Die außerdiagonalen Elemente der Hamilton-Matrix

$$\begin{pmatrix} \langle \Psi^{HF} | \hat{H}_e | \Psi^{HF} \rangle & \langle \Psi^{HF} | \hat{H}_e | \Psi^{HF} \rangle & \dots & \langle \Psi^{HF} | \hat{H}_e | \Psi^{HF} \rangle & \dots \\ \langle \Psi^{HF}_1 | \hat{H}_e | \Psi^{HF} \rangle & \langle \Psi^{HF}_1 | \hat{H}_e | \Psi^{HF}_1 \rangle & \dots & \langle \Psi^{HF}_1 | \hat{H}_e | \Psi^{HF}_{1'} \rangle & \dots \\ \vdots & \vdots & \ddots & \vdots & & \\ \langle \Psi^{HF}_{1'} | \hat{H}_e | \Psi^{HF} \rangle & \langle \Psi^{HF}_{1'} | \hat{H}_e | \Psi^{HF}_1 \rangle & \dots & \langle \Psi^{HF}_{1'} | \hat{H}_e | \Psi^{HF}_{1'} \rangle & \dots \\ \vdots & \vdots & \vdots & \ddots & \rangle & , \qquad (5.89)$$

repräsentieren Wechselwirkungen der verschiedenen durch die Slater-Determinanten beschriebenen Zuständen. Man unterscheidet verschiedene Niveaus der CI-Berechnungen: Bei der CISD-Berechnung werden einfach und zweifach angeregte Zustände berücksichtigt, bei CISDTQ werden auch dreifache- und vierfache Substitutionen einbezogen. Solche Berechnungen sind allerdings sehr aufwendig, daher wurde die CISD(TQ)-Methode entwickelt, bei der nur bedingt dreiund vierfache Anregungen berücksichtigt werden.

Bei der Coupled-Cluster-(CC)-Methode werden Korrelationsbeiträge von Vier-Teilchen-Wechselwirkungen durch Wechselwirkungen von zwei Zwei-Teilchen-Systemen beschrieben. Solche Systeme bezeichnet man als Cluster, sie bestehen aus einem Elektronenpaar. Im Vergleich zur CI-Methode werde also Vierfachanregungen durch zwei Zweifachanregungen und Sechsfachanregungen durch drei Zweifachanregungen beschrieben. Man spricht somit von CCD- und CCSDT-Berechnungen. Bei der vereinfachten CCSD(T)-Methode werden sowohl einfache als auch zweifache Anregungen berücksichtigt, mit Hilfe der Störungstheorie werden auch dreifach substituierte Slaterdeterminanten einbezogen. Bei dem QCI-Verfahren handelt es sich um ein vereinfachtes CC-Verfahren. Näheres dazu findet man bei SCUSERIA und LEE [16].

5.2.5 Die Basissätze

Die meisten *ab initio* -Berechnungen benutzen Basissätze, die aus Gauß-Typ-Funktionen aufgebaut sind (GTO, Gauß Type Orbitals). Man unterscheidet unkontrahierte Gauß-Orbitale, die aus einem primitiven Gauß-Orbital besteht, und kontrahierte Gauß-Orbitale, die Linearkombinationen von mehreren primitiven Gauß-Orbitalen sind. Werden zwei primitive Gauß-Orbitale verwendet, so spricht man von einem STO-2G Basissatz, bei dreien von STO-3G. Bei den einfachsten Hartree-Fock-Berechnungen verwendet man für jedes Atom so viele Basisfunktionen, daß die Elektronen des Atoms durch diese Ein-Elektronen-Funktionen beschrieben werden können und sich der Basissatz aus s-, p-, d-, ... Funktionen zusammensetzt. Diese Basisfunktionen bezeichnet man als den minimalen Basissatz. Für die Atome Li und Be benötigt man beispielsweise eine 1s- und 2s-Funktion, in der Praxis werden jedoch noch die Basisfunktionen 2p dazugenommen. Minimale Basissätze sind für eine präzise Beschreibung der elektronischen Konfiguration nicht allzu geeignet. Es existieren zwei verbesserte Basissätze:

• Bei den sogenannten *split valence*-Basissätzen werden für die Kern- und Valenzschalen unterschiedliche Basissätze verwendet. Bsp.: Der Basissatz 3-21G besteht aus einem STO-3G Basissatz für die Kernschalen und für die Valenzschale aus zwei primitiven lokalisierten Orbitalen und einem delokalisierten Satz unkontrahierter Orbitale. Anisotrope Ladungsverteilungen werden allerdings nicht sehr gut beschrieben.

Elemente	Bezeichnung	primitive Orbitale	kontrahierte Orbitale
Li-Ne	cc-pVDZ	(9s4p1d)	[3s2p1d]
	cc- $pVTZ$	(10s5p2d1f)	[4s3p2d1f]
	cc- $pVQZ$	(12s6p3d2f1g)	[5s4p3d2f1g]
	cc- $pV5Z$	(14s8p4d3f2g1h)	$\left[6s5p4d3f2g1h ight]$

Tabelle 5.3 Korrelationskonsistente polarisierte Basissätze für die Elemente der zweiten Periode [17].

 Bei den Polarisations-Basissätzen werden zusätzliche primitive Orbitale mit höherer l-Quantenzahl in der Valenzschale berücksichtigt. Bei dem 6-31G*-Basissatz werden ab der zweiten Periode sechs d-Funktionen verwendet, bei 6-31G** werden bei den Atomen H bis Ar noch drei primitive p-Typ-Gauß-Orbitale verwendet.

DUNNING [17] hingegen entwickelte die sogenannten korrelationskonsistenten (cc, engl., correlation consistent) Basissätze, die eine systematische Annäherung an das Basissatz-Limit durch sukzessive Vergrößerung des Basissatzes erlauben. Der Begriff korrelationskonsistent impliziert, daß jede Vergrößerung des Basissatzes im gleichen Maße zur Korrelationsenergie beiträgt. Für die Elemente der zweiten Periode werden n 1s-, n 2p-, n 3d-, (n-1) 4f-, (n-2) 5g- und (n-3)6h-Orbitale verwendet. Im Falle von n = 1 spricht man von einem double-zeta-Basissatz, für n = 2 von einem triple-zeta Basissatz.

Mittels primitiven s- und p- Orbitalen werden durch Hartree-Fock-Optimierungen die Orbitalkoeffizienten ermittelt. Diese primitiven Funktionen werden dann um die oben genannten Korrelations-Terme ergänzt und die Orbitalkoeffizienten mit einer CI-Berechnung weiter optimiert. Abschließend werden die primitiven s- und p-Orbitale kontrahiert. In der Tabelle 5.3 sind die korrelationskonsistenten polarisierten Basissätze für die Atome der zweiten Periode aufgeführt. Da die *l*-Quantenzahl größer als eins ist, tragen die Basissätze die Beschreibung polarisiert.

5.3 Überblick über bisherige Arbeiten am Cyanofulminat

Obwohl Cyanofulminat (NCCNO) schon seit mehr als 30 Jahren in der organischen Chemie als Reagenz in 1,3-dipolaren Cycloadditionen bekannt ist [18, 19], ist dessen Nachweis erst vor etwas mehr als 10 Jahren mittels Matrix-Isolationsspektroskopie gelungen. Die Spektroskopie von NCCNO in der Gasphase wird hingegen erst seit einigen Jahren betrieben. Im folgenden wird zunächst auf die bisherigen niedrig- und hochauflösenden spektroskopischen Arbeiten am NCCNO-Molekül eingegangen, bevor die im Rahmen dieser Arbeit durchgeführten Messungen und erzielten Ergebnisse im Detail erläutert werden.

5.3.1 Spektroskopische und theoretische Untersuchungen

Im Jahre 1987 gelang es MAIER und TELES [20] erstmals, Cyanofulminat (NCCNO) pyrolytisch darzustellen, zusammen mit Argon auf einem 10 K kalten Fenster zu kondensieren und zwischen 400 cm⁻¹ und 4000 cm⁻¹ mittels niedrig auflösender FTIR-Spektroskopie zu charakertisieren. Die Spektroskopie von NCCNO in der Gasphase ist eng mit den Namen PASINSZKI und WESTWOOD verbunden. Im Jahre 1995 gelang es ihnen, NCCNO in der Gasphase mittels Photoelektronen-, niedrigauflösender FTIR- und Photoionisations-Massenspektroskopie nachzuweisen [21]. In einem spektralen Bereich von 400 cm⁻¹ bis 4000 cm⁻¹ nahmen sie ein FTIR-Spektrum mit 0.5 cm⁻¹ Auflösung auf und konnten sechs der sieben Fundamentalschwingungen

Z	uordnung	Gasphase	Matrix	QCISD	QCISD(T)
ν_1	$\nu(\text{CNO})_{\text{as}}$	$2328~\mathrm{cm}^{-1}$	$2356\mathrm{cm}^{-1}$	$2526\mathrm{cm}^{-1}$	$2445\mathrm{cm}^{-1}$
ν_2	$ u({ m NC}) $	$2192~\mathrm{cm}^{-1}$	$2192\mathrm{cm}^{-1}$	$2306\mathrm{cm}^{-1}$	$2231\mathrm{cm}^{-1}$
$ u_3$	$\nu(\text{CNO})_{\text{s}}$	$1442 {\rm ~cm^{-1}}$	$1445\mathrm{cm}^{-1}$	$1456\mathrm{cm}^{-1}$	$1460\mathrm{cm}^{-1}$
$ u_4$	$ u({ m CC})$	$722~{ m cm^{-1}}$		$736\mathrm{cm}^{-1}$	$733{ m cm^{-1}}$
ν_5	$\delta(\mathrm{CNO})$	$511 cm^{-1}$		$502\mathrm{cm}^{-1}$	$475\mathrm{cm}^{-1}$
$ u_6$	$\delta(m NCC)$	$409~{ m cm^{-1}}$	$407\mathrm{cm}^{-1}$	$438\mathrm{cm}^{-1}$	$405\mathrm{cm}^{-1}$
ν_7	$\delta(ext{CCN})$			$94\mathrm{cm}^{-1}$	$54\mathrm{cm}^{-1}$

Tabelle 5.4 Experimentelle [20,22] und berechnete [22] Bandenlagen von NCCNO.

TTO

identifizieren, die in der Tabelle 5.4 aufgeführt sind. Im Jahre 1996 folgte eine umfangreichere ergänzende Arbeit von PASINSZKI und WESTWOOD [22], die darüberhinaus spektroskopische Untersuchungen im ultravioletten Spektralbereich und umfangreiche quantenchemische *ab in-itio*-Berechnungen enthielt.

Sowohl die Konturen der Streckschwingungsbanden als auch die *ab initio*-Berechnungen deuteten auf eine sehr niedrigliegende CCN-Knickschwingung großer Amplitude mit möglicherweise quasilinearem Verhalten hin. Die quantenchemischen Berechnungen auf QCISD- und QCISD(T)-Niveau mit dem Popleschen Basissatz 6-31G^{*} lieferten ein sehr anharmonisches Knickschwingungspotential, das sehr flach und breit ist, jedoch keine Barriere zur Linearität aufweist. Die folgenden Potentialfunktionen $V(\rho)$ als Funktion des CCN-Bindungswinkels ρ wurden ermittelt:

$$V(\rho)_{QCISD} = 0.3694 \rho^2 + 1.1 \times 10^{-4} \rho^4, \qquad (5.90)$$

$$V(\rho)_{QCISD(T)} = 0.076 \,\rho^2 + 1.1 \times 10^{-4} \,\rho^4 + 1.7 \times 10^{-8} \,\rho^6.$$
(5.91)

Gerade die Berechnung auf QCISD(T)-Niveau liefert ein sehr anharmonisches Potential mit erheblichem quartischen Anteil. Die harmonische Wellenzahl der niedrigstliegenden CCN-Knickschwingung wurde zu 94 cm⁻¹ bzw. 54 cm⁻¹ berechnet. Sämtliche berechneten Bandenlagen sind in der Tabelle 5.4 aufgeführt. Eine Berechnung der Verteilung der potentiellen Energie auf die verschiedenen Schwingungsfreiheitsgrade (PED, engl., Potential Energy Distribution) auf Grundlage von unskalierten QCISD-Kraftkonstanten zeigt, daß die symmetrische und asymmetrische CNO-Streckschwingung ν_3 und ν_1 in guter Näherung jeweils als reine NO- bzw. CN-Schwingung beschrieben werden können. Die PED-Werte der anderen Schwingungen deuten auf starke Kopplungen dieser Schwingungen hin.

Das Photoelektronen-Spektrum zeigt keine Aufspaltung der in einem regulär linearen Molekül entarteten π -Orbitale. In einer späteren Veröffentlichung von Guo *et al.* [23] wurde die Zuordnung der CNO-Knickschwingung ν_5 korrigiert. Die Lage der ν_5 -Bande wurde dann zu 422 cm⁻¹

Tabelle 5.5 Ermittelte spektroskopische Konstanten von NCCNO für den Schwingungsgrundzustand und die Zustände (ν_4), ($\nu_5 + \nu_6$), (ν_6) und ($\nu_6 + \nu_7$) [23].

	$ ilde{ u}_{ m c}/{ m cm}^{-1}$	B/cm^{-1}	$D/10^{-9} { m cm}^{-1}$	$q/10^{-6} { m cm}^{-1}$	$q_D / 10^{-12} \mathrm{cm}^{-1}$
(GS)	0.0	0.07708554(34)	4.570(30)		
(u_4) (σ)	714.753941(57)	0.07702482(35)	4.583(30)		
$(u_5+ u_6)~(\sigma)$	826.291859(79)	$0.077\ 270\ 47\ (35)$	4.208(31)		
(u_6) (π)	403.925967(61)	0.07721463(35)	4.504(30)	0.31477(52)	$0.258\ (88)$
$(u_6+ u_7)~(\sigma)$	490.123622(70)	0.07761902(35)	2.643(32)		

	$B/{ m MHz}$	D/kHz	$I_0 / \mathrm{u} \mathrm{\AA}^2$
NCCNO	2310.997796(59)	0.1493(17)	218.6844
$^{15}\mathrm{NCCNO}$	2245.15080(13)	0.1374(57)	225.0981
$\mathrm{N}^{13}\mathrm{CCNO}$	2290.862681(70)	0.1341(22)	220.6064
$\mathrm{NCC^{15}NO}$	2297.89635~(12)	0.1320(49)	219.9312
$\rm NCCN^{18}O$	2205.3461(2)	0.120(11)	229.1609

Tabelle 5.6 Rotations- und Zentrifugalverzerrungskonstanten verschiedener NCCNO-Isotopomere [24].

bestimmt. Im Laufe ihrer spektroskopischen Untersuchungen stellten PASINSZKI und WEST-WOOD fest, daß das NCCNO-Molekül gar nicht so instabil ist, wie zunächst erwartet. Bei einem Druck von rund 60 Pa in ihrer IR-Absorptionszelle nahm die Konzentration von NCCNO erst nach zwei Stunden um rund 90 % ab, so daß das NCCNO-Molekül besser als semi-stabil bezeichnet werden sollte.

Im gleichen Jahr wurde von GUO *et al.* [23] im Laboratorium von P. BERNATH erstmals ein hochaufgelöstes FTIR-Spektrum von NCCNO im mittleren Infrarot von 200 cm⁻¹ bis 4000 cm⁻¹ mit einer Auflösung von 0.005 cm⁻¹ aufgenommen. NCCNO wurde durch die Pyrolyse seines Dimers Dicyanofuroxan (NCCNO)₂ generiert und im langsamen Fluß durch die IR-Absorptionszelle gepumpt. Aus dem äußerst komplexen Spektrum, das eine Liniendichte von rund 100 Linien pro cm⁻¹aufweist, konnte die Lage der CC-Streckschwingungsfundamentalen ν_4 zu 714 cm⁻¹ und das Bandenzentrum der NCC-Knickschwingungsfundamentalen ν_6 zu 404 cm⁻¹ bestimmt werden. Eine Bande um 490 cm⁻¹, die zunächst als CNO-Knickschwingungsfundamentale identifiziert wurde, konnte der Kombinationsbande $\nu_6 + \nu_7$ zugeordnet werden, da keinerlei Hinweise auf einen Q-Zweig im Spektrum entdeckt werden konnte. Aus dieser Kombinationsbande wurde die Lage der niedrigstliegenden CCN-Knickschwingung ν_7 zu 86 cm⁻¹ abgeschätzt. Eine Bande um 826 cm⁻¹ konnte der Kombinationsbande $\nu_5 + \nu_6$ zugeordnet werden. Daraus wurde das Bandenzentrum der nicht direkt beobachteten CNO-Knickschwingungsfundamentalen ν_5 auf 422 cm⁻¹ geschätzt. In der Tabelle 5.5 sind die ermittelten spektroskopischen Konstanten der verschiedenen Schwingungszustände aufgeführt.

Die symmetrische und asymmetrische CNO-Streckschwinung ν_1 und ν_3 sowie die NC-Streckschwingung ν_2 konnten nicht im Detail analysiert werden, da die Struktur der Absorptionsbanden wegen des Auftretens zahlreicher *hot bands* in Verbindung mit der niedrigstliegenden Knickschwingung ν_7 zu komplex ist.

Ende des Jahres 1996 wurde von BRUPBACHER *et al.* [24] ein Fourier-Transform-Mikrowellenspektrum eines gepulsten NCCNO-Molekularstrahles zwischen 4 GHZ und 23 GHz aufgenommen. Das erhaltene *a*-Typ-Rotationsspektrum von NCCNO im Schwingungsgrundzustand entsprach

	Exp.	MP3	QCISD	QCISD(T)	B3-LYP
	r_s	$6-31G^*$	$6-31G^*$	$6\text{-}31\mathrm{G}^{*}$	$6-31G^*$
r(N-C)/Å	1.1606	1.162	1.171	1.180	1.169
r(C-C)/Å	1.363.3	1.375	1.379	1.373	1.361
$r(\text{C-N})/\text{\AA}$	$1.157\ 4$	1.162	1.169	1.179	1.172
r(N-O)/Å	$1.193\ 3$	1.197	1.212	1.212	1.198

Tabelle 5.7 Experimentelle [24] und berechnete Kernabstände [22] von NCCNO.

Abbildung 5.3 Fortrat-Diagramm von NCCNO im zweiten angeregten Zustand der CCN-Knickschwingung ν_7 . l_7 ist die Quantenzahl des schwingungsinduzierten Drehimpulses. Entnommen aus [1].

dem Spektrum eines regulär linearen Moleküls. Aus den Rotations- und Zentrifugalverzerrungskonstanten der Isotopomere ¹⁵NCCNO, N¹³CCNO, NCC¹⁵NO und NCCN¹⁸O konnte eine r_s -Struktur bestimmt werden. Unter der Annahme einer linearen Gleichgewichtsgeometrie wurden so die verschiedenen, in der Tabelle 5.7 aufgelisteten, Kernabstände ermittelt. Die Position des zentralen Kohlenstoffatoms wurde aus der Schwerpunktsbedingung abgeleitet. Da die errechneten Kernabstände keinerlei Anomalien aufweisen, wurde dies als Indiz für eine lineare Gleichgewichtsgeometrie gewertet, wobei jedoch quasilineares Verhalten nicht grundsätzlich ausgeschlossen werden konnte.

LICHAU [1] gelang es im Jahre 1998, sowohl das *a*-Typ-Rotationsspektrum im Millimeterwellenund Sub-Millimeterwellenbereich als auch das rotationsaufgelöste Vibrationsspektrum der niedrigstliegenden CCN-Knickschwingung ν_7 von NCCNO zu messen und zu analysieren. Das *a*-Typ-Rotationsspektrum sah zunächst wie das Rotationsspektrum eines regulär linearen Moleküls aus. Erst die genauere Betrachtung des Fortrat-Diagrammes von NCCNO in angeregten Zuständen der niedrigstliegenden Knickschwingung ν_7 lieferte den entscheidenden Hinweis auf eine Anomalie. Bei einem Fortrat-Diagramm wird die Rotationsquantenzahl J gegen die durch die Division der experimentellen Übergangsfrequenz ν durch 2(J + 1) erhaltene effektive Rotationskonstante aufgetragen. Die Übergänge eines Subzustandes bilden dabei eine mehr oder weniger stark gekrümmte vertikale Linie, eine sogenannte Serie. Wie anhand der Abbildung 5.3 deutlich zu erkennen ist, ist die Serie des Subzustandes $(v_7 = 2)^{0e}$ nach rechts zu größeren reduzierten Übergangsfrequenzen gekrümmt, wohingegen die des Subzustandes $(v_7 = 2)^{2e}$ nach links zu kleineren reduzierten Übergangsfrequenzen gekrümmt ist. Daraus leitete LICHAU ab, daß der Termwert der Subzustände $(v_7 = 2)^{2e/f}$ kleiner ist als der des Subzustandes $(v_7 = 2)^{0e}$. Offensichtlich handelt es sich somit um eine deutlich anharmonische CCN-Knickbewegung, die NCCNO zu-

Abbildung 5.4 Angepaßte Potentialfunktion für die CCN-Knickschwingung ν_7 von NCCNO und erhaltene Termwerte nach LICHAU [1]. Die gepunktete Linie entspricht der von PASINSZKI und WESTWOOD berechneten Potentialfunktion [22]. γ_0 ist der aus der Analyse bestimmte Quasilinearitätsparameter (siehe Text). Entnommen aus [1].

mindest zu einem leicht quasilinearen Molekül macht. Die Analyse des FIR-Spektrums von NCCNO bestätigte die Interpretation des Millimeterwellenspektrums. LICHAU konnte auf diese Weise das Termschema der niedrigstliegenden Knickschwingung ν_7 bis zum fünffach angeregten Zustand aufbauen. Eine Analyse dieser Knickschwingung nach dem Modell eines halbstarren Knickschwingers ergab eine Potentialfunktion mit einem deutlich quartischen Beitrag. Die ermittelte Potentialfunktion wurde bestimmt zu:

$$V(\rho)/cm^{-1} = 728.30\,(80)\,(\rho/\text{rad})^2 + 915.4\,(23)\,(\rho/rad)^4.$$
(5.92)

Der quadratische und der quartische Beitrag liegen somit in der gleichen Größenordnung. In der Abbildung 5.4 ist die an die experimentellen Daten angepaßte Potentialfunktion abschließend graphisch dargestellt. Aus den experimentellen Termwerten bestimmte LICHAU den Quasilinearitätsparameter zu $\gamma_0 = -0.939$, die Analyse lieferte einen Wert von $\gamma_0 = -0.942$. Der Parameter γ_0 wurde im Jahre 1976 von YAMADA und M. WINNEWISSER [25] zur Quantifizierung der Quasilinearität eingeführt. Es gilt:

$$\gamma_0 = 1 - 4 \, \frac{E_1}{E_0},\tag{5.93}$$

wobei E_1 für die Energie des niedrigsten Zustandes mit $K_a = 1$ bzw. l = 1 und E_0 für die Energie des niedrigsten angeregten Zustandes mit $K_a = 0$ bzw. l = 0 steht. Dieser Parameter kann Werte von -1 für ein regulär lineares bis +1 für ein gewinkeltes Molekül annehmen.

5.4 Präparation des Pyrolysevorläufers

Die Präparation des NCCNO-Moleküls erfolgte sowohl für die FTIR-Messungen in der 3 m-Absorptionszelle als auch für die Molekularstrahlmessungen pyrolytisch. Ausgangspunkt ist das 3,4-Dicyanofuroxan, das in Anlehnung an die Beschreibung von PASINSZKI und WEST-WOOD [22, 23] als Pyrolysevorläufer verwendet wurde. Die explizite Beschreibung der Darstellung dieses Pyrolysevorläufers findet man bei [1].

Nach PARKER *et al.* [26] wird Cyanoessigsäure mit rauchender Salpetersäure und katalytischen Mengen an rauchender Schwefelsäure zu 3,4-Dicyanofuroxan umgesetzt:

Nach Reinigung der Reaktionslösung und Abtrennung des Lösungsmittels fällt das Reaktionsprodukt in guter Ausbeute als Feststoff mit einem Schmelzpunkt von rund 40 °C aus. Im nächsten Schritt erfolgt die Pyrolyse des Vorläufers nach:

Auf die genauen experimentellen Bedingungen der Pyrolyse wird in den nächsten Kapiteln eingegangen werden.

5.5 Messung des FTIR-Spektrums von NCCNO im mittleren Infrarot

Wie bereits eingehend im vorigen Kapitel dargelegt wurde, konnte bis dato das Rotations-Schwingungs-Spektrum des NCCNO-Moleküls im mittleren Infrarot, das bereits von Guo *et al.* [23] aufgenommen wurde, nicht analysiert werden, da aufgrund der niedrigliegenden CCN-Knickschwingung und der somit zahlreich auftretenden *hot bands* eine Bestimmung der Bandenzentren der Fundamentalbanden und weiterer Subbanden nicht möglich war. Darüber hinaus waren die spektroskopischen Konstanten angeregter ν_7 -Knickschwingungszustände unbekannt. Sie wurden erst im Jahre 1998 von LICHAU durch Messungen im Bereich der Millimeterwellen und des fernen Infrarot im Molekülspektroskopischen Laboratorium des Physikalisch-Chemischen-Instituts der Justus-Liebig Universität ermittelt [1]. Zur Bestimmung der Banden-

5.5.1 Durchführung der Messungen des MIR-Spektrums von NCCNO in der 3 m-Absorptionszelle

In Anlehnung an die Experimente von GUO *et al.* [23] wurden im Gießener Laboratorium Absorptionsmessungen an NCCNO in einer Absorptionszelle mit verbesserter instrumenteller Auflösung durchgeführt, die Spektren mit sehr gutem Signal-zu-Rausch-Verhältnis lieferten. NCCNO wurde, wie bereits erwähnt, durch Pyrolyse von 3,4-Dicyanofuroxan dargestellt. Ein kleiner Kolben, in dem sich der Vorläufer befand, wurde mittels eines Young-Hahnes mit dem Pyrolyserohr aus Quarz verbunden. Die horizontale Pyrolysezone wurde mit einem 7 cm langen Röhrenofen, einem Ersatzheizelement eines Hammerlötkolbens der Firma ERSA², auf rund 870 K geheizt. Das Pyrolyserohr wurde mittels Normalschliff-Duranglasrohren mit der Absorptionszelle verbunden, so daß der Abstand zwischen der Pyrolysezone und dem Einlaß der Absorptionszelle rund einen halben Meter betrug. An die Absorptionszelle war eine flüssig-Stickstoff-gekühlte Kühlfalle und ein aus einer Rotations- und Treibmittelpumpe bestehender Pumpstand angeschlossen, der mit einem Teflonventil von der Zelle abgetrennt werden konnte. Das Teflonventil und der Young-Hahn wurden nun ein wenig geöffnet, so daß sich ein langsamer Fluß durch die Zelle einstellte. Der Substanzdruck in der Zelle betrug rund 0.03 mbar. Auf eine Kühlung der Zelle wurde verzichtet.

Zur Aufnahme des Bandensystems der asymmetrischen CN-Streckschwingung ν_1 um 2350 cm⁻¹ und der NC-Streckschwingung ν_2 um 2200 cm⁻¹ wurde der Globar als Strahlungsquelle verwendet, wobei der Aperturdurchmesser auf 1.3 mm begrenzt wurde. Zur Teilung des parallelen IR-Strahles wurde ein Si:CaF₂-Strahlenteiler verwendet, als Detektor fungierte ein InSb-Halbleiter-Detektor. Fenstermaterial der Absorptionszelle war CaF₂. Über Nacht wurden unter sehr langsamen Flußbedingungen insgesamt 397 Scans bei Raumtemperatur erhalten, die addiert wurden. Da die zu erwartende Doppler-Verbreiterung bei 2200 cm⁻¹ rund 3.3×10^{-3} cm⁻¹ betrug, wurde mit einer instrumentellen Auflösung von 3.0×10^{-3} cm⁻¹ gemessen. In der Tabelle 5.8 sind die Meßparameter nochmals zusammengefaßt.

Das für NCCNO in diesem spektralen Bereich erhaltene Interferogramm wurde durch eine Fourier-Transformation in ein Spektrum überführt. Durch anschließende Division mit einem zuvor aufgenommenen Hintergrundspektrum wurde ein Transmissionsspektrum berechnet. Durch anschließendes Postzerofilling wurde die Anzahl der Interferogrammpunkte vervierfacht und erneut ein Transmissionsspektrum, das den Namen ZTJETBGS.1 trägt, berechnet. Diese OPUS³-Datei befindet sich auf einer separaten *Compact Disc* im File NCCNO.a.zip unter dem Verzeichnis FTIR/Zelle/NCCNO/TFILE. Das Transmissionsspektrum ZTJETBGS.1 wurde anhand von CO-Rotations-Schwingungs-Übergängen [27] kalibriert. In der Tabelle 5.9 sind die Kalibrationsdaten aufgeführt. Die Kalibrationsdatei ztjetbgs.cal befindet sich ebenfalls auf der beigefügten *Compact Disc* im File NCCNO/CAL. Zudem wurde mit dem Standard-Peakfinder von OPUS eine Linienliste, ZTJETBGS.PLI, mit den Übergangswellen-

²ERSA Löttechnik GmbH, 97877 Wertheim

³OPUS Spektroskopiesoftware, Bruker Analytische Meßtechnik GmbH, 76189 Karlsruhe

Abbildung 5.5 Das Transmissionsspektrum von NCCNO zwischen 2050 cm⁻¹ und 2450 cm⁻¹. Das NCCNO befand sich in der 3 m-Zelle bei einer Temperatur von rund 298 K. Der Substanzdruck betrug 0.03 mbar, die instrumentelle Auflösung wurde mit 0.003 cm⁻¹ etwas größer als die bei dieser Temperatur zu erwartende Doppler-Verbreiterung gewählt. Insgesamt wurden 397 Scans aufgenommen. Die in dem Spektrum eingezeichneten schwarzen Linien kennzeichnen den zu erwartenden Verlauf der Basislinie und verdeutlichen, daß aufgrund der enormen Liniendichte sowohl die ν_2 - als auch die ν_1 -Bande nicht vollständig aufgelöst sind.

zahlen aller ermittelten Rotations-Vibrations-Übergänge erstellt. Rund 18 000 Linienpositionen wurden insgesamt erhalten, dies entspräche im Falle von vollständig aufgelösten Bandensystemen einer Liniendichte von rund 130 Linien pro Wellenzahl im Bereich von 2 280 cm⁻¹ bis 2 380 cm⁻¹ und rund 100 Linien pro Wellenzahl im Bereich von 2 160 cm⁻¹ bis 2 210 cm⁻¹. Die Unsicherheit der Linienpositionen wurde zu 2×10^{-4} cm⁻¹ abgeschätzt. In der Abbildung 5.5 ist dieses Transmissionsspektrum dargestellt. Deutlich zu sehen sind die nicht vollständig rotationsaufgelösten Bandensysteme der schwächeren NC-Streckschwingung und der asymmetrischen CN-Streckschwinung. Die Bande um 2 130 cm⁻¹ stammt von CO, das als Nebenprodukt bei der Pyrolyse entsteht.

Die Messung des Bandensystems der symmetrischen NO-Streckschwingung ν_3 bei rund 1450 cm⁻¹ wurde unter sehr ähnlichen Bedingungen gemessen. Mit rund 0.055 mbar wurde der Substanzdruck in der Absorptionszelle ein wenig höher gewählt. Da die zu erwartende Dopplerverbreiterung sich zu rund 2.2×10^{-3} cm⁻¹ errechnete, wurde die experimentelle Auflösung auf 2.0×10^{-3} cm⁻¹ festgelegt. Die CaF₂-Fenster der Zelle wurden durch KBr-Fenster ersetzt, der Si:CaF₂-Strahlenteiler durch einen Ge:KBr-Strahlenteiler, zudem wurde ein mit flüssigem Heli-

Abbildung 5.6 Das Transmissionsspektrum von NCCNO zwischen 1 400 cm⁻¹ und 1 500 cm⁻¹. Das NCCNO befand sich in der 3 m-Zelle bei einer Temperatur von rund 298 K. Der Substanzdruck betrug 0.055 mbar, die instrumentelle Auflösung wurde mit 0.002 cm⁻¹ etwas größer als die bei dieser Temperatur zu erwartende Doppler-Verbreiterung gewählt. Insgesamt wurden 320 Scans aufgenommen. Die in dem Spektrum eingezeichnete schwarze Linie kennzeichnet den zu erwartenden Verlauf der Basislinie und verdeutlicht, daß aufgrund der hohen Liniendichte das NO-Streckschwingungsbandensystem ν_3 nicht vollständig aufgelöst ist. Die einzelnen starken Absorptionslinien stammen von Wasser-Absorptionen in diesem Bereich.

um gekühlter GeCu-Detektor für die Messungen verwendet. Die genauen Meßbedingungen sind der Tabelle 5.8 zu entnehmen. Die Spektrenaufarbeitung erfolgte auf die bereits geschilderte Weise. Das nach dem Postzerofilling berechnete Spektrum ZTJETBDS.1 wurde mittels OCS-Linienpositionen [27] kalibriert. Die Kalibrationsparameter sind in der Tabelle 5.9 aufgelistet. Insgesamt wurden rund 7150 NCCNO-Linienpositionen, die in der Datei ZTJETBDS.PLI zu finden sind, bestimmt. Das Transmissionsspektrum ZTJETBDS.1, die Kalibrationsdatei ztjetbes.cal und die Peakliste ZTJETBDS.PLI befinden sich ebenfalls auf der beigefügten *Compact Disc.* Wie die anderen Bandensysteme, so ist auch dieses Bandensystem nicht vollständig rotationsaufgelöst; die sich ergebende Liniendichte von rund 70 Linien pro Wellenzahl im Intervall von 1400 cm⁻¹ bis 1500 cm⁻¹ ist daher in Wirklichkeit höher. Wegen der geringeren Linienbreite in diesem spektralen Bereich wurde die Genauigkeit einer Linienposition zu 1.0×10^{-4} cm⁻¹ angesetzt.

Aufgrund der starken Überlagerung der verschiedensten Rotations-Vibrations-Übergänge wurde dieses Bandensystem darüber hinaus mit der Peakfinder-Routine der Spektroskopiesoftware

	$1400~{\rm cm^{-1}}$ bis $1500~{\rm cm^{-1}}$	$2050 {\rm ~cm^{-1}} {\rm ~bis} \; 2450 {\rm ~cm^{-1}}$
Strahlungsquelle	Globar	Globar
Apertur	$1.3\mathrm{mm}$	$1.3\mathrm{mm}$
Meßbereich	$988 - 1974 \mathrm{cm}^{-1}$	1860 - $2790\mathrm{cm}^{-1}$
${\it Strahlenteiler}$	Ge:KBr	${ m Si:CaF_2}$
Detektor	${\it GeCu-Photoleiter}$	InSb-Halbleiter
ont Filton	#3,	#5,
opt. rmer	$1100-1800{ m cm^{-1}}$	$1950-2750{ m cm^{-1}}$
elektronische Filter	$1066-2290{ m cm^{-1}}$	$1698-3001{ m cm^{-1}}$
Fenster	KBr	CaF_2
instrum. Auflösung	$0.002~{ m cm}^{-1}$	$0.003~{ m cm^{-1}}$
Anzahl der Scans	320	397
optische Weglänge	3.02 m	3.02 m
Temperatur	298 K	298 K
${\it Substanzdruck}$	$0.030 \mathrm{\ mbar}$	$0.055 \mathrm{\ mbar}$

Tabelle 5.8 Meßparameter zur Aufnahme der Infrarot-Spektren von NCCNO.

HILRAPSS99 [28] bearbeitet. Mit diesem Programm gelingt es unter bestimmten Voraussetzungen, einzelne Rotations-Vibrations-Linien in stark überlagerten Bereichen zu identifizieren. Das Programm benötigt als Startinformation den Typ der Linienprofilfunktion, die minimale Transmission der schwächsten Rotations-Vibrations-Linien, und die Halbwertsbreite einer vollständig aufgelösten Rotations-Vibrations-Linie. Mit diesen Informationen wird ein berechnetes Spektrum so an das experimentelle Spektrum angepaßt, daß die Abweichungen minimal werden (vgl. auch Kapitel 6). Insgesamt wurden mit diesem Programm rund 14 000 Linienpositionen ermittelt, die im Verzeichnis HILRAPSS in der Datei ZTJETBDH.ASC zu finden sind. In der Abbildung 5.6 ist das Transmissionsspektrum von NCCNO von 1400 cm⁻¹ bis 1500 cm⁻¹ dargestellt. Bei den starken Linien handelt es sich um Absorptionen von Wasser aus atmosphärischem Restgas in den Spektrometer-Kammern.

Eine Auflistung sämtlicher Dateinamen der Hintergrundspektren, der einzelnen Meßblöcke, der Kalibrationsdateien, der Peaklisten und der Transmissionfiles finden sich im Anhang D. Diese Files befinden sich auf der beigefügten *Compact Disc*.

		ZTJETBDS.1	ZTJETBGS.1.
Kalibrationsdatei	:	ztjetbes.cal	ztjetbgs.cal
Kalibration	:	OCS (extern),	CO (intern),
		37 OCS-Linien,	7 CO-Linien,
		von $1686 - 1727 \ {\rm cm}^{-1}$	${\rm von}~2086-2170~{\rm cm}^{-1}$
Kalibrationsfaktor	:	1.0000011600(10)	1.0000012400(10)
Standardabweichung			
der Anpassung $/\mathrm{cm}^{-1}$:	1.43×10^{-5}	$4.31 \times 10^{-6} \text{ cm}^{-1}$

Tabelle 5.9 Parameter zur Kalibration der Transmissionsfiles ZTJETBDS.1 und ZTJETBGS.1.

Abbildung 5.7 Schematische Darstellung der NCCNO-Pyrolyseapparatur.

5.5.2 Durchführung der Messungen des MIR-Spektrums eines NCCNO-Molekülstrahles

Aufgrund des bereits angesprochenen Zuordnungs-Problems der Fundamentalbanden der Streckschwingungen ν_1 , ν_2 und ν_3 zwischen 1 400 cm⁻¹ und 2 500 cm⁻¹ sowie deren hot bands wurden Molekularstrahlexperimente mit NCCNO durchgeführt. Eine schematische Darstellung der Pyrolysevorrichtung ist in der Abbildung 5.7 dargestellt. Der NCCNO-Vorläufer 3,4-Dicyanofuroxan wurde in einer sehr schmalen Kühlfalle bei rund 320 K zum Schmelzen gebracht. Im Inneren der Kühlfalle befand sich ein sehr schmales Glasrohr, das fast bis zum Boden der Kühlfalle reichte. Durch dieses Glasrohr wurde Argon mit einem Druck von rund 150 mbar durchgeströmt, der mittels des ersten Young-Hahnes der Kühlfalle und eines weiteren Reduzierventils eingeregelt wurde. Das Argon durchströmte den flüssigen Vorläufer und auf diese Weise wurden größere Mengen desselbigen mitgerissen. Dieses Gasgemisch wurde dann extern in einem Quarzrohr bei rund 870 K pyrolysiert. Dazu wurde derselbe 7 cm lange Röhrenofen wie bei den Messungen in der Absorptionszelle verwendet. Das Pyrolyserohr wurde mit einem rund 3 m langen Teflonschlauch an die Einlaßvorrichtung der Düse angeschlossen. Zur Expansion dieses Gasgemisches wurde eine Edelstahllochdüse mit 0.3 mm Durchmesser verwendet.

Unter Berücksichtigung der sehr divergenten Expansion wurde die instrumentelle Auflösung auf 0.008 cm⁻¹ begrenzt. Mit dieser Auflösung wurde sowohl das Bandensystem der symmetrischen NO-Streckschwingung ν_3 als auch die Bandensysteme der NC- und CN-Streckschwingung ν_2 bzw. ν_1 gemessen. Im Bereich um 1450 cm⁻¹ wurden insgesamt 60 Scans aufgenommen, im Bereich der anderen Streckschwingungen wurden 160 Scans addiert. Die instrumentellen Meßparameter entsprechen den in der Tabelle 5.8 angegebenen Werten. Die Transmissionsfiles tragen die Bezeichnung ZTJETADF.1 (2100 – 2500 cm⁻¹) bzw. ZTJETBBS.1 (1400 – 1500 cm⁻¹) und befinden sich auf der beigefügten *Compact Disc* unter NCCNO.a.zip im Verzeichnis FTIR/JET/NCCNO/TFILE. Die dazugehörigen Linienlisten weisen die Endung PLI auf und befinden sich im Verzeichnis FTIR/JET/NCCNO/PLI, die Kalibrationsfiles ztjetadf.cal und ztjetbes.cal befinden sich im Verzeichnis CAL. In der Tabelle 5.10 sind die Kalibrationsdaten aufgeführt. Die

		ZIJEIBBS.I	ZIJEIADF.I.
Kalibrationsdatei	:	ztjetbes.cal	ztjetadf.cal
Kalibration :		OCS (extern),	CO_2 über CO (extern),
		37 OCS-Linien,	8 CO_2 -Linien,
		von $1686 - 1727~{ m cm^{-1}}$	$\mathrm{von}~2351-2371~\mathrm{cm}^{-1}$
Kalibrationsfaktor	:	1.0000011600(10)	1.0000012400(10)
Standardabweichung			
der Anpassung $/\mathrm{cm}^{-1}$:	1.43×10^{-5}	$9.38 \times 10^{-7} \mathrm{~cm^{-1}}$

Tabelle 5.10 Parameter zur Kalibration der Transmissionsfiles ZTJETBBS.1 und ZTJETADF.1.

Kalibration wurde anhand von OCS- und CO-Kalibrationslinien durchgeführt [27]. Der Hintergrunddruck in der Expansionskammer betrug rund 4.5×10^{-4} Torr, der Partialdruck des Vorläufers war nicht exakt bekannt, er betrug schätzungsweise 5 mbar.

Die Rotationstemperatur der NCCNO-Moleküle wurde unter Berücksichtigung von Gleichung (4.39) zu (7.3 ± 1.5) K bestimmt. Diese Rotationstemperatur entspricht ungefähr der unter vergleichbaren Bedingungen erzielten Rotationstemperatur des N₂O-Moleküls (vgl. Kapitel 3.2.2.3). Interessant ist weiterhin die Tatsache, daß bei einer höheren Pyrolysetemperatur von rund 920 K und einer wesentlich kürzeren Teflonverbindung zur Expansionsdüse von rund 1.5 m. das Absorptionssignal von NCCNO zwar ein wenig zunahm, jedoch kam es sehr schnell zur Verstopfung der Düse durch Dimerisierung von NCCNO und durch die Ablagerung von nicht pyrolysiertem Vorläufer. Nach rund 6 Scans mußte die Expansionskammer geöffnet und die Düse mit Aceton gereinigt werden. Bei niedrigerer Pyrolysetemperatur und längeren Zuleitungen konnten problemlos 20 bis 30 Scans mit einer Auflösung von 0.008 cm^{-1} ohne Unterbrechung aufgenommen werden. Zur weiteren Minimierung des Ablagerungsproblems wurden darüberhinaus Messungen mit der heizbaren Kapillardüse durchgeführt. Die Kapillartemperatur wurde auf 300 K, 348 K. 373 K und 413 K eingestellt, jedoch konnten keinerlei NCCNO-Absorptionen in den Spektren entdeckt werden. Die Verbreiterung der Rotations- und Vibrationsverteilung kann nicht der Grund dafür sein, da ein Vergleich von Testmessungen an CO_2 bei 300 K, unter gleichen Bedingungen zwischen Loch- und Kapillardüse durchgeführt, vergleichbare Absorptionen bei nahezu übereinstimmenden Rotationstemperaturen von rund 23 K aufzeigte. Diese Spektren sind in der Abbildung 5.8 dargestellt.

Entscheidend sind vielmehr die Flußbedingungen durch die Kapillare. Während bei den CO_2 -Messungen bei gleichem Vordruck P_0 auch vergleichbare Hintergrunddrücke P_1 in der Expansionskammer herrschten, unterschieden sich im Falle der NCCNO-Messungen die Drucke in der Expansionskammer um einen Faktor zwei bis drei. Der NCCNO-Durchsatz durch die Kapillare war somit wesentlich kleiner. Zum anderen kann vermutet werden, daß sich das NCCNO in der Kapillare zu einem gewissen Teil zersetzt. Des weiteren wurde auch die direkte Pyrolyse des NCCNO-Vorläufers in der Kapillardüse bei rund 840 K probiert. Diese Experimente führten erwartungsgemäß zu keinem Ergebnis, da vermutlich das NCCNO in großem Maße in der Kapillare zersetzt wird, darüberhinaus eine starke Zunahme der Population angeregter Rotationsund Vibrationzustände mit Erhöhung der Düsentemperatur einhergeht, somit eine Verteilung der Absorption auf eine Vielzahl von Übergängen stattfindet (vgl Kapitel 3.2.2.4). Zudem ist der Substanzfluß verglichen zu einer Expansion durch die Lochdüse wesentlich geringer.

Eine Auflistung sämtlicher Dateinamen der Hintergrundspektren, der einzelnen Meßblöcke, der

Abbildung 5.8 Ausschnitt aus dem FTIR-Spektrum eines CO₂-Molekularstrahls. Dargestellt ist der Übergang $(\nu_3) - (GS)$ von ¹³CO₂, da die CO₂-Bande $(\nu_3) - (GS)$ durch Übergänge von warmen, im Spektrometer befindlichen CO₂ überlagert ist. Sowohl die Expansion durch die Kapillardüse (oben) als auch durch die Lochdüse (unten) ergab eine Rotationstemperatur von rund 23 K. Die instrumentelle Auflösung betrug 4.0×10^{-3} cm⁻¹.

Kalibrationsdateien, der Peaklisten und der Transmissionfiles finden sich im Anhang D. Diese Files befinden sich ebenfalls auf der beigefügten *Compact Disc*.

5.6 Zuordnung der Rotations-Vibrations-Übergänge

Im Jahre 1996 gelang es GUO et al. [23], die in einem spektralen Bereich von 400 cm⁻¹ bis 720 cm⁻¹ befindlichen Fundamentalbanden der CC-Streckschwingung ν_4 , der CNO-Knickschwingung ν_5 und NCC-Knickschwingung ν_6 zu analysieren. Zwei Jahre später konnte LICHAU [1] das FIR-Spektrum von NCCNO um 80 cm⁻¹ aufnehmen und ein Energietermschema bis zur fünffach angeregten CCN-Knickschwingung ν_7 aufbauen. Im Spektralbereich von 1000 cm⁻¹ bis 2500 cm⁻¹ besitzt das NCCNO-Molekül drei weitere Streckschwingungs-Bandensysteme, die von GUO et al. [23] gemessen wurden, aufgrund der enorm hohen Liniendichte jedoch nicht analysiert werden konnten (vgl. Abbildung 5.9).

Im Rahmen dieser Arbeit wurden diese Bandensysteme untersucht. Es handelt sich um das intensitätsstärkste Bandensystem der CN-Streckschwingung ν_1 bei 2 353 cm⁻¹, um das Bandensystem der NC-Streckschwingung ν_2 um 2 192 cm⁻¹, das, wie aus niedrigaufgelösten Messungen hervorgeht, eine rund zehnmal kleinere Absorbanz aufweist und das Bandensystem der NO-

Abbildung 5.9 Die bis zu dieser Arbeit analysierten Normalschwingungen des NCCNO-Moleküls.

Streckschwingung ν_3 bei 1447.5 cm⁻¹, das halb so intensiv ist wie das ν_1 -Bandensystem. Die Bandensyteme dieser Streckschwingungen werden durch die Fundamentalübergänge und durch *hot bands* aus angeregten Zuständen der niedrigstliegenden Knickschwingung ν_7 bestimmt. Im Falle der Fundamentalbanden handelt es sich um

• Parallelübergänge: $\Sigma^+ - \Sigma^+$ mit l = 0, $\Delta l = 0$ und $\Delta J = \pm 1$. Es findet keine Änderung der Parität statt, daher gibt es nur R- und P-Zweige.

Für die hot bands gilt:

• $l \neq 0$ mit $\Delta l = 0$. $\Pi - \Pi$ -, $\Delta - \Delta$ - usw. Übergänge ohne Paritätsänderung, daher treten wiederum nur P- und R-Zweige auf.

Q-Zeige sind in diesen Spektren nur bei einer Änderung der *l*-Quantenzahl zu erwarten, also etwa bei Obertönen, die allerdings merklich intensitätsschwächer sein sollten. Mit den erhaltenen NCCNO-Molekularstrahlspektren konnten erstmals die Fundamentalbanden identifiziert und die Bandenzentren sowie die *J*-Zuordnung bestimmt werden. Mit diesen Informationen wurden die aus den Messungen in der 3 m-Absorptionszelle erhaltenen Daten analysiert und höhere Rotationszustände zugeordnet. Aufgrund der offensichtlich sehr niedrigen Rotations- und Vibrationstemperaturen konnten jedoch keinerlei Informationen über *hot bands* in den Molekularstrahlmessungen gewonnen werden. Versuche, durch die Verwendung einer Schlitzdüse oder eines anderen Trägergases (Helium bzw. Stickstoff) einen wärmeren Molekularstrahl zu erzeugen

Abbildung 5.10 Loomis-Wood-Diagramm des bei Raumtemperatur gemessenen ν_1 -Bandensystems von NCCNO. Markiert ist eine Subbande der ersten hot band $(\nu_1 + \nu_7)^{1e} - (\nu_7)^{1e}$. Das Symbol LS markiert die lokalen Störungen der Bande.

und somit Übergänge aus angeregten Zuständen der ν_7 -Knickschwingung zu erhalten, schlugen fehl. Offensichtlich wurde bei diesen Versuchen die Population so stark auf angeregte Rotations-Vibrations-Zustände verteilt, daß keinerlei NCCNO-Absorptionen mehr zu erkennen waren.

Weitere Zuordnungen erfolgten mit dem Programm LW51 [29], das nach dem Verfahren von LOOMIS und WOOD [30] arbeitet. Bei diesem Verfahren werden dem Spektrum Abschnitte der Länge $2B_{ps}^{\prime\prime}$ entnommen und diese untereinander gesetzt. Bei geeigenter Wahl der Reihenentwicklungskonstanten kann man die P(J)- und R(J)-Linien einer Subbande als vertikale Serien erkennen. Die Übergangswellenzahl $\tilde{\nu}$ einer Subbande ist gegeben durch:

$$\tilde{\nu} = \tilde{\nu}_{c} + (2B_{ps}'' + \Delta B_{ps}) m + (\Delta B_{ps} - \Delta D_{ps}) m^{2} - [2 (D_{ps}'' + \Delta D_{ps}) - 2H_{aver}] m^{3} - (\Delta D_{ps} - 3\Delta H_{ps}) m^{4} + 6H_{aver} m^{5} + \Delta H_{ps} m^{6}.$$
(5.94)

Es gilt hierbei $\Delta B_{ps} = B'_{ps} - B''_{ps}$, $\Delta D_{ps} = D'_{ps} - D''_{ps}$, $\Delta H_{ps} = H'_{ps} - H''_{ps}$ und $H_{aver} = 1/2 (H'_{ps} + H''_{ps})$. $\tilde{\nu}_c$ stellt das Zentrum der Subbande dar, die Größen mit " beziehen sich auf das untere und die mit ' auf das obere Energieniveau. m steht für die Rotationsquantenzahl, es gilt

Tabelle 5.11 Reihenentwicklungskonstanten verschiedener Niveaus der Knickschwingung ν_7 von NC-CNO nach LICHAU [1].

Subzustand	G_c/cm^{-1}	$B_{ps}/{ m cm}^{-1}$	$D_{ps}/10^{-9} {\rm cm}^{-1}$	$H_{ps}/10^{-12} {\rm cm}^{-1}$
(GS)	0	0.0770866063(21)	4.7815(69)	0.006642(47)
$(u_7)^{1\mathrm{e}}$	80.5241052(88)	0.0774454508(15)	5.45724(51)	0.007980(36)
$(u_7)^{1\mathrm{f}}$	$80.524261\;(10)$	0.0775900783(14)	6.175(46)	0.012383(32)
$(2\nu_7)^{0{ m e}}$	166.11819(18)	0.077887672(32)	-5.321(11)	-0.36225(75)
$(2\nu_7)^{2e}$	$164.60561\;(34)$	0.077920998(57)	18.26(19)	0.3828(13)
$(2 u_7)^{2\mathrm{f}}$	164.6042509(99)	0.0779205167(18)	$6.64045\ (61)$	0.012509(44)

m = -J'' im P-Zweig und m = J'' + 1 im R-Zweig. Das Programm LW51 übernimmt die Aufteilung und das Untereinandersetzen des Spektrums. Dieses wird in Form einer Linienliste, die die Linienpositionen und die relativen Intensitäten der einzelnen Übergänge enthält, eingelesen. Durch die Wahl geeigneter Startkonstanten können zueinandergehörende Rotations-Vibrations-Übergänge als vertikale Serie erkannt werden. Die einzelnen Linien werden mit einem Cursor markiert und mit einer least-square-Anpassung die Konstanten aus Gleichung (5.94) an die markierten Linienpositionen angepaßt. Oftmals erkennt man dann weitere zur Subbande gehörende Übergänge, so daß nach weiteren Iterationen die gesamten Rotations-Vibrations-Übergänge einer Subbande zugeordnet werden können. In der Abbildung 5.10 ist das LW-Diagramm des ν_1 -Bandensystems von NCCNO dargestellt. In der markierten Subbande sind deutlich einige lokale Störungen zu sehen.

Die korrekte J-Zuordnung einer Subbande wurde durch Vergleich der mit LW51 angepaßten Reihenentwicklungskonstanten der unteren Ausgangs-Zustände mit den aus den LICHAUschen Daten [1] bestimmten Reihenentwicklungskonstanten der verschiedenen angeregten Zustände der Knickschwingung ν_7 sichergestellt. Die bis zur zweifach angeregten Knickschwingung ν_7 bestimmten Reihenentwicklungskonstanten sind in der Tabelle 5.11 aufgeführt.

An dieser Stelle soll kurz auf die Notation der Schwingungszustände des NCCNO-Moleküls eingegangen werden. Diese werden durch die sieben Schwingungsquantenzahlen ($v_1 v_2 v_3 v_4 v_5 v_6 v_7$) gekennzeichnet. Aus Gründen der Übersichtlichkeit werden im folgenden die Schwingungszustände durch die Bezeichnungen der angeregten Schwingungsmoden beschrieben. Der Kombinationszustand aus angeregter ν_7 - und ν_1 -Schwingung trägt demnach die Bezeichnung ($\nu_1 + \nu_7$). Ein Übergang vom Grundzustand (GS, engl., Ground State) in diesen Kombinationszustand wird somit durch ($\nu_1 + \nu_7$) – (GS) beschrieben. Die Schwingungs-Subzustände werden zusätzlich mit der Quantenzahl l_7 des schwingungsinduzierten Drehimpulses und der Symmetrie des Rotations-Schwingungsniveaus des Schwingungs-Subzustandes (e oder f) in der Form ($\nu_1 + \nu_7$) $^{l_7 e, f}$ beschrieben.

5.7 Analyse des Bandensystems der NO-Streckschwingung ν_3

In der Abbildung 5.11 sind sowohl Ausschnitte des Transmissionsspektrums des NCCNO-Molekularstrahls als auch des bei Raumtemperatur aufgenommenen NCCNO-Spektrums dargestellt. Wie man erkennt, gelang es durch den drastischen Abkühlungseffekt der Überschallexpansion das ν_3 -Bandensystem des semi-stabilen NCCNO-Moleküls vollständig aufgelöst zu messen (vgl. auch mit Abbildung 5.6). Das Molekularstrahl-Spektrum des kalten NCCNO, das eine Rotationstemperatur von (7.3 ± 1.5) K aufweist, beinhaltet Rotations-Schwingungs-Übergänge der NO-Streckschwingung ν_3 bis rund J'' = 15. Die in der Abbildung erkennbaren starken Wasser-Absorptionen sind auf zwischenzeitliche Probleme mit dem Interferometer-Vakuum zurückzuführen. In den Abbildungen 5.12 bis 5.14 sind vergrößerte Ausschnitte des P- und R-Zweiges der ν_3 -Fundamentalbande zwischen 1445.2 und 1449.8 cm⁻¹ dargestellt, die die durch die Kühlung bedingte drastische Vereinfachung des Spektrums dokumentieren. Das Bandenzentrum der ν_3 -Fundamentalbande konnte aus den Molekularstrahlmessungen zu 1447.46324(15) cm^{-1} bestimmt werden. Wie man anhand den Abbildungen erkennt, zeigt das bei Raumtemperatur aufgenommene NCCNO-Spektrum im Bereich des Bandenzentrums keine interpretierbare Struktur. Im R-Zweig zeigt dieses Spektrum eine Struktur, die bis zu J'' = 6 zugeordnet werden kann, wohingegen im P-Zweig aufgrund von Überlagerungen mit anderen Banden ebenfalls

Abbildung 5.11 Zwei Ausschnitte aus dem Bandensystem der NO-Streckschwingung ν_3 . Jeweils blau gezeichnet ist das FTIR-Spektrum des NCCNO-Molekularstrahls, wohingegen jeweils der gleiche Ausschnitt des bei Raumtemperatur erhaltenen NCCNO-Spektrums rot gekennzeichnet ist. Die aus dem Molekularstrahlspektrum gewonnene J-Zuordnung ist ebenfalls eingezeichnet.

Abbildung 5.12 Vergrößerter Ausschnitt aus dem Bandensystem der NO-Streckschwingung ν_3 . Blau gezeichnet ist wiederum das FTIR-Spektrum des NCCNO-Molekularstrahls. Aufgrund der Divergenz des Molekularstrahls wurde mit einer instrumentellen Auflösung von 0.0080 cm⁻¹ gemessen. Das bei Raumtemperatur erhaltenen NCCNO-Spektrum ist rot gekennzeichnet und wurde mit einer instrumentellen Auflösung von 0.0020 cm⁻¹ gemessen, wobei die Doppler-Verbreiterung in diesem Bereich rund 0.0022 cm⁻¹ beträgt. Zu sehen sind einige der zugeordneten Rotations-Schwingungs-Übergänge der ν_3 -Fundamentalbande [P(12)–P(5) von (ν_3) – (GS)].

Abbildung 5.13 Vergrößerter Ausschnitt aus dem Bandensystem der NO-Streckschwingung ν_3 . Blau gezeichnet ist wiederum das FTIR-Spektrum des NCCNO-Molekularstrahls. Zu sehen sind einige der zugeordneten Rotations-Schwingungs-Übergänge der ν_3 -Fundamentalbande [P(5)–R(1) von (ν_3) – (GS)]. Das bei Raumtemperatur erhaltenen NCCNO-Spektrum ist rot gekennzeichnet.

Abbildung 5.14 Vergrößerter Ausschnitt aus dem Bandensystem der NO-Streckschwingung ν_3 . Blau gezeichnet das FTIR-Spektrum des NCCNO-Molekularstrahls. Zu sehen sind einige der zugeordneten Rotations-Schwingungs-Übergänge der ν_3 -Fundamentalbande [R(4)–R(14) von (ν_3) – (GS)]. Das bei Raumtemperatur erhaltenen NCCNO-Spektrum ist wiederum rot gekennzeichnet.

Abbildung 5.15 Ausschnitt der bei Raumtemperatur erhaltenen $2\nu_4$ -Bande von NCCNO. Dargestellt ist der P-Zweig der Bande. Einige der zugeordneten Rotations-Vibrations-Übergänge im P-Zweig der Bande sind ebenfalls eingezeichnet. Instrumentelle Auflösung: 0.0020 cm^{-1} , Doppler-Verbreiterung: 0.0022 cm^{-1} .

eine klare Strukturierung der Bande bei niedrigen Rotationsquantenzahlen nicht zu erkennen ist. Die erst durch die aufwendigen Molekularstrahlmessungen ermöglichte eindeutige Zuordnung der ν_3 -Bande lieferte den Ansatzpunkt zur Analyse weiterer Banden im ν_3 -Bandensystem des bei Raumtemperatur erhaltenen Spektrums. Zunächst konnten in diesem Spektrum höhere Rotationszustände des Überganges (ν_3) – (GS) zugeordnet werden. Dort konnten mühelos Übergänge bis J'' = 35 im P- und R-Zweig identifiziert werden, der Intensitätsverlauf der einzelnen Rotations-Vibrations-Linien deutete jedoch darauf hin, daß eigentlich auch Übergänge aus höheren Rotationszuständen zu sehen sein müßten. Nach längerem Suchen konnten mit dem Programm LW51 diese Übergänge bis J'' = 75 auch gefunden werden. Das Problem mit der Zuordnung der Übergänge aus höheren Rotationszuständen ist auf eine starke globale und lokale Störungen der Bande durch mehrere unbekannte Resonanzpartner zurückzuführen. Das Ausmaß dieser Störungen nimmt mit der Rotationsquantenzahl J deutlich zu, daher wurden lediglich aus den Molekularstrahl-Daten Reihenentwicklungskonstanten bestimmt, die in der Tabelle 5.12 aufgeführt sind.

Die Abschätzung des harmonischen Termwertes der zweifach angeregten CC-Streckschwingung $2\nu_4$ ergibt einen Betrag von rund 1429.5 cm⁻¹. Dieser Schwingungszustand sollte also prinzipiell in der Lage sein, durch eine *Fermi*-Typ-Resonanz mit dem einfach angeregten NO-Streckschwingungszustand (ν_3) in Wechselwirkung zu treten. Nach längerer Suche wurde um

Abbildung 5.16 Darstellung der Differenzen $\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$ der zweifach angeregten CC-Streckschwingung $2\nu_4$.

 $1\,422 \text{ cm}^{-1}$ eine sehr intensitätsschwache Bande gefunden, deren Reihenentwicklungskonstanten darauf hindeuteten, daß es sich um einen Übergang vom Schwingungsgrundzustand in einen angeregten Streckschwingungszustand handelt. Es stellte sich jedoch heraus, daß diese Bande keinerlei *qlobale* oder *lokale* Störungen aufweist, somit als möglicher Resonanzpartner der ν_3 -Schwingung nicht in Frage kommt. Die in der Abbildung 5.16 dargestellte Differenz der beobachteten und berechneten Linienpositionen der $2\nu_4$ -Bande zeigen nur leichte systematische Abweichungen von einer statistischen Verteilung. Aufgrund der deutlich geringeren Transmission der Rotations-Vibrations-Linien im R-Zweig sind dort die Abweichungen vom berechneten Wert größer. Die aus der Anpassung erhaltenen Reihenentwicklungskonstanten des unbekannten unteren Zustandes stimmen sehr gut mit den aus den LICHAUschen Daten ermittelten Konstanten des Grundzustandes überein. Die Rotationskonstante des oberen Zustandes B'_{ps} ist deutlich kleiner als die des Grundzustandes. Mit den Daten von LICHAU [1] und GUO et al. [23] wurde eine lineare Extrapolation der Rotationskonstante B'_{ps} für den zweifach angeregten Zustand der ν_4 -Schwingung durchgeführt. Die ermittelten und berechneten Reihenentwicklungskonstanten sind in der Tabelle 5.12 aufgeführt. Die Differenz zwischen extrapolierter und experimentell bestimmter Rotationskonstante ist mit rund 3.0×10^{-4} cm⁻¹ doch sehr deutlich. Man muß jedoch berücksichtigen, daß es sich bei dem NCCNO-Molekül um ein sehr flexibles Molekül handelt, bei dem harmonische Näherungen nur bedingt brauchbar sind, somit eine lineare Extrapolati-

Tabelle 5.12 Reihenentwicklungskonstanten verschiedener Zustände der Streckschwingungen ν_3 und ν_4 von NCCNO.

Zustand	G_c	B_{ps}	D_{ps}	H_{ps}	σ
	$/\mathrm{cm}^{-1}$	$/\mathrm{cm}^{-1}$	$/10^{-9} { m cm}^{-1}$	$/10^{-12} { m cm}^{-1}$	$/10^{-4} {\rm cm}^{-1}$
(GS) [1]	0	0.0770866063(21)	4.7815(69)	$0.006\ 642\ (47)$	
(u_3)	1447.46324(15)	0.0768751(15)			5.44
$(u_4) [23]$	$714.753\ 941\ (57)$	0.07702482(35)	4.583(30)		
$(2\nu_4)$ (calc)	1429.5	0.076963			
$(2\nu_4)$ (obs)	1422.053879~(51)	0.076991441(52)	4.954(11)		2.20

Abbildung 5.18 Ausschnitt aus dem Termwerteschema des NCCNO-Moleküls zwischen 1 400 cm⁻¹ und 1 700 cm⁻¹.

on der Rotationskonstante mit einem deutlichen Fehler behaftet sein kann. Die Differenz zwischen extrapoliertem und ermitteltem Termwert beträgt rund 7.5 cm⁻¹. Diese Anharmonizität erscheint durchaus realistisch. Letztendlich erscheint die Zuordnung der zweifach angeregten CC-Streckschwingung $2\nu_4$ sehr plausibel. Die Suche nach einem Resonanzpartner des ersten angeregten NO-Streckschwingungszustandes (ν_3) blieb bisher ohne Ergebnis.

Im Verlauf der weiteren Analyse dieses Bandensystems konnten hot bands aus angeregten Zuständen der niedrigstliegenden CCN-Knickschwingung ν_7 identifiziert werden. Die vorläufig zugeordneten und analysierten Übergänge im Bandensystem der NO-Streckschwingung ν_3 sind in der Abbildung 5.17 schematisch dargestellt. Es handelt sich im einzelnen um Übergänge aus dem Schwingungsgrundzustand (GS) in die Zustände (ν_3), ($2\nu_4$) und um Übergänge aus einfach und zweifach angeregten Knickschwingungszuständen (ν_7), ($2\nu_7$) in die Kombinationszustände ($\nu_3 + \nu_7$), ($\nu_3 + 2\nu_7$) bzw. ($2\nu_4 + \nu_7$), ($2\nu_4 + 2\nu_7$). Bis auf das Bandensystem ($2\nu_4$) – (GS) sind sämtliche Banden mehr oder weniger stark global und lokal gestört. Einige der in Frage kommenden Resonanzpartner der Kombinationszustände ($\nu_3 + \nu_7$) sowie ($\nu_3 + 2\nu_7$) sind in der Abbildung 5.18 aufgeführt.

Auf der linken Seite des Diagramms sind die durch Addition der harmonischen Termwerte erhaltenen Vibrationsenergieen möglicher Resonanzpartner aufgeführt. Mit $(2\nu_4)$ wird der zweite angeregte CC-Streckschwingungszustand bezeichnet, (ν_5) steht für den ersten angeregten Zustand der CNO-Knickschwingung, $(2\nu_6)$ für den zweiten angeregten NCC-Knickschwingungszustand. Auf der rechten Seite des Diagramms sind die experimentell ermittelten Termwerte der bisher identifizierten Resonanzpartner aufgeführt. Wie bereits erwähnt wurde, steht der erste angeregte Zustand der NO-Streckschwingung (ν_3) nicht oder nur sehr schwach in Resonanz mit dem zweifach angeregten Schwingungszustand der CC-Streckschwingung ($2\nu_4$). Der Kombinationszustand ($\nu_3 + \nu_7$) wechselwirkt über eine anharmonische Resonanz, eine *Fermi*-Typ-Resonanz, mit dem Schwingungszustand ($2\nu_4 + \nu_7$) (siehe Abbildung 5.18). Die Zuordnung der Subbanden ($2\nu_4 + \nu_7$)^{1e,f} – (ν_7)^{1e,f} erfolgt durch die Ermittlung des Bandentyps und des Intensitätsverlaufs der Subbanden. Da im Spektrum keinerlei Hinweis auf das Vorhandensein eines starken Q-Zweiges innerhalb dieser Subbanden existiert und der untere Zustand zweifelsfrei als (ν_7) zugeordnet werden kann, muß es sich um einen $\Delta l = 0$ -Übergang handeln. Damit konnte eine *Coriolis*-Resonanz zwischen den betrachteten Zuständen ausgeschlossen werden. Sowohl die Abschätzung des harmonischen Termwertes des Schwingungszustandes ($2\nu_4 + \nu_7$) als auch die relative Intensität der analysierten Subbanden deuten darauf hin, daß die getroffenen Zuordnung plausibel ist. Zudem weisen die ($2\nu_4 + \nu_7$)^{1e,f} – (ν_7)^{1e,f}-Subbanden durchweg kleinere Transmissionswerte auf als die ($\nu_3 + \nu_7$)^{1e,f} – (ν_7)^{1e,f}-Subbanden, was ebenfalls plausibel ist.

Damit steht fest, daß sich die Zustände $(2\nu_4 + \nu_7)$ und $(\nu_3 + \nu_7)$ in wesentlichem Maße durch eine *Fermi*-Typ-Resonanz stören (vgl. Abbildung 5.18). Dabei sind natürlich andere, schwächere *Fermi*-Typ- oder *Coriolis*-Typ-Resonanzen durch unbekannte Resonanzpartner nicht auszuschließen. In Anbetracht der hohen Zustandsdichte im Bereich um 1400 cm⁻¹ erscheint deren Existenz zumindest sehr wahrscheinlich.

Auf analoge Weise wurde auch das Resonanzpaar $(2\nu_4 + 2\nu_7)$ und $(\nu_3 + 2\nu_7)$ zugeordnet, das ebenfalls ein *Fermi*-Typ-Resonanzpaar bildet. Natürlich sind auch in diesem Falle Resonanzen durch unbekannte Partner, sogenannter *dark states*, nicht auszuschließen, worauf noch ausführlich eingegangen wird.

5.7.1 Das $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ -Resonanzsystem von NCCNO

Um zunächst einen qualitativen Eindruck des Ausmaßes der Wechselwirkung der Schwingungszustände $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ zu bekommen, deren Termwerte sich um einen Betrag von rund 16 cm⁻¹ unterscheiden, wurde dieses *Fermi*-Typ-Resonanzpaar zunächst mit dem Verfahren der sogenannten reduzierten Termwerte analysiert. Dieses Verfahren erlaubt es, Störungen graphisch anschaulich darzustellen und die Wechselwirkungsverhältnisse der Schwingungszustände zu klären.

Die Abbildung 5.19 veranschaulicht, wie ein oberer Schwingungszustand durch eine Resonanz gestört wird. Denkbar wäre es nun, eine Resonanz durch das Auftragen der Rotations-Vibrations-Termwerte als Funktion von J(J + 1) [vgl. Gleichung (5.71)] gemäß $T(J) = G_c + B_{ps} J(J + 1)$ sichtbar zu machen. Diese Verfahren würde jedoch zu einer derart großen Steigung (B_{ps}) führen, daß eine Störung der Rotations-Vibrations-Niveaus nicht mehr erkennbar wäre. Daher sind andere Verfahren erforderlich, um die Steigung der Kurve in ein vergleichbares Verhältnis zur Störung zu setzen. Man erreicht dies durch Subtraktion geeigneter Rotationstermwerte von dem Rotations-Vibrations-Termwert T(J). Es existieren drei verschiedene Modelle [31], bei denen vom experimentell ermittelten Rotations-Vibrations-Termwert, im folgenden mit $T_m(J)$ bezeichnet, ein geeigneter Rotations- und teilweise auch ein Vibrationsbeitrag subtrahiert wird, so daß die Störungen sichtbar werden. Die erhaltenen reduzierten Termwerte werden dann graphisch gegen J(J + 1) aufgetragen.

Abbildung 5.19 Einfluß einer Resonanz auf die Rotations-Vibrationstermwerte T(J). Die einseitigen Pfeile stellen Rotations-Vibrationsübergänge dar [Q(J)-Zweig-Übergänge]. Die beidseitigen Pfeile deuten die durch Resonanz verursachte Verschiebung der Rotations-Vibrations-Niveaus an. Nach [31].

Im Falle des Modells 1 wird von dem experimentellen Rotations-Vibrations-Termwert $T_m(J)$ der Rotationsbeitrag des Grundzustandes subtrahiert. Für den reduzierten Termwert T_{Red1} nach Modell 1 gilt also:

$$T_{Red1} = T_m(J) - \left[B_{ps}^{GS}J(J+1) - D_{ps}^{GS}[J(J+1)]^2\right].$$
(5.95)

 B_{ps}^{GS} und D_{ps}^{GS} sind die Reihenentwicklungskonstanten des Grundzustandes (GS, engl., Ground State). Eine Auftragung von T_{Red1} gegen J(J+1) sollte näherungsweise eine Gerade mit der Steigung ($B_{ps}' - B_{ps}^{GS}$) liefern. Im Falle von starken Störungen zwischen den Schwingungszuständen kommt es zu einer deutlichen Krümmung der Geraden, wobei die Kurven der reduzierten Termwerte von beiden Resonanzpartnern sich spiegelbildlich verhalten. Es kann allerdings auch vorkommen, daß sich die Rotations-Schwingungsniveaus kreuzen.

Für das Resonanzpaar $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ wurde zunächst eine graphische Darstellung nach Modell 1 vorgenommen, die in der Abbildung 5.20 zu sehen ist. Wie man deutlich erkennt, nimmt der reduzierte Rotations-Schwingungstermwert für beide Partner praktisch linear mit J(J + 1) ab. Es fällt auf, daß beide Geraden nahezu parallel verlaufen, d. h. es handelt sich auf jeden Fall um eine nicht kreuzende globale Fermi-Typ-Resonanz. Da die Fermi-Typ-Resonanz-Matrixelemente keine J-Abhängigkeit aufweisen, sollte aufgrund der unterschiedlichen Zentrifugalverzerrung die Wechselwirkung der Rotations-Vibrations-Niveaus jedoch abhängig von J sein. Offensichtlich ähneln sich die Reihenentwicklungskonstanten beider Resonanzpartner sehr stark, so daß die Bestimmung des Fermi-Typ-Matrixelementes aus diesen Daten sehr fraglich erschien.

Im Falle des Modells 3 werden die Rotations-Vibrations-Termwerte für beide Vibrations-Niveaus mit den aus den ersten zwanzig J-Werten bestimmten Reihenentwicklungskonstanten G_c , $B_{<20}$,

Abbildung 5.20 Berechnete reduzierte Termwerte der $(\nu_3 + \nu_7)^{1e}$ und $(2\nu_4 + \nu_7)^{1e}$ Rotations-Vibrations-Niveaus von NCCNO nach Modell 1 und Modell 3 [31].

 $D_{\leq 20}$ berechnet [32]. Die daraus erhaltenen Rotations-Vibrations-Termwerte werden von den experimentellen Rotations-Vibrations-Termwerten $T_m(J)$ subtrahiert:

$$T_{Red3} = T_m(J) - \left[G_c + B_{\leq 20} J \left(J+1\right) - D_{\leq 20} \left[J \left(J+1\right)\right]\right].$$
(5.96)

Im Unterschied zu Modell 1 wird in Modell 3 auch ein Vibrationsbeitrag, G_c , abgezogen. Das Modell 3 ist besonders im Falle von schwachen Störungen bevorzugt anzuwenden. Ergänzend zu erwähnen ist, daß für das Resonanzsystem $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ J-Werte zwischen 20 und 40 zur Bestimmung der Reihenentwicklungskonstanten verwendet wurden.

Analog wurde nun für das Resonanzpaar eine graphische Darstellung nach Modell 3 vorgenommen, die ebenfalls in der Abbildung 5.20 dargestellt ist. Wie man sieht, zeigt der im Modell 1 energetisch höher liegende Partner negative Abweichungen im Modell 3. Für den anderen Resonanz-Partner gilt das umgekehrte. Beide wechselwirkenden Partner sollten nach Modell 3 betraglich gleiche Abweichungen mit entgegengesetztem Vorzeichen aufweisen. Die im vorliegenden Fall offensichtlich leichten Abweichungen von der Spiegelsymmetrie an der Null-Linie sind im wesentlichen auf eine stark fehlerbehaftete (Fehler rund 25%) Zentrifugalverzerrungskonstante $D_{20\leq 40}$ der Rotations-Vibrations-Niveaus $(2\nu_4 + \nu_7)^{1e}$ zurückzuführen. Die Analyse nach dem Modell 3 bestätigt aber, daß die zu $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ zugeordneten Schwingungszustände ein Resonanzpaar bilden. Auf das Modell 2 wird im Rahmen dieser Arbeit nicht näher eingegangen werden. Näheres findet man bei [31].

Abbildung 5.21 Vergrößerter Ausschnitt aus dem bei Raumtemperatur erhaltenen Bandensystem der NO-Streckschwingung ν_3 . Abgebildet sind einige Rotations-Schwingungsübergänge von (ν_7) in die gestörten Zustände $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ (rot/grün bzw. blau/braun). Zudem sind einige Übergänge vom Grundzustand in den ersten angeregten Zustand der ν_3 -Schwingung eingezeichnet.

	(GS)	(u_7)	$(2\nu_7)$
G_v /cm ⁻¹	0	80.524182(10)	166.118 254 (16)
$x_l \ /{ m cm^{-1}}$			-0.3785027(37)
B_v /cm ⁻¹	0.0770866063(21)	0.0775177648(15)	$0.0778883945\ (23)$
d_{Jl} $/10^{-6} {\rm cm}^{-1}$			8.03046(75)
$D_v \ /10^{-9} { m cm}^{-1}$	$4.781\ 48\ (69)$	$5.816\ 41\ (50)$	6.36329(86)
h_{Jl} $/10^{-11}$ cm ⁻¹			6.927~(29)
H_v $/10^{-14} \mathrm{cm}^{-1}$	$0.6642\ (47)$	1.01869(35)	1.0470(74)
s_{Jl} $/10^{-16}$ cm ⁻¹			5.07(26)
$q_7 / 10^{-4} \mathrm{cm}^{-1}$		1.446295(30)	1.390077(72)
q_{7J} $/10^{-10}$ cm ⁻¹		-7.1839(99)	-6.084(22)
$q_{7JJ}/10^{-15} \mathrm{cm}^{-1}$		4.4078(70)	3.231(12)

Tabelle 5.13 Effektive Konstanten nach dem YAMADA, BIRSS und ALIEV Hamiltonian [9] für den Schwingungsgrundzustand und die Schwingungszustände (ν_7) und ($2\nu_7$) von NCCNO. Die Konstanten wurden der Arbeit von LICHAU [1] entnommen.

In der Abbildung 5.21 ist ein Ausschnitt des bei Raumtemperatur erhaltenen NCCNO-Spektrums abgebildet. Zu sehen sind einige der zugeordneten Rotations-Vibrationsübergänge vom Zustand (ν_7) in die an der *Fermi*-Typ-Resonanz beteiligten Schwingungszustände ($\nu_3 + \nu_7$) und ($2\nu_4 + \nu_7$). Zudem sind ebenfalls einige Übergänge vom Grundzustand in den ersten angereg-

Abbildung 5.22 Darstellung der Differenzen $\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$ für das Resonanzpaar $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ von NCCNO. Links: Abweichung der ohne Berücksichtigung der *Fermi*-Typ-Resonanz berechneten Linienpositionen, rechts: Abweichung der berechneten Linienpositionen einer *Fermi*-Typ-Resonanz berücksichtigenden Anpassung.

ten Zustand der ν_3 -Schwingung eingezeichnet. Wie bereits erwähnt, zeigte die Fermi-Typ-Diade $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ eine kaum J-abhängige Wechselwirkung, so daß es fraglich war, ob das Fermi-Typ-Matrixelement W_F bestimmt werden kann. Zunächst wurden mit dem Programm linc96x6 effektive spektroskopische Konstanten nach YAMADA, BIRSS und ALIEV [9] (vgl. Kapitel 5.1.3) von beiden Resonanzpartnern bestimmt. Dazu wurden die von LICHAU veröffentlichten und in der Tabelle 5.13 aufgeführten spektroskopischen Konstanten des unteren Zustandes (ν_7) im Fit festgehalten. Die in Gleichung (5.52) nicht aufgeführte Konstante s_{Jl} beschreibt die *l*-Abhängigkeit von H_v mit $s_{Jl} l^2$. Für die Rotations-Vibrations-Übergänge wurde generell von einer Unsicherheit von 1.0×10^{-4} cm⁻¹ ausgegangen. Mit diesem Wert wurden sämtliche experimentellen Daten zur Anpassung der spektroskopischen Konstanten gewichtet. Zur Bestimmung des Fermi-Typ-Matrixelementes W_F müssen die nach Symmetrien separierten Hamilton-Submatrizen

	$(\nu_3 + \nu_7), 1e$	$(2\nu_4 + \nu_7), 1e$
$(\nu_3 + \nu_7), 1e$	$E_{11} + U_{11}$	W_F
$(2\nu_4 + \nu_7), 1e$	W_F	$E_{11}' + U_{11}'$

und

	$(\nu_3 + \nu_7), 1f$	$(2\nu_4 + \nu_7), 1f$
$(\nu_3 + \nu_7), 1f$	$E_{11} - U_{11}$	W_F
$(2\nu_4 + \nu_7), 1f$	W_F	$E_{11}' - U_{11}'$

diagonalisiert werden. Die Größen E_{11} bzw. E'_{11} und U_{11} bzw. U'_{11} sind über die Gleichungen (5.52) und (5.53) definiert.

Die Anspassung der spektroskopischen Konstanten erfolgte mit dem Programm lincx22, das von JUNG [33] zur Verfügung gestellt wurde. Die ermittelten Konstanten sind in der Tabelle 5.14 aufgeführt; eine Übersicht sämtlicher experimenteller Übergangswellenzahlen mit ihren Abweichungen vom jeweils berechneten Wert bietet Anhang D. Aufgrund der starken Korrelation der Größen G_v und W_F und der schwachen J-Abhängigkeit der *Fermi*-Typ-Wechselwirkung ist zwar das *Fermi*-Typ-Matrixelement W_F mit 7.003 (82) cm⁻¹ sehr gut bestimmt, jedoch ist der Schwingungstermwert G_v mit einem relativ großen Fehler von 0.15 cm⁻¹ behaftet. Durch die Berücksichtigung des *Fermi*-Typ Matrixelements verbessert sich die Standardabweichung σ des Fits um rund 15% von 4.05 × 10⁻⁴ cm⁻¹ auf 3.40 × 10⁻⁴ cm⁻¹.

In der Abbildung 5.22 ist Differenz zwischen beobachteten und berechneten Linienpositionen $\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$ dargestellt. Wie man deutlich erkennt, weisen diese Differenzen sowohl mit als auch ohne Berücksichtigung der *Fermi*-Typ-Resonanz eine systematische Abweichung von einer statistischen Verteilung auf. Es ist daher zu vermuten, daß weitere unbekannte Schwingungszustände in Resonanz mit den Kombinationszuständen $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ treten. So kann beispielsweise der Zustand $(\nu_4 + 2\nu_6)^0$, dessen Schwingungstermwert zu 1523 cm⁻¹ abgeschätzt werden kann, über eine *Coriolis*-Resonanz prinzipiell mit beiden Kombinationszuständen $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ wechselwirken. Eine resonanzverstärkte Bande vom Grundzustand in den Kombinationszustand $(\nu_4 + 2\nu_6)$ konnte jedoch im Spektrum nicht nachgewiesen werden. Die Zentrifugalverzerrungskonstante H_v mußte während der Anspassung auf dem Grundzustandswert konstant gehalten werden. Zudem konnte die Konstante q_{7JJ} , die die quadratische *J*-Abhängigkeit der *l*-Typ-Aufspaltungskonstante beschreibt, nicht angepaßt werden.

	$(\nu_3 + \nu_7)$, gestört	$(\nu_3 + \nu_7)$, ungestört
G_v /cm ⁻¹	$1\ 528.977\ 765\ (48)$	1524.83(15)
B_v $/\mathrm{cm}^{-1}$	0.077321005~(46)	0.0772968(18)
D_v $/10^{-9} { m cm}^{-1}$	5.763(10)	6.087(53)
H_v $/10^{-14} {\rm cm}^{-1}$	1.346(57)	$1.01869^{a)}$
$q_7 / 10^{-4} \mathrm{cm}^{-1}$	$1.405\ 79\ (59)$	$1.4392\;(28)$
q_{7J} $/10^{-10}$ cm ⁻¹	-7.29(16)	-7.75(11)
$q_{7JJ} / 10^{-15} \mathrm{cm}^{-1}$	6.31(97)	
σ /10 ⁻⁴ cm ⁻¹	4.05	3.40
	$(2\nu_4 + \nu_7)$, gestört	$(2\nu_4 + \nu_7)$, ungestört
G_v /cm ⁻¹	$\frac{(2\nu_4 + \nu_7), \text{ gest \"{o}rt}}{1513.015583(66)}$	$(2\nu_4 + \nu_7)$, ungestört 1 517.17 (15)
$\frac{G_v /\mathrm{cm}^{-1}}{B_v /\mathrm{cm}^{-1}}$	$\frac{(2\nu_4 + \nu_7), \text{ gest \" ort}}{1513.015583(66)}\\ 0.077366734(96)$	$\begin{array}{c} (2\nu_4+\nu_7), {\rm ungest\"{o}rt} \\ 1517.17(15) \\ 0.0773896(18) \end{array}$
$ \frac{G_v \ /cm^{-1}}{B_v \ /cm^{-1}} \\ D_v \ /10^{-9}cm^{-1} $	$\begin{array}{c} (2\nu_4+\nu_7), \ {\rm gest \ddot{o}rt} \\ \hline 1\ 513.015\ 583\ (66) \\ 0.077\ 366\ 734\ (96) \\ 6.049\ (35) \end{array}$	$\begin{array}{c} (2\nu_4+\nu_7), {\rm ungest\"{o}rt} \\ \hline 1517.17(15) \\ 0.0773896(18) \\ 5.201(49) \end{array}$
$\begin{array}{c ccc} G_v & /cm^{-1} \\ B_v & /cm^{-1} \\ D_v & /10^{-9}cm^{-1} \\ H_v & /10^{-14}cm^{-1} \end{array}$	$\begin{array}{c}(2\nu_4+\nu_7),\; {\rm gest\ddot{o}rt}\\ \hline 1513.015583(66)\\ 0.077366734(96)\\ 6.049(35)\\ 6.40(35)\end{array}$	$\begin{array}{c} (2\nu_4+\nu_7), {\rm ungest\"{o}rt} \\ \hline 1517.17(15) \\ 0.0773896(18) \\ 5.201(49) \\ 1.01869^{a}) \end{array}$
$\begin{array}{c ccc} G_v & /\mathrm{cm}^{-1} \\ B_v & /\mathrm{cm}^{-1} \\ D_v & /10^{-9}\mathrm{cm}^{-1} \\ H_v & /10^{-14}\mathrm{cm}^{-1} \\ q_7 & /10^{-4}\mathrm{cm}^{-1} \end{array}$	$\begin{array}{c}(2\nu_4+\nu_7),\; {\rm gest\ddot{o}rt}\\\hline1513.015\;583\;(66)\\0.077\;366\;734\;(96)\\6.049\;(35)\\6.40\;(35)\\1.334\;62\;(64)\end{array}$	$\begin{array}{c}(2\nu_4+\nu_7),{\rm ungest\"ort}\\1517.17(15)\\0.0773896(18)\\5.201(49)\\1.01869^{a)}\\1.2998(29)\end{array}$
$\begin{array}{c c} G_v & /\mathrm{cm}^{-1} \\ B_v & /\mathrm{cm}^{-1} \\ D_v & /10^{-9}\mathrm{cm}^{-1} \\ H_v & /10^{-14}\mathrm{cm}^{-1} \\ q_7 & /10^{-4}\mathrm{cm}^{-1} \\ q_{7J} & /10^{-10}\mathrm{cm}^{-1} \end{array}$	$\begin{array}{c}(2\nu_4+\nu_7), \ {\rm gest \ddot{o}rt}\\\hline1513.015583(66)\\0.077366734(96)\\6.049(35)\\6.40(35)\\1.33462(64)\\-2.49(15)\end{array}$	$\begin{array}{c} (2\nu_4+\nu_7), {\rm ungest \" ort} \\ \hline 1517.17(15) \\ 0.0773896(18) \\ 5.201(49) \\ 1.01869^{a)} \\ 1.2998(29) \\ -1.60(20) \end{array}$
$\begin{array}{c ccc} G_v & /\mathrm{cm}^{-1} \\ B_v & /\mathrm{cm}^{-1} \\ D_v & /10^{-9}\mathrm{cm}^{-1} \\ H_v & /10^{-14}\mathrm{cm}^{-1} \\ q_7 & /10^{-4}\mathrm{cm}^{-1} \\ q_{7J} & /10^{-10}\mathrm{cm}^{-1} \\ W_F & /\mathrm{cm}^{-1} \end{array}$	$\begin{array}{c} (2\nu_4+\nu_7), \ {\rm gest} \ddot{\rm ort} \\ \hline 1513.015583(66) \\ 0.077366734(96) \\ 6.049(35) \\ 6.40(35) \\ 1.33462(64) \\ -2.49(15) \\ 7.003(82) \end{array}$	$\begin{array}{c} (2\nu_4+\nu_7), {\rm ungest\"ort} \\ \hline 1517.17(15) \\ 0.0773896(18) \\ 5.201(49) \\ 1.01869^{a)} \\ 1.2998(29) \\ -1.60(20) \end{array}$

Tabelle 5.14 Berechnete effektive Konstanten nach dem YAMADA, BIRSS und ALIEV Hamiltonian [9] für die Kombinationszustände ($\nu_3 + \nu_7$) und ($2\nu_4 + \nu_7$) von NCCNO.

a): konstant gehalten während des Fits

Wie man der Abbildung 5.23 entnehmen kann, nimmt durch die *Fermi*-Typ-Wechselwirkung die Energiedifferenz der an der Resonanz beteiligten Kombinationszustände von 7.66 cm⁻¹ auf $15.96 \text{ cm}^{-1} \text{ zu}$.

In der Abbildung 5.24 ist ein berechnetes Fortrat-Diagramm der an der Resonanz beteilig-

Abbildung 5.23 Effekt der *Fermi*-Resonanz auf die Vibrationstermwerte der Kombinationszustände $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ von NCCNO.

Abbildung 5.24 Berechnetes Fortrat-Diagramm der Kombinationszustände $(\nu_3 + \nu_7)$ und $(2\nu_4 + \nu_7)$ von NCCNO.

ten Subzustände $(\nu_3 + \nu_7)^{1e,f}$ und $(2\nu_4 + \nu_7)^{1e,f}$ abgebildet. Bei einem Fortrat-Diagramm wird die Rotationsquantenzahl J gegen die durch 2(J + 1) geteilte Differenz δE zweier Rotations-Schwingungstermwerte, $\delta E = T_m(J + 1) - T_m(J)$, eines Subzustandes aufgetragen. Der Ausdruck $\frac{\delta E}{2(J+1)}$ stellt eine Art effektive Rotationskonstante des Subzustandes dar. Trägt man nun J gegen $\frac{\delta E}{2(J+1)}$ auf, so findet man für jeden Subzustand aufgrund der Zentrifugalverzerrung mehr oder weniger stark gekrümmte vertikale Linien, sogenannte Serien. Die Serien der 1eund 1f-Subzustände sind durch die l-Typ-Aufspaltung voneinander separiert. In der Abbildung 5.24 symbolisieren die ausgefüllten Symbole die gestörten Subzustände. Wie man deutlich erkennt, nimmt mit Berücksichtigung der *Fermi*-Typ-Resonanz die effektive Rotationskonstante der $(\nu_3 + \nu_7)$ Rotations-Vibrationszustände ab wohingegen die des Resonanzpartners $(2\nu_4 + \nu_7)$ zunimmt. Die durch die Zentrifugalverzerrung bedingte Krümmung der Kurven ändert sich kaum. Die l-Typ-Aufspaltung bleibt ebenfalls nahezu konstant.

Ein Vergleich der von LICHAU [1] für den Grundzustand und für die Schwingungszustände (ν_4), (ν_7) und ($\nu_4 + \nu_7$) ermittelten Rotationskonstanten B_v mit den im Rahmen dieser Arbeit angepaßten Rotationskonstanten des Schwingungszustandes ($2\nu_4$) und der Kombinationszustände ($\nu_3 + \nu_7$) und ($2\nu_4 + \nu_7$) zeigt, daß die bisher getroffenen Zuordnungen schlüssig sind. In der Tabelle 5.15 sind die entsprechenden Werte aufgelistet. Die Differenz zwischen der Rotationskonstante des Grundzustandes und der des einfach angeregten CC-Streckschwingungszustandes (ν_4) beträgt rund 6.1×10^{-5} cm⁻¹. Bei weiterer Anregung dieser Mode nimmt diese nochmals um 3.4×10^{-5} cm⁻¹ ab. Ein Übergang vom Schwingungszustand (ν_7) zum Kombinationszustand ($\nu_4 + \nu_7$) führt zu einer Abnahme der Rotationskonstante um ca. 8.4×10^{-5} cm⁻¹. Eine nochmalige Anregung der ν_4 -Mode reduziert B_v um weitere 4.4×10^{-5} cm⁻¹. Diese Abnahme fügt sich relativ gut in dieses Schema ein. Die Rotationskonstante mit dem Wert 0.077 296 8 cm⁻¹

Schwingungszustand	$B_v/{ m cm}^{-1}$	Referenz
(GS)	0.0770866063(21	[1]
(u_7)	0.0775177648(15)	[1]
(u_4)	0.0770258690(26)	[1]
$(u_4+ u_7)$	0.0774338150(43)	[1]
$(2 u_4)$	0.076991441(52)	diese Arbeit
$(2\nu_4 + \nu_7)$	0.0773896(16)	diese Arbeit
$(\nu_3 + \nu_7)$	0.0772968(18)	diese Arbeit

Tabelle 5.15 Rotationskonstanten B_v des NCCNO-Moleküls in verschiedenen Schwingungszuständen.

kann demnach nur zum Schwingungszustand $(\nu_3 + \nu_7)$ gehören.

5.7.2 Das $(\nu_3 + 2\nu_7)/(2\nu_4 + 2\nu_7)$ -Resonanzsystem von NCCNO

Im spektralen Bereich um 1 450 cm⁻¹ konnte ein weiteres Fermi-Typ-Resonanzpaar, das durch die Schwingungszustände ($\nu_3 + 2\nu_7$) und ($2\nu_4 + 2\nu_7$) gebildet wird, zugeordnet werden. Interessant ist die energetische Lage der beteiligten Schwingungszustände (vgl. Abbildung 5.18). Lag bei dem im vorigen Kapitel beschriebenen Resonanzpaar ($\nu_3 + \nu_7$)/($2\nu_4 + \nu_7$) der ($\nu_3 + \nu_7$)-Termwert rund 15.96 cm⁻¹ oberhalb des ($2\nu_4 + \nu_7$) Schwingungszustandes, so ist beim vorliegenden Fermi-Typ-Paar der ($\nu_3 + 2\nu_7$)-Termwert rund 14.29 cm⁻¹ tiefer gelegen als der des Schwingungszustandes ($2\nu_4 + 2\nu_7$). Die starke Verschiebung der Energieniveaus führt offensichtlich dazu, daß der Schwingungszustand ($2\nu_4$) nicht für die starke Störung des (ν_3)-Zustandes verantwortlich ist. Die Energiedifferenz von rund 25 cm⁻¹ ist zu groß und das Fermi-Typ-Matrixelement zu klein, um eine starke Störung zu verursachen. Das Fermi-Typ-Resonanzpaar ($\nu_3 + 2\nu_7$)/($2\nu_4 + 2\nu_7$) wurde ebenfalls mit dem Verfahren der reduzierten Termwerte betrachtet. In der Abbildung 5.25 sind die nach Modell 1 und Modell 3 erhaltenen Darstellungen abgebildet. Auch in diesem Resonanz-System zeigt das Modell 1 eine praktisch lineare Abnahme der reduzierten Termwerte für beide Partner mit J(J + 1). Beide Partner weisen ähnliche Geradensteigungen in dieser Darstellung auf, so daß eine Kreuzung auszuschließen ist.

Das Modell 3 liefert hingegen ein diffuseres Bild, bei dem sowohl die *l*-Typ-Resonanz der 0eund 2e-Niveaus als auch die *Fermi*-Typ-Resonanz der Schwingungs-Zustände eine Rolle spielt. Das Fehlen jeglicher Spiegelsymmetrie entlang der Abszisse läßt auf das Vorhandensein eines oder mehrerer zusätzlicher Resonanzpartner schließen. So ist beispielsweise eine weitere *Fermi*-Typ-Resonanz mit dem Schwingungszustand $(4\nu_6)$ möglich, dessen Termwert sich zu 1616 cm⁻¹ abschätzen läßt, oder aber *Coriolis*-Resonanzen mit den Kombinationszuständen $(\nu_4 + 2\nu_6 + \nu_7)^1$ (1600 cm⁻¹) oder $(\nu_4 + \nu_5 + \nu_6 + \nu_7)^1$ (1620 cm⁻¹). Hinweise darauf wurden jedoch im gemessenen Spektrum nicht erhalten. Es erschien aus diesem Grund sehr fraglich, ob effektive Molekülkonstanten nach YAMADA, BIRSS und ALIEV [9] angepaßt werden könnten. Zur deren Bestimmung müssen die nach Symmetrien separierten Hamilton-Submatrizen

	$(\nu_3 + 2\nu_7), 2e$	$(\nu_3 + 2\nu_7), 0e$	$(2\nu_4 + 2\nu_7), 0e$	$(2\nu_4 + 2\nu_7), 2e$
$(\nu_3 + 2\nu_7), 2e$	E_{22}	$\sqrt{2}U_{02}$	0	W_F
$(\nu_3 + 2\nu_7), 0e$	$\sqrt{2}U_{02}$	E_{00}	W_F	0
$(2\nu_4 + 2\nu_7), 0e$	0	W_F	E_{00}^{\prime}	$\sqrt{2}U_{02}^{\prime}$
$(2\nu_4 + 2\nu_7), 2e$	W_F	0	$\sqrt{2}U_{02}'$	E_{22}^{\prime}

Abbildung 5.25 Berechnete reduzierte Termwerte der $(\nu_3 + 2\nu_7)^{0e,2e,2f}$ und $(2\nu_4 + 2\nu_7)^{0e,2e,2f}$ -Subzustände von NCCNO nach Modell 1 und Modell 3.

	$(\nu_3 + 2\nu_7), 2f$	$(2\nu_4 + 2\nu_7), 2f$
$(\nu_3 + 2\nu_7), 2f$	E_{22}	W_F
$(2\nu_4 + 2\nu_7), 2f$	W_F	E_{22}^{\prime}

diagonalisiert werden. Die Größen E_{22} bzw. E'_{22} , E_{00} bzw. E'_{00} und U_{02} bzw. U'_{02} sind über die Gleichungen (5.52) und (5.53) definiert. Gemäß Gleichung (5.66) sollte das Fermi-Typ-Matrixelement W_F in erster Näherung unabhängig von den Quantenzahlen v_7 und l_7 sein, daher wurde während der Anpassung der spektroskopischen Konstanten mit dem Programm I5a [33] W_F auf dem zuvor ermittelten Wert von 7.003 (82) cm⁻¹ festgehalten. Die Parameter des unteren Zustandes wurden konstant auf den in der Tabelle 5.13 angegebenen Werten gehalten. Die durchgeführte Anpassung konvergierte relativ langsam. Nach rund 20 Zyklen erreichte die Standardabweichung ihr Minimum mit rund 8.8×10^{-4} cm⁻¹. Die ermittelten spektroskopischen Zentrifugalverzerrungskonstanten beider Resonanzpartner wiesen jedoch physikalisch nicht sinnvolle Werte auf. So nahmen für den Schwingungszustand ($\nu_3 + 2\nu_7$) D_v und H_v neagtive Werte an, wohingegen für den Zustand ($2\nu_4 + 2\nu_7$) H_v nahezu zwei Größenordnungen größer ist im Vergleich zum unteren Zustand. Wurde der Parameter W_F während des Fits freigegeben, so konvergierte dieser überhaupt nicht. Auch die Änderung der Startwerte der Konstanten brachte keinen Erfolg, so daß lediglich die in der Tabelle 5.16 angegebenen Reihenentwicklungskonstanten bestimmt werden konnten.

Subzustand	G_c	B_{ps}	D_{ps}	H_{ps}	σ
	$/\mathrm{cm}^{-1}$	$/\mathrm{cm}^{-1}$	$/10^{-9} {\rm cm}^{-1}$	$/10^{-12} \mathrm{cm}^{-1}$	$/10^{-4} {\rm cm}^{-1}$
(ν_3)	$1447.46324~(15)^{\mathrm{a})}$	$0.0768751(15)^{\mathrm{a})}$			5.44
$(u_3+ u_7)^{1\mathrm{e}}$	1528.977657(69)	0.077250739(60)	5.402(12)	0.01048(67)	4.01
$(u_3+ u_7)^{ m 1f}$	1528.977864~(64)	0.077391269(62)	6.123(14)	0.01638(12)	3.63
$(\nu_3 + 2\nu_7)^{0e}$	1604.178976(55)	0.07769763(27)	-7.19(24)	0.110(56)	2.31
$(\nu_3 + 2\nu_7)^{2e}$	1602.97137(14)	0.07772426(37)	21.22(23)	1.141(39)	5.73
$(\nu_3 + 2\nu_7)^{2f}$	$1\ 602.971\ 27\ (19)$	0.07772386(46)	8.27(27)	0.829(43)	7.47
$(2\nu_4)$	1422.053879(51)	0.076991441(52)	4.954(11)		2.10
$(2\nu_4 + \nu_7)^{1e}$	1513.015995~(69)	0.07729948(10)	5.782(35)	0.0531(67)	3.46
$(2\nu_4 + \nu_7)^{1f}$	$1513.01462\ (10)$	0.07743488(17)	6.670(75)	0.1140(88)	3.31
$(2\nu_4 + 2\nu_7)^{0e}$	1618.46445(18)	$0.07773411\ (29)$	-9.49(11)	-0.7150(97)	7.09
$(2\nu_4 + 2\nu_7)^{2e}$	1617.69899(11)	0.07775090(45)	28.21(46)	0.34(12)	3.42
$(2\nu_4 + 2\nu_7)^{2f}$	1617.69878(13)	0.07775029(39)	8.40(28)	0.298(56)	4.61

Tabelle 5.16 Sämtliche ermittelte Reihenentwicklungskonstanten verschiedener Subzustände der Streckschwingungen ν_3 und ν_4 von NCCNO.

a): lediglich Daten der Jet-Messungen berücksichtigt.

Obwohl die Kombinationszustände $(\nu_3 + 2\nu_7)$ und $(2\nu_4 + 2\nu_7)$ gestört sind, gewinnt man einen qualitativen Eindruck, welchen Einfluß die Anregung der NO- und CC-Streckschwingungen ν_3 bzw. ν_4 auf das effektive Knickschwingungspotential der niedrigliegenden CCN-Knickschwingung ν_7 haben, indem man die Reihenentwicklungskonstanten der $(\nu_3 + 2\nu_7)$ - und $(2\nu_4 + 2\nu_7)$ -Subzustände mit den Reihenentwicklungskonstanten der unteren Subzustände vergleicht.

Wie anhand der Abbildung 5.26 zu erkennen ist, sind die NCCNO-Termwerte mit $l_7 = 0$ und

Abbildung 5.26 Energiedifferenzen der $l_7 = 2/l_7 = 0$ -Niveaus der Schwingungszustände $(\nu_3 + 2\nu_7)$, $(2\nu_4 + 2\nu_7)$ und $(2\nu_7)$ des NCCNO-Moleküls.

 $l_7 = 2$ sowohl im Grund- als auch in den Kombinationszuständen ($\nu_3 + 2\nu_7$) und ($2\nu_4 + 2\nu_7$) im Vergleich zu einem regulär linearen Molekül invertiert, d. h. daß das $l_7 = 2$ -Niveau unterhalb des $l_7 = 0$ -Niveaus liegt. Diese Invertierung ist auf das Vorhandensein einer deutlich anharmonischen CCN-Knickschwingungs-Potentialfunktion mit großem quartischen Beitrag zurückzuführen. Weiterhin erkennt man aber auch, daß durch die Anregung der ν_3 -Schwingung sich die energetische Trennung beider Niveaus von 1.51 cm^{-1} zu 1.21 cm^{-1} verkleinert. Das bedeutet, daß mit Anregung der NO-Streckschwingung ν_3 der quartische Beitrag zum effektiven Knickschwingungspotential der ν_7 -Schwingung reduziert wird, da sich die energetische Lage der l_7 -Subzustände dem harmonischen Grenzfall nähert. Noch ausgeprägter ist dieses Verhalten bei Anregung zweier CC-Streckschwingungsquanten $2\nu_4$. Die Energiedifferenz der Niveaus verkleinert sich auf rund 0.77 cm⁻¹. Eine deutliche Näherung zum harmonischen Grenzfall tritt also ein. Durch die Anregung der NO- und CC-Streckschwingungen nimmt offensichtlich der quartische Beitrag des effektiven Potentials der CCN-Knickschwingung ab. Eine quantitative Beschreibung der Abhängigkeit der effektiven Knickschwingungspotentialfunktion einer Knickschwingung großer Amplitude in Abhängigkeit der Anregung von Streckschwingungen kleiner Amplitude findet man bei BUNKER [34]. Dort wird der Einfluß der CH- und CN-Streckschwingungen auf das effektive Potential der HCN-Knickschwingung im HCNO-Molekül beschrieben.

Im Gegensatz zum NCCNO findet man im Falle des HCNO, daß durch die Anregung der CHund CN-Streckschwingungen die Barriere zur Linearität deutlich erhöht wird, d.h. der quarti-

Abbildung 5.27 Ausschnitt aus dem Bandensystem der NC-Streckschwingung ν_2 . Oben: Molekularstrahlspektrum, unten: Zellenspektrum von NCCNO bei Raumtemperatur.

sche Beitrag stark zunimmt. Beträgt die Barriere zur Linearität im Grundzustand rund 11.5 cm⁻¹, so nimmt sie mit Anregung zweier CH-Streckschwingungsquanten auf rund 85.3 cm⁻¹ zu. Aus dieser Betrachtung wird zudem deutlich, daß durch den Einfluß der Streckschwingungen kleiner Amplitude auf das Potential einer anharmonischen Knickschwingung großer Amplitude natürlich auch der in Gleichung (5.93) eingeführte Quasilinearitätsparameter abhängig von der Anregung der Streckschwingung sein muß. Im Falle des HCNO-Moleküls verkleinert sich γ_0 von -0.65 auf -0.43 bei Anregung zweier CH-Streckschwingungsquanten [31].

Beim NCCNO-Molekül ergibt die Anregung der NO- oder CC-Streckschwingung eine genau entgegengesetzte Tendenz. Aufgrund der durch die Resonanzen bedingten Störungen der Vibrations-Termwerte wurden explizite γ_0 -Werte nicht berechnet. Insgesamt konnten im Bandensystem der NO-Streckschwingung ν_3 bisher rund 1 400 Rotations-Vibrations-Übergänge zugeordnet werden. Dies entspricht ungefähr 15% der insgesamt gefundenen Übergänge.

5.8 Die Bandensysteme der NC- und CN-Streckschwingungen ν_2 und ν_1

Wie bereits aus niedrigaufgelösten Infrarot-Messungen von PASINSZKI und WESTWOOD [22] bekannt war, sollte das NC-Bandensystem ν_2 nur rund ein Fünftel der Absorbanz des NO-Bandensystems ν_3 aufweisen. Es war daher sehr fraglich, ob es überhaupt möglich sei, Absorptionen in dem spektralen Bereich um 2 190 cm⁻¹ durch FTIR-Messungen an NCCNO-Molekularstrahlen nachzuweisen.

In der Abbildung 5.27 ist neben einem Ausschnitt des bei Raumtemperatur erhaltenen Transmissionsspektrums des NC-Bandensystems ν_2 auch ein Ausschnitt des Molekularstrahlspektrums im gleichen spektralen Bereich von NCCNO dargestellt. Wie man sieht, sind sehr schwache Absorptionen mit einer maximalen Transmission von rund 99.3 % im Molekularstrahlspektrum zu erkennen, die sich bis ungefähr J'' = 10 in P- und R-Zweig erstrecken. Informationen über *hot bands* liefert das Molekularstrahlspektrum hingegen nicht. Die Abbildung 5.28 zeigt einen vergrößerten Ausschnitt des ν_2 -Bandensystems. Eingezeichnet sind die durch die Molekularstrahlmessungen erhaltenen Zuordnungen im P- und R-Zweig der Fundamentalbande (ν_2) – (GS). Wie man weiterhin erkennt, ist in dem bei Raumtemperatur erhaltenen Spektrum keine klare Strukturierung im Bereich des Bandenzentrums zu erkennen. Das Zentrum der Fundamentalbande der NC-Streckschwingung ν_2 konnte aus dem Molekularstrahlspektrum zu 2192.462 18 (15) cm⁻¹ bestimmt werden. Mit dieser Information konnten in dem bei Raumtemperatur aufgenommenen Spektrum insgesamt rund 80 Rotations-Übergänge der ν_2 -Fundamentalen zugeordnet werden.

In der Abbildung 5.29 ist ein Ausschnitt des P-Zweiges des ν_2 -Bandensystems dieses Spektrums dargestellt. Eingezeichnet sind einige der getroffenen Zuordnungen. Die an die zugeordneten Linien angepaßten Reihenentwicklungskonstanten sind in der Tabelle 5.17 aufgeführt. Auffallend sind die deutlich zu großen Werte für die Zentrifugalverzerrungskonstanten D_{ps} und H_{ps} , die um ein Vielfaches größer sind als die entsprechenden Zentrifugalverzerrungskonstanten im Grundzustand. Dies läßt auf eine merkliche Störung des (ν_2) -Schwingungszustandes schließen. Der für die Störung verantwortliche Resonanzpartner konnte bisher nicht identifiziert werden. Ähnliches gilt für die Subbanden der ersten hot band, $(\nu_2 + \nu_7)^{1e,f} - (\nu_7)^{1e,f}$, die ebenfalls starke Störungen durch einen oder mehrere unbekannte Resonanzpartner aufweisen.

140

Abbildung 5.28 Vergrößerter Ausschnitt des NC-Streckschwingungsbandensystems ν_2 . Blau gezeichnet ist das aus den Molekularstrahlmessungen an NCCNO gewonnene FTIR-Spektrum. Eingezeichnet ist die *J*-Zuordnung der Fundamentalbande (ν_2) – (*GS*). Instrumentelle Auflösung: 0.0080 cm⁻¹. Rot gezeichnet ist das bei Raumtemperatur erhaltene NCCNO-Spektrum im Bereich des ν_2 -Bandensystems. Instrumentelle Auflösung: 0.0030 cm⁻¹, Doppler-Verbreiterung: 0.0033 cm⁻¹.

Abbildung 5.29 Ausschnitt aus dem bei Raumtemperatur erhaltenen Spektrum des ν_2 -Bandensystems von NCCNO. Die in diesem Bereich zugeordneten Rotations-Schwingungsübergänge sind eingezeichnet. Instrumentelle Auflösung: 0.0030 cm⁻¹, Doppler-Verbreiterung: 0.0033 cm⁻¹.

Überraschenderweise konnten zunächst keine Rotations-Vibrations-Übergänge der Subbanden der zweiten hot band, $(\nu_2+2\nu_7)^{0e}-(2\nu_7)^{0e}$ bzw. $(\nu_2+2\nu_7)^{2e,f}-(2\nu_7)^{2e,f}$, identifiziert werden. Erst das in Abbildung 5.30 dargestellte Jet-Spektrum des CN-Streckschwingungs-Bandensystem ν_1 um 2355 cm⁻¹ lieferte einen entscheidenden Hinweis zur Zuordnung des $(\nu_2 + 2\nu_7)^{0e}$ -Subzustandes. Neben der CN-Fundamentalen ν_1 um 2353.64 cm⁻¹, die sich bis rund J'' = 20 in P- und R-Zweig erstreckt, tritt eine weitere relativ intensitätsstarke Bande im Molekularstrahlspektrum zu Tage, die im Detail in den Abbildungen 5.33 und 5.34 dargestellt ist. In Anbetracht der relativ großen Transmission dieser Bande und der Tatsache, daß in den zuvor erhaltenen Jet-Spektren keinerlei Informationen über hot bands enthalten war, ist es klar, daß es sich um eine durch Resonanz verstärkte Bande handeln muß. Ein weiteres Indiz für diese Vermutung ist zum einen die um rund 10 cm^{-1} nach höheren Wellenzahlen verschobene Lage dieser Bande verglichen zur ν_1 -Fundamentalen, zum anderen stimmen die für den unteren Zustand ermittelten Reihenentwicklungskonstanten sehr gut mit den von LICHAU [1] ermittelten Konstanten des Grundzustandes überein. Sowohl der Termwert dieses Schwingungszustandes von 2.363.978.86 cm⁻¹ als auch das Fehlen eines Q-Zweiges in dieser Bande sprechen für die Zuordnung zu $(\nu_2 + 2\nu_7)^0 - (GS)$. Der $(\nu_2 + 2\nu_7)$ -Schwingungszustand wechselwirkt offenbar über eine Fermi-Typ-Resonanz mit (ν_1) , wodurch die Subbande $(\nu_2 + 2\nu_7)^0 - (GS)$ deutlich an Intensität gewinnt. Aufgrund der geringen Anzahl von Rotations-Vibrations-Übergängen in den Kombinationszustand ($\nu_2 + 2\nu_7$) ist eine Betrachtung dieses Resonanzpaares nach den Modellen der reduzierten Termwerte wenig

Abbildung 5.30 Ausschnitt aus dem Bandensystem der CN-Streckschwingung ν_1 . Oben: Molekularstrahlspektrum, 160 Scans, $T_{rot} = 7$ K, instrumentelle Auflösung: 0.008 0 cm⁻¹. Unten: Zellenspektrum von NCCNO bei Raumtemperatur, 320 Scans, instrumentelle Auflösung: 0.003 0 cm⁻¹.

Abbildung 5.31 Ausschnitt aus der Fundamentalbande der CN-Streckschwing ν_1 von NCCNO. Blau abgebildet ist das FTIR-Spektrum des NCCNO-Molekularstrahls. Eingezeichnet sind die in diesem Bereich zugeordneten Rotations-Vibrationsübergänge der Fundamentalbande (ν_1) – (GS). Darunter ist das in diesem Bereich bei Raumtemperatur erhaltene Spektrum von NCCNO dargestellt.

190

Abbildung 5.32 Ausschnitt aus dem P-Zweig der CN-Streckschwingungsbande ν_1 von NCCNO. Blau abgebildet ist das FTIR-Spektrum des NCCNO-Molekularstrahls. Eingezeichnet sind die in diesem Bereich zugeordneten Rotations-Vibrationsübergänge der Fundamentalbande (ν_1) – (GS). Instrumentelle Auflösung: 0.008 0 cm⁻¹. Darunter ist das bei Raumtemperatur in diesem Bereich erhaltene Spektrum von NCCNO dargestellt. Instrumentelle Auflösung: 0.003 0 cm⁻¹, Doppler-Verbreiterung: 0.003 3 cm⁻¹. Eingezeichnet sind die zugeordneten Übergänge P(J) von (ν_1) – (GS), R(J) von ($\nu_1 + \nu_7$)^{1e} – (ν_7)^{1e} und ($\nu_1 + \nu_7$)^{1f} – (ν_7)^{1f}.

Abbildung 5.33 Übersicht über die Bande $(2\nu_2 + 2\nu_7)^0 - (GS)$ von NCCNO. Blau dargestellt ist das FTIR-Spektrum des NCCNO-Molekularstrahls. Eingezeichnet sind die in diesem Bereich zugeordneten Rotations-Vibrationsübergänge des durch *Fermi*-Typ-Resonanz verstärkten Obertons $(2\nu_2+2\nu_7)^0 - (GS)$. Darunter ist das in diesem Bereich bei Raumtemperatur erhaltene Spektrum abgebildet.

Abbildung 5.34 Ausschnitt des P-Zweiges der Bande $(2\nu_2 + 2\nu_7)^0 - (GS)$ von NCCNO. Die obere Abbildung zeigt das FTIR-Spektrum des NCCNO-Molekularstrahls zwischen 2 361.6 und 2 362.3 cm⁻¹. Schwarz eingezeichnet sind die Übergänge P(J) von $(2\nu_2 + 2\nu_7)^0 - (GS)$. Die untere Abbildung zeigt das Raumtemperatur-Spektrum in diesem Bereich. Schwarz markiert sind die Übergänge P(J) von $(2\nu_2 + 2\nu_7)^0 - (GS)$, rot gekennzeichnet sind die Übergänge R(J) von $(\nu_1) - (GS)$.

Sub-	G_c	B_{ps}	D_{ps}	H_{ps}	L_{ps}	σ
zustand	$/\mathrm{cm}^{-1}$	$/{\rm cm}^{-1}$	$/10^{-9} { m cm}^{-1}$	$/10^{-12} { m cm}^{-1}$	$/10^{-15} \mathrm{~cm}^{-1}$	$/10^{-4} { m cm}^{-1}$
(ν_1)	2353.63816(13)	0.07718989(62)	5.172(73)	7.77(30)	-7.20(32)	4.90
$(u_1 + u_7)^{1\mathrm{e}}$	2425.80794(10)	0.07727799(29)	9.74(19)	0.295(33)		4.45
$(u_1 + u_7)^{1\mathrm{f}}$	$2\ 425.807\ 91\ (15)$	0.07744958(40)	12.69(27)	0.626(50)		5.49
$(\nu_1 + 2\nu_7)^{0e}$	2505.194595(78)	0.077718703(73)	-1.110(13)			3.70
$(\nu_1 + 2\nu_7)^{2e}$	2502.76689(22)	0.07776788(54)	18.26(28)	0.772(41)		7.86
$(u_1 + 2 u_7)^{2\mathrm{f}}$	2502.76741(25)	0.07776695(62)	8.85(35)	0.486(54)		8.97
(ν_2)	2192.46207(11)	0.07687381(77)	15.8(12)	10.09(54)		4.79
$(\nu_2 + \nu_7)^{1e}$	2273.41646(92)	0.0772371(11)	10.88(43)	0.616(50)		5.07
$(\nu_2 + \nu_7)^{1f}$	2273.4191(10)	0.0773785(13)	11.77(53)	0.738(65)		4.50
$(\nu_2 + 2\nu_7)^{0e}$	$2\ 36\ 2.979\ 331\ (82)$	0.0773412(14)	-52.3(59)	-70.1(86)	50.0(40)	2.54

Tabelle 5.17 Reihenentwicklungskonstanten verschiedener Subzustände der Streckschwingungen ν_1 und ν_2 von NCCNO.

aussagekräftig. Ein Vergleich der Abbildungen 5.31 bis 5.34 verdeutlicht, daß die Liniendichte, d. h. die Anzahl der Linien pro cm⁻¹, ab rund 2350 cm⁻¹ doch deutlich zurückgeht, was man schon anhand der Abbildung 5.5 erahnen kann.

Die CN-Fundamentalbande ν_1 konnte wie bereits erwähnt ebenfalls anhand des Molekularstrahlspektrums relativ einfach zugeordnet werden. Die Abbildungen 5.31 und 5.32 zeigen aber auch, daß aufgrund des sehr guten Signal-zu-Rausch-Verhältnisses in dem bei Raumtemperatur erhaltenen Spektrum, ebenfalls Rotations-Vibrations-Übergänge bei sehr niedrigen *J*-Werten zu sehen sind. So kann man sowohl im P- wie auch im R-Zweig die Übergänge P(2) und R(1) von $(\nu_1) - (GS)$ erkennen. Ebenfalls mißlang der Versuch, effektive spektroskopische Konstanten nach YAMADA, BIRSS und ALIEV [9] an die erhaltenen Übergänge anzupassen. Der Fit ergab physikalisch nicht sinnvolle Werte für die Zentrifugalverzerrungskonstanten beider Kombinationszustände, so daß wiederum Reihenentwicklungskonstanten angepaßt werden mußten. Offensichtlich wird dieses Resonanzpaar durch weitere unbekannte Resonanzpartner gestört. Die Werte der angepaßten Konstanten sind in der Tabelle 5.17 aufgeführt.

Auch die weiteren Kombinations-Zustände der CN-Streckschwingung, $(\nu_1 + \nu_7)$ und $(\nu_1 + 2\nu_7)$, weisen erhebliche Störungen durch unbekannte Resonanzpartner auf. Es wurden wiederum Reihenentwicklungskonstante für die dazugehörigen Subzustände ermittelt. Ein Vergleich der Reihenentwicklungskonstanten der ν_1 - und ν_2 -Kombinationszustände zeigt, daß beide Streckschwingungen einen unterschiedlichen Einfluß auf das Knickschwingungspotential der niedrigstliegenden Knickschwingung ν_7 besitzen. Die NC-Streckschwingung ν_2 hat offensichtlich kaum einen Einfluß, da sich die Termwerte des ν_2 -Systems einigermaßen zufriedenstellend durch Addition der entsprechenden ν_7 -Termwerte reproduzieren lassen. Wie anhand der Abbildung 5.35 zu erkennen ist, nimmt die Energiedifferenz der l_7 -Subzustände von 1.51 cm⁻¹ im unteren Zustand auf 2.43 cm⁻¹ im oberen Kombinationszustand zu. Offensichtlich führt eine Anregung der CN-Streckschwingung ν_1 zu einem anharmonischeren ν_7 -Knickschwingungspotential.

Das Vorhandensein der relativ intensitätsstarken CN-Streckschwingungs-Übergänge spiegelt sich in dem bei Raumtemperatur erhaltenen Spektrum durch zahlreiche Oberton-Übergänge { $\nu_1 + (n+1)v_7$ } - (nv_7) in die Kombinationszustände { $\nu_1 + (n+1)v_7$ } wider. So existiert in diesem Spektrum zwischen 2 400 cm⁻¹ und 2 435 cm⁻¹ eine Reihe von sehr schwachen Banden, die prominente Q-Zweige aufweisen. In der Abbildung 5.36 sind diese dargestellt. Es handelt sich um Oberton-Übergänge mit $\Delta v_1 = \Delta v_7 = 1$, $\Delta l = \pm 1$. In der Tabelle 5.18 sind die bisher ermittelten Bandenzentren dieser Übergänge den entsprechenden Bandenzentren der reinen 194

Subbande	$\operatorname{Zentrum}$	Subbande	Zentrum
$(\nu_1 + \nu_7)^{1e} - (GS)$	$2425.808{ m cm}^{-1}$	$(\nu_7)^{1e,f} - (GS)$	$80.445{ m cm^{-1}}$
$(u_1 + 2 u_7)^{0\mathrm{e}} - (u_7)^{1\mathrm{e},\mathrm{f}}$	$2424.671{ m cm^{-1}}$	$(2 u_7)^{0\mathrm{e}} - (u_7)^{1\mathrm{e}}$	$85.670{ m cm^{-1}}$
$(\nu_1 + 2\nu_7)^{2e} - (\nu_1)^{1e} (\nu_1 + 2\nu_7)^{2f} - (\nu_1)^{1f}$	2422.243 cm ⁻¹	$\begin{array}{l}(2\nu_7)^{2\mathrm{e}}-(\nu_1)^{1\mathrm{e}}\\(2\nu_7)^{2\mathrm{f}}-(\nu_7)^{1\mathrm{f}}\\(3\nu_7)^{1\mathrm{e}}-(2\nu_7)^{0\mathrm{e}}\\(3\nu_7)^{3\mathrm{e}}-(2\nu_7)^{2\mathrm{e}}\\(3\nu_7)^{3\mathrm{f}}-(2\nu_7)^{2\mathrm{f}}\end{array}$	$ \left. \begin{array}{c} 83.845\mathrm{cm^{-1}} \\ 87.840\mathrm{cm^{-1}} \\ 86.805\mathrm{cm^{-1}} \end{array} \right. $

Tabelle 5.18 Zentren der zugeordneten ν_1 -Subbanden im Vergleich zu den von LICHAU [1] ermittelten ν_7 -Subbandenzentren von NCCNO.

 ν_7 -Übergänge [1] gegenüber gestellt. Auffallend ist der entgegengesetzte Verlauf der Termwerte. Während bei den reinen ν_7 -Übergängen das Bandenzentrum der $(2\nu_7)^{0e} - (\nu_7)^{1e,f}$ -Subbanden mit +5.12 cm⁻¹ deutlich oberhalb der $(\nu_7)^{1e,f} - (GS)$ -Subbanden liegt, kehrt sich dieser Verlauf bei den im Rahmen dieser Arbeit zugeordneten Übergängen $(\nu_1 + 2\nu_7)^{0e} - (\nu_7)^{1e,f}$ um. Verantwortlich hierfür ist zum einen die Störung der Schwingungszustände durch Resonanzen, zum anderen der Einfluß der Streckschwingung auf das ν_7 -Knickschwingungspotential.

In dem in der Abbildung 5.36 dargestellten Spektrum treten weitere Q-Zweige im Bereich von 2 405 bis 2 420 cm⁻¹ hervor, die von weiteren Oberton-Übergängen herrühren und aus zeitlichen Gründen noch nicht analysiert werden konnten.

Abbildung 5.35 Energiedifferenzen der $l_7 = 2/l_7 = 0$ -Niveaus der Schwingungszustände $(\nu_1 + 2\nu_7)$ und $(2\nu_7)$ des NCCNO-Moleküls.

Abbildung 5.36 Ausschnitt aus dem bei Raumtemperatur erhaltenen Spektrum von NCCNO. Abgebildet sind die Banden der Oberton-Übergänge { $\nu_1 + (n+1)\nu_7$ } – $(n \nu_7)$ mit $\Delta l_7 = \pm 1$ von NCCNO.

5.9 Zusammenfassung der Ergebnisse und Ausblick

Im Rahmen der vorliegenden Arbeit wurde das MIR-Spektrum von NCCNO zwischen 1400 cm⁻¹ und 2500 cm⁻¹ mittels hochauflösender FTIR-Spektroskopie aufgenommen. Die erstmalige spektroskopische Charakterisierung eines Molekülstrahles des semi-stabilen Cyanofulminats erlaubte die Zuordnung der Fundamentalübergänge der CN-Streckschwingung ν_1 , der NC-Streckschwingung ν_2 und der NO-Streckschwingung ν_3 und komplettiert das bis dato gewonnene Bild über die Normalschwingungen des NCCNO-Moleküls, welche zusammenfassend in der Abbildung 5.37 dargestellt sind. Rotations-Vibrations-Übergänge in Kombinationszustände dieser Streckschwingungen mit der einfach und zweifach angeregten CCN-Knickschwingung ν_7 konnten ebenfalls zugeordnet werden. Weiterhin konnte die Störung dieser Schwingungszustände durch *Fermi*-Typ-Resonanzen mit den Kombinationszuständen $(2\nu_4 + \nu_7)$ und $(2\nu_4 + 2\nu_7)$ aufgezeigt werden und für das Resonanzpaar $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ effektive spektroskopische Konstanten nach YAMADA, BIRSS und ALIEV [9] angepaßt werden. Das dabei ermittelte *Fermi*-Typ Matri-xelement wurde zu 7.003 (82) cm⁻¹ bestimmt.

Aufgrund der hohen Zustandsdichte zwischen 1400 cm^{-1} und 2500 cm^{-1} , in diesem Termwerte-Bereich existieren rund 2900 Zustände, sind praktisch sämtliche Schwingungszustände mehr oder weniger stark durch verschiedene Resonanzpartner gestört, so daß für die Subzustände Reihenentwicklungskonstanten angepaßt wurden. Die zugeordneten Linien samt den Differenzen zwischen den gemessenen und berechneten Linienpositionen befinden sich im Anhang D.

Abbildung 5.38 Das zur Zeit bekannte Vibrationstermschema des NCCNO-Moleküls. Schwarz gezeichnet sind die von LICHAU [1], blau die von GUO *et al.* [23] ermittelten Schwingungszustände. Rot dargestellt sind die im Rahmen dieser Arbeit analysierten Schwingungszustände von NCCNO.

In der Abbildung 5.38 ist abschließend das bis zum jetzigen Zeitpunkt bekannte Vibrationstermschema des NCCNO-Moleküls dargestellt. Schwarz dargestellt sind die von LICHAU [1] ermittelten Vibrationsniveaus, blau die von GUO *et al.* [23] und rot die im Rahmen dieser Arbeit analysierten, insgesamt 12 Vibrationsniveaus. Rund 2 500 Rotations-Vibrations-Übergänge konnten bisher zugeordnet werden; dies entspricht ungefähr 10% der insgesamt gefundenen Übergänge.

Die Analyse weiterer Oberton-Übergänge $\{\nu_1 + (n+1)v_7\} - (n\nu_7)$, mit $\Delta l_7 = \pm 1$, die im Bereich zwischen 2 400 und 2 430 cm⁻¹ liegen und intensive Q-Zweige aufweisen, ermöglicht unter Umständen die Zuordnung und Charakterisierung höherer $\{\nu_1 + (n+1)v_7\}$ -Kombinationszustände. Denkbar wären beispielsweise neue Messungen in der 3 m-Absorptionszelle des Gießener Labors mit wesentlich höherem Druck-Wegelänge-Produkt.

Nichtsdestotrotz wird es bei zukünftigen Arbeiten unerläßlich sein, einerseits Spektren der Resonanzpartner der verschiedenen Streckschwingungszustände und Streckschwingungs-Kombinationszustände zu erhalten, um die komplizierten Resonanzsystem analysieren zu können. Erforderlich wären somit zunächst neue FTIR-Messungen im Bereich zwischen 400 und 1000 cm⁻¹. Andererseits werden wiederum nur aufwendigere theoretische Verfahren physikalisch interpretierbare Ergebnisse der komplizierten Wechselwirkungsverhältnisse liefern.

5.10 Literaturverzeichnis

- H. LICHAU, Spektroskopische und theoretische Untersuchungen zur Struktur und Dynamik von kovalenten Fulminaten und Heterokumulenen, Dissertation, Justus-Liebig-Universität, Gießen (1999).
- [2] P. JENSEN, Theoretische Chemie IV Theoretische Spektroskopie, Bergische Universität Gesamthochschule Wuppertal (1995).
- [3] W. GORDY AND R. L. COOK, Microwave Molecular Spectra, 3rd edition, John Wiley & Sons, New York (1984).
- [4] D. PAPOUŠEK AND M. R. ALIEV, Molecular Vibrational/Rotational Spectra, Academia, Prague (1982).
- [5] I. MILLS, T. CVITĂS, K. HOMANN, N. KALLAY, K. KUCHITSU, Quantities, Units and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford, 1993.
- [6] J. K. G. WATSON, The Vibration-Rotation Hamiltonian of Linear Molecules, Mol. Phys. 19, 465–487 (1970).
- [7] M. GOLDSMITH, G. AMAT, AND H. H. NIELSEN, Higher Order Rotations-Vibration Energies of Polyatomic Molecules, J. Chem. Phys. 24, 1178–1182 (1956).
- [8] T. OKA, Vibration-Rotation Interaction in Symmetric-Top Molecules and the Splitting between A_1 and A_2 Levels, J. Chem. Phys. 47, 5410–5426 (1967).
- [9] K. M. T. YAMADA, F. W. BIRSS, AND M. R. ALIEV, Effective Hamiltonian for Polyatomic Linear Molecules, J. Mol. Spectrosc. 112, 347–356 (1985).
- [10] E. FERMI, Über den Ramaneffekt des Kohlendioxyds, Z. Physik 71, 250–259 (1931).
- [11] H. H. NIELSEN, The Vibration-Rotation Energies of Molecules and their Spectra in the Infra-Red, Seiten 173–313 in S. FLÜGGE, Handbuch der Physik, Band XXXVII/1, Springer-Verlag, Berlin (1959).
- [12] J. M. BROWN, J. T. HOUGEN, K. -P. HUBER, J. W. C. JOHNS, I. KOPP, H. LEFEBVRE-BRION, A. J. MERER, D. A. RAMSAY, J. ROSTAS, AND R. N. ZARE, The Labeling of Parity Doublet Levels in Linear Molecules, J. Mol. Spectrosc. 55, 500-503 (1975).
- [13] P. JENSEN, Ab Initio Molekülorbitaltheorie, 5. Auflage, Justus-Liebig-Universität, Gießen (1993).
- [14] A. D. BECKE, Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behaviour, Phys. Rev. A 38, 3098–3100 (1988).

- [15] C. LEE, W. YANG, AND R. G. PARR, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, *Phys. Rev. B* 37, 785-789 (1988).
- [16] G. E. SCUSERIA AND T. J. LEE, Comparison of Coupled-Cluster Methods which include the Effects of Connected Triple Excitations, J. Chem. Phys. 93, 5851–5855 (1990).
- T. H. DUNNING (JR.), Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen, J. Chem. Phys. 90, 1007-1023 (1989).
- [18] C. GRUNDMANN AND H. D. FROMMELD, Nitrile Oxides. VIII. Cyanogen-N-Oxide, J. Org. Chem. 31, 4235–4237 (1966).
- [19] M. CHRISTL AND R. HUISGEN, Alte und neue Cycloadditionen der Nitriloxide, Tetrahedron Lett. 50, 5209–5213 (1968).
- [20] G. MAIER AND J. H. TELES, Isolierung und Photoisomerisierung von einfach substituierten Nitriloxiden, Angew. Chem. 99, 152–153 (1987).
- [21] T. PASINSZKI AND N. P. C. WESTWOOD, Gas-Phase generation and Spectroscopy of the Unstable NCCNO Molecule, J. Chem. Soc. Chem. Commun. 1995, 1901–1902 (1995).
- [22] T. PASINSZKI AND N. P. C. WESTWOOD, Ground, Excited, and Ionic States of the NCCNO Molecule: A HeI Photoelectron, Infrared, Ultraviolett, and *ab initio* Investigation, J. Phys. Chem. 100, 16856–16863 (1996).
- [23] B. GUO, T. PASINSZKI, N. P. C. WESTWOOD, K. ZHANG, AND P. F. BER-NATH, High Resolution Infrared Spectroscopy of Cyanogen N-Oxide, NCCNO, J. Chem. Phys. 105, 4457-4460 (1996).
- [24] T. BRUPBACHER, R. K. BOHN, W. JÄGER, M. C. L. GERRY, T.PASINSZKI, AND N. P. C. WESTWOOD, Microwave Spectrum and Geometry of Cyanogen N-Oxide, NCCNO, J. Mol. Spectrosc. 181, 316–322 (1997).
- [25] K. YAMADA AND M. WINNEWISSER, A Parameter to Quantify Molecular Quasilinearity, Z. Naturforsch. 31a, 139–144 (1976).
- [26] C. O. PARKER, W. D. EMMONS, H. A. ROLEWICZ, AND K. S. MCCALLUM, Chemistry of Dinitroacetonitrile I. Preparation and Properties of Dinitroacetonitrile and its Salts, *Tetrahedron* 17, 79–87 (1962).
- [27] A. G. MAKI AND J. S. WELLS, Wavenumber Calibration Tables from Heterodyne Frequency Measurements, Band 821 der NIST Special Publications, United States Department of Commerce, Washington D.C. (1991)
- [28] G. CH. MELLAU, persönliche Mitteilung, Justus-Liebig-Universität, Gießen (1999).
- [29] F. STROH, Cyanisocyan, CNCN: Identifikation und Charakterisierung einer neuen Spezies mittels hochauflösender Mikrowellen- und Fourier-Transform-Infrarot-Spektroskopie, Dissertation, Justus-Liebig-Universität, Gießen (1991).
- [30] F. W. LOOMIS AND R. W. WOOD, The Rotational Structure of the Blue-Green Bands of Na-2, Phys. Rev. 32, 223-236 (1928).
- [31] S. ALBERT, Netzwerke von Resonanzsystemen in den Spektren eines quasilinearen Moleküls, Dissertation, Justus-Liebig-Universität, Gießen (1995).
- [32] J. K. HOLLAND, D. LAWRENCE, AND I. MILLS, Perturbations in the Infrared Spectrum of Monofluoroacetxlene, and Their Relationship to Intramolecular Vibrational Energy Redistribution, J. Mol. Spectrosc. 151, 369–377 (1992).
- [33] M. JUNG, persönliche Mitteilung, Justus-Liebig-Universität, Gießen (1999).

[34] P. R. BUNKER, B. M. LANDSBERG, AND B. P. WINNEWISSER, HCNO as a Semirigid Bender, J. Mol. Spectrosc. 74, 9–25 (1979).

Kapitel 6

ROTATIONS-VIBRATIONS-Spektroskopie am Oxetan-Molekül

Beim Oxetan-Molekül (C_3H_6O) handelt es sich um eine viergliedrige, gesättigte Ringverbindung, die eine gewinkelte Ringkonformation bezüglich der Ringebene annehmen kann. Die Knickbewegung aus dieser Ebene heraus bezeichnet man als Ring-Puckering-Schwingung. Diese gehört, vergleichbar mit energetisch tiefliegenden Knickbewegungen vieler Kettenmoleküle, zu den Schwingungsbewegungen mit großer Amplitude, den sogenannten *large amplitude motions*. Da die Puckering-Schwingung des Oxetans im FIR-Bereich des elektromagnetischen Spektrums liegt-KUNZMANN [1] konnte den Termwert des ersten und zweiten angeregten Zustandes der Puckering-Schwingung zu 52.920318 (20) cm⁻¹ bzw. 142.579818 (24) cm⁻¹ bestimmen-ist in Analogie zum NCCNO-Molekül eine sehr große Dichte an Energieniveaus und damit an Absorptionslinien im mittleren Infrarot zu erwarten.

Der CH-Streckschwingungsbereich um 3000 cm⁻¹ sollte somit eine Vielzahl von Rotations-Schwingungs-Übergängen aus dem Grundzustand und aus angeregten Zuständen der Puckering-

Abbildung 6.1 Das Oxetan-Molekül.

Schwingung aufweisen. Es erschien daher erfolgversprechend, den CH-Streckschwingungsbereich wiederum mit der Kombination aus Molekularstrahltechnik und FTIR-Spektroskopie zu untersuchen. Insbesondere die mittels *ab initio* -Berechnungen ermittelten Intensitäten einiger CH-Moden in diesem spektralen Bereich von rund 100 km/mol [2] erschienen ausreichend für deren spektroskopischen Nachweis.

Im folgenden Kapitel werden zunächst einige Anmerkungen zur Theorie der Molekülspektren eines asymmetrischen Moleküls gegeben, bevor auf die bisherigen spektroskopischen und theoretischen Arbeiten am Oxetan eingegangen wird. Anschließend wird die Aufzeichnung der FTIR-Spektren von Oxetan im Bereich der CH-Streckschwingungen erläutert. Die FTIR-Messungen an Oxetan erfolgten sowohl unter statischen Bedingungen als auch unter den Bedingungen einer Überschallexpansion. Abschließend folgt dann eine Interpretation der Spektren.

6.1 Theorie der Molekülspektren eines asymmetrischen Kreisels

In diesem Kapitel wird in Grundzügen die theoretische Beschreibung der Molekülspektren eines symmetrischen und asymmetrischen Kreisels aufgezeigt. Die Ableitung der quantenmechanischen Beziehungen zur Beschreibung der Eigenzustände symmetrischer und asymmetrischer Moleküle basiert auf den in Kapitel 5 aufgezeigten Grundlagen und orientiert sich im wesentlichen an den Darstellungen von JENSEN [3], GORDY und COOK [4] sowie PAPOUŠEK und ALIEV [5] und BUNKER [6].

6.1.1 Der symmetrische Kreisel

Symmetrische Kreisel sind dadurch charakterisiert, daß zwei der drei Hauptträgheitsmomente identisch sind. Man unterscheidet prolate Kreisel mit $I_a < I_b = I_c$, d. h. A > B = C, und oblate Kreisel mit $I_a = I_b < I_c$ und A = B > C. Gewöhnlicherweise fällt im oblaten Fall die *a*- und im prolaten Fall die *c*-Achse mit der *z*-Achse des molekülfesten Koordinatensystems zusammen. Gemäß den Gleichungen (5.42) und (5.43) besitzt die Hamilton-Matrix nur diagonale Elemente. Für einen prolaten Kreisel ergibt sich

$$E_{J,K} = \langle J, K, M | \hat{H} | J, K, M \rangle = BJ (J+1) + (A-B) K^2, \qquad (6.1)$$

und für einen oblaten Kreisel erhält man:

$$E_{J,K} = \langle J, K, M | \hat{H} | J, K, M \rangle = BJ (J+1) + (C-B) K^2.$$
(6.2)

Wie man leicht sieht, hängen die Matrixelemente nur vom Betrag der Quantenzahhl K ab, alle Energieniveaus mit |K| > 0 sind zweifach entartet.

6.1.2 Qualitative Beschreibung des asymmetrischen Kreisels

Im allgemeinsten Fall eines Rotators unterscheiden sich die Hauptträgheitsmomente I_a , I_b und I_c voneinander. Man bezeichnet solche Rotatoren als asymmetrische Kreisel. Der Hamiltonoperator eines starren asymmetrischen Kreisels ist nach Gleichung (5.29) gegeben durch

$$\hat{H}_{rot}^{0} = \frac{1}{2} \left(\frac{\hat{L}_{a}^{2}}{I_{a}} + \frac{\hat{L}_{b}^{2}}{I_{b}} + \frac{\hat{L}_{c}^{2}}{I_{c}} \right).$$
(6.3)

Die Hamiltonmatrix eines asymmetrischen Kreisel ist diagonal bezüglich J und M, enthält aber, wie aus der Gleichung (5.42) ersichtlich wird, Außerdiagonalelemente bezüglich K. Dies

Abbildung 6.2 Korrelation der Energieniveaus eines asymmetrischen Kreisels mit den Energieniveaus eines prolaten und eines oblaten Kreisels. Entnommen aus [4].

unterscheidet den asymmetrischen vom symmetrischen Kreisel. Analytische Lösungen der zur Hamilton-Matrix gehörenden Säkulargleichung lassen sich lediglich für niedrige *J*-Werte finden. Es existieren jedoch Näherungsverfahren, die für die Interpretation und Beschreibung der Spektren asymmetrischer Kreiselmoleküle nützlich sind. Die im folgenden vorgestellten Näherungsverfahren nach RAY [7] und WANG [8] enthalten einen sogenannten Asymmetrieparameter, der ein Maß für die Abweichung eines asymmetrischen Kreisels von einem symmetrischen Kreisel ist.

Der RAysche Asymmetrieparameter [7] κ ist definiert als

$$\kappa = \frac{2B - A - C}{A - C},\tag{6.4}$$

wobei A, B, C die Rotationskonstanten sind. Im einen Grenzfall von $\kappa = -1$ geht der asymmetrische Kreisel in den prolaten symmetrischen Kreisel über, d. h. C geht gegen B, im anderen Fall

von $\kappa = +1$ nähert sich der asymmetrische Kreisel dem oblaten symmetrischen Kreisel, A geht gegen B. Der asymmetrischste Kreisel besitzt $\kappa = 0$. Die zu K = +1 und K = -1 gehörenden Rotations-Niveaus eines asymmetrischen Kreisels sind im Gegensatz zum symmetrischen Kreisel aufgespalten. Daher existieren (2J + 1) Energiestufen der Rotation für einen asymmetrischen Rotator, wohingegen es beim symmetrischen Kreisel lediglich (J + 1) Niveaus gibt.

Die Nomenklatur der Rotations-Niveaus eines asymmetrischen Kreisels läßt sich anschaulich aus dem Korrelationsdiagramm in der Abbildung 6.2 erkennen. In diesem Diagramm werden die Energieniveaus eines oblaten bzw. prolaten symmetrischen Kreisels ineinander überführt. Die Abszisse beschreibt den Grad der Asymmetrie. Zur Beschreibung der Energiestufen werden die K-Quantenzahlen der Grenzfälle des oblaten und prolaten symmetrischen Kreisels verwendet. Ein Rotations-Niveau wird nach KING, HAINER und CROSS [9] beschrieben durch

 $J_{K_a K_c},$

wobei K_a die K-Quantenzahl des prolaten und K_c die des oblaten Kreisels darstellen. Eine weitere Möglichkeit der Darstellung besteht in der Form

 J_{τ} ,

wobei die Pseudoquantenzahl τ definiert ist als $\tau = K_a - K_c$.

6.1.3 Die Näherung nach RAY

Unter Verwendung des in Gleichung (6.4) eingeführten Asymmetrieparameters κ formulierte RAY den Hamiltonoperator eines asymmetrischen Kreisels \hat{H} zu

$$\hat{H} = \frac{1}{2}(A+C)\hat{L}^2 + \frac{1}{2}(A-C)\hat{H}(\kappa)$$
(6.5)

mit dem reduzierten Hamiltonoperator

$$\hat{H}(\kappa) = \hat{L}_{a}^{2} + \kappa \hat{L}_{b}^{2} - \hat{L}_{c}^{2}.$$
(6.6)

Der Vorteil dieser Beschreibungsweise liegt darin, daß die reduzierten Energien, die Eigenwerte des reduzierten Hamilton-Operators $\hat{H}(\kappa)$ sind, nur noch vom Asymmetrieparameter κ und nicht von den individuellen Rotationskonstanten A, B und C abhängen. Als reduzierte Energien bezeichnet man Eigenwerte des Hamiltonoperators nach Gleichung (6.5) für einen hypothetischen Rotator mit den Rotationskonstanten $A = +1, B = \kappa$ und C = -1. Die reduzierte Energie beschreibt also die Abweichung der tatsächlichen Energie von der eines symmetrischen Kreisels.

Wählt man nun die Eigenfunktionen eines symmetrischen Kreisels als Basisfunktionen, so erzeugt der erste Summand in Gleichung (6.5) nur diagonale Matrixelemente

$$E_{K,K} = \langle J, K, M | (A+C) \hat{L}^2 | J, K, M \rangle = (A+C) J (J+1).$$
(6.7)

Für den reduzierten Hamilton-Operator findet man sowohl diagonale als auch außerdiagonale Matrixelemente

$$E_{K,K} = \langle J, K, M | \hat{H}(\kappa) | J, K, M \rangle = F \left[J \left(J + 1 \right) - K^2 \right] + GK^2,$$
(6.8)

$$E_{K,K\pm 2} = \langle J, K, M | \hat{H}(\kappa) | J, K \pm 2, M \rangle = \frac{1}{2} H \sqrt{f(J, K \pm 1)},$$
(6.9)

wobei für den Faktor $f(J, K \pm 1)$ gilt

$$f(J, K \pm 1) = [J(J+1) - K(K \pm 1)] \times [J(J+1) - (K \pm 1)(K \pm 2)] .$$
(6.10)

Die Werte für $f(J, K \pm 1)$ sind bis J = 30 tabelliert [9]. Zwischen den Matrixelementen bestehen die folgenden Beziehungen:

$$E_{K,K} = E_{-K,-K}, E_{K,K+2} = E_{K+2,K} = E_{-K,-K-2} = E_{-K-2,-K}.$$
(6.11)

Über die Matrixelemente $E_{K,K\pm 2}$ wird eine notwendige Resonanz der Energieniveaus vermittelt, die zu einer symmetrischen Aufspaltung derselbigen führt.

Die Form der Konstanten F, G und H ist abhängig von der Zuordnung der Hauptträgheitsachsen a, b, c zu den moleküfesten Achsen x, y und z, also davon, ob man die Eigenfunktionen eines prolaten oder oblaten Kreisels als Basisfunktionen wählt. In der Tabelle 6.1 sind die in Anlehnung an Tabelle 5.2 möglichen Kombinationen aufgezeigt. Ein hochgestelltes r oder l gibt an, ob es sich um ein rechts- oder linkshändiges Koordinatensystem handelt. Aus Gründen der Zweckmäßigkeit wird man für einen fast prolaten Kreisel die Eigenfunktionen eines prolaten symmetrischen Kreisels verwenden. Analoges gilt für den oblaten Fall. Denn nur dann werden die Außerdiagonalelemente der Hamilton-Matrix möglichst klein.

6.1.4 Die Reduktion nach WANG

Die sogenannte WANGsche Reduktion [8] erlaubt die Beschreibung leicht asymmetrischer Moleküle mit κ nahe +1 oder -1. Für einen fast prolaten Kreisel ist der WANGsche Asymmetrieparameter b_p definiert zu

$$b_p = \frac{C - B}{2A - B - C} = \frac{\kappa + 1}{\kappa - 3}.$$
(6.12)

Der Parameter b_p besitzt Werte zwischen 0 für einen prolaten und -1 für einen oblaten Kreisel. Für den Zustand größter Asymmetrie ist $b_p = -\frac{1}{3}$. Für den Hamilton-Operator eines prolaten, fast-symmetrischen Kreisel gilt unter Verwendung des WANGschen Parameters b_p in der I^r-Repräsentation:

$$\hat{H} = \frac{1}{2}(B+C)\hat{L}^2 + [A - \frac{1}{2}(B+C)]\hat{H}(b_p).$$
(6.13)

Der reduzierte Hamilton-Operator $\hat{H}(b_p)$ ist gegeben durch

$$\hat{H}(b_p) = \hat{L}_a^2 + b_p (\hat{L}_c^2 - \hat{L}_b^2).$$
(6.14)

Verwendet man wiederum die Wellenfunktionen des prolaten symmetrischen Kreisels als Basisfunktionen, so findet man im einzelnen für die Matrixelemente unter Berücksichtigung von

Tabelle 6.1 Die Koeffizienten F, G und H des reduzierten Hamilton-Operators \hat{H}_{κ} nach RAY in Abhängigkeit von der der Wahl der Achsen. Entnommen aus [4]

	I^r	Π^r	III^r	I^l	II^l	III^l
F	$\frac{1}{2}(\kappa-1)$	0	$\frac{1}{2}(\kappa + 1)$	$\frac{1}{2}(\kappa-1)$	0	$\frac{1}{2}(\kappa + 1)$
G	1	κ	-1	1	κ	-1
H	$-\frac{1}{2}(\kappa+1)$	1	$\frac{1}{2}(\kappa-1)$	$\frac{1}{2}(\kappa+1)$	1	$-\frac{1}{2}(\kappa-1)$

Gleichung (6.13):

$$E_{K,K} = \langle J, K, M | \hat{H} | J, K, M \rangle = \frac{1}{2} (B+C) J (J+1) + \left[A - \frac{1}{2} (B+C) \right] K^2, \quad (6.15)$$

$$E_{K,K\pm 2} = \langle J, K, M | \hat{H} | J, K \pm 2, M \rangle = \frac{1}{4} (C - B) \times \sqrt{f(J, K \pm 1)} .$$
(6.16)

Die Diagonalelemente des fast prolaten Kreisels sind im Prinzip denen des prolaten symmetrischen Kreisels [Gleichung (6.1)] sehr ähnlich. Daraus folgt wiederum, daß die $\Delta K = \pm 2$ Außerdiagonalelemente die Asymmetrieaufspaltung Δ_{asym} beschreiben. Für diese gilt näherungsweise:

$$\Delta_{asym} = \frac{(C-B) b_p^{|K|-1}}{2 \times 8^{|K|-1} \left[(|K|-1)! \right]^2} \times \frac{(J+|K|)!}{(J-|K|)!}, \qquad (6.17)$$

und für die Aufspaltung der |K| = 1-Niveaus kann man ableiten [10]

$$\Delta_{asym}^{(|K|=1)} = \frac{1}{2} \left(C - B \right) J \left(J + 1 \right) .$$
(6.18)

Eine erhebliche Vereinfachung der Hamilton-Matrix wird durch deren Faktorisierung nach WANG [8] erzielt. Anstatt die Eigenfunktionen eines symmetrischen Kreisels als Basis zu verwenden, werden nach WANG symmetrieadaptierte Basisfunktionen, die Linearkombinationen der Eigenfunktionen eines symmetrischen Kreisels darstellen, verwendet:

$$|J, K, M\rangle' = \frac{1}{\sqrt{2}} \left[(-1)^{\beta} |J, K, M\rangle + (-1)^{\gamma} |J, -K, M\rangle \right],$$
(6.19)

$$|J,0,K\rangle' = (-1)^{\beta} |J,0,M\rangle$$
 (6.20)

Die Größe γ kann den Wert 0 oder 1 annehmen, β bezeichnet das Maximum von K und M. Durch diese Transformation wird die Hamilton-Matrix in eine Blockdiagonalmatrix aus vier Submatrizen \mathbf{E}^+ , \mathbf{E}^- , \mathbf{O}^+ und \mathbf{O}^- überführt. Die einzelnen Submatrizen können nun unabhängig voneinander diagonalisiert werden. Für einen gegebenen J-Wert erhält man im einzelnen [4]:

$$\mathbf{E}^{+} = \begin{bmatrix} E_{00} & \sqrt{2}E_{02} & 0 & \cdot & \cdot \\ \sqrt{2}E_{02} & E_{22} & E_{24} & 0 & \cdot \\ 0 & E_{24} & E_{44} & E_{46} & \cdot \\ \cdot & 0 & E_{46} & E_{66} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}, ,$$

$$\mathbf{E}^{-} = \begin{bmatrix} E_{22} & E_{24} & 0 & \cdot & \cdot \\ E_{24} & E_{44} & E_{46} & 0 & \cdot \\ 0 & E_{46} & E_{66} & E_{68} & \cdot \\ \cdot & 0 & E_{68} & E_{88} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}, ,$$

$$\mathbf{O}^{\pm} = \begin{bmatrix} E_{11} \pm E_{-11} & E_{13} & 0 & \cdot & \cdot \\ E_{13} & E_{33} & E_{35} & 0 & \cdot \\ 0 & E_{35} & E_{55} & E_{57} & \cdot \\ \cdot & 0 & E_{57} & E_{77} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}.$$

$$(6.21)$$

6.1.5 Zentrifugalverzerrung im asymmetrischen Kreisel

In der bisherigen Betrachtung des asymmetrischen Kreisels wurde die Rotation des Moleküls unter der Annahme einer starren Konformation betrachtet. Durch die Rotation und Schwingung kommt es jedoch zu Verzerrungen des Kraftfeldes der chemischen Bindungen, so ist das Trägheitsmoment abhängig vom Rotations- und Schwingungszustand des Moleküls. Im Kapitel 5.1.2 wurde explizit die Entwicklung des Rotations-Vibrations-Hamiltonoperators, der im folgenden mit \hat{H} bezeichnet wird, dargelegt. Dieser setzt sich aus verschiedenen Teiloperatoren \hat{H}_L zusammen:

$$\hat{H} = \hat{H}_0 + \hat{H}_1 + \hat{H}_2 + \ldots = \sum_{L=0}^{\infty} \hat{H}_L .$$
 (6.22)

Berücksichtigt man in dieser Darstellung maximal quartische Terme, so kann der Rotations-Vibrations-Hamilton-Operator als Summe von verschiedenen Termen, die im einzelnen aufgeführt werden, beschrieben werden [5]:

• Quartische Anharmonizität der Schwingungen:

$$H_{v} = H_{20} + H_{30} + H_{40} = \frac{1}{2} \sum_{k=1}^{3N-6} \omega_{k} \left(\hat{p}_{k}^{2} + q_{k}^{2} \right)$$

$$+ \frac{1}{6} hc \sum_{k=1}^{3N-6} \sum_{l=1}^{3N-6} \sum_{m=1}^{3N-6} \phi_{klm} q_{k} q_{l} q_{m}$$

$$+ \frac{1}{24} hc \sum_{k=1}^{3N-6} \sum_{l=1}^{3N-6} \sum_{m=1}^{3N-6} \sum_{n=1}^{3N-6} \phi_{klmn} q_{k} q_{l} q_{m} q_{n} + \sum_{\alpha}^{3N-6} B_{\alpha} \hat{p}_{\alpha}^{2}.$$
(6.23)

 ϕ_{klm} steht für die kubische und ϕ_{klmn} für die quartische Kraftkonstante [vgl. Gleichung (5.19)]. H_{20} stellte den Operator des harmonischen Oszillators dar, H_{30} und H_{40} beschreiben die Anharmonizität der Schwingungen. B_{α} steht für die Rotationskonstante in der Gleichgewichtskonfiguration mit $\alpha = x, y, z$. ω_k repräsentiert die harmonische Schwingungswellenzahl der k-ten Normalschwingung, dementsprechend stellen die Größen q_k, q_l , q_m und q_n dimensionslose Normalkoordinaten der k-ten usw. Normalschwingung dar.

• Rotations-Schwingungs-Wechselwirkung:

$$\hat{H}_{21} = -2\sum_{k,l} (\omega_l / \omega_k)^{1/2} q_k \hat{p}_l \sum_{\alpha} B_{\alpha} \zeta_{kl}^{\alpha} \hat{L}_{\alpha}.$$
(6.24)

 ω_l und ω_k sind die Wellenzahlen der *l*-ten und *k*-ten Schwingung, q_k repräsentiert wieder die dimensionslose Normalkoordinate der *k*-ten Schwingung. \hat{p}_l entspricht dem Operator des linearen Impulses der *l*-ten Schwingung, ζ_{kl}^{α} der *Coriolis*-Kopplungskonstante und \hat{L}_{α} dem aus Rotations- und Schwingungsbewegung resultierenden Drehimpuls.

• Quartische Zentrifugalverzerrung:

$$\hat{H}_{12} = \sum_{\alpha,\beta} \sum_{k} B_k^{\alpha,\beta} q_k \hat{L}_{\alpha} \hat{L}_{\beta}, \qquad (6.25)$$

$$\hat{H}_{22} = \frac{3}{8} \sum_{\alpha,\beta,\gamma} \sum_{k,l} B_{\gamma}^{-1} (B_k^{\alpha\gamma} B_l^{\gamma\beta} + B_l^{\alpha\gamma} B_k^{\gamma\beta}) q_k q_l \hat{L}_{\alpha} \hat{L}_{\beta} , \qquad (6.26)$$

$$\hat{H}_{04} = \frac{1}{4} \sum_{\alpha,\beta,\gamma,\delta} \tau_{\alpha\beta\gamma\delta} \hat{L}_{\alpha} \hat{L}_{\beta} \hat{L}_{\gamma} \hat{L}_{\delta}.$$
(6.27)

Für die Ableitungen $B_k^{\alpha\beta}$ gilt:

$$B_k^{\alpha,\beta} = \left(\frac{\partial \mu_{\alpha\beta}}{\partial q_k}\right)_0 , \qquad (6.28)$$

wobei $\mu_{\alpha\beta}$ die Matrixelemente des inversen Trägheitstensors darstellen. Die Größen $\tau_{\alpha\beta\gamma\delta}$ sind Verzerrungskonstanten, die von den Kraftkonstanten und den Matrixelementen des inversen Trägheitstensors abhängen. Insgesamt existieren 81 solcher Konstanten, wobei einige der Konstanten äquivalent sind. Symmetriebedingt (z. B. bei C_{2v} -Symmetrie) reduziert sich die Zahl der Verzerrungskonstanten auf neun.

Da aufgrund identischer J- und K-Abhängigkeiten der Zentrifugalverzerrungskonstanten nicht mehr als fünf Linearkombinationen der neun vorhandenen Verzerrungskonstanten aus einem Spektrum bestimmt werden können, muß der Hamilton-Operator entsprechend reduziert werden. WATSON [11–13] führte dazu einen standardisierten Hamilton-Operator

$$\hat{H} = \sum_{p,q,r=0}^{\infty} h_{p,q,r} (\hat{L}_z^r \hat{L}_y^q \hat{L}_x^p)$$
(6.29)

ein, der in der sogenannten A-Reduktion so vereinfacht wird, daß keinerlei $\Delta K = \pm 4$ Matrixelemente auftreten [4]. Berücksichtigt man Zentrifugalverzerrungskonstanten sechster Ordnung, so stellen sich die Matrixelemente, die sich aus diesem Hamilton-Operator in der I^r-Darstellung in der Basis der Wellenfunktionen des symmetrischen Kreisels ergeben, wie folgt dar:

$$\langle J, K | H | J, K \rangle$$

$$= \frac{1}{2} (B + C) J (J + 1) + [A - \frac{1}{2} (B + C)] K^{2}$$

$$- \Delta_{J} J^{2} (J + 1)^{2} - \Delta_{JK} J (J + 1) K^{2} - \Delta_{K} K^{4}$$

$$+ \Phi_{J} J^{3} (J + 1)^{3} + \Phi_{JK} J^{2} (J + 1)^{2} K^{2} + \Phi_{kj} J (J + 1) K^{4} + \Phi_{K} K^{6},$$
(6.30)

 $\langle J, K \pm 2 | \hat{H} | J, K \rangle$

$$= \left\{ \frac{1}{4} \left(B - C \right) - \delta_J J \left(J + 1 \right) - \frac{1}{2} \delta_K \left[\left(K \pm 2 \right)^2 + K^2 \right] + \frac{1}{2} \phi_J J^2 \left(J + 1 \right)^2 + \frac{1}{2} \phi_{JK} J \left(J + 1 \right) \left[\left(K \pm 2 \right)^2 + K^2 \right] + \frac{1}{2} \phi_K \left[\left(K \pm 2 \right)^4 + K^4 \right] \right\} \right.$$

$$\times \sqrt{\left[J \left(J + 1 \right) - K \left(K \pm 1 \right) \right] \times \left[J \left(J + 1 \right) - \left(K \pm 1 \right) \left(K \pm 2 \right) \right]} .$$
(6.31)

$$\Delta_J, \Delta_{JK}, \Delta_K, \delta_J, \delta_K :$$
Zentrifugalverzerrungskonstanten vierter Ordnung,
$$\Phi_J, \Phi_{JK}, \Phi_{KJ}, \Phi_K, \phi_J, \phi_{JK}, \phi_K :$$
Zentrifugalverzerrungskonstanten sechster Ordnung.

Das zur Anpassung der spektroskopischen Konstanten an die gemessenen Übergänge verwendete Programm AWAT1 [14] arbeitet auf Grundlage der I^r-Darstellung. Für fast symmetrische Moleküle, bei denen die Rotationskonstante B nur wenig verschieden von der Rotationskonstanten C ist, ist die A-Reduktion nur bedingt braucbar. In solchen Fällen verwendet man die sogenannte S-Reduktion (vgl. [4]).

6.1.6 Die Symmetrieeigenschaften der Gesamtwellenfunktionen des Oxetans

Zur Bestimmung der erlaubten Rotations-Vibrations-Übergänge des Oxetan-Moleküls ist es notwendig, die Symmetrieeigenschaften der durch Elektronen-, Rotations-, Schwingungs- und Kernspinwellenfunktionen beschriebenen Energiezustände von Oxetan mittels der irreduziblen Darstellungen der molekularen Symmetriegruppe (MS) zu bestimmen. Ist diese Bestimmung erfolgt,

$\mathbf{C}_{2v}(M)$	Е	(16)(25)(34)(79)	$(15)(26)(79)^*$	$(12)(34)(56)^*$
$\mathbf{C}_{2\mathrm{v}}$	E	C_2	$\sigma_v(ac)$	$\sigma_v(ab)$
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

Tabelle 6.2 Charakteren-Tafel der MS-Gruppe $C_{2v}(M)$ von Oxetan.

so ist die Angabe der Niveaus, zwischen denen Übergänge stattfinden können, sehr einfach. Die im folgenden beschriebene Ableitung orientiert sich im wesentlichen an den Arbeiten von BUN-KER [6] und KUNZMANN [1].

Die molekulare Symmetriegruppe ist eine Untergruppe der CNPI-Gruppe (engl., Complete Nuclear Permutation Inversion Group). Die CNPI-Gruppe eines Moleküls enthält alle möglichen Permutationen und Permutationen-Inversionen identischer Kerne. Bezeichnet man die Kerne des Oxetan-Moleküls wie in der Abbildung 6.3 angegeben, so findet man für die CNPI-Gruppe des Oxetans:

$CNPI = \mathbf{S}_{6}^{H} \otimes \mathbf{S}_{3}^{H} \otimes \boldsymbol{\epsilon}$

 ϵ bezeichnet die Einheitsoperation und die Inversion (2 Elemente), $\mathbf{S}_{6}^{\mathrm{H}}$ die Permutationen der sechs Wasserstoffatome (insgesamt 6! Elemente) und $\mathbf{S}_{3}^{\mathrm{C}}$ die Permutationen der drei Kohlenstoffatome (insgesamt 3! Elemente). Die CNPI-Gruppe des Oxetans erhält man also aus dem direkten Produkt \otimes der Untergruppen $\mathbf{S}_{6}^{\mathrm{H}}$, $\mathbf{S}_{3}^{\mathrm{H}}$ und ϵ .

Die molekulare Symmetriegruppe ergibt sich nun als Summe aller durchführbaren Operationen, die zu symmetrieäquivalenten Molekülen führt. Mit dem Begriff durchführbar sind die Symmetrieoperationen gemeint, für die keine Potentialbarrieren überwunden werden müssen. Die molekulare Symmetriegruppe enthält darüberhinaus Informationen über die Dynamik eines Moleküls. So gehört beispielsweise das NH₃-Molekül zur MS-Gruppe $\mathbf{D}_{3h}(\mathbf{M})$, wohingegen NF₃ durch $\mathbf{C}_{3v}(\mathbf{M})$ repräsentiert wird. Der Grund dafür liegt darin, daß das Ammoniak-Molekül mit 2020 cm⁻¹ eine relativ kleine Inversionsbarriere besitzt und daher eine merkliche Wechselwirkung zwischen beiden symmetrieäquivalenten Formen besteht. Es existieren also zwei Konformere, die leicht ineinander übergehen, so daß die Symmetrieeigenschaften am besten durch die MS-Gruppe $\mathbf{D}_{3h}(\mathbf{M})$ der planaren Konfiguration beschrieben wird.

Aufgrund der besonderen Dynamik der sehr niedrigliegenden Ring-Puckering-Schwingung wird Oxetan durch die MS-Gruppe $C_{2v}(M)$ beschrieben. Die Charakterentafel dieser Gruppe ist in der Tabelle 6.2 aufgeführt. Die sogenannten irreduziblen Darstellungen werden mit A_1 , A_2 , B_1 und B_2 bezeichnet. Ihre Elemente ergeben sich aus der Spur der Matrizen, welche die Symmetrieoperationen beschreiben. Der Index 1 sagt aus, daß die irreduzible Darstellung symmetrisch bezüglich der Symmetrieoperation $(15)(26)(79)^*$ ist.

Abbildung 6.3 Numerierung der Atome des Oxetans.

6.1.6.1 Symmetrieklassifizierung der Gesamtwellenfunktion

Im elektronischen Grundzustand gilt für die Gesamtwellenfunktion des Oxetan-Moleküls näherungsweise:

$$\Psi_{tot} = \Psi_{vib} \,\Psi_{rp} \,\Psi_{Rot} \,\Psi_{ns}. \tag{6.32}$$

Hier beschreibt Ψ_{vib} die Schwingungswellenfunktion, Ψ_{rp} die Ring-Puckering-Schwingungswellenfunktion, Ψ_{Rot} die Rotationswellenfunktion und Ψ_{ns} die Kernspinwellenfunktion (ns, engl., Nuclear Spin). Die Symmetrie der Gesamtwellenfunktion Γ_{tot} ergibt sich aus der Verknüpfung \otimes der Symmetrien der verschiedenen Wellenfunktionen:

$$\Gamma_{tot} = \Gamma_{vib} \otimes \Gamma_{rp} \otimes \Gamma_{Rot} \otimes \Gamma_{ns}.$$
(6.33)

 Γ_{tot} stellt die reduzible Darstellung der gesamten Wellenfunktion dar. Sie ergibt sich aus der Verknüpfung der reduziblen Darstellungen Γ_{vib} , Γ_{rp} usw.. Das *Pauli*-Prinzip besagt nun, daß bei einer ungeraden Anzahl von Permutationen von *Fermionen* (Elementarteilchen mit halbzahligem Spin), die Gesamtwellenfunktion das Vorzeichen ändern muß. Da nur die Operation (16)(25)(34)(79) eine reine Permutation ist, dabei eine ungerade Anzahl von Permutationen von *Fermionen* durchgeführt wird, nämlich drei, kann die Gesamtwellenfunktion nur durch B_1 bzw. B_2 dargestellt werden:

$$\Gamma_{tot} = \Gamma_{vib} \otimes \Gamma_{rp} \otimes \Gamma_{Rot} \otimes \Gamma_{ns} \in \{B_1, B_2\}.$$
(6.34)

In den folgenden Abschnitten wird auf die Symmetrieklassifizierung der Wellenfunktionen eingegangen, die die Symmetrie der Gesamtwellenfunktion bestimmen.

6.1.6.2 Symmetrieklassifizierung der Kernspinwellenfunktion

Die Anzahl der Kernspinwellenfunktionen, die auf Grund ihrer Symmetrie
eigenschaften bestimmten irreduziblen Darstellungen der MS-Gruppe zuge
ordnet werden können, bestimmen durch die daraus resultierende Spin-Statistik die Intensität beobachtbarer Rotations-Vibrations-Übergänge. Oxetan besitzt zwei Arten von Wasserstoff-Kernen. Zum einen die α -Wasserstoff an
Tabelle 6.3 Bezüglich der Symmetrieoperationen invariante Kernspinverteilungen der Protonen in α -Position im Oxetan.

E	(16)(25)(34)(79)	$(15)(26)(79)^*$	$(12)(34)(56)^*$
$\alpha\alpha\alpha\alpha$, $\alpha\alpha\alpha\beta$, $\alpha\alpha\beta\alpha$,	$\alpha\alpha\alpha\alpha$, $\alpha\beta\beta\alpha$,	$\alpha\alpha\alpha\alpha$, $\alpha\beta\alpha\beta$,	$\alpha\alpha\alpha\alpha$, $\alpha\alpha\beta\beta$,
$\alpha\beta\alpha\alpha, \beta\alpha\alpha\alpha, \alpha\alpha\beta\beta,$	$\beta \alpha \alpha \beta, \beta \beta \beta \beta \beta;$	$\beta \alpha \beta \alpha, \beta \beta \beta \beta \beta;$	$\beta\betalphalpha,etaetaetaetaeta.$
$\alpha\beta\alpha\beta, \beta\alpha\alpha\beta, \alpha\beta\beta\alpha,$			
$\beta \alpha \beta \alpha, \beta \beta \alpha \alpha, \alpha \beta \beta \beta,$			
$\beta \alpha \beta \beta, \beta \beta \alpha \beta, \beta \beta \beta \alpha,$			
etaetaetaetaeta;			

den C-Atomen 7 und 9, zum anderen die β -H an dem C-Atom der Nummer 8. Die reduzible Darstellung der Kernspinwellenfunktion läßt sich somit darstellen als Verknüpfung der reduziblen Darstellungen der beiden H-Atome:

$$\Gamma_{ns} = \Gamma_{ns}^{\alpha - H} \otimes \Gamma_{ns}^{\beta - H}.$$
(6.35)

Ein Kern mit der Bezeichnung A und der Kernspinquantenzahl I_A besitzt $(2I_A + 1)$ mögliche Kernspinzustände, die mit der Quantenzahl m_{I_A} bezeichnet werden, wobei m_{I_A} die Werte

$$m_{I_A} \in \{-I_A, -I_A + 1, \dots, +I_A\}$$
(6.36)

annehmen kann. Ein Molekül mit a gleichen Kernen A enthält $(2I_A + 1)^a$ Kernspinzustände dieser Kerne. Die vier Protonen des Oxetans in α -Stellung bilden somit 16 Kernspinzustände. Bezeichnet man mit α die zu $m_I = +\frac{1}{2}$ und mit β die zu $m_I = -\frac{1}{2}$ gehörende Kernspinwellenfunktion, so stellen sich die 16 Kernspinzustände wie folgt dar:

Die gegenüber den Elementen der MS-Gruppe invarianten Kernspinverteilungen der Protonen in der α -Position sind in der Tabelle 6.3 aufgeführt. Zur Symmetrieklassifizierung der Kernspinwellenfunktion wird nun die Anzahl n der j irreduziblen Darstellungen bestimmt, aus denen die reduzible Darstellung $\Gamma_{ns}^{\alpha-H}$ zusammengesetzt ist. Dies geschieht mit der Reduktionsformel [15]:

$$n_j = \frac{1}{k} \sum_{i=1}^k \chi_i \chi_i^{(j)}.$$
(6.38)

 n_j symbolisiert die Anzahl der irreduziblen Darstellung j, χ_i den Charakter der reduziblen Darstellung bezüglich der Symmetrieoperation i, $\chi_i^{(j)}$ den Charakter der irreduziblen Darstellung j bezüglich der Symmetrieoperation i und k die Zahl der Symmetrieoperationen in der Gruppe. Anwendung dieser Gleichung liefert:

$$\Gamma_{ns}^{\alpha-H} = 7A_1 + 3A_2 + 3B_1 + 3B_2. \tag{6.39}$$

Auf analoge Weise erhält man für die beiden β -Wasserstoffatome:

$$\Gamma_{ns}^{\beta-H} = 3A_1 + B_1. \tag{6.40}$$

Tabelle 6.4 Symmetrieoperationen und äquivalente Rotationen der $C_{2v}(M)$ -Gruppe.

E	(16)(25)(34)(79)	$(12)(34)(56)^*$	$(15)(26)(79)^*$
\mathbf{R}^{0}	R^{π}_{a}	R^{π}_{c}	R^{π}_{b}

Die Darstellung der reduziblen Darstellung der gesamten Kernspinwellenfunktion von Oxetan ist nach Gleichung (6.35) gegeben durch:

$$\Gamma_{ns}^{tot} = \Gamma_{ns}^{\alpha-H} \otimes \Gamma_{ns}^{\beta-H}
= (7A_1 + 3A_2 + 3B_1 + 3B_2) \otimes (3A_1 + B_1)
= (21A_1 + 7B_1) + (9A_2 + 3B_2) + (9B_1 + 3A_1) + (9B_2 + 3A_2)
= (24A_1 + 12A_2 + 16B_1 + 12B_2).$$
(6.41)

6.1.6.3 Symmetrieklassifizierung der Rotationswellenfunktion

Zur Bestimmung der Transformationseigenschaften der Rotationswellenfunktionen werden zunächst die zu den Permutationen und Permutationen-Inversionen äquivalenten Rotationen ermittelt (vgl. Tabelle 6.4). Die Zuordnung der Rotationswellenfunktionen erfolgt mit Hilfe der Symmetrieregel des asymmetrischen Kreisels [6]. Diese Symmetrieregel besagt, daß die Zustände bei denen sowohl die K_a - als auch die K_c -Quantenzahlen gerade Werte aufweisen (ee), wie die totalsymmetrische Darstellung der Gruppe transformieren, wohingegen die eo-Zustände wie die Darstellung, die +1 für R_a^{π} aufweist, transformieren. Die Zustände oe tranformieren hingegen wie die Darstellung, die +1 für R_c^{π} aufweist, wohingegen die oo-Zustände wie die Darstellung, die +1 für R_b^{π} aufweist, transformieren. In der Tabelle 6.5 ist das Ergebnis dargestellt.

6.1.6.4 Symmetrieklassifizierung der Ring-Puckering-Schwingung

Wie bereits eingehend von KUNZMANN [1] dargelegt, ergeben sich die Charaktere der in der Abbildung 6.4 dargestellten Ring-Puckering-Schwingung durch die Wirkung der Symmetrieoperationen der MS-Gruppe auf die beiden möglichen Konformere. Wird durch eine solche Operation das unveränderte Molekül erhalten, so ist der Charakter dieser Operation +1, eine Veränderung zum Spiegelbild führt zu -1. Daraus läßt sich ableiten, daß die Zustände der Ring-Puckering-

Abbildung 6.4 Die Ring-Puckering-Schwingung des Oxetans.

Tabelle 6.5 Die aus der Symmetrieregel des asymmetrischen Kreisels resultierende Symmetrierassen der Rotationswellenfunktionen.

$K_a K_c$	R^{π}_{a}	R^{π}_{b}	\mathbf{R}_c^{π}	Γ_{Rot}
e e	+1	+1	+1	A_1
e o	+1	-1	-1	A_2
o e	-1	-1	+1	${B}_2$
0 0	-1	+1	-1	B_1

Schwingung mit gerader Schwingungsquantenzahl v_{rp} wie die Symmetrierasse A_1 tranformieren und die mit ungerader Schwingugsquantenzahl wie B_1 .

6.1.6.5 Ableitung der Auswahlregeln für die Oxetan-Spektren

Der Prozeß der Absorption oder Emission von Strahlung, der zu Übergängen zwischen verschiedenen Rotations-Schwingungs-Niveaus m und n eines Moleküls führt, wird gewöhnlicherweise durch die Wechselwirkung des permanenten elektrischen Dipolmoments $\mu_{\mathbf{e}}$ des Moleküls mit dem elektrischen Feldvektor der elektromagnetischen Strahlung induziert. Solche elektrischen Dipol-Übergänge sind dann möglich, wenn das elektrische Übergangsdipolmonent \mathbf{R}^{nm}

$$\mathbf{R^{nm}} = \int_{-\infty}^{+\infty} \psi_n^* \,\mu_\mathbf{e} \,\psi_m \,d\tau, \qquad (6.42)$$

von Null verschieden ist. $\mu_{\mathbf{e}}$ steht für den Vektor des permanenten elektrischen Dipolmomentes. Die Gleichung (6.42) muß bestimmte Symmetriebedingungen erfüllen. So ist der Integrand von (6.42) nur dann von Null verschieden, wenn er zur totalsymmetrischen Darstellung der MS-Gruppe gehört. Da das permanente elektrische Dipolmoment eine vektorielle Größe ist, muß der Charakter für eine Permutation +1 sein und für eine Permutation-Inversion -1. $\mu_{\mathbf{e}}$ transformiert also wie die Koordinaten des Raumes und wird in der Gruppe $\mathbf{C}_{2v}(\mathbf{M})$ durch die Symmetrierasse A_2 repräsentiert. Kennzeichnet man den unteren Zustand eines Überganges mit " und den oberen mit einem ', so gilt:

$$\Gamma'_{vib} \otimes \Gamma'_{rp} \otimes \Gamma'_{Rot} \otimes \Gamma'_{ns} \otimes \Gamma_{\mu_e} \otimes \Gamma''_{vib} \otimes \Gamma''_{rp} \otimes \Gamma''_{Rot} \otimes \Gamma''_{ns} \supset A_1, \tag{6.43}$$

$$\Gamma'_{vib} \otimes \Gamma'_{rp} \otimes \Gamma'_{Rot} \otimes \Gamma'_{ns} \otimes \Gamma''_{vib} \otimes \Gamma''_{rp} \otimes \Gamma''_{Rot} \otimes \Gamma''_{ns} \supset A_2.$$
(6.44)

 $\supset A_1$ bedeutet, daß das oben aufgeführte Produkt die totalsymmetrische Darstellung beinhalten muß. \otimes steht für das direkte Produkt der reduziblen Darstellungen. Da bei einem Übergang die Kernspinwellenfunktionen erhalten bleiben, läßt sich (6.44) vereinfachen zu:

$$\Gamma'_{vib} \otimes \Gamma'_{rp} \otimes \Gamma'_{Rot} \otimes \Gamma''_{vib} \otimes \Gamma''_{rp} \otimes \Gamma''_{Rot} \supset A_2.$$
(6.45)

Nach ZÜRCHER und GÜNTHARD [16] ergeben die irreduziblen Darstellungen der Normalschwingungen des Oxetans folgende Symmetrie-Rassen:

$$8A_1 + 4A_2 + 6B_1 + 6B_2.$$

Nach WIESER, DANYLUK und KYDD [17] besitzt beispielsweise die asymmetrische Streckschwingung der β -Wasserstoffatome ν_{13} die Symmetrierasse B_1 .

Zudem muß berücksichtigt werden, daß Schwingungszustände mit gerader Schwingungsquantenzahl wie A_1 transformieren, da jede Symmetrierasse mit sich selbst multipliziert A_1 ergibt. Betrachtet man zunächst lediglich Rotations-Vibrationsübergänge ohne Änderung des Puckering-Zustandes, so ergibt sich aus Gleichung (6.45)

$$\Gamma'_{vib} \otimes \Gamma'_{Rot} \otimes \Gamma''_{vib} \otimes \Gamma''_{Rot} \supset A_2.$$
(6.46)

Ein Rotations-Vibration-Übergang ist nur dann erlaubt, wenn sich die Darstellung der Rotationswellenfunktion ändert. Diese muß sich ändern, da das absorbierte Lichtquant einen Drehimpuls überträgt, der erhalten bleiben muß. Stellt man nun die möglichen Änderungen der Symmetrierassen der Schwingungswellenfunktionen und der aus Gleichung (6.46) folgenden Änderung

Γ_{vib}	Γ_{Rot}	$K_a K_c \longleftrightarrow K_a K_c$	$\Delta K_a; \Delta K_c$	Bandentyp
	$A_1 \longleftrightarrow A_2$	$e \ e \longleftrightarrow e \ o$		
$A_1 \longleftrightarrow A_1$	$B_1 \longleftrightarrow B_2$	$o \ o \longleftrightarrow o \ e$	$\pm 0,2,;\pm 1,3,$	a–Typ
$A_2 \longleftrightarrow A_1$		IR-ind	aktiv	
	$A_1 \longleftrightarrow B_2$	$e \ e \longleftrightarrow \ o \ e$		
$B_1 \longleftrightarrow A_1$	$A_2 \longleftrightarrow B_1$	$e \circ \longleftrightarrow \circ \circ$	$\pm 1,3,;\pm 0,2,$	c–Typ
	$A_1 \longrightarrow B_1$			
	$A_1 \longleftrightarrow D_1$			1 5
$B_2 \longleftrightarrow A_1$	$A_2 \longleftrightarrow B_2$	$e \circ \longleftrightarrow \circ e$	$\pm 1, 3,; \pm 1, 3,$	b-Typ

Tabelle 6.6 Auswahlregeln für Rotations-Vibrationsübergänge des Oxetan-Moleküls.

der Rotationswellenfunktionen zusammen, so ergibt sich mit der Symmetrieregel des asymmetrischen Kreisels aus Tabelle 6.5 die in der Tabelle 6.6 aufgeführten Auswahlregeln für Rotations-Vibrations-Übergänge im Oxetan. Liegt nun das Übergangsmoment des Rotations-Vibrations-Überganges entlang einer der Hauptträgheitsachsen, so spricht man von einem *a*-Typ-, *b*-Typoder *c*-Typ-Übergang. Eine sogenannte *Hybrid-Bande* zeichnet sich durch das Vorhandensein mehrere Richtungskomponenten des Übergangsmomentes aus.

Geht man nun im folgenden zu Rotations-Puckering-Vibrations-Übergängen über, so kann man, unter Berücksichtigung daß die Puckering-Schwingung wie A_1 oder B_1 transformiert,

$$\Gamma'_{vib} \otimes \Gamma'_{Rot} \otimes \Gamma''_{vib} \otimes \Gamma''_{Rot} \supset A_2 \otimes B_1 = B_2, \tag{6.47}$$

die in der Tabelle 6.7 aufgeführten Auswahlregeln ableiten. Die Spinstatistik des Oxetans ergibt sich aus Gleichung (6.35). Nimmt man nun an, daß sich das Molekül im vibratorischen Grundzustand (A_1) und Grundzustand der Ring-Puckering-Schwingung (A_1) befindet, so folgt:

$$\Gamma_{Rot} \otimes \Gamma_{ns} \in \{B_1, B_2\}. \tag{6.48}$$

Auf Grundlage dieser Gleichung und unter Berücksichtigung der Gleichung (6.41) und der in der Tabelle 6.5 aufgeführten Symmetrieregel des asymmetrischen Kreisels ergeben sich die in der Tabelle 6.8 angegebenen statistischen Gewichte der verschiedenen Rotationszustände von Oxetan.

 Tabelle 6.7 Auswahlregeln f
 ür Rotations-Puckering-Vibrations
 überg
 änge im Oxetan.

Γ_{vib}	Γ_{Rot}	$K_a \longleftrightarrow K_c$	$\Delta K_a;\Delta K_c$	Bandentyp
$A_1 \longleftrightarrow A_1$	$\begin{array}{c} A_1 \longleftrightarrow B_2 \\ A_2 \longleftrightarrow B_1 \end{array}$	$e \ e \ \longleftrightarrow \ o \ e$ $e \ o \ \longleftrightarrow \ o \ o$	$\pm 1, 3,; \pm 2, 4,$	<i>c</i> -Typ
$A_1 \longleftrightarrow A_2$	$\begin{array}{c} A_1 \longleftrightarrow B_1 \\ A_2 \longleftrightarrow B_2 \end{array}$	$\begin{array}{c} e \ e \ \longleftrightarrow \ o \ o \\ e \ o \ \longleftrightarrow \ o \ e \end{array}$	$\pm 1, 3,; \pm 1, 3,$	b-Typ
$A_1 \longleftrightarrow B_1$	$\begin{array}{c} A_1 \longleftrightarrow A_2 \\ B_1 \longleftrightarrow B_2 \end{array}$	$e \ e \ \longleftrightarrow \ e \ o$ $o \ o \ \longleftrightarrow \ o \ e$	$\pm 0, 2,; \pm 1, 3,$	<i>a</i> -Typ
$A_1 \longleftrightarrow B_2$				IR-inaktiv

K_a	K_c	Γ_{Rot}	Γ_{vib}	Γ_{rp}	Γ_{ns}	Γ_{tot}	${\it statistisches}$
							Gewicht
 е	e	A_1	A_1	A_1	B_1, B_2	B_1, B_2	28
е	0	A_2	A_1	A_1	B_1, B_2	B_2, B_1	28
0	e	B_1	A_1	A_1	A_1, A_2	B_1, B_2	36
 0	0	B_2	A_1	A_1	A_1, A_2	B_2, B_1	36

Tabelle 6.8 Spin-Statistik des Oxetan-Moleküls im vibratorischen Grundzustand.

6.2 Bisherige spektroskopische und theoretische Arbeiten am Oxetan

Seit 40 Jahren ist das Oxetan-Molekül Gegenstand spektroskopischer Arbeiten in dem spektralen Bereich der Mikrowellen, Millimeterwellen, des fernen und des mittleren Infrarots. Der für die Analyse der Ring-Puckering-Schwingung interessante Bereich des fernen Infrarots wurde erstmals im Jahre 1960 von DANTI *et al.* [18] untersucht. In ihrer Veröffentlichung berichten sie von einer Vielzahl von Absorptionen oberhalb von 80 cm⁻¹, die sie für starke Q-Zweige der *c*-Typ-Übergänge der Ring-Puckering-Schwingung hielten. Zwischen 40 cm⁻¹ und 70 cm⁻¹ konnten sie keinerlei Absorptionen feststellen.

Im gleichen Jahr untersuchten CHAN *et al.* [19, 20] das Mikrowellenspektrum von Oxetan und von einer Vielzahl von Oxetan-Isotopomeren. Die Auswertung des *a*-Typ-Mikrowellenspektrums einer großen Zahl an Schwingungssatelliten der Ring-Puckering-Schwingung ergab ein sehr unregelmäßiges Verhalten der Rotationskonstanten A in Abhängigkeit der Puckering-Quantenzahl. Eine Art Zickzack-Verhalten wurde festgestellt. Dieses anomale Verhalten wurde auf das Vorhandensein eines Doppel-Minimum-Potentials der Ring-Puckering-Schwingung zurückgeführt. Dabei stören sich Zustände der beiden Konformere mit gerader Puckering-Quantenzahl weniger als solche mit ungerader, da die mit ungerader Quantenzahl durch eine Schwingungswellenfunktion mit einem Knotenpunkt in der planaren Konformation beschrieben werden. Diese unterschiedliche Störung erklärte das Zickzack-Verhalten der A-Rotationskonstanten des Oxetans. Die Autoren konnten darüber hinaus eine Potentialfunktion V(x) für die Ring-Puckering-Schwingung ermitteln, die ihre Daten und die Daten von DANTI *et al.* am besten reproduzierte:

$$V(x) = 9\,145\,x^2 + 301\,540\,x^4 + 130.2\,\exp[-196.7x^2]. \tag{6.49}$$

x steht dabei für die Ring-Puckering-Schwingungskoordinate, die in der Abbildung 6.5 schematisch dargestellt ist. Im Jahre 1966 gelang es CHAN *et al.* [21] durch die erneute Untersuchung des FIR-Spektrums von Oxetan, die Ring-Puckering-Fundamentale zweifelsfrei um 53 cm⁻¹ zu lokalisieren und die korrespondierende Potentialfunktion deutlich zu verbessern. Die Höhe der Barriere zur planaren Konfiguration wurde zu (15.3 ± 0.5) cm⁻¹ ermittelt, wobei der vibratorische Grundzustand 12 cm⁻¹ oberhalb dieser Barriere liegt.

Die ersten Untersuchungen im NIR-Bereich zwischen 2600 cm⁻¹ und 2900 cm⁻¹ wurden von UEDA und SHIMANOUCHI [22] im Jahre 1967 durchgeführt. Ihnen gelang es, sowohl die *a*-Typ-Bande der symmetrischen α -CH-Streckschwingung um 2894.33 cm⁻¹ zu messen, als auch eine Reihe von Differenzbanden dieser Schwingung mit der Ring-Puckering-Schwingung zu charakterisieren. Insbesondere konnten sie eine *Fermi*-Typ-Resonanz zwischen dem Schwingungszustand der asymmetrischen α -CH-Streckschwingung und dem Kombinationszustand aus symmetrischer

Abbildung 6.5 Definition der Ring-Puckering-Koordinate des Oxetan-Moleküls.

 α -CH-Streckschwingung und Ring-Puckering-Schwingung aufzeigen.

An dieser Stelle erscheint es sinnvoll, die Nomenklatur der verschiedenen Schwingungsmoden einzuführen. Da in der vorliegenden Literatur gleiche Schwingungsmoden unterschiedlich bezeichnet werden, soll im Rahmen dieser Arbeit konsequent die von BÁNHEGY *et al.* [2] aufgezeigten Bezeichnungen verwendet werden. Diese sind in der Tabelle 6.9 aufgeführt. Aufgrund der großen Zahl an Schwingungsmoden des Oxetan-Moleküls wird für die Bezeichnung der Schwingungzustände die in Kapitel 5 eingeführte Nomenklatur verwendet. Die Schwingungszustände des Oxetans werden somit im folgenden mit den Bezeichnungen der Schwingungsmoden beschrieben. Sind beispielsweise die Schwingungen ν_8 und ν_{14} angeregt so lautet die Bezeichnung des Schwingungs-Kombinationszustandes ($\nu_8 + \nu_{14}$). Ein Übergang vom Grundzustand in diesen Kombinationszustand wird somit beschrieben durch ($\nu_8 + \nu_{14}$) – (*GS*) (GS, engl., Ground State).

Im Jahre 1972 verbesserten KYDD *et al.* [23] die Potentialfunktion der Ring-Puckering-Schwingung von Oxetan unter Verwendung einer quadratisch-quartischen Funktion

$$V(x) = 7.16\ 10^5\ x^4 - 6.58\ 10^3\ x^2,\tag{6.50}$$

wobei die Höhe der Barriere zur planaren Form zu (15.1 ± 0.5) cm⁻¹ und die Lage des Schwingungsgrundzustandes zu 12.2 cm⁻¹ oberhalb dieser Barriere berechnet wurde. Im gleichen Jahr wurde von WIESER *et al.* [24] erneut das FIR-Spektrum von Oxetan, aber auch das der Isotopomere α -D₂-, β -D₂-, α , α' -D₄- und D₆-Oxetan aufgenommen. Es konnten dabei Übergänge bis zu dem elften angeregten Puckering-Schwingungszustand identifiziert werden. Die experimentell ermittelten Isotopenverhältnisse stimmten jedoch nicht sehr gut mit den aus dem Puckering-Modell (Annahme eines quartischen Oszillators) theoretisch berechneten Werten überein. Dies führten die Autoren darauf zurück, daß zum einen die Normalkoordinate der Puckering-Schwingung nicht exakt bekannt sei, zum anderen die effektiven reduzierten Massen eine nicht vernachlässigbare Abhängigkeit von der Puckering-Koordinate aufweisen. Die ermittelten Bandenlagen sind in der Tabelle 6.10 aufgeführt.

WIESER und DANYLUK [25] untersuchten im Jahre 1972 sowohl die β -CH₂-, die symmetrische und asymmetrische α -CH₂-Scherschwingungen als auch Kombinations- und Differenzbanden der Scherschwingungen mit der Ring-Puckering-Schwingung des Oxetans und einiger Isotopomere des Oxetan-Moleküls. Die Lage der symmetrischen α -CH₂-Scherschwingungs-Fundamentalen konnte zu (1505.0±0.5) cm⁻¹ bestimmt werden, das Bandenzentrum der β -CH₂-Scherschwingung wurde zu (1452.0±0.5) cm⁻¹ ermittelt. Aus der Lage der Kombinations- und Differenzübergänge folgerten die Autoren, daß diese Scherschwingungen einen sehr kleinen Einfluß auf die Poten-

Mode	Schwingung	Berechnete	$\operatorname{Berechnete}$
		Wellenzahl $/\mathrm{cm}^{-1}$	Intensität $/(\rm km/mole)$
	Symmetrierasse A_1		
$ u_1 $	Ringdeformation	801	10.7
ν_2	symmetrische CO-Streck	903	18.3
$ u_3$	symmetrische CC-Streck	1032	1.8
$ u_4$	symmetrische α -CH ₂ -Kipp	$1\ 338$	1.0
ν_5	β -CH ₂ -Scher	1458	2.2
ν_6	symmetrische α -CH ₂ -Scher	1511	0.4
$ u_7$	symmetrische β -CH-Streck	$2\ 941$	17.4
ν_8	symmetrische α -CH-Streck	2959	12.3
	Sama and D		
	Symmetricable CC Streak	040	7 9
ν_9	antisymmetrische CC-Streck	940	
$ \nu_{10} $	antisymmetrische c.C. Kipp	1 008	0.4
ν_{11}	βCH Kipp	1 201	14.7
ν_{12}	ρ -OII ₂ -Kipp	1 4 9 2	2.0
ν_{13}	summetrische α CH Streck	1 400	2.9
ν_{14}	symmetrische α -OH-Streck	2 955	100.9
	${f Symmetrierasse}\ B_1$		
$ u_{15} $	Ring–Puckering	120	7.2
$ u_{16}$	β -CH ₂ -Pendel	740	0.6
$ u_{17} $	symmetrische α -CH ₂ -Pendel	$1\ 097$	4.4
ν_{18}	symmetrische α -CH ₂ -Torsion	1197	1.8
$ u_{19} $	antisymmetrische α -CH-Streck	2981	24.7
ν_{20}	antisymmetrische $\beta\text{-}\mathrm{CH}\text{-}\mathrm{Streck}$	3010	71.0
	Symmetrierasse A_2		
ν_{21}	antisymmetrische α -CH ₂ -Pendel	833	0.0
ν_{22}	antisymmetrische α -CH ₂ -Torsion	1112	0.0
ν_{23}	β –CH ₂ –Torsion	1235	0.0
ν_{24}	antisymmetrische α -CH-Streck	2987	0.0

 $\label{eq:constraint} \textbf{Tabelle 6.9} \ \text{Die berechneten Termwerte und Intensitäten} \ (SCF/4-21G) \ der verschiedenen Schwingungsmoden von Oxetan [2].$

tialfunktion der Ring-Puckering-Schwingung haben. Das erste FTIR-Spektrum von Oxetan im FIR-Bereich wurde von JOKISAARI und KAUPPINEN [26] im Jahre 1973 augenommen. Die aufgrund einer relativ hohen instrumentellen Auflösung von mehr als 0.25 cm⁻¹ erzielte deutliche Verbesserung der Genauigkeit der ermitttelten Bandenlagen der Ring-Puckering-Progression ermöglichte die Anpassung einer quadratisch-quartisch-sextischen Potentialfunktion der Form

$$V(\zeta) = 60 \left[-0.325 \,\zeta^2 + 0.1010 \,\zeta^4 + 1.45 \times 10^{-4} \,\zeta^6 \right],\tag{6.51}$$

wobe
i ζ eine reduzierte, dimensions
lose Koordinate

$$\zeta = \left(\frac{2\mu_{rm}k}{\hbar^2}\right)^{\frac{1}{4}} x \tag{6.52}$$

 $\begin{array}{lll} \hbar & = & 1.054\,572\,66\,\times 10^{-34} \ {\rm Js}\ [27], \\ k & : & {\rm frei}\ {\rm wählbare}\ {\rm Konstante}, \\ \mu_{rm} & : & {\rm reduzierte}\ {\rm Masse}. \end{array}$

	n-Oxetan ^{a})	α -D ₂ -Oxetan ^{b)}	β -D ₂ -Oxetan ^{b)}	α, α' -D ₄ -Oxetan ^{b)}	D_6 -Oxetan ^{b)}
$v'_{rp} \leftarrow v''_{rp}$	$\tilde{\nu}~/{ m cm}^{-1}$	$ ilde{ u}~/{ m cm}^{-1}$	$\tilde{ u} \ / { m cm}^{-1}$	$\tilde{ u} \ / \mathrm{cm}^{-1}$	$\tilde{\nu}/\mathrm{cm}^{-1}$
$1 \leftarrow 0$	52.90(05)	48.7	49.6	43.7	41.2
$2 \leftarrow 1$	$89.56\ (05)$	81.7	83.5	73.4	69.2
$3 \leftarrow 2$	104.44(10)	95.1	97.2	85.3	80.5
$4 \leftarrow 3$	$117.95\ (05)$	107.2	109.6	96.1	90.7
$5 \leftarrow 4$	128.89(10)	117.0	119.7	104.9	99.1
$6 \leftarrow 5$	$138.42\ (06)$	125.5	128.5	112.6	106.2
$7 \leftarrow 6$	$146.94\ (05)$	133.0	136.3	119.2	112.7
$8 \leftarrow 7$	$154.65\ (05)$	139.9	143.4	125.3	118.3
$9 \leftarrow 8$	$161.73\ (07)$	146.3	149.7	130.9	123.7
$10 \leftarrow 9$	$168.25\ (07)$	152.0	155.7	136.4	128.7
$11 \leftarrow 10$	174.45(10)	157.4		141.0	133.3

Tabelle 6.10 Bandenpositionen der Ring-Puckering-Übergänge des Oxetans und einiger Isotopomere
von Oxetan.

a): [26], b): [24]

darstellt (vgl. auch [1]). Die in der Tabelle 6.10 angegebenen Bandenpositionen konnten mit dieser Funktion innerhalb des Fehlerbereiches reproduziert werden.

Die im Jahre 1967 von UEDA und SHIMANOUCHI [22] begonnen Messungen im CH-Streckschwingungsbereich wurden 1974 von WIESER *et al.* [17] durch IR- und Raman-Messungen im Bereich von 2 700 cm⁻¹ bis 3 200 cm⁻¹ ergänzt. Die von Ihnen erhaltenen IR-Übergänge sind in der Tabelle 6.11 aufgeführt. Neben dem *n*-Oxetan wurden ebenfalls Untersuchungen an den Isotopomeren α -D₂, β -D₂, α, α' -D₄ und D₆, sowohl in der Gasphase als auch von den festen Verbindungen bei 15 K, durchgeführt. Die von UEDA und SHIMANOUCHI beobachtete FERMI-Typ-Resonanz zwischen dem Schwingungszustand der asymmetrischen α -CH₂-Streckschwingung ν_{19} und dem Kombinationszustand aus symmetrischer α -CH₂-Streckschwingung ν_{14} und Ring-Puckering-Schwingung $\nu_{15} \equiv \nu_{rp}$ konnte bestätigt werden. Die energetische Lage der Differenzbanden ($\nu_{14} + n \nu_{rp}$) – [$(n + 1) \nu_{rp}$] aus symmetrischer α -CH₂-Streckschwingung und Ring-Puckering-Schwingung bestätigte, daß diese Streckschwingung praktisch keinen Einfluß auf das Ring-Puckering-Schwingungspotential besitzt.

Im gleichen Jahr wurden ebenfalls Untersuchungen im Bereich der Mikrowellen betrieben. CRES-

Übergang	Schwingung	$\operatorname{Symmetrie}$	$\tilde{\nu} \ / { m cm}^{-1}$	Bandentyp
$(u_{14})-(GS)$	sym. α -CH-Streck	B_2	2887.1	b-Typ
$(u_8)-(GS)$	sym. α -CH-Streck	A_1	2893.9	<i>a</i> -Typ
$(u_8+ u_{rp})-(GS)$	sym. α -CH-Streck+RP ^{a})	A_1	$2929.2^{a)}$	$c ext{-}\mathrm{Typ}$
$(u_{19} + n u_{rp}) - (n u_{rp})$	asym. $\alpha\text{-}\mathrm{CH}\text{-}\mathrm{Streck}\text{+}\mathrm{RP}$	B_1	2938.3	$c ext{-}\mathrm{Typ}$
$(u_{19})-(GS)$	asym. α -CH-Streck ^{a)}	B_1	$2957.3^{a)}$	$c ext{-}\mathrm{Typ}$
$(u_{20})-(GS)$	asym. $\beta\text{-}\mathrm{CH}\text{-}\mathrm{Streck}$	B_1	3006.0	$c ext{-}\mathrm{Typ}$

Tabelle 6.11 IR-Banden von Oxetan im CH-Streckschwingungsbereich [17].

a): Fermi-Typ-Resonanz

v_{rp}	A / MHz	B / MHz	C / MHz
0	12045.4908(81)	11734.0807(81)	6730.6894(81)
1	12058.0086(96)	11726.5819(96)	$6\ 772.273\ 2\ (96)$
2	12058.9670(63)	11718.8730(63)	$6\ 789.044\ 3\ (63)$
3	12060.3357(92)	11709.9570(92)	6809.7182(92)
4	$12\ 059.509\ 8\ (94)$	$11\ 700.542\ 2\ (94)$	6827.1698(94)
5	$12\ 057.190\ 9\ (88)$	11690.6230(88)	6842.9721(88)

Tabelle6.12RotationskonstantenvonOxetaninAhängigkeitvomRing-Puckering-SchwingungszustandnachCRESWELLundMILLS[28].

WELL und MILLS [28] führten beispielsweise Mikrowellenmessungen von Oxetan und verschiedenen Oxetan-Isotopomeren in einer mit Trockeneis gekühlten Zelle (T=220 K) im Frequenzbereich von 26.5 GHz bis 40 GHz durch. Die Datenanalyse unter Verwendung des Watson-Hamiltonians in der II^r-Darstellung ergab Zentrifugalverzerrungsparameter bis zur sechsten Ordnung. In der Tabelle 6.12 sind die erhaltenen Rotationskonstanten aufgeführt. MALLIN-SON und ROBIETTE [29] führten im gleichen Frequenzbereich Messungen am α -D₂-Isotopomer durch und untersuchten die Abhängigkeit der Zentrifugalverzerrungskonstanten vom Puckering-Schwingungszustand.

In den darauffolgenden Jahren wurden mit den verschiedensten spektroskopischen und theoretischen Methoden Strukturbestimmungen von Oxetan vorgenommen. CRESWELL [30] ermittelte aus den im Schwingungsgrundzustand erhaltenen Rotationskonstanten verschiedener Oxetan-Isotopomere eine r_0 -Struktur, bei der die internen Koordinaten an die Trägheitsmomente angepaßt werden. Die Ergebnisse sind in der Tabelle 6.13 aufgeführt. LUGER und BUSCHMANN [31] kristallsierten hingegen Oxetan auf einem Vierkreis-Diffraktometer und führten eine Röntgenstruktur-Analyse in einem Temperaturbereich zwischen 90 K und 140 K durch. Sie stellten dabei fest, daß der Ring deutlich von einer planaren Anordnung abweicht und bei 90 K einen Diederwinkel von 8.7 (2)° aufweist.

Zu Beginn der 80er Jahre wurden auch *ab initio*-Berechnungen verwendet, um Strukturen und Schwingungsfrequenzen des Oxetans zu reproduzieren. BAHENGY *et al.* [2] verwendeten-aus der heutigen Sicht-recht simple SCF-Rechnungen mit dem Basissatz 4-21 G. Die für die planare

	r_0 -Struktur [30]	Kristallstruktur [31]	ab initio [2]	ab initio [32]
			SCF4-21 G	$SCF6-31G^*$
r(C-O)/Å	1.448(5)	1.460(1)	1.468	1.419
$r(ext{C-C})/ ext{\AA}$	1.546(5)	1.534(2)	1.540	1.537
$r(\mathrm{C}_{lpha} ext{-}\mathrm{H})/\mathrm{\AA}$	1.092(5)	0.97(2)	1.083	1.084
$r(\mathrm{C}_{eta} ext{-}\mathrm{H})/\mathrm{\AA}$	1.087(5)	0.97(2)	1.083	1.082
$\gamma({ m CCO}) \ /^{\circ}$	91.8(10)	91.99(7)	90.99	91.65
$\gamma({ m COC}) \ /^{\circ}$	91.9(10)	90.18(8)	91.73	92.79
$\gamma({ m CCC}) \ /^{\circ}$	84.6(10)	84.79(9)	86.29	
$\gamma(\mathrm{HC}_{\beta}\mathrm{C}) /^{\circ}$	109.6(5)		109.91	

Tabelle 6.13 Die Strukturparameter des Oxetan-Moleküls. γ ist der Bindungswinkel, r steht für den Kernabstand.

	$v_{rp} = 0$	$v_{rp} = 1$	$v_{rp} = 2$
A / cm^{-1}	$0.401\ 793\ 381\ (14)$	0.402209934(14)	0.402243905(40)
B / cm^{-1}	0.391406043(14)	0.391155630(14)	0.390900227(40)
C / cm^{-1}	0.224510745(14)	0.225896739(13)	0.226458198(49)
$\Delta_J \ /10^{-7} {\rm cm}^{-1}$	1.65498(60)	1.66549(63)	1.61638(70)
$\Delta_{JK} \ /10^{-8} {\rm cm}^{-1}$	-4.6796(83)	-2.15769(83)	-1.5037(16)
Δ_{K} $/10^{-7} {\rm cm}^{-1}$	1.52335(57)	3.22496(60)	2.6126(12)
$\delta_J / 10^{-8} {\rm cm}^{-1}$	5.48139(57)	5.3815(14)	5.5922(33)
$\delta_K / 10^{-8} \mathrm{cm}^{-1}$	-2.78(30)	5.9458(31)	3.2069(70)
$\Phi_J / 10^{-13} \mathrm{cm}^{-1}$	8.7(12)	8.0(12)	9.11(80)
$\Phi_{JK} / 10^{-13} \mathrm{cm}^{-1}$	9.0(19)	-1.60(20)	5.7(13)
$\Phi_{KJ} / 10^{-13} \mathrm{cm}^{-1}$	5.2(28)	1.07(28)	
$\Phi_K / 10^{-12} \mathrm{cm}^{-1}$	-1.23(29)	0.65(21)	-0.70(40)
$\phi_J / 10^{-13} \mathrm{cm}^{-1}$	1.08(19)	1.12(19)	2.47(43)
ϕ_{JK} $/10^{-12} {\rm cm}^{-1}$	-1.041(80)	0.344(83)	-0.44(12)
$\phi_K / 10^{-13} \mathrm{cm}^{-1}$	-1.60(67)	8.01(70)	10.4(27)
G_v /cm ⁻¹	0	52.920318~(20)	142.579818(24)

Tabelle 6.14 Spektroskopische Konstanten für den Grundzustand und die beiden ersten angeregten Puckering-Zustände von Oxetan nach KUNZMANN [1].

OXETAN-MOLEKUL

Konformation erhaltenen Strukturparameter sind in der Tabelle 6.13 aufgeführt. Die berechneten Schwingungsfrequenzen und Intensitäten befinden sich in der Tabelle 6.9. MASTRYU-KOV und BOGGS [32] führten im Jahre 1995 hingegen SCF-Berechnungen mit den komplexeren Polarisations-Basissätzen 6-31 G^{*} durch, die ebenfalls Strukturparameter für die planare Form des Oxetans ergaben.

Im Jahre 1983 untersuchten KYDD *et al.* [33] die IR- und Raman-Spektren von *n*-Oxetan und von einigen Deuterium-Isotopomeren in einem spektralen Bereich von 500 cm⁻¹ bis 1500 cm⁻¹. Die Untersuchungen wurden an gasförmigen Oxetan und an Oxetan in einer Argon-Matrix bei 15 K durchgeführt. Die Messungen zeigten, daß die von BÁHENGY *et al.* berechneten Termwerte maximale Abweichungen von 5 % aufweisen. Die Mehrzahl der berechneten Schwingungstermwerte weichen sogar nur nur rund 1 % vom experimentell ermittelten Wert ab. Weitere neuere Arbeiten am Oxetan stammen von LESARRI *et al.* [34] im Bereich der Millimeterwellen zwischen 80 GHz und 250 GHz. Sie bestimmten das permanente Dipolmoment von Oxetan entlang der *a*-Achse zu 1.944 (3) D. TURNBULL *et al.* [35] untersuchten hingegen die Obertöne der CH-Streckschwingungen zwischen 5600 cm⁻¹ und 18 800 cm⁻¹.

Die ersten rotationsaufgelösten Messungen der Bandensysteme der Ring-Puckering-Schwingung wurden von KUNZMANN [1] im Jahre 1998 am Molekülspektroskopischen Laboratorium der Justus-Liebig-Universität Gießen mit dem hochauflösenden Bruker IFS 120 HR-Spektrometer durchgeführt. Durch die Verwendung einer kühlbaren Absorptionszelle, die bei rund 203 K betrieben wurde, konnte die K-Struktur der intensiven Q-Zweige aufgelöst und analysiert werden. Zusammen mit den Mikrowellendaten von CRESWELL und MILLS [28] und den Millimeterwellenübergängen von LESARRI *et al.* [34] konnten für den Grundzustand und die ersten beiden angeregten Puckering-Zustände spektrokopische Konstanten des in A-Reduktion verwendeten Watson-Hamiltonoperators in der I^r-Darstellung angepaßt werden. Die ermittelten Konstanten sind in der Tabelle 6.14 aufgeführt.

6.3 Messung des FTIR-Spektrums von Oxetan im mittleren Infrarot

Wie bereits eingehend in der Einleitung dieses Kapitels dargelegt wurde, ist aufgrund der energetisch sehr tiefliegenden Ring-Puckering-Schwingung des Oxetan-Moleküls im CH-Streckschwingungsbereich um $3\,000$ cm⁻¹ eine Vielzahl von Rotations-Vibrationsübergängen aus dem Grundzustand und angeregten Zuständen der Ring-Puckering-Schwingung zu erwarten. Sowohl die leichte Verdampfbarkeit von Oxetan als auch die aus *ab initio* -Berechnungen ermittelten Intensitäten verschiedener CH-Streckschwingungen erschienen erfolgversprechende FTIR-Experimente an Oxetan-Molekularstrahlen zu ermöglichen.

Zur Aufnahme des FTIR-Spektrums von Oxetan in der 3 m-Zelle wurde über einen Young-Hahn 0.29 mbar an Oxetan aus einem Vorratskolben in die bei Raumtemperatur (T = 298 K) temperierte Zelle verdampft. Unter statischen Meßbedingungen wurden insgesamt 60 Scans mit einer instrumentellen Auflösung von 0.004 cm⁻¹ gemittelt. Im Vergleich hierzu beträgt die Doppler-Verbreiterung bei 3 000 cm⁻¹ und Raumtemperatur rund 4.8×10^{-3} cm⁻¹. Als Strahlungsquelle wurde die Wolfram-Lampe verwendet, wobei der Aperturdurchmesser auf 1.3 mm begrenzt wurde. Die genauen Meßbedingungen sind explizit in der Tabelle 6.15 aufgeführt.

Abbildung 6.6 Das FTIR-Spektrum des Oxetans zwischen 2 750 cm⁻¹ und 3 150 cm⁻¹. Das Oxetan befand sich in der 3 m-Absorptionszelle bei einer Temperatur von rund 298 K. Der Substanzdruck betrug 0.29 mbar, die instrumentelle Auflösung wurde mit 0.0040 cm^{-1} etwas größer als die bei dieser Temperatur errechnete Doppler-Verbreiterung von 0.0048 cm^{-1} gewählt. Insgesamt wurden 60 Scans aufgenommen. Die in dem Spektrum eingezeichnete schwarze Linie kennzeichnet den zu erwartenden Verlauf der Basislinie und verdeutlicht, daß aufgrund der hohen Liniendichte die CH-Streckschwingungs-Bandensysteme kaum aufgelöst sind.

	$2750 \text{ cm}^{-1} \text{ bis } 3100 \text{ cm}^{-1}$
Strahlungsquelle	Wolfram-Lampe
Apertur	$1.3~\mathrm{mm}$
Meßbereich	1975 - $3949{ m cm}^{-1}$
Strahlenteiler	${ m Si:CaF}_2$
Detektor	${ m InSb-Halbleiter}$
opt. Filter	$\#6,\ 2700-3600{ m cm}^{-1}$
elektronische Filter	$2488-4107{ m cm^{-1}}$
Fenster	${ m CaF}_2$
instrum. Auflösung	$0.004 \ {\rm cm^{-1}}$
Anzahl der Scans	60

Tabelle 6.15 Instrumentelle Parameter zur Aufnahme der Infrarot-Spektren von Oxetan.

Das für Oxetan in diesem spektralen Bereich erhaltene Interferogramm wurde auf die bereits in Kapitel 5.5.1 geschilderte Weise aufgearbeitet und in ein Transmissions-Spektrum überführt, das den Namen ZTJETAIS.1 trägt und sich unter Oxetan.a.zip im Verzeichnis FTIR/ZELLE/Oxetan auf einer separaten *Compact Disc* befindet. Die Kalibration des Transmissionsspektrums wurde anhand von OCS-Linienpositionen [36] durchgeführt. Das Dokumentationsfile ZTJETAN.CAL der Kalibration befindet sich ebenfalls auf der beigefügten *Compact Disc*. Die Kalibrationsparameter sind in der Tabelle 6.16 aufgelistet. Eine Auflistung sämtlicher Dateinamen der Hintergrundspektren, der einzelnen Meßblöcke, der Kalibrationsdateien, der Peaklisten und der Transmissionfiles finden sich im Anhang E. Diese Files befinden sich auf der beigefügten *Compact Disc*.

Zur Aufnahme des FTIR-Spektrums eines Oxetan-Molekularstrahles wurde Oxetan unter einem statischen Druck von rund 250 mbar ohne Zusatz eines Trägergases expandiert. Um möglicherweise die K-Substrukur und die Asymmetrieaufspaltung der Banden auflösen zu können, wurde zur Minimierung der Dopplerverbreiterung die Schlitzdüse zur Expansion verwendet. Es zeigte sich jedoch, daß eine Erhöhung der instrumentellen Auflösung keinen nennenswerten Informationsgewinn brachte, so daß wiederum mit einer Auflösung von 0.004 cm⁻¹ gemessen wurde, um den Substanzverbrauch zu minimieren.

Insgesamt wurden 50 Scans gemittelt. Die experimentellen Bedingungen entsprechen den in Tabelle 6.15 aufgeführten. Das berechnete Transmissions-Spektrum, das den Namen ZTJETALS.1 trägt, befindet sich im Verzeichnis FTIR/Jet/Oxetan auf der beigefügten *Compact Disc*. Die Kalibration wurde wiederum mit tabellierten OCS-Linienpositionen [36] durchgeführt. Die Kalibrationsparameter sind in der Tabelle 6.16 aufgeführt. Eine Auflistung sämtlicher Dateinamen der Hintergrundspektren, der einzelnen Meßblöcke, der Kalibrationsdateien, der Peaklisten und der Transmissionfiles finden sich wiederum im Anhang E. Diese Files befinden sich auf der beigefügten *Compact Disc*.

In der Abbildung 6.6 ist das bei Raumtemperatur erhaltene Transmissionsspektrum von Oxetan dargestellt. Das FTIR-Spektrum des Oxetan-Jets wird im Detail im nächsten Kapitel diskutiert.

		ZTJETAIS.1	ZTJETALS.1.
Kalibrationsdatei	:	ztjetan.cal	ztjetan.cal
Kalibration	:	OCS (extern),	OCS (extern),
		22 OCS-Linien,	22 OCS-Linien,
		${ m von}~2897-2932~{ m cm}^{-1}$	${ m von}2897-2932{ m cm}^{-1}$
Kalibrationsfaktor	:	1.0000013480(10)	1.0000013480(10)
${\it Standardabweichung}$			
der Anpassung $/\mathrm{cm}^{-1}$:	$6.98 imes 10^{-6}$	$6.98 \times 10^{-6} \ {\rm cm}^{-1}$

Tabelle 6.16 Parameter zur Kalibration der Transmissionsfiles ZTJETAIS.1 und ZTJETALS.1.

6.4 Zuordnung der Rotations-Vibrationsübergänge

In der Abbildung 6.7 ist ein Ausschnitt des aufgenommenen FTIR-Spektrums des Oxetan-Molekularstrahls im Bereich von 2840 cm⁻¹ bis 3010 cm⁻¹ dargestellt. Die Rotationstemperatur wurde nach Gleichung (4.39) zu (50 ± 6) K bestimmt, so daß praktisch sämtliche Banden vollständig rotationsaufgelöst gemessen werden konnten. Die von WIESER *et al.* [17] angegebenen Bandenzentren der verschiedenen Schwingungsmoden im Bereich von 2880 cm⁻¹ bis 3010 cm⁻¹ konnten bis auf das Bandenzentrum der symmetrischen α -CH-Streckschwingung ν_8 , die entweder von der symmetrischen α -CH-Streckschwingung mit B_2 -Symmetrie ν_{14} überlagert ist oder aber einfach zu intensitätsschwach ist, problemlos zugeordnet werden. Die ermittelten Bandenzentren sind in der Tabelle 6.17 aufgeführt.

In der Abbildung 6.8 ist zunächst eine Übersicht der Bande (ν_{14}) – (GS) dargestellt, die aus zeitlichen Gründen noch nicht analysiert werden konnte. Es handelt sich um eine *b*-Typ Bande, die einen Übergang vom Grundzustand in den ersten angeregten Zustand der symmetrischen α -CH-Streckschwingung mit B_2 -Symmetrie beinhaltet. Wie man erkennt, ist das Spektrum des Oxetan-Molekularstrahls vollständig aufgelöst und man erkennt das Zentrum dieser Bande um 2887.7 cm⁻¹. Hinweise auf die Bande der symmetrischen α -CH-Streckschwingung ν_8 konnten nicht erhalten werden. Das bei Raumtemperatur aufgenommene Spektrum ist durch starke Überlagerungen von Absorptionslinien gekennzeichnet, wobei aus dem nicht aufgelösten Untergrund die Spitzen verschiedener Absorptionslinien herausragen.

Die Abbildung 6.9 zeigt hingegen einen Ausschnitt der c-Typ Bande ($\nu_8 + \nu_{rp}$) – (GS), die im Rahmen dieser Arbeit analysiert wurde. Es handelt sich um einen Übergang vom Grundzustand in den Kombinationszustand aus einfach angeregter Ring-Puckering-Schwingung und der symmetrischen α -CH-Streckschwingung mit der Symmetrie A_1 . Eingezeichnet ist die aus dem Molekularstrahlspektrum gewonne J-Zuordnung im Bereich des P- und des R-Zweiges. Wie anhand der Abbildung 6.10 zu erkennen ist, besitzt das bei Raumtemperatur aufgenommene Spektrum im Bereich von J = 2 bis J = 8 im P-Zweig der Bande keine klar interpretierbare Struktur. Diese ist nur im Jet-Spektrum deutlich zu erkennen. Nur in kleinen spektralen Bereichen des P- und R-Zweiges weisen beide Spektren eine vergleichbare klare Strukturierung der Subbanden auf. In der Abbildung 6.11 ist solch ein Bereich im P-Zweig zwischen 2920.2 cm⁻¹ und 2 922.2 cm⁻¹ abgebildet. In beiden Spektren sind für jeden J-Wert zentral starke Absorptions-Linien zu erkennen. Die aufgrund der Asymmetrie und der Zentrifugalverzerrung des Moleküls bedingte K-Strukturierung der einzelnen Subbanden ist jedoch wesentlich besser in dem Molekularstrahlspektrum aufgelöst. Allerdings ist auch in diesem Spektrum die Aufspaltung der Absorptionslinien nicht vollkommen aufgelöst.

Abbildung 6.7 FTIR-Spektrum von Oxetan, das durch die Edelstahl-Schlitzdüse expandiert wurde. Expansionsdruck P_0 : 250 mbar, Rotationstemperatur T_{rot} : (50 ± 6) K. Insgesamt wurden 50 Scans aufgenommen bei einer instrumentellen Auflösung von 0.0040 cm⁻¹. Die Zuordnungen der Banden nach WIESER *et al.* [17] sind eingezeichnet.

Abbildung 6.8 Ausschnitt der Bande (ν_{14})–(GS) von Oxetan. Blau dargestellt ist das FTIR-Spektrum des Oxetan-Molekularstrahls, rot gezeichnet das bei Raumtemperatur erhaltene FTIR-Spektrum.

Abbildung 6.9 Ausschnitt der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan. Blau dargestellt ist das FTIR-Spektrum des Oxetan-Molekularstrahls. Eingezeichnet ist *J*-Zuordnung im P- und R-Zweig der Bande. Die schwache, nicht vollständig aufgelöste Absorption um 2940 cm⁻¹ stammt von *hot bands* $(\nu_{19} + n\nu_{rp}) - (n\nu_{rp})$. Rot abgebildet ist wiederum das bei Raumtemperatur erhaltene FTIR-Spektrum in diesem Bereich.

Übergang	Schwingung	$\operatorname{Symmetrie}$	$ ilde{ u}~/{ m cm}^{-1}$	Bandentyp
$(u_8)-(u_{rp})$	sym. α -CH-Streck-RP	A_1	2841.61	<i>c</i> -Typ
$(u_{14})-(GS)$	sym. α -CH-Streck	B_2	2887.71	b-Typ
$({ u}_8)-(GS)$	sym. α -CH-Streck	A_1	-	$a ext{-}\mathrm{Typ}$
$(u_8+ u_{rp})-(GS)$	sym. α -CH-Streck+RP ^{a)}	A_1	$2929.17^{a)}$	c-Typ
$(\nu_8 + 2\nu_{rp}) - (\nu_{rp})$	sym. α -CH-Streck+RP ^{a)}	A_1	$2929.51^{a)}$	c-Typ
$(\nu_8 + 3\nu_{rp}) - (2\nu_{rp})$	sym. α -CH-Streck+RP ^a)	A_1	$2930.06^{a)}$	c-Typ
$(u_{19} + n u_{rp}) - (n u_{rp})$	asym. α -CH-Streck+RP	B_1	2938.7	c-Typ
$({ u}_{19})-(GS)$	asym. α -CH-Streck ^{a)}	B_1	$2957.44^{a)}$	c-Typ
$(\nu_{20})-(GS)$	asym. $\beta\text{-}\mathrm{CH}\text{-}\mathrm{Streck}$	B_1	3006.67	<i>c</i> -Typ

 Tabelle 6.17
 Ermittelte Bandenlagen von Oxetan im CH-Streckschwingungsbereich.

a): Fermi-Typ-Resonanz

Die Abbildung 6.12 zeigt weiterhin einen vergrößerten Ausschnitt der Banden $(\nu_{19}) - (GS)$, ein Übergang vom Grundzustand in den ersten angeregten Zustand der asymmetrischen α -CH-Streckschwingung der Symmetrie B_1 , und $(\nu_{20}) - (GS)$, einem Übergang vom Grundzustand in den ersten angeregten Zustand der asymmetrischen β -CH-Streckschwingung mit der Symmetrie B_1 , die im Rahmen dieser Arbeit nicht analysiert wurden. Auch hier weist das Spektrum des kalten Oxetans eine wesentlich klarere Strukturierung dieser c-Typ Banden auf im Vergleich zu dem bei Raumtemperatur erhaltenen Spektrum.

Aus praktischen Gründen wurde die intensivste c-Typ-Bande des FTIR-Spektrums um 2929 cm⁻¹ näher betrachtet. Diese ist in den Abbildungen 6.7 und 6.9 bis 6.11 dargestellt. Nach WIESER *et al.* [17] handelt es sich um einen Übergang vom Grundzustand in den Kombinationszustand der symmetrischen α -CH-Streckschwingung ν_8 und der Ring-Puckering-Schwingung ν_{rp} . Da das Oxetan-Molekül sehr einem oblaten symmetrischen Kreisel ähnelt-es besitzt nach RAY einen Asymmetrieparameter von rund $\kappa = 0.883$ -entspricht die c-Typ-Bande vom Aussehen einem Parallel-Übergang eines oblaten symmetrischen Kreisels mit einem P-, Q- und R-Zweig, die eine K-Substruktur aufweisen. Die Auswahlregeln für die Rotations-Schwingungsübergänge lauten:

$$\Delta K_c = 0, \pm 2, \pm 4, \dots, \Delta K_a = \pm 1, \pm 3, \pm 5, \dots$$
 und $\Delta J = 0, \pm 1,$

wobei die Übergänge mit $\Delta K_c = 0$ und $\Delta K_a = \pm 1$ am intensivsten sind. Die betrachteten Subbanden der Rotations-Puckering-Schwingungsüberganges werden in Anlehnung an MULLI-KEN [39] mit dem Symbol

$$(\Delta K_c)(\Delta J)_{K'_c}$$

beschrieben, wobei zusätzlich die Änderung der K_a -Quantenzahl angegeben werden kann. Die besagte c-Typ-Bande erstreckt sich sowohl im P- als auch im R-Zweig bis rund J'' = 19 (vgl. Abbildung 6.9).

Nachdem die J-Zuordnung praktisch sofort anhand des Molekularstrahlspektrums erfolgt war, wurden erste Versuche zur Zuordnung der K-Substruktur durch Berücksichtigung der von AL-LEN und CROSS [37] tabellierten relativen Intensitäten von Übergängen asymmetrischer Kreisel, der Population der verschiedenen K-Subzustände und der Spinstatistik (Tabelle 6.8) unternom-

Abbildung 6.10 Ausschnitt aus dem P-Zweig der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan. Blau dargestellt ist das FTIR-Spektrum des Oxetan-Molekularstrahls. Eingezeichnet ist *J*-Zuordnung in diesem Bereich. Instrumentelle Auflösung: 0.0040 cm⁻¹. Rot abgebildet ist wiederum das bei Raumtemperatur erhaltene Spektrum. Instrumentelle Auflösung 0.0040 cm⁻¹, Doppler-Verbreiterung: 0.0048 cm⁻¹.

Abbildung 6.11 Vergrößerter Ausschnitt des P-Zweiges der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan. Blau dargestellt ist wiederum das FTIR-Spektrum des Oxetan-Molekularstrahls. Eingezeichnet ist *J*-Zuordnung in diesem Bereich. Instrumentelle Auflösung: 0.0040 cm^{-1} . Rot abgebildet ist wiederum das bei Raumtemperatur erhaltene Spektrum in diesem Bereich. Instrumentelle Auflösung 0.0040 cm^{-1} , Doppler-Verbreiterung: 0.0048 cm^{-1} .

Abbildung 6.12 Ausschnitt der Banden $(\nu_{19}) - (GS)$ und $(\nu_{20}) - (GS)$ von Oxetan. Blau dargestellt ist das FTIR-Spektrum des Oxetan-Molekularstrahls, rot gezeichnet das bei Raumtemperatur erhaltene FTIR-Spektrum.

Tabelle 6.18 Peaklisten der $(\nu_8 + \nu_{rp}) - (GS)$ -Bande von Oxetan.

men. Die berechneten relativen Intensitäten der verschiedenen P- und R-Zweig-Übergänge des Typs $(J \pm 1)_{(K_a \pm 1), K_c} - J_{K_a, K_c}$ wurden mit den experimentell ermittelten Werten verglichen und auf eine Übereinstimmung hin untersucht. Diese Versuche blieben jedoch erfolglos, da zum einen offensichtlich der Betrag der Asymmetrieaufspaltung der K-Subzustände zu ungenau bekannt war, zum anderen die meisten Subbanden sich stark überlagern. Die starken Überlagerungen manifestieren sich beispielsweise in einem starken Q-Zweig-Peak, der sich aus den verschiedenen Q-Zweigen der Subbanden zusammensetzt. In der Abbildung 6.13 ist ein Ausschnitt aus den erhaltenen Spektren im Bereich des Q-Zweiges dargestellt. Im Spektrum des kalten Oxetans ist neben den Q-Zweigen der Bande $(\nu_8 + \nu_{rp}) - (GS)$ auch Q-Zweige der hot bands $(\nu_8 + 2\nu_{rp}) - (\nu_{rp})$ und $(\nu_8 + 3\nu_{rp}) - (2\nu_{rp})$ zu erkennen.

Die Zuordnung der Rotations-Vibrations-Übergänge erfolgte mit Hilfe des Loomis-Wood Programmes LW51 (vgl. Kapitel 5). Das Bandenzentrum der betrachteten *c*-Typ-Bande wurde mit 2929.17 cm⁻¹ angenommen, und die vom Programm benötigte Rotationskonstante B''_{ps} des unteren Zustandes wurde approximativ aus den Rotationskonstanten des Grundzustandes [1] mit $B''_{ps} \approx (A'' + B'')/2$ zu 0.396 60 cm⁻¹ berechnet. Der Parameter ΔB_{ps} wurde nun so lange verändert, bis einzelne K-Subbanden zu erkennen waren. Es stellte sich jedoch recht schnell heraus, daß die K-Substruktur nur unzureichend aufgelöst war, so daß diese Bande mit der Peakfinder-Routine der Spektroskopiesoftware HILRAPSS99 [38] bearbeitet wurde (vgl. Kapitel 5), die unter der MATHEMATICA¹-Benutzeroberfläche läuft.

Dieses Programm ermöglicht es, einzelne Rotations-Vibrations-Linien in Bereichen, die durch die Überlagerung von verschiedenen Absorptionslinien nicht vollständig aufgelöst sind, zu identifizieren. Als Startinformation benötigt es den Typ der Linienprofilfunktion, die minimale Transmission der schwächsten Rotations-Vibrations-Linien, und die Halbwertsbreite einer vollständig aufgelösten Absorptionslinie. Zudem muß ein Bereich um eine Linie vorgegeben werden, der gefittet werden soll. Mit diesen Informationen wird ein berechnetes Spektrum an das experimentelle Spektrum angepaßt, so daß die Abweichungen minimal werden. Als Linienprofilfunktion wurde in einer ersten Näherung die Doppler-Funktion verwendet. Die Halbwertsbreite der Linien wurde aus Rotations-Vibrations-Linien der *b*-Typ-Bande der Schwingung ν_{14} zu $(0.004.6 \pm 0.000.4)$ cm⁻¹ festgelegt. Das Ergebnis der Anpassung für den Bereich des Q-Zweiges ist in der Abbildung 6.14 dargestellt.

Wie man deutlich erkennt, wird das gemessene Spektrum sehr gut durch das berechnete wiedergegeben. Die Abweichung zwischen beiden wird durch die schwarze Kurve beschrieben. Die ermittelten Rotations-Vibrations-Linien sind ebenfalls eingezeichnet. Zur Kontrolle der mit dem Programm HILRAPSS99 durchgeführten Anpassung im Bereich der stark überlagerten Q-Zweige, wurde zu einem späteren Zeitpunkt zusätzlich ein Fit durchgeführt, bei dem die Positionen der stärksten erkennbaren Absorptionslinien, die später aus den Vorhersagen eindeutig zugeordnet

 $^{^1\}mathrm{MATHEMATICA}$ Version 3.0, Wolfram Research Inc.

Abbildung 6.13 Ausschnitt aus dem Bereich der Q-Zweige der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan. Blau dargestellt ist das FTIR-Spektrum des Oxetan-Molekularstrahls. Neben den Q-Zweigen der Bande $(\nu_8 + \nu_{rp}) - (GS)$ sind ebenfalls die Q-Zweige der *hot bands* $(\nu_8 + 2\nu_{rp}) - (\nu_{rp})$ und $(\nu_8 + 3\nu_{rp}) - (2\nu_{rp})$ zu erkennen. Rot abgebildet ist wiederum das bei Raumtemperatur erhaltene Spektrum.

Abbildung 6.14 Jet-Spektrum der $(\nu_8 + \nu_{rp}) - (GS)$ -Bande von Oxetan. Zu sehen sind der P-, Qund R-Zweig der Bande. Vergrößert dargestellt ist der experimentell erhaltene Q-Zweig (blau) dieser Bande, das mit dem Programm HILRAPSS99 [38] berechnete Spektrum (rot), die eingefügten Rotations-Vibrations-Linien (grün) und die Differenz zwischen dem berechneten und experimentell erhaltenen Spektrum (schwarz).

werden konnten, festgehalten wurden. Damit konnte sichergestellt werden, daß auch schwächere Absorptionslinien in diesem Bereich sinnvoll in die nicht-aufgelöste Struktur eingefügt wurden. Mit anderen Worten: es wurde auf diese Weise überprüft, daß der Fit in ein globales Minimum gelangt.

Wie bereits erwähnt, stammen die im oberen Spektrum erkennbaren Absorptionen neben dem starken Q-Zweig der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Q-Zweigen der hot bands $(\nu_8 + 2\nu_{rp}) - (\nu_{rp})$ und $(\nu_8 + 3\nu_{rp}) - (2\nu_{rp})$ (vgl. Tabelle 6.17). Mit diesem Programm wurden nun sämtlicher P(J)und R(J)-Übergänge untersucht und die erhaltenen Files im *pek*-Format in Linienlisten konvertiert. Die durch die Güte der Anpassung bestimmte Genauigkeit der einzelnen Linienpositionen schwankt zwischen 5×10^{-5} und 3×10^{-4} cm⁻¹. Für die spätere Anpassung der spektroskopischen Konstanten an die gemessenen Übergänge wurde von einer generellen Ungenauigkeit der Linienpositionen von 2×10^{-4} cm⁻¹ ausgegangen. Die Namen der Peaklisten und die dazugehörige Wellenzahlbereiche sind in der Tabelle 6.18 aufgeführt.

Die erhaltenen Linienlisten wurde nun in das Programm LW51 eingelesen. In der Abbildung 6.15 ist ein Ausschnitt eines Loomis-Wood-Diagrammes dargestellt. Mit dem Programm AWAT wurden im nächsten Schritt Vorhersagen für die Rotations-Vibrations-Übergänge der ($\nu_8 + \nu_{rp}$) –

Abbildung 6.15 Ausschnitt aus dem Loomis-Wood-Diagramm des P-Zweiges der $(\nu_8 + \nu_{rp}) - (GS)$ -Bande von Oxetan. Markiert ist eine Subbande.

(GS)-Bande berechnet. Dazu wurden die von KUNZMANN ermittelten Grundzustandskonstanten verwendet. Für den oberen Zustand wurden bis auf die Rotationskonstante C die gleichen Werte der Konstanten angenommen. Die Rotationskonstante C wurde mit rund 0.217 851 cm⁻¹ etwas kleiner als der Grundzustandswert gewählt. Zwar nimmt mit Anregung der Puckering-Schwingung die Konstante C leicht zu (vgl. Tabelle 6.14), die Differenz zwischen den C-Konstanten des ersten angeregten Puckering-Zustandes und des Grundzustandes besträgt rund 1.4×10^{-3} cm⁻¹, jedoch wurde angenommen, daß durch Anregung der symmetrischen CH-Streckschwingung ν_8 das Trägheitsmoment I_c effektiv zunimmt und somit die Rotationskonstante C insgesamt kleiner wird. Der Schwingungstermwert wurde auf 2 929.17 cm⁻¹ festgelegt.

Auf Grundlage dieser Konstanten wurden nun sämtliche Rotations-Puckering-Vibrations-Übergänge vorhergesagt und die berechneten Übergänge in das Programm LW51 eingelesen. Das berechnete Loomis-Wood-Diagramm stimmte von seiner Struktur relativ gut mit dem aus experimentellen Daten erhaltenen Diagramm überein, so daß zunächst bis J'' = 5 die Asymmetrie-Dubletts $K_c = 1$; $K_a = J, J-1$ in P- und R-Zweig zugeordnet werden konnten. Die zugeordneten Übergänge wurden dann in das Eingabefile des Programmes AWAT eingegeben und die Vorhersagen verfeinert. Auf diese Weise wurden sämtliche Übergänge sukzessive zugeordnet. Insgesamt konnten somit rund 350 Rotations-Puckering-Vibrations-Übergänge in dieser Bande zugeordnet werden.

Die mit dem Programm AWAT angepäßten spektroskopischen Konstanten sind in der Tabelle 6.19 aufgeführt. Die Konstanten des Grundzustandes wurden während des Fits auf den von KUNZMANN [1] veröffentlichten Werten festgehalten (vgl. Tabelle 6.14). Zudem wurden einige Zentrifugalverzerrungskonstanten vierter Ordnung und die Zentrifugalverzerrungskonstanten sechster Ordnung auf den Grundzustandswerten festgehalten. Der Schwingungstermwert dieser Kombinationsschwingung wurde zu 2929.140 69 (13) cm⁻¹ bestimmt. Die Standardabweichung des Fits betrug 1.10×10^{-3} cm⁻¹. Die Genauigkeit der Anpassung wird dabei durch zwei Faktoren bestimmt. Zum einen können Asymmetrie-Dubletts, die eine Aufspaltung bis rund 3×10^{-3} cm⁻¹ aufweisen, bedingt durch die geringere Auflösung des Spektrums nicht genaueren Übergangs-

Spektroskopisch	ne Konstante	$\nu_8 + \nu_{rp}$
A	$/\mathrm{cm}^{-1}$	0.4016344(88)
B	$/\mathrm{cm}^{-1}$	0.3913028(67)
C	$/\mathrm{cm}^{-1}$	0.2251979(69)
Δ_J	$/10^{-7} {\rm cm}^{-1}$	1.97(40)
Δ_{JK}	$/10^{-7} {\rm cm}^{-1}$	-6.4(11)
Δ_K	$/10^{-7} {\rm cm}^{-1}$	$1.52335~(57)^{a)}$
δ_J	$/10^{-8} {\rm cm}^{-1}$	$5.48139(57)^{a)}$
δ_K	$/10^{-7} {\rm cm}^{-1}$	4.07(48)
Φ_J	$/10^{-13} \mathrm{cm}^{-1}$	$8.7(12)^{a)}$
Φ_{JK}	$/10^{-13} {\rm cm}^{-1}$	$9.0~(19)^{a)}$
Φ_{KJ}	$/10^{-13} \mathrm{cm}^{-1}$	$5.2~(28)^{a)}$
Φ_K	$/10^{-12} \mathrm{cm}^{-1}$	$-1.23(29)^{a m)}$
ϕ_J	$/10^{-13} {\rm cm}^{-1}$	$1.08~(19)^{a m)}$
ϕ_{JK}	$/10^{-12} \mathrm{cm}^{-1}$	$-1.041 \ (80)^{a)}$
ϕ_K	$/10^{-13} {\rm cm}^{-1}$	$-1.60~(67)^{a m)}$
G_v	$/\mathrm{cm}^{-1}$	2929.14069(13)
σ	$/10^{-3} {\rm cm}^{-1}$	1.10

Tabelle 6.19 Ermittelte spektroskopische Konstanten für den Kombinationszustand $(\nu_8 + \nu_{rp})$ von Oxetan.

a): festgehalten während des Fits

wellenzahlen zugeordnet werden. Zum anderen spielen Überschneidungen der einzelnen Subbanden eine Rolle. So überlagern sich beispielsweise die Rotations-Puckering-Vibrations-Übergänge $4_{13} - 3_{03}$ und $4_{40} - 3_{30}$. Dies hat zur Folge, daß die experimentell ermittelte Übergangswellenzahl von $4_{13} - 3_{03}$ eine Abweichung von rund 1.6×10^{-3} cm⁻¹ vom berechneten Wert aufweist. Die experimentell erhaltenen Übergagswellenzahlen samt deren Abweichungen vom berechneten Wert befinden sich im Anhang E dieser Arbeit.

Auffallend an den ermittelten spektroskopischen Konstanten der Tabelle 6.19 ist, daß sich die erhaltenen Rotationskonstanten des Kombinationszustandes ($\nu_8 + \nu_{rp}$) deutlich weniger von den Rotationskonstanten des Grundzustandes unterscheiden, als dies die Rotationskonstanten des ersten angeregten Zustandes der Ring-Puckering-Schwingung (Tabelle 6.14) tun. Dies erklärt wiederum die in der Abbildung 6.16 angedeuteten Überlagerungen der Q-Zweige der einzelnen Subbanden. Eingezeichnet sind einige der getroffenen Zuordnungen. Bei der intensivsten Absorptionslinie um 2929.1605 cm⁻¹ handelt es sich um überlagerte Übergänge mit $K_c = 5, 6, 7$. Die Bandenzentren der Subbanden eines fast oblaten symmetrischen Kreisels sind näherungsweise gegeben durch:

$$\tilde{\nu}_0^{sub} = \tilde{\nu}_0 + \left[(C' - C'') - (\bar{B}' - \bar{B}'') \right] K_c^2, \tag{6.53}$$

mit $\overline{B} = (A + B)/2$. Für die Bandenzentren der K-Subbanden des Kombinationszustandes $(\nu_8 + \nu_{rp})$ gilt somit

$$\tilde{\nu}_0^{sub} = 2\,929.140\,78\,(12) + (8.13 \times 10^{-4})\,K_c^2,\tag{6.54}$$

wohingegen die des ersten angeregten Ring-Puckering-Zustandes beschrieben werden durch

$$\tilde{\nu}_0^{sub} = 52.920\,318\,(20) + (1.31 \times 10^{-3})\,K_c^2. \tag{6.55}$$

Die deutliche Überlagerung der Subbanden des Überganges $(\nu_8 + \nu_{rp}) - (GS)$ ist eine Folge der

Abbildung 6.16 Einige zugeordnete Rotations-Puckering-Schwingungsübergänge im Bereich der Q-Zweige des Überganges ($\nu_8 + \nu_{rp}$) – (GS) von Oxetan. Blau dargestellt ist das experimentell erhaltene FTIR-Spektrum des Oxetan-Molekularstrahlss, grün gezeichnet sind die mit dem Programm HIL-RAPSS99 [38] eingefügten Linien in die nicht vollständig aufgelöste Struktur. Eingezeichnte sind einige der zugeordneten Übergänge $J_{(K_a\pm 1),K_c} - J_{K_a,K_c}$.

geringen Abweichung der Rotationskonstanten diese Kombinationszustandes von den Rotationskonstanten des Grundzustandes. Offensichtlich dämpft die symmetrische α -CH-Streckschwingung ν_8 die durch die Ring-Puckering-Schwingung hervorgerufenen Änderungen der Rotationskonstanten. Die Q-Zweige des reinen Ring-Puckering-Überganges sind somit stärker voneinander separiert. Dies verdeutlicht sich insbesondere bei Betrachtung der entsprechenden Fortrat-Diagramme. Bei Fortrat-Diagrammen wird die Rotationsquantenzahl J gegen die Übergangswellenzahl eines Rotations-Vibrationsüberganges aufgetragen. Das durch diese Auftragung erhaltene Muster gibt sehr kompakt und übersichtlich die Struktur der Subbanden eines Spektrums wieder. In der Abbildung 6.17 ist das berechnete Fortrat-Diagramm der Q-Zweige des Überganges $(\nu_8 + \nu_{rp}) - (GS)$ aufgetragen. Die Übergangswellenzahlen der mit Kreisen gekennzeichnten Übergänge sind mit den in den Tabellen 6.19 und 6.14 angegebenen spektroskopischen Konstanten berechnet worden.

Die Subzweige, die nach links laufen, stellen die Übergänge $\Delta J_{\Delta K_a,\Delta K_c} = 0_{-1,0}$ dar, wohingegen die nach rechts laufenden Zweige Übergänge des Typs $\Delta J_{\Delta K_a,\Delta K_c} = 0_{+1,0}$ repräsentieren. Die durch die Asymmetrie des Oxetan-Moleküls bedingte Aufspaltung der Subzweige erfolgt bei zunehmenden K_c erst bei höheren Werten der Rotationsquantenzahl J. Zum Vergleich ist in der Abbildung 6.18 das für die Q-Zweige des Überganges (ν_{rp}) – (GS) von KUNZMANN berechne-

Abbildung 6.17 Berechnetes Fortrat-Diagramm der Q-Zweige des Überganges $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan. Zur Berechnung wurden die in der Tabelle 6.19 aufgeführten Konstanten verwendet.

Abbildung 6.18 Berechnetes Fortrat-Diagramm der Q-Zweige des Überganges $(\nu_{rp}) - (GS)$ von Oxetan. Entnommen aus der Arbeit von KUNZMANN [1].

Abbildung 6.19 P-Zweig-Übergänge $(J-1)_{(K_a-1),K_c} - J_{K_a,K_c}$ mit $J = 9 \leftarrow J = 10$ der Bande $(\nu_8 + \nu_{rp}) - (GS)$ von Oxetan. Die expliziten Zuordnungen bis $K_c = 2$ sind eingezeichnet. Die schwarz gestrichenen Linien deuten die Aufspaltungen der Übergänge an.

Tabelle 6.20 Ermittelte Asymmetrieaufspaltungen bei den P-Zweig-Übergängen $(J-1)_{(K_a-1),K_c} - J_{K_a,K_c}$ mit $J = 9 \leftarrow 10$ von Oxetan.

Übergang	$\Delta_{asym}/~{ m cm}^{-1}$
$9_{91} \leftarrow 10_{101}/9_{81} \leftarrow 10_{91}$	0.09362
$9_{72} \leftarrow 10_{82} / 9_{82} \leftarrow 10_{92}$	0.05417
$9_{63} \leftarrow 10_{73} / 9_{73} \leftarrow 10_{83}$	0.01025

te Fortrat-Diagramm aufgeführt. Man sieht anhand dieser Abbildungen recht deutlich, daß die Asymmetrieaufspaltungen in beiden Diagrammen recht ähnlich sind, sich jedoch aus den bereits genannten Gründen die Bandenzentren der einzelnen Subzweige mit steigendem Wert von K_c sehr unterschiedlich verschieben.

Die verschiedenen Subzweige im P- als auch im R-Zweig-Bereich des Spektrums erstrecken sich über einen weit größeren spektralen Bereich, so daß exemplarisch in der Abbildung 6.19 die P-Zweig-Übergänge $J = 9 \leftarrow J = 10$ um 2 921.2 cm⁻¹ herausgegriffen sind. Die relativen Intensitäten der Absorptionslinien deuten darauf hin, daß auch die P-Subzweige durch andere Übergänge überlagert sind. Der Verlauf der Asymmetrieaufspaltungen Δ_{asym} der dargestellten Übergänge ist in der Tabelle 6.20 explizit aufgeführt.

6.5 Zusammenfassung der Ergebnisse und Ausblick

Im Rahmen der vorliegenden Arbeit wurde erstmals das MIR-Spektrum von Oxetan zwischen 2750 cm⁻¹ und 3150 cm⁻¹ mittels hochauflösender FTIR-Spektroskopie aufgenommen. Die spektroskopische Untersuchung eines 50 K kalten Molekülstrahles von Oxetan mit der in Kapitel 4 vorgestellten Molekularstrahlanlage mit Mehrfachreflexionsoptik ergab ein vollständig rotationsaufgelöstes Spektrum. Die K-Substruktur konnte nicht vollständig aufgelöst werden, war aber wesentlich besser aufgelöst als in dem bei Raumtemperatur aufgenommenen Spektrum. Sie wurde mit der Peakfinder-Routine HILRAPSS99 bearbeitet. Analysiert wurde bisher die Kombinationsbande ($\nu_8 + \nu_{rp}$) – (GS), deren Termwert zu 2929.14069 (13) cm⁻¹ bestimmt wurde. Ein Vergleich der angepaßten Rotationskonstanten mit den Rotationskonstanten des Grundzustandes und des ersten angeregten Ring-Puckering-Zustandes zeigt, daß die symmetrische α -CH-Streckschwingung ν_8 der durch die Ring-Puckering-Schwingung hervorgerufenen Änderung der effektiven Rotationskonstanten entgegenwirkt, d. h. einen gewissermaßen kompensierenden Einfluß besitzt.

Die von WIESER *et al.* vermutete *Fermi*-Typ-Resonanz zwischen dem Kombinationszustand $(\nu_8 + \nu_{rp})$ und dem ersten angeregten Zustand der asymmetrischen α -CH-Streckschwingung ν_{19} der Symmetrierasse B_1 kann zum jetzigen Zeitpunkt nicht bestätigt werden, da es bisher nicht möglich war, Informationen über die symmetrische α -CH-Streckschwingungs-Fundamentalbande (ν_8) und die asymmetrische α -CH-Streckschwingungsbande (ν_{19}) aus dem erhaltenen Spektrum zu gewinnen. Die Analyse der *b*-Typ-Bande der symmetrischen α -CH-Streckschwingung ν_{14} um 2887.71 cm⁻¹, die der Symmetrierasse B_2 angehört, sollte mit den vorliegenden Daten durchführbar sein und insbesondere möglicherweise die Frage beantworten, ob die Fundamentalbande (ν_8) überlagert ist und wenn ja, wo das genaue Zentrum dieser Bande liegt. Aus zeitlichen Gründen konnte diese Bande jedoch noch nicht analysiert werden.

In Anbetracht der von BÁNHEGY *et al.* [2] berechneten relativen Intensitäten der CO-Streckschwingungen ν_2 und ν_{10} mit 18.3 km/mol bzw. 77.4 km/mol, des Dampfdruckes von Oxetan und der Empfindlichkeit der Gießener Molekularstrahlanlage mit Mehrfachreflexionsoptik, erscheint es zudem lohnenswert und erfolgversprechend, Oxetan im spektralen Bereich um 1000 cm⁻¹ mit hochauflösender FTIR-Spektroskopie und Molekularstrahltechnik zu untersuchen.

6.6 Literaturverzeichnis

- M. KUNZMANN, Hochaufgelöste Infrarot-Spektroskopie an Oxetan Aufnahme und Auswertung der Ring-Puckering-Fundamentalbande, *Diplomarbeit*, Justus-Liebig-Universität, Gießen (1998).
- [2] G. BÁNHEGYI, P. PULAY AND G. FOGARASI, Ab Initio Study of the Vibrational Spectrum and Geometry of Oxetane -I. Interpretation of the Spectra, Spectrochim. Acta 39A, 761-769 (1983).
- [3] P. JENSEN, Theoretische Chemie IV Theoretische Spektroskopie, Bergische Universität Gesamthochschule Wuppertal (1995).
- [4] W. GORDY AND R. L. COOK, Microwave Molecular Spectra, 3rd edition, John Wiley & Sons, New York (1984).
- [5] D. PAPOUŠEK AND M. R. ALIEV, Molecular Vibrational/Rotational Spectra, Academia, Prague (1982).
- [6] P. R. BUNKER, Molecular Symmetry and Spectroscopy, Academic Press, London (1979).
- B. S. RAY, Über die Eigenwerte des asymmetrischen Kreisels, Z. Physik 78, 74–91 (1932).
- [8] S. C. WANG, On the Asymmetric Top in Quantum Mechanics, *Phys. Rev.* 34, 243–252 (1929).
- [9] G. W. KING, R. M. HAINER, AND P. C. CROSS, The Asymmetric Rotor I. Calculation and Symmetry Classification of Energy Levels, J. Chem. Phys. 11, 27–42 (1943).
- [10] H. LICHAU, Spektroskopische und theoretische Untersuchungen zur Struktur und Dynamik von kovalenten Fulminaten und Heterokumulenen, Dissertation, Justus-Liebig-Universität, Gießen (1999).
- [11] J. K. G. WATSON, Determination of Centrifugal Distortion Coefficients of Asymmetric Top Molecules, J. Chem. Phys. 46, 1935–1949 (1967).
- [12] J. K. G. WATSON, Determination of Centrifugal Distortion Coefficients of Asymmetric Top Molecules II. Dreizler, Dendl, and Rudolph's Results, J. Chem. Phys. 48, 181–185 (1968).
- [13] J. K. G. WATSON, Determination of Centrifugal Distortion Coefficients of Asymmetric Top Molecules III. Sextic Coefficients, J. Chem. Phys. 48, 4517–4524 (1968).
- [14] K. M. T. YAMADA, Programmbeschreibung zu AWAT1 und AWAT3, Köln (1994).
- [15] I. P. LORENZ, Gruppentheorie und Molekülsymmetrie: Anwendung auf Schwingungs- und Elektronenzustände, Attempto Verlag Tübbingen GmbH, Tübingen (1992).
- [16] R. F. ZÜRCHER AND H. H. GÜNTHARD, Schwingungsspektren und thermodynamische Eigenschaften von Trimethylenoxid, Hel. Chim. Acta 38, 849–865 (1955).
- [17] H. WIESER, M. DANYLUK, R. A. KYDD, W. KIEFER, AND H. J. BERNSTEIN, Vibrational Spectra and Ring Puckering Progressions in the C-H Stretching Region

of Trimethylene Oxide and Several Deuterated Analogs, J. Chem. Phys. 61, 4380–4393 (1974).

- [18] A. DANTI, W. J. LAFFERTY AND R. C. LORD, Far Infrared Spectrum of Trimethylene Oxide, J. Chem. Phys. 33, 294–295 (1960).
- [19] S. I. CHAN, J. ZINN AND W. GWINN, Double Minimum Vibration of Trimethylene Oxide, J. Chem. Phys. 33, 295–296 (1960).
- [20] S. I. CHAN, J. ZINN AND W. GWINN, Trimethylene Oxide. I. Microwave Spectrum, Dipole Moment, and Double Minimum Vibration, J. Chem. Phys. 33, 1643–1655 (1960).
- [21] S. I. CHAN, J. ZINN AND W. GWINN, Trimethylene Oxide. III. Far-Infrared Spectrum and Double Minimum Potential Function, J. Chem. Phys. 44, 1103–1111 (1966).
- [22] T. UEDA AND T. SHIMANOUCHI, Near-Infrared Band Progressions of Ring Molecules and Ring-Puckering Motion, J. Phys. Chem. 47, 5018–5030 (1967).
- [23] R. A. KYDD, H. WIESER AND M. DANYLUK, Ring Puckering Potential Functions for Normal and Deuterated Trimethylene Oxides, J. Mol. Spectrosc. 44, 14–17 (1972).
- [24] H. WIESER, M. DANYLUK AND R. A. KYDD, The Far-Infrared Spectra and the Ring Puckering Vibration of Some Deuterated Analogs of Trimethylene Oxide, J. Mol. Spectrosc. 43, 382–392 (1972).
- [25] H. WIESER AND M. DANYLUK, Infrared Band Progressions in the CH₂ Scissoring Region and the Ring Puckering Vibration of Trimethylene Oxide and some Deuterated Analogs, Can. J. Chem. 50, 2761–2770 (1972).
- [26] J. JOKISAARI AND J. KAUPPINEN, Vapor-Phase Far-Infrared Spectrum and Double Minimum Potential Function of Trimethylene Oxide, J. Chem. Phys. 59, 2260– 2263 (1973).
- [27] I. MILLS, T. CVITAŠ, K. HOMANN, N. KALLAY, AND K. KUCHITSU, Quantities, Units and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford (1988)
- [28] R. A. CRESWELL AND I. M. MILLS, Microwave Spectra and Centrifugal Distortion Constants of Oxetane, J. Mol. Spectrosc. 52, 392–412 (1974).
- [29] P. D. MALLINSON AND A. G. ROBIETTE, The Microwave Spectrum of α -D₂ Oxetane and the Analysis of the Centrifugal Distortion Constants of Oxetane, J. Mol. Spectrosc. 52, 413-419 (1974).
- [30] R. A. CRESWELL, Molecular Structure of Oxetane, Mol. Phys. 30, 217–222 (1975).
- [31] P. LUGER AND J. BUSCHMANN, Oxetane: The First X-Ray Analysis of a Nonsubstituted Four-Membered Ring, J. Am. Chem. Soc. 106, 7118–7121 (1984).
- [32] V. S. MASTRYUKOV AND J. E. BOGGS, Structure and Conformation of some Saturated Four-Membered Rings, J. Mol. Struct. (Theochem) 338, 235–248 (1995).
- [33] R. A. KYDD, H. WIESER AND W. KIEFER, Vibrational Assignments for Trimethylene Oxide and Several Deuterated Analogues, Spectrochim. Acta A 39, 173–180 (1983).
- [34] A. LESARRI, S. BLANCO AND J. C. LÓPEZ, The Millimeter-Wave Spectrum of Oxetane, J. Mol. Struct. 354, 237–243 (1995).
- [35] D. M. TURNBULL, M. G. SOWA AND B. R. HENRY, CH Stretching Overtone Spectra of Trimethylene Oxide and Trimethylene Sulfide, J. Phys. Chem. 100, 13433–13438 (1996).
- [36] A. G. MAKI AND J. S. WELLS, Wavenumber Calibration Tables from Heterodyne

Frequency Measurements, Band 821 der *NIST Special Publications*, United States Department of Commerce, Washington D.C. (1991)

- [37] H. C. ALLEN AND P. C. CROSS, Molecular Vib-Rotors, John Wiley and Sons, New York and London (1963).
- [38] G. CH. MELLAU, General Concepts of the 1999 Version of the HILRAPSS99-High/Low Resolution Analysis/Prediction of Spectra Software, Sixteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon/Frankreich (1999). Poster J40.
- [39] R. S. MULLIKEN, Report on Notation for the Spectra of Polyatomic Molecules, J. Chem. Phys. 23, 1997–2011 (1955).

Abbildung 7.8 Ausschnitt aus dem Loomis-Wood-Diagramm der ν_4 -Bande von OC₅O, die bei 213 K in der 3 m-Absorptionszelle aufgenommen wurde. Markiert ist ein Teil des P-Zweiges.

213 K aufgenommenen Spektrum ermittelten spektroskopischen Konstanten der Vollständigkeit halber aufgeführt. Die Daten aus beiden Spektren wurden für die Anpassung berücksichtigt. Die Qualität der Anpassung ist bedingt durch die Störungen nicht sehr zufriedenstellend, daher sind die Konstanten weder physikalisch besonders aussagekräftig noch für die Extrapolation bisher unbekannter Übergänge sehr geeignet.

Das Bandensystem der Streckschwingung ν_5 um 2065 cm⁻¹ ist in den Abbildungen 7.9 bis 7.11 abgebildet. Dieses Bandensystem weist einen deutlich größeren Transmissionswert auf im Vergleich zum ν_4 -System. Die Kontur der Bande erscheint zudem sehr viel symmetrischer, wobei die Fundamentale relativ zentral bezüglich dieser Kontur liegt. Die Fundamentalbande der Schwingungsmode ν_5 ist bis J'' = 60 praktisch sehr wenig gestört und konnte mit Hilfe des Molekularstrahlspektrums, den spektroskopischen Konstanten des Grundzustandes aus Tabelle 7.5 und einer lokalen Resonanz des oberen Schwingungszustandes bei J' = 75 eindeutig zugeordnet werden. Der Schwingungstermwert der Fundamentalen wurde zu 2065.555 99 (16) ermittelt. Die angepaßten spektroskopischen Konstanten sind ebenfalls in der Tabelle 7.5 aufgeführt. Neben der Fundamentalen erkennt man in dem bei 213 K aufgenommenen Spektrum zwei weitere Serien. Diese Serien weisen keine intensiven Q-Zweig auf, so daß es sich um Übergänge handeln muß, bei denen sich die *l*-Quantenzahl nicht ändert, also $\Delta l = 0$. Eine eindeutige Zuordnung dieser Serien blieb jedoch verwehrt.

7.5 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Dissertation wurde das MIR-Spektrum von OC_5O zwischen 2000 cm⁻¹ und 2450 cm⁻¹ mittels hochauflösender FTIR-Spektroskopie aufgenommen. Die spektroskopischen Messungen an einer in dieser Form vollkommen neuartigen OC_5O -Isopropylcyclohexan-Argon-Expansion ermöglichte es, erstmals ein vollständig rotationsaufgelöstes Spektrum des intensivsten Streckschwingungsbandensystems ν_4 zu erhalten. Auf Grundlage dieses Spektrums

Abbildung 7.9 Ausschnitt aus dem ν_5 -Bandensystem von OC₅O. Blau gezeichnet ist das FTIR-Spektrum des OC₅O-Molekularstrahls. Darunter ist das bei 213 K erhaltene Spektrum abgebildet. Die eingezeichnete schwarze Linie verdeutlicht, daß diese Bande nicht vollständig aufgelöst ist.

Abbildung 7.10 Ausschnitt aus dem P-Zweig der ν_5 -Bande von OC₅O. Dargestellt ist das bei 213 K erhaltene Spektrum. Zu erkennen sind die Übergänge P(60) bis P(22) von ν_5 .

Abbildung 7.11 Vergrößerter Ausschnitt des P-Zweiges der ν_5 -Bande von OC₅O. Blau gezeichnet ist das FTIR-Spektrum des OC₅O-Molekularstrahls (instrument. Auflösung: 0.008 cm⁻¹). Darunter ist das bei 213 K erhaltene Spektrum abgebildet (instrument. Auflösung: 0.002 1 cm⁻¹). Eingezeichnet sind zudem die Übergänge P(16) bis P(4) der ν_5 -Fundamentalbande.

konnten die Rotations- und Zentrifugalverzerrungskonstanten sowohl des Grundzustandes als auch des ersten angeregten ν_4 -Schwingungszustandes deutlich verbessert werden. Das Bandenzentrum wurde auf den Wert von 2242.128 93 (29) cm⁻¹ festgelegt. Dieser Wert weicht um rund 0.1 cm^{-1} gegenüber dem von HOLLAND ermittelten ab, dessen *J*-Zuordnung offenbar fehlerbehaftet war. Die Analyse des in der Absorptionszelle bei 213 K aufgenommenen Spektrums ermöglichte die Zuordnung von Rotations-Vibrations-Übergängen aus höher angeregten Rotationszuständen bis ungefähr J = 140.

Sowohl in dem FTIR-Spektrum des OC₅O-Jets als auch in dem bei 213 K aufgenommenen Spektrum manifestiert sich die sehr starke globale und lokale Störung des (ν_4)-Zustandes. Als Konsequenz daraus mußten zur Anpassung der Konstanten an die spektroskopischen Übergänge Terme höherer Ordnung berücksichtigt werden, was die physikalische Aussagekraft dieser Konstanten sehr einschränkt. Vermutlich aufgrund dieser Störungen konnten in dem bei 213 K aufgenommenen Spektrum keinerlei Serien identifiziert werden, die von Absorptionen der sicherlich zahlreich vorhandenen hot bands der ν_4 -Schwingung in Kombination mit den niedrigliegenden Knickschwingungen ν_8 und ν_{11} herrühren. Das Spektrum des OC₅O-Jets weist hingegen deutlich eine zweite Serie um 2242.5 cm^{-1} auf, die jedoch lediglich im P-Zweig deutlich zu erkennen ist. Hilfreich wären daher Messungen mit einem Diodenlaser an OC₅O-Molekularstrahlen in diesem spektralen Bereich. Zudem würde dies möglicherweise die Frage klären, ob diese Bande einen zumindest schwachen Q-Zweig aufweist und somit Aufschluß über die an dem Ubergang beteiligten Zustände geben. Darüberhinaus könnte die wesentlich empfindlichere Diodenlaserspektrokopie die Messung an OC₅O-Molekularstrahlen mit größeren Rotations- und Vibrationstemperaturen ermöglichen und somit zum einen die J-Lücke zwischen Jet- und Zellen-Spektrum der ν_4 -Fundamentalen schließen, zum anderen Aufschluß über hot bands geben. Es sei an dieser Stelle jedoch angemerkt, daß es mehr als fraglich erscheint, ob die in diesem spektralen Bereich zu gewinnenden Informationen mit den heute gängigen Methoden auch ausgewertet und physikalisch interpretiert werden können.

Weiterhin konnten Rotations-Vibrations-Übergänge vom Grundzustand in den ersten angeregten Zustand der Streckschwingung ν_5 erstmals zugeordnet werden. Der Schwingungstermwert wurde anhand den Daten, die aus dem bei 213 K aufgenommenen Spektrum gewonnen wurden, zu 2065.555 99 (16) cm⁻¹ bestimmt. Erstaunlicherweise zeigt diese Bande nur geringe Störungen oder lokale Resonanzen. Weitere Banden konnten auch in diesem System nicht zugeordnet werden. In der Abbildung 7.12 sind die beiden analysierten Normalschwingungen des OC₅O-Moleküls zusammenfassend grafisch dargestellt. Im Anhang F befinden sich sämtliche zugeordnete Rotations-Vibrations-Übergänge samt den Abweichungen von den berechneten Linienpositionen.

Die Lage der möglicherweise quasilinearen Knickschwingungen ν_{11} und ν_8 konnte im Rahmen dieser Arbeit nicht ermittelt werden, da es aufgrund der offensichtlich sehr starken Störungen der oberen Zustände nicht gelang, entsprechende *hot bands* und Kombinations- oder Differenzbanden im ν_4 -Bandensystem zuzuordnen. Da es vor rund 10 Jahren HOLLAND nicht gelang, ein FTIR-Spektrum des ν_{11} -Bandensystems von OC₅O direkt zu erhalten, erscheint der experimentelle Weg zur ν_{11} nahezu verschlossen. Möglicherweise gelingt es aber, die sehr schwachen Bandensysteme der Knickschwingung ν_9 und ν_{10} um 500 cm⁻¹ durch den Einsatz von Mehrfachreflexionsoptiken in Hochauflösung zu messen, um dort einen Hinweis auf die Schwingungen ν_8 und ν_{11} zu bekommen. In Anbetracht der zügig fortschreitenden Computerentwicklung sollte

Abbildung 7.12 Einige Normalschwingungen des OC_5O -Moleküls zusammen mit den G_v -Werten und den dazugehörigen Rotationskonstanten.

es prinzipiell ebenfalls möglich sein, ein geeignetes *ab initio* -Verfahren zu finden, um zunächst die Lage der niedrigstliegenden Knickschwingung ν_7 von OC₃O zufriedenstellend berechnen zu könnnen, um diese Methode dann am OC₅O anzuwenden. Ist die Lage der Schwingung ν_{11} einigermaßen sicher abgeschätzt, so könnte man mit Hilfe der Terahertz-Spektroskopie versuchen, diese direkt zu messen.

An dieser Stelle sollen nun einige qualitative Betrachtungen zu dem Verhalten der beiden niedrigliegenden Knickschwingungen ν_8 und ν_{11} von OC₅O folgen. Dazu wird zunächst qualitativ auf die elektronische Struktur von OC₃O und OC₅O eingegangen. Als Grundlage dieser Betrachtungen steht die BENTsche Regel [14], aus der man ableiten kann, daß freie Elektronenpaare bevorzugt Orbitale mit hohem s-Charakter besetzen. Überträgt man nun diese Regel auf das π -System der Heterokumulene, so kann man folgern, daß wenn nach dem Valence Bond (VB)-Modell Resonanzstrukturen mit merklichem Beitrag zur Gesamt-Elektronenkonfiguration existieren, bei denen ein freies Elektronenpaar ein *p*-Orbital besetzt, die lineare Konfiguration ungünstiger gegenüber einer gewinkelten wird, da der *s*-Charakter dieses Orbitals erhöht wird. LICHAU folgerte nun daraus [15], daß wenn bei Zentralatomen eines linearen Moleküls, die das Zentrum einer anharmonischen Knickschwingung darstellen, die π -Elektronendichte erhöht ist, ebenfalls die Barriere zur Linearität erhöht ist. Mit zunehmender π -Elektronendichte nimmt also die Energie der linearen Gleichgewichtskonfiguration zu. Als Beispiel sei zunächst einmal das OC₃O-Molekül angeführt. Für dieses Molekül lassen sich eine Vielzahl von Resonanzstrukturen formulieren, von denen die wichtigsten in der Abbildung 7.13 aufgeführt sind Wie man sieht,

Abbildung 7.13 Einige Resonanzstrukturen zur Beschreibung der Elektronenkonfiguration des OC₃O-Moleküls.

existieren einige Resonanzstrukturen, bei denen das zentrale C-Atom ein freies Elektronenpaar aufweist. Daraus läßt sich schlußfolgern, daß im gewichteten Mittel aller Resonanzstrukturen eine leicht erhöhte π -Elektronendichte an diesem Zentralatom vorherrscht, was nach der BENTschen Regel eine Neigung zur sp^2 -Hybridisierung impliziert. Dies erklärt wiederum die extrem niedrige Übergangswellenzahl der Knickschwingung ν_7 . Zur Quantifizierung dieses Effektes führte JANOSCHEK [7] B3LYP/cc-pVTZ *ab initio* -Berechnungen durch, die diese qualitative Beschreibung bestätigte. So stellte es sich heraus, daß das zentrale Kohlenstoffatom eine deutlich höhere negative Partialladung aufweist als die endständigen Sauerstoffatome. Demnach besitzt die Resonanzstruktur mit zwei freien Elektronenpaaren am zentralen C-Atom (VI) nahezu das gleiche Gewicht wie die mit der negativen Ladung am Sauerstoffatom (II).

In der Abbildung 7.14 sind die mit QCIS/6-311G^{*} berechneten π -Orbitale des OC₅O-Moleküls dargestellt. Jedes dieser Orbitale ist zweifach entartet. Wie man sieht, wird dieses Molekül nicht durch kumulierte π -Bindungen, sondern im wesentlichen durch Dreizentren- π -Molekül-Orbitale bestimmt. Interessant ist die Betrachtung der Ladunsgverteilung. So stellt man fest, daß die Ladung an den Sauerstoffatomen von -0.40 deutlich von den Ladungen an den C-Atomen zwei und vier mit -0.60 übertroffen wird. JANOSCHEK errechnete mit B3LYP/cc-pVTZ einen Wert von -0.40 für die Sauerstoff- und -0.42 für die C2- und C4-Atome. Dieser Befund spricht dafür, daß die vier π -Elektronen des Dreizentren-Molekülorbitals der Kohlenstoffatome C2C3C4 im wesentlichen an den C-Atomen zwei und vier lokalisiert sind. Offensichtlich besitzt die Resonanzstruktur

einen nicht zu vernachlässigenden Beitrag zur Gesamtelektronenkonfiguration. In Analogie zum OC_3O -Molekül kann man daher den Schluß ziehen, daß die C-Atome zwei und vier die Zentren einer potentiell anharmonischen, möglicherweise quasilinearen Knickschwingung darstellen. Der quasilineare Charakter sollte wesentlich weniger ausgeprägt sein als beim OC_3O , da die Ladungsdichte an diesen beiden C-Atome geringer ist, als dies beim zentralen C-Atom des OC_3O der Fall ist.

Unter Berücksichtigung der Abbildung 7.12 kann man nun vermuten, daß die Schwingungsmode ν_8 möglicherweise quasilineare Eigenschaften besitzt oder zumindest ein ausgeprägt anharmonisches Schwingungspotential aufweist.

Abbildung 7.14 Die zweifach entarteten π -Orbitale des OC₅O-Moleküls. Berechnet mit MP2/6-311G*.

Auf der anderen Seite scheint es so, daß die niedrigstliegende Schwingung ν_{11} im wesentlichen eine Knickbewegung an den C-Atomen eins und fünf darstellt. Dabei handelt es sich um Kohlenstoffatome mit niedriger π -Elektronendichte und positiver Partialladung. Es ist daher anzunehmen, daß diese Schwingungsmode ein eher regulär-harmonisches Verhalten mit einer kleinen Schwingungsamplitude zeigen wird, wodurch sich wiederum das offensichtlich kleine Übergangsmoment dieser Schwingung erklären läßt.

7.6 Literaturverzeichnis

- F. HOLLAND, Hochauflösende Fourier-Transform-Infrarotspektroskopie an einigen für die Astrophysik interessanten Molekülen mit kumulierten Doppelbindungen, Dissertation, Justus-Liebig-Universität, Gießen (1989).
- [2] F. HOLLAND, M. WINNEWISSER, G. MAIER, H. P. REISENAUER, AND A. ULRICH, The High-Resolution Fourier Transform Infrared Spectrum of the ν_4 Band System of OCCCCCO, J. Mol. Spectrosc. 130, 470–474 (1988).
- [3] A. KLEMENC AND G. WAGNER, Pentacarbondioxyd, O:C:C:C:C:C:C,

Chem. Ber. 70, 1880–1882 (1937).

- [4] G. MAIER, H. P. REISENAUER, U. SCHÄFER, AND H. BALLI, C₅O₂ (1,2,3,4-Pentatetraen-1,5-dion), ein neues Oxid des Kohlenstoffs, Angew. Chem. 100, 590– 592 (1988).
- [5] R. JANOSCHEK, Novel Carbon Suboxides and Subsulphides (C₅O₂, C₅S₂, C₄O₂, and C₂S₂: Assignment of UV and IR Spectra by Quantum Chemical Calculations, J. Mol. Struct. (Theochem) 232, 147–154 (1991).
- [6] K.H. KIM, B. LEE, AND S. LEE, Structures and Spectroscopic Properties of OC_nO (n=2-6): Density Functional Theory Study, Bull. Korean. Chem. Soc. 19, 553-557 (1998).
- [7] R. JANOSCHEK, Theoretical Studies on Heterocumulated Double Bond Systems, Sulfur Reports 21, 373-400 (1999).
- [8] E. N. KARYAKIN, A. F. KRUPNOV, AND S. M. SHAPIN, Microwave Study of Vibration-Rotation Spectrum of Carbon Suboxide C₃O₂ in the 300- to 1000-GHZ Frequency Range, J. Mol. Spectrosc. 94, 283-301 (1982).
- [9] H. BALLI, V. MÜLLER, AND A. S. GEZGIN, Einführung der Diazogruppe mit Azidiniumsalzen in Hydroxy-arene und Hydroxy-hetarene, *Helv. Chim. Acta* 61, 104–107 (1978).
- [10] A. ULRICH, Neue Oxide des Kohlenstoffs, Dissertation, Justus-Liebig-Universität, Gießen (1992).
- W. SCOTT AND G. W. WATT, Reactions in the Thiazole Series. I. Reactions of 2-Chlorobenzothiazoles with Thioureas, J. Org. Chem. 2, 148–156 (1937).
- [12] H. BALLI AND F. KERSTING, Azidiniumsalze I, Synthese quasiaromatischer Azidocyclimonium- fluoroborate, Justus Liebigs Ann. Chem. 647, 1–18 (1961).
- [13] H. P. REISENAUER, persönliche Mitteilung (1998).
- [14] H. A. BENT, An Appraisal of Valence-Bond Structures and Hybridization in Compounds of the First-Row Elements, Chem. Rev. 61, 275–311 (1961).
- [15] H. LICHAU, Spektroskopische und theoretische Untersuchungen zur Struktur und Dynamik von kovalenten Fulminaten und Heterokumulenen, Dissertation, Justus-Liebig-Universität, Gießen (1999).

Kapitel 7

ROTATIONS-VIBRATIONS-Spektroskopie an OC_5O

Wie zu Beginn dieser Arbeit dargelegt wurde, war ein weiteres Ziel der vorliegenden Dissertation die erneute Aufnahme und Analyse des Rotations-Vibrations-Spektrums von 1,2,3,4-Pentatetraen-1,5-dion (OC₅O) im Bereich der Streckschwingungen ν_5 und ν_4 im mittleren Infrarot um 2 200 cm⁻¹. Dieser spektrale Bereich wurde zwar im Jahre 1988 von HOLLAND im Molekülspektroskopischen Laboratorium der Justus-Liebig-Universität Gießen untersucht [1,2], jedoch konnte die Streckschwingungsfundamentale ν_4 nur vorläufig und die ν_5 -Fundamentale gar nicht zugeordnet werden. Zudem konnten keinerlei relevanten Informationen für die Abschätzung der Lage der beiden niedrigstliegenden, potentiell quasilinearen, Knickschwingungen ν_8 und ν_{11} gewonnen werden. Die Bandenzentren der meisten anderen Streck- und Knickschwingungen von gasförmigem OC₅O, die in der Tabelle 7.1 aufgeführt sind, konnte Holland bestimmen.

Die erneute Aufnahme des FTIR-Spektrums im Bereich der genannten Streckschwingungen verfolgte im wesentlichen das Ziel, erstmals das durch *hot bands* aus Zuständen der thermisch angeregten niedrigstliegenden Knickschwingungen ν_8 und ν_{11} praktisch kaum aufgelöste intensivste Bandensystem der ν_4 -Streckschwingung vollständig rotationsaufgelöst zu messen. Dazu sollten FTIR-Messungen von OC₅O-Molekularstrahlen durchgeführt werden, mit der Hoffnung, daß das erhaltene Spektrum neben der Fundamentalbande auch die erste *hot band* und möglicherweise auch die Kombinationsbande von ν_4 und ν_8 bzw. ν_4 und ν_{11} enthält, um die Lage der möglicherweise quasilinearen Knickschwingungen ν_8 und ν_{11} zumindest abschätzen zu können. Im folgenden soll nun zunächst auf die Ergebnisse füherer Arbeiten eingegangen werden, um den Hintergrund der vorgestellten Untersuchungen darzulegen. Danach wird die Präparation des bisher gängigsten Pyrolysevorläufers für OC₅O erläutert und anschließend die Aufnahme des MIR-Spektrums dargestellt. Zum Abschluß folgt die Analyse des Spektrums.

7.1 Überblick über bisherige Arbeiten an OC_5O

Rund 50 Jahre nach der erstmaligen Postulierung der Bildung von OC_5O als Zersetzungsprodukt des Kohlensuboxids durch KLEMENC und WAGNER [3] gelang es MAIER und Mitarbeitern [4] im Jahre 1988, erstmals OC_5O direkt nachzuweisen. Dazu bestrahlten sie das aus Phloroglucin dargestellte 2,3,6-Trisdiazo-1,3,5-cyclohexantrion bei 254 nm in einer 12 K kalten Argon-Matrix

Abbildung 7.1 Darstellung und Reaktionen von OC_5O .

und nahmen ein FTIR-Spektrum der Photolyseprodukte auf. Durch Vergleich der experimentell erhaltenen Absorptionsbanden mit den nach dem MNDO-Verfahren berechneten zeigte sich, daß neben dem bereits bekannten Kohlensuboxid OC₃O auch OC₅O entstanden war. In Übereinstimmung mit der Prognose, daß Kohlenoxide OC_nO mit ungerader Kohlenstoffzahl stabiler sein sollten als solche mit gerader, war es möglich, OC₅O im präparativen Maßstab herzustellen. Dazu kondensierten MAIER und Mitarbeiter OC₅O zusammen mit einem niedrigschmelzenden Lösungsmittel, wie beispielsweise Isopropylcyclohexan (Schmelzpunkt $T_{mp} = -90.6^{\circ}$ C), auf einen mit flüssigem Stickstoff gekühlten Kühlfinger. Die nach dem Auftauen erhaltene Lösung ist selbst bei Raumtemperatur einige Tage stabil. In reiner Form ist OC₅O nur bis rund -90° C stabil, oberhalb dieser Temperatur polymerisiert es zu einem schwarzen Festkörper der Zusammensetzung (C₅O₂)_x. Mit den OC₅O-Lösungen führten MAIER und Mitarbeiter weitere Untersuchungen durch, um die postulierte Struktur zu beweisen. So verblaßte die gelbe Lösung bei

Mode	$\mathbf{Symmetrie}$	Matrix	Gasphase	Mode	Symmetrie	Matrix	Gasphase
		G_v/cm^{-1}	G_v/cm^{-1}			G_v/cm^{-1}	G_v/cm^{-1}
$ u_1 $	Σ_q^+	b)	b)	$ u_7 $	Π_g	$530^{c)}$	_b)
ν_2	Σ_{g}^{+}	$1665^{c)}$	_b)	ν_8	Π_g	$145^{c)}$	_ b)
$ u_3$	Σ_{g}^{+}	$573^{c)}$	_b)	$ u_9 $	Π_u	$539^{d)}$	$542^{a})$
$ u_4 $	Σ_u^+	$2213^{d)}$	$2242^{a m)}$	$ u_{10} $	Π_u	$470^{(d)}$	474^{a}
ν_5	Σ_u^+	$2059^{d)}$	$2065^{a m)}$	$ u_{11} $	Π_u	_b)	_b)
ν_6	Σ_{u}^{+}	$1144^{d)}$	$1152^{a)}$				

Tabelle 7.1 Lage der Fundamentalbanden von OC_5O .

a): HOLLAND et al. [1,2], b): nicht beobachtet, c): CCl₄-Matrix (77 K), Raman [2], d): Argon-Matrix 12 K, IR [4].

Zugabe von Methanol sofort, und es konnte Allendicarbonsäuredimethylester nachgewiesen werden. Weiterhin sprachen die aus NMR- und UV-Messungen sowie aus der Massenspektroskopie gewonnenen Daten für die vorgeschlagene Struktur.

Die Bestrahlung von OC_5O in einer Argon-Matrix mit Licht der Wellenlänge 230 nm, dies entspricht der Lage der intensivsten Bande von OC_5O , führte zur Abspaltung von CO und der Bildung des carbenoiden Kohlenstoffoxids 4-Oxo-butatrienyliden, C₄O. In der Abbildung 7.1 sind Synthese und einige Reaktionen von OC_5O dargestellt.

Im Jahre 1988 gelang es HOLLAND *et al.* [1,2] erstmals, ein hochaufgelöstes FTIR-Spektrum von OC₅O in der Gasphase aufzunehmen. Dazu verdampften sie OC₅O-Lösungen, die durch Destillation von dem Nebenprodukt OC₃O befreit waren, in eine Absorptionszelle. In der Tabelle 7.1 sind die ermittelten Bandenzentren der Fundamentalschwingungen aufgeführt. HOLLAND *et al.* gelang es, die Fundamentalbande der intensitätsstärksten Streckschwingung ν_4 vorläufig zuzuordnen; IR-Experimente mit OC₅O-Lösungen zur Bestimmung der Lage der niedrigstliegenden, potentiell quasilinearen Knickschwingung ν_{11} schlugen jedoch fehl. In der Tabelle 7.2 sind die von HOLLAND ermittelten Konstanten der ν_4 -Fundamentalen aufgeführt.

In den darauffolgenden zehn Jahren ruhte die experimentelle Arbeit an OC_5O und theoretische *ab initio* -Berechnungen traten in den Vordergrund. JANOSCHEK [5] gelang es beispielsweise, das UV-Spektrum von OC_5O , das Banden bei 223 und 390 nm aufweist, zu reproduzieren und zuzuordnen. KIM *et al.* [6] verwendeten hingegen die Dichtefunktional-Methode BLYP mit dem Basissatz 6-311 G^{*}, um die Struktur und das Schwingungsspektrum von OC_5O zu berechnen. Sie berechneten eine lineare Gleichgewichtsgeometrie für dieses Molekül, das somit zur Punktgruppe $\mathbf{D}_{\infty h}$ gehört. In der Tabelle 7.3 sind einige aus theoretischen Arbeiten erhaltene Parameter auf-

Spektroskopisc	he Konstante	(GS)	(u_4)
G_v	$/\mathrm{cm}^{-1}$		2242.01623(15)
${B}_{v}$	$/\mathrm{cm}^{-1}$	$0.026\ 597\ 30\ (47)$	0.02660828(53)
D_v	$/10^{-10} { m cm}^{-1}$	3.62(21)	134.41(86)
${H}_{v}$	$/10^{-12} { m cm}^{-1}$		1.176(13)
L_v	$/10^{-17} { m cm}^{-1}$		-5.390(83)
M_v	$/10^{-22} { m cm}^{-1}$		9.83(20)

Tabelle 7.2 Berechnete effektive Konstanten für den Grundzustand (GS) und den (ν_4)-Zustand von OC₅O [1,2].

$\operatorname{Struktur}$	BLYP/	B3LYP/	QCISD(T)/
	6-311G*[6]	cc-pVTZ [7]	cc-pVDZ
$r_{\rm O-C1}/{\rm \AA}$	1.1790	1.1627	1.1790
$r_{ m C1-C2}/{ m \AA}$	1.2840	1.2765	1.2999
$r_{ m C2-C3}/{ m \AA}$	1.2810	1.2700	1.2948
$r_{ m C3-C4}/{ m \AA}$	1.2810	1.2749	1.2948
$r_{ m C4-C5}/{ m \AA}$	1.2840	1.2711	1.2999
Schwingungs-	BLYP/	B3LYP/	
wellenzahlen	6-311G*[6]	cc-pVTZ $[7]$	
$\nu_1 / {\rm cm}^{-1}$	2296	2369	
$\nu_2/~{ m cm}^{-1}$	1652	$1\ 720$	
$\nu_3/~{ m cm}^{-1}$	544	562	
$\nu_4/~{ m cm^{-1}}$	2283	2315	
$\nu_{5}/~{\rm cm}^{-1}$	2049	2131	
$\nu_6/~{ m cm}^{-1}$	1107	1147	
$\nu_7/~{ m cm^{-1}}$	526	561	
$\nu_8/~{ m cm}^{-1}$	153	143	
$\nu_{9}/~{\rm cm}^{-1}$	523	561	
$\nu_{10}/~{\rm cm}^{-1}$	429	504	
$\nu_{11}/~{\rm cm}^{-1}$	48	56	

Tabelle 7.3 Mit *ab initio* - Verfahren berechnete Bindungslängen und Schwingungfrequenzen von OC₅O.

geführt. In einer sehr aktuellen Arbeit von JANOSCHEK [7] finden sich *ab initio* -Berechnungen zu einer Vielzahl von Heterokumulenen C_nX und XC_nY (X,Y=O,S; n=2 bis 6). Zur Berechnung der Struktur und des Schwingungsspektrums von OC₅O wurde wiederum eine Dichtefunktionalmethode verwendet, B3LYP mit dem DUNNINGschen Basissatz cc-pVTZ. Die Ergebnisse sind ebenfalls in der Tabelle 7.3 aufgeführt.

Die generelle Schwäche der durchgeführten *ab initio* -Berechnungen ist die Annahme harmonischer Schwingungen. Dies manifestiert sich darin, daß beispielsweise die Lage der niedrigstliegenden, quasilinearen Knickschwingung ν_7 von OC₃O mit den genannten Verfahren nur sehr schlecht berechnet werden kann. Mit BLYP/6-311G* errechnet sich ein Wert von 82 cm⁻¹ [6], mit dem Verfahren B3LYP/cc-pVTZ erhält man 56 cm⁻¹ [7]. Der experimentell ermittelte Wert ist jedoch rund 18 cm⁻¹ [8].

7.2 Präparation des Pyrolysevorläufers

Als Vorläufer zur pyrolytischen Darstellung des OC_5O -Moleküls dient die Verbindung 2,4,6-Trisdiazo-1,3,5-cyclohexatrion, die durch Umsetzung von 1,3,5-Trihydroxybenzol bei 273 K in Methanol mit einem Azidiniumsalz erhalten wird [9,10]:

Zur Synthese des benötigten Azidiniumsalzes wird 2-Mercaptobenzothiazol zunächst mit Dischwefeldichlorid zu 2-Chlorbenzothiazol umgesetzt, das man wiederum mit Triethyloxonium-tetrafluoroborat und Natriumazid zu dem gewünschten Azidiniumsalz abreagieren läßt [11, 12]:

Die genauen Pyrolysebedingungen zur Darstellung von OC_5O werden in den nächsten Kapiteln explizit beschrieben.

7.3 Messung des FTIR-Spektrums von OC₅O im mittleren Infrarot

Seit den Arbeiten von HOLLAND *et al.* [1,2] ist bekannt, daß die klassische Infrarot-Spektroskopie am Heterokumulen OC₅O im mittleren Infrarot vor einer Vielzahl von Problemen steht: Bedingt durch die pyrolytische Darstellung des OC₅O-Moleküls enthält das Spektrum neben den ν_4 - und ν_5 -Bandensystemen von OC₅O auch Absorptionen der Kohlenstoffoxide CO, CO₂ und OC₃O. Vor allem das Spektrum des Kohlensuboxids OC₃O weist bedingt durch die niedrigliegende, sehr anharmonische Knickschwingung ν_7 eine Vielzahl von Absorptionen im Bereich der intensivsten Streckschwingung ν_3 auf, die von *hot bands* herrühren. Diese *hot bands* überlagern jedoch die ν_4 -Bande von OC₅O. Als Folge dieser Überlagerungen und der Tatsache, daß das OC₅O-Molekül mit rund 0.027 cm⁻¹ eine dreimal kleinere Rotationskonstante als OC₃O besitzt und ebenfalls niedrigliegende Knickschwingungen aufweist, ist das Bandensystem der intensitätsstärksten Streckschwingung ν_4 von OC₅O kaum rotationsmäßig aufzulösen.

Die zu erwartende hohe Zustandsdichte im mittleren Infrarot um 2200 cm⁻¹ läßt eine starke globale und/oder lokale Störung der an den Übergängen beteiligten oberen Zustände erwarten. Aufgrund des Fehlens von Mikrowellendaten, das OC₅O-Molekül besitzt kein permanentes

elektrisches Dipolmoment, und der Störung der oberen Zustände sollte eine Zuordnung von hot bands kein einfaches Unterfangen sein.

Gegenstand der vorliegenden Arbeit war es daher, basierend auf den Arbeiten von HOLLAND et al. [1,2] durch Molekularstrahlexperimente an OC₅O Versuchsbedingungen zu finden, die es erlauben, durch Reduzierung der Anzahl der hot bands sowohl des OC₅O- als auch des OC₃O-Moleküls die Fundamentalbande ν_4 von OC₅O eindeutig zuzuordnen und eventuell indirekt durch die Analyse einer hot band und einer Differenz- oder Kombinationsbande die Lage einer der niedrigstliegenden Knickschwingungen abzuschätzen. In Anbetracht des sehr niedrigen Dampfdruckes des OC₅O-Pyrolysevorläufers und dessen Explosivität war es klar, daß solche Experimente nur mit OC₅O-Lösungen durchgeführt werden können.

Zunächst werden im folgenden die experimentellen Bedingungen der FTIR-Messungen an OC_5O vorgestellt, bevor die Analyse des Spektrums folgt. Im Anschluß folgt eine qualitative Abschätzung der Lage der niedrigstliegenden, potentiell quasilinearen Knickschwingungen ν_8 und ν_{11} .

7.3.1 Messung des MIR-Spektrums von OC₅O in der 3 m-Absorptionszelle

In Anlehnung an die Experimente von HOLLAND *et al.* wurden wiederum Experimente an OC_5O in einer Absorptionszelle durchgeführt. OC_5O wurde direkt durch die Pyrolyse von 2,4,6-Trisdiazo-1,3,5-cyclohexatrion hergestellt. Der Vorläufer, der in einem einseitig verschlossenen Quarzrohr auf rund 393 K geheizt wurde, wurde direkt in die Pyrolysezone, die mit einem 7 cm langen Röhrenofen, einem Ersatzheizelement eines Hammerlötkolbens der Firma ERSA, auf rund 850 K geheizt wurde, gebracht und dort pyrolysiert. Die maximale Vorläufertemperatur betrug kurzzeitig 420 K, oberhalb dieser Temperatur besteht akute Explosionsgefahr! Das Pyrolyserohr wurde mittels Normalschliff-Duranglasrohren mit der Absorptionszelle verbunden, die auf 213 K gekühlt wurde. Das Teflonventil der Zelle wurde ein wenig geöffnet, so daß sich ein sehr langsamer Fluß durch die Zelle einstellte. Der Substanzdruck in der Zelle betrug rund 0.18 mbar. Als Strahlungsquelle wurde der Globar verwendet, wobei der Durchmesser der Apertur auf 1.15 mm begrenzt wurde.

Insgesamt konnten 100 Scans bei einer Zellentemperatur von 213 K erhalten werden, die addiert wurden. Da die zu erwartende Doppler-Verbreiterung bei 2 200 cm⁻¹ und 213 K rund 2.4×10^{-3} cm⁻¹ beträgt, wurden die Messungen mit einer instrumentellen Auflösung von 2.1×10^{-3} cm⁻¹ durchgeführt. In der Tabelle 7.4 sind die Meßparameter nochmals zusammengefaßt.

Die Aufarbeitung des Spektrums erfolgte auf die bereits in Kapitel 5.5.1 geschilderte Weise. Das Transmissionsspektrum ZTC5O2D1.1 befindet sich auf der beigefügten *Compact Disc* unter C5O2.a.zip im Verzeichnis FTIR/Zelle/TFILE/C5O2. Eine Auflistung sämtlicher Dateinamen der Hintergrundspektren, der einzelnen Meßblöcke, der Kalibrationsdateien, der Peaklisten und der Transmissionfiles finden sich im Anhang F. Diese Files befinden sich ebenfalls auf der beigefügten *Compact Disc*.

Da eine direkte Identifizierung der ν_4 -Bande von OC₅O in diesem Transmissionsspektrum unmöglich ist, wurde ein zusätzliches Spektrum aufgenommen, nachdem die Zelle rund drei Stunden verschlossen war. Dieses Spektrum, das den Namen ZTC5O2D2.1 trägt, wurde dann als Referenz verwendet. In der Abbildung 7.2 sind die erhaltenen Transmissionsspektren abgebildet. Der obere Bereich der Abbildung (ZTC5O2D1.1) zeigt das Spektrum der Pyrolyseprodukte

	$2000 {\rm ~cm^{-1}} {\rm ~bis} \ 2500 {\rm ~cm^{-1}}$
Strahlungsquelle	Globar
Apertur	$1.15\mathrm{mm}$
Meßbereich	1860 - $2790\mathrm{cm}^{-1}$
${\it Strahlenteiler}$	${ m Si:CaF_2}$
Detektor	InSb-Halbleiter
opt Filter	#5,
opt. Filter	$1950-2750{ m cm^{-1}}$
elektronische Filter	$1737-2923{ m cm^{-1}}$
Fenster	CaF_2
instrum. Auflösung	$0.0021~{ m cm^{-1}}$
Anzahl der Scans	100
optische Weglänge	$3.02 \mathrm{~m}$
Temperatur	213 K
Substanzdruck	$0.18 \mathrm{\ mbar}$

Tabelle 7.4 Instrumentelle Parameter zur Aufnahme der Infrarot-Spektren von OC₅O.

des OC₅O-Vorläufers 2,4,6-Trisdiazo-1,3,5-cyclohexatrion. Man erkennt Absorptionen von CO, OCO, OC₃O und OC₅O. In der unteren Abbildung ist das Spektrum dargestellt, das man durch Verwendung des Single-Beam Spektrums C5O2D2.1 als Background erhält. Als einzige Absorption zwischen 2 190 und 2 250 cm⁻¹ ist das ν_4 -Bandensystem von OC₅O zu erkennen. Offensichtlich ist das OC₅O-Molekül wesentlich instabiler als OC₃O.

7.3.2 Messung des MIR-Spektrums eines OC₅O-Molekularstrahles

Mit den Schwingungsmoden ν_8 und ν_{11} besitzt das OC₅O-Molekül zwei niedrigliegende, potentiell quasilineare Knickschwingungen. Daher weisen die Bandensysteme der Streckschwingungen im mittleren Infrarot sehr komplexe Strukturen auf und sind nur teilweise aufgelöst. Aus diesem Grund wurden ebenfalls Molekularstrahlexperimente mit OC₅O durchgeführt. Diese Arbeiten waren mit einem erheblichen experimentellen Aufwand verbunden, da der Dampfdruck des OC₅O-Vorläufers (rund 3×10^{-3} mbar bei Raumtemperatur) viel zu gering ist, um diesen direkt in eine Trägergasexpansion zu pyrolysieren. Vor den eigentlichen Jet-Experimenten mußten daher größere Mengen an OC₅O/Isopropylcyclohexan-Lösungen hergestellt werden, da diese einen hinreichend hohen Dampfdruck an OC₅O aufweisen sollten. In der Abbildung 7.3 ist die im Rahmen dieser Arbeit entwickelte Pyrolyseapparatur abgebildet, die in ähnlicher Form von MAIER und Mitarbeitern verwendet wurde [4, 13].

Der Pyrolysevorläufer 2,4,6-Trisdiazo-1,3,5-cyclohexatrion wurde mit einem 5 cm langen Ersatzheizelement eines Hammerlötkolbens auf eine Temperatur zwischen 390 K und 420 K in einem Quarzrohr des Durchmessers 18 mm gebracht. Direkt nach dieser Heizzone schloß sich eine rund 7 cm lange Pyrolysezone an, die mit einem Heizelement auf rund 850 K geheizt wurde. Über einen Young-Hahn wurden dann geringe Mengen des Lösungsmittels Isopropylcyclohexan zugeführt, so daß der Gesamtdruck in der Vakuumapparatur unter langsamen Flußbedingungen rund 0.20 mbar betrug. Das Gemisch der Pyrolyseprodukte und des Lösungsmittels wurde daraufhin an einen mit flüssigem Stickstoff gekühlten Kühlfinger kondensiert. Insgesamt konnten durchschnittlich rund 80 mg Vorläufer pro Stunde umgesetzt werden. Legt man die von ULRICH [10] spezifizierte Ausbeute von maximal 20 % OC₅O zugrunde, so entspricht dies der

Abbildung 7.2 Oben: Transmissions-Spektrum der Pyrolyse-Produkte des OC_5O -Vorläufers. Zellentemperatur: 213 K, 100 Scans wurden addiert, instrumentelle Auflösung: 0.0021 cm⁻¹, Doppler-Verbreiterung: 0.0024 cm⁻¹. Unten dargestellt ist das Transmissions-Spektrum, das man durch Verwendung des Spektrums C5O2D2.1 als Background erhält. Zu sehen ist nur die ν_4 -Fundamentalbande, die aus einem nicht aufgelösten Untergrund herausragt. Die eingezeichnete schwarze Linien zeigt den zu erwartenden Verlauf der Basislinie an und verdeutlicht, daß aufgrund der enormen Liniendichte das Bandensystem der ν_4 -Schwingung kaum aufgelöst ist.

Abscheidung von rund 8 mg OC_5O pro Stunde. Das kondensierte Gemisch wurde dann vorsichtig in ein gekühltes Probenrohr überkondensiert, wobei die entstehende dreiprozentige Lösung gelb-grün gefärbt ist. Das Überkondensieren muß im Dunklen erfolgen, da das gelöste OC_5O unter Lichteinfluß zur Polymerisation neigt. Versuche, die Polymerisationsneigung durch Zugabe eines Radikalinhibitors (4-tert-Butylbrenzcatechin) zu unterbinden, schlugen fehl. Nach rund zwei bis drei Minuten polymerisiert das gelöste OC_5O im Sonnenlicht.

Im weiteren Verlauf wurden pro Tag durchschnittlich rund 400 mg Vorläufer umgesetzt, dies entspricht der Herstellung von ungefähr 1.5 ml der Lösung. Nach rund 5 Wochen wurden rund 40 ml Lösung erhalten, die für die Molekularstrahlexperimente verwendet wurden. Diese Experimente wurden in analoger Weise zu den NCCNO-Experimenten durchgeführt (vgl. Abbildung 5.7). Ein Teil der Lösung wurde in eine mäßig geheizte Kühlfalle gefüllt, und über eine Zuleitung wurde Argon unter einem Druck von 150 mbar durch die Lösung geleitet. Das enstehende Argon-Lösungsmittel-Gemisch wurde über eine Teflonleitung zur Expansionsdüse geleitet. Zur Expansion des Gasgemisches wurde eine Edelstahllochdüse mit einem Durchmesser von 0.3 mm verwendet. Der Hintergrunddruck in der Expansionskammer betrug 3 bis 4×10^{-4} mbar. Auf-

Abbildung 7.3 Schematische Darstellung der OC₅O-Pyrolyseapparatur.

grund der divergenten Expansionscharakteristik des Jets wurde die instrumentelle Auflösung des FT-Spektrometers auf 0.008 cm^{-1} begrenzt. Insgesamt konnten 60 Scans aufgenommen werden, die addiert wurden. Die experimentellen Bedingungen entsprechen den in der Tabelle 7.4 aufgeführten mit der Ausnahme, daß der Aperturdurchmesser auf 1.3 mm festgelegt wurde.

Das berechnete Transmissionsspektrum ZTJETWZ1.1 befindet sich auf der beigefügten *Compact Disc* im Verzeichnis FTIR/Jet/TFILE/C5O2. Eine Auflistung sämtlicher Dateinamen der Hintergrundspektren, der einzelnen Meßblöcke, der Kalibrationsdateien, der Peaklisten und der Transmissionfiles finden sich im Anhang F. Diese Files befinden sich ebenfalls auf der beigefügten *Compact Disc*.

7.4 Zuordnung der Rotations-Vibrationsübergänge

In der Abbildung 7.4 ist ein Ausschnitt des erhaltenen FTIR-Spektrums des OC₅O-Molekularstrahles von 2 000 bis 2 450 cm⁻¹ dargestellt. In dem abgebildeten Spektrum finden sich einerseits Absorptionen von H₂O und OCO, die auf Absorptionen von Restgas in den Spektrometerkammern zurückzuführen sind, andererseits erkennt man deutlich die Absorptionen der stärksten Streckschwingungsbanden der Pyrolyseprodukte OC₅O und OC₃O, die in diesem Spektrum deutlich voneinander separiert sind. Bei näherer Betrachtung lassen sich auch Rotations-Vibrations-Linien der Streckschwingung ν_5 von OC₅O mit einer Transmission von 0.995 erkennen. Die Rotationstemperatur wurde anhand Gleichung (4.39) zu (13.2 ± 1.6) K bestimmt; sämtliche Banden konnten vollständig rotationsaufgelöst gemessen werden. Versuche, durch Ver-

Abbildung 7.4 Das FTIR-Spektrum einer $OC_5O/Isopropylcyclohexan/Argon-Expansion durch die Edelstahllochdüse. Der Expansionsdruck betrug rund 150 mbar. Aufgrund der divergenten Expansions$ $charakteristik des Jets wurde die instrumentelle Auflösung auf 0.008 cm⁻¹ festgelegt. Die Zuordnungen der verschiedenen Banden sind eingezeichnet. In der unteren Abbildung ist die <math>\nu_4$ -Bande samt den *J*-Zuordnungen dargestellt.

Abbildung 7.5 Ausschnitt aus dem Bandensystem der Streckschwingung ν_4 von OC₅O. Blau gezeichnet ist das FTIR-Spektrum des OC₅O-Molekularstrahls. Expansionsdruck: 150 mbar, instrumentelle Auflösung: 0.008 cm⁻¹, Rotationstemperatur: $T_{rot} = 13$ K. Das bei 213 K erhaltenen OC₅O-Spektrum ist rot gekennzeichnet. Absorptionsweglänge: 3.02 m, Substanzdruck: 0.18 mbar, instrumentelle Auflösung: 0.002 1 cm⁻¹.

Abbildung 7.6 Vergrößerter Ausschnitt des R-Zweiges der ν_4 -Bande von OC₅O. Blau gezeichnet ist das FTIR-Spektrum des OC₅O-Molekularstrahls. Dargestellt sind die Übergänge R(6) bis R(14) der ν_4 -Fundamentalbande, instrumentelle Auflösung: 0.008 cm⁻¹. Darunter ist das bei 213 K erhaltene Spektrum abgebildet, instrumentelle Auflösung: 0.002 1 cm⁻¹.

Abbildung 7.7 Loomis-Wood-Diagramm des ν_4 -Bandensystems eines OC₅O-Molekularstrahles. Markiert ist die Fundamentalbande. Deutlich zu sehen ist die globale Störung der Serie. LS markiert die beiden lokalen Störungen der Bande.

wendung einer Schlitzdüse oder eines anderen Trägergases (N₂ oder He) einen wärmeren Molekularstrahl zu erzeugen, um möglicherweise *hot bands* sehen zu können, schlugen fehl, da in diesem Fall sämtliche Absorptionen verschwanden.

Im unteren Teil der Abbildung 7.4 ist ein vergrößerter Ausschnitt der intensitätsstärksten Streckschwingungsbande ν_4 von OC₅O samt der J-Zuordnung dargestellt. Wie man deutlich erkennt, setzt sich das ν_4 -Bandensystem aus zwei erkennbaren Subbanden zusammen. Es handelt sich um die ν_4 -Fundamentalbande und eine Bande, die nicht zugeordnet werden konnte. Der obere Zustand dieser unbekannten, wesentlich intensitätsschwächeren, Bande kann möglicherweise für die Störungen des ν_4 -Schwingungszustandes verantwortlich ist. Da im aufgenommenen ν_3 -Bandensystem des OC₃O-Moleküls ansatzweise Absorptionen der ersten hot band $(\nu_3 + \nu_7)^1 - (\nu_7)^1$ zu sehen sind, kann man in Analogie vermuten, daß es sich um eine hot band der Streckschwingung ν_4 mit einer der niedrigliegenden Knickschwingungen handelt, die vielleicht durch eine Coriolis-Resonanz mit ν_4 verstärkt wird. Bei solch einem Übergang handelt es sich um eine Senkrechtbande, die einen Q-Zweig aufweisen sollte. Im Jet-Spektrum ist jedoch um 2242 cm^{-1} kein Q-Zweig zu erkennen. Es ist jedoch nicht auszuschließen, daß dieser Q-Zweig einfach zu intensitätsschwach ist; der Q-Zweig der Bande $(\nu_3 + \nu_7)^1 - (\nu_7)^1$ von OC₃O ist beispielsweise ebenfalls sehr schwach. Andererseits kann man wiederum annehmen, daß es sich möglicherweise um eine durch Resonanz mit ν_4 verstärkte Bande handelt, die Übergänge vom Grundzustand in einen unbekannten angeregten Zustand beinhaltet. Aus dem vorliegenden Spektrum kann das Zentrum dieser Bande zu 2242.54 cm⁻¹ abgeschätzt werden. Eine eindeutige Zuordnung ließ sich aus den vorliegenden Daten jedoch nicht durchführen.

Die Abbildung 7.5 zeigt einen Vergleich des bei 213 K aufgenommenen OC₅O-Spektrums mit dem Spektrum eines OC₅O-Molekularstrahles. Wie man erkennt, existiert sowohl im P- als auch im R-Zweig eine deutliche Lücke zwischen beiden Spektren, die sich ungefähr zwischen J'' = 20 und J'' = 40 erstreckt. In der Abbildung 7.6 ist nochmals ein vergrößerter Ausschnitt des R-Zweiges dieser Bande zu sehen, der den drastischen Abkühlungseffekt der Überschallexpansion und die damit einhergehende Reduktion der Liniendichte verdeutlicht.

Die für diesen Bereich ermittelte Linienliste des Molekularstrahlspektrums wurde nun in das Loomis-Wood-Programm LW51 eingelesen. In der Abbildung 7.7 ist das erhaltene Loomis-Wood-Diagramm abgebildet. In diesem Diagramm erkennt man deutlich die ν_4 -Fundamentale, die im P-Zweig Rotations-Vibrations-Übergänge bis J'' = 20 und im R-Zweig bis J'' = 36 beinhaltet. Die Bande weist in diesem Bereich niedriger Rotationsquantenzahlen eine deutliche globale Störung auf, darüberhinaus erkennt man sowohl im P- als auch im R-Zweig eine lokale Resonanz (LS), über die die J-Zuordnung zweifelsfrei getroffen werden konnte. Offensichtlich ist der obere Schwingunsgzustand bei J' = 17 lokal sehr stark gestört, so daß die Rotations-Vibrationsübergänge R(16) und P(18), die beide zu diesem Niveau führen, eine deutliche Abweichung von der eigentlich zu erwartenden Übergangswellenzahl zeigen. Auf Grundlage dieser J-Zuordnung konnte das Bandenzentrum der ν_4 -Schwingungsfundamentalen aus den Molekularstrahldaten zu 2242.128 93 (29) cm⁻¹ bestimmt werden. Der errechnete Schwingungstermwert unterscheidet sich damit um rund 0.11 cm⁻¹ von HollANDS [1, 2] ermitteltem Wert, dessen J-Zuordnung offensichtlich nicht korrekt ist.

In der Tabelle 7.5 sind die aus den FTIR-Jet-Messungen gewonnen spektroskopischen Konstanten aufgeführt. Zur zufriedenstellenden Anpassung der 23 Rotations-Vibrations-Übergänge mußten aufgrund der starken Störung der ν_4 -Bande Zentrifugalverzerrungskonstanten höherer Ordnung bis einschließlich L_v angepaßt werden.

Unter Berücksichtigung der Molekularstrahldaten der Streckschwingung ν_4 wurden nun die Rotations-Vibrationsübergänge aus höher angeregten Rotationszuständen anhand des bei 213 K aufgenommenen Zellenspektrums zugeordnet. In der Abbildung 7.8 ist das dazugehörige Loomis-Wood-Diagramm abgebildet. Deutlich zu sehen ist, daß auch die höheren Rotationszustände des ν_4 -Schwingungszustandes sehr stark gestört sind. In diesem Diagramm gibt es jedoch keinerlei Hinweise auf Übergänge von Störungspartnern oder aber auf Übergänge von *hot bands* aus angeregten Zuständen der niedrigliegenden Knickschwingungen ν_8 und ν_{11} . In der Abbildung 7.5 sind zum Vergleich das Jet- und das Zellenspektrum von OC₅O gegenübergestellt. Wie bereits erwähnt, existiert sowohl im P- als auch im R-Zweig eine deutliche Lücke zwischen beiden Spektren, die sich ungefähr zwischen J'' = 20 und J'' = 40 erstreckt. Bedingt durch die Störung der ν_4 -Rotations-Vibrations-Niveaus praktisch über den gesamten J-Bereich erwies sich die Interpolation über diese Lücke schwieriger als zunächst vermutet. In der Tabelle 7.5 sind die aus dem bei

Tabelle 7.5 Berechnete effektive Konstanten für den Grundzustand (GS), den ersten angeregten (ν_4)und (ν_5)-Zustand von OC₅O.

	$(GS)^{a)}$	$(u_4^{a)})$	$(u_4^{b)})$	$(u_5^{a)})$
G_v / cm^{-1}		2242.12893(29)	2242.13063(97)	2065.55599(16)
$B_v \ /\mathrm{cm}^{-1}$	0.02659205(16)	0.02655225~(77)	0.0265468(57)	0.0265328(15)
$D_v \ /10^{-8} {\rm cm}^{-1}$	0.142(29)	-45.8(48)	1.15(32)	0.103(23)
$H_v \ /10^{-11} {\rm cm}^{-1}$		-88(10)	0.0406(11)	$0.002\ 60\ (46)$
$L_v / 10^{-15} \mathrm{cm}^{-1}$		503~(71)	-0.00774(41)	
$\sigma_v \ /10^{-3} {\rm cm}^{-1}$	0.581	0.581	3.79	0.581

a): Jet- und Raumtemperatur-Daten berücksichtigt, b): lediglich Raumtemperatur-Daten verwendet

Abbildung 7.8 Ausschnitt aus dem Loomis-Wood-Diagramm der ν_4 -Bande von OC₅O, die bei 213 K in der 3 m-Absorptionszelle aufgenommen wurde. Markiert ist ein Teil des P-Zweiges.

213 K aufgenommenen Spektrum ermittelten spektroskopischen Konstanten der Vollständigkeit halber aufgeführt. Die Daten aus beiden Spektren wurden für die Anpassung berücksichtigt. Die Qualität der Anpassung ist bedingt durch die Störungen nicht sehr zufriedenstellend, daher sind die Konstanten weder physikalisch besonders aussagekräftig noch für die Extrapolation bisher unbekannter Übergänge sehr geeignet.

Das Bandensystem der Streckschwingung ν_5 um 2065 cm⁻¹ ist in den Abbildungen 7.9 bis 7.11 abgebildet. Dieses Bandensystem weist einen deutlich größeren Transmissionswert auf im Vergleich zum ν_4 -System. Die Kontur der Bande erscheint zudem sehr viel symmetrischer, wobei die Fundamentale relativ zentral bezüglich dieser Kontur liegt. Die Fundamentalbande der Schwingungsmode ν_5 ist bis J'' = 60 praktisch sehr wenig gestört und konnte mit Hilfe des Molekularstrahlspektrums, den spektroskopischen Konstanten des Grundzustandes aus Tabelle 7.5 und einer lokalen Resonanz des oberen Schwingungszustandes bei J' = 75 eindeutig zugeordnet werden. Der Schwingungstermwert der Fundamentalen wurde zu 2065.555 99 (16) ermittelt. Die angepaßten spektroskopischen Konstanten sind ebenfalls in der Tabelle 7.5 aufgeführt. Neben der Fundamentalen erkennt man in dem bei 213 K aufgenommenen Spektrum zwei weitere Serien. Diese Serien weisen keine intensiven Q-Zweig auf, so daß es sich um Übergänge handeln muß, bei denen sich die *l*-Quantenzahl nicht ändert, also $\Delta l = 0$. Eine eindeutige Zuordnung dieser Serien blieb jedoch verwehrt.

7.5 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Dissertation wurde das MIR-Spektrum von OC_5O zwischen 2000 cm⁻¹ und 2450 cm⁻¹ mittels hochauflösender FTIR-Spektroskopie aufgenommen. Die spektroskopischen Messungen an einer in dieser Form vollkommen neuartigen OC_5O -Isopropylcyclohexan-Argon-Expansion ermöglichte es, erstmals ein vollständig rotationsaufgelöstes Spektrum des intensivsten Streckschwingungsbandensystems ν_4 zu erhalten. Auf Grundlage dieses Spektrums

Abbildung 7.9 Ausschnitt aus dem ν_5 -Bandensystem von OC₅O. Blau gezeichnet ist das FTIR-Spektrum des OC₅O-Molekularstrahls. Darunter ist das bei 213 K erhaltene Spektrum abgebildet. Die eingezeichnete schwarze Linie verdeutlicht, daß diese Bande nicht vollständig aufgelöst ist.

Abbildung 7.10 Ausschnitt aus dem P-Zweig der ν_5 -Bande von OC₅O. Dargestellt ist das bei 213 K erhaltene Spektrum. Zu erkennen sind die Übergänge P(60) bis P(22) von ν_5 .

Abbildung 7.11 Vergrößerter Ausschnitt des P-Zweiges der ν_5 -Bande von OC₅O. Blau gezeichnet ist das FTIR-Spektrum des OC₅O-Molekularstrahls (instrument. Auflösung: 0.008 cm⁻¹). Darunter ist das bei 213 K erhaltene Spektrum abgebildet (instrument. Auflösung: 0.002 1 cm⁻¹). Eingezeichnet sind zudem die Übergänge P(16) bis P(4) der ν_5 -Fundamentalbande.

konnten die Rotations- und Zentrifugalverzerrungskonstanten sowohl des Grundzustandes als auch des ersten angeregten ν_4 -Schwingungszustandes deutlich verbessert werden. Das Bandenzentrum wurde auf den Wert von 2242.128 93 (29) cm⁻¹ festgelegt. Dieser Wert weicht um rund 0.1 cm^{-1} gegenüber dem von HOLLAND ermittelten ab, dessen *J*-Zuordnung offenbar fehlerbehaftet war. Die Analyse des in der Absorptionszelle bei 213 K aufgenommenen Spektrums ermöglichte die Zuordnung von Rotations-Vibrations-Übergängen aus höher angeregten Rotationszuständen bis ungefähr J = 140.

Sowohl in dem FTIR-Spektrum des OC₅O-Jets als auch in dem bei 213 K aufgenommenen Spektrum manifestiert sich die sehr starke globale und lokale Störung des (ν_4)-Zustandes. Als Konsequenz daraus mußten zur Anpassung der Konstanten an die spektroskopischen Übergänge Terme höherer Ordnung berücksichtigt werden, was die physikalische Aussagekraft dieser Konstanten sehr einschränkt. Vermutlich aufgrund dieser Störungen konnten in dem bei 213 K aufgenommenen Spektrum keinerlei Serien identifiziert werden, die von Absorptionen der sicherlich zahlreich vorhandenen hot bands der ν_4 -Schwingung in Kombination mit den niedrigliegenden Knickschwingungen ν_8 und ν_{11} herrühren. Das Spektrum des OC₅O-Jets weist hingegen deutlich eine zweite Serie um 2242.5 cm^{-1} auf, die jedoch lediglich im P-Zweig deutlich zu erkennen ist. Hilfreich wären daher Messungen mit einem Diodenlaser an OC₅O-Molekularstrahlen in diesem spektralen Bereich. Zudem würde dies möglicherweise die Frage klären, ob diese Bande einen zumindest schwachen Q-Zweig aufweist und somit Aufschluß über die an dem Ubergang beteiligten Zustände geben. Darüberhinaus könnte die wesentlich empfindlichere Diodenlaserspektrokopie die Messung an OC₅O-Molekularstrahlen mit größeren Rotations- und Vibrationstemperaturen ermöglichen und somit zum einen die J-Lücke zwischen Jet- und Zellen-Spektrum der ν_4 -Fundamentalen schließen, zum anderen Aufschluß über hot bands geben. Es sei an dieser Stelle jedoch angemerkt, daß es mehr als fraglich erscheint, ob die in diesem spektralen Bereich zu gewinnenden Informationen mit den heute gängigen Methoden auch ausgewertet und physikalisch interpretiert werden können.

Weiterhin konnten Rotations-Vibrations-Übergänge vom Grundzustand in den ersten angeregten Zustand der Streckschwingung ν_5 erstmals zugeordnet werden. Der Schwingungstermwert wurde anhand den Daten, die aus dem bei 213 K aufgenommenen Spektrum gewonnen wurden, zu 2065.555 99 (16) cm⁻¹ bestimmt. Erstaunlicherweise zeigt diese Bande nur geringe Störungen oder lokale Resonanzen. Weitere Banden konnten auch in diesem System nicht zugeordnet werden. In der Abbildung 7.12 sind die beiden analysierten Normalschwingungen des OC₅O-Moleküls zusammenfassend grafisch dargestellt. Im Anhang F befinden sich sämtliche zugeordnete Rotations-Vibrations-Übergänge samt den Abweichungen von den berechneten Linienpositionen.

Die Lage der möglicherweise quasilinearen Knickschwingungen ν_{11} und ν_8 konnte im Rahmen dieser Arbeit nicht ermittelt werden, da es aufgrund der offensichtlich sehr starken Störungen der oberen Zustände nicht gelang, entsprechende *hot bands* und Kombinations- oder Differenzbanden im ν_4 -Bandensystem zuzuordnen. Da es vor rund 10 Jahren HOLLAND nicht gelang, ein FTIR-Spektrum des ν_{11} -Bandensystems von OC₅O direkt zu erhalten, erscheint der experimentelle Weg zur ν_{11} nahezu verschlossen. Möglicherweise gelingt es aber, die sehr schwachen Bandensysteme der Knickschwingung ν_9 und ν_{10} um 500 cm⁻¹ durch den Einsatz von Mehrfachreflexionsoptiken in Hochauflösung zu messen, um dort einen Hinweis auf die Schwingungen ν_8 und ν_{11} zu bekommen. In Anbetracht der zügig fortschreitenden Computerentwicklung sollte

Abbildung 7.12 Einige Normalschwingungen des OC_5O -Moleküls zusammen mit den G_v -Werten und den dazugehörigen Rotationskonstanten.

es prinzipiell ebenfalls möglich sein, ein geeignetes *ab initio* -Verfahren zu finden, um zunächst die Lage der niedrigstliegenden Knickschwingung ν_7 von OC₃O zufriedenstellend berechnen zu könnnen, um diese Methode dann am OC₅O anzuwenden. Ist die Lage der Schwingung ν_{11} einigermaßen sicher abgeschätzt, so könnte man mit Hilfe der Terahertz-Spektroskopie versuchen, diese direkt zu messen.

An dieser Stelle sollen nun einige qualitative Betrachtungen zu dem Verhalten der beiden niedrigliegenden Knickschwingungen ν_8 und ν_{11} von OC₅O folgen. Dazu wird zunächst qualitativ auf die elektronische Struktur von OC₃O und OC₅O eingegangen. Als Grundlage dieser Betrachtungen steht die BENTsche Regel [14], aus der man ableiten kann, daß freie Elektronenpaare bevorzugt Orbitale mit hohem s-Charakter besetzen. Überträgt man nun diese Regel auf das π -System der Heterokumulene, so kann man folgern, daß wenn nach dem Valence Bond (VB)-Modell Resonanzstrukturen mit merklichem Beitrag zur Gesamt-Elektronenkonfiguration existieren, bei denen ein freies Elektronenpaar ein *p*-Orbital besetzt, die lineare Konfiguration ungünstiger gegenüber einer gewinkelten wird, da der *s*-Charakter dieses Orbitals erhöht wird. LICHAU folgerte nun daraus [15], daß wenn bei Zentralatomen eines linearen Moleküls, die das Zentrum einer anharmonischen Knickschwingung darstellen, die π -Elektronendichte erhöht ist, ebenfalls die Barriere zur Linearität erhöht ist. Mit zunehmender π -Elektronendichte nimmt also die Energie der linearen Gleichgewichtskonfiguration zu. Als Beispiel sei zunächst einmal das OC₃O-Molekül angeführt. Für dieses Molekül lassen sich eine Vielzahl von Resonanzstrukturen formulieren, von denen die wichtigsten in der Abbildung 7.13 aufgeführt sind Wie man sieht,

Abbildung 7.13 Einige Resonanzstrukturen zur Beschreibung der Elektronenkonfiguration des OC₃O-Moleküls.

existieren einige Resonanzstrukturen, bei denen das zentrale C-Atom ein freies Elektronenpaar aufweist. Daraus läßt sich schlußfolgern, daß im gewichteten Mittel aller Resonanzstrukturen eine leicht erhöhte π -Elektronendichte an diesem Zentralatom vorherrscht, was nach der BENTschen Regel eine Neigung zur sp^2 -Hybridisierung impliziert. Dies erklärt wiederum die extrem niedrige Übergangswellenzahl der Knickschwingung ν_7 . Zur Quantifizierung dieses Effektes führte JANOSCHEK [7] B3LYP/cc-pVTZ *ab initio* -Berechnungen durch, die diese qualitative Beschreibung bestätigte. So stellte es sich heraus, daß das zentrale Kohlenstoffatom eine deutlich höhere negative Partialladung aufweist als die endständigen Sauerstoffatome. Demnach besitzt die Resonanzstruktur mit zwei freien Elektronenpaaren am zentralen C-Atom (VI) nahezu das gleiche Gewicht wie die mit der negativen Ladung am Sauerstoffatom (II).

In der Abbildung 7.14 sind die mit QCIS/6-311G^{*} berechneten π -Orbitale des OC₅O-Moleküls dargestellt. Jedes dieser Orbitale ist zweifach entartet. Wie man sieht, wird dieses Molekül nicht durch kumulierte π -Bindungen, sondern im wesentlichen durch Dreizentren- π -Molekül-Orbitale bestimmt. Interessant ist die Betrachtung der Ladunsgverteilung. So stellt man fest, daß die Ladung an den Sauerstoffatomen von -0.40 deutlich von den Ladungen an den C-Atomen zwei und vier mit -0.60 übertroffen wird. JANOSCHEK errechnete mit B3LYP/cc-pVTZ einen Wert von -0.40 für die Sauerstoff- und -0.42 für die C2- und C4-Atome. Dieser Befund spricht dafür, daß die vier π -Elektronen des Dreizentren-Molekülorbitals der Kohlenstoffatome C2C3C4 im wesentlichen an den C-Atomen zwei und vier lokalisiert sind. Offensichtlich besitzt die Resonanzstruktur

einen nicht zu vernachlässigenden Beitrag zur Gesamtelektronenkonfiguration. In Analogie zum OC_3O -Molekül kann man daher den Schluß ziehen, daß die C-Atome zwei und vier die Zentren einer potentiell anharmonischen, möglicherweise quasilinearen Knickschwingung darstellen. Der quasilineare Charakter sollte wesentlich weniger ausgeprägt sein als beim OC_3O , da die Ladungsdichte an diesen beiden C-Atome geringer ist, als dies beim zentralen C-Atom des OC_3O der Fall ist.

Unter Berücksichtigung der Abbildung 7.12 kann man nun vermuten, daß die Schwingungsmode ν_8 möglicherweise quasilineare Eigenschaften besitzt oder zumindest ein ausgeprägt anharmonisches Schwingungspotential aufweist.

Abbildung 7.14 Die zweifach entarteten π -Orbitale des OC₅O-Moleküls. Berechnet mit MP2/6-311G*.

Auf der anderen Seite scheint es so, daß die niedrigstliegende Schwingung ν_{11} im wesentlichen eine Knickbewegung an den C-Atomen eins und fünf darstellt. Dabei handelt es sich um Kohlenstoffatome mit niedriger π -Elektronendichte und positiver Partialladung. Es ist daher anzunehmen, daß diese Schwingungsmode ein eher regulär-harmonisches Verhalten mit einer kleinen Schwingungsamplitude zeigen wird, wodurch sich wiederum das offensichtlich kleine Übergangsmoment dieser Schwingung erklären läßt.

7.6 Literaturverzeichnis

- F. HOLLAND, Hochauflösende Fourier-Transform-Infrarotspektroskopie an einigen für die Astrophysik interessanten Molekülen mit kumulierten Doppelbindungen, Dissertation, Justus-Liebig-Universität, Gießen (1989).
- [2] F. HOLLAND, M. WINNEWISSER, G. MAIER, H. P. REISENAUER, AND A. ULRICH, The High-Resolution Fourier Transform Infrared Spectrum of the ν_4 Band System of OCCCCCO, J. Mol. Spectrosc. 130, 470–474 (1988).
- [3] A. KLEMENC AND G. WAGNER, Pentacarbondioxyd, O:C:C:C:C:C:C,

Chem. Ber. 70, 1880–1882 (1937).

- [4] G. MAIER, H. P. REISENAUER, U. SCHÄFER, AND H. BALLI, C₅O₂ (1,2,3,4-Pentatetraen-1,5-dion), ein neues Oxid des Kohlenstoffs, Angew. Chem. 100, 590– 592 (1988).
- [5] R. JANOSCHEK, Novel Carbon Suboxides and Subsulphides (C₅O₂, C₅S₂, C₄O₂, and C₂S₂: Assignment of UV and IR Spectra by Quantum Chemical Calculations, J. Mol. Struct. (Theochem) 232, 147–154 (1991).
- [6] K.H. KIM, B. LEE, AND S. LEE, Structures and Spectroscopic Properties of OC_nO (n=2-6): Density Functional Theory Study, Bull. Korean. Chem. Soc. 19, 553-557 (1998).
- [7] R. JANOSCHEK, Theoretical Studies on Heterocumulated Double Bond Systems, Sulfur Reports 21, 373-400 (1999).
- [8] E. N. KARYAKIN, A. F. KRUPNOV, AND S. M. SHAPIN, Microwave Study of Vibration-Rotation Spectrum of Carbon Suboxide C₃O₂ in the 300- to 1000-GHZ Frequency Range, J. Mol. Spectrosc. 94, 283-301 (1982).
- [9] H. BALLI, V. MÜLLER, AND A. S. GEZGIN, Einführung der Diazogruppe mit Azidiniumsalzen in Hydroxy-arene und Hydroxy-hetarene, *Helv. Chim. Acta* 61, 104–107 (1978).
- [10] A. ULRICH, Neue Oxide des Kohlenstoffs, Dissertation, Justus-Liebig-Universität, Gießen (1992).
- W. SCOTT AND G. W. WATT, Reactions in the Thiazole Series. I. Reactions of 2-Chlorobenzothiazoles with Thioureas, J. Org. Chem. 2, 148–156 (1937).
- [12] H. BALLI AND F. KERSTING, Azidiniumsalze I, Synthese quasiaromatischer Azidocyclimonium- fluoroborate, Justus Liebigs Ann. Chem. 647, 1–18 (1961).
- [13] H. P. REISENAUER, persönliche Mitteilung (1998).
- [14] H. A. BENT, An Appraisal of Valence-Bond Structures and Hybridization in Compounds of the First-Row Elements, Chem. Rev. 61, 275–311 (1961).
- [15] H. LICHAU, Spektroskopische und theoretische Untersuchungen zur Struktur und Dynamik von kovalenten Fulminaten und Heterokumulenen, Dissertation, Justus-Liebig-Universität, Gießen (1999).

Kapitel 8

Versuche zur Charakterisierung anderer Moleküle mit besonderer Dynamik

Neben den im Detail vorgestellten Untersuchungen an NCCNO, Oxetan und OC_5O im mittleren Infrarot wurden darüberhinaus Versuche unternommen, weitere aus moleküldynamischer Sicht interessante Spezies in diesem spektralen Bereich mit klassischer FTIR-Spektroskopie in Absorptionszellen und FTIR-Spektroskopie von Molekularstrahlen zu charakterisieren. Im folgenden werden diese Versuche kurz beschrieben.

8.1 Das Propadienon

Das Propadienon- bzw. Methylenketen-Molekül ($H_2C=C=C=O$) ist das nächst höhere Homologe des Keten-Moleküls. Seit rund 25 Jahren existiert eine Diskussion über die Struktur und die interne Dynamik dieses Kettenmoleküls. Propadienon besitzt möglicherweise astrochemische Bedeutung. Es wird vermutet, daß das interstellar nachgewiesene Propinal über die protonierte Form von Propadienon gebildet wird [1,2]. Die Anfänge der Forschung an Propadienon liegen im Jahre 1968, als A. L. BROWN und RITCHIE [3] Pyrolysen an Acrylsäureanhydrid unter Atmosphärendruck durchführten und Propadienon und Propinal als Zwischenprodukte der Pyrolyseprodukte Acetylen und Kohlenmonoxid postulierten. Erst in den Jahren 1976 bis 1978 folgten die ersten Versuche, Propadienon spektroskopisch direkt nachzuweisen, R. F. C. BROWN et al. [4,5] gelang es, Propadienon durch Pyrolyse eines Adduktes aus Cyclopentadien und 2,2-Dimethyl-5-methylen-1,3-dioxan-4,6-dion darzustellen und dieses durch ein niedrigaufgelöstes IR- und ein NMR-Spektrum sowie verschiedene Abfangreaktionen nachzuweisen. Das IR-Spektrum zeigte eine für Ketene charakteristische starke Absorption um $2\,100$ cm⁻¹. Etwa zur gleichen Zeit konnte BLACKMAN et al. [6] erstmals das Mikrowellenspektrum von Propadienon zwischen 8 GHz und 35 GHz detektieren. Sie pyrolysierten Acrylsäureanhydrid bei rund 770 K und einem Druck von 250 Pa in eine 3 m lange G-Band-Zelle. Dabei stellten sie fest, daß das Propadienon unter diesen Bedingungen eine Halbwertszeit von rund 15 Sekunden aufweist. Aussagen über die Struktur von Propadienon konnten jedoch nicht getroffen werden.

Initiiert durch diese Untersuchungen folgten einige *ab initio* -Berechnungen [7, 8] (HF/4-31G bzw. 6-31G^{**}), die für Propadienon eine planare Struktur mit C_{2v} -Symmetrie voraussagten. R. D. BROWN [9, 10] konnte diese Voraussage durch Mikrowellenmessungen an Methylenketen und verschiedenen Isotopomeren des Methylenketens sowie Stark-Messungen an diesen Verbindungen widerlegen. So stellte er beispielsweise fest, daß Propadienon sowohl ein Dipolmoment entlang der a-Achse von 2.156 (3) D als auch entlang der b-Achse von 0.7914 (6) D besitzt. Propadienon weist demnach C_s -Symmetrie mit einem Winkel von rund 26° am mittleren C-Atom auf. 3 Jahre später wurde von R D. BROWN et al. [11] eine Art Zickzack-Struktur postuliert mit einem C1C2C3-Winkel von 144.5° und einem OC1C2-Winkel von 169.4°. In einer Arbeit aus dem Jahre 1987 von R D. BROWN et al. [12] konnte diese Struktur durch weitere Messungen im Bereich der Mikrowellen und Anwendung der Theorie des halbstarren Knickschwingers im wesentlichen bestätigt werden. Demnach handelt es sich bei Propadienon um ein flexibles Molekül, das eine niedrigliegenden Knickschwingung (um 160 $\rm cm^{-1}$) in der Molekülebene mit großer Amplitude besitzt. Das Potential dieser Knickbewegung weist zwei Minima auf, die durch eine Barriere von rund 360 cm⁻¹ voneinander getrennt sind. Weiter theoretische *ab initio* -Studien [1, 13] untermauerten diese Bestimmung. Insbesondere zeigte sich, daß zur qualitativen Bestimmung der Strukturparameter die Elektronenkorrelation bei ab initio -Berechnungen berücksichtigt werden muß. Errechnet sich mit HF/6-31G^{*} noch eine lineare Gleichgewichtsgeometrie des Propadienon-Moleküls, so ändert sich dies bei MP2/6-31G* oder QCISD/6-31G* [13]. Mit MP2/6-31G* erhält man einen C1C2C3-Bindungswinkel von rund 138° und einen OC1C2-Winkel von rund 167°. Mit dem QCISD/6-31G*-Verfahren ergeben sich recht ähnliche Ergebnisse.

Ein Matrix-IR-Spektrum wurde ebenfalls von Propadienon erhalten. CHAPMAN *et al.* [14] berichteten im Jahre 1987 von solch einem Spektrum. Bisher existieren jedoch keine veröffentlichten hochaufgelösten Gasphasen-IR-Messungen an Propadienon. Sowohl MCNAUGHTON und GODFREY [15] als auch der Gruppe um NAKANAGA [16] gelang es wohl, solche Spektren aufzunehmen - diese zeigen Absorptionen der intensivsten Bande um 2 125 cm⁻¹, die nicht vollständig aufgelöst sind - jedoch konnte bisher das Spektrum nicht zugeordnet werden. Vor diesem Hintergrund wurde geplant, ebenfalls Messungen an Propadienon um 2 100 cm⁻¹ im Rahmen dieser Arbeit durchzuführen. Die Pyrolysen wurden sowohl mit Acrylsäureanhydrid als auch mit Acrylsäurechlorid durchgeführt. Acrylsäureanhydrid wird durch Umsetzung von Acrylsäure mit Triethylamin und Acrylsäurechlorid in Ether bei 273 K erhalten.

Zunächst wurden FTIR-Messungen an den Pyrolyseprodukten in der 3 m-Absorptionszelle durchgeführt. Dazu wurde Acrylsäureanhydrid, das sich in einem Vorratskolben befand, über einen Young-Hahn in die 25 cm lange Pyrolysezone im Inneren eines Klappofens gebracht, die auf rund 790 K geheizt wurde. Die Pyrolysezone befand sich rund 30 cm vom Einlaß der 3 m-Zelle entfernt. In den folgenden Experimenten, die sich über einen Monat erstreckten, wurden eine Vielzahl von Pyrolyseparametern verändert. So wurden ebenfalls Pyrolysen an Acrylsäurechlorid durchgeführt, die Pyrolysetemperatur zwischen 670 K und 1100 K variiert, der Vorläuferdruck zwischen 0.1 Torr und 2 Torr verändert, Pyrolysen mit einem 7 cm langen Ofen probiert, Gemische der Vorläufer mit Argon pyrolysiert, die Temperatur der Meßzelle zwischen 240 K und 320 K variiert und Messungen unter statischen Bedingungen bis sehr schnellen Flußbedingungen durchgeführt. Des weiteren wurde auch ein Pyrolyse direkt am Substanz-Einlaß der 3 m-Zelle versucht. Es zeigte sich sehr schnell, daß das Propadienon-Molekül unter den genannten Bedingungen spektroskopisch nur sehr schwer faßbar ist. Dies hat verschiedene Gründe: auf der einen Seite scheint die Pyrolyse bei Drücken, die für IR-Experimente typisch sind, nicht so gut zu funktionieren wie bei den viel niedrigeren Drücken von Mikrowellenexperimenten. Breitbandige IR-Messungen zwischen 1800 und 2950 cm⁻¹ zeigten, daß bei der Pyrolyse des geeignetsten Vorläufers Acrylsäurechlorid überhaupt nur sehr wenig HCl entsteht. Versuche, durch das Einbringen von Quarzwolle oder feinem HgO in die Pyrolysezone den Umsetzungsgrad zu erhöhen,

Abbildung 8.1 Die Streckschwingungsbandensysteme ν_3 von Keten (oben) und Propadienon (unten). Das Keten-Spektrum wurde mit einer Absorptionsweglänge von 3.02 m, bei einer Temperatur von 295 K und einer Auflösung von 0.001 85 cm⁻¹ aufgenommen. Das Propadienon-Spektrum wurde mit einer Auflösung von 0.005 0 cm⁻¹ aufgenommen. Die Absorptionsweglänge betrug ebenfalls 3.02 m. Zellentemperatur: 298 K.

scheiterten. Es schien so, als ob in beiden Fällen der Vorläufer an diesen Oberflächen polymerisierte. Auf der anderen Seite konnten ebenfalls keinerlei Propadienon-Absorptionen mehr beobachtet werden, wenn zur Steigerung des Umsetzungsgrades die Pyrolysetemperatur erhöht wurde. Allenfalls die Produktion der beobachtbaren Nebenprodukte Keten und CO nahm zu. Offensichtlich scheint das produzierte Propadienon unter den verwendeten Pyrolysedrücken bei relativ hohen Pyrolysetemperaturen sehr schnell zu zerfallen oder abzureagieren. Das Wechselspiel zwischen der temperatur- und druckabhängigen Produktbildung und dem Produktzerfall ließ sich nicht entscheidend optimieren. Es wurden verschiedene Pyrolysebedingungen gefunden, bei denen Propadienon nachgewiesen werden konnte. So gaben Experimente mit einem Gasgemisch von 10 Torr Argon und 1 Torr Acrylsäurechlorid bei Pyrolysetemperaturen von 1000 K bis 1100 K über eine Länge von 25 cm unter langsamen Flußbedingungen als auch Pyrolysen bei 900 K mit einem 7 cm langen Ofen, 0.4 Torr Acrylsäurechlorid unter sehr schnellen Flußbedingungen die besten Ergebnisse. In der Abbildung 8.1 ist eines der erhaltenen Spektren abgebildet, das mit einer Auflösung von 0.0050 cm^{-1} gemessen wurde. Zum Vergleich ist ebenfalls das Spektrum des Ketens abgebildet. Eindeutig erkennbar neben den starken CO-Linien ist eine wenig aufgelöste Absorption um 2 125 cm $^{-1}$, die dem Propadienon zugeordnet werden kann. Da aus dem aufgenommenen Spektrum keine auswertbaren Informationen erhaltenen werden konnten, wurden ebenfalls FTIR-Messungen an Molekularstrahlen der Pyrolyseprodukte des Acrylsäurechlorids durchgeführt. Aufgrund der sehr sensiblen Pyrolysebedingungen wurde versucht, Propadienon direkt in der Pyrolysedüse darzustellen. Dazu wurde die in Kapitel 4.2.2.4 beschriebene Düse auf rund 800 K geheizt und steigende Mengen von Acrylsäurechlorid (Drücke zwischen 5 und 100 Torr) zusammen mit 100 bis 150 Torr Argon durch diese Düse expandiert, jedoch ohne Ergebnis. Experimente mit externen Pyrolysen schlugen ebenfalls fehl. Sowohl das Transmissionsfile des Propadienon-Spektrums, TPDNN1718.1, als auch das Transmissionsfile des Ketens, TUKETENB.1, befinden sich auf der beigefügten *Compact Disc* unter dem File Div.a.zip im Verzeichnis Dissertation/Propadienon.

Als Ausblick auf zukünftige FTIR-Experimente an Propadienon sind basierend auf den bisher gewonnenen Erkenntnissen einige Vorschläge zu nennen. Auf der einen Seite können andere Pyrolysevorläufer, wie z. B. das 3-Diazo-2,4(5H)-furandion, verwendet werden, das möglicherweise mit größeren Ausbeuten in das gewünschte Propadienon umgesetzt werden kann. Auf der andere Seite können möglicherweise neue FTIR-Molekularstrahlexperimente bei denen eine modifizierten Pyrolysedüse verwendet wird, wie sie beispielsweise in der Arbeitsgruppe von DAVIES [17] entwickelt wurde (vgl. Kapitel 4.2.2.4), zuzuordnende Spektren liefern. In dieser Arbeitsgruppe gelang es vor kurzem, Propadienon in solch einer Düse darzustellen und mittels Diodenlaserspektroskopie zu vermessen [18]. Allerdings konnte das erhaltene Spektrum nicht eindeutig zugeordnet werden.

8.2 Das Diisocyanat

In Zusammenarbeit mit der Arbeitsgruppe MAIER wurden auch Untersuchungen an dem Diisocyanat-Molekül (OCNNCO) im Bereich des mittleren Infrarot durchgeführt. Das Diisocyanat wurde erstmals im Jahre 1996 von MAIER und Mitarbeitern [19] mittels Matrix-Isolations-Spektroskopie bei 10 K identifiziert. Die Darstellung erfolgte durch Umsetzung von Oxalsäuredihydrazid mit Salpetriger Säure und anschließender Zersetzung des entstehenden Oxalsäurediazids. Die im niedrigaufgelösten IR-Spektrum zwischen 500 und 4 000 cm⁻¹ erkennbaren Absorptionsbanden konnten durch Vergleich mit den aus BLYP/6-31G*-Rechnungen berechneten Termwerten identifiziert werden. In Übereinstimmung mit den Berechnungen, die für das Diisocyanat C_{2h} -Symmetrie voraussagen, konnten in diesem spektralen Bereich vier IR-aktive Schwingungen zugeordnet werden. Die Berechnungen zeigten weiterhin, daß der CNN-Winkel rund 126° beträgt, wohingegen der OCN-Winkel um 11° von dem linearen Wert abweicht. Dieses Molekül sollte zudem eine um 70 cm⁻¹ liegende Knickschwingung aufweisen, die vermutlich für sehr hohe Liniendichten im Bereich der Streckschwingungen verantwortlich sein wird. Die intensivste dieser Banden ist die NCO-Streckschwingungsbande um 2 201 cm⁻¹, die im Rahmen dieser Arbeit untersucht wurde.

Die von Dipl. Chem. M. NAUMANN aus der Arbeitsgruppe MAIER präparierte Probe - es handelte sich um in Methylenchlorid gelöstes Azidoformylisocyanat - wurde über einen Young-Hahn in die rund 7 cm lange Pyrolysezone gebracht, die auf rund 870 geheizt wurde. Die entstehenden Pyrolyseprodukte wurden in die auf 200 K gekühlte 3 m-Absorptionszelle geleitet und die Messungen durchgeführt. Die Halbwertszeit des Diisocyanates betrug bei einem Gesamtdruck von rund 0.1 mbar und einer Zellentemperatur von 200 K rund 40 Minuten. In der Abbildung 8.2 ist das erhaltene Transmissionsspektrum abgebildet. Es wurden 40 Scans bei einer instrumentellen Auflösung von 0.002 1 cm⁻¹ gemittelt. Deutlich zu sehen sind die starken Absorptionen der Nebenprodukte von CO und N₂O um 2180 bzw. 2230 cm⁻¹. Die NCO-Streckschwingung

Abbildung 8.2 Ausschnitt aus dem Transmissionsspektrum der Pyrolyseprodukte von Azidoformylisocyanat. Instrumentelle Auflösung: $0.002 \ 1 \ cm^{-1}$. Temperatur der Absorptionszelle: 200 K. Absorptionsweglänge: 3.02 m.

von Diisocyanat liegt bei rund 2208 cm⁻¹. Aufgrund des Fehlens von Grundzustandskonstanten - die einzige stabile Konformation trans-Diisocyanat besitzt kein permanentes elektrisches Dipolmoment und kann daher nicht mit der Mikrowellenspektroskopie spektroskopiert werden - oder aber anderen spektroskopischen Informationen, konnte dieses Spektrum vorläufig nicht zugeordnet werden.

Es wurden daher ebenfalls Experimente mit Molekularstrahlen durchgeführt. Dazu wurde in Methylenchlorid gelöstes Azidoformylisocyanat bei rund 260 K verdampft und extern mit dem 7 cm langen Pyrolyseofen pyrolysiert. Die Pyrolysegase wurden mit rund 150 mbar Argon versetzt und das Gasgemisch expandiert. Diese Versuche brachten jedoch keinerlei Ergebnisse hervor. Vermutlich lag dies daran, daß sich der präparierte Vorläufer zersetzt hatte. Weitere Versuche zur Darstellung des Vorläufers waren aus zeitlichen Gründen nicht mehr möglich. In Anbetracht der doch sehr starken Intensität der NCO-Streckschwingung sollte es aber prinzipiell möglich sein, spektroskopisch meßbare Diisocyanat-Molekularstrahlen zu erzeugen, die die zur Auswertung des NCO-Bandensystems benötigten Startinformatonen liefern sollten.

Das Transmissionsfile ZTDIGHS.1 der Zellenmessung befindet sich auf der beigefügten *Compact Disc* unter Div.a.zip im Verzeichnis Dissertation/Diisocyanat.

8.3 Weitere untersuchte Moleküle

Neben den Messungen am Cyanofulminat-Molekül (NCCNO) wurden auch Versuche unternommen, andere Fulminate mittels FTIR-Spektroskopie von Molekularstrahlen dieser Spezies zu charakterisieren. Gegenstand dieser Messungen waren Brom- und Methylfulminat, die Streckschwingungs-Absorptionen um 2200 cm⁻¹ aufweisen sollten. Dazu wurde eine ähnliche externe Pyrolysevorrichtung wie bei den NCCNO-Experimenten verwendet (vgl. Abbildung 5.7). Für die Bromfulminat-Messungen wurde der feste Vorläufer, Dibromformoxim Br₂CNOH, in die Kühlfalle gefüllt und diese zwischen 273 K und 350 K geheizt. Ein Trägergasstrom von 200 bis 400 mbar Argon wurde über bzw. durch den Vorläufer geleitet, der bei 350 K flüssig vorliegt, und das Gasgemisch bei 870 K pyrolysiert. Das Heizen der Pyrolysezone wurde mit dem 7 cm langen Ofen durchgeführt. Diese Versuche ergaben jedoch kein meßbares Ergebnis. Die kurze Lebensdauer des Bromfulminats und der relativ geringe Dampfdruck des Vorläufers scheinen eine Charakterisierung auf diesem Wege nicht zu ermöglichen.

Auf analogem experimentellen Wege wurde mit dem flüssigen Methylfulminat-Vorläufer Dimethylfuroxan verfahren. Diese Messungen verliefen jedoch ebenfalls ergebnislos. Vermutlich ist ebenfalls die Lebensdauer dieses Moleküls unter den beschriebenen Bedingungen zu kurz. Aufgrund des relativ hohen Dampfdruckes des Vorläufers erscheint es jedoch vielversprechend, diesen direkt vor der Expansion in einer geeigneten Düse zu pyrolysieren.

Des weiteren wurden Molekularstrahlmessungen an Dimethylether und Aceton im CH-Streckschwingungsbereich um $3\,000$ cm⁻¹ durchgeführt. Diese Experimente wurden mit der bereits in Kapitel 4.2.2.4 beschriebenen Schlitzdüse durchgeführt. Dimethylether wurde unter einem statischen Druck von rund 100 mbar expandiert. In dem aufgenommenen FTIR-Spektrum konnten jedoch keinerlei Absorptionen erkannt werden, was vermutlich auf die zu geringe Intensität dieses Bandensystems zurückzuführen ist. Aceton wurde hingegen unter statischen Drücken zwischen 180 und 300 mbar expandiert, jedoch ebenfalls ohne meßbares Ergebnis. Messungen unter statischen Bedingungen an Aceton zeigten, daß das CH-Bandensystem ebenfalls zu intensitätsschwach ist. Möglicherweise sind Messungen des CO-Bandensystems erfolgversprechender.

Im Rahmen dieser Arbeit wurden ebenfalls Molekularstrahlen von Methanol im Bereich um 3 000 $\rm cm^{-1}$ spektroskopiert. Da bekannt war, daß das Methanol zur Clusterbildung neigt, wurden diese Messungen mit der heizbaren Düse durchgeführt. Die Düsentemperatur wurde zwischen 300 K und 650 K variiert, die verwendeten Expansiondrücke schwankten zwischen 140 mbar und 250 mbar. Auch diese Experimente verliefen ergebnislos. Vermutlich konnte bei niedrigen Düsentemperaturen die Clusterbildung nicht entscheidend verringert werden, wohingegen bei sehr hohen Düsentemperaturen der Molekularstrahl zu sehr aufgeheizt wurde. Vielversprechend sind Experimente mit einer modifizierten heizbaren Düse und Trägergasexpansionen von Methanol mit beispielsweise Argon, um die Clusterbildung entscheiden zu reduzieren.

8.4 Literaturverzeichnis

- [1] R. G. A. R. MACLAGAN, M. J. MCEWAN, AND G. B. I. SCOTT, *Ab initio* Calculations Related to the Formation of Propynal and Propadienone in Interstellar Clouds, *Chem. Phy. Lett.* 240, 185–192 (1995).
- [2] S. Ekern, J. Szczepanski, and M. Vala, An *ab initio* Study of the C_3H_2O

Potential Surface: A Mechanism for Propynal Formation and Destruction, J. Phys. Chem. 100, 16109–16115 (1996).

- [3] A. L. BROWN AND P. D. RITCHIE, Studies in Pyrolysis. Part XXIV. Competitive Routes in the Pyrolysis of Carboxylic Acid Anhydrides, J. Chem. Soc. (C), 2007– 2013 (1968).
- [4] R. F. C. BROWN, F. W. EASTWOOD, AND G. L. MCMULLEN, Evidence for the Pyrolytic Generation of Methylene Keten (Propadienone), J. Am. Chem. Soc. 98, 7421–7422 (1976).
- [5] R. F. C. BROWN, F. W. EASTWOOD, AND G. L. MCMULLEN, Methyleneketenes and Methylenecarbenes. VII Evidence for the Pyrolytic Generation of Methyleneketene (Propadienone), Aust. J. Chem. 30, 179–193 (1977).
- [6] G. L. BLACKMAN, R. D. BROWN, R. F. C. BRWON, F. W. EASTWOOD, AND G. L. MCMULLEN, The Microwave Spectrum of Methylene Ketene, J. Mol. Spectrosc. 68, 488-491 (1977).
- [7] L. RADOM, An *ab initio* Molecular Orbital Study of the Structure and Properties of Propadienone (Methyleneketen), Aust. J. Chem. 31, 1-9 (1978).
- [8] A. KOMORNICKI, C. E. DYKSTRA, M. A. VINCENT, AND L. RADOM, A Theoretical Study of Propadienone and Its Isomers Propynal and Cyclopropenone, J. Am. Chem. Soc. 103, 1652–1656 (1981).
- [9] R. D. BROWN, Microwave Spectrum and Unusual Geometry of Propadienone (Methylene Ketene), J. Am. Chem. Soc. 103, 5711–5715 (1981).
- [10] R. D. BROWN, The Peculiar Structure of Propadienone $(\mathbf{H}_2\mathbf{C}_3\mathbf{O})$, J. Mol. Struct. 97, 293–302 (1982).
- [11] R. D. BROWN, R. CHAMPION, P. S. ELMES, AND P. D. GODFREY, The Structure of Propadienone, J. Am. Chem. Soc. 107, 4109–4112 (1985).
- [12] R. D. BROWN, P. D. GODFREY, AND R. CHAMPION, The Rotation-Vibration Spectrum and Double-Minimum ν_{12} Potential Function of Propadienone: A Semirigid Bender Analysis, J. Mol. Spectrosc. 123, 93-125 (1987).
- [13] A. L. EAST, The Kinkiness of Cumulenones: H_2C_3O , H_2C_4O , and H_2C_5O , J. Chem. Phys. 108, 3574–3583 (1998).
- [14] O. L. CHAPMAN, M. D. MILLER, AND S. M. PITZENBERGER, Infrared Spectroscopy of Matrix-Isolated Propadienone, J. Am. Chem. Soc. 109, 6867–6868 (1987).
- [15] D. MCNAUGHTON AND P. D. GODFREY, persönliche Mitteilung (1998).
- [16] T. NAKANAGA persönliche Mitteilung (1998).
- [17] Z. LIU, R. J. LIVINGSTONE, AND P. B. DAVIES, Pulse Pyrolysis Infrared Laser Jet Spectroscopy of Free Radicals, Chem. Phys. Lett. 291, 480–486 (1998).
- [18] P. B. DAVIES, Diode Laser Absorption Spectroscopy of Free Radicals and Ions, Invited Lecture WA03, 54th Ohio State University Symposium on Molecular Spectroscopy, June 14-18 (1999).
- [19] G. MAIER, M. NAUMANN, H. P. REISENAUER, AND J. ECKWERT, Diisocyanate, Angew. Chem. 108, 1800–1801 (1996).

Kapitel 9

ZUSAMMENFASSUNG UND AUSBLICK

Gegenstand der vorliegenden Dissertation war die Charakterisierung des semi-stabilen Kettenmoleküls Cyanofulminat (NCCNO), der Ringverbindung Oxetan (C_3H_6O) sowie des instabilen Kohlensuboxides 1,2,3,4-Pentatetraen-1,5-dion (OC₅O) durch hochauflösende FTIR-Spektroskopie im mittleren Infrarot. Hierfür wurden sowohl spektroskopische Messungen an Molekularstrahlen dieser Verbindungen durchgeführt als auch Messungen an diesen Substanzen in einer Absorptionszelle. Die vorliegende Arbeit gliedert sich in vier Abschnitte:

- Bau und Erprobung der Mehrfachreflexionsoptik aus zwei sphärischen Spiegeln: Ein wesentlicher Bestandteil der vorliegenden Arbeit war die Entwicklung und der Bau einer für die FTIR-Spektroskopie von Molekularstrahlen neuartigen Mehrfachreflexionsoptik. Bis zu Beginn dieser Arbeit existierten lediglich zwei optische Systeme zur Vielfachreftexion von divergenter IR-Strahlung durch Molekularstrahlen; eine Anordnung aus ringförmig angeordneten Planspieglen und eine White-Anordnung, die jedoch Nachteile bezüglich der Justage und den optischen Anforderungen birgt. Es wurde daher eine Anordnung aus sphärischen Spiegeln gebaut, die an die bereits existierende Molekularstrahlapparatur des Gießener Molekülspektroskopischen Laboratoriums adaptiert wurde. In zahlreichen Testmessungen konnte die Leistungsfähigkeit der Optik unter Beweis gestellt werden. Die Empfindlichkeit der FTIR-Messungen von Molekularstrahlen konnte um eine ganze Größenordnung verbessert werden. Der kompakte Aufbau, die leichte Justierbarkeit sowie die ausgesprochene Leistungsfähigkeit des Systems sind die wesentlichen Merkmale der Anordnung. Diese vorteilhaften Eigenschaften spiegeln sich in dem Interesse anderer Arbeitsgruppen wider, die sich mit IR-Spektroskopie an Molekularstrahlen beschäftigen, die Optik nachzubauen und auch darin, daß die Gießener Molekularstrahlanlage samt Mehrfachreflexionsoptik schon bald Bestandteil eines Review-Artikels in der Zeitschrift International Reviews in Physical Chemsitry über die Spektroskopie von Molekularstrahlen sein wird.
- Spektroskopische Untersuchungen an NCCNO: Begonnen wurden die spektroskopischen Untersuchungen mit der Aufzeichnung der FTIR-Spektren des semi-stabilen Kettenmoleküls Cyanofulminat (NCCNO) zwischen 1 400 cm⁻¹ und 2 500 cm⁻¹. Die FTIR-Messungen an einem freien NCCNO-Argon-Molekularstrahl, von dem eine NCCNO-Rotationstemperatur von rund 7 K bestimmt werden konnte, erlaubte zunächst die Zuordnung der NO-Streckschwingungs-Fundamentalen ν₃, deren Ursprung bei 1447.463 24 (15) liegt. Rotations-Übergänge in Kombinationszustände von ν₃ mit der einfach und zweifach angeregten niedrigstliegenden CCN-Knickschwingung ν₇ konnten ebenso anhand der bei Raumtemperatur durchgeführten Absorptionszellen-Messungen zugeordnet werden, wie auch Übergänge in den zweifach angeregten CC-Streckschwingungszustand (2ν₄)

sowie Übergänge in die Kombinationszustände $(2\nu_4 + \nu_7)$ und $(2\nu_4 + 2\nu_7)$. Es zeigte sich bald, daß bis auf den Schwingungszustand $(2\nu_4)$ sämtliche Schwingungszustände mehr oder weniger stark durch *Fermi*-Typ-Resonanzen gestört sind. Im einzelnen konnten die Resonanzpaare $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ und $(\nu_3 + 2\nu_7)/(2\nu_4 + 2\nu_7)$ identifiziert werden. Für das Resonanzpaar $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ gelang es, effektive spektroskopische Konstanten nach YAMADA, BIRSS und ALIEV¹ anzupassen und das *Fermi*-Typ Matrixelement W_F zu 7.003 (82) cm⁻¹ zu bestimmen. Für sämtliche anderen Schwingungszustände konnten aufgrund der massiven Störungen Reihenentwicklungskonstanten angepäßt werden.

Des weiteren gelang es, die CN- und NC-Streckschwingungsfundamentalbanden ν_1 bzw. ν_2 um 2353.63816(13) cm⁻¹ bzw. 2192.46218(15) cm⁻¹ anhand den aus den FTIR-Messungen an NCCNO-Molekularstrahlen erhaltenen Spektren zuzuordnen. Die spektroskopischen Messungen im Bereich des ν_1 -Bandensystems an NCCNO-Molekularstrahlen zeigt zudem eine weitere Bande, bei der es sich um einen durch Resonanz mit ν_1 verstärkten Übergang vom Grundzustand in den Kombinationszustand ($\nu_2 + 2\nu_7$)⁰ handelt. Unter Berücksichtigung des bei Raumtemperatur aufgenommenen Spektrums konnten weiterhin Kombinationszustände der Streckschwingungen ν_1 und ν_2 mit der einfach und zweifach angeregten Knickschwingung ν_7 identifiziert werden und der Einfluß der Streckschwingungen auf das Potential der niedrigliegenden ν_7 -Knickschwingung qualitativ beschrieben werden. Die vorliegend Arbeit komplettiert somit das Bild über die Fundamentalschwingungen des NCCNO-Moleküls; die Zahl der bekannten NCCNO-Schwingungsniveaus konnte verdoppelt werden.

Die Zuordnung der zwischen 2 400 cm⁻¹ und 2 430 cm⁻¹ gemessenen { $\nu_1 + (n+1)\nu_7$ } – $(n\nu_7)$ -Banden mit $\Delta l_7 = \pm 1$, die intensive Q-Zweige aufweisen, ermöglicht möglicherweise die Zuordnung und Charakterisierung höherer { $\nu_1 + (n+1)\nu_7$ }-Kombinationszustände. Denkbar wären beispielsweise neue Messungen in der 3 m-Absorptionszelle des Gießener Labors mit wesentlich höherem Druck-Wegelänge-Produkt. Vor diesen Messungen ist es aber vermutlich nötig, die Bandensysteme der NCC- und CNO-Knickschwingung ν_6 und ν_5 um 410 cm⁻¹ sowie das Bandensystem der CC-Streckschwingung ν_4 um 715 cm⁻¹ zu analysieren, um weitere Hinweise über die möglichen Resonanzpartner der NO-, NC- und CN-Streckschwingungszustände zu bekommen.

• Spektroskopische Untersuchungen am Oxetan: Des weiteren wurde im Rahmen dieser Arbeit der rund 50 K kalte Molekularstrahl einer reinen Oxetan-Expansion mittels FTIR-Spektroskopie zwischen 2 750 cm⁻¹ und 3 150 cm⁻¹ untersucht. Diese Messung ergab ein nahezu vollständig rotationsaufgelöstes Spektrum, bei dem der *c*-Typ-Übergang vom Grundzustand in den Kombinationszustand aus symmetrischer α -CH-Streckschwingung ν_8 mit A_1 -Symmetrie und Ring-Puckering-Schwingung im Detail analysiert werden konnte. Das Zentrum dieser Bande konnte zu 2 929.140 69 (13) cm⁻¹ bestimmt werden. Die Analyse zeigte zum einen, daß durch den Einfluß der α -CH-Streckschwingung die Rotationskonstanten des Puckering-Zustandes derart verändert werden, daß diese sehr den Grundzustandskonstanten ähneln. Aus diesem Grunde sind die Ursprünge der verschiedenen Q-Subzweige wesentlich weniger voneinander separiert als es bei den reinen Puckering-Übergängen der Fall ist. Zum anderen ist auffallend, daß die Bandenzentren der Übergänge ($\nu_8 + \nu_{rp}$)-(GS), ($\nu_8 + 2\nu_{rp}$)-(ν_{rp}), ($\nu_8 + 3\nu_{rp}$)-($2\nu_{rp}$) um weniger als 1 cm⁻¹ voneinander separiert sind

¹K. M. T. YAMADA, F. W. BIRSS, AND M. R. ALIEV, Effective Hamiltonian for Polyatomic Linear Molecules, J. Mol. Spectrosc. **112**, 347–356 (1985).

obwohl das Potential der Puckering-Schwingung stark anharmonisch ist. Offensichtlich führt eine Anregung der Streckschwingung ν_8 zu einem harmonischerem Ring-Puckering-Potential, sofern resonanzbedingte Störungen der Niveaus auszuschließen sind. Weiterhin konnten aus den Molekularstrahl-Messungen die Bandenzentren weiterer α -CH- und β -CH-Streckschwingungen sowie hot bands und Kombinations- bzw. Differenzbanden dieser Streckschwingungen in Kombination mit der Puckering-Schwingung bestimmt werden. Insbesondere die Analyse der b-Typ-Bande der symmetrischen α -CH-Streckschwingung ν_{14} um 2887.71 cm⁻¹, die der Symmetrierasse B_2 angehört, sollte mit den vorliegenden Daten durchführbar sein und die Frage nach der Lage der reinen ν_8 -Schwingung klären. Dies kann wiederum Aufschluß über eine mögliche *Fermi*-Typ-Resonanz der Zustände ($\nu_8 + \nu_{rp}$) und der asymmetrischen α -CH-Streckschwingung ν_{19} der Symmetrierasse B_1 geben. In Anbetracht der Sensitivität der FTIR-Jet-Apparatur sind darüberhinaus Messungen im Bereich der CO-Streckschwingungen um 1000 cm⁻¹ denkbar. Die Daten der ν_{14} -Fundamentalbande sind auf der beiligenden *Compact Disc* zugänglich.

• Spektroskopische Untersuchungen an OC₅O: Weiterhin gelang es durch Anwendung der FTIR-Spektroskpie an Molekularstrahlen, ein vollständig aufgelöstes Spektrum des intensivsten Streckschwingungsbandensystems ν_4 des instabilen Kettenmoleküles OC₅O zu erhalten. Die Analyse dieses Spektrums ergab deutlich verbesserte spektroskopische Konstanten des Grundzustandes und des ν_4 -Schwingungszustandes. Das Bandenzentrum dieser Schwingung konnte auf den Wert von 2242.12893 (29) cm⁻¹ festgelegt werden. Übergänge in höher angeregte Rotations-Vibrations-Zustände von ν_4 konnten anhand des bei 213K aufgenommenen Spektrums zugeordnet werden, allerdings besitzen die angepaßten spektroskopischen Konstanten aufgrund der massiven Störung der Bande eine nur begrenzte physikalische Aussagekraft. Hinweise auf Resonanzpartner gibt es in dem aufgenommenen Spektrum des OC₅O-Molekularstrahls, bei dem deutlich der P-Zweig einer zweiten Bande zu erkennen ist. Diodenlasermessungen könnten Aufschluß über den schwächeren R-Zweig dieser Bande geben und somit Informationen zur deren Identifizierung liefern. Aufgrund der hohen spektralen Leistungsdichte der kohärenten Strahlungsquellen dieser Technik wäre es zudem möglich, wärmere OC_5O -Jets zu spektroskopieren um höher angeregte Rotationszustände des ν_4 -Zustandes zuzuordnen und möglicherweise auch Informationen über hot bands der ν_4 -Schwingung in Kombination mit den niedrigliegenden, potentiell quasilinearen Knickschwingungen ν_8 und ν_{11} zu bekommen. Indirekt könnten dann Aussagen über die Lage dieser Knickschwingungen erhalten werden, was im Rahmen dieser Arbeit nicht gelang.

Neben der Streckschwingung ν_4 konnte auch die schwächere Fundamentalbande der Streckschwingung ν_5 zugeordnet werden. Das Zentrum dieser Bande konnte zu 2065.555 99 (16) cm⁻¹ bestimmt werden. Diese Bande weist erstaunlicherweise nur geringe Störungen auf, jedoch konnten auch in diesem Bandensystem vorläufig keine *hot bands* oder Kombinationsbanden zugeordnet werden. Das Ziel zukünftiger Arbeiten sollte es sein, entweder durch die Zuordnung von *hot bands* und Kombinations- oder Differenzbanden der zugeordneten Streckschwingungen in Kombination mit den niedrigliegenden Knickschwingungen, indirekte Informationen über die Lage der Knickschwingungen zu erhalten, oder aber durch hochwertige *ab initio* -Berechnungen Aussagen zu gewinnen, um die Knickschwingungen direkt mit der empfindlichen Terahertz-Spektroskopie messen zu können.

Neben den spektroskopischen Messungen an den bisher vorgestellten Molekülen wurden im Rahmen dieser Arbeit eine Vielzahl weiterer Experimente durchgeführt, die wertvolle Hinweise auf zukünftige Messungen geben. Durch Modifikation der im Rahmen dieser Arbeit entwickelten Pyrolysedüse sollte es möglich sein, die aus moleküldynamischer Sicht interessanten, instabilen Moleküle Propadienon, Diisocyanat und Methylfulminat im Molekularstrahl zu erzeugen und zu spektroskopieren, um Aussagen über deren Struktur und Dynamik zu gewinnen. Die vorliegende Dissertation liefert somit einen wichtigen Beitrag zur Weiterentwicklung von FTIR-Molekularstrahl-Systemen, die es ermöglichen sollte, FTIR-Spektren anderer instabiler oder schwach absorbierender kalter Moleküle zu erhalten.

Anhang

Anhang A

DANKSAGUNG

Mein herzlicher Dank gilt meinem verehrten Lehrer Herrn Prof. Dr. Manfred Winnewisser für die Betreuung und die freundliche Unterstützung dieser Arbeit. Besonders möchte ich ihm und seiner Frau Dr. Brenda P. Winnewisser für das Verständnis und die Geduld, die mir entgegengebracht wurde, und für die immerwährende Förderung einer sehr angenehmen und offenen Arbeitsatmosphäre, die eine unkomplizierte Zusammenarbeit ermöglichte, danken. Die von ihnen geförderte internationale Ausrichtung der Arbeit war eine große Bereicherung für mich.

Frau Dr. Brenda P. Winnewisser möchte ich für die zahlreichen wertvollen Ratschläge und spektroskopischen Hilfestellungen herzlich danken. Ferner danke ich ihr für die Korrektur von Manuskripten in englischer Sprache.

Herrn Dr. Stefan Klee möchte ich für die unermüdliche Bereitschaft, sich mit den während dieser Arbeit auftretenden Problemen zu beschäftigen, herzlich danken. Die zahlreichen Gespräche, Vorschläge und Anregungen, die mich während meiner Arbeit am Molekülspektroskopischen Laboratorium begleiteten, haben entscheidend zum Gelingen dieser Arbeit beigetragen. Ihm gebührt zudem Dank für das aufwendige Korrekturlesen dieser Arbeit.

Herrn Dr. Michael Lock danke ich für die Hilfe bei den FTIR-Messungen und der Bedienung des FTIR-Spektrometers. Sein Engagement und seine Geduld im Verlauf der sehr aufwendigen Molekularstrahlmessungen gingen weit über das gewohnte Maß hinaus. Für das Korrekturlesen dieser Arbeit bin ich ihm ebenfalls zu Dank verpflichtet.

Herrn Dr. Holger Lichau, der mich praktisch während des gesamten Chemiestudiums begleitete, möchte ich für die Bereitstellung der NCCNO- und OC_5O -Pyrolysevorläufer bedanken. Seine ständige Hilfsbereitschaft und die zahlreichen Diskussionen mit ihm waren sehr hilfreich. Herrn Dipl. Chem. Michael Jung und Herrn Dipl.-Ing. Georg Mellau möchte ich für die Bereitstellung von Software zur Auswertung meiner Spektren danken. Die Diskussionen mit Ihnen über die theoretischen Grundlagen der Molekülspektren waren sehr hilfreich. Herrn Dr. Markus Mengel möchte ich für Hilfestellungen und Anregungen bezüglich der Mehrfachreflexionsoptik danken.

Herzlicher Dank gilt den Mitgliedern der Werkstatt für Feinmechanik im Physikalisch-Chemischen Institut der Justus-Liebig-Universität Gießen, den Herren Harry Heidt, Gerd Pfeiffer und Sascha Lember. Ohne deren Einsatzbereitschaft, Know-how und Ideen wäre der Bau der Optik und das Betreiben der Molekularstrahlanlage nicht möglich gewesen. Danken möchte ich auch allen anderen Mitarbeitern am Physikalisch-Chemischen Institut der Justus-Liebig-Universität, die auf vielfältige Weise zum Gelingen der vorliegenden Dissertation beigetragen haben. Mein herzlicher Dank gilt allen ehemaligen und derzeitigen Diplomanden und Doktoranden am Physikalisch-Chemischen Institut für die sehr angenehme Arbeitsatmosphäre und deren Hilfsbereitschaft.

Danken möchte ich auch den Mitarbeitern der Arbeitsgruppe von Prof. Günther Maier. Herrn Dr. Hans-Peter Reisenauer möchte ich für Hilfestellungen bezüglich der OC_5O -Pyrolyseappartur und der OC_5O -Synthese danken. Herrn Dipl. Chem. Mathias Naumann danke ich für die Bereitstellung von Diisocyanat-Vorläufer. Den Herren Dr. Christian Lautz und Dr. Jörg Endres möchte ich mich für die gute Zusammenarbeit und den freundschaftlichen Kontakt während des Chemiestudiums bedanken. Dank gebührt ihnen auch für ihre Unterstützungen in Form von Glasgeräten und Chemikalien für Synthesen.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danke ich für die Gewährung von Sach- und Reisemitteln, ohne die die Arbeit und die Teilnahme an Tagungen nicht möglich gewesen wäre.

Besonders möchte ich mich bei meiner Familie, allen Verwandten und Frau Susanne Pfeifer für ihre mannigfaltigen Unterstützungen und ihre Geduld bedanken, ohne die diese Arbeit nicht zustandegekommen wäre.

Im Gedenken an meinen Vater.

Anhang B

LEBENSLAUF

Persönliche Daten

05. Juli 1971 geboren in 35708 Haiger

<u>Schulbesuch</u>

1977 - 1981	Besuch der Ambachtal-Grundschule
	in 35745 Herborn-Burg
1981 - 1990	Besuch des Johanneum Gymnasiums
	in 35745 Herborn
11. Juni 1990	Zeugnis der Allgemeinen Hochschulreife
1990 - 1991	Zivildienst bei der Arbeitsgemeinschaft Allergiekrankes Kind in 35745 Herborn

<u>Studium</u>

1991 - 1993	Grundstudium der Chemie an der Justus-Liebig-Universität
	in 35390 Gießen
05. Oktober 1993	Abschluß der mündlichen Vordiplom-Prüfungen
	Erwerb des Vordiploms
1993 - 1995	Hauptstudium der Chemie an der Justus-Liebig-Universität
	in 35390 Gießen
26. Februar 1996	Abschluß der mündlichen Diplom-Prüfungen
6. März 1997	Abschluß der Diplomarbeit mit dem Thema "Hochauflösende Dioden- laserspektroskopie intensitätsschwacher Vibrationsübergänge verschiede- ner Blausäure-Isotonomere" am Physikalisch-Chemischen Institut der
	Universität Gießen in der Arbeitsgruppe von Prof. Dr. Manfred Winne- wisser. Erwerb des Diplomgrades im Fach Chemie
ab April 1997	Anfertigung der vorliegenden Dissertation in derselben Arbeitsgruppe

Berufliche Tätigkeit

April 1997	Wissenschaftliche Hilfskraft am Physikalisch-Chemischen Institut der
–Juli 1997	Justus-Liebig-Universität Gießen
Dezember 1997	Wissenschaftliche Hilfskraft am Physikalisch-Chemischen Institut der
– April 1998	Justus-Liebig-Universität Gießen
April 1998	Wissenschaftlicher Mitarbeiter am Physikalisch-Chemischen Institut der
–März 2000	Justus-Liebig-Universität Gießen

Anhang C

EXPERIMENTELLE DATEN ZU KAPITEL 4

In der Tabelle C.1 sind die Dateien der einzelnen Meßserien der verschiedenen Testmessungen aufgeführt. Es handelt sich um Testmessungen an CO₂ und N₂O zur Charakterisierung des Einflußes der Geometrie und der Position der Düse relativ zum Strahlengang der im Rahmen dieser Arbeit entwickelten Mehrfachreflexionsoptik, auf die Rotationstemperaturen und relativen Intensitäten der Rotations-Vibrations-Übergänge von ¹³CO₂ und N₂O. Die Transmissionsspektren wurden nicht kalibriert, da für die Auswertungen lediglich die relativen Intensitäten der verschiedenen Rotations-Vibrations-Übergänge berücksichtigt wurden. Die verschiedenen Meßblöcke befinden sich auf der beigefügten *Compact Disc* im File Optik.a.zip im Verzeichnis FTIR/Jet/Test/Meas. Die Transmissionsfile sind hingegen in den Verzeichnissen FTIR/Jet/Test/-Tfilea-o bzw. FTIR/Jet/Test/Tfiler-x abgespeichert.

Zur Auswertung der Spektren wurden Microsoft Excel-Arbeitsblätter erstellt, die im Verzeichnis Dissertation/Excel zu finden sind. Die Filenamen der Excel-Arbeitsblätter entsprechen im wesentlichen den Namen der Transmissionsfiles, wobei sie die Endung xls aufweisen. Ein vorangestelltes D deutet an, daß eine Korrektur von Absorptionen des Hintergrundes vorgenommen wurde, wohingegen ein Z auf die Verwendung eines zerogefüllten Spektrums steht. Die Bezeichnung A steht für Spektren in Aborbanz-Darstellung.

Substanz	Meßbereich	Scans	Zahl der	Auflösung	Dateiname	Hintergrund-	Transmissions-
	/cm ⁻¹	pro Block	Blöcke	/cm ⁻¹		spektrum	spektrum
CO_2	1860-2787	4	jeweils 1	0.004	JETMT9.1-	JETMB9.1	TJETM1.1-
					JETMT9.6		TJETM6.1
CO_2	1860-2787	4	jeweils 1	0.004	JETMT9.7-	JETMB9.1	TJETM7.1-
					$\rm JETMT9.11$		TJETM11.1
CO_2	1860-2787	4	jeweils 1	0.004	JETNT9.1-	JETNB9.1	TJETN1.1-
					JETNT9.5		TJETN5.1
CO_2	1860-2787	4	jeweils 1	0.004	JETNT9.1-	JETNB9.1	TJETN1.1-
					JETNT9.5		TJETN5.1
CO_2	1860-2787	4	jeweils 1	0.004	JETNT9.6-	JETNB9.1	TJETN6.1-
					JETNT9.8		TJETN8.1
N_2O	1860-2787	4	jeweils 1	0.004	JETR1.2-	JETRB1.1	TJETR2.1-
					JETR1.7		TJETR7.1
CO_2	1860-2787	10	2	0.004	JETR1.8-	JETRB1.1	TJETR189.1
					JETR1.9		
CO_2	1860-2787	4	jeweils 1	0.004	JETT1.1-	JETTB1.1	TJETT1.1-
					JETT1.5		TJETT5.1
CO_2	1860-2787	4	jeweils 1	0.004	JETT1.6-	JETTB1.1	TJETT6.1-
					JETT1.9		TJETT9.1
CO_2	1860-2787	4	jeweils 1	0.004	JETT1.10-	JETTB1.1	TJETT10.1-
					JETT1.13		TJETT13.1
CO_2	1860-2787	4	jeweils 1	0.004	JETT1.16-	JETTB1.2	TJETT16.1-
					JETT1.18		TJETT18.1
CO_2	1860-2787	4	jeweils 1	0.004	JETT1.14-	JETTB1.2	TJETT14.1-
					JETT1.15,		TJETT15.1,
					JETT1.19-		TJETT19.1
					JETT1.20		TJETT20.1
CO_2	1860-2787	4	jeweils 1	0.004	JETT1.15,	JETTB1.2	TJETT15.1-
					JETT1.21,		TJETT21.1,
					JETT1.22		TJETT22.1
CO_2	1860-2787	4	jeweils 1	0.004	JETAQ1.11	JETAQB1.1	TJETAQ1.1-
N_2O	1860-2787	4	jeweils 1	0.004	JETAR1.2-	JETARB1.1	TJETAR2.1-
					JETAR1.6		TJETAR6.1
N_2O	1860-2787	4	jeweils 1	0.004	JETAU1.4-	JETAUB1.1	TJETAU4.1-
					JETAU1.9		TJETAU9.1

Tabelle C.1 Zusammenfassung der Meßblöcke der Testmessungen an CO_2 und N_2O .

Anhang D

EXPERIMENTELLE DATEN ZU KAPITEL 5

Alle experimentellen Daten zu Kapitel 5, den spektroskopischen Untersuchungen am Cyanofulminat-Molekül (NCCNO) im Bereich zwischen 1400 bis 2500 cm⁻¹, sind auf einer beigefügten separaten *Compact Disc* unter dem File NCCNO.a.zip abgespeichert. Dieses File wurde mit dem Programm WinZIP 5.6 für Windows/NT erstellt.

Die verschiedenen Dateien sind in den Verzeichnissen FTIR/Zelle/NCCNO/ BG (Hintergrundspektren), Meas (Meßblöcke), Calib (Kalibration), Doc (Datendokumentation), Peakl (Peaklisten) und TFILE (Transmissionsfiles) abgespeichert. Bei der Benennung der Dateinamen wurde die folgende Systematik angewandt:

JET	:	Name des Spektrums,
Dateiendung 1,2,3,	:	Nummerierung der Meßblöcke,
Suffix B	:	${ m Hintergrundspektrum},$
Suffix A,B,C,	:	Meßserie,
Präfix T	:	${\it Transmissions spektrum},$
Präfix Z	:	zerogefülltes Transmissionsspektrum,
Dateiendung doc	:	Dokumentationsdatei,
Dateiendung cal	:	Kalibrationsdatei,
Dateiendung pli	:	Peakliste.

Die Transmissionsspektren der Messungen die mit der 3 m-Zelle durchgeführt wurden tragen die Bezeichnung ZTJETBGS.1 $(2\ 100\ -\ 2\ 500\ \mathrm{cm^{-1}})$ bzw. ZTJETBDS.1 $(1\ 400\ -\ 1\ 500\ \mathrm{cm^{-1}})$, die der Messungen an den NCCNO-Molekularstrahlen die Bezeichnung ZTJETADF.1 $(2\ 100\ -\ 2\ 500\ \mathrm{cm^{-1}})$ bzw. ZTJETBBS.1 $(1\ 400\ -\ 1\ 500\ \mathrm{cm^{-1}})$. Die dazugehörigen kalibrierten Linienlisten tragen die Endung PLI. Die mit der Spektroskopiesoftware HILRAPSS99 erstellte Linienliste im Bereich zwischen 1400 und 1500 cm⁻¹ trägt die Bezeichnung ZTJETBDH.ASC und befindet sich in dem Verzeichnis HILRAPSS/NCCNO. In der Tabelle D.1 sind die Dateien der einzelnen Meßserien an NCCNO aufgeführt. Die Tabelle D.2 beinhaltet eine Zusammenstellung der Transmissionsfiles sowie Angaben über die Kalibration dieser Spektren.

Im Verzeichnis Dissertation/NCCNO/Rek befinden sich schließlich die für jeden Subzustand erstellten Eingabefiles zur Bestimmung der Reihenentwicklungskonstanten. Die Reihenentwicklungskonstanten wurden mit dem Programm linc96 berechnet. In den Dateinamen bezeichnen die ersten sieben Ziffern die Vibrationsquantenzahlen v_1 , v_2 , v_3 ,, v_4 , v_5 , v_6 , ν_7 und die letzte Ziffer steht für den Betrag der l_7 -Quantenzahl. Zusätzlich ist die Parität der an dem Übergang beteiligten Niveaus angegeben. Die Dateinamen der mit dem Programm HILRAPSS99 erstellten Linienlisten, die zur Anpassung von spektroskopischen oder Reihenentwicklungskonstanten ver-

$\operatorname{Substanz}$	Meßbereich	\mathbf{Scans}	Zahl der	Auflösung	P	$\operatorname{Dateiname}$	Messung
	$/\mathrm{cm}^{-1}$	pro Block	Blöcke	$/\mathrm{cm}^{-1}$	$/\mathrm{mbar}$		
NCCNO+Ar	1950-2750	4	1	0.008	160	JETAD.5	Jet
NCCNO+Ar	1950-2750	4	1	0.008	160	JETAD.6	Jet
NCCNO+Ar	1950-2750	4	1	0.008	160	JETAD.7	Jet
NCCNO+Ar	1950-2750	16	1	0.008	150	JETAD.9	Jet
NCCNO+Ar	1950-2750	32	1	0.008	150	JETAD.10	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAE.6	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAE.7	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAE.9	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAE.10	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAF.2	Jet
NCCNO+Ar	1950-2750	16	1	0.008	150	JETAF.3	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAF.4	Jet
NCCNO+Ar	1950-2750	16	1	0.008	150	JETAF.5	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAF.6	Jet
NCCNO+Ar	1950-2750	4	1	0.008	150	JETAF.7	Jet
NCCNO+Ar	1950-2750	8	1	0.008	150	JETAF.8	Jet
NCCNO+Ar	1950-2750	24	1	0.008	0.055	JETAF.9	Jet
NCCNO	1950-2750	50	7	0.003	0.055	JETBG 1-7	\mathbf{Zelle}
NCCNO	1950-2750	47	1	0.003	150	JETBG.8	\mathbf{Zelle}
NCCNO+Ar	1100-1800	4	2	0.008	165	JETBB.1-2	Jet
NCCNO+Ar	1100-1800	8	1	0.008	190	JETBB.3	Jet
$\rm NCCNO+Ar$	1 100 - 1 800	8	1	0.008	190	JETBB.5	Jet
NCCNO+Ar	1 100 - 1 800	8	1	0.008	165	JETBB.6	Jet
NCCNO+Ar	1 100 - 1 800	4	1	0.008	165	JETBB.7	Jet
NCCNO+Ar	1 100 - 1 800	8	2	0.008	165	JETBB.8-9	Jet
NCCNO+Ar	1 100 - 1 800	8	1	0.008	165	JETBB.11	Jet
NCCNO	1 100 - 1 800	10	2	0.002	0.030	JETBC.2-3	Zelle
NCCNO	1 100 - 1 800	10	30	0.002	0.030	JETBD.1-10	Zelle

 Tabelle D.1 Die verschiedenen Meßblöcke der FTIR-Messungen an NCCNO.

 Tabelle D.2 Zusammenstellung der verschiedenen Transmissionsfiles von NCCNO.

Messung	Meßbereich	S cans	Single-Beam-	Transmissions-	Kalib.	Kalib	BG-
	$/\mathrm{cm}^{-1}$		$\operatorname{Spektren}$	file		messung	File
NCCNO-	1950-2750	160	JETAD.9-10	ZTJETADF.1	CO ₂ über	ZTJETV11.1	JETADB.1
Jet			JETAE.6-7		CO (extern)		
			JETAE.9-10				
			JETAF.2-8				
NCCNO-	1950-2750	397	JETBG.1-7	ZTJETBGS.1	CO (intern)		JETBFB.1
Zelle			JETBG.8				
NCCNO-	1100-1800	60	JETBB.1-11	ZTJETBBS.1	OCS (extern)	ZTJETBES.1	JETBBB.1
Jet							
NCCNO-	1100-1800	320	JETBC.2-3	ZTJETBDS.1	OCS (extern)	ZTJETBES.1	JETBCB.1
Zelle			JETBD.1-10				

wendet wurden, weisen zusätzlich ein hauf. Die Dateinamen der im ν_1 -Bandensystem erhaltenen Q-Zweige weisen sowohl die Parität des oberen als auch des unteren Subzustandes auf, zudem sind die Filenamen durch ein Q gekennzeichnet.

Neben den Reihenentwicklungskonstanten wurden für das *Fermi*-Typ-Resonanzpaar $(\nu_3 + \nu_7)/(2\nu_4 + \nu_7)$ spektroskopische Konstanten angepaßt und das Matrixelement W_F bestimmt. Diese Berechnung wurde mit dem Programm lincx22 durchgeführt. Die Ein- und Ausgabefiles befinden sich im Verzeichnis DISSERTATION/NCCNO/SK. Die Dateinamen der Eingabedateien für linc96 und lincx22 weisen die Endung .lin auf, wohingegen die Dateinamen der entsprechenden Ausgabedateien mit der Endung .lot enden.

Sämtliche experimentellen Übergangswellenzahlen $\tilde{\nu}_{obs}$ sind in den nun folgenden Tabellen zusammengestellt, wobei immer auch deren Abweichungen von den berechneten Übergangswellenzahlen ($\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$) angegeben sind, wie sie sich aus den mit linc96 bestimmten Reihenentwicklungskonstanten in Tabelle 5.16 und 5.17 ergeben. Ein (J) kennzeichnet eine Linienposition, die dem Spektrum einer Molekularstrahlmessung entnommen wurde. Ein Asterix hinter einer Abweichung deutet an, daß der betreffende Übergang bei der Anpassung der Konstanten nicht berücksichtigt wurde.

P-Zweig			R-Zweig		
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0			2353.791555(J)	-0.000988	
1	$2353.482726({ m J})$	-0.001264	2353.946233(J)	-0.000895	
2	2353.328907(J)	$-0.001\ 117$	2354.101160(J)	-0.000755	
3	2353.175476(J)	-0.000 786	$2354.256\ 225(J)$	-0.000677	
4	$2353.022017(\mathrm{J})$	-0.000687	2354.411896(J)	-0.000187	
5	2352.868891(J)	$-0.000\ 456$	$2354.567\ 321$	-0.000133	
6	2352.715792	-0.000 393	$2354.723\ 134$	0.000127	
7	2352.563188	$-0.000\ 025$	$2354.878\ 920$	0.000185	
8	2352.410588	$0.000\ 163$	$2355.035\ 453$	0.000824	
9	2352.258209	$0.000\ 395$	2355.191709	0.001030	
10	2352.105858	$0.000\;487$	$2355.347\ 882$	0.001006	
11	2351.953487	$0.000\ 400$	2355.504581	0.001374	
12	2351.801657	0.000~706	$2355.663\ 472^*$	0.003811	
13	2351.645124^*	-0.003828	$2355.816\ 706$	0.000481	
14	2351.501912^*	0.004833	$2355.976\ 012^*$	0.003127	
15	2351.345792	$0.000\ 473$	$2356.129\ 772$	0.000144	
16	2351.193635	-0.000024	$2356.286\ 887$	0.000448	
17	2351.041754	-0.000 330	$2356.443\ 503$	0.000201	
18	2350.890843	$0.000\ 262$	$2356.600\ 784$	0.000582	
19	2350.739655	$0.000\ 520$	$2356.757\ 677$	0.000552	
20	2350.588274	$0.000\ 543$	2356.914515	0.000462	
21	2350.436892	$0.000\ 539$	2357.071380	0.000410	
22	2350.285455	$0.000\ 470$	$2357.228\ 135$	0.000274	
23	2350.133962	$0.000\ 350$	2357.384612	-0.000097	
24	2349.982719	$0.000\ 502$	2357.541 118	-0.000 380	
25	2349.830700	-0.000 084	2357.698 066	-0.000146	
26	2349.679401	0.000 103	2357.854793	-0.000041	
27	2349.527770	0.000 027	2358.011 105	-0.000 245	
28	2349.376.001	-0.000 102	2358.167.499	-0.000245	
29	2349.224176	-0.000 186	2358.323755	-0.000246	
30	9949 090 100	0 000 252	2358.479.652	-0.000 454	
31 হন	2348.920100	-0.000 353	2338.0333373	-0.000 470	
ა∠ ეე	2348.708313	-0.000 074	2338.791 303	-0.000 499	
აა 94	2348.013404	-0.000 055	2330.940 097	-0.000 475	
04 25	2348,403113	-0.000 521	2359.102.322	-0.000 409	
36	2348.310180	-0.000 800	2359.237 470	-0.000 403	
37	2348 004 675	-0.000.219	2359.412.420	0.000.034	
38	2347 851 437	-0.000 409	2359 721 641	-0.000.234	
39	2347 697 978	-0.000.318	2359 875 903	-0.000127	
40	2347.544326	-0.000 216	2360.029 833	-0.000079	
41	2347.390.368	-0.000 166	2360.183541	0.000 030	
42	$2347\ 235\ 968$	-0 000 293	2360, 136, 945	0.000129	
43	2347.081789	0.000 074	2360.490.044	0.000226	
44	2346.927139	$0.000\ 255$	2360.642727	0.000221	
45	2346.771880	$0.000\ 120$	2360.795189	0.000320	
46	2346.616731	$0.000\ 399$	2360.947291	0.000395	
47	2346.460974	0.000~384	2361.099005	0.000429	
48	2346.304939	$0.000\ 416$	$2361.250\ 359$	0.000463	
49	2346.148600	$0.000\ 481$	2361.401270	0.000429	
50	2345.991845	$0.000\;480$	2361.551904	0.000508	
51	2345.834177	$-0.000\ 071$	2361.704228^*	0.002684	
52	2345.677173	$0.000\ 420$	$2361.850\ 957$	-0.000307	
53	2345.521554^*	0.002~693	$2362.000\ 372$	-0.000162	

Tabelle D.3 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1) - (GS)$ von NCCNO.

	Fe	ortsetzung Ta	belle D.3	
54	$2345.360\ 146$	-0.000408	2362.149317	-0.000012
55	2345.201508	$-0.000\ 301$	2362.297818	0.000198
56	$2345.042\ 732$	$0.000\ 131$	$2362.446\ 070$	0.000697
57	2344.881851	-0.001050	2362.594904^*	0.002352
58	$2344.723\ 434$	$0.000\ 757$	$2362.735\ 374^*$	-0.003740
59			$2362.880\ 137^*$	-0.004873
60	$2344.396\ 742^*$	-0.003~759	$2363.028\;444$	-0.001741
61	$2344.233\ 590^*$	-0.004869		
62	2344.074038	-0.001671		
63	2343.911190	-0.001002		
64	$2343.748\ 675$	$0.000\ 839$		
65	2343.584360	0.001796		
66	$2343.419\ 574^*$	$0.003\ 286$		

Tabelle D.4 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO.

P-Zweig			R-Zweig		
J''	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0					
1			2345.593118	$0.000\ 340$	
2	2344.973605	-0.000280	$2345.747\ 463$	$0.000\ 801$	
3	2344.817958	-0.000366	2345.901005	0.000~795	
4	2344.661868	-0.000559	2346.054215	0.000~794	
5	2344.505252	-0.000944	$2346.207\ 092$	0.000~798	
6	2344.349023	-0.000605	2346.359665	$0.000\ 835$	
7	2344.192546	-0.000178	$2346.512\ 210$	0.001184	
8	2344.035209	-0.000275			
9	2343.720260	0.000268			
10	2343.562979	0.001240			
11	2343.405283	0.002130			
12	2343.248030^*	0.003810	$2347.265\ 435$	$-0.001\ 450$	
13	2342.765109^*	-0.000250	2347.415986	-0.001038	
14			$2347.566\ 122$	-0.000 693	
15			2347.715676	-0.000581	
16	2342.605059	0.000006	2347.864897	$-0.000\ 452$	
17	2342.444731	0.000330	2348.013786	$-0.000\ 302$	
18	2342.283795	0.000395			
19	2342.121806	-0.000245			
20	2341.960066	-0.000284	$2348.458\ 405$	$.000\ 233$	
21	2341.798575	0.000279	$2348.605\ 355$	$-0.000\ 128$	
22	2341.635894	0.000005	$2348.752\ 389$	-0.000043	
23	2341.472908	-0.000217	$2348.898\ 952$	$-0.000\ 064$	
24	2341.309645	-0.000358	$2349.045\ 210$	$-0.000\ 025$	
25	2341.146659	0.000137	2349.191191	$0.000\ 106$	
26	2340.982759	0.000081	$2349.336\ 674$	$0.000\ 109$	
27	2340.818526	0.000055	2349.481741	$0.000\ 069$	
28	2340.654156	0.000257	$2349.626\ 088$	$-0.000\ 316$	
29	2340.488954	-0.000005	2349.771045	$0.000\ 287$	
30	2340.323891	0.000242			
31	2339.825184	-0.000298			
32			2350.201234	$-0.000\ 302$	
33			2350.344058	-0.000 300	
34	2339.658376	-0.000298	2350.486771	$-0.000\ 021$	
35	2339.491263	-0.000223	$2350.628\ 875$	$0.000\ 040$	
36	2339.324151	0.000235	$2350.770\ 342$	$-0.000\ 143$	

	Fe	ortsetzung Ta	abelle D.4	
37	2339.155847	$-0.000\ 115$	2350.911864	$0.000\ 125$
38	2338.987516	$-0.000\ 107$	$2351.052\ 666$	$0.000\ 070$
39	2338.818935	$0.000\ 039$	$2351.193\ 635$	$0.000\ 582$
40	2338.649635	$-0.000\ 145$	$2351.333\ 135$	$0.000\ 026$
41	$2338.480\ 445$	$0.000\ 173$	$2351.472\ 996$	$0.000\ 235$
42	$2338.310\ 563$	$0.000\ 191$	$2351.612\ 053$	$0.000\ 046$
43	$2338.140\ 127$	$0.000\ 050$	2351.751055	$0.000\ 208$
44	$2337.968\ 805$	-0.000581	2351.889365	$0.000\ 088$
45	$2337.798\ 673$	$0.000\ 375$	2352.027508	$0.000\ 212$
46	$2337.626\ 935$	$0.000\ 124$	2352.164987	$0.000\ 084$
47	2337.454755	$-0.000\ 168$	$2352.302\ 245$	$0.000\ 148$
48	$2337.282\ 657$	$0.000\ 023$	$2352.438\ 892$	$0.000\ 016$
49	$2337.110\ 033$	$0.000\ 090$	2352.575291	$0.000\ 052$
50	2336.93727	$0.000\ 422$	$2352.711\ 496$	$0.000\ 311$
51	2336.763345	$-0.000\ 005$	$2352.846\ 732$	$0.000\ 019$
52	2336.589696	$0.000\ 249$	2352.981884	$0.000\ 060$
53	2336.41494	$-0.000\ 200$	$2353.116\ 372$	$-0.000\ 143$
54	$2336.240\ 515$	$0.000\ 088$	2353.251081	$0.000\ 294$
55	2336.065648	$0.000\ 339$	2353.384212	-0.000428
56	2335.713615	$-0.000\ 245$	$2353.517\ 730$	-0.000344
57			$2353.650\ 750$	-0.000340
58	2335.537224	$-0.000\ 305$	2353.783216	$-0.000\ 472$
59	$2335.360\ 252$	-0.000543	$2353.915\ 543$	$-0.000\ 326$
60	2335.183391	-0.000268	$2354.047\ 483$	$-0.000\ 150$
61	2335.005976	$-0.000\ 147$	$2354.179\ 395$	$0.000\ 411$
62	$2334.827\ 702$	-0.000486	2354.311612	$0.0016\ 91$

Tabelle D.5 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO.

	Ι	P-Zweig	R-Zweig		
$J^{\prime\prime}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0					
1			2345.593118	$-0.000\ 193$	
2	$2344.973\ 605$	$0.000\ 452$	$2345.747\ 463$	$-0.000\ 184$	
3	$2344.817\ 958$	$0.000\ 547$	2345.901005	-0.000695	
4	2344.661868	$0.000\ 480$	2346.054215	-0.001255	
5	$2344.505\ 252$	$0.000\ 169$	$2346.207\ 092^*$	-0.001863	
6	$2344.349\ 023$	$0.000\ 527$	$2346.359\ 665^*$	$-0.002\ 490$	
7	$2344.192\ 546$	$0.000\ 919$	$2346.512\ 210^*$	-0.002859	
8	$2344.035\ 209$	0.000~735			
9					
10	$2343.720\ 260$	$0.000\ 946$			
11	$2343.562\ 979$	0.001674			
12	$2343.405\ 283^*$	$0.002\ 275$			
13	$2343.248\ 030^*$	$0.003\ 609$			
14			$2347.575\ 981$	-0.001330	
15			$2347.727\ 197$	-0.000675	
16			$2347.877\ 471$	-0.000659	
17			$2348.027\ 219$	-0.000863	
18			$2348.177\ 409$	-0.000316	
19			$2348.326\ 382$	-0.000676	
20			$2348.475\ 576$	$-0.000\ 501$	
21	2341.964940	$-0.000\ 156$	2348.624631	$-0.000\ 148$	
22	$2341.803\ 616$	$-0.000\ 204$			
23	$2341.642\ 015$	-0.000 219			

24 2341.480 053 -0.000 282 2349.069 969 0.001 0 25 2341.318 230 0.000 110 26 2341.155 577 -0.000 012 2349.363 815 0.000 3 27 2340.992 729 -0.000 007 2349.509 907 -0.000 2 28 2340.829 882 0.000 321 -0.000 321	10 70 82 12
25 2341.318 230 0.000 110 26 2341.155 577 -0.000 012 2349.363 815 0.000 3 27 2340.992 729 -0.000 007 2349.509 907 -0.000 2 28 2340.829 882 0.000 321	70 82 12
26 2341.155 577 -0.000 012 2349.363 815 0.000 3 27 2340.992 729 -0.000 007 2349.509 907 -0.000 2 28 2340.829 882 0.000 321 -0.000 321	70 82 12
272340.992729-0.0000072349.509907-0.0002282340.8298820.000321	82 12
28 2340.829882 0.000321	12
	12
29 2340.666 148 0.000 088 2349.802 451 -0.000 2	
30	
31 2340.337 849 -0.000 222 2350.093 333 -0.000 4	36
32 2350.238 650 -0.000 1	51
$33 2340.008 \ 498 -0.000 \ 251 2350.383 \ 357 -0.000 \ 1$	26
$34 2339.843 \ 380 \text{-}0.000 \ 201 2350.527 \ 732 \text{-}0.000 \ 0$	79
$35 2339.677\ 763 -0.000\ 310 2350.671\ 775 -0.000\ 0$	09
$36 2339.512\ 035 -0.000\ 186 2350.815\ 457 0.000\ 0$	58
$37 2339.345\ 947 -0.000\ 078 2350.958\ 780 \qquad 0.000\ 1$	26
$38 2339.179 \ 499 0.000 \ 018 2351.101 \ 687 0.000 \ 1$	40
$39 2339.012\ 303 -0.000\ 285 2351.244\ 123 \qquad 0.000\ 0$	47
$40 2338.845 \ 440 0.000 \ 095 2351.386 \ 476 0.000 \ 2$	37
41 2338.677967 0.000218 2351.528331 0.0002	96
42 2351.669 770 0.000 3	07
$43 2338.510\ 051 0.000\ 253 2351.810\ 849 0.000\ 3$	28
44 2338.341748 0.000255 2351.951901 0.0006	92
$45 2338.173 \ 140 0.000 \ 308 2352.091 \ 817 0.000 \ 2$	91
$46 2338.003 \ 950 0.000 \ 136 2352.231 \ 705 0.000 \ 2$	32
47 2337.834788 0.000349 2352.371316 0.0002	67
48 2337.494719 0.000103 2352.510374 0.0001	20
49 2337.324 476 0.000 307 2352.649 265 0.000 1	74
$50 2337.153 \ 708 0.000 \ 342 2352.787 \ 519 -0.000 \ 0$	40
51 2336.982 580 0.000 372 2352.925 580 -0.000 0	81
$52 2336.810\ 703 0.000\ 007 2353.063\ 169 -0.000\ 2$	30
$53 2336.638 \ 495 -0.000 \ 338 2353.200 \ 482 -0.000 \ 2$	92
54 2336.466 425 -0.000 196 2353.337 684 -0.000 166 -0.000 166 -0.000 166 -0.000 -	07
$55 \ 2336.293\ 745 \ -0.000\ 318 \ 2353.473\ 750 \ -0.000\ 7$	03
$56 2336.120 \ 955 -0.000 \ 206$	
$57 2335.947 \ 307 -0.000 \ 613 2353.745 \ 661 -0.001 \ 0$	67
58 2353.881 617 -0.000 7	33
$59 2335.599 \ 732 -0.000 \ 706 2354.017 \ 628 -0.000 \ 0$	09
$60 2335.425\ 280 -0.000\ 927 2354.154\ 303 0.001\ 7$	09
$61 2335.251659 0.000002 2354.294136^* 0.0069$	07
$62 2335.078\ 426 0.001\ 631$	

Tabelle D.6 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + \nu_7)^{1f} - (GS)$ von NC-CNO.

		Q-Zweig
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0		
1		
2		
3		
4	2425.73778	$-0.000\ 025$
5	2425.74162	$0.000\ 183$
6	$2425.745\ 84$	$0.000\ 044$
7	2425.75107	$0.000\ 198$
8	$2425.757\ 58$	$0.000\ 905$
9	$2425.763\ 90$	0.000~697
10	2425.77168^*	$0.001\ 240$

	Fortsetzung Tal	oelle D.6
11	2425.77952^*	0.001121
12	2425.79702^*	$0.009\ 954$
13	$2425.797\ 02$	$0.000\ 571$
14	2425,806,34	-0.000205
15	2425 815 77	-0 001 570
16	2120.01077	-0.001.070
17	2420.027.04	0.001.302
10	2420.040.09	-0.000 402
10	2420.80340	-0.000 486
19	2425.867.12	-0.000 429
20	2425.881.60	-0.000 232
21	2425.896.14	-0.000 669
22	$2425.912\ 07$	-0.000 406
23	$2425.928\ 38$	-0.000436
24	$2425.945\ 58$	$-0.000\ 257$
25	$2425.963\ 33$	$-0.000\ 200$
26	2425.98197	$0.000\ 075$
27	2426.00102	$0.000\ 098$
28	$2426.020\ 47$	$-0.000\ 154$
29	2426.04138	$0.000\ 403$
30	2426.06134	-0.000637
31	$2426.080\ 34^*$	-0.003298
32	$2426.105\ 55$	$-0.000\ 402$
33	$2426.128\ 45$	-0.00045
34	2426.15252	0.000023
35	2426.17675	0.000026
36	2426.201.48	-0.000 107
37	2426 227 35	0 000 264
38	2426 253 08	-0 000 139
30 20	2420,200 00	0.000 132
39 40	2420.200 33	0.000.370
40	2420.307 38 9496 995 96	0.000 249
41	2420.33536	0.000034
42	2426.364.27	0.000 336
43	2426.393.96	0.000 797
44	2426.42354	0.000532
45	$2426.453\ 40$	-0.000070
46	$2426.485\ 02$	$0.000\ 487$
47	$2426.516\ 49$	$0.000\ 266$
48	$2426.548\ 78$	$0.000\ 263$
49	2426.58179	0.000~368
50	$2426.615\ 22$	$0.000\ 275$
51	2426.64898	$-0.000\ 102$
52	2426.68421	$0.000\ 375$
53	2426.71883	-0.000377
54	2426.754.78	-0.000421
55	2426 791 39	-0 000 425
56	2720.191.09	-0.000 420
50	2420.02022 2426.061 ED*	-0.000 830 0.000 425
07 E0	2420.004 30	-0.002 433
58	2420.90375	-0.001709
59	2426.943 32*	-0.001 294
60	2426.983 32*	-0.001 116
61	$2427.023\ 74^*$	-0.001 160
62	2427.06457^*	$-0.001\ 471$
63	$2427.107\ 94$	$0.000\ 084$
64	$2427.150\ 40$	$0.000\ 037$
65	2427.19441	$0.000\ 845$

	P-Zweig		R-Zweig	
$J^{\prime\prime}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0				
1				
2				
3				
4				
5				
6				
7	$2337.979\ 301$	$0.000\ 535$		
8	$2337.820\ 497$	$-0.000\ 110$		
9				
10	2337.503720	$0.000\ 459$		
11	2337.344 306	$0.000\ 233$		
12	2337.184727	$0.000\ 187$		
13	2337.024759	0.000 098	22.41.252.202	0.000.000
14	2336.864 598	$0.000\ 162$	2341.372 208	0.000 060
15	2336.704.243	0.000 380	2341.522.621	0.000 165
16	2336.542 947	0.000 005	2341.672.452	0.000 036
10	2330.381 810	0.000 146	2341.821701	-0.000 326
18	2330.220 320	0.000 279	2341.971 144	-0.000 144
19	2330.037.072	-0.000 399	2242 268 500	0 000 161
20 91	2335.732.472	0.000302 0.000.417	2342.208 390	
21 99	2335 560 840	0.000 417	2342.410 842	-0.000 110
22 93	2335 406 531	-0.000 102	2342.304730	-0.000 000
$\frac{23}{24}$	2335.400.331	0.000 078	2342.712.130	0.000 120
25	2000.210120	0.000 201	2343 006 251	0.000.078
$\frac{2}{26}$	2334.914 111	-0.000 116	2343.152758	0.000 183
23 27	2334.749 214	-0.000 155	2343.298656	0.000 045
28	2334.584427	0.000284	2343.444222	-0.000 059
29	$2334.418\ 450$	-0.000 096	$2343.589\ 428$	$-0.000\ 153$
30	$2334.252\ 529$	-0.000047	2343.734329	-0.000 181
31	$2334.086\ 164$	-0.000067	2343.877956	$-0.001\ 110$
32	$2333.919\ 688$	$0.000\ 178$	$2344.023\ 162$	$-0.000\ 084$
33	$2333.751\ 468$	-0.000941	$2344.167\ 038$	$-0.000\ 011$
34	2333.584604	$-0.000\ 323$	$2344.310\ 582$	$0.000\ 109$
35	$2333.417\ 021$	-0.000041	$2344.453\ 379$	$-0.000\ 136$
36	$2333.248\ 911$	$0.000\ 100$	$2344.596\ 230$	$0.000\ 057$
37	$2333.080\ 109$	$-0.000\ 063$		
38	2332.911279	$0.000\ 135$		
39	2332.741923	$0.000\ 198$	2345.021130	-0.000697
40	$2332.572\ 097$	$0.000\ 185$	$2345.162\ 597$	$-0.000\ 335$
41	$2332.400\ 885$	-0.000819	$2345.303\ 537$	$-0.000\ 106$
42	$2332.230\ 809$	-0.000 290	2345.443813	$-0.000\ 147$
43	2332.059 958	-0.000 137	2345.583 895	$0.000\ 014$
44	2331.888 857	0.000 165	2345.723 313	-0.000 091
45	2331.715.734	-0.001 155	2345.862.592	0.000.000
40	2331.544 523	-0.000 100	2340.001345	0.000 090
41 10	2001.0/1904	-0.000 120 0.000 065	2340.139 082	0.000 102
40 70	2001.190 990	-0.000 000	2340.277 032	0.000 127
49 50	2330 852 088	0 000 258	2340,413 194	0.000 100
50	2000.002 000	0.000 400	2346 680 549	0.000 407
52	2330.503.074	0.000089	2010.000042	0.000 000
53	2000.000.011	3.000 000	2346.961259	$0.000\ 136$

Tabelle D.7 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{0e} - (2\nu_7)^{0e}$ von NCCNO.

	F	ortsetzung T	abelle D.7	
54	$2330.152\ 121$	-0.000414		
55	2329.977336	$0.000\ 623$		
56	$2329.800\ 613$	$0.000\ 119$		
57	2329.624278	$0.000\ 395$	$2347.500\ 955$	0.000082
58	2329.447085	$0.000\ 204$	2347.635027	0.000192
59	2329.269586	$0.000\ 093$	2347.768684	0.000269
60	2329.091811	$0.000\ 089$	$2347.902\ 119$	0.000504
61	2328.914119	$0.000\ 545$	2348.034779	0.000338
62	2328.734903	$-0.000\ 150$	$2348.167\ 190$	0.000293
63	$2328.556\ 574$	$0.000\ 409$		
64			$2348.430\ 765$	0.000041
65	2328.198143	$0.000\ 832$	$2348.562\ 428$	0.000321
66			2348.692983	-0.000164
67	2327.837275	$0.000\ 206$	2348.823787	-0.000063
68			2348.953373	-0.000853
69	$2327.475\ 715$	$0.000\ 213$	2349.083263	-0.001020
70	$2327.293\ 481$	-0.000763		
71	$2327.112\ 604$	-0.000078	2349.343653	0.000176
72	$2326.930\ 729$	-0.000097		
73	2326.747969	-0.000719	2349.601052	-0.000461
74	$2326.566\ 012$	$-0.000\ 267$	2349.729557	-0.000567
75	$2326.383\ 418$	$-0.000\ 192$	$2349.858\ 201$	-0.000279
76				
77	2326.017841	$0.000\ 297$		
78	2325.834832	$0.000\ 659$		
79	$2325.651\ 434$	$0.000\ 840$		
80			2350.501339^*	0.004460

Tabelle D.8 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{0e} - (\nu_7)^{1f}$ von NCCNO.

	. 1	<u>Q-Zweig</u>
J''	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0		
1		
2		
3	2424.749562	$0.000\ 346$
4		
5		
6	2424.753135	$0.000\ 035$
7		
8	2424.756956	-0.000041
9		
10		
11		
12	2424.767398	-0.000578
13	2424.771275	$-0.000\ 120$
14	2424.774377	-0.000711
15	2424.777894	$-0.001\ 163$
16	2424.784375	0.001070
17	2424.788113	$0.000\ 278$
18	2424.792240	-0.000 409
19	2424.798471	$0.000\ 720$
20		
21	2424.809494	$0.000\ 663$
22	2424.814701	$-0.000\ 115$

	Fortsetzung Tab	elle D.8
23	2424.821985	0.000882
24	2424.828576	0.000881
25	2424.834835	0.000237
26	2424.841953	0.000139
27	2424.849569	0.000220
28	2424.857379	0.000171
29	2424.864608	-0.000786
30	2424.874107	0.000194
31	2424.882526	-0.000245
32	2424.891361	-0.000611
33	2424.901636	0.000114
34	2424.910803	-0.000623
35	2424.921493	-0.000198
36	2424.932350	0.000028
37	2424.943622	0.000296
38	2424.954838	0.000130
39	2424.965806	-0.000670
40	2424.978850	0.000214
41	2424.990177	-0.001017
42	2425.003277	-0.000881
43	2425.016959	-0.000576
44	2425.031139	-0.000194
45	$2425.045\ 402$	-0.000156
46	$2425.060\ 440$	0.000222
47		
48	2425.091542	0.000667
49	2425.106829	-0.000060
50	2425.123751	0.000381
51	2425.140673	0.000346
52	2425.158370	0.000602
53	2425.175486	-0.000217
54	2425.194208	0.000069
55	2425.213428	0.000340
56	2425.233009	$0.000\ 453$
57	2425.252977	0.000422
58	2425.273111	0.000018
59	2425.294298	0.000117
60	2425.315845	0.000018
61	2425.337364	-0.000679
62	2425.360850	0.000012
63	2425.384723	0.000500
64	$2425.408\ 430$	0.000222
65		
66	2425.457063	-0.000958

P-Zweig		R-Zweig		
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0				
1				
2				
3				
4				
5			$2339.091\ 484$	$-0.000\ 391$
6			$2339.245\ 109$	-0.000461
7			2339.398623	$-0.000\ 333$
8	$2336.907\ 110$	-0.000 900	$2339.552\ 110$	$0.000\ 077$
9	$2336.749\ 414$	$-0.000\ 326$	$2339.705\ 042$	$0.000\ 242$
10			2339.857089	$-0.000\ 167$
11	$2336.432\ 692$	$0.000\ 399$		
12	$2336.273\ 140$	$0.000\ 024$		
13	2336.113921	$0.000\ 283$	$2340.312\ 453$	$-0.000\ 301$
14	2335.954203	$0.000\ 346$	2340.463973	$0.000\ 011$
15	2335.793986	$0.000\ 211$	$2340.615\ 050$	$0.000\ 195$
16	2335.633687	$0.000\ 295$	$2340.766\ 183$	0.000~748
17	$2335.473\ 055$	$0.000\ 347$	$2340.916\ 457$	$0.000\ 757$
18	2335.311786	$0.000\ 063$		
19	$2335.150\ 711$	$0.000\ 273$	2341.215731	$0.000\ 446$
20	2334.988361	$-0.000\ 492$	2341.364 564	-0.000 040
21	2224 224 222	0.000 150	2341.513 924	$0.000\ 317$
22	2334.664.633	-0.000 152	2341.662 454	0.000 160
23	2334.502 339	0.000 036	2341.811 094	$0.000\ 429$
24	2334.339 353	-0.000 171	9949 106 400	0 000 020
20 96	2334.170.002	-0.000 386	2342.100 490	0.000 030
20	9999 847 009	0 001 506	2342.233743	
21 98	2333.847.902	-0.001 500	2342,401 030	0.000 002
20 20	2333.084.334	-0.001 112	2342.348 143	0.000 333
30	2333 355 870	-0.001.030	2342.094.520	0.000 048
31	2333 190557	-0.001.255	2342.987557	0.000050 0.001257
32	2333.025.910	-0.000 778	2343.132347	0.000 499
33		0.000110	2343.278051	0.000 963
34	2332.696005	0.000420	2010/210 001	010000000
35	$2332.530\ 609$	0.001000		
36			$2343.707\ 354^*$	-0.003621
37	$2332.198\ 489$	0.001670	2343.851369^*	-0.003631
38	$2332.032\ 179$	$0.002\ 168$	2343.994858^*	-0.003870
39	$2331.866\ 341^*$	$0.003\ 409$	$2344.136\ 878^*$	$-0.005\ 283$
40			2344.281142^*	$-0.004\ 159$
41			$2344.423\ 246^*$	-0.004907
42			$2344.565\ 073^*$	$-0.005\ 647$
43			$2344.710\ 750$	$-0.002\ 255$
44			$2344.849\ 536^*$	$-0.005\ 477$
45			$2344.996\ 481$	$-0.000\ 267$
46	2330.684020	$-0.002\ 024$		
47	$2330.516\ 977$	$0.000\ 061$		
48	$2330.343\ 910^*$	-0.003641	$2345.418\ 417$	-0.001942
49			$2345.560\ 410$	-0.000638
50	2330.006 887	-0.001 243	2345.701323	-0.000 167
51	$2329.837\ 670$	$-0.000\ 414$	2345.841599	-0.000 090

Tabelle D.9 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2e} - (2\nu_7)^{2e}$ von NCCNO.

	F	ortsetzung Ta	abelle D.9	
52	$2329.667\ 483$	-0.000 338	2345.982872	0.001221
53	2329.497878	$0.000\ 530$	2346.122373	$0.000\ 989$
54	$2329.327\ 497$	$0.000\ 827$	$2346.260\ 765$	$-0.000\ 129$
55	$2329.156\ 950$	$0.001\ 157$	$2346.400\ 875$	0.000688
56	2328.985323	$0.000\ 598$	$2346.538\ 714$	-0.000558
57	2328.814361	$0.000\ 890$	2346.678048	$-0.000\ 107$
58	2328.642014	$-0.000\ 025$	$2346.816\ 524$	$-0.000\ 321$
59	2328.471135	0.000698	$2346.955\ 111$	-0.000238
60	$2328.298\ 649$	-0.000021		
61	$2328.125\ 721$	-0.001028		
62	2327.954897	$0.000\ 217$		
63	2327.782799	$0.000\ 327$	$2347.507\ 131$	-0.000564
64	2327.611781	0.001646	2347.644582	-0.000829
65	2327.437634	-0.000044	$2347.782\ 005$	-0.000 996
66	2327.264373	-0.000737	$2347.920\ 509$	$0.000\ 034$
67	$2327.092\ 525$	$0.000\ 082$	$2348.058\ 016$	$0.000\ 171$
68	$2326.920\ 538$	$0.000\ 852$		

Tabelle D.10 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2f} - (2\nu_7)^{2f}$ von NCCNO.

P-Zweig		R-Zweig		
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/$ cm ⁻¹
0				
1				
2				
3				
4				
5			$2339.091\ 484$	-0.000884
6			$2339.245\ 109$	-0.000944
7			2339.398623	-0.000805
8	$2336.907\ 110$	-0.001348	$2339.552\ 110$	-0.000383
9	$2336.749\ 414$	-0.000746	$2339.705\ 042$	-0.000204
10			2339.857089	-0.000599
11	$2336.432\ 692$	0.000050		
12	$2336.273\ 140$	-0.000280		
13	2336.113921	0.000032	$2340.312\ 453$	-0.000683
14	2335.954203	0.000154	2340.463973	-0.000350
15	2335.793986	0.000087	$2340.615\ 050$	-0.000145
16	2335.633687	0.000249	$2340.766\ 183$	$0.000\ 434$
17	2335.473055	0.000389	$2340.916\ 457$	$0.000\ 470$
18	2335.311786	0.000203		
19	$2335.150\ 711$	0.000524	$2341.215\ 731$	0.000226
20	2334.988361	-0.000118	2341.364564	-0.000221
21			$2341.513\ 924$	0.000181
22	2334.664633	0.000511	$2341.662\ 454$	0.000074
23	$2334.502\ 339$	0.000867	2341.811094	$0.000\ 401$
24	$2334.339\ 353$	0.000846		
25	$2334.176\ 062$	0.000836	$2342.106\ 490$	0.000141
26			2342.253745	0.000055
27	2333.847902	0.000186	2342.401056	0.000351
28	2333.684334	0.000849	$2342.548\ 145$	0.000751
29	$2333.520\ 102$	0.001165	2342.694320	0.000564
30	2333.355870	0.001798	2342.841077	0.001286
31	$2333.190\ 557$	0.001668	$2342.987\ 557^*$	0.002058
32	2333.025910	0.002522	$2343.132\ 347$	0.001468

	Fo	rtsetzung Ta	belle D.10	
33			$2343.272\ 097$	-0.003834
34	2332.686007^*	$-0.005\ 425$		
35	2332.520861^*	$-0.004\ 116$		
36	2332.355382^*	-0.002823	$2343.707\ 354$	-0.001769
37			2343.851369	$-0.001\ 497$
38	2332.022015	-0.001697	2343.994858	$-0.001\ 425$
39	2331.854487	$-0.001\ 505$	$2344.136\ 878^*$	-0.002498
40	2331.686627	-0.001331	2344.281142	-0.001002
41	2331.517215^*	-0.002396	2344.423246	-0.001344
42	2331.349244	-0.001708	$2344.565\ 073$	-0.001642
43	2331.181550	$-0.000\ 433$		
44	2331.012526	$-0.000\ 179$	2344.849530	$-0.000\ 480$
45			$2344.990\ 748$	$-0.000\ 436$
46			2345.131716	$-0.000\ 329$
47			2345.272~796	$0.000\ 198$
48			2345.413072	$0.000\ 228$
49			$2345.552\ 821$	$0.000\ 032$
50			2345.694150	0.001716
51				
52			$2345.971\ 462$	$0.000\ 613$
53	2329.475721	$-0.000\ 055$	$2346.109\ 273$	$-0.000\ 355$
54	2329.304316	$0.000\ 736$	$2346.248\ 053$	-0.000075
55	2329.131332	$0.000\ 217$	$2346.386\ 003$	$-0.000\ 353$
56	2328.958847	$0.000\ 459$	$2346.525\ 033$	$0.000\ 715$
57	2328.785336	-0.000 069	$2346.662\ 899$	$0.000\ 879$
58	2328.613211	0.001038	$2346.799\ 492$	$0.000\ 020$
59				
60			2347.073480	$-0.000\ 173$
61	2328.089800	-0.001256	2347.210710	$0.000\ 310$
62	2327.917065	$0.000\ 160$	2347.347 385	0.000454
63	2327.743167	0.000621	2347.483 313	0.000056
64	2327.569075	0.001 086	2347.617939	-0.001 448
65	2327.394540	0.001294	2347.754 366	-0.000 969
66			2347.890.183	-0.000928

Tabelle D.11 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2e} - (\nu_7)^{1f}$ von NCCNO.

	(Q-Zweig
J''	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0		
1		
2		
3	2422.011784	-0.000227
4		
5		
6		
7	2422.019760	$0.000\ 053$
10		
11	2422.032389	-0.000520
12	2422.037651	$0.000\ 596$
13		
14	2422.045489	-0.000852
15	2422.052274	0.000~799

Fortsetzung Tabelle D.11			
16	2422.057370	0.000437	
17			
18	2422.068947	0.000147	
19	2422.076009	0.000808	
20			
21	2422.087585	-0.001334	
22			
23	2422.103732	-0.000091	
24	2422.112511	0.000805	
25	2422.119186	-0.000684	
26			
27			
28	2422.145025	-0.000957	
29	2422.155854	0.000649	
30	2422.164883	0.000207	
31			
32			
33			
34			
35	2422.215897	0.000398	

 Tabelle D.12
 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_1 + 2\nu_7)^{2f} - (\nu_7)^{1e}$ von NCCNO.

	Q-Zweig		
$J^{\prime\prime}$	$ ilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0			
1			
2	2422.011784	-0.000077	
3			
4			
5			
6			
7	$2422.027\ 902$	$-0.000\ 114$	
10	$2422.045\ 489$	$0.000\ 062$	
11	$2422.052\ 274$	-0.000236	
12			
13	$2422.068\ 947$	$0.000\ 362$	
14			
15	2422.087585	$0.000\ 393$	
16	$2422.097\ 445$	$0.000\ 006$	
17			
18	$2422.119\ 186$	-0.000624	
19	2422.131787	$-0.000\ 142$	
20	$2422.145\ 025$	$0.000\ 360$	
21			
22			
23	$2422.186\ 873$	$0.000\ 323$	
24	2422.201966	$0.000\ 240$	
25			
26	2422.233262	$-0.000\ 615$	
27	$2422.250\ 627$	$-0.000\ 218$	
28			
29			
30	$2422.305\ 546$	$0.000\ 279$	

	P-Zweig		R	R-Zweig	
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0					
1			2192.769.319(J)	0.000184	
2	2192.152943(J)	-0.000351	2192.922 246(J)	0.000216	
3	2191.998453(J)	$0.000\ 184$	2193.074 611(J)	0.000114	
4	2191.842612(J)	-0.000207	2193.226 203	-0.000 333	
5	2191.686974	$0.000\ 032$	2193.378748	0.000603	
6	2191.531591	0.000954	2193.529769	0.000447	
7	2191.374130	$0.000\ 226$	2193.679586	-0.000481	
8	2191.217057	$0.000\ 317$	2193.830539	0.000162	
9	2191.059028	-0.000 118	2193.981173	0.000922	
10	2190.901013	-0.000 106	$2194.130\ 214$	0.000526	
11	2190.742375	-0.000283	$2194.278\ 453$	-0.000233	
12	2190.582976	-0.000 787	2194.427037	-0.000206	
13	2190.424047	-0.000 383	2194.575276	-0.000083	
14	2190.264108	-0.000553	$2194.722\ 711$	-0.000323	
15	2190.104168	-0.000285	$2194.870\ 091$	-0.000177	
16	2189.943564	-0.000244	$2195.017\ 027$	-0.000033	
17	2189.782433	-0.000291	$2195.162\ 981$	-0.000432	
18	2189.621053	$-0.000\ 150$	2195.309073	-0.000256	
19	2189.459147	$-0.000\ 100$	2195.454653	-0.000157	
20	2189.296840	$-0.000\ 017$	$2195.599\ 762$	-0.000100	
21	2189.133937	$-0.000\ 101$	2195.744690	0.000201	
22	$2188.970\ 439$	$-0.000\ 355$	$2195.888\ 830$	0.000130	
23	2188.806954	$-0.000\ 177$	$2196.032\ 374$	-0.000127	
24	2188.643206	$0.000\ 151$	$2196.175\ 876$	-0.000028	
25	2188.478877	$0.000\ 301$	$2196.319\ 420$	0.000499	
26	2188.313592	$-0.000\ 112$	2196.461815	0.000249	
27	2188.148709	$0.000\ 257$	2196.604210	0.000355	
28	2187.983106	$0.000\ 272$	$2196.746\ 092$	0.000283	
29	2187.817309	$0.000\;442$	$2196.887\ 781$	0.000333	
30	2187.650875	$0.000\ 305$	$2197.029\ 109$	0.000312	
31	2187.484648	$0.000\ 682$	$2197.170\ 091$	0.000207	
32	2187.317328	$0.000\ 249$	$2197.310\ 783$	0.000043	
33	2187.149384	-0.000552	2197.451294	-0.000106	
34	2186.982576	$0.000\ 005$	2197.591501	-0.000402	
35	2186.815048	$0.000\ 031$	2197.731819	-0.000471	
36	2186.646856	-0.000456	2197.871942	-0.000667	
37	2186.479175	$-0.000\ 326$	$2198.012\ 744$	-0.000167	
38	2186.310802	-0.000 828	2198.152799	-0.000453	
39	2186.143634	$-0.000\ 117$	$2198.295\ 664^*$	0.001969	
40	2185.976356	$0.000\ 437$	$2198.439\ 915^*$	0.005610	
41	2185.809700	0.001502	$2198.586\ 256^*$	0.011101	
42	2185.645814^{*}	$0.005\ 161$			
43	2185.479104^{*}	0.005746			

Tabelle D.13 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_2) - (GS)$ von NCCNO.

	P-Zweig		R-Zweig	
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
20				
21				
22				
23				
24				
25				
26				
27				
28			$2197.199\ 601$	0.000720
29			$2197.340\ 458$	-0.000258
30			$2197.479\ 903^*$	-0.002183
31			2197.623932	0.000944
32	$2187.722\ 037^*$	-0.003283	$2197.762\ 384$	-0.001036
33	$2187.552\ 183^*$	-0.004391	2197.904041	0.000659
34	$2187.386\ 843$	-0.000524	$2198.045\ 993^*$	0.003122
35	$2187.218\ 650$	$0.000\ 952$	$2198.180\ 716$	-0.001170
36	$2187.050\ 416^*$	$0.002\ 851$	$2198.320\ 078$	-0.000346
37	$2186.875\ 853$	-0.001113	$2198.458\ 512$	0.000026
38	2186.704877	-0.001025	$2198.596\ 877$	0.000807
39	$2186.534\ 413$	$0.000\ 043$		
40	$2186.362\ 703$	$0.000\ 333$	$2198.870\ 228$	$0.000\ 428$
41	2186.189733	$-0.000\ 168$	$2199.006\ 004$	0.000059
42	$2186.017\ 524$	0.000561	2199.141696	0.000086
43	2185.843696	$0.000\ 140$		
44	2185.669784	$0.000\ 104$	2199.411572	0.000072
45	$2185.495\ 207$	$-0.000\ 128$	$2199.545\ 700$	-0.000026
46	$2185.320\ 119$	$-0.000\ 402$	2199.679550	0.000077
47	$2185.145\ 071$	$-0.000\ 169$	$2199.812\ 750$	0.000006
48	$2184.969\ 581$	$0.000\ 088$	$2199.945\ 438$	-0.000102
49	2184.794021	$0.000\ 740$	$2200.078\ 292$	0.000429
50			$2200.209\ 331$	-0.000384
51			2200.341160	0.000060
52	$2184.262\ 149$	0.000269	2200.471660	-0.000360
53	2184.083640	$-0.000\ 194$		
54	2183.905~366	0.000 030		
55	2183.726566	0.000174	2200.861026	-0.001010
56	2183.547074	0.000068	2200.990654	-0.000489
57	2183.367388	$0.000\ 205$	2201.119450	-0.000 360
58	2183.187 438	0.000510	2201.247 111	-0.000 933
59	2183.006 450	$0.000\ 201$	2201.375 436	
60	2182.825 795	0.000644	2201.503 776	0.000 535
61	2182.643 851	0.000 209	2201.630 329	0.000109
62	2182.461 922	0.000 192	2201.757.090	0.000 291
63	2182.279.937	0.000 513	2201.883 269	0.000282
64	2182.096.512	-0.000 221	0000 104015	0.000.000
65	2181.913 848	0.000 180	2202.134 215	-0.000020
66	2181.730 202	-0.000 038	2202.258 746	-0.000573
67	2181.546 292	-0.000 167	2202.383 956	-0.000 103
68	2181.361.662	-0.000 677	2202.509 193	0.000722
69	2181.177.434	-0.000 459		
70	2180.993 538	0.000 403		

 Tabelle D.14
 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_2 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO.

	P-Zweig		R-Zweig	
$J^{\prime\prime}$	$\tilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
20				
21				
22				
23				
24				
25				
26				
27				
28				
29	$2188.217\ 559^*$	-0.002~779		
30	2188.051942	-0.000552		
31	2187.885865^*	0.001675		
32			$2197.772\ 073$	$0.000\ 356$
33	$2187.545\ 107$	-0.001085	$2197.912\ 225$	$0.000\ 480$
34	2187.376720	$0.000\ 223$	$2198.052\ 515$	0.001219
35	$2187.206\ 838$	$0.000\ 503$	$2198.191\ 434$	0.001065
36	$2187.036\ 457$	0.000~750	2198.328345	$-0.000\ 618$
37	$2186.866\ 229^*$	0.001619	$2198.466\ 544$	-0.000533
38	$2186.692\ 193$	$-0.000\ 852$	2198.604659	$-0.000\ 051$
39	$2186.520\ 455$	-0.000556	$2198.742\ 124$	$0.000\ 261$
40	2186.348551	$0.000\ 043$	$2198.878\ 302$	$-0.000\ 233$
41	$2186.175\ 553$	$0.000\ 018$	2199.014520	$-0.000\ 207$
42	2186.001849	$-0.000\ 245$	2199.149894	-0.000546
43	$2185.828\ 339$	$0.000\ 154$	2199.285628	-0.000046
44	2185.653582	$-0.000\ 227$	$2199.420\ 975$	$0.000\ 544$
45	$2185.479\ 103$	$0.000\ 136$	2199.554161	-0.000552
46	$2185.303\ 598$	-0.000063	2199.688385	$-0.000\ 136$
47	$2185.127\ 443$	$-0.000\ 450$	2199.821751	$-0.000\ 108$
48	$2184.952\ 479$	$0.000\ 814$	2199.954522	$-0.000\ 208$
49	2184.774981	$0.000\ 001$	2200.087542	$0.000\ 406$
50	2184.597690	$-0.000\ 151$	$2200.218\ 568$	-0.000514
51	$2184.420\ 026$	-0.000227	$2200.350\;438$	$-0.000\ 135$
52	$2184.242\ 707$	$0.000\;487$	2200.481713	$0.000\ 099$
53	2184.063866	$0.000\ 120$	$2200.612\ 725$	$0.000\ 515$
54	2183.884997	$0.000\ 160$	$2200.742\ 020$	$-0.000\ 348$
55	$2183.705\ 504$	$0.000\ 005$	$2200.872\ 104$	$0.000\ 009$
56			$2201.001\ 801$	$0.000\ 403$
57	$2183.345\ 855$	$0.000\ 293$	$2201.130\ 625$	$0.000\ 339$
58	2183.164853	$-0.000\ 125$	$2201.259\ 172$	$0.000\ 404$
59	2182.984308	$0.000\ 312$	$2201.386\ 417$	$-0.000\ 437$
60	$2182.802\ 863$	$0.000\ 238$	$2201.514\ 438$	$-0.000\ 115$
61	$2182.620\ 809$	$-0.000\ 065$	2201.641822	$-0.000\ 057$
62	$2182.438\ 533$	$-0.000\ 221$	$2201.768\ 708$	$-0.000\ 135$
63	$2182.256\ 091$	$-0.000\ 187$	$2201.895\ 205$	$-0.000\ 252$
64	2182.073096	$-0.000\ 362$	2202.021703	$-0.000\ 035$
65	$2181.889\ 643$	-0.000664	$2202.148\ 519$	$0.000\ 821$
66	$2181.706\ 550$	-0.000290	$2202.277\ 773^*$	$0.004\ 417$
67	$2181.523\ 485$	$0.000\ 413$		
68	2181.343231^*	0.004212		

 Tabelle D.15
 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_2 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO.

 P-Zweig
 P.Z.
	P-Zweig		R-Zweig		
$J^{\prime\prime}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0			2363.134184	$0.000\ 170$	
1	2362.825245	$0.000\ 087$	2363.289333	$0.000\ 126$	
2	2362.671398	-0.000 096	$2363.445\ 506$	$0.000\ 592$	
3	2362.517995	$-0.000\ 347$			
4	2362.365588	$-0.000\ 116$	$2363.757\ 713$	$-0.000\ 172$	
5	$2362.213\ 403$	$-0.000\ 180$	2363.915354	$0.000\ 196$	
6	2362.061911	-0.000075	2364.072995	$0.000\ 029$	
7	$2361.910\ 750$	$-0.000\ 167$	2364.231329	$0.000\ 014$	
8	$2361.760\ 310$	-0.000074	$2364.390\ 050$	$-0.000\ 162$	
9	$2361.610\ 369$	$-0.000\ 025$	2364.549740	$0.000\ 076$	
10			2364.709790	$0.000\ 112$	
11	$2361.312\ 147$	$0.000\ 076$	2364.869564	-0.000 696	
12	2361.163923	$0.000\ 171$	$2365.031\ 497$	$0.000\ 081$	
13	$2361.016\ 141$	$0.000\ 137$	2365.193237	$0.000\ 084$	
14	2360.868914	$0.000\ 080$	2365.355531	$0.000\ 057$	
15	$2360.722\ 323$	$0.000\ 077$	$2365.518\;434$	$0.000\ 049$	
16	2360.576287	$0.000\ 040$	2365.681808	$-0.000\ 082$	
17	2360.430915	$0.000\ 074$	2365.845818	$-0.000\ 178$	
18	$2360.286\ 013$	-0.000020	$2366.010\ 660$	$-0.000\ 050$	
19	2360.141832	$0.000\ 002$	2366.175972	$-0.000\ 070$	
20	$2359.998\ 178$	$-0.000\ 061$	$2366.342\ 005$	$0.000\ 000$	
21	$2359.855\ 464$	$0.000\ 194$	$2366.508\ 647$	$0.000\ 028$	
22	$2359.713\ 000$	$0.000\ 063$	2366.675981	$0.000\ 069$	
23			2366.844063	$0.000\ 142$	
24	2359.429845	$-0.000\ 423$	$2367.012\ 893$	$0.000\ 197$	
25	2359.290068	$0.000\ 072$	2367.182387	$0.000\ 082$	
26	$2359.150\ 401$	-0.000095	$2367.352\ 906$	$0.000\ 072$	
27	2359.011953	$0.000\ 117$	2367.524367	$-0.000\ 031$	
28	2358.874335	$0.000\ 232$	$2367.696\ 936$	$-0.000\ 203$	
29	2358.737327	$-0.000\ 083$	2367.871249	$0.000\ 012$	
30	2358.601649	-0.000252	$2368.046\ 947$	$0.000\ 033$	
31	2358.467244	-0.000511	$2368.225\ 166$	$0.000\ 721$	
32	2358.334944	-0.000252	$2368.403\ 467$	-0.000694	
33	$2358.205\ 248$	$0.000\ 751$			

Tabelle D.16 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_2 + 2\nu_7)^{0e} - (GS)$ von NCCNO.

	P-Zweig			R-Zweig	
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0			1447.616586	-0.000 403	
1	$1447.309\ 649$	$0.000\ 583$	$1447.770\ 558$	$0.000\ 242$	
2	1447.154537	0.000067	$1447.922\ 673$	-0.000547	
3	$1446.999\ 178$	-0.000273	1448.076064	$0.000\ 362$	
4	1446.844268	$0.000\ 258$	1448.227921	$0.000\ 160$	
5	1446.687887	$-0.000\ 259$	1448.379561	$0.000\ 164$	
6	1446.531774	-0.000088	$1448.530\ 550$	-0.000 063	
7	1446.374800	$-0.000\ 356$	1448.681171	$-0.000\ 237$	
8	$1446.217\ 694$	$-0.000\ 337$	1448.831796	$0.000\ 013$	
9	$1446.060\ 926$	$0.000\ 439$	1448.981807	$0.000\ 068$	
10	$1445.902\ 526$	$0.000\ 001$	$1449.130\ 453$	-0.000824	
11	1445.743941	$-0.000\ 205$	1449.279566	-0.000832	
12	1445.587306	0.001954	$1449.429\ 492$	$0.000\ 388$	
13	1445.425664	$-0.000\ 479$	1449.577211	$-0.000\ 185$	
14	1445.267212	0.000~690	1449.724975	-0.000 300	

Tabelle D.17 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_3) - (GS)$ von NCCNO.

Tabelle D.18 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_3 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO.

	P-Zweig		$\operatorname{R-Zweig}$		
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0					
1					
2					
3					
4					
5					
6	$1447.518\ 369$	$-0.000\ 191$	$1449.527\ 115$	$0.000\ 048$	
7	1447.361590	$0.000\ 255$	1449.679066	$0.000\ 227$	
8	$1447.203\ 895$	$0.000\ 173$	1449.829871	$-0.000\ 350$	
9	$1447.046\ 468$	$0.000\ 747$	1449.981143	-0.000 069	
10	1446.887375	$0.000\ 044$	1450.131725	$-0.000\ 087$	
11	$1446.728\ 476$	$-0.000\ 077$	1450.281524	-0.000498	
12	$1446.569\ 323$	$-0.000\ 065$	1450.431710	$-0.000\ 130$	
13	$1446.409\ 704$	$-0.000\ 130$	1450.581163	$-0.000\ 105$	
14	$1446.249\ 800$	-0.000093	$1450.730\ 155$	$-0.000\ 150$	
15	$1446.089\ 261$	$-0.000\ 304$	$1450.878\ 916$	-0.000034	
16	1445.927661	$-0.001\ 188$	$1451.026\ 957$	$-0.000\ 247$	
17	1445.767714	$-0.000\ 032$	$1451.175\ 037$	$-0.000\ 029$	
18	$1445.606\ 267$	$0.000\ 011$	$1451.322\ 499$	-0.000 038	
19	1445.444692	$0.000\ 313$			
20	1445.281982	$-0.000\ 133$	$1451.616\ 310$	$0.000\ 006$	
21	$1445.119\ 427$	-0.000038	$1451.762\ 654$	$0.000\ 054$	
22	$1444.956\ 460$	$0.000\ 031$	$1451.908\ 588$	$0.000\ 084$	
23	$1444.793\ 040$	$0.000\ 034$	1452.054319	$0.000\ 303$	
24	1444.629213	$0.000\ 016$	1452.199214	$0.000\ 079$	
25	$1444.465\ 294$	$0.000\ 291$	1452.344224	$0.000\ 361$	
26			$1452.488\ 633$	$0.000\;435$	
27			$1452.632\ 461$	$0.000\ 320$	
28	$1443.970\ 379$	$0.000\ 274$	$1452.776\ 080$	$0.000\ 389$	
29	1443.804681	$0.000\ 313$	$1452.919\ 683$	$0.000\ 834$	
30	$1443.638\ 596$	$0.000\ 350$	$1453.062\ 203$	$0.000\ 589$	

	Fortsetzung Tabelle D.18					
31	1443.472172	$0.000\ 432$	1453.204647	$0.000\ 661$		
32	1443.305441	$0.000\ 593$	$1453.346\ 913$	$0.000\ 947$		
33	1443.138609	0.001037	$1453.489\ 192^*$	0.001640		
34	1442.970919	0.001007				
35	1442.803003^*	$0.001\ 135$				
36	1442.635586^*	$0.002\ 147$				
37						
38			$1454.188\;423^*$	$-0.001\ 167$		
39	1442.124147^*	-0.001~705	$1454.327\ 721$	-0.001097		
40	1441.954191	-0.001699	$1454.466\ 774$	$-0.000\ 879$		
41	1441.784239	-0.001305	$1454.605\ 875$	$-0.000\ 219$		
42	1441.613846	-0.000970	1454.743786	-0.000356		
43	1441.443196	-0.000509	1454.881160	-0.000 636		
44	1441.271847	-0.000364	$1455.018\ 947$	$-0.000\ 110$		
45	1441.099973	-0.000 363	$1455.155\ 202$	-0.000722		
46	1440.927879	$-0.000\ 199$	$1455.292\ 061$	$-0.000\ 337$		
47	1440.754841	-0.000598	$1455.428\ 229$	-0.000249		
48	1440.581912	-0.000506	$1455.563\ 921$	-0.000244		
49	1440.408790	-0.000225	$1455.699\ 282$	$-0.000\ 176$		
50	1440.235034	-0.000 198	1455.834279	-0.000 078		
51	1440.060992	-0.000075	1455.968 766	-0.000 097		
52	1 400 511 0 40	0.000.000	1456.102 949	-0.000 025		
53	1439.711369	-0.000 228	1456.236.668	-0.000 025		
54	1439.536125	-0.000 166	1456.369 861	-0.000 156		
55	1439.360587	-0.000 018	1456.503 170	$0.000\ 222$		
56	1439.184 433	-0.000 106	1456.635.656	0.000 171		
57 50	1439.007933	-0.000 161	1450.767.619	-0.000.009		
08 50	1438.831304	0.000034	1457 091 195	0 000 459		
09 60	1438.033997	-0.000.069	1497.031.189 1457.169.907	0.000452		
00 61	1430.470.047	0.000103	1497.102.207 1.457.909.040	0.000 512		
01 69	1430.290321	-0.000 205	1407.292.949 1457.492.050	0.000 089		
62	1436.120404 1437.041658	0.000219	1457.422.959 1457.559.680	0.000 520		
03 64	1437.941030 1437.769.457	0.000190	1457.552.080 1457.681.091	0.000400		
65	1437.583.240	0.000 034	1457.081.921 1457.810.065	0.000 313		
66	1437 403 240	0.000 339	1457 939 270	0.000.066		
67	1437 222 664	-0.000.162	1458 067 301	-0.000.110		
68	1437 042 322	0.000.098	1458 194 993	-0.000 110		
69	$1436\ 861\ 515$	0.000050	1458, 322, 316	-0.000.331		
70	$1436\ 680\ 267$	0.000270 0.000377	1458 449 263	-0.000412		
71	1436498541	0.000.381	1458,576,316	0.000.006		
72	1436.316352	0.000297	11001010 010	0.000 000		
73	1436.134274	0.000 700				
.3 74	1435.951041	0.000323				
75	1435.768451	0.000 962				
76			1459.203149	-0.000 444		
77			1459.327396	-0.000 476		
78	1435.214775	-0.000782	1459.451681	-0.000 078		
79	1435.030727	-0.000 106	$1459.575\ 495$	$0.000\ 242$		
80	1434.845568	-0.000 169	1459.698517	$0.000\ 161$		
81	1434.660442	$0.000\ 174$	1459.821045	-0.000022		
82	1434.474907	$0.000\ 480$	$1459.943\ 450$	$0.000\ 064$		
83	1434.288502	$0.000\ 287$	$1460.065\ 304$	-0.000 009		
84	1434.101724	$0.000\ 092$	1460.186766	-0.000 083		
85	1433.914818	$0.000\ 140$	$1460.307\ 759$	-0.000 235		
86	1433.727493	$0.000\ 139$	1460.428697	-0.000051		
87	1433.539020	-0.000 639	$1460.549\ 020$	-0.000092		

	101	thethang rat	Jene Bile	
88	$14\overline{33.351019}$	-0.000577	$14\overline{60.669080}$	$-0.000\ 005$
89	$1433.163\ 324$	$0.000\ 161$	1460.788753	$0.000\ 086$
90	$1432.974\ 488$	$0.000\ 127$	1460.907826	-0.000034
91			$1461.026\ 514$	$-0.000\ 148$
92			1461.145046	-0.000029
93			$1461.262\ 801$	-0.000298
94			$1461.380\ 644$	-0.000090
95			1461.497822	$-0.000\ 158$
96			$1461.615\ 293$	$0.000\ 456$
97			$1461.731\ 430$	$0.000\ 124$
98			$1461.847\ 453$	0.000066
99			1461.963058	-0.000023
100			1462.078399	$0.000\ 012$
101			$1462.193\ 192$	$-0.000\ 115$
102			1462.307669	$-0.000\ 171$
103			1462.422238	$0.000\ 252$
104			$1462.535\ 711$	-0.000036
105			1462.648993	$-0.000\ 130$
106			1462.762018	-0.000095
107			1462.874504	$-0.000\ 215$
108			1462.987369	$0.000\ 428$
109			1463.097951	$-0.000\ 827$
110			$1463.210\ 265$	$0.000\ 032$
111			1463.321234	-0.000070
112				
113			$1463.542\ 013$	-0.000288
114			$1463.652\ 441$	0.000214
115			$1463.762\ 433$	$0.000\ 661$

Fortsetzung Tabelle D.18

Tabelle D.19 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_3 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO.

		P-Zweig	-	R-Zweig
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0				
1				
2				
3				
4				
5				
6	$1447.516\ 034$	-0.000735	$1449.529\ 123$	$0.000\ 194$
7	$1447.359\ 086$	$-0.000\ 120$	1449.681062	$0.000\ 138$
8	$1447.200\ 781$	-0.000466	$1449.832\ 357$	$-0.000\ 163$
9	$1447.042\ 754$	$-0.000\ 137$	1449.983828	$0.000\ 110$
10	1446.884151	$0.000\ 012$	1450.134537	$0.000\ 021$
11	1446.724701	-0.000290	$1450.285\ 001$	$0.000\ 086$
12	$1446.565\ 339$	$-0.000\ 108$	1450.434550	-0.000~365
13	1446.404943	-0.000565	$1450.584\ 481$	$-0.000\ 035$
14	1446.245230	$0.000\ 058$	1450.733605	$-0.000\ 112$
15	1446.083930	$-0.000\ 512$	1450.882673	$0.000\ 155$
16	1445.923113	$-0.000\ 203$	$1451.030\ 963$	$0.000\ 043$
17	1445.761609	$-0.000\ 186$	$1451.178\ 866$	-0.000056
18	$1445.599\ 793$	-0.000086		
19	$1445.437\ 405$	$-0.000\ 163$	1451.473757	$0.000\ 032$
20	1445.274570	-0.000293	$1451.620\ 505$	$-0.000\ 021$
21	$1445.112\ 017$	$0.000\ 254$	$1451.766\ 930$	$0.000\ 004$

	Fo	rtsetzung Ta	belle D.19	
22	1444.948341	$0.000\ 072$	$1451.912\ 969$	$0.000\ 042$
23			$1452.058\ 717$	$0.000\ 191$
24	1444.620327	$0.000\ 228$	$1452.203\ 808$	$0.000\ 083$
25	1444.455436	$0.000\ 013$	$1452.348\ 543$	$0.000\ 020$
26	1444.290414	$0.000\ 060$	1452.493093	$0.000\ 173$
27	1444.125243	$0.000\ 351$	$1452.636\ 959$	$0.000\ 043$
28	1443.959072	$0.000\ 036$	$1452.780\ 678$	$0.000\ 167$
29	1443.793054	$0.000\ 266$	1452.923918	$0.000\ 213$
30	1443.626336	$0.000\ 190$	$1453.066\ 699$	$0.000\ 202$
31	1443.459252	$0.000\ 140$	$1453.209\ 299$	$0.000\ 411$
32	1443.292150	$0.000\ 464$	1453.351344	$0.000\ 467$
33	1443.124182	$0.000\ 314$	$1453.492\ 915$	$0.000\ 450$
34	1442.956024	0.000~367	$1453.634\ 488$	$0.000\ 837$
35	1442.787493	$0.000\ 438$	1453.774931	$0.000\ 496$
36	1442.618482	$0.000\ 421$	$1453.915\ 723$	$0.000\ 905$
37	1442.449405	0.000~729	$1454.055\ 893$	0.001090
38	1442.279608	$0.000\ 708$	$1454.195\ 993^*$	0.001610
39	1442.109998	0.001265	$1454.336\ 698^*$	$0.003\ 140$
40	1441.939793^*	0.001610		
41	1441.770210^*	$0.002\ 980$		
42			$1454.746\ 985^*$	-0.001680
43			1454.885005	-0.001233
44	1441.250122^*	-0.001910	$1455.022\ 500$	-0.000904
45	1441.078127^*	-0.001400	$1455.159\ 379$	-0.000788
46	1440.905933	-0.000701	$1455.296\ 087$	-0.000441
47	1440.732728	-0.000619	$1455.432\ 110$	-0.000376
48	1440.559174	-0.000497	1455.567904	-0.000139
49	1440.384754	-0.000853	1455.702834	-0.000362
50	1440.210959	-0.000195	1455.837896	-0.000051
51	1440.036069	-0.000244	1455.972085	-0.000211
52	1439.860593	-0.000492	1456.106092	$-0.000\ 150$
53	1439.685165	-0.000 303	1456.239760	-0.000026
54	1439.509254	-0.000211	$1456.372\ 735$	$-0.000\ 192$
55	1439.332912	-0.000162	1456.506120	0.000454
56	1439.156314	$0.000\ 017$	$1456.638\ 102$	$0.000\ 100$
57	1438.978996	-0.000137	1456.769.787	-0.000 149
58	1438.801361	-0.000221		0.0000
59	1438.623547	-0.000 099	$1457.032\ 808$	$0.000\ 211$
60	1438.445414	0.000 089	1457.163437	$0.000\ 113$
61	1438.266551	-0.000 067	1457.292949	-0.000 700
62	1438.087473	-0.000052	1457.422959	-0.000613
63	1437.907969	-0.000 080	1457.552.680	-0.000412
64	1437.727925	-0.000263	1457.681 921	-0.000 290
65	1437.548042	0.000 100	1457.810 965	0.000037
66	1437 367 209	-0.000 105	1457 939 270	0.000 028
67	1437 186 505	0.000 204	1458 067 301	0.000 146
68	1437.004955	0.000 049	1458.194.993	0.000 326
69	1436 823 220	0 000 049	1458 399 316	0 000 520
70	1436 641 035	0.000.052	1458 449 263	0 000 778
71	1436 458 987		1458 574 501	-0 000 201
79	1436 275 565	0.000 109	1458 700 810	0.000 291
73	1436 002 506	0.000.002	1458 896 440	0.000 121
74	1435 008 218		1400.020 440	0.000 200
1 ± 75	1/35 79/ 001	0.000 194	1459 076 938	0 000 226
76	1/35 5/000/	0.000.049	1450 200 602	0.000 220
10 77	1 435 955 547	0.000.009	1450 297610	0.000 293
11 78	1/35 170 917	0.000 372	1459.524.010	0.000 400
	1400.110411	0.000 440	1409,441,004	0.000 199

	For	tsetzung la	belle D.19	
80	$1434.798\ 718$	$0.000\ 291$	1459.693634	0.000106
81	$1434.612\ 252$	$0.000\ 165$	$1459.816\ 086$	0.000254
82	$1434.425\ 487$	$0.000\ 116$	$1459.938\ 099$	0.000362
83				
84			1460.179682	-0.000669
85			1460.300566	-0.000494
86			1460.421389	0.000018
87			1460.541223	-0.000062
88			1460.660650	-0.000151
89			1460.779911	-0.000009
90			1460.898547	-0.000096
91			$1461.017\ 402$	0.000433
92			1461.134863	-0.000036
93			$1461.252\ 217$	-0.000217
94			1461.369328	-0.000246
95			$1461.486\ 141$	-0.000178
96			$1461.602\ 751$	0.000082
97			$1461.718\ 590$	-0.000036
98			1461.834005	-0.000184
99			$1461.949\ 500$	0.000140
100			1462.063838	-0.000300
101			$1462.178\ 420$	-0.000104
102			$1462.292\ 383$	-0.000136
103			$1462.405\ 743$	-0.000380
104			$1462.519\ 541$	0.000204
105			1462.632035	-0.000126
106			1462.743809	-0.000788
107			$1462.856\ 718$	0.000074
108			$1462.968\ 352$	0.000049
109			$1463.079\ 786$	0.000211
110			1463.191261	0.000801

Fortsetzung Tabelle D.19

Tabelle D.20 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_3 + 2\nu_7)^{0e} - (2\nu_7)^{0e}$ von NCCNO.

	P-Zweig			R-Zweig
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0				
1				
2				
3				
4				
5	1437.277286	$-0.000\ 422$		
6				
7				
8				
9			1439.597565	$0.000\ 263$
10				
11	$1436.326\ 109$	$0.000\ 158$		
12				
13				
14			1440.351587	-0.000046
15	1435.684012	$0.000\ 129$	1440.501071	$-0.000\ 310$
16	$1435.522\ 537$	$0.000\ 110$	$1440.650\ 615$	$-0.000\ 145$
17	$1435.360\ 586$	-0.000 009	$1440.800\ 033$	$0.000\ 264$
18	$1435.198\ 522$	$0.000\ 132$	1440.948378	-0.000 033

Fortsetzung Tabelle D.20				
19	1435.036038	$0.000\ 225$		
20	$1434.872\ 992$	$0.000\ 128$	1441.244541	-0.000056
21	1434.709563	$0.000\ 018$	1441.391807	-0.000338
22	$1434.546\ 145$	$0.000\ 288$	$1441.539\ 596$	0.000265
23	1434.381517	-0.000285	$1441.686\ 503$	$0.000\ 346$
24	$1434.217\ 621$	$0.000\ 241$		
25	1434.051783	-0.000810	$1441.978\ 645$	-0.000092
26	$1433.887\ 401$	-0.000042	$1442.124\ 194$	$-0.000\ 301$
27	1433.721828	$-0.000\ 105$	1442.269864	-0.000037
28	$1433.556\ 103$	$0.000\ 041$	$1442.415\ 332$	$0.000\ 375$
29	$1433.389\ 805$	-0.000 030	$1442.558\ 218$	-0.001440
30	1433.223246	-0.000 006	1442.703870	$-0.000\ 162$
31	$1433.056\ 536$	$0.000\ 219$	$1442.848\ 043$	-0.000013
32	1432.889046	$0.000\ 014$		
33				
34	$1432.553\ 500$	$0.000\ 077$	$1443.277\ 683$	-0.000428
35	1432.385095	-0.000010	1443.421154	$0.000\ 352$
36	$1432.216\ 428$	$-0.000\ 021$		
37	1432.047632	$0.000\ 173$		
38	$1431.877\ 891$	$-0.000\ 248$		
39	$1431.708\ 279$	$-0.000\ 214$	$1443.988\ 552$	$0.000\ 186$
40	$1431.538\ 277$	-0.000249	$1444.129\ 426$	-0.000054
41	$1431.368\ 422$	$0.000\ 180$		
42	$1431.197\ 659$	$0.000\ 012$	$1444.410\ 923$	$0.000\ 108$
43	$1431.026\ 932$	$0.000\ 185$		
44	1430.855860	$0.000\ 313$		
45	1430.683816	$-0.000\ 239$		
46	$1430.512\ 525$	$0.000\ 248$		
47	$1430.340\ 233$	$0.000\ 013$		
48	1430.167925	$0.000\ 031$		
49	$1429.995\ 266$	-0.000040		
50	$1429.822\ 277$	$-0.000\ 188$		
51	$1429.649\ 198$	$-0.000\ 184$		
52	$1429.476\ 007$	-0.000 060		
53	$1429.302\ 275$	$-0.000\ 256$		
54	$1429.128\ 917$	$0.000\ 132$		
55	1428.955052	$0.000\ 208$		

Tabelle D.21 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_3 + 2\nu_7)^{2e} - (2\nu_7)^{2e}$ von NCCNO.

	P-Zweig		-	R-Zweig
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0				
1				
2				
3				
4			$1439.142\ 405$	$0.001\ 185$
5			1439.295735	0.001038
6			1439.448397	$0.000\ 619$
7	$1437.269\ 237$	$0.000\ 437$	$1439.600\ 771$	$0.000\ 311$
8	$1437.110\ 734$	$0.000\ 516$	1439.753048	$0.000\ 304$
9	1436.951328	$0.000\ 084$	1439.904790	$0.000\ 163$
10	$1436.792\ 312$	$0.000\ 433$		
11	$1436.632\ 623$	$0.000\ 503$	1440.207556	0.000~369
12	1436.471991	$0.000\ 022$	$1440.357\ 751$	-0.000 110

131436.310859-0.0005651440.508011-0.000 118 $1436.150\,374$ $-0.000\ 111$ 1440.657831-0.00016014151435.988914-0.000237 $1440.807\,234$ -0.00020916 $1435.827\,235$ $-0.000\ 186$ $1440.956\ 492$ $0.000\ 007$ 17 $1435.665\,027$ -0.000269 $1441.105\ 264$ $0.000\ 148$ -0.000314 $1441.253\ 452$ $0.000\ 119$ 18 $1435.502\,460$ 191435.339448-0.0004061441.401091 -0.000045-0.00040320 $1435.176\,133$ 1441.5485670.00004421 $1435.012\,339$ -0.0004811441.6955690.00007622 $1434.848\,288$ -0.000417 $1441.842\ 016$ -0.00002923 $1434.683\,830$ -0.000360 $1441.988\ 196$ 0.0000191442.134321 $0.000\ 432$ 241434.518675-0.00060025-0.0006071434.35335326 $1434.187\,523$ -0.000721 $1442.423\,282$ -0.00076627 $1434.021\,417$ -0.000710 $1442.568\ 158$ -0.000336-0.000761 $1442.712\ 204$ -0.000313281433.85484929 $1433.688\,067$ -0.0006251442.855 897 -0.000220301433.520964-0.0004101442.999 209 -0.00008531 $1433.353\,107$ -0.0005501443.142 023 -0.00002532 $1433.185\,201$ -0.000340 $1443.284\,281$ -0.000099331433.016716-0.0003111443.426082-0.000208-0.000197-0.000220341432.8479201443.567 559 351432.678758-0.0000521443.708 810 -0.00003936 $1432.508\,911$ $-0.000\ 200$ $1443.849\,106$ -0.00039637 $1432.339\,249$ $0.000\ 230$ 0.00028938 $1432.168\,827$ 39 $1\,431.998\,221$ 0.00055140 $1431.827\,505$ $0.001\,087$ 1444.408 198 0.0002170.000675 $1444.546\ 675$ 0.00009341 1431.65545942 $1431.483\,464$ 0.000691 $1444.685\ 185$ $0.000\ 402$ 43 $1431.310\,880$ 0.0004931444.822757 $0.000\ 170$ 44 $1431.138\,040$ $0.000\ 408$ 1444.960 456 0.0004560.0005661445.0970980.000072451430.96507846 $1430.791\,402$ 0.000371 $1445.233\,885$ $0.000\ 213$ 0.00043947 $1430.617\,634$ 1445.370 335 0.0003930.000533 $1445.506\ 197$ 48 $1430.443\,542$ $0.000\,353$ 49 $1430.268\,799$ $0.000\ 319$ $1445.641\,973$ 0.000589 $1430.094\,270$ 1445.77756050 $0.000\,655$ 0.000 989 $1429.918\,956$ 510.000536 $1429.743\,910$ $0.001\,008$ 521446.178991-0.00109953 $1429.567\,871$ $0.000\ 801$ 541429.3913100.000377 $1446.312\,972$ -0.000975 $1429.213\,827$ -0.0006721446.446753-0.00074355561429.036879-0.0008991446.579934-0.00081557 $1428.860\,242$ -0.000538 $1446.712\ 606$ $-0.001\ 110$ $1428.682\,878$ -0.000638 $1446.845\,009$ $-0.001\ 402$ 5859 $1428.505\,172$ -0.000826 $1446.978\,645$ -0.000201-0.00057260 $1428.327\,664$ 1447.110 466 -0.0005700.0002101447.242 544 -0.000452611428.150456621427.971654-0.0003851447.374752 0.00001263 $1427.793\,760$ $0.000\ 130$ 1447.507 809 $0.001\,523$ 64 $1427.615\,670$ $0.000\ 635$ 1447.641 338* $0.003\,688$ 65 $1427.438\,065$ 0.00179666 1427.261173* 0.003824

Fortsetzung Tabelle D.21

P-Zweig		R-Zweig		
$J^{\prime\prime}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0	·		·	
1				
2				
3				
4			$1439.142\ 405$	0.001295
5			1439.295735	$0.001\ 147$
6			$1439.448\ 397$	0.000~727
7	1437.269237	0.000570	$1439.600\ 771$	$0.000\ 414$
8	1437.110734	0.000659	1439.753048	$0.000\ 400$
9	1436.951328	0.000238	1439.904790	$0.000\ 248$
10	$1436.792\ 312$	$0.000\ 601$		
11	1436.632623	$0.000\ 685$		
12			1440.357751	-0.000 090
13			$1440.508\ 011$	-0.000 133
14	$1436.150\ 374$	$0.000\ 118$	1440.657831	$-0.000\ 217$
15	1435.988914	$0.000\ 007$	1440.807234	-0.000 318
16	1435.827235	0.000073	$1440.956\ 492$	$-0.000\ 164$
17	1435.665027	0.000004	$1441.105\ 264$	-0.000 095
18	$1435.502\ 460$	-0.000029	$1441.253\ 452$	-0.000 209
19	$1435.339\ 448$	$-0.000\ 112$	1441.401091	$-0.000\ 471$
20	$1435.176\ 133$	$-0.000\ 102$	1441.548567	-0.000 494
21	$1435.012\ 339$	$-0.000\ 175$	$1441.695\ 569$	-0.000 590
22	1434.848288	-0.000 111	$1441.842\ 016$	-0.000 838
23	1434.683830	-0.000057	$1441.988\ 196$	-0.000951
24	$1434.518\ 675$	-0.000 306	1442.134321	-0.000 718
25	1434.353353	$-0.000\ 327$	$1442.279\ 608$	-0.000 920
26	1434.187523	-0.000 461	1442.424853	-0.000764
27	$1434.021\ 417$	-0.000478	$1442.569\ 992$	$-0.000\ 312$
28	1433.854849	-0.000563	$1442.714\ 411$	-0.000 181
29	1433.688067	-0.000 469	1442.858146	-0.000 334
30	1433.520964	-0.000 306	1443.001770	$-0.000\ 201$
31	$1433.353\ 107$	-0.000 506	$1443.145\ 173$	$0.000\ 109$
32	$1433.185\ 201$	-0.000 366	1443.287913	$0.000\ 150$
33	$1433.016\ 716$	-0.000418	1443.429756	$-0.000\ 312$
34	1432.847920	-0.000 396	1443.571780	-0.000 202
35	1432.678758	-0.000 356	1443.712734	-0.000774
36	$1432.508\ 911$	-0.000621	1443.855065	$0.000\ 418$
37	1432.339249	-0.000323	1443.995678	$0.000\ 274$
38	$1432.168\ 827$	-0.000410	$1444.136\ 250$	$0.000\ 468$
39	1431.998221	-0.000310	$1444.275\ 978$	$0.000\ 194$
40	$1431.827\ 505$	0.000048	$1444.415\ 715$	$0.000\ 300$
41	$1431.655\ 459$	-0.000 560	1444.554677	$-0.000\ 002$
42	1431.485336	0.001114	1444.694262	$0.000\ 680$
43	$1431.313\ 175$	0.001104	$1444.833\ 101$	$0.000\ 971$
44	$1431.140\ 592$	0.001020	$1444.970\ 591$	0.000263
45	$1430.967\ 724$	0.000994		
46	1430.794346	0.000~794		
47	1430.621055	0.001010	1445.383791	$0.000\ 896$
48	$1430.447\ 484$	0.001267	$1445.520\ 552$	0.000~783
49	$1430.273\ 015$	$0.000\ 940$	$1445.657\ 488$	$0.001\ 156$
50	1430.098504	$0.000\ 876$		
51	1429.924207	0.001321		
52			1446.064026	-0.000238
53	$1429.573\ 846$	0.001288	1446.199060	-0.000 632

Tabelle D.22 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_3 + 2\nu_7)^{2f} - (2\nu_7)^{2f}$ von NCCNO.

Fortsetzung Tabelle D.22								
54	1429.397162	$0.000\ 168$	1446.334289	-0.000578				
55	1429.220967	$-0.000\ 212$	$1446.469\ 027$	-0.000775				
56	1429.044924	$-0.000\ 203$	$1446.603\ 640$	$-0.000\ 872$				
57	1428.868625	-0.000227	$1446.737\ 933$	-0.001078				
58	1428.692049	$-0.000\ 318$	$1446.872\ 409$	-0.000 908				
59	1428.515181	-0.000509	$1447.006\ 646$	-0.000800				
60	1428.338263	-0.000573	$1447.139\ 998$	$-0.001\ 419$				
61	1428.161039	-0.000784	$1447.273\ 721$	-0.001528				
62	1427.983393	-0.001276	$1447.407\ 965$	-0.000997				
63	1427.806686	-0.000 709	$1447.542\ 080$	-0.000498				
64	1427.629695	$-0.000\ 325$	$1447.677\ 337$	0.001218				
65	1427.453195	$0.000\ 628$	$1447.812\ 722^*$	$0.003\ 112$				
66	1427.276819	0.001761	$1447.947\ 800^*$	0.004~726				
67	1427.101146^*	$0.003\ 629$						

P-Zweig			R-Zweig			
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$		
0						
1						
2						
3						
4						
5						
6						
7	1420.970956	$0.000\ 280$				
8	1420.814988	$-0.000\ 185$				
9	1420.659663	$0.000\ 182$				
10	1420.503904	$0.000\ 304$				
11	1420.347293	-0.000236				
12	1420.191165	$-0.000\ 104$				
13	1420.034730	-0.000 089				
14	$1419.878\ 008$	$-0.000\ 173$				
15	1419.721297	$-0.000\ 056$				
16	$1419.564\ 197$	$-0.000\ 139$				
17	1419.407003	$-0.000\ 127$				
18	$1419.249\ 721$	-0.000015				
19	$1419.092\ 003$	$-0.000\ 149$				
20						
21	$1418.776\ 315$	$-0.000\ 103$				
22	$1418.618\ 303$	$0.000\ 035$	$1425.547\ 413$	$0.000\ 368$		
23	1418.459829	-0.000 100	1425.697188	$0.000\ 579$		
24	1418.301 129	-0.000 272	1425.846042	$0.000\ 064$		
25	1418.142 539		1425.995547	0.000 394		
26	1417.983.621	-0.000 158	1426.144 410	0.000 277		
27	1417.824 542	-0.000 142	1426.292 788	-0.000 130		
28	1417.665 263	-0.000 138	1426.441 862	0.000 355		
29	1417.505675	-0.000 255	1426.590 243	0.000 342		
30 91	1417.340.103		1420.737870	-0.000 229		
01 20	1417.100200 1417.026204		1420.880 220	0.000125 0.000051		
32 33	1417.020.204		1427.033.938	0.000.018		
34	1410.300079 1416705741		1427.101 490	0.000 018		
35	1416 544 962	-0.000.170	1427.529 127	-0.000.325		
36	1416 384 289	-0.000 170	1427,470,011 1427,623,339	0.000.180		
37	$1416\ 223\ 367$	0.000 0 13	1427.770.247	0.000 268		
38	1416.062.031	-0.000.150	1427.917.019	0.000.419		
39	1415.900760	-0.000 058	1428.063316	0.000 294		
40	1415.739156	-0.000 111		0.000 20 2		
41	1415.577415	-0.000111	$1428.355\ 359$	$0.000\ 088$		
42	1415.415468	$-0.000\ 127$				
43	$1415.253\ 383$	-0.000091	$1428.646\ 672$	-0.000 050		
44	1415.091148	-0.000016				
45	$1414.928\ 566$	-0.000 098	$1428.937\ 410$	$0.000\ 039$		
46	$1414.765\ 785$	$-0.000\ 188$	$1429.082\ 589$	$0.000\ 194$		
47	$1414.602\ 959$	$-0.000\ 134$	1429.227579	0.000~362		
48	$1414.439\ 979$	-0.000042	1429.371872	$0.000\ 034$		
49	$1414.276\ 664$	-0.000 096	$1429.517\ 007$	$0.000\ 750$		
50	$1414.113\ 272$	$-0.000\ 035$	$1429.660\ 959$	$0.000\ 486$		
51	$1413.949\ 736$	$0.000\ 072$	1429.804093	-0.000 393		
52	$1413.785\ 649$	$-0.000\ 180$	$1429.948\ 376$	$0.000\ 081$		
53	1413.621659	$-0.000\ 144$	1430.091793	-0.000 108		

Tabelle D.23 Zugeordnete Rotations-Vibrations-Übergänge $(2\nu_4) - (GS)$ von NCCNO.

	Fo	rtsetzung Ta	belle D.23	
54	$1413.457\ 469$	-0.000 116	1430.235358	$0.000\ 056$
55	$1413.293\ 103$	-0.000073	$1430.378\ 639$	$0.000\ 140$
56	$1413.128\ 506$	-0.000 069	1430.521643	$0.000\ 153$
57	$1412.963\ 706$	$-0.000\ 075$	1430.663889	$-0.000\ 387$
58	$1412.798\ 636$	$-0.000\ 158$	$1430.807\ 110$	$0.000\ 255$
59	1412.633584	-0.000031	1430.949326	$0.000\ 098$
60	$1412.468\ 096$	$-0.000\ 147$	$1431.090\ 933$	-0.000460
61	$1412.302\ 557$	$-0.000\ 120$	$1431.233\ 150$	$-0.000\ 201$
62	$1412.136\ 755$	$-0.000\ 162$	1431.375227	$0.000\ 127$
63	$1411.970\ 889$	$-0.000\ 075$	$1431.516\ 796$	$0.000\ 156$
64	1411.804942	$0.000\ 126$	$1431.658\ 262$	$0.000\ 292$
65	$1411.638\ 532$	$0.000\ 059$		
66	1411.471751	$-0.000\ 184$	$1431.940\ 162$	$0.000\ 161$
67	$1411.305\ 060$	$-0.000\ 141$		
68	$1411.138\ 215$	-0.000056		
69	1410.971037	$-0.000\ 109$		
70	1410.803780	-0.000043		
71	$1410.636\ 403$	$0.000\ 100$		
72	$1410.468\ 637$	$0.000\ 052$		
73	$1410.300\ 814$	$0.000\ 144$		

P-Zweig R-Zweig $\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$ $\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$ J'' $(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$ $(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$ 0 1 23 1432.027 186 0.0007034 $1431.870\ 455$ -0.0002625 $1431.714\,314$ -0.0003466 $1431.558\ 437$ $0.000\,126$ 7 1431.401791 $0.000\ 120$ 1433.722 120 $0.001\,484$ 8 $0.000\,378$ $1433.873\,635$ 0.000741 $1431.245\ 118$ 9 1431.087 473 -0.0000451434.0257190.000861101430.929964-0.0000401434.176789 $0.000\ 260$ 11 1434.327780 -0.000126-0.000389121430.613715 1434.478 850 -0.00013813 $1430.455\ 458$ -0.0002601434.629497-0.00028014 $1430.296\,903$ -0.000138 $1434.780\ 167$ $-0.000\ 104$ 15 $1430.137\,922$ $-0.000\ 152$ $1434.930\ 435$ -0.0000351429.978751 -0.000064 $1435.080\ 030$ 16-0.0003441429.819 326 0.0000601435.230 149 0.00016617181435.379698 $0.000\ 402$ 19 $1435.528\,684$ 0.000370201429.339 328 $0.000\ 454$ $1435.677\,234$ $0.000\ 198$ 211429.178 433 $0.000\,270$ $1435.825\ 440$ -0.000021221429.017039-0.0001211435.973821 $0.000\,230$ 231436.121195-0.00022824 $1428.694\,570$ 0.000286 $1436.268\ 893$ -0.00006625 $1428.532\ 138$ -0.0002721436.415947-0.0002501428.369990-0.0002551436.56274426-0.000394271428.207 618 -0.0001721436.709 181 -0.000 600 281428.044960-0.000084 $1436.855\,249$ -0.000878291427.881930 -0.000078 $1437.001\,538$ -0.000 636 1427.718 451 -0.000231 $1437.148\ 010$ 0.00008730 $1427.554\ 601$ $1437.293\ 395$ -0.000464 $0.000\ 021$ 31321427.390 875 -0.0002831437.438 122 -0.0004031427.227 009 0.000049-0.00013833 $1437.583\,240$ 34 $1427.062\ 454$ -0.000018 $1437.727\,925$ -0.00000735 $1426.897\,398$ -0.000296 $1437.872\ 013$ -0.0001741426.732536-0.00009036 $1438.016\ 057$ -0.000085371426.567 272 0.000005 $1438.159\ 622$ -0.000176 $1426.401\ 435$ $1438.303\,267$ $0.000\ 113$ 38-0.000184391426.235 687 0.000006-0.00003440 $1426.069\ 149$ -0.000304 $1438.588\ 932$ $1425.902\ 775$ 41-0.000161 $1438.731\,382$ -0.000041421425.736048-0.0000811438.873354-0.00022543 $1425.568\,951$ -0.000083 $1439.015\ 358$ -0.00007744 $1425.401\,601$ -0.000048 $1425.233\ 745$ -0.000230 $1439.298\,564$ $0.000\ 316$ 45 $1425.065\,980$ -0.0000331439.439528 $0.000\,324$ 461424.897831 0.000 069 1439.579725 $-0.000\ 135$ 47-0.000063481424.729 160 1439.720379 0.000162491424.560094-0.0003031439.860 593 $0.000\ 319$ 50 $1424.391\,254$ -0.000030 $1440.000\ 301$ $0.000\ 270$ 51 $1424.221\,920$ 0.0000371440.139541 $0.000\ 052$ 52 $1424.052\ 187$ -0.000009 $1440.278\,909$ 0.000261

Tabelle D.24 Zugeordnete Rotations-Vibrations-Übergänge $(2\nu_4 + \nu_7)^{1e} - (\nu_7)^{1e}$ von NCCNO.

	For	rtsetzung Tal	oelle D.24	
53	1423.882232	$0.000\ 009$	1440.417817	0.000309
54	1423.711938	-0.000026	$1440.556\ 118$	0.000049
55	1423.541383	-0.000037		
56	$1423.370\ 608$	$0.000\ 016$	$1440.832\ 543$	0.000245
57	$1423.199\ 532$	$0.000\ 053$		
58	$1423.028\ 079$	$-0.000\ 005$		
59	$1422.856\ 588$	$0.000\ 183$	$1441.244\ 487$	0.000074
60	1422.684626	$0.000\ 181$	$1441.381\ 484$	0.000292
61	$1422.512\ 440$	$0.000\ 236$	$1441.518\ 682$	0.001005
62	$1422.340\ 182$	$0.000\ 500$		
63	1422.167032	$0.000\ 151$		
64	1421.993865	0.000064		
65	1421.821130	$0.000\ 687$		
66	$1421.646\ 829$	$0.000\ 019$		
67	1421.473048	$0.000\ 148$		
68	$1421.298\ 758$	$0.000\ 041$		
69	$1421.124\ 442$	$0.000\ 182$		
70	1420.949524	-0.000008		
71	1420.774521	$-0.000\ 012$		
72	$1420.599\ 257$	-0.000 009		
73	1420.423780	$0.000\ 049$		
74	$1420.247\ 707$	-0.000223		
75	1420.071681	$-0.000\ 184$		
76	$1419.895\ 271$	-0.000266		
77	$1419.718\ 675$	-0.000274		
78	1419.541938	$-0.000\ 163$		
79	1419.364748	-0.000249		
80	$1419.187\ 249$	-0.000 390		
81	$1419.009\ 536$	-0.000491		
82	$1418.832\ 018$	$-0.000\ 148$		
83	1418.653836	$-0.000\ 220$		
84	1418.474784	$-0.000\ 917$		
85	$1418.296\ 882$	$-0.000\ 221$		
86	$1418.117\ 747$	$-0.000\ 517$		
87	$1417.938\ 962$	$-0.000\ 227$		
88	$1417.760\ 208$	$0.000\ 330$		
89	$1417.580\ 735$	$0.000\ 399$		
90	1417.401915	0.001350		

 Tabelle D.25
 Zugeordnete Rotations-Vibrations-Übergänge $(2\nu_4 + \nu_7)^{1f} - (\nu_7)^{1f}$ von NCCNO.

		P-Zweig		R-Zweig
J''	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{ u}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0				
1				
2				
3				
4				
5				
6				
7			1433.720947	$0.000\ 180$
8			1433.873635	$0.000\ 488$
9			1434.025719	$0.000\ 504$
10			1434.176789	$-0.000\ 181$
11			1434.327780	-0.000 632

	Fo	rtsetzung Ta	belle D.25	
12			$1434.478\ 850$	-0.000691
13			$1434.629\ 497$	-0.000860
14			$1434.780\ 167$	-0.000693
15			$1434.930\ 435$	-0.000613
16			$1435.080\ 030$	-0.000893
17			$1435.230\ 149$	-0.000 333
18			1435.379698	-0.000030
19	1429.489569	$0.000\ 440$	$1435.528\ 684$	$0.000\ 026$
20	1429.328345	$0.000\ 278$	1435.677234	-0.000039
21	$1429.167\ 111$	$0.000\ 415$	$1435.825\ 440$	$-0.000\ 132$
22	$1429.005\ 416$	$0.000\ 400$	1435.973821	$0.000\ 266$
23	1428.843353	$0.000\ 327$	1436.121195	$-0.000\ 027$
24			$1436.268\ 893$	$0.000\ 320$
25	$1428.518\ 625$	$0.000\ 505$	1436.415947	$0.000\ 340$
26	$1428.355\ 359$	$0.000\ 156$	$1436.562\ 744$	$0.000\ 419$
27	$1428.192\ 413$	$0.000\;437$	$1436.709\ 181$	$0.000\ 456$
28	$1428.028\ 627$	$0.000\ 186$	$1436.855\ 249$	$0.000\ 441$
29	1427.864671	$0.000\ 075$	$1437.000\ 238$	$-0.000\ 335$
30	$1427.700\ 468$	$0.000\ 025$	$1437.146\ 242$	$0.000\ 221$
31	1427.535895	-0.000 086	1437.291287	$0.000\ 137$
32	1427.371200	-0.000010	$1437.435\ 648$	$-0.000\ 314$
33	$1427.206\ 268$	$0.000\ 138$	$1437.580\ 268$	$-0.000\ 188$
34	1427.041322	$0.000\ 580$		
35	$1426.875\ 100$	$0.000\ 054$	1437.868963	$0.000\ 474$
36	$1426.709\ 139$	$0.000\ 097$	1438.011915	$-0.000\ 113$
37	$1426.542\ 683$	-0.000047	$1438.155\ 461$	$0.000\ 212$
38	1426.375760	$-0.000\ 350$	$1438.298\ 321$	$0.000\ 169$
39	$1426.209\ 167$	$-0.000\ 017$	$1438.440\ 170$	-0.000568
40	1426.041824	$-0.000\ 126$	$1438.582\ 725$	-0.000280
41	$1425.874\ 418$	$0.000\ 008$	1438.724724	-0.000231
42	$1425.706\ 356$	$-0.000\ 208$	$1438.866\ 706$	$0.000\ 119$
43	$1425.538\ 157$	-0.000256	1439.007933	$0.000\ 030$
44	$1425.369\ 751$	$-0.000\ 206$	$1439.149\ 028$	$0.000\ 126$
45	1425.201048	$-0.000\ 148$	$1439.290\ 407$	$0.000\ 822$
46	1425.031923	$-0.000\ 209$	1439.429913	-0.000039
47	$1424.862\ 720$	-0.000045	$1439.569\ 923$	$-0.000\ 081$
48	1424.692712	-0.000 383		
49	1424.522851	-0.000273	1439.848988	-0.000 177
50	1424.352370	-0.000 483	1439.987 755	-0.000 521
51	1424.182.212	-0.000 071	1440.126 501	-0.000 574
52	1424.011 152	-0.000 262	1440.265777	0.000214
53	1423.840 079	-0.000 169	$1440.404\ 351$	0.000611
54 57	1423.668 690	-0.000 095	1 4 40 400 01 4	0.000.011
55	1423.496784	-0.000 245	1440.680.014	0.000844
56 57	1423.324 981	0.000 002	1440.816 905	0.000 480
57	1423.152575	-0.000 062	1440.953 370	-0.000.005
28 50	1422.980.014	0.000.009	1441.089.927	-0.000 094
59 60	1422.807.093	0.000.010	1441.220 126	
6U 61	1422.033859	-0.000.019	1441.302 575	0.000164
01 69	1422.400 427 1499 986 594	0.000.041	1441.497.970	-0.000 182
0⊿ 62	1422.200 004 1499 119 765	-0.000 078 0.000 207	1441.003 408	-0.000 141
00 64	1422.112700 1791 030 510	0.000 207 0.000 905		
65 65	1421,330,310 1491 769 096	0.000 400 0.000 910		
60 66	1421.703 930 1791 588 870	0.000.319		
00 67	1421.000 079	0.000 144		
68	1491 998 981			
60 69	1421 062 498	0.000 018		

F	Fortsetzung Tabelle D.25						
70	1420.886499	-0.000036					
71	1420.710260	-0.000071					
72	1420.533869	-0.000004					
73	1420.357181	0.000017					
74	1420.180157	-0.000050					
75	1420.002810	-0.000198					
76	1419.825430	-0.000139					
77	1419.647962	0.000066					

 Tabelle D.26
 Zugeordnete Rotations-Vibrations-Übergänge $(2\nu_4 + 2\nu_7)^{0e} - (2\nu_7)^{0e}$ von NCCNO.

 D.Z. siz
 B.Z. roig

		P-Zweig	$\operatorname{R-Zweig}$		
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0					
1					
2					
3					
4					
5			1453.273348	-0.001040	
6			$1453.427\ 213$	$-0.000\ 801$	
7			$1453.580\ 997$	-0.000340	
8			1453.734260	-0.000095	
9			$1453.886\ 917$	$-0.000\ 155$	
10			1454.039246	$-0.000\ 242$	
11			1454.191668	$0.000\ 064$	
12			1454.343689	$0.000\ 266$	
13			1454.495036	$0.000\ 091$	
14	1450.137839	$0.000\ 472$	$1454.646\ 397$	$0.000\ 225$	
15	1449.977233	$-0.000\ 082$	$1454.797\ 175$	$0.000\ 069$	
16	$1449.817\ 321$	$0.000\ 355$	1454.947830	$0.000\ 081$	
17	$1449.656\ 232$	$-0.000\ 088$	$1455.098\ 426$	$0.000\ 325$	
18	1449.495316	$-0.000\ 063$			
19	$1449.334\ 494$	$0.000\ 348$	$1455.398\ 037$	$0.000\ 091$	
20	$1449.172\ 843$	$0.000\ 223$	1455.547714	$0.000\ 273$	
21	$1449.010\ 839$	$0.000\ 034$	$1455.696\ 332$	$-0.000\ 322$	
22	1448.848943	$0.000\ 242$	$1455.845\ 850$	$0.000\ 263$	
23	$1448.686\ 859$	$0.000\ 548$	1455.994625	$0.000\ 383$	
24	$1448.523\ 603$	-0.000033	$1456.142\ 398$	-0.000223	
25	$1448.360\ 929$	$0.000\ 251$	1456.291093	0.000~368	
26	1448.197748	$0.000\ 309$	$1456.438\ 619$	$0.000\ 063$	
27	1448.034666	$0.000\ 745$	$1456.585\ 591$	-0.000526	
28	$1447.870\ 304$	$0.000\ 180$	$1456.732\ 771$	-0.000639	
29	$1447.706\ 376$	$0.000\ 324$	$1456.880\ 101$	$-0.000\ 334$	
30	$1447.542\ 080$	$0.000\ 375$			
31	$1447.377\ 376$	$0.000\ 291$	$1457.173\ 241$	-0.000449	
32	$1447.212\ 518$	$0.000\ 324$	$1457.319\ 449$	$-0.000\ 475$	
33			$1457.465\ 088$	-0.000 809	
34	1446.881697	$0.000\ 092$	1457.611295	$-0.000\ 315$	
35	$1446.715\ 925$	$0.000\ 016$			
36	$1446.549\ 918$	-0.000030			
37	1446.384037	$0.000\ 314$			

Fortsetzung Tabelle D.26							
38							
39	$1446.050\ 618$	$0.000\ 133$					
40	1445.884043	$0.000\ 569$					
41	1445.717371	$0.001\ 167$					
42							
43							
44			$1459.052\ 890$	-0.001815			
45			$1459.196\ 979$	-0.000646			
46			1459.339944	-0.000349			
47			$1459.483\ 120$	$0.000\ 411$			
48							
49			1459.764550^*	-0.002236			
50	$1444.197\ 886$	-0.001313	1459.907216	-0.001229			
51	$1444.027\ 622$	-0.001744	$1460.049\ 113$	-0.000737			
52	$1443.858\ 339$	-0.000939	$1460.190\ 698$	-0.000302			
53	$1443.688\ 339$	-0.000596	1460.331760	-0.000135			
54	$1443.517\ 731$	$-0.000\ 607$	1460.472526	-0.000006			
55	$1443.347\ 188$	$-0.000\ 297$	$1460.613\ 115$	0.000203			
56	$1443.176\ 545$	$0.000\ 169$	1460.754029	0.000998			
57	$1443.005\ 506$	$0.000\ 495$	$1460.892\ 881$	-0.000008			
58	1442.833687	$0.000\ 298$	$1461.032\ 768$	0.000284			
59			$1461.172\ 361$	0.000548			
60	$1442.490\ 183$	$0.000\ 812$	1461.311555	0.000681			
61	$1442.317\ 865$	$0.000\ 893$	$1461.450\ 544$	0.000880			
62	1442.144966	$0.000\ 654$	$1461.589\ 245$	0.001063			
63	$1441.972\ 135$	$0.000\ 747$	$1461.727\ 809$	0.001387			
64	$1441.799\ 112$	$0.000\ 912$	$1461.866\ 080$	0.001697			
65			$1462.004\ 286^*$	0.002227			
66			$1462.142\ 825^*$	0.003378			
67			1462.283234^*	0.006691			
68			$1462.422\ 238^*$	0.008897			
69							
70			1462.683645	-0.002376			
71			$1462.820\ 482$	-0.001408			
72			$1462.956\ 321$	-0.001116			
73			$1463.092\ 130$	-0.000522			
74			1463.227036	-0.000492			
75			$1463.362\ 257$	0.000203			
76			1463.496998	0.000776			
77			1463.631844^*	0.001823			
78			$1463.767\ 202^*$	0.003765			
79							
80							
81							
82			$1464.287\ 834^*$	-0.005183			
83			1464.421231^*	-0.003082			
84			1464.553868	-0.001267			
85			$1464.686\ 061$	0.000598			
86			$1464.816\ 435$	0.001160			

P-Zweig R-Zweig $\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$ $\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$ $(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$ J'' $(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$ 0 1 $\mathbf{2}$ 3 4 51452.3131140.0002836 1452.1553370.00004171451.997424 0.000004 $0.000\,147$ 8 $1451.839\,350$ $1454.483\,232$ $0.000\,631$ 9 1451.6807110.0000691454.635168 $0.000\,178$ 101451.521478-0.000258 $1454.786\ 824$ -0.000197 $1451.362\,253$ 11 -0.0002301454.938659-0.000032121451.202814 -0.000067-0.0001651455.089831 13 $1451.043\,016$ 0.000088 $1455.240\ 736$ -0.00019714 $1455.391\,637$ $0.000\ 140$ 15 $1450.721\,238$ -0.000716 $1455.541\ 701$ $0.000\,017$ 161450.560967 0.000039 $1455.691\,873$ 0.0003831450.3996630.000559170.0001261455.841469 $1450.237\,873$ 0.0004950.00009418 $1455.990\ 434$ 191450.075347-0.0003011456.138 759 $0.000\,188$ 20 $1449.913\,205$ 0.000063 $1456.286\ 256$ -0.000545211449.750458 $0.000\,203$ 1456.433856-0.00076822 $1449.587\,501$ 0.000518 $1456.581\,952$ -0.000081231449.422437 -0.0008841456.728 959 -0.000064241449.259058-0.000205 $1456.875\ 516$ -0.000070251449.094736-0.000069 $1457.021\,519$ -0.000 198 261448.929847-0.000094 $1457.167\ 296$ $-0.000\ 113$ 271448.764651-0.000014 $1457.312\ 446$ -0.000208281448.598928-0.000042 $1457.457\ 115$ -0.000331291448.4331700.000318 $1457.601\,781$ $0.000\,004$ 301448.265535-0.000768 $1457.745\ 628$ -0.00001231 $1448.099\,335$ $0.000\,018$ $1457.889\ 267$ $0.000\ 241$ 321447.932133 0.000246 $1458.032\ 441$ 0.000513331447.7640250.000020341447.596263 0.000599 1458.3167920.0005473536 $1447.258\,240$ $0.000\,663$ 371458.738766 -0.00011038 $1458.878\,558$ -0.00013339 $1459.018\ 172$ 0.00021240 $1459.295\ 123$ 0.0003054142 $1459.432\ 911$ 0.000525431459.705 246 44-0.000503 $1459.841\,270$ -0.0002514546 $1459.976\ 611$ -0.000061471460.110967-0.00022348 $1460.244\,934$ -0.00012849 $1460.378\,083$ -0.00019350 $1460.510\ 873$ 0.00005451 $1460.643\,208$ 0.000530521460.775 303* 0.001465531460.907 826* 0.003539

Tabelle D.27 Zugeordnete Rotations-Vibrations-Übergänge $(2\nu_4 + 2\nu_7)^{2e} - (2\nu_7)^{2e}$ von NCCNO.

P-Zweig R-Zweig $\tilde{\nu}_{obs}/\,{\rm cm}^{-1}$ $\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$ J'' $(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$ $(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$ 1 $\mathbf{2}$ 3 $\mathbf{4}$ 51452.3131140.0005046 1452.1553370.000 269 7 1451.9974240.0002388 $1451.839\,350$ 0.0003869 1451.680711 $0.000\ 310$ 1454.635168 $0.000\ 312$ 101451.521478-0.000019 $1454.786\ 824$ $-0.000\ 110$ 11 $1451.362\,253$ 0.0000011454.938659-0.0000071451.202814 -0.000222120.0001481455.08983113 $1451.043\,016$ 0.000278 $1455.240\ 736$ -0.000356141450.8826730.000205 $1455.391\,637$ -0.00014815 $1450.721\,238$ -0.000617 $1455.541\ 701$ -0.000428161450.560967 $1455.691\,873$ -0.0002520.000067171450.3996630.0000621455.841469-0.00030218 $1450.237\,873$ -0.000086 $1455.990\ 434$ -0.000632191450.075347-0.0006251456.138 759 -0.00125120 $1449.913\,205$ -0.000435 $1456.288\,362$ -0.000240211449.750458 -0.0005041456.436236-0.00060422 $1449.587\,501$ -0.0004381456.5855910.000 866 231449.424570 0.0000011456.7327710.000517241449.2615270.000675 $1456.880\ 101$ 0.000673251449.0967930.000 006 0.000535261448.932758 $1457.173\ 241$ $0.000\,384$ 271448.767909 0.0002971457.319 449 0.000641281448.6028540.0003531457.465 088 0.00053729 $1448.437\,217$ 0.000177 $1457.611\,295$ 0.001361301448.2712570.000028 $1457.755\ 144$ $0.000\,187$ 31 $1448.105\,025$ $1457.899\ 647$ -0.000042 $0.000\ 028$ 321447.937858 -0.0006960.0003051458.044 225 331447.771161 -0.000528 $1458.187\,350$ -0.00050834 $1447.604\,424$ -0.0000491458.331097-0.00033735 $1458.474\,630$ -0.00001636-0.000954 $1458.616\ 542$ 371447.100814 $0.000\ 103$ 1458.759671-0.0003111446.931556-0.000530 $1458.902\ 438$ $0.000\,334$ 38391446.762808 -0.0003001459.043 499 -0.000363401446.593229-0.000550 $1459.185\ 293$ 0.000036411446.424026-0.000071 $1459.327\,396$ $0.001\,108$ 421446.254388 $0.000\,324$ 1459.4671910.000234431459.608 180 $0.000\,918$ 441459.745 607* -0.00159945 $1459.885\,775$ -0.00101446 $1460.025\ 434$ -0.000577471460.164 477 -0.00039748 1460.303 096 -0.00028349 $1460.441\,243$ -0.00028550 $1460.579\ 115$ -0.00020751 $1460.716\ 672$ -0.00009152 $1444.535\,201$ $0.000\ 615$ $1460.853\,645$ -0.000209531444.3613010.0005481460.990 298 -0.000298

Tabelle D.28 Zugeordnete Rotations-Vibrations-Übergänge $(2\nu_4 + 2\nu_7)^{2f} - (2\nu_7)^{2f}$ von NCCNO.

Fortsetzung Tabelle D.28								
54	1444.186878	0.000294	$1461.126\ 640$	-0.000352				
55	1444.012472	$0.000\ 389$	$1461.262\ 801$	-0.000245				
56	1443.837580	$0.000\ 328$	$1461.398\ 417$	-0.000343				
57	1443.662282	$0.000\ 187$	1461.533836	-0.000301				
58			$1461.669\ 122$	-0.000060				
59			1461.804307	0.000409				
60			$1461.940\ 024^*$	0.001734				

Anhang E

EXPERIMENTELLE DATEN ZU KAPITEL 6

Alle experimentellen Daten zu Kapitel 6, zu den spektroskopischen Untersuchungen am Oxetan im spektralen Bereich um 3 000 cm⁻¹, sind auf der beigefügten *Compact Disc* unter Oxetan.a.zip abgespeichert. Dieses File wurde mit dem Programm WinZIP 5.6 für Windows/NT erstellt. Die verschiedenen Dateien sind in den Verzeichnissen FTIR/Zelle/Oxetan/ BG (Hintergrundspektren), Meas (Meßblöcke), Calib (Kalibration), Doc (Datendokumentation), Peakl (Peaklisten) und TFILE (Transmissionsfiles) abgespeichert. Die aufgenommenen FTIR-Spektren im OPUS-Format befinden sich in dem Verzeichnis FTIR/Zelle/Oxetan/TFILE bzw. FTIR/Jet/Oxetan/TFILE. Das Transmissionsspektrum der Messung, die mit der 3 m-Zelle durchgeführt wurde, trägt die Bezeichnung ZTJETAIS.1, wohingegen das der Messung an dem Oxetan-Molekularstrahl die Bezeichnung ZTJETAIS.1 besitzt. In der Tabelle E.1 sind die Dateien der einzelnen Meßserien an Oxetan aufgeführt. In der Tabelle E.2 sind die Transmissionsfiles und Angaben über die Kalibration zusammengestellt. Die mit der Spektroskopiesoftware HILRAPSS99 erstellten Linienlisten im Bereich zwischen 2915 und 2942 cm⁻¹ tragen die Bezeichnungen oxetanjet1.txt bis oxetanjet3.txt und befinden sich in dem Verzeichnis HILRAPSS/Oxetan.

Die zur Anpassung der spektroskopischen Konstanten mit dem Programm Awat erstellte Eingabedatei v8+vrp.in und die dazugehörige Ausgabedatei v8+vrp.out befindet sich im Verzeichnis Dissertation/Oxetan.

Sämtliche aus den Molekularstrahlmessungen gewonnenen experimentellen Übergangswellenzahlen $\tilde{\nu}_{obs}$ des Rotations-Puckering-Schwingungs-Überganges ($\nu_8 + \nu_{rp}$) – (GS) sind in der nun folgenden Tabelle zusammengestellt, wobei immer auch deren Abweichungen von den berechneten Übergangswellenzahlen ($\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$) angegeben sind, wie sie sich aus den mit AWAT bestimmten spektroskopischen Konstanten in den Tabellen 6.14 und 6.19 ergeben. Ein Asterix hinter einer

Substanz	Meßbereich /cm ⁻¹	Scans pro Block	Zahl der Blöcke	Auflösung	P /mhar	Dateiname	Messung
	/ СШ	pro block	DIOCKE	/011	/ 1110/11		
Oxetan	2750-3100	4	1	0.004	280	JETAI.3	Jet
Oxetan	2750-3100	4	1	0.004	250	JETAL.1	Jet
Oxetan	2750-3100	8	1	0.004	250	JETAL.2	Jet
Oxetan	2750-3100	4	1	0.004	250	JETAL.3	Jet
Oxetan	2750-3100	8	2	0.004	250	JETAL.4-5	Jet
Oxetan	2750-3100	6	1	0.004	250	JETAL.6	Jet
Oxetan	2750-3100	4	1	0.004	250	JETAL.7	Jet
Oxetan	2750-3100	4	1	0.004	250	JETAM.2	Jet
Oxetan	2750-3100	30	2	0.004	250	JETAI.1-2	Zelle

Tabelle E.1 Die verschiedenen Meßblöcke der FTIR-Messungen an Oxetan.

Messung	Meßbereich	S cans	Single-Beam-	Transmissions-	Kalib.	Kalib	BG-
	$/\mathrm{cm}^{-1}$		$\operatorname{Spektren}$	file		messung	File
Oxetan-	$2\ 750\ -3\ 100$	50	JETAI.3	ZTJETALS.1	OCS (extern)	ZTJETAN.1	JETALB.1
Jet			JETAL.2-7				
			JETAM.2				
Oxet an-	$2\ 750\ -\ 3\ 100$	60	JETAI.1-2	ZTJETAIS.1	OCS (extern)	ZTJETAN.1	JETAIB.1
Zelle							

 ${\bf Tabelle \ E.2} \ {\rm Zusammenstellung \ der \ verschiedenen \ Transmissionsfiles \ von \ Oxetan.}$

Abweichung deutet an, daß der betreffende Übergang bei der Anpassung der Konstanten nicht berücksichtigt wurde.

J'	K_a'	K_c'	\leftarrow	J''	$K_a^{\prime\prime}$	K_c''	$\tilde{\nu}_{obs.}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
					$^{Q}P_{K}$, mit	$\Delta K_a = -1$	
1	1	0	\leftarrow	2	2	0	2927.553298	-0.000 240
2	2	0	\leftarrow	3	3	0	$2926.758\ 450$	$0.000\ 019$
3	3	0	\leftarrow	4	4	0	2925.962433	$0.000\ 713$
4	4	0	\leftarrow	5	5	0	2925.162843	$-0.000\ 234$
5	5	0	\leftarrow	6	6	0	2924.362672	$0.000\ 312$
6	6	0	\leftarrow	7	7	0	2923.560158	$0.000\ 475$
7	7	0	\leftarrow	8	8	0	2922.755582	$0.000\ 155$
8	8	0	\leftarrow	9	9	0	2921.950542	$0.000\ 402$
9	9	0	\leftarrow	10	10	0	2921.144414	$0.000\ 016$
10	10	0	\leftarrow	11	11	0	2920.336682	$-0.002\ 001$
11	11	0	\leftarrow	12	12	0	2919.529467	-0.003884
1	0	1	\leftarrow	2	1	1	2927.565440	$0.000\ 199$
1	1	1	\leftarrow	2	2	1	2927.546132	$0.001\ 720$
2	1	1	\leftarrow	3	2	1	2926.775976	$-0.000\ 518$
2	2	1	\leftarrow	3	3	1	2926.745031	$-0.000\ 149$
3	2	1	\leftarrow	4	3	1	2925.987294	$0.000\ 164$
3	3	1	\leftarrow	4	4	1	2925.945755	$0.000\ 373$
4	3	1	\leftarrow	5	4	1	2925.196721	$-0.000\ 304$
4	4	1	\leftarrow	5	5	1	2925.144671	-0.000266
5	4	1	\leftarrow	6	5	1	2924.406390	$0.000\ 399$
5	5	1	\leftarrow	6	6	1	2924.344195	$0.000\ 327$
6	5	1	\leftarrow	7	6	1	2923.614206	$0.000\ 375$
6	6	1	\leftarrow	7	7	1	2923.541286	$-0.000\ 879$
7	7	1	\leftarrow	8	8	1	2922.741495	$0.001\ 600$
7	6	1	\leftarrow	8	7	1	2922.820468	$0.000\ 183$
8	8	1	\leftarrow	9	9	1	2921.937966	$0.000\ 810$
8	7	1	\leftarrow	9	8	1	2922.023956	$-0.001\ 156$
9	9	1	\leftarrow	10	10	1	2921.134130	$0.000\ 061$
9	8	1	\leftarrow	10	9	1	2921.228118	$0.000\ 046$
10	10	1	\leftarrow	11	11	1	2920.329603	$-0.001\ 209$
10	9	1	\leftarrow	11	10	1	2920.430927	0.001935
11	10	1	\leftarrow	12	11	1	2919.628148	$0.000\ 312$
11	11	1	\leftarrow	12	12	1	2919.529477	$0.001\ 909$
12	11	1	\leftarrow	13	12	1	2918.824964	$0.000\ 200$
12	12	1	\leftarrow	13	13	1	2918.723213	-0.001289
13	12	1	\leftarrow	14	13	1	2918.021794	$0.001\ 595$
2	0	2	\leftarrow	3	1	2	2926.764607	$-0.000\ 859$
2	1	2	\leftarrow	3	2	2	2926.764607	0.001022
3	1	2	\leftarrow	4	2	2	2925.974437	$0.000\ 481$
3	2	2	\leftarrow	4	3	2	2925.969564	$0.000\ 290$
4	2	2	\leftarrow	5	3	2	2925.184738	0.001097
4	3	2	\leftarrow	5	4	2	2925.175190	$0.000\ 753$
5	3	2	\leftarrow	6	4	2	2924.394306	$-0.000\ 329$
5	4	2	\leftarrow	6	5	2	2924.379251	$0.000\ 245$
6	4	2	\leftarrow	7	5	2	2923.605692	-0.001093
6	5	2	\leftarrow	7	6	2	2923.583677	$0.000\ 740$
7	5	2	\leftarrow	8	6	2	$2922.820\ 468$	$0.000\ 744$
7	6	2	\leftarrow	8	7	2	2922.786896	$0.000\ 728$

For	tsetzu	ing [Tabel	le E.3				
8	6	2	\leftarrow	9	7	2	2922.032915	$0.000\ 059$
8	7	2	\leftarrow	9	8	2	$2921.988\ 095$	-0.000 590
9	7	2	\leftarrow	10	8	2	$2921.245\ 095$	-0.000508
9	8	2	\leftarrow	10	9	2	2921.191374	$0.000\ 907$
10	8	2	\leftarrow	11	9	2	$2920.456\ 657$	$-0.000\ 807$
10	9	2	\leftarrow	11	10	2	$2920.391\ 497$	-0.000068
11	9	2	\leftarrow	12	10	2	2919.668655	0.000588
3	Ő	3	←	4	1	3	2925.974437	-0.000277
3	1	3	←	4	2	3	2925.974437	-0.000 197
4	1	3	←	5	2	3	2925.180654	-0.000702
4	2	3	←	5	3	3	2925.180654	-0.000420
5	2	3	. ←	6	3	3	2924.386 941	-0.001 312
5	-3	3	←	6	4	3	2924.386 941	-0.000 562
6	3	3	`. ←	7	4	3	2923 594 825	-0.000.762
6	4	3	`. ←	7	5	3	2923.594.825	0.000.917
7	4	3	`. ←	8	5	3	2922 805 269	0.0000011
7	5	3	`. ←	8	6	3	2922 800 819	0.000.580
8	5	3	`. ←	g	6	3	2922 011 599	-0.000.819
8	6	3	Ļ	à	7	3	2922.011.039	0.000 600
q	6	3) 	10	7	3	2922.007 040	0.000 000
9 Q	7	२ २	<u> </u>	10	8	3 3	2921.222.055	0.000 203
9 10	7	3	~	11	8	3	2921.213 007	0.000 005
10	8	3	~	11	0	3	2920.433 813	0.000 130
11	8	ე ვ	~	11 19	9	3 3	2920.420 194	0.002.004
11	0	ე ვ		12	9 10	2		0.002.008
19	9	3	~	12	10	3	2919.023.074	0.000 010
12	9 10	2 2	<u>,</u>	12	11	2	2918.800 000	0.000 494
12	10	3	~	14	11	3		0.000720
13	11	3	~	14	11 19	3	2918.074 421	-0.000 414
10	0	3 4	~	5	12	3 1	2918.031752	-0.001193
	1	-	~	5	1 9	4	2925.104738 2025 184738	-0.001584
5	1	4		6	2	4	2920,104750	-0.001301
5	2	-	~	6	2	4	2924.391 184	-0.001395
6	2	-	<u>,</u>	7	2	4	2924.591 104	-0.001535
6	2	-	~	7	4	4	2923.599 410	0.000 551
7	3 3	-	~	8		4	2923.399 410	0.000 009
7	4	-	~	8	т 5	4	2922.805 269	-0.000031
8	т Л	- 1) 	a	5	- 1	2922.000 209	-0.000.303
8	5	- 1) 	a	6	- 1	2922.011 599	-0.000.049
q	5	т 1) 	10	6	т Л	2922.011 999	-0.000.850
9	6	-	~	10	7	4	2921.217 931	-0.000 300
9 10	6	-	~	11	7	4	2921.217 991	-0.000502
10	7	-	~	11	8	4	2920.424 493	-0.001 383
11	7	-	~	19	8	4	2920.424 495	-0.000 499
11	8	-	~	12	0	4	2919.039.280	0.001301 0.000133
19	8	-	~	12	9 0	4	2919.032.039	0.000133 0.001302
12 19	0	-± /	<u></u>	19 19	9 10	+ /	2018 827 015	-0.001.002
12 19	9 0	4 1		10 17	10	4 1	2910.037 913	0.001.000
10 19	9 10	4± 1	\leftarrow	14 17	10 11	4 1	2910,000 929 2018 040 479*	0.001.997
20 19	10	4 K		14 6	11 1	4 K	2910.0494/2 909/ 900 110	0.000292
ม เร	1	ט ג	~	6	1 9	J K	2924.099119	-0.000 279
U A	1 1	ม ร	~ ~	7	∠ ?	ม ร	2924.099 119 2924.099 119	-0.000 279 0.000 279
0 6	1 9	ม ร	~	1 7	∠ ૧	ט ג	2923.003.092 2923 605.609	0.000 200 0.000 200
U	<u> </u>	J	<u>،</u> –			J	2020.000 002	0.000 400

For	tsetz	zung	Tabe	elle E	.3			
7	2	5	\leftarrow	8	3	5	$2922.812\ 052$	$0.000\ 509$
7	3	5	\leftarrow	8	4	5	$2922.812\ 052$	$0.000\ 511$
8	3	5	\leftarrow	9	4	5	$2922.020\;448^*$	$0.002\ 75$
8	4	5	\leftarrow	9	5	5	$2922.020\;448^*$	$0.002\ 755$
9	4	5	\leftarrow	10	5	5	$2921.225\ 155$	$0.001\ 197$
9	5	5	\leftarrow	10	6	5	$2921.225\ 155$	0.001211
10	5	5	\leftarrow	11	6	5	$2920.430\ 927$	$0.000\ 537$
10	6	5	\leftarrow	11	7	5	$2920.430\ 927$	$0.000\ 572$
11	6	5	\leftarrow	12	7	5	2919.635280	-0.001768
11	7	5	\leftarrow	12	8	5	$2919.635\ 280$	-0.001688
12	7	5	\leftarrow	13	8	5	2918.841185^*	-0.002843
12	8	5	\leftarrow	13	9	5	2918.841185^*	-0.002673
13	8	5	\leftarrow	14	9	5	2918.049472	-0.001893
13	9	5	←	14	10	5	2918.049 472	-0.001 556
6	0	6	←	7	1	6	2923.614 206	0.000 313
6	1	6	←	7	2	6	2923 614 206	0.000.313
7	1	6	, L	8	2	6	2922 820 468	0.000.618
7	2	6	, L	8	3	6	2922.820.468	0.000.618
8	2	6	~	0	3	6	2922.020 400	0.000015
0	2	6		9	3 4	6	2922.027 392	0.001575
0	ა ე	6	<i>~</i>	9 10	4	6	2922.027.392	0.001 575
9	3 4	e e	,	10	4 E	0 C	2921.231 103	-0.000 085
9	4	0	<i>←</i>	10	0 0	0	2921.231 185	-0.000 684
8	1	(<i>←</i>	9	2	1	2922.032 915	-0.002 799
8	2	(\leftarrow	9	3	(2922.032.915	-0.002 799
				(Q–Zw	eig	Ubergänge	
				Q_{i}	Q_{K_c} :	mit	$\Delta K_a = \pm 1$	
1	0	1	\leftarrow	1	1	1	$2929.130\ 004$	$-0.000\ 854$
1	1	1	\leftarrow	1	0	1	2929.151652	$0.000\ 073$
2	1	1	\leftarrow	2	2	1	2929.111046	$0.001\ 432$
2	2	1	\leftarrow	2	1	1	$2929.171\ 191$	-0.000593
3	2	1	\leftarrow	3	3	1	$2929.075\ 463$	$-0.002\ 297$
5	4	1	\leftarrow	5	5	1	$2928.985\ 519^*$	$0.003\ 000$
6	6	1	\leftarrow	6	5	1	2929.354576	0.001606
7	6	1	\leftarrow	7	7	1	$2928.848\ 815$	0.001968
7	7	1	\leftarrow	7	6	1	$2929.424\ 472$	$0.002\ 017$
8	8	1	\leftarrow	8	7	1	$2929.499\ 113$	-0.001562
10	9	1	\leftarrow	10	10	1	$2928.580\ 109$	$0.000\ 736$
2	0	2	\leftarrow	2	1	2	2929.143831	0.001144
2	1	2	\leftarrow	2	0	2	2929.143831	$0.000\ 207$
3	1	2	\leftarrow	3	2	2	$2929.140\ 810$	0.000~749
3	2	2	\leftarrow	3	1	2	2929.143831	-0.000 900
4	2	2	←	4	3	2	2929.132.810	-0.001 628
4	3	2	←	4	2	2	2929.147 795	-0.000 571
5	3	2	, ←	5	4	2	2929 125 409	0.001.286
5	4	2	, L	5	3	2	2929 156 054	-0.000.195
6	4	2	`	6	5	2	2929.105.776	0.000 199
6	5	2	<u>,</u>	6	4	2	2929.103 170	-0.001 403
7	J K	∠ າ		7	н А	⊿ 9	2929.171 191 9090 001 969	0.000.819
1 0	0 6	∠ າ	<u></u>	1 0	7	∠ າ	2929,001,000 2020 072 102	-0.000 042 0.001 995
0 10	U O	4	← ,	0 10	1	2 9	2929.040 107 2020 210 027	0.000.200
0 10	9	2	<i>←</i>	-0 10	ð 1	2	2929.318 837 2020 147 705	0.000 398
చ ం	U 1	ა	<i>←</i>	ა ი	1	ა ი	2929.147 795	0.001.335
3	1	3	\leftarrow	3	0	3	2929.147.795	0.001 309
4	1	3	\leftarrow	4	2	3	2929.143831	-0.001 566

2 3 2929.143 831 -0.001 566 ... Fortsetzung auf der nächsten Seite

For	tsetzu	ing [Tabel	le E.3	}			
4	2	3	←	4	1	3	2929.143831	-0.001 751
5	2	3	←	5	3	3	2929.143831	-0.000 088
5	3	3	←	5	2	3	2929.143831	-0.000 826
6	3	3	←	6	4	3	2929.143831	0.002049
6	4	3	←	6	3	3	2929 143 831	-0.000.159
7	4	3	`. ←	7	5	3	2929 137 436	-0.001.116
7	5	3	Ļ	7	1	3	2929.107 100	-0.001210
8	5	3	Ļ	8	6	3	2929.139810	-0.000.742
8	6	3	2	8	5	3	2020.102.010	-0.000742
q	6	3) 	q	7	3	2929.145.001	-0.001708
à	7	3	Ļ	à	6	3	2929.147.795	-0.001.688
10	7	3	Ļ	10	8	3	2020.115360	0.001 369
10	8	3	~	10	7	3	2929.115.054	0.001309
11	8	3	~	11	0	3	2929.100 034	-0.001149
11	0	3	~	11	9	3	2929.090351	-0.000 220
1	9 1	1	~	1	0	1	2929.171191	0.000 332
	0	4	~		1	4	2929.151.652	0.000 478 0.000 479
5	0 9	4		5	1	4	2929.151052 2020 151652	0.000479 0.001654
0 E	1	4	,	0 E	1	4	2929.151.052	0.001004
0 6	1 9	4	,	0 6	2	4	2929.131032 2020 147705	0.001 000
6	ა ი	4	\leftarrow	6	2	4	2929.147795	
0 7	4	4	~	0	ა	4	2929.147795	-0.000 813
1	4	4	~	1	ა 4	4	2929.147795	0.000 073
(3	4	<i>~</i>	(4	4	2929.147790	0.000774
8	Э 4	4	<i>~</i>	8	4	4	2929.143831	-0.001 089
8	4	4	<i>~</i>	8	0 F	4	2929.143831	-0.001 384
9	0	4	<i>—</i>	9	Э С	4	2929.143831	-0.000 096
9	5	4	<i>~</i>	9 10	6	4	2929.143831	0.000694
10	í c	4	<i>←</i>	10	0	4	2929.143831	0.001 326
10	6	4	\leftarrow	10	7	4	2929.140810	$0.000\ 141$
11	8	4	<i>←</i>	11	(4	2929.140810	-0.000701
11	7	4	\leftarrow	11	8	4	2929.137436	-0.000 164
12	9	4	<i>←</i>	12	8	4	2929.140810	-0.000 528
12	8	4	\leftarrow	12	9	4	2929.132810	-0.000768
13	10	4	\leftarrow	13	9	4	2929.143831	0.001274
13	9	4	<i>←</i>	13	10	4	2929.130004	0.001940
14	10	4	<i>←</i>	14	10	4	2929.147795	0.001 821
14	10	4	<i>~</i>	14	11	4	2929.119270	-0.001 006
15	11	4	<i>~</i>	15	11	4	2929.131032	
10	11	4	<i>—</i>	10	12	4	2929.111040	0.001 895
10	13	4	<i>~</i>	10	12	4	2929.104983	0.000 991
5	1	5	<i>←</i>	5	1	5	2929.156.054	-0.001 205
5 C	0	5	<i>←</i>	5 C	1	5	2929.156.054	-0.001 205
0	2	5	<i>←</i>	0	1	5	2929.156.054	0.000 132
0	1	э -	<i>←</i>	0	2	э -	2929.150.054	$0.000\ 132$
1	ა ი	Э г	<i>~</i>	(2	Э г	2929.150.054	0.001 037
(2	5	\leftarrow	(ა ი	5	2929.156.054	0.001638
8	4	5	<u>←</u>	8	3	5	2929.151652	-0.001 117
8	3	5	<u>←</u>	8	4	5	2929.151652	-0.001 113
9	Ð ∡	5 F	<i>←</i>	9	4	5 F	2929.151652	0.000 648
9 10	4	5 F	<i>←</i>	9 10	5 	5 F	2929.101602	0.000 001
10	0	о г	÷	10	о С	о г	2929.147795	-0.001 300
10	э 7	о г	÷	10	0 C	о г	2929.147795	
11	1	Э	\leftarrow	11	U	Э	1919.141 (90	0.000 333

For	tsetzu	ıng	Tabel	le E.3				
11	6	5	\leftarrow	11	7	5	2929.147795	0.000639
12	8	5	\leftarrow	12	7	5	2929.143831	-0.001540
12	7	5	\leftarrow	12	8	5	2929.143831	-0.001288
13	9	5	\leftarrow	13	8	5	2929.143831	0.000276
13	8	5	\leftarrow	13	9	5	2929.143831	0.000842
14	10	5	\leftarrow	14	9	5	2929.140810	-0.001101
14	9	5	\leftarrow	14	10	5	2929.140810	0.000088
15	11	5	\leftarrow	15	10	5	2929.140810	0.000224
15	10	5	\leftarrow	15	11	5	2929.137436	-0.000783
16	11	5	\leftarrow	16	12	5	2929.137436	0.002128
16	12	5	\leftarrow	16	11	5	2929.140810	0.001017
17	12	5	\leftarrow	17	13	5	2929.132810	0.001106
17	13	5	←	17	12	5	2929.140810	0.000960
18	13	5	←	18	14	5	2929.125409	-0.001565
18	14	5	←	18	13	5	2929.140896	-0.000312
19	14	5	←	19	15	5	2929.121688	0.001204
19	15	5	←	19	14	5	2929.143831	-0.000672
$\frac{1}{20}$	15	5	←	20	16	5	2929.111.046	-0.000310
$\frac{-}{20}$	16	5	~	$\frac{-}{20}$	15	5	2929 151 652	0.001.054
21	16	5	, L	21	17	5	2929.101.002	-0.002.084
21	17	5	, L	21	16	5	2929 160 832	0.002001
6	1	6	, L	6	0	6	2929.164.983	0.000210 0.000253
6	0	6) 	6	1	6	2929.164.983	0.000253
7	2	6) 	7	1	6	2929.164.983	0.000205 0.001705
7	1	6		7	1 9	6	2929.104983	0.001705
8	3 T	6		8	2	6	2929.104983	0.001705
e e	ງ ງ	6	, ,	0	2	6	2929.100832	-0.000859
0	4	6		0	3 3	6	2929.100832	-0.000838
9	2 7	6		9	4	6	2929.100832	0.000838
9 10	5	6		9 10	4	6	2929.100.052	0.000358
10	4	6) 	10	т 5	6	2929.156.054	-0.002103
11	т 6	6) 	11	5	6	2929.156.054	-0.002104
11	5	6) 	11	6	6	2929.156.054	-0.000341
19	7	6	~	19	6	6	2929.156.054	0.001.400
12	6	6		12	7	6	2929.150.054	0.001499
12	8	6		12	7	6	2929.150.054	0.001.004
13	7	6		13	8	6	2929.151.652	-0.001082
14	0	6		14	8	6	2929.151.652	-0.001009
14	9	6		14	0	6	2929.151.652	0.000085 0.000715
15	10	6	, ,	15	9	6	2929.101002	0.000713
15	0	6	\leftarrow	10 15	9 10	6	2929.147795 2020 147705	-0.001304
16	9 10	6		16	11	6	2929.147795	-0.001428
16	11	6	<i>(</i>	16	10	6	2929.147795	0.000194
17	11	6	<i>~</i>	17	10	6	2929.147795	0.000028 0.001716
17	11 19	6	<i>~</i>	17	11	6	2929.147795	0.001710 0.001270
10	10	6		10	12	6	2929.147790	0.001370
10	12	6	,	10	10	6	2929.143.031	-0.000817
10 10	10 19	0	← ,	10 10	14	0 6	2929.143831 9090 149 991	
19 10	13 14	0	← ,	19 10	14 19	U E	2929,140001 9090 149091	0.000 360
20 19	14 17	0 6	,	19 19	⊥3 1 ⊑	U G	2929,140 801 2020 140 810	
20 20	14 15	0	← ,	⊿0 90	10 14	0 6	2929.140810 2020 142 021	-0.001007
20 91	10 1⊭	0 6	,	⊿∪ ค1	14 16	U G	2929,140 801 2020 140 810	-0.000482
∠1 91	10 16	0 6	÷	⊿⊥ 91	10 15	U 6	2929,140810 9090 149 091	0.000.017
<u>4</u> 1	10	0	←	4 L	10	0	4949.140001	-0.000 882

For	tsetzu	ıng '	Tabel	le E.3				
22	16	6	\leftarrow	22	17	6	2929.137436	-0.000881
22	17	6	\leftarrow	22	16	6	2929.147795	0.001903
7	0	7	\leftarrow	7	1	7	2929.171191	-0.002395
7	1	7	\leftarrow	7	0	7	2929.171191	-0.002395
8	1	7	\leftarrow	8	2	7	2929.171191	-0.000880
8	2	7	\leftarrow	8	1	7	2929.171191	-0.000880
9	2	7	\leftarrow	9	3	7	2929.171191	$0.000\ 733$
9	3	7	\leftarrow	9	2	7	2929.171191	$0.000\ 733$
10	3	7	\leftarrow	10	4	7	2929.171191	$0.002\;413$
10	4	7	\leftarrow	10	3	7	2929.171191	$0.002\;413$
11	4	7	\leftarrow	11	5	7	2929.164983	-0.002079
11	5	7	\leftarrow	11	4	7	2929.164983	-0.002079
12	6	7	\leftarrow	12	6	7	2929.164983	-0.000364
12	6	7	\leftarrow	12	5	7	2929.164983	-0.000364
13	6	7	\leftarrow	13	7	7	2929.164983	0.001316
13	7	7	\leftarrow	13	6	7	2929.164983	0.001315
14	7	7	\leftarrow	14	8	7	2929.160832	-0.001229
14	8	7	\leftarrow	14	7	7	2929.160832	-0.001230
15	8	7	\leftarrow	15	9	7	2929.160832	$0.000\ 266$
15	9	7	\leftarrow	15	8	7	2929.160832	$0.000\ 264$
16	9	7	\leftarrow	16	10	7	2929.160832	0.001610
16	10	7	\leftarrow	16	9	7	2929.160832	0.001606
				P.	-7.wo	ia ÏII	horgänge	
				о О р	Zwe	15 U		
				* R	K_c II	nt Δ	$K_a = +1$	
3	3	0	\leftarrow	2	2	0	2931.520985	$0.000\ 432$
4	4	0	\leftarrow	3	3	0	2932.315697	$0.000\ 237$
5	5	0	\leftarrow	4	4	0	2933.112914	0.001093
6	6	0	\leftarrow	5	5	0	2933.910577	0.000 705
7	7	0	\leftarrow	6	6	0	2934.710022	0.000 467
8	8	0	\leftarrow	7	7	0		0.000268
9	9	0	\leftarrow	8	8	0	2936.312559	-0.000 240
10	10	0	\leftarrow	9	9	0	2937.115.083	-0.000 498
11	11	0	\leftarrow	10	10	0	2937.916 412	-0.002 362
12	12	0	\leftarrow	11	11	0	2938.719639	-0.002 636
13	13	0	\leftarrow	12	12	0	2939.527709	0.001618
3	2	1	\leftarrow	2	1	1	2931.504618	$0.000\ 243$
3	3	1	\leftarrow	2	2	1	2931.535496	$0.000\ 259$
4	3	1	\leftarrow	3	2	1	2932.291 402	-0.000 673
4	4	1	\leftarrow	3	3	1	2932.333 277	$0.000\ 151$
5	4	1	\leftarrow	4	3	1	2933.080216	$0.000\ 141$
5	5	1	\leftarrow	4	4	1	2933.131656	$0.000\ 471$
6	5	1	\leftarrow	5	4	1	2933.868 928	$0.000\ 397$
6	6	1	\leftarrow	5	5	1	2933.928 920	-0.000 577
7	6	1	\leftarrow	6	5	1	2934.658.073	0.000410
7	7	1	\leftarrow	6 	6	1	2934.729.429	0.001255
8	7	1	\leftarrow	7	6 -	1	2935.447921	0.000166
8	8	1	\leftarrow	7	7	1	2935.527641	0.000394
9	8	1	\leftarrow	8	7	1	2936.239.255	0.000144
9	9	1	\leftarrow	8	8	1	2936.326667	-0.000 146
10	9	1	\leftarrow	9	8	1	2937.031709	-0.000 326
10	10	1	\leftarrow	9	9	1	2937.125377	-0.001 525
11	10	1	\leftarrow	10	9	1	2937.827.272	0.000 446
12	11	1	\leftarrow	11	10	1	2938.624620	0.000893

For	tsetzu	ing [Fabel	le E.3				
3	1	2	←	2	0	2	$2931.520\ 985$	$0.000\ 865$
3	2	2	\leftarrow	2	1	2	$2931.520\ 985$	-0.000 988
4	2	2	\leftarrow	3	1	2	2932.309987	$0.000\ 082$
4	3	2	\leftarrow	3	2	2	2932.315697	0.001206
5	3	2	\leftarrow	4	2	2	2933.099.069	0.001008
5	4	2	\leftarrow	4	3	2	2933.107283	$0.000\ 226$
6	4	2	\leftarrow	5	3	2	2933.884425	-0.000073
6	5	2	←	5	4	2	2933.900 588	0.000 803
7	5	2	←	6	4	2	2934.669 392	$0.000\ 037$
7	6	2	←	6	5	2	2934.691 906	-0.000 829
8	6	2	←	7	5	2	2935.452282	-0.000 767
8	7	2	←	7	6	2	2935.486277	0.000 263
ğ	7	2	←	8	ő	2	2936 235 937	-0.000.200
g	8	2	, L	8	7	2	2936 281 355	0.000200
10	8	2	Ļ	g	7	2	2937 018 458	-0.000 722
10	ğ	2	Ļ	g	8	2	2937 074 898	0.000 953
11	g	2	, L	10	8	2	2937 801 044	-0 001 642
11	10	2	, L	10	g	2	2937 870 033	0.001012 0.001245
19	10	2	2	11	a	2	2938 585 466	0.001240 0.001627
12	10	2	~	3	9 0	2	2930.303 400	-0.001027 0.001573
4	2	3	~	3 3	1	3	2932.315 697	-0.001 575
5	2 9	.ე ვ		3 1	1	3		-0.001001
5	2	.ე ვ		4	1 9	3	2933.107.283	-0.001144
6	2	.ე ვ		5	2	3	2933.107 283	-0.001415 0.001641
6	3 4	.ე ვ		5	2	3	2933.900 588	0.001041 0.000022
7	4 5	.ე ვ		6	3 4	3	2933.900 388	0.000922 0.001647
0	5	.ე ე		7	4	ე	2934.091 900	0.001.047
0	6	.ე ვ		7	4 5	3	2935.478.521	0.000 955
0	6	.ე ვ		0	5	3	2935.481.041	0.000 498
9	7	ა ე	,	0	0 6	ა ე	2930.203.309	0.000 058
9 10	7	.ე ვ		0	6	3	2930.271 283	0.000043 0.000427
10	0	ა ე	,	9	7	ა ე	2937.030.002	-0.000427
11	0	.ე ვ		9 10	7	3	2937.038343	-0.002 072
11	0	.ე ე		10	0	ე	2937.839.202	0.003.092 0.001.291
11	9	ა ე	,	10	0	ა ე	2937.049313	
12	9 10	.ე ვ		11	0	3	2938.019.308	0.000910 0.000714
12	10	.ე ვ		19	9	3	2938.041.041	0.000714 0.000726
13	11	.ე ვ		12	9 10	3	2939.399.028	-0.000730
14	11	3	~	12	10	3	2939.429 333	-0.002.012
14	19	2	<u>,</u>	13	11	2	2940.170 498	-0.001 515
14	12	ა ე	,	13	11	ა ე	2940.220 830	-0.001 515
15	12	.ე ვ		14	11	3	2940.938 223	-0.000 884
10	10	3 4	,	14	12	3 4		
0 5	1 9	4	,	4	1	4	2933.112.914	-0.001942
0 6	2	4	÷	4 E	1	4	2933.112 914	-0.001 940
U E	∠ າ	4 1	\leftarrow	ม ร	1 0	4 1	2999,900 919 2999,900 919	0.000.352
0 7	∠ 2	4 1	<u></u>	о с	∠ າ	Ч± Л	29994 606 907	0.000 333
(7	ა 1	4	← ,	U E	2	4 1	2994.090 207 2024 606 207	
(4	4	÷	0	ა ი	4	2994.090 207 9025 496 977	
ð	4 E	4	÷	(ე ⊿	4 1	2900.400 277 0025 406 077	0.000 082
ð	Э F	4	← ,	(4	4 1	2999.400 277 9026 976 649	-0.000 983
9 0	с с	4 1	÷	0 0	4 K	4 1	2990.270.042	-0.000 377
9 10	0 6	4	← ,	ð	0 F	4 1	2990.270 042 9027 066 179	
10	0	4	\leftarrow	9	Э	4	∠yər.000 173	-0.000 189

For	tsetzu	ing [Tabel	le E.3	;			
10	7	4	\leftarrow	9	6	4	$2937.066\ 173$	-0.0006
11	7	4	\leftarrow	10	6	4	2937.854348	-0.0007
11	8	4	\leftarrow	10	7	4	2937.854348	-0.0017
12	8	4	\leftarrow	11	7	4	2938.641541	-0.0016
12	9	4	\leftarrow	11	8	4	2938.641541^*	-0.0034
13	9	4	\leftarrow	12	8	4	2939.429333	-0.0010
13	10	4	\leftarrow	12	9	4	$2939.437\ 346^*$	0.0036
14	10	4	\leftarrow	13	9	4	$2940.217\ 037$	$0.000\ 3$
14	11	4	\leftarrow	13	10	4	$2940.220\ 836$	-0.0012
15	11	4	\leftarrow	14	10	4	$2941.005\;490^*$	0.0037
15	12	4	\leftarrow	14	11	4	$2941.010\ 813$	$0.000\ 3$
6	1	5	\leftarrow	5	0	5	2933.914188	$0.000\ 3$
6	2	5	\leftarrow	5	1	5	2933.914188	$0.000\ 3$
7	2	5	\leftarrow	6	1	5	$2934.706\ 272$	0.0013
7	3	5	\leftarrow	6	2	5	$2934.706\ 272$	0.0013
8	3	5	\leftarrow	7	2	5	$2935.499\ 097^*$	$0.003\ 4$
8	4	5	\leftarrow	7	3	5	$2935.499\ 097^*$	$0.003\ 4$
9	4	5	\leftarrow	8	3	5	$2936.289\ 320^*$	0.0032
9	5	5	\leftarrow	8	4	5	$2936.289\ 320^*$	0.0032
10	5	5	\leftarrow	9	4	5	2937.074898	-0.0012
10	6	5	\leftarrow	9	5	5	2937.074898	-0.0013
11	6	5	\leftarrow	10	5	5	$2937.866\ 737$	0.0007
11	7	5	\leftarrow	10	6	5	$2937.866\ 737$	0.0007
12	7	5	\leftarrow	11	6	5	$2938.655\ 397$	-0.0001
12	8	5	\leftarrow	11	7	5	$2938.655\ 397$	-0.000 1
13	8	5	\leftarrow	12	7	5	$2939.447\ 214$	$0.002\ 7$
13	9	5	\leftarrow	12	8	5	2939.447214	$0.002\ 5$
14	9	5	\leftarrow	13	8	5	2940.234552	0.0013
14	10	5	\leftarrow	13	9	5	2940.234552	0.0010
15	10	5	\leftarrow	14	9	5	$2941.022\ 960$	0.0013
15	11	5	\leftarrow	14	10	5	$2941.022\ 960$	0.000 8
8	2	6	\leftarrow	7	1	6	$2935.506\ 436$	0.0012
8	3	6	\leftarrow	7	2	6	$2935.506\ 436$	0.0012
9	3	6	\leftarrow	8	2	6	$2936.295\ 745$	-0.0001
9	4	6	\leftarrow	8	3	6	$2936.295\ 745$	-0.000 1
10	4	6	\leftarrow	9	3	6	$2937.083\ 635^*$	-0.002 7
10	5	6	\leftarrow	9	4	6	$2937.083\ 695^*$	-0.0027

Anhang F

EXPERIMENTELLE DATEN ZU KAPITEL 7

Alle experimentellen Daten zu Kapitel 7, den spektroskopischen Untersuchungen an OC_5O zwischen 2000 und 2500 cm⁻¹, sind auf der beigefügten *Compact Disc* unter C5O2.a.zip abgespeichert. Dieses File wurde ebenfalls mit dem Programm WinZIP 5.6 für Windows/NT erstellt. Die verschiedenen Dateien sind in den Verzeichnissen FTIR/Zelle/C5O2/ BG (Hintergrundspektren), Meas (Meßblöcke), Calib (Kalibration), Doc (Datendokumentation), Peakl (Peaklisten) und TFILE (Transmissionsfiles) abgespeichert. Die aufgenommenen FTIR-Spektren im OPUS-Format befinden sich in dem Verzeichnis FTIR/Zelle/C5O2/TFILE bzw. FTIR/Jet/C5O2/TFILE. Die Transmissionsspektren der Messungen, die mit der 3 m-Zelle durchgeführt wurden, tragen die Bezeichnung ZTC5O2D1.1 bzw. ZTC5O2D2.1, das der Messung an dem OC₅O-Molekularstrahl die Bezeichnung ZTJETWZ1.1. Zusätzlich befindet sich in dem Verzeichnis FTIR/Zelle/C5O2 ein Transmissionsfile mit der Bezeichnung ZTC5O2D1D2.1, das durch Verwendung des Spektrums ZTC5O2D2.1 als Background erhalten wurde. In der Tabelle F.1 sind die Dateien der einzelnen Meßserien an OC₅O aufgeführt. In der Tabelle F.2 sind die Transmissionsfiles und Angaben über die Kalibration zusammengestellt.

Im Verzeichnis Dissertation/C5O2 befinden sich die für jeden Zustand erstellten Eingabefiles zur Bestimmung der spektroskopischen Konstanten. Diese wurden mit dem Programm linc96 berechnet. Es handelt sich um die Files v4v5jetrt.lin und v4v5rt.lin. Die dazugehörigen Ausgabefiles tragen die Endung lot.

Sämtliche experimentellen Übergangswellenzahlen $\tilde{\nu}_{obs}$ sind in den nun folgenden Tabellen zusammengestellt, wobei immer auch deren Abweichungen von den berechneten Übergangswellenzahlen ($\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$) angegeben sind, wie sie sich aus den mit linc96 bestimmten spektroskopischen Konstanten der Tabelle 7.5 ergeben. Ein (J) kennzeichnet eine Linienposition, die dem Spektrum des OC₅O-Molekularstrahls entnommen wurde. Ein Asterix hinter einer Abweichung deutet an, daß der betreffende Übergang bei der Anpassung der Konstanten nicht berücksichtigt wurde.

Substanz	Meßbereich	Scans pro Block	Zahl der Blöcke	Auflösung	P /mhan	Dateiname	Messung
	/ СШ	pro block	Бюске	/ СШ	/ mbai		
C5O2+Ar	1859-2759	4	6	0.008	110	JETW1.2-7	Jet
C5O2+Ar	1859-2759	4	1	0.008	150	JETZ1.5	Jet
C5O2+Ar	1859-2759	4	1	0.008	150	JETZ1.10	Jet
C5O2+Ar	1859-2759	8	2	0.008	150	JETZ1.11-12	Jet
C5O2+Ar	1859-2759	4	3	0.008	150	JETZ1.13-15	Jet
C5O2	1859-2759	10	10	$0.002\ 1$	0.18	C5O2D1.1-10	\mathbf{Z} elle
C5O2	1859-2759	10	10	$0.002\ 1$	0.18	C5O2D1.11-20	\mathbf{Z} elle

Tabelle F.1 Die verschiedenen Meßblöcke der FTIR-Messungen an OC₅O.

Messung	Meßbereich	\mathbf{Scans}	Single-Beam-	Transmissions-	Kalib.	Kalib	BG-
	$/\mathrm{cm}^{-1}$		$\operatorname{Spektren}$	file		messung	File
C5O2-	1950-2750	60	JETW1.2-7	ZTJETWZ1.1	CO (extern)	ZTJETV11.1	JETWB.1
Jet			JETZ1.5				
			JETZ1.10-15				
C5O2-	1950-2750	100	C5O2D1.1-10	$\rm ZTC5O2D1.1$	CO (extern)	$\rm ZTC5O2E1.1$	C5O2AB.1
Zelle							
$C5O_{2}$ -	1950-2750	100	C5O2D1.1-20	$\rm ZTC5O2D2.1$	CO (extern)	$\rm ZTC5O2E1.1$	C5O2AB.1
Zelle							

 $\label{eq:tabelle} \textbf{Tabelle F.2} \ \textbf{Zusammenstellung der verschiedenen Transmissionsfiles von OC_5O}.$

]	P-Zweig]	R-Zweig
$J^{\prime\prime}$	$\tilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$ ilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0			$2242.180\ 863$	-0.001 169
2	$2242.022\ 004$	$-0.000\ 476$	$2242.288\ 237$	0.000172
4	$2241.915\ 544$	-0.000233	$2242.395\ 002$	0.000960
6	$2241.809\ 166$	$0.000\ 147$	2242.501047	0.000770
8	$2241.702\ 900$	0.000379	$2242.608\ 006$	0.000890
10	$2241.596\ 911$	$0.000\ 282$	$2242.715\ 242$	$0.000\ 401$
12	2241.491281	-0.000344	$2242.822\ 893$	-0.000675
14	$2241.386\ 289$	-0.001336	$2242.932\ 095$	-0.001071
16	$2241.282\ 820$	-0.001681	2243.044509	0.001286
18	2241.183948	$0.002\ 108$	$2243.153\ 379$	0.000289
20	2241.093025^*	0.014030	2243.261750	-0.000296
22			$2243.368\ 903$	-0.000708
24			$2243.476\ 388$	0.000306
26			$2243.583\ 319$	0.000000
28			2243.691275^*	-0.004579
30			$2243.799\;424^*$	-0.022957
32			$2243.854\ 122^*$	-0.123578
34			$2243.909\ 014^*$	-0.276167
36			$2244.018\ 105^*$	-0.461738

Tabelle F.3 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_4) - (GS)$, entnommen dem Spektrum des OC₅O-Molekularstrahls.

Tabelle F.4 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_4) - (GS)$, entnommen dem Spektrum das mit OC₅O in der 3 m Zelle erhalten wurde.

	P-	Zweig	R-	Zweig
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$
0			$2242.180\ 863(J)$	-0.002858
2	$2242.022\ 004(\mathrm{J})$	$-0.002\ 413$	$2242.288237({ m J})$	-0.001646
4	$2241.915\ 544({ m J})$	-0.002630	$2242.395\ 002({ m J})$	$-0.001\ 005$
6	$2241.809\ 166(J)$	-0.002730	$2242.501047({ m J})$	-0.001039
8	$2241.702\ 900(\mathrm{J})$	$-0.002\ 677$	$2242.608\ 006({ m J})$	$-0.000\ 104$
10	2241.596~911(J)	-0.002298	$2242.715\ 242(\mathrm{J})$	0.001176
12	$2241.491281(\mathrm{J})$	-0.001498	$2242.822\ 893(J)$	$0.002\ 955$
14	$2241.386\ 289(J)$	$0.000\ 014$	$2242.932\ 095({ m J})$	$0.006\ 387$
16	$2241.282\ 820(\mathrm{J})$	0.003142	$2243.044509^{*}(\rm J)$	$0.013\ 154$
18	$2241.183948^{*}(\rm J)$	$0.010\ 978$	$2243.153\ 379^{*}({ m J})$	$0.016\ 523$
20			$2243.261750^{*}(\rmJ)$	$0.019\ 564$
22			$2243.368\ 903^*(\rm J)$	0.021586
24			$2243.476388^{*}({ m J})$	0.024169
26			$2243.583319^{*}(\rmJ)$	$0.026\ 456$
28			$2243.691275^{*}(\rm J)$	$0.030\ 061$
30			$2243.799\ 424^{*}(\rm J)$	0.034185
32			$2243.854122^{*}(\rm J)$	-0.014781
34			$2243.909014^*(\rm J)$	$-0.063\ 157$
36			$2244.018\ 105^{*}({ m J})$	$-0.056\ 902$
38				
40	$2239.960\ 960^*$	$-0.023\ 313$	$2244.277\ 140$	-0.002093
42	$2239.859\;485^*$	-0.014548	2244.381800	0.001250
44	$2239.755\ 212^*$	-0.008070	2244.481918	$0.000\ 629$
46	2239.649639^*	$-0.002\ 346$	2244.583338	0.001923
48	2239.541267^*	0.001159	2244.683262	$0.002\ 369$

		Fortsetzung Tabelle F.4				
-	50	2239.428908^*	0.001289	2244.781746	0.002056	
	52	2239.317324^*	$0.002\ 838$	$2244.879\ 288$	0.001513	
	54	2239.204411	0.003732	$2244.976\ 138$	0.001020	
	56	2239.090529	0.004358	2245.071714	0.000021	
	58	2238.975317	0.004382	$2245.166\ 570$	-0.000903	
	60	2238.859302	0.004354	$2245.260\ 429$	-0.002007	
	62	2238.742290	$0.004\ 101$	$2245.353\ 679$	-0.002884	
	64	2238.624308	0.003670	$2245.446\ 042$	-0.003794	
	66	2238.505468	$0.003\ 186$	2245.537048	-0.005193	
	68	2238.385964	$0.002\ 858$	$2245.628\ 276$	-0.005493	
	70	2238.265877	$0.002\ 774$	$2245.718\ 230$	-0.006181	
	72	2245.807796	-0.006368			
	74	2238.022492	0.001898	$2245.896\ 365$	-0.006663	
	76	2237.899720	0.001632	2245.984187	-0.006819	
	78	2237.776615	0.001862	2246.071593	-0.006513	
	80	2237.652513	0.001916	$2246.158\ 112$	-0.006227	
	82	2237.527663	$0.002\ 030$	$2246.245\ 214$	-0.004505	
	84	2237.402453	$0.002\ 577$	$2246.245\ 214^*$	-0.089049	
	86	2237.276662	0.003315	$2246.410\ 664$	-0.007329	
	88	2237.150898	0.004831	$2246.497\ 018$	-0.003915	
	90			$2246.577\ 528$	-0.005581	
	92	2236.890785	$0.001\ 424$	$2246.660\ 281$	-0.004271	
	94	2236.764966	0.004972	$2246.742\ 037$	-0.003255	
	96	2236.632417	$0.002\;422$	$2246.822\ 575$	-0.002787	
	98	2236.502610	0.003214	$2246.903\ 417$	-0.001380	
	100	2236.371778	$0.003\ 542$	$2246.983\ 456$	-0.000175	
	102	2236.239533	$0.002\ 985$	$2247.062\ 609$	0.000711	
	104	2236.108120	$0.003\ 750$	$2247.141\ 401$	0.001769	
	106	2235.975017	0.003282	$2247.218\ 643$	0.001778	
	108	2235.841914	0.003235	$2247.296\ 051$	$0.002\ 425$	
	110	2235.708119	$0.002\ 889$	$2247.372\ 684$	0.002744	
	112	2235.572828	$0.001\ 412$	$2247.449\ 316$	0.003488	
	114	2235.437814	$0.000\ 554$	2247.524204	0.002900	
	116	2235.301775	-0.001001			
	118	2235.165515	$-0.002\ 459$	$2247.672\ 650$	0.001609	
	120	2235.028535	-0.004319	$2247.746\ 984$	0.001694	
	122	2234.889339	-0.008066	$2247.820\ 847$	0.001751	
	124	2234.752192	$-0.009\ 414$	2247.894876	$0.002\ 452$	
	126			$2247.966\ 662$	0.001442	
	128			$2248.045\ 316$	0.007904	
	130			2248.101980	-0.006931	
	132			$2248.175\ 040$	-0.004563	
	134			$2248.246\ 272$	-0.003079	
	136			$2248.312\ 685$	-0.005304	
	138			$2248.395\ 050$	0.009728	
	140			$2248.452\ 324$	0.001201	
	142			2248.514998	-0.000129	

302

		P-Zweig		R-Zweig
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$\frac{1}{(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\text{cm}^{-1}}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$\frac{1}{(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\text{cm}^{-1}}$
	0037	(000 curc)/	0037	(000 curc)/
2				
4				
6			2065.929661	0.000834
8	2065.131299	0.000229	2066.033 233	0.000054
10	2065.022734	0.000043	2066.137416	0.000358
12	2064.913580	-0.000261	$2066.240\ 192$	-0.000271
14	2064.803970	-0.000551	2066.343606	0.000210
16	2064.694006	-0.000725	$2066.445\ 926$	0.000070
18	2064.584451	-0.000023	$2066.548\ 488$	0.000642
20	2064.473920	$0.000\ 169$	2066.649596	0.000230
22	2064.362772	$0.000\ 209$	$2066.750\ 317$	-0.000099
24	2064.251015	$0.000\ 103$	$2066.850\ 940$	-0.000059
26	$2064.139\ 058$	0.000259	2066.951017	-0.000098
28	$2064.025\ 584$	-0.000642	$2067.050\ 761$	-0.000004
30	$2063.913\ 155$	-0.000041	$2067.150\ 228$	0.000276
32	$2063.799\ 473$	-0.000236	$2067.248\ 525$	-0.000150
34	2063.685757	-0.000012	$2067.346\ 136$	-0.000801
36	2063.571293	$-0.000\ 082$	$2067.444\ 461$	-0.000278
38	2063.456566	$0.000\ 034$	2067.541740	-0.000342
40	2063.341548	$0.000\ 309$	$2067.638\ 563$	-0.000404
42	$2063.225\ 816$	$0.000\ 316$	$2067.735\ 267$	-0.000129
44	$2063.109\ 414$	$0.000\ 099$	$2067.830\ 525$	-0.000844
46	$2062.992\ 879$	$0.000\ 192$	2067.927084	0.000197
48	$2062.875\ 493$	$-0.000\ 123$	$2068.022\ 085$	0.000134
50	$2062.758\ 108$	$0.000\ 003$	$2068.117\ 308$	0.000746
52	$2062.640\ 175$	$0.000\ 022$	$2068.210\ 641$	-0.000079
54	2062.521688	-0.000074		
56	$2062.403\ 208$	0.000275	$2068.397\ 556$	-0.000120
58	2062.283509	$-0.000\ 157$	$2068.490\ 196$	-0.000278
60	2062.164005	0.000044	2068.583224	0.000407
62	2062.041987^*	-0.001830	$2068.675\ 047$	0.000342
64 64	2061 500 552*	0.000.400	2060 OF - 060	0.000.045
00	2061.799772	-0.002 439	2008.857.060	-0.000045
68 70	2001.077498	-0.003 249	2068.948 177	0.000504
70	2001.555 487	-0.003 351	2009.038.233	0.000 599
74	2001.452.051	-0.003 833	2009.120.300	0.001070
74 76	2001.310.331	-0.005 128	2009.213 380	-0.000950
70	2001.184.007	-0.000 333	2009.304.337	-0.000 410
10 80	2001.000 789	-0.003 918	2009.392.030	-0.000 400
82	2000.330 472	-0.006571	2009.480 838	-0.000.207
81	2060 685 850*	-0.006.901	2005.001 000	0.000 401
86	2060 559 610*	-0 007 546	2069 740 605	-0 000 060
88	2060 433 126*	-0 007 934	2069 825 636	-0.000.636
90	2060.306.068*	-0.008 395	2069.910847	-0.000 495
92	2060.178968^*	-0.008 388	2069,996 093	0.000227
94	2060.051307^*	-0.008 420	2070.080 224	0.000395
96		-	2070.163634	0.000415
98	$2059.793\ 534^*$	$-0.009\ 316$	$2070.247\ 108^*$	0.001090

Tabelle F.5 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_5) - (GS)$ von OC₅O, entnommen dem Spektrum das mit OC₅O in der 3 m Zelle erhalten wurde.

Fortsetzung Tabelle F.5 100 $2059.664\,260^*$ -0.009314 $2070.329\,868^*$ $0.001\,658$ 102 $2070.412\ 787^*$ $0.003\ 008$ 104 $2070.493\ 920^*$ $0.003\ 217$ 106 $2070.575\ 392^*$ $0.004\ 429$ 108 $2070.656\ 311^*$ $0.005\ 775$ 110 $2070.736\ 841^*$ $0.007\ 443$ 112 $2070.816\ 749^*$ $0.009\ 226$
Anhang F

EXPERIMENTELLE DATEN ZU KAPITEL 7

Alle experimentellen Daten zu Kapitel 7, den spektroskopischen Untersuchungen an OC_5O zwischen 2000 und 2500 cm⁻¹, sind auf der beigefügten *Compact Disc* unter C5O2.a.zip abgespeichert. Dieses File wurde ebenfalls mit dem Programm WinZIP 5.6 für Windows/NT erstellt. Die verschiedenen Dateien sind in den Verzeichnissen FTIR/Zelle/C5O2/ BG (Hintergrundspektren), Meas (Meßblöcke), Calib (Kalibration), Doc (Datendokumentation), Peakl (Peaklisten) und TFILE (Transmissionsfiles) abgespeichert. Die aufgenommenen FTIR-Spektren im OPUS-Format befinden sich in dem Verzeichnis FTIR/Zelle/C5O2/TFILE bzw. FTIR/Jet/C5O2/TFILE. Die Transmissionsspektren der Messungen, die mit der 3 m-Zelle durchgeführt wurden, tragen die Bezeichnung ZTC5O2D1.1 bzw. ZTC5O2D2.1, das der Messung an dem OC₅O-Molekularstrahl die Bezeichnung ZTJETWZ1.1. Zusätzlich befindet sich in dem Verzeichnis FTIR/Zelle/C5O2 ein Transmissionsfile mit der Bezeichnung ZTC5O2D1D2.1, das durch Verwendung des Spektrums ZTC5O2D2.1 als Background erhalten wurde. In der Tabelle F.1 sind die Dateien der einzelnen Meßserien an OC₅O aufgeführt. In der Tabelle F.2 sind die Transmissionsfiles und Angaben über die Kalibration zusammengestellt.

Im Verzeichnis Dissertation/C5O2 befinden sich die für jeden Zustand erstellten Eingabefiles zur Bestimmung der spektroskopischen Konstanten. Diese wurden mit dem Programm linc96 berechnet. Es handelt sich um die Files v4v5jetrt.lin und v4v5rt.lin. Die dazugehörigen Ausgabefiles tragen die Endung lot.

Sämtliche experimentellen Übergangswellenzahlen $\tilde{\nu}_{obs}$ sind in den nun folgenden Tabellen zusammengestellt, wobei immer auch deren Abweichungen von den berechneten Übergangswellenzahlen ($\tilde{\nu}_{obs} - \tilde{\nu}_{calc}$) angegeben sind, wie sie sich aus den mit linc96 bestimmten spektroskopischen Konstanten der Tabelle 7.5 ergeben. Ein (J) kennzeichnet eine Linienposition, die dem Spektrum des OC₅O-Molekularstrahls entnommen wurde. Ein Asterix hinter einer Abweichung deutet an, daß der betreffende Übergang bei der Anpassung der Konstanten nicht berücksichtigt wurde.

Substanz	Meßbereich /cm ⁻¹	Scans pro Block	Zahl der Blöcke	Auflösung /cm ⁻¹	P /mbar	Dateiname	Messung
C5O2+Ar	1859 - 2759	4	6	0.008	110	JETW1.2-7	Jet
C5O2 + Ar	1859 - 2759	4	1	0.008	150	JETZ1.5	Jet
C5O2+Ar	1859-2759	4	1	0.008	150	JETZ1.10	Jet
C5O2+Ar	1859-2759	8	2	0.008	150	JETZ1.11-12	Jet
C5O2+Ar	1859-2759	4	3	0.008	150	JETZ1.13-15	Jet
C5O2	1859-2759	10	10	$0.002\ 1$	0.18	C5O2D1.1-10	\mathbf{Z} elle
C5O2	1859-2759	10	10	$0.002\ 1$	0.18	C5O2D1.11-20	${ m Zelle}$

Tabelle F.1 Die verschiedenen Meßblöcke der FTIR-Messungen an OC₅O.

Messung	Meßbereich	Scans	Single-Beam-	Transmissions-	Kalib.	Kalib	BG-
	$/\mathrm{cm}^{-1}$		$\operatorname{Spektren}$	file		messung	File
C5O2-	1950-2750	60	JETW1.2-7	ZTJETWZ1.1	CO (extern)	ZTJETV11.1	JETWB.1
Jet			JETZ1.5				
			JETZ1.10-15				
C5O2-	1950-2750	100	C5O2D1.1-10	$\rm ZTC5O2D1.1$	CO (extern)	$\rm ZTC5O2E1.1$	C5O2AB.1
Zelle							
C5O2-	1950-2750	100	C5O2D1.1-20	$\rm ZTC5O2D2.1$	CO (extern)	$\rm ZTC5O2E1.1$	C5O2AB.1
Zelle							

 $\label{eq:tabelle} \textbf{Tabelle F.2} \ \textbf{Zusammenstellung der verschiedenen Transmissionsfiles von OC_5O}.$

]	P-Zweig	R-Zweig		
$J^{\prime\prime}$	$\tilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$ ilde{ u}_{obs}/{ m cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0			$2242.180\ 863$	-0.001 169	
2	$2242.022\ 004$	$-0.000\ 476$	$2242.288\ 237$	0.000172	
4	$2241.915\ 544$	-0.000233	$2242.395\ 002$	0.000960	
6	$2241.809\ 166$	$0.000\ 147$	2242.501047	0.000770	
8	$2241.702\ 900$	0.000379	$2242.608\ 006$	0.000890	
10	$2241.596\ 911$	$0.000\ 282$	$2242.715\ 242$	$0.000\ 401$	
12	2241.491281	-0.000344	$2242.822\ 893$	-0.000675	
14	$2241.386\ 289$	-0.001336	$2242.932\ 095$	-0.001071	
16	$2241.282\ 820$	-0.001681	2243.044509	0.001286	
18	2241.183948	$0.002\ 108$	$2243.153\ 379$	0.000289	
20	2241.093025^*	0.014030	2243.261750	-0.000296	
22			$2243.368\ 903$	-0.000708	
24			$2243.476\ 388$	0.000306	
26			$2243.583\ 319$	0.000000	
28			2243.691275^*	-0.004579	
30			$2243.799\;424^*$	-0.022957	
32			$2243.854\ 122^*$	-0.123578	
34			$2243.909\ 014^*$	-0.276167	
36			$2244.018\ 105^*$	-0.461738	

Tabelle F.3 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_4) - (GS)$, entnommen dem Spektrum des OC₅O-Molekularstrahls.

Tabelle F.4 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_4) - (GS)$, entnommen dem Spektrum das mit OC₅O in der 3 m Zelle erhalten wurde.

	P-	Zweig	R-Zweig		
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\mathrm{cm}^{-1}$	
0			$2242.180\ 863(J)$	-0.002858	
2	$2242.022\ 004(\mathrm{J})$	$-0.002\ 413$	$2242.288237({ m J})$	-0.001646	
4	$2241.915\ 544({ m J})$	-0.002630	$2242.395\ 002(\mathrm{J})$	$-0.001\ 005$	
6	$2241.809\ 166(J)$	-0.002730	$2242.501047({ m J})$	-0.001039	
8	$2241.702\ 900({ m J})$	$-0.002\ 677$	$2242.608\ 006(\mathrm{J})$	$-0.000\ 104$	
10	$2241.596~911({ m J})$	-0.002298	$2242.715\ 242(\mathrm{J})$	$0.001\ 176$	
12	$2241.491281(\mathrm{J})$	-0.001498	$2242.822\ 893(J)$	$0.002\ 955$	
14	$2241.386\ 289(J)$	$0.000\ 014$	$2242.932~095({ m J})$	$0.006\ 387$	
16	$2241.282\ 820(\mathrm{J})$	$0.003\ 142$	$2243.044509^{*}(\rm J)$	$0.013\ 154$	
18	$2241.183948^{*}(\rm J)$	$0.010\ 978$	$2243.153\ 379^{*}({ m J})$	$0.016\ 523$	
20			$2243.261750^{*}(\rm J)$	$0.019\ 564$	
22			$2243.368\ 903^*(\rm J)$	0.021586	
24			$2243.476~388^{*}(\rm J)$	0.024169	
26			$2243.583319^{*}(\rm J)$	$0.026\ 456$	
28			$2243.691275^{*}(\rm J)$	$0.030\ 061$	
30			$2243.799\ 424^{*}(\rm J)$	0.034185	
32			$2243.854122^{*}(\rm J)$	-0.014781	
34			$2243.909014^*(\rm J)$	$-0.063\ 157$	
36			$2244.018\ 105^{*}(\rm J)$	$-0.056\ 902$	
38					
40	$2239.960\ 960^*$	$-0.023\ 313$	$2244.277\ 140$	-0.002093	
42	$2239.859\;485^*$	-0.014548	2244.381800	0.001250	
44	$2239.755\ 212^*$	-0.008070	2244.481918	$0.000\ 629$	
46	2239.649639^*	-0.002346	2244.583338	$0.001\ 923$	
48	2239.541267^*	0.001159	2244.683262	0.002~369	

		Fo	belle F.4			
-	50	2239.428908^*	0.001289	2244.781746	0.002056	
	52	2239.317324^*	$0.002\ 838$	$2244.879\ 288$	0.001513	
	54	2239.204411	0.003732	$2244.976\ 138$	0.001020	
	56	2239.090529	0.004358	2245.071714	0.000021	
	58	2238.975317	0.004382	$2245.166\ 570$	-0.000903	
	60	2238.859302	0.004354	$2245.260\ 429$	-0.002007	
	62	2238.742290	$0.004\ 101$	$2245.353\ 679$	-0.002884	
	64	2238.624308	0.003670	$2245.446\ 042$	-0.003794	
	66	2238.505468	$0.003\ 186$	2245.537048	-0.005193	
	68	2238.385964	$0.002\ 858$	$2245.628\ 276$	-0.005493	
	70	2238.265877	$0.002\ 774$	$2245.718\ 230$	-0.006181	
	72	2245.807796	-0.006368			
	74	2238.022492	0.001898	$2245.896\ 365$	-0.006663	
	76	2237.899720	0.001632	2245.984187	-0.006819	
	78	2237.776615	0.001862	2246.071593	-0.006513	
	80	2237.652513	0.001916	$2246.158\ 112$	-0.006227	
	82	2237.527663	$0.002\ 030$	$2246.245\ 214$	-0.004505	
	84	2237.402453	$0.002\ 577$	$2246.245\ 214^*$	-0.089049	
	86	2237.276662	0.003315	$2246.410\ 664$	-0.007329	
	88	2237.150898	0.004831	$2246.497\ 018$	-0.003915	
	90			$2246.577\ 528$	-0.005581	
	92	2236.890785	$0.001\ 424$	$2246.660\ 281$	-0.004271	
	94	2236.764966	0.004972	$2246.742\ 037$	-0.003255	
	96	2236.632417	$0.002\;422$	$2246.822\ 575$	-0.002787	
	98	2236.502610	0.003214	$2246.903\ 417$	-0.001380	
	100	2236.371778	$0.003\ 542$	$2246.983\ 456$	-0.000175	
	102	2236.239533	$0.002\ 985$	$2247.062\ 609$	0.000711	
	104	2236.108120	$0.003\ 750$	$2247.141\ 401$	0.001769	
	106	2235.975017	0.003282	$2247.218\ 643$	0.001778	
	108	2235.841914	0.003235	$2247.296\ 051$	$0.002\ 425$	
	110	2235.708119	$0.002\ 889$	$2247.372\ 684$	0.002744	
	112	2235.572828	$0.001\ 412$	$2247.449\ 316$	0.003488	
	114	2235.437814	$0.000\ 554$	2247.524204	0.002900	
	116	2235.301775	-0.001001			
	118	2235.165515	$-0.002\ 459$	$2247.672\ 650$	0.001609	
	120	2235.028535	-0.004319	$2247.746\ 984$	0.001694	
	122	2234.889339	-0.008066	$2247.820\ 847$	0.001751	
	124	2234.752192	$-0.009\ 414$	2247.894876	$0.002\ 452$	
	126			$2247.966\ 662$	0.001442	
	128			$2248.045\ 316$	0.007904	
	130			2248.101980	-0.006931	
	132			$2248.175\ 040$	-0.004563	
	134			$2248.246\ 272$	-0.003079	
	136			$2248.312\ 685$	-0.005304	
	138			$2248.395\ 050$	0.009728	
	140			$2248.452\ 324$	0.001201	
	142			2248.514998	-0.000129	

302

		P-Zweig		R-Zweig
$J^{\prime\prime}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$\frac{1}{(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\text{cm}^{-1}}$	$\tilde{\nu}_{obs}/\mathrm{cm}^{-1}$	$\frac{1}{(\tilde{\nu}_{obs} - \tilde{\nu}_{calc})/\text{cm}^{-1}}$
	0037	(000 curc)/	0037	(005 curc)/
2				
4				
6			2065.929661	0.000834
8	2065.131299	0.000229	2066.033 233	0.000054
10	2065.022734	0.000043	2066.137416	0.000358
12	2064.913580	-0.000261	$2066.240\ 192$	-0.000271
14	2064.803970	-0.000551	2066.343606	0.000210
16	2064.694006	-0.000725	$2066.445\ 926$	0.000070
18	2064.584451	-0.000023	$2066.548\ 488$	0.000642
20	2064.473920	$0.000\ 169$	2066.649596	0.000230
22	2064.362772	$0.000\ 209$	$2066.750\ 317$	-0.000099
24	2064.251015	$0.000\ 103$	$2066.850\ 940$	-0.000059
26	$2064.139\ 058$	0.000259	2066.951017	-0.000098
28	$2064.025\ 584$	-0.000642	$2067.050\ 761$	-0.000004
30	$2063.913\ 155$	-0.000041	$2067.150\ 228$	0.000276
32	$2063.799\ 473$	-0.000236	$2067.248\ 525$	-0.000150
34	2063.685757	-0.000012	$2067.346\ 136$	-0.000801
36	2063.571293	$-0.000\ 082$	$2067.444\ 461$	-0.000278
38	2063.456566	$0.000\ 034$	2067.541740	-0.000342
40	2063.341548	$0.000\ 309$	$2067.638\ 563$	-0.000404
42	$2063.225\ 816$	$0.000\ 316$	$2067.735\ 267$	-0.000129
44	$2063.109\ 414$	$0.000\ 099$	$2067.830\ 525$	-0.000844
46	$2062.992\ 879$	$0.000\ 192$	2067.927084	0.000197
48	$2062.875\ 493$	$-0.000\ 123$	$2068.022\ 085$	0.000134
50	$2062.758\ 108$	$0.000\ 003$	$2068.117\ 308$	0.000746
52	$2062.640\ 175$	$0.000\ 022$	$2068.210\ 641$	-0.000079
54	2062.521688	-0.000074		
56	$2062.403\ 208$	0.000275	$2068.397\ 556$	-0.000120
58	2062.283509	$-0.000\ 157$	$2068.490\ 196$	-0.000278
60	2062.164005	0.000044	2068.583224	0.000407
62	2062.041987^*	-0.001830	$2068.675\ 047$	0.000342
64 64	2061 500 552*	0.000.400	2060 OF - 060	0.000.045
00	2061.799772	-0.002 439	2008.857.060	-0.000045
68 70	2001.077498	-0.003 249	2068.948 177	0.000504
70	2001.555 487	-0.003 351	2009.038.233	0.000 599
74	2001.452.051	-0.003 833	2009.120.300	0.001070
74 76	2001.310.331	-0.005 128	2009.213 380	-0.000950
70	2001.184.007	-0.000 333	2009.304.337	-0.000 410
10 80	2001.000 789	-0.003 918	2009.392.030	-0.000 400
82	2000.330 472	-0.006571	2009.480 838	-0.000.207
81	2060 685 850*	-0.006.901	2005.001 000	0.000 401
86	2060 559 610*	-0.007.546	2069 740 605	-0 000 060
88	2060 433 126*	-0 007 934	2069 825 636	-0.000.636
90	2060.306.068*	-0.008 395	2069.910847	-0.000 495
92	2060.178968^*	-0.008 388	2069,996 093	0.000227
94	2060.051307^*	-0.008 420	2070.080 224	0.000395
96		-	2070.163634	0.000415
98	$2059.793\ 534^*$	$-0.009\ 316$	$2070.247\ 108^*$	0.001090

Tabelle F.5 Zugeordnete Rotations-Vibrations-Übergänge $(\nu_5) - (GS)$ von OC₅O, entnommen dem Spektrum das mit OC₅O in der 3 m Zelle erhalten wurde.

Fortsetzung Tabelle F.5 100 $2059.664\,260^*$ -0.009314 $2070.329\,868^*$ $0.001\,658$ 102 $2070.412\ 787^*$ $0.003\ 008$ 104 $2070.493\ 920^*$ $0.003\ 217$ 106 $2070.575\ 392^*$ $0.004\ 429$ 108 $2070.656\ 311^*$ $0.005\ 775$ 110 $2070.736\ 841^*$ $0.007\ 443$ 112 $2070.816\ 749^*$ $0.009\ 226$

Anhang G

Veröffentlichungen

Bislang ist ein großer Teil der vorliegenden Dissertation auf Tagungen dargestellt worden. Veröffentlichungen in Fachzeitschriften werden in den nächsten Monaten folgen. Ein Beschreibung der Gießener Molekularstrahlanlage samt Mehrfachreflexionsoptik wird bald Bestandteil eines Review-Artikels in der Zeitschrift *International Reviews in Physical Chemistry* über die Spektroskopie von Molekularstrahlen sein, an dem unter anderen Prof. Michel Herman vom Laboratoire de Chimie Physique Moléculaire, Université Libre, aus Brüssel arbeitet.

G.1 Tagungsbeiträge

- R. PETRY, S. KLEE, AND M. WINNEWISSER, The Detection of very Weak Rotation-Vibration-Transitions of D¹²C¹⁴N and D¹³C¹⁵N by Tunable Diode-Laser Spectroscopy, 15th Colloquium on High Resolution Molecular Spectroscopy, Glasgow, Schottland, 7.-11. September 1997. Poster H32.
- R. PETRY, S. KLEE, M. LOCK, B. P. WINNEWISSER, AND M. WINNEWISSER, FTIR Jet Spectra of the Unstable Chain Molecules NCCNO and OC₅O Measured with a Multipass System, 54th International Symposium on Molecular Spectroscopy, Columbus, Ohio, 14.-18. Juni 1999. Vortrag FB04.
- 3. R. PETRY, S. KLEE, M. LOCK, B. P. WINNEWISSER, AND M. WINNEWISSER, FTIR Jet Spectroscopy in Combination with a Spherical Mirror Multipass System, Fourier Transform Spectroscopy. New Methods and Applications, Meeting of the Optical Society of America, Santa Barbara, California, 22.–24. Juni 1999. Vortrag FWA3-1.