

Promotion am Institut für Anorganische und Analytische Chemie (FB08) zur Erlangung des Grades und Titels eines Doktors der Naturwissenschaften (Dr. rer. nat.)

Dissertation

Synthese und Charakterisierung von

Metall- und Metallkomplex-Triflimidaten

Vorgelegt von:OBetreuender Gutachter:IZweiter Gutachter:IDritter Prüfer:IVierter Prüfer:I

Claudia Bülter Prof. M. S. Wickleder Prof. S. Schindler Prof. B. Smarsly Prof. R. Göttlich April 2018

Disputation: 21.09.2018

"Alle sagen immer: Es geht nicht.

Da kam einer, der wusste das nicht und hat's einfach gemacht. "

(nach Goran Kikic)

Inhaltsverzeichnis

Kurzzu	usammenfassung	13
Abstra	act	14
1	Einleitung	15
2	Grundlagen	19
2.1	<i>Bis</i> -trifluormethylsulfonylimidat ($^{-}N(SO_2CF_3)_2 = [NTf_2]^{-}$)	19
2.1.1	Ladungsverteilung im [NTf ₂] ⁻ -Anion	19
2.1.2	Konfigurationen des [NTf ₂] ⁻ -Anions	20
2.1.3	Bis-trifluormethylsulfonylimid (HNTf2)	23
2.2	Metall-Triflimidate M ⁿ⁺ (NTf ₂) _n	24
2.2.1	Binäre Metall-Triflimidate	25
2.2.2	Metall-Triflimidate mit Co-Liganden	30
2.3	Metallkomplex-Triflimidate (MKTs = $[M^{n+}(L)_m][NTf_2]_n$)	33
3	Experimenteller Teil	42
3.1	Darstellung der Säure HNTf2	42
3.2	Darstellung der Metall-Triflimidate und ihrer Derivate	43
3.2.1	Darstellung von Pb(NTf ₂) ₂	43
3.2.2	Darstellung von [Pd(HOAc) ₂ (NTf ₂) ₂] (HOAc = CH ₃ COOH)	44
3.3	Darstellung von Metallkomplex-Triflimidaten (MKTs)	45
3.3.1	Ni-Komplexe	47
3.3.2	Cu-Komplexe	48
3.3.3	Pd-Komplexe	49
3.3.4	Ag-Komplexe	50
3.3.5	Pt-Komplexe	51
3.3.6	Au-Komplexe	52
4	Auswertung und Diskussion	53

4.1	Synthesen	. 53
4.2	Einkristallstrukturanalyse	. 54
4.2.1	Strukturen von [Pd(HOAc) ₂ (NTf ₂) ₂], Pb(NTf ₂) ₂ und HNTf ₂	. 55
4.2.2	Strukturen der Ni-Komplexe	. 64
4.2.3	Strukturen der Cu-Komplexe	. 67
4.2.4	Strukturen der Pd-Komplexe	. 71
4.2.5	Strukturen der Ag-Komplexe	. 72
4.2.6	Strukturen der Pt-Komplexe	. 76
4.2.7	Strukturen der Au-Komplexe	. 78
4.2.8	Strukturvergleich aller [NTf ₂] ⁻ -Anionen in den Metallkomplexen.	. 82
4.3	Infrarot (IR)-Spektroskopie	. 94
4.4	Raman-Spektroskopie	102
4.5	Thermogravimetrie und Schmelzpunktbestimmung	111
5	Zusammenfassung und Ausblick1	18
6	Literaturverzeichnis1	28
7	Anhang 1	33
7.1	Kristallographische Daten zu [Cu ₂ (4-EtPy) ₈][(NTf ₂) ₂ (NO ₃) ₂]	133
7.2	TG, DTG und Pulverrückstände weiterer Verbindungen	150
8	Erklärung1	55

<u>Abbildungsverzeichnis</u>

Abb. 1: Cisoide und transoide Konfiguration des $[NTf_2]^-$ -Anions (a) und
Ausschnitt aus der Kristallstruktur von [Cu(EtIm) ₄][NTf ₂] ₂ ^[19] (b)16
Abb. 2: Mesomere Grenzstrukturen der S-N-O-Bindungen des [NTf2] ⁻ -
Anions
Abb. 3: Cisoide (a) und transoide (b) Konfiguration des [NTf ₂] ⁻ -Anions 20
Abb. 4: Elementarzelle des HNTf2 mit Wasserstoffbrückenbindungen 24
Abb. 5: Ausschnitt aus der Kristallstruktur von Zn(NTf ₂) ₂ ^[11]
Abb. 6: Bidentate Koordinationsmodi des [NTf ₂] ⁻ -Anions
Abb. 7: Orientierung der CF_3 -Gruppen entlang b in dem schichtartig
aufgebauten Zn(NTf ₂) ^[11] 28
Abb. 8: Ausschnitt aus der Schichtstruktur von Ag(NTf ₂) ^[36]
Abb. 9: Transoide Konfiguration der [NTf2] ⁻ -Anionen in den Verbindungen
[R ₁ AuCl ₂ (NTf ₂)] ^[42] (a) und [Er(H ₂ O) ₅][NTf ₂] ₃ ^[41] (b)
Abb. 10: Wasserstoffbrückenbindungen (a) und Strukturausschnitt (b) in
$[Pd(H_2O)_2(NTf_2)_2]^{[37]}$
Abb. 11: Ausschnitt aus der Kristallstruktur von [Cu(Etlm) ₄][NTf ₂] ₂ ^[19]
Abb. 12: Strukturausschnitt von [Ag(EtIm)2][NTf2] ^[46] mit linearer
Koordinationsumgebung der Ag ⁺ -Kationen
Abb. 13: Strukturausschnitt von [Pd(EtIm) ₄][NTf ₂] ₂ ^[47]
Abb. 14: Strukturausschnitt von $[Zn(EtIm)_6][NTf_2]_2$ (a) modifiziert nach ^[40]
und [Ni(Melm) ₆][NTf ₂] ₂ (b) modifiziert nach ^[19] 38
Abb. 15: Kristalle von HNTf242
Abb. 16: Aufbau zur Darstellung von $Pb(NTf_2)_2$ mit einem Schlenkrohr als
Reaktionsgefäß
Abb. 17: Kristalle von [Pd(HOAc) ₂ (NTf ₂) ₂]45
Abb. 18: Allgemeines Reaktionsschema als Beispiel zur Darstellung Pyridin-
Derivat-haltiger MKTs

Abb. 19: Kristalle von [Ni(Py) ₄ (H ₂ O) ₂][NTf ₂] ₂ (a), [Ni(3-EtPy) ₄ (H ₂ O) ₂][NTf ₂] ₂
(b) und [Ni(4-EtPy) ₄ (H ₂ O) ₂][NTf ₂] ₂ (c)
Abb. 20: Kristalle von [Cu ₂ (4-EtPy) ₈][(NTf ₂) ₂ (NO ₃) ₂] (a), [Cu(Py) ₄][NTf ₂] ₂ (b).
Abb. 21: Kristalle von [Pd(4-EtPy) ₄][NTf ₂] ₂ 50
Abb. 22: Kristalle von [Ag(Py) ₂][NTf ₂] (a), [Ag(3-EtPy) ₂][NTf ₂] (b), [Ag(4-
EtPy) ₂][NTf ₂] (c)
Abb. 23: Kristalle von [Pt(3-EtPy) ₄][NTf ₂] (a), [Pt(4-EtPy) ₄][NTf ₂] (b)
Abb. 24: Kristalle von [Au(3-EtPy) ₂][NTf ₂] (a), [Au(4-EtPy) ₂][NTf ₂] (b)
Abb. 25: Perspektivische Darstellung der Wasserstoffbrückenbindung in
[Pd(HOAc) ₂ (NTf ₂) ₂] (a) und Fehlordnung der CF ₃ -Gruppen des [NTf ₂] ⁻ -
Anions (b)
Abb. 26: Anordnung der Pd-Atome in [Pd(HOAc) ₂ (NTf ₂) ₂] (a) und
Orientierung der CF ₃ -Gruppen (b) im Kristallgitter
Abb. 27: Anordnung der drei verschiedenen Pb-Polyeder in Pb(NTf2)2 und
Orientierung der CF ₃ -Gruppen im Kristallgitter58
Abb. 28: Koordination der [NTf2] ⁻ -Anionen (einzähnig (Stabmodell);
zweizähnig (Kugelmodell)) um die drei verschiedenen Pb-Atome in
Pb(NTf ₂) ₂
Abb. 29: Verschiedene [NTf ₂] ⁻ -Anionen und deren Koordination zu den drei
verschiedenen Pb-Atomen in Pb(NTf ₂) ₂ 60
Abb. 30: Koordination der Ni ²⁺ -Ionen in den Verbindungen
$[Ni(Py)_4(H_2O)_2][NTf_2]_2$ (a), $[Ni(3-EtPy)_4(H_2O)_2][NTf_2]_2$ (b) und
[Ni(4-EtPy) ₄ (H ₂ O) ₂][NTf ₂] ₂ (c)65
Abb. 31: Projektion auf (010) (links) bzw. auf (100) (rechts) für die
Verbindungen [Ni(3-EtPy) ₄ (H ₂ O) ₂][NTf ₂] ₂ II (a) und
[Ni(4-EtPy) ₄ (H ₂ O) ₂][NTf ₂] ₂ III (b)67
Abb. 32: Ausschnitte aus der [Cu ₂ (4-EtPy) ₈][(NTf ₂) ₂ (NO ₃) ₂]-Kristallstruktur.

Abb. 33: Koordination um das Cu^{2+} in $[Cu(Py)_4][NTf_2]_2$ (a) und $[Cu_2(4-$
EtPy)8][(NTf2)2(NO3)2] (b)
Abb. 34: Strukturausschnitte (mit Elementarzelle (a)) (b) von
[Cu(Py) ₄][NTf ₂] ₂ 70
Abb. 35: Kristallstruktur von [Pd(4-EtPy)4][NTf ₂] ₂ 71
Abb. 36: Strukturausschnitt von [Pd(4-EtPy) ₄][NTf ₂] ₂ 72
Abb. 37: Strukturausschnitt mit Elementarzelle von $[Ag(Py)_2][NTf_2]$ (a) und
[Ag(3-EtPy) ₂][NTf ₂] (b)73
Abb. 38: Kristallstruktur von [Ag(4-EtPy)2][NTf2] mit kristallographisch
unterscheidbaren Ag1- und Ag2-Atomen75
Abb. 39: Quadratisch-planare, windmühlenartige-Umgebung der
fehlgeordneten EtPy-Liganden um das Pt^{2+} -Kation in [Pt(3-EtPy) ₄][NTf ₂] ₂ (a)
und [Pt(4-EtPy) ₄][NTf ₂] ₂ (b)76
Abb. 40: Elementarzellen von [Pt(3-EtPy) ₄][NTf ₂] ₂ (a) und
[Pt(4-EtPy) ₄][NTf ₂] ₂ (b)77
Abb. 41: Asymmetrische Einheit von [Au(3-EtPy) ₂][NTf ₂]
Abb. 42: Kristallstruktur von $[Au(3-EtPy)_2][NTf_2]$ in Projektion auf (100) (a)
und (010) (b)
Abb. 43: Stapelung der [Au(4-EtPy)2]-Einheit entlang b in [Au(4-
EtPy)2][NTf2]
Abb. 44: Kristallstruktur von [Au(4-EtPy)2][NTf2] in (010)
Abb. 45: Abstand des $[NTf_2]^-$ -Anions zum Pt^{2+} -Ion in den Pt-MKTs X (a)
und XI (b)
Abb. 46: Asymmetrische Einheit von [Cu(Py) ₄][NTf ₂] ₂ (a) und [NTf ₂] ⁻ -
Anionen des [Cu ₂ (4-EtPy) ₈][(NTf ₂) ₂ (NO ₃) ₂] (b)85
Abb. 47: Wechselwirkung des [NTf2] ⁻ -Anions zum Ag ⁺ -Kation in den Ag-
MKTs VII (a), VIII (b) und IX (c)
Abb. 48: Fehlordnung der CF ₃ -Gruppe in [Au(3-EtPy) ₂][NTf ₂]; Besetzung:
F21A-Atom-61(5) %, F21B-Atom-39(5) %

Abb. 49: IR-Spektren der Py-Derivat-Metallkomplex-Ttriflimidate
Abb. 50: IR-Spektren der 3-EtPy-Derivat-Metallkomplex-Triflimidate98
Abb. 51: IR-Spektren der 4-EtPy-Derivat-Metallkomplex-Triflimidate 99
Abb. 52: Raman-Spektren der Py-Derivat-Metallkomplex-Triflimidate 104
Abb. 53: Raman-Spektren der 3-EtPy-Derivat-Metallkomplex-Triflimidate.
Abb. 54: Raman-Spektren der 4-EtPy-Derivat-Metallkomplex-Triflimidate.
Abb. 55: Pulverdiffraktogram von den Rückständen von [Ag(3-EtPy)2][NTf2]
und [Ag(4-EtPy) ₂][NTf ₂] im Vergleich mit simulierten Ag-Daten ^[68] 113
Abb. 56: Thermische Zersetzung von [Ag(Py)2][NTf2]113
Abb. 57: Thermische Zersetzung von [Ag(3-EtPy)2][NTf2]114
Abb. 58: Thermische Zersetzung von [Ag(4-EtPy)2][NTf2]115
Abb. 59: Quadratisch-planare Einheit von [Pd(HOAc) ₂ (NTf ₂) ₂] (a) und die
drei kristallographisch unterscheidbaren Pb^{2+} -Ionen von $Pb(NTf_2)_2$ (b) 119
Abb. 60: Lineare Verknüpfung der Liganden in [Ag(Py)2][NTf2] (a) und
gestapelte, lineare [Au(4-EtPy)2]-Einheiten entlang b in [Au(4-EtPy)2][NTf2]
(b)120
Abb. 61: Quadratisch-planare Koordination der Py-Liganden um das Cu ²⁺ -
Ion in $[Cu(Py)_4][NTf_2]_2$ (a) und oktaedrische Koordinationsumgebung der
Ni ²⁺ -Ionen in [Ni(Py) ₄ (H ₂ O) ₂][NTf ₂] ₂ (b)121
Abb. 62. Orientierung des cisoiden [NTf2] ⁻ -Anions von [Au(3-EtPy)2][NTf2]
(a) und der transoiden $[NTf_2]^-$ -Anionen von $[Pt(3-EtPy)_4][NTf_2]_2$ (b) zum
Metallzentrum
Abb. 63: IR-Spektren der Py-Derivat-Metallkomplex-Triflimidate inklusive
der nicht kristallin erhaltenen Py-Derivate (mit einem a gekennzeichnet).
Abb. 64: Raman-Spektren der 3-EtPy-Derivat-Metallkomplex-Triflimidate.

Abb. 65: TG und DTG von [Au(3-	-EtPy) ₂][NTf ₂].			150
Abb. 66: Pulverdiffraktogramm	von	dem	TG-Rückstand	von	[Au(3-
EtPy)2][NTf2] und simulierten Au	-Dater	ז ^[69]			150
Abb. 67: TG und DTG von [Pt(3-	EtPy)4]	[NTf ₂] ₂ .			151
Abb. 68: TG und DTG von [Pt(4-l	EtPy)4]	[NTf ₂] ₂ .			151
Abb. 69: Pulverdiffraktogramm	von	dem	TG-Rückstand	von	[Pt(4-
EtPy) ₄][NTf ₂] ₂ und simulierten Pt	-Dater	ו ^[70]			152
Abb. 70: TG und DTG von [Pd(4-	EtPy) ₄]	[[NTf ₂] ₂			152
Abb. 71: TG und DTG mit MS vo	n [Cu(l	Py)₄][N⁻	۲f ₂]2		153
Abb. 72: TG und DTG mit MS vo	n [Ni(F	₽y)₄(H₂C	D)2][NTf2]2		153
Abb. 73: TG und DTG mit MS vo	n [Ni(3	8-EtPy)4	.(H2O)2][NTf2]2		154
Abb. 74: TG und DTG mit MS vo	n [Ni(4	-EtPy)4	.(H ₂ O) ₂][NTf ₂] ₂		154

Tabellenverzeichnis

Raman-Moden/ cm⁻¹ Tab. 2: IR-Banden und des [NTf₂]⁻-Anions. Tab. 3: Vergleich ausgewählter Parameter von $[Ag(EtIm)_2][NTf_2],$ Tab. 4: Kristallographische Daten von HNTf₂, [Pd(HOAc)₂(NTf₂)₂] und Tab. 5: Pb-O-Abstände/ pm in Pb(NTf₂)₂......59 Tab. 6: Bindungslängen/ pm der [NTf₂]⁻-Anionen in den Verbindungen HNTf₂^[1], [Pd(HOAc)₂(NTf₂)₂] und Pb(NTf₂)₂.....60 Tab. 7: Winkel/ ° der $[NTf_2]^-$ -Anionen in den Verbindungen HNTf₂, [Pd(HOAc)₂(NTf₂)₂] und Pb(NTf₂)₂.....61 Tab. 8: Kristallographische Daten von [Ni(Py)₄(H₂O)₂][NTf₂]₂ I, [Ni(3-EtPy)₄(H₂O)₂][NTf₂]₂ II und [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂ III......64 Tab. 9: Abstände/ pm und Winkel/ ° innerhalb der [NiO₂N₄]-Oktaeder in den Verbindungen [Ni(Py)4(H2O)2][NTf2]2 I, [Ni(3-EtPy)4(H2O)2][NTf2]2 II und Tab. 10: Winkel und Atomabstände der NO3⁻-Anionen in der Verbindung Tab. 11: Kristallographische Daten von [Cu₂(4-EtPy)₈][(NTf₂)₂(NO₃)₂] IV und Tab. 12: Kristallographische Daten von [Ag(Py)2][NTf2] VII, [Ag(3-EtPy)2][NTf2] VIII und [Ag(4-EtPy)2][NTf2] IX......75 Tab. 13: Kristallographische Daten von [Pt(3-EtPy)₄][NTf₂]₂ X und [Pt(4-EtPy)₄][NTf₂]₂ XI......77

Tab. 14: Kristallographische Daten von [Au(3-EtPy)2][NTf2] XII und [Au(4-
EtPy)2][NTf2] VIII
Tab. 15: Bindungslängen/ pm der [NTf2]-Anionen von Metallkomplex-
Triflimidaten im Vergleich
Tab. 16: Ausgewählte Winkel/ ° innerhalb der [NTf2]-Anionen von
Metallkomplex-Triflimidaten im Vergleich
Tab. 17: IR-Banden/ cm ⁻¹ der Py-Derivat-Metallkomplex-Triflimidate und
von Py ^[62] 95
Tab. 18: IR-Banden/ cm ⁻¹ der 3-EtPy-Derivat-Metallkomplex-Triflimidate
und von 3-EtPy ^[66]
Tab. 19: IR-Banden/ cm ⁻¹ der 4-EtPy-Derivat-Metallkomplex-Triflimidate
und von 4-EtPy ^[64-65] 100
Tab. 20: Raman-Moden/ cm ⁻¹ der Py-Derivat-Metallkomplex-Triflimidate
und von Py ^[62] 103
Tab. 21: Raman-Moden/ cm ⁻¹ der3-EtPy-Derivat-Metallkomplex-
Triflimidate und von 3-EtPy ^[66] 105
Tab. 22:Raman-Moden/ cm ⁻¹ der4-EtPy-Derivat-Metallkomplex-
Triflimidate und von 4-EtPy ^[64-65] 108
Tab. 23: Daten der thermalen Zersetzung von Ag-MKTs116
Tab. 24: Schmelzpunkte/ °C der MKTs117
Tab. 25: Übersicht der in dieser Arbeit behandelten Kristallstrukturen und
ihre wichtigsten kristallographischen Daten126
Tab. 26: Kristallographische Daten von [Cu ₂ (4-EtPy) ₈][(NTf ₂) ₂ (NO ₃) ₂] 133
Tab. 27: Funktionale Atomkoordinaten und isotrope oder äquivalent
isotrope Auslenkungsparameter (Å ²)134
Tab. 28: Atomare Auslenkungsparameter (Å ²)139
Tab. 29: Geometrische Parameter (Å, °)142

Danksagung

An erster Stelle möchte ich mich bei Herrn Prof. Mathias S. Wickleder bedanken, dass ich in seinem Arbeitskreis dieses interessante Promotionsthema bearbeiten durfte. Ebenfalls möchte ich mich recht herzlich bei Herrn Prof. Siegfried Schindler für das Zweitgutachten bedanken. Bei Herrn Prof. Bernd Smarsly und Herrn Prof. Richard Göttlich bedanke ich mich für die Teilnahme als Dritt- bzw. Viertprüfer im Promotionsverfahren.

Außerdem möchte ich mich bei der gesamten Arbeitsgruppe Wickleder für die hilfreiche fachliche, experimentelle und technische Unterstützung während der Doktorarbeit bedanken. Darüber hinaus habe ich von der angenehmen Arbeitsatmosphäre profitiert. Im Einzelnen danke ich Herrn Dr. Christian Logemann für die Überprüfung meiner schriftlichen Arbeit und Herrn Dr. Wolfgang Herrendorf für die fürsorgliche Veranstaltungsplanung insbesondere im letzten Drittel der Promotionsphase. Ein weiterer Dank gilt meinen Vertiefungspraktikanten Thorben Krauskopf, Markus Schauermann, Tim Weber, Nils Anschütz und Hannes Giese, die immer frischen Wind in meinen Unialltag gebracht haben.

Meinen Dank gilt auch meinen Freunden und meiner Familie, die mich trotz der Entfernung immer unterstützt und motiviert haben. Im Besonderen möchte ich hier meinem Ehemann Dr. Heinz Bülter und Frau Dr. Mona Struckmann für die persönliche und private Motivation sowie hilfreiche fachliche Unterstützung herzlich danken.

12

Kurzzusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Charakterisierung von Metall- und Metallkomplex-Triflimidaten (MKT) mit dem Anion *Bis*-trifluormethylsulfonylimidat ($^{-}N(SO_2CF_3)_2 = [NTf_2]^{-}$).

Das strukturell stark vernetzte Bleitriflimidat Pb(NTf₂)₂ wurde in einer Metathesereaktion des Metall-Acetats mit HNTf₂ in einem Schlenkrohr unter Inertgasatmosphäre bei 90 °C im Sandbad synthetisiert. Das komplexe Metall-Triflimidat-Acetat-Addukt [Pd(HOAc)₂(NTf₂)₂] wurde in einer Glasampulle unter Verwendung eines Blockthermostaten mit definiertem Temperaturprofil dargestellt.

Luftstabile Metallkomplex-Triflimidate der Zusammensetzung $[M^{n+}(L)_m][NTf_2]_n$ (M = Ag⁺, Cu²⁺, Ni²⁺, Pd²⁺, Pt²⁺ und Au⁺) mit m = 2 bzw. 4 und L = Pyridin (Py), 3-Ethylpyridin (EtPy) und 4-Ethylpyridin, wurden zweistufig (Komplexierung und Salzmetathese) aus Metallsalzen (z. B. Nitrate, Acetate) und Li(NTf₂) dargestellt. Hierbei liegen die [NTf₂]⁻-Anionen frei im Kristallgitter vor. Die Zersetzung der Anionen findet ab T >233 °C statt und führt in einem mehrstufigen Prozess zum jeweiligen Metall. Linear verknüpfte MKTs weisen die niedrigsten Schmelzpunkte auf: [Ag(Py)₂][NTf₂] **VII**, 67 °C; [Ag(3-EtPy)₂][NTf₂] **VIII**, 71 °C; [Ag(4-EtPy)₂][NTf₂] IX, 74 °C; [Au(3-EtPy)₂][NTf₂] XII, 70 °C; [Au(4-EtPy)₂][NTf₂] XIII, 73 °C. Die Liganden-Struktur und die Koordinationszahl des Metalls sind für die Konfiguration des [NTf₂]⁻-Anions maßgebend. Ausschließlich VII, VIII und **XII** enthalten *cis*-förmige [NTf₂]⁻-Anionen. Alle anderen [NTf₂]⁻-Anionen der MKTs besitzen transoide Konfiguration.

13

Abstract

The present thesis deals with the characterization of metal triflimidates and metal complex triflimidates (MKT) containing the anion *bis*-trifluormethyl-sulfonylimidate ($^{-}N(SO_2CF_3)_2 = [NTf_2]^{-}$).

The lead triflimidate Pb(NTf₂)₂ consists of a highly interlinked structure. It was synthesized by the reaction of the metal acetate with HNTf₂ inside a Schlenk tube and a sand bath under inert conditions at 90 °C. The complex metal triflimidate acetate adduct [Pd(HOAc)₂(NTf₂)₂] was obtained in a sealed glass ampoule using a block thermostat with a defined temperature profile.

metal Air stable complex triflimidates with the composition $[M^{n+}(L)_m][NTf_2]_n$ (M = Ag⁺, Cu²⁺, Ni²⁺, Pd²⁺, Pt²⁺ and Au⁺) and with m = 2 and 4, respectively, and with L = pyridine (Py), 3-ethylpyridine (EtPy) and 4-ethylpyridine, were synthesized in two steps (complexation and metathesis) by using metal salts (e.g. nitrate, acetate) and Li(NTf₂). The [NTf₂]⁻ anions are uncoordinated in the crystal lattices. The thermal decomposition of the anions occurs above T > 233 °C and leads in a multistep process to the respective metals. Linear coordinated MKTs exhibit the lowest melting points: [Ag(Py)₂][NTf₂] VII, 67 °C; [Ag(3-EtPy)₂][NTf₂] VIII, 71 °C; [Aq(4-EtPy)₂][NTf₂] **IX**, 74 °C; [Au(3-EtPy)₂][NTf₂] **XII**, 70 °C; [Au(4-EtPy)₂][NTf₂] XIII, 73 °C. The ligand structure and the coordination number of the metals are determining the configuration of the $[NTf_2]^-$ anion. Exclusively **VII**, **VIII** and **XII** contain *cis* shaped [NTf₂]⁻ anions.

1 Einleitung

Das *Bis*-trifluormethylsulfonylimidat-Anion ("Triflimidat"), [N(SO₂CF₃)₂]⁻ bzw. [NTf₂]⁻, gehört zur Gruppe der schwach-koordinierenden Anionen. Diese Anionen sind in der Regel niedrig geladen, wobei die negative Ladung über mehrere Atome delokalisiert ist. In [N(SO₂CF₃)₂]⁻ sind dies das Stickstoffatom und die Sauerstoffatome der Triflylgruppe, –SO₂CF₃.^[1-3] Wie viele schwach-koordinierende Anionen wird auch das Triflimidat-Ion zum Aufbau ionischer Flüssigkeiten (ILs) eingesetzt.^[4-6] Die hohe Redoxstabilität des [NTf₂]⁻-Anions ist hierbei vorteilhaft und ermöglicht elektrochemische Reaktionen in ILs mit einem breiten Spannungsfenster. Auch in der Batterieforschung wird z. B. das Li(NTf₂) verwendet.^[7]

Aufgrund der schwachen Koordinationsfähigkeit des Triflimidats sind jedoch nur wenige Kristallstrukturen solvensfreier Triflimidate bekannt. Foropoulos konnte zwar bereits 1984 das Cäsiumsalz^[8] darstellen, jedoch nicht die Kristallstruktur aufzuklären^[9]. Oft werden diese Verbindungen in Lösung durch Umsetzung von Metall-carbonaten, -oxiden oder – hydroxiden^[10] mit der reinen Säure HNTf₂ synthetisiert, wodurch der Nachweis über spektroskopische Methoden erfolgen kann. Erst 2004 gelang es mit Zn(NTf₂)2^[11] das erste wasserfreie Triflimidat zu untersuchen. In dieser schichtartigen Struktur liegen für Triflimidat-Verbindungen typisch zueinander orientierte CF₃-Gruppen vor.

In den solvenshaltigen Triflimidaten werden die Metallionen partiell $(La(NTf_2)_3 \cdot H_2O)$ oder vollständig $([Mg(H_2O)_6][NTf_2]_2 \cdot 2H_2O^{[12]})$ von Solvensmolekülen umgeben.

Diese Verbindungen werden ähnlich zu den reinen Metall-Triflimidaten aus dem Metalloxid und der Säure in dem jeweiligen Lösungsmittel oder in einer Metathesereaktion gewonnen.^[12] Verwendung finden solvenshaltige Triflimidate wie das bereits erwähnte La(NTf₂)₃·H₂O^[13-15] u. a. als Katalysator^[10, 16-17] bei der Diels-Alder-Cycloaddition von Cyclopentadien mit einem Methylvinylketon. Aus den Analysen an diesen Verbindungen ist bekannt, dass das Triflimidat-Anion im Wesentlichen in zwei Konfigurationen vorliegt, die sich in der Stellung der CF₃-Gruppen zueinander unterscheiden. Sie werden als *cisoid* bzw. *transoid* bezeichnet^[18] (siehe Abb. 1 a).

Abb. 1: Cisoide und transoide Konfiguration des $[NTf_2]^-$ -Anions (a) und Ausschnitt aus der Kristallstruktur von $[Cu(EtIm)_4][NTf_2]_2^{[19]}$ (b).

In Metall-Triflimidaten wie dem oben erwähnten $[Mg(H_2O)_6][NTf_2]_2 \cdot 2H_2O^{[12]}$ liegen die Triflimidat-Anionen unkoordiniert vor. Mittlerweile ist eine Vielzahl von kationischen Komplexen bekannt, die durch Triflimidat-Ionen stabilisiert werden. Deren Herstellung geschieht meist über zuvor synthetisierte Metall-Triflimidate oder deren Derivate, welche anschließend mit dem Komplex-bildenden Lösungsmittel als Ligand L umgesetzt werden. So berichten z. B. Schaltin *et al.* über die Komplexe $[M^{n+}(L)_m][NTf_2]_n$ (mit M = Ag, Cu, Ni, Pd), wobei für L vor allem Alkylnitrile und *N*-Alkylimidazol-Derivate verwendet wurden.^[19-22] Durch die Größe der beteiligten komplexen Ionen ist die Gitterenergie dieser Salze gering, so dass sie niedrige Schmelzpunkte aufweisen und mithin als ILs (Schmelzpunkt < 100 °C) aufgefasst werden können.^[23] Für diese Art von Komplexen hat sich in der Literatur der Begriff "Metallkomplex-Triflimidate" (MKTs) etabliert. Sie finden in der Elektrochemie als Elektrolyt oder sogar als direkte Metallquelle für elektrochemische Abscheidung Anwendung.^[22] Die thermische Stabilität der bei Raumtemperatur manchmal auch gelartigen oder festen Verbindungen ist von Vorteil, um Synthesen bei höheren Temperaturen oberhalb des Schmelzpunktes der Edukte durchführen zu können. Die Schmelzpunkte der MKTs sind vor allem durch die Art des Liganden L steuerbar. Dies lässt sich anschaulich an den Kupferimidazol-Derivat-Triflimidaten [Cu(L)₄][NTf₂]₂ verdeutlichen^[19] (siehe Abb. 1 b). Je länger die Alkylkette am Imidazolmolekül (Im) ist, desto niedriger ist der Schmelzpunkt:

Melm (89 °C) > Etlm (74 °C) > Butyllm (46 °C) > Hexyllm (flüssig bei RT).

In der vorliegenden Arbeit spielen MKTs mit Edelmetallen eine besondere Rolle. Sie bieten die Möglichkeit diese Metalle in ILs zu implementieren und in ihnen elektrochemische Synthesen durchzuführen. Fernziel dieses Ansatzes ist es, auf elektrochemischem Wege definierte Oxidationsstufen einzustellen und Edelmetallverbindungen in ungewöhnlichen Valenzzuständen zu erhalten. Ausgangspunkt dieser Arbeiten ist die Synthese der Säure HNTf₂ und ihre Umsetzung mit unterschiedlichen Metallen. Die Forschung wird schließlich auf Metallkomplexe erweitert, mit besonderem Augenmerk auf Edelmetallkomplexe. Die Untersuchungen zielen zum einen auf das strukturelle Verständnis von Triflimidaten und MKTs ab, und zum anderen auf ihre Eigenschaften. Ferner ist die Konfiguration des [NTf₂]⁻-Anions von Bedeutung. Dabei stehen vor allem die schwingungsspektroskopische und die thermische Analyse im Vordergrund.

Für die strukturelle Darstellung der Triflimidate wird in der vorliegenden Arbeit eine einheitliche Darstellung verwendet, die nachstehend gezeigt ist (Tab. 1). Wichtige Wechselwirkungen, wie Wasserstoffbrückenbindungen

17

aber auch entscheidende Atomabstände sind pink-gestrichelt hervorgehoben und die Liganden sind teilweise übersichtlicher in Stabform dargestellt.

н	С	Ν	0	S	F	M ^{<i>n</i>+}
weiß	grau	orange	blau	gelb	grün	divers
\bigcirc		\bigcirc		0		-

Tab. 1: Farbkodierung der Atome innerhalb des $[NTf_2]^-$ -Anions.

2 Grundlagen

Wichtige Hintergründe zu Metall-Triflimidaten $M^{n+}(NTf_2)_n$ und Metallkomplex-Triflimidaten $[M^{n+}(L)_m][NTf_2]_n$ werden in den folgenden Abschnitten behandelt. Hierbei steht L vorzugsweise für die Liganden wie Pyridinderivate und Imidazol und *m* für die Anzahl der Liganden um das Metallzentrum. Verschiedene Charakteristika und Anwendungen des *Bis*trifluormethylsulfonylimidates (⁻N(SO₂CF₃)₂ = [NTf₂]⁻) sind von Bedeutung.

2.1 Bis-trifluormethylsulfonylimidat (⁻N(SO₂CF₃)₂ = [NTf₂]⁻)

Die vielfältige Chemie des *Bis*-trifluormethylsulfonylimidates (⁻N(SO₂CF₃)₂ = [NTf₂]⁻) ist unter anderem durch die charakteristische Triflylgruppe -SO₂CF₃ geprägt, wodurch sich die geläufige Abkürzung Triflimidate ergibt.

2.1.1 Ladungsverteilung im [NTf₂]⁻-Anion

Diese Substanzklasse weist eine Delokalisation der Elektronen innerhalb der S-N-O-Bindungen auf (siehe Abb. 2). Die S-N-Bindung haben einen Doppelbindungscharakter, welcher schon durch Cruickshank 1961 beschrieben wurde^[1].

Abb. 2: Mesomere Grenzstrukturen der S-N-O-Bindungen des [NTf₂]⁻-Anions.

Allgemeine Standardwerte^[24] für nicht mesomeriestabilisierte Verbindungen betragen für eine S-N-Einfachbindung 173 pm und für eine S=N-Doppelbindung 149 pm. Entsprechend liegen die Werte für eine S-O- Einfachbindung bei 170 pm und die einer S=O-Doppelbindung bei 146 pm.

Des Weiteren besitzt die Triflylgruppe mit ihrer CF₃-Gruppe einen stark elektronenziehenden Rest. Aufgrund dieses negativen induktiven Effektes ist die S-C-Bindung meist etwas länger als die Standard-S-C-Bindung mit 181 pm^[24], weshalb eher eine trigonale Pyramide als ein idealer Tetraeder in den S-CF₃-Einheiten vorliegt.

Diese beiden Pyramiden eines [NTf₂]⁻-Anions können allgemein in zwei verschiedenen Formationen vorliegen.

2.1.2 Konfigurationen des [NTf₂]⁻-Anions

Bezüglich einer Ebene durch die Atome S-N-S des [NTf₂]⁻-Anions können die beiden CF₃-Gruppen zwei unterschiedliche Orientierungen einnehmen, die als *transoid* (C₂-Symmetrie) oder *cisoid* (C₁-Symmetrie) bezeichnet werden (Abb. 3).

Abb. 3: Cisoide (a) und transoide (b) Konfiguration des $[NTf_2]^-$ -Anions.

Die entsprechende Konfiguration kann u. a. durch kalkulierte und experimentell bestimmte, charakteristische Infrarot (IR)-Schwingungen und Raman-Moden in den Bereichen 240-380 cm⁻¹ und 715-765 cm⁻¹ identifiziert werden.^[18, 25-28] Dort sind Interferenzen der Banden des [NTf₂]⁻-Anions mit denen der Gegenkationen unerheblich.

Folgende Symbole und Abkürzungen wurden für die verschiedenen Schwingungstypen in dieser Arbeit verwendet:

Streckschwingung v, Deformationsschwingung δ , Schaukelschwingung ρ , Drehschwingung τ , Wippschwingung ω , symmetrische **sym**, asymmetrische **as**, aromatische Schwingung **ar**, in Phase schwingend (**i**) oder separat (**s**) zueinander.

Die in der Tab. 2 dem $[NTf_2]^-$ -Anion zugeordneten Wellenzahlen wurden anfangs ausschließlich den symmetrischen (sym) und asymmetrischen (as) Deformationsschwingungen δ CF₃ der Triflyl-Gruppen zugeordnet. Tatsächlich beinhalten Sie neben den δ S-N-S auch die separaten (s) "Regenschirmdeformationen" δ_s CF₃ und δ_s N-SO₂.

Schwin- gungs- Moden	IR [NTf2] ⁻	Raman [NTf ₂]-	cisoides Isomer	<i>transoides</i> Isomer
v_l^{as} SO ₂	1354	1349-1351	1321	1323
$v_s^{as} SO_2$	1334	1330-1331	1302	1300
v^{sym} CF ₃	1240	1239-1240	1233	1234
v CF ₃	1227	-	1202	1205
<i>v</i> CF ₃	1195	1192	1122	1115
vi ^{sym} SO ₂	1136	1131-1137	1113	1112
v ^{as} S-N-S	1060	_	1008	999
v C-S	788	-	766	768
	761	762	750	751

Tab. 2: IR-Banden und Raman-Moden/cm⁻¹ des [NTf₂]⁻-Anions. Charakteristische Bereiche sind farbig hervorgehoben.^[18, 25-26, 28]

[NTf ₂]⁻	739	740	713	716
			738	741
δ S-N-S	656	652-653	630	_
δ_{s}^{as} SO ₂		632-618		
δ_{s}^{as} SO ₂	656	653-655	630	-
[NTf ₂]⁻	_	628	_	607
	618	_	_	602
	602	604	581	_
		592	564	570
	570	571	557	557
δ^{sym} SO ₂		551	534	535
	513			
ωSO_2		407-401	408	391
	405	395		
τSO_2	359	352-339	315	325
			350/ 351	339/ 340
ho SO2	326	333-325	309	304
			326-333	314
ho SO ₂		315-312	291	295
$ ho CF_3$			306	298
	288		269	274
$ ho CF_3$	288	279-276	269 264	274 262
$ ho CF_3$	288 224	279-276	269 264 210	274 262
$ ho \operatorname{CF}_3$ $ ho \operatorname{CF}_3$	288	279-276 185-170	269 264 210 154	274 262 154

Die Vibrationsspektren des Anions können durch ionische Wechselwirkungen^[26], Druck und Temperatur beeinflusst werden.^[27] In festem Aggregatzustand scheint die *transoide* Form vorherrschend zu sein. Im flüssigen koexistieren beide Rotationsisomere bei Raumtemperatur, wenn gleich die *transoide* Form um 2,2 kJ·mol^{-1[26]} bevorzugt ist.^[18] Bei theoretischen Berechnungen wurde die Temperatur in 20 °C Schritten auf 100 °C erhöht, wodurch die *cisoide* Form um ca. 18 % zugenommen hatte. Wird der Druck auf eine Triflimidat-Verbindung mit 1-Butyl-1methylpyrrolidinium als Gegenion bei konstanter Temperatur (26,85 °C) von 3 auf 8 GPa erhöht, so verschiebt sich das Spektrum von ca. 752 cm⁻¹ zu höheren Wellenzahlen um 767 cm⁻¹. Hier scheint die *cisoide* Form bevorzugt zu sein, nicht zuletzt aufgrund des um 0,34 \pm 0,02 cm³·mol⁻¹ geringeren Volumens zum *transoiden* Isomer.^[28]

Insgesamt herrscht bei dem relativ großen Volumen des [NTf₂]⁻-Anions eine über das gesamte Anion verteilte recht geringe Ladungsdichte, weshalb es nach dem HSAB-Prinzip zu den weichen Anionen zählt und eher als schwach bis gering koordinierend eingestuft wird.^[13] Je nachdem, wo die Ladung lokalisiert ist, ergeben sich verschiedene Bindungsmodi bezüglich der Metallkationen (Kapitel 2.2.1). Das [NTf₂]⁻-Anion kann bei negativer Ladung am Stickstoffatom protoniert werden, wodurch die konjugierte Säure entsteht.

2.1.3 *Bis*-trifluormethylsulfonylimid (HNTf₂)

Die Säure *Bis*-trifluormethylsulfonylimid HNTf₂ oder auch Triflimid wurde von Foropoulos 1984 synthetisiert.^[8] 2011 wurde von Agel *et al.* eine analoge Synthese^[29] mit käuflich erwerblichem Li(NTf₂) durchgeführt (Gl. 1). Dabei wurde das Lithiumsalz in konzentrierter Schwefelsäure gelöst und bei 90 °C unter Schutzgas erhitzt. Durch eine anschließende Kältedestillation konnte das Produkt mit einer Ausbeute von 99 % erhalten werden.

$$2 \operatorname{Li}(\operatorname{NTf}_2)_{(s)} + H_2 SO_4_{(l)} \xrightarrow{90 \circ C} 2 \operatorname{HNTf}_2_{(l)} + \operatorname{Li}_2 SO_4_{(s)}$$
 (Gl. 1)

Hierbei wurde über dem Schmelzpunkt der Säure (55 °C) gearbeitet. Die Struktur wurde 1996 von Haas *et al.* mittels Röntgenbeugung an

Einkristallen bestimmt.^[1] Die Säure kristallisiert in der orthorhombischen Raumgruppe *Pccn* (Nr. 56) mit den Gitterkonstanten a = 1640,4(2) pm, b = 553,5(1) pm, c = 955,7(2) pm und einem Zellvolumen *V* von 867,7 10⁶ · pm³. Abb. 4 illustriert ein Ausschnitt der Struktur in Projektion auf (010), wobei mit *Z* = 4 die asymmetrische Einheit aus einem HNTf₂-Molekül besteht.

Abb. 4: Elementarzelle des HNTf₂ mit Wasserstoffbrückenbindungen.

Die Wasserstoffbrückenbindungen sind hierbei durch die pinkgestrichelten Linien hervorgehoben und liegen mit einem Donor-Akzeptor-Abstand N-O von 308,90(3) pm und einem Winkel von 141,03(2)° im mäßig starken Bereich^[30].

Das Triflimid zählt zu den super Säuren^[10] und hat mit der Triflylgruppe, wie oben erwähnt eine der stärksten elektronenziehenden Gruppen^[13], wodurch die Acidität des am Stickstoff gebundenen Wasserstoffatoms erhöht wird. Deshalb sollte HNTf₂ besonders gut zur Synthese von Metall-Triflimidaten geeignet sein.

2.2 Metall-Triflimidate Mⁿ⁺(NTf₂)_n

Die größte Anwendung finden Metall-Triflimidate als Katalysatoren in diversen Reaktionen wie zum Beispiel Cycloadditionen, Umlagerungsreak-

tionen und Friedel-Crafts-Acylierung und -Alkylierung^[10, 16-17]. Die Triflimidat-Salze werden unter anderem zur Bildung von ionischen Flüssigkeiten (ILs) verwendet.^[4] ILs stellen eine Verbindungsklasse dar, die ausschließlich aus schwach koordinierenden Anionen aufgebaut ist, welche mit großen, meist organischen Kationen geringfügig wechselwirken. Sie weisen einen geringen Dampfdruck auf und liegen über einen weiten Temperaturbereich (unterhalb von 100 °C) in flüssiger Form vor. ILs sind generell ungiftig, nicht brennbar oder explosiv und besitzen ein breites elektrochemisches Fenster. Außerdem besitzen sie eine hohe Redoxstabilität^[31-32]. Allgemein werden ILs bei Raumtemperatur als klare, leicht gelbliche und eher viskose Flüssigkeiten beschrieben.

2.2.1 Binäre Metall-Triflimidate

Die allgemeine Summenformel für binäre Metall-Triflimidate ist M^{*n*+}(NTf₂)_{*n*}, wobei das Metallkation M sich in der Oxidationsstufe *n*⁺ befindet und von entsprechend vielen [NTf₂]⁻-Anionen umgeben ist. Als eines der ersten Metall-Triflimidate wurde 1984 von Foropoulos *et al.* das Cäsiumsalz synthetisiert.^[8-9] Oft werden die reinen Metall-Triflimidate durch Umsetzung von Metalloxiden^[20] und der reinen Säure dargestellt (Gl. 2).

$$2 \text{ HNTf}_{2(s)} + \text{CuO}_{(s)} \longrightarrow \text{Cu(NTf}_{2})_{2(aq)} + \text{H}_{2}\text{O}_{(l)}$$
 (GI. 2)

Auf elektrochemischen Syntheseweg wurden 2003 M(NTf₂) (M = V, Ni, Zn), Sm(NTf₂)₃ sowie Sn(NTf₂)₄^[33] und 2008 M(NTf₂) (M = Cu, Bi)^[34] dargestellt, jeweils in Form ihrer Solvens-Addukte. Viele weitere Triflimidate folgten durch Darstellung aus den Metallcarbonaten, -oxiden oder -hydroxiden^[10]. Zur Katalyse von Friedel-Crafts-Acylierung mit Anisol wurden unter anderem die Verbindungen M(NTf₂)₃ (M = Al, Yb) und Ti(NTf₂)₄ als Lewis-Säure eingesetzt.^[17] Oft wird die Existenz der Verbindungen in Lösung vorausgesetzt oder mit spektroskopischen Methoden bewiesen. Einkristallstrukturdaten konnten erstmals im Jahre 2004 von Zn(NTf₂)₂ erhalten werden. Damit wurde ein Einblick in den strukturellen Aufbau von Metall-Triflimidaten gewonnen. Aufgrund des Mesomerieverhaltens des Anions, kann dieses entweder über die O-Atome der SO₂-Einheit oder über das N-Atom an das M^{*n*+}-Ion binden. Dies kann entweder monodentat geschehen oder bidentat-chelatisierend, wie es in dem Zn-Triflimidat zum Teil der Falls ist (siehe Abb. 5, **pink** hervorgehoben). Einige SO₂-Einheiten verbrücken hingegen zwei verschiedene Kationen miteinander (**rosa** hervorgehoben).

Abb. 5: Ausschnitt aus der Kristallstruktur von $Zn(NTf_2)_2^{[11]}$.

Hierbei sind die O-Atome zweier verschiedener SO₂-Gruppen über die O-S-N-S-O Kette des gesamten *transoiden* [NTf₂]⁻-Anions mit dem insgesamt oktaedrisch umgebenden Zn²⁺ ringförmig verknüpft (durchschnittliche Atomabstände: S-O: 144,9 pm, S-N: 154,9 pm, Zn-O: 207,4 pm). Dies entspricht einem Sechsring (Abb. 6) und wird vor allem in Alkalimetall-Triflimidaten beobachtet.^[35] Möglich ist auch ein viergliedriger Ring (typisch für Lanthan-Verbindungen), indem beide O-Atome einer SO₂-Gruppe angreifen.^[13-14]

Abb. 6: Bidentate Koordinationsmodi des [NTf₂]⁻-Anions.

Ein struktureller Grund für die schlechte Kristallisierbarkeit der Triflimidate ist in der Anordnung der CF₃-Gruppen zu sehen. Diese sind häufig zueinander orientiert und stoßen sich dadurch elektrostatisch ab, was zu einer leichten Verschiebbarkeit der Schichten führen kann. Der schichtartige Aufbau ist nachfolgend beispielhaft für Zn(NTf₂)₂ gezeigt (Abb. 7).

Nicht selten schieben sich die oft plättchenartigen Kristallite bei Berührung auseinander oder bekommen aufgrund der geringen Dicke Risse. Zudem sind viele Metall-Triflimidate sehr luftempfindlich, weshalb unter inerter Atmosphäre gearbeitet werden muss.

Abb. 7: Orientierung der CF₃-Gruppen entlang b in dem schichtartig aufgebauten $Zn(NTf_2)^{[11]}$.

Auch die Einkristallstruktur des Ag(NTf₂) (monoklin, $P2_1/c$ (Nr. 14), Z = 8, a = 766,01(2) pm, b = 1048,92(3) pm, c = 2204,11(6) pm, $\beta = 96,034(2)^{\circ}$, $V = 1747,36(8) \ 10^6 \cdot \text{pm}^3$, $R_1 \ (I_0 > 2\sigma(I_0)) = 0,0457$) ist schichtartiger Natur (Abb. 8).

Abb. 8: Ausschnitt aus der Schichtstruktur von Ag(NTf₂)^[36].

Obwohl das Ag-Salz schon 2009 von Arvai *et al.*^[9] unter der Verwendung von N-Benzyltriflimid erhalten wurde, konnte dessen Struktur erst 2014 nach einer simplen Synthese mit Silberacetat Ag(OAc) nach Gl. 3 im Arbeitskreis Wickleder bestimmt werden^[36-37].

$$HNTf_{2(s)} + Ag(OAc)_{(s)} \xrightarrow{Sandbad} Ag(NTf_{2})_{(s)} + HOAc_{(l)}$$
(Gl. 3)

Die Ag⁺-Kationen sind jeweils von sechs O-Atomen (Ag-O: 245,1(2)-251,2(2) pm) in einem verzerrten Oktaeder umgeben. Die negative Ladung sollte daher eher am O-Atom lokalisiert sein und ein S=N-Doppelbindungscharakter vorliegen. Entsprechende S-O-Abstände liegen zwischen 143,4(2) pm und 145,1(2) pm und die S=N-Bindungslängen um 157,7 pm. Bedingt durch die stark elektronenziehenden Fluorsubstituenten am C-Atom sind die S-C-Bindungen verlängert und liegen im Bereich von 183,9(2)-184,7(3) pm (Standard-Literaturwerte: 181 pm^[10]). Ag(NTf₂) ist neben Li(NTf₂) eine der wenigen schon kommerziell erhältlichen Verbindungen^[10], wobei letztere in Lithiumbatterien genutzt^[7] wird und die Kristallstruktur 1994^[38] aus Pulverdaten bestimmt werden konnte.

Schon 1 mol % des Rohproduktes von Pb(NTf₂)₂ reicht aus, um bei einer Friedel-Crafts-Reaktion von Toluol mit Benzoylchlorid unter Rückfluss nach 6 h eine Ausbeute von 95 % zu erreichen.^[11] Das Blei(II)triflimidat Pb(NTf₂)₂ kann z. B.^[39] aus dem Carbonat und frisch synthetisiertem HNTf₂ gewonnen werden (Gl. 4).

$$2 \text{ HNTf}_{2 (aq)} + \text{Pb}(\text{CO}_{3})_{2 (aq)} \xrightarrow{50 \text{ mL H}_{2}\text{O}} \text{Pb}(\text{NTf}_{2})_{2 (aq)} + 2 \text{ HCO}_{3 (aq)}$$
(Gl. 4)

Nach abgeschlossener Reaktion wurde die Lösung filtriert, das Filtrat am Rotationverdampfer eingeengt und schließlich im Vakuum bei 120 °C über 3 Tage getrocknet. Strukturell wurde das Pb(NTf₂)₂ jedoch nicht untersucht. Wesentlich häufiger konnten bisher Einkristallstrukturdaten von Metall-Triflimidat-Derivaten mit zusätzlich koordinierten Lösungsmittelmolekülen erhalten werden.

2.2.2 Metall-Triflimidate mit Co-Liganden

Eine ganze Reihe an Metall-Triflimidat-Hydraten der Zusammensetzung $M^{n+}(NTf_2)_n \cdot m H_2O$ (1 $\leq m \geq$ 9), von $[Mg(H_2O)_6][NTf_2]_2 \cdot 2 H_2O$ bis La(NTf_2)_3 $\cdot H_2O^{[15]}$ konnte bisher dargestellt werden. Nach Gl. 5 erfolgt die Darstellung von $[Zn(H_2O)_6][NTf_2]_2 \cdot 2 H_2O$ gemäß

$$2 \text{ HNTf}_{2 (aq)} + ZnO_{(s)} \xrightarrow{H_2O} [Zn(H_2O)_6][NTf_2]_2 \cdot 2 H_2O_{(s)}$$
 (GI. 5)

Der ZnO-Überschuss wurde anschließend abfiltriert, der Großteil des Lösungsmittels im Vakuum entfernt und das Produkt schließlich in der Kälte ausgefällt.^[40] Zum Nachweis erfolgte eine Elementaranalyse und es wurden IR-Daten herangezogen. Besonders häufig wurden bisher die Hydrate der Seltenerdtriflimidate untersucht. Durch die H₂O-Moleküle werden Wasserstoffbrücken ausgebildet und der Komplex stabilisiert. So gelang es Hoogerstraete *et al.*^[41] 2015 diverse Seltenerdverbindungen [M(H₂O)_x][NTf₂]₃ · *y* H₂O (M = Sc, Ce, Pr, Nd, Gd, Sm, Tb, Dy, Er, La; *x* = 3, 5, 7; 1 ≤ *y* ≥ 2,5) darzustellen. In Abb. 9 b ist exemplarisch [Er(H₂O)₅][NTf₂]₃ (monoklin, *P*2₁/*n* (Nr. 14), *Z* = 4, *a* = 1287,88(4) pm, *b* = 1827,97(7) pm, *c* = 1288,14(5) pm, β = 94,524(3)°, *V* = 3023,10(19) 10⁶ · pm³, *R*₁ (*l*o>2*a*(*l*o)) = 0,0173) mit ausschließlich einzähnig über O-Atome bindenden [NTf₂]⁻-

Abb. 9: Transoide Konfiguration der $[NTf_2]^-$ -Anionen in den Verbindungen $[R_1AuCl_2(NTf_2)]^{[42]}$ (a) und $[Er(H_2O)_5][NTf_2]_3^{[41]}$ (b).

Die Verbindungen [RAuCl₂(NTf₂)] ($R_1 = N,N'$ -ditert-butylimidazol-2-yliden, $R_2 = N_1N' - bis(2,6-diisopropylphenyl)imidazol-2-yliden)$ konnten durch Metathesereaktionen des entsprechenden R-Trichlorogold(III)-Komplexes mit Silbertriflimidat in Dichlormethan unter Fällung des Silberchlorids erhalten werden (siehe Abb. 9 a).^[42] Die [NTf₂]⁻-Anionen sind in dieser Struktur (triklin, P-1 (Nr. 2), Z = 4, a = 1125,2(5) pm, b = 1193,6(5) pm, c = 1782,3(5) pm, $\alpha = 79,810(5)^{\circ}, \qquad \beta = 82,054(5)^{\circ},$ $\gamma = 89,142(5)^{\circ},$ $V = 2333,2(16) \ 10^6 \cdot \text{pm}^3, R_1 (I_0 > 2\sigma(I_0)) = 0,0516)$ monodentat über die N-Atome koordiniert (Au-N: 216,5(8) pm). Duñach und Antoniotti gewannen 2008 verschiedene Metall-Triflimidat-DMSO-Addukte (DMSO = Dimethylsulfoxid) mit $M^{n+} = Cu^{2+}$, Mq^{2+} , Bi^{3+} und Sn^{4+} , indem sie die reinen Metallpulver mit entsprechenden Äquivalenten an HNTf2 in DMSO bei erhitzten.^[34] 100 °C im O₂-Strom In der Verbindung [Ru(4-Isopropyltoluol)(NTf₂)₂]^[6] ist je ein [NTf₂]⁻-Anion über ein O-Atom und das zweite sogar bidentat über ein O-Atom und ein N-Atom gleichzeitig koordiniert.

Eine weitere Edelmetallverbindung, die innerhalb des Arbeitskreises von Wickleder dargestellt werden konnte, ist das Hydrat $[Pd(H_2O)_2(NTf_2)_2]^{[37]}$.

Die Darstellung gelang über die Umsetzung von Pd-Pulver mit HNTf₂ in einem Pyrexröhrchen und denselben Reaktionsbedingungen, die auch bei der Synthese von Ag(NTf₂) gewählt wurden. Die Einkristallstrukturanalyse dieses bisher einzig bekannten Pd-Triflimidates zeigt, dass zwei [NTf₂]⁻-Anionen über die N-Atome in einem Pd-N-Abstand von 204,4(1) pm und zwei Wassermoleküle (Pd-O: 202,3(1) pm) zu einer quadratisch planaren Koordinationsumgebung um das Pd²⁺-Kation führen (Abb. 10 b). Zwischen diesen beiden Baueinheiten werden mittelstarke^[30] Wasserstoffbrückenbindungen mit einem Donor-Akzeptor Abstand O₁-O₁₂ von 268,5(2) pm und O₁-O₂₂ von 270,6(2) pm zur Stabilisierung ausgebildet (Abb. 10 a).

Abb. 10: Wasserstoffbrückenbindungen (a) und Strukturausschnitt (b) in $[Pd(H_2O)_2(NTf_2)_2]^{[37]}$.

Die Ladungsverteilung in den [NTf₂]⁻-Anionen von [Pd(H₂O)₂(NTf₂)₂] sollte somit einem S-N-Einfachbindungscharakter entsprechen, wobei die negative Ladung eher am Stickstoffatom lokalisiert ist und so eine Bindung zum Pd ausgebildet werden kann (S-N: 163,2(1) pm, 163,6(1) pm; S=O: 142,2(1)-143,0(1) pm).

2.3 Metallkomplex-Triflimidate (MKTs = $[M^{n+}(L)_m][NTf_2]_n$)

Das [NTf₂]⁻-Anion kann auch frei im Kristallgitter vorliegen und als Gegen-Metallkomplex fungieren. ion für einen kationischen Diese als bezeichneten Metallkomplex-Triflimidate (MKTs) Verbindungen $[M^{n+}(L)_m][NTf_2]_n$ setzen sich aus einem Metallkation in der Oxidationsstufe n^+ zusammen, welches von einer entsprechenden Anzahl m an Liganden L koordiniert ist. Oft werden als Liganden N-haltige Aliphate oder heteroaromatische Kohlenwasserstoffe wie z. B. 1-Hexen^[20], Isomere des Butylamins^[43] und Imidazol-Derivate^[19], aber auch Alkylnitrile wie Acetonitril (CH₃CN)^[22], verwendet. Die Herstellung eines CH₃CN-Adduktes des einwertigen Kupfers erfolgt über die Synthese von Cu(NTf₂)₂, welches anschließend in einer Komproportionierungsreaktion unter Schutzsgas mit Cu und CH₃CN nach Gl. 6 umgesetzt wird:

 $Cu(NTf_2)_{2(s)} + Cu_{(s)} + 8 CH_3CN_{(l)} \longrightarrow 2 [Cu(CH_3CN)_4][NTf_2]_{(aq)}$ (GI. 6)

Das CH₃CN dient zugleich als Lösungsmittel, in welchem die Cu⁺-Verbindung am stabilsten ist. Wird die analoge Verbindung [Cu(C₆H₅CN)₄][NTf₂] thermisch zersetzt, so spalten sich ab Temperaturen von T > 70 °C die Liganden schrittweise bis hin zum reinen Cu⁺-Triflimidat wieder ab (Siedepunkt von C₆H₅CN (Benzonitril): 188 °C). Das Cu(NTf₂) zersetzt sich erst bei T > 300 °C.^[22]

Das farblose, bei Raumtemperatur kristalline [Cu(CH₃CN)₄][NTf₂] weist einen Schmelzpunkt von 66 °C^[44] auf. Die Kristallstruktur dieses MKTs konnte bei Raumtemperatur in der Raumgruppe $P2_1/m$ bestimmt werden. Sie zeigt tetraedrisch umgebene Kupferkationen (Cu-N: 199,4(5)-201,3(7) pm) und ein freies [NTf₂]⁻-Anion. [Cu(CH₃CN)₄][NTf₂]^[19] konnte durch Zugabe des Liganden zu einer Lösung des jeweiligen Metall-Triflimidat-Hydrates in Ethanol und anschließender Aufreinigung mit Diethylether, gefolgt von einer Trocknung im Vakuum, dargestellt werden. In Abb. 11 ist ein Ausschnitt aus der bei -173 °C bestimmten Kristallstruktur (triklin, *P*-1 (Nr. 2), *Z* = 1, *a* = 899,1(2) pm, *b* = 943,8(3) pm, *c* = 1465,4(3) pm, *a* = 89,594(15)°, *β* = 72,209(13)°, *γ* = 62,905(13)°, *V* = 1041,2(4) $10^{6} \cdot \text{pm}^{3}$, *R*₁ (*I*₀>2*σ*(*I*₀)) = 0,0823) des blauen [Cu(EtIm)₄][NTf₂]₂ (EtIm= Ethylimidazol) zu sehen. Es liegt eine quadratischplanare N-Umgebung der Liganden um das Cu²⁺-Kation vor (Cu-N: 198,8(5) pm, 201,0(4) pm).

Abb. 11: Ausschnitt aus der Kristallstruktur von [Cu(EtIm)₄][NTf₂]₂^[19].

Die gestrichelt hervorgehobenen Cu-O-Abstände zu den Sauerstoffatomen des *transoiden* [NTf₂]⁻-Anions betragen 272,0(16) pm und 292,4(17) pm. Ebenfalls zu sehen sind Fehlordnungen von einigen dieser O-Atome, aber auch des gesamten Anions inklusive der F-Atome in den CF₃-Gruppen. In der ähnlich kristallisierenden Verbindung [Cu(MeIm)₄][NTf₂]₂ (MeIm= Methylimidazol), sind die Cu-O-Abstände etwas kleiner und liegen bei 252,5(7) pm und 263,0(6) pm. Zudem sind noch stabilisierende Wasserstoffbrückenbindungen der Liganden zu den O-Atomen –C-H-O im Bereich von 236,0-272,7 pm zu finden. Vergleicht man die Schmelzpunkte (SP) der Kupferimidazol-Derivat-Triflimidate, so sinken diese mit steigender Kettenlänge:

 $[Cu(Melm)_4][NTf_2]_2$ (89 °C) > $[Cu(Etlm)_4][NTf_2]_2$ (74 °C) > $[Cu(Butyllm)_4][NTf_2]_2$ (46 °C) > $[Cu(Hexyllm)_4][NTf_2]_2$ (flüssig bei RT).

Dieses Verhalten ist auch bei den farblosen Silberimidazol-Derivat-Triflimidaten, welche sich durch Austausch der jeweiligen Acetonitril-Verbindung mit dem N-Alkylimidazol und anschließender Entfernung des überschüssigen Lösungsmittels in Hochvakuum darstellen lassen, zu finden:^[45]

 $[Ag(Melm)_2][NTf_2] (87 °C) > [Ag(Etlm)_2][NTf_2] (65 °C) > [Ag(Butyllm)_2][NTf_2] (42 °C).$

Die meisten bisher genannten MKTs weisen alle einen Schmelzpunkt < 100 °C auf, wodurch sie eine Untergruppe der ionischen Flüssigkeiten bilden. Diese haben für die Elektrochemie sehr positive Eigenschaften und werden u. a. als Elektrolyt oder direkt als Medium für Metallabscheidungen genutzt. Um mit oder in den MKTs elektrochemische Experimente durchführen zu können, muss mindestens bei Schmelztemperatur gearbeitet werden. Dies setzt eine hinreichende thermische Stabilität dieser Verbindungen voraus, welche mit thermogravimetrischen Untersuchungen betätigt werden kann.

[Ag(EtIm)₂][NTf₂]^[46] wurde bereits thermogravimetrisch analysiert. Der Abbau wurde mit einer Heizrate von 5 °C·min⁻¹ durchlaufen und beginnt erst ab ca. 150 °C, wodurch diese Verbindung für weiterführende Experimente durchaus geeignet ist. Ab ca. 380 °C beginnt offenbar der Abbau des Anions. Die Einkristallstrukturanalyse ergab, dass die Ag⁺-Kationen linear durch die N-Atome der Liganden koordiniert sind (Ag-N in [Ag(Melm)₂][NTf₂]: 208,9(5) pm, 209,3(5) pm; Ag-N in [Ag(EtIm)₂][NTf₂]:

35

210,2(2) pm, 201,7(2) pm). Dies ist im Falle des Et-Derivates (monoklin, $P2_1/n$ (Nr. 14), Z = 4, a = 1492,57(3) pm, b = 867,93(2) pm, c = 1658,37(3) pm, $\beta = 108,698(1)^\circ$, V = 2034,94(7) $10^6 \cdot$ pm³, R_1 ($I_0 > 2\sigma(I_0)$) = 0,0341) in Abb. 12 zu sehen.

Abb. 12: Strukturausschnitt von [Ag(EtIm)₂][NTf₂]^[46] mit linearer Koordinationsumgebung der Ag⁺-Kationen.

Der Ag-Ag-Abstand zwischen zwei Komplexkationen beträgt 457,27(3) pm. Der Ag-O-Abstand beträgt 288,6(2) pm, weshalb eine direkte Koordination des *cisoiden* [NTf₂]⁻-Anions ausgeschlossen ist. Gleiches gilt auch für das Palladium(II)triflimidat [Pd(MeIm)₄][NTf₂]₂^[47] (triklin, *P*-1 (Nr. 2), *Z* = 1, *a* = 884,59(5) pm, *b* = 916,93(6) pm, *c* = 1432,28(9) pm, *α* = 92,776(5)°, *β* = 106,337(5)°, γ = 113,370(6)°, *V* = 1006,3(1) 10⁶ · pm³, *R*₁ (*I*₀>2*σ*(*I*₀)) = 0,0254), wobei hier die CF₃-Gruppen bezogen auf die S-N-S Ebene eine *cis*-Stellung einnehmen. Der strukturelle Aufbau von [Pd(MeIm)₄][NTf₂]₂ ähnelt dem bereits erwähnten [Cu(MeIm)₄][NTf₂]₂, wo ebenfalls eine quadratisch-planare Koordinationsumgebung um das Metallkation zu finden ist. Im Falle des [Pd(EtIm)₄][NTf₂]₂ liegen die entsprechenden Pd-N Abstände zwischen 201,7(1)-202,1(1) pm und die Atome Pd und O sind 309,9(2) pm voneinander entfernt (gestrichelte Linie in Abb. 13).

Abb. 13: Strukturausschnitt von [Pd(EtIm)₄][NTf₂]₂^[47].

Deutlich zu sehen ist auch hier wieder die Fehlordnung des $[NTf_2]^-$ Anions. Für die Darstellung dieser Verbindungen (SP von $[Pd(MeIm)_4][NTf_2]_2$: 105 °C und SP von $[Pd(EtIm)_4][NTf_2]_2$: 76 °C), wurde als Pd(II)-Quelle das Acetat gewählt und dieses mit dem entsprechenden *N*-Alkylimidazol zusammen mit der reinen Säure HNTf_2 in CH_3CN umgesetzt. Eine weitere Möglichkeit um z. B. Zn-haltige MKTs zu erhalten, ist die Synthese^[40] aus dem Triflimidat-Hydrat $[Zn(H_2O)_6][NTf_2]_2) \cdot 2 H_2O$ gemäß Gl. 7:

$$[Zn(H_2O)_6][NTf_2]_2 \cdot 2 H_2O_{(s)} + 6 EtIm_{(l)} \xrightarrow{EtOH} [Zn(EtIm)_6][NTf_2]_{2(s)} + 8 H_2O_{(l)}$$
(GI. 7)

Hierbei wird ein Austausch der H₂O-Liganden mit EtIm durchgeführt und das Produkt [Zn(EtIm)₆][NTf₂]₂ (SP: 35 °C und SP von [Zn(MeIm)₆][NTf₂]₂: 65 °C) nach Entfernung der Ethanols (EtOH, 20 mL) sowie des überschüssigen H₂O als Feststoff erhalten. Aus der Produkt-Schmelze konnten dann Einkristalle gezüchtet werden. Die Struktur von [Zn(EtIm)₆][NTf₂]₂ (monoklin, P2₁/c (Nr. 14), Z = 2, a = 1108,34(5) pm, b = 1111,96(4) pm, c = 2022,37(7) pm, $\beta = 98,423(4)^{\circ}$, V = 2465,6(2) 10⁶ · pm³, R₁ (I_O>2 σ (I_O)) = 0,0273) weist *cisoide* [NTf₂]⁻ Anionen auf, die komplett frei von Fehlordnungen sind. Wie für Zn²⁺ zu

erwarten, ist der durch die N-Atome der Etlm-Liganden aufgespannte Koordinationspolyeder ein Oktaeder (Abb. 14 a).

Abb. 14: Strukturausschnitt von [Zn(EtIm)₆][NTf₂]₂ (a) modifiziert nach^[40] und [Ni(MeIm)₆][NTf₂]₂ (b) modifiziert nach^[19].

Durch diese "Abschirmung" können die Anionen weniger stark mit dem Metallzentrum wechselwirken. Die entsprechenden Zn-O-Abstände vom Metallzentrum zu den O-Atomen liegen alle oberhalb von 545,4(1) pm. Ebenso verhält es sich bei [Ni(Melm)₆][NTf₂]₂ (Abb. 14 b), wobei die O-Atome der *transoiden* Anionen in mindestens 522,3(2) pm Entfernung zum Ni²⁺-Ion liegen. Diese Struktur (monoklin, *P*2₁/*n* (Nr. 14), *Z* = 4, *a* = 820,18(2) pm, *b* = 2031,83(5) pm, *c* = 2693,80(8) pm, *β* = 92,341(3)°, $V = 4485,4(2) \ 10^6 \cdot \text{pm}^3, R_1 (I_O > 2\sigma(I_O)) = 0,0466$) weist eine Fehlordnung der Methylgruppen auf. Diese Art der Fehlordnung der terminalen Alkylketten ist nicht untypisch. Eine ganze Reihe weiterer Nickel-Imidazol-Triflimidate der Zusammensetzung [Ni(*R*Im)₆][NTf₂]₂, wobei *R* Methyl bis Dodecyl entspricht, konnten durch Metathese der H₂O-Liganden ausgehend von [Ni(H₂O)₆][NTf₂]₂ · 2 H₂O mit dem entsprechenden N-Alkylimidazol erhalten werden.^[48]

Die thermische Analyse der Ni-MKTs konnte den bisher ermittelten Trend der Schmelzpunkte bestätigen. Während das Melm-Derivat noch einen Schmelzpunkt von 149 °C aufweist, liegt jener vom Etlm-Derivat schon bei 81 °C und das Dodecyllm-Derivat ist bei Raumtemperatur bereits flüssig.

Ein Vergleich ausgewählter Parameter der [NTf₂]⁻-Anionen verschiedener Etlm-Derivate ist aus der Tab. 3 zu entnehmen.

Parameter		[Ag(Etlm) ₂] [NTf ₂]	[Cu(Etlm) ₄] [NTf ₂] ₂	[Pd(EtIm) ₄] [NTf ₂] ₂	[Ni(Etlm) ₆] [NTf ₂] ₂
Konfigurat	ion	cis	trans	trans	cis
	S-N-S	124,3(1)	124(3) 126,9(9)	124,8(4) 123,8(7)	125,51(9)
	0-S-0	118,6(1) 119,0(1)	115(2) 121(3) 120,2(1) 122(1)	118,6(3) 118,8(3) 111,2(6) 127,3(8)	117,67(7) 118,96(8)
	N-S-C	100,0(1) 106,5(1)	94(2) 106(2) 99,7(7) 110,1(7)	101,8(4) 103,3(5) 106,6(8) 96,7(9)	98,95(8) 104,79(9)
Winkel/ °	S-C-F	111,1(2) 110,7(2) 109,1(2) 109,1(2) 112,8(2) 109,8(2)	119(2) 102(2) 111(2) 110(2) 102(2) 118(2) 96,1(9) 113,2(9) 121(1) 98,1(9) 119(1) 113(1)	110,7(5) 110,8(8) 109,4(9) 110,8(9) 107(1) 110(1) 112,7(1) 113,0(1) 114(1) 110,4(6) 114(1) 109,1(9)	111,1(1) 109,6(1) 111,1(1) 111,7(1) 110,3(1) 109,8(2)
	F-C-F	108,9(2) 108,6(2) 108,5(2) 109,2(3) 108,0(2) 107,8(2)	109(1) 107(1) 109(1) 110(1) 108(1) 109(1) 108(1) 109(1) 108(1) 107(1) 108(1) 110(1)	104(1) 111(1) 108,6(8) 107,8(9) 110(1) 108,3(7) 11 (1) 111(1) 108(1) 107(1) 106(1) 105(1)	108,5(2) 108,5(1) 107,9(2) 107,7(2) 108,5(2) 108,8(2)

Tab. 3: Vergleich ausgewählter Parameter von $[Ag(EtIm)_2][NTf_2]$, $[Cu(EtIm)_4][NTf_2]_2$, $[Pd(EtIm)_4][NTf_2]_2$ und $[Ni(EtIm)_6][NTf_2]_2$.

			140(4)	141,8(6)	
			141(4)	143,1(5)	
		143,1(2)	138(4)	143,1(6)	143,4(1)
		143,6(2)	140(4)	142,0(5)	143,7(1)
	S-0	142,6(2)	136(2)	150(1)	143,1(1)
		143,1(2)	141(1)	143(1)	143,1(1)
			144(2)	134(1)	
			144(1)	142(1)	
			156(3)	156,4(5)	
	C N	158,2(2)	158(4)	158,39(6)	157,8(1)
	S-IN	157,7(2)	155(1)	153,4(9)	157,2(2)
			159(1)	164(1)	
			181(4)	182,6(6)	
	S-C	184,0(3)	187(4)	183,5(6)	183,6(2)
Atomabstände/		183,7(3)	192(2)	182,9(6)	183,9(2)
pm			180(2)	182,9(6)	
•			131,8(9)	133(1)	
			131,9(9)	129(2)	
			132,0(9)	138(2)	
		132,3(3)	131,6(9)	132(1)	132,4(2)
		132,7(3)	132,0(9)	129(1)	133,2(2)
	СE	133,1(3)	132,2(9)	134(2)	133,6(2)
	C-r	132,1(3)	129,7(8)	133(2)	133,4(2)
		131,8(3)	129,9(8)	129(2)	133,3(2)
		133,1(4)	129,9(8)	132(2)	131,9(2)
			129,7(8)	131(2)	
			129,8(8)	135(2)	
			130,0(8)	134(2)	
	M-O	288,6(2)	272(2) 292(2)	309,9(2)	> 545,1(1)

Im Vergleich zwischen den *cisoiden* bzw. *transoiden* Isomeren sind keine Unterschiede zwischen den in der obigen Tabelle aufgeführten Werten zu finden. Die S-N-S-Winkel aller vier Verbindungen betragen etwa 124,5° und die Sulfonyl-Gruppen weisen einen O-S-O-Winkel zwischen 111,2(6)° und 127,3(8)° auf. Alle N-S-C-Winkel in den oben untersuchten Verbindungen liegen bei ca. 102±8° und auch die Winkel bezüglich der CF₃-Einheiten sind in allen vier Verbindungen ähnlich (N-S-F~ 110,5°, F-C-F~ 108,5°). Die betrachteten Atomabstände lassen keine Rückschlüsse auf mögliche Einflüsse, wie der Art des Metalls M auf das [NTf₂]⁻-Anion zu. Weder die S-O-Abstände um 142 pm, die S-N-Abstände mit durchschnittlich 157,55 pm oder die S-C-Bindungslängen bei 183 pm, noch die C-F-Abstände um 131 pm, weisen größere Unterschiede zwischen den vier EtIm-Derivaten auf. Lediglich der M-O-Abstand zwischen Komplexkation und Anion ist bei der linearen Ag⁺-Verbindung mit 288,6(2) pm geringer als bei den quadratisch-planaren Pd²⁺- (309,9(2) pm) und den oktaedrischen Ni²⁺-Komplexen (\geq 545,1(1) pm).

3 Experimenteller Teil

Im folgenden Abschnitt werden die Synthesebedingungen zu den durchgeführten Versuchen und die dafür genutzten Geräte, sowie die eingesetzten Edukte und erhaltenen Produkte aufgeführt.

3.1 Darstellung der Säure HNTf₂

Wie in Abschnitt 2.1.2 beschrieben, konnte die reine Säure HNTf₂ von Agel *et al.* bereits erfolgreich synthetisiert werden.^[29] Die hier durchgeführte Synthese verlief analog über die Reaktion des *Bis*-trifluormethylsulfonylimid-Lithiumsalzes Li(NTf₂) (40 g, 0,14 mol, > 99 %, Sigma-Aldrich, Steinheim) in 60 mL konzentrierter Schwefelsäure H₂SO₄ (Sigma Aldrich). Diese Lösung wurde über 30 Minuten bei 90 °C gerührt und anschließend einer Kältedestillation unterzogen, um das Rohprodukt aufzureinigen. Ein Teil des Produktes kristallisierte bereits an der Wand des Umfüllbogens aus, weshalb dieser Teil der Apparatur mit einem Heißluftfön partiell erwärmt wurde, wodurch sich das Produkt in den Vorlagekolben überführen lies. Es wurden 37,0 g (97 %) farbloser Kristalle der reinen Säure HNTf₂ erhalten, dessen Einkristallstruktur analysiert und über die Literaturangaben bestätigt

wurde. Die Säure wurde bei Raumtemperatur in einem Schlenkkolben, dessen Schliffe mit säurebeständigem PTFE-Fett bestrichen wurden, unter Schutzgasatmosphäre gelagert (Abb. 15).

Abb. 15: Kristalle von HNTf₂.

3.2 Darstellung der Metall-Triflimidate und ihrer Derivate

Für die Synthese der beiden Metall-Triflimidate Pb(NTf₂)₂ und [Pd(HOAc)₂(NTf₂)₂] wurde die zuvor frisch hergestellte Säure HNTf₂ als Edukt verwendet. Bei der Handhabung von HNTf₂ waren aus Sicherheitsgründen säurefeste Camatril-Handschuhe und ein extra angefertigter Spatel aus Glas notwendig. Es wurde ausschließlich in Digestorien gearbeitet.

3.2.1 Darstellung von Pb(NTf₂)₂

Die Synthese des Bleitriflimidates Pb(NTf₂)₂ erfolgte in einem speziell angefertigten Schlenkrohr (Abb. 16), um das Produkt unter inerter Atmosphäre besser handhaben zu können. Zur Darstellung wurde Blei(IV)acetat Pb(OAc)₄ (0,116 g, 0,178 mmol, im Arbeitskreis vorhanden) in der Schutzgashandschuhbox eingewogen und HNTf₂ (0,050 g, 0,178 mmol) hinzugegeben.

Abb. 16: Aufbau zur Darstellung von Pb(NTf₂)₂ mit einem Schlenkrohr als Reaktionsgefäß.

Das verschlossene Schlenkrohr wurde in einem Sandbad platziert und über drei Tage auf 90 °C erwärmt. Nachdem das Sandbad über 12 h abgekühlt war, konnten die farblosen Einkristalle des feuchtigkeitsempfindlichen Produktes unter einem Argon-Strom entnommen und röntgendiffraktometrisch analysiert werden.

Es konnte schon vor der Reaktion eine Zersetzung des Pb(OAc)₄ beobachtet werden. Hierbei bildete sich wahrscheinlich das stabilere Blei(II)acetat Pb(OAc)₂, sodass bei der durchgeführten Reaktion (Gl. 8) anstatt einer Reduktion eine der Metathese ähnliche Reaktion anzunehmen ist.

$$Pb(OAc)_{2(s)} + 2 HNTf_{2(s)} \xrightarrow{72 h, 12 h} Pb(NTf_{2})_{2(s)}$$
 (GI. 8)

3.2.2 Darstellung von [Pd(HOAc)₂(NTf₂)₂] (HOAc = CH₃COOH)

Palladiumacetat Pd(OAc)₂ (0,027 g, 0,120 mmol, 45,9-48,4 %, Alfa Aesar) wurde in eine Glasampulle (Länge: 30 cm, Innendurchmesser: 1,2 cm) vorgelegt und mit HNTf₂ (0,1 g, 0,356 mmol) versetzt. Beim Abfüllen der Chemikalien konnte bei Luftkontakt eine Rauchentwicklung beobachtet werden, die der Zersetzung der Säure zuzuschreiben ist.

Die Öffnung der Ampulle wurde über einen Quickfit an eine Vakuumapparatur gehängt, evakuiert und unter Kühlung mit flüssigem Stickstoff an der Verjüngung abgeschmolzen. Bei der Reaktion in einem Blockthermostaten wurde ausgehend von der Raumtemperatur (RT) ein Temperaturprofil gemäß Gl. 9 gewählt.

(Gl. 9)

Gelbe Einkristalle von [Pd(HOAc)₂(NTf₂)₂] (Abb. 17) wurden erhalten und direkt für eine Einkristallstrukturbestimmung herangezogen. Das Produkt zersetzte sich rasch bei Kontakt mit Luftfeuchtigkeit und war nur einen geringen Zeitraum in dem verwendeten perfluorierten Öl stabil.

Abb. 17: Kristalle von [Pd(HOAc)₂(NTf₂)₂].

3.3 Darstellung von Metallkomplex-Triflimidaten (MKTs)

Die Synthese der MKTs ist angelehnt an die Darstellung von Silber-Alkylamin-Triflimidaten nach Huang *et al.*^[20] und wurde nach folgendem Schema modifiziert (Abb. 18):

Abb. 18: Allgemeines Reaktionsschema als Beispiel zur Darstellung Pyridin-Derivat-haltiger MKTs.

Die nasschemische Synthese erfolgte in zwei Schritten.

Zunächst wurden die entsprechenden Metallsalze (vorwiegend stöchiometrische Mengen bezogen auf die Oxidationsstufe *n* der eingesetzten Metalle M und dem Lithiumsalz) in einem Becherglas vorgelegt und mit wenig destilliertem H₂O (1 mL) versetzt. Vor der Zugabe des jeweiligen Pyridin-Derivates NC₅H₄*R* (*R* = 2-Et, 3-Et, 4-Et, H; 1 mL im Überschuss; Py: 98 %, Alfa Aesar, Lancashire; 2-EtPy: 97 %, Sigma-Aldrich, Steinheim; 3-EtPy: 98 %, Sigma-Aldrich, Steinheim; 4-EtPy: 98 %, Acros Organics, New Jersey) wurde das Reaktionsgefäß in einem Eisbad auf 0 °C abgekühlt, um dem Temperaturanstieg während der Komplexierungsreaktion entgegen zu wirken.

Im zweiten Schritt wurde eine wässrige Lösung von Li(NTf₂) (0,05 g, 0,17 mmol; > 99 %, Sigma-Aldrich, Steinheim) zum Reaktionsgemisch gegeben und über Nacht gerührt, wobei sich zwei Phasen bildeten. Die obere wässrige Phase enthält das in der Metathesereaktion gebildete entsprechende Lithiumsalz (LiNO₃, LiCl oder LiOAc) als Nebenprodukt und

wurde abdekantiert. Die untere Phase wurde mit destilliertem H₂O gewaschen (3 x 1 mL) bis keine Trübung der wässrigen Phase mehr erkennbar war.

Nach der Extraktion wurde das Rohprodukt für 48 h in einem Exsikkator über Sicapent (Merck KGaA, Darmstadt) getrocknet und anschließend von überschüssigem Pyridin-Derivat an Luft befreit. Einkristalle der erhaltenen Verbindungen wurden, wie in den entsprechenden Abschnitten 3.3.1-3.3.6 erläutert wird, durch verschiedene Methoden kristallisiert.

3.3.1 Ni-Komplexe

Es wurden die drei Nickelverbindungen $[Ni(Py)_4(H_2O)_2][NTf_2]_2$ I, $[Ni(3-EtPy)_4(H_2O)_2][NTf_2]_2$ II und $[Ni(4-EtPy)_4(H_2O)_2][NTf_2]_2$ III als blaue kristalline Feststoffe erhalten.

Für die Synthese der Ni-MKTs wurde Nickelnitrathexahydrat NiNO₃ · 6 H₂O (I: 509 mg, 1,75 mmol, II+III 254 mg, Merck KGaA, Darmstadt) in destilliertem H₂O gelöst. Die Komplexierungsreaktion erfolgte zügig, sodass nur zehn Minuten gerührt wurde, bevor die wässrige Li(NTf₂) (501 mg, 1,75 mmol) Lösung hinzugegeben werden konnte. Es bildete sich eine tiefblaue organische Phase.

Einkristalle von I (Abb. 19 a) wurden durch Umkristallisation in einem Pyrexröhrchen (Pyrex DURAN®) mit teflonbeschichtetem Deckel in dem jeweiligen Pyridin-Derivat als Lösungsmittel bei 60 °C erhalten. Bei II und III (Abb. 19 b und Abb. 19 c) wurde die Mutterlauge mit einem zuvor auf einer Petrischale gezüchteten Kristall an geimpft.

Abb. 19: Kristalle von [Ni(Py)₄(H₂O)₂][NTf₂]₂ (a), [Ni(3-EtPy)₄(H₂O)₂][NTf₂]₂ (b) und [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂ (c).

3.3.2 Cu-Komplexe

Es wurde zunächst die Verbindung [Cu₂(4-EtPy)₈][(NTf₂)₂(NO₃)₂] **IV** aus dem Edukt Kupfer(II)-nitrat-Trihydrat Cu(NO₃)₂ · 3 H₂O (422,71 mg, 1,75 mmol, 99 %, Acros Organics) erhalten. Das Produkt **IV** weist Nitrat-Ionen auf. Dies lässt auf eine unvollständige Metathese schließen, weshalb die Stöchiometrie des eingesetzten Kupfersalzes an die Menge des Lithiumsalzes angepasst wurde und eine längere Reaktionszeit über Nacht gewählt wurde. Durch die modifizierten Synthesebedingungen entstanden (unter Verwendung von Pyridin) nach dem zweiten Reaktionsschritt zwei klar voneinander unterscheidbare Phasen, von denen die untere, blaue organische Phase das "reine" [Cu(Py)₄][NTf₂]₂ **V** enthielt.

Einkristalle zur Charakterisierung konnten von beiden Verbindungen durch langsames Abdampfen der überschüssigen Lösungsmittel auf einer Petrischale erhalten werden. Diese bläulichen bzw. blauvioletten Kristalle sind in Abb. 20 zu sehen.

Abb. 20: Kristalle von [Cu₂(4-EtPy)₈][(NTf₂)₂(NO₃)₂] (a), [Cu(Py)₄][NTf₂]₂ (b).

3.3.3 Pd-Komplexe

Als Reaktionsgefäß wurde bei allen Edelmetallverbindungen statt eines Becherglases ein 20 mL Rollrandglas gewählt. Es erfolgte eine Eintopfsynthese, wobei das Reaktionsgefäß gleichzeitig zur Aufbewahrung des Produktes verwendet werden kann.

Für die Pd-MKTs wurde Palladiumacetat Pd(OAc)₂ (0,196 g, 0,873 mmol, 45,9-48,4 %, Alfa Aesar) in 6 mL destilliertes H₂O gegeben, da es sich nur wenig löste. Nach Zugabe des jeweiligen Pyridin-Derivates entstand eine braun-orange Suspension, die sich in einen beigen Niederschlag umwandelte, als das Li(NTf₂) hinzugegeben wurde. Nach etwa einem Tag lag eine klare wässrige Phase mit einem hell-braunen Niederschlag vor, der nach Trocknung im Exsikkator zu einem gelb-braunen, pulverartigem Feststoff wurde.

Die braunen Pulver wurden zwecks Kristallisation mit fünf Tropfen des jeweiligen Pyridin-Derivates und einem Tropfen Aceton gelöst und auf eine Petrischale gegeben. Die verschiedenen Derivate kristallisieren sehr fein in federartiger Form aus. Bisher konnten nur von [Pd(4-EtPy)₄][NTf₂]₂ **VI** für die Einkristallstrukturanalyse geeignete, gelbliche schimmernde Kristalle erhalten werden (Abb. 21).

Abb. 21: Kristalle von [Pd(4-EtPy)4][NTf2]2.

3.3.4 Ag-Komplexe

Unter Verwendung von Silbernitrat AgNO₃ (296,4 mg, 1,745 mmol; > 99,8 %, Merck KGaA, Darmstadt) konnten jeweils milchig-trübe organische Phasen erhalten werden. Das überschüssige Lösungsmittel dieser Phasen verflüchtigte sich in Petrischalen, die großflächig auf einem Sandbad bei 40 °C erhitzt wurden. Es wurden [Ag(Py)₂][NTf₂] **VII**, [Ag(3-EtPy)₂][NTf₂] **VIII** sowie [Ag(4-EtPy)₂][NTf₂] **IX** als farblose, kristalline Feststoffe erhalten.

Einer dieser erhaltenen Kristalle wurde als Impfkristall zur noch flüssigen organischen Phase in ein Pyrexröhrchen gegeben, wodurch die in Abb. 22 erhaltenen farblosen Einkristalle auskristallisierten.

Abb. 22: Kristalle von [Ag(Py)₂][NTf₂] (a), [Ag(3-EtPy)₂][NTf₂] (b), [Ag(4-EtPy)₂][NTf₂] (c).

3.3.5 Pt-Komplexe

Das verwendete Platinchlorid PtCl₂ (78 mg, 0,29 mmol, Alfa Aesar, Lancashire) löste sich nicht in destilliertem H₂O. Dennoch wurde dieses hinzugegeben, um später eine Phasentrennung zu erhalten. Nach der Zugabe des Py-Derivates stellten sich erst nach zwei Stunden klare, voneinander unterscheidbare Phasen ein. Die milchige, organische Phase färbte sich nach Zugabe der wässrigen Lösung von Li(NTf₂) dunkelgelb. Nach der Trocknung im Exsikkator konnten bis zu 0,5 cm große, blassgelbgraue Einkristalle von [Pt(3-EtPy)₄][NTf₂] **X** erhalten und direkt für die Analytik genutzt werden. Bemerkenswert ist hier die Luftstabilität der Verbindungen (Abb. 23 a).

Abb. 23: Kristalle von [Pt(3-EtPy)₄][NTf₂] (a), [Pt(4-EtPy)₄][NTf₂] (b).

Eine Spatelspitze von [Pt(4-EtPy)₄][NTf₂] **XI** wurde in einem Rollrandglas mit drei Tropfen 4-EtPy versetzt. Nach zwei Wochen war das Lösungsmittel verdampft und es waren blassgelb-graue Einkristalle (Abb. 23 b) für die Analytik entstanden. Messbare Einkristalle von [Pt(Py)₄][NTf₂] konnten bisher nicht erhalten werden. IR- und Raman-Daten (siehe Kapitel 4.3 und 4.4) bestätigen dennoch dessen Existenz.

3.3.6 Au-Komplexe

Als Metallquelle für die Au-MKTs diente Gold(III)-chlorid AuCl₃ (523 mg, 1,74 mmol, im AK vorhanden), welches sich analog zu dem PtCl₂ nahezu nicht in entmineralisiertem H₂O löst. Die erhaltene organische Phase wies einen hellen, bräunlichen Farbton auf. Nach dem aus dem Reaktionsgefäß im Exsikkator das H₂O entzogen worden war, dampfte das überschüssige Lösungsmittel durch kleine Löcher im Aluminiumdeckel langsam an Luft ab. Nach vier Wochen befanden sich dort relativ große, blass-gelbe Einkristalle (Abb. 24). Diese konnten als [Au(3-EtPy)₂][NTf₂] **XII** und [Au(4-EtPy)₂][NTf₂] **XIII** identifiziert werden.

Abb. 24: *Kristalle von* [*Au*(3-*EtPy*)₂][*NTf*₂] (*a*), [*Au*(4-*EtPy*)₂][*NTf*₂] (*b*).

Die Reduktion des Oxidationszustandes der Au-Kationen von +III auf +I ist hierbei auf mögliche Reaktionen mit den Lösungsmitteln zurückzuführen.

4 Auswertung und Diskussion

4.1 Synthesen

Bei der angewendeten Syntheseroute handelt es sich um eine einfache Eintopfsynthese zur Darstellung von MKTs.

In keinem Fall war die Verwendung des Pyridin-Derivates 2-EtPy erfolgreich. Es konnten keine Komplexierungsreaktionen beobachtet werden und somit keine MKTs gemäß [Mⁿ⁺(2-EtPy)_m][NTf₂]_n erhalten werden. Offenbar verhindert die Ethylgruppe in dieser Position am Aromaten die Bildung des Komplexes. Vor allem in quadratisch-planarer Umgebung der Liganden um das entsprechende Metallkation erscheint die sterische Hinderung durch die Ethylgruppen plausibel. Ungeklärt ist, weshalb auch bei einer linearen Koordination (Ag⁺ und Au⁺) keine Produkte dargestellt werden konnten.

Von Bedeutung sind die Verwendung von Li(NTf₂) in stöchiometrischer Menge und eine ausreichend lange Reaktionszeit nach der Zugabe von Li(NTf₂). So können die [NO₃]⁻-Anionen vollständig durch die [NTf₂]⁻-Ionen ersetzt werden und sich damit die ionische Flüssigkeit vollständig bilden.

Eine stöchiometrische Einwaage der Py-Liganden ist nicht zwingend notwendig, da sie als Überschusskomponenten gleichzeitig als Lösungsmittel für die organische Phase fungieren. Der Überschuss beim Py ist besonders wichtig, da es selbst im Gegensatz zu den EtPy-Derivaten wasserlöslicher ist. Dadurch lösen sich die Py-Komplexe schneller wieder auf und konnten für einige Metalle nicht erhalten werden. Folglich sollte die Verwendung von H₂O in möglichst kleinen Mengen (\approx 1 mL) erfolgen.

Alle Nebenprodukte sind gut in H₂O löslich und können einfach abdekantiert oder mit H₂O extrahiert werden.

4.2 Einkristallstrukturanalyse

Die Bestimmung der Kristallstrukturen wurde mittels Röntgenbeugung an Einkristallen vorgenommen. Hierbei wurde das Einkristall-Diffraktometer Karlsruhe) für die Analyse APEX _____ (Bruker, der Verbindung [Pd(HOAc)₂(NTf₂)₂] genutzt, wobei der Einkristall auf dem Polarisationsmikroskop KL 500 (Schott, Mainz) ausgewählt wurde. Für alle weiteren Produkte wurden geeignete Einkristalle in inertem Fomblin[®]Y Öl (Sigma-Aldrich, Steinheim) unter dem Polarisations-Mikroskop Stemi 508 (Zeiss, Wetzlar) mit einer Nylon-Öse eines Mikromounts ausgewählt und auf einem Goniometerkopf montiert. Die Messungen erfolgten mit dem Einkristall-Diffraktometer D8 Venture (Bruker, Karlsruhe) unter Stickstoffkühlung bei 100 K. Es wurde monochromatische Mo- $K\alpha$ -Strahlung mit 71,073 pm verwendet. Die erhaltenen Intensitäten wurden mit dem Programm APEX3 verarbeitet, wobei die Lösung der Strukturen mit dem Programm SHELXS^[49] und die Verfeinerungen mit dem Programm SHELXL erfolgt ist. Die Lösung der Kristallstrukturen wurde mithilfe von direkten Methoden durchgeführt. Eine numerische Absorptions-Korrektur wurde durchgeführt und anisotrop verfeinert. Die Abbildungen der verschiedenen Kristallstrukturen wurden mit dem Programm Diamond 4.1.2 (Crystal Impact, Bonn)^[50] angefertigt.

Im Einzelnen wird zunächst auf die jeweilige Kristallstruktur der verschiedenen Produkte eingegangen, wobei die Liganden teilweise übersichtlicher in Stabform dargestellt sind. Wichtige Wechselwirkungen, wie Wasserstoffbrückenbindungen, aber auch entscheidende Atomabstände sind pink-gestrichelt hervorgehoben. Dieser Analyse folgt ein Vergleich aller in den Verbindungen enthaltenen [NTf₂]⁻-Anionen.

Auf die Auflistung von Kristallstrukturdaten wird in dieser Arbeit weitgehend verzichtet, da diese über die CCDC-Nummern in der Datenbank (https://www.ccdc.cam.ac.uk) *"The Cambridge Crystallographic Data Centre"* zugänglich sind. Auch enthalten sind die Atomabstände und Winkel der jeweiligen Pyridin-Derivat-Liganden der Metallkomplex-Triflimidate in den entsprechenden cif.-Dateien. Diese entsprechen alle den erwarteten Standardwerten^[24, 51] und werden daher in dieser Arbeit nicht diskutiert.

4.2.1 Strukturen von [Pd(HOAc)₂(NTf₂)₂], Pb(NTf₂)₂ und HNTf₂

Durch Einsatz von HNTf₂ konnten die Verbindungen Pb(NTf₂)₂ und [Pd(HOAc)₂(NTf₂)₂] erhalten werden. Die Struktur der Säure HNTf₂ wurde 1996 von Haas *et al.* bestimmt^[1]. Darüber hinaus konnte die Struktur durch Messungen an dem eigenen Produkt bestätigt werden und wird im folgenden Abschnitt mit den Kristallstrukturdaten der erhaltenen Metall-Triflimidat-Derivaten verglichen.

In Tabelle 4 sind die Gitterparameter der synthetisierten Verbindungen [Pd(HOAc)₂(NTf₂)₂], Pb(NTf₂)₂ und der eingesetzten Säure HNTf₂ zusammengefasst.

Die Palladiumverbindung und die eingesetzte Säure kristallisieren beide in einer orthorhombischen Raumgruppe (*Pccn* bzw. *Pbca*). Im Gegensatz dazu ist das Kristallsystem der Silberverbindung monoklin und gehört der Raumgruppe *Ia* mit dem Winkel β = 115,3283(16)° an. Alle drei Verbindungen zeigen vier Formeleinheiten in der Elementarzelle, wobei das Zellvolumen von der einfachen Struktur der Säure über die Pd-Komplexverbindung hin zur vernetzten Pb-Verbindung größer wird.

Parameter		HNTf ₂	[Pd(HOAc) ₂ (NTf ₂) ₂]	Pb(NTf ₂) ₂		
Molmasse ∕ g mol⁻¹		200,43	786,80	2303,15		
Kristallsystem		orthorhombisch	orthorhombisch	monoklin		
Raumgruppe		<i>Pccn</i> (Nr. 56)	<i>Pbca</i> (Nr. 61)	<i>la</i> (Nr. 9)		
Gitterkonstanten/ pm	а	1640,4(2)	1111,70(3)	1250,4(1)		
	b	553,5(1)	1237,88(3)	4111,8(3)		
	С	955,7(2)	1690,12(5)	1209,21(7)		
Winkel/ °	β			115,328(2)		
Zellvolumen/ $10^6 \cdot pm^3$		867,7	2325,9(1)	5619,2(7)		
Ζ		4	4	4		
$R_1(I_0>2\sigma(I_0))$		0,037	0,0173	0,0418		
CCDC-Nummer		1316997	1476026	1475896		

Tab. 4: Kristallographische Daten von HNTf2, [Pd(HOAc)2(NTf2)2] und Pb(NTf2)2.

In dem Pd-HOAC-Addukt entspricht die asymmetrische Einheit der Summenformel [Pd_{0,5}(HOAc)(NTf₂)]. Fügt man zwei dieser Einheiten zusammen, sind die Pd²⁺-Kationen quadratisch-planar umgeben. Es greifen je zwei [NTf₂]⁻-Anionen über das N-Atom (N-Pd: 204(1) pm; N-Pd-N: 180,0°) und zwei HOAc-Gruppen mit dem O-Atom der Carboxylgruppe an (O-Pd: 200,48(9) pm; O-Pd-O: 180,0°; O-Pd-N: 87,15(4)°, 92,85(4)°; Abb. 25 a).

Beide Liganden sind über eine mäßig starke Wasserstoffbrückenbindung^[30] mit einem Donor-Akzeptor-Abstand von 272,5(1) pm verbunden. Diese Eigenschaften gleichen dem bereits in 2.2.2 erwähnten Dihydrat [Pd(H₂O)₂(NTf₂)₂].

Das [NTf₂]⁻-Anion in [Pd(HOAc)₂(NTf₂)₂] weist innerhalb der CF₃-Gruppen eine Fehlordnung auf (F22A/F22B bzw. F23A/F23B zu: 50/50 %; Abb. 25 b). Zur Übersichtlichkeit werden F22B und F23B in allen anderen Abbildungen vernachlässigt.

Abb. 25: Perspektivische Darstellung der Wasserstoffbrückenbindung in $[Pd(HOAc)_2(NTf_2)_2]$ (a) und Fehlordnung der CF₃-Gruppen des $[NTf_2]^-$ -Anions (b).

Acht Pd-Atome liegen auf den Ecken der Elementarzelle, sechs weitere auf den Flächen (Abb. 26 a). Die einzelnen Komplexe sind entlang *c* bzw. *a* gestapelt (Abb. 26 b). Zwei CF₃-Gruppen verschiedener Komplexe weisen jeweils zueinander.

Abb. 26: Anordnung der Pd-Atome in [Pd(HOAc)₂(NTf₂)₂] (a) und Orientierung der CF₃-Gruppen (b) im Kristallgitter.

Auch in der Pb-Verbindung sind die CF₃-Gruppen zueinander orientiert. Sie weisen in eine Art Hohlraum in Form eines Kreises, welcher durch die Anordnung der drei kristallographisch unterscheidbaren Polyeder (O-Atome umgeben die drei unterscheidbaren Pb²⁺-Kationen) aufgespannt wird. Dieser Hohlraum besteht, wie aus Abb. 27 ersichtlich, aus je vier Polyedern mit einem Pb3-Kation (violett) bzw. Pb2-Kation (hellblau) im Zentrum sowie zwei Polyedern mit einem Pb1-Kation (gelb) im Zentrum.

Abb. 27: Anordnung der drei verschiedenen Pb-Polyeder in Pb(NTf₂)₂ und Orientierung der CF₃-Gruppen im Kristallgitter.

Die Polyeder einer Sorte liegen immer in einer Schicht parallel zur (010)-Ebene. Im Falle der Pb3-Polyeder sind es mit sechs Stück doppelt so viele wie bei den anderen beiden mit dem weiteren Unterschied, dass sie direkt nebeneinander in [100]-Richtung liegen. In Richtung *b* liegen die drei verschiedenen Polyeder in der Reihe Pb3-Pb2-Pb1-Pb2-Pb3 vor. Die Polyeder selbst werden über die O-Atome innerhalb der [NTf₂]⁻-Anionen aufgebaut (Abb. 28).

Abb. 28: Koordination der [NTf₂]⁻-Anionen (einzähnig (Stabmodell); zweizähnig (Kugelmodell)) um die drei verschiedenen Pb-Atome in Pb(NTf₂)₂.

An Pb1 greifen drei *cis*-orientierte und ein *trans*-orientiertes [NTf₂]⁻-Anion einzähnig (Stabmodell), sowie je ein verschieden orientiertes [NTf₂]⁻-Anion an. Im Falle von Pb2 greifen drei ausschließlich *cisoide* [NTf₂]⁻-Anionen zweizähnig-chelatisierend an und eines einzähnig. Zwei weitere [NTf₂]⁻-Anionen *transoider* Natur sind ebenfalls einzähnig koordiniert. Pb3 ist von sechs [NTf₂]⁻-Anionen umgeben, von denen vier *cisoid*-artig sind und einzähnig angreifen, sowie zwei *transoid*-artige, von denen eines ebenfalls einzähnig und das andere zweizähnig angreift. Zugehörige Pb-O-Abstände sind in Tab. 5 zusammengefasst.

	Pb1		Pb2		Pb3	
	cisoid	transoid	cisoid	transoid	cisoid	transoid
einzähnig	262,8(9) 265,3(9) 253,7(9)	258,9(8)	2,518(8)	272,4(9) 260,6(9)	262,1(8) 247,7(9) 251,5(9) 274,4(9)	250,4(9)
zweizähnig	261,5(9) 267,3(8)	258,8(8) 261,3(8)	290,9(2) 260,6(9) 268,3(9) 270,4(9) 260,6(9) 264,0(8)	-	-	264,7(9) 270(1)

Tab. 5: Pb-O-Abstände/ pm in Pb(NTf2)2.

Es gibt in Pb(NTf₂)₂ sechs kristallographisch unterscheidbare [NTf₂]⁻-Anionen. Diese sind in der folgenden Abb. 29 zu sehen. Pb-O-Abstände sind hierbei entsprechend den bereits erwähnten Polyederfarben markiert.

Abb. 29: Verschiedene $[NTf_2]^-$ -Anionen und deren Koordination zu den drei verschiedenen Pb-Atomen in Pb $(NTf_2)_2$.

Jedes dieser sechs Anionen ist einmal zweizähnig und zweimal einzähnigchelatisierend zu zwei verschiedenen Pb-Atomen koordiniert.

In den nachfolgenden Tab. 6 und 7 sind ausgewählte Bindungslängen und Winkel der [NTf₂]⁻-Anionen der drei Verbindungen HNTf₂, Pb(NTf₂)₂ und [Pd(HOAc)₂(NTf₂)₂] (Werte für FA-Atome in blau, FB-Atome in grau) gegenüber gestellt.

Bindungslängen/ pm	HNTf₂	[Pd(HOAc) ₂ (NTf ₂) ₂]	Pb(N	Tf ₂)2
S-O	140,1(2) - 141,7(2)	141,9(1) 143,8(1) 142,0(1) 142,5(1)	143,4(9) 144,1(9) 143,4(9) 143,6(9) 143,0(9) 143,1(9) 142,7(9) 142,8(9) 142(1)	143(1) 144,1(9) 143,7(9) 144,3(9) 142,7(9) 143,7(9) 143,4(9) 143,7(9) 142,1(9)

Tab. 6: Bindungslängen/ pm der $[NTf_2]^-$ -Anionen in den Verbindungen $HNTf_2^{[1]}$, $[Pd(HOAc)_2(NTf_2)_2]$ und $Pb(NTf_2)_2$.

			143(1)	143,7(9)
			143,2(9)	140(1)
			143,7(9)	141,8(9)
			156(1)	156(1)
			156(1)	155(1)
C NI		162,3(1)	156(1)	155(1)
2-IN		163,7(1)	155(1)	158(1)
			156(1)	160(1)
			155 (1)	158(1)
			185(1)	183(2)
			185(1)	188(2)
S C	194 0(2)	185,6(1)	183(1)	185(1)
3-0	104,0(3)	183,4(1)	183(1)	182(2)
			184(1)	186(1)
			184(1)	183(2)
			127(2)	132(2)
			129(2)	133(2)
			130(2)	131(2)
			131(2)	130(2)
			124(2)	129(2)
		118,4(5)	131(2)	131(2)
		1,20,3(4)	132(2)	132(2)
	129 8(4)	131,7(2)	137(2)	132(2)
C-F	-	146,6(4)	132(2)	131(2)
CI	133 0(3)	148,6(4)	133(2)	132(2)
	10070(07	131,7(2)	129(2)	133(2)
		132,1(2)	130(2)	130(2)
		132,4(2)	131(2)	132(2)
			131(2)	132(2)
			131(2)	131(2)
			133(2)	138(2)
			132(2)	125(2)
			131(2)	133(2)

Tab. 7: Winkel/ °	der	[NTf₂]⁻-Anionen	in	den	Verbindungen	HNTf ₂ ,
[Pd(HOAc) ₂ (NTf ₂) ₂] und Pb(NTf ₂) ₂ .						

Winkel / °	HNTf₂	[Pd(HOAc) ₂ (NTf ₂) ₂]	Pb(NTf ₂) ₂	
			117,8(6)	116,7(5)
			116,7(5)	117,3(5)
0-5-0	102 2(1)	121,34(6)	118,0(5)	116,8(5)
0 3 0	102,2(1)	121,90(7)	116,8(6)	115,9(6)
			117,3(6)	119,7(5)
			116,5(6)	119,3(7)
			116,5(5)	109,2(6)
		112,97(6)	107,9(6)	117,0(5)
		105,81(6)	108,1(6)	114,9(6)
N-3-U		121,90(7)	116,3(5)	114,7(7)
		106,31(6)	109,3(6)	112,6(6)
			116,3(6)	115,8(5)

			109,6(6)	114,5(5)
			116,3(6)	107,6(6)
			109 7(6)	106 3(5)
			116 0(5)	116 0(5)
			115 2(6)	116 5(6)
			100.2(5)	10,5(0)
			108,3(5)	107,1(7)
		100.07(0)	127,6(7)	127,8(7)
2-IN-2		123,27(6)	127,8(7)	127,8(7)
			122,8(7)	125,1(9)
			103,0(6)	103,1(7)
			105,3(6)	99,8(9)
N-S-C	123 9(1)	105,18(6)	102,9(7)	99,2(6)
NJC	123,3(1)	102,61(8)	103,8(6)	107,9(6)
			101,3(6)	104,4(6)
			106,2(7)	99,9(9)
			112(1)	110,0(9)
			110(1)	109,4(9)
			109,2(9)	107,5(9)
			110,6(9)	108(1)
			109.6(9)	110(1)
		112 1(3)	109 6(9)	109(1)
		117 5(3)	110 9(9)	108 4 (9)
		110 74(11)	109(1)	100,4(9)
		100.0(2)	109(1)	109,7(9)
S-C-F		100,9(2)	110 0(0)	110(1)
		100,5(2)	100.0(9)	110(1)
		108,73(10)	109,8(9)	110(1)
		110,78(9)	107,7(9)	108(1)
		110,33(9)	109,1(9)	110(1)
			110,1(9)	109(1)
			108,9(9)	107(1)
			111(1)	110(1)
			110(1)	112(1)
			110,8(9)	110(1)
			108(1)	111(1)
			108(1)	110(1)
			110(1)	109(1)
			110(1)	110(1)
		110.0(2)	108(1)	110(1)
		119,9(3)	109(1)	109(1)
		112,9(3)	110(1)	110(1)
		107,2(3)	109(1)	111(1)
	109,0(2)	103,8(2)	110(1)	109(1)
F-C-F	-	105,8(3)	111(1)	110(1)
	109,8(2)	99,6(3)	111(1)	110(1)
		109,5(1)	108(1)	109(2)
		108,9(1)	111(1)	114(2)
		108,6(1)	110(1)	111/2)
			110(1)	111(Z) 105(1)
			100(1)	100(1)
			109(1)	109(2)
			108(1)	110(2)
			108(1)	107(2)

Eine Diskrepanz der Bindungslängen oder –winkel bezüglich der Konfiguration der [NTf₂]⁻-Anionen ist nicht festzustellen. Die S-C-Bindungslängen liegen bei allen drei Verbindungen in einem Bereich von 182(2)-188(2) pm und sind somit länger als die literaturbekannten Standard-Werte von 181 pm^[24]. Der Grund hierfür sind die stark elektronenziehenden Fluorsubstituenten am Kohlenstoffatom.

Bei analogen Verbindungen wie Ag(NTf₂)₂ und [Pd(H₂O)₂(NTf₂)₂] (siehe Kapitel 2.2.1 und 2.2.2) liegen die gefundenen Werte im gleichen Bereich^[36]. Auch die C-F-Bindungen in der CF₃-Gruppe sind in den Edelmetallverbindungen ähnlich (ausgenommen fehlgeordnete Atome) und liegen zwischen 124(2) pm und 137(2) pm. Das gleiche gilt für die F-C-F-Bindungswinkel des durch die CF₃-Gruppe mit S aufgespannten verzerrten Tetraeders. Diese liegen jeweils zwischen 105(1)° und 114(2)°, wobei die meisten Werte bei etwa 109° liegen.

Dies stimmt gut mit den typischen Werten der Säure, $Pb(NTf_2)_2$ und $[Pd(HOAc)_2(NTf_2)_2]$ überein. Dort liegen die C-F-Bindungen zwischen 129,8(4) pm und 133,0(3) pm und die F-C-F-Winkel zwischen 108,7(3)° und 109,8(2)°. Allgemein zeigen die CF₃-Gruppen der unterschiedlichen Baueinheiten jeweils zueinander.

Die S-O-Bindungslänge steigt im Gegensatz zum O-S-O-Bindungswinkel vom HNTf₂ über [Pd(HOAc)₂(NTf₂)₂] bis zu Pb(NTf₂)₂. Dieser Trend entspricht dem in Kapitel 2.1.1 beschriebenem Doppelbindungsverhalten. So weist das Bleitriflimidat mit 144,3(9) pm die längste S-O-Bindung auf, da dort eher eine S-O-Einfachbindung durch die hohe Elektronendichte am Sauerstoff vorliegt. Dies entspricht dem Verhalten von Ag(NTf₂), wo die [NTf₂]⁻-Anionen ebenfalls über die Sulfonyl-Gruppen verknüpft sind. Im Gegensatz dazu spricht die kurze S-O-Bindung in den Verbindungen HNTf₂ (140,1(2) pm) und [Pd(HOAc)₂(NTf₂)₂] (141,9(1) pm) für einen S=O-Doppelbindungscharakter, was ebenfalls für [Pd(H₂O)₂(NTf₂)₂] der Fall ist. Bei den Pd-Verbindungen und der freien Säure ist die Ladung am N-Brückenatom lokalisiert. Ein weiterer Grund für die verschiedenen Bindungslängen könnten intramolekulare Wechselwirkungen wie z. B. Wasserstoffbrückenbindungen sein.

4.2.2 Strukturen der Ni-Komplexe

Bei [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂ **III** wurde für die Verfeinerung von der Kristallstruktur das Zwillingsgesetz mit der Matrix -100 010 00-1 angewendet. Der Flack-x Parameter beträgt 0,004.

Die Strukturdaten der drei Nickel(II)-Komplexe [Ni(Py)₄(H₂O)₂][NTf₂]₂ I, [Ni(3-EtPy)₄(H₂O)₂][NTf₂]₂ II und [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂ III werden in der Tab. 8 zusammengefasst.

Parameter	I	II	111		
Molmasse / g mol ⁻¹	971,44	10	83,65		
Kristallsystem	monoklin	monoklin	orthorhombisch		
Raumgruppe	C2/c (Nr. 15)	<i>l2/a</i> (Nr. 15)	<i>Pca</i> 2 ₁ (Nr. 29)		
Gitterkonstanten/ pm a	1861,2(2)	1997,7(2)	1677,03(5)		
b	1491,1(1)	1115,30(6)	1178,39(3)		
C	1387,3(1)	2144,9(1)	2342,07(7)		
Winkel/ ° β	104,772(3)	104,603(2)			
Zellvolumen/ 10 ⁶ · pm ³	3722,9(6)	4624,5(6)	4628,4(2)		
Ζ	4	4	4		
$R_1(I_0>2\sigma(I_0))$	0,0377	0,0547	0,0560		
CCDC-Nummer	1511497	1511900	1514571		

Tab. 8: Kristallographische Daten von [Ni(Py)4(H₂O)₂][NTf₂]₂ I, [Ni(3-EtPy)4(H₂O)₂][NTf₂]₂ II und [Ni(4-EtPy)4(H₂O)₂][NTf₂]₂ III.

Auffällig ist, dass **III** als einzige Verbindung nicht im monoklinen sondern im orthorhombischen Kristallsystem in der Raumgruppe *Pca*2₁ (Nr. 29) kristallisiert. Die Koordination der Ni²⁺-Kationen ist in allen drei Ni-Verbindungen oktaedrisch (Abb. 30).

Abb. 30: Koordination der Ni²⁺-Ionen in den Verbindungen $[Ni(Py)_4(H_2O)_2][NTf_2]_2$ (a), $[Ni(3-EtPy)_4(H_2O)_2][NTf_2]_2$ (b) und $[Ni(4-EtPy)_4(H_2O)_2][NTf_2]_2$ (c).

Hierbei ist das Ni-Atom jeweils von vier N-Atomen der verschiedenen Py-Derivatliganden und von zwei O-Atomen der Wassermoleküle koordiniert. Entsprechende Winkel und Atomabstände sind in der Tab. 9 zusammengefasst.

Wie zu erwarten, liegen die Winkel der gegenüberliegenden O-Atome der H₂O-Liganden und die der N-Atome der Py-Derivate bei Werten um 180° und jene benachbarter Liganden bei ca. 90°. Die dazugehörigen Ni-O-Bindungen liegen zwischen 209,9(3) pm und 211,2(3) pm und die Ni-N-Abstände finden sich in einem Bereich zwischen 208,3(2) pm und 212,0(2) pm. Dies ähnelt dem bereits bekannten Ni-Im-Triflimidat [Ni(EtIm)₆][NTf₂]2^[48] in dem ebenfalls eine oktaedrische Koordinationsum-gebung für das Ni²⁺-Ion vorliegt. Die Ni-N-Abstände liegen dort zwischen 212(1) pm und 213,2(1) pm.

Tab. 9: Abstände/pm und Winkel/° innerhalb der $[NiO_2N_4]$ -Oktaeder in den Verbindungen $[Ni(Py)_4(H_2O)_2][NTf_2]_2$ I, $[Ni(3-EtPy)_4(H_2O)_2][NTf_2]_2$ II und $[Ni(4-EtPy)_4(H_2O)_2][NTf_2]_2$ III.

Messgröße/	Atomo				
Einheit	Atome	I	11	••••	
	Ni-O1	211,1(1)	211 2(2)	211,2(3)	
Albetände /	Ni-O2	211,1(1)	211,2(2)	209,9(3)	
ADStanue/	Ni-N4	200 2(2)	209,5(2)	210,2(4)	
pm	Ni-N2	200,5(2)	200 c(2)	211,8(4)	
	Ni-N3	212 0(2)	209,0(2)	209,7(4)	
	Ni-N1	212,0(2)	209,5(2)	210,3(4)	
	01-Ni-02	178,02(8)	178,6(1)	176,3(1)	
	01-Ni-N4	90.01(4)	89,55(8)	89,2(1)	
	O2-Ni-N4	69,01(4)	89,49(8)	90,3(1)	
	01-Ni-N3	00 72(C)	90,35(8)	88,9(1)	
	02-Ni-N1	00,72(0)	89,55(8)	90,1(1)	
	01-Ni-N1	01 26(6)	89,49(8)	93,6(1)	
Winkel/	02-Ni-N3	91,20(0)	90,65(8)	87,4(1)	
o	02-Ni-N2	00.00(4)	90,35(8)	91,9(1)	
	01-Ni-N2	90,99(4)	90,65(8)	88,9(1)	
	N4-Ni-N2	180,0	178,07(8)	175,3(2)	
	N4-Ni-N1	80 50(4)	91,8(1)	88,2(2)	
	N4-Ni-N3	09,50(4)	90,14(8)	90,8(1)	
	N1-Ni-N3	179,00(9)	178,07(8)	177,2(2)	
	N2-Ni-N3	$00 \in O(4)$	87,9(1)	93,5(1)	
-	N1-Ni-N2	90,30(4)	90,14(8)	87,6(1)	

Durch die Wassermoleküle werden die [NTf₂]⁻-Anionen über Wasserstoffbrückenbindungen in der Kristallstruktur aller drei Ni-Py-Derivate schwach an die Komplexe gebunden. Dies ist in der folgenden Abb. 31 an den Verbindungen **II** und **III** gezeigt.

Hierbei liegend die Wechselwirkungen jeweils im mäßig starken Bereich^[30] mit Donor-Akzeptor-Abständen von 282,3(2) pm (I) und 281,9(2) pm, 279,3(3) pm (II) und 285,1(3) pm, 274,5(2) pm und 278,8(5) pm (III).

Abb. 31: Projektion auf (010) (links) bzw. auf (100) (rechts) für die Verbindungen $[Ni(3-EtPy)_4(H_2O)_2][NTf_2]_2 II (a)$ und $[Ni(4-EtPy)_4(H_2O)_2][NTf_2]_2 III (b).$

4.2.3 Strukturen der Cu-Komplexe

Zwei $[NTf_2]^-$ -Anionen besetzen Positionen innerhalb der Elementarzelle von $[Cu_2(4-EtPy)_8][(NTf_2)_2(NO_3)_2]$ **IV** (Abb. 32 b), alle weiteren liegen entweder mit dem N-Atom auf den Kanten der Elementarzelle oder bei c/₂. Die durch Symmetrie erzeugte Fehlordnung der S3-, N2- und S4-Atome wird in Abschnitt 4.2.8 und in Abb. 46 näher erläutert.

Abb. 32: Ausschnitte aus der [Cu₂(4-EtPy)₈][(NTf₂)₂(NO₃)₂]-Kristallstruktur.

Die zwei verschiedenen Cu²⁺-Ionen der Verbindung IV sind beide von vier N-Atomen der 4-EtPy-Liganden in äguatorialer Position umgeben und von zwei O-Atomen der NO3⁻-Gruppen in axialer Position, wodurch verzerrte Oktaeder entstehen. Diese sind in Abb. 32 a in flieder für das Cu1-Atom und in türkis für das Cu2-Atom hervorgehoben. Je zwei gleichartige [CuN₄O₂]-Oktaeder sind über ein durch Symmetrie erzeugtes, identisches O-Atom (Cu1-O5: 239,7(7) pm und Cu2-O7: 240,7(6) pm) eines fehlgeordneten NO₃⁻-Anions im Fall von Cu1 in *c*-Richtung und bei Cu2 entlang [101] verknüpft, wobei die Bindungslängen O5-N3A 108,4(7) pm und die von O7-N3B 108,0(6) pm betragen. Die N3B-Atome sitzen hierbei auf den Ecken der Elementarzelle auf der speziellen Wyckofflage 1c. Zwischen den terminalen zu je 50 % besetzten O6/O8-Atomen sind auf Grund der Fehlordnung lange Abstände von N3A-O6 mit 166(2) pm und für N3B-O8 mit 167(1) pm zu finden. Zwischen zwei verschiedenen Cu-Oktaedern liegt ein weiteres NO3⁻-Anion (Abb. 32 a). Die Abstände sind entsprechend (Cu1-O29: 253,0(2) pm, O29-N4: 117(1) pm, N4-O39: 124(1) pm, N4-O19: 120,5(9) pm, O19-Cu2: 255,5(2) pm). In der Tab. 10 sind zugehörige Winkel und Abstände zusammengefasst. Wichtige kristallographische Daten der Struktur sind in Tabellenform (Tab. 26-29) im Anhang zu finden.

Winkel /°	N3A	N3B	N4
Cu1-O5-N	174,6(6)		
O5-N-O5	180,0(9)		
06-N-06	180,0	-	-
	86,7(7)		
05-14-06	93,3(7)		
Cu2-07-N		170,1(5)	
07-N-07		180,0	
08-N-08	-	180,0	-
		88,2(5)	
07-IN-00		91,8(5)	

Tab. 10: Winkel und Atomabstände der NO_3^- -Anionen in der Verbindung [Cu₂(4-EtPy)₈][(NTf_2)₂(NO_3)₂].

Cu1-O29-N			142,1(2)
Cu2-O19-N			155,6(2)
O29-N-O39		-	117(1)
O39-N-O19			115(1)
O19-N-O29			127(1)
Abstände /pm	N3A	N3B	N4
O5-N	108,4(7)		
06-N	166(2)	_	
07-N		108,0(6)	_
08-N	-	167(1)	
O19-N			120,5(9)
O29-N		-	117(1)
O39-N			124(1)

Die Struktur der NO₃⁻-Gruppen ist trigonal-planar. In Abb. 33 b ist diese Anordnung noch einmal veranschaulicht. Zudem ist in Abb. 33 a die ähnlich den Pt- bzw. Pd-Derivaten nahezu quadratisch-planare Koordinationsumgebung um das Cu²⁺-Kation in [Cu(Py)₄][NTf₂]₂ **V** abgebildet.

Abb. 33: Koordination um das Cu^{2+} in $[Cu(Py)_4][NTf_2]_2$ (a) und $[Cu_2(4-EtPy)_8][(NTf_2)_2(NO_3)_2]$ (b).

Die Abstände von den N-Atomen der windmühlenartig angeordneten Py-Liganden zum Cu-Atom liegen bei 200,6(2) pm und 202,0(2) pm und gleichen somit dem anfangs beschriebenen Im-Derivat [Cu(EtIm)₄][NTf₂]₂ von Hoogerstraete^[19]. Die N-Cu-N-Winkel benachbarter N-Atome liegen zwischen 87,80(9)° und 91,31(9)°. Die Winkel der gegenüberliegenden N- Atome lassen auf die leichte Abweichungen von perfekter Planarität schließen, die in der Seitenansicht in der Ebene (010) in Abb. 34 a sichtbar ist. Dort sind beide oberen N-Atome nicht deckungsgleich (Abb. 33 a).

Abb. 34: Strukturausschnitte (mit Elementarzelle (a)) (b) von [Cu(Py)₄][NTf₂]₂.

Dieses ist ebenfalls in Abb. 34 b zu erkennen. Die Py-Ringe weisen dort mit den Cu-Atomen als Drehpunkt abwechselnd zueinander und voneinander weg. Zwischen zwei dieser Komplexkationen liegen die [NTf₂]⁻-Anionen, jeweils mit den CF₃-Gruppen zueinander orientiert.

Die kristallographischen Daten beider Cu-Verbindungen sind in Tab. 11 zusammengefasst.

Parameter		IV	V		
Molmasse ∕ g mol⁻¹		1682,60	940,24		
Kristallsystem		triklin	monoklin		
Raumgruppe		<i>P</i> -1 (Nr. 2)	<i>l</i> 2/ <i>a</i> (Nr. 15)		
Gitterkonstanten/ pm	а	1358,1(1)	1846,81(8)		
	b	1493,0(1)	1988,69(5)		
	С	1878,4(1)	1934,73(5)		
Winkel/ °	α	89,587(2)			

Tab. 11: Kristallographische Daten von $[Cu_2(4-EtPy)_8][(NTf_2)_2(NO_3)_2]$ IV und $[Cu(Py)_4][NTf_2]_2$ V.

β	88,436(2)	96,297(1)
γ	76,366(2)	
Zellvolumen/ 10 ⁶ · pm ³	3700,2(5)	7062,9(4)
Z	2	8
$R_1(I_0>2\sigma(I_0))$	0,1369	0,0507
CCDC-Nummer	Siehe 7.1	1518809

4.2.4 Strukturen der Pd-Komplexe

Das bisher einzige einkristallin erhaltene MKT mit Palladium, [Pd(4-EtPy)₄][NTf₂]₂ **VI**, kristallisiert in der triklinen Raumgruppe *P*-1 (Nr. 2). Die Elementarzelle ist durch die Gitterkonstanten *a* = 995,33(3) pm, *b* = 1070,02(3) pm und *c* = 1110,90(4) pm und den Winkeln α = 75,433(2)°, β = 73,804(2)° und γ = 76,646(2)° definiert. Die Strukturlösung konnte bis zu einem *R*₁ (*I*₀>2 σ (*I*₀))-Wert von 0,0250 verfeinert werden und ist unter der Nummer 1519978 in der CCDC-Datenbank zu finden.

Das Pd²⁺-Ion ist quadratisch-planar durch die vier N-Atome der 4-EtPy-Liganden koordiniert (N-Pd-Abstände: 201,79(13) pm und 202,38(13) pm; Abb. 35).

Abb. 35: Kristallstruktur von [Pd(4-EtPy)4][NTf2]2.

Die Liganden sind ähnlich der Cu-Verbindung $[Cu(Py)_4][NTf_2]_2$ **V** wie die Blätter einer Windmühle angeordnet, wobei der Winkel benachbarter 4-EtPy-Liganden mit 88,72(5)° bzw. 91,28(5)° nahezu rechtwinklig ist und mit dem Winkel gegenüberliegender Liganden (180°) die Planarität belegt. Die Wechselwirkung der *transoiden* $[NTf_2]^-$ -Anionen zum Zentralatom geht eher von den O-Atomen aus.

In Abb. 36 ist die Stapelung der [Pd(4-EtPy)₄][NTf₂]₂-Einheiten entlang *a* zu sehen. Dieses Muster wiederholt sich in Richtung [001], indem die Pd-Atome jeweils im Abstand von 1110,90(4) pm auf dem Vielfachen des Vektors \vec{c} liegen und in [010] Richtung mit einem Pd-Pd-Abstand von 1070,02(3) pm.

Abb. 36: Strukturausschnitt von [Pd(4-EtPy)4][NTf2]2.

Die Charakteristika dieser Verbindung sind mit der Verbindung Pd(Etlm)₄][NTf₂]₂ von Schaltin *et al.*^[47] verwandt.

4.2.5 Strukturen der Ag-Komplexe

Alle drei MKTs mit Ag als Edelmetall weisen ähnlich wie die Au-Derivate (Kapitel 4.2.7) nahezu lineare N-Ag-N-Bindungen auf. Hierbei beträgt der entsprechende Winkel bei [Ag(Py)₂][NTf₂] **VII** 178,4(2)°, bei [Ag(3-
EtPy)₂][NTf₂] **VIII** 172,6(3)° und bei [Ag(4-EtPy)₂][NTf₂] **IX** 175,99(6)° bzw. 177,25(6)°. Die dazugehörigen N-Ag-Abstände (**VII**: 212,8(6) pm und 213,7(6) pm, **VIII**: 213,4(9) pm, **IX**: 212,2(2)-212,4(1) pm) liegen alle im literaturbekannten Bereich der ebenfalls linear koordinierten Ag-MKTs von Schaltin^[46].

Eine Besonderheit ist den Strukturen der Py-Verbindung und des 3-EtPy-Derivates gemein: Die hier silberfarben abgebildeten Ag-Atome liegen relativ nahe beieinander (Abb. 37).

Abb. 37: Strukturausschnitt mit Elementarzelle von [Ag(Py)₂][NTf₂] (a) und [Ag(3-EtPy)₂][NTf₂] (b).

In **VII** beträgt der Ag-Ag-Abstand 366,98(9) pm und in **VIII** sind es nur 323,1(1) pm. Diese Abstände sind kürzer als die der in Kapitel 2.3 berichteten Verbindung [Ag(EtIm)₂][NTf₂]^[23] (457,27(3) pm). Je zwei [Ag(Py)₂][NTf₂]- bzw. [Ag(3-EtPy)₂][NTf₂]-Einheiten liegen folglich immer zusammen als Einheit (Dimer) vor und bilden bei **VIII** die Elementarzelle. Innerhalb der Dimere liegen die N-Ag-Ag-Winkel bei 96,2(2)° bzw. 91,1(2)°, weshalb die Einheiten nahezu orthogonal zueinander stehen.

Die Dimere sind durch intermolekulare d¹⁰-d¹⁰-Wechselwirkungen der Ag-Atome in der Elektronenkonfiguration [Kr]4d¹⁰ untereinander in **VIII** und durch die π - π -Stapelwechselwirkung der jeweiligen Py-Liganden in **VII** und **VIII** stabilisiert.^[52] Diese intermolekularen d¹⁰-d¹⁰-Wechselwirkungen von Ag-Atomen wurden bereits 1987 von Jansen^[53] beschrieben. In **VIII** wird die intermolekulare Wechselwirkung der Ag-Atome als argentophil bezeichnet, da der Ag-Ag-Abstand mit 323,1(1) pm zwischen 253,35 pm und 344 pm liegt. Argentophile Wechselwirkungen konnten auch bei den zweikernigen Di(Py)-Silberkationen in den Verbindungen [Ag(Py)₂][A] (A = ClO₄⁻, BF₄⁻ und PF₆⁻)^[54] beobachtet werden. Hier liegen die Dimere gestaffelt als leicht gewellte Kette vor (Ag-Ag-Abstände: 296,4(2)-300,01(5) pm).

Eine Aneinanderreihung dieser Einheiten entlang *c* bzw. *a* führt in **VII** bzw. **VIII** zu einer für Triflimidat-Verbindungen typischen Orientierung von trigonalen Pyramiden aus den SCF₃-Atomen zueinander. Interessanterweise sind im Gegensatz zum 4-EtPy-Derivat mit *transoiden* [NTf₂]⁻-Anionen diese bei **VII** und **VIII** *cis*-orientiert. Dieser Sachverhalt wird in Kapitel 4.2.8 genauer diskutiert.

Auch bei **IX** sind diese Polyeder zueinander orientiert, wodurch entlang *c* eine Art $_{n}[NTf_{2}]^{-}$ -Kette" entsteht (Abb. 38).

Diese ist immer abwechselnd mit einer schichtartigen Ansammlung der Kationenkomplexe in [100]-Richtung angeordnet. Die zwei kristallographisch unterscheidbaren Ag⁺-Kationen folgen hierbei einer Ag2/Ag2- bzw. Ag1/Ag1-Abfolge entlang *a*, wohingegen nebeneinanderliegende [Ag(4-EtPy)₂]-Einheiten der Reihung Ag2/Ag1/Ag2 unterliegen.

74

Abb. 38: Kristallstruktur von [Ag(4-EtPy)₂][NTf₂] mit kristallographisch unterscheidbaren Ag1- und Ag2-Atomen.

Informationen zur Struktur der drei Ag-MKTs sind aus Tab. 12 zu entnehmen.

Tab. 12: Kristallographische Daten von [Ag(Py)₂][NTf₂] VII, [Ag(3-EtPy)₂][NTf₂] VIII und [Ag(4-EtPy)₂][NTf₂] IX.

Parameter		VII	VIII	IX
Molmasse / g mol ⁻¹		546,22	60)2,32
Kristallsystem		monoklin	triklin	monoklin
Raumgruppe		C2/c (Nr. 15)	<i>P</i> -1 (Nr. 2)	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)
Gitterkonstanten/ pm	а	2072,61(6)	813,1(2)	1736,55(7)
	b	867,99(3)	1097,3(2)	1404,19(6)
	С	2167,33(7)	1304,3(2)	1877,28(8)
Winkel/ °	α		96,412(6)	
	β	101,035(1)	105,081(6)	104,074(2)
	γ		102,305(5)	
Zellvolumen/ 10 ⁶ · pm ³		3826,9(2)	1080,4(4)	4440,2(3)
Ζ		8	2	8
$R_1(I_0>2\sigma(I_0))$		0,0852	0,0856	0,0598
CCDC-Nummer		1497491	1475873	1517219

4.2.6 Strukturen der Pt-Komplexe

Mit den beiden Vertretern [Pt(3-EtPy)₄][NTf₂]₂ **X** und [Pt(4-EtPy)₄][NTf₂]₂ **XI** wurden erstmals Pt-MKTs synthetisiert. Sie kristallisieren beide im monoklinen Kristallsystem mit der Raumgruppe *P*2₁/*c*. Im Gegensatz zu **X** gibt es in **XI** nicht nur eine, sondern zwei kristallographisch unterscheidbare [Pt(EtPy)₄][NTf₂]-Einheiten. Identisch ist die quadratisch-planare Koordination der Pt²⁺-Kationen über die N-Atome der EtPy-Liganden, welche durch die nahezu rechtwinkligen N-Pt-N Winkel benachbarter N-Atome (**X**: 89,81(6)° und 90,19(6)°; **XI**: 89,6(2)°, 90,5(2)° und 89,1(3)°, 90,9(3)°) und jener von gegenüberliegenden N-Atomen um 180,0° verifiziert wird (Abb. 39).

Abb. 39: Quadratisch-planare, windmühlenartige-Umgebung der fehlgeordneten EtPy-Liganden um das Pt²⁺-Kation in [Pt(3-EtPy)₄][NTf₂]₂ (a) und [Pt(4-EtPy)₄][NTf₂]₂ (b).

Die EtPy-Gruppen weisen eine Fehlordnung auf. Aufgrund der Besetzung von C8A/9A zu C8B/9B von 66/34, werden im Folgenden nur die CA-Atome berücksichtigt. Die Et-Gruppen der Liganden weisen je in eine Richtung dieser windmühlenartigen Anordnung um die Pt-Atome (Abb. 39 b). Innerhalb der Elementarzelle von **X** befindet sich das Symmetrieelement direkt auf der Pt-Lage in der Zellmitte (Abb. 40 a), wodurch weitere vier Pt-Atome direkt auf $a_{/2}$ projiziert werden. Zum Ladungsausgleich befinden sich je vier [NTf₂]⁻-Anionen in der Einheitszelle, welche ähnlich zu **XI** alle *transoider* Natur sind. In **XI** sind diese schichtartig in [010]-Richtung und alternierend mit den Kation-Komplexen angeordnet (Abb. 40 b).

Abb. 40: *Elementarzellen von* [*Pt*(3-*EtPy*)₄][*NTf*₂]₂ (*a*) *und* [*Pt*(4-*EtPy*)₄][*NTf*₂]₂ (*b*).

Die zwei kristallographisch unterscheidbaren Pt-Atome liegen in **XI** auf den speziellen Wyckoff-Lagen 2*c* und 2*d*.

Die nachfolgende Tab. 13 gibt wichtige Strukturparameter von **X** und **XI** wieder.

Tab. 13: Kristallographische Daten von [Pt(3-EtPy)4][NTf2]2 X und [Pt(4-EtPy)4][NTf2]2 XI.

Parameter		X	XI		
Molmasse ∕ g mol⁻¹		1184,00			
Kristallsystem		monoklin	monoklin		
Raumgruppe		<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)		
Gitterkonstanten/ pm	а	1113,78(4)	2143(1)		
	b	1350,47(5)	1089,8(5)		
	С	1480,40(5)	2074,6(9)		
Winkel/ °	β	103,234(2)	116,539(9)		

Zellvolumen/ 10 ⁶ · pm ³	2167,6(1)	4334(3)
Z	2	4
$R_1(I_0>2\sigma(I_0))$	0,0437	0,1090
CCDC-Nummer	1527348	1538312

4.2.7 Strukturen der Au-Komplexe

[Au(3-EtPy)₂][NTf₂] **XII** ist das erste Au-MKT, das bisher beschrieben wurde. Hierbei entspricht die asymmetrische Einheit genau der Summenformel. Beide 3-EtPy-Liganden koordinieren analog zu den in Abschnitt 4.2.5 bereits vorgestellten Ag-MKTs nahezu linear über die N-Atome an das Au-Atom (im Folgenden immer mit goldenem Farbton abgebildet; Abb. 41).

Abb. 41: Asymmetrische Einheit von [Au(3-EtPy)2][NTf2].

Der N-Au-N-Winkel beträgt 175,4(2)° und die N-Au-Abstände liegen bei 202,1(2) pm bzw. 202,4(2) pm. Der Abstand von dem O-Atom des *cisoiden* [NTf₂]⁻-Anions beträgt 321,8(2) pm zum Au⁺-Kation (siehe auch Kapitel 4.2.8). Alle Bindungen und Winkel der EtPy-Liganden liegen im normalen Bereich, wobei die Et-Gruppen parallel zur N-Au-N-Bindung ausgerichtet und entgegengesetzt zum Au-Atom orientiert sind.

Mit Z = 2 besteht die Elementarzelle formal aus zwei [Au(3-EtPy)₂][NTf₂]-Einheiten (Abb. 42).

Abb. 42: Kristallstruktur von $[Au(3-EtPy)_2][NTf_2]$ in Projektion auf (100) (a) und (010) (b).

Die EtPy-Au-EtPy-Einheiten liegen parallel mit einer leichten Verschiebung innerhalb der Ebene (100). Je zwei Au-Atome dieser Einheiten weisen entlang *a* einen Abstand von 327,68(5) pm zueinander auf.

Wichtige Strukturparameter von **XII** sind in der folgenden Tab. 14 mit denen von [Au(4-EtPy)₂][NTf₂] **XIII** zusammengefasst.

Tab. 14: KristallographischeDatenvon[Au(3-EtPy)_2][NTf_2]XIIund[Au(4-EtPy)_2][NTf_2]EtPy)_2][NTf_2]VIII.

Parameter		XII	XIII		
Molmasse / g mol ⁻¹		691	691,42		
Kristallsystem		triklin	monoklin		
Raumgruppe		<i>P</i> -1 (Nr. 2)	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)		
Gitterkonstanten/ pm	а	820,83(5)	1713,85(8)		
	b	1084,58(7)	2050,59(9)		
	С	1317,66(8)	1972,16(9)		
Winkel/ °	α	98,325(2)			
	β	103,346(2)	110,292(2)		
	γ	103,030(2)			
Zellvolumen/ 10 ⁶ · pm ³		1087,75(12)	6500,8(5)		
Ζ		2	12		
$R_1(I_0>2\sigma(I_0))$		0,0773	0,0377		
CCDC-Nummer		1529755	1523831		

In **XIII** sind vier entlang *b* angeordnete kristallographisch unterscheidbare Au-Atome vorhanden, von denen Au2 und Au4 (Abb. 43) auf der speziellen Wyckoff-Lage 4*e* liegen.

Abb. 43: Stapelung der [Au(4-EtPy)₂]-Einheit entlang b in [Au(4-EtPy)₂][NTf₂].

Ähnlich der Struktur der Ag-Triflimidate (Kapitel 4.2.5) sind die Liganden so ausgerichtet, dass der Au-Au-Abstand entsprechend kurz ist. Die Au-Au-Abstände liegen im Bereich zwischen 338,64(4) pm und 347,58(6) pm. Bei diesen u. a. von Schmidbaur^[55] beschriebenen d¹⁰-d¹⁰-Wechselwirkungen handelt es sich um metallophile intermolekulare Wechselwirkungen zwischen den voll besetzten Schalen der Au(I)-Zentren in der Elektronenkonfiguration 5d¹⁰, die in diesem Fall als aurophile Wechselwirkungen^[56] bezeichnet werden. Hierbei wird ein Gleichgewichtsabstand von ca. 300 pm (250 pm-350 pm)^[57] angestrebt. Dieser liegt unterhalb der Summe zweier Van-der-Waals-Radien (380 pm), wobei die Stärke aurophiler Wechselwirkungen mit Wasserstoffbrückenbindungen vergleichbar ist.^[58] Die meisten bisher bekannten stäbchenartigen Verbindungen mit Pyridin-Derivat-Liganden und aurophilen Wechselwirkungen haben als zweiten Liganden ein Halogen. In [(NHC)Au(R-Py)][PF₆] (R = 4-Me-, 4-Me₂N-, 4-Ph- und 4-CN-) wird das komplexe Kation mit einem Nheterocyclischen Carben gebildet. Die Au-Au-Abstände liegen dort in dem Bereich von 347,3-343,6 pm^[59] und die Au-Atome sind in zick-zack-artigen Ketten angeordnet.

Jedes dieser Au-Atome in **XIII** wird wie das 3-EtPy-Derivat linear über die N-Atome zweier 4-EtPy-Liganden koordiniert (N-Au-N-Winkel: 178,7(1)-180,0°; N-Au-Abstände: 200,8(2)-202,1(2) pm). Alle auf einer Seite liegenden Et-Gruppen sind entweder nach unten orientiert (rechts in Abb. 43) oder weisen nach oben (links in Abb. 43).

Abb. 44: Kristallstruktur von [Au(4-EtPy)₂][NTf₂] in (010).

Beim Blick auf die (010)-Ebene sind Au3 und Au4 jeweils deckungsgleich und Au2 zu Au1 etwas verschoben (Abb. 44). Die Et-Gruppen zu beiden letztgenannten Au-Atomen ragen im oberen Teil der Abbildung aus der Papierebene heraus und im unteren in Richtung [1-11] in die Zeichenebene hinein. Genau umgekehrt ist das Verhalten der äußeren, zu Au3 und Au4 gehörenden Et-Gruppen. Es liegt somit keine rechtwinklige Orientierung der jeweiligen Et-Gruppenpaare zueinander innerhalb (010) vor. Zwischen diesen Stapelungen liegen je zwei [NTf₂]⁻-Anionen in *transoider* Konfiguration mit typisch zueinander orientieren CF₃-Gruppen.

4.2.8 Strukturvergleich aller [NTf₂]⁻-Anionen in den Metallkomplexen

In allen dargestellten MKTs liegen die [NTf₂]⁻-Anionen frei im Kristallgitter vor und koordinieren nicht direkt an das M^{*n*+}-Zentrum, wie es bei den Metall-Triflimidat-Derivaten der Fall ist. In einigen Verbindungen liegen sie dennoch recht nahe an dem entsprechendem Metallzentrum (Tab. 15).

Verk).	N-S	S-O	S-C	M-N	M-O
Ni	I	156,7(2) 158(2)	143,2(2) 143,7(2) 141,8(2) 143,1(2)	183,2(2) 183,2(2)	> 554,3(2)	> 445,0(2)
	II	156,0(3) 157,4(3)	143,2(2) 143,3(2) 138,2(3) 141,1(3)	182,7(3) 180,5(5)	> 533(2)	> 440,1(2)
	111	157,5(4) 157,7(4) 154,2(5) 160,8(5)	$142,0(4) \\143,7(3) \\143,1(4) \\142,6(4) \\145,3(4) \\143,7(4) \\141,4(4) \\143,7(4) \\143,7(4) \\$	183,5(6) 182,2(6) 183,6(7) 182,7(7)	> 529,7(2)	> 413,4(2)
Cu	IV	162(2) 169(1) 156(1) 157(1) 173(2) 145(2)	122,3(9) 136(1) 139,8(9) 143(1) 138(1) 141(2) 128(1) 140(2)	181(1) 163(2) 231(5) 177(2)	-	_
	V	156,8(3) 155,5(2) 158,4(2) 156,7(3)	141,7(2) 143,7(2) 142,0(2) 143,7(2) 142,6(3) 142,7(3) 143,0(3) 144,7(2)	183,6(3) 182,1(3) 182,4(3) 182,5(4)	429,5(2) 453,5(2)	264,6(2) 256,8(2)
Pd	VI	156,3(2) 158,3(2)	142,9(1) 143,5(1)	183,4(2) 183,1(2)	563,5(2)	317,1(1) 510,5(1)

Tab. 15: Bindungslängen/ pm der [NTf₂]⁻-Anionen von Metallkomplex-Triflimidaten im Vergleich.

			142,4(1)			
Ag	VII	156,4(8) 152,7(8)	138(1) 138,0(8) 123,6(9) 197(1)	178(1) 171(1)	544,2(2)	295,9(2)
	VIII	156,3(9) 159,2(9)	141,9(8) 143,6(7) 141,6(8) 143,3(8)	183(1) 185(1)	505(2)	286,5(2)
	IX	157,5(2) 158,2(2) 157,8(2) 157,3(2)	143,2(1) 143,3(1) 142,6(1) 143,2(1) 143,0(1) 143,2(1) 142,9(1) 143,5(1)	183,5(2) 183,5(2) 183,6(2) 183,6(2)	495,9(2) 458,3(2)	294,2(1) 292,7(2)
Pt	Х	157,0(2) 154,9(2)	142,4(2) 143,5(2) 142,1(2) 142,5(2)	182,3(3) 181,8(3)	556,6(2)	360,7(2)
	XI	157,2(6) 157,4(6) 157,6(6) 156,1(6)	141,7(5) 143,6(6) 142,7(6) 142,6(6) 144,6(5) 139,6(6) 144,2(6) 142,5(6)	182,5(7) 182,7(8) 184,0(8) 182,5(7)	434,9(2) 429,1(2)	361,7(2) 421,3(2)
Au	XII	162(1) 152,2(9)	139,1(9) 142,6(9) 138,6(9) 147,6(9)	184(1) 183(1)	524,6(2)	321,8(2)
	XIII	157,6(3) 157,7(3) 158.2(2) 157,2(3) 158,3(3) 158,3(2)	142,2(2) 143,4(2) 143,0(2) 143,5(2) 142,6(2) 143,2(2) 142,0(2) 143,7(2) 141,7(3) 142,2(3) 142,9(2) 143,3(2)	183,4(3) 184,5(3) 183,0(3) 183,7(3) 182,5(3) 182,9(3)	515,8(2)	332,2(2)

Im Falle der Ni-MKTs ist durch die O- und N-Atome der sechs Liganden ein Oktaeder um das Ni²⁺-Ion aufgespannt, wodurch eine direkte Koordination der [NTf₂]⁻-Anionen nahezu unmöglich wird. In den Verbindungen mit quadratisch-planarer Koordination um das Metallkation, wie in den Pt-MKTs hingegen, wäre eine direkte Bindung zwischen den O-Atomen der Sulfonyl-Gruppen des [NTf₂]⁻-Anions möglich (Abb. 45). Die beobachteten Abstände Pt-O bzw. Pt-N liegen aber bereits deutlich oberhalb der Summe der Van-der-Waals-Radien (Pt-O: **X**: 360,7(2) pm; **XI**: 361,7(2) pm, 429,1(2) pm und 421,3(2) pm; Pt-N: **X**: 556,6(2) pm; **XI**: 434,9(2) pm).

Abb. 45: Abstand des $[NTf_2]^-$ -Anions zum Pt^{2+} -Ion in den Pt-MKTs X (a) und XI (b).

Bei genauerer Betrachtung von Abb. 45 b weisen zum Pt1 ausschließlich die O-Atome des [NTf₂]⁻-Anions hin, wobei beim Pt2 sowohl eine Annäherung der N-Atome als auch der O-Atome erkennbar ist.

Auch im Falle der beiden Cu-Verbindungen liegen nicht-koordinierende [NTf₂]⁻-Anionen vor.

Bei dem Cu-Py-Derivat **V** (Abb. 46 a) liegen die M-N-Abstände bei 429,5(2) pm bzw. 453,5(2) pm und die M-O-Abstände bei 264,6(2) pm bzw. 256,8(2) pm. Diese Werte passen gut zu dem in Kapitel 2.3 beschriebenen literaturbekannten [Cu(Melm)₄][NTf₂]₂^[19], bei welchem ebenfalls längere M-O-Abstände vorliegen und eine direkte Koordination der [NTf₂]⁻-Anionen ausgeschlossen wurde.

Abb. 46: Asymmetrische Einheit von $[Cu(Py)_4][NTf_2]_2$ (a) und $[NTf_2]^-$ -Anionen des $[Cu_2(4-EtPy)_8][(NTf_2)_2(NO_3)_2]$ (b).

Kupfer(II) befindet sich in den oben genannten Verbindungen in der Elektronenkonfiguration [Ar]3d⁹ und eine für d⁹-Systeme typische Jahn-Teller-Verzerrung^[60] liegt vor. Ein Vergleich der Abstände des Cu-Atoms zu den [NTf₂]⁻-Anionen (Cu-O: 264,6(2) pm und 256,8(2) pm) und zu den Py-Liganden (Cu-N: 200,6(2) pm und 202,0(2) pm) zeigt, dass die Abstände zu den [NTf₂]⁻-Anionen um ca. 60 pm länger sind. Die [NTf₂]⁻-Anionen werden somit nicht mehr als Liganden des Cu²⁺-Kations betrachtet. Folglich liegt ein Extremfall der Jahn-Teller-Verzerrung vor. Anstatt einer oktaedrischen Koordination der vier Py-Liganden und der zwei [NTf₂]⁻-Anionen um das Cu²⁺-Kation, ist ausschließlich eine quadratisch-planare Koordination der vier Py-Liganden um das Cu²⁺-Kation zu berücksichtigen.

Eines der zwei kristallographisch verschiedenen [NTf₂]⁻-Anionen scheint in dieser Struktur *transoider* Natur zu sein und die Konfiguration des anderen entspricht keiner eindeutigen Zuordnung und liegt zwischen beiden Konfigurationsmöglichkeiten. In der nitrathaltigen Kupferverbindung **IV** (Abb. 46 b) existieren ebenfalls zwei kristallographisch unterscheidbare [NTf₂]⁻-Anionen. N2 ist im Gegensatz zu N1 fehlgeordnet, wobei die Besetzung von N2A und N2B jeweils 50 % beträgt. Die den Atomen N2A und S3 zugehörigen Werte sind in den Tab. 15 und Tab. 16 grau hinterlegt und die für N2B und S4 blau. Auch bei der quadratisch-planaren Umgebung in [Pd(4-EtPy)₄][NTf₂]₂ **VI** scheint eine Koordination des [NTf₂]⁻-Anions unmöglich, da der M-N-Abstand mit 563,5(2) pm sehr lang ist. Der kürzeste M-O-Abstand hingegen liegt bei 317,1(1) pm. Auch hier ist die Summe der Van-der-Waals-Radien der beteiligten Atome deutlich überschritten.

Bei den Ag- und Au-MKTs weisen die [NTf₂]⁻-Anionen eher eine starke Wechselwirkung zu den linearer koordinierten M⁺-Kationen auf (Abb. 47).

Abb. 47: Wechselwirkung des $[NTf_2]^-$ -Anions zum Ag^+ -Kation in den Ag-MKTs VII (a), VIII (b) und IX (c).

Die M-N-Abstände liegen bei 544,2(2) pm (**VII**), 504,7(2) pm (**VIII**), 458,3(2) pm bzw. 496(2) pm (**IX**) und die M-O-Abstände liegen bei 295,6(2) pm (**VII**), 286,5(2) pm (**VIII**), 292,7(2) pm bzw. 294(1) pm (**IX**) im Falle der Ag-MKTs.

Bei den Au-Verbindungen liegen die kürzesten M-N-Abstände bei 524,6(2) pm bzw. 515,8(2) pm und die M-O Abstände bei 321,8(1) pm und 332,2(2) pm. Verglichen mit den Verbindung Ag[NTf₂] (siehe Kapitel 2.2.1) und der chlorhaltigen Verbindung (siehe Kapitel 2.2.2) sind diese deutlich länger.

Der kürzeste Abstand des Metalls zum [NTf₂]⁻-Anion tritt in den vorgestellten Verbindungen somit meist zum O-Atom auf. Obwohl die [NTf₂]⁻-Anionen in den MKTs im Gegensatz zu den Metall-Triflimidaten als freie Anionen im Kristallgitter vorliegen, wirkt sich die schwache Coulomb-wechselwirkung auch bei MKTs auf die Delokalisation der Elektronen (und den Doppelbindungscharakter) innerhalb der "O₂-S-N-S-O₂-Bindungen" aus (siehe zum Vergleich Kapitel 2.1, 2.3 und 4.2.1):

 a. Ist der Abstand zum N-Atom kürzer, sollte dort die negative Ladung bevorzugt sein. Somit müssten N-S-Einfach- und S=O-Doppelbindungen vorliegen.

In Verbindung **XI** wird sowohl eine Koordination über die N-Atome des [NTf₂]⁻-Anions (Pt2) als auch über die O-Atome (Pt1) beobachtet. Bei Pt2 ist das [NTf₂]⁻-Anion auch mit dem N-Atom zum Metallkation orientiert. Der kürzeste Abstand ist dennoch durch den Sauerstoff gegeben (Abb. 45). Die Bindungsverhältnisse entsprechen hier eher Fall a als b. Das dem M-Kation am nächsten gelegene O-Atom weist zu seinem Nachbarn die in dieser Verbindung kürzeste O-S-Bindungslänge von 139,6(6) pm auf. Die beiden S-N-Bindungen sind nahezu gleich lang mit 157,2(6) pm und 157,6(6) pm. Für Pt1 sind die für den Fall b typischen Längenverhältnisse zu beobachten (O-S: 144,2(6) pm und S-N: 156,1(6) pm).

87

b. Ist das [NTf₂]⁻-Anion eher über das O-Atom in Richtung des Metalls ausgerichtet, sollte im Idealfall dort die negative Ladung lokalisiert sein. Folglich müssten eine N=S-Doppelbindung und eine S-O-Einfachbindung vorliegen.

Dies ist in Übereinstimmung mit den Befunden für folgende Verbindungen:

- V [Cu(Py)₄][NTf₂]₂: Wenn auch nur schwach ausgeprägt, so sind die O-S-Bindungen mit 144,7(2) pm und 143,7 (pm) im Vergleich zu den in Kapitel 2.3 beschriebenen Standardwerten von 142 pm verlängert. Entsprechend sind die S-N-Bindungslängen mit 155,5(2) pm und 156,7(3) pm kürzer als die durchschnittlichen literaturbekannten Werte mit 157,55 pm.
- VI [Pd(4-EtPy)₄][NTf₂]₂: Die zu dem verknüpfenden N-Atom gehörenden N-S-Bindungen betragen ca. 156,3(2) pm und die S-O Bindungen liegen bei bis zu 143,5(1) pm.
- In den beiden Ag-Verbindungen VII und IX liegen neben den kürzeren N-S-Bindungen (157,5(2) pm und 157,3(2) pm) ebenfalls längere S-O-Bindungen vor (143,3(1) pm und 143,5(1) pm). In dem Ag-Py-Derivat weicht die S-O-Bindungslänge von 197(1) pm stark von bekannten Werten ab, weshalb VII hier nicht zur Bewertung herangezogen wird.
- VI [Pt(3-EtPy)₄][NTf₂]₂: Hier ist ein O-Atom zum Metallkation orientiert (O-S-Bindung: 142,5(2) pm). Folglich ist die N-S-Bindung mit 154,9(2) pm auf dieser Seite des Triflimidats kürzer.
- In dem Au-MKT XII wird dieser Unterschied in den Bindungslängen am stärksten sichtbar und entspricht schon fast den Werten der in Kapitel 4.2.1 beschriebenen Metall-Triflimidaten (O-S: 147,6(9) pm und S-N: 152,2(9) pm, 162(1) pm).

Eine Auswirkung auf die Länge der benachbarten S-C-Bindungen bezüglich der bevorzugten N- oder O-Anziehung des [NTf₂]⁻-Anions zum jeweiligen Metallkation ist nicht zu beobachten. Hier liegen die Werte der S-C-Bindungen um 183 pm im erwarteten Bereich. Die C-F-Bindungslängen betragen zwischen 130-133 pm und entsprechen auch den erwarteten Werten.

Welche Winkel die Atome in den [NTf₂]⁻-Anionen einschließen, ist in Tab. 16 aufgelistet. Hierbei liegen die Werte im erwarteten Bereich und sind vergleichbar mit analogen Imidazol-Verbindungen (siehe Kapitel 2.3).

Verb.	S-N-S	N-S-O	0-S-0	N-S-C	S-C-F	F-C-F	lsomer
Ni I	125,5(1)	116,93(9) 108,90(9) 116,3(1) 107,3(1)	118,2(1) 118,8(1)	103,00(9) 103,17(9)	110,7(1) 110,9(1) 109,5(1) 112,3(2) 109,7(2) 111,4(1)	108,5(2) 108,8(2) 108,4(2) 107,8(3) 108,8(2) 106,7(2)	trans
II	128,0(2)	117,2(1) 108,9(1) 116,7(2) 110,4(2)	118,4(1) 117,4(3)	102,4(2) 99,9(2)	111,6(2) 109,9(2) 109,5(2) 109,5(4) 108,8(4) 109,4(3)	108,7(3) 108,6(3) 108,5(3) 110,2(5) 109,8(5) 109,3(5)	trans
	124,5(3) 124,0(3)	117,5(2) 108,0(2) 108,6(2) 115,8(2) 117,7(3) 108,4(2) 107,2(3) 114,1(2)	117,7(2) 118,8(2) 116,2(3) 121,1(3)	103,2(3) 103,1(3) 105,5(3) 103,0(3)	108,7(4) 111,5(4) 111,1(4) 110,7(4) 109,2(4) 110,8(4) 111,2(4) 111,2(4) 109,6(4) 112,7(5) 108,2(4) 110,6(4)	107,5(5) 109,9(5) 108,1(5) 108,8(5) 109,2(5) 108,0(5) 110,5(5) 107,2(5) 106,8(5) 112,0(5) 107,1(5) 106,1(6)	trans
Cu IV	111,7(8) 125,0(8) 119(1)	134,2(8) 67(3) 75,9(9) 135(3)	142(3) 120,8(8) 119(1) 111(2)	107,9(6) 95,9(6) 101,8(8) 106(2)	113 (1) 110,1(9) 120,4(8) 120(1)	107(2) 110(2) 94(1) 100(1)	trans

Tab. 16: Ausgewählte Winkel/° innerhalb der $[NTf_2]^-$ -Anionen von Metallkomplex-Triflimidaten im Vergleich.

			107,0(7) 115,7(7) 117,9(7) 110,2(9) 147,8(9 80(2) 91,6(9) 130(2)		96,6(8) 105,7(8)	122(1) 112,7(9) 119(2) 114(1) 116 (1) 94(3) 93(4) 92(3)	99(1) 100(1) 100(2) 100(2) 107(2) 132(4) 123(4) 105(5)	
	V	125,9(2) 125,8(2)	118,1(1) 107,3(2) 117(1) 108,4(1) 114,2(2) 115,1(2) 117,1(2) 109,0(1)	116,7(2) 118(1) 117,8(2) 117,6(2)	103,9(1) 103,8(2) 95,9(1) 104(2)	111,4(2) 109,5(2) 110,9(2) 111,9(2) 111,0(2) 108,5(2) 110,9(3) 110,8(3) 109,2(2) 111,4(3) 110,1(3) 110,1(3)	110,1(3) 108,0(3) 106,8(3) 108,2(3) 108,2(3) 108,2(3) 109,4(3) 109,4(3) 107,8(3) 109,6(3) 109,6(3) 109,1(3)	<i>trans,</i> leicht gedreht
Pd	VI	126,3(1)	109,44(8) 117,22(8) 115,84(8) 108,36(8)	117,23(8) 119,81(9)	102,50(8) 101,19(8)	110,9(1) 110,4(1) 111,2(1) 111,2(1) 111,6(1) 109,7(1)	108,5(2) 108,4(2) 107,3(2) 108,7(2) 108,2(2) 107,4(2)	trans
Ag	VII	126,5(6)	118,6(7) 107,1(5)	115,7(7) 133,6(7)	104,2(6) 107,5(6)	111(1) 113(1) 112(1) 125(1) 115(1) 86(1)	111(2) 107(1) 103(1) 116(1) 96(2) 109(2)	cis
	VIII	125,1(6)	115,9(5) 107,4(5) 110,0(5) 115,2(5)	117,9(5) 119,3(5)	105,7(6) 98,9(5)	112,4(9) 109,4(9) 110,0(9) 111,6(8) 110,1(8) 108,4(8)	108(1) 108(1) 108(1) 110(1) 108(1) 109(1)	cis
	IX	125,17(9) 124,43(9)	108,64(8) 117,17(8) 108,31(9) 116,42(8) 116,33(8) 108,12(9) 116,64(8) 108,76(8)	117,94(8) 118,64(9) 119,3(1) 117,6(1)	102,47(9) 102,70(9) 102,61(8) 103,9(1)	110,6(1) 111,7(1) 109,5(1) 111,2(2) 111,2(1) 108,8(2) 112(1) 110,7(2) 109,1(1) 111(1) 110,2(1) 110,8(1)	108,8(2) 108,3(2) 108(2) 108,8(2) 108,4(2) 108,5(2) 108,5(2) 108,5(2) 108,5(2) 108,5(2) 108,2(2)	trans
Pt	Х	128,5(1)	109,3(1) 117,0(1)	119(1) 116,6(1)	97,98(14) 101,0(1)	110,0(2) 109,7(2)	108,2(3) 109,5(3)	trans

			118,4(1) 109,6(1) 116,33(8) 108,12(9)			111,0(2) 110,2(3) 110,1(2) 111,5(2)	108,5(2) 109,5(3) 107,3(3) 108,3(3)	
X	12 12	25,5(4) 26,2(4)	119,7(4) 106,2(3) 116,7(3) 108,4(3) 115,9(3) 110,5(3) 116,7(3) 108,9(4)	119,3(4) 119,5(4) 119,8(4) 118,8(4)	101,5(3) 101,3(3) 102,7(4) 102,3(4)	110,6(5) 111,9(6) 113,0(5) 110,8(5) 110,3(5) 111,2(5) 110,6(5) 109,5(6) 110,3(6) 111,5(5) 108,5(5) 112,6(5)	106,8(7) 109,0(7) 105,1(7) 108,4(6) 107,8(7) 108,3(6) 109,8(7) 108,4(8) 108,2(7) 107,2(6) 109,4(6) 107,4(6)	trans
Au X	I 12	25,7(7)	104,8(7) 113,7(5) 116,5(6) 108,8(6)	120,7(7) 107,2(7)	97,3(5) 113,6(6)	112,3(7) 109,0(8) 132(1) 98,9(16) 109,7(9) 112,3(7) 106(1)	115(2) 109(1) 73(2) 101(1) 119(2) 114(1) 109(1) 105,9(9)	cis
X	II 12 12 12	24,4(2) 23,4(2) 25,4(2)	116,7(1) 108,3(1) 117(1) 107,4(1) 108,4(1) 116,8(1) 117,6(2) 107,6(2) 107,6(2) 109,1(1) 115,5(1)	118,5(2) 118,2(1) 118,9(1) 118,7(2) 120(2) 118,8(1)	103,4(2) 104,6(2) 102,6(1) 102,6(2) 102,4(2) 103,4(1)	112,0(2) 111,1(2) 108,6(2) 110,9(2) 111,8(2) 108,7(2) 110,0(2) 111,6(2) 111,6(2) 111,4(2) 109,2(2) 111,5(2) 110,1(2) 110,2(2) 111,6(2) 112,2(2) 109,3(2)	108,8(3) 108,5(3) 107,8(3) 108,2(3) 108,2(3) 108,2(3) 108,2(3) 108,1(3) 108,0(2) 107,9(3) 109,1(3) 106,9(3) 110,0(3) 107,0(3) 109,2(3) 107,0(3) 107,3(3)	trans

In **XII** liegt eine Fehlordnung einer CF₃-Gruppe des *cis*-orientierten [NTf₂]⁻-Anions vor. Diese ist in Abb. 48 dargestellt. Das F21B-Atom ist hierbei im Gegensatz zum F21A-Atom mit 61(5) % Besetzung nur zu 39(5) % besetzt. Die entsprechenden Werte zum F21B-Atom sind in der Tab. 16 in grau gesetzt.

Abb. 48: *Fehlordnung der CF*₃-*Gruppe in [Au*(3-*EtPy*)₂][*NTf*₂]; *Besetzung: F21A-Atom-61(5) %, F21B-Atom-39(5) %.*

Die Abweichung des S-C-F21A-Winkels mit 99(2)° von den üblichen S-C-F-Winkeln sowie die der benachbarten F-C-F21A-Winkel mit 101(1)° und 119(2)° sind ebenfalls dieser Fehlordnung zuzuschreiben.

In dem Au-Derivat **XIII** liegen alle Winkel und Abstände der Atome innerhalb der drei *transoiden* [NTf₂]⁻-Anionen im bisher diskutierten Bereich (Kapitel 2.3).

Unter Berücksichtigung der Tab. 15 und Tab. 16 sind allgemein keine expliziten Trends der Bindungslängen oder der Winkel innerhalb der [NTf₂]⁻-Anionen für eine *cis*- bzw. *trans*-Stellung der CF₃-Gruppen zu beobachten. Dieses deckt sich mit dem in Kapitel 2.3 beobachteten Sachstand.

Die Oxidationszahl des Metalls und die damit verbundene Koordinationszahl bzw. die Anzahl der Pyridin-Derivatliganden um das Metallzentrum scheinen eine eher aussagekräftige Kenngröße für eine ausschließliche *cis*bzw. *trans*-Orientierung der CF₃-Gruppen zu sein. *Cis*-förmige [NTf₂]⁻-

92

Anionen sind in den hier untersuchten Strukturen lediglich bei einer linearen Koordination der Py- bzw. 3-EtPy-Derivatliganden um ein Metallzentrum in den zwei Silberverbindungen (**VII** und **VIII**) sowie dem Au-MKT **XII** vorhanden. Bemerkenswert ist, dass bei beiden analogen Agund Au-MKTs mit 4-EtPy-Liganden die transoide Konfiguration vorherrscht. Daher scheint die jeweilige bevorzugte Konfiguration des [NTf₂]⁻-Anions von Packungseffekten bestimmt zu sein.

Die beobachteten Isomere decken sich mit den in Kapitel 2.3 untersuchten Im-Derivaten. Hierbei besitzt die Verbindung [Ag(EtIm)₂][NTf₂] eine lineare Koordinationsumgebung und ebenfalls *cisoide* [NTf₂]⁻-Anionen. Im Vergleich der beiden Liganden-Arten und der Position der Ethyl-Gruppe, ähnelt das 3-Im-Derivat sterisch dem 3-EtPy-Derivat.

Die quadratisch-planar umgebenden M^{2+} -Kationen in den diskutierten [Cu(EtIm)₄][NTf₂]₂^[19] und [Pd(EtIm)₄][NTf₂]₂^[47] besitzen wie die in dieser Arbeit untersuchten analogen Verbindungen (**IV**, **V**, **VI**, **X** und **XI**) ausschließlich *trans*-orientierte [NTf₂]⁻-Anionen.

Literaturbekannte Verbindungen mit der Koordinationszahl sechs um das Metallzentrum, wie z.B. [Ni(EtIm)₆][NTf₂]^[48] und [Zn(EtIm)₆][NTf₂]^{2^[40], weisen ausschließlich *cisoide* Isomere auf. Die [NTf₂]⁻Anionen in den hier untersuchten Ni-MKTs (I-III) zeigen alle *transoide* Eigenschaften. Dies ist bei dem 4-EtPy-Derivat III analog zu allen anderen 4-EtPy-Derivaten dieser Arbeit zu erwarten. Das bekannte kurzkettigere [Ni(MeIm)₆][NTf₂]^[19] hat hingegen nur *transoide* [NTf₂]⁻Anionen. Dies stimmt mit dem substituentenfreien Py-Derivat I überein. Im Gegensatz zu den genannten literaturbekannten Ni- und Zn-MKTs, sind zwei der Liganden in diesen Verbindungen (I-III) jedoch H₂O-Moleküle. Diese nehmen wesentlich weniger Raum ein als die Py-Moleküle, weshalb eine ähnliche Ordnung wie bei den}

quadratisch-planaren Strukturen gegeben ist und eine *trans*-Orientierung der [NTf₂]⁻-Anionen bevorzugt scheint.

Somit ist auch der strukturelle Aufbau der verwendeten Liganden dafür entscheidend, welches Isomer sich bevorzugt ausbildet.

4.3 Infrarot (IR)-Spektroskopie

Für die Aufnahme der IR-Spektren wurde das ATR-Infrarotspektrometer *Alpha* (Bruker Optics GmbH, Billerica) genutzt.

Entsprechende IR-Banden^[18, 25-28, 61-66] können den Liganden sowie dem [NTf₂]⁻-Anion zugeordnet werden (vergl. Kapitel 2.1.2). Ein paar dieser Banden überdecken einander. IR-Spektren von HNTf₂ wurden bereits von Rey *et al.*^[25] publiziert. Die IR-Spektren dieser Arbeit wurden standardisiert aufgenommen bei Wellenzahlen \tilde{v} zwischen 4000 und 400 cm⁻¹. Die höchste Bande eines Spektrums entspricht 100 %. Daher ist die Ordinate in relativer Transmission angegeben.

Im Zuge dieser Arbeit wurden die Gold- **XIIa**, Palladium- **VIa** und Platin-Pyridin-Derivate **Xa** sowie das Palladium-3-Ethylpyridinderivat **VIb** synthetisiert. Es konnte jedoch kein brauchbarer Einkristall gezüchtet werden, um eine Strukturbestimmung vorzunehmen. Die im Folgenden aufgeführten IR-Spektren in Abb. 49 und Abb. 50 (Tab. 17 und Tab. 18) sind jenen der bekannten Kupfer- und Nickelverbindungen sehr ähnlich und lassen auf die Existenz der oben genannten Verbindungen schließen.

Die IR-Banden als auch die Raman-Moden (Kapitel 4.4) weisen für alle Ni-Verbindungen charakteristische ν O-H-Schwingungen im Bereich von 3432-3551 cm⁻¹ auf. In den Tab. 17-19 und den Abb. 49-51 sind die Spektren wiedergegeben.

94

Moden	Ру	XIIa	Vla	Ха	I	v
<i>v</i> О-Н	-	-	_	_	3511 3444	_
ar v C-H	3077	3120 3061	3112 3090	3113 3089	3120 3082	3129 3093
$v_{ m ring},\delta$ C-H	1598	1612	1610	1614	1656 1606	1610
$v_{ring}, vC=N$	1581	1579	1576	-	1576	1578
$\nu_{ m ring},\delta{ m C-H}$	1483	1488	1491	1485	1491	1493
ar δ_i C-H	1439	1462	1456	1459	1447	1452
$v_i^{as} SO_2$		1342	1344	1346	1345	1352
$v_s^{as} SO_2$		1329	1330	1331	1326	1325
		1215	1229	1229	1224	1223
		1181	1178	1174	1183	1174
v_i^{sym} SO ₂		1134	1133	1133	1132	1128
v ^{as} S-N-S		1082 1050	1055	1079 1053	1053	1053
	1031	1018	1021	1022	1011	1018
$V_{\rm ring}, \delta {\rm C-H}$	940	953	956	964	953	956
δC-C-C		838	879	887	836	837
$ au_{ m ring}, \delta m C-C-C$		792	790	786	793	788
v ^{sym} S-N-S		762	767	772	757	756
[NTf ₂] ⁻		740	738	738	741	738
δC=N	704	Schulter	700	700	703	697
δ S-N-S		681	660	663	654	652
		609	608	608	609	610
[NTf ₂]⁻			S	chulter		599
		586	569	569	570	568
$\delta^{as} \operatorname{CF}_3$		511	513	513	510	511
		461	465	476	431	433
ω SU ₂		409	411	410	413	409

Tab. 17: IR-Banden/ cm⁻¹ der Py-Derivat-Metallkomplex-Triflimidate und von $Py^{[62]}$.

Abb. 49: IR-Spektren der Py-Derivat-Metallkomplex-Ttriflimidate.

Bei hohen Energien sind die aromatischen (ar) Schwingungen sichtbar (ν C-H (3100-3129 cm⁻¹; 3061-3093 cm⁻¹), ν ring, δ C-H (1601-1656 cm⁻¹) und ν ring, ν C=N (1557-1584 cm⁻¹), ν ring, δ C-H (1488-1493 cm⁻¹) und ar δ_i C-H (1447-1462 cm⁻¹)). Dazwischen liegen bei den EtPy-Derivaten die Schwingungen ν CH₃ (2970-2978 cm⁻¹; 2936-2944 cm⁻¹), ν CH₂ (2877-2890 cm⁻¹). Darauf folgen die Schwingungen ν C-C (1480-1506 cm⁻¹; 1459-1469 cm⁻¹) und δ^{as} CH₃ (1414-1444 cm⁻¹).

Moden	3-EtPy	XII	VIb	X	II
<i>v</i> О-Н	-	-	-	-	3471
ar v C-H	3080	3088	3100	3102	-
νCH_3	2975 2940	2978 2943	2976 2943	2977 2944	2975 2938
ν CH ₂	2890	2884	2885	2886	2880
$v_{ m ring},\delta$ C-H	1595	1611	1607	1610	1650 1607
$v_{\text{ring}}, v C = N$	1580	1583	1583	1584	1584
<i>v</i> C-C	1480 1465	1484 1465	1483 1462	1484 1463	1485 1461
$\delta^{as} \operatorname{CH}_3$	1420	1443	1443	1444	1432
v_l^{as} SO ₂		Schulter	1347	1347	1355
vs ^{as} SO ₂		1325	1315	1320	1319
V. CE.		1226	1223	1222	1229
		1180	1179	1179	1182
v ^{sym} SO ₂		1127	1134	1134	1132
v ^{as} S-N-S		1052	1054	1054	1053
$v_{ m ring},\delta{ m C}{ m -H}$	970	974 941	958 919	959 919	969 933
δC-C-C	800	815	817	819	815
$ au_{ m ring}, \delta$ C-C-C		787	788	789	790
ν ^{sym} S-N-S		763	763	763	764
[NTf ₂] ⁻		739	738	738	740
δC=N	710	696	702	703	712
δ S-N-S		652	668	669	652
		Schulter	608	608	-
[NTf ₂]⁻		597	602	Schulter	603
		569	568	568	569
$\delta^{as} \operatorname{CF}_3$		504	511	511	511

Tab. 18: IR-Banden/ cm⁻¹ der 3-EtPy-Derivat-Metallkomplex-Triflimidate und von 3-EtPy^[66].

Abb. 50: IR-Spektren der 3-EtPy-Derivat-Metallkomplex-Triflimidate.

Der nächste Bereich des Spektrums ist von den Banden des Anions dominiert. Man findet v_t^{as} SO₂-und v_s^{as} SO₂-Schwingungen um 1345 cm⁻¹ und 1325 cm⁻¹ und v_{as} CF₃-Banden um 1220 cm⁻¹ und 1175 cm⁻¹. Symmetrische SO₂-Streckschwingungen v_t^{sym} SO₂ von in-Phase-schwingenden SO₂-Gruppen liegen bei fast allen Verbindungen zwischen 1127 cm⁻¹ und 1135 cm⁻¹, wohingegen bei [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂ eine v_s^{sym} SO₂-Bande von separat schwingenden SO₂-Gruppen zu sehen ist. Streckschwingungen der S-N-S-Einheit erscheinen bei den Wellenzahlen 1050-1082 cm⁻¹ für v^{as} S-N-S, 757-767 cm⁻¹ für v^{sym} S-N-S ("Schulter" in [Pd(4-EtPy)₄][NTf₂]₂) und 652-681 cm⁻¹ für Deformationsschwingungen δ S-N-S. Bei [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂ ist letztere lediglich als eine "Schulter" um 670 cm⁻¹ sichtbar. Zwischen diesen Banden der S-N-S-Einheit sind verschiedene Banden der Schwingung von den Py-Ringen zu sehen (1034-778 cm⁻¹).

Abb. 51: IR-Spektren der 4-EtPy-Derivat-Metallkomplex-Triflimidate.

In dem Wellenzahlbereich um 740 cm⁻¹ liegt die für die Symmetrie des $[NTf_2]^-$ -Anions charakteristische Schwingung des gesamten Anions (738 cm⁻¹ ~ *cisoid* C₁, 741 cm⁻¹ ~ *transoid* C₂). Diese ist in den Tab. 17-19 farbig hervorgehoben.

Moden	4-EtPy	IX	XIII	VI	ХІ	Ш
<i>v</i> О-Н	-	-	-	-	-	3432
ar v C-H	3069	-	-	3069	3115	-
ν CH ₃	2970 2936	2977 2939	2974 2939	2974 2936	2976 2939	2978 2943
v CH ₂	2877	2878	2880	2878	2882	2885
$v_{\rm ring}, \delta {\sf C} { m -} {\sf H}$	1602	1618	1609	1620 1601	1624	1619
$v_{ring}, vC=N$	1561	1558	1559	1559	1559	1557
ν C-C	1498 1469	1506 1460	1505 1460	1496 1459	1506 1460	1505 1461
$\delta^{as} \operatorname{CH}_3$	1416	1433	1421	1439 1414	1440	1429
$v_i^{as} SO_2$		1342	1348	1350	1346	1346
v_s^{as} SO ₂		1326	1331	Schulter	1324	1332
V CEa		1226	1226	1225	1226	1227
		1179	1179	1183	1172	1189
vs ^{sym} SO ₂		-	-	-	-	1137
v_t^{sym} SO ₂		1134	1134	1135	1130	-
v ^{as} S-N-S		1054	1054	1056	1056	1055
ar δ_i C-H		1034	1011	994	989	1023
ar <i>δ</i> ₅ C-H	996	988	970	972	971	982
86-6-6		882	873	871	871	875
<i>b</i> C-C-C	823	829	826	821	840	835
$ au_{ m ring}, \delta$ C-C-C		790	786	778	788	790
<i>v^{sym}</i> S−N−S		762	762	Schulter	762	764
$[NTf_2]^-$		738	739	739	743	740
$\delta C=N$	704	-	712	719	704	716
δ S-N-S		652	653	653	656	Schulter (670)
[NTf ₂] ⁻		610	613	615	616	612

Tab. 19: IR-Banden/ cm⁻¹ der 4-EtPy-Derivat-Metallkomplex-Triflimidate und von 4-EtPy^[64-65].

	-	600	601	593	-
	567	569	567	569	569
$\delta^{as} \operatorname{CF}_3$	509	508	508	505	511
ω SO ₂	409	-	406	404	412

Die charakteristische Schwingung des gesamten Anions liegt bei 738 cm⁻¹ für [Pd(Py)₄][NTf₂]₂ VIa, [Pt(Py)₄][NTf₂]₂ Xa, [Cu(Py)₄][NTf₂]₂ V, [Pd(3-EtPy)₄][NTf₂]₂ VIb, [Pt(3-EtPy)₄][NTf₂]₂ X, [Ag(4-EtPy)₂][NTf₂] IX und bei 739 cm⁻¹ für [Au(3-EtPy)₂][NTf₂] **XII**, [Au(4-EtPy)₂][NTf₂] **XIII**, [Pd(4-EtPy)₄][NTf₂]₂ VI. Gemäß der Literatur sollte eine C₁-Konfiguration in den noch unbekannten Kristallstrukturen erwartet werden. Da in [Cu(Py)₄][NTf₂]₂ ein Anion leicht zwischen beiden Symmetrien gedreht vorliegt, ist dieser niedrige Wert nachvollziehbar. Die nach Einkristallstrukturmessungen als transoid bestimmten Au-, Ag- und Pd-4EtPy-Derivate sollten hingegen eher einen Wert um 741 cm⁻¹ aufweisen. Die Werte für [Au(3-EtPy)₂][NTf₂] korrelieren mit den bisher bestimmten Eigenschaften. Größere Werte mit 740 cm⁻¹ sind für [Au(Py)₂][NTf₂] XIIa, [Ni(3-EtPy)₄(H₂O)₂][NTf₂]₂ **II**, [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂) **III**, 741 cm⁻¹ für [Ni(Py)₄(H₂O)₂][NTf₂]₂ I und 743 cm⁻¹ für [Pt(4-EtPy)₄][NTf₂]₂ XI zu finden, was mit der gefundenen Symmetrie übereinstimmt.

Eine letzte Bande der Py-Derivate, die δ C=N-Deformationsschwingungen zugeordnet werden kann, ist um 700 cm⁻¹ zu finden und bei [Au(Py)₂][NTf₂] nur als "Schulter" ausgeprägt. Weitere Gesamtschwingungen des Anions treten im Bereich von 616-567 cm⁻¹ auf. Es folgen δ^{as} CF₃-Banden mit 510 cm⁻¹ und ω SO₂-Banden zwischen 476-404 cm⁻¹.

4.4 Raman-Spektroskopie

Die Raman-Spektren wurden mit dem dispersiven Raman-Mikroskop SENTERRA (Bruker Optics, Ettlingen) aufgenommen, welches mit dem Objektiv Olympus (MPLN 100, F.N.22, N.A.0.9) ausgestattet ist. Die Anregung der Verbindungen wurde mit einem Nd:YAG Laser (λ = 532 nm, P = 2 mW) realisiert. Die Ordinatenwerte wurden auf 100 % normiert (höchste Mode in jedem Spektrum). Es wurde ein Wellenzahlen-Bereich (\tilde{v}) von 80-4450 cm⁻¹ aufgenommen, um auch bei geringeren Wellenzahlen unter 400 cm⁻¹ Informationen zu den jeweiligen [NTf₂]⁻-Anionen zu erhalten.

Anhand spezifischer Raman-Moden^[18, 25-26, 28, 61-66] können die Liganden identifiziert und die Geometrie des [NTf₂]⁻-Anions bestätigt werden. Da einige Moden der Liganden mit denen des Anions (vergl. Kapitel 2.1.2) überlagert sind, werden diese in der Diskussion separat behandelt. Es erfolgt zunächst eine Diskussion der Py-Derivate, gefolgt von den EtPy-Derivaten und den Moden des Anions. Raman-Spektren der reinen Säure HNTf₂ wurden bereits von Rey *et al.*^[25] aufgenommen und hinreichend beschrieben.

In allen Spektren der Ni-Verbindungen sind im Gegensatz zu allen anderen Verbindungen Moden im Bereich von 3451-3448 cm⁻¹ zu sehen. Diese sind den H₂O-Molekülen der Derivate zuzuordnen (siehe Tab. 20-22).

Moden	Ру	VII	I	V
<i>v</i> О-Н			3451	
ar vC-H	3077	3075	3083	3093
$v_{\rm ring}, \delta {\sf C}{\sf -}{\sf H}$	1596	1597	1606	1610
$v_{\text{ring}}, v C = N$	1578	1572	1573	1574
$v_{\rm ring}, \delta {\sf C}{\sf -}{\sf H}$	1492	1485	1489	1493
$v_l^{as} SO_2$	-	1351	1345	1356
vs ^{as} SO ₂	_	1328	1324	1328
v ^{sym} CF ₃	-	1238	1239	1240
$v_{\rm ring}, \delta {\sf C}{\sf -}{\sf H}$	1231	1238	1223	Schulter
v_t^{sym} SO ₂	-	1134	1131	1131,5
$v_{ m ring}, \delta$ C-H	1149		Schulter	
	1037	1035	1044	1044
V/ O ring, C-H	1005	1008	1014	1022
$ au_{ m ring}, \delta$ C-C-C	752	790	795	792
[NTf ₂] ⁻	-	739	742	739
δ S-N-S	654	649	651	650
	-	622	632	Schulter
[NTf ₂] ⁻	-	Schulter	587	589
	-	552	554,5	567
ω SO ₂	-	402,5	402	405
τSO_2	-	325	338	Schulter
$ ho { m SO}_2$	-	310	314	318
	-	278	276	279
ρ CF3	-	_	184	165
τCF_3	-	107	115	134,5

Tab. 20: Raman-Moden/ cm⁻¹ der Py-Derivat-Metallkomplex-Triflimidate und von $Py^{[62]}$.

Pyridin-Moden der Verbindungen:

In allen drei Spektren der Py-Derivate (Tab. 20 und Abb. 52) und den EtPy-Derivaten sind ν C-H-Moden im Bereich von 3075-3093 cm⁻¹ zu finden, die typisch für heteroaromatische Verbindungen sind. Aromatische Ringvibrationen ν_{ring} , δ C-H erscheinen neben ν_{ring} , ν C=N-Moden (1573 cm⁻¹) bei Wellenzahlen um 1579-1610 cm⁻¹ bzw. 1485-1493 cm⁻¹. Erhaltene Moden um 1221-1238 cm⁻¹ und 1149 cm⁻¹ sind auf ν_{ring} , δ C-H-Deformationsschwingungen innerhalb der Ringebene zurückzuführen. Diese liegen in den 4-EtPy-Derivtaen etwas niedriger zwischen 1207-1214 cm⁻¹. Folgende Moden zwischen 1008-1044 cm⁻¹ gehören zu den ν/δ_{ring} , C-H-Schwingungen aus der Ringebene hinaus. Diese sind in den EtPy-Derivaten mit den δ C-H-Schwingungen der Et-Gruppen überlagert und nehmen somit einen weiteren Bereich von 1095-1026 cm⁻¹ ein. In dem Bereich von 792-817 cm⁻¹ folgen dann die τ_{ring} , δ C-C-C-Drehschwingungen. δ_{ring} , C-N-Vibrationen um 670 cm⁻¹ sind mit Schwingungen des gesamten des [NTf₂]⁻ -Anions überlagert.

Abb. 52: Raman-Spektren der Py-Derivat-Metallkomplex-Triflimidate.

Moden	3-EtPy	VIII	XII	x	н
<i>v</i> О-Н					3484
ar vC-H	3080	3083	3083	3081	3078
(CH ₃); <i>v</i> C-H	2975	2985	2983	2975	2975
	2930	2944	2945	2945	2940
	2005	2897	2902	2905	2876
(CH ₂); VC-H	2895	2743	2745	2747	2743
$v_{\rm ring}, \delta$ C-H	1590	1603	1607	1610	1608
$v_{\text{ring}}, v C = N$	1580	1584	1583	1582	1585
SCU	1440	1464	1466	1464	1451
∂CH ₃	1440	1446	1431	1429	-
vCH ₂ -CH ₃	1380	1349	-	1348	1380
$v_l^{as} SO_2$	-	1349	-	-	-
$v_s^{as} SO_2$	-	1324	1328	1324	1330
v ^{sym} CF ₃	-	1237	1240	1241	1241
$v_{ m ring},\delta$ C-H	1220	1237	-	-	1221 1225
δCH_3	1185	1196	1200	1198	1198
V_l^{sym} SO ₂	1071	1134	1136	1139	1135
	1037	1058	1072	1075	1064
V∕∂ring, C-H		1037	1037	1037	1037
δCH_2		974	981	981	967
$ au_{ m ring}, \delta { m C-C-C}$	800	795	811	815	797
[NTf ₂] ⁻	-	740	742	741	742
δ S-N-S	-	654	671	672	653
	630	654	-	630	-
	-	573	568	567	574
δC-C-C		500	507	513	501
ω SO ₂	-	404	406	408	408

Tab. 21: Raman-Moden/ cm⁻¹ der 3-EtPy-Derivat-Metallkomplex-Triflimidate und von 3-EtPy^[66].

τSO_2	-	327	330	337	-
$ ho { m SO}_2$	-	311	309	314	313
$ ho CF_3$	-	280	284	279	277
$ ho CF_3$	160	167	Schulter	160	165
$ au CF_3$	_	117	132	121	123

Ethylmoden der Verbindungen:

Zuzüglich den Moden, welche in den Py-Derivaten zu finden sind, enthalten die Raman-Spektren der EtPy-Derivate (Tab. 21 und 22, Abb. 53 und 54) noch die Moden der -CH₂-CH₃-Gruppen. Die größten -CH₃; ν C-H Moden liegen bei 2975-2989 cm⁻¹ und 2940-2952 cm⁻¹ und die der -CH₂; ν C-H-Moden in einem Bereich von 2876 bis 2919 cm⁻¹. Dabei finden sich Moden im unteren Bereich bei 2743 cm⁻¹ bei den 3-EtPy-Verbindungen und eher höher um die 2887 cm⁻¹ bei den 4-EtPy-Verbindungen. Ebenfalls nicht unerwartet sind die δ CH₃-Moden bei 1451-1466 cm⁻¹ und 1423-1446 cm⁻¹ sowie die nur in den 3-EtPy-Verbindungen klar zu separierenden Deformationsschwingungen bei 1196-1200 cm⁻¹. Wellenzahlen um 1349-1383 cm⁻¹ gehören zu den ν CH₂-CH₃-Streckschwingungen. Von aromatischen Schwingungen überlagert sind die ρ CH₃-Schaukelschwingungen um 1049-1056 cm⁻¹ und 980-990 cm⁻¹ mit darunterliegenden δ CH₂-Moden bei 967-981 cm⁻¹. In beiden Spektren der EtPy-Derivate sind δ C-C-C-Schwingungen um 505 cm⁻¹ zu sehen.

Abb. 53: Raman-Spektren der 3-EtPy-Derivat-Metallkomplex-Triflimidate.

Abb. 54: Raman-Spektren der 4-EtPy-Derivat-Metallkomplex-Triflimidate.

Moden	4-EtPy	IX	XIII	VI	XI	111
<i>v</i> O-H		3236	3247	3242	3243	3440 3236
ar vC-H	3080	3080	3089	3081	3086	3081
(CH ₃); <i>v</i> C-H	2975	2984	2988	2989	2975	2981
	2930	2942	2951	2952	2940	2945
(611) 6.11	2005	2909	2913	2912	2917	2919
(CH ₂); VC-H	2895	2880	2897	2887	2889	III 3440 3236 3081 2981 2945 2945 2919 2892 1619 1557 1463 1463 1383 1350 1330 1267 1207 1207 1207 1207 1207 1207 1207 978 978 788 742 668
$v_{ m ring},\delta{ m C-H}$	1590	1619	1623	1621	1622	1619
v_{ring} , $vC=N$	1580	1557	1557	1555	1553	1557
$\nu_{ m ring},\delta{ m C-H}$		-	1504	1510	1506	1505
SCIL	1440	1460	1462	1461	1454	1463
δCH_3	1440	1430	1431	1423	1423	1428
vCH ₂ -CH ₃	1380	1377	-	1382	1376	1383
$v_i^{as} SO_2$	-	Schulter	1353	1359	Schulter	1350
$v_s^{as} SO_2$	-	1326	1335	1319	1318	1330
δС-Н		1264	Schulter	1269	1263	1267
v ^{sym} CF ₃	-	1240	1241	1242	1240	1240
$v_{ m ring},\delta{ m C-H}$	1220	1212	1208	1218	1214	1207
v_i^{sym} SO ₂	-	1134	1136	1130	1135	1137
$\nu/\delta_{\rm ring}$, C-H	1040	1094 1070	1079	1076	1079	1069
$ ho CH_3$		-	1049	1056	1051	-
ar δC-H		1029	-	-	-	1026
$ ho CH_3$		990	978	980	980	
δCH_2		-	-	967	967	978
$ au_{ m ring}, \delta$ C-C-C	800	792	796	796	796	788
[NTf ₂] ⁻	-	739	740	740	737	742
δ S-N-S		666	663	664	662	668

Tab. 22: Raman-Moden/cm⁻¹ der 4-EtPy-Derivat-Metallkomplex-Triflimidate und von 4-EtPy^[64-65].
		-	632	629	624	628
[NTf ₂]-		Schulter	587	586	586	590
[IN 112]	-	566	555	568	567	568
	-			533	532	555
δC-C-C		517	-	-	-	513
ωSO ₂	-					411
<i>v</i> M-O		398	401	398	397	397
τSO_2	-	340	339	339	336	338
$ ho {\sf SO}_2$	-	314	315	315	308	313
$ ho CF_3$	-	277	278,5	276	274	277
$ ho CF_3$		167	170	172	171	-
τCF_3	-	122	117	117	116	111

Moden des [NTf₂]⁻-Anions:

Die ersten Moden des $[NTf_2]^-$ -Anions sind im Bereich von 1345-1359 cm⁻¹ zu finden. Neben diesen asymmetrischen Schwingungen der in-Phaseschwingenden SO₂-Gruppen v_i^{as} SO₂ sind auch separat schwingende v_s^{as} SO₂-Moden bei 1319-1335-cm⁻¹ zu finden. Symmetrische Schwingungen der SO₂-Gruppen v_i^{sym} SO₂ entsprechen den Wellenzahlen 1130-1139 cm⁻¹. Die v^{sym} CF₃-Moden liegen bei 1237-1242 cm⁻¹, die ρ CF₃-Schwingungen um 277 cm⁻¹ und 170 cm⁻¹ sowie die τ CF₃ Moden zwischen 107-132 cm⁻¹.

Die wohl aussagekräftigste Wellenzahl bezüglich der Konfiguration ist 740 cm⁻¹ (in Tab. 20-22 farbig hervorgehoben). Beträgt diese eher 738 cm⁻¹, liegt eine *cisoide* C₁-Konfiguration vor. Diese ist aufgrund der Raman-Daten bei den folgenden Verbindungen zu erwarten: [Pt(4-EtPy)₄][NTf₂]₂ **XI** (737 cm⁻¹), [Ag(Py)₂][NTf₂] **VII** (739 cm⁻¹), [Cu(Py)₄][NTf₂]₂ **V** (739 cm⁻¹) und [Ag(4-EtPy)₂][NTf₂] **IX** (739 cm⁻¹). Lediglich für [Ag(Py)₂][NTf₂] ist dieses jedoch korrekt. Im Falle der Cu-Verbindung ist diese Abweichung von der Einkristallstrukturanalyse durch das leicht gedrehte (also weder ausschließlich *cis*- oder *trans*-orientierte) [NTf₂]⁻-Anion zu erklären. Somit treten Abweichungen nur bei den beiden Verbindungen mit einem 4-EtPy-Liganden auf, weshalb ein Einfluss des Liganden nicht ausgeschlossen werden kann. Bei einer Wellenzahl um eher 741 cm⁻¹ sollte eine *transoide* C₂-Form vorherrschen. Auf Grundlage der Spektren sollte eine *transoide* Konfiguration für die nachfolgenden Verbindungen zutreffen: [Ag(3-EtPy)₂][NTf₂] **VIII** (740 cm⁻¹), [Au(4-EtPy)₂][NTf₂] **XIII** (740 cm⁻¹), [Pd(4-EtPy)₄][NTf₂]₂ **VI** (740 cm⁻¹), [Pt(3-EtPy)₄][NTf₂]₂ **X** (741 cm⁻¹) und für alle drei Ni-Verbindungen [Ni(Py)₄(H₂O)₂][NTf₂]₂ **II** (742 cm⁻¹), [Ni(3-EtPy)₄(H₂O)₂][NTf₂]₂ **II** (742 cm⁻¹), [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂ **III** (742 cm⁻¹) sowie für [Au(3-EtPy)₂][NTf₂] **XII** (742 cm⁻¹). Bei dem Ag- und Au-3-EtPy-Derivat, welche laut Einkristallstrukturanalyse ein [NTf₂]⁻-Anion mit C₁-Konfiguration besitzen, stimmt dies nicht überein.

Weitere Schwingungen, die zu dem [NTf₂]⁻-Anion gezählt werden, sind die δ S-N-S zwischen 649-672 cm⁻¹ und die Schwingungen des gesamten [NTf₂]⁻-Anions um 630 cm⁻¹, 585 cm⁻¹ und 555 cm⁻¹. Diese sind mit δ ring C-N-Vibrationen überlagert. Wippschwingungen der SO₂-Gruppen ω SO₂ sind in dem Bereich von 397-4011 cm⁻¹ zu sehen, τ SO₂-Moden bei 325 cm⁻¹ bzw. 340 cm⁻¹ und ρ SO₂-Moden im Bereich von 308-318 cm⁻¹. Vergleicht man vor allem die letzten beiden Moden mit den theoretischen Werten für *cis-/trans*-Isomerie, ist eine deutliche Tendenz aller Verbindungen ins *Transoide* zu erkennen, weshalb diese Moden für unbrauchbar für die Identifikation scheinen.

Es konnten weder im IR- (Kapitel 4.3) noch im Raman-Spektrum signifikante Größenänderungen der Moden bezüglich der verschiedenen Metall-Koordinationen (linear, quadratisch-planar und oktaedrisch) oder der Position der EtPy-Gruppen (ohne (Py), 3-EtPy und 4-EtPy) festgestellt werden. Für die [NTf₂]⁻-Anionen ist dies zu erwarten, da sie nicht direkt an das Metallzentrum koordinieren, sondern frei im Gitter vorliegen. Die in der Literatur für die Bestimmung der Konfiguration häufig herangezogene Wellenzahl zwischen 738 cm⁻¹ und 740 cm⁻¹ stellt eine eher unzuverlässige Kenngröße für eine klare *cis*- oder *trans*-Orientierung des [NTf₂]⁻-Anions dar.

4.5 Thermogravimetrie und Schmelzpunktbestimmung

In diesem Abschnitt wird das thermische Verhalten der erhaltenen Verbindungen thematisiert. Die Messungen wurden unter Inertgas-Atmosphäre in einem Al₂O₃-DTA/TG-Tiegel bei einer Heizrate von 5 °C · min⁻¹ und einer maximal Temperatur bis 1000 °C durchgeführt. Dabei wurden keine Intermediate isoliert. Es wurde das Gerät Netzsch QMS 403 C (Netzsch-Gerätebau GmbH, Selb) verwendet, dem das Massenspektrometer Netzsch STA 409 PC/PG (Netzsch-Gerätebau GmbH, Selb) nachgeschaltet wurde, um freigesetzte Fragmente (m/z 12-100) direkt zu analysieren und den entsprechenden Temperaturen besser zuordnen zu können. Der Abszissenwert wurde nur bis 967 °C aufgetragen, da bis dahin die MS-Daten aufgezeichnet wurden.

Pulverdiffraktogramme der nach der Zersetzung entstandenen Rückstände wurden mit dem Pulverdiffraktometer Stoe Stadi P (Stoe, Darmstadt) unter Benutzung von Cu-*K*- α - Strahlung (λ = 154,06 pm) aufgenommen und mit simulierten Literaturdaten mithilfe des Programmes WinXPow 2.20^[67] verglichen. Die Intensität wurde auf 100 % normiert und ein Messbereich von 5-90 2 Θ gewählt.

Die Schmelzpunkte der Produkte wurden mit dem Schmelzpunktmessgerät *KSP 1N* (A.KRÜSS Optronic GmbH, Hamburg) in Kapillarröhrchen optisch ermittelt.

Der thermische Abbau aller Metallkomplex-Triflimidate ist sich sehr ähnlich und geschieht meist in zwei bis drei Schritten bis hin zum reinen Metall (die Stufen sind farblich hervorgehoben). Daher wird exemplarisch an den Silberkomplex-Triflimidaten der prozentuale Massenverlust *m* beim Abbau bei der Thermogravimetrie (TG) und deren erster Ableitung (Differenz-Thermogravimetrie, DTG), zur Temperatur *T* (30-967 °C) ins Verhältnis gesetzt und verglichen. Weitere Abbaumechanismen anderer Verbindungen sind im Anhang zu finden. Die mit dem Massenspektrometer detektierten, freigesetzten Massen sind in relativen Einheiten farbig in den Abbildungen hinterlegt (Fragment: m/z; H_2O : 18, SO_2 : 64, NC_4H_4 : 66; NC_6H_6 : 92; **CF**₃: 69). Für die Zersetzung von Pyridin und Ethyl-Pyridinen sind die Fragmente NC_4H_4 und NC_6H_6 herangezogen worden.

Für die Interpretation des thermischen Abbaus aller drei Silberkomplex-Triflimidate wird der Rückstand nach der Messung als reines Ag (M = 107,868 g/ mol) angenommen. Dieses konnte mittels Pulverdiffraktometrie für die beiden EtPy-Derivate nachgewiesen werden (Abb. 55).

Die relative Intensität im Pulverdiffraktogramm ist bezogen auf den intensivsten Reflex auf 100 % skaliert. Abzüglich der Masse des Silbers müsste ein Gesamtmassenverlust von 80,24 % bei den Py-Derivaten und 82,08 % bei den EtPy-Derivaten vorherrschen. Dies steht im Einklang mit Zersetzungsprozessen in zwei bzw. drei Stufen (Abb. 57-58).

112

Abb. 55: Pulverdiffraktogram von den Rückständen von [Ag(3-EtPy)₂][NTf₂] und [Ag(4-EtPy)₂][NTf₂] im Vergleich mit simulierten Ag-Daten^[68].

Abb. 56: Thermische Zersetzung von [Ag(Py)2][NTf2].

Im Falle des Ag-Py-Derivates deutet das DTG-Signal auf einen zweistufigen Zersetzungsmechanismus hin (Abb. 56). Klar ersichtlich sind freigesetzte Pyridin-Fragmente schon ab 153 °C in beiden Schritten, sowie der Zerfall des $[NTf_2]^-$ -Anions ab 244 °C. Dieser Zerfall geht mit einem experimentellen Massenverlust m_e von 27,68 % im ersten Schritt und einem von 47,19 % im Zweiten einher. Tatsächlich liegt der berechnete Massenverlust m_b bis hin zum reinen Ag bei 80,24 %.

Abb. 57: Thermische Zersetzung von [Ag(3-EtPy)2][NTf2].

Auch die Zersetzung von [Ag(3-EtPy)₂][NTf₂] verläuft in zwei ineinander verlaufenden Schritten. Hierbei zersetzt sich im ersten Teil ab 76 °C das EtPy gefolgt von der Freisetzung des [NTf₂]⁻-Anions ab 299 °C. Der entsprechende experimentelle Massenverlust beträgt 76,14 %.

Abb. 58: Thermische Zersetzung von [Ag(4-EtPy)2][NTf2].

Das thermische Verhalten des 4-EtPy-Derivates weicht mit einem dreistufigen Prozess von dem der anderen beiden Derivate ab. Schritt I stellt die Zersetzung der organischen Komponente ab 120 °C dar ($m_e = 17,97$ %), die noch im Temperaturberiech von 233-368 °C im zweiten Schritt ($m_e = 25,59$ %) anhält. Darüber hinaus wird im zweiten Schritt eine SO₂-Einheit frei. Im letzten Abschnitt zersetzt sich schließlich das [NTf₂]⁻-Anion vollständig ($m_e = 31,13$ %).

In Tab. 23 sind die Zersetzungsdaten aller drei Ag-MKTs noch einmal zusammengefasst.

Bei allen analysierten MKTs fand die thermische Zersetzung hauptsächlich in einem Bereich zwischen 70 °C und 500 °C statt. Vornehmlich geschieht erst die Freisetzung der organischen Py-Moleküle und anschließend die der [NTf₂]⁻-Anionen. Einzig bei [Pt(3-EtPy)₄][NTf₂]₂ ist ein Abbauschritt bei höheren Temperaturen um 685 °C zu erkennen.

Ctufa	Daramatar	[Ag(Py) ₂]	[Ag(3-EtPy) ₂]	[Ag(4-EtPy) ₂]	
Stule	Parameter	[NTf ₂]	[NTf ₂]	[NTf ₂]	
T	T Bereich / °C	153-355	76-299	120-233	
	m _b / %	-	-	17,78	
	m _e / %	27,68	15,07	17,97	
	Frei aeworden	mit ll	mit ll	FtPv	
	i i et geworden	zusammen	zusammen		
П	T Bereich / °C	355-967	299-967	233-368	
	m _b / %	-	-	28,41	
	m₀/ %	47,19	61,07	25,59	
	frei aeworden	$2 \cdot Py$, N, $2 \cdot CF_3$,	$2 \cdot EtPy, N, 2 \cdot CF_3,$	FtPv SO₂	
	free geworden	$2 \cdot SO_2$	$2 \cdot SO_2$	20 9, 502	
Ш	T Bereich / °C			368-967	
	m _b / %	_	_	35,89	
	m₀/ %			31,13	
	Frei geworden			N, 2 · CF ₃ , SO ₂	
	$\sum (m_b)$ /%	80,24	82,08	82,08	
	$\sum(m_e)$ / %	74,87	76,14	74,69	

Tab. 23: Daten der thermalen Zersetzung von Ag-MKTs.

In dem thermischen Abbau der Nickelkomplex-Triflimidate ist zusätzlich zu Beginn die Freisetzung der Wassermoleküle zu sehen (siehe Anhang).

Bei den Verbindungen [Au(3-EtPy)₂][NTf₂], [Pt(3-EtPy)₄][NTf₂]₂, [Pt(4-EtPy)₄][NTf₂]₂ und [Pd(4-EtPy)₄][NTf₂]₂ war der Ausgang zum Massenspektrometer verstopft, weshalb hier keine brauchbaren Daten aufgenommen bzw. aufgetragen werden können. Die Schmelzpunkte der Verbindungen wurden ermittelt und sind in der Tab. 24 aufgeführt.

Ligand L	Ру	3-EtPy	4-EtPy
$[Ni(L)_4(H_2O)_2][NTf_2]_2$	75	101	106
$[Pd(\mathbf{L})_4][NTf_2]_2$	172	126	156
$[Ag(L)_2][NTf_2]$	67	71	74
$[Pt(L)_4][NTf_2]_2$	166	119	205
[Au(L) ₂][NTf ₂]	198	70	73

Tab. 24: Schmelzpunkte/ °C der MKTs.

Das einzige Metall, bei welchen alle drei Vertreter zu den ILs gezählt werden können, ist Ag. Dort sind alle Schmelzpunkte < 100 °C und steigen von $[Aq(Py)_2][NTf_2]$ über $[Aq(3-EtPy)_2][NTf_2]$ zu $[Aq(4-EtPy)_2][NTf_2]$ um ca. 3 °C an. Die gleiche Tendenz ist bei den Ni-Derivaten zu finden: 75 °C < 101 °C < 106 °C, wobei die EtPy-Derivate formal nicht zu den ILs gehören. Umgekehrt verhält es sich bei den Au-MKTs. Hier ist der Schmelzpunkt von 198 °C des Py-Derivates deutlich größer als die Schmelzpunkte der anderen EtPy-Derivate (70-73 °C). Daher zählen nur die Au-EtPy-Derivate zu den ILs. Wie bei diesen Au-Verbindungen, liegt auch bei den Pd-MKTs der niedrigste Schmelzpunkt bei dem [Pd(3-EtPy)2][NTf2]2, wobei diese Verbindungen insgesamt große Schmelzpunkte zwischen 126-172 °C aufweisen. Den höchsten Schmelzpunkt aller Verbindungen besitzt das [Pt(4-EtPy)₂][NTf₂]₂ mit 205 °C. Die beiden anderen Pt-Vertreter können ebenfalls nicht zur Klasse der ILs gezählt werden. Insgesamt scheinen die Schmelzpunkte der linear koordinierten MKTs kleiner zu sein im Vergleich zu denen der quadratisch-planar bzw. oktaedrisch koordinierten Metalle. Somit finden sich bei der cisoiden Konfiguration des Anions die niedrigsten Schmelzpunkte.

5 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit ist es gelungen eine Reihe von Metall- und Metallkomplex-Triflimidaten (MKT) mit dem Anion *Bis*-trifluormethylsulfonylimidat ($^{(N(SO_2CF_3)_2)} = [NTf_2]^{(T)}$) darzustellen und zu charakterisieren. Die wichtigsten kristallographischen Parameter sind in der Tab. 25 zusammengefasst.

Die Darstellung des Bleitriflimidates Pb(NTf₂)₂ erfolgte in einem speziell angefertigten Schlenkrohr durch Erhitzen im Sandbad und unter Verwendung der reinen Säure HNTf₂ in Inertgasatmosphäre. Die Säure wurde im großen Labormaßstab hergestellt in Anlehnung an bereits bekannte Synthesen von Agel^[29]. Hierbei wird das Lithiumsalz Li(NTf₂) in konzentrierter H₂SO₄ umgesetzt und reines, kristallines HNTf₂ durch eine nachfolgende Kältedestillation erhalten. Das Metall-Triflimidat-Acetat-Addukt [Pd(HOAc)₂(NTf₂)₂] wurde ebenfalls durch Metathesereaktion des Metall-Acetats mit HNTf₂ dargestellt. Als Reaktionsgefäß diente eine Glasampulle, welche in einem Blockthermostaten einem bestimmten Temperaturprofil unterzogen wurde, um direkt Einkristalle zu erhalten. Die Einkristallstruktur des Metall-Triflimidates und des Metall-Triflimidat-Derivates konnten erfolgreich mittels Röntgenbeugung bestimmt werden. Die Struktur der Pb-Verbindung ist mit drei kristallographisch unterscheidbaren Pb-Atomen vernetzt aufgebaut, wohingegen das Pd-Triflimidat-Derivat eine Komplexverbindung mit separaten, quadratisch-planaren [Pd(HOAc)₂(NTf₂)₂]-Einheiten ist (siehe Abb. 59).

118

Abb. 59: Quadratisch-planare Einheit von [Pd(HOAc)₂(NTf₂)₂] (a) und die drei kristallographisch unterscheidbaren Pb²⁺-Ionen von Pb(NTf₂)₂ (b).

Ebenfalls wurden verschiedene Metallkomplex-Triflimidate (MKTs) der Zusammensetzung $[M^{n+}(L)_m][NTf_2]_n$ (mit M = Ag⁺, Cu²⁺, Ni²⁺, Pd²⁺, Pt²⁺) und Au⁺) mit der Anzahl m der Liganden L (Pyridin (Py), 3-Ethylpyridin und 4-Ethylpyridin) über Einkristalldiffraktometrie charakterisiert. Diese wurden zweistufig durch Komplexierung und Salzmetathese aus den entsprechenden Metallsalzen (z. B. Nitrate; Acetate) und Li(NTf₂) dargestellt, wobei die zugrunde liegende Syntheseroute nach Huang^[20] modifiziert wurde. Danach folgten eine Extraktion und Trocknung im Exsikkator bzw. Verdampfung des Lösungsmittels an Luft, um Einkristalle zu erhalten. Ein stöchiometrischer Ansatz oder sogar ein leichter Überschuss des Li(NTf₂) ist bei der Synthese entscheidend. Werden geringere Mengen des Li(NTf₂) eingesetzt oder eine zu geringe Reaktionszeit im zweiten Schritt gewählt, werden nicht alle Anionen ausgetauscht und es entsteht eine gemischtionische Verbindung wie bei [Cu2(4-EtPy)8][(NTf2)2(NO3)2] IV. Zudem lösen sich die MKTs mit absteigender Kettenlänge besser in Wasser, weshalb nur eine geringe Menge Wasser (max. 1 mL) zur Extraktion verwendet werden darf. Die Synthese eines 2-Ethlpyridin-Derivates gelang bisher nicht. Vermutlich ist die sterische Hinderung des 2-Ethylpyridins eine Ursache dafür.

Durch die Wahl eines anderen Syntheseverfahrens könnten analoge 2-Ethylpyridin-Verbindungen mit Silber oder Gold, bei denen eine lineare Verknüpfung zweier Liganden um das Metallzentrum vorliegt, erhalten werden. Entsprechende linear-verknüpfte Verbindungen konnten mit den Edelmetallen Ag ($[Ag(Py)_2][NTf_2]$ VII, $[Ag(3-EtPy)_2][NTf_2]$ VIII und $[Ag(4-EtPy)_2][NTf_2]$ IX) und Au ($[Au(3-EtPy)_2][NTf_2]$ XII und $[Au(4-EtPy)_2][NTf_2]$ XIII) bereits erfolgreich dargestellt werden (für Beispiele siehe Abb. 60).

Abb. 60: Lineare Verknüpfung der Liganden in [Ag(Py)₂][NTf₂] (a) und gestapelte, lineare [Au(4-EtPy)₂]-Einheiten entlang b in [Au(4-EtPy)₂][NTf₂] (b).

Alle anderen MKTs weisen ebenfalls typische Koordinationszahlen für den jeweiligen Oxidationszustand des Metallkations auf. Mit den verschiedenen Liganden werden für die Metalle typische Polyeder ausgebildet. So sind die Metallkationen in $[Cu(Py)_4][NTf_2]_2$ V, $[Pd(4-EtPy)_4][NTf_2]_2$ VI, $[Pt(3-EtPy)_4][NTf_2]$ X und $[Pt(4-EtPy)_4][NTf_2]$ XI quadratisch-planar von den N-Atomen der Liganden umgeben (Abb. 61 a). Die Polyeder in den Ni-MKTs $([Ni(Py)_4(H_2O)_2][NTf_2]_2$ I, $[Ni(3-EtPy)_4(H_2O)_2][NTf_2]_2$ II und $[Ni(4-EtPy)_4(H_2O)_2][NTf_2]_2$ III) entsprechen einem Oktaeder aus den vier N-

Atomen der äquatorialen Py-Liganden und den zwei O-Atomen der axialen H₂O-Moleküle (siehe Abb. 61 b).

Abb. 61: Quadratisch-planare Koordination der Py-Liganden um das Cu^{2+} lon in [$Cu(Py)_4$][NTf_2]₂ (a) und oktaedrische Koordinationsumgebung der Ni^{2+} -lonen in [$Ni(Py)_4(H_2O)_2$][NTf_2]₂ (b).

Wechselwirkungen zwischen dem [NTf2]⁻-Anion und dem Metallkation haben keine Auswirkungen auf die Konfiguration des [NTf2]⁻-Anions. Dies folgt aus dem Vergleich der Winkel und Bindungslängen aller [NTf2]⁻-Anionen, da keine signifikanten Abweichungen zwischen cisoiden und transoiden Anionen ermittelt wurden. Die Verknüpfung des [NTf₂]⁻-Anions bzw. die Orientierung zum Metallkation wird durch Coulomb-Wechselwirkung beeinflusst. Diese Wechselwirkung wirkt sich auf die Bindungsverhältnisse in den O-S-N-S-O-Einheiten aus. Ist der Abstand vom Metall zum N-Atom kürzer, ist dort die negative Ladung bevorzugt und es liegen N-S-Einfachbindungen und S=O-Doppelbindungen vor ([Pd(HOAc)₂(NTf₂)₂]: S=O 141,9(1) pm, S-N 162,3(1) pm). Ist das [NTf₂]⁻-Anion eher über das O-Atom zum Metall ausgerichtet, ist dort die negative Ladung lokalisiert und liegen N=S-Doppelbindungen bzw. S-O-Einfachbindungen vor. es Besonders ausgeprägt ist dieser Effekt bei dem Au-MKT XII, wobei dieser Unterschied in den Bindungslängen (S-O 147,6(9) pm, S=N 152,2(9) pm) dem Pb(NTf₂)₂ ähnelt (S-O 144,3(9) pm, S=N 156(1) pm).

121

Die Koordinationszahl des Metalls bzw. die Anzahl der Py-Derivat-Liganden um das Metallzentrum sind für eine ausschließliche *cis*- bzw. *trans*-Orientierung der CF₃-Gruppen maßgebend (siehe Abb. 62). *Cis*förmige [NTf₂]⁻-Anionen sind in den untersuchten Strukturen lediglich bei einer linearen Koordination der Py- bzw. 3-EtPy-Liganden um ein Metallzentrum zu beobachten (Silberverbindungen **VII** und **VIII** sowie Au-MKT **XII**). Bemerkenswert ist, dass bei beiden analogen Ag- und Au-MKTs mit 4-EtPy-Liganden die *transoide* Konfiguration vorherrscht. Daher ist die jeweilige bevorzugte Konfiguration des [NTf₂]⁻-Anions nicht gänzlich frei von Packungseffekten. Somit ist der strukturelle Aufbau der verwendeten Liganden ebenfalls dafür entscheidend, welches Isomer sich bevorzugt ausbildet.

Abb. 62. Orientierung des cisoiden [NTf₂]⁻-Anions von [Au(3-EtPy)₂][NTf₂] (a) und der transoiden [NTf₂]⁻-Anionen von [Pt(3-EtPy)₄][NTf₂]₂ (b) zum Metallzentrum.

Die erhaltenen IR- und Raman-Spektren aller Py-, 3-EtPy- und 4-EtPy-Derivate gleichen einander und bestätigen das Strukturmodel der schon durch Einkristallstrukturanalyse bestimmten Verbindung. Darüber hinaus bestätigen die IR-Daten die Darstellung weiterer Derivate, die nicht einkristallin erhalten wurden: $[Pd(Py)_4][NTf_2]_2$ VIa, $[Pd(3-EtPy)_4][NTf_2]_2$ VIb, $[Pt(Py)_4][NTf_2]_2$ Xa und $[Au(Py)_2][NTf_2]$ XIIa (siehe Abb. 63).

Abb. 63: IR-Spektren der Py-Derivat-Metallkomplex-Triflimidate inklusive der nicht kristallin erhaltenen Py-Derivate (mit einem a gekennzeichnet).

Die nach Literaturangaben^[18, 25-28] in den IR- und Raman-Spektren für die Orientierung der [NTf₂]⁻-Anionen entscheidenden Wellenzahlen um 740 cm⁻¹, konnten in den Raman-Spektren für *cisoide* Anionen (738 cm⁻¹) lediglich bei [Ag(Py)₂][NTf₂] bestätigt werden. Sechs Verbindungen konnten übereinstimmend mit den Ergebnissen der Einkristallstrukturanalyse durch Raman-Spektren als *transoid* (741 cm⁻¹) identifiziert werden (siehe Abb. 64). Über IR-Spektren konnten vier Verbindungen übereinstimmend mit den Einkristallstrukturdaten als *transoid* und nur [Au(3-EtPy)₂][NTf₂] als *cisoid* bestimmt werden. Somit geht aus den analysierten Spektren dieser Arbeit hervor, dass die Wellenzahlen 738 cm⁻¹ und 740 cm⁻¹ keine spezifischen Parameter für die Ableitung einer *cisoiden* oder *transoiden* Konfiguration sind. Die [NTf₂]⁻-Anionen der MKTs liegen frei im Kristallgitter vor. Folglich sind die Moden des Anions im IR- und Raman-Spektrum unabhängig von der Metallkoordination (linear, quadratisch-planar, oktaedrisch) oder der Position der EtPy-Gruppen (ohne (Py), 3-EtPy und 4-EtPy).

Abb. 64: Raman-Spektren der 3-EtPy-Derivat-Metallkomplex-Triflimidate.

Im Gegensatz zu den dargestellten Pb- und Pd-Triflimidat-Derivaten sind die MKTs luftstabil. Die Stabilität der erhaltenen MKTs wurde mit Hilfe thermogravimetrischer Methoden untersucht. Durch ein gekoppeltes Massenspektrometer am Ausgang konnten die freiwerdenden Fragmente des [NTf₂]⁻-Anions ermittelt werden. Die Zersetzung des [NTf₂]⁻-Anions erfolgt erst ab 233 °C. Somit sind weitere Synthesen bei erhöhten Temperaturen möglich, indem die Schmelze der Verbindungen verwendet wird. Dadurch wird ein Zugang zu neuen Verbindungen unter Verwendung von höher schmelzenden Metalledukten ermöglicht.

Mit den Ag-MKTs (Schmelzpunkt (SP): **VII** 67 °C, **VIII** 71 °C, **IX** 74 °C), den Au-EtPy-Derivaten (SP: **XII** 70 °C und **XIII** 73 °C) und dem Ni-Py-Derivat (SP: **I** 75 °C) wurden neue metallhaltige ionische Flüssigkeiten (SP < 100 °C) erhalten. Die Schmelzpunktanalyse der kristallographisch analysierten Verbindungen ergab eine Zunahme des Schmelzpunktes von dem jeweiligen Py- über das 3-EtPy- zum 4-EtPy-Derivat. Allgemein weisen die MKTs mit linear-koordinierten Metallkationen und somit die als *cisoid* bestimmten Verbindungen die niedrigeren Schmelzpunkte auf.

Für zukünftige Studien können die dargestellten Verbindungen als direkte Metallquelle für elektrochemische Abscheidungen Anwendung finden. Des Weiteren sind alle MKTs stabile Vorläuferverbindungen, um elektrochemisch ungewöhnliche Oxidationsstufen zu erforschen. Der in der vorliegenden Arbeit optimierte Syntheseweg bildet eine solide Basis für die Darstellung weiterer kurz- sowie langkettigerer Py-Derivate mit den Substitutionsstellen 3 bzw. 4. Außerdem ist eine Ausweitung auf andere Nhaltige Liganden oder oxo-anionische Spezies denkbar. Die Analyse entsprechender Verbindungen ist insbesondere im Hinblick auf die Konfiguration des Anions und des Schmelzpunktes interessant.

Verbindung	Kristallsystem	Gitterkonstanten/ pm		Winkel/ °			Zell-	Z	
und	und	a	h	C	a	ß	2/	volumen/	
CCDC-Nummer	Raumgruppe	G	5	C	u	P	1	10 ⁶ ∙ pm³	
HNTf ₂	orthorhombisch	1640 4(2)		055 7(2)				967 7	4
1316997	<i>Pccn</i> (Nr. 56)	1040,4(2)	333,3(1)	955,7(2)				007,7	4
[Pd(HOAc) ₂ (NTf ₂) ₂]	orthorhombisch	1111 70(2)	1007 00(0)	1600 12/5)				2225 0(1)	1
1476026	<i>Pbca</i> (Nr. 61)	1111,70(5)	1257,00(5)	1090,12(3)				2323,9(1)	4
Pb(NTf ₂) ₂	monoklin	1250 4(1)	<i>A</i> 111 0(2)	1200 21(7)		115 220/2)		EC10 2(7)	4
1475896	<i>la</i> (Nr. 9)	1250,4(1)	4111,0(5)	1209,21(7)		115,520(2)		5019,2(7)	4
$[Ni(Py)_4(H_2O)_2][NTf_2]_2$	monoklin	1961 2(2)	1/01 1/1)	1207 2/1)		104 772(2)		2722 0(6)	1
1511497	C2/c (Nr. 15)	1801,2(2)	1491,1(1)	1507,5(1)		104,112(3)		5722,9(0)	4
$[Ni(3-EtPy)_4(H_2O)_2][NTf_2]_2$	monoklin	1007 7(2)	(2) 1115,30(6)	(6) 2144 Q(1)		104 603(2)		4624 5(6)	1
1511900	<i>l2/a</i> (Nr. 15)	1991,1(2)		2144,9(1)	2144,9(1)	(1)	104,005(2)		-024,3(0)
$[Ni(4-EtPy)_4(H_2O)_2][NTf_2]_2$	orthorhombisch	1677 03(5)	1178 20(2)	2342 07(7)				1628 1(2)	Δ
1514571	<i>Pca</i> 2 ₁ (Nr. 29)	1077,03(3)	1170,35(3)	2342,07(7)				4020,4(2)	-
$[Cu_2(4-EtPy)_8][(NTf_2)_2(NO_3)_2]$	triklin	1358 1(1)	1/03 0(1)	1878 /(1)	89 587(2)	88 436(2)	76 366(2)	3700 2(5)	2
Siehe 7.1	<i>P</i> -1 (Nr. 2)	1550,1(1)	1455,0(1)	1070,4(1)	09,307(2)	00,450(2)	10,300(2)	5700,2(3)	2
$[Cu(Py)_4][NTf_2]_2$	monoklin	1846 81(8)	1088 60(5)	103/ 73/5)		96 297(1)		7062 9(4)	Q
1518809	<i>l</i> 2/ <i>a</i> (Nr. 15)	1040,01(0)	1500,05(5)	1554,75(5)		50,257(1)		1002,3(7)	0
[Pd(4-EtPy) ₄][NTf ₂] ₂	triklin	005 33(3)	1070 02(3)	1110 90(4)	75 / 33(2)	73 804(2)	76 646(2)	1083 07(6)	1
1519978	<i>P</i> -1 (Nr. 2)	(2)20,00(0)	1070,02(3)	1110,50(4)	(2)(2)	13,004(2)	10,040(2)	1065,07(0)	
[Ag(Py) ₂][NTf ₂]	monoklin	2072,61(6)	867,99(3)	2167,33(7)		101,035(1)		3826,9(2)	8

Tab. 25: Übersicht der in dieser Arbeit behandelten Kristallstrukturen und ihre wichtigsten kristallographischen Daten.

1497491	C2/c (Nr. 15)								
[Ag(3-EtPy) ₂][NTf ₂] 1475873	triklin <i>P</i> -1 (Nr. 2)	813,1(2)	1097,3(2)	1304,3(2)	96,412(6)	105,081(6)	102,305(5)	1080,4(4)	2
[Ag(4-EtPy) ₂][NTf ₂] 1517219	monoklin <i>P</i> 2 ₁ /c (Nr. 14)	1736,55(7)	1404,19(6)	1877,28(8)		104,074(2)		4440,2(3)	8
[Pt(3-EtPy) ₄][NTf ₂] ₂ 1527348	monoklin <i>P</i> 2 ₁ /c (Nr. 14)	1113,78(4)	1350,47(5)	1480,40(5)		103,234(2)		2167,6(1)	2
[Pt(4-EtPy) ₄][NTf ₂] ₂ 1538312	monoklin <i>P</i> 2 ₁ /c (Nr. 14)	2143(1)	1089,8(5)	2074,6(9)		116,539(9)		4334(3)	4
[Au(3-EtPy) ₂][NTf ₂] 1529755	triklin <i>P</i> -1 (Nr. 2)	820,83(5)	1084,58(7)	1317,66(8)	98,325(2)	103,346(2)	103,030(2)	1087,75(12)	2
[Au(4-EtPy) ₂][NTf ₂] 1523831	monoklin <i>P</i> 2 ₁ /c (Nr. 14)	1713,85(8)	2050,59(9)	1972,16(9)		110,292(2)		6500,8(5)	12

6 Literaturverzeichnis

- A. Haas, C. Klare, P. Betz, J. Bruckmann, C. Krüger, Y. H. Tsay, F. Aubke, Inorg. Chem. **1996**, 35, 1918-1925.
- [2] I. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116-2142.
- [3] J. F. Kögel, T. Linder, F. G. Schröder, J. Sundermeyer, S. K. Goll, D. Himmel, I. Krossing, K. Kütt, J. Saame, I. Leito, *Chem. Eur. J.* **2015**, *21*, 5769-5782.
- [4] P. Wasserscheid, T. Welton, in *Ionic Liquids in Synthesis*, Wiley-VCH Verlag GmbH & Co. KGaA, **2003**, pp. 348-355.
- [5] W. E. S. Hart, J. B. Harper, L. Aldous, *Green Chem.* **2015**, *17*, 214-218.
- [6] D. B. Williams, M. E. Stoll, B. L. Scott, D. A. Costa, J. W. J. Oldham, Chem. Commun. 2005, 1438-1440.
- [7] X. Wang, E. Yasukawa, S. Kasuya, J. Electrochem. Soc. 2000, 147, 2421-2426.
- [8] J. Foropoulos, D. D. DesMarteau, Inorg. Chem. 1984, 23, 3720-3723.
- [9] R. Arvai, F. Toulgoat, B. R. Langlois, J.-Y. Sanchez, M. Médebielle, *Tetrahedron* 2009, 65, 5361-5368.
- [10] S. Antoniotti, V. Dalla, E. Duñach, Angew. Chem. 2010, 122, 8032-8060.
- [11] M. J. Earle, U. Hakala, B. J. McAuley, M. Nieuwenhuyzen, A. Ramani, K. R. Seddon, *Chem. Commun.* **2004**, 1368-1369.
- [12] L. Xue, D. D. DesMarteau, W. T. Pennington, Solid State Sci. 2005, 7, 311-318.
- [13] A.-V. Mudring, A. Babai, S. Arenz, R. Giernoth, Angew. Chem. 2005, 117, 5621-5624.
- [14] S. Tang, A. Babai, A.-V. Mudring, Angew. Chem. 2008, 120, 7743-7746.
- [15] D. B. Baudry, A. Dormond, F. Duris, J. M. Bernard, J. R. Desmurs, J. Fluorine Chem. 2003, 121, 233-238.
- [16] P. A. Grieco, S. T. Handy, Tetrahedron Lett. 1997, 38, 2645-2648.

- [17] K. Mikami, O. Kotera, Y. Motoyama, H. Sakaguchi, M. Maruta, *Synlett* 1996, 1996, 171-172.
- [18] A. Martinelli, A. Matic, P. Johansson, P. Jacobsson, L. Börjesson, A. Fernicola, S. Panero, B. Scrosati, H. Ohno, J. Raman Spectrosc. 2011, 42, 522-528.
- [19] T. Vander Hoogerstraete, N. R. Brooks, B. Norberg, J. Wouters, K. Van Hecke, L. Van Meervelt, K. Binnemans, *CrystEngComm* **2012**, *14*, 4902-4911.
- [20] J.-F. Huang, H. Luo, C. Liang, D.-E. Jiang, S. Dai, Ind. Eng. Chem. Res. 2008, 47, 881-888.
- [21] D. Depuydt, N. R. Brooks, S. Schaltin, L. Van Meervelt, J. Fransaer, K. Binnemans, ChemPlusChem 2013, 78, 578-588.
- [22] S. Schaltin, N. R. Brooks, K. Binnemans, J. Fransaer, J. Electrochem. Soc.2011, 158, D21-D27.
- [23] I. J. B. Lin, C. S. Vasam, J. Organomet. Chem. 2005, 690, 3498-3512.
- [24] A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102 ed., Walter de Gruyter, Berlin, 2007.
- [25] I. Rey, P. Johansson, J. Lindgren, J. C. Lassègues, J. Grondin, L. Servant, J. Phys. Chem. A **1998**, 102, 3249-3258.
- [26] M. Herstedt, M. Smirnov, P. Johansson, M. Chami, J. Grondin, L. Servant, J. C. Lassègues, J. Raman Spectrosc. 2005, 36, 762-770.
- [27] F. Capitani, S. Gatto, P. Postorino, O. Palumbo, F. Trequattrini, M. Deutsch, J. B. Brubach, P. Roy, A. Paolone, J. Phys. Chem. B 2016, 120, 1312-1318.
- [28] F. Capitani, F. Trequattrini, O. Palumbo, A. Paolone, P. Postorino, J. Phys. Chem. B 2016, 120, 2921-2928.
- [29] F. Agel, F. Pitsch, F. F. Krull, P. Schulz, M. Wessling, T. Melin, P. Wasserscheid, *Phys. Chem. Chem. Phys.* 2011, 13, 725-731.

- [30] G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, 1997.
- [31] K. Izutsu, in *Electrochemistry in Nonaqueous Solutions*, Wiley-VCH Verlag GmbH & Co. KGaA, **2009**.
- [32] K. Binnemans, Chem. Rev. 2007, 107, 2592-2614.
- [33] I. Favier, E. Duñach, *Tetrahedron Lett.* **2003**, *44*, 2031-2032.
- [34] S. Antoniotti, E. Dunach, Chem. Commun. 2008, 993-995.
- [35] L. Xue, C. W. Padgett, D. D. DesMarteau, W. T. Pennington, Solid State Sci. 2002, 4, 1535-1545.
- [36] C. Kolb, M. S. Wickleder, Z. Anorg. Allg. Chem. 2016, 642, 1049.
- [37] C. Kolb, Synthese und Charakterisierung von Metalltriflimidaten, Masterarbeit, Carl-von Ossietzky Universtität Oldenburg (Oldenburg), 2014.
- [38] J. L. Nowinski, P. Lightfoot, P. G. Bruce, J. Mater. Chem. 1994, 4, 1579-1580.
- [39] M. J. Earle, B. J. Mcauley, A. Ramani, K. R. Seddon, J. M. Thomson, World Patent, WO 2002072519 A3, 2002.
- [40] M. Steichen, N. R. Brooks, L. Van Meervelt, J. Fransaer, K. Binnemans, Dalton Trans. 2014, 43, 12329-12341.
- [41] T. Vander Hoogerstraete, N. R. Brooks, B. Onghena, L. Van Meervelt,K. Binnemans, *CrystEngComm* **2015**, *17*, 7142-7149.
- [42] B. Jacques, J. Kirsch, P. de Frémont, P. Braunstein, Organometallics 2012, 31, 4654-4657.
- [43] D. Depuydt, N. R. Brooks, S. Schaltin, L. Van Meervelt, J. Fransaer, K. Binnemans, *ChemPlusChem* 2013, 78, 578-588.
- [44] N. R. Brooks, S. Schaltin, K. Van Hecke, L. Van Meervelt, K. Binnemans,J. Fransaer, *Chem. Eur. J.* **2011**, *17*, 5054-5059.
- [45] N. R. Brooks, S. Schaltin, K. Van Hecke, L. Van Meervelt, J. Fransaer, K. Binnemans, *Dalton Trans.* 2012, *41*, 6902-6905.

- [46] S. Schaltin, N. R. Brooks, L. Stappers, K. Van Hecke, L. Van Meervelt, K. Binnemans, J. Fransaer, *Phys. Chem. Chem. Phys.* 2012, 14, 1706-1715.
- [47] S. Schaltin, N. R. Brooks, J. Sniekers, L. Van Meervelt, K. Binnemans, J. Fransaer, *Chem. Commun.* 2014, *50*, 10248-10250.
- [48] J. Sniekers, K. Verguts, N. R. Brooks, S. Schaltin, T. H. Phan, T. M. Trung Huynh, L. Van Meervelt, S. De Feyter, J. W. Seo, J. Fransaer, K. Binnemans, Chem. Eur. J. **2016**, 22, 1010-1020.
- [49] G. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.
- [50] *Diamond 4.1.2*, K. Brandenburg: Bonn, **2016**.
- [51] W. Willing, R. Christophersen, U. Müller, K. Dehnicke, Z. Anorg. Allg. Chem. 1987, 555, 16-22.
- [52] H. Schmidbaur, A. Schier, Angew. Chem. 2015, 127, 756-797.
- [53] M. Jansen, Angew. Chem. 1987, 99, 1136-1149.
- [54] C. Y. Chen, J. Y. Zeng, H. M. Lee, Inorg. Chim. Acta 2007, 360, 21-30.
- [55] H. Schmidbaur, Gold Bull. 2000, 33, 3-10.
- [56] F. Scherbaum, A. Grohmann, B. Huber, C. Krüger, H. Schmidbaur, Angew. Chem. Int. Ed. 1988, 27, 1544-1546.
- [57] H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2012, 41, 370-412.
- [58] H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2008, 37, 1931-1951.
- [59] I. J. B. Lin, C. S. Vasam, Can. J. Chem. 2005, 83, 812-825.
- [60] C. E. Housecroft, A. G. Sharpe, Anorganische Chemie, 2 ed., Pearson Studium, München, 2006.
- [61] M. Castriota, T. Caruso, R. G. Agostino, E. Cazzanelli, W. A. Henderson,S. Passerini, J. Phys. Chem. A 2005, 109, 92-96.
- [62] J. F. Arenas, I. L. Tocón, J. C. Otero, J. I. Marcos, J. Mol. Struct. 1997, 410-411, 443-446.
- [63] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*, 6 ed., Georg Thieme Verlag, Stuttgart, **2002**.

- [64] I. López Tocón, M. S. Woolley, J. C. Otero, J. I. Marcos, J. Mol. Struct.**1998**, 470, 241-246.
- [65] R. L. Garrell, K. D. Beer, Langmuir 1989, 5, 452-458.
- [66] G. Shakila, S. Periandy, S. Ramalingam, Spectrochim. Acta Mol. Biomol. Spectros. 2011, 78, 732-739.
- [67] WinXPOW 2.20, S. Cie: Darmstadt, 2006.
- [68] J. Spreadborough, J. W. Christian, J. Sci. Instrum. 1959, 36, 116.
- [69] J. J. Couderc, G. Garigue, L. Lafourcade, Q. T. Nguyen, Z. Metallkd.**1959**, 50, 708-716.
- [70] J. Häglund, A. Fernández Guillermet, G. Grimvall, M. Körling, *Phys. Rev. B* 1993, *48*, 11685-11691.

7 Anhang

7.1 Kristallographische Daten zu [Cu2(4-

EtPy)₈][(NTf₂)₂(NO₃)₂]

Tab. 26: Kristallographische Daten von [Cu₂(4-EtPy)₈][(NTf₂)₂(NO₃)₂].

$C_{60}H_{70}Cu_2F_{12}N_{12}O_{15}S_4$	<i>Z</i> = 2
<i>M</i> _r = 1682,60 g/ mol	F(000) = 1728
triklin, <i>P</i> -1	$D_{\rm x}$ = 1,510 Mg m ⁻³
<i>a</i> = 1358,1(1) pm	Mo $K\alpha$ Strahlung, λ = 0,71073 Å
<i>b</i> = 1493,03(11) pm	2 θ = 4,6–56,4°
<i>c</i> = 1878,44(14) pm	$\mu = 0,79 \text{ mm}^{-1}$
<i>α</i> = 89,587(2)°	<i>T</i> = 100 K
$\beta = 88,436(2)^{\circ}$	blaue Blöcke
$\gamma = 76,366(2)^{\circ}$	8650 Reflexe mit $I > 2\sigma(I)$
$V = 3700,2(5) \ 10^6 \cdot \text{pm}^3$	$R_{\rm int} = 0,234$
Bruker D8 Venture	$\theta_{max} = 28,4^\circ, \theta_{min} = 2,1^\circ$
Strahlungsquelle: ImuS-Mikrofeinfokusquelle	<i>h</i> = -18→18
ϕ und ω Scans	<i>k</i> = -19→19
Absorptionskorrektur: numerisch	<i>l</i> = -25→25
154779 gemessene Reflexe	18450 unabhängige Reflexe
Verfeinerung gegen <i>F</i> ²	Wasserstoffatome wurden teilweise frei verfeinert, teilweise unter Benutzung der AFIX Befehle von SHELX berechnet
Kleinste-Quadrate-Matrix: Voll	$w = 1/[\sigma^2(F_o^2) + (0,2P)^2]$ mit P = (F_o^2 + 2F_c^2)/3
$R[F^2 > 2\sigma(F^2)] = 0,137$	(Δ/σ) _{max} = 5,256
$wR(F^2) = 0,415$	Δ _{max} = 2,38 e Å ⁻³
S = 1,28	Δ _{min} = -1,92 e Å ⁻³
18450 Reflexe	Extinktions-Korrektur: SHELXL, Fc [*] =kFc[1+0,001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
978 Parameter	Extinktionskoeffizient: 0,0034(12)

51	· · ·				
	X	у	Ζ	U _{iso} */U _{eq}	Occ, (<1)
Cu2	0,19674 (7)	0,41041 (6)	0,11374 (5)	0,0266 (3)	
Cu1	0,48898 (7)	0,13291 (7)	0,34633 (5)	0,0364 (3)	
S3	0,9061 (2)	0,0567 (2)	-0,0067 (2)	0,07 (1)	
S2	0,7719 (3)	0,5016 (3)	0,2431 (2)	0,093 (1)	
N12	0,2626 (4)	0,3204 (4)	0,0370 (3)	0,024 (1)	
N6	0,6234 (5)	0,0624 (5)	0,3037 (4)	0,034 (2)	
N11	0,1204 (4)	0,3207 (4)	0,1536 (3)	0,028 (1)	
N5	0,5603 (5)	0,2181 (5)	0,3959 (4)	0,037 (2)	
N9	0,2671 (5)	0,5070 (4)	0,0758 (4)	0,033 (2)	
N8	0,3562 (5)	0,2138 (6)	0,3830 (4)	0,042 (2)	
N10	0,1473 (7)	0,4972 (5)	0,1946 (4)	0,049 (2)	
N7	0,4166 (5)	0,0468 (7)	0,2992 (4)	0,050 (2)	
C47	0,3118 (5)	0,2350 (5)	0,0534 (4)	0,024 (2)	
H47	0,3120	0,2157	0,1017	0,029*	
C51	0,2592 (6)	0,3448 (5)	-0,0319 (4)	0,030 (2)	
H51	0,2218	0,4048	-0,0444	0,036*	
C42	0,0086 (6)	0,2003 (6)	0,2120 (4)	0,036 (2)	
C48	0,3632 (6)	0,1731 (5)	0,0022 (4)	0,029 (2)	
H48	0,3992	0,1133	0,0162	0,034*	
C49	0,3620 (5)	0,1979 (5)	-0,0686 (4)	0,027 (2)	
C43	-0,0014 (6)	0,2315 (6)	0,1435 (4)	0,033 (2)	
H43	-0,0489	0,2128	0,1143	0,040*	
F22	0,7956 (6)	0,4165 (7)	0,1238 (4)	0,119 (3)	
C50	0,3073 (6)	0,2868 (6)	-0,0849 (4)	0,036 (2)	
H50	0,3035	0,3073	-0,1330	0,043*	
C5	0,5495 (7)	0,2310 (6)	0,4663 (4)	0,039 (2)	
H5	0,5130	0,1945	0,4930	0,046*	
C12	0,6923 (6)	0,0077 (6)	0,3442 (5)	0,037 (2)	
H12	0,6774	0,0034	0,3936	0,043*	
C44	0,0552 (6)	0,2892 (6)	0,1154 (4)	0,030 (2)	
H44	0,0473	0,3071	0,0668	0,036*	
F12	0,6969 (6)	0,3660 (8)	0,1970 (4)	0,113 (3)	
C16	0,6480 (6)	0,0685 (6)	0,2354 (4)	0,037 (2)	
H16	0,6005	0,1080	0,2060	0,044*	

Tab. 27: Funktionale Atomkoordinaten und isotrope oder äquivalent isotrope Auslenkungsparameter ($Å^2$).

C41	0,0769 (7)	0,2320 (7)	0,2511 (5)	0,044 (2)
H41	0,0877	0,2124	0,2991	0,053*
C58	0,2144 (7)	0,5903 (6)	0,0551 (5)	0,041 (2)
H58	0,1426	0,6015	0,0543	0,049*
C40	0,1305 (6)	0,2921 (6)	0,2222 (4)	0,039 (2)
H40	0,1759	0,3141	0,2513	0,047*
C15	0,7380 (7)	0,0213 (6)	0,2045 (5)	0,043 (2)
H15	0,7524	0,0298	0,1555	0,052*
C54	0,3683 (6)	0,4958 (6)	0,0803 (5)	0,041 (2)
H54	0,4076	0,4380	0,0960	0,049*
C14	0,8081 (6)	-0,0392 (6)	0,2457 (5)	0,038 (2)
C3	0,8254 (8)	-0,0220 (8)	-0,0207 (6)	0,056 (3)
F32	0,6432 (6)	0,4925 (9)	0,1432 (5)	0,169 (6)
C57	0,2595 (7)	0,6604 (6)	0,0350 (6)	0,051 (3)
H57	0,2192	0,7178	0,0195	0,061*
C52	0,4162 (7)	0,1351 (6)	-0,1278 (4)	0,039 (2)
H52A	0,4588	0,1687	-0,1558	0,046*
H52B	0,3646	0,1223	-0,1599	0,046*
C13	0,7838 (6)	-0,0427 (6)	0,3173 (5)	0,041 (2)
H13	0,8306	-0,0801	0,3483	0,049*
C53	0,4837 (7)	0,0423 (6)	-0,1040 (5)	0,043 (2)
H53A	0,5131	0,0062	-0,1460	0,064*
H53B	0,4428	0,0080	-0,0760	0,064*
H53C	0,5382	0,0535	-0,0748	0,064*
C55	0,4170 (7)	0,5644 (7)	0,0631 (5)	0,050 (2)
H55	0,4880	0,5541	0,0691	0,060*
C6	0,5881 (7)	0,2938 (7)	0,5018 (5)	0,044 (2)
H6	0,5778	0,3010	0,5519	0,053*
C26	0,2820 (7)	0,1810 (8)	0,4118 (5)	0,056 (3)
H26	0,2944	0,1162	0,4186	0,067*
C30	0,3347 (8)	0,3052 (7)	0,3728 (5)	0,049 (2)
H30	0,3857	0,3307	0,3508	0,059*
O22	0,7999 (8)	0,5772 (7)	0,2073 (5)	0,108 (4)
C56	0,3641 (7)	0,6468 (7)	0,0376 (5)	0,048 (2)
C45	-0,0517 (7)	0,1363 (7)	0,2421 (5)	0,044 (2)
H45A	-0,0049	0,0801	0,2602	0,053*

H45B	-0,0914	0,1176	0,2038	0,053*
С9	0,6133 (7)	0,2691 (6)	0,3599 (5)	0,044 (2)
H9	0,6216	0,2614	0,3097	0,053*
C7	0,6425 (8)	0,3470 (7)	0,4639 (5)	0,055 (3)
C27	0,1873 (8)	0,234 (1)	0,4331 (5)	0,068 (3)
H27	0,1364	0,2077	0,4547	0,081*
C8	0,6564 (8)	0,3324 (7)	0,3924 (5)	0,056 (3)
H8	0,6957	0,3657	0,3651	0,067*
C19	0,4436 (8)	-0,0448 (9)	0,3109 (6)	0,062 (3)
H19	0,5037	-0,0682	0,3365	0,074*
C23	0,3343 (7)	0,078 (1)	0,2617 (6)	0,082 (5)
H23	0,3124	0,1420	0,2506	0,099*
C33	0,218 (1)	0,5265 (7)	0,2337 (5)	0,078 (4)
C28	0,1722 (8)	0,3322 (10)	0,4198 (5)	0,064 (3)
C29	0,2470 (8)	0,3631 (8)	0,3912 (5)	0,062 (3)
H29	0,2386	0,4274	0,3835	0,074*
O12	0,845 (1)	0,4318 (6)	0,2747 (6)	0,121 (4)
C18	0,8891 (8)	-0,1826 (7)	0,1788 (6)	0,060 (3)
H18A	0,8426	-0,1650	0,1393	0,089*
H18B	0,8592	-0,2177	0,2141	0,089*
H18C	0,9537	-0,2206	0,1606	0,089*
C37	0,050 (1)	0,5339 (8)	0,2074 (5)	0,070 (4)
H37	0,0017	0,5131	0,1804	0,084*
C60	0,396 (1)	0,759 (1)	-0,0580 (7)	0,089 (4)
H60A	0,4297	0,7106	-0,0914	0,134*
H60B	0,4245	0,8132	-0,0645	0,134*
H60C	0,3232	0,7763	-0,0672	0,134*
C17	0,9071 (7)	-0,0968 (7)	0,2131 (6)	0,055 (3)
H17A	0,9343	-0,0597	0,1770	0,066*
H17B	0,9578	-0,1144	0,2507	0,066*
C46	-0,1248 (9)	0,1821 (9)	0,3033 (7)	0,076 (4)
H46A	-0,1696	0,2390	0,2860	0,114*
H46B	-0,0854	0,1966	0,3428	0,114*
H46C	-0,1657	0,1397	0,3200	0,114*
C59	0,412 (1)	0,7245 (9)	0,0166 (8)	0,084 (4)
H59A	0,3851	0,7767	0,0494	0,100*

H59B	0,4856	0,7040	0,0238	0,100*	
C2	0,7259 (9)	0,447 (1)	0,182 (1)	0,101 (6)	
C34	0,184 (2)	0,594 (1)	0,2892 (7)	0,125 (8)	
O23	0,866 (3)	0,098 (3)	0,056 (1)	0,50 (3)	
N1	0,680 (1)	0,5294 (8)	0,2976 (6)	0,116 (5)	
C36	0,017 (1)	0,600 (1)	0,2576 (7)	0,120 (8)	
H36	-0,0543	0,6257	0,2633	0,144*	
COAA	0,082 (2)	0,631 (1)	0,2999 (7)	0,14 (1)	
S1	0,6006 (6)	0,6238 (4)	0,2999 (3)	0,206 (4)	
F23	0,826 (1)	-0,0602 (7)	-0,0799 (5)	0,151 (5)	
F13	0,829 (2)	-0,075 (2)	0,0235 (9)	0,36 (2)	
F33	0,7358 (7)	0,021 (1)	-0,023 (1)	0,29 (1)	
F24	0,1691 (7)	-0,154 (1)	0,496 (1)	0,23 (1)	
F14	0,2338 (7)	-0,106 (2)	0,4176 (8)	0,29 (1)	
F34	0,225 (2)	-0,054 (1)	0,504 (1)	0,35 (2)	
C4	0,174 (1)	-0,084 (1)	0,4651 (7)	0,090 (5)	
S4	0,0574 (3)	-0,0136 (3)	0,4382 (2)	0,093 (1)	
C20	0,392 (1)	-0,105 (1)	0,2892 (7)	0,090 (5)	
H20	0,4166	-0,1684	0,3011	0,108*	
O19	0,3392 (4)	0,3311 (5)	0,1952 (3)	0,045 (1)	
N4	0,4259 (6)	0,3010 (6)	0,2115 (4)	0,051 (2)	
O29	0,4623 (8)	0,2269 (6)	0,2327 (4)	0,112 (4)	
O39	0,4754 (9)	0,36 (1)	0,2184 (6)	0,149 (6)	
07	0,0542 (4)	0,4720 (5)	0,0401 (4)	0,049 (2)	
O14	0,0256 (8)	-0,054 (0)	0,3872 (7)	0,142 (6)	
O21	0,513 (1)	0,615 (1)	0,3393 (6)	0,195 (8)	
O11	0,593 (2)	0,679 (1)	0,234 (1)	0,35 (2)	
O5	0,4969 (6)	0,0374 (6)	0,4501 (4)	0,069 (2)	
N3A	0,5000	0,0000	0,5000	0,12 (1)	
O6	0,421 (1)	0,087 (1)	0,5420 (8)	0,065 (4)	0,5
C21	0,311 (5)	-0,082 (2)	0,253 (1)	0,15 (2)	
C22	0,2768 (9)	0,010 (2)	0,2375 (8)	0,16 (1)	
H22	0,2167	0,0306	0,2114	0,194*	
C24	0,229 (2)	-0,127 (3)	0,227 (1)	0,26 (2)	
H24A	0,1769	-0,1215	0,2655	0,307*	
H24B	0,1965	-0,0901	0,1862	0,307*	
		1	1		

C25	0,254 (3)	-0,205 (2)	0,209 (2)	0,32 (3)	
H25A	0,2168	-0,2139	0,1663	0,475*	
H25B	0,2372	-0,2445	0,2474	0,475*	
H25C	0,3266	-0,2222	0,1983	0,475*	
O24	0,080 (2)	0,067 (1)	0,411 (2)	0,37 (2)	
C10	0,688 (1)	0,419 (1)	0,4969 (8)	0,096 (5)	
H10A	0,7264	0,4450	0,4600	0,115*	
H10B	0,7355	0,3900	0,5339	0,115*	
C31	0,068 (1)	0,394 (2)	0,4406 (8)	0,132 (8)	
H31A	0,0450	0,4024	0,4889	0,158*	
C32	0,011 (3)	0,433 (3)	0,388 (2)	0,34 (3)	
H32A	0,0352	0,4228	0,3402	0,413*	
H32B	-0,0544	0,4713	0,3980	0,413*	
Н	-0,021 (6)	0,342 (6)	0,428 (4)	0,02 (2)*	
H31B	-0,020 (5)	0,388 (5)	0,402 (4)	-0,001 (15)*	
N3B	0,0000	0,5000	0,0000	0,12 (1)	
O8	-0,0299 (9)	0,6028 (8)	0,0400 (6)	0,038 (3)	0,5
N2A	0,9908 (9)	0,0079 (8)	0,0492 (7)	0,031 (3)	0,5
N2B	0,033 (1)	0,039 (1)	0,504 (1)	0,055 (4)	0,5
F11	0,686 (2)	0,655 (1)	0,417 (1)	0,28 (1)	
F21	0,594 (3)	0,768 (1)	0,376 (1)	0,47 (3)	
F31	0,755 (3)	0,706 (1)	0,335 (2)	0,42 (2)	
C1	0,661 (4)	0,714 (5)	0,379 (2)	0,43 (5)	
C38	0,054 (2)	0,712 (2)	0,353 (1)	0,23 (2)	
H38A	0,0963	0,7520	0,3653	0,270*	
C39	-0,049 (5)	0,716 (2)	0,379 (2)	0,43 (5)	
H39A	-0,0978	0,7456	0,3437	0,648*	
H39B	-0,0620	0,7516	0,4236	0,648*	
H39C	-0,0571	0,6533	0,3884	0,648*	
H38B	-0,011 (5)	0,750 (5)	0,390 (4)	-0,001 (15)*	
O13	0,895 (1)	0,1061 (9)	-0,0595 (6)	0,134 (5)	
C11	0,604 (4)	0,499 (5)	0,531 (3)	0,55 (6)	
H11A	0,5566	0,5282	0,4948	0,819*	
H11B	0,6356	0,5449	0,5520	0,819*	
H11C	0,5665	0,4738	0,5689	0,819*	

Tab. 28: Atomare Auslenkungsparameter (Å²).

	<i>U</i> ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Cu2	0,0317 (5)	0,0179 (5)	0,0282 (5)	-0,0022 (4)	0,0000 (4)	0,0006 (4)
Cu1	0,0350 (6)	0,0336 (7)	0,0376 (6)	-0,0011 (4)	-0,0050 (4)	-0,0092 (4)
S3	0,0595 (17)	0,068 (2)	0,094 (2)	-0,037 (2)	-0,032 (2)	0,036 (2)
S2	0,133 (3)	0,060 (2)	0,066 (2)	0,017 (2)	-0,010 (2)	0,020 (2)
N12	0,021 (3)	0,018 (3)	0,032 (3)	-0,003 (2)	-0,002 (2)	0,002 (3)
N6	0,035 (4)	0,029 (4)	0,037 (4)	-0,007 (3)	-0,007 (3)	-0,002 (3)
N11	0,025 (3)	0,028 (4)	0,027 (3)	-0,002 (3)	-0,002 (3)	0,008 (3)
N5	0,050 (4)	0,029 (4)	0,030 (4)	-0,005 (3)	-0,003 (3)	-0,001 (3)
N9	0,032 (4)	0,018 (4)	0,045 (4)	-0,001 (3)	-0,002 (3)	0,006 (3)
N8	0,036 (4)	0,050 (5)	0,032 (4)	0,006 (3)	-0,002 (3)	-0,007 (3)
N10	0,081 (6)	0,025 (4)	0,029 (4)	0,008 (4)	0,000 (4)	0,003 (3)
N7	0,027 (4)	0,074 (7)	0,049 (5)	-0,009 (4)	0,004 (3)	-0,031 (4)
C47	0,023 (4)	0,021 (4)	0,030 (4)	-0,008 (3)	-0,007 (3)	0,004 (3)
C51	0,036 (4)	0,023 (4)	0,029 (4)	-0,001 (3)	-0,001 (3)	0,007 (3)
C42	0,033 (4)	0,040 (5)	0,034 (5)	-0,004 (4)	0,004 (4)	0,007 (4)
C48	0,033 (4)	0,010 (4)	0,039 (4)	0,004 (3)	0,000 (3)	0,002 (3)
C49	0,026 (4)	0,020 (4)	0,034 (4)	-0,008 (3)	0,004 (3)	0,001 (3)
C43	0,028 (4)	0,036 (5)	0,034 (4)	-0,004 (3)	0,000 (3)	-0,002 (4)
F22	0,085 (6)	0,161 (9)	0,089 (6)	0,012 (5)	0,024 (5)	-0,015 (6)
C50	0,043 (5)	0,027 (5)	0,032 (4)	0,003 (3)	0,006 (4)	0,007 (3)
C5	0,052 (5)	0,038 (5)	0,029 (4)	-0,018 (4)	-0,002 (4)	0,000 (4)
C12	0,027 (4)	0,042 (5)	0,037 (5)	-0,007 (4)	-0,003 (3)	0,005 (4)
C44	0,032 (4)	0,031 (5)	0,026 (4)	-0,004 (3)	-0,006 (3)	0,001 (3)
F12	0,096 (6)	0,167 (10)	0,088 (6)	-0,050 (6)	-0,017 (5)	-0,009 (6)
C16	0,044 (5)	0,037 (5)	0,028 (4)	-0,003 (4)	-0,005 (4)	0,006 (4)
C41	0,042 (5)	0,060 (7)	0,032 (5)	-0,017 (4)	-0,004 (4)	0,018 (4)
C58	0,045 (5)	0,018 (5)	0,060 (6)	-0,008 (4)	-0,014 (4)	0,000 (4)
C40	0,032 (4)	0,057 (6)	0,031 (4)	-0,018 (4)	-0,006 (3)	0,014 (4)
C15	0,053 (6)	0,037 (6)	0,035 (5)	-0,003 (4)	0,005 (4)	-0,005 (4)
C54	0,036 (5)	0,038 (5)	0,046 (5)	-0,005 (4)	-0,013 (4)	0,009 (4)
C14	0,038 (5)	0,036 (5)	0,042 (5)	-0,011 (4)	-0,005 (4)	-0,001 (4)
С3	0,046 (6)	0,072 (8)	0,055 (6)	-0,027 (5)	0,024 (5)	-0,019 (6)
F32	0,069 (5)	0,28 (2)	0,119 (7)	0,044 (7)	0,000 (5)	0,095 (9)
C57	0,055 (6)	0,021 (5)	0,080 (7)	-0,016 (4)	-0,019 (5)	0,016 (5)

						· · · · · · · · · · · · · · · · · · ·
C52	0,044 (5)	0,030 (5)	0,036 (5)	0,002 (4)	0,003 (4)	0,001 (4)
C13	0,038 (5)	0,032 (5)	0,051 (5)	-0,004 (4)	0,001 (4)	-0,003 (4)
C53	0,047 (5)	0,027 (5)	0,048 (5)	0,001 (4)	0,010 (4)	-0,005 (4)
C55	0,040 (5)	0,046 (6)	0,066 (6)	-0,012 (4)	-0,014 (5)	0,017 (5)
C6	0,056 (6)	0,044 (6)	0,036 (5)	-0,019 (4)	0,004 (4)	-0,013 (4)
C26	0,044 (6)	0,077 (8)	0,041 (5)	-0,002 (5)	-0,010 (4)	-0,019 (5)
C30	0,059 (6)	0,049 (6)	0,029 (5)	0,005 (5)	0,004 (4)	-0,002 (4)
O22	0,130 (9)	0,078 (7)	0,100 (7)	0,007 (6)	0,003 (6)	0,047 (6)
C56	0,053 (6)	0,043 (6)	0,056 (6)	-0,026 (5)	-0,010 (5)	0,009 (5)
C45	0,039 (5)	0,050 (6)	0,046 (5)	-0,017 (4)	-0,001 (4)	0,012 (4)
С9	0,054 (6)	0,032 (5)	0,048 (5)	-0,014 (4)	0,005 (4)	0,003 (4)
C7	0,071 (7)	0,049 (7)	0,054 (6)	-0,034 (5)	0,023 (5)	-0,018 (5)
C27	0,056 (7)	0,12 (1)	0,029 (5)	-0,012 (7)	0,003 (4)	-0,017 (6)
C8	0,070 (7)	0,044 (6)	0,057 (6)	-0,024 (5)	0,022 (5)	-0,012 (5)
C19	0,053 (6)	0,078 (9)	0,061 (7)	-0,031 (6)	0,018 (5)	-0,021 (6)
C23	0,032 (5)	0,139 (13)	0,064 (7)	0,009 (6)	-0,001 (5)	-0,065 (8)
C33	0,175 (13)	0,022 (6)	0,037 (6)	-0,017 (7)	-0,035 (7)	0,001 (4)
C28	0,051 (6)	0,090 (10)	0,036 (6)	0,016 (6)	-0,006 (5)	-0,007 (6)
C29	0,066 (7)	0,069 (8)	0,031 (5)	0,025 (6)	0,010 (5)	0,000 (5)
O12	0,19 (1)	0,052 (6)	0,119 (8)	-0,006 (6)	-0,085 (8)	0,032 (6)
C18	0,067 (7)	0,031 (6)	0,068 (7)	0,012 (5)	0,013 (5)	-0,003 (5)
C37	0,098 (9)	0,066 (8)	0,024 (5)	0,021 (7)	0,012 (5)	0,006 (5)
C60	0,107 (1)	0,085 (10)	0,09 (1)	-0,047 (8)	-0,023 (8)	0,041 (8)
C17	0,048 (6)	0,053 (7)	0,054 (6)	0,007 (5)	0,009 (5)	-0,001 (5)
C46	0,064 (7)	0,073 (9)	0,098 (9)	-0,036 (6)	0,050 (7)	-0,013 (7)
C59	0,089 (9)	0,068 (9)	0,11 (1)	-0,048 (7)	-0,032 (8)	0,027 (8)
C2	0,038 (6)	0,09 (1)	0,16 (2)	-0,004 (6)	0,013 (8)	0,08 (1)
C34	0,27 (2)	0,034 (8)	0,055 (8)	0,001 (11)	-0,04 (1)	-0,001 (6)
O23	0,83 (7)	0,64 (6)	0,12 (1)	-0,40 (6)	0,28 (3)	-0,23 (3)
N1	0,2 (1)	0,061 (8)	0,063 (7)	0,024 (8)	0,019 (8)	0,017 (6)
C36	0,16 (0)	0,1 (1)	0,044 (7)	0,09 (1)	-0,014 (8)	-0,015 (7)
C0AA	0,25 (2)	0,08 (1)	0,039 (8)	0,07 (1)	-0,02 (1)	-0,002 (7)
S1	0,322 (9)	0,097 (4)	0,128 (4)	0,071 (4)	0,154 (5)	0,065 (3)
F23	0,26 (1)	0,091 (7)	0,124 (8)	-0,095 (8)	0,089 (8)	-0,044 (6)
F13	0,44 (3)	0,59 (4)	0,19 (1)	-0,40 (3)	-0,24 (2)	0,28 (2)
F33	0,056 (6)	0,21 (1)	0,62 (3)	-0,067 (7)	0,06 (1)	-0,29 (2)

F24	0,066 (6)	0,17 (1)	0,42 (2)	0,035 (7)	0,02 (1)	0,17 (2)
F14	0,054 (6)	0,60 (3)	0,15 (1)	0,05 (1)	0,022 (7)	0,17 (2)
F34	0,41 (3)	0,11 (1)	0,49 (3)	0,04 (1)	-0,40 (3)	-0,04 (2)
C4	0,11 (1)	0,12 (1)	0,040 (7)	-0,00 (1)	-0,021 (7)	-0,002 (7)
S4	0,114 (3)	0,103 (3)	0,046 (2)	0,012 (2)	-0,022 (2)	-0,006 (2)
C20	0,11 (1)	0,13 (1)	0,064 (8)	-0,09 (1)	0,025 (8)	-0,044 (8)
O19	0,029 (3)	0,059 (4)	0,047 (4)	-0,010 (3)	-0,011 (3)	0,012 (3)
N4	0,038 (5)	0,059 (6)	0,049 (5)	-0,002 (4)	-0,002 (4)	0,027 (4)
O29	0,161 (9)	0,070 (6)	0,056 (5)	0,069 (6)	0,034 (5)	0,034 (5)
O39	0,121 (9)	0,25 (2)	0,122 (9)	-0,13 (1)	-0,039 (7)	0,07 (1)
07	0,034 (3)	0,056 (4)	0,057 (4)	-0,009 (3)	-0,023 (3)	0,031 (3)
O14	0,098 (8)	0,15 (1)	0,14 (1)	0,044 (7)	-0,045 (7)	-0,080 (9)
O21	0,31 (2)	0,16 (1)	0,082 (8)	-0,02 (1)	0,19 (1)	-0,002 (8)
O11	0,39 (3)	0,23 (2)	0,24 (2)	0,24 (2)	0,27 (2)	0,2 (2)
O5	0,108 (6)	0,079 (6)	0,037 (4)	-0,054 (5)	-0,019 (4)	0,021 (4)
N3A	0,14 (2)	0,16 (2)	0,12 (1)	-0,13 (2)	-0,09 (1)	0,11 (2)
O6	0,08 (1)	0,05 (1)	0,06 (1)	0,000 (8)	0,006 (8)	0,005 (7)
C21	0,12 (2)	0,24 (3)	0,12 (2)	-0,13 (2)	0,06 (1)	-0,12 (2)
C22	0,021 (6)	0,40 (4)	0,062 (9)	-0,04 (1)	0,004 (6)	-0,13 (2)
C24	0,27 (3)	0,52 (5)	0,10 (1)	-0,35 (4)	0,04 (2)	-0,11 (2)
C25	0,48 (6)	0,26 (4)	0,31 (4)	-0,25 (4)	-0,15 (4)	-0,07 (3)
O24	0,39 (3)	0,15 (2)	0,63 (5)	-0,14 (2)	-0,36 (4)	0,23 (3)
C10	0,12 (1)	0,11 (1)	0,077 (9)	-0,07 (1)	0,039 (8)	-0,046 (8)
C31	0,07 (1)	0,21 (2)	0,065 (9)	0,05 (1)	0,021 (7)	-0,001 (11)
C32	0,20 (3)	0,34 (5)	0,38 (5)	0,16 (3)	-0,05 (3)	0,17 (4)
N3B	0,024 (6)	0,29 (3)	0,061 (9)	-0,07 (1)	-0,026 (7)	0,11 (1)
O8	0,046 (7)	0,024 (6)	0,034 (6)	0,012 (5)	-0,010 (5)	-0,014 (5)
N2A	0,035 (7)	0,007 (6)	0,049 (8)	-0,007 (5)	0,025 (6)	-0,014 (5)
N2B	0,06 (1)	0,04 (1)	0,073 (12)	-0,014 (8)	-0,002 (8)	-0,010 (8)
F11	0,37 (3)	0,12 (1)	0,36 (3)	-0,13 (2)	0,19 (2)	-0,12 (1)
F21	0,81 (6)	0,07 (1)	0,42 (3)	0,05 (2)	0,44 (4)	0,01 (1)
F31	0,66 (5)	0,16 (2)	0,50 (4)	-0,24 (2)	0,43 (4)	-0,16 (2)
C1	0,36 (5)	0,9 (1)	0,11 (2)	-0,40 (7)	-0,17 (3)	0,28 (5)
C38	0,29 (3)	0,20 (3)	0,1 (1)	0,13 (2)	-0,06 (2)	-0,10 (2)
C39	1,0 (1)	0,06 (2)	0,20 (3)	0,01 (4)	0,32 (6)	0,01 (2)
O13	0,20 (1)	0,13 (1)	0,090 (7)	-0,09 (1)	-0,046 (8)	0,057 (7)

	C11	0,5 (1)	0,9 (2)	0,31 (7)	-0,4 (1)	0,17 (7)	-0,25 (9)
--	-----	---------	---------	----------	----------	----------	-----------

Tab. 29: Geometrische Parameter (Å, °).

Cu2—N10	2,000 (7)	C7—C10	1,50 (2)
Cu2—N11	2,006 (6)	C27—C28	1,46 (2)
Cu2—N12	2,019 (6)	С27—Н27	0,9500
Cu2—N9	2,024 (6)	C8—H8	0,9500
Cu2—07	2,407 (6)	C19—C20	1,34 (2)
Cu1—N7	2,016 (8)	С19—Н19	0,9500
Cu1—N5	2,017 (7)	C23—C22	1,50 (3)
Cu1—N8	2,026 (7)	C23—H23	0,9500
Cu1—N6	2,027 (7)	C33—C34	1,45 (2)
Cu1—O5	2,397 (7)	C28—C29	1,31 (2)
S3—O13	1,223 (9)	C28—C31	1,54 (2)
S3—O23	1,36 (1)	С29—Н29	0,9500
S3—N2A	1,62 (2)	C18—C17	1,51 (2)
S3—N2A ⁱ	1,69 (1)	C18—H18A	0,9800
S3—C3	1,81 (1)	C18—H18B	0,9800
S2—O12	1,398 (9)	C18—H18C	0,9800
S2—O22	1,43 (1)	C37—C36	1,36 (2)
S2—N1	1,57 (1)	С37—Н37	0,9500
S2—C2	1,63 (2)	C60—C59	1,49 (2)
N12—C47	1,330 (9)	C60—H60A	0,9800
N12—C51	1,340 (9)	С60—Н60В	0,9800
N6—C16	1,33 (1)	C60—H60C	0,9800
N6—C12	1,34 (1)	C17—H17A	0,9900
N11—C44	1,33 (1)	С17—Н17В	0,9900
N11—C40	1,36 (1)	C46—H46A	0,9800
N5—C5	1,34 (1)	C46—H46B	0,9800
N5—C9	1,34 (1)	C46—H46C	0,9800
N9—C54	1,35 (1)	С59—Н59А	0,9900
N9—C58	1,34 (1)	С59—Н59В	0,9900
N8—C26	1,32 (1)	C34—C0AA	1,37 (3)
N8—C30	1,34 (1)	O23—N2A	1,89 (4)
N10—C37	1,32 (1)	N1—S1	1,56 (1)
N10—C33	1,38 (2)	C36—C0AA	1,36 (3)

N7—C23	1,33 (1)	C36—H36	0,9500
N7—C19	1,35 (2)	C0AA—C38	1,54 (2)
C47—C48	1,39 (1)	S1—O11	1,38 (1)
C47—H47	0,9500	S1—O21	1,41 (2)
C51—C50	1,37 (1)	S1—C1	2,31 (5)
C51—H51	0,9500	F24—C4	1,20 (2)
C42—C41	1,37 (1)	F14—C4	1,18 (2)
C42—C43	1,37 (1)	F34—C4	1,18 (2)
C42—C45	1,5 (1)	C4—S4	1,77 (2)
C48—C49	1,38 (1)	S4—O14	1,28 (1)
C48—H48	0,9500	S4—O24	1,4 (2)
C49—C50	1,4 (1)	S4—N2B	1,45 (2)
C49—C52	1,52 (1)	S4—N2B	1,73 (2)
C43—C44	1,38 (1)	C20—C21	1,28 (3)
C43—H43	0,9500	C20—H20	0,9500
F22—C2	1,43 (2)	O19—N4	1,205 (9)
C50—H50	0,9500	N4—O29	1,17 (1)
C5—C6	1,36 (1)	N4—O39	1,24 (1)
C5—H5	0,9500	O7—N3B	1,080 (6)
C12—C13	1,38 (1)	O5—N3A	1,084 (7)
C12—H12	0,9500	N3A—O5	1,084 (7)
C44—H44	0,9500	N3A—O6	1,66 (2)
F12—C2	1,38 (2)	N3A—O6	1,66 (2)
C16—C15	1,38 (1)	C21—C22	1,37 (3)
C16—H16	0,9500	C21—C24	1,52 (2)
C41—C40	1,38 (1)	C22—H22	0,9500
C41—H41	0,9500	C24—C25	1,19 (5)
C58—C57	1,38 (1)	C24—H24A	0,9900
C58—H58	0,9500	C24—H24B	0,9900
C40—H40	0,9500	C25—H25A	1,0023
C15—C14	1,4 (1)	C25—H25B	1,0040
C15—H15	0,9500	C25—H25C	1,0015
C54—C55	1,38 (1)	O24—N2B	1,91 (4)
C54—H54	0,9500	C10—C11	1,57 (6)
C14—C13	1,38 (1)	C10—H10A	0,9900
C14—C17	1,53 (1)	C10—H10B	0,9900

C3—F13	1,13 (2)	C31—C32	1,32 (3)
C3—F33	1,24 (2)	C31—H31A	0,9500
C3—F23	1,25 (1)	C31—H31B	1,42 (7)
F32—C2	1,39 (2)	C32—H32A	0,9500
C57—C56	1,39 (1)	C32—H32B	0,9500
С57—Н57	0,9500	C32—H31B	0,90 (8)
C52—C53	1,54 (1)	N3B—07	1,080 (6)
C52—H52A	0,9900	N3B—O8	1,67 (1)
С52—Н52В	0,9900	N3B—O8	1,67 (1)
C13—H13	0,9500	N2A—S3	1,69 (1)
C53—H53A	0,9800	N2A—O13	2,02 (2)
С53—Н53В	0,9800	N2A—N2A	1,87 (3)
С53—Н53С	0,9800	N2B—N2B	1,63 (3)
C55—C56	1,36 (1)	N2B—S4	1,73 (2)
С55—Н55	0,9500	F11—C1	1,12 (5)
С6—С7	1,39 (1)	F21—C1	1,07 (7)
C6—H6	0,9500	F31—C1	1,48 (5)
C26—C27	1,39 (1)	C38—C39	1,47 (6)
C26—H26	0,9500	C38—H38A	0,9500
C30—C29	1,34 (1)	C38—H38B	1,16 (7)
C30—H30	0,9500	C39—H39A	1,0984
C56—C59	1,50 (1)	C39—H39B	1,1057
C45—C46	1,55 (1)	C39—H39C	1,0944
C45—H45A	0,9900	C39—H38B	0,84 (8)
C45—H45B	0,9900	O13—N2A	2,02 (2)
С9—С8	1,38 (1)	C11—H11A	1,0729
С9—Н9	0,9500	C11—H11B	1,1139
С7—С8	1,36 (1)	C11—H11C	1,0636
N10—Cu2—N11	91,0 (3)	C27—C28—C31	1167 (1)
N10—Cu2—N12	173,4 (3)	C28—C29—C30	1201 (1)
N11—Cu2—N12	91,3 (3)	C28—C29—H29	119,6
N10—Cu2—N9	86,2 (3)	C30—C29—H29	119,7
N11—Cu2—N9	176,6 (3)	C17—C18—H18A	109,5
N12—Cu2—N9	91,7 (3)	C17—C18—H18B	109,5
N10—Cu2—O7	94,8 (3)	H18A—C18—H18B	109,5
N11—Cu2—O7	88,3 (2)	C17—C18—H18C	109,5
N12—Cu2—O7	91,4 (2)	H18A—C18—H18C	109,5
-------------	-----------	---------------	-----------
N9—Cu2—O7	90,1 (2)	H18B—C18—H18C	109,5
N7—Cu1—N5	178,6 (3)	N10—C37—C36	123 (1)
N7—Cu1—N8	91,6 (3)	N10—C37—H37	118,6
N5—Cu1—N8	87,9 (3)	C36—C37—H37	118,6
N7—Cu1—N6	90,7 (3)	C59—C60—H60A	109,5
N5—Cu1—N6	90,0 (3)	С59—С60—Н60В	109,4
N8—Cu1—N6	174,4 (3)	H60A—C60—H60B	109,5
N7—Cu1—O5	87,2 (3)	C59—C60—H60C	109,5
N5—Cu1—O5	91,5 (3)	H60A—C60—H60C	109,5
N8—Cu1—O5	90,2 (3)	H60B—C60—H60C	109,5
N6—Cu1—O5	94,9 (3)	C18—C17—C14	110,2 (9)
O13—S3—O23	116 (2)	C18—C17—H17A	109,6
013—S3—N2A	141,5 (8)	C14—C17—H17A	109,6
023—S3—N2A	78 (2)	С18—С17—Н17В	109,6
013—S3—N2A	86,7 (9)	С14—С17—Н17В	109,6
023—S3—N2A	146 (2)	H17A—C17—H17B	108,1
N2A—S3—N2A	68,8 (8)	C45—C46—H46A	109,5
O13—S3—C3	104,5 (7)	C45—C46—H46B	109,4
O23—S3—C3	101 (1)	H46A—C46—H46B	109,5
N2A—S3—C3	107,0 (6)	C45—C46—H46C	109,5
N2A—S3—C3	95,8 (6)	H46A—C46—H46C	109,5
012—S2—022	121,0 (8)	H46B—C46—H46C	109,5
012—S2—N1	107,2 (7)	C60—C59—C56	116 (1)
022—S2—N1	114,9 (7)	C60—C59—H59A	108,3
012—S2—C2	103,2 (7)	C56—C59—H59A	108,1
022—S2—C2	105,8 (7)	С60—С59—Н59В	108,2
N1—S2—C2	102,3 (8)	С56—С59—Н59В	108,1
C47—N12—C51	117,9 (6)	H59A—C59—H59B	107,4
C47—N12—Cu2	120,9 (5)	F32—C2—F12	1000 (1)
C51—N12—Cu2	121,2 (5)	F32—C2—F22	98 (1)
C16—N6—C12	116,8 (7)	F12—C2—F22	1000 (1)
C16—N6—Cu1	122,3 (5)	F32—C2—S2	120 (1)
C12—N6—Cu1	120,9 (6)	F12—C2—S2	122 (1)
C44—N11—C40	116,7 (7)	F22—C2—S2	113,1 (9)
C44—N11—Cu2	122,1 (5)	C0AA—C34—C33	120 (2)

C40—N11—Cu2	121,1 (5)	S3—O23—N2A	57 (1)
C5—N5—C9	117,1 (8)	S1—N1—S2	125,8 (8)
C5—N5—Cu1	120,7 (6)	C37—C36—C0AA	122 (2)
C9—N5—Cu1	121,9 (6)	C37—C36—H36	119,2
C54—N9—C58	116,5 (7)	C0AA—C36—H36	119,1
C54—N9—Cu2	121,3 (5)	C34—C0AA—C36	118 (1)
C58—N9—Cu2	121,5 (6)	C34—C0AA—C38	115 (2)
C26—N8—C30	115,5 (8)	C36—C0AA—C38	127 (2)
C26—N8—Cu1	123,4 (7)	O11—S1—O21	121 (1)
C30—N8—Cu1	120,8 (7)	O11—S1—N1	117,8 (7)
C37—N10—C33	119 (1)	O21—S1—N1	110,0 (9)
C37—N10—Cu2	122,5 (8)	O11—S1—C1	100 (2)
C33—N10—Cu2	118,0 (8)	O21—S1—C1	98 (1)
C23—N7—C19	117 (1)	N1—S1—C1	106 (2)
C23—N7—Cu1	121,5 (9)	F34—C4—F14	99 (2)
C19—N7—Cu1	121,0 (7)	F34—C4—F24	100 (2)
N12—C47—C48	122,3 (7)	F14—C4—F24	107 (2)
N12—C47—H47	118,8	F34—C4—S4	119 (2)
C48—C47—H47	118,9	F14—C4—S4	113 (1)
N12—C51—C50	122,7 (7)	F24—C4—S4	116 (1)
N12—C51—H51	118,7	O14—S4—O24	108 (2)
C50—C51—H51	118,7	O14—S4—N2B	147,3 (9)
C41—C42—C43	115,3 (8)	O24—S4—N2B	84 (2)
C41—C42—C45	122,6 (7)	O14—S4—N2B	92 (1)
C43—C42—C45	122,1 (8)	O24—S4—N2B	135 (2)
C49—C48—C47	120,4 (6)	N2B—S4—N2B	601 (1)
C49—C48—H48	119,8	O14—S4—C4	107,7 (7)
C47—C48—H48	119,8	O24—S4—C4	106 (1)
C48—C49—C50	116,4 (7)	N2B—S4—C4	97,2 (8)
C48—C49—C52	123,9 (7)	N2B—S4—C4	105,2 (8)
C50—C49—C52	119,7 (7)	C21—C20—C19	123 (2)
C42—C43—C44	122,2 (8)	C21—C20—H20	118,6
C42—C43—H43	118,9	C19—C20—H20	118,4
C44—C43—H43	118,9	O29—N4—O19	127 (1)
C51—C50—C49	120,3 (7)	O29—N4—O39	117 (1)
C51—C50—H50	119,8	O19—N4—O39	115 (1)

C49—C50—H50	119,9	N3B—07—Cu2	170,1 (5)
N5—C5—C6	123,4 (8)	N3A—O5—Cu1	174,6 (6)
N5—C5—H5	118,3	O5—N3A—O5	180,0 (9)
C6—C5—H5	118,3	O5—N3A—O6	93,3 (7)
N6—C12—C13	122,9 (8)	O5—N3A—O6	86,7 (7)
N6—C12—H12	118,5	O5—N3A—O6	86,7 (7)
C13—C12—H12	118,6	O5—N3A—O6	93,3 (7)
N11—C44—C43	122,4 (7)	O6—N3A—O6	180,0
N11—C44—H44	118,8	C20—C21—C22	117 (2)
C43—C44—H44	118,8	C20—C21—C24	138 (3)
N6—C16—C15	124,0 (8)	C22—C21—C24	105 (3)
N6—C16—H16	118,0	C21—C22—C23	120 (2)
C15—C16—H16	118,0	C21—C22—H22	120,0
C42—C41—C40	121,3 (8)	C23—C22—H22	119,9
C42—C41—H41	119,4	C25—C24—C21	118 (3)
C40—C41—H41	119,3	C25—C24—H24A	107,9
N9—C58—C57	123,1 (8)	C21—C24—H24A	108,1
N9—C58—H58	118,5	C25—C24—H24B	107,6
С57—С58—Н58	118,5	C21—C24—H24B	107,7
N11—C40—C41	122,1 (8)	H24A—C24—H24B	107,3
N11—C40—H40	118,9	C24—C25—H25A	112,3
C41—C40—H40	119,0	C24—C25—H25B	113,1
C16—C15—C14	119,4 (8)	H25A—C25—H25B	106,5
C16—C15—H15	120,3	C24—C25—H25C	111,9
C14—C15—H15	120,3	H25A—C25—H25C	106,5
N9—C54—C55	122,8 (8)	H25B—C25—H25C	105,9
N9—C54—H54	118,6	S4—O24—N2B	49 (1)
C55—C54—H54	118,6	C7—C10—C11	112 (2)
C13—C14—C15	116,3 (8)	C7—C10—H10A	109,3
C13—C14—C17	122,2 (8)	C11—C10—H10A	111,6
C15—C14—C17	121,5 (8)	C7—C10—H10B	109,5
F13—C3—F33	107 (2)	C11—C10—H10B	106,7
F13—C3—F23	110 (2)	H10A—C10—H10B	108,0
F33—C3—F23	945 (1)	C32—C31—C28	117 (2)
F13—C3—S3	113 (1)	C32—C31—H31A	121,8
F33—C3—S3	110 (1)	C28—C31—H31A	121,6

F23—C3—S3	120,1 (8)	C32—C31—H31B	38 (3)
C58—C57—C56	119,7 (8)	C28—C31—H31B	120 (3)
C58—C57—H57	120,1	H31A—C31—H31B	105,9
C56—C57—H57	120,1	C31—C32—H32A	120,2
C49—C52—C53	116,0 (7)	С31—С32—Н32В	119,8
C49—C52—H52A	108,3	H32A—C32—H32B	120,0
C53—C52—H52A	108,3	C31—C32—H31B	78 (5)
C49—C52—H52B	108,3	H32A—C32—H31B	109,6
С53—С52—Н52В	108,3	H32B—C32—H31B	82,9
H52A—C52—H52B	107,4	07—N3B—07	180,0
C14—C13—C12	120,5 (8)	O7—N3B—O8	88,2 (5)
C14—C13—H13	119,8	O7—N3B—O8	91,8 (5)
C12—C13—H13	119,8	O7—N3B—O8	91,8 (5)
C52—C53—H53A	109,5	07—N3B—O8	88,2 (5)
С52—С53—Н53В	109,5	O8—N3B—O8	180,0
H53A—C53—H53B	109,5	S3—N2A—O23	44,8 (7)
C52—C53—H53C	109,4	S3—N2A—S3	111,2 (8)
H53A—C53—H53C	109,5	O23—N2A—S3	155 (1)
H53B—C53—H53C	109,5	S3—N2A—O13	140,7 (8)
C56—C55—C54	120,5 (9)	O23—N2A—O13	165 (1)
C56—C55—H55	119,8	S3—N2A—O13	37,1 (4)
C54—C55—H55	119,7	S3—N2A—N2A	57,3 (7)
C7—C6—C5	119,1 (8)	O23—N2A—N2A	102 (1)
С7—С6—Н6	120,4	S3—N2A—N2A	53,9 (6)
С5—С6—Н6	120,5	013—N2A—N2A	87,2 (8)
N8—C26—C27	125 (1)	S4—N2B—N2B	68 (1)
N8—C26—H26	117,4	S4—N2B—S4	120 (1)
C27—C26—H26	117,4	N2B—N2B—S4	51 (1)
C29—C30—N8	125 (1)	S4—N2B—O24	46,9 (9)
C29—C30—H30	117,5	N2B—N2B—O24	110 (2)
N8—C30—H30	117,5	S4—N2B—O24	153 (1)
C55—C56—C57	117,2 (8)	F21—C1—F11	133 (5)
C55—C56—C59	123,7 (9)	F21—C1—F31	126 (4)
C57—C56—C59	119,0 (9)	F11—C1—F31	101 (5)
C42—C45—C46	111,6 (8)	F21—C1—S1	92 (3)
C42—C45—H45A	109,3	F11—C1—S1	92 (4)

C46—C45—H45A	109,3	F31—C1—S1	91 (3)
C42—C45—H45B	109,3	C39—C38—C0AA	106 (3)
C46—C45—H45B	109,2	C39—C38—H38A	126,9
H45A—C45—H45B	108,0	C0AA—C38—H38A	126,7
N5—C9—C8	122,6 (9)	C39—C38—H38B	35 (4)
N5—C9—H9	118,7	C0AA—C38—H38B	141 (5)
С8—С9—Н9	118,7	H38A—C38—H38B	92,3
C8—C7—C6	117,8 (9)	C38—C39—H39A	121,7
C8—C7—C10	118 (0)	С38—С39—Н39В	122,6
C6—C7—C10	124,0 (9)	H39A—C39—H39B	94,7
C26—C27—C28	115 (1)	C38—C39—H39C	121,2
C26—C27—H27	122,6	H39A—C39—H39C	95,2
C28—C27—H27	122,7	H39B—C39—H39C	94,4
С7—С8—С9	119,8 (9)	C38—C39—H38B	52 (6)
С7—С8—Н8	120,1	H39A—C39—H38B	117,2
С9—С8—Н8	120,1	H39B—C39—H38B	73,2
N7—C19—C20	125 (1)	H39C—C39—H38B	145,8
N7—C19—H19	117,4	S3—013—N2A	56,2 (7)
C20—C19—H19	117,8	C10—C11—H11A	117,9
N7—C23—C22	118 (2)	C10—C11—H11B	123,0
N7—C23—H23	121,1	H11A—C11—H11B	96,5
C22—C23—H23	121,2	C10—C11—H11C	116,5
N10—C33—C34	119 (2)	H11A—C11—H11C	99,3
C29—C28—C27	119 (1)	H11B—C11—H11C	99,0
C29—C28—C31	124 (1)		

7.2 TG, DTG und Pulverrückstände weiterer Verbindungen

Abb. 65: TG und DTG von [Au(3-EtPy)₂][NTf₂].

Abb. 66: Pulverdiffraktogramm von dem TG-Rückstand von [Au(3-EtPy)₂][NTf₂] und simulierten Au-Daten^[69].

Abb. 67: TG und DTG von [Pt(3-EtPy)₄][NTf₂]₂.

Abb. 68: TG und DTG von [Pt(4-EtPy)4][NTf2]2.

Abb. 69: Pulverdiffraktogramm von dem TG-Rückstand von [Pt(4-EtPy)₄][NTf₂]₂ und simulierten Pt-Daten^[70].

Abb. 70: TG und DTG von [Pd(4-EtPy)₄][NTf₂]₂.

Abb. 71: TG und DTG mit MS von [Cu(Py)4][NTf2]2.

Abb. 72: TG und DTG mit MS von [Ni(Py)₄(H₂O)₂][NTf₂]₂.

Abb. 73: TG und DTG mit MS von [Ni(3-EtPy)₄(H₂O)₂][NTf₂]₂.

Abb. 74: TG und DTG mit MS von [Ni(4-EtPy)₄(H₂O)₂][NTf₂]₂.

8 Erklärung

"Ich erkläre: Ich habe die vorgelegte Dissertation selbstständig und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Ich stimme einer evtl. Überprüfung meiner Dissertation durch eine Antiplagiat-Software zu. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten."

(Claudia Bülter)