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Abstract 

In the present thesis, new polysulfates and hydrogenpolysulfates of Rare Earth and 

transition metals are described. The work focuses on the synthesis under harsh 

conditions, like usage of SO3 and trifluormethanesulfonic acid as both reactant and 

solvents. Another aspect is the structural determination by X-ray crystallography.  

Reactions in pure SO3 under the presence of the strong oxidizing agent XeF2 lead to 

new polysulfates and hydrogenpolysulfates. On the one hand the new disulfates 

K[Mn(S2O7)2] and Cs[Mn(S2O7)2] ∙ SO3 could be obtained by the disproportion of 

hexafluoromanganates. Special about the cesium compound is the addition of sulfur 

trioxide molecules into the crystal structure. This can be seen as a “frozen” intermediate 

on the route towards higher polysulfates. On the other hand, KPr(S2O7)(S3O10) could 

be obtained, in which the Rare Earth cation could be stabilized by trisulfate anions for 

the first time ever seen. Furthermore, Ba(HS3O10)2 was synthesized, showing a 

coordination of the divalent alkaline metal center by hydrogentrisulfates. In 

comparison with other already known hydrogentrisulfates like M(HS3O10) with M = Na, 

K, Rb it can be seen, that the anions of Ba(HS3O10)2 and Na(HS3O10) built dimers, 

whereas K(HS3O10) and Rb(HS3O10) forming anionic chains.  

Reactions of Rare Earth oxides with trifluormethanesulfonic acid, 

trifluormethanesulfonic anhydrate and fuming nitric acid lead in the case of the heavier 

Rare Earth metals to the compounds RE(CF3SO3)3(H2O) with RE = Er, Tm and Lu and in 

the case of the lighter Rare Earth metals to (NO)5[RE(CF3SO3)8] with RE = La, Pr, Sm, Tb, 

Dy. The latter show an elusive coordination of triflate ligands towards the Rare Earth 

cation. 

Two Rare Earth sulfonates (Eu2(NH2BDS)3(NMP)8 and Eu(BTS)(DMA)5) could be 

synthesized by the reaction of EuCO3 with the respective sulfonic acids 

(anilinedisulfonic acid and benzenetrisulfonic acid) in organic solvents. Both 

compounds show a linkage of the europium atoms via sulfonic linkers. 
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Last but not least the europium cluster {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py could be 

obtained by the reaction of EuOCl and LiH in pyridine. It consists of two [Eu4O]-

tetrahedra, which can be seen as an excision of the EuOCl structure.
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Kurzzusammenfassung 

Die vorliegende Arbeit beschäftigt sich mit der Synthese und Charakterisierung neuer 

Polysulfate und Sulfatderivate der Seltenen Erden und Übergangsmetalle. Der 

Schwerpunkt dieser Arbeit liegt auf der Synthese unter drastischen Bedingungen, wie 

zum Beispiel der Einsatz von reinem Schwefeltrioxid oder auch 

Trifluormethansulfonsäure sowohl als Reaktant als auch als Lösungsmittel. Als weiterer 

Aspekt wurden die erhaltenen Verbindungen röntgenographisch analysiert. 

Reaktionen in reinem SO3 unter Zuhilfenahme des starken Oxidationsmittels XeF2 

führten zu neuen Polysulfaten und Hydrogenpolysulfaten. Zum einen konnten die 

Disulfate K[Mn(S2O7)2] und Cs[Mn(S2O7)2] ∙ SO3 durch Disproportionierung von 

Hexafluoromanganaten synthetisiert werden. Das Besondere an der 

Ceasiumverbindung ist die Einlagerung von SO3-Molekülen in die Kristallstruktur. 

Somit kann diese als Intermediat zur Bildung höherer Polysulfate angesehen werden. 

Zum anderen konnte mit KPr(S2O7)(S3O10) zum ersten Mal ein SE3+-Kation mit 

Trisulfatanionen stabilisiert werden. Des Weiteren wurde Ba(HS3O10)2 erhalten, welches 

eine Koordination von Hydrogentrisulfaten an ein zweiwertiges Erdalkalikation 

aufweist. Im Vergleich mit den bisher synthetisierten Hydrogentrisulfaten der 

Alkalimetalle Na, K und Rb lässt sich feststellen, dass die Anionen des Barium- und 

Natriumhydrogentrisulfats Dimere ausbilden, während hingegen in dem Kalium- und 

Rubidiumhydrogentrisulfat anionische Ketten vorliegen. 

Die Umsetzung von Seltenerdoxiden mit Trifluormethansulfonsäure, 

Trifluormethansulfonsäureanhydrid und rauchender Salpetersäure führten im Falle der 

schwereren Seltenen Erden zu den Verbindungen SE(CF3SO3)3(H2O) mit SE = Er, Tm 

und Lu und im Falle der leichteren Seltenen Erden zu den Verbindungen 

(NO)5[SE(CF3SO3)8] mit SE = La, Pr, Sm, Tb, Dy. Letztere weisen erstmals eine 

Koordination der SE3+-Kationen von ausschließlich Triflatliganden auf.  
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Die Selten Erd Sulfonate Eu2(NH2BDS)3(NMP)8 und Eu(BTS)(DMA)5 konnten jeweils 

durch Reaktionen von EuCO3 mit der jeweiligen Sulfonsäure (Anilindisulfonsäure und 

Benzoltrisulfonsäure) in organischen Lösungsmitteln dargestellt werden. Beide 

Verbindungen weisen eine Verknüpfung der Europiumatome durch Sulfonsäurelinker 

auf. 

Abschließend konnte der Europiumcluster {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py aus der 

Reaktion von EuOCl und LiH in Pyridin erhalten werden. Dieser weist zwei zu einem 

Dimer verknüpfte [Eu4O]-Tetraeder auf, welche einen Ausschnitt der zu Schichten 

verknüpften [Eu4O]-Tetraeder in Europiumoxidchlorid darstellen. 
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I   Introduction 

With an annual production of more than 200 million tons, sulfuric acid (H2SO4) is one 

of the most important chemicals. Its production started already in the 16th century 

when sulfate minerals (vitriols) were decomposed to give SO3. A new process has been 

developed during the industrial revolution in England (lead chamber process) while 

nowadays sulfuric acid is always prepared via the so-called double contact process. 

The main fields of application of H2SO4 are mining[1] and separation processes (e.g. for 

Rare Earths, uranium, titanium dioxide), and usage as an electrolyte[2] in batteries and 

galvanic devices. Astonishingly, our knowledge of the chemical behavior of sulfuric 

acid or, in a broader sense, of the system SO3/H2O is quite incomplete. On one hand, 

the SO3-rich side of the system is not well investigated, although polysulfuric acids are 

believed to exist. On the other hand, the reactivity of mixtures of SO3 and H2O or even 

neat SO3 needs certainly intensive investigations. Finally, the lack of knowledge is not 

only true for H2SO4 but also for most of the derivates of sulfuric acid, like 

methanesulfonic acid (CH3SO3H), trifluoromethanesulfonic acid (CF3SO3H) and 

fluorosulfonic acid (HSO3F). Also, these derivatives are frequently used acids, because 

they have similar physical properties as H2SO4 but are much less oxidizing and more 

easy to handle. 

In this work, both investigations in the system H2SO4/SO3 and the reactivity of sulfuric 

acid and their derivatives have been addressed. As metals for the respective reactivity 

studies, special emphasis was put on the lanthanide europium and on the transition 

metal manganese. The reason for this choice was the possibility of these metals to 

adopt different oxidation states. By finding the correct reaction conditions, we hoped 

that compounds of these elements in uncommon oxidation states could be gained, i.e. 

Eu+2 and Mn4+. 

In course of the work, a number of very different compounds could be prepared. At 

first glance, the collection appears quite widespread but with a bird´s eye view, it 
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should be clear what they have in common. They all contribute to our understanding 

of the reactivity of H2SO4-related acids. 

In the following chapters, the current knowledge of each investigated systems will be 

presented. Thereafter, the new findings will be discussed in detail. An additional 

chapter is devoted to an unusual cluster compound of europium, which has been 

obtained by serendipity. It fits not exactly into the context of reactions in acids, but 

give a first hint on unusual reactions even in organic solvents. 

 

 

1. Polysulfates and Hydrogenpolysulfates 

1.1 Polysulfates 

Polysulfates are salts of polysulfuric acids, which theoretically range from H2S2O7 to 

H2SnO3n+1. Nevertheless, up to date the only polysulfuric acid determined by single 

crystal diffractometry is the disulfonic acid H2S2O7, characterized in the early 90’s by 

Hönle at all[3]. Although, the existence of this elusive disulfuric acid and H2S3O10 are 

already stated by spectroscopic studies 30 years before[4]. 

Formally the condensation of two or more sulfuric acid molecules leads to polysulfuric 

acids. In the case of a very large amount of sulfuric acid molecules, the asbestos-like 

modifications of α-SO3 and β-SO3 are formed[5]. They consist of infinite chains, which 

are terminated by OH- and H respectively. The difference between both modifications 

lays in the interlinkage of the SO3-chains in the α-modification compared to non-

interlinked chains in β-SO3. 

Compared to the lack of structural knowledge considering the polysulfuric acids, the 

chemical field of their salts, named polysulfates, is better investigated. Particularly the 

salts of H2S2O7. MacGillavry characterized 1954 the first hydrogendisulfate 

(NO2)(HS2O7)
[6], which was followed by more than 50 new disulfate structures in the 

recent years. The first disulfate containing an alkaline metal K2(S2O7)
[7] was described 

in 1960, whereas the first disulfate of a transition metal Cd(S2O7)
[8] could not be 
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obtained until 1988. In 2012 Pd(S2O7)
[9] could be synthesized by Bruns et al., which 

shows an unusual Pd-coordination as well as a ferromagnetic ordering at low 

temperature. Salts of the disulfuric acid and Rare Earth elements could not be 

described until the beginning of the 21st century. The first disulfate of this class was 

the hydrogensulfate disulfate Nd(S2O7)(HSO4)
[10], whereas it took another eight years 

to synthesize the first compounds of pure Rare Earth disulfates, RE2(S2O7)3
[11] (RE = La 

- Nd).  

Despite the well-known field of disulfates, higher polysulfates could only be described 

recently, except for the pentasulfate K2(S5O16)
[12] obtained by de Vries and Mijlhoff in 

1969, and the trisulfate (NO2)2(S3O10)
[13] by Eriks and MacGillavry in 1954. The recently 

discovered trisulfates range from main group metals Pb(S3O10)
[14] to earth alkaline 

metals like Ca(S3O10) and Sr(S3O10)
[15], noble metals like Ba2[Pd(HS2O7)2(S3O10)2]

[16] and 

finally the double salt containing no metal at all I2(S3O10)(SO4)2
[17]. 

The longer the polysulfate chains get, the fewer described compounds can be found. 

Nevertheless, the field of tetrasulfates is quite diverse. The first tetrasulfate 

(NO2)2(S4O13)
[18] could be synthesized by Logemann et al. 2012. In the following years 

a tetrasulfate containing an earth alkaline metal Ba(S4O13)
[15] and tetrasulfates 

stabilized as ligands in complex anions of precious metals M2[Pd(S4O13)2] (M = Na, K, 

Rb, (NH4), (NO), (NO2))
[19] could be obtained. 

Despite the characterization of the first pentasulfate K2(S5O16)
[12] in the late 60’s, it took 

nearly sixty years to obtain other pentasulfates. In 2017 Schindler et al. successfully 

synthesized the pentasulfates M2(S5O16) (M = Li, Na, Cs, Ag)[20]. 

The largest known polysulfates so far are hexasulfates. In 2015 the first hexasulfates 

(NH4)2(S6O19) and Rb2(S6O19)
[21] were described by Schindler et al.. 

 

 

 

 



I Introduction 

 

 
22 

 

1.2 Disulfatometallates 

Disulfatometallates are a special kind of species among the disulfates. Until now three 

different classes of compounds could be found, bisdisulfatometallates, 

trisdisulfatometallates, and tetrakisdisulfatometallates. The differences lay in the 

number of disulfate ligands coordinating to the metal center. In the 

bisdisulfatometallates only two disulfate anions coordinate in a bidentate chelating 

way to the metal center (figure 1). 

 

Figure 1: Coordination of Au3+ in [Au(S2O7)2]-[22]. 

 

The second class, the trisdisulfatometallates, contain three disulfate anions, which 

coordinate in a bidentate chelating way (figure 2).  

 

Figure 2: Coordination of Pt4+ in [Pt(S2O7)4]2-[23]. 
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The last and third class are the tetrakisdisulfatometallates. These compounds are 

coordinated by four disulfate units in two different ways. Tetrakisdisulfatometallates 

of the type A4[M(S2O7)4] (M = Zr, Hf; A = Li, Na, Ag)[24] consist of four disulfate anions 

coordinating in a bidentate chelating way (figure 3). 

 

Figure 3: Coordination of Zr4+ in [Zr(S2O7)4]2-[24]. 

 

Tetrakisdisulfatometallates with silicon and germanium as metal centers[25], consist of 

four disulfate groups, two coordinate in a bidentate chelating way and two in a 

monodentate way (figure 4).  

 

Figure 4: Coordination of Si4+ in [Si(S2O7)4]2-[25]. 
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The first prediction of crystal structures for K2[Si(S2O7)3], K2[Ge(S2O7)3] and 

K2[Ti(S2O7)3]
[26] was already published in 1969 by Thilo and Winkler. Nevertheless, the 

structure determination via single crystal diffractometry could not be done until 2011 

by Logemann et al.[27]. After this milestone, a bunch of different ternary 

trisdisulfatometallates could be synthesized. The metals inside the disulfato-

complexes range from Si in A2[Si(S2O7)3] (A = Na, Cs)[27], to the heavier group fourteen 

homolog Ge in B[Ge(S2O7)3] (B = Sr, Ba, Pb)[25] and Sn in A2[Sn(S2O7)3] (A = (NH4), Ag)[28]. 

Transition metals can be found as metal centers as well, for example Ti in B[Ti(S2O7)3] 

(B = Sr, Ba, Pb)[25], Pt in (NO)2[Pt(S2O7)3]
[23] and Pd in K2[Pd(S2O7)3]

[29]. Mutual to all 

described trisdisulfatometallates is the tetravalent metal center. Therefore, this motif 

can be used to stabilize other metals, which tetravalent oxidation states are unstable 

and hence uncommon. 

 

1.3 Hydrogenpolysulfates 

Polysulfates are salts of fully deprotonated polysulfuric acids. Another class of sulfate 

chemistry opens up when only one hydrogen atom is split off and the other is still 

remaining at the oxygen atom. These kinds of salts are called hydrogenpolysulfates. 

Caused by the high acidity of these salts structural information is even more limited 

than for polysulfates. The earliest described hydrogenpolysulfates are (NO2)(HS2O7)
[6] 

characterized 1954 by MacGillavry et al. and Se4(HS2O7)2
[30] 1971 by Gillespie et al. After 

characterizing this two compounds the research in this field was abandoned for nearly 

40 years. Recently some other hydrogendisulfates like 

Li13[Zr(HS2O7)(S2O7)3]3[Zr(S2O7)4]
[24], As(HS2O7)(S2O7)

[31], Ba2[Pd(HS2O7)2(S3O10)2]
[16] and 

Pd(HS2O7)2
[32] could be obtained. The first systematic approach towards 

hydrogenpolysulfates was done by Schindler et al. It leads to new hydrogendisulfates 

of the formula M(HS2O7) (M = K, (NH4), (NO), Rb and Cs)[33] and Li(HS2O7)
[34]. During 

this approach, the first hydrogenium-bis-hydrogendisulfate anion could be 

synthesized in the compound Li[H(HS2O7)2]
[34]. Additionally, hydrogenpolysulfates of 
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longer sulfate chains could be synthesized as well. The hydrogentrisulfate anion 

[HS3O10]
- could be stabilized in three different compounds M(HS3O10) (M = Na, K, 

Rb)[35]. Even the hydrogen salt of the tetrasulfonic acid could be obtained by stabilizing 

the anion in Li3[H(S4O13)2]
[36]. 

 

2. Rare Earth Triflates 

Exchanging one OH group of sulfuric acid with a CF3 group leads to 

trifluoromethanesulfonic acid (triflic acid), a derivate of sulfuric acid and very strong 

Brønsted acid. The salts formed by triflic acid are called trifluoromethanesulfates 

(triflates) and show delocalization of the negative charge, which leads to being a weak 

Lewis base. Weak Lewis bases, and therefore the trifluoromethanesulfate anion, do not 

tend to bind to high valent metals. Hence it is often used as a good leaving group in 

chemical synthesis. Triflates of lanthanide metals are commercially available and 

scandium triflate is used as a catalyst in a three-component Ugi reaction for the 

synthesis of organic molecules[37], whereas praseodymium triflate is used as a catalyst 

in the symmetric Aldol reaction[38]. Nevertheless, the triflate ligands do not coordinate 

the lanthanide ion. The metal center is coordinated by nine water molecules forming 

a cationic complex and the triflate anions function as charge compensators. Nakayama 

et al. reported the complete dehydration of the lanthanide triflates[39], but was unable 

to determine the crystal structures. A breakthrough was the first synthesis of a highly 

triflated europium atom (NO)5[Eu(CF3SO3)8]
[40] by Bruns et al. in 2015, which was 

obtained by a reaction of europium oxide, fuming nitric acid, trifluoromethanesulfonic 

acid and trifluoromethanesulfonic anhydrate in a sealed and heated ampoule. This 

compound shows an Eu3+ ion only coordinated by triflate ligands. In former work, 

without the use of trifluoromethanesulfonic anhydrate, a mixed coordination sphere 

around the Eu3+ ion could be found. It consists of three triflate ligands and three 

coordinating water molecules forming RE(CF3SO3)3(H2O)3
[41]. The same motif of three 
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coordinating triflate ligands and three coordinating ligands of another origin can be 

found in Eu(CF3SO3)3(CH3CN)3
[42] as well. 

 

3. Coordination polymers 

The field of coordination polymers is very broad, ranging from inorganic compounds 

like aluminosilicates, aluminophosphates, metallosilicates and metal phosphates[43] to 

organic and metal organic compounds containing polycarboxylates and heterocycles.  

A coordination polymer is built up by two different parts, the first part consists of metal 

ions or cluster of metal ions. Used common metals are transition metals with 

coordination numbers of two to seven, which lead to a large variety of coordination 

polyhedra and therefore a huge variety of linking patterns. In recent years Rare Earth 

metals[44] are used too, due to the fact, that the coordination number is much higher 

with seven to ten and therefore allowing new linking patterns. These metal ions are 

linked via the second part, the linker. It consists of at least two functional groups, which 

connect the metal clusters. This is the one and only limiting factor of functioning as a 

linker, meaning it is not necessary to have a specific charge, so linker exist as anionic, 

cationic and neutral ones[43]. The linkage of the metal ions can be done in one direction 

(1D) resulting in a chain, two directions (2D) forming a layer or in three directions (3D) 

building a three-dimensional network. If the coordination sphere of the metal ion is 

not completely satisfied by coordination of the linker, it can be filled up by 

coordinating solvent molecules or other ligands, such as chloride ligands. Additionally, 

it often can be seen, that non-coordinating solvent molecules are present as well.  

Coordination polymers are used due to their interesting properties like heterogeneous 

catalists[45], magnetic phenomena[46] and luminescent properties[47] to name a few. 

Most of the known coordination polymers use carboxylate ligands, which connect via 

their carboxylate groups to the metal ions. As starting compounds carbon acids are 

used, which exist in a huge variety and are easily accessible. Although they are 

commonly used, carboxylate anions as linker have a big disadvantage. When heated 
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up to a specific point, they easily decarboxylate and the coordination polymer is 

destroyed. Examples are the malonic acid, which decomposes between 140 and 160 °C, 

and β-oxo carboxylic acids, which decarboxylate above 100 °C[48]. 

By changing the carboxylate ligands into sulfonate ligands the thermostability 

increases significantly. A comparison between the copper terephthalate 

Cu(BDC)(H2O)2
[49] and the sulfonate analog Cu(BDS)(H2O)4

[50] show a decomposition 

point of 250 °C for the first mentioned compound, whereas the sulfonate is stable up 

to 400 °C.  

Additionally, the sulfonate group shows a pyramidal configuration, while the 

carboxylate group is planar. This can lead in the case of soft metal ions to a tridentate 

binding type of the sulfonates. However, for hard metal ions the sulfonate ion only 

binds with one or two oxygen atoms, due to the delocalization of the negative charge. 

This can be explained by the fact that sulfonic acids show a higher acid strength than 

carbon acids, which leads to the sulfonate ion being a weaker corresponding base. 

The used sulfonic acids and their carbon acid analog are shown in figure 5. 

 

 

Figure 5: Used sulfonic acids and their carboxylic analog. 
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Due to the fact that sulfonic acids are barely commercially available, only a few 

coordination polymers containing sulfonate anions are known so far[50-51]. Some of the 

sulfonic acids used in this work were produced in the working group of Prof. Dr. J. 

Christoffers at the University of Oldenburg. 

 

3.1 Rare Earth coordination polymers 

Coordination polymers with Rare Earth elements as metal ions show extraordinary 

properties, such as luminescence. Depending on the Rare Earth ion the emission can 

range in the whole spectra of the visible light. The field of Rare Earth coordination 

polymers with carboxylic linker is quite well known. For example, Reedijk et al. 

synthesized the compound Gd2(BDCNH2)3(DMF)4
[52], which was then post-synthetic 

modified by treatment with acetic acid and ethyl isocyanate.  

In comparison, only a few coordination polymers with Rare Earth metals linked via 

sulfonic acids can be found. Mao et al. described 2010 coordination polymers 

containing different Rare Earth ions, REx(BTSOH)x(Phen)x(H2O)x (RE = La, Pr, Nd, Eu, Gd, 

Tb)[53] with different compositions for x. Shortly after, Mietrach et al. were able to 

synthesize La(BTS)(H2O)5 and RE(BTS)(H2O)4 (RE = Nd, Sm, Eu)[51d].  

All coordination polymers described above consist of trivalent Rare Earth ions, due to 

the fact, that this is the most stable oxidation state. Nevertheless, europium atoms can 

also be found in a divalent oxidation state, caused by the stable f7-configuration[2]. Up 

to date, only two coordination polymers containing a divalent europium atom could 

be obtained. The first was synthesized 2002 by Férey et al. called MIL-52[54] (Matériaux 

de l’Institut Lavoisier) by hydrothermal synthesis of europium metal, terephthalic acid, 

and water. The second compound (Eu(NH2BDS)(DMF)2
[51b]) could be characterized by 

Gudenschwager et al. 2015. 
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II   Basic knowledge 

 

1. Preparative and apparatus methods 

 

1.1 Glovebox 

A glovebox is used when compounds are sensitive towards hydrolysis or oxidation. It 

contains a box-like working space which is hermetically sealed towards the outer 

environment. A polycarbonate glass plane at the front enables the user to see inside 

the interior, filled with an inert gas like nitrogen or argon (synthesis for this thesis was 

done in an argon-filled glovebox). On the right side of the glovebox two antechambers 

are added, a small one and a large on (figure 6). Both can be evacuated and filled with 

inert gas, to make sure, that all chemicals and working tools enter the interior of the 

glovebox without contamination of water or oxygen. On the lower end of the 

polycarbonate window, rubber gloves are added to enable the user to work inside the 

inert compartment. Furthermore, the interior is equipped with an inert gas purification 

system as well as with high-efficiency box filters, which allow small contaminations by 

water or oxygen. The levels of water and oxygen inside the box are constantly 

monitored by oxygen and moisture analyzers. In addition, the glovebox is used under 

a slight overpressure to ensure that in the case of a small leakage no oxygen or water 

gets into the inert atmosphere. 
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Figure 6: Used glovebox with a small and a large antechamber on the right side. 

 

1.2 Duran-glass ampoules and apparatus for sealing 

Most of the compounds were synthesized in duran-glass ampoules with two ground-

glass joints (S.T. 14/23) and a taper at the upper end as seen in figure 7.  

 

 

Figure 7: Used duran-glass ampoules. 

 

The perpendicular joint is used for filling educts into the ampoule, whereas the 

horizontal joint is for connecting the ampoule to the sealing apparatus. If volatile 

educts are used the lower end of the ampule is dipped into liquid nitrogen to freeze 
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the educts and prevent them from evaporating. Afterward, the ampoule is evacuated 

and torch sealed at the taper using a natural gas/oxygen burner. 

 

Figure 8: Used sealing apparatus. 

 

 

1.3 Synthesis of pure sulfur trioxid 

Neat sulfur trioxide cannot be purchased and needs to be synthesized prior to the 

reaction. Therefore, a special apparatus (invented by D. van Gerven at the working 

group of Prof. M. Wickleder) is needed. It consists of a 1 L round-bottom flask 

containing the dry agent phosphorus(V) oxide, a distillation unit (red circle in figure 9) 

and a dropping funnel filled with oleum (65 % SO3). Furthermore, the apparatus is 

equipped with a schlenk line to apply either nitrogen or vacuum to different parts of 

the apparatus. Cause of the strong oxidation agent SO3 all taps need to be made from 

Teflon and all other equipment need to be glassware. During the synthesis all taps are 

closed, resulting in a closed system being heated up, so it is inevitable to have a 

pressure gauge at the top of the apparatus. If the pressure changes dramatically, either 

nitrogen can be added for an increase of pressure, or a vacuum can be applied via the 

schlenk line for a decrease of pressure.  
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Figure 9: Apparatus for the synthesis of pure sulfur trioxide. 

 

For the synthesis of SO3, the round-bottom flask will be heated up to 120 °C with an 

oil bath, while the pressure is constantly monitored and maintained at a slight 

overpressure by applying nitrogen or vacuum. A small amount of oleum is then added 

to the P4O10 and SO3 is evaporating. The distilling part of the apparatus is heated up 

with a heat gun, to prevent the SO3 condensation anywhere else than in the burette–

body of the apparatus. When enough liquid SO3 is collected, the required amount is 

dropped into the ampoule underneath the burette-body. The lower end of the 

ampoule is placed under liquid nitrogen to freeze out the liquid SO3. This allows to 

apply vacuum to the ampoule and torch seal it, while still being connected to the 

apparatus. After sealing, the ampoule is defrosted slowly and placed in a resistance 

furnace. 

 



III Basic knowledge 

 

 
33 

 

1.4 Furnaces 

Torch sealed ampoules were either placed in a resistance furnace (figure 11) or in a 

block furnace (figure 10) for the reaction. Both furnaces can be used with a chosen 

temperature profile, which exists of a predefined heating rate, a phase with constant 

temperature and a defined cooling phase.  

Ampoules with neat SO3 as a reagent are exclusively heated in the resistance furnaces, 

whereas the ampoules with liquid solvents can be heated in block and resistance 

furnaces. 

  

Figure 10: Block furnace.                           Figure 11: Resistance furnace. 

 

 

1.5 Jones Reductor 

The Jones Reductor[55] is a tool for reducing trivalent europium ions in aqueous 

solution. It consists of zinc, which is amalgamated due to the fact, that pure zinc reacts 

slowly with acids, whereas zinc covered with a thin layer of zinc amalgam reacts easily. 

The amalgamated zinc is placed in a column to increase the surface and enhance the 

reduction. The Jones Reductor is prepared by weighing 300 g granulated zinc into a 

beaker and adding 1 M hydrochloric acid until the zinc is covered. After decantation 
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of the acid 25 % mercury(II) chloride solution was added and stirred for ten minutes. 

The solution was decanted and the zinc washed with water for three times. The 

amalgamated zinc was then densely packed into the column and stored under water. 

Before using the Jones Reductor it needs to be activated with 1 M hydrochloric acid. 

 

Figure 12: Used Jones Reductor. 

 

2. Analyzing methods 

 

2.1 X-Ray-crystallography 

 

2.1.1 Powder X-Ray diffraction 

Powder X-Ray diffraction was used to determine the purity of the synthesized educts. 

The advantage of this method is, that it can be used for crystalline powders as well and 

not only for single crystals of a specific size. A powder consists of a huge amount of 

small crystallites, which underlay a statistical distribution. X-rays are now diffracted on 

those atomic planes, which fulfill the Bragg-equation. The measurement can be done 

in a transmission mode, where the sample is glued to an adhesive tape and fixed in 
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the X-ray beam. The sample holder is then rotated, to assure that all lattice planes are 

recorded. If the sample is moisture-sensitive the described method cannot be used. In 

this case, the sample is filled in a glass capillary with a diameter of 0.2 to 0.5 mm and 

after sealing fixed in the beam and also rotated. The bent X-rays are collected by a 

detector and analyzed using a specific computer software. The powder X-Ray 

diffractometer used in this work is called StadiP and manufactured by Stoe & Cie. 

 

Figure 13: Powder diffractometer StadiP (STOE company). 

 

 

2.1.2 Single crystal X-Ray diffraction 

All analysis in this work is done via single crystal X-Ray diffraction. The single crystals 

of Ba(HS3O10)2 were selected under the polarization microscope KL 500 and afterwards 

measured on a Bruker APEX II diffractometer. All other compounds were handled in an 

inert oil, selected under the polarization microscope Stemi 508 and fixed on a 

MicroMountTM, which was then mounted on a goniometer head (figure 14) and put 

into the X-Ray beam. The diffractometer used was a D8 Venture, also manufactured by 

Bruker. During the measurement, the sample was cooled to 100 K using a liquid 

nitrogen stream. All results were obtained by using monochromatic Mo-Kα-radiation 

with a wavelength of 71.07 pm.  
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Figure 14: Goniometer head with MicroMountTM. 

 

Once the measurement was finished, the obtained intensities were analyzed using the 

program APEX3. The structures of the compounds were first solved and then refined 

using SHELXS and SHELXL integrated into the program OLEX. Method of choice for all 

structural resolutions was the direct method. The refinement was done using a 

numerical absorption correction and anisotropic refinement parameters. All figures of 

crystal structures were done with the software Diamond. 

 

Figure 15: Single crystal diffractometer D8 Venture (Bruker company). 
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3. Used apparatus, computer programs, chemicals 

 

3.1 Apparatus 

Table 1: Used apparatus. 

Name Typ Manufacturer 

Resistance block furnace Gefran 800P Liebisch Labortechnik, 

Bielefeld, Germany 

Bruker Single Crystal 

Diffractometer 

Bruker Venture D8 Bruker AXS GmbH, 

Karlsruhe, Germany 

Argon Glovebox Unilab Braun, Garching 

Germany 

Polarizing microscope KL 500 Schott, Mainz, Germany 

Polarizing microscope Stemi 508 Zeiss, Wetzlar, Germany 

Powder diffractometer Stadi P Stoe & Cie, Darmstadt, 

Germany 

Resistance furnace - manufactured by the 

Carl von Ossietzky 

university Oldenburg, 

Germany 

 

3.2 Computer programs 

Table 2: Used computer programs. 

Programm Purpose 

Bruker APEX3[56] data reduction, integration and 

absorption correction 

Diamond 4.1.2[57] visualizing crystal structures 

MAPLE[58] determination of coordination 

spheres based on electrostatic 

considerations 

OLEX2[59] user interface for structure solution 

and refinement 

Origin Pro 9[60] creation of diagrams and data 

analysis 

SHELXS-2017[61] structure solution 

SHELXL-2015[61] structure refinement 

STOE WIN X-POW 2.20[62] Analysis of X-ray powder 

diffractograms 
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3.3 Chemicals 

Table 3: Used chemicals. 

Substance Formula Purification Manufacturer 

Aniline-2,5-disulfonic acid NH2C6H3(SO3H)3 95 % Alfa Aeser GmbH 

& Co. KG, 

Karlsruhe, 

Germany 

Barium carbonate BaCO3 99.0 % Merck KGaA, 

Darmstadt, 

Germany 

Benzenetrisulfonic acid C6H3(SO3H)3 - synthesized in the 

working group of 

Prof. Christoffers, 

Oldenburg, 

Germany 

Cerium(IV) sulfate Ce(SO4)2 98.0 % Merck KGaA, 

Darmstadt, 

Germany 

Dicesium 

hexafluoromanganate(IV) 

Cs2MnF6 - pre-existing in the 

working group 

N,N-Dimethylacetamide C4H9NO 99.8 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

Dipotassium 

hexafluoromanganate(IV) 

K2MnF6 - pre-existing in the 

working group 

Dysprosium(III) oxide Dy2O3 99.9 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

Erbium(III) oxide Er2O3 99.99 % smart-elements 

GmbH 

Vienna, Austria 

Europium(III) oxide Eu2O3 99.99 % smart-elements 

GmbH 

Vienna, Austria 

Europium(III) oxide chloride EuOCl - pre-existing in the 

working group 

Fomblin® - - Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

conc. hydrochloric acid HCl 37 % Carl Roth GmbH + 

Co. KG, Karlsruhe, 

Germany 
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Lanthanium(III) oxide La2O3 99.5 % Merck KGaA, 

Darmstadt, 

Germany 

Lithium hydride LiH 96.0 % Merck KGaA, 

Darmstadt, 

Germany 

Lutetium(III) oxide Lu2O3 99.9 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

1-Methyl-2-pyrrolidinone C5H9NO 99.5 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

fuming Nitric acid HNO3 99.5 % Merck KGaA, 

Darmstadt, 

Germany 

Oleum (65 % SO3) H2SO4 ∙ SO3 65 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

Phosphorus(V) oxide P4O10 99 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

Potassium hydroxide KOH 85 % Carl Roth GmbH + 

Co. KG, Karlsruhe, 

Germany  

Potassium sulfate K2SO4 99.0 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

Praseodymium(III) fluoride PrF3 - pre-existing in the 

working group 

Praseodymium(IV) oxide PrO2 - pre-existing in the 

working group 

Pyridine C5H5N 99.8 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

Samarium(III) oxide Sm2O3 99.99 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 

Sodium hydrogen carbonate NaHCO3 99.5 % Fisher Scientific, 

Pittsburgh, 

Pensylvania, USA 

Sodium hydroxide NaOH 98 % Carl Roth GmbH + 

Co. KG, Karlsruhe, 

Germany 
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conc. sulfuric acid H2SO4 96 % Carl Roth GmbH + 

Co. KG, Karlsruhe, 

Germany 

Terbium(III,IV) oxide Tb4O7 99.9 % ChemPUR 

Feinchemikalien 

und 

Forschungsbedarf 

GmbH, Karlsruhe, 

Germany 

Thulium(III) oxide Tm2O3 99 % Johnson Matthey, 

Karlsruhe, 

Germany 

Trifluoromethanesulfonic acid CF3SO3H 99 % Merck KGaA, 

Darmstadt, 

Germany 

Trifluoromethanesulfonic 

anhydride 

(CF3SO3)2O 99 % Abcr, Karlsruhe, 

Germany 

Xenon(II) fluoride XeF2 99.99 % Sigma-Aldrich 

GmbH, Steinheim, 

Germany 
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III Polysulfates 

 

1. Cs[Mn(S2O7)2] ∙ SO3 

 

1.1 Synthesis 

Using solvothermal synthesis Cs[Mn(S2O7)2] ∙ SO3 was obtained in a duran-glass 

ampoule (d = 16 mm, l = 200 mm, thickness of wall = 1 mm). Therefore, 50 mg 

(0.12 mmol) Cs2MnF6 and 60 mg (0.35 mmol) XeF2 were weighted into the ampoule 

under an inert atmosphere in the argon-glovebox. Pure sulfur trioxide was added using 

the apparatus described in chapter II.1.3. The ampoule was then torch sealed under 

vacuum and placed in a resistance furnace, heated up to 80 °C within 12 h and 

maintained at this temperature for 24 h. After this period the ampoule was cooled 

down to room temperature during a time of 120 h. Colorless, needle-shaped crystals 

of Cs[Mn(S2O7)2] ∙ SO3 could be obtained (Figure 16). 

 

Figure 16: Picture of the synthesized Cs[Mn(S2O7)2] ∙ SO3-crystals under a polarization 

microscope. 
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1.2 Crystal structure 

Cs[Mn(S2O7)2] ∙ SO3 crystallizes triclinic with the space group P-1 and one formula unit 

per unit cell. Selected crystal data information is shown in table 4, whereas detailed 

information can be found in the appendix (table 24). 

 

Table 4: Selected crystal data of Cs[Mn(S2O7)2] ∙ SO3. 

Cs[Mn(S2O7)2] ∙ SO3 a = 519.38(2) pm b = 765.18(3) pm c = 938.32(3) pm 

triclinic, P-1 α = 69.661(2)° β = 82.921(2)° γ = 84.738(2)° 

CSD no. 434494 V = 346.51(2) ∙ 106 pm3       Z = 1  

 

The compound exhibits one crystallographically independent manganese atom, which 

is coordinated by six oxygen atoms forming a slightly disordered octahedron (figure 

17).  

 

Figure 17: Coordination sphere of the manganese atom in Cs[Mn(S2O7)2] ∙ SO3. 

 

All oxygen atoms belong to disulfate ligands, which bind to the Mn3+ ion in two 

different ways. Two of the disulfate anions are a bidentate ligand using two oxygen 

atoms, one of each tetrahedron, to coordinate the Mn3+ ion. In figure 18 they are 

marked as orange tetrahedra. These four oxygen atoms mark the horizontal plane of 

the octahedron. The two tips of the octahedron consists of oxygen atoms belonging 

to two monodentate disulfate ligands, shown with yellow color. The Mn-O bond 

lengths for bidentate ligands range between 186 pm and 190 pm, whereas the Mn-O 

bond for monodentate ligands is slightly larger with a value of 219 pm. There is no 
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literature known compound of a trivalent manganese atom coordinated by sulfate 

anions or sulfate derivates. Comparison to the divalent manganese compound, 

CsMn[H(HSO4)2](H2O)2
[63], shows slightly longer Mn-O bonds with an average of 

216 pm. 

 

Figure 18: Coordination of the Mn3+ ion by two different disulfate ligands. 

 

If the linking pattern of these disulfate anions is considered, it can be seen, that a 

disulfate ligand, highlighted in the red circle in figure 19, is coordinating in a bidentate 

way to one manganese atom Mn(b) and also coordinating a second manganese atom 

Mn(a) in a monodentate way. This linking pattern is the same for every sulfate ligand, 

meaning that the disulfate anion coordinating in a monodentate way to Mn(a) is 

coordinating in a bidentate way to Mn(b), and the anion coordinating Mn(a) in a 

bidentate way is coordinating Mn(b) monodentately. This leads to chains of 

manganese-disulfate units. Additionally, it can be seen, that one of the oxygen atoms 

(O21) is neither involved in the building of the manganese-sulfate chains, nor 

coordinating to any other atom. The other two oxygen atoms (O12 and O22), which 

are not part of the linkage between the Mn3+ ions, are binding to cesium atoms. O22 

is binding to one Cs+ ion, whereas O12 is binding to two Cs+ ions.  

For the S-O bonds in the disulfate ligand different lengths can be found. The bonds 

between the sulfur atoms and the oxygen atoms coordinating to manganese or cesium 
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atoms (O11, O12, O6, O21, O22, and O9) lay in a narrow range between 142 pm and 

149 pm for the tetrahedron around S1 and between 142 pm and 150 pm for the 

tetrahedron around S2. The S-O bonds between the bridging oxygen atom (O121) and 

the sulfur atoms S1 and S2 are 160 pm and 165 pm and therefore larger than the 

previously mentioned ones. This typical behavior of S-O bond lengths in disulfate 

ligands can be found in the literature[7, 9-10, 30, 64] as well. 

 

Figure 19: Connection pattern of the disulfate anions to manganese atoms, forming a chain. 

 

For charge compensation the compound contains one crystallographically 

independent cesium atom. It is coordinated by twelve oxygen atoms as shown in figure 

20. The Cs-O bond lengths are in average 327 pm. 

 

Figure 20: Coordination sphere of the cesium atom in Cs[Mn(S2O7)2] ∙ SO3. 
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Four of the oxygen atoms belong to coordinating sulfur trioxide ligands, shown with a 

turquoise triangle in figure 21. These SO3-units are binding via one oxygen atom to 

the cesium atom and built up a horizontal plane. Interesting is the fact, that exactly 

four sulfur trioxide ligands are coordinated pairwise, meaning, that each two of them 

are facing each other. This can be seen as a “frozen” intermediate on the route towards 

the building of a disulfate ligand. 

Additionally, the cesium atom is coordinated by six already built disulfate ligands, 

which only differ in their coordination pattern. One of the pattern could already be 

seen for the manganese atom, meaning four disulfate units coordinate with only one 

oxygen atom to the metal center, this is shown with yellow tinted tetrahedra (figure 

21). The other two disulfate ligands exhibits a new pattern, although they coordinate 

with two oxygen atoms in a bidentate chelating way to the metal center, they differ to 

the ones described above. In this case both oxygen atoms do not belong to two 

different SO4-tetrahedra, instead they belong to the same tetrahedron. In figure 21 

this is highlighted as red tetrahedra. 

 

Figure 21: The cesium atom coordinated by SO3 units (turquoise) and disulfate units, 

coordinating via one oxygen atom (yellow) and two oxygen atoms (red). 

 

Figure 22 shows the connection of different manganese-disulfate chains via Cs+ ions. 

Therefore, four cesium atoms lay on the edges of the unit cell and the manganese-

disulfate chain is located in the middle of the unit cell, showing connections to all four 
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cesium atoms. Furthermore, it can be seen, that the layers of SO3 molecules connect 

the Cs+ ions in a horizontal plane as well.  

 

Figure 22: Connection of the manganese-disulfate chains via Cs+ ions. 

 

 

Figure 23: Stacked manganese-disulfate chains. 
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The manganese-disulfate chains are growing along the crystallographic a-axis and are 

stacked with cesium atoms towards the crystallographic b-axis in an alternating way. 

The sulfur trioxide ligand shows a disorder of all three oxygen atoms. The sulfur atom 

in the center stays the same, but the oxygen atoms rotate 45 degrees (figure 24). The 

distribution between both disordered parts is even with 50 % on each part. It can also 

be seen, that every oxygen atom is coordinating to a different cesium atom, meaning 

the sulfur trioxide ligand is bridging three cesium atoms. Due to the disorder the S-O 

bond lengths range from 129 pm to 151 pm. 

 

Figure 24: Disorder of the sulfur trioxide ligand in Cs[Mn(S2O7)2] ∙ SO3 with occupation 

factors. 
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2. K[Mn(S2O7)2] 

 

2.1 Synthesis 

K[Mn(S2O7)2] was synthesized identically as the previous described compound 

Cs[Mn(S2O7)2] ∙ SO3. A duran-glass ampoule (d = 16 mm, l = 200 mm, thickness of 

wall = 1 mm) was used and 50 mg (0.20 mmol) K2MnF6 and 60 mg (0.35 mmol) XeF2 

were weighted into the ampoule under an inert atmosphere in the argon-glovebox. 

The condensation of pure sulfur trioxide into the ampoule was as well done with the 

apparatus described in chapter II.1.3. It was then torch sealed under vacuum and 

placed in a resistance furnace using the same heating and cooling rate as described in 

III.1.1. (Heated up to 80 °C within 12 h and maintained at this temperature for 24 h, 

then cooled down to room temperature with a rate of 0.5 °C/h.) Colorless, needle-

shaped crystals of K[Mn(S2O7)2] could be obtained. 

 

 

2.2 Crystal structure 

K[Mn(S2O7)2] crystallizes orthorhombic with the space group Iba2 and four formula 

units per unit cell. The lattice parameters are shown in table 5. Detailed crystal data 

information can be found in the appendix (table 23). 

 

Table 5: Selected crystallographic data of K[Mn(S2O7)2]. 

K[Mn(S2O7)2] a = 1236.41(4) pm b = 974.93(3) pm c = 991.75(4) pm 

orthorhombic, Iba2    

CSD no. 434495 V = 1195.47(7) ∙ 106 pm3       Z = 4  
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The compound contains one crystallographically independent Mn3+ ion, which is 

coordinated by six oxygen atoms forming a distorted octahedron (figure 25). Each 

oxygen atom is disordered over two positions (a and b) due to the different 

arrangement of the disulfate anions to which they belong. This results in the octahedral 

coordination of the manganese atom shown on the right in figure 25. The appearance 

of these two octahedra is evenly distributed with 52 % for part a and 48 % for part b. 

The Mn-O bond lengths range between 189 pm and 222 pm. As seen in the discussion 

of Cs[Mn(S2O7)2] ∙ SO3 there is no literature known compound of a trivalent manganese 

atom coordinated by sulfate anions or sulfate derivates. But again a comparison to a 

divalent manganese compound, KMn[H(HSO4)2](H2O)2
[63] can be made. The Mn-O 

bond length of this compound is in average 216 pm and therefore lays in the range of 

the observed ones. 

 

 

Figure 25: Coordination spheres of the manganese atom in K[Mn(S2O7)2] with part a of the 

disordered oxygen atoms on the left and part b of the disordered oxygen atoms on the right. 

 

Four of the oxygen atoms belong to bidentate disulfate ligands, which coordinate with 

one oxygen atom from each SO4-tetrahedron to the Mn3+ atom (highlighted as orange 

in figure 26). In detail, this is shown on the right side, as the Mn(b) atom is coordinated 

by O3 from the S1-tetrahedron as well as by O5 from the S2-tetrahedron. The disulfate 

ligands shown in a yellow color only coordinate the metal center in a monodentate 
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way. This can also be seen on the detailed figure, where the Mn(a) atom is only 

coordinated by the O2 atom of the S1-tetrahedron an no oxygen atom from the S2-

tetrahedron. This means, that one disulfate group is bridging the Mn(a) and Mn(b) 

atoms in a monodentate way to Mn(a) and a bidentate way to Mn(b). This pattern 

continues, as the Mn(a) atom is coordinated in a bidentate way by another disulfate 

ligand, resulting in chains. 

 

 

Figure 26: Connection of the neighboring manganese atoms via two different disulfate 

ligands. 

 

Additionally, for compensating the charge of the described anionic chains the 

compound exhibits one crystallographically independent potassium atom 

octacoordinated by oxygen atoms with an average bond length of 276 pm (figure 27). 

Alike the former description of the disordered manganese coordination sphere, the 

oxygen atoms coordinating to the potassium atom show a disorder as well (figure 27 

right side). The distribution between part a and part b is the same as for the manganese 

coordination sphere seen in figure 25. 
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Figure 27: Coordination spheres of the potassium atom in K[Mn(S2O7)2] with part a of the 

disordered oxygen atoms on the left (figure a) and part b of the disordered oxygen atoms on 

the right (figure b). 

 

The disulfate units coordinating to the K+ metal center show the same types of 

connection as described in the manganese part above. Two of the coordinating 

disulfate groups function as bidentate chelating ligands, coordinating with an oxygen 

atom from each of the two SO4-tetrahedra, shown as orange tetrahedra in figure 28. 

The four remaining disulfate ligands coordinate with only one oxygen atom to the 

potassium atom, shown with yellow tetrahedra. 

The S-O bond lengths within the disulfate anions differ slightly. For oxygen atoms, 

which also connect to potassium or manganese atoms (O1, O2, O3, O5, O6, and O7), 

S-O bond lengths of a narrow range between 142 pm and 149 pm for the tetrahedron 

around S1 and between 147 pm and 154 pm around S2 can be found. Slightly larger 

is the S-O bond of the bridging oxygen atom (O4) and the S1 atom with 161 pm, 

whereas the bond length of the same oxygen atom (O4) to the S2 atom is significant 

smaller with 152 pm. This short bond length is an artefact of the disorder and does not 

show the real S-O distances. The differences between the bond lengths of bridging 

and non-bridging oxygen atoms towards the sulfur center is a typical behavior found 

for other disulfate anions as well[7, 9-10, 30, 64]. 

 



III Polysulfates 

 
53 

 

 

Figure 28: Coordination of the potassium atom by two different disulfate ligands. 

 

These linkages between the K+ and Mn3+ atoms lead to a three-dimensional 

connection. In figure 29 the metal-rich layers along the crystallographic a-axis are 

shown. Potassium- and manganese atoms are altering along the axis. The metal-rich 

layers are stacked along the crystallographic b-axis with a sulfate rich layer in between. 

The alternation of the two different metal atoms can be seen as well. 
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Figure 29: Stacking of the metal rich and sulfate layers in K[Mn(S2O7)2]. 

 

The comparison of the two different manganese coordination spheres caused by the 

disorder of the oxygen atoms show, that part b can be received by rotating part a for 

180° (figure 30). 
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Figure 30: Comparison of the two coordination spheres of the manganese atom, with part a 

of the disorder on the left and part b on the right. 

 

If both parts are combined in one figure it can be seen, that part a is stretched out 

towards the bottom of the page, whereas part b is pointing in exactly the opposite 

direction (figure 31). 

 

 

Figure 31: Combined coordination spheres of the manganese atom. 
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3. Ba(HS3O10)2 

 

3.1 Synthesis 

The following synthesis was chosen for the preparation of a trisdisulfatometallate with 

tetravalent cerium ions. The usage of Ce(SO4)2 (50 mg, 0.15 mmol) does not require a 

strong oxidizing atmosphere, as neat SO3 would provide, cause the cerium ion already 

occupies a tetravalent oxidation state. Therefore, Oleum (65 % SO3, 1 mL) was used as 

a reagent and solvent. Trisdisulfatometallates crystallize i.a. with Ba2+ as a counter ion, 

which suggest adding BaCO3 (50 mg 0.25 mmol) to the reaction mixture. Similar to all 

syntheses done in this dissertation, this reaction took place in a duran-glass ampoule 

(d = 16 mm, l = 300 mm, thickness of wall = 1 mm) as well. Which was then placed 

under liquid nitrogen, torch sealed under vacuum and placed in a block furnace. 

Colorless, block-shaped crystals (figure 32) of Ba(HS3O10)2 could be obtained after 

heating up the ampoule to 110 °C in 24 h, maintained at this temperature for 48 h, and 

cooling to room temperature within 158 h. 

 

 

Figure 32: Picture of the synthesized Ba(HS3O10)2-crystals under a polarization microscope. 
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3.2 Crystal structure 

Ba(HS3O10)2 crystallizes orthorhombic with the space group Pbcn with four formula 

units per unit cell and the lattice parameters shown in table 6. Detailed crystal data 

information can be found in the appendix (table 25). 

 

Table 6: Selected crystal data of Ba(HS3O10)2. 

Ba(HS3O10)2 a = 1211.62(4) pm b = 953.02(9) pm c = 1366.27(4) pm 

orthorhombic, Pbcn    

CSD no. 434493 V = 1577.63(9) ∙ 106 pm3       Z = 4  

 

The compound shows one crystallographically independent Ba2+ ion, which is 

coordinated by ten oxygen atoms (figure 33). 

 

Figure 33: Coordination sphere of the barium atom in Ba(HS3O10)2. 

 

 

The Ba2+ ion is exclusively coordinated by hydrogentrisulfate units, which are 

crystallographically the same (figure 34). Nevertheless, the linkage of these [HS3O10]
- 

ligands to the metal center differs. Two out of eight hydrogentrisulfate anions are 

coordinated by two oxygen atoms forming a bidentate ligand. The coordination is 

done via one oxygen atom of the terminal tetrahedron and one of the middle SO4-

tetrahedron.These hydrogentrisulfate anions are shown with violet tetrahedra in figure 



III Polysulfates 

 
59 

 

34. The remaining six [HS3O10]
- ligands only connect to the Ba2+ ion with one oxygen 

atom, belonging to one of the terminal tetrahedra, shown with teal color. 

 

 

Figure 34: Coordination of the barium atom by hydrogentrisulfate anions in two different 

linking pattern. 

 

The [HS3O10]
- ions form intermolecular hydrogen bonds towards an adjacent anion, 

leading to dimers (figure 35). This motif was already observed in the literature for 

various hydrogendisulfates[33] as well as the hydrogentrisulfate Na[HS3O10]
[35]. The 

oxygen atom O13 functions as a donor, whereas the oxygen atom O33 is the acceptor. 

The distance D∙∙∙A is 252.8(2) pm and can be determined using the Jeffrey[65] 

classification as a strong hydrogen bond. Another indication of a strong hydrogen 

bond is the angle between the donor, hydrogen, and the acceptor atom (∢D-H-A) of 

173(4)°. 
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Figure 35: Dimers of hydrogentrisulfate anions. 

 

The left part of figure 36 shows, that four [HS3O10]
- anions build two dimers, in which 

every hydrogentrisulfate ion is coordinated to the same Ba2+ ion. In the same figure 

(part b), four [HS3O10]
- anions are shown, which build hydrogen bonds towards a 

hydrogentrisulfate ion coordinated by the adjacent Ba2+ ion. 

 

 

Figure 36: Hydrogen bonds between [HS3O10]- ions coordinated to the same Ba2+ ion (a) and 

between [HS3O10]- ions bonding to adjacent barium atoms (b). 
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Due to this fact layers of [HS3O10]
- ions are arranged in the direction of the 

crystallographic a-axis, as seen in figure 37. These layers are stacked along the 

crystallographic c-axis and held together via Ba2+ ions. 

 

Figure 37: Stacked layers of hydrogentrisulfate anions, connected via Ba2+ ions. 

 

Each hydrogentrisulfate group connects four Ba2+ ions, one in a bidentate chelating 

way and the other three monodentately (figure 38). Two oxygen atoms (O13 and O22) 

are terminal, i.e they are not coordinated to metal atoms. However O13 is the acceptor 

atom of the former described hydrogen bond. 
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Figure 38: Connection of four Ba2+ ions via one hydrogentrisulfate ligand. 

 

The S-O bond length of the terminal oxygen atom O22 is the shortest one with a value 

of 140.9 pm. The respective bond lengths of the oxygen atoms connecting to the Ba2+ 

ions (O11, O12, O21, O31, and O32) range between 141.7 and 142.4 pm and are similar 

to the average S-O bond lengths in the literature known compound Na[HS3O10]
[35]. The 

sulfur-oxygen bond of the protonated oxygen atom O33 is significantly larger than the 

previously mentioned ones with a value of 151.0 pm. Similarly, the bond S1-O13 with 

O13 being the acceptor of the hydrogen bond, is slightly stretched (144.0 pm). The 

largest S-O bonds can be found between the sulfur atoms and the bridging oxygen 

atoms. These oxygen bridges show asymmetry. Especially for the oxygen bridge of the 

non-protonated tetrahedron, S1-O121-S2, a large asymmetry can be found. The bond 

S1-O121 is the largest one with 172.4 pm, whereas the S2-O121 bond is way shorter 

with 155.2 pm. The second oxygen bridge towards the protonated tetrahedron is by 

far less pronounced with sulfur-oxygen bond lengths of 160.5 pm (S2-O231) and 

163.7 pm (S3-O231). This phenomenon was already seen in other polysulfates[12, 18]. 

The Ba-O bond lengths are in average 281 pm. 
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4. KPr(S2O7)(S3O10) 

 

4.1 Synthesis 

As all three syntheses mentioned above, this synthesis also aimed for a 

trisdisulfatometallate. In this case a Pr4+ ion should function as the central atom. 

Therefore 50 mg (0.25 mmol) PrF3, 50 mg (0.27 mmol) K2SO4, and 20 mg (0.12 mmol) 

XeF2 were filled in a duran-glass ampoule (d = 16 mm, l = 300 mm, thickness of 

wall = 1 mm) under an inert atmosphere in the argon-glovebox. Pure sulfur trioxide 

was added using the apparatus described in chapter II.1.3 and the ampoule was torch 

sealed under vacuum. The reaction took place in a resistance furnace at 120 °C for 

about 48 h. The heating rate was 4.3 °C/h and the cooling rate 1.0 °C/h. K2[Pr(S2O7)3] 

could not be synthesized but, the first Rare Earth trisulfate, KPr(S2O7)(S3O10), could be 

obtained as slightly yellow block-shaped crystals (figure 39). 

 

 

Figure 39: Picture of the synthesized KPr(S2O7)(S3O10)-crystals under a polarization 

microscope. 
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4.2 Crystal structure 

 

KPr(S2O7)(S3O10) crystallizes in the orthorhombic system with the space group Pbcm 

with four formula units per unit cell. The following table shows the lattice parameters. 

Detailed crystal data information can be found in the appendices (table 26). 

 

 Table 7: Selected crystal data of KPr(S2O7)(S3O10). 

KPr(S2O7)(S3O10) a = 1109.24(4) pm b = 1365.81(4) pm c = 933.54(3) pm 

orthorhombic, Pbcm    

CSD no. 434496 V = 1414.32(8) ∙ 106 pm3       Z = 4  

 

The compound shows one crystallographically independent Pr3+ ion, which is 

coordinated by nine oxygen atoms forming the coordination polyhedra shown in 

figure 40. As can be seen, each oxygen atom is disordered over two positions (part a 

and part b), resulting in two different coordination polyhedra. The problem of 

disordered atoms in this compound is not caused by bad crystal quality, because 

reproduction exhibits exactly the same disordered ligands. 

 

Figure 40: Coordination polyhedra of the praseodymium atom with disordered oxygen 

atoms (both possible oxygen sites are shown separately). 
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The oxygen atoms belong to di-and trisulfate anions (figure 41). The different colors 

of the tetrahedra show the different coordination modes to the Pr3+ ions. One of the 

two trisulfate ligands, is only coordinating via a single oxygen atom to the Pr3+ ion. 

This oxygen atom is part of a terminal SO4-tetrahedron and highlighted with a teal 

color in figure 41. The other trisulfate anion (bright green color) functions as a 

tridentate ligand, using three oxygen atoms, one from each SO4-tetrahedron, to 

coordinate the Pr3+ ion. To complete the coordination sphere three disulfate anions 

are coordinated as well. One of the latter is coordinated monodentately (yellow), the 

other two in a bidentate chelating fashion involving two oxygen atoms of different 

tetrahedra (orange). 

 

 

Figure 41: Coordination of the Pr3+ ion in KPr(S2O7)(S3O10). 

 

The di-and trisulfate anions function as bridging ligands between six Pr3+ ions. The 

numbers in the following description do not mean, that the Pr3+ ions are 

crystallographically independent, they are chosen for a better understanding (figure 

42). The Pr3+ ion in the center (Pr1) is linked to the Pr2 atom, as well as to the Pr4 atom, 
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by one disulfate and one trisiulfate anion, whereas The Pr1 and Pr3 atoms are 

connected via a single disulfate unit. The connection between the Pr1 and Pr5 atoms 

is done via two different disulfate ligands. Last but not least the Pr6 atom is only linked 

to the Pr1 atom by one disulfate anion. 

 

 

Figure 42: Connection of the Pr3+ ions via di-and trisulfate anions. 

 

For charge compensation the compound also contains one crystallographically 

independent K+ ion, which is coordinated by seven oxygen atoms (figure 43). Due to 

the fact, that all disulfate and trisulfate ligands show a disorder over two different 

positions, two coordination spheres (part a and part b) can be found for the K+ ion as 

well. The distribution of the disordered oxygen atoms onto the two sites is 50:50. 
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Figure 43: Coordination polyhedra of the K+ ion with disordered oxygen atoms (both 

possible oxygen sites are shown separately). 

 

The polysulfate anions does not only link the Pr3+ ions among themselves, they also 

concatenate them to surrounding K+ ions. A single disulfate unit is linking the Pr3+ ion 

to the potassium atoms K8, K10 and K11, whereas two different disulfate anions 

connect the Pr atom and the K9 atom. Linkage of a disulfate and a trisulfate unit can 

be found between the Pr3+ ion and the K5 atom. Most of the potassium atoms (K2, K3, 

K4, K6, K7) are coordinated to the Pr3+ ion by a single trisulfate anion. The only linking 

pattern of two trisulfate anions can be found for the Pr3+ ion and the K1 atom. 

 

Figure 44: Connection of the potassium-and praseodymium atoms via di-and trisulfate 

anions. 
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KPr(S2O7)(S3O10) does not only show disorder in the oxygen atom positions, it also 

contains disordered sulfur atoms. Nevertheless, the coordination modes of both 

possible disulfate and trisulfate ligands are identical. Figure 45 shows the linking 

pattern of the disordered ligands part b, whereas the other possible positions of the 

ligands (part a) were already seen in figure 41. 

 

Figure 45: The Pr3+ ion coordinated by two disordered trisulfate and three disordered 

disulfate anions. 

 

The compound shows typical S-O bond lengths and their asymmetry concerning the 

S-O bridges, which are already known for other di- and trisulfates, for example 

Nd(S2O7)(HSO4)
[10], Pr2(S2O7)3

[11] and Pb(S3O10)
[66]. The S-O bond lengths for the 

terminal oxygen atoms in both anions (O11, O12, O13, O122, O123, O31, O32, O33, 

O41, O42, O43, O51, O52, and O53) are in average 141 pm, whereas the ones for the 

bridging oxygen atoms are slightly longer. For the disulfate anion bond lengths of 

163.7 pm (S4-O451) and 162.9 pm (S5-O451) can be found without any trace of 

asymmetry. This changes in the case of the trisulfate anion, where a significant 

asymmetry of the S-O bonds can be found. The S-O bonds to the sulfur atom (S2) of 
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the bridging SO4-tetrahedron are slightly shorter with 153.8 pm (S2-O121) and 

156.6 pm (S2-O231) than the S-O bonds to the sulfur atoms (S1 and S3) belonging to 

the outer tetrahedra, with 175.3 pm for S1-O121 and 169.3 pm for S3-O231. The Pr-O 

bond lengths are in average 247 pm and the K-O bond lengths are found around 

270 pm. 

 

 

Figure 46: The [S2O7]2- (b) and [S3O10]2- (a) anions in KPr(S2O7)(S3O10). 
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IV Rare Earth triflates 

 

1. RE(CF3SO3)3(H2O)3 (RE = Er, Tm, Lu) 

1.1 Synthesis 

From the reactions of 60 mg of the respective Rare Earth oxides (Er2O3 (0.16 mmol), 

Tm2O3 (0.16 mmol) and Lu2O3 (0.15 mmol)) with 0.6 mL trifluoromethanesulfonic acid 

and 0.3 mL trifluoromethanesulfonic anhydrate in 0.6 mL fuming nitric acid 

RE(CF3SO3)3(H2O)3 (RE = Er, Tm, Lu) can be obtained. The syntheses were carried out in 

duran-glass ampoules (d = 16 mm, l = 250 mm, thickness of wall = 1 mm), which can 

be seen in figure 7. If the ampoules were torch sealed under vacuum without any 

further treatment, the acids would evaporate and no reaction can take place. 

Therefore, the solvents inside the ampoules were frozen by dipping the lower ends 

into liquid nitrogen. After sealing, the reaction inside the ampoules can take place 

while the ampoules were heated up to 120 °C in a block furnace within 12 h and 

maintained at this temperature for another 48 h. The ampoules were then cooled down 

to room temperature with a cooling rate of 1.3 °C/h. Colorless, block-shaped crystals 

of RE(CF3SO3)3(H2O)3 (RE = Er, Tm, Lu) could be obtained (figure 47). 

 

Figure 47: Pictures of the synthesized RE(CF3SO3)3(H2O)3-crystals (RE = Er, Tm, Lu) under a 

polarization microscope. 
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1.2 Crystal structure 

RE(CF3SO3)3(H2O)3 (RE = Er, Tm, Lu) crystallize isotypically in the triclinic system and the 

space group P-1 with two formula units per unit cell. The following table shows the 

lattice parameters of each of the Rare Earth triflates. Detailed crystal data information 

can be found in the appendices (tables 27-29). 

 

Table 8: Selected crystal data of RE(CF3SO3)3(H2O)3 (RE = Er, Tm, Lu). 

 Er(CF3SO3)3(H2O)3 Tm(CF3SO3)3(H2O)3 Lu(CF3SO3)3(H2O)3 

crystal system triclinic triclinic triclinic 

space group P-1 P-1 P-1 

lattice  a = 785.40(4) pm a = 784.20(3) pm a = 779.58(3) pm 

parameter b = 1086.24(6) pm b = 1085.10(4) pm b = 1080.31(3) pm 

 c = 1127.38(6) pm c = 1125.02(5) pm c = 1127.88(4) pm 

 α = 99.102(2)° α = 99.030(2)° α = 99.225(2)° 

 β = 108.754(2)° β = 108.689(2)° β = 108.559(2)° 

 γ = 101.461(2)° γ = 101.505(2)° γ = 101.690(2)° 

Z 2 2 2 

cell volume 866.65(8) ∙ 106 pm3 863.11(6) ∙ 106 pm3 855.57(5) ∙ 106 pm3 

CSD no. 434671 434498 434497 

 

Due to isotypic structures only Er(CF3SO3)3(H2O)3 will be discussed in detail. 

Nevertheless, the different bond lengths of the three Rare Earth complexes will be 

shown after the structure description. Likewise, the disorder of one triflate group in 

the compound Tm(CF3SO3)3(H2O)3 will be discussed at the end of this chapter. 
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The compound shows one crystallographically independent Er3+ ion, which is 

octacoordinated by oxygen atoms forming a bi-capped trigonal prism shown in figure 

48. 

 

Figure 48: Coordination sphere of the Er3+ ion in Er(CF3SO3)3(H2O)3. 

 

Three of the coordinating oxygen atoms belong to water molecules, binding only to 

the Er3+ ion (figure 48), while all other oxygen atoms are part of triflate ligands. One of 

the triflate ligands shows no further connection, whereas the other four triflate anions 

function as bridging ligands between two neighbored erbium atoms. Therefore, one 

of the oxygen atoms, belonging to the SO3-group within the triflate ion, is binding to 

one Er3+ ion, whereas a different oxygen atom of the same SO3-group is coordinated 

to a different Er3+ ion. The third oxygen atom of the SO3-group is terminal. This results 

in a motif, that the Er3+ ions are linked via two triflate ligands. This leads to a one-

dimensional strand, which could be described by the NIGGLY-formula 

[Er(CF3SO3)4/2(CF3SO3)1/1(H2O)3/1].∞

1  
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Figure 49: Linkage of the neighboring Er3+ ions via triflate ligands. 

 

In the structure of Er(CF3SO3)3(H2O)3 two different types of hydrogen bonds occur. The 

ones that are connecting the different parts within the same plane (shown in figure 50 

as orange broken off bonds) and the ones connecting the different planes with each 

other, shown as red broken off bonds. These hydrogen bonds keep the planes 

connected to each other. With D∙∙∙A distances between 272 pm and 290 pm and angles 

between 124° and 170° (table 9) the hydrogen bonds can be determined as moderately 

strong[65]. 

 

Table 9: Hydrogen bonds in Er(CF3SO3)3(H2O)3. 

D-H H∙∙∙A / pm D∙∙∙A / pm angle(DHA) / ° A 

O1AA-H1AA 194 272 164 O5 

O4AA-H4AA 198 271 170 O4 

O4AA-H4AB 234 290 139 O2AA 

O3AA-H3AA 216 275 124 O4 

O3AA-H3AB 204 279 142 O6AA 
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Figure 50: Hydrogen bonds connecting different planes (red off bonds) and hydrogen bonds 

within the same plane (orange off bonds); triflate groups are shown in a wire model. 

 

The crystals of Er(CF3SO3)3(H2O)3 were difficult to prepare, once they were tipped with 

the needle they flattered out. This can be explained with the fact, that the planes are 

separated by the fluorine atoms of the triflates. The CF3-groups are orientated towards 

each other, forming a “Teflon” like layer (figure 51). 
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Figure 51: Er(CF3SO3)3(H2O)3 planes forming a “Teflon” like layer between each other. 

 

As mentioned above Tm(CF3SO3)3(H2O)3 shows a disorder in one of the five triflate 

ligands. The disorder appears at the CF3-group as seen in figure 52. The disorder within 

the CF3 groups show both positions in a ratio of approximately 75/25 %. 

 

Figure 52: Disordered CF3-group in Tm(CF3SO3)3(H2O)3. 
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The bond lengths within the triflate anion are the same for all synthesized Rare Earth 

compounds and also consistent with the literature[40]. The S-C bond length is about 

183 pm and the C-F bond lengths around 132 pm. The S-O bonds show differences in 

their lengths, caused by further coordination of the oxygen atoms. For the terminal 

oxygen atoms the bond lengths are slightly shorter with an average of 143 pm than 

the S-O bonds to coordinating oxygen atoms with 145 pm. For the bond lengths of 

the Rare Earth atoms to the oxygen atoms different lengths can be found, shown in 

table 10.  

 

Table 10: Bond lengths between the Rare Earth atom and the coordinating oxygen atoms. 

 Er(CF3SO3)3(H2O)3 Tm (CF3SO3)3(H2O)3 Lu (CF3SO3)3(H2O)3 

RE-O4(water) / pm 230.9(1) 231.1(2) 225.8(2) 

RE-O5(water) / pm 229.5(1) 226.4(2) 224.9(3) 

RE-O6(water) / pm 228.1(1) 227.6(1) 228.5(2) 

RE-O1(triflate) / pm 235.5(1) 229.8(1) 233.6(2) 

RE-O3(triflate) / pm 232.4(1) 234.8(1) 236.7(2) 

RE-O11(triflate) / pm 236.5(1) 235.3(1) 227.2(2) 

RE-O21(triflate) / pm 238.9(1) 235.9(1) 233.4(2) 

RE-O23(triflate) / pm 235.8(1) 238.1(1) 233.1(2) 

 

It can be seen, that the RE-O bond lengths of the coordinating water ligands are 

significant shorter than the RE-O bonds of the triflate anions. The bonds are also 

shorter, the heavier the Rare Earth atom gets. This can be explained by the lanthanide 

contraction. 
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2. (NO)5[RE(CF3SO3)8] (RE = La, Pr, Sm, Tb, Dy) 

 

2.1 Synthesis 

To obtain (NO)5[RE(CF3SO3)8] (RE = La, Pr, Sm, Tb, Dy) the same synthetical route as 

described above is used. 60 mg of the respective Rare Earth oxides (La2O3 (0.18 mmol), 

PrO2 (0.35 mmol), Sm2O3 (0.17 mmol), Tb4O7 (0.14 mmol) and Dy2O3 (0.16 mmol)) react 

with 0.6 mL trifluoromethanesulfonic acid and 0.3 mL trifluoromethanesulfonic 

anhydrate in 0.6 mL fuming nitric acid. All syntheses were done in duran-glass 

ampoules (d = 16 mm, l = 250 mm, thickness of wall = 1 mm), which lower parts were 

placed under liquid nitrogen, to prevent the evaporation of the solvents. Afterwards 

the ampoules were torch sealed under vacuum and placed in a block furnace, heated 

up to 120 °C in 24 h and maintained in this temperature for 48 h. After this period the 

ampoules were cooled down to room temperature within 79 h. Colorless, block-

shaped crystals of (NO)5[RE(CF3SO3)8] (RE = La, Pr, Sm, Tb, Dy) could be obtained 

(Figure 53). 

 

Figure 53: Pictures of the synthesized (NO)5[RE(CF3SO3)8]-crystals (RE = La, Pr, Sm, Tb, Dy) 

under a polarization microscope. 

 

2.2 Crystal structure 

(NO)5[RE(CF3SO3)8] (RE = La, Pr, Sm, Tb, Dy) crystallize isotypically in the orthorhombic 

system and the space group Fddd with sixteen formula units per unit cell. Table 11 

shows the lattice parameters of each of the Rare Earth triflates. Detailed crystal data 

information can be found in the appendices (tables 30-34). 
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Table 11: Selected crystal data of (NO)5[RE(CF3SO3)8] (RE = La, Pr, Sm, Tb, Dy). 

 (NO)5[La(CF3SO3)8] (NO)5[Pr(CF3SO3)8] (NO)5[Sm(CF3SO3)8] 

crystal system orthorhombic orthorhombic orthorhombic 

space group Fddd Fddd Fddd 

lattice  a = 1942.3(1) pm a = 1934.1(2) pm a = 1934.21(6) pm 

parameter b = 2925.5(2) pm b = 2924.3(3) pm b = 2875.73(9) pm 

 c = 2950.2(2) pm c = 2932.8(2) pm c = 2955.74(9) pm 

Z 16 16 16 

cell volume 16764(2) ∙ 106 pm3 16588(2) ∙ 106 pm3 16440.6(9) ∙ 106 pm3 

CSD no. 434500 434501 434502 

 

 (NO)5[Tb(CF3SO3)8] (NO)5[Dy(CF3SO3)8]  

crystal system orthorhombic orthorhombic  

space group Fddd Fddd  

lattice  a = 1928.44(8) pm a = 1929.74(8) pm  

parameter b = 2869.6(1) pm b = 2870.1(1) pm  

 c = 2945.1(1) pm c = 2950.7(1) pm  

Z 16 16  

cell volume 16298(1) ∙ 106 pm3 16342(1) ∙ 106 pm3  

CSD no. 434503 434499  

 

Due to isotypic structures only the (NO)5[Sm(CF3SO3)8] will be discussed in detail. 

Nevertheless, the different bond lengths of the five Rare Earth complexes will be 

compared after the structure description of (NO)5[Sm(CF3SO3)8]. 



IV Rare Earth triflates 

 
81 

 

In the structure of (NO)5[Sm(CF3SO3)8] the samarium atom is located on the special 

Wyckoff site 16e and is coordinated by eight oxygen atoms forming a slightly distorted 

square antiprism (figure 54). 

 

Figure 54: Coordination sphere of the samarium atom in (NO)5[Sm(CF3SO3)8]. 

 

Each oxygen atom belongs to a monodentate triflate anion, building the 

[Sm(CF3SO3)8]
5- complex (figure 55). 

 

 

Figure 55: The [Sm(CF3SO3)8]5- complex, build up by Sm3+ and eight coordinating triflate 

ligands. 

 



IV Rare Earth triflates 

 
82 

 

Due to the C2 symmetry of this complex only four triflate ligands are 

crystallographically unique. Every triflate ion is only coordinated to one samarium 

atom, leading to the monomeric complex [Sm(CF3SO3)8]
5-. These complexes are 

stacked along the crystallographic a-axis, held together by nitrosylium cations (figure 

56). 

 

Figure 56: Stacking of the [Sm(CF3SO3)8]5- complexes in direction of the a-axis. 

 

As it is shown, the NO+ cations consist of either the oxygen atom O4 and the nitrogen 

atom N4 or the atoms O3 and N3, respectively. Both of this cations suffer from 

positional disorder. The NO+ cation is linear and the midpoint of the bond between 

oxygen and nitrogen is situated on the Wyckoff position 8a for the N4 and O4 and on 

the Wyckoff position 8b for N3 and O3. This leads to a situation, where it cannot be 

distinguished crystallographically which atom is oxygen and which is nitrogen. Figure 

57 is showing the disorder for a) the (N3O3)+ cation and b) the (N4O4)+ ion. 



IV Rare Earth triflates 

 
83 

 

 

Figure 57: Disorder of the (N3O3)+ cation (a) and (N4O4)+ cation (b). 

 

Each of these rods is connected to two other rods in direction of the crystallographic 

b-axis. This connection occurs also via NO+ cations. In this case the NO+ ions were built 

of the oxygen atoms O1 and O2 and the nitrogen atoms N1 and N2 (figure 58).  

 

Figure 58: Connection of the rods via nitrosylium cations. 

 

There is no disorder shown by these two types of NO+ cations, due to no symmetry 

restriction of their locations. Nevertheless, they vary in their position along the 
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crystallographic a-axis (figure 59), leading to a “butterfly” liked shape when viewed 

along the [001] direction. 

 

Figure 59: Stacking of the nitrosylium ions along the a-axis, leading to a “butterfly” liked 

shaped when looked on the (001) plane. 

 

Alongside the crystallographic c-axis there is no connection between the 

(NO)5[Sm(CF3SO3)8] rods. Furthermore it can be seen, that there are channels in 

between the rods. The “walls” of these channels are decorated by the fluorine atoms 

of the triflates (figure 60).  

 

Figure 60: Perfluorinated channels inside (NO)5[Sm(CF3SO3)8]. 
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The bond lengths within the triflate-anion are the same far all synthesized Rare Earth 

compounds and also consistent with the literature[40]. The S-C bond length is about 

183 pm and the C-F bond length is around 132 pm. The S-O bond lengths show 

differences in their lengths, caused by the different coordinations of the oxygen atoms. 

For the terminal oxygen atoms the bond lengths are slightly shorter with an average 

of 144 pm than the S-O bonds to coordinating oxygen atoms with 146 pm. The only 

difference between all compounds is the length of the Re-O bond. The observed bond 

lengths are shown in table 12.  

 

Table 12: Bond lengths between the Rare Earth atom and the coordinating oxygen atoms. 

[RE(CF3SO3)8]
5- La Pr Sm- Eu- Tb Dy 

RE-O11 / pm 248.7(3) 247.5(7) 243.1(2) 240.32(7) 237.9(2) 238.9(3) 

RE-O21 / pm 249.1(3) 243.6(8) 242.2(2) 241.06(7) 238.5(2) 240.3(3) 

RE-O31 / pm 252.6(3) 244.9(8) 240.1(2) 241.64(7) 239.1(2) 240.1(3) 

RE-O41 / pm 247.9(3) 245.5(8) 241.6(2) 239.21(7) 236.7(2) 238.3(3) 

 

As seen in the description of the RE(CF3SO3)3(H2O)3 compounds above, the lanthanide 

contraction can be seen as well. The heavier the Rare Earth elements get, the shorter 

their bonds towards the coordinating oxygen atoms are. Nevertheless the dysprosium-

compound does not fit into this scheme. Its oxygen bond length is slightly increased 

compared to the terbium-compound.  
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V Rare Earth sulfonates 

1. Synthesis of EuSO4 and EuCO3 

1.1 EuSO4
[67] 

Europium(II) sulfate could be synthesized by using 

a Jones reductor, which is described in chapter 

III.1.5. The schematic apparatus used, is shown on 

the right (figure 61). Before using the Jones 

reductor, it was washed with 150 mL 0.1 M 

hydrochloric acid. Meanwhile, a diluted solution of 

hydrochloric acid was prepared by mixing 8 mL 

6 M hydrochloric acid and 1 mL conc. hydrochloric 

acid, which were then filled up with distilled water 

to a total volume of 200 mL. Afterwards, 3.51 g 

(9.97 mmol) europium(III) oxide was dissolved in 

the prepared diluted hydrochloric acid, resulting in 

an europium(III) chloride solution. This solution 

was then added to the Jones reductor and slowly 

passed through it. The tip of the reductor was 

placed inside a stirred 8 M sulfuric acid solution, which was continuously held under 

an argon flow. This prevents the contact of the divalent europium ions with oxygen, 

which may have caused oxidation to trivalent europium ions. The divalent europium 

ions react with the sulfuric acid, forming europium(II) sulfate. After the europium(III) 

chloride solution passed through the reductor was washed with 150 mL 0.1 M 

hydrochloric acid. The obtained α-EuSO4 is metastable, hence it is stirred and heated 

up to 80 °C, while the solution is still stored under argon flow. The α- turns into the 

stable β-EuSO4, that means all handling after the heating process can be done without 

an argon flow protecting the product. After cooling down to room temperature the 

white product was filtrated and dried overnight at 75 °C.  

 
Figure 61: Apparatus for the 

EuSO4 synthesis. 
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2 Eu3+
(aq) + Zn(s)      

           
→            2 Eu2+

(aq) + Zn2+
(aq)      (1) 

Eu2+ 
(aq) + SO4

2- 
(aq)     

           
→          α-EuSO4 (s)     

80 °C
→            β-EuSO4 (s)   (2) 

 

To ensure that the synthesized product is free of any impurities it was measured by 

powder x-ray diffraction. The comparison with a diffraction pattern[68] from the 

literature shows, that the aimed product could be obtained without any crystalline 

impurities (figure 62). 

 

 

Figure 62: Powder x-ray diffraction pattern of the synthesized EuSO4 shown in black and the 

reference[68] shown in red. 
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1.2 EuCO3
[67] 

Europium(II) carbonate can be obtained by using the prior synthesized europium(II) 

sulfate. Therefore 2.500 g (10.10 mmol) EuSO4 was given to 150 mL of a boiling 

solution containing 5.403 g (0.4 M) sodium hydroxide and 6.301 g (1 M) sodium 

hydrogen carbonate. The white solid changed its color into yellow immediately. 

Nevertheless, the solution was stirred for another thirty minutes, before it was cooled 

down to room temperature. The product was filtrated and stored overnight at 75 °C.  

EuSO4 (s) + Na2CO3 (aq)       
           
→          EuCO3 (s) + Na2SO4 (aq)    (3) 

To ensure that the synthesized product is free of any impurities it was measured by 

powder x-ray diffraction. The comparison with a diffraction pattern[69] from the 

literature shows, that the aimed product could be obtained without any crystalline 

impurities (figure 63). 

 

Figure 63: Powder x-ray diffraction pattern of the synthesized EuCO3 shown in black and the 

reference[69] shown in red. 
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2. Eu2(NH2BDS)3(NMP)8 

 

2.1 Synthesis 

All syntheses done so far used oleum or neat SO3 as a solvent. Both of them are 

strongly oxidizing compounds and therefore not suitable for usage with organic 

reagents. Thus, the organic solvent NMP was chosen and filled in a duran-glass 

ampoule (d = 16 mm, l = 200 mm, thickness of wall = 1 mm) together with 40.0 mg 

(158 mmol) aniline-2,5-disulfonic acid (NH2BDS) and 30.1 mg (142 mmol) of the 

previously synthesized EuCO3. The ampoule was then dipped into liquid nitrogen, 

torch sealed and placed in a block furnace at 160 °C for 24h. The heating phase lasts 

six hours and the cooling phase 120 h. Colorless, diamond-shaped crystals of 

Eu2(NH2BDS)3(NMP)8 could be obtained (figure 64). 

 

 

Figure 64: Picture of the synthesized Eu2(NH2BDS)3(NMP)8 crystals under a polarization 

microscope. 
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2.2 Crystal structure 

Eu2(NH2BDS)3(NMP)8 crystallizes with the triclinic system and the space group P-1 with 

two formula units per unit cell. The following table shows the lattice parameters, 

detailed crystal data information can be found in the appendices (table 35). All atoms 

of the compound are located on the general Wyckoff-position 2i.  

 

Table 13: Selected crystal data of Eu2(NH2BDS)3(NMP)8. 

Eu2(NH2BDA)3(NMP)8 a = 979.45(5) pm b = 1928.6(1) pm c = 2886.1(2) pm 

triclinic, P-1 α = 83.596(2)° β = 82.988(2)° γ = 84.339(2)° 

CCDC no. 1848602 V = 5357.0(5) ∙ 106 pm3       Z = 2  

 

The compound shows three crystallographic independent Eu3+ ions, which show a 

variety of different coordination spheres, caused by severe disorder of the ligands.  

In the case of the Eu1 atom, four different coordination spheres can be found (figure 

65), which are formed by heptacoordination of oxygen atoms resulting in distorted 

single capped trigonal prisms. 

 

 

Figure 65: The four different coordination spheres of the europium atom (Eu1) in 

Eu2(NH2BDS)3(NMP)8 caused by disorder of the ligands. 
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In the case of the Eu2 atom, only two different coordination spheres can be found 

(figure 66). Both show the metal atom in sevenfold coordination of oxygen atoms 

resulting in a distorted single capped trigonal prism. 

 

Figure 66: The two different coordination spheres of the europium atom (Eu2) in 

Eu2(NH2BDS)3(NMP)8. 

 

The third crystallographically independent Eu3 atom, shows four different 

coordination spheres (figure 67), similar to Eu1. All four Eu3+ ions are heptacoordinated 

by oxygen atoms to form a distorted single capped trigonal prism. 

 

Figure 67: The four different coordination spheres of the europium atom (Eu3) in 

Eu2(NH2BDS)3(NMP)8 caused by the ligand disorder. 

 

Three of the oxygen atoms belong to aniline-2,5-disulfonate ligands (NH2BDS), which 

are binding monodentately to the Eu3+ ions (figure 68). The differences in the 

coordination spheres of the europium atoms are only caused by different bond lengths 

and angles, as well as different disordered ligands. The motif of three monodentately 

binding NH2BDS ligands is the same for all different europium atoms. Two sulfonate 

ligands facing into the same direction, whereas the third sulfonate ligand is rotated by 
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90°. The coordination sphere of the europium atoms are completed by four 

coordinating NMP-ligands (figure 68, drawn in the wires model). 

 

Figure 68: Coordination spheres of the three crystallographic independent europium atoms, 

coordinating NMP-molecules are drawn in the wire model. 

 

Every NH2BDS ligand is linking two different Eu3+ ions with each other. This leads to 

the twelve-membered ring shown in figure 69. Each europium atom is part of three 

different rings, forming a two dimensional layer. 

 

Figure 69: Twelve-membered rings of europium atoms and linking sulfonate acids. The NMP-

molecules were omitted for clarity. 
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The different layers are held together via hydrogen bonds, which occur between the 

NH2-groups as a donor and the non-coordinating oxygen atoms of the NH2BDS 

ligands (figure 70) as an acceptor. The distances D∙∙∙A range from 271(2) pm to 

296(2) pm and are, thus, medium strong[65] (table 14 ). Another indication of moderate 

hydrogen bonds are the angles (∢D-H-A) around 123.4° and 149.2°. 

 

Figure 70: Layers of Eu2(NH2BDS)3(NMP)8, linked via hydrogen bonds (red broken off bonds). 

 

Table 14: Selected hydrogen bonds in Eu2(NH2BDS)3(NMP)8. 

D-H H∙∙∙A / pm D∙∙∙A / pm angle(DHA) / ° A 

N32-H32A 238 296(2) 123.4 O42 

N33A-H33E 216 295(1) 149.2 O31A 

N42-H42F 200 271(2) 136.1 O63 

 

The coordinated NMP ligands are strongly disordered and discussed in depth in the 

chapter IX.1 (appendix). 

Similar to the NMP ligands, the NH2BDS anions are disordered as well. First, the 

disorder of the NH2BDS anion coordinating with the O82 atom to the Eu3 atom should 

be described. In this case the center of the benzene ring lays on a center of symmetry, 

meaning that only half of the aniline-2,5-disulfonate ligand is crystallographically 

independent. The other half is generated by symmetry. All of the further described 
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NH2BDS ligands show a disorder in the NH2-group. It can be either on one side of the 

benzene ring (red nitrogen atom in figure 71) or on the other side of the benzene ring 

(light red nitrogen atom in figure 71). Both NH2-positions show the same commonness 

of occurrence. Additionally, the disulfonate ion in figure 71 contains disordered oxygen 

atoms, which are caused by the rotability of the oxygen atoms. 

 

Figure 71: Disordered aniline-2,5-disulfonic acid coordinating the Eu3 atom, shown with 

occupation factors. 

 

The aniline-2,5-disulfonate anions connecting the Eu1 and Eu2 atom are also 

disordered. Both can be seen in figure 72 (a and b). In this case there is no center of 

symmetry laying beyond the benzene ring. Therefore, the whole disulfonate ligand is 

crystallographically independent. It can be seen, that the oxygen atoms are disordered 

over two positions, as well as the whole benzene ring. The distribution is slightly even 

for both NH2BDS ligands, with 59:41 for O22/O22A and 56:44 for O54/O54A. The third 

disulfonate ligand shown in figure 72 (c) displays the same disorder pattern as the two 

mentioned above. Its distribution is slightly shifted towards the disordered part a with 

53:47. The only difference is, that this NH2BDS ligand is linking Eu2 and the Eu3. 
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Figure 72: Disordered aniline-2,5-disulfonate anions linking two europium atoms, shown with 

occupation factors. 

 

The disorder of the following two aniline-2,5-disulfonate anions (figures 73 and 74) is 

more complicated. Eu2(NH2BDS)3(NMP)8 crystallizes in the centrosymmetric space 

group P-1, nevertheless not all atoms of the compound satisfy the rules of this 

centrosymmetric space group. The two mentioned NH2BDS ligands lay directly on a 

symmetric center, but do not fulfill the symmetry. Therefore, the fourfold disorder seen 

in figure 73 and 74 is caused. Although it is not holistic fulfilling, it is suppressed during 

the refinement of the structure. A and c in figure 73 show the disordered part a of the 

aniline-2,5-disulfonate ion linking two Eu1 atoms. It is the predominant part with 32 %. 

Part b and c show the disordered part b of the NH2BDS ligand with an occupation of 

18 %.  
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Figure 73: Disordered aniline-2,5-disulfonate ions linking two Eu1 atoms, shown with 

occupation factors. 

 

The only difference of the aniline-2,5-disulfonate anion shown in figure 74, is that it is 

linking two Eu33 atoms and the occupation factors are 37 % for the disordered part a 

and 12 % for the disordered part b. 

 

Figure 74: Disordered aniline-2,5-disulfonate anions linking two Eu3 atoms, shown with 

occupation factors. 
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The bond lengths between the carbon atom and the NH2 groups vary between 129 pm 

and 140 pm due to the disorder. Nevertheless they are in a narrower range than seen 

in other aniline-2,5-disulfonates as Eu2(BDSNH2)3(DMA)8
[51b] with 123 pm – 142 pm and 

Eu(BDSNH2)(Ox)0.5(phen)2
[70] with 123 pm – 157pm. The internuclear distances of the 

carbon atoms are in average 140 pm and the S-C distances 177 pm. The S-O bond 

lengths range between 144 pm and 148 pm. The Eu-O bond lengths are around 

232 pm and do not differ whether the oxygen atom belongs to a coordinating 

disulfonate anion or a coordinating NMP ligand. 
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3. Eu(BTS)(DMA)5 

 

3.1 Synthesis 

Eu(BTS)(DMA)5 was obtained by the reaction of 20 mg (63 µmol) benzenetrisulfonic 

acid (H3BTS) and 15.2 mg (71.7 mmol) of the previously synthesized EuCO3 in 1 mL 

DMA. The synthesis was carried out in a duran-glass ampoule (d = 16 mm, l = 200 mm, 

thickness of wall = 1 mm), which was torch sealed under vacuum and placed in block 

furnace at 160 °C. The temperature was maintained for 24 h and then slowly reduced 

to room temperate during a period of 120 h. Colorless, block-shaped crystals of could 

be obtained (figure 75). 

 

 

Figure 75: Picture of the synthesized Eu(BTS)(DMA)5 crystals under a polarization microscope. 
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3.2 Crystal structure 

Eu(BTS)(DMA)5 crystallizes in the orthorhombic system and the space group P212121 

with four formula units per unit cell. The following table shows the lattice parameters 

and detailed crystal data information can be found in the appendices (table 36). All 

atoms of the compound are located on the specific Wyckoff-position 4a.  

 

Table 15: Selected crystal data for Eu(BTS)(DMA)5. 

Eu(BTS)(DMA)5 a = 1475.12(5) pm b = 2122.36(6) pm c = 2383.21(7) pm 

orthorhombic, P212121    

CCDC no. 1848600 V = 7461.2(4) ∙ 106 pm3       Z = 4  

 

The compound contains two crystallographic independent europium atoms, which 

show four different coordination spheres, caused by disorder of the ligands. In three 

of the four cases (figure 76 a, b and c) the Eu3+ ion is coordinated by seven oxygen 

atoms, forming an distorted single capped trigonal prism (a), (b) and a distorted 

pentagonal bipyramid (c). In the last case (figure 76 d) the Eu3+ ion is coordinated by 

eight oxygen atoms. 

 

Figure 76: The four different coordination spheres of the europium atoms (Eu1 and Eu2) in 

Eu(BTS)(DMA)5 caused by ligand disorder. 
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The disorderd ligands will be discussed in detail after the general structure description 

of Eu(BTS)(DMA)5.  

The two crystallographically independent europium atoms only differ in their bond 

lengths and angles towards the ligands. Both trivalent metal ions are coordinated by 

two benzenetrisulfonate ligands (BTS), whose benzene rings are parallel to each other, 

and five dimethylacetamide (DMA) molecules (figure 77).  

 

Figure 77: Coordination-spheres of the Eu1 (a), and the Eu2 atom (b), respectively, DMA 

ligands are shown in the wire model for clarity. 

 

The BTS anion functions as a bridging ligand between the Eu1 and the Eu2 atom. It is 

coordinated via one oxygen atom of the first [SO3] group to Eu1 and via another 

oxygen atom of a second [SO3] group to Eu2. One of the three [SO3] groups remains 

uncoordinated. This connection leads to zigzag-strands in direction of the 

crystallographic a-axis (figure 78). The europium atoms alternate along the strand. 
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Figure 78: Connection of the europium atoms via BTS anions forming zigzag-strands in the 

direction of the crystallographic a-axis. 

 

These zigzag strands are stacked on top of each other along the crystallographic b-

axis in a way that every Eu1 atom is congruent on top of another Eu1 atom, as well as 

every Eu2 is to another Eu2 atom (figure 79). 

 

Figure 79: Stacking of the zigzag-strands in the direction of the crystallographic b-axis. 
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Furthermore, the strands are also stacked in direction of the crystallographic c-axis. 

This stacking differs to the one in b-direction, by alternating the europium atoms 

(figure 80). Although it seems that Eu3+ ions are also alternating in this figure, a closer 

look reveals, that the europium atoms in the red circles are out of the paper-plane, 

whereas the atoms in the green circles are into the paper-plane. That results in the 

formerly described stacking. 

 

Figure 80: Stacking of the rods in the direction of the crystallographic c-axis with alternating 

europium atoms. 

 

As mentioned above, the ligands are strongly disordered, which will be discussed for 

the BTS-ligands in the following and for the DMA molecules in the appendix IX.2. 

One of the bridging BTS anion shows a disorder of oxygen atoms over two positions 

(figure 81). Each of the [SO3] groups is disordered, resulting in two different ways of 

coordination to the Eu3+ ions. In the predominant part a only one oxygen atom (O21A) 
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binds to the Eu2 atom and one (O11A) to the Eu1 atom. For the disordered part b, a 

different model can be found. Likewise, as in part a only one oxygen atom (O11B) is 

bonding to the Eu1 atom, but the Eu2 atom is coordinated by two oxygen atoms (O21B 

and O23B) in a chelating way. However, this is only the case in 16 % of the ligands 

throughout the crystal. This bidentately coordinating [SO3] group results in the 

eightfold coordination of the Eu2 atom as was seen in figure 76. 

 

Figure 81: Disordered benzenetrisulfonate anion linking the two different europium atoms. 

 

 

The C-C bond lengths are in average 139 pm, whereas the S-C distances are 

approximately 177 pm. The S-O bond lengths range between 139 pm and 146 pm. The 

Eu-O bonds are around 236 pm and do not differ, whether the oxygen atom belongs 

to a coordinating trisulfonate ligand or a coordinating DMA molecule. 
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VI Excision of [Eu4O] clusters from EuOCl: The structure   

     of {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py 

 

1. {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py 

 

1.1 Dry pyridine 

Pyridine is an organic solvent, which is miscible with water and additionally 

hygroscopic. Therefore it has to be dried, before it can be used in a water-sensitive 

reaction. For drying, pyridine is filled into a round bottom flask and potassium 

hydroxide is added. After two weeks the pyridine can be purified by fractional 

distillation. The dried pyridine was kept under an inert atmosphere inside a glove box. 

 

1.2 Synthesis 

Since the reaction of divalent europium compounds in organic solvents does not lead 

to the desired divalent product, because an oxidation to Eu3+ ions took place, the 

synthesis route was changed again. Accordingly, EuOCl (74 mg, 0.36 mmol) and dry 

pyridine (1 mL) were filled in a duran-glass ampoule (d = 16 mm, l = 300 mm, 

thickness of wall = 1 mm) under an inert atmosphere, the reducing agent LiH (12 mg, 

1.5 mmol) was added and the ampoule then torch sealed. After fourteen days of 

storage at room temperature light-yellow, block-shaped crystals of 

{[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py could be obtained (figure 82). 
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Figure 82: Picture of the synthesized {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py crystals under a 

polarization microscope. 

  

1.3 Crystal structure 

{[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py crystallizes in the triclinic system and the space 

group P-1 with two formula units per unit cell. The following table shows the lattice 

parameters, detailed crystal data information can be found in the appendices (table 

37). 

 

Table 16: Selected crystal data of {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py. 

{[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py a = 1939.6(1) pm b = 2026.39(9) pm c = 2452.5(1) pm 

triclinic, P-1 α = 78.335(2)° β = 80.509(2)° γ = 65.836(2)° 

CCDC no. 1839865 V = 8576.8(7) ∙ 106 pm3       Z = 2  

 

The usual procedure of a structure description does not reflect the principles of 

structural architecture for {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py. In common procedure the 

coordination of the cations is the main focus and the centers of the polyhedra are 

occupied with metal ions, whereas the anions function as ligands. In the case of 

{[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py oxygen atoms can be found, which does not belong 

to bonded complexes or ions, such as sulfate or chloride. These O2- ions are exclusively 
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coordinated by four Eu3+ ions forming [Eu4O] cluster. The motif of [RE4X] (X = O2-, N3-) 

clusters is already known for a huge variety of compounds[71], which were intensively 

studied by Schleid et al. 

{[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py exhibits three crystallographically independent 

[Eu4O] clusters, which form [Eu4O] dimers (figure 83a). The resulting [O2Eu6] dimer is 

capped on each site by a further Eu3+ ion leading to a [Eu8] parallelepiped (figure 83 

b). The Eu-O bond lengths within the [Eu4O] clusters are extremely short with 

approximately 227 pm. They are even shorter than the already literature known 

236 pm for the Eu-O bonds of a comparable compound (Eu4OCl6)
[72], showing the same 

[Eu4O] motif. Additionally, very short distances (in average 367 pm) between the Eu3+ 

ions of the [Eu4O] tetrahedra can be seen as well, this results from the intrinsic 

constraints of the O2- centered [Eu4] tetrahedra. The Eu-Eu bonds of the capped Eu+3 

ions are slightly larger with approximately 377 pm. 

 

Figure 83: Dimer of [Eu4O] clusters in {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py . 

 

Connected [Eu4O] tetrahedra can be found in the well characterized compound 

EuOCl[73] as well. The latter shows each tetrahedron linked by vertices (green 

tetrahedra) and edges (purple tetrahedra) to adjacent [Eu4O] tetrahedra (figure 84). 

Therefore the [Eu4O] dimer in {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py can be seen as an 

excision from the EuOCl structure. 
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Figure 84: Layer of [Eu4O] clusters in EuOCl. 

 

In the following description the {[Eu6O2]Eu2(OH)6}Cl12(Py)12 group with the two 

crystallographically independent [Eu4O] clusters will be called europium cluster 1, and 

the one with only one crystallographically independent [Eu4O] cluster, due to 

symmetry, will be called europium cluster 2. For the discussion of the coordination 

numbers of the Eu3+ ions, the program MAPLE (Madelung Part of Lattice Energy)[58] 

was used. It determines the coordination spheres based on electrostatic 

considerations. The files can be found in the appendix (tables 38-49). 

In figure 86 the three O2- ions (O5, O6, O14), forming the [Eu4O]-tetrahedra are 

highlighted as dark grey bonds. Additionally, the Eu3+ ions are coordinated by 

hydroxide ligands, which show different modes of linkage. In the europium cluster 1, 

only two different coordination spheres can be found. On the one hand hydroxide 

ligands, which are only bridging two different Eu3+ ions (O4 and O7) marked as red 

bonds and on the other side hydroxide ligands which are bridging between three 

different europium atoms (O1-O3 and O8-O10) marked as orange bonds.  In the 

europium cluster 2, the hydroxide ligands belong to three different types. Both types 

described in the europium cluster 1 are present as well. O12 is bridging two different 

Eu3+ ions (red), whereas O13 and O15 are bridging three different Eu3+ ions (orange). 

Besides that, another type of hydrogen ligand occurs. O11 is bridging four different 

Eu3+ ions, highlighted with yellow bonds. Paying attention to the Eu-O bond lengths 

of the OH- ligands, a trend concerning the different linking modes can be recognized. 
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The Eu-O bonds of the twofold coordinated hydroxide ions are in average 230 pm, 

whereas the Eu-O bonds of the threefold coordinated ones are in average 15 pm 

larger. The largest Eu-O bonds can be found for the fourfolded OH- ligands, which are 

approximately 272 pm. 

 

 

Figure 85: The four different oxygen atoms in the europium cluster. [Eu4O]-tetrahedra (dark 

grey bonds), hydroxides bridging two Eu3+ ions (red bonds), hydroxides bridging three Eu3+ 

ions (orange bonds) and hydroxides bridging four Eu3+ ions (yellow bonds). 

 

Additionally, coordinating Cl- ions can be found as well (figure 85). These bound in two 

different ways to the Eu3+ ions. First, there are terminal Cl- ligands (Cl2, Cl4, Cl11, Cl12, 

Cl15, Cl17), which only coordinate one Eu3+ ion (dark green bonds) with an Eu-Cl 

distance of 275 pm. The second chloride ligand is bridging two different Eu3+ ions (Cl1, 

Cl3, Cl4-Cl10, Cl13, Cl14, Cl16, Cl18) shown as bright green bonds. The Eu-Cl bonds of 

this twofolded ligand are slightly larger with 282 pm.  
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Figure 86: The two different bonding types of the Cl- ions, terminal ligands (dark green bond) 

and ligands bridging two Eu3+ ions (bright green bonds). 

 

The coordination of the nitrogen atoms to the Eu3+ ions is easily described. Each 

nitrogen atom is terminally bonded to a single Eu3+ ion (figure 86, turquoise bond) 

with an average Eu-N distance of 266 pm. 

 

Figure 87: Monodentate nitrogen atoms bonding to one Eu3+ ion, shown with turquoise 

bonds. 
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In figure 87 the whole coordination spheres of both europium clusters are shown. The 

pyridines are shown in the wire model to maintain clarity. The difference between 

europium cluster 1 and europium cluster 2 only lies in the coordination of the 

hydroxide ligands.  

 

 

Figure 88: Full coordination spheres of both europium clusters in {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 

11 Py. 

 

The described complexes are surrounded by further non-bonded pyridine molecules, 

so that the structure can be seen as a molecular {[Eu6O2]Eu2(OH)6}Cl12(Py)12 cluster in a 

“bath” of pyridine molecules. For a better identification the binding pyridine ligands 

are drawn in the wire model, whereas the non-binding pyridines are drawn in the ball 

and stick model (figure 88). 
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Figure 89: Molecular {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py cluster in a “bath” of non-

coordinating pyridine molecules. 

 

One of the coordinated pyridine is disordered over two positions as shown in figure 

90. The ring is slightly tilted, resulting in the shown disorder. The distribution between 

both possible positions are nearly even with 48:52 %. 

 

Figure 90: Disorder of the coordinating pyridine ligand (N79/N79A) with occupation factors. 
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Three of the non-binding pyridine molecules are also disordered over two positions 

(figure 90). The pyridines around N169/N69A and N127/N27A show the same disorder 

as the coordinated pyridine described above. Both possible positions are nearly even 

distributed with 57:43 % for N169/N69A and 65:35 % for N127/N27A. The pyridine 

(N115/N15A) shows a different disorder, where the ring of the pyridine is not tilted. 

Instead, the whole pyridine molecule is rotated by approximately 170°.  

 

Figure 91: Disorder of the non-coordinated pyridine molecules with occupation factors. 

 

Last but not least the coordination spheres of the twelve crystallographically 

independent Eu3+ ions should be described. 

The europium cluster 1 exhibits eight Eu3+ ions, as can be seen in figure 92. Six of the 

latter show a coordination number of eight (Eu1-Eu5 and Eu7), whereas two of them 

are only sevenfold coordinated (Eu6 and Eu8). The coordination spheres of the 

eightfold coordinated Eu3+ ions differ by the nature of the ligands. The Eu1 atom, as 

well as the Eu7 atom, is coordinated by three oxygen, three chlorine, and two nitrogen 

atoms. The coordination sphere of the Eu2 atom consists of four oxygen, three 

chlorine, and only one nitrogen atom. Equally coordinated by four oxygen atoms are 

the Eu3 atom and Eu5 atom, those coordination spheres were filled up by two chlorine 

and two nitrogen atoms. The last eightfold coordinated Eu3+ ion is the Eu4 atom, which 
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is coordinated by five oxygen, two chlorine, and one nitrogen atom. The two sevenfold 

coordinated Eu3+ ions differ in their coordination sphere as well. The Eu6 atom is 

coordinated by four oxygen, two chlorine, and one nitrogen atom, whereas the Eu8 

atom is coordinated by only three oxygen, three chlorine, and one nitrogen atom. 

 

 

Figure 92: Coordination spheres of the eight crystallographic independent Eu3+ ions of the 

europium cluster 1 in {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py. 

 

The europium cluster 2 only contains four crystallographically independent Eu3+ ions 

(figure 93). The other half of the cluster is obtained by symmetry. All four Eu atoms 

show a coordination number of eight. Nevertheless, each of them is coordinated 

differently. The Eu9 atom is coordinated by three oxygen, three chlorine, and two 

nitrogen atoms, whereas the coordination sphere of the Eu10 atom consists of four 

oxygen, three chlorine, and one nitrogen atom. For the Eu11 atom a coordination of 

five oxygen, two chlorine, and one nitrogen atom can be found. Finally, the Eu12 atom 

is coordinated by four oxygen, two chlorine, and two nitrogen atoms.  
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Figure 93: Coordination spheres of the four crystallographic independent Eu3+ ions of the 

europium cluster 2 in {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py. 
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VII Conclusion/Summary 

In this dissertation new polysulfates, hydrogenpolysulfates and salts of sulfuric acid 

derivates were presented. The main focus of this work was on the synthesis route and 

therefore compounds with different metals, like alkaline earth metals (barium), 

transition metals (manganese), and Rare Earth metals (europium) could be described. 

An overview of the synthesized compounds and their crystallographic information is 

given at the end of each paragraph. 

In the beginning, the synthesis route of choice was a reaction in neat sulfur trioxide 

using the strong oxidation agent XeF2. Theoretically, both, the SO3 and de XeF2 are 

very strong oxidization agents and should prevent a reduction of the used metal. 

Nevertheless, for the compounds K[Mn(S2O7)2] and Cs[Mn(S2O7)2] ∙ SO3 a reduction of 

the manganese metal could be found. Starting material was in both cases a 

hexafluoromanganate(IV), whereas the obtained compounds contain trivalent 

manganese atoms. At first sight, this is confusing, because how should a reduction 

take place in a highly oxidizing atmosphere? But a closer look into the ampoule 

showed side products of a purple color. Unfortunately, these products were not 

crystalline and therefore could not be determined any further. But it is common 

knowledge, that manganese in the oxidation state +VII shows a purple color[2]. 

Accordingly, it can be assumed that a disproportion of the manganese(IV) compound 

had taken place.  

All manganese atoms in both compounds are only coordinated by disulfate ligands 

and additionally contain alkaline metals. This leads to the suggestion, that they may 

be similar to the structures of disulfatometallates, which were formerly investigated in 

the working group. The main difference, between the group of the disulfatometallates 

and the in this work, obtained compounds, is the different oxidation state of the central 

metal ion. Disulfatometallates show metals in a tetravalent oxidation state, whereas 

K[Mn(S2O7)2] and Cs[Mn(S2O7)2] ∙ SO3 show trivalent metal ions. Another significant 

difference is the linkage of the disulfate units to the metal centers. The disulfate ligands 
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of the tris- and tetrakisdisulfatometallates only link to one central metal ion, like in 

[Pt(S2O7)4]
2-[23] and [Zr(S2O7)4]

2-[24] (figure 2 and 3). On the other hand, the disulfate 

ligands in K[Mn(S2O7)2] and Cs[Mn(S2O7)2] ∙ SO3 coordinate in a bidentate chelating 

way to one manganese atom, but also link this manganese atom in a monodentate 

way to the neighboring manganese atom. This linking pattern can be found in both 

compounds (figure 94). 

 

Figure 94: Comparison of the connection pattern of K[Mn(S2O7)2] and Cs[Mn(S2O7)2] ∙ SO3. 

 

The latter compound Cs[Mn(S2O7)2] ∙ SO3 also shows a sulfur trioxide molecule 

captured in the crystal structure.  
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Table 17: Selected crystal data of K[Mn(S2O7)2] and Cs[Mn(S2O7)2] ∙ SO3. 

 K[Mn(S2O7)2] Cs[Mn(S2O7)2] ∙ SO3 

crystal system orthorhombic triclinic 

space group Iba2 P-1 

lattice parameter a = 1236.41(4) pm a = 519.38(2) pm 

 b = 974.93(3) pm b = 765.18(3) pm 

 c = 991.75(4) pm c = 938.32(3) pm 

  α = 69.661(2)° 

  β = 82.921(2)° 

  γ = 84.738(2)° 

Z 4 1 

cell volume 1195.47(7)(8) ∙ 106 pm3 346.51(2) ∙ 106 pm3 

CSD no. 434495 434494 

 

 

Furthermore, a new hydrogentrisulfate could be obtained in a reaction with oleum. 

Ba(HS3O10)2 is the first hydrogentrisulfate which contains a divalent alkaline earth 

metal. Formerly discovered hydrogentrisulfates by Schindler et al.[35] only contain 

monovalent metals like sodium, potassium, and rubidium. The dimer found in this 

structure can also be found in Na(HS3O10). The anions in K(HS3O10) and Rb(HS3O10) are 

linked to chains and no dimers can be found. This is in line with the ion radii of the 

used metal ions. Barium and sodium have the smallest radii with 116 pm for the sixfold 

Na+ and 166 pm for the tenfold Ba2+. The ion radii for potassium and rubidium are 

slightly larger with 173 pm for a tenfold K+ and 180 pm for a tenfold Rb+[2] It seems, 

that in between 166 pm and 173 pm there is a breaking point, in which the dimer-like 

structure is not stable anymore and chains of [HS3O10]
- anions are formed (figure 95).  
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Figure 95: Comparison of [HS3O10]--dimers in Ba(HS3O10)2 and [HS3O10]--chains in K(HS3O10). 

 

Table 18: Selected crystal data of Ba(HS3O10)2. 

Ba(HS3O10)2 a = 1211.62(4) pm b = 953.02(9) pm c = 1366.27(4) pm 

orthorhombic, Pbcn    

CSD no. 434493 V = 1577.63(9) ∙ 106 pm3       Z = 4  

 

 

The already known polysulfates usually coordinate low valent metals like alkaline and 

alkaline earth metals. This is even more the case, when it comes to longer polysulfate 

chains. For the disulfate anion a huge variety of different metal centers are known, 

whereas for the trisulfate anions only a few metals as centers are known. In this work, 

the first trisulfate anion coordinating a trivalent Rare Earth ion could be synthesized. 

Although KPr(S2O7)(S3O10) is not a pure trisulfate (figure 96), it still shows that it is 

possible to stabilize the trisulfate anion with a trivalent metal ion.  
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Figure 96: Praseodymium atom coordinated by two trisulfate and three disulfate anions. 

 

In former works, only a coordination of disulfate ligands around Rare Earth metal 

centers could be achieved by Schwarzer et al.[11].  

 

Table 19: Selected crystal data of KPr(S2O7)(S3O10). 

KPr(S2O7)(S3O10) a = 1109.24(4) pm b = 1365.81(4) pm c = 933.54(3) pm 

orthorhombic, Pbcm    

CSD no. 434496 V = 1414.32(8) ∙ 106 pm3       Z = 4  

 

The second part of this dissertation is about derivates of sulfuric acids and their salts. 

As the derivate to start with, trifluoromethanesulfonic acid was used. Rare Earth oxides 

were treated with trifluoromethanesulfonic acid and trifluoromethanesulfonic 

anhydride. The latter was added to eliminate any remaining water molecules, either 

from the oxides or the walls of the ampoules. Trifluoromethansulfonic anhydrate reacts 

with water and forms two molecules of trifluoromethanesulfonic acid. Additionally, 

fuming nitric acid was added as well. Former work showed, that crystallization in 

trifluoromethanesulfonic acid is nearly impossible, so the fuming nitric acid functions 
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as a crystallization medium. Two different kinds of triflates could be obtained. For the 

heavier Rare Earth metals like (Er, Tm, Lu) a mixed coordination sphere of water and 

triflate ligands could be found. The lighter Rare Earth metals like (La, Pr, Sm, Eu[40], Tb, 

Dy) show an elusive coordination of triflate ligands (figure 97). 

 

Figure 97: Comparison of both obtained triflate types. 

 

The effect, that in the coordination sphere of the heavier Rare Earth ions water 

molecules are still present could already be seen in the field of Rare Earth nitrates[24].  
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Table 20: Selected crystal data of (NO)5[RE(CF3SO3)8] (RE = La, Pr, Sm, Tb, Dy) and 

RE(CF3SO3)3(H2O)3 (RE = Er, Tm, Lu). 

 (NO)5[La(CF3SO3)8] (NO)5[Pr(CF3SO3)8] (NO)5[Sm(CF3SO3)8] (NO)5[Tb(CF3SO3)8] 

crystal 

system 
orthorhombic orthorhombic orthorhombic orthorhombic 

space group Fddd Fddd Fddd Fddd 

lattice a = 1942.3(1) pm a = 1934.1(2) pm a = 1934.21(6) pm a = 1928.44(8) pm 

parameter b = 2925.5(2) pm b = 2924.3(3) pm b = 2875.73(9) pm b = 2869.6(1) pm 

 c = 2950.2(2) pm c = 2932.8(2) pm c = 2955.74(9) pm c = 2945.1(1) pm 

Z 16 16 16 16 

cell volume 16764(2) ∙ 106 pm3 16588(2) ∙ 106 pm3 16440.6(9) ∙ 106 pm3 16298(1) ∙ 106 pm3 

CSD no. 

 

434500 

 

434501 

 

434502 

 

434503 

 

 (NO)5[Dy(CF3SO3)8] Er(CF3SO3)3(H2O)3 Tm(CF3SO3)3(H2O)3 Lu(CF3SO3)3(H2O)3 

crystal 

system 
orthorhombic triclinic triclinic triclinic 

space group Fddd P-1 P-1 P-1 

lattice a = 1929.74(8) pm a = 785.40(4) pm a = 784.20(3) pm a = 779.58(3) pm 

parameter b = 2870.1(1) pm b = 1086.24(6) pm b = 1085.10(4) pm b = 1080.31(3) pm 

 c = 2950.7(1) pm c = 1127.38(6) pm c = 1125.02(5) pm c = 1127.88(4) pm 

  α = 99.102(2)° α = 99.030(2)° α = 99.225(2)° 

  β = 108.754(2)° β = 108.689(2)° β = 108.559(2)° 

  γ = 101.461(2)° γ = 101.505(2)° γ = 101.690(2)° 

Z 16 2 2 2 

cell volume 16342(1) ∙ 106 pm3 866.65(8) ∙ 106 pm3 863.11(6) ∙ 106 pm3 855.57(5) ∙ 106 pm3 

CSD no. 434499 434671 434498 434497 
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Using the synthesis strategies described above it is not likely to obtain compounds 

with a divalent europium atom. Neat SO3 and also the trifluoromethanesulfonic acid 

are strong oxidizing agents and would oxidize the europium immediately. The 

synthesis of choice was, therefore, a reaction of already divalent europium compounds, 

such as EuSO4 and EuCO3 with sulfonic acids and organic solvents. Unfortunately, the 

oxidizing atmosphere was still too strong and compounds with trivalent europium 

could be obtained. The compound Eu2(NH2BDS)3(NMP)8 shows twelve-membered 

rings of europium atoms and linking sulfonic groups, which form layers held together 

via hydrogen bonding (figure 98). 

 

Figure 98: Twelve-membered rings of europium atoms and linking sulfonate anions forming 

layers, held together via hydrogen bonds. The NMP-molecules were omitted for clarity. 
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The second synthesized compound, Eu(BTS)(DMA)5, shows strands of europium atoms 

and linking sulfonate anions in the direction of the crystallographic a-axis. These 

zigzag strands are then stacked onto each other in both the crystallographic b- and c-

axis (figure 99). 

 

Figure 99: Stacking of the zigzag rods in Eu(BTS)(DMA)5. 

 

Table 21: Selected crystal data of Eu2(NH2BDS)3(NMP)8 and Eu(BTS)(DMA)5. 

 Eu2(NH2BDS)3(NMP)8 Eu(BTS)(DMA)5 

crystal system triclinic orthorhombic 

space group P-1 P212121 

lattice parameter a = 979.45(5) pm a = 1475.12(5) pm 

 b = 1928.6(1) pm b = 2122.36(6) pm 

 c = 2886.1(2) pm c = 2383.21(7) pm 

 α = 83.596(2)°  

 β = 82.988(2)°  

 γ = 84.339(2)°  

Z 3 4 

cell volume 5357.0(5) ∙ 106 pm3 7461.2(4) ∙ 106 pm3 

CCDC no. 1848602 1848600 
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In the last part of this work, the synthesis route was changed again. It was tried to 

obtain divalent europium by a reduction in organic solvents. As a reducing agent 

lithium hydride was used and dried pyridine as a solvent added. In this case, the 

europium source was europium oxychloride. The reduction of europium did not take 

place, but for the first time, a europium cluster could be stabilized, which is an excision 

of the EuOCl structure (figure 100).  

 

Figure 100: Excision of the [Eu4O]-tetrahedron in {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py and the 

layer-type structure in EuOCl[73]. 

 

The two [Eu4O]-tetrahedra in {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py are connected via a 

common edge, shown with the gold and purple tetrahedra. In the case of EuOCl, the 

tetrahedra build a layer in which each tetrahedron is connected to four adjacent 

tetrahedra via common edges (purple tetrahedra) and to four adjacent tetrahedra via 

common vertices (green tetrahedra). 

Table 22: Selected crystal data of {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py. 

{[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py a = 1939.6(1) pm b = 2026.39(9) pm c = 2452.5(1) pm 

triclinic, P-1 α = 78.335(2)° β = 80.509(2)° γ = 65.836(2)° 

CCDC no. 1839865 V = 8576.8(7) ∙ 106 pm3       Z = 2  
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IX Appendix 

1. Disorder of the NMP-ligands in Eu2(NH2BDS)3(NMP)8 

For the Eu1 atom all of the four coordinated NMP-ligands are disordered as shown in 

figure 101 The occupation factors show, that the distribution is not even among both 

disordered parts a and b and also not the same for all four disordered ligands. In case 

of O21 the disordered part a is dominant with 90 %, nearly the same can be seen for 

O31A with 92 % of the disordered part b. For the O11 the distribution is also shifted 

towards the disordered part b with 82 %. Only for the O1 the distribution between the 

disordered part a and b is closer to equality with 66 % and 34 % respectively. 

 

Figure 101: Disordered NMP ligands coordinating the Eu1 atom, shown with occupation 

factors. 

 

The same disorder pattern can be found for the Eu2 atom as well. All four connecting 

NMP-ligands are disordered as shown in figure 102. The occupation factors show, that 

the distribution is not even among both disordered parts a and b and also not the 

same for all four disordered ligands. In case of O41 the disordered part a is dominant 

with 86 %, nearly the same can be seen for O51 with 92 % of the disordered part a. For 

O61 and O71 the distribution is nearly even with 59 % and 56 % of the disordered part 

a. 
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Figure 102: Disordered NMP ligands coordinating the Eu2 atom, shown with occupation 

factors. 

 

Last but not least, the Eu3 atom shows the same disorder pattern as the previous 

described ones. All four connecting NMP-ligands are disordered as shown in figure 

103. The occupation factors show, that the distribution is not even among both 

disordered parts a and b and also not the same for all four disordered ligands. The 

distribution for a and b lays on the side of the disordered part a with 65 % for O81 and 

60 % for O91. For the other two NMP-ligands the distribution is slightly shifted towards 

the disordered part b with 60 % for O01B and 55 % for O11B. 

 

Figure 103: Disordered NMP ligands coordinating the Eu3 atom, shown with occupation 

factors. 
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2. Disorder of the NMP-ligands in Eu(BTS)(DMA)5 

For the Eu1 atom, four of the five connecting DMA ligands are disordered as shown in 

figure 104. The occupation factors show, that the distribution is not even among both 

disordered parts a and b, part a is predominant with ranges from 69 % for O3A to 88 % 

for O5B. 

 

Figure 104: Disordered DMA ligands coordinating the Eu1 atom, with occupation factors. 

 

Whereas the coordination sphere around the Eu1 atom show one non-disordered 

DMA ligand, the coordination sphere around the Eu2 atom is completely disordered. 

All five disordered ligands are shown in figure 105. The distribution between part a 

and part b for the oxygen atoms O7 and O8 is nearly even with 54 % for O8A and 56 % 

for O7A. For the oxygen atoms O6A, O9A and O10A part a is the predominant part 

with ranges from 63 % for O10A to 77 % for O9A. 
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Figure 105: Disordered DMA ligands coordinating the Eu2 atom, with occupation factors. 
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3. Crystal data of K[Mn(S2O7)2] 

 

Table 23: Crystallographic data of K[Mn(S2O7)2]. 

Molecular formula K[Mn(S2O7)2] 

Crystal size 0.044 mm3 ∙ 0.055 mm3 ∙ 0.088 mm3 

Crystal description colorless blocks 

Molar mass 446.28 g∙mol-1 

Crystal system orthorhombic 

Space group Iba2 

Lattice parameter a = 1236.41(4) pm 

b = 974.93(3) pm 

c = 991.75(4) pm 

Cell volume 1195.47(7) ∙ 106 pm3 

Z 4 

Cell measurement temperature 100 K 

µ 2.226 mm-1 

Measured reflections 22486 

Independent reflections 1365 

With (Io > 2σ(I)) 1221 

Rint 0.575 

Rσ 0.0185 

R1; wR2 (Io > 2σ(I)) 0.0425 ; 0.0828 

R1; wR2 (all data) 0.0502 ; 0.0873 
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Goodness of fit 1.132 

Max./min. residual electron density 0.829 / -1.154 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434495 

 

 

4. Crystal data of Cs[Mn(S2O7)2] ∙ SO3 

 

Table 24: Crystallographic data of Cs[Mn(S2O7)2] ∙ SO3. 

Molecular formula Cs[Mn(S2O7)2] ∙ SO3 

Crystal size 0.034 mm3 ∙ 0.057 mm3 ∙ 0.117 mm3 

Crystal description colorless blocks 

Molar mass 620.15 g∙mol-1 

Crystal system triclinic 

Space group P-1 

Lattice parameter a = 519.38(2) pm 

b = 765.18(3) pm 

c = 938.32(3) pm 

α = 69.661(2)° 

β = 82.921(2)° 

γ = 84.738(2)° 

Cell volume 346.51(2) ∙ 106 pm3 

Z 1 
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Cell measurement temperature 100 K 

µ 4.390 mm-1 

Measured reflections 25212 

Independent reflections 2037 

With (Io > 2σ(I)) 1778 

Rint 0.0712 

Rσ 0.0348 

R1; wR2 (Io > 2σ(I)) 0.0309 ; 0.0468 

R1; wR2 (all data) 0.0431 ; 0.0492 

Goodness of fit 1.108 

Max./min. residual electron density 0.650 / -0.808 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434494 
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5. Crystal data of Ba(HS3O10)2 

 

Table 25: Crystallographic data of Ba(HS3O10)2. 

Molecular formula Ba(HS3O10)2 

Crystal size 0.203 mm3 ∙ 0.206 mm3 ∙ 0.326 mm3 

Crystal description colorless blocks 

Molar mass 651.72 g∙mol-1 

Crystal system orthorhombic 

Space group Pbcn 

Lattice parameter a = 1211.62(4) pm 

b = 953.02(3) pm 

c = 1366.27(4) pm 

Cell volume 1577.63(9) ∙ 106 pm3 

Z 4 

Cell measurement temperature 100 K 

µ 3.421 mm-1 

Measured reflections 25008 

Independent reflections 2906 

With (Io > 2σ(I)) 2780 

Rint 0.0206 

Rσ 0.0110 

R1; wR2 (Io > 2σ(I)) 0.0144 ; 0.037 

R1; wR2 (all data) 0.0156 ; 0.0383 
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Goodness of fit 1.104 

Max./min. residual electron density 0.534 / -0.547 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434493 

 

6. Crystal data of KPr(S2O7)(S3O10) 

 

Table 26: Crystallographic data of KPr(S2O7)(S3O10). 

Molecular formula KPr(S2O7)(S3O10) 

Crystal size 0.051 mm3 ∙ 0.107 mm3 ∙ 0.123 mm3 

Crystal description colorless blocks 

Molar mass 612.31 g∙mol-1 

Crystal system orthorhombic 

Space group Pbcm 

Lattice parameter a = 1109.24(4) pm 

b = 1365.81(4) pm 

c = 933.54(3) pm 

Cell volume 1414.32(8) ∙ 106 pm3 

Z 4 

Cell measurement temperature 100 K 

µ 4.571 mm-1 

Measured reflections 37906 
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Independent reflections 2844 

With (Io > 2σ(I)) 2500 

Rint 0.569 

Rσ 0.240 

R1; wR2 (Io > 2σ(I)) 0.0414 ; 0.0893 

R1; wR2 (all data) 0.0500 ; 0.0918 

Goodness of fit 1.325 

Max./min. residual electron density 1.693 / -3.997 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434496 
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7. Crystal data of Er(CF3SO3)3(H2O)3 

 

Table 27: Crystallographic data of Er(CF3SO3)3(H2O)3. 

Molecular formula Er(CF3SO3)3(H2O)3 

Crystal size 0.111 mm3 ∙ 0.146 mm3 ∙ 0.649 mm3 

Crystal description colorless needles 

Molar mass 668.52 g∙mol-1 

Crystal system triclinic 

Space group P-1 

Lattice parameter a = 785.40(4) pm 

b = 1086.24(6) pm 

c = 1127.38(6) pm 

α = 99.102(2)° 

β = 108.745(2)° 

γ = 101.461(2)° 

Cell volume 866.65(8) ∙ 106 pm3 

Z 2 

Cell measurement temperature 100 K 

µ 5.351 mm-1 

Measured reflections 138184 

Independent reflections 7657 

With (Io > 2σ(I)) 7201 

Rint 0.0480 

Rσ 0.183 
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R1; wR2 (Io > 2σ(I)) 0.0185 ; 0.0407 

R1; wR2 (all data) 0.0214 ; 0.0415 

Goodness of fit 1.065 

Max./min. residual electron density 1.953 / -1.570 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434671 

 

8. Crystal data of Tm(CF3SO3)3(H2O)3 

 

Table 28: Crystallographic data of Tm(CF3SO3)3(H2O)3. 

Molecular formula Tm(CF3SO3)3(H2O)3 

Crystal size 0.053 mm3 ∙ 0.056 mm3 ∙ 0.076 mm3 

Crystal description colorless blocks 

Molar mass 670.19 g∙mol-1 

Crystal system triclinic 

Space group P-1 

Lattice parameter a = 784.20(3) pm 

b = 1085.10(4) pm 

c = 1125.02(5) pm 

α = 99.030(2)° 

β = 108.688(2)° 

γ = 101.505(2)° 

Cell volume 863.11(6) ∙ 106 pm3 
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Z 2 

Cell measurement temperature 100 K 

µ 5.651 mm-1 

Measured reflections 50104 

Independent reflections 7487 

With (Io > 2σ(I)) 6515 

Rint 0.0516 

Rσ 0.0450 

R1; wR2 (Io > 2σ(I)) 0.0256 ; 0.0409 

R1; wR2 (all data) 0.0380 ; 0.0431 

Goodness of fit 1.054 

Max./min. residual electron density 1.244 / -1.077 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434498 
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9. Crystal data of Lu(CF3SO3)3(H2O)3 

 

Table 29: Crystallographic data of Lu(CF3SO3)3(H2O)3. 

Molecular formula Lu(CF3SO3)3(H2O)3 

Crystal size 0.040 mm3 ∙ 0.080 mm3 ∙ 0.155 mm3 

Crystal description colorless blocks 

Molar mass 676.23 g∙mol-1 

Crystal system triclinic 

Space group P-1 

Lattice parameter a = 779.58(3) pm 

b = 1080.31(3) pm 

c = 1127.88(4) pm 

α = 99.225(2)° 

β = 108.559(2)° 

γ = 101.690(2)° 

Cell volume 855.57(5) ∙ 106 pm3 

Z 2 

Cell measurement temperature 100 K 

µ 6.285 mm-1 

Measured reflections 52515 

Independent reflections 5435 

With (Io > 2σ(I)) 4706 

Rint 0.0701 

Rσ 0.0432 
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R1; wR2 (Io > 2σ(I)) 0.0295 ; 0.0527 

R1; wR2 (all data) 0.0413 ; 0.0550 

Goodness of fit 1.054 

Max./min. residual electron density 2.479 / -1.953 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434497 

 

10. Crystal data of (NO)5[La(CF3SO3)8] 

 

Table 30: Crystallographic data of (NO)5[La(CF3SO3)8]. 

Molecular formula (NO)5[La(CF3SO3)8] 

Crystal size 0.089 mm3 ∙ 0.123 mm3 ∙ 0.126 mm3 

Crystal description colorless needles 

Molar mass 1481.52 g∙mol-1 

Crystal system orthorhombic 

Space group Fddd 

Lattice parameter a = 1942.2(1) pm 

b = 2925.5(2) pm 

c = 2950.2(2) pm 

Cell volume 16764(2) ∙ 106 pm3 

Z 16 

Cell measurement temperature 100 K 
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µ 1.625 mm-1 

Measured reflections 146843 

Independent reflections 6315 

With (Io > 2σ(I)) 4865 

Rint 0.0976 

Rσ 0.0388 

R1; wR2 (Io > 2σ(I)) 0.0438 ; 0.0842 

R1; wR2 (all data) 0.0683 ; 0.0938 

Goodness of fit 1.035 

Max./min. residual electron density 1.398 / -1.474 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434500 
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11. Crystal data of (NO)5[Pr(CF3SO3)8] 

 

Table 31: Crystallographic data of (NO)5[Pr(CF3SO3)8]. 

Molecular formula (NO)5[Pr(CF3SO3)8] 

Crystal size 0.042 mm3 ∙ 0.071 mm3 ∙ 0.133 mm3 

Crystal description colorless blocks 

Molar mass 1483.52 g∙mol-1 

Crystal system orthorhombic 

Space group Fddd 

Lattice parameter a = 1934.1(2) pm 

b = 2924.3(3) pm 

c = 2932.8(2) pm 

Cell volume 16588(2) ∙ 106 pm3 

Z 16 

Cell measurement temperature 100 K 

µ 1.787 mm-1 

Measured reflections 60117 

Independent reflections 4237 

With (Io > 2σ(I)) 2548 

Rint 0.1693 

Rσ 0.0774 

R1; wR2 (Io > 2σ(I)) 0.0535 ; 0.1003 

R1; wR2 (all data) 0.1171 ; 0.1243 
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Goodness of fit 1.012 

Max./min. residual electron density 1.356 / -1.322 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434501 

 

12. Crystal data of (NO)5[Sm(CF3SO3)8] 

 

Table 32: Crystallographic data of (NO)5[Sm(CF3SO3)8]. 

Molecular formula (NO)5[Sm(CF3SO3)8] 

Crystal size 0.074 mm3 ∙ 0.080 mm3 ∙ 0.103 mm3 

Crystal description colorless blocks 

Molar mass 1492.96 g∙mol-1 

Crystal system orthorhombic 

Space group Fddd 

Lattice parameter a = 1934.21(6) pm 

b = 2875.73(9) pm 

c = 2955.74(9) pm 

Cell volume 16440.6(9) ∙ 106 pm3 

Z 16 

Cell measurement temperature 100 K 

µ 2.046 mm-1 

Measured reflections 43558 



IX Appendix 

 

 
153 

 

Independent reflections 6004 

With (Io > 2σ(I)) 4368 

Rint 0.0575 

Rσ 0.0456 

R1; wR2 (Io > 2σ(I)) 0.0383 ; 0.0632 

R1; wR2 (all data) 0.0684 ; 0.0705 

Goodness of fit 1.063 

Max./min. residual electron density 1.206 / -1.206 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434502 
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13. Crystal data of (NO)5[Tb(CF3SO3)8] 

 

Table 33: Crystallographic data of (NO)5[Tb(CF3SO3)8]. 

Molecular formula (NO)5[Tb(CF3SO3)8] 

Crystal size 0.072 mm3 ∙ 0.082 mm3 ∙ 0.110 mm3 

Crystal description colorless needles 

Molar mass 1501.53 g∙mol-1 

Crystal system orthorhombic 

Space group Fddd 

Lattice parameter a = 1928.44(8) pm 

b = 2869.6(1) pm 

c = 2945.1(1) pm 

Cell volume 16298(1) ∙ 106 pm3 

Z 16 

Cell measurement temperature 100 K 

µ 2.359 mm-1 

Measured reflections 93174 

Independent reflections 9609 

With (Io > 2σ(I)) 6345 

Rint 0.0635 

Rσ 0.0594 

R1; wR2 (Io > 2σ(I)) 0.0415 ; 0.0678 
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R1; wR2 (all data) 0.0883 ; 0.0785 

Goodness of fit 1.033 

Max./min. residual electron density 1.587 / -2.346 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434503 

 

14. Crystal data of (NO)5[Dy(CF3SO3)8] 

 

Table 34: Crystallographic data of (NO)5[Dy(CF3SO3)8]. 

Molecular formula (NO)5[Dy(CF3SO3)8] 

Crystal size 0.053 mm3 ∙ 0.091 mm3 ∙ 0.257 mm3 

Crystal description colorless needles 

Molar mass 1505.11 g∙mol-1 

Crystal system orthorhombic 

Space group Fddd 

Lattice parameter a = 1929.74(8) pm 

b = 2870.1(1) pm 

c = 2950.7(1) pm 

Cell volume 16342(1) ∙ 106 pm3 

Z 16 

Cell measurement temperature 100 K 

µ 2.450 mm-1 
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Measured reflections 58159 

Independent reflections 5069 

With (Io > 2σ(I)) 3764 

Rint 0.0641 

Rσ 0.0422 

R1; wR2 (Io > 2σ(I)) 0.0399 ; 0.0718 

R1; wR2 (all data) 0.0673 ; 0.0796 

Goodness of fit 1.022 

Max./min. residual electron density 1.631 / -1.321 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CSD-no. 434499 
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15. Crystal data of Eu2(NH2BDS)3(NMP)8 

 

Table 35: Crystallographic data of Eu2(NH2BDS)3(NMP)8. 

Molecular formula Eu2(NH2BDS)3(NMP)8 

Crystal size 0.130 mm3 ∙ 0.487 mm3 ∙ 0.902 mm3 

Crystal description colorless diamonds 

Molar mass 2775.49 g∙mol-1 

Crystal system triclinic 

Space group P-1 

Lattice parameter a = 979.45(5) pm 

b = 1928.6(1) pm 

c = 2886.1(2) pm 

α = 83.596(2)° 

β = 82.988(2)° 

γ = 84.339(2)° 

Cell volume 5357.0(5) ∙ 106 pm3 

Z 3 

Cell measurement temperature 100 K 

µ 2.003 mm-1 

Measured reflections 249926 

Independent reflections 28852 

With (Io > 2σ(I)) 26838 

Rint 0.0514 

Rσ 0.0270 
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R1; wR2 (Io > 2σ(I)) 0.0590 ; 0.1168 

R1; wR2 (all data) 0.0640 ; 0.1187 

Goodness of fit 1.266 

Max./min. residual electron density 3.478 / -2.983 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CCDC-no. 1848602 

 

16. Crystal data of Eu(BTS)(DMA)5 

 

Table 36: Crystallographic data of Eu(BTS)(DMA)5. 

Molecular formula Eu(BTS)(DMA)5 

Crystal size 0.180 mm3 ∙ 0.284 mm3 ∙ 0.466 mm3 

Crystal description colorless blocks 

Molar mass 1805.66 g∙mol-1 

Crystal system orthorhombic 

Space group P212121 

Lattice parameter a = 1475.12(5) pm 

b = 2122.36(6) pm 

c = 2383.21(7) pm 

Cell volume 7461.2(4) ∙ 106 pm3 

Z 4 
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Cell measurement temperature 100 K 

µ 1.917 mm-1 

Measured reflections 283645 

Independent reflections 21929 

With (Io > 2σ(I)) 19504 

Rint 0.0715 

Rσ 0.0377 

R1; wR2 (Io > 2σ(I)) 0.0451 ; 0.0875 

R1; wR2 (all data) 0.0562 ; 0.0911 

Goodness of fit 1.118 

Max./min. residual electron density 5.476 / -3.520 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CCDC-no. 1848600 
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17. Crystal data of {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py 

 

Table 37: Crystallographic data of {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py. 

Molecular formula {[Eu6O2]Eu2(OH)6}Cl12(Py)12 ∙ 11 Py 

Crystal size 0.174 mm3 ∙ 0.269 mm3 ∙ 0.335 mm3 

Crystal description light yellow blocks 

Molar mass 5007.61 g∙mol-1 

Crystal system triclinic 

Space group P-1 

Lattice parameter a = 1939.6(1) pm 

b = 2026.39(9) pm 

c = 2452.5(1) pm 

α = 78.335(2)° 

β = 80.509(2)° 

γ = 65.836(2)° 

Cell volume 8576.8(7) ∙ 106 pm3 

Z 2 

Cell measurement temperature 100(2) K 

µ 4.660 mm-1 

Measured reflections 446960 

Independent reflections 35244 

With (Io > 2σ(I)) 27362 

Rint 0.0743 

Rσ 0.0313 
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R1; wR2 (Io > 2σ(I)) 0.0350 ; 0.0695 

R1; wR2 (all data) 0.0573 ; 0.0793 

Goodness of fit 1.056 

Max./min. residual electron density 1.568 / -1.249 e- / Å-3 

Diffractometer Bruker D8 Venture 

X-Ray source Mo-Kα, λ = 0.7107 Å 

CCDC-no. 1839865 

 

 

 

 

18. Results of the MAPLE calculations 

 

The following Ionradii[2] were used for the calculations with the program MAPLE: 

C4+  CN:4 29 pm 

Cl-  CN:6 176 pm 

Eu3+  CN:8 120 pm 

N3-  CN:4 132 pm 

O2-  CN:4 124 pm 

 

The results of the calculation for the different europium atoms are shown in the 

following tables. 
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Results for Eu1 

 

Table 38: Results from the MAPLE calculation for Eu1. 

ZT Eu1 0.8941 0.1630 0.6942 Abstand ë-ECoN( 1) ë-ECoN( 3) 

1 Cl2 0.9994 0.0367 0.7440 273.745 1.209 1.215 

2 O3 0.8472 0.1467 0.6175 235.168 1.150 1.156 

3 Cl1 0.8582 0.3031 0.6324 279.785 1.079 1.086 

4 Cl3 0.8386 0.1997 0.8027 282.941 1.012 1.019 

5 O1 0.8297 0.0807 0.7284 241.610 0.988 0.995 

6 O2 0.7563 0.2247 0.6969 243.881 0.932 0.938 

7 N1 0.9851 0.2177 0.7193 263.888 0.659 0.666 

8 N7 10.083 0.1316 0.6140 266.332 0.608 0.614 

 

CN: 8 

1-MEFIR:  118.89    3-MEFIR:  119.02 

1-ECoN :  7.6372    3-ECoN:   7.6888 

 

Results for Eu2 

 

Table 39: Results from the MAPLE calculation for Eu2. 

ZT Eu2 0.7604 0.2674 0.5819 Abstand ë-ECoN( 1) ë-ECoN( 4) 

1 O6 0.6868 0.2030 0.6121 219.928 1.416 1.488 

2 O7 0.6914 0.2752 0.5098 233.796 1.012 1.091 

3 Cl1 0.8582 0.3031 0.6324 278.022 0.993 1.072 

4 Cl4 0.8758 0.2176 0.5000 280.031 0.950 1.029 

5 Cl5 0.6269 0.3720 0.6288 295.651 0.634 0.708 

6 O3 0.8472 0.1467 0.6175 252.215 0.617 0.691 

7 N13 0.7594 0.3913 0.5194 265.946 0.507 0.576 

8 O2 0.7563 0.2247 0.6969 277.467 0.196 0.240 

 

CN: 8 

1-MEFIR:  116.45    4-MEFIR:  118.00 

1-ECoN:  6.3255    4-ECoN:  6.8946 
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Results for Eu3 

 

Table 40: Results from the MAPLE calculation for Eu3. 

ZT Eu3 0.6293 0.1959 0.5413 Abstand ë-ECoN( 1) ë-ECoN( 4) 

1 O6 0.6868 0.2030 0.6121 226.398 1.312 1.360 

2 O7 0.6914 0.2752 0.5098 227.130 1.246 1.294 

3 Cl9 0.5302 0.1306 0.5294 276.095 1.098 1.147 

4 O8 0.5282 0.2549 0.6058 242.920 0.895 0.944 

5 Cl8 0.7530 0.0611 0.5470 294.508 0.715 0.763 

6 N19 0.6775 0.1758 0.4365 264.853 0.584 0.629 

7 O9 0.6083 0.1134 0.6341 259.980 0.512 0.555 

8 N25 0.5274 0.3087 0.4831 276.906 0.364 0.402 

 

CN: 8 

1-MEFIR:  117.69    4-MEFIR :  118.67 

1-ECoN:  6.7270    4-ECoN  :  7.0938 

 

 

Results for Eu4 

 

Table 41: Results from the MAPLE calculation for Eu4. 

ZT Eu4 0.7581 0.0901 0.6541 Abstand ë-ECoN( 1) ë-ECoN( 3) 

1 O5 0.6693 0.1377 0.7247 233.172 1.143 1.161 

2 Cl7 0.7266 -0.0310 0.7098 276.768 1.087 1.104 

3 O6 0.6868 0.2030 0.6121 235.438 1.085 1.103 

4 O3 0.8472 0.1467 0.6175 235.556 1.082 1.100 

5 Cl8 0.7530 0.0611 0.5470 282.920 0.955 0.973 

6 O1 0.8297 0.0807 0.7284 240.856 0.949 0.967 

7 N31 0.8882 -0.0219 0.6367 279.182 0.331 0.344 

8 O9 0.6083 0.1134 0.6341 288.684 0.120 0.127 

 

CN: 8 

1-MEFIR :  117.75    3-MEFIR :  118.10 

1-ECoN  :  6.7752    3-ECoN  :  6.9035 
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Results for Eu5 

 

 

Table 42: Results from the MAPLE calculation for Eu5. 

ZT Eu5 0.7322 0.1428 0.7932 Abstand ë-ECoN( 1) ë-ECoN( 4) 

1 O4 0.6699 0.0670 0.8282 222.693 1.311 1.369 

2 O5 0.6693 0.1377 0.7247 227.043 1.246 1.305 

3 Cl3 0.8386 0.1997 0.8027 274.833 1.074 1.135 

4 O1 0.8297 0.0807 0.7284 242.090 0.864 0.925 

5 N43 0.6917 0.1694 0.8951 259.972 0.638 0.696 

6 Cl6 0.6096 0.2800 0.7852 296.575 0.627 0.684 

7 O2 0.7563 0.2247 0.6969 267.129 0.343 0.388 

8 N37 0.8342 0.0233 0.8490 281.091 0.268 0.308 

 

CN: 8 

1-MEFIR :  116.68    4-MEFIR :  117.87 

1-ECoN  :  6.3718    4-ECoN  :  6.8095 

 

 

Results for Eu6 

 

Table 43: Results from the MAPLE calculation for Eu6. 

ZT Eu6 0.5968 0.2482 0.6816 Abstand ë-ECoN( 1) ë-ECoN( 3) 

1 O6 0.6868 0.2030 0.6121 231.111 1.181 1.200 

2 O5 0.6693 0.1377 0.7247 233.824 1.111 1.131 

3 O10 0.5110 0.1875 0.7176 235.537 1.068 1.087 

4 Cl5 0.6269 0.3720 0.6288 278.481 1.056 1.075 

5 O8 0.5280 0.2549 0.6058 241.898 0.908 0.927 

6 Cl6 0.6096 0.2800 0.7882 288.309 0.848 0.867 

7 N49 0.4640 0.3532 0.7034 277.059 0.356 0.371 

 

CN: 7 

1-MEFIR :  114.62    3-MEFIR :  114.99 

1-ECoN  :  6.5842    3-ECoN  :  6.7193 
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Results for Eu7 

 

Table 44: Results from the MAPLE calculation for Eu7. 

ZT Eu7 0.4717 0.1657 0.6396 Abstand ë-ECoN( 1) ë-ECoN( 4) 

1 Cl11 0.3617 0.2893 0.5917 230.336 1.615 1.649 

2 O9 0.6083 0.1134 0.6341 215.414 1.082 1.124 

3 Cl10 0.5142 0.0265 0.7040 262.938 0.858 0.900 

4 Cl9 0.5302 0.1306 0.5294 279.536 0.515 0.551 

5 O10 0.5110 0.1875 0.7176 238.802 0.492 0.528 

6 N55 0.3565 0.1911 0.7193 255.894 0.322 0.351 

7 O8 0.5282 0.2549 0.6058 258.397 0.175 0.196 

8 N61 0.3877 0.1049 0.6129 278.695 0.077 0.089 

 

CN: 8 

1-MEFIR :  107.68    4-MEFIR :  108.43 

1-ECoN  :  5.1362    4-ECoN  :  5.3884 

 

Results for Eu8 

 

 

Table 45: Results from the MAPLE calculation for Eu8. 

ZT Eu8 0.5982 0.0720 0.7616 Abstand ë-ECoN( 1) ë-ECoN( 3) 

1 O5 0.6693 0.1377 0.7247 220.436 1.374 1.420 

2 O4 0.6699 0.0670 0.8282 227.946 1.131 1.180 

3 Cl10 0.5142 0.0265 0.7040 279.718 0.946 0.996 

4 Cl12 0.4800 0.1292 0.8407 282.268 0.892 0.942 

5 Cl7 0.7266 -0.0310 0.7098 293.510 0.665 0.712 

6 O10 0.5110 0.1875 0.7176 251.967 0.594 0.639 

7 N67 0.5978 -0.0493 0.8221 260.414 0.594 0.639 

 

 

CN: 7 

1-MEFIR :  113.05    3-MEFIR :  113.99 

1-ECoN  :  6.2162    3-ECoN  :  6.5534 
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Results for Eu9 

 

 

Table 46: Results from the MAPLE calculation for Eu9. 

ZT Eu9 0.7997 0.5090 0.9502 Abstand ë-ECoN( 1) ë-ECoN( 3) 

1 N73 0.7165 0.4598 0.9277 235.131 1.325 1.335 

2 O15 0.8273 0.5294 10.336 234.437 1.155 1.165 

3 O13 0.8655 0.5912 0.9268 236.020 1.115 1.125 

4 Cl16 0.8172 0.3732 10.157 283.084 0.995 1.006 

5 Cl13 0.8733 0.4696 0.8455 284.571 0.964 0.975 

6 Cl15 0.7078 0.6375 0.8921 285.179 0.951 0.962 

7 O11 0.9339 0.4435 0.9619 251.556 0.736 0.746 

8 N79 0.6728 0.5511 10.156 267.641 0.570 0.579 

 

CN: 8 

1-MEFIR :  118.62    3-MEFIR :  118.83 

1-ECoN  :  8.3812    3-ECoN  :  8.4750 

 

 

Results for Eu10 

 

 

Table 47: Results from the MAPLE calculation for Eu10. 

ZT Eu10 0.9024 0.4090 0.0793 Abstand ë-ECoN( 1) ë-ECoN( 4) 

1 O14 0.9810 0.4691 0.0553 220.261 1.407 1.476 

2 O12 0.9589 0.4009 0.1572 230.475 1.097 1.172 

3 Cl16 0.8172 0.3732 0.0157 279.675 0.957 1.032 

4 Cl17 0.7717 0.4714 0.1473 283.756 0.870 0.946 

5 O15 0.8273 0.5294 0.0336 251.233 0.638 0.709 

6 Cl18 10.389 0.2982 0.0429 296.420 0.619 0.689 

7 N85 0.8880 0.2908 0.1417 264.459 0.535 0.602 

8 O11 0.9339 0.4435 -0.0381 283.752 0.134 0.167 

 

CN: 8 

1-MEFIR :  116.44    4-MEFIR :  117.91 

1-ECoN  :  6.2561    4-ECoN  :  6.7927 
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Results for Eu11 

 

Table 48: Results from the MAPLE calculation for Eu11. 

ZT Eu11 0.9220 0.5824 0.0095 Abstand ë-ECoN( 1) ë-ECoN( 3) 

1 O14 0.9810 0.4691 0.0553 232.699 1.165 1.184 

2 O14 10.190 0.5309 -0.0553 234.266 1.125 1.144 

3 Cl18 0.9611 0.7018 -0.0429 278.533 1.058 1.078 

4 O15 0.8273 0.5294 0.0336 237.199 1.050 1.070 

5 O13 0.8655 0.5912 -0.0732 240.783 0.960 0.980 

6 Cl14 0.9131 0.6107 0.1197 284.051 0.941 0.960 

7 N91 0.7911 0.6949 0.0249 279.766 0.329 0.343 

8 O11 10.661 0.5565 0.0381 283.941 0.166 0.175 

 

CN: 8 

1-MEFIR :  117.94    3-MEFIR :  118.32 

1-ECoN  :  6.8040    3-ECoN  :  6.9460 

 

 

Results for Eu12 

 

Table 49: Results from the MAPLE calculation for Eu12. 

ZT Eu12 0.9713 0.5288 0.8672 Abstand ë-ECoN( 1) ë-ECoN( 4) 

1 O12 10.411 0.5991 0.8429 222.200 1.306 1.370 

2 O14 10.190 0.5309 0.9447 225.971 1.256 1.321 

3 Cl13 0.8733 0.4696 0.8455 273.821 1.078 1.145 

4 O13 0.8655 0.5912 0.9268 243.328 0.816 0.882 

5 Cl14 10.869 0.3893 0.8803 293.564 0.667 0.731 

6 N103 10.268 0.5015 0.7643 266.229 0.496 0.554 

7 N97 0.8835 0.6473 0.8061 273.519 0.367 0.419 

8 O11 0.9339 0.4435 0.9619 275.640 0.214 0.252 

 

CN: 8 

1-MEFIR :  116.33    4-MEFIR :  117.64 

1-ECoN  :  6.2008    4-ECoN  :  6.6742 
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X Abbreviations and symbols 

 

A  acceptor 

BDC  benzenedicarboxylic acid 

BDS  benzenedisulfonic acid 

BTS  benzenetrisulfonic acid 

CCDC  Cambridge Crystallographic Data Centre 

CN  coordination number 

CSD  Cambridge Structural Database 

DMA  N,N-dimethylacetamide 

DMF  N,N-dimethylformamide 

D  Donor 

NMP  N-Methyl-2-pyrrolidone 

Ox  oxalate 

Phen  1,10-phenantroline 

Py  pyridine 

RE  Rare Earth element 

d  diameter 

l  length 
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