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Chapter 1.

Introduction

If you have built castles in the air, your work need not be lost; that is where they
should be. Now put the foundations under them.

Henry David Thoreau

In the Fifties and Sixties lots of new particles were discovered in the newly built particle ac-
celerators, and the days of field theory seemed to be over, at least in the theory of the strong
interactions [Gro99]. First of all, one did not know which particles to use as the relevant
degrees of freedom, since they all seemed to be equally qualified at that time. In addition,
the couplings in the strong interactions were too large to admit a perturbative treatment.
In the mid-Sixties the quark model restored the order in the particle zoo, and it allowed a
group-theoretical classification of the observed hadron spectrum [GMN00]. In the Seventies
Quantum Chromo Dynamics (QCD) [GW73b, Wei73] arose as a field theory which could ex-
plain asymptotic freedom [GW73b, GW73a, Pol73]. Thus, one had a field theory at hand,
which in principle was capable to describe the observations, with the quarks as fundamental
fields. At short distances QCD was used to tackle many problems, and no contradiction to
experiment has been found. Unfortunately, the low-energy part of QCD can not be treated
in perturbation theory due to the increase of the coupling at low momentum transfers. To-
day, one still lacks an analytic tool for treating that region and calculating, for example, the
particle masses from QCD directly.
Besides the SU(3) colour gauge symmetry, the QCD Lagrangian possesses an approximate
global symmetry, the so called chiral symmetry. The chiral symmetry leads to conserved
charges and currents with opposite parity, and if that symmetry was realised in nature, every
hadron would have a chiral partner with degenerate mass but with opposite parity. These
parity partners are missing in the observed hadron spectrum, which suggests that the sym-
metry is spontaneously broken. The pseudoscalar mesons are very good candidates for the
Goldstone bosons of the broken symmetry, which are not exactly massless due to the chiral
symmetry breaking quark mass terms in the QCD Lagrangian. Chiral Perturbation Theory
(CHPT) [Wei79, GL84, GL85] describes the interactions among the lightest mesons in terms
of an effective field theory, which is based on these symmetry properties. Although one returns
to a field theory in terms of non-elementary particles, one has a systematic way of treating
interactions in orders of momenta, opposed to an expansion in the coupling. The possible
interaction terms are constrained by the symmetry, which reduces the number of parameters
and endows the theory with predictive power. The momentum expansion, however, restricts
its applicability to energies well below 1 GeV. It is also possible to include additional par-
ticles, as for example baryons and vector mesons, in a systematic way into the Lagrangian
[Kra90, CWZ69, Geo84], which leads to a chiral effective field theory with a broader applica-
bility.
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Chapter 1. Introduction

In the energy region between the applicability domains of CHPT and of perturbative QCD
one still has to rely on models, which leads back to the question of the relevant degrees of free-
dom. Is a given hadron, for example, a two- or three-quark state (constituent quark model
[GI85, CI86, PDG06]) or is it a bound state of two different hadrons (’dynamically gener-
ated’,’molecule’ - see below)? In any case, one does not have to start from the beginning, but
the experiences and constraints from QCD and CHPT should be incorporated in these mod-
els. The constituent quark model has been very successful in describing part of the observed
hadron spectrum, especially for the heavy-quark systems, e.g. charmonia and bottomonia
[Swa06]. On the other hand, especially in the light-quark sector, there is still a lively debate
about the nature of many hadronic states. One sector with a lot of activity is, for example,
the light scalar meson sector (σ, a0(980), f0(980), κ(900)). These states can not be explained
within the naive constituent quark model, and many models have been proposed to explain
the phenomenology of these resonances. The suggestions for the nature of these resonances
vary between qq states, multiquark states, KK bound states and superpositions of them (see
e.g. [PDG06, AT04, Pen06] and references therein). A different route to explain the low-lying
scalars has been taken in [OO97, OO99]. In these works the authors explain the states as
being dynamically generated by the interactions of the pseudoscalar mesons. The scattering
amplitudes are calculated by iterating the lowest order amplitudes of CHPT, which leads to
a unitarisation of the amplitudes and creates poles which can be associated with the scalars.
A similar question about the nature of hadronic resonances one encounters in the baryon
sector, where the quark model also has trouble to describe the baryon excitations and their
properties in a satisfying way (see e.g. [BM00, CR00] and references therein). As in the scalar
case, an alternative approach to explain the resonance structure has been to generate reso-
nances by iterating the leading order interactions of a chiral effective theory. The pioneering
work in that direction has been done in [KSW95a, KSW95b] and was followed by many other
works [OR98, OM01, JOO+03, LK02, GRLN04], which suggest a number of JP = 1

2

− baryon
resonances to be generated dynamically by the interactions of Goldstone bosons and baryons,
e.g. Λ(1405) and N∗(1535). Studying the interaction of the pseudoscalar mesons with the
decuplet of baryons [KL04, SOVV05] also led to the generation of many known JP = 3

2

−

resonances, as for example the Λ(1520).
Recent works applied the approach to the interactions of the octet of Goldstone bosons with
the nonet of vector mesons [LK04, ROS05]. The authors calculate the scattering amplitude by
solving a Bethe-Salpeter equation with a kernel fixed by the lowest order interaction of a chi-
ral expansion. The leading order expression for the scattering of Goldstone bosons off vector
mesons in a chiral framework is given by the Weinberg-Tomozawa (WT) term [Wei66, Tom66]
and leads to a parameter free interaction. The only free parameter in the calculation enters
through the regularisation of the loop integral in the Bethe-Salpeter equation. Poles have
been found, which have been attributed to the axial-vector mesons.
A comparison of the pole position and width is necessarily indirect and depends on the model,
which is used to extract these quantities from the actual observables. In addition, the height
of the scattering amplitude, or in other words the strength of the interaction, is not tested
in this way. We apply the method of dynamical generation directly to a physical process,
namely the τ decay. The τ decay offers a clean probe to study the hadronic interactions, since
the weak interaction part is well understood and can be cleanly separated from the hadronic
part, which we are interested in. The τ decay into three pions is dominated by a resonance
structure, which is usually ascribed to the a1. So far the descriptions of the τ decay into the
a1 are mostly based upon a parametrisation in terms of Breit-Wigner functions and many
parameters (see [PDG06] and references therein), which leads to model dependent results. A
different approach using the chiral effective field theory including vector mesons and axial-
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Figure 1.1.: (a) Basic diagram describing the dynamically generated a1 in the τ decay and
(b) additional diagram, when the a1 is included explicitly. φ and V are the intermediate
Goldstone boson and vector meson, respectively, which can be either πρ or KK∗.

vector mesons has been performed in [GDPP04]. The method yields a good description of
the spectral function for the decay into three pions. However, the width of the a1 has been
parametrised in that work, whereas in the present work we generate the width by the decay
into vector meson and Goldstone boson. In [A+00] a big contribution was found from a1

decay into σπ, f0(1370)π and f2(1270)π and from that point of view the good agreement in
[GDPP04] by just including the decay of the a1 into ρπ comes as a surprise and shows the
model dependence of the extracted information from the τ decay. In [UBW02] the authors
successfully describe the spectral function for the decay τ− → 2π0π−ντ in the framework of
the linear σ-model. The width of the a1 in this work is generated from the elementary decays
of the a1, but without considering the WT interaction.
The a1 is especially interesting, since it is considered to be the chiral partner of the ρ
[Wei67, Sch03]. As already mentioned, one expects a chiral partner for every particle from
chiral symmetry. Due to the spontaneous symmetry breaking, one does not find degenerate
one-particle states with the right quantum numbers. Nevertheless, the chiral partners have to
exist, not necessarily as one-particle states, but at least as multi-particle states. Unmasking
the a1 as a bound state of a vector meson with a Goldstone boson would therefore approve its
role of the chiral partner and disapprove its existence as a one-particle state. In the meson-
meson and meson-baryon scattering examples, mentioned before, one can also see that the
dynamically generated resonances would qualify as the chiral partners of the scattered parti-
cles, although the question of the chiral partner for these particles is not as clear as for the
a1 and the ρ. Even for the chiral partner of the ρ a different suggestion besides the a1 exists,
namely the b1(1235) [CP76].

We calculate the τ decay in two different ways. We first calculate it by assuming that the a1

is generated dynamically and use the method from [LK04, ROS05] to describe the decay. This
means that in this framework the τ decay is essentially described as follows: From the weak
interactions a pair of mesons emerges (one pseudoscalar meson, one vector meson). Their final
state interaction produces the resonant a1 structure. This process is depicted in Fig. 1.1(a),
where the blob stands for the iterated loop diagrams. The required vertices relevant for the
process are calculated in a chiral effective field theory and the standard weak interactions.
There are at most two free parameters in that calculation (in the simplest case only one), which
enter through the regularisation of different loops. In a second calculation, we introduce the a1

explicitly. Different to [GDPP04], where the width of the a1 is parametrised, we will generate
the width by the a1 decay into pseudoscalar and vector mesons. In addition, we still include
the WT term, since there is no reason to neglect it. We note that including the a1 and the
WT term is not double counting, as will be explained in Chapter 3. The essential additional
diagram is shown in Fig. 1.1(b), where the blob again represents the iterated loop diagrams,

3



Chapter 1. Introduction

but this time the kernel also includes the a1 interaction, which will be discussed in detail in
Chapter 6. Afterwards we compare both calculations to experiment and see which scenario is
favoured by the data. Since there exist excellent data for the τ decay [S+05], one can expect
that the results will be quite decisive. In case that the first scenario is favoured by experiment,
this would be a sign that the a1 is a dynamically generated resonance (molecule state) and in
case the second calculation is favoured, this would be a hint that the a1 is a quark-antiquark
state.

Generally, different effective theories or different formalisms do not necessarily have to exclude
each other. However, the more informative and more decisive situation appears, if the different
approaches lead to deviating results. The importance of knowing the right formalism to
describe particle interactions can be seen, for example, in the discussion about the ω spectral
function in a cold baryon rich medium. To leading order in the baryon density, modifications
of the spectral distribution are determined by vector meson nucleon scattering amplitudes.
In [LWF02] the nucleon resonances in these channels are dynamically generated and the
ωN amplitude is calculated in a similar framework as mentioned above, however without
constraints from chiral symmetry. In other models the ωN scattering amplitude is calculated
in aK-matrix approach [MSL+06] or at tree level [KKW97] including the resonances explicitly.
The results on the shape of the in-medium spectral function of all three calculations differ
quantitatively as well as qualitatively. One can of course find more differences in these models
than the one mentioned, but knowing the right framework to describe the process, would
already be a major step forward. Due to the small amount of information and the high
complexity, in-medium physics is often based on vague assumptions and crude approximations,
and whenever informations can be extracted from the vacuum sector, that should be done.

The work is structured as follows. In Chapter 2 we will give a brief summary of CHPT in order
to settle the notation and to remind of the most important facts. In Chapter 3 we introduce
the vector mesons in the chiral Lagrangian and construct the interaction terms, which are
relevant for this work. We will also discuss the influence of the choice of interpolating fields
on the vertices. The most important ingredient in our calculation is the unitarisation of
the scattering amplitude, which will be discussed in detail in Chapter 4. We will describe
the most important methods to unitarise the scattering amplitude and comment on their
differences or equivalence. In order to solve the resulting equations, we will use the so called
projector formalism, which will be described in Chapter 5. The formalism is based on the
work in [LK04], but takes a deviating route to determine the final form of the projectors,
which, however, will not influence the result. We will address the differences and the reasons
for them to appear. In Chapter 6 we will outline the calculation and show the formalism at
work. (The interested reader may find further details on the calculations in the appendices.)
In Chapter 7 we will show results for the spectral functions obtained in the two different
scenarios. We will also investigate the Dalitz projection data from [A+00] within the first
scenario. Finally we will close with a summary and an outlook in Chapter 8.
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Chapter 2.

Chiral Perturbation Theory

Chiral Perturbation Theory (CHPT) is an effective field theory describing the interactions of
the pseudoscalar mesons at low energies, where low in that case basically means below the ρ
meson mass. We will briefly recall some facts about CHPT, and we will see how the theory
emerges from QCD. Due to the extensive literature on that subject, we will be rather short
on most issues. For a detailed introduction to CHPT see for example [Sch03].

2.1. Chiral symmetry

We start by writing down the QCD Lagrangian [PS95],

LQCD =
∑

f=u,d,s,c,b,t

qf (i /D −mf )qf − 1
4
Gµν,aGµν

a , (2.1)

with the covariant derivative
Dµ = ∂µ − ig

λa

2
Aµ,a (2.2)

and the field strength tensor of the gluons

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c . (2.3)

The matrices λa are the Gell-Mann matrices, which can be found in Appendix A, and fabc

are the SU(3) structure constants, which can also be found in Appendix A.
In the following we will neglect the heavy flavours c, b and t, which means we will ignore effects
due to virtual heavy quark pairs. This is a reasonable approximation for the energy regime,
we are interested in.
The QCD Lagrangian describes the interactions of quarks and gluons in terms of an SU(3)
colour gauge symmetry. Besides the SU(3) gauge symmetry and many more symmetries (e.g.
parity, charge conjugation or time reversal), the Lagrangian possesses an additional symmetry
in the case of massless quarks. Since the quark masses are very small compared to hadronic
scales, one can expect this approximate symmetry to be useful. In order to see the symmetry,
we introduce projectors on so called left- and right-handed states

PR =
1
2
(1 + γ5) , PL =

1
2
(1− γ5) . (2.4)

It is easy to verify that these objects are indeed projectors. Using these operators, we can
write the QCD Lagrangian for massless quarks (and only light flavours) as

L0
QCD =

∑

f=u,d,s

iqf,R /Dqf,R + iqf,L /Dqf,L − 1
4
Gµν,aGµν

a (2.5)

5



Chapter 2. Chiral Perturbation Theory

with
qf,L = PLqf , qf,R = PRqf . (2.6)

Since the covariant derivative does not depend on flavour, L0
QCD is invariant under independent

U(3) rotations of the left- and right-handed quarks


uL

dL

sL


 → VL



uL

dL

sL


 = exp

(
−iθL

a

λa

2

)
e−iθL



uL

dL

sL


 , (2.7)



uR

dR

sR


 → VR



uR

dR

sR


 = exp

(
−iθR

a

λa

2

)
e−iθR



uR

dR

sR


 . (2.8)

λa are again the Gell-Mann matrices, but now acting on flavour instead of colour. We see
that the symmetry can also be written as an SU(3)L × SU(3)R × U(1)R × U(1)L symmetry.
This global symmetry leads according to Noether’s theorem to 18 conserved currents

Lµ,a = qLγ
µλa

2
qL , Rµ,a = qRγ

µλa

2
qR (2.9)

and
Lµ = qLγ

µqL , Rµ = qRγ
µqR . (2.10)

Instead of these currents it is more convenient to use linear combinations of these expressions,
which have a definite transformation behaviour under parity, namely

V µ,a = Rµ,a + Lµ,a = qγµλa

2
q , (2.11)

Aµ,a = Rµ,a − Lµ,a = qγµγ5
λa

2
q , (2.12)

V µ = Rµ + Lµ = qγµq , (2.13)
Aµ = Rµ − Lµ = qγµγ5q . (2.14)

These currents transform as vector and axial-vector currents under parity. They correspond
to transformations of the left- and right-handed quarks with the same phase and with an
opposite phase, respectively.
The singlet axial-vector current is not preserved by quantisation. This phenomenon is referred
to as anomaly and for further information we refer to [PS95]. The singlet vector current leads
to baryon conservation, which yields the classification of hadrons into mesons and baryons.
The SU(3)V symmetry is reflected in the particle spectrum, since the particles are ordered
according to representations of SU(3)V , e.g. the octet of vector mesons or the decuplet
of baryons. Neglecting strangeness and considering only SU(2)V , the symmetry is almost
perfectly realised, which can be seen in for example the triplet of pions or the triplet of ρ
mesons. The whole SU(3)L×SU(3)R or equivalently SU(3)V ×SU(3)A symmetry is the chiral
symmetry, which we are interested in, and which we will investigate further.
The associated charge operators to the conserved currents of the chiral symmetry are defined
as the space integrals of the charge densities

Qa
R/L =

∫
d3x q†R/L

λa

2
qR/L (2.15)

and
Qa

V = Qa
R +Qa

L , Qa
A = Qa

R −Qa
L , (2.16)

6



2.2. Chiral Lagrangian

which commute with the Hamiltonian corresponding to L0
QCD (cf. Eq.(2.5)).

If the Hamiltonian is invariant under certain symmetry transformations, one usually orders the
physical states according to irreducible representations of the symmetry group. In case of the
chiral symmetry, we would expect that for every state, there exists a state of opposite parity
with the same mass, which can be seen as follows. Let |i,+ > be a single-particle eigenstate
of the Hamiltonian with energy eigenvalue Ei and positive parity. Defining |φ >= Qa

A|i,+ >,
we know

H0
QCD|φ >= H0

QCDQ
a
A|i,+ >= Qa

AH
0
QCD|i,+ >= Ei|φ > (2.17)

and
P |φ >= PQa

AP
−1P |i,+ >= −Qa

A|i,+ >= −|φ > , (2.18)

where P is the parity operator. Thus, the states have opposite parity and the same energy
eigenvalue. However, the derivation does not tell us, whether the state |φ > is a single-particle
state. For that conclusion one has to assume that the operator annihilates the ground state.
Under this assumption one gets

Qa
A|i,+ >= Qa

Aa
†
i |0 >= ([Qa

A, a
†
i ] + a†iQ

a
A)|0 >= −λ

a
ij

2
b†j |0 > , (2.19)

where we used

[Qa
A, a

†
i ] = −λ

a
ij

2
b†j (2.20)

and b†j generates quanta of opposite parity as a†j . The relation (2.20) can be verified by
explicitly evaluating the commutator. In turn, if Qa

A does not annihilate the ground state, the
state with opposite parity will not be a single-particle state. Since the degenerate multiplets
of opposite parity are not observed in the physical particle spectrum, the ground state is not
invariant under the symmetry, i.e. the symmetry must be spontaneously broken. As already
mentioned, the SU(3)V symmetry is realised in the particles spectrum, and thus the chiral
symmetry is broken down to SU(3)V ×SU(3)A −→ SU(3)V . In this case Goldstone’s theorem
tells us that there are eight massless Goldstone bosons with transformation properties closely
connected to those of the broken generators. The pseudoscalar mesons have the right quantum
numbers, and although they are not massless, there is a definite mass gap to all other states,
which makes them a very good candidate for the Goldstone bosons. The small masses are
due to the explicit symmetry breaking by the quark mass terms.

2.2. Chiral Lagrangian

Now we want to describe the pseudoscalar mesons as Goldstone bosons of the spontaneously
broken symmetry SU(3)V × SU(3)A −→ SU(3)V . We will see that we need to introduce the
concept of a non-linear realisation [CWZ69]. The usual linear representations are not suited
to describe the interaction of the Goldstone bosons alone. An example is the linear σ-model
[AH03, Mos89], where the price for the linear transformation of the pion is the introduction
of the σ meson, whose nature is still controversal. The problem in that case is cured by the
non-linear σ-model [AH03, Mos89], which is an example of a non-linear realisation.
In order to describe the pions, we will look at the connection between the pions and the coset
space (SU(3)V × SU(3)A)/SU(3)V . We briefly recall the definition of a coset space and the
relevant properties. The left coset of g is defined by

gH = {gh|h ∈ H} , (2.21)

7



Chapter 2. Chiral Perturbation Theory

and the set of all left cosets is called the quotient group G/H. Given any representation ϕ of
G = SU(3)V × SU(3)A

ϕ : (G×M) −→M , (2.22)

where M is some vector space, we can make the following observation. If H is the subgroup,
which leaves the ground state invariant, then all elements of a coset map the origin onto the
same vector, since

ϕ(gh, 0) = ϕ(g, 0) (2.23)

by the homomorphism property. It is also easy to show [Sch03] that the mapping

gH −→ ϕ(g, 0) (2.24)

is injective, and therefore there exists a one-to-one correspondence between the quotient group
and the ground state excitations of the group G. The ground state excitations are caused by
the generators of the broken group, i.e. by Qa

A|0〉 6= |0〉, which are directly connected to the
Goldstone bosons. Thus, the next step is to parametrise the coset space, which in our case is
isomorph to SU(3), by the Goldstone boson fields. There are several ways to do that and we
will use the most popular exponential parametrisation

U = eiφ/F0 (2.25)

with

φ =



π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K0 − 2√
3
η


 (2.26)

and the pion decay constant F0. The transformation of the Goldstone bosons can be figured
out by multiplying the coset space element with the corresponding transformation. In order
to do that explicitly, we choose a representative of the coset space element. In the following we
will use that a general element g ∈ G can be denoted with g = (L,R) since SU(3)V × SU(3)A

is isomorph to SU(3)L × SU(3)R and an element of the subgroup h ∈ SU(3)V is then to be
identified with h = (V, V ). Noting that

(L,R) (V, V )︸ ︷︷ ︸
∈H

= (LV,RV ) = (1, RL†) (LV,LV )︸ ︷︷ ︸
∈H

,

we see that the coset space elements can be characterised by RL†. Multiplying with a trans-
formation g′ ∈ G yields

(L′, R′) (1, RL†)H︸ ︷︷ ︸
=gH

= (L′, R′RL†)H = (1, R′RL†L′†)H .

Thus, under a transformation g = (L,R) ∈ G the Goldstone bosons transform as

U → U ′ = RUL† . (2.27)

Using this transformation law, we can construct the lowest order chiral Lagrangian, where
lowest order means that one orders the interaction in powers of the external momenta and
the Goldstone boson masses. The construction is straightforward and the Lagrangian reads

Leff =
F 2

0

4
Tr[∂µU(∂µU)†] , (2.28)
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2.2. Chiral Lagrangian

where Tr denotes the trace in flavour space. One can easily convince oneself that there are
no other terms with two derivatives or less. Eq.(2.28) would be the Lagrangian for a perfect
SU(3)V×SU(3)A symmetry. However, we already noted that the quark mass term breaks the
chiral symmetry explicitly

Lquark−mass = −qRMqL − qLM
†qR , M =



mu 0 0
0 md 0
0 0 ms


 . (2.29)

Although M is a constant matrix and does not transform, the Lagrangian LQCD would be
invariant if M transformed according to

M −→ RML†. (2.30)

One then constructs the most general Lagrangian by including M together with U transform-
ing according to Eq.(2.27) and Eq.(2.30). At lowest order this leads to

Ls.b. =
F 2

0B0

2
Tr[MU † + UM †] , (2.31)

where B0 parametrises the connection between the Goldstone boson masses and the quark
masses. Identifying the terms of quadratic order in the fields φ, one gets for example

Ls.b. = −B0

2
Tr[φ2M ] + · · · = −B0(mu +md)π+π− −B0(mu +ms)K+K−

−B0(md +ms)K0K
0 − B0

2
(mu +md)π0π0 + . . . .

(2.32)

Using mu ≈ md ≈ m the masses of the pions and kaons are given by

m2
π = 2B0m, (2.33)

m2
K = B0(m+ms) . (2.34)

So far we have only considered global symmetries, which we will now promote to local ones,
which requires some explanation. The link between the underlying theory and the effective
field theory is formulated via the path integral formalism (see [GL84]). In the absence of
anomalies the Ward identities can be expressed as a local invariance of the generating func-
tional including external fields (see e.g. [Sch03]). But, there is still a subtlety. In the path
integral formalism, one does not need the Lagrangian to be invariant under the symmetry;
the action is the quantity, which has to be invariant. That means that the Lagrangian has
only to be invariant up to a total derivative. However, in [Leu94] it was shown that the
freedom of adding total derivatives and performing field transformations can be used to bring
the Lagrangian into a manifestly gauge invariant form.
The QCD Lagrangian including the couplings of the eight vector currents, eight axial-vector
currents as well as scalar and pseudoscalar quark densities to external fields reads

L = L0
QCD + Lext = L0

QCD + qγµ(vµ + γ5a
µ)q − q(s− iγ5p)q . (2.35)

Instead of external vector and axial-vector fields one can use

vµ =
1
2
(rµ + lµ) , aµ =

1
2
(rµ − lµ). (2.36)

9



Chapter 2. Chiral Perturbation Theory

The transformation behaviour of the external fields is such that they cancel the terms resulting
from the local chiral transformation and the transformations are given by

rµ −→ VRrµV
†
R + iVR∂µV

†
R (2.37)

lµ −→ VLlµV
†
L + iVL∂µV

†
L (2.38)

s+ ip −→ VR(s+ ip)V †L (2.39)

s− ip −→ VL(s− ip)V †R . (2.40)

Using these fields to guarantee the local invariance of the lowest order chiral Lagrangian, one
gets

L2 =
F 2

0

4
Tr[DµU(DµU)†] +

F 2
0

4
Tr[χU † + Uχ†] (2.41)

with
∂µU → DµU = ∂µU − irµU + iUlµ (2.42)

and
χ = 2B0(s+ ip) , (2.43)

where s incorporates explicit chiral symmetry breaking through the quark mass matrix s = M .
Another advantage of using the external fields is the convenient way of connecting the effective
theory to the weak interactions [PS95]. One of the couplings, we will need, is the coupling of
the weak gauge boson W to the pions, which can be determined by setting

rµ = 0 , lµ = − g√
2
(W+

µ T+ + h.c.) , (2.44)

where h.c. refers to the hermitian conjugate and

T+ =




0 Vud Vus

0 0 0
0 0 0


 . (2.45)

Here, Vij denote the elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. The
constant g is related to the W mass and the Fermi constant by

GF =
√

2
g2

8M2
W

. (2.46)

The external fields in Eq.(2.44) are chosen such that with these settings in the quark La-
grangian with external fields one gets exactly the standard charged-current weak interaction
in the light-quark sector.
We will use the Langrangian in Eq.(2.41) to describe the decay of the W boson into three
pions to lowest order. However, CHPT is only capable to describe the τ decay at energies well
below 1 GeV. In particular, the theory can not reproduce the resonance structure seen in the
τ decay. Therefore, we will discuss the inclusion of the vector mesons into the Lagrangian in
the next chapter.
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Chapter 3.

Vector Mesons and Chiral Symmetry

At low energies the dynamics of the pseudoscalar mesons are described by the chiral La-
grangian. That description is doomed to fail in processes dominated by the heavier mesons,
most notably the vector mesons. Several models have been proposed to introduce the vector
mesons in the chiral Lagrangian and most of them were motivated by the phenomenological
successful ideas of vector-meson dominance and universal coupling [Sak69]. A very prominent
way of introducing the vector mesons is the so called Hidden Symmetry Approach [BKY88].
In this approach the vector mesons are introduced as gauge bosons of a hidden local sym-
metry, which in case one just wants to include the ρ meson, would be for example SU(2)V .
Choosing one parameter, which is introduced by the model, the KSFR relation ([BKY88] and
references therein), universality of the coupling and vector dominance emerges naturally. On
the other hand introducing the vector mesons as gauge bosons is quite an assumption and
the inclusion of the axial-vector mesons into the Lagrangian is also troublesome. If one tries
to include the axial-vector mesons, one has to add higher order terms to the Lagrangian in
order to still fit the phenomenological constraints [KM90].
A more general way to treat the vector mesons was already introduced in [Wei68, CWZ69,
CCWZ69], along with the non-linear realisation of the Goldstone bosons. The only restriction
on the vector mesons, in that approach, is that they transform as an octet under SU(3)V . We
will refer to that scheme as the WCCWZ scheme, named after the people who contributed
to the development (Weinberg, Callan, Coleman, Wess, Zumino). In that approach the phe-
nomenological constraints are implemented by putting constraints on the couplings.
In addition to the different assumptions on the nature of the vector mesons, there is also a
choice on the interpolating fields. Instead of describing the particles in terms of four-vectors,
the vector mesons can also be represented by antisymmetric tensor fields [EGPdR89, EGL+89].
The approaches are of course equivalent since the choice of fields can not influence the physics.
However, in practice the Lagrangians are truncated in a derivative expansion and the La-
grangian might differ in ’higher’ order contact terms (see e.g. [EGL+89, BP96]), which espe-
cially influence the behaviour at higher energies. We put ’higher’ in quotation marks, since
the contact terms are higher order than the lowest order CHPT Lagrangian, but may not be
of higher order than the process involving the vector mesons. We will discuss the appearance
and form of these contact terms in more detail later. In the calculation in [EGL+89], for
example, the calculation employing tensor fields led to a reasonable high-energy behaviour,
whereas in the calculation using vector fields, one had to introduce contact terms in order
to get the same result as in the tensor field approach. However, one has to be careful to
use constraints from high energies in a scheme which is ordered in powers of momenta. In
principle both schemes are not suited to be valid in that energy region and an improvement
at high energies does not have to lead to an improvement at low energies. In this work, we
will use the WCCWZ scheme and describe the vector mesons by vector fields. In addition,
we will include the higher order terms to improve the high-energy behaviour.

11



Chapter 3. Vector Mesons and Chiral Symmetry

In contrast to CHPT the power counting for loop diagrams is not straightforward anymore in
the presence of vector mesons. The appearance of a heavy mass scale in the loop jeopardises
the power counting, which has also been noted in the baryon sector [GSS88]. There are sev-
eral methods to renormalise the loops such that power counting is restored. We will shortly
describe the methods and then comment on the way, in which we will renormalise the loop
diagrams in our calculations.

3.1. The WCCWZ scheme

The only requirement, we want the vector mesons to fulfil, is that they transform as an octet
under SU(3)V , i.e. we want them to live in the adjoint representation of SU(3)V . That leaves
some freedom of how the vector mesons transform under the whole group SU(3)V×SU(3)A,
and one needs some kind of connection between the different choices. That connection has
been investigated in [CWZ69]. It was shown that any non-linear realisation which becomes
linear when restricted to the subgroup can be brought into a standard form. The different
descriptions can be connected by field transformations, and therefore they are equivalent. We
do not want to repeat the general proof, which can be found in [CWZ69], but we will give a
short example. Let Vµ and Ṽµ be two different choices for the vector mesons fields with the
following transformation behaviour

Vµ
SU(3)V ×SU(3)A−→ LVµL

† , (3.1)

Ṽµ
SU(3)V ×SU(3)A−→ RṼµL

† . (3.2)

These transformations are obviously different, but when restricted to the subgroup SU(3)V
((L,R) = (B,B)), the fields transform in the same way

Vµ
SU(3)V−→ BVµB

† , (3.3)

Ṽµ
SU(3)V−→ BṼµB

† . (3.4)

Now we want to find a transformation, which transforms Vµ into Ṽµ. This simple field trans-
formation is given by

Ṽµ = UVµ , (3.5)

where we recall that U contains the Goldstone boson fields according to Eq.(2.25). Eq.(3.5)
is verified by the transformation behaviour

Ṽµ
SU(3)V ×SU(3)A−→ RUL†LVµL

† = RṼ L† . (3.6)

The reason for that freedom is that the SU(3)V×SU(3)A symmetry is broken, and it is only
the transformation properties of the vector mesons under SU(3)V which matter. Using that
freedom to choose the fields, we will use a form [Geo84] which is very convenient for the
construction of the Lagrangian and which is more or less the standard form, which is used by
many other authors. In order to do so, we first define the auxiliary quantity u, which is the
square root of U

u2 = U . (3.7)

The transformation on U induces a transformation on u, which is given by

u −→ u′ =
√
RUL† ≡ RUK−1(L,R,U) = KUL† . (3.8)
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3.1. The WCCWZ scheme

We define the transformation of the vector fields in terms of K
(
U
V

)
→

(
U ′

V ′

)
=

(
RUL†

K(L,R,U)V K†(L,R,U)

)
. (3.9)

The matrix K carries the SU(3)V×SU(3)A transformation in a non-linear way. That descrip-
tion is very much in the line of the original paper [CWZ69], where also the transformation
of a certain parametrisation of the coset space was used to induce the transformation on the
other fields. The important feature is that under the subgroup SU(3)V the transformation
becomes linear, which can be seen by noting that

√
Bu2B† =

√
BuB†BuB† = BuB† (3.10)

and looking at Eq.(3.8).
At first sight that representation looks somewhat messy, but it is quite handy for the con-
struction of the Lagrangian, since one does not need to know the exact form of K at any time.
One just needs building blocks, which transform the same way as Vµ, which will be defined
in the following. For an explicit verification of the transformation of these terms, we refer to
[Sch03]. The vector meson octet is given by

Vµ =



ρ0

µ + ω8
µ/
√

3
√

2ρ+
µ

√
2K+

µ√
2ρ−µ −ρ0

µ + ω8
µ/
√

3
√

2K0
µ√

2K−
µ

√
2K0

µ −2ω8
µ/
√

3


 . (3.11)

ω8
µ is an admixture of the physical states ωµ and φµ (for details see e.g. [PDG06]). We do not

care about the details of this mixing, since these states do not contribute to our calculation.
The covariant derivative of the vector mesons is given by

∇µVν = ∂µVν + [Γµ, Vν ] , Γµ =
1
2
(u†(∂µ − irµ)u+ u(∂µ − ilµ)u†)) , (3.12)

which also transforms as
∇µ −→ ∇′µ = K∇µK

† . (3.13)

Thus, the field strength tensor of the vector mesons, defined by

Vµν = ∇µVν −∇νVµ , (3.14)

also transforms the same as Vµ.
A very important building block is

uµ = iu†DµUu
† (3.15)

with the covariant derivativeDµ defined in Eq.(2.42). Another expression, containing basically
the external fields (in our case we are interested in the W boson, see Eq.(2.44)), is given by

fµν
± = uFµν

L u† ± u†Fµν
R u , (3.16)

where Fµν
L/R are the field strength tensors of the external left and right handed vector fields

Fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ] , Fµν

R = ∂µrν − ∂νrµ − i[rµ, rν ] . (3.17)
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Chapter 3. Vector Mesons and Chiral Symmetry

3.1.1. Vector-meson couplings

Since all building blocks (Vµ, Eq.(3.14), Eq.(3.15), Eq.(3.16)) transform the same under chiral
symmetry, one simply multiplies the objects and takes the flavour trace in order to get an
invariant. Taking also care of parity and charge conjugation (see Tab. C.1), the Lagrangian
containing the coupling of the W to a Goldstone boson and a vector meson to lowest order is
given by

Lvec = −1
8

Tr[VµνV
µν ]− fV

4
Tr[Vµνf

µν
+ ]− igV

4
Tr[Vµν [uµ, uν ]] , (3.18)

which has already been written down in [EGL+89]. We note that the definition of Vµ in
[EGL+89] differs from our definition by a factor of

√
2, which yields different prefactors in

front of our terms. The external field lµ is connected to the W boson by Eq.(2.44). The
last term on the right hand side of Eq.(3.18), for example, incorporates a contribution to the
W → φV vertex, as well as the ρ→ ππ vertex:

− igV

4
Tr[Vµν [uµ, uν ]] → − igV

2F 2
0

Tr[(∂µVν − ∂νVµ)∂µφ∂νφ] (3.19)

and

− igV

4
Tr[Vµν [uµ, uν ]] → igV g

2
√

2F0

Tr[∂µV ν([∂µφ,W
−
ν T

t
+]− [∂νφ,W

−
µ T

t
+])] (3.20)

with T+ given in Eq.(2.45). The important point to note in Eq.(3.18) is that chiral symmetry
(breaking) connects the desired couplings ofW to mesons on the one hand side to the couplings
of vector mesons to a virtual photon and to two Goldstone bosons on the other hand side.
Therefore, the constants fV and gV can be determined from Γ(ρ0 → e+e−) and Γ(ρ → 2π),
which yields

fV =
0.154GeV

Mρ
, gV =

0.069GeV
Mρ

, (3.21)

which are the values given in e.g. [EGL+89]. In the same work the authors also used theoretical
considerations and approximations to estimate the constants. Using the KSFR relation in the
form

fV = 2gV (3.22)

and

fV gV =
f2

π

M2
ρ

, (3.23)

which origins in constraints on the high-energy behaviour of the pion form factor [EGL+89],
the two coefficients can be pinned down to be

fV =
√

2fπ

Mρ
≈ 0.127 GeV

Mρ
, gV =

fπ√
2Mρ

≈ 0.064GeV
Mρ

, (3.24)

which roughly reproduces Eq.(3.21). However, these values are not determined by exact hard
constraints. The constraint coming from the high-energy behaviour is questionable. The
theory was written down to hold for small momenta, and there will be no inconsistency, if the
theory breaks down for high energies. Fixing the constants by high-energy behaviour does
not mean that the low-energy behaviour is improved. In the following we will use the values
in Eq.(3.21) determined from experiment. We will also explore the impact of variations of
these values on our results in Chapter 7.
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3.1. The WCCWZ scheme

The Weinberg-Tomozawa (WT) term, which was mentioned already in Chapter 1, is contained
in the kinetic term of Eq.(3.18). The explicit expression together with the other vertices, which
we will use in our work, resulting from the Lagrangian in Eq.(3.18), can be found in Appendix
D.

3.1.2. Power counting

Since the number of vector mesons in a process might change (opposed to for example the
number of baryons in a process), the power counting for processes involving vector mesons
might work different for different processes. In principle there are two situations, where it
works. We keep the following discussion on the tree level and postpone the power counting
for loop diagrams to Section 3.3.1, since this an extra topic.

1. For energies much smaller than the vector meson mass, every derivative counts as O(q)
(also the ones on the vector mesons) [EGL+89]. In particular, since the energies are much
smaller than the vector meson mass, the vector mesons can only appear as intermediate
particles, and the chiral order of the diagram can be determined by integrating out the
vector mesons. We can study this situation by looking for example at the contribution
to pion scattering stemming from the Lagrangian in Eq.(3.18). The coupling of the
vector meson to the pseudoscalar mesons starts at O(q3). Since the propagator cannot
decrease the chiral counting a contribution to pion scattering would be at least

O(q3)
1
M2

V

O(q3) = O(q6) . (3.25)

This power counting changes, if one uses the tensor instead of the vector realisation to
describe the vector mesons. We will come back to that point in Section 3.2.

2. In case the number of vector mesons does not change in a process, a systematic power
counting is possible as long as all three-momenta are small compared to the mass of
the vector meson [JMW95]. In this case a derivative on the Goldstone bosons counts
as small, whereas a derivative on the vector mesons does not influence the order. We
encounter this situation for example by determining the lowest order contribution to
the scattering of a Goldstone boson off a vector meson. This term is given by the WT
term, which is O(q), since there is only one ’soft’ derivative (see Appendix D.1).

In our calculation the requirement of small energies is not fulfilled, and therefore we have to be
careful in applying the power counting. The assumption is that considering the lowest order
terms, which are dictated by either one of the above power counting schemes, the calculation
is also applicable at higher energies. In addition, for the final state interactions we will see in
Chapter 5 how we extend the applicability of our calculation to higher energies by applying
the power counting to the kernel of the Bethe-Salpeter equation instead of applying it to the
scattering amplitude. This is of course where the model starts and the theory ends. However,
in Chapter 7 we will see that our model is well behaved and can be systematically improved,
which are two very promising properties.
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Chapter 3. Vector Mesons and Chiral Symmetry

3.1.3. Axial-vector meson couplings

Now we also introduce the relevant terms, describing the interactions of the a1, into the
Lagrangian. We recall that we will investigate two scenarios describing the τ decay, where
in one of them the a1 field is included explicitly. Thus, for this scenario we will need the
Lagrangian which we are going to discuss in the following. The axial-vector nonet Aµ is given
by

Aµ =



a0

1 + f1(1285)
√

2a+
1

√
2K+

1A√
2a−1 −a0

1 + f1(1285)
√

2K0
1A√

2K−
1A

√
2K0

1A

√
2f1(1420)




µ

. (3.26)

Before we write down the interaction terms, we want to comment on the troublesome term
Tr[Aµu

µ], which appears in the Lagrangian when one uses the four-vector field formalism
instead of the antisymmetric tensor description [EGPdR89]. This interaction couples the
unphysical spin 0 component of the a1 to the Goldstone bosons. In our approach, we can of
course just set the coupling to zero, but it is instructive to have a closer look at the spin 0
component of the a1.
The problem is that the condition

∂µV
µ = ∂µA

µ = 0 , (3.27)

which eliminates the extra component, does not remain valid in the presence of the interac-
tions, as long as the fields do not couple to conserved currents. If the fields couple to conserved
currents, the unwanted spin 0 component will be projected out at the vertex. However the
axial-vector mesons are not treated as gauge particles in our scheme, and there is no reason
why they should couple to a conserved current. The only thing which should be assured is
that the unphysical spin 0 component is not propagated. That is already taken care of since
the projectors, which we will introduce in Chapter 5, project on the J = 1 state, and therefore
eliminate the spin 0 part.. The coupling of the a1 to the W , which we will write down below,
also projects out the unwanted part, as can be seen in the explicit expression for the vertex in
Appendix D. Therefore, the question of how to treat the spin 0 component is only academical
in that case.
A different way to assure the elimination of the spin 0 component is using the tensor repre-
sentation, where the interactions project automatically on transverse states [Leu07]. We will
comment on the use of the tensor formalism at the end of the chapter.

The Lagrangian, we are going to use, to describe the interactions of the a1 is

Laxial = −fA

4
Tr[Aµνf

µν
− ] + ic1 Tr[V µν [Aµ, uν ]] + ic2Tr[Aµν [Vµ, uν ]] , (3.28)

where the first term describes the coupling of the a1 to the W and the last two terms describe
the decay of the a1 into Goldstone boson and vector meson with the unknown constants c1
and c2. According to the power counting discussions in the previous section, the first term is
O(q3) (situation 1) and the two other terms are O(q) (situation 2). The i in front of these
constants is chosen such that c1 and c2 are real, which follows from hermiticity

(iTr[V µν [Aµ, uν ]])∗ = −iTr[(V µν)T [(Aµ)T , (uν)T ]] = −iTr[V µν [uν , Aµ]] = iTr[V µν [Aµ, uν ]] .
(3.29)
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3.2. Vector vs tensor formulation

While the first term on the right hand side of Eq.(3.28) has again already been written down
in [EGL+89], one can find different approaches in the literature in order to describe the a1

decay vertex. Before we will comment on the other works, we will first explain the structure
of our terms. Since we want to describe the decay of an axial-vector meson into a Goldston
boson and a vector meson, we need one axial-vector field, one vector field and uµ, which
contains the Goldstone boson fields. Demanding a minimum number of derivatives, one is led
to the terms above without the specific ordering. In addition the term has to be C-invariant,
which leads to the commutator, which can be seen as follows

Tr[V µνAµuν ]
C−→ Tr[(−V µνT )AT

µu
T
ν ] = −Tr[uνAµV

µν ] = −Tr[V µνuνAµ] . (3.30)

Since uµ transforms as an axial-vector under parity, the invariance under parity transforma-
tions can also be seen directly.
Looking at Eq.(3.28) we see that both terms describing the decay into vector and pseudoscalar
meson contain a uµ. This means that integrating out the a1 would generate to lowest order an
interaction term of vector mesons and Goldstone bosons, which contains two uµ and therefore
leads to an expression of order O(q2). Since the WT term is O(q1) including both interactions
is not double counting. This will become important in the discussion of the results in Chapter
7.

In [RPO04] the authors propose a phenomenological Lagrangian in terms of tensor fields,
which is successful in reproducing the decay branching ratios. In [KM90] the hidden symme-
try formalism was used to derive the pertinent terms, which yields the same results as the
phenomenological approach. Comparing our Lagrangian to these works, we find agreement
by choosing

c1 = −1
4
, c2 = −1

8
. (3.31)

We will come back to that relation, when we discuss the calculation using an explicit a1 in
Section 6.5 and when we look at the results in Section 7.3.

In [GDPP04] the WCCWZ scheme with tensor fields is used to write down the most general
Lagrangian including axial-vector fields. Using tensor fields, one is led to terms with more
derivatives in that case and more possible terms, namely five terms. Therefore it is more
useful to compare directly the matrix elements and see if nevertheless the same structures
appear. This is done in Chapter 6 and we find that their choice of parameters corresponds to

c1 = 0 , c2 = −1
4
. (3.32)

These values, however, have to be handled with care, since due to the additional structures
in [GDPP04] a one-to-one comparison is not possible (see Chapter 6).

3.2. Vector vs tensor formulation

As already mentioned, power counting in the presence of vector mesons depends on the choice
of interpolating fields, in particular whether one uses vector or tensor fields [EGL+89]. This
issue will be discussed in the present section. The tensor field Lagrangian, fitting our needs,
is

Ltensor =
M2

8
Tr[WµνW

µν ]− 1
4

Tr[∂λWλµ∂νW
νµ] + Tr[Wµν j̃

µν ] (3.33)
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Chapter 3. Vector Mesons and Chiral Symmetry

with

j̃µν =
FV

4
fµν
+ +

iGV

4
[uµ, uν ] . (3.34)

According to the power counting considerations before, we see that for example the contri-
bution to pion scattering from this Lagrangian contributes already at O(q4), since the vertex
for the ρ decay into two pions appears with one derivative less. In principle, one could also
introduce O(q4) contact terms, but using arguments concerning the high-energy behaviour of
the pion form factor, these terms are discussed away [EGL+89]. In the vector field formalism,
where the contributions to pion scattering even started at O(q6), one can of course also intro-
duce additional O(q4) contact terms. In the following, we will see that this is even necessary
in order to connect to the tensor field Lagrangian.
In order to show the relation between the vector and the tensor formulation, we will transform
the vector meson Lagrangian into a Lagrangian using antisymmetric tensor fields. We start
with a Lagrangian of the form

L = −1
8

Tr[VµνV
µν ] +

M2

4
Tr[VµV

µ] + Tr[Vµνj
µν ] (3.35)

with

jµν = −fV

4
fµν
+ − igV

4
[uµ, uν ], (3.36)

which of course corresponds to the Lagrangian we are going to use (cf. Eq.(3.18)). The masses
M2 of the vector mesons in the octet were chosen to be the same for simplicity. In principle,
one can write down a separate mass term for every vector particle, but since we are mainly
interested in the higher order term resulting from the transformation, choosing one average
mass is sufficient. The transformation, which follows, is suitable especially for that kind of
interaction. The coupling of the current to the vector meson can also be written as

Tr[Vµνj
µν ] = Tr[∂µVν(jµν − jνµ)] → −Tr[Vν∂µ(jµν − jνµ)] = Tr[Vν j̃

ν ] (3.37)

with
j̃ν = ∂µ(jµν − jνµ) . (3.38)

Thus, we can also assume the general form of the coupling to be Tr[V µjµ] and then trans-
form the Lagrangian. That procedure is chosen in [Leu07] and works in principle the same
way. However, in that way one introduces additional derivatives, which ruins the high-energy
behaviour. In case the interactions can be written as Tr[V µjµ] without partial integration,
the vector field formalism will produce less derivatives, and therefore it will have the better
high-energy behaviour. Thus, by choosing the interpolating fields, one should also consider
the kind of interactions, one is dealing with. One should not blindly argue with the better
high-energy behaviour of the tensor field formalism for any kind of Lagrangian. Nevertheless,
an argument for favouring the tensor field formalism, which is always valid, is the inherent
projection on transverse states.

The transformation, which follows, is only suited for terms including one vector field. A
discussion on transformations covering a broader spectrum of interaction terms can be found
in [KNT07]. We start with the introduction of an antisymmetric tensor field W ′

µν by adding
1
8W

′
µνW

µν′ to the Lagrangian. Then we replace the field by the shifted tensor field Wµν

Wµν = W ′
µν − Vµν − αjµν , (3.39)
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3.3. Renormalisation in the presence of spin-1 fields

which leads to the following Lagrangian

L′ = 1
8

Tr[WµνW
µν ] +

M2

4
Tr[VµV

µ] + Tr[Vµνj
µν(1 +

1
4
α)]

+
1
4
αTr[Wµνj

µν ] +
1
8
α2 Tr[jµνj

µν ] +
1
2

Tr[Wµν∂
µV ν ]

(3.40)

Now we want to choose α such that Vµν decouples from the other fields, i.e. from jµν , which
is the case for α = −4. Using partial integration, we move the derivative in the last term on
the tensor field and arrive at

L′ = 1
8

Tr[WµνW
µν ] +

M2

4
Tr[VµV

µ]− Tr[Wµνj
µν ]− 1

2
Tr[∂νWνµV

µ] + 2 Tr[jµνj
µν ] (3.41)

Now we introduce V ′µ

V ′µ = Vµ − 1
M2

∂λWλµ ,

and we see that we can integrate out V ′µ easily, since it does not interact with any other
particle. Thus, we get

L′′ = 1
8

Tr[WµνW
µν ]− 1

4M2
Tr[∂λWλµ∂νW

νµ]− Tr[Wµνj
µν ] + 2Tr[jµνj

µν ] . (3.42)

We renormalise the tensor field such that it describes a proper spin 1 particle

Wµν = MW̃µν , (3.43)

and arrive at the final Lagrangian

L′′ = M2

8
Tr[W̃µνW̃

µν ]− 1
4

Tr[∂λW̃λµ∂νW̃
νµ]−M Tr[W̃µνj

µν ] + 2Tr[jµνj
µν ] . (3.44)

We can make contact to the tensor field Lagrangian of Eq.(3.33) by identifying fV = FV
M and

gV = GV
M . However, there is one difference, namely the contact terms contained in Tr[jµνj

µν ].
The contribution of these terms to our calculation is discussed in Chapter 6. It will turn out
that these contact terms are necessary to get a reasonable high-energy behaviour.

The entire Lagrangian we are going to use in the bound-state scenario is

L = Lvec + L2 − 2Tr[jµνj
µν ] , (3.45)

where L2 is lowest order CHPT Lagrangian defined in Eq.(2.41) and Lvec is defined in
Eq.(3.18). This Lagrangian (3.45) is equivalent to L2 plus the corresponding tensor field
Lagrangian (3.33). In case we explicitly include the a1, we have an additional term

La1 = Lvec + L2 − 2Tr[jµνj
µν ] + Laxial (3.46)

with Laxial given in Eq.(3.28).

3.3. Renormalisation in the presence of spin-1 fields

As we will discuss in Chapter 5, the treatment of the final state interactions in the τ decay
involves a summation of loop diagrams. These loops lead to divergent expressions, which need
to be renormalised. While this is a straightforward procedure in CHPT, the renormalisation
in the presence of vector mesons, or heavy particles in general, requires some explanation.
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N

π

N N

Figure 3.1.: Pion-loop contribution to the nucleon self energy.

V

π

π π

π

π

V V

Figure 3.2.: Example of self-energy graphs including vector mesons, which have no analog
in the meson-baryon sector.

3.3.1. Powercounting for loop diagrams

In CHPT the expansion in momentum can be mapped onto an expansion in terms of tree and
loop graphs, with the chiral order of a graph given by [Sch03]

D =
∑

n

Vn(n− 2) + 2L+ 2 (3.47)

with L the number of loops and Vn the number of vertices of order O(pn). In the presence
of a heavy mass scale in the loops this power counting breaks down. The problem was
first tackled in the meson-baryon sector [GSS88], where one found that loop graphs might
start at the same order as the corresponding tree graphs. In particular, it was found that
the nucleon mass requires renormalisation at every order in the loop expansion. The loop
in Fig. 3.1 already generates an infinite contribution to the nucleon mass, even in the chiral
limit. Several solutions have been proposed, as the infrared regularization scheme (IR) [BL99],
the Extended On-Mass-Shell Renormalization (EOMS) [FGJS03] and the χ-BS(3) approach
[LK02]. We do not want to discuss the different methods in detail, since that has been done
in the references quoted above, but we will address the consequences for the renormalisation
of the loop diagrams in the present calculation.
When dealing with vector mesons instead of baryons, one encounters in general an additional
complication. Due to baryon number conservation a baryon in the loop is always connected
to an external baryon. In that case the momentum w in the loop, as for example in Eq.(3.48)
below, belongs to a heavy particle. For vector mesons new classes of graphs might appear (see
Fig. 3.2), where an external Goldstone boson can be connected to a heavy particle in the loop
or two Goldstone bosons in the loop can be connected to a vector meson. For a discussion of
these diagrams and an extension of the IR scheme, we refer to [BM05]. The loops appearing
in our work, however, can be treated in analogy to the meson-baryon sector.
The basic idea to restore power counting in the above prescriptions is to perform additional
subtractions in the renormalisation of the diagrams. These subtractions are chosen such that
the diagrams contribute to the desired order. These additional subtractions have to be analytic
in the small variables in order to be realisable by counterterms of the Lagrangian. That this
is indeed the case has been shown in the references quoted above. In the χ-BS(3) scheme the
additional subtractions are realised in dimensional regularisation through the subtraction of
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3.3. Renormalisation in the presence of spin-1 fields

a pole appearing in three dimensions. In IR the loop integrals are split in a so called infrared
singular part and a regular part, where the regular part is the power counting violating term
associated with the heavy mass scale in the loop, which is dropped. In EOMS the power
counting violating terms are identified and shown to be analytic by a suitable expansion
of the loop integrals. All prescription agree to the desired order but may differ in additional
contributions from higher orders. This is due to the fact that the loop integrals, which contain
a heavy mass scale, might contribute to all orders and since one only demands to be accurate
to a certain order, there is some freedom in dealing with the higher order terms.
The easiest example and also the divergent loop integral, we encounter in our work, is the
scalar loop integral including one vector meson (or one heavy particle)

IφV (w) = i

∫
d4l

(2π)4
1

(l − w)2 −M2
φ + iε

1
l2 −M2

V + iε
. (3.48)

The expected order of this integral is determinded as follows: The integration in 4 dimensions
counts as O(q4), the Goldstone boson propagator as O(q−2) and the vector meson propagator
as O(q−1). The order of the vector meson propagator stems from the fact that in case the
internal lines are connected to a heavy particle, this means

w2 −M2
V = O(q) . (3.49)

This counting shows that in the presence of a heavy particle Eq.(3.47) cannot hold anymore
and the integral in Eq.(3.48) is expected to have chiral order O(q). Without additional sub-
tractions, however, it contributes already at O(q0). In all the above schemes that contribution
would be subtracted with the argument that it already has been included in the most general
chiral Lagrangian, and therefore it is taken care of by a suitable counterterm. In our scheme
we only include the Weinberg-Tomozawa term and that term is not the suitable counter-
term, which can take care of the additional subtraction. Thus by choosing the subtraction
for the loop diagram, we simulate part of the higher order terms, which we do not include.
In particular, that means it is not a hard constraint to choose the renormalisation such that
IφV ∼ O(q). Of course, it would be unreasonable to use arbitrarily big subtractions, but one
has the freedom to vary the renormalisation parameter in a suitable range. We will come back
to that point in Chapter 7.

3.3.2. Crossing symmetry

Since we do not include the suitable counterterms in our calculation, the renormalisation
parameter, which could be for example a subtraction point, is a free parameter. We now
want to look at an argument, which puts a constraint on the parameter, which renormalises
the amplitude of a Goldstone boson scattering off a vector meson. More details about this
renormalisation condition can be found in [LK02, LK04].
In an exact theory the amplitude, which one calculates, should be crossing symmetric. Since
in our calculation, we neglect the u-channel cut (left-handed cut [OO99]) and consider only
the s-channel cut, as will be explained in detail in Chapter 4, our amplitudes will not be
crossing symmetric by construction. The basic assumption, which that approximation relies
on, is that in an energy region where the loop diagrams do not develop a cut, the loops can
be neglected. This means our calculation is reliable in the region of the s-channel cut and in
the low-energy region, where no cut is present. An analogous calculation could be done by
summing the u-channel diagrams, which should then be valid in the region of the u-channel
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Chapter 3. Vector Mesons and Chiral Symmetry

cut and again in the low-energy region. Thus, the amplitudes should match in the region
between the cuts. If we choose our subtraction scheme such that

Tµν(s0) = Kµν(s0) (3.50)

for an s0 in the region of no cuts, i.e. sleft < s0 < sright, then the matching is guaranteed.
In Eq.(3.50) Tµν is the unitarised scattering amplitude and Kµν the lowest order expression.
Furthermore sleft/right is the threshold for the appearance of the left-/right-handed cut. That
means, we match the unitarised scattering amplitude with the perturbative amplitude at sub-
threshold energies. Of course, it also automatically recovers the perturbative nature of the
amplitude near threshold.
Another way to put the last constraint is that the one-loop correction should not be unnat-
urally large by choosing a peculiar renormalisation. In other words the one-loop correction
should not be larger than the lowest order result itself.
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Chapter 4.

Chiral Unitarity

In this chapter we discuss the framework for describing the final state interactions of the
hadrons. The final state is dominated by resonance structures, and therefore a perturbative
calculation can not describe the process. Assuming that the resonance structure is gener-
ated dynamically, one needs a proper way of resumming the strong rescattering effects. A
prominent way of treating these interactions is to impose unitarity constraints together with
constraints from chiral symmetry on the scattering amplitude. The success of that approach
seems to indicate that unitarity is responsible for the structures appearing in the final state.
We will show how to derive the most general form of a partial wave amplitude fulfilling uni-
tarity, when the left-hand cut is neglected, by using the N/D method [OO99]. That amplitude
will then be matched to the lowest order expression of a chiral expansion. Another common
scheme to describe the rescattering is to solve a Lippmann-Schwinger equation or a Bethe-
Salpeter equation with potentials fixed from chiral symmetry breaking [OO97, RPO04, LK04].
We will also discuss that approach and comment on the equivalence of that method to the
N/D prescription. We will also address briefly the inverse amplitude method and describe its
relation to the other methods.

4.1. Unitarity and helicity amplitudes

As already mentioned, we want to use unitarity to constrain the scattering amplitude. Since
we are dealing with spin-1 particles, we will briefly derive the unitarity condition for helicity
amplitudes. Defining the T -matrix as S = 1+ iT , the unitarity condition reads

−i(T − T †) = TT † . (4.1)

Now we sandwich the T -matrix between two two-particle states with momenta p1, p2 and
k1, k2 and insert a complete set of states between T †T . Thus we get

−i〈p1, p2|T |k1, k2〉+ i〈p1, p2|T †|k1, k2〉 =
∑

n

(
n∏

i=1

∫
d3qi
(2π)3

1
2Ei

)
〈p1p2|T †|{qi}〉〈{qi}|T |k1k2〉 .

(4.2)
The only intermediate states we consider are two-particle states (which is the first simplifica-
tion), and for the moment we also omit the coupled channels, which we will talk about later.
Therefore, we can write

− i(M(k1k2 → p1p2)−M∗(p1p2 → k1k2))

= (2π)4
(

2∏

i=1

∫
dq3i

(2π)3
1

2Ei

)
M∗(p1p2 → q1q2)M(k1k2 → q1q2)δ(k1 + k2 −

∑
qi)

(4.3)
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times an overall δ(k1 +k2−p1−p2). The invariant matrix element M is defined in Eq.(A.26).
Since in our case one particle is a vector meson, we have to take into account the polarisation
of the states. The matrix element can be expanded in the centre-of-mass system (CMS) in
helicity amplitudes as follows (see Appendix A and [JW59])

M(k1k2, λ→ p1p2, λ) =
∑

JM

2J + 1
4π

D∗
Mλ

(φ, θ,−φ)DMλ(φ, θ,−φ)MJM
λλ

. (4.4)

For the left hand side of Eq.(4.3) we can choose φ = θ = φ = 0 and θ to be the angle between
the incoming and outgoing vector particle. On the right hand side, we have to integrate over
arbitrary angles and we will use the orthogonality relation of the Wigner functions Eq.(A.46).
Plugging in everything, we get

2
∑

J

2J + 1
4π

dJ
λλ
=MJ

λλ
=

pcm

16π2
√
s

∑

J

∑

λ′

(2J + 1)
4π

dJ
λλ

(θ)M∗J
λ′λM

J
λ′λ , (4.5)

where the d-functions are the simplified Wigner functions, defined in Appendix A.3 and s is
the total invariant energy. pcm is the centre-of-mass momentum given by

pcm =
1

2
√
s

√
(s− (MV +mφ)2)(s− (MV −m2

φ)2) (4.6)

with the vector meson mass MV and the Goldstone boson mass mφ. Comparing coefficients,
we get

2=MJ
λλ

=
pcm

16π2
√
s

∑

λ′
M∗J

λ′λM
J
λ′λ . (4.7)

So far we have nine equations for nine unknown matrix elements. From parity invariance,
however, we know

Mλλ = M−λ−λ , (4.8)

which reduces the independent matrix elements to five. Using

M+
00 = M00 (4.9)

M+
01 =

1√
2
(M01 +M0−1) =

√
2M01 (4.10)

M+
10 =

1√
2
(M10 +M−10) =

√
2M10 (4.11)

M+
11 = M11 +M1−1 (4.12)

M−
11 = M11 −M1−1 (4.13)

the problem decouples to a problem involving the four matrix elements with the index + and
to an equation involving only M−

11. M−
11 is the coefficient of the negative parity part (see

Chapter 5 for more details), which we are not interested in, since we want to investigate the
a1, which has positive parity. Writing the helicity structure in matrix notation the positive
parity part becomes

=M = M∗σM , (4.14)

with
σ =

p

32π2
√
s
, (4.15)

which is proportional to the two-particle phase space, and

M =
(
M11 M10

M01 M00

)
, (4.16)
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where we dropped the index +, since it would just appear everywhere.
Including coupled channels, we only have to make slight changes. Looking at Eq.(4.2) or
Eq.(4.3) we see that the matrix elements basically get another index indicating the channel.
When we integrate over the phase space we also have to distinguish between the different
channels. In our case we are dealing with two channels, and we get

=M = M∗ΣM , (4.17)

where Σ is given by

Σ =




σρπ 0 0 0
0 σKK∗ 0 0
0 0 σρπ 0
0 0 0 σKK∗


 , (4.18)

and M reads

M =




M1111 M1211 M1110 M1210

M2111 M2211 M2110 M2210

M1101 M1201 M1100 M1200

M2101 M2201 M2100 M2200


 , (4.19)

where the first two indices indicate the channel with

channel 1 : ρπ (4.20)
channel 2 : KK∗ (4.21)

and the last two indices determine the helicity of the incoming and outgoing channel. The
notation is chosen such that the indices denoting the outgoing channel always appear on the
left, e.g. M1210 denotes the scattering amplitude for (KK∗, λ = 0) → (πρ, λ = 1). Note that
M = MT , since

Mabij = 〈a, i|T |b, j〉 = 〈b, j|T |a, i〉 = Mbaji , (4.22)

where |a, i〉 is a state of particles in channel a with the helicity of the vector meson i. The
relation above relies on time reversal invariance, which is excellently discussed in e.g. [Tun85].

These equations only hold for s > sthreshold and the cut is called the right-hand cut. We know
from crossing symmetry that there is another cut on the left hand side. For s < sleft we have

Ml(s+ iε)−Ml(s− iε) = 2i=Ml(s). (4.23)

4.2. N/D method

In this section we derive the most general structure of a partial wave amplitude, when the
left-hand cut is neglected, by making use of the N/D method. The derivation is based upon
[OO99].
In order to focus on the principles, we leave out the helicity and the coupled-channel structure
for the moment. We will discuss the differences and modifications in that case afterwards.
Dealing with one channel and scalar particles Eq.(4.14) can be written as

=T−1
L = −σ(s) . (4.24)

25



Chapter 4. Chiral Unitarity

Here L is the angular momentum and TL are the expansion coefficients of the expansion of
the scattering amplitude in Legendre Polynomials PL

TL =
2L+ 1

2

∫
M(s, cos θ)PL(cos θ)d cos θ (4.25)

and
M =

∑

L

TL(s)PL(cos θ) . (4.26)

We start by writing the partial wave amplitude as a quotient of two functions

TL =
NL

DL
. (4.27)

These functions are chosen such that NL carries the left-hand cut and DL bears the right-hand
cut. Then we know that the imaginary parts obey the following equations

=DL = =T−1
L NL = −σ(s)NL , s > sth

=DL = 0 , s < sth

(4.28)

and

=NL = =TLDL , s < sleft

=NL = 0 , s > sleft

(4.29)

Since we want to neglect the left-hand cut, we set NL = 1 and describe the amplitude by DL

alone. Using a dispersion relation, we can write

DL =
n−1∑

k=0

skak +
sn

π

∫ ∞

sth

−σ(ζ)
ζn(ζ − s)

dζ , (4.30)

where n is chosen such that ∣∣∣∣
DL(s)
sn

∣∣∣∣
|s|→∞−→ 0 . (4.31)

This function describes the most general structure, when the left-hand cut is neglected, except
in the case of the existence of zeros in TL, which are not covered by Eq.(4.30). At these points
=DL and therefore DL is not known. In [CDD56] that problem is studied and solved by
introducing the function α, which satisfies

dα

ds
= =DL . (4.32)

For the existence and properties of α see [CDD56] and references within. The imaginary part
of DL is known and continuous except at the zeros of TL and therefore α is known between
two zeros only up to a constant. Thus, it can be written as

α(s) = −
∫ s

sth

σ(ζ)dζ +
∑

i

α(si)Θ(s− si) . (4.33)

Plugging Eq.(4.33) together with Eq.(4.32) into Eq.(4.30), we find

DL =
n−1∑

k=0

skak +
sn

π

∫ ∞

sth

−σ(ζ))
ζn(ζ − s)

dζ +
∑

i

α(si)
π

sn

sn
i

1
si − s

. (4.34)
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Using
sn

sn
i

1
si − s

= − 1
sn
i

n−1∑

j=0

sn−1−jsj
i +

1
si − s

, (4.35)

we see that we can absorb the first part into
∑n−1

k=0 s
kak and change ak → ãk. Replacing

α(si)
π = γi, we get

DL =
n−1∑

k=0

skãk +
sn

π

∫ ∞

sth

−σ(ζ)
ζn(ζ − s)

dζ +
∑

i

γi

si − s
. (4.36)

Thus, the most general partial wave amplitude becomes

TL = D−1
L (4.37)

DL =
n−1∑

k=0

skãk +
sn

π

∫ ∞

sth

−σ(ζ)
ζn(ζ − s)

dζ +
∑

i

γi

si − s
. (4.38)

The terms which appear in the last sum on the right hand side of Eq.(4.38) are usually called
CDD-poles, named after the authors of [CDD56]. In [Gas75] these terms were linked to the
existence of preexistent particles. These poles can also mimic the presence of zeros required
by the underlying symmetries, as for example the Adler zeros of meson-meson scattering (see
[OO99] and references within), which are however not of interest in our case.
Assuming that DL is described by a once subtracted dispersion relation, we get

TL = D−1
L

DL = ã0 +
s

π

∫ ∞

sth

−σ(ζ)
ζ(ζ − s)

dζ +
∑

i

γi

si − s
.

(4.39)

We split the constant ã in two parts ã = atree + aloop and define

g(s) = aloop +
s

π

∫ ∞

sth

−σ(ζ)
ζ(ζ − s)

dζ . (4.40)

The function g(s) can be associated with the scalar loop function IφV (s) given in Eq.(3.48)
since both have the same cut and the same imaginary part along the cut, which can be deduced
from the optical theorem [PS95]. The dependence of the loop function on the regularisation
scale or the subtraction point is translated into the free choice of the constant aloop. After
that association one is pushed to identify the remaining terms as the tree contributions of the
scattering amplitude. One could use large-NC (NC=number of colours in QCD) arguments to
make the argument sound more fancy, but in principle one also just identifies the integral in
Eq.(4.40) with the loops, which would then be suppressed and the remaining terms correspond
again to contact and pole terms, which remain in the large-NC limit. Defining

K =
(
atree +

∑

i

γi

si − s

)−1
, (4.41)

we get

TL =
[ 1
K

+ g(s)
]−1

=
K

1 +Kg(s)
, (4.42)

which is identical with the solution of the Bethe-Salpeter equation, in case the kernel K
factorises out of the integral (see Section 4.4).
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Now we turn to the full problem by also including the coupled-channel and helicity struc-
ture. Including the helicity structure and coupled channels the unitarity relation was given in
Eq.(4.17). The equation can be rewritten in the form

=M−1 = −Σ . (4.43)

Thus, we have a dispersion relation for every entry of M−1, where the imaginary parts only
appear on the diagonals. Using a once subtracted dispersion relation, we get

T−1
ij = −δij

(
ai +

s

π

∫ ∞

sthi

ρi(ζ)
ζ(ζ − s)

dζ

)
+K−1

ij , (4.44)

where ρ1 = ρ3 = σπρ and ρ2 = ρ4 = σK∗K . K−1
ij contains all the subtraction constants and

contributions from CDD-poles. Using matrix notation the formula looks more familiar

T = (1 +KG)−1K (4.45)

with

Gij = δiji

∫
d4l

(2π)4
1

l2 −M2
i + iε

1
(w − l)2 −m2

i + iε
= −δij

(
ai +

s

π

∫ ∞

sthi

ρi(ζ)
ζ(ζ − s)

dζ

)
.

(4.46)
Again, we can make the identification of K with the contact and pole terms present before
unitarisation and remaining in the Large NC limit. Expanding that equation, we get

T = K −KGK ± . . . . (4.47)

We note that we can match that expression to lowest order CHPT, in which case K is nothing
but the lowest order scattering contribution and the remaining terms correspond to the sum
of loop diagrams resulting from the iteration of the lowest order interaction (see Section 4.4).

4.3. Inverse amplitude method

There is another method, which is capable of extending CHPT to higher energies, the inverse
amplitude method (IAM). We will briefly review the derivation of that method [GNP02] in
order to be able to pin down the differences to the N/D method. We will write everything in
a matrix notation, which includes the helicity and the coupled-channel structure. We start
by looking at the inverse amplitude, which after using the unitarity constraint to substitute
the imaginary part of the inverse amplitude, can be written as

T−1 = <T−1 − iΣ . (4.48)

The crucial step is now to approximate the inverse of the real part by an expansion scheme,
e.g. by chiral perturbation theory, as follows

<T−1 = <(T1+T2+. . . )−1 = <(T−1
1 (1+(T2+. . . )T−1

1 )−1) = T−1
1 (1−<(T2)T−1

1 )+. . . , (4.49)

where we used that the lowest order contribution T1 consists of tree graphs, i.e. =T1 = 0.
Pluggin this equation into Eq.(4.48), yields

T ' (T−1
1 (1−<(T2)T−1

1 )− iΣ)−1 = T1(T1 − T2)−1T1 . (4.50)
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We used that

=T2 = T1=GT1 , (4.51)

which is the perturbative unitarity relation. By comparing Eq.(4.50) and Eq.(4.45), we see
that the methods in general will produce different results, which is of course not a big surprise,
since the approximations, which have been used, are not the same. However, if

<T2 = T1<GT1 (4.52)

and K = T1, the methods agree. Using CHPT, the IAM includes in addition to the loop
diagrams, also the contact terms of higher order, which might be partly simulated through
the regularisation parameter but not completely and not in general. In [OO99], for instance,
using the N/D method, the ρ could not be generated dynamically with a suitable cutoff.
It has to be included as a preexistent particle. On the other hand the IAM method can
reproduce the ρ [GNP02], if one uses CHPT up to order O(q4). As we have briefly discussed
in Section 3.2, the ρ can be understood to mediate the O(q4) contact terms (at least in the
tensor formulation) [EGL+89]. Thus the IAM is capable to reconstruct a resonance from its
low-energy appearance.

In the following we will explain how the inverse amplitude method works by looking at a toy
model [OOP99]. We assume the amplitude has the following structure

T =
ap2

q2 −M2 + i2MΓ
, (4.53)

where q2 is the total invariant energy squared of, for example, a meson pair, p2 is an invariant
quantity of dimension momentum squared related to the momenta and masses of the mesons,
and 2MΓ = −ap2=G, where G is the two-meson propagator defined in Eq.(4.46). Using the
IAM formalism with

T1 = −a p
2

M2
(4.54)

and

<T2 = −ap
2q2

M4
= T1

q2

M2
, (4.55)

we get

T =
T 2

1

T1 −<T2 − iT1=GT1
=

ap2

q2 −M2 + i2MΓ
, (4.56)

which is the exact result. That explains of course why the method is successful in describing
the resonance structure, but it does not tell us anything about the nature of the resonances.
The method is able to produce the kind of structure in Eq.(4.53), but that structure could be
present because of a real resonance or it could be produced by some rescattering mechanism.
Since our aim is to figure out the nature of a resonance, we will not use the IAM. The
N/D method offers a cleaner interpretation of the structure, which appears, since it can
be connected to the Bethe-Salpeter equation and therefore to potential scattering, with the
potential given by the lowest order interaction. Especially when we use the WT term as the
driving force, we can be sure that no preexistent resonance has its footprints in that process.
In the next section, we will see the connection of the N/D method to the Bethe-Salpeter
equation in detail.
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T = K + KT

Figure 4.1.: Diagrammatic form of the Bethe-Salpeter equation.

4.4. The Bethe-Salpeter equation

The Bethe-Salpeter equation was originally derived in [SB51]. It is the relativistic analogon
to the integral form of the two-body Schrödinger equation. We do not want to derive the
equation, but we want to say a few words on its structure, which in principle is enough
to convince oneself that the equation is correct. Before we write down the equation, we
define a class of diagrams, namely the two-particle irreducible diagrams. We will define these
diagrams in the case of Goldstone boson vector-meson scattering, but it should be obvious how
to extend the definition to other processes. This class exists of all diagrams with two external
pseudoscalar meson and two external vector meson lines with the exception of two classes of
diagrams. The first kind of diagrams, which are excluded, are the ones which fall apart by
an equal-time cut of one vector meson propagator and one Goldstone boson propagator. The
other kind of diagrams, which are excluded, are the disconnected diagrams. The equation
which expresses the scattering amplitude in terms of the kernel K, which is given by the
two-particle irreducible diagrams, is called the Bethe-Salpeter equation (Fig. 4.1)

Tµν(p, p, w) = Kµν(p, p, w) +
∫

d4l

(2π)4
Kµα(p, l, w)Gαβ(l, w)T βν(l, p, w) , (4.57)

where p (p) is the incoming (outgoing) momentum of the vector meson, w the total four-
momentum and

Gαβ = i
1

(w − l)2 −m2
φ + iε

gαβ − lαlβ
M2

V

l2 −M2
V + iε

(4.58)

the product of propagators. MV is the mass of the vector meson and mφ is the mass of
the Goldstone boson. For the moment, we leave out the coupled-channel structure. The full
coupled-channel version of the Bethe-Salpeter equation is given in Eq.(4.70) below.
So far that equation is just a shift of the problem of evaluating the scattering amplitude to
the problem of evaluating the kernel. However, that equation offers another kind of approx-
imation for the purpose of practical calculations. Instead of doing perturbation theory for
the scattering amplitude, one can do it for the kernel. That amounts to the summation of a
certain kind of loop diagrams, namely the ones which have a right-hand cut. In Fig. 4.2 one
can see the kind of diagrams, which are summed up, if the lowest order approximation to the
kernel is just a contact term.
Calculating the kernel in perturbation theory, we can write down the equation easily but
in general the equation is still not easily solvable for non-separable kernels, i.e. K(p, p) 6=
K1(p)K2(p). In addition, the tensor structure leads to complications. However, since we are
usually only interested in the lowest partial waves of the scattering, a partial wave expansion
is reasonable.
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4.4. The Bethe-Salpeter equation

T = + + +. . .

Figure 4.2.: Iteration of loop diagrams by using lowest order interaction for the kernel.

In order to establish a closer relationship to potential scattering, we shortly recall the analo-
gous formulas in non-relativistic scattering theory. In quantum mechanics one usually deals
with a Hamiltonian of the form

H = H0 + V , (4.59)

where the eigenstates φa of H0 are known and V is a potential between, for example, two
particles. The Lippmann-Schwinger equation then reads

|ψ±a 〉 = |φa〉+G±V |ψ±a 〉 , (4.60)

where |ψ±a 〉 are the unknown eigenstates of the total Hamiltonian and

G±a =
1

Ea −H0 ± iε
. (4.61)

The epsilon prescription guarantees that G is well defined, |ψ+
a 〉 corresponds to a state prop-

agating away from the scattering region and |ψ−a 〉 denotes a state propagating towards the
scattering region. The S matrix is defined as

S(a, b) ≡ 〈ψ−a |ψ+
b 〉 = δ(a− b)− 2πiδ(Ea − Eb)T (a, b) (4.62)

where T contains the interesting part of the scattering process. Using Eq.(4.60) and Eq.(4.62)
one finds that the T matrix is given by

T (a, b) = 〈φa|V |Ψ+
b 〉 (4.63)

or
T |φa〉 = V |ψ+

a 〉 . (4.64)

Using again Eq.(4.60) and Eq.(4.64) one finds the following equation for T

T = V + V G+T , (4.65)

which obviously is very similar to the Bethe-Salpeter equation.

4.4.1. Partial wave expansion

A partial wave expansion of the scattering amplitude and the kernel leads to two complications.
First of all, one has to make sense of the expansion of an object with Lorentz indices, and
secondly, the particles in the loops are offshell. We will discuss these problems in detail in
Chapter 5 and also in Appendix B.
For the moment we assume that we can expand the kernel and the scattering amplitude into
projectors Y µν(JMP )

ij

Kµν
ab (q, q, w) =

∑

J,M,P,i,j

V
(JMP )
abij (s)Y µν(JMP )

ij (q, q, w) , (4.66)
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Tµν
ab (q, q, w) =

∑

J,M,P,i,j

M
(JMP )
abij (s)Y µν(JMP )

ij (q, q, w) , (4.67)

which fulfil the following orthogonality relation
∫

d4l

(2π)4
Y JMP

λ1λ2µα(q, l, w)Gαβ(l, w)Y J ′M ′P ′
λ3λ4βν (l, q, w)

= δλ2λ3δPP ′δJJ ′δMM ′Y JMP

λ1λ4µν(q, q, w)(−IφV ) .
(4.68)

We recall that IφV is given by

IφV = i

∫
d4l

(2π)4
1

(l − w)2 −M2
φ + iε

1
l2 −M2

V + iε
. (4.69)

The indices a, b correspond to the channels πρ andKK∗, where T ab denotes a scattering b→ a,
J is the total angular momentum, M its projection, P the parity and i, j are the helicities
of the incoming and outgoing channel. The coupled-channel version of the Bethe-Salpeter
equation for a Goldstone boson and a vector meson reads

T ab
µν(q, q, w) = Kab

µν(q, q, w) +
∑

c,d

∫
d4l

(2π)4
Kad

µβ(q, l, w)Gαβ
dc (l, w)T cb

αν(l, q, w) (4.70)

with

Gαβ
cd (l, w) =

i

(w − l)2 −m2
c + iε

gαβ − lαlβ/M2
c

l2 −M2
c + iε

δcd . (4.71)

Note that the expansion coefficients in Eq.(4.66) and Eq.(4.67) only depend on s = w2 (w =
(
√
s,~0)), which means they are onshell. In principle these coefficients can also depend on w · l

and l2, which we discuss at the end of this section. Plugging in the expansions Eq.(4.66) and
Eq.(4.67) in Eq.(4.70) yields

∑

JMP,ij

M
(JMP )
abij Y

µν(JMP )
ij =

∑

JMP,ij

V
(JMP )
abij Y

µν(JMP )
ij

+
∑

c,d

∑

J,M,P,i,j

∑

J ′,M ′,P ′,i′,j′

∫
d4l

(2π)4
V

(JMP )
acij Y

µβ(JMP )
ij Gdc

αβM
(J ′M ′P ′)
dbi′j′ Y

αν(J ′M ′P ′)
i′j′ .

(4.72)

Using the orthogonality relation, one gets
∑

J,M,P,i,j

M
(JMP )
abij Y

µν(JMP )
ij =

∑

J,M,P,i,j

V
(JMP )
abij Y

µν(JMP )
ij

+
∑

c

∑

J,M,P,i,j

∑

j′
V

(JMP )
acij M

(JMP )
dbjj′ Y

µν(JMP )
ij′ (−Ic) .

(4.73)

Since the projectors are linearly independent with respect to J,M,P, i, j, we get rid of the
sum over J,M,P, i, j and we will omit the indices JMP from now on. So we are left with

Mabij = Vabij +
∑

c

∑

k

VacikMcbkj(−Ic) (4.74)

which can be solved algebraically. Note that this is identical to the N/D method.
We introduce the renormalised quantity JφV (s, µ)

JφV (s, µ) = IφV (s)− IφV (µ) , (4.75)
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which depends on the subtraction point µ. In order to render Eq.(4.74) finite we substitute

IφV (s) → JφV (s, µ1) , (4.76)

which introduces the unknown parameter µ1.
In case the coefficients would depend also on the loop momentum l, we could still use the
orthogonality relation, but Eq.(4.73) would read

∑

J,M,P,i,j

M
(JMP )
abij Y

µν(JMP )
ij =

∑

J,M,P,i,j

V
(JMP )
abij Y

µν(JMP )
ij

+
∑

c

∑

J,M,P,i,j

∑

j′

∫ ~l2d|~l|dl0
(2π)4

(−i)
V

(JMP )
acij (w, l)M (JMP )

cbjj′ (w, l)

((w − l)2 −m2
c + iε)(l2 −M2

c + iε)
Y

µν(JMP )
ij′ .

(4.77)

We could use the orthogonality of the projectors, since it follows from the integration over
the angles, which can be seen in Appendix B. Using again the linear independence of the
projectors and omitting J,M,P , one gets

Mabij = Vabij +
∑

c

∑

k

∫
d4l

(2π)4
Vacik(w, l)Mcbkj(w, l)

−i
(w − l)2 −m2

c + iε

1
l2 −M2

c + iε
. (4.78)

Eq.(4.78) is obviously not the same as Eq.(4.74) and can not be solved algebraically. In the
next section, we will discuss why, nevertheless, it is reasonable to put the coefficients onshell.

4.4.2. Onshell reduction

In the last section we saw that due to the dependence of the kernel and the scattering am-
plitude on the loop momentum, the Bethe-Salpeter equation will not be easily solvable. We
will now discuss the difference between Eq.(4.74) and Eq.(4.78). For simplicity, we leave out
the coupled-channel and the helicity structure, which does not affect the general arguments.
Thus, we are dealing with an equation of the form

M = V +
∫

d4

(2π)4
V (w, l)M(w, l)

−i
(w − l)2 −m2 + iε

1
l2 −M2 + iε

, (4.79)

which is just a Bethe-Salpeter equation for scalar particles. There are different explanations
in the literature why it is justified to use the Bethe-Salpeter equation with the kernel taken
onshell, e.g. [LK02, OO97]. One of the explanations is of course given in section 4.2, which
says that the N/D method is equivalent to the Bethe-Salpeter equation with the kernel taken
onshell. We will also look at two other explanations in order to see the problem from different
sides. One should mention that it has been shown in [KLF01] that using kernels which just
differ offshell will lead to different results in the solution of the Bethe-Salpeter equation.
Thus, we do not want to show that the result will not change, but we want to see what kind
of differences we can expect.

The idea of the justification of the onshell reduction in [OO97] is based on the following
observation
∫

d4l

(2π)4
l2

l2 −m2
1

1
(w − l)2 −m2

2

=
∫

d4l

(2π)4
m2

1

l2 −m2
1

1
(w − l)2 −m2

2

+
∫

d4l

(2π)4
1

(w − l)2 −m2
2

.

(4.80)
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Figure 4.3.: Two examples of tadpole diagrams.

We see that we can split an integral with a momentum squared in the numerator into the same
integral using the onshell condition for the momentum plus a tadpole. Originally the name
tadpole was introduced for diagrams with one external leg due to its striking similarity to an
actual tadpole, as can be seen by looking at the left diagram in Fig. 4.3. The name tadpole
is also used for one-loop diagrams with a propagator which connects back to its originating
vertex (e.g. right diagram in Fig. 4.3). A tadpole is an analytic function of s = w2, i.e. it
has no cuts. It is straightforward to use Eq.(4.80) to write in general

∫
d4l

(2π)4
K(w, l)G(l)K(w, l) =

∫
d4l

(2π)4
Kon(s)G(l)Kon(s) + tadpoles , (4.81)

where Kon(s) is the function K(w, l) onshell. It is also straightforward to imagine, that for
higher loops the equation looks similar and instead of having just a sum of tadpoles, they
might appear in powers. Since the tadpoles have no cuts, they will contribute in a similar way
to the real part as higher order contact terms. Thus, neglecting the tadpoles is a simplification
on the same level as neglecting the higher order contact terms.

In [LK02] the authors give a formula how one can modify the kernel and still get the same
onshell result for the scattering amplitude. In a few examples it is shown, how that formula
is able to reduce the Bethe-Salpeter equation to an algebraic equation. We will derive that
formula and also show two examples.
We begin by splitting the kernel into 4 parts

K = K +KL +KR +KLR , (4.82)

where KL vanishes for onshell kinematics in the outgoing channel, KR vanishes for onshell
kinematics in the incoming channel and KLR vanishes in both cases. Now we rewrite the
onshell scattering amplitude using that decomposition. We will use an index i if the incoming
momenta are onshell and an index o if the outgoing momenta are onshell.

T io = K
io +K

o
GT i +Ko

RGT
i (4.83)

and T i is given by
T i = K

i +Ki
L +KGT i . (4.84)

If we put the scattering amplitudes back offshell, we calculate an onshell equivalent amplitude,
which we call W . Looking at Eq.(4.84), we see

W −KGW = K +KL . (4.85)

The left hand side can be written as

W −KLGW −KRGW −KLRGW −KGW = W −KRGW −KLRGW − (KL +K)GW

= W −KRGW −KLRGW − (1−KRG−KLRG)(1−KRG−KLRG)−1(KL +K)GW .
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Introducing
X = (1−KRG−KLRG)−1(KL +K) , (4.86)

Eq.(4.85) becomes

(1−KRG−KLRG)W − (1−KRG−KLRG)XGW = KL +K (4.87)

or
W −XGW = X ⇐⇒ W = (1−XG)−1X . (4.88)

If we denote the offshell extension of T io by T , we see by looking at Eq.(4.83) that

T = K +KG(1−XG)−1X +KRG(1−XG)−1X . (4.89)

We note that
X(1−GX) = (1−XG)X (4.90)

and multiply T with (1−GX) from the right to get

T (1−GX) = K(1−GX) +KGX +KRGX = K +KRGX . (4.91)

That can be written as

T (1−GX +GK +GKRGX)− TG(K +KRGX) = K +KRGX . (4.92)

Introducing the abbreviation

V = (K +KRGX)(1−GX +GK +GKRGX)−1 , (4.93)

we get

T − TGV = V

T = V (1−GV )−1

T − V GT = (1− V G)V (1−GV )−1 = V

T = (1− V G)−1V

(4.94)

This formula tells us how one can change a kernel and still get the same onshell result. We
will illustrate how it works, first on an easy example, which can be also found in [LK02] and
then on the WT term, which we use in our calculation.

Example 1

The first example employs the WT term for pion-nucleon scattering as kernel, which is given
by

K = C(/q + /q) = C(2/w − /p− /p) . (4.95)

The Bethe-Salpeter equation for this case is

T = K +
∫

d4l

(2π)4
K(l, w)

−i
/p−MN + iε

1
(w − l)2 −m2

π + iε
T (l, w) . (4.96)

The decomposition into the 4 kernels can be directly seen

K = C(2/w − 2MN )
KLR = 0
KR = −C(/p−MN )

KL = −C(/p−MN ) .

(4.97)
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So the equation for X becomes

X = C(2/w −MN − /p) + iC

∫
d4l

(2π)4
X(l)Gπ(w − l) , (4.98)

where Gπ(q) = 1/(q2 −m2
π + iε) is the pion propagator. The solution to that equation is

X = C(2/w−MN − /p)+
C2(I l

π + (/w −mN )Iπ)
1− CIπ

= C(2/w−MN − /p)+
C2(/w −mN )Iπ

1− CIπ
, (4.99)

where we used

Iπ = i

∫
d4l

(2π)4
Gπ(l) , I l

π = i

∫
d4l

(2π)4
/lGπ(l) = 0 . (4.100)

Knowing X we can evaluate V

V = (K +KRGX) + V GKL , (4.101)

which is in that case

V = 2C(/w −mN ) + C2(/w −mN )Iπ +
C3I2

π(/w −mN )
1− CIπ

+ iC

∫
d4l

(2π)4
V Gπ(l) . (4.102)

We notice that the external momenta are gone and we get

V =
1

1− CIπ

(
2C(/w −mN ) + C2(/w −mN )Iπ +

C3I2
π(/w −mN )
1− CIπ

)

=
/w −mN

(1− CIπ)2
(2C(1− CIπ) + C2Iπ(1− CIπ) + C3I2

π)

= C
/w −mN

(1 + CIπ)2
(2− CIπ) .

(4.103)

Thus, using the kernel V , we can easily solve the Bethe-Salpeter equation. Besides the tad-
poles, we get the same result for the onshell scattering amplitude, which we would have got
by simply using the kernel onshell.

Example 2

In this example we will consider the kernel which appears in our calculation after the projection
on J = 1+ (see Section 5.1). For simplicity, we will leave out the helicity and coupled-channel
structure and assume that the scattering amplitude is determined by the following equation

T = K +
∫

d4l

(2π)4
K(w, l)T (w, l)

−i
(w − l)2 −m2 + iε

1
l2 −M2 + iε

. (4.104)

The kernel in this simplified case is

K = C

(
2w · q + 2w · q − q2 − q2 − 2

(w · q)(w · q)
s

)
. (4.105)

We turn that expression into a form, where one easily can read off the different parts of the
kernel Kon,KL,KR and KLR

K =
C

2

(
3s− p2 − p2 − 1

s
p2p2 − 1

s
q2q2 +

1
s
p2q2 +

1
s
q2p2 − q2 − q2

)
. (4.106)
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Thus, the four parts are given by

K =
C

2

(
3s− 2M2

ρ −
M4

ρ

s
− M4

π

s
+

2
s
M2

πM
2
ρ − 2M2

π

)

KL = (p2 −M2
ρ )a(s) + (q2 −M2

π)a(s)

KR = (p2 −M2
ρ )a(s) + (q2 −M2

π)a(s)

KLR = −C
2s

(
(p2 −M2

ρ )(p2 −M2
ρ ) + (q2 −M2

π)(q2 −M2
π)

+ (p2 −M2
ρ )(q2 −M2

π) + (q2 −M2
π)(p2 −M2

ρ )
)
,

(4.107)

where we introduced
a(s) = −C

2s
(s+M2

ρ −M2
π) (4.108)

This yields the following equation for X

X + ia(s)
∫

d4l

(2π)4
GπX + ia(s)

∫
d4l

(2π)4
GρX

− iC

2s
(p2 −M2

ρ )
(∫

d4l

(2π)4
GπX +

∫
d4l

(2π)4
GρX

)

− iC

2s
(q2 −M2

π)
(

d4l

(2π)4
GπX +

d4l

(2π)4
GρX

)
= KL +K ,

(4.109)

with
Gρ =

1
(w − l)2 −M2

ρ + iε
. (4.110)

Introducing

I(s,X) = −i
∫

d4l

(2π)4
GπX − i

∫
d4l

(2π)4
GρX , (4.111)

this becomes

X +
(
C

2s
(p2 −M2

ρ ) +
C

2s
(q2 −M2

π)− a(s)
)
I(s,X) = K + (p2 −M2

ρ )a(s) + (q2 −M2
π)a(s) .

(4.112)
With the ansatz

X = f1(s) + f2(s)(p2 −M2
ρ ) + f3(s)(q2 −M2

π) , (4.113)

the equation can be solved, and the determination of the fi is in principle straightforward,
but a bit lengthy. Since the explicit form of the fi is not of interest for our purposes, we will
skip the calculation and solve for V . Knowing the structure of X, we can already write down
the equation for V , which is

V = K + a(s)I(s,X)− ia(s)
∫

d4l

(2π)4
V (Gπ +Gρ) + V GKLRGX , (4.114)

where we used that
X −KRGX −K = KL +KLRGX . (4.115)

We can simplify the last term of Eq.(4.114) as follows

V GKLRGX =
C

2s

∫
d4l

(2π)4

∫
d4l′

(2π)4
V (Gπ(l) +Gρ(l))(Gπ(l′) +Gρ(l′))X(l′)

≡ b(s)
∫

d4l

(2π)4
V (Gπ(l) +Gρ(l)) ,

(4.116)
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where b(s) is some function of tadpoles and only depends on s. Then Eq.(4.114) becomes

V = K + a(s)I(s,X)− (ia(s)− b(s))
∫

d4l

(2π)4
V (Gπ +Gρ) , (4.117)

and therefore

V =
K + a(s)I(s,X)

1 + (a(s) + ib(s))(Iπ + Iρ)
. (4.118)

Thus, we see that again the problem reduces to an algebraic one by the modification of the
kernel. Although we did not explicitly calculate I(s,X), we know that it is a function of
tadpoles. In other words, dropping all tadpoles in Eq.(4.118) would lead to V = K.

4.4.3. The kernel

The kernel of the Bethe-Salpeter equation can consist of parts, which are analytic in the
energy region, one is interested in, and parts which are non-analytic. The non-analytic parts
are possible s-channel resonances, which have a pole in the physical region. The analytic part
consists of contact terms, as well as t- and u-channel processes, since they do not have any
singularities in the physical energy region. The analytic parts can be expanded in powers of
the momenta of the involved particles (and in powers of the Goldstone boson masses). This
leads to contact terms, which can equivalently and systematically be expressed in terms of
a chiral Lagrangian. The approach we take is to consider the relevant s-channel resonances
in the kernel and keep contact terms up to a specific order. This approximation is a model
assumption, and it is not guaranteed that it works for the quite large energy region, we are
interested in. However, it is certainly worthwhile to study its properties. Following this
strategy, one has to avoid double counting between the s-channel processes and the contact
terms, since for s < m2

res these s-channel resonance terms can also contribute to the analytic
part.
Now we want to become specific and discuss the present case. Here the problem is that one
is not sure whether there is a relevant preexisting resonance (i.e. a quark-antiquark state
at about 1260MeV with quantum numbers JP = 1+). Therefore, we calculate two different
scenarios, one with explicit a1 and one without explicit a1. Comparing to experiment, we
determine which scenario is favoured by the data. As already mentioned, we have to be
careful with double counting. Restricting the contact terms to the WT term, there is no
problem, since the WT term contributes at O(q) and the elementary a1 at O(q2). Thus,
there can be no double counting. In particular, this means that only considering an a1 and
neglecting the WT term is very questionable. The focus in discussing the results will therefore
be on the interplay between the a1 and the WT term.
In order to check the systematics of our model, we will also study the influence of keeping
contact terms up to order O(q2) instead of O(q) in the scenario without explicit a1.
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Chapter 5.

Partial Wave Projectors

A very useful tool in scattering theory is the partial wave expansion, being so valuable because
for low energies only the lowest angular momentum modes are excited. In a relativistic frame-
work, including particles with spin, the orbital angular momentum is not a good quantum
number anymore and neither is the spin. Instead one uses states with definite helicity and
total angular momentum, which have been first employed in [JW59]. Similar to the partial
wave decomposition one expands the scattering amplitude into helicity amplitudes. In our
case we want to expand a kernel with a tensor structure in objects with definite total angular
momentum and helicity, which we call projectors. By total angular momentum and helicity
of a tensor we mean that after multiplying with the polarisation vectors, the resulting scalar
object has the appropriate quantum numbers (see Eq.(5.29)).
In the following we will derive the explicit form of the projectors. A similar derivation can be
found in [LK04], which, however, deals different with the offshell extrapolation of the objects,
and therefore also ends up with different projectors. We will discuss the differences in detail
in Section 5.3.
The general form of a scattering amplitude for the scattering of a pseudoscalar meson φ off a
vector meson V with polarisation λ is given by

〈φ(q)V (p, λ)|T |φ(q)V (p, λ)〉 = (2π)4δ4(q + p− q − p)ε†µ(p, λ)Tµν(q, q, w)εν(p, λ) , (5.1)

where w = p+ q = q+ p is the total four-momentum, εµ is the polarisation vector of a vector
meson (see Appendix A.2), q (q) is the momentum of the incoming (outgoing) meson and p (p)
is the momentum of the incoming (outgoing) vector meson. Due to Lorentz invariance the
most general form of Tµν is given in terms of five scalar amplitudes

Tµν =
∑

i

FiL
i
µν , (5.2)

with

Lµν
1 = gµν − wµwν

s
, Lµν

2 = wµwν , Lµν
3 = wµqν − wµwν q · w

s

Lµν
4 = qµwν − wµwν q · w

s
, Lµν

5 =
(
qµ − wµ (q · w)

s

)(
qν − wν q · w

s

)
.

(5.3)

The Li can of course be chosen differently as long as they contain all possible Lorentz structures
in a linearly independent way. We note that there are only five independent terms, since p
and p can be expressed in terms of w, q, q. In addition, structures containing e.g. qµ are not
independent since

ε†µ(p, λ)qµ = ε†µ(p, λ)(w − p)µ = ε†µ(p, λ)wµ (5.4)
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due to ε†µ(p)pµ = 0.
After multiplying with polarisation vectors, the amplitude can be expanded in the centre-of-
mass system (CMS) as follows

ε†µ(p, λ)Tµνεν(p, λ) =
∑

JM

2J + 1
4π

D∗
Mλ

(φ, θ,−φ)DMλ(φ, θ,−φ)〈JMλ|T |JMλ〉 , (5.5)

which we already used in Eq.(4.4). The Wigner functionsD are given in Appendix A.3, as well
as the simplified Wigner functions d, which we will need below. |JMλ〉 is a state with total
angular momentum J , its projection M and helicity λ. In two-particle scattering one usually
chooses the incoming particles flying along the z-axis and the outgoing particles moving in
the xz-plane with an angle θ to the z-axis, which corresponds to the choice

qµ = (q0, 0, 0,−pcm) , wµ = (
√
s, 0, 0, 0) , qµ = (q0,−pcm sin θ, 0,−pcm cos θ) , (5.6)

where pcm = |~p| is the centre-of-mass momentum. In that case Eq.(5.5) reduces to

ε†µ(p, λ)Tµνεν(p, λ) =
∑

J

(2J + 1)〈λ|T J |λ〉dJ
λλ

(θ) , (5.7)

where we abbreviated |JMλ〉 = |λ〉. From Eq.(5.5) we would expect a factor of 4π, which we
put into the definition of the matrix element. The sum over M is cancelled by dλM (0) = δMλ,
which reflects the fact that there is no orbital angular momentum along the direction of
motion.
We abbreviate the nine possible (and five independent) helicity combinations as follows

φ1 = ε†µ(p, 1)Tµνεν(p, 1) + ε†µ(p, 1)Tµνεν(p,−1)

= ε†µ(p,−1)Tµνεν(p,−1) + ε†µ(p,−1)Tµνεν(p, 1)
(5.8)

φ2 = ε†µ(p, 1)Tµνεν(p, 1)− ε†µ(p, 1)Tµνεν(p,−1)

= ε†µ(p,−1)Tµνεν(p,−1)− ε†µ(p,−1)Tµνεν(p, 1)
(5.9)

φ3 =
MV

√
2

sin θ
ε†µ(p, 0)Tµνεν(p, 1) = −MV

√
2

sin θ
ε†µ(p, 0)Tµνεν(p,−1) (5.10)

φ4 =
MV

√
2

sin θ
ε†µ(p, 1)Tµνεν(p, 0) = −MV

√
2

sin θ
ε†µ(p,−1)Tµνεν(p, 0) (5.11)

φ5 = MVMV ε
†
µ(p, 0)Tµνεν(p, 0) , (5.12)

where MV (MV ) is the mass of the incoming (outgoing) vector meson.
Next we want to find a connection between φi and Fi, which can be calculated by multiplying
Eq.(5.2) with the explicit expression for the polarisation vectors given in Appendix A.2. This
yields




φ1

φ2

φ3

φ4

φ5




=




−1 0 0 0 0
−x 0 0 0 −pcmpcm(1− x2)
ω 0 −√sp2

cm 0 −pcmpcmωx
−ω 0 0 p2

cm

√
s ωpcmpcmx

−ωωx pcmpcms p2
cm

√
sωx p2

cm

√
sωx pcmpcmωωx

2



·




F1

F2

F3

F4

F5



, (5.13)
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where ω = p0 = w·p√
s

is the energy of the vector meson in the CMS and x = cos θ. The inverse
of that equation is




F1

F2

F3

F4

F5




=




−1 0 0 0 0
ωωx

pcmpcms(1−x2)
− ωωx2

pcmpcms(1−x2)
ωx

pcmpcms − ωx
pcmpcms

1
pcmpcms

− ω√
sp2

cm(1−x2)
ωx√

sp2
cm(1−x2)

− 1
p2

cm

√
s

0 0

− ω√
sp2

cm(1−x2)
ωx√

sp2
cm(1−x2)

0 1
p2

cm

√
s

0
x

pcmpcm(1−x2)
− 1

pcmpcm(1−x2)
0 0 0




·




φ1

φ2

φ3

φ4

φ5




. (5.14)

Thus, we can express the scalar amplitudes Fi in terms of the helicity matrix elements, which
yields

Tµν(q, q, w) = −φ1L
1
µν

+ L2
µν

1
pcmpcms

(
ωωx

1− x2
φ1 − ωωx2

1− x2
φ2 + ωxφ3 − ωxφ4 + φ5

)

+ L3
µν

1
p2

cm

√
s

(
− ω

1− x2
φ1 +

ωx

1− x2
φ2 − φ3

)

+ L4
µν

1
p2

cm

√
s

(
− ω

1− x2
φ1 +

ωx

1− x2
φ2 + φ4

)

+ L5
µν

1
pcmpcm(1− x2)

(xφ1 − φ2) .

(5.15)

We introduce parity eigenstates, which are given by

〈1±| = 1√
2
(〈−1| ± 〈1|) . (5.16)

Using the symmetry relations for the d-functions Eq.(A.48) and Eq.(A.49), we can express
the φi as

φ1 =
1
2

∑

J

(2J + 1)(〈1+|T J |1+〉(dJ
11 + dJ

1−1) + 〈1−|T J |1−〉(dJ
11 − dJ

1−1)) (5.17)

φ2 =
1
2

∑

J

(2J + 1)(〈1+|T J |1+〉(dJ
11 − dJ

1−1) + 〈1−|T J |1−〉(dJ
11 + dJ

1−1)) (5.18)

φ3 =
MV

√
2

sin θ
1√
2

∑

J

(2J + 1)dJ
10〈0|T J |1+〉 (5.19)

φ4 =
MV

√
2

sin θ
1√
2

∑

J

(2J + 1)dJ
01〈1+|T J |0〉 (5.20)

φ5 = MVMV

∑

J

(2J + 1)dJ
00〈0|T J |0〉 . (5.21)

If one plugs these expressions into Eq.(5.15), one can read off the projectors, which are the
prefactors in front of the matrix elements. For J = 1 the projector with negative parity is

Y 1−
11µν =

3
2
x

(
−L1

µν − L5
µν

1
pp

)
(5.22)
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and the projectors with positive parity are

Y 1+

11µν =
3
2

(
−L1

µν + L2
µν

ωωx

pcmpcms
+ L3

µν

−ω
p2

cm

√
s

+ L4
µν

−ω
p2

cm

√
s

)
(5.23)

Y 1+

10µν = MV
3√
2

(
− ωx

pcmpcms
L2

µν + L4
µν

1
p2

cm

√
s

)
(5.24)

Y 1+

01µν = −MV
3√
2

(
ωx

pcmpcms
L2

µν − L3
µν

1
p2

cm

√
s

)
(5.25)

Y 1+

00µν =
3MVMV xL

2
µν

pcmpcms
. (5.26)

We usually do not need the explicit form of the projectors, which will become clear in the rest
of the chapter. The projectors are of course defined for the kinematics given in Eq.(5.6). In
general the projectors can also depend on the z-projection of the angular momentum, which
is not the case for this choice of coordinate system, as explained above.
The quantity, which is of more interest and which does not depend on the coordinate system
is the matrix element in front of the projector. We calculate these coefficients in terms of Fi

by using

ε†µ(p, λ)
(∑

i

FiL
µν
i

)
εν(p, λ) =

∑

J

(2J + 1)〈λ|T J |λ〉dJ
λλ

(θ) (5.27)

and the orthogonality relation Eq.(A.45) in order to get

〈λ|T J |λ〉 =
1
2

∫ π

0
ε†µ(p, λ)

(∑

i

FiL
µν
i

)
εν(p, λ)dJ

λλ
sin θdθ . (5.28)

As already mentioned, the projectors are chosen such that when they are multiplied with
the respective polarisation vectors, the appropriate terms of the expansion of the scattering
amplitude remain. To be more precise, the projectors fulfil

εµ†(p, λ1)Y JMP

λ2λ3µν(p, l, s)ε
ν(l, λ4) = δ|λ1|λ2

δλ3|λ4|(2J + 1)D∗J
Mλ1

(Ω)DJ
Mλ4

(Ω)

·
(

1√
2

)λ2+λ3

P (λ1−λ4)/2 .
(5.29)

In our derivation we chose the coordinate system which is best suited to derive the expansion
coefficients, which are independent of the frame. In principle it is enough to know the property
Eq.(5.29) and the expansion coefficients in order to perform calculations.
We also need the projectors for particles, which are off the mass shell, since the vector meson
appears in our calculation as an intermediate particle. Since we did not use the mass shell
condition at any point of the derivation, the offshell form of the projectors one can easily get
by substituting the polarisation vectors by their offshell form. The expansion coefficients will
then in general also depend on the momenta, but the expansion into projectors can still be
done. The reason is that using spherical coordinates, which introduces the angles, can be
done for particles being onshell or offshell. There is one subtlety concerning the polarisation
vectors, since the vector meson propagator also contains a spin 0 part. That issue will be
discussed in Appendix B, where we derive the orthogonality relation for the projectors.
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5.1. Projection of the WT term

Now we want to use the machinery, we just developed, to project the WT term (see Appendix
D.1) on JP = 1+. We first have to determine the Fi, which is easily done by writing

Kµν = −CWT

4F 2
0

(p+ p)(q + q)gµν = −CWT

4F 2
0

(p+ p)(q + q)
(
Lµν

1 +
Lµν

2

s

)
, (5.30)

and therefore
F1 = −CWT

4F 2
0

(p+ p)(q + q) = sF2 , F3 = F4 = F5 = 0 . (5.31)

We introduce the auxiliary function g(s)

g(s) =
1
6
CWT

F 2
0

(2w · q + 2w · q − q2 − 2q0q0 − q2) , (5.32)

where q0 = q·w√
s

is the energy of the Goldstone boson in the CMS. g(s) is O(q) as one can see
from the appearance of one Goldstone boson derivative. We note that g(s) as well as Fi have
a matrix structure reflecting the coupled channels. This structure is encoded in CWT and in
the different masses. The function g(s) depends only on s since the expansion coefficients are
taken onshell. Using g(s), F1 reads

F1 = −3
2
g − CWT

2F 2
0

pcmpcmx . (5.33)

Next we will determine the expansion coefficients V P
abij = (V P

ij )ab. We note that

φ1 + φ2 =
∑

J

(2J + 1)(V J+

11 + V J−
11 )dJ

11 (5.34)

and
φ1 − φ2 =

∑

J

(2J + 1)(V J+

11 − V J−
11 )dJ

1−1 . (5.35)

Using the explicit expressions and the orthogonality relation for the d-functions in Appendix
A.3, the connection between Fi and φi from Eq.(5.13) and Eq.(5.17), we get

V 1+

11 + V 1−
11 =

∫ 1

−1

1
2
(φ1(x) + φ2(x))d1

11(x)dx

=
∫ 1

−1

(
F1

(
−1

2
x− 1

2

)
− F5

pp(1− x2)
2

)
1 + x

2
dx = −1

4

∫ 1

−1
F1(1 + x)2dx

= g +
CWT

16f2

8
3
pp ,

(5.36)

V 1+

11 − V 1−
11 =

∫ 1

−1

1
2
(φ1(x)− φ2(x))d1

1−1(x)dx

=
∫ 1

−1

(
F1

(
1
2
x− 1

2

)
+ F5

pp(1− x2)
2

)
1− x

2
dx = −1

4

∫ 1

−1
F1(1− x)2dx

= g − CWT

16f2

8
3
pp ,

(5.37)

and therefore
V 1+

11 = g . (5.38)
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Furthermore

V 1+

01 =
1

2M

∫ 1

−1
sin θφ3(x)d1

10(x)dx =

= − 1
2
√

2M

∫ 1

−1
(1− x2)(F1ω − F3

√
sp2 − F5ωppx)dx

= − 1
2
√

2M

∫ 1

−1
(1− x2)F1ωdx =

ω√
2M

g ,

(5.39)

V 1+

10 =
1

2M

∫ 1

−1
sin θφ4(x)d1

01(x)dx =

=
1

2
√

2M

∫ 1

−1
(1− x2)(−ωF1 + F4p

2√s+ F5ωppx)dx

= − 1
2
√

2M

∫ 1

−1
(1− x2)ωF1dx =

ω√
2M

g ,

(5.40)

and finally

V 1+

00 =
1

2MM

∫ 1

−1
φ5(x)d1

00(x)dx

=
1

2MM

∫ 1

−1
(−ωωxF1 + F2spp+ F3

√
sp2ωx+ F4ωp

2x
√
s+ F5ωωppx

2)xdx

=
1

2MM

∫ 1

−1
(−ωωx2F1 + F2sppx)dx =

1
2MM

∫ 1

−1
(−ωωx2 + ppx)F1dx

=
ωω

2MM
g − CWT p

2
cmp

2
cm

6F 2
0MM

.

(5.41)

We abbreviate the last term by introducing another auxiliary function h(s)

h(s) =
CWT p

2
cmp

2
cm

6F 2
0MM

. (5.42)

Since h(s) is O(q4), whereas g is O(q), it is higher order and we neglect it for the moment. We
explicitly checked the influence of this term, and there was no visible difference in the results
by including the term. With these coefficients the lowest partial wave takes an easy form

KJP =1+

µν = gY 1+

11µν + g
ω√
2M

Y 1+

01µν + g
ω√
2M

Y 1+

10µν + g
ωω

2MM
Y 1+

00µν

= −3
2
gL1

µν = −g3
2

(
gµν − wµwν

w2

)
.

(5.43)

Next we want to connect to the calculation in [LK04], which also yields a handy simplification,
if we neglect h(s). Rewriting g(s) yields

gab(s) =
CWT

ab

12F 2
0

(
3s− (M2

φa +M2
φb +M2

V a +M2
V b)−

1
s
(M2

V b −M2
φb)(M

2
V a −M2

φa)
)
. (5.44)

and for convenience we assign numbers to the channels as we did in Chapter 4

channel 1 = πρ

channel 2 = KK∗ .
(5.45)
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The equation we have to solve is (see Section 4.4.1)

Mabij = Vabij +
∑

c

∑

k

VacikMcbkj(−IV φ) . (5.46)

In matrix notation and using the renormalised loop integral the equation is




M1111

M2111

M1101

M2101


 =




V1111

V2111

V1101

V2101




+




V1111(−Jπρ) V1211(−JKK∗) V1110(−Jπρ) V1210(−JKK∗)
V2111(−Jπρ) V2211(−JKK∗) V2110(−Jπρ) V2210(−JKK∗)
V1101(−Jπρ) V1201(−JKK∗) V1100(−Jπρ) V1200(−JKK∗)
V2101(−Jπρ) V2201(−JKK∗) V2100(−Jπρ) V2200(−JKK∗)


 ·




M1111

M2111

M1101

M2101


 ,

(5.47)

where we recall the definition of JφV

JφV (s, µ) = IφV (s)− IφV (µ) . (5.48)

We abbreviate the matrix by V J and write down the equation for the other M ’s




M1110

M2110

M1100

M2100


 =




V1110

V2110

V1100

V2100


 + V J ·




M1110

M2110

M1100

M2100


 . (5.49)

Altogether there are 16 unknown expansion coefficients, which are determined by four equa-
tions each with four unknowns. It should be obvious how the equations for the remaining
expansion coefficients look like. For the WT term we see that the third row is a multiple of
the first row of V J and the second row is a multiple of the fourth row. This can be seen by
looking at the explicit expressions for Vabij , which we calculated in Eq.(5.36)-Eq.(5.41). We
will call the proportionality factors v1 and v2. For the first matrix equation, for example, we
have

v1M1111 = M1101 , v2M2111 = M2101 (5.50)

with

v1 =
ωπρ√
2Mρ

(5.51)

v2 =
ωKK∗√
2MK∗

. (5.52)

Thus, the equations for four unknowns reduce to equations with two unknowns, and we are
left with

(
M1111

M2111

)
=

(
V1111

V2111

)
+

(
V1111J1 + v1V1110J1 V1211J2 + v2V1210J2

V2111J1 + v1V2110J1 V2211J2 + v2V2210J2

)
·
(
M1111

M2111

)

=
(
V1111

V2111

)
+

(
(1 + v2

1)V1111J1 (1 + v2
2)V1211J2

(1 + v2
1)V2111J1 (1 + v2

2)V2211J2

)
·
(
M1111

M2111

)
.

(5.53)

45



Chapter 5. Partial Wave Projectors

The solution for the other equations can be seen as follows



M1110

M2110

M1100

M2100


 = (1− V J)−1




V1110

V2110

V1100

V2100


 = (1− V J)−1v1




V1111

V2111

V1101

V2101


 = v1




M1111

M2111

M1101

M2101


 (5.54)

and analogous for the remaining unknown expansion coefficients. We see that the helicity
structure completely decouples in case we neglect h(s). The final results for Tµν in the
channels, we are interested in, are given by

Tµν
πρπρ = M1111Y

µν
11 +M1110Y

µν
10 +M1101Y

µν
01 +M1100Y

µν
00

= M1111(Y
µ
11 + c1Y

µν
10 + c1Y

µν
01 + c1c1Y

µν
00 ) = −M1111

3
2

(
gµν − wµwν

w2

) (5.55)

and

Tµν
KK∗πρ = M2111Y

µν
11 +M2110Y

µν
10 +M2101Y

µν
01 +M2100Y

µν
00

= M21211(Y
µ
11 + c1Y

µν
10 + c2Y

µν
01 + c1c2Y

µν
00 ) = −M2111

3
2

(
gµν − wµwν

w2

)
.

(5.56)

These are the same results as in [LK04].

5.2. Connection between helicity states and orbital angular
momentum

In order to determine the s and d-wave component of the vector-meson Goldstone boson two-
particle state, we need to know the relation between the helicity states and the orbital angular
momentum l. In particular, we first want to determine the following overlap

〈J,M ; l, s = 1|J,M, λ〉 =? . (5.57)

In order to do so, we express both states in Eq.(5.57) in terms of orbital angular momentum
and spin states, which is pretty simple for the left hand side. The states of total angular mo-
mentum J can be written as a combination of states with definite orbital angular momentum
l and spin s

|J,M ; l, s〉 =
∑
ms

C(mms(ls)JM)|l,m〉|s,ms〉 , (5.58)

where s = 1 is the spin of the vector meson, ms the z-projection of the spin, m the z-projection
of the orbital angular momentum, M = m +ms and C is a Clebsch-Gordan coefficient. We
choose the following notation for the Clebsch-Gordan coefficients

〈j1j2,m1m2|j1j2, jm〉 = C(m1m2(j1j2)jm)δm,m1+m2 . (5.59)

Next we want to express the helicity states of the moving system in terms of the spin and
orbital angular momentum states. Since the spin and the orbital angular momentum are not
conserved quantum numbers in a relativistic framework, the helicity states will be a mixture
of different states. We need the following relations

|l,m〉 =

√
2l + 1

4π

∫
dΩ|θ, φ〉Dl∗

m,0(φ, θ, 0) , (5.60)
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and the inverse of that equation, which is

|θ, φ〉 =
∑

l,m

|l,m〉
√

2l + 1
4π

Dl
m0(φ, θ, 0) . (5.61)

At the same time we can write for a helicity state moving along the z axis |ẑ, λ >
|ẑ, λ >= |ẑ〉|s, λ〉 , (5.62)

where |s, λ〉 is the usual spin state with ms = λ. Although the spin is not a conserved quantum
number, it coincides with the helicity state in the rest frame of the particle. Since one can
not produce any orbital angular momentum along the direction of motion, after a boost the
z-projection of the total angular momentum is still given by the spin projection of the particle,
which is the same as the helicity. Thus, we can use the above decomposition. Next we apply
the rotation operator U(φ, θ, 0) to the state. After the rotation the spin and helicity states
will not be the same anymore, but the connection is given by the Wigner rotation functions.
We have to rotate each factor on the right hand side of Eq.(5.62) separately, which gives

|θ, φ, λ〉 = U(φ, θ, 0)|ẑ, λ〉 =
∑
mS

|θ, φ〉D1
mSλ(φ, θ, 0)|1,mS〉 . (5.63)

Applying the projection operator (see [Tun85] or [JW59]) on definite total angular momentum
states, we get

|J,M, λ〉 =

√
2J + 1

4π

∫
DJ∗

Mλ(φ, θ, 0)|θ, φ, λ〉dΩ

=
∑
mS

√
2J + 1

4π

∫
DJ∗

Mλ(φ, θ, 0)|θ, φ〉D1
mSλ(φ, θ, 0)|1,mS〉dΩ

=
∑

mS ,l,m

√
2l + 1

4π

√
2J + 1

4π

∫
DJ∗

Mλ(φ, θ, 0)|l,m〉Dl
m0(φ, θ, 0)D1

mSλ(φ, θ, 0)|1,mS〉dΩ .

(5.64)

We use the following relation for the Wigner rotation functions

Dj
mn(R)Dj′

m′n′(R) =
∑

J,M,N

C(mm′(jj′)JM)〉DJ
MN (R)C(nn′(jj′)JN) , (5.65)

which yields

|J,M, λ〉 =
∑

mS ,l,m,l′

√
2l + 1

4π

√
2J + 1

4π

∫
DJ∗

Mλ(φ, θ, 0)Dl′
m+mS ,λ(φ, θ, 0)dΩ|l,m〉|m1〉

· C(mSm(l1)l′mS +m)C(0λ(l1)l′λ)

=
∑

mS ,l,m,l′

√
2l + 1

4π

√
2J + 1

4π
2πδM,m+mS

∫
dJ

Mλ(x)dl′
Mλ(x)dx|l,m〉|1,mS〉

· C(mSm(l1)l′ms +m)C(0λ(l1)l′λ)

=
∑

l,mS

√
2l + 1
2J + 1

C(mS(M −mS)(l1)JM)C(0λ(l1)Jλ)|l,M −mS〉|1,mS〉 .

(5.66)

Therefore, we get from Eq.(5.58) and Eq.(5.66)

〈J,M ; l, 1|J,M, λ〉 =

√
2l + 1
2J + 1

C(0λ(l1)Jλ) , (5.67)
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where we used
∑

mS ,ms′

C(mS(M −mS)(l1)JM)C((M ′ −ms′)ms′(l1)J ′M ′) = δJJ ′δMM ′ . (5.68)

Now we will connect the helicity projectors to angular momentum projectors. In order to do
so we notice that

Mλλ = 〈J,M, λ|T |J,M, λ〉 =
∑

l,l′
〈J,M, λ|J,M ; l′, 1〉〈J,M ; l′, 1|T |J,M ; l, 1〉〈J,M ; l, 1|J,M, λ〉

=
∑

l,l′
〈J,M ; l′, 1|T |J,M ; l, 1〉

√
(2l + 1)(2l′ + 1)

2J + 1
C(0λ(l1)Jλ)C(0λ(l′1)Jλ) ,

(5.69)

where we used that also the orbital angular momentum states build a complete basis. By
building quotients of the respective amplitudes, we can pin down constraints. If we only
consider JP = 1+ and therefore only deal with s- and d-waves, we know for all possible
combinations of l

M11

M1−1
=

M11

M−1−1
=

M11

M−11
=

M10

M−10
=

M01

M0−1
= 1 , (5.70)

which we knew in principle already from Eq.(4.8). Therefore, we can use (again)

M+
11 = M11 +M1−1 = 2M11 (5.71)

M+
10 =

1√
2
(M10 +M−10) =

√
2M10 (5.72)

M+
01 =

1√
2
(M01 +M0−1) =

√
2M01 . (5.73)

Looking up the Clebsch-Gordan coefficients of Eq.(5.69), we get the following relations for the
respective transitions

s− wave → s− wave :
M+

11

M+
10

=
√

2 ,
M+

11

M+
01

=
√

2 ,
M+

11

M00
= 2 (5.74)

s− wave → d− wave :
M+

11

M+
10

= −
√

2
2
,

M+
11

M+
01

=
√

2 ,
M+

11

M00
= −1 (5.75)

d− wave → s− wave :
M+

11

M+
10

=
√

2 ,
M+

11

M+
01

= −
√

2
2
,

M+
11

M00
= −1 (5.76)

d− wave → d− wave :
M+

11

M+
10

= −
√

2
2
,

M+
11

M+
01

= −
√

2
2
,

M+
11

M00
=

1
2
. (5.77)

Calling the transitions with definite angular momentumDab, where a, b ∈ {s, d} and supressing
the Lorentz indices, we get

Dss = Y11 +
1√
2
Y10 +

1√
2
Y01 +

1
2
Y00 (5.78)

Dsd = Y11 − 2√
2
Y10 +

1√
2
Y01 − Y00 (5.79)

Dds = Y11 +
1√
2
Y10 − 2√

2
Y01 − Y00 (5.80)

Ddd = Y11 − 2√
2
Y10 − 2√

2
Y01 + 2Y00 . (5.81)
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In principle we can multiply each of these expressions by an arbitrary normalisation constant,
which we chose to be one, which means we use the above expressions. If we want to express
our amplitude in terms of orbital angular momentum

Tµν = M+
11Y

µν
11 +M+

10Y
µν
10 +M+

01Y
µν
01 +M+

00Y
µν
00

= cssD
µν
ss + csdD

µν
sd + cdsD

µν
ds + cddD

µν
dd ,

(5.82)

we have to solve the following equations



1 1 1 1
1√
2

− 2√
2

1√
2

− 2√
2

1√
2

1√
2

− 2√
2

− 2√
2

1
2 −1 −1 2


 ·




css
csd
cds

cdd


 =




M+
11

M+
10

M+
01

M00


 . (5.83)

The solution to that equation is

1
9




4 2
√

2 2
√

2 2
2 −2

√
2

√
2 −2

2
√

2 −2
√

2 −2
1 −√2 −√2 2


 ·




M+
11

M+
10

M+
01

M00


 =




css
csd
cds

cdd


 . (5.84)

It is interesting to note, that only for a particle at rest, the Weinberg-Tomozawa term is a
pure s-wave, while for moving particles, factors of ω

M reduce the s-wave part. In Chapter 7
Fig. 7.22 we will look at that quantitatively and show the ratios of the coefficients cab for
different kernels.

If one goes beyond WT and includes higher corrections to the kernel, it will not be obvious,
which terms in the Lagrangian will contribute at which order to a given coefficient c. Since one
is interested in determining the leading order contribution to the coefficients, we investigate
this issue in more detail. We can not expect the WT term to be the leading order term for
all transitions. It clearly is the leading order term for an s-wave to s-wave transition, since
the contribution from the WT term is O(q), as one can see by looking at Eq.(5.84) and the
expansion coefficients Eq.(5.36)-Eq.(5.41). Since the higher order terms can only contribute
terms of order equal or higher O(q2), the WT term is the leading term. For transitions
involving d-waves we have to look closer. In the following we will show in which order the
scalar coefficients Fi from Eq.(5.2) contribute to the respective transitions. For simplicity we
only consider the πρ channel.
We start by investigating the WT term. As already mentioned, it yields an O(q) contribution
to css, which is obviously the leading term, since the WT term is the only term at that order.
To determine the order of the other transitions, we expand in powers of pcm

Mρ
, which yields

csd = cds =
g(s)
9

(
2− 2

ω

Mρ
+

ω

Mρ
− ω2

M2
ρ

)
=
g(s)
9

(
−p

2
cm

M2
ρ

+
1
2
p2

cm

M2
ρ

− p2
cm

M2
ρ

+O(q4)
)
,

(5.85)
where we used

ω

M
= 1 +

p2
cm

2M2
ρ

+O(q4) . (5.86)

Therefore, altogether the expression is O(q3), since g(s) is O(q). The relatively high order is
not surprising, since the occurrence of the mixed transition csd is a relativistic effect, which
leads to an additional factor of p2

cm/M
2
ρ . Expanding cdd yields

cdd =
g(s)
9

(
1− ω

Mρ
− ω

Mρ
+

ω2

M2
ρ

)
=
g(s)
9

(
−1

2
p2

cm

M2
ρ

− 1
2
p2

cm

M2
ρ

+
p2

cm

M2
ρ

+O(q4)
)
. (5.87)
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Thus, we see that even the O(q3) terms cancel and the final order of the expression is O(q5).
Here the order is even higher as for csd although the appearance of a d-wave transition in
general is not a pure relativistic effect. However, a d-wave transition stemming from the
WT with its specific energy dependence is a relativistic effect, and therefore suppressed by
further powers of p2

cm/M
2
ρ . We will not discuss the coefficient cdd further, since in a rigorous

treatment, we would also have to check for example the contributions stemming from J = 2
and J = 3 terms of the expansion.
Next we want to see at which order the higher order terms might contribute to csd. Since
the WT term contributes at O(q3) to csd and cds, there might be terms of higher order in
the Lagrangian (cf. Section 6.6 below), which contribute at the same order to the respective
coefficients. Thus, we investigate, how the scalar coefficients Fi appear in csd and cds. We
can see from Eq.(5.36-5.41) that F2 will only yield nonzero contributions to J = 1+, if it is
proportional to x. In case it is proportional to x it also has to come with a factor of p2

cm.
Together with the factor p2

cm in Eq.(5.41) a contribution from F2 is always at least O(q4).
We also do not have to consider F1, since an F1 stemming from the higher order terms would
always be of higher order than the F1 from the WT term. In case the only nonzero Fi would
be F3, we can read off the expansion coefficient from Eq.(5.36-5.41) to be

V 1+

11 = V 1+

10 = 0 , V 1+

01 =
2
√
sp2

cm√
23Mρ

F3 , V 1+

00 =
ω
√
sp2

cm

3M2
ρ

F3 . (5.88)

Here we assumed that an F3 can exist which is not proportional to x. Indeed an example will
be given in Eq.(6.100). We also see from Eq.(6.100) that the leading order term in F3 is O(q).
The above coefficients lead to

css =
2
√
sp2

cm√
23Mρ

F3

(
2
√

2 + 2
ω√
2M

)
, (5.89)

which is obviously O(q3),

cds =
2
√
sp2

cm√
23Mρ

F3

(
−2
√

2− 2
ω√
2M

)
, (5.90)

which is also O(q3) and

csd =
2
√
sp2

cm√
23Mρ

F3

(√
2− 2

ω√
2M

)
=

2
√
sp2

cm√
23Mρ

F3

(
− p2

cm√
2M2

+O(q4)
)
, (5.91)

which is O(q5). Looking at F4 one only has to switch the roles of csd and cds. Any contribution
stemming from F5 would be at least O(q4), which can be concluded with the same arguments
we used for F2. Thus, we can make the following statements :

• The leading order contribution to css is given by the WT term only and is O(q).

• The leading order contribution to csd (cds) is O(q3) and stems from the WT term and
from any term proportional to Lµν

3 (Lµν
4 ) with the scalar factor F3 in front of it being

O(q). (These terms can be found in the O(q2) Lagrangian in Eq.(6.94) below.)

It is not surprising that the coefficient csd is higher order than the coefficient css, since the
appearance of the mixed transitions is a pure relativistic effect, which leads to an additional
increase in the order.
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5.3. Covariant projectors

The projectors, we have constructed, are especially suited for the calculation we want to do.
The task, we set out in the beginning, was to solve the Bethe-Salpeter equation with the use
of projectors and then implement that solution in the context of the τ decay. Since we can
explicitly work in the CMS of the Goldstone boson and the vector meson, we only need the
projectors in that frame. In this frame the projectors written down in the preceding sections
are perfectly well defined and the most straightforward thing one can write down. However,
there are applications, where one needs the projectors in a general frame, as for example in
in-medium calculations, where the frame of reference is the heat bath and not the CMS. One
can not make sense of the angular expansion outside the CMS, but we can express everything
in terms of covariant objects and call that object the covariant projector, which would then
be defined in any frame [LK04].
Another issue, which has to be addressed, is that in our calculation the outgoing ρ meson is
offshell. In order to derive the explicit form of the projectors, we considered the particles to
be on their mass shell. Thus, in order to use the explicit form in our case, we have to define
an offshell extrapolation of the projectors. In principle this extrapolation is arbitrary, since
there is no definite argument to constrain the extrapolation. The covariant projectors offer a
possibility to define the offshell extrapolation, which is also arbitrary in the sense that there
is no reason for us to use the covariant projectors, but at least we have chosen the offshell
extrapolation according to some ’higher’ principle, namely covariance. We will discuss that
issue again in Section 6.8.
In the following we will define the covariant projectors for JP = 1+ and show their relation
to the projectors we have calculated before. As noted in [LK04], problems will arise, if one
wants to express for example cos θ in terms of four-vector products

cos θ ↔ Yqq√
YqqYqq

, (5.92)

with

Yxy =
(w · x)(w · y)

w2
− x · y , (5.93)

because of the square root singularities, which spoil the analytic properties of the projector
in an arbitrary frame. Thus, we take linear combinations of the CMS projectors in order to
avoid such terms. The linear combinations, which one can use for JP = 1+ are

Yµν
1 = Y 1+

11µν +
ω√
2M

Y 1+

01µν +
ω√
2M

Y 1+

10µν +
ωω

2MM
Y 1+

00µν = −3
2

(
gµν − wµwν

w2

)
(5.94)

Yµν
2 =

p2
cmp

2
cm

MM
Y µν

22 = 3
(

(w · q)(w · q)
s

− q · q
)
wµwν

s
(5.95)

Yµν
3 =

p2
cm

M

(
Y µν

01 +
ω√
2M

Y µν
00

)
=

3√
2
√
s

(
wµqν − wµwν q · w

s

)
(5.96)

Yµν
4 =

p2
cm

M

(
Y µν

10 +
ω√
2M

Y µν
00

)
=

3√
2
√
s

(
qµwν − wµwν q · w

s

)
, (5.97)

which are exactly the projectors for JP = 1+ in [LK04]. Note that the projectors are very
similar to Lµν

1 − Lµν
4 .
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Next we want to investigate, if there are any differences, when we use the covariant projectors.
We first rename the CMS projectors and omit the Lorentz indices

Y µν
11 = Y1 , Y µν

00 = Y2 , Y µν
01 = Y3 , Y µν

10 = Y4 . (5.98)

The orthogonality relation Eq.(B.1) for the same parity (P = +) part, the same J and the
same M (i.e. just the helicity structure) is abbreviated as

(Yi, Yj) = oijkYk (5.99)

with oijk given by

oijk =

{
−IV φ for ijk ∈ {111, 144, 222, 233, 313, 342, 424, 431}
0 otherwise

. (5.100)

We can expand the scattering amplitude for JP = 1+ into both projectors as

T =
∑

i

tiYi , (5.101)

T =
∑

i

t′iYi . (5.102)

The matrix A, which gives the transformation between the coefficients

A · t′ = t (5.103)

and between the projectors
ATY = Y (5.104)

is given by

A =




1 0 0 0
ωω

2MM

p2
cmp2

cm

MM

ωp2
cm√

2MM

ωp2
cm√

2MM
ω√
2M

0 p2
cm

M
0

ω√
2M

0 0 p2
cm
M



. (5.105)

We call the inverse B = A−1. We calculate the orthogonality relation for the covariant
projectors by using Eq.(5.99), which gives

(Yi,Yj) = akialj (Yk, Yl) = akialjoklmYm = akialjoklmbnmYn . (5.106)

Calculating the orthogonality relation for the covariant projectors in the CMS is justified,
since the covariant projectors are defined in any frame.
Next we will show explicitly that for the applications of the projectors in the present work,
it does not matter whether we perform the calculation with the CMS projectors or with the
covariant ones. We will solve the Bethe-Salpeter equation with both projectors and afterwards
show, that one can transform the results into each other. In particular this means that in
any calculation in the CMS it does not matter which projectors one uses. We can expand the
scattering amplitude as in Eq.(5.101) and Eq.(5.102) and the kernel as

K =
∑

i

kiYi , (5.107)
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K =
∑

i

k′iYi . (5.108)

The two expansions differ offshell, but onshell they are of course the same. This difference
can be seen by noting that in Eq.(5.94)-Eq.(5.97) everything is expressed in terms of four-
vectors, whereas in Eq.(5.23)-Eq.(5.26) the ’onshell quantities’ pcm and ω appear. Omitting
the Lorentz indices, the Bethe-Salpeter equation in the first case is

tiYi = kiYi + kitjoijkYk , (5.109)

which we write as
t = k +G · t (5.110)

with (G)ij = klolji. In the second case we have

t′iYi = k′iYi + k′it
′
jakialjoklmbnmYn , (5.111)

which we write as
t′ = k′ +G′ · t′ , (5.112)

with (G′)ij = knaljonlmbim. Next we want to show that multiplying t′ by A really gives t,
which would show that it does not matter how we perform the calculation and that we can
transform the results also afterwards. In order to do so, we first note that

(AG′)ij = aikknaljonlmbkm = knaljonli = (GA)ij , (5.113)

and therefore also
A ·G′n = GnA (5.114)

from which it follows that

A · t′ = A(1−G′)−1k′ = A
∞∑

n=0

G′nk′ =
∞∑

n=0

GnAk′ = (1−G)−1k = t . (5.115)

The crucial step in the derivation is that the orthogonality relation and therefore the loop
integrals for the covariant projectors are actually calculated in the CMS, which means that
even when we use the covariant projectors the calculations will be the same.
Differences might appear through the different offshell extrapolations of the projectors, which
can be seen best for Y2 since it is directly proportional to Y2. The following example shows
the differences, which might appear offshell, for a simple case.

Example

The kernel we want to consider is
K = Y2 (5.116)

or expressed in covariant projectors
K = k′Y2 (5.117)

with k′ = MM
p2

cmp2
cm

. The result for T in the first case is

T = (1− IφV )−1Y2 (5.118)

and in the second case

T ′ =
(

1− k′
p2

cmp
2
cm

MM
IφV

)−1

k′Y2 = (1− IV φ)−1k′Y2 . (5.119)
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Onshell the results are the same, but they differ offshell. We can see this by looking at
Eq.(5.95), where we see that instead of factors of pcm covariant expressions in terms of four-
vectors appear, which are not onshell. We also see that there would not have been a difference
if we had transformed the projectors into covariant projectors before or after the calculation,
since the results only differ by the use of the different projectors. In other words, if we tried
to express the result from Eq.(5.118) in covariant projectors, we would as well end up with
Eq.(5.119). Thus, calculating in the CMS system and afterwards transforming into covariant
projectors would have let to the same results as calculating with the covariant projectors from
the beginning.
For our calculations in all scenarios even the offshell extrapolation is the same, as we will see
in Chapter 6.
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Chapter 6.

τ Decay

The present chapter is structured as follows: after spending a few words on the weak inter-
actions, we use the tools we discussed before to calculate the τ decay. First, we calculate
the τ decay without a1, which is the shortest part due to the simple form of the WT term.
Including the a1 is in principle straightforward after the discussions in the last chapters, but
leads to some lengthy calculations, which the interested reader can find in the appendices B.1
and E.3. Finally, we calculate the decay again without a1, but include higher order correc-
tions to the WT term. We recall that performing the calculation with and without explicit
a1 is important in order to see how decisive the τ decay actual is. In addition, including the
higher order terms is a reliable method in order to test the systematics of our model and study
possible improvements.

6.1. Weak interactions

So far we have not yet discussed the weak process, which is the starting point of the τ decay.
The weak decay of the τ into a neutrino and a W boson is part of the standard model, which
is subject of many textbooks. We only summarise the properties which are relevant for the τ
decay and refer to [PS95] for details.
The weak and the electromagnetic interactions are described by a spontaneously broken gauge
theory, the so called Glashow-Weinberg-Salam Theory of weak interactions. It is based on
an SU(2)×U(1) gauge theory, which is broken down to U(1). The interaction part of the
Lagrangian, which couples the W bosons to the τ lepton is given by

LW = g(W+
µ J

µ+
W +W−

µ J
µ−
W ) (6.1)

with

Jµ+
W =

1√
2
(νLγ

µτL) , Jµ−
W =

1√
2
(τLγ

µνL) , (6.2)

where the index L denotes the projection on left-handed states, as in Eq.(2.6). The weak
coupling g is related to the Fermi constant GF by

GF =
√

2
g2

8M2
W

. (6.3)

The decay of the W boson to mesons is part of the chiral Lagrangian Eq.(2.41). The decay
vertex, which is given in Appendix D, includes an entry of the Cabibbo-Kobayashi-Maskawa
matrix, namely Vud. That matrix describes the relation between the quark mass eigenstates
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and the weak eigenstates, which are not the same. In the SU(3) case the mixing can be
described by a single parameter

(
d′

s′

)
=

(
cos θC sin θC

− sin θC cos θC

)
=

(
d
s

)
, (6.4)

which is the so called Cabibbo angle θC

cos θC = Vud = 0.974 . (6.5)

6.2. The decay width

Since the weak decay vertex is common in all diagrams (cf. Fig. 6.2 and Fig. 6.8 below), we
can separate it from the hadronic information by writing the invariant matrix element as

iM = C(s)Sµ

(
gµν − wµwν

M2
W

)
Wν , (6.6)

where we used the following abbreviations

Sµ = v(pν)γµ(1− γ5)u(pτ ) (6.7)

and

C(s) =




√
GFM2

W√
2


 1
s−M2

W

' −
√

GF√
2M2

W

= C . (6.8)

Wν denotes the hadronic tensor, which we will calculate in detail below. Since the mass of the
W boson is much bigger than the energy region we are interested in, the last approximation
is well justified. The observable quantity we want to determine is the decay width for τ− →
π−π0π0ντ , which is given by

dΓ =
(2π)4

2Mτ
|M|2dφ4 , (6.9)

where dφ4 is the four-body phase space, which we can write as a product of a three-body and
two-body phase space [PDG06]

dφ4(pτ , q1, q2, q3, pν) = dφ3(w, q1, q2, q3)dφ2(pτ , w, pν)(2π)3ds . (6.10)

In Chapter 7 we actually compare the spectral function with the data, which is related to
the decay width. The exact relation is given in Eq.(7.21), where one can see that the two
quantities differ basically by some kinematical factors.
We notice that Sµ in Eq.(6.7) depends only on pτ and pν and the hadronic part depends only
on w, q1, q2, q3 (which can be seen explicitly below). Rewriting the width yields

dΓ
ds

=
∫

φ3

∫

φ2

(2π)7

2Mτ
|C|2 1

4

∑

spins

S∗µSν

(
gµα − wµwα

M2
W

)(
gνβ − wνwβ

M2
W

)
W ∗

αWβdφ3dφ2 . (6.11)

Note the additional factor of 1
2 in Eq.(6.11) due to two identical particles in the final state.

We see that we can treat
Wµν ≡

∫

φ3

W ∗
µWνdφ3 (6.12)
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separately and by Lorentz invariance it must have the following structure

Wµν(s) = W1(s)
(
gµν − wµwν

w2

)
+W2(s)

wµwν

w2
. (6.13)

W1 and W2 can then be calculated from the following two equations

3W1(s) +W2(s) =
∫

φ3

W ∗ ·Wdφ3 (6.14)

W2(s) =
1
s

∫

φ3

w ·W ∗w ·Wdφ3 (6.15)

The three-body phase space can be written as

dφ3 =
1

(2π)7
1

16s
dm2

12dm
2
23 , (6.16)

with the following kinematical borders

(m2
23)max = (E∗2 + E∗3)2 −

(√
E∗22 −m2

π −
√
E∗23 −m2

π

)2

, (6.17)

(m2
23)min = (E∗2 + E∗3)2 −

(√
E∗22 −m2

π +
√
E∗23 −m2

π

)2

. (6.18)

These are the values when particle 2 and 3 fly parallel or antiparallel to each other. Since
m2

23 is a Lorentz invariant quantity, we can calculate it in any frame, and for convenience we

choose the m12 rest frame, where E∗2 =
√

m2
12

2 and E∗3 = s−m2
π−m2

12

2
√

m2
12

. Therefore,

(m2
23)max =

(s−m2
π)2

4m2
12

−
(√

m2
12

4
−m2

π −
√

(s−m2
π −m2

12)2

4m2
12

−m2
π

)2

, (6.19)

(m2
23)min =

(s−m2
π)2

4m2
12

−
(√

m2
12

4
−m2

π +

√
(s−m2

π −m2
12)2

4m2
12

−m2
π

)2

(6.20)

and

(m2
12)max = (

√
s−mπ)2 , (6.21)

(m2
12)min = 4m2

π . (6.22)

Using the above formulas, the calculation of W1 and W2 is straightforward. Thus, it only
remains to bring Eq.(6.11) in a suitable shape.

The sum over the spin matrices is
∑

SµSβ∗ =
∑

v(pντ )γµ(1− γ5)u(pτ )u(pτ )(1 + γ5)γβv(pντ )

= Tr[/pν
γµ(1− γ5)(/pτ

+mτ )(1 + γ5)γβ]

= Tr[/pν
γµ
/pτ
γβ + /pν

γµ
/pτ
γ5γ

β − /pν
γµγ5/pτ

γβ + /pν
γµ
/pτ
γβ]

= 2 Tr[/pν
γµ
/pτ
γβ − /pν

γµ
/pτ
γβγ5]

= 8(pµ
ντ
pβ

τ − pντ · pτg
µβ + pβ

ντ
pµ

τ + iεµβασpνσpτα) ,

(6.23)
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where we used the properties of the γ matrices from Appendix .A.

The decay width becomes

dΓ
ds

=
∫

φ2

(2π)7

8M
|C|28(2pα

ντ
pβ

τ − pτ · pντ g
αβ)

(
wαwδ

M2
W

− gαδ

)(
wβwσ

M2
W

− gβσ

)

(
W1(s)

(
gδσ − wδwσ

w2

)
+W2(s)

wδwσ

w2

)
dφ2 ,

(6.24)

where we used that the expression in front of SµSν is symmetric in µ, ν, and therefore the
term including the ε tensor vanishes. The expression can be further simplified

dΓ
ds

=
(2π)7

M
|C|2

∫

φ2

(2pα
ντ
pβ

τ − pτ · pντ g
αβ)

(
W1(s)

(
gαβ −

wαwβ

w2

)

+W2(s)
1
s
wαwβ

(
1− 2

w2

M2
W

+
w4

M4
W

))
dφ2 .

(6.25)

Neglecting terms of O( s
M2

W
) (as we did already in Eq.(6.8)), we get

dΓ
ds

= 2
(2π)7

Mτ
|C|2(W2(s)−W1(s))

1
s

∫

φ2

(w · pντ )(w · pτ )dφ2

− (2π)7

Mτ
|C|2(W1(s) +W2(s))

∫

φ2

(pντ · pτ )dφ2 .

(6.26)

Neglecting the neutrino mass, we know

w · pντ =
1
2
((w + pντ )2 − s) =

1
2
(M2

τ − s) (6.27)

w · pτ =
1
2
(−(pτ − w)2 + s+M2

τ ) =
1
2
(M2

τ + s) (6.28)

pντ · pτ =
1
2
(−(pτ − pντ ) +M2

τ ) =
1
2
(M2

τ − s) (6.29)

and ∫

φ2

dφ2 =
1

2(2π)5
pcm

1
Mτ

, (6.30)

with pcm = 1
2Mτ

(M2
τ − s). Thus, we finally get

dΓ
ds

=
π2

2Mτs
|C|2(M2

τ − s)2
(
W2 −W1

(
1 +

2s
M2

τ

))
. (6.31)

6.3. Which diagrams to include?

One can not expect chiral perturbation theory to describe the τ decay in the whole energy
region (see [CFU96] for pure CHPT calculations), since the energies, which are involved are
beyond 1 GeV and the decay is dominated by resonance structures. Including vector mesons at
tree level will certainly improve the calculation, but still one can not expect to find a satisfying
description of the data due to the strong correlations in the final state. In particular, the vector
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Figure 6.1.: Spectral function for the decay τ− → π−π0π0ντ without including rescattering
diagrams in comparison to data from [S+05]. The lowest order CHPT calculation corresponds
to the diagrams Fig. 6.2a, 6.2b and the second curve additionally includes the diagrams Fig.
6.2c, 6.2d.
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Figure 6.2.: Relevant diagrams for the decay τ− → π−π0π0ντ without including the a1.
φ and V correspond to intermediate Goldstone boson and vector meson (πρ or KK∗). The
blob represents the final state interaction obtained from the solution of the Bethe-Salpeter
equation (see Fig. 4.2).
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W

π

π

π

π

π

π

Figure 6.3.: Diagram describing pion correlations, which we do not include in our calculation.
The blob denotes the final state interactions of the pions.

mesons at tree level can not produce an axial-vector resonance. In Fig. 6.1 we see the spectral
function calculated in lowest order CHPT and by including vector mesons in comparison to
data. The CHPT calculation (Fig. 6.2a, 6.2b) can only describe the lowest data points, which
are far below the πρ threshold. The onset of the rise in the region 0.5− 0.7 GeV2 is described
much better if one includes the tree-level vector-meson diagrams Fig. 6.2c, 6.2d. Nonetheless,
the main bump in the data at about 1.5GeV2 is clearly out of reach. The philosophy in the
present work is that the final state is dominated by the coupled-channel dynamics of the πρ
state. That point of view is suggested by the improvement when we include the ρ in the
calculation and the height of the amplitude, which we can see in Fig. 6.1. The deviation
from the data for higher energies can then be explained by the increasing importance of the
rescattering diagrams, describing the final state interactions (Fig. 6.2e, 6.2f). We neglect
further correlations between the pions, as for example the diagram in Fig. 6.3, which we
expect to have only a minor influence, since the tree level result for the three-pion process is
much smaller than the tree-level result for the process including vector mesons (see Fig. 6.1).
When we include the a1 we expect, of course, also the a1 to have a major influence on the
result, but we still include the WT term in the calculation, as already mentioned.
In Chapter 7 we will also look at Dalitz projections, where one can see the clearly dominating
ρ in the final state, which gives another justification for the processes, which we include.

6.4. Calculation of τ decay without a1

In this version of the calculation, the a1 is assumed to be generated dynamically. Therefore,
we have to include strong final state effects, which we do by iterating the loop diagrams,
as described in the previous chapters. In Fig. 6.2 we see the processes, which we take into
account. The diagrams Fig. 6.2a, 6.2b are the lowest order CHPT processes, Fig. 6.2c, 6.2d
are the tree-level processes including vector mesons and the diagrams Fig. 6.2e, 6.2f describe
the rescattering. Wµ from Eq.(6.6) is split into the following contributions

Wµ = Wµ
3π +Wµ

vec +Wµ
πρ +Wµ

KK∗ , (6.32)

where Wµ
3π corresponds to the processes in Fig. 6.2a, 6.2b, Wµ

vec to the diagrams Fig. 6.2c,
6.2d and Wµ

φV to Fig. 6.2e, 6.2f. Using the rules from Appendix D, these functions are given
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by

W 3π
µ =

gVud

3F0
(q1 + q3 − 2q2)µ +

F0gVud

2
wµ

1
s−m2

π

1
6F 2

0

(−4w(q1 + q3 − 2q2)− 2m2
π) , (6.33)

W vec
µ =

[
−gVud

2F0
(fV (w ·m12gµα −m12νwα)− 2gV (q3 ·m12gµα −m12µq3α))

− F0gVud

2
2gV

F 2
0

wµ
1

s−m2
π

(m12 · q3wα − w ·m12q3α)

]
gV

F 2
0

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)α

+ (q1 ↔ q3) , (6.34)

W V φ
µ =

[
−cφV gVud

2
√

2F0

∫
d4l

(2π)4
(fV (w · lgα

µ − lµw
α)− 2gV ((w − l) · lgα

µ − lµ(w − l)α))GV φ
αβ (l)

− 1
s−m2

π

F0gVud

2
wµ

∫
d4l

(2π)4
cφV

√
2gV

F 2
0

(l(w − l)wα − lw(w − l)α)GV φ
αβ (l)

]

· igV

F 2
0

T βγ
V φ

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ + (q1 ↔ q3) , (6.35)

where q1 and q3 are the momenta of the likewise non-charged pions, q2 is the momentum of
the charged pion, w = q1 + q2 + q3, mij = qi + qj and

GV φ
αβ (l) =

1
(w − l)2 −m2

φ + iε

gαβ − lαlβ
M2

V

l2 −M2
V + iε

. (6.36)

(q1 ↔ q3) denotes the same amplitude with the momenta of the likewise pions q1 and q3
exchanged. The self energy of the ρ meson is taken from [GK91] and given by

Π(p2) =
g2
ρ

48π2
p2




(
1− 4m2

π

p2

) 3
2


ln

∣∣∣∣∣∣

√
1− 4m2

π
p2 + 1

√
1− 4m2

π
p2 − 1

∣∣∣∣∣∣
− iπθ(p2 − 4m2

π)


 +

8m2
π

p2
+ Csub


 ,

(6.37)
where gρ = 6.05 and the subtraction constant Csub is given such that <Π(p2 = M2

ρ ) = 0,
which leads to

Csub = −8m2
π

M2
ρ

− 2
(

1− 4m2
π

M2
ρ

)3/2

ln
Mρ +

√
M2

ρ − 4m2
π

2mπ
. (6.38)

All other constants appearing can be found in Appendix D and Tab. E.1. In most calculations
the spectral distribution of the vector mesons ia also considered in the loop integral. This is
done by folding the loop integral with the spectral function as follows

IφV → IφV
= i

∫
dx

(
−1
π

=ΠV (x)
(x−M2

V −<ΠV (x))2 + =ΠV (x)2

∫
d4l

(2π)4
1

(w − l)2 −M2
φ + iε

1
l2 − x+ iε

)
,

(6.39)

where the index V on the self energy indicates the different self energies for K∗ and ρ. The
self energy of K∗ is calculated analogous to the one for the ρ.
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The rescattering is encoded in Tµν
φV in Eq.(6.35), which describes the scattering amplitude for

the process φV → πρ. We note that Tµν
φV factors out of the integral, since in case we take the

Weinberg-Tomozawa term as the kernel, Tµν
φV is given by Eq.(5.55) and Eq.(5.56), which only

depends on w.
Evaluating the integral in Eq.(6.35), doing some algebra and introducing some abbreviations,
the above functions take the following form

Wµ
3π = −

(
gµν − wµwν

w2

)
gVud

F0
q2ν − gVud

F0

wµ

s

m2
π

s−m2
π

(
1
2
s− (q2 · w)

)
, (6.40)

Wµ
vec =

(
gµν − wµwν

w2

)
gVudgV

F 3
0

m2
12

m2
12 −M2

V −Π

(
fV (m2

12q2ν − (m12 · q2)m12ν)

+ (fV − 2gV )((m12q3)q2ν −m12ν(q3 · q2))
)

+
wµ

s

m2
π

s−m2
π

2gVudg
2
V

F 3
0

(
(m12 · q3)(w · q2)− (w ·m12)(q3 · q2)

) m2
12

m2
12 −M2

V −Π

+ (q1 ↔ q3) , (6.41)

Wµ
T = Wµ

πρ +Wµ
KK∗ =

(
gµν − wµwν

w2

)
bT

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)ν + (q1 ↔ q3) .

(6.42)

Whereas the simplifications leading to Eq.(6.40) and Eq.(6.41) are straightforward, Eq.(6.35)
contains an additional loop diagram, which needs to be renormalised. The simplification of
this expression corresponds to a special case of the calculation shown in Appendix B.1. In
order to get to the simple form shown in Eq.(6.42), we dropped tadpoles in the renormalisation
of the divergent integrals, which has been explained in the previous chapters. The nontrivial
part of W T

µ is contained in bT and given by

bT =
3gV gVud

4F 3
0

M1111Jπρ(µ2)
(

(fV − 2gV )
1
2
(s−m2

π +M2
ρ )

+ 2gV

(
2
3
M2

ρ +
1

12s
(m2

π −M2
ρ − s)2

))

− 3gV gVud

4
√

2F 3
0

M1211JKK∗(µ2)
(

(fV − 2gV )
1
2
(s−m2

K +M2
K∗)

+ 2gV

(
2
3
M2

K∗ +
1

12s
(m2

K −M2
K∗ − s)2

))
.

(6.43)

We recall that M1111 and M1211 are the expansion coefficients of the scattering amplitude,
which in general can be determined by Eq.(4.74) and which are explicitly calculated in Section
5.1. We note that the renormalised loop integral JφV (µ2) appearing in bT does not have to
depend on the same subtraction point as the loop integrals in the scattering amplitude. There-
fore we denote the subtraction point of this loop with µ2 and the subtraction point appearing
in the scattering amplitude with µ1. We will discuss the appearance of two subtraction points
and their relation in more detail later.
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Figure 6.4.: Higher order contribution to the decay τ− → π−π0π0ν.

Choice of interpolating fields

In Chapter 3 we discussed the differences in using vector fields or antisymmetric tensor fields
to describe the interactions. In order to transform from vector fields to antisymmetric tensor
fields, one had to include the following higher order interactions

L3πho = −2Tr[jµνj
µν ] (6.44)

with
jµν = −fV

4
fµν
+ − igV

4
[uµ, uν ]. (6.45)

Assuming that CHPT is given at O(q4) solely by the vector-meson tensor field Lagrangian
without further point interactions, one needs the interaction term in Eq.(6.44), if one works
in the vector-field realisation. We will show that the inclusion of Eq.(6.44) yields indeed a
decent high-energy behaviour. Dropping terms, which are not of interest for the τ decay, we
get

−2Tr[jµνj
µν ] −→ g2

V

8
Tr[[uµ, uν ][uµ, uν ]]− ifV gV

4
Tr[fµν

+ [uµ, uν ]] . (6.46)

The vertices with the corresponding Feynman rules can be found in Appendix D. Perturba-
tively, they yield the additional contribution, which is shown diagrammatically in Fig. 6.4.
Below we will show that one can even resum contributions generated from Eq.(6.44) and the
ρππ coupling. The contribution from Fig. 6.4 reads

iMho = CSµ

(
gµν − wµwν

M2
W

)
W 3πho

ν , (6.47)

with

Wµ
3πho = −

(
gµν − wµwν

s

)[
gVudgV

F 3
0

(fV − 2gV )(q2ν(m12 · q3)−m12ν(q2 · q3))

+
gVudgV fV

F 3
0

(m2
12q2ν − m2

12

2
m12ν)

]

− 2gVudg
2
V

F 3
0

m2
π

s(s−m2
π)
wµ((w · q2)(m12 · q3)− (q2 · q3)(w ·m12)) + (q1 ↔ q3) .

(6.48)

We will show that the net effect of adding this contribution (in a resummed way) is the
replacement

p2

p2 −M2
ρ −Π

→ M2
ρ

p2 −M2
ρ −Π

(6.49)

in Wµ
vec (Eq.(6.41)). Superficially, it seems like we actually have to replace p2 → M2

ρ + Π.
In order to show the validity of Eq.(6.49), we look at the sums of diagrams, which build up
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Chapter 6. τ Decay

= + + +. . .

Figure 6.5.: Sum of diagrams, which build up the full ρ propagator.

4 + 4 + 4 +. . .

Figure 6.6.: Sum of higher order diagrams, contributing to the τ decay.

the full ρ propagator, which are shown in Fig. 6.5. So far we have just included additionally
the two diagrams, which can be seen in Fig. 6.4. But looking at the sum in Fig. 6.5, it
would be reasonable to also include the diagrams in Fig. 6.6, which we call Wµ

sum. In the
following we will show that by including this sum, the replacement in Eq.(6.49) is justified.
The central relation is that the higher order contact term is proportional to the lowest order
diagram including the ρ, which is stated more precise in Fig. 6.7. This relation guarantees
that one can split off the ρππ vertex in the higher order contact term in the same way as for
the resonance diagram. Thus, using the relation in Fig. 6.7, both sums together yield

Wµ
vec +Wµ

sum = Wµ
vec

(
1− p2 −M2

p2

)
= Wµ

vec

M2

p2
, (6.50)

which leads exactly to the replacement advocated in Eq.(6.49). We will not explicitly men-
tion the inclusion of the higher order terms anymore in the following, but only perform the
replacement in Wµ

vec.
We omitted the diagrams with the π intermediate state (right diagram Fig. 6.4) in the dis-
cussion, since the arguments follow exactly the same lines.

6.5. Calculation of the τ decay with explicit a1

Next we include the a1 explicitly. We introduce it as a bare resonance and generate the width
by summing up the self-energy contributions from the decay of the a1 into Goldstone boson
and vector meson. As already mentioned, there is no good reason to drop the WT term when
we include the a1, and therefore we keep it. The choice for the kernel has been discussed in
detail in Section 4.4.3. We have to calculate the diagrams shown in Fig. 6.8. In comparison

4 = ·

(

−

p
2
−M

2

ρ

p2

)

Figure 6.7.: Relation between higher order contact term and lowest order resonance diagram.
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Figure 6.8.: Relevant diagrams for the decay τ− → π−π0π0ν including the a1.

K = +
a1

Figure 6.9.: Kernel of the Bethe-Salpeter equation when including the a1 explicitly (see also
Fig. 4.1); i.e. one has to replace the point interaction in Fig. 4.2 by the two diagrams on the
right hand side.

65



Chapter 6. τ Decay

to Fig. 6.2, there are two additional diagrams, where the W merges into the a1. Furthermore
the blobs, indicating the resummation, are not the same as in the calculation before, since we
also include the a1 interaction in the kernel. The additional diagram in the kernel is shown
in Fig. 6.9, and it leads to the following expression

Kµν
a1

= cV φcV ′φ′
16
F 2

0

(−i)
s−M2

a

(
gαβ −

wαwβ

M2
a

)
(−i)(−1)

(c1(qνpα − pqgαν) + c2(wνqα − qwgαν))(c1(qµpβ − pqgβµ) + c2(wµqβ − qwgβµ)) .
(6.51)

Note the additional factor of (−i) due to the definition of the kernel in the Bethe-Salpeter
equation and a factor of two due to the normalisation of the states (see also Section D.1).
We rewrite this expression in a form, from which it is easy to read off the Fi

Kµν
a1

=
16CWT

F 2
0

1
s−M2

a

[
wµwν

(
c21

(
pp− pq − pq − (wp)(wp)

M2
a

+
(pq)(wp)
M2

a

+
(pq)(wp)
M2

a

− (pq)(pq)
M2

a

)
+ c1c2(qp− qw) + c1c2(pq − qw) + c22(qq)

)

+ wµqν(c21pq − c1c2pq + c1c2qw − c22qw)

+ wνqµ(c21pq + c1c2qw − c1c2pq − c22qw)

+ gµν(c21(pq)(pq) + c1c2(qw)(pq) + c1c2(pq)(qw) + c22(qw)(qw))

]
,

(6.52)

where we used the Weinberg-Tomozawa matrix CWT to describe the isospin structure, since
it turned out to be the same.
Looking at Eq.(5.41), we see that terms proportional to x in F2 vanish, and therefore we leave
them out in F2 already. Thus, we can write

F1 =
16CWT

F 2
0

1
s−M2

a

(c21(pq)(pq) + c1c2(qw)(pq) + c1c2(pq)(qw) + c22(qw)(qw)) (6.53)

F2 =
16CWT

F 2
0

1
s−M2

a

((c21(pp) + c1c2qp+ c1c2pq + c22(qq)) (6.54)

F3 =
16CWT

F 2
0

1
s−M2

a

((c21 − c1c2)pq + (c1c2 − c22)qw) (6.55)

F4 =
16CWT

F 2
0

1
s−M2

a

((c21 − c1c2)pq + (c1c2 − c22)qw)) , (6.56)

Using Eq.(5.28) and performing the same steps as in Section 5.1, the coefficients of the pro-
jected kernel are given by

V 1+

ab11 = −2
3
F1ab + gab (6.57)

V 1+

ab01 = − 2
3
√

2Ma

(F1abωa − F3ab

√
sp2

a) +
ωa√
2MV a

gab (6.58)

V 1+

ab10 =
2

3
√

2Mb

(−ωbF1ab + F4abp
2
b

√
s) +

ωb√
2MV b

gab (6.59)

V 1+

ab00 =
1

3MaMb

(
−ωaωbF1ab − sp2

bp
2
a(c1 − c2)2

16CWT

F 2
0

1
s−M2

a

+ F3abωbp
2
a

√
s

+ F4abωap
2
b

√
s
)

+
ωaωb

2MV aMV b
gab . (6.60)
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6.5. Calculation of the τ decay with explicit a1

We note again that the coefficients Fi possess a matrix structure, since CWT is a matrix, and
the indices a, b denote the respective channels.

The whole matrix element can be written similar to Eq.(6.6)

iMa1 = CSµ

(
gµν − wµwν

M2
W

)
Wν , (6.61)

but this time with

Wν = W ′πρ
ν +W ′KK∗

ν +W 3π
ν +W vec

ν +W tree
ν +W a1πρ

ν +W a1KK∗
ν . (6.62)

W tree
ν corresponds to Fig. 6.8h, W a1

ν to Fig. 6.8g and W ′V φ
ν differ from W V φ

ν because of the
different kernel. Due to the non-vanishing of F3 and F4 the solution of the Bethe-Salpeter
equation will not take the simple form of Eq.(5.55), and in contrast to the calculation before
Tµν

V φ will not factor out of the integral. Therefore, we can not take over the calculation for

W V φ
ν from before, and we have to do some more algebra. Using the rules from Appendix D,

we get

W ′φV
µ =

[
−cφV gVud

2
√

2F0

∫
d4l

(2π)4
(fV (w · lgα

µ − lµw
α)

− 2gV ((w − l) · lgα
µ − lµ(w − l)α))GφV

αβ (l)T βγ
φV (l)

− 1
s−m2

π

F0gVud

2
wµ

∫
d4l

(2π)4
cφV

√
2gV

F 2
0

(l(w − l)wα − lw(w − l)α)GφV
αβ (l)T βγ

φV (l)

]

· igV

F 2
0

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ + (q1 ↔ q3)

=

[
−cφV

gVud

2
√

2F0

∫
d4l

(2π)4

(
fV (w · lgα

µ − lµw
α)

− 2gV ((w − l) · lgα
µ − lµ(w − l)α − wµw

α

s
l(w − l) + (w − l)αwµ

lw

s
)
)
GφV

αβ (l)T γβ
φV (l)

− cφV
gVud

2
√

2F0

2gV
m2

π

s−m2
π

wµ

s

∫
d4l

(2π)4
(l(w − l)wα − lw(w − l)α)GφV

αβ (l)T γβ
φV (l)

]

· igV

F 2
0

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ + (q1 ↔ q3) .

(6.63)

We evaluate that expression explicitly in Appendix B.1, where it is shown to take the form

W ′µ
φV =

cφV gVudgV

2
√

2F 3
0

JφV (µ2)
(
gV (αφV

1 Lγµ
1 + αφV

3 Lγµ
3 )

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ

+
1
2
(fV − 2gV )(αφV

2 Lγµ
1 + αφV

4 Lγµ
3 )

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ

)
+ (q1 ↔ q3) .

The coefficients αi can be found in Appendix B.1. We see that the result is proportional to
Lµν

1 and Lµν
3 , which means that we can express the result easily in terms of the covariant

projectors from Section 5.3. Thus, due to the explicit form of the result, the offshell extension
will not change by this replacement.
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The contribution from the additional diagram in Fig. 6.8g is given by

Wµ
a1φV =

ifA

2
gVuds

(
gµν − wµwν

w2

)
gνα

s−M2
a1

cφV
2
√

2
F0(

c1

∫
d4l

(2π)4
((w − l)βlα − (w − l)lgαβ)GφV

βγ T
γδ
φV

+ c2

∫
d4l

(2π)4
((w − l)αwβ − (w − l)wgαβ)GφV

βγ T
δγ
φV

)
gV

F 2
0

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)δ

+ (q1 ↔ q3)

=
2icφV fAgVudgV s√

2F 3
0

(
gµα − wµwα

w2

)
1

s−M2
a1

(
c1

∫
d4l

(2π)4
((w − l)βlα − (w − l)lgβ

α)GφV
βγ T

γδ
φV

+ c2

∫
d4l

(2π)4
((w − l)αw

β − (w − l)wgβ
α)GφV

βγ T
δγ
φV

)
m2

12

m2
12 −M2

ρ −Π
(q1 − q2)δ

+ (q1 ↔ q3) .
(6.64)

This expression can be simplified in a similar way as W ′µ
φV , which yields

Wµ
a1φV =

cφV fAgVudgV√
2F 3

0

s

s−M2
a

JφV (µ1)
(
gµ
α −

wµwα

w2

)

·
(
(c1β

φV
1 + c2β

φV
2 )Lδα

1 + (c1β
φV
3 + c2β

φV
4 )Lδα

3

) m2
12

m2
12 −M2

ρ −Π
(q1 − q2)δ

+ (q1 ↔ q3) .

(6.65)

The coefficients βφV
i are again functions of s and are given by

βφV
1 = (s−m2

φ −M2
V )M11 +

MV√
2
√
s
(s+m2

φ −M2
V )M10 , (6.66)

β′φV
1 = (s−m2

φ −M2
V )M01 +

MV√
2
√
s
(s+m2

φ −M2
V )M00 , (6.67)

βφV
2 = (s+m2

φ −M2
V )M11 +

√
s√

2MV

(s−m2
φ −M2

V )M10 , (6.68)

β′φV
2 = (s+m2

φ −M2
V )M01 +

√
s√

2MV

(s−m2
φ −M2

V )M00 , (6.69)

βφV
3 = βφV

1

ω

p2
√
s
− β′φV

1

√
2Mρ

p2
√
s
, (6.70)

βφV
4 = βφV

2

ω

p2
√
s
− β′φV

2

√
2Mρ

p2
√
s
. (6.71)

Note that the indices on the expansion coefficients Mij of the scattering amplitude indicating
the channels are suppressed, as explained in Appendix B.1.

The last new diagram, we have to evaluate, is the new tree level diagram in Fig. 6.8h, which
leads to the following expression

Wµ
tree =

2fAgVudgV

F 3
0

s

s−M2
a

(
gµα − wµwα

w2

)
m2

12

m2
12 −M2

ρ −Π
(q1 − q2)β

(c1(q3βm12α − q3m12gαβ) + c2(wβq3α − wq3gαβ) + (q1 ↔ q3) .
(6.72)
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In order to compare the resulting matrix element to the one in [GDPP04], we write

iMtree =
4GFVudfAgV

3F 3
0

s

s−M2
A

m2
12

m2
12 −M2

ρ

Sµ
(
gµν − wµwν

s

)

·
[
(q1 − q2)ν

(
c2(−2s+ 2m2

12 +m2
23 − 3m2

π)− c1m
2
12(s−m2

12 +m2
23 − 3m2

π)
)

+ (q3 − q2)ν (c2 − c1) (u−m2
23)

]
+ (q1 ↔ q3) .

(6.73)

In [GDPP04] an additional constant λ0 appears, which we consider to be negligible due to
an additional factor of m2

π. Neglecting λ0, the matrix element obtained in [GDPP04] can be
written as

iM =
4GFVudFAGV√

23F 3
0

s

s−M2
A

m2
12

m2
12 −M2

ρ

Sµ
(
gµν − wµwν

s

)

·
[
(q1 − q2)ν

(
λ′

s
(−2s+ 2m2

12 +m2
23 − 3m2

π) +
λ′′

m2
12

(s−m2
12 +m2

23 − 3m2
π)

)

+ (q3 − q2)ν

(
λ′

s
+

λ′′

m2
12

)
(u−m2

23)

]
+ (q1 ↔ q3) .

(6.74)

This means we can identify

∓
√

2
MAMρ

c1 ↔ λ′′

m2
12

, ±
√

2
MAMρ

c2 ↔ λ′

s
, (6.75)

where the additional dependence on s and m2
12 stems from the choice of fields. In [GDPP04]

high-energy constraints are used to constrain the parameters, which results in

λ′′ = 0 , λ′ =
1
2
. (6.76)

This leads to the values for c1 and c2, which have been given in Eq.(3.32). A direct comparison,
however, is ambiguous due to the higher order terms and the additional energy dependence.
Although, for example, the influence of λ0 should be small, by using the values obtained in
[GDPP04] one finds that this is not the case. In addition, in [GDPP04] the width of the a1

is parametrised, whereas we will generate it by the decay into vector meson and Goldstone
boson, which also makes a comparison troublesome. The sign for c2 was chosen by comparing
the relative minus sign to the expressions for the other diagrams in [GDPP04].

Wµ
a1φV as well as the new tree level diagram Wµ

tree are singular at s = Ma1 . The reason for
this is that the bare a1 does not have a width. This width is generated by the Bethe-Salpeter
equation and only the sum of all diagrams yields a well defined result. Thus we have to
add the diagrams Fig. 6.8g and Fig. 6.8h in order to get a non-singular result. Adding the
diagrams leads to

W tree
µ +W a1πρ

µ +W a1KK∗
µ =

fAgVudgV s√
2F 3

0

(
gµα − wµwα

w2

) m2
12

m2
12 −M2

ρ −Π
(q1 − q2)β

(
c1

(
−(Ma1

1 )1L
αβ
1 +

(
− ωπρ√

sp2
cmπρ

(Ma1
1 )1 +

√
2Mρ√
sp2

cmπρ

(Ma1
1 )3

)
Lβα

3

)

+ c2

(
−(Ma1

2 )1L
αβ
1 +

(
− ωπρ√

sp2
cmπρ

(Ma1
2 )1 +

√
2Mρ√
sp2

cmπρ

(Ma1
2 )3

)
Lβα

3

))

+ (q1 ↔ q3) .

(6.77)
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The details of calculation as well as the definition of Ma1
i can be found in Appendix E.3.

Looking at Eq.(6.77), it is still not explicit that the expression does not contain a singularity
anymore, but it should be clear from the explanation above. In order to get a feeling for the
expression and see its connection to the a1 propagator including the self-energy, we neglect
the WT term for the moment. Then the sum of these diagrams should be equal to a tree
diagram including the self energy Πa1 of the a1. This means that without the WT term the
a1 propagator is given by

1
s−M2

a −Πa1

!=
c1(Ma1

1 )1 + c2(Ma1
2 )1

(c1(s−m2
π −M2

ρ ) + c2(s+m2
π −M2

ρ ))
√

2
!=

(
−(c1(Ma1

1 )1 + c2(Ma1
2 )1)ωπρ + (c1(Ma1

1 )3 + c2(Ma1
2 )3)

√
2Mρ

) 1
2
√

2
√
sp2

cmπρ(c2− c1)
.

(6.78)

Showing this equality analytically is cumbersome and therefore we checked it numerically by
explicitly calculating both sides. Including the WT term, however, the above formula does
not hold anymore.

We see that we can add W ′φV
µ and W tree

µ +W a1φV
µ easily and get

W Ta1
µ ≡W tree

µ +
∑

φV

(
W a1φV

µ +W ′φV
µ

)
=

(
gµα − wµwα

w2

) m2
12

m2
12 −M2

ρ −Π
(q1 − q2)δ

(A1L
δα
1 +A2L

δα
3 ) + (q1 ↔ q3)

(6.79)

with

A1 = −fAgVudgV s√
2F 3

0

(c1(Ma1
1 )1+c2(Ma1

2 )1)+
∑

φV

cφV gVudgV

2
√

2F 3
0

JφV (µ2)
(
gV α

φV
1 +

1
2
(fV −2gV )αφV

2

)

(6.80)
and

A2 = −fAgVudgV s√
2F 3

0

(
c1

(
ωπρ√
sp2

cmπρ

(Ma1
1 )1 −

√
2Mρ√
sp2

cmπρ

(Ma1
1 )3

)

+ c2

(
ωπρ√
sp2

cmπρ

(Ma1
2 )1 −

√
2Mρ√
sp2

cmπρ

(Ma1
2 )3

))

+
∑

φV

cφV gVudgV

2
√

2F 3
0

JφV (µ2)
(
gV α

φV
3 +

1
2
(fV − 2gV )αφV

4

)
.

(6.81)

The remaining part is now straightforward and follows the same lines as in the calculation
before. We only have to substitute Wµ

T with Wµ
Ta1 in the calculation of W1. W2 does not

change, because neither Wµ
φV nor Wµ

φV a1 contribute to W2.

At the beginning of this section we used that the a1 vertex, which results from the Lagrangian
Eq.(3.28), is given by

Γµν
a1 = −2

√
2cφV

F0
c1(qνpµ − p · qgµν)− 2

√
2cφV

F0
c2(wνqµ − w · qgµν) . (6.82)

Using εν(p)pν = 0, s = M2
a , M2

a = 2M2
ρ and c1 = 2c2 the vertex can be cast into a different

form

Γµν
a1 =

2
√

2cφV

F0
c2(2qνpµ − (2pq + wq)gµν + wνqµ) =

2
√

2cφV

F0
c2(wνpµ − wpgµν) . (6.83)
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6.6. Calculation of τ decay including higher order terms

The last expression is the vertex, which is used in [RPO04]. We see that only with the
simplifications above, the vertex is the same as the one we use. These simplifications, however,
basically mean to put certain momenta onshell and apply Weinberg’s relation between the ρ
and a1 mass [Wei67], as well as a relation between c1 and c2, which are anyway free parameters.
Using explicitly the vertex from Eq.(6.83), the formulas slightly change and we have to replace

A1 = −fAgVudgV s√
2F 3

0

c2(Ma1
3 )1 +

∑

φV

cφV gVudgV

2
√

2F 3
0

JφV (µ2)
(
gV α

φV
1 +

1
2
(fV − 2gV )αφV

2

)
(6.84)

and

A2 = −fAgVudgV s√
2F 3

0

c2

(
ωπρ√
sp2

cmπρ

(Ma1
3 )1 −

√
2Mρ√
sp2

cmπρ

(Ma1
3 )3

)

+
∑

φV

cφV gVudgV

2
√

2F 3
0

JφV (µ2)
(
gV α

φV
3 +

1
2
(fV − 2gV )αφV

4

)
,

(6.85)

with

Ma1
3 =

1
s−M2

a

(1− V J)−1




√
2(s−m2

π +M2
ρ )

−(s−M2
K +M2

K∗)
2Mρ

√
s

−√2MK∗
√
s


 . (6.86)

In addition, the kernel changes, which is taken care of by using

F1 =
16CWT

F 2
0

1
s−M2

a

c22(w · p)(w · p) (6.87)

F2 =
16CWT

F 2
0

1
s−M2

a

c22(qq) (6.88)

F3 =
16CWT

F 2
0

1
s−M2

a

c22(w · p) (6.89)

F4 =
16CWT

F 2
0

1
s−M2

a

c22(w · p) . (6.90)

In Section 7.3 we will show the influence of these modifications on the results.

6.6. Calculation of τ decay including higher order terms

This time we again assume that the a1 is generated dynamically. In addition to the WT term,
we consider higher order corrections to the kernel of the Bethe-Salpeter equation. One part
of the higher order correction, as the WT term itself, is contained in the kinetic part of the
Lagrangian Eq.(3.18). As long as we were only interested in the lowest order, we dropped it
in the derivation of the WT term because it is higher order (see Eq.(D.1) and the comment
afterwards). This term reads

1
2

Tr[[V µ, ∂µVν ]Γν ] → 1
16F 2

0

Tr[[V µ, ∂µVν ][φ, ∂νφ]] , (6.91)

where we dropped terms containing more than two Goldstone boson fields. A partial integra-
tion leads to

− 1
16F 2

0

Tr[[V µ, V ν ][∂µφ, ∂νφ]− [V µ, V ν ][φ, ∂µ∂νφ]︸ ︷︷ ︸
=0

]− [∂µV
µ, V ν ][φ, ∂νφ]︸ ︷︷ ︸

=0

] , (6.92)
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where one sees that the second part is zero by exchanging µ ↔ ν and the third part is zero
because of ∂µV

µ = 0. The first term in Eq.(6.92) has a similar structure as the WT term,
and we can evaluate it by looking closely at the result of the WT term. The new contribution
to the kernel reads

Kµν
1 =

CWT

2F 2
0

(qνqµ − qµqν) . (6.93)

Next we write down all terms with two pion momenta, which one can construct, taking care of
parity, C-invariance, hermiticity and of course chiral symmetry (see Appendix C for details)

Lho = λ′1 Tr[VµV
µuνu

ν ] + λ′2 Tr[VµuνV
µuν ]

+ λ′3 Tr[VµVνu
µuν ] + λ′4 Tr[VµV

νuνu
µ] + λ′5 Tr[Vµu

µVνu
ν + Vµu

νVνu
µ]

+ λ′6 Tr[VµνV
ναuαu

µ] + λ′7 Tr[VµνV
ναuµuα] + λ′8 Tr[VµνuαV

ναuµ + Vµνu
µV ναuα]

+ λ′9 Tr[Vµu
ν ] Tr[V µuν ] + λ′10 Tr[Vµu

µ] Tr[Vνu
ν ] + λ′11 Tr[Vµuν ] Tr[V νuµ]

+ λ′12 Tr[V α
µ u

µ] Tr[Vναu
ν ] + λ′13 Tr[Vµαuν ] Tr[V ναuµ] .

(6.94)

The thirteen new terms are evaluated in Appendix D and lead to the following kernel in
addition to the WT-term

Kµν
ho =

4CWT

F 2
0

(
(q · q)gµν(λ′1 − 2λ′2) + qνqµ(λ′3 − 2λ′5 −

1
2
)

+ qµqν(λ′4 − 2λ′5 +
1
2
)− (w · q)(w · q)gµν(λ′6 + λ′7 − 2λ′8)

)

− 812

F 2
0

(
(λ′9(q · q) + (λ′12 + λ′13)(w · q)(w · q))gµν + λ′10q

µqν + λ′11q
µqν

)
.

(6.95)

Thus, we see that there are actually only eight independent variables contributing to the
kernel. Using pνeν(p) = 0, we can replace qνqµ → wνwµ and use that only terms proportional
to x will contribute to F2. Thus, the term proportional to wµwν does not contribute at all,
and we are down to six independent variables, which we call λ1, λ2, . . . λ6. Therefore the kernel
can be written as

Kµν
ho =

CWT

F 2
0

(
gµν

(
λ1(q · q) + λ2(w · q)(w · q)

)
+ qµqνλ3

)

− 12

F 2
0

((
λ4(q · q) + λ5(w · q)(w · q)

)
gµν + λ6q

µqν
)
.

(6.96)

We express qµqν in terms of the covariant structures Lµν
i as follows

qµqν = Lµν
5 +

q · w
s

Lµν
3 +

q · w
s

Lµν
4 +

(q · w)(q · w)
s2

Lµν
2 , (6.97)

in order to read off the coefficients Fi, which are

F1 =
CWT

F 2
0

(q0q0)(λ1 + sλ2)− 12

F 2
0

(q0q0)(λ4 + sλ5) (6.98)

F2 = −λ1
CWT

F 2
0

1
s
pcmpcmx+ λ4

12

F 2
0

1
s
pcmpcmx (6.99)

F3 =
CWT

F 2
0

q · w
s

λ3 − 12

F 2
0

q · w
s

λ6 (6.100)

F4 =
CWT

F 2
0

q · w
s

λ3 − 12

F 2
0

q · w
s

λ6 . (6.101)
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We already dropped terms proportional to x in F1 and we dropped terms not proportional
to an even or no power of x in F2 and F5, because they do not contribute to the channel
JP = 1+. This leads to the following expansion coefficients for the kernel

V 1+

ab11 = −2
3
F1ab + gab (6.102)

V J+

ab01 = − 2
3
√

2Ma

(F1abωa − F3ab

√
sp2

a) +
ωa√
2MV a

gab (6.103)

V J+

ab10 =
2

3
√

2Mb

(−ωbF1ab + F4abp
2
b

√
s) +

ωb√
2MV b

gab (6.104)

V J+

ab00 =
1

3MaMb

(
−ωaωbF1ab − (λ1CWT − λ412)ab

1
F 2

0

p2
bp

2
a + F3abωbp

2
a

√
s

+ F4abωap
2
b

√
s

)
+

ωaωb

2MV aMV b
gab . (6.105)

The diagrams, we have to include are the same as in Fig. 6.2 with a different scattering
amplitude. As in the case including the a1, the scattering amplitude will not take the simple
form of Eq.(5.43), but we can use the results from the last section and write similar to before

iMho = CSµ

(
gµν − wµwν

M2
W

)
Wν , (6.106)

with
Wν = W ′′ρπ

ν +W ′′KK∗
ν +W 3π

ν +W vec
ν , (6.107)

where

W ′′φV
µ =

cφV gVudgV

2
√

2F 3
0

JφV (µ2)
(
gµα − wµwα

w2

)((
gV α

φV
1 +

1
2
(fV − 2gV )αφV

2

)
Lγα

1

+
(
gV α

φV
3 +

1
2
(fV − 2gV )αφV

4

)
Lγα

3

)
m2

12

m2
12 −M2

ρ −Π
(q1 − q2)γ

+ (q1 ↔ q3) .

(6.108)

W ′′φV
µ is calculated the same way as W ′φV

µ in Appendix B.1 and the coefficients αφV
i are also

the same except that one has to replace the coefficients of the scattering amplitude, since the
kernel has changed. The remaining part for calculating the width works the same way as
before.

6.7. W form factor

Instead of first calculating the scattering amplitude, one could introduce the W form factor
to determine the decay. Leaving out some details and only considering the WT term, it is
possible to work out the decay width in a few lines. It is instructive to look at this simple
calculation, since here the intermediate steps are not clouded by lengthy algebra and the core
of the calculation is better visible.
The details we leave out are

• neglect longitudinal part of the hadronic tensor proportional to m2
π
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= +

Figure 6.10.: Diagrammatic form of the equation to determine the form factor of the W
boson. The dashed lines represent pions, the solid lines the ρ meson and the wiggly line the W
boson. The bare vertex includes also the diagram with the intermediate pion (see Eq.(6.111)).

• fV − 2gV = 0

• neglect lowest order CHPT diagrams (direct three-pion decays)

• only πρ channel, no coupled channels

The first simplification actually has no visible influence on the result. The second simplifica-
tion is numerically almost fulfilled, i.e.

fV − 2gV

fV
≈ 0.1 → fV >> (fV − 2gV ) (6.109)

The third approximation will only influence the very low-energy region of the decay. The only
serious simplification is the last one, which we will later also see to have a minor influence on
the results. Therefore, we can expect this slimmed down version to be pretty close to the full
calculation.
The equation, determining the W form factor, is

V µν(q, w) = V µν
0 (q, w) +

∫
d4l

(2π)4
V µα(l, w)Gαβ(l, w)Kβν(l, q, w) , (6.110)

which can be seen in pictorial form in Fig. 6.10. With the simplifications above, V µν
0 is given

by

V µν
0 =

−igVud

2F0
(fV (w · pgµν − pµwν)− gV (2q · pgµν − 2pµqν))

+ i
F0gVud

2
wµ i

s−m2
π

i2gV

F 2
0

((q · p)wν − (w · p)qν)

=
−igVudfV

2F0

(
wpgµν − pµwν − qpgµν + pµqν + wµwν pq

s
− wµqνwq

s

)
+ (∼ m2

π)

→ −igVudfV

2F0

(
gµα − wµwα

s

)
(gν

αwp− pαw
ν − gν

αqp+ pαq
ν)

=
−igVudfV p

2

2F0

(
gµα − wµwα

s

)
(gν

α −
pαp

ν

p2
) ,

(6.111)

where p is the momentum of the vector meson. We drop the term proportional to pν , since it
will not contribute due to the form of the ρππ vertex (∼ (q1 − q2)µ) and the renormalisation
scheme, in which tadpoles are dropped. Thus, we get

V µν
0 =

−igVudfVM
2
ρ

2F0

(
gµν − wµwν

s

)
≡ V0L

µν
1 (6.112)
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with Lµν
1 defined in Eq.(5.3). The kernel Kµν is already known to be (see Eq.(5.43))

Kµν = K0L
µν
1 (6.113)

with

K0 = − 1
4F 2

0

(
3s− (2m2

π + 2M2
ρ )− 1

s
(M2

ρ −m2
π)2

)
. (6.114)

Looking at Eq.(6.110) and the form of the kernel, i.e. that it does not depend on q, we can
write down a reasonable ansatz for Vµν

V µν = V (s)Lµν
1 . (6.115)

Plugging in this ansatz in Eq.(6.110) we get

V Lµν
1 = V0L

µν
1 +K0V Iπρ

(
2
3

+
1

12M2
ρ s

(m2
π −M2

ρ − s)2
)
Lµν

1 , (6.116)

and we can easily read off V to be

V =
V0

1−K0

(
2
3 + 1

12M2
ρ s

(m2
π −M2

ρ − s)2
)
Iπρ

. (6.117)

The result is rendered finite by substituting Iπρ → Jπρ(µ1). The above calculation seems to
employ only one subtraction point µ1. This is in contrast to our derivation in Section 6.4,
where we argued that two different subtraction points can appear, namely one to renormalise
the Bethe-Salpeter equation and one for the entrance loop from the W boson into the rescat-
tering process. We will show in the following how the second subtraction point can also be
recovered in the present calculation.
Omitting the Lorentz structure for the moment, the full W decay vertex can be written as

V = V0 + V0GT . (6.118)

In the solution of the Bethe-Salpeter equation for the scattering matrix, we will use G′ in the
following, in order to indicate a possibly different subtraction point. Using T = (1−KG′)−1K
the form factor V can be written as

V = V0 + V0G(1−KG′)−1K = V0(1−G′K)(1−G′K)−1 + V0GK(1−G′K)−1

= V0(1−G′K +GK)(1−G′K)−1 , (6.119)

which corresponds to an equation of the form shown in Fig. 6.10, provided one takes the bare
W form factor as

V ′0 = V0(1−G′K +GK) . (6.120)

We see that in the vertex we can effectively include a change in the subtraction point of the
first loop relative to the subtraction point of the Bethe-Salpeter equation. We note that the
change in the subtraction point is at least one order higher in a chiral counting, since the
kernel K is already O(q). We recall that Eq.(3.18) contains only the lowest order W → φV
vertex. Using different renormalisation points for the loops G and G′ gives us the possibility
to account for modifications of this lowest order expression.
For the calculation of the whole decay, we only use one diagram, which is shown Fig. 6.11.
Thus, we get

iM = CSµ

(
gµν − wµwν

M2
W

)
W ν

form (6.121)
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W
ν

ρτ

π

π

π

Figure 6.11.: Diagram describing the τ decay in the simplified version.

with

Wµ
form = − iV gV

F 2
0

m2
12

m2
12 −M2

ρ −Π
Lµα

1 (q1α − q2α) + (q1 ↔ q3) . (6.122)

It is instructive to check whether the full calculation from Section 6.4 with the simplifications
above yield the same result. Thus we write Eq.(6.32) (including the higher order corrections
Eq.(6.44)) with the simplifications above, which yields

Wµ = −gVudgV fVM
2
ρ

2F 3
0

m2
12

m2
12 −M2

ρ −Π
Lµν

1 (q1 − q2)ν

(
1− 3

2
M11J(µ2)

(
2
3

+
1

12sM2
ρ

(s+M2
ρ −m2

π)2
))

.

(6.123)

M11 can be deduced from Eq.(5.53) to be

M11 =
−2

3K0

1− 2
3K0Jπρ(µ2)(1 + ω2

πρ

2M2
ρ
)

(6.124)

with
2
3

+
1

12sM2
ρ

(s+M2
ρ −m2

π)2 =
2
3

(
1 +

ω2
πρ

2M2
ρ

)
. (6.125)

Thus we get

Wµ = −gVudgV fVM
2
ρ

2F 3
0

m2
12

m2
12 −M2

ρ −Π
Lµν

1 (q1 − q2)ν

·

1 +

K0Jπρ(µ2)
(

2
3 + 1

12sM2
ρ
(s+M2

ρ −m2
π)2

)

1−K0Jπρ(µ1)
(

2
3 + 1

12sM2
ρ
(s+M2

ρ −m2
π)2

)



=
−iV0gV

F 2
0

m2
12

m2
12 −M2

ρ −Π
Lµν

1 (q1 − q2)ν

·

1−K0

(
2
3 + 1

12sM2
ρ
(s+M2

ρ −m2
π)2

)
(Jπρ(µ1)− Jπρ(µ2))

1−K0Jπρ(µ1)
(

2
3 + 1

12sM2
ρ
(s+M2

ρ −m2
π)2

)

 .

(6.126)

Remembering Eq.(6.120), this is obviously the same as the result in Eq.(6.122).
It is interesting and also important to investigate the size of the correction induced from
applying different subtraction points. Therefore, we plot

∣∣∣V ′0
V0

∣∣∣ for µ1 = M2
ρ and µ2 = 8.5M2

ρ ,
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Figure 6.12.: The left plot shows the ratio V ′0/V0 for µ1 = M2
ρ and µ2 = 8.5M2

ρ . The right

plot shows the relative strength δ =
∣∣∣V1
V0

∣∣∣ of the one-loop correction to the lowest order vertex
for the decay W → πρ.

which will turn out to be the best choice (see Chapter 7). The ratio can be seen in the left
plot of Fig. 6.12. We only plotted the ratio up to 1.2 GeV, since at higher energies the power
counting is not expected to work anyway. We see that around the threshold for the decay
into πρ the correction is indeed reasonably sized and comparable to the correction for the
subtraction point at µ1 = M2

ρ . Since K0 changes sign at around s ≈ 0.6GeV, a change in the
subtraction point leads to a decrease of V ′0 below that energy.
Another way to check the size of the correction is to demand that the contribution from the
first loop should not be bigger than the lowest order term itself. Thus, we compare the lowest
order vertex for the decay W → ρπ, with the one-loop correction, i.e. we have to compare V0

with

V µν
1loop = V0K0Iπρ

(
2
3

+
1

12M2
ρ s

(m2
π −M2

ρ − s)2
)
Lµν

1 ≡ V1L
µν
1 . (6.127)

We note that by comparing only the first loop, there can only be one subtraction point, since
we only have one loop integral. Of course, this is the case, which can be seen for example
by expanding Eq.(6.126) up to one loop. In the right plot of Fig. 6.12 we see the relative
strength δ =

∣∣∣V1
V0

∣∣∣ of the one-loop correction to the lowest order vertex for two choices of the
subtraction point. We see that for both subtraction points the corrections for low energies
are not too big. Choosing µ2 ' 8.5M2

ρ seems like a big change, but since the real part of the
loop integral increases slowly (see Fig. E.1), the subtraction is not very big.
We do not show the results of the simplified calculations explicitly, since one can anticipate
the outcome by looking at the discussions in Chapter 7. In particular, in Fig. 7.8 we will see
that neglecting the strangeness channel does not have a big effect. The other simplification
have already been estimated at the beginning of the chapter to be less important.

6.8. Onshell, offshell?

During the last chapters we met several situations, where we encountered so called offshell
effects. In order not to get confused, we briefly recall and summarise the situation. Although,
in principle, offshell effects are not measurable [FS00], we mentioned possible influences on the
results. The reasons for the possible effects on the results originate in certain approximations
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we made. In the following we recall the different situations and explain in detail the possible
effects and the reasons for them. There are basically three occurrences:

• In the discussion on the choice between vector and tensor fields (Section 6.4 and Section
3.2) we encountered the prototype of an offshell effect. We saw that both descriptions
differ by additional contact terms. Thus, choosing one of the representations, the other
one yields the same results, as long as one also includes the additional terms in the
calculation. Not including these additional terms would lead to a difference in the
matrix element of a factor of p2/M2

ρ . Putting the ρ on the mass shell, the matrix
elements would be the same, but since the ρ meson is offshell (we look at a two-pion
final state emerging from the ρ) in our calculation, there is a difference. A very similar
situation has been discussed in [FS00]. Thus choosing different interpolating fields, we
might have to consider additional or less diagrams in order to get the same result. This
raises the question, which diagrams one has to include in the calculations. In our case
we choose the relevant processes such that we get a decent high-energy behaviour.

• In Section 4.4.2 we discussed in much detail, why it is justified to take the kernel in
the Bethe-Salpeter equation onshell. We showed that this simplification is on the same
level as neglecting higher order contact terms and therefore putting the kernel onshell is
not a severe additional approximation. Again we see that the offshell effect is connected
to higher order contact terms and in principle this situation is connected to the one
we discussed before. Here, however, the situation is mixed up with the approximation,
we do by calculating the kernel of the Bethe-Salpeter equation perturbatively, which
corresponds to summing only a certain class of diagrams. Since we expect the higher
order corrections to the kernel to play a minor role, we do not expect severe problems.
However, this is a model assumption and we will test it by investigating the influence on
the result by including corrections to the kernel. In case these terms induce systematic
corrections in the result, there is an indication that the model assumption is reasonable.

• In order to expand the kernel and the scattering amplitude in partial waves, we have
to put the particles onshell. However, as already mentioned, the vector mesons in
our calculation are not onshell. Therefore, we have to put the projectors back offshell,
which is ambiguous and which has been discussed in Section 5.3. This uncertainty in the
offshell extrapolation is of different nature as the ones before, since here the uncertainty
originates in the question, how to define a partial wave expansion for virtual particles.
In Chapter 7 we will show the results by assuming the ρ to be stable, in which case this
problem does not appear. This means we consider πρ to be the final state instead of
three pions. In this way we can estimate the possible influence induced by this effect.
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Results

The quantity, we want to compare most of our calculations with, is the hadronic spectral
function which enters the decay τ− → 2π0π−ντ . The data, we use, were measured by the
ALEPH collaboration and can be found in [S+05]. Since the spectral function is the central
quantity, we will first discuss its relation to our calculation in detail.

7.1. Spectral function

The definition of the spectral function, which one finds in [S+05], is

a1 = −2π
s
=ΠT (s) , (7.1)

with the hadronic vacuum polarisation

Πµν = ΠT

(
gµν − wµwν

s

)
+ ΠL

wµwν

s
. (7.2)

defined by

Πµν = i

∫
d4xeiwx〈0|TAµ(x)Aν(0)†|0〉 , (7.3)

where T is the time ordering symbol and Aµ is the charged axial current

Aµ = uγµγ5d . (7.4)

The definition in Eq.(7.3) is especially suited to express the spectral function in terms of the
generating functional, which we will show next. We recall that in the presence of external
fields the QCD Lagrangian reads

L = L0
QCD + Lext = L0

QCD + qγµ

(
vµ +

1
3
vµ
(s) + γ5aµ

)
q − q(s− iγ5p)q , (7.5)

and we define the generating functional as

exp(iZ(v, a, s, p)) = 〈0|Tei
R

d4Lext(x)|0〉 . (7.6)

Then we can write

〈0|TAµ(x)Aν(0)†|0〉 = (−i)2 δ

δa+
µ (x)δa−ν (0)

exp(iZ)|v=a=p=0,s=diag(mu,md,ms) . (7.7)
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In order to connect to the weak interactions, we identify

a+
µ =

gVud

2
√

2
W+

µ . (7.8)

Using the generating functional of the hadronic Lagrangian in Eq.(7.7), we can connect the
spectral function to the effective theory we use.

In principle the spectral function is chosen such that it contains the hadronic information of
the process of interest, which can be seen in the above formulas. For an exact relation to the
previous calculation, however, it will be easier to start with the decay, one actually calculates.
The decay width of the W can be written as

Γ(W → X) =
1
3

∑

λ

ε†µ(λ)εν(λ)
1

2
√
s
(−i)g

2V 2
ud

8
Hµν , (7.9)

where the hadronic tensor Hµν is given by

Hµν = i
∑

n

∫ n∏

i=1

(
d3pi

(2π)32Ei

)
〈0|Aµ(0)|n〉〈n|A†ν(0)|0〉(2π)4δ4(w − pn)

= i
∑

n

∫ n∏

i=1

(
d3pi

(2π)32Ei

)∫
d4xeix(w−pn)〈0|Aµ(0)|n〉〈n|A†ν(0)|0〉

= i
∑

n

∫ n∏

i=1

(
d3pi

(2π)32Ei

)∫
d4xeiwx〈0|eip̂xAµ(0)e−ip̂x|n〉〈n|Aν(0)†|0〉

= i

∫
d4xeiwx〈0|Aµ(x)Aν(0)†|0〉 ,

(7.10)

where pn =
∑

i pi. From the lines above we can also see that
∫
d4xeiwx〈0|Aν(0)†Aµ(x)|0〉 = 0 , (7.11)

since the term would lead to δ4(w+ pn), which can not be fulfilled due to energy-momentum
conservation. Next we want to bring the time ordering symbol into the game as follows

Hµν = i

∫
d4xθ(x0)eiwx〈0|Aµ(x)A†ν(0)|0〉+ i

∫
d4xθ(−x0)eiwx〈0|Aµ(x)A†ν(0)|0〉

= i

∫
d4xθ(x0)eiwx〈0|Aµ(x)A†ν(0)|0〉+ i

∫
d4xθ(−x0)eiwx〈0|Aµ(0)A†ν(−x)|0〉

= i

∫
d4xθ(x0)eiwx〈0|Aµ(x)A†ν(0)|0〉+ i

∫
d4xθ(x0)e−iwx〈0|Aµ(0)A†ν(x)|0〉

= i

∫
d4xeiwx〈0|TAµ(x)A†ν(0)|0〉+ i

∫
d4xe−iwx〈0|TAµ(0)A†ν(x)|0〉 ,

(7.12)

where we used that

〈0|Aµ(x)Aν(0)|0〉 = 〈0|e−ip̂xAµ(x)eip̂xe−ip̂xAν(0)eip̂x|0〉 = 〈0|Aµ(0)Aν(−x)|0〉 . (7.13)

We could introduce the time ordering symbol for the θ function, since the contribution for
negative times is zero, which we know from Eq.(7.11).
From Lorentz invariance, we know that Hµν must have the following structure

Hµν = H1

(
gµν − wµwν

s

)
+H2

wµwν

s
. (7.14)
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This means that Hµν is symmetric under the exchange of µ↔ ν, which leads to

∫
d4xeiwx〈0|Aµ(x)A†ν(0)|0〉 =

∫
d4xeiwx〈0|Aν(x)A†µ(0)|0〉 . (7.15)

Therefore, we get

Hµν = Πµν −Π∗µν = 2i=Πµν . (7.16)

Plugging this expression into Eq.(7.9) yields

Γ(W → X) =
1
3

∑

λ

ε†µ(λ)εν(λ)
1

2
√
s
(−i)g

2V 2
ud

8
2i=Πµν = −g

2V 2
ud

8
√
s
=ΠT , (7.17)

where we used Eq.(7.2) and ε(w) · w = 0. Thus, with the definition of the spectral function
a1(s) in Eq.(7.1) we get

a1(s) =
2π
s

8
√
s

g2Vud2

Γ (7.18)

In order to determine the spectral function for the decay of τ− → 2π0π−ντ , we replace the
total decay width by Γ(W → 3π). This width has in principle been calculated already in
Chapter 6 and is given by

Γ(W → 3π) = Wµν 1
6

∑
ε†µεν

(2π)4

2
√
s

= −(2π)4

4
√
s
W1 , (7.19)

where we expressed the decay width in terms of W1 (see Eq.(6.13); W2 does not appear since
εµw

µ = 0). Note the factor of 1
2 due to the identical particles in the final state. Thus, the

spectral function in terms of W1 is

a1(s) = −(2π)5
(

2
gVud

)2 1
2s
W1 = − 26π5

g2V 2
uds

W1 . (7.20)

In [S+05] the spectral function is given in a different form

a1(s) =
m8

τ

6V 2
ud

B3π

B(τ− → e−ντντ )
1
N

dN

ds

(
(m2

τ − s)2(m2
τ + 2s)

)−1
, (7.21)

which can be seen to be the same by using

Γ(τ− → e−ντνe) =
m5

τG
2
F

192π3
(7.22)

and
1
N

dN

ds
=

1
ΓtotB3π

dΓ
ds

(7.23)

together with our expression for dΓ
ds in Eq.(6.31), when we neglect W2. The two expressions

Eq.(7.20) and Eq.(7.21) differ by the appearance of W2, which would be zero, if the axial-
vector current was conserved. The contribution from W2, however, is very small since it is
suppressed by a factor of m2

π, which is negligible from a practical point of view.
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Figure 7.1.: Spectral function for the decay τ− → 2π0π−ντ calculated with different choices
for the interpolating fields. v1 only uses the vector field Lagrangian Eq.(3.18), whereas v2
additionally includes the contact terms from Eq.(3.45).

7.2. Calculation without a1

First we want to investigate the spectral function for the decay τ− → 2π0π−ντ calculated by
iterating the WT term in order to dynamically generate the a1. We will discuss the influence
of different aspects of the calculation on the results in detail and determine the values of the
subtraction points.

• Influence of interpolating fields and spectral distribution

We discussed the different possibilities to describe vector particles, namely in terms of vector
fields and in terms of antisymmetric tensor fields. We introduced higher order corrections
in order to account for the difference stemming from the choice of fields. For the present
calculation we note that using the antisymmetric tensor fields, leads to the appearance of
less derivatives, and therefore we expect a better high-energy behaviour. Instead of explicitly
using the antisymmetric tensor fields, we use the vector representation but also include the
higher order terms given in Eq.(3.45). Fig. 7.1 shows the spectral function calculated with
vector fields (v1) and with vector fields including the higher order terms (v2). One clearly
sees the better high-energy behaviour. In Fig. 7.1 we used dimensional regularisation with
µ1 = µ2 = M2

ρ , which is the value from [LK04]. We will discuss the influence of the subtraction
points in detail below. The kink which can be seen at about 1.9GeV2 results from the
threshold of the KK∗ channel. Using spectral distributions for the vector mesons, taken from
[GK91], smoothes the curve, which can be seen in Fig. 7.2. The curve also gets a little broader
and moves to the right, but the overall structure is unchanged. If we do not state otherwise,
the following calculations will always contain the higher order corrections (i.e. v2) and the
spectral function for the vector mesons in the loop.

• Influence of renormalisation
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Figure 7.2.: Spectral function for the decay τ− → 2π0π−ντ calculated with and without
including the width of the vector mesons in the loop integral. The curve labeled v2 is the
same as in Fig. 7.1.

In Chapter 6 we encountered two subtraction points in our calculation. In the following we
will investigate the influence of these two parameters. We start by setting µ1 = µ2 and vary
them simultaneously. In perturbation theory physical quantities do not depend on the renor-
malisation scale or the cutoff, which one is using in the respective regularisation scheme. Since
we are summing only certain diagrams in our approach, and we do not include the counter
terms accompanying the divergent loop integrals, our results will depend on the renormali-
sation parameter. This parameter simulates parts of the counter terms, which are of higher
order in a chiral counting. In the left plot of Fig. 7.3 we see the spectral function for the decay
τ− → 2π0π−ντ calculated with different renormalisation schemes in comparison to data from
[S+05]. The various schemes are explained in Appendix E. The different curves clearly differ
in the height of the peak, but the position of the peak is not influenced. The width of the peak
turns out to be too small in all prescriptions. The cutoffs cutthree in the three-dimensional
cutoff scheme and cuteuc in the euclidian cutoff scheme are chosen at 1 GeV, the subtraction
constant a0 in the dispersion relation is a0 = −0.001 and the subtraction point in dimensional
regularisation is chosen at µ1 = M2

ρ again. We see that a cutoff of natural size leads to a
much higher and sharper peak than the subtraction point, which was motivated by crossing
symmetry. It is hard to say what the natural size of a subtraction constant a0 is and we
chose it such that it lies in between the other curves. Since including the spectral function
for the vector mesons in the cutoff schemes is more complicated and does not lead to new
insights for this comparison, we did not include the spectral distribution in the loops in the
calculations shown in the left plot of Fig. 7.3. In the right plot of Fig. 7.3 we calculated the
spectral function using dimensional regularisation with different subtraction points in order
to see how the subtraction point is connected to the other renormalisation parameters. The
figure shows that we end up with pretty much the same results as in the left plot. Thus, using
dimensional regularisation and varying the subtraction point, we cover the full discussion on
the renormalisation parameter.
It is also instructive to look directly at the scattering amplitudes, which describe the rescat-
tering. We note that the scattering amplitude only depends on µ1 and is independent of µ2.
In Fig. 7.4 we see the real and imaginary part of the scattering amplitude for πρ scattering
(corresponding to M1111) for different renormalisation descriptions. The curves shown in Fig.
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Figure 7.3.: The left plot shows the spectral function for the decay τ− → 2π0π−ντ calculated
with different renormalisation schemes in comparison to data from [S+05]. For the values of
the renormalisation parameters see the text. The right plot shows the spectral function
calculated with dimensional regularisation for different subtraction points.
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Figure 7.4.: Real (left) and imaginary (right) part of the scattering amplitude for πρ scat-
tering. The curves correspond to the highest curve in the left plot of Fig. 7.3 and to the two
curves shown in Fig. 7.2.

7.4 correspond to the highest and lowest curve in the left plot of Fig. 7.3. In addition, we
plotted the lowest curve using a spectral distribution for vector mesons in the loop, which
corresponds to the result in Fig. 7.2. We see that the scattering amplitude hardly shows a
resonance structure by using the subtraction point at M2

ρ . The resonant structure is more
pronounced for the cutoff scheme. Including the spectral function of the ρ basically smoothes
the curve. The bump in the imaginary part is moved to the left in the cutoff scheme, whereas
in Fig. 7.3 one could hardly see a difference in the position of the peak. This shows that it
is not so obvious to translate the structure seen in the scattering amplitude to the spectral
function of the τ decay. In other words, interferences between the tree level diagrams and the
rescattering diagrams (cf. Fig. 6.2) play an important role.
Next we want to investigate the effect of changing µ2 while keeping µ1 fixed. We will use
µ1 = M2

ρ , which in [LK04] was determined by using crossing symmetry arguments. Thus,
using these arguments to fix one subtraction point, we are in principle left with only one free
parameter. The results for different choices of µ2 can be seen in Fig. 7.5. We see that we can
describe the data very well by varying only that subtraction point and keeping µ1 = M2

ρ fixed
in the scattering amplitude. We note that choosing the subtraction point at µ2 = 8.5M2

ρ ,
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Figure 7.5.: Spectral function for the decay τ− → 2π0π−ντ , calculated by varying the
subtraction point µ2 of the first loop and keeping the subtraction point in the scattering
amplitude fixed at µ1 = M2

ρ , in comparison to data from [S+05].

which describes the data best, corresponds approximately to a cutoff of 1GeV in a cutoff
scheme. Obviously this value is very reasonable.
For completeness, we also investigate the dependence on µ1 while keeping µ2 fixed. In Fig. 7.6
we see the spectral function for different values of µ1 and µ2 = 8.5M2

ρ . Raising the subtraction
point to µ1 = 2M2

ρ broadens the curve and the peak is moved a little to the right. Further
raising the subtraction point leads to a smaller width and the peak is shifted to the left. We
note in passing that the maximum in the width of the peak is connected to the minimum of
the real part of the loop function, which can be seen in Fig. E.1.

In Fig. 7.7 we see the spectral function for µ1 = M2
ρ and µ2 = 8.5M2

ρ (see Fig. 7.5)
split into the different contributions from the diagrams shown in Fig. 6.2. We see that
the bump is partly created by the negative interference of the rescattering diagrams and the
diagrams including the vector mesons at tree level. The little bump, we see in the rescattering
contribution alone appears at the wrong position and only the sum of all diagrams gives the
pronounced peak, which is of course the only quantity that can be measured.

• Influence of coupled channels

The spectral function calculated with and without including the strangeness channel is shown
in Fig. 7.8, which shows that the bump also appears without the kaon channel. The height is a
little less by leaving out the kaons, but that could be compensated by varying the subtraction
point µ2. The rise in the data in the energy region up to about 1.1GeV2 can also be described
by leaving out the kaons, but the width of the peak is better described by including both
channels. However, the effect is pretty small and one can safely say that the ρπ channel plays
the dominant role.

• Varying gV and fV
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Figure 7.6.: Spectral function for the decay τ− → 2π0π−ντ , calculated by varying the
subtraction point µ1 of the scattering amplitude, while keeping µ2 fixed at µ2 = 8.5M2

ρ , in
comparison to data from [S+05].
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Figure 7.7.: Spectral function for µ1 = M2
ρ and µ2 = 8.5M2

ρ (see Fig. 7.5) splitted up into
the different contributions from the diagrams in Fig. 6.2 in comparison to data from [S+05].
The ’lowest order CHPT’ curve corresponds to Fig. 6.2a,b, ’inc. vector mesons’ to Fig. 6.2c,d
and ’only rescattering’ to Fig. 6.2e,f.
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Figure 7.8.: Spectral function for the decay τ− → 2π0π−ντ calculated with and without
including the kaon channel in comparison to data from [S+05].

So far we used the experimentally measured values for fV and gV , which are given by

fV =
0.154GeV

Mρ
, gV =

0.069GeV
Mρ

. (7.24)

As already noted in Chapter 3, these values slightly differ from

fV = 2gV , gV =
F0√
2Mρ

, (7.25)

which are the values, obtained by theoretical considerations and approximations in [EGL+89].
In order to show the influence of these parameters on the results, we show in Fig. 7.9 the
spectral function calculated with different values for gV and fV . ’g1’ corresponds to the
theoretical motivated values of fV and gV according to Eq.(7.25) with the subtraction points
µ1 = M2

ρ and µ2 = 8.5M2
ρ . ’g2’ uses the same parameters as ’g1’, except for µ2, which is

chosen to be µ2 = 14M2
ρ in order to fit the height of the peak. We see that the moderate

difference in fV and gV has a sizeable impact on the results, which is due to the fact that the
combination fV gV appears quadratically in the final formulas. The change in the height of
the peak can be compensated by a readjustment of the subtraction point µ2, but the spectral
function in this case seems to be shifted to the right. We note that there is no other parameter,
which potentially can influence the spectral function up to about s ≈ 0.7GeV2, as can be
seen from the discussions before.
Except of the influence at low energies and the resulting small shift, varying fV and gV seems
to have a similar effect as varying µ2. This is not too surprising, since changing fV and gV

changes also the W decay vertex and leaves the scattering amplitude untouched.

• Stable ρ

In Section 6.3 we discussed which diagrams we should include in our calculation, and we
assumed that the contribution from the pion final state interactions are small. In order to
show that this a reasonable assumption, we compare our previous calculations with one, where
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Figure 7.9.: Spectral function for the decay τ− → 2π0π−ντ calculated with different values
for gV and fV in comparison to data from [S+05]. ’g1’ corresponds to the theoretically
motivated values of fV and gV according to Eq.(7.25) with the subtraction points µ1 = M2

ρ

and µ2 = 8.5M2
ρ . ’g2’ uses the same parameters as ’g1’, except µ2, which is chosen to be

µ2 = 14M2
ρ .

the ρ is assumed to be stable. This means we look at a spectral function obtained from the
final state ρπ instead of 3π. With the notation from Chapter 6 and neglecting the longitudinal
part proportional to m2

π, we get

Wµ
stable = −

(
gµν − wµwν

s

)
bT
F 2

0

gV
ερν(p)+

(
gµν − wµwν

s

)
gVudfV

2F0
(p2gνα−pαpν)εαρ (p) , (7.26)

and therefore

W1 = −1
3

pcm

2(2π)5
√
s

(
|bT |2F

4
0

g2
V

+
g2V 2

udf
2
V

4F 2
0

M4
ρ −

fV

gV
F0gVudM

2
ρ<(bT )

)

·
(

2 +
1

4sM2
ρ

(s+M2
ρ −m2

π)2
)
.

(7.27)

For simplicity, we also neglected terms ∼ (fV − 2gV ) in the tree level diagram (Wµ
vec). We

checked explicitly, that these terms influence the results by less than 10%, and therefore they
would only lengthen the formulas above. The negligible influence is of course expected from
Eq.(6.109). In order to see the net effect of assuming a stable ρ, we do not include the spectral
function for the vector mesons in the loops. When the ρ is stable, the threshold for the decay
of the τ is of course sharper and moved to the right, which can be seen in Fig. 7.10. We see
that besides these differences, the structure is the same as before and there is not much room
for a big contribution from pion final state interactions.
Using the projectors defined in Chapter 5 or in [LK04] implies a certain offshell extrapolation.
In our calculation we describe a ρ, which is not on the mass shell, and therefore a specific
offshell extrapolation might influence the result. Using a stable ρ, that problem does not
appear. Since the result with a stable ρ shows the same structures, this also helps in gaining
trust in the offshell extrapolation, which we chose.

We want to summarise shortly what we saw so far. In a scenario where the a1 is generated
dynamically we employ two parameters µ1 and µ2. Varying both simultaneously with µ1 = µ2,

88



7.3. Calculation with explicit a1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3

a1

s[GeV2]

data
pion final state

stable ρ

Figure 7.10.: The plot shows the spectral function for the decay τ− → 2π0π−ντ calculated
by assuming ρπ to be the final state (’stable ρ’) and using the usual three-pion final state
(’pion final state’) in comparison to data from [S+05]. In order to see the mere difference by
assuming the different final state, we do not use a spectral distribution for the vector mesons
in the loop. The subtraction points are chosen according to the best choice at µ1 = M2

ρ and
µ2 = 8.5M2

ρ .

we saw that we always got a peak at the same position with varying height and a too small
width. Using the value from [LK04] to fix µ1, we describe the data very well by choosing
the only remaining free parameter µ2 at 8.5M2

ρ . We also saw that in the process under
consideration the main contribution came from the ρπ channel, while the kaon channel plays
a minor role. In addition, we investigated the influence of the parameters fV and gV and found
that the results are quite sensitive to these parameters. In particular, the low-energy behaviour
is best described by using the values, which are directly determined from experiment. Finally
we assumed the ρ to be stable, which yields a qualitatively similar result. This eliminates
concerns about possibly large final state interactions of the pions (cf. Fig. 6.3).

7.3. Calculation with explicit a1

Now we want to look at the results of the calculation when we include the a1 explicitly. A
very small coupling of the a1 together with the values from the calculations before will of
course reproduce the results from before and will give a good description of the data. To
check whether a scenario with an explicit a1 can also describe the data reasonably well, we
have to demand that the coupling is not almost zero, and we expect the value of the coupling
to be comparable to the values found in [RPO04, KM90, GDPP04]. In order to get non zero
couplings and still be reasonably close to the data, we have to keep the contribution from the
WT term small. We start by choosing µ1 = µ2 = M2

ρ according to [LK04], which we can
expect to be a good choice by looking at Fig. 7.3. Scanning through the parameter space, it
turned out that in most cases a two bump structure is observed. We show an example of this
in Fig. 7.11 (set 3). By finetuning the parameters, it is possible to merge these two bumps
into one, which can also be seen in Fig. 7.11 (set 1 or set 2). The parameters leading to these
curves are given in Tab. 7.1. From set 1 and set 2, we see that there are different possible
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Figure 7.11.: Spectral function for the decay τ− → 2π0π−ντ including the a1 with different
sets of paramaters in comparison to data from [S+05]. The parameter sets are given in Tab.
7.1.

Ma1 [GeV] fA c1 c2 µ1 [M2
ρ ] µ2 [M2

ρ ] remark
set 1 1.23 F0√

2Mρ
· 1.05 -1

4
1

1.65 −1
8

1
1.6 2 1.05

set 2 1.195 F0√
2Mρ

· 1.45 -1
4

1
2.6 −1

8
1

1.6 1 2.5

set 3 1.21 F0√
2Mρ

· 1.45 -1
4

1
2.4 −1

8
1

1.6 1 2.5

set 4 1.5 F0√
2Mρ

-1
4 −1

8 2 5.5 w/o WT

set 5 1.5 F0√
2Mρ

- −1.4
8 2 5.8 w/o WT, Eq.(6.83)

set 6 1.2 F0√
2Mρ

· 1.05 -1
4

1
1.7 −1

8
1

1.6 2 6 fV , gV Eq.(7.25)

Table 7.1.: Different sets of parameters for the calculations with explicit a1. The remark
’w/o WT’ means that the WT term is not included, the additional remark ’Eq.(6.83)’ means
that the a1 decay vertex from Eq.(6.83) is used (which does not employ the parameter c1)
and ’fV , gV Eq.(7.25)’ means that we choose the values from Eq.(7.25) for fV and gV .
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Figure 7.12.: Spectral function for the decay τ− → 2π0π−ντ including the a1 with different
sets of paramaters in comparison to data from [S+05]. The WT was not included in these
calculations. In addition, the curve labelled ’set 5’ uses a different energy dependence to
describe the a1 decay (see text).

choices for the parameters, which can (more or less) describe the data. A deviation is only
seen for 0.8GeV2 . s . 1.1GeV2.

Next we want to see, how far we get by switching off the WT term. We perform such an
analysis without the WT term for completeness. We recall our strategy discussed in Section
4.4.3 to approximate the φV scattering kernel by possible resonances (here the a1) plus contact
terms of lowest order. In that strategy there is no justification to neglect even the lowest order
contact term, which is just the WT term with its strength fixed model independently by chiral
symmetry breaking. In Fig. 7.12 we see the spectral function calculated with explicit a1 but
without the WT term in the kernel (set 4). In that case the second bump disappears and by
changing the parameters, one can determine the position and the height of the peak. Although
one might expect that the width of the peak can be adjusted by the choice of c1 and c2, this
is not the case, since there is a more complex interplay between the position and the width of
the peak. There are lots of parameter choices which give a qualitatively similar curve. The
curve labelled set 4 represents the best fit to the data by varying all parameters and we see
that it agrees with the choice for c1 and c2 from [KM90] and [RPO04] (cf. Eq.(3.31)). For the
curve labelled ’set 5’, we used the a1 decay vertex from Eq.(6.83) and we see that in this case
the shape of the peak is described very well. This shows the uncertainties in the shape of the
width and how it is influenced by the energy dependence of the a1 decay vertex. Therefore,
we have to be careful to draw conclusions from the exact shape of the width.
From Fig. 7.12 (set 4) and Fig. 7.11 one should not conclude that the WT term is a correction,
which improves the shape of the width, since one does not simply switch on the WT term in
order to get from Fig. 7.12 to Fig. 7.11. Instead the parameter sets are quite different and
one has to finetune the parameters in order to arrive at a single reasonable peak, when one
includes the WT term.
Looking at ’set 4’ in Fig. 7.12 one might criticise that we do not have the most sophisticated
model describing the explicit a1 and that other models describe the data better (e.g. [UBW02,
GDPP04]). However, our description of the a1 is completely sufficient to show the strong
influence of the WT term and has the advantage to be elementary and transparent.
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Figure 7.13.: Spectral function for the decay τ− → 2π0π−ντ including the a1 using para-
mater set 1 with and without including the WT term in comparison to data from [S+05].
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Figure 7.14.: Real part (Re), imaginary part (Im) and absolute value squared (abs2) of the
a1 propagators resulting from parameter set 4 (left plot) and parameter set 1 without WT
term (right plot).

Next, we want to see the role of the WT played in the best result, which was shown in Fig. 7.11
(set 1). In Fig. 7.13 we plotted the result from parameter set 1 with and without including
the WT term. Although with this choice of subtraction points the WT term is suppressed
very strongly, it obviously still has a major influence on the result.

Looking at the parameters for the calculations, which do not include the WT term, one
might wonder why the mass of the a1 is that high, although the peak clearly is at the right
position of

√
s ≈ 1.26GeV. The first guess would be that the parameter in Tab. 7.1 is a

bare parameter and that together with the real part of the self energy, one gets the physical
mass. However, the subtraction point µ1 is chosen to be µ1 = 2M2

ρ , and therefore the real
part of the renormalised loop function is almost zero at the physical mass of the hypothetical
a1. From Eq.(6.78) we know that a shift of the bare mass has to be proportional to <JφV (µ1)
and therefore is almost zero. In order to see why the spectral function nevertheless peaks at
the right position, we look at the a1 propagators, which result from ’set 4’ in Fig. 7.12 and
’set 1 w/o WT’ in Fig. 7.13. In Fig. 7.14 we see the real part (Re), imaginary part (Im)
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Figure 7.15.: Spectral function for the decay τ− → 2π0π−ντ including the a1 using different
sets of paramaters in comparison to data from [S+05].

and absolute value squared (abs2) of the a1 propagator resulting from parameter set 4 (left
plot) and parameter set 1 without WT term (right plot). In the left plot the zero in the real
part does obviously not coincide with the maximum in the imaginary part. Thus, defining
the physical mass as either the zero of the real part or the maximum of the imaginary part
leads to different values. If one chooses the bare mass around 1.2 GeV without including the
WT term, the width will turn out too small, which has been seen in Fig. 7.13 already. In
the right plot of Fig. 7.14 we see the propagator corresponding to set 1 without WT term,
which clearly has a smaller width than the one in the left plot. Again, one might argue that
the model does not properly describe the width of the a1. On the other hand, it can also be
used as another sign that the a1 is just not necessary to describe the data. The shape of the
spectral function seems to be driven by the πρ loop function and the energy dependence in
front of it. The pole structure of the propagator is shifted to the right of the region, where
the interesting structure appears. Therefore the actual pole structure of the propagator seems
to be redundant. A point interaction, which is sufficiently attractive and yields the proper
phase space (width) is all one needs. We saw already in the previous section that the WT
term alone without explicit a1 can also reproduce the peak.

In the discussion of the results without the explicit a1, we showed results for the theoretically
motivated values of fV and gV . Using the theoretical values, it is possible to further suppress
the WT term in comparison to the explicit a1. In Fig. 7.15 we see the best result, which we
found in this case. In Fig. 7.9 we found that the rise in the data for energies between about
0.7Gev2 . s . 1.2GeV2 is described worse. Here, we find the same problem in the case of
the a1. However, we note that using the theoretically motivated parameters, one can hardly
call it finetuning anymore, since it is much easier to get rid of the second bump.

Looking at the results including the a1 it is not so easy to draw an immediate conclusion. For
sure, one can say that the WT term has a major influence on the result. The second bump
structure can be recovered in almost every calculation including the a1 together with the WT
term. An important point is that the inclusion of the WT term leads to very strong effects,
although we already kept the contribution very small. Only by finetuning one can merge the
two appearing bumps. However, merging two bumps by finetuning the parameters does not

93



Chapter 7. Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3

a1

s[GeV2]

data
only WT
hoset 1

Figure 7.16.: Spectral function for the decay τ− → 2π0π−ντ including higher order terms
in the kernel in comparison to data from [S+05]. For the choice of the parameters see Tab.
7.2.

seem to be a natural way of reproducing the data. In other words: Why should an elementary
state appear right at the position, where an attractive potential already created a peak? We
note again that the strength of the WT term is model independently fixed by chiral symmetry
breaking. Since the WT alone already produces a peak at the right position, one could already
expect that a description of the data including the a1 has to be accompanied by a delicate
choice of the parameters. Still, it would be too much to talk about a definite sign that there
is no explicit a1. However, the peculiarities with explicit a1 together with the success of the
description without the a1 should be regarded as a good indication. In the next section, we
will show that adding higher order corrections to the WT term it is possible to systematically
improve the situation in the molecule scenario and that the ordering of diagrams makes sense
in this scenario without the explicit a1.

7.4. Higher order terms

In Section 6.6 we determined the corrections to the kernel at O(q2), which led to six new
unknown parameters. In the following we leave out the explicit a1 again and show the influence
of these corrections on the results. In Fig. 7.16 we show the spectral function with and without
including the higher order correction. There are several parameter sets (Tab. 7.2), which can
describe the data in a qualitatively similar way. We see that the higher order terms can be
chosen such that they systematically improve the agreement with the data. Note that the size
of the higher order terms is not constrained by chiral symmetry (except that they should be
of natural size - a demand of every effective field theory).
Next we investigate the connection between the higher order terms and the subtraction points.
Changing µ2 can hardly be compensated by the higher order terms, which is expected, since
the µ2 acts as a higher oder correction to the W decay vertex and not to the scattering
amplitude. However, a slight raise in µ2 can be compensated, as can be seen in Fig. 7.17.
It can also be seen that the higher order terms do not touch the energy region up to about
s ≈ 1GeV2.
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7.4. Higher order terms

λ1 λ2 [GeV−1] λ3 λ4 λ5 [GeV−1] λ6 µ1 [GeV2] µ2 [GeV2]
hoset 1 0 0 1.5 -1.4 0 0 M2

ρ 8.5M2
ρ

hoset 2 0.6 0.3 2.5 0 0 0 M2
ρ 9M2

ρ

hoset 3 0 -0.3 0 -1.4 0 0 M2
ρ 8.5M2

ρ

hoset 4 0.85 0 0 -0.45 0 0 8.5M2
ρ 8.5M2

ρ

Table 7.2.: Different sets of parameters, which yield a good description of the spectral
function.
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Figure 7.17.: Spectral function for the decay τ− → 2π0π−ντ including higher order terms
in the kernel in comparison to data from [S+05]. For the choice of the parameters see Tab.
7.2. In the calculation including only the WT term we employ the same subtraction point
µ2 = 9M2

ρ as in the calculation including the higher order terms.
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Figure 7.18.: Spectral function for the decay τ− → 2π0π−ντ with and without higher order
terms using µ1 = µ2 = 8.5M2

ρ in comparison to data. The parameters for the higher order
corrections are given in Tab. 7.2.

Next we want to discuss the connection to µ1. Here we can expect that the higher order terms
are at least to some extent able to compensate for changes. In Fig. 7.18 we can see that we
can account for moving the subtraction point µ1 by changing the parameters of the higher
order terms. The parameters are again given in Tab. 7.2. We see that the compensation is
even better than expected, since the corrections up to order O(q2) do not have to carry all
the structures, which might be influenced by moving the subtraction point.
It is also interesting to look directly at the changes induced in the scattering amplitude. In Fig.
7.19 we see the real and imaginary part of the scattering amplitude for the different parameter
sets given in Tab. 7.2 in comparison to the calculation without higher order corrections. In
order not to overload the figures, we show four different plots. Figs. 7.19(a) and (b) show
the scattering amplitudes for the first three parameters sets in comparison to a calculation
without higher order corrections and µ1 = M2

ρ . We see that the scattering amplitude is not
modified much. Only ’hoset 2’ shows a different structure, which becomes most obvious in
the imaginary part. This change in the scattering amplitude seems to be correlated with the
parameter λ3, which we will further investigate, when we look at the Dalitz plot projections
in Section 7.5. Fig. 7.19(c) and (d) show the scattering amplitudes for the ’hoset 4’, which
was chosen to compensate for the change in the subtraction point µ1. The figure shows the
scattering amplitude for µ1 = M2

ρ and µ1 = 8.5M2
ρ without higher order terms in comparison

to µ1 = 8.5M2
ρ with higher order corrections. We see that the corrections bring the scattering

amplitudes for µ1 = 8.5M2
ρ back into the shape they had before, when we used µ1 = M2

ρ

without higher order corrections. In other words, changes in the renormalisation point can
be replaced by changes in the higher order terms. The renormalisation scale dependence is
reduced as it should, when including higher order terms.

One might argue that including the higher order corrections was unnecessary and describing
the data with 6 parameters is no success. However, the point in including the higher order
corrections is not that we can describe the data with seven parameters, but that they sys-
tematically improve the result. In case of the inclusion of an explicit a1, we saw that adding
the WT term to the a1 interaction worsened the results. Here, however, adding the higher
order terms to the kernel behaves as a correction. Note that the calculations are not ordered
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Figure 7.19.: Real (left) and imaginary (right) part of the scattering amplitude for πρ
scattering with and without higher order corrections. The upper two plots show the scattering
amplitudes for hoset 1-3 in comparison to a calculation without higher order terms and µ1 =
M2

ρ . The lower two plots show the scattering amplitude for hoset 4 in comparison to a
calculation without higher order corrections and µ1 = M2

ρ and µ1 = 8.5M2
ρ , respectively.
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according to usual perturbation theory. Instead the kernel of the Bethe-Salpeter equation is
calculated in perturbation theory. The convergence of that kind of perturbative expansion is
not guaranteed. Therefore it is encouraging to see that the next to leading order terms behave
as a correction and are even able to improve the agreement with the data.
We note that there are many possible choices for the parameters, which describe the data. In
Section 7.5 we will see that the different sets can be further discriminated by looking at the
Dalitz plot projections.

7.5. Dalitz plot projections

In Fig. 7.20 we show the Dalitz plot projections in m2
12 or m2

23 for the calculation using the
WT term only and for the calculation including the higher order terms in comparison to data
from [A+00]. We determined the normalisation of the theoretical curve such that the area
under all curves, corresponding to different slices of

√
s, agrees with the area under the data

points. We also subtracted the contribution to the data, which was identified as background in
[A+00]. Using this normalisation, we do not really lose any information, since we already saw
before that the spectral function was well reproduced for all invariant masses, which implies
a proper total decay width and therefore a proper normalisation. Fig. 7.20 clearly shows
that the final state is dominated by the ρ meson, and the data are described quite well by
all parameter sets. The last two plots seem to show an improvement by including the higher
order corrections. The improvement in the last two plots is most pronounced for hoset 2.
But since we overshoot at lower m2

12 and the error bars are pretty large for these invariant
masses, the advantage is not very stringent. We recall that q1 and q3 are the momenta of the
likewise pions and that the amplitude is symmetric under the exchange q1 → q3. Thus, m2

12

and m2
23 are the invariant mass of the intermediate ρ, which we clearly see in the Dalitz plot

projections.
In Fig. 7.21 we plot the number of decays versus m2

13, which is the invariant mass of the
likewise pions. These pions do not build up the ρ and therefore the structure in these plots
is completely different from Fig. 7.20. When we look at Fig. 7.21, we also find that the
calculations including the higher order corrections describe the data better, which again is
more pronounced for hoset 2. The steep rise at small m2

13 is much better reproduced by hoset2
and also the additional structure at higher invariant masses is reproduced better with hoset 2,
although we overshoot that structure. We note that using hoset 3 and hoset 4, we do not get
a noteworthy difference in the Dalitz plot projections in comparison to a calculation without
higher order corrections. Thus, the improvement in the Dalitz plots seems to be correlated
with the parameter λ3, which is non-vanishing for hoset 1 and hoset 2 (cf. Tab. 7.2).
It is interesting to see the amount of d-wave contributions from the different parameter sets.
In Fig. 7.22 we plotted the absolute value of the ratio of the respective coefficient css and
cds to the sum of all coefficients (see Section 5.2). We see, that the parameter sets, which
describe the Dalitz plot projections better, clearly have a higher d-wave contribution. Thus,
our calculation indicates a population of d-waves in the τ decay in the amount, which is
shown in Fig. 7.22. We note that the leading order contribution to csd is given by the terms
proportional to λ3 and λ6 in Eq.(6.96). A statement about pure d-wave transitions given by
cdd would be more complicated, since terms of higher chiral order than q2 would contribute
at leading order.
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Figure 7.20.: Dalitz plot projections inm2
12 orm2

23 with and without higher order corrections
in comparison to data from [A+00]. The different parameter sets can be found in Tab. 7.2.
The curve labelled µ2 = 8.5M2

ρ corresponds to a calculation using the WT term only, µ1 = M2
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and µ2 = 8.5M2
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Figure 7.21.: Dalitz plot projections in m2
13 with and without higher order corrections in

comparison to data from [A+00]. The different parameter sets can be found in Tab. 7.2. The
curve labelled µ2 = 8.5M2

ρ corresponds to a calculation using the WT term only, µ1 = M2
ρ

and µ2 = 8.5M2
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Chapter 8.

Summary and Outlook

We presented in this thesis a new way to calculate the process τ− → 2π0π−ντ . We performed
the calculation under different assumptions and we emphasise that in the simplest scenario,
which describes the data already very well, we only used one free parameter. In this scenario
the resonant structure seen in the data essentially is caused by an attractive final state in-
teraction between π and ρ. In order to set the stage, the first chapters were devoted to the
explanation of the ingredients of our model describing the decay process, which are essentially
chiral symmetry and unitarity. We discussed the most important facts and issues which ap-
pear by implementing vector mesons in the chiral Lagrangian and showed their effects on our
calculation. In one scenario the strong final state correlations which appear in the τ decay
are taken into account by iterating the lowest order interaction in a Bethe-Salpeter equation.
The connection of the Bethe-Salpeter equation to the unitarisation methods has been reviewed
in detail. In order to solve the Bethe Salpeter equation we used the so called partial wave
projectors. We presented an exact relation to the covariant projectors used in [LK04] and
showed a proof of their orthogonality. We also gave the exact connection between the helicity
states and states of orbital angular momentum. Afterwards we performed the calculation in
different ways, namely with and without including an explicit a1. All relevant formulas to
retrace the calculation have been given in Chapter 6. The calculations were essentially split
in three parts:
1. In one scenario we described the final state correlations in the τ decay solely by iterating
the WT term (molecule scenario). The picture we promote is that the process is dominated
by ρπ final state interactions, which are described by iterating the WT term. The weak
decay is part of the standard model and the WT term is predicted parameter free from chi-
ral symmetry. The remaining coupling constants (fV , gV ), which describe the interaction of
the vector mesons are determined by the properties of the ρ [EGL+89]. The only unknown
parameters in the calculation entered through the renormalisation of the loop integrals. We
introduced two subtraction points to render the loop integrals finite. One subtraction point
(µ1) renormalises the loops in the scattering amplitude describing the final state interactions.
This parameter was already introduced in [LK04] and fixed by crossing symmetry arguments.
The other subtraction point (µ2) enters in the renormalisation of the first loop, which contains
the W decay vertex. We investigated the influence of these parameters on the results. First,
we set µ1 = µ2 and varied them simultaneously. In particular, we compared the different
values used in [LK04] and [ROS05]. We found that all choices produce a peak at the same
position with a different height. The position of this peak was in the region of the resonant
structure seen in the data, but the width always turned out to be too small. Afterwards we
investigated the influence of µ2 by keeping µ1 fixed. Using the crossing symmetry argument
from [LK04] in order to determine µ1, we were left with one parameter. Fitting this parame-
ter, we reproduced the spectral function for the decay τ− → 2π0π−ντ quite well.
2. In a second scenario, we explicitly introduced the a1 in the calculation. This introduced
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new parameters, namely the mass of the a1, its coupling to the W boson fA and the cou-
plings to the vector-meson Goldstone boson states c1 and c2. The most obvious feature in
that calculation has been, that due to the strong influence of the WT term, a second bump
appeared. Finetuning the parameters, one could merge the two bumps into one and the data
were described more or less satisfying. However, the results of these calculations are pecu-
liar. An important point is that the inclusion of the WT term leads to very strong effects,
although we already kept the contribution very small. Merging two bumps by finetuning the
parameters does not seem to be a natural way of reproducing the data. Since the WT alone
already produces a peak at the right position, one could expect already that a description of
the data including the a1 has to be accompanied by a delicate choice of the parameters. Thus,
recalling the success of the model without explicit a1, the scenario with explicit a1 seems to
be artificial.
3. In the third part we left out the explicit a1 again and included higher order corrections to
the kernel. These additional terms further improved the molecule scenario, and we found an
almost perfect agreement with the data. These corrections introduced six new parameters and
many combinations of these parameters were found, which fit the spectral function very well.
However, the intention in introducing the higher order terms was not only to describe the
spectral function, which was already described quite well without the corrections, but to show
the possibility of a systematic improvement. The corrections induced by these terms behaved
as higher order corrections are supposed to behave. That was not clear from the beginning,
since we calculated the kernel of the Bethe-Salpeter equation perturbatively, which does not
automatically guarantee that we picked up the most important contributions for the scatter-
ing amplitude itself. Therefore, this is an encouraging fact, which puts further foundation to
the molecule scenario and shows its systematic nature.
Comparing our calculation to the Dalitz projections, we found that including higher order
terms, which carry d-wave components, describe the data better. In a relativistic framework
one first has to make sense of what one means with a d-wave component. This task has been
fulfilled in Chapter 5. We defined the coefficient csd, which describes the transition from an
s-wave to a d-wave state, and pointed out that the leading contribution to this term is given
by the WT term and the higher order correction, which we included in the third part of the
calculation. The size of this coefficient is clearly correlated with the quality to describe the
Dalitz plot data.
We also discussed possible uncertainties in the model. We discussed the influence of pion
final state correlations and the influence of the offshell behaviour of the ρ. In order to judge
the uncertainties, we performed the calculation under the assumption that the ρ is stable,
which led to very similar results. In addition, we note that the clear sign of the peak was
seen with almost any choice for the free parameters and the importance of the WT term is
not questionable.

To summarise, one finds that without the explicit a1 one has a well behaved model, which
can be systematically improved and which describes the data very well. Most parameters
(in the simplest scenario, all but one) are fixed by chiral symmetry breaking and the well
known properties of the ρ. An explicit a1 leads to peculiar properties, if one generates the
width consistently from the Bethe-Salpeter equation and additionally includes the WT term.
Although it is possible to find parameter sets, which describe the data more or less satisfying,
the scenario seems artificial. When we try to describe the data with an explicit a1, the strength
of the WT interaction causes problems. On the other hand, this strength is fixed by chiral
symmetry breaking and we note again that including the WT term and the explicit a1 is not
double counting. For sure one can claim that the WT term should not be disregarded, as
however, has been done in many previous approaches.
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These indications point towards a dynamical nature of the a1 as a coupled-channel meson-
molecule.

As an outlook we note that a further step in the calculation would be to include medium effects
in order to see what happens to the a1 in case we approach the chiral symmetry restoration
[RW00]. In principle, when the restoration happens, the axial-vector spectral function defined
in Section 7.1 must be degenerate with the corresponding vector spectral function. In the
latter the ρ meson prominently appears at least in the vacuum [S+05]. It is, however, not
so clear what chiral restoration implies for the specific part of the spectral function with a
three-pion final state. In any case one would expect a drastic reshaping of both the vector
and the axial-vector spectral function.
It would also be interesting to figure out how well the molecule scenario agrees with QCD
lattice calculations [Kog83] of the axial-vector current-current correlator (in the specific region
accessible by lattice QCD). Here one has to perform the calculations with a higher pion mass in
order to connect to lattice QCD calculations. This also brings into play pion mass corrections
to the involved coupling constants as for example F0, fV , gV . Still one can expect that the
presented framework offers enough predictive power to obtain a valuable comparison to lattice
QCD [Leu06].
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Chapter 8. Summary and Outlook
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Appendix A.

Notation and Normalisation

A.1. Conventions and γ matrices

The notation and the conventions in this work correspond mainly to those in the book of
Peskin and Schroeder [PS95].

Units

We work in natural units, i.e.,
~ = c = 1 . (A.1)

This yields the relations

[length] = [time] = [energy]−1 = [mass]−1 .

The only unit conversion that will be needed throughout this work is given by

197.327MeV = 1 fm−1 .

Metric tensor and four-vectors

We use the metric tensor in the form,

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

Four-vectors are denoted by italic letters (x), three-vectors are marked by arrows (~x).
Greek indices denote the components of a four-vector and run from 0 to 3 (where the zeroth
component is the time or energy component of the four-vector). Following the Einstein sum-
mation convention, we sum over all indices that appear twice in a term.
We distinguish between four-vectors with upper (contravariant) and lower (covariant) indices,

xµ = (x0, ~x) (contravariant) ,

xµ = gµνx
ν = (x0,−~x) (covariant) .

The scalar product of two four-vectors is defined by

x · p = xµx
µ = gµνx

µpν = x0p0 − ~x · ~p .
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Appendix A. Notation and Normalisation

Pauli matrices

The Pauli matrices are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

The Pauli matrices obey the (anti-)commutation relations

{σi, σj} = 2δij and [σi, σj ] = 2iεijkτk , (A.3)

where δij is the Kronecker delta and εijk is the totally antisymmetric tensor (Levi-Civita
symbol) in three dimensions. The (anti-)commutation relations above lead to the following
helpful relation

σiσj = δij + iεijkσk . (A.4)

Dirac matrices

The Dirac matrices (or γ matrices) satisfy – independently of the chosen representation – the
anticommutation relations

{γµ, γν} = 2gµν . (A.5)

There exist several explicit representations of the Dirac matrices. In this work, we will use
the so-called chiral (or Weyl) representation that can be constructed from the Pauli matrices
in a 2× 2 block form:

γ0 =
(

0 12×2

12×2 0

)
, γi =

(
0 τ i

−τ i 0

)
, γ5 =

(−12×2 0
0 12×2

)
. (A.6)

Products of γ matrices and four-vectors are denoted in the Feynman slash notation,

p · γ = pµγ
µ = /p .

In addition, we use

γ5 = iγ0γ1γ2γ3 . (A.7)

By construction, the matrix γ5 has the following properties,

(γ5)2 = 14×4 , (γ5)† = γ5 , {γ5, γµ} = 0 .

The γ matrices also fulfil
γµ†γ0 = γ0γ

µ ,

which assures the hermiticity of the Dirac Lagrangian.

Traces of γ matrices

We will encounter traces of γ matrices. For further reference, we list some helpful relations
below:

Tr[14×4] = 4 , (A.8)
Tr[γµγν ] = 4gµν , (A.9)

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ) , (A.10)

Tr[γ5] = 0 , (A.11)

Tr[γµγνγ5] = 0 , (A.12)

Tr[γµγνγργσγ5] = −4iεµνρσ . (A.13)
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A.1. Conventions and γ matrices

Note that the trace of an odd number of γ matrices is always zero.

Gell-Mann matrices

The elements of SU(3) can be written in terms of the eight generators λa

U(θ) = exp

(
−i

8∑

a=1

θa
λa

2

)
, (A.14)

with real parameters θa. One possible representation for the generators is the one chosen by
Gell-Mann, which is given by

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −1
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .

(A.15)

Some useful properties are

λa = λ†a , (A.16)
Tr[λaλb] = 2δab , (A.17)

Tr[λa] = 0 . (A.18)

Trace relations

In [EFS02] one can find the following formula concerning 3× 3 matrices, which follows from
the Cayley-Hamilton theorem

A1{A2, A3}+A2{A3, A1}+A3{A1, A2} − Tr[A1]{A2, A3} − Tr[A2]{A3, A1}
− Tr[A3]{A1, A2}+ Tr[A1] Tr[A2]A3 + Tr[A2] Tr[A3]A1 + Tr[A3] Tr[A1]A2 − Tr[A1A2]A3

− Tr[A2A3]A1 − Tr[A3A1]A2 − Tr[A1A2A3]13 − Tr[A1A3A2]13 + Tr[A1A2] Tr[A3]13

+ Tr[A3A1] Tr[A2]13 + Tr[A2A3] Tr[A1]13 − Tr[A1] Tr[A2] Tr[A3]13 = 0 .
(A.19)

Multiplying this equation with another matrix and taking the trace, one can derive trace
relations. In our case, we want to find trace relations for terms constructed out of two Vµ and
two uµ (see Appendix C below). Using the above formula, we find the following relations

2Tr[Vµuνu
νV µ]+2 Tr[VµuνV

µuν ]+2Tr[VµV
µuνu

ν ] = Tr[VµV
µ] Tr[uνu

ν ]+2 Tr[Vµuν ] Tr[V µuν ]
(A.20)

and

2 Tr[VµVνu
µuν ] + 2Tr[VµVνu

µuν ] + Tr[Vµu
µVνu

ν ] + Tr[VµuνV
νuµ]

= Tr[Vµu
ν ] Tr[Vνu

µ] + Tr[Vµu
µ] Tr[V νuν ] + Tr[VµVν ] Tr[uµuν ] .

(A.21)
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Appendix A. Notation and Normalisation

A.2. Momentum states, helicity states and normalisation

One-particle momentum states with three-momentum ~p and helicity λ are normalised such
that their inner product is Lorentz invariant, i.e.

〈p, λ|p, λ〉 = 2Ep(2π)3δ(3)(~p−~p)δλλ (A.22)

Thus, we can deduce the normalisation for a two-particle state. We choose the second particle
to be a scalar since we encounter these states in our calculation, but it should be obvious how
one can extend the description to two particles with spin.

〈p, q, λ|p, q, λ〉 = 4EpEq(2π)6δ(3)(~p−~p)δ(3)(~q −~q)δλλ . (A.23)

Using the total four-momentum wµ = pµ + qµ we can rewrite the above equation

〈p, q, λ|p, q, λ〉 = 4EpEq(2π)6δ(3)(~w − ~w)δ(3)(~q −~q)δλλ

= 4EpEq(2π)6δ(3)(~w − ~w)
1
~q2
δ(|~q| − |~q|)δ(Ω− Ω)δλλ

= 4
√
s

|~q| (2π)6δ(4)(w − w)〈θ, φ, λ|θ, φ, λ〉

= 4
√
s

|~q| (2π)6〈w, θ, φ, λ|w, θ, φ, λ〉 ,

and thus

|p, q, λ〉 = 2(2π)3
√√

s

|~q| |w, θ, φ, λ〉 . (A.24)

Scattering matrix

In order to isolate the interesting part of the scattering matrix, one defines the T -matrix

S = 1+ iT . (A.25)

The invariant matrix element M is introduced as

〈p, q, λ|T |p, q, λ〉 = (2π)4δ4(p+ q − p− q)M . (A.26)

Using Eq.(A.24), we see that

〈p, q, λ|T |p, q, λ〉 = (2π)4δ4(p+ q − p− q)M

!= δ4(p+ q − p− q)4(2π)6
√
s√

pcmpcm

〈θ, φ, λ|T |θ, φ, λ〉 , (A.27)

and thus

M = 〈θ, φ, λ|T |θ, φ, λ〉 16π2√s√
pcmpcm

. (A.28)

The quantity, which we expand according to Eq.(5.5) and Eq.(5.7) in our calculation is the
invariant matrix element. The definition of T expressed in helicity states thus reads

SJ
λ

= δλλ + iT J
λλ

= δλλ + iMJ
λλ

√
pcmpcm

4π
√
s

, (A.29)
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A.2. Momentum states, helicity states and normalisation

where
T J

λλ
= 〈λ|T J |λ〉 , (A.30)

and Mλλ denote the respective expansion coefficients of M . The additional factor of 4π arises
due to the definition of the expansion coefficients in Eq.(5.7).

Polarisation vectors

Massive spin 1 particles are described by the Proca Lagrangian

L = −1
4
FµνF

µν +
m2

2
VµV

µ , (A.31)

with Vµ being the vector field in the vector representation and Fµν = ∂µVν − ∂νVµ. Applying
the Euler-Lagrange equations, one finds the following equations of motion

(¤ +M2
V )Vµ = 0 , ∂µV

µ = 0 . (A.32)

The first equation tells us that every component of Vµ can be described by a wave and the
second equation reduces the four degrees of freedom of the four-vector to three. In the rest
frame the polarisation vectors should be the spin states, and therefore eigenstates of J3. Ji

are the three-dimensional representation matrices of SU(2), and we choose the explicit form

(Ji)jk = −iεijk . (A.33)

Thus, we can choose for the three-dimensional polarisation vectors in the rest frame

~ε±1 =



∓1√

2−i√
2

0


 , ~ε0 =




0
0
1


 . (A.34)

The extension to four dimensions is easily done by adding a zeroth component to the polar-
isation vectors εµ(λ) = (0,~ελ). In order to determine the polarisation vectors for a moving
particle, we will first boost the vectors in z-direction and then rotate it. The boost in z-
direction does not change the spin or helicity of the particle but after a rotation these states
will not be spin eigenstates anymore. After a boost

Λµν =
1
MV




E 0 0 p
0 1 0 0
0 0 1 0
p 0 0 E


 , (A.35)

the polarisation vectors are given by

εµ(p,±1) =




0
∓1√

2−i√
2

0


 , εµ(p, 0) =




pcm

M
0
0
ω
M


 . (A.36)

The rotation acts only on the three vectors and is given by

~ε(λ, θ, φ) =
∑

λ′
D1

λλ′~ε(λ
′) , (A.37)

111



Appendix A. Notation and Normalisation

with the Wigner rotation function D1
λλ′ . In a frame, where the vector meson is flying with

momentum pcm and an angle θ to the z-axis the polarisation vectors become

εµ(p,±1) =




0
∓ cos θ√

2−i√
2± sin θ√
2


 , εµ(p, 0) =




pcm

M
ω
M

sin θ
0

ω
M

cos θ


 . (A.38)

A.3. Wigner rotation matrices

The Wigner rotation matricesDJ
mm′ [Tun85] or Wigner functions represent the group elements

of SO(3) in the various representation. They can be defined as

U(α, β, γ)|j,m〉 = |j,m′〉Dj(α, β, γ)m′
m , (A.39)

where U(α, β, γ) is the operator representing the rotation by the Euler angles (α, β, γ). One
also uses the simplified Wigner functions or d-functions

Dλλ(α, β, γ) = e−iαλdJ
λλ

(β)e−iγλ (A.40)

with
dJ

λλ
(β) = 〈jm′|e−iβJ2 |jm〉 . (A.41)

The d-functions can be expressed in closed form, for example, via the Jacobi polynomials

dJ(β)mm′ =

√
(j +m′)!(j −m′)!
(j +m)!(j −m)!

(
cos

β

2

)m+m′ (
sin

β

2

)m−m′

Pm′−m,m+m′
j−m′ (cosβ) . (A.42)

In particular, one sees
dmm′(0) = δmm′ (A.43)

The relation to the spherical harmonics is given by

Ylm(θφ) =
(

2l + 1
4π

) 1
2

(Dl(φ, θ, 0)l
m0)

∗ . (A.44)

The Wigner functions and the d-functions obey orthogonality relations
∫ π

0
dj

λλ
(θ)dj′

λλ
(θ) sin θdθ =

2δjj′
(2j + 1)

, (A.45)

∫
dΩlD

J
Mλ2

D∗J ′
M ′λ2

=
∫
dΩle

−iφl(M−M ′)dJ
Mλ2

dJ ′
M ′λ2

=
4π

2J + 1
δJJ ′δMM ′ . (A.46)

The Wigner functions are also needed in writing down the connection between angular mo-
mentum states and linear momentum states

|J,M, λ〉 =
2J + 1

4π

∫
dφd cos θ|θ, φ, λ〉DJ(φ, θ, 0)Mλ . (A.47)
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A.3. Wigner rotation matrices

The d-functions satisfy a number of symmetry relation, as for example

dj(β)m′m = dj(β)−m′−m(−1)m′−m , (A.48)

dj(β)m′m = dj(−β)mm′ . (A.49)

The explicit form of the d-functions for j = 1 is given by

d1(β)00 = cosβ , (A.50)

d1(β)10 = −sinβ√
2
, (A.51)

d1(β)11 =
1 + cos θ

2
, (A.52)

d1(β)1−1 =
1− cos θ

2
. (A.53)
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Appendix B.

Orthogonality Relation of the Projectors

In this appendix we want to prove the orthogonality relation for the projectors. In order to do
so we have to recall the meaning of the projectors. The task in the beginning was to expand a
vertex with a tensor structure into partial waves. That was achieved by expanding the tensor
in such a way that when we multiply with a polarisation vector, we get a definite angular
momentum state. The relation we want to prove is

∫
d4l

(2π)4
Y JMP

λ1λ2µα(p, l, w)Gαβ(l, w)Y J ′M ′P ′
λ3λ4βν (l, p, w)

= δλ2λ3δPP ′δJJ ′δMM ′Y JMP

λ1λ4µν(p, p, w)(−IφV ) ,
(B.1)

with

Gµν = i
gµν − lµlν

M2
V

l2 −M2
V + iε

1
(w − l)2 −M2

φ + iε
. (B.2)

When the particles are on shell, the polarisation vectors obey the following relation

−
(
gµν − lµlν

M2

)
=

∑

λ

ε(λ, l)µ†εν(λ, l) . (B.3)

Since the particles in the loop are off shell, the relation is modified

−
(
gµν − lµlν

l2

)
=

∑

λ

ε(λ, l)µ†εν(λ, l) , (B.4)

where also in the polarisation vectors, one has to substitute of course M2
V → l2. We further

know that

−
(
gµν − lµlν

M2

)
= −

(
gµν − lµlν

l2

)
+

lµlν

l2M2
V

(M2
V − l2) . (B.5)

Thus, we see that the longitudinal part of the propagator resists to the substitution of the
numerator with a sum over the polarisation vectors. It is not surprising that the longitudinal
part of the propagator, which can be identified with the unphysical spin zero part, makes
trouble in a relation, which was constructed to hold for spin one particles. However, the
additional contribution leads to tadpole terms, which we are used to drop, what we will also
do in that case. Besides the usual argument, that the tadpole contributions are taken care
of by the contact interactions, we have in that case the additional argument, that we do not
want to propagate the unphysical spin zero part.

We multiply the projectors from the left with ε†µ(p, λ) and from the right with εν(p, λ). The
projectors have the task that if they are multiplied with the respective polarisation vectors,
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only the term with the appropriate quantum numbers will survive in the expansion Eq.(5.5).
When one multiplies with the wrong polarisation vectors, one gets zero. This tells us imme-
diately the polarisation of the vectors, which we multiply from the left and from the right. In
general, after multiplying a projector with the polarisation vectors, we get

εµ†(p, λ)Y JMP

λ1λ2µν(p, l, w)εν(l, λ) = δ|λ|λ1
δλ2|λ|(2J + 1)D∗J

Mλ
(Ω)DJ

Mλ(Ωl)

·
(

1√
2

)λ1+λ2

P (λ−λ)/2 .
(B.6)

The factors in the second line arise due to the definition of the parity states. In order to
understand that factor, we look at an example, namely Y 1+

11 and Y 1−
11 . When we want to

expand the above projectors in helicity states, we know that 〈1+|Y 1+

11 |1+〉 = 1 and all other
matrix elements are zero for Y 1+

11 . For Y 1−
11 we have that 〈1−|Y 1−

11 |1−〉 = 1 and all others are
zero. Further we know

〈1+|T J |1+〉 = 〈1|T J |1〉+ 〈1|T J | − 1〉 (B.7)

and
〈1−|T J |1−〉 = 〈1|T J |1〉 − 〈1|T J | − 1〉 . (B.8)

Thus, we get for Y 1+

11

〈1|Y 1+

11 |1〉 =
1
2
, 〈1|Y 1+

11 | − 1〉 =
1
2

(B.9)

and for Y 1−
11

〈1|Y 1−
11 |1〉 =

1
2
, 〈1|Y 1−

11 | − 1〉 = −1
2
. (B.10)

which is reproduced by our definition. One can easily check that the form in Eq.(B.6) covers
all possibilities in the correct way.

Now we plug in Eq.(B.6) on the left side of Eq.(B.1) after multiplying with the polarisation
vectors, which leads to

∫
d4l

(2π)4
ε†µ(p, λ)Y JMP

λ1λ2µα(p, l, w)Gαβ(l, w)Y J ′M ′P ′
λ3λ4βν (l, p, w)εν(p, λ)

→
∑

λl

(−i)
∫

l2dldl0
(2π)4(l2 −M2

V + iε)((w − l)2 −M2
φ + iε)

∫
dΩl

(
δ|λ|λ1

δλ2|λl|(2J + 1)D∗J
Mλ

(Ω)DJ
Mλl

(Ωl)
(

1√
2

)λ1+λ2

P (λ−λl)/2

· δλ3|λ|δλ4|λ|(2J
′ + 1)D∗J ′

M ′λl
(Ωl)DJ ′

M ′λ(Ω)
(

1√
2

)λ3+λ4

P ′(λl−λ)/2

)

= (−i)δ|λ|λ1
δ|λ|λ4

δλ2λ3(2J + 1)(2J ′ + 1)D∗J
Mλ

(Ω)DJ ′
M ′λ(Ω)

∫
l2dldl0

(2π)4(...)(...)

(
1√
2

)λ1+2λ2+λ4

·
(∫

dΩlD
∗J
M ′λ2

(Ωl)DJ ′
Mλ2

(Ωl)P (λ−λ2)/2P ′(λ−λ2)/2

+
∫
dΩlD

∗J ′
M ′−λ2

(Ωl)DJ
M−λ2

(Ωl)P (λ+λ2)/2P ′(λ+λ2)/2

)(
1
2

)1−λ2

= (−i)δ|λ|λ1
δλ4|λ|δλ2λ3(2J + 1)D∗J

Mλ
(Ω)DJ

Mλ(Ω)δJJ ′δMM ′

(
1√
2

)λ1+λ4 CP

2

∫
4πl2dldl0

(2π)4(...)(...)
,
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where abbreviated the factors arising from the parity terms with CP , which is given by

CP = P (λ+λ2)/2P ′(λ+λ2)/2 + P (λ−λ2)/2P ′(λ−λ2)/2 .

Next we will have a closer look at that factor and bring it into a simple form. In order to so,
we look at the different possibilities for P and P ′ separately

• P = P ′ = 1
CP = 2

• P = P ′ = −1
In that case we know that λ2 = 1 = |λ| = |λ| and we get the following possible values
for CP

λ λ CP

1 1 2
-1 -1 2
1 -1 -2
-1 1 -2

• P = −P ′ = 1
In that case λ2 = 1 = |λ| and we see that λ has no influence on CP and

CP = 0

• P = −P ′ = −1
In that case λ2 = 1 = |λ| and λ has no influence and again

CP = 0

Putting everything together, we have

CP = 2δPP ′P
(λ−λ)/2 . (B.11)

Thus, we arrive at

∫
d4l

(2π)4
ε†µ(p, λ)Y JMP

λ1λ2µα(p, l, w)Gαβ(l, w)Y J ′M ′P ′
λ2λ3βν (l, p, w)εν(p, λ)

= (−i)δ|λ|λ1
δλ4|λ|δλ2λ3(2J + 1)D∗J

Mλ
(Ω)DJ

M ′λ(Ω)δJJ ′δMM ′

(
1√
2

)λ1+λ4

δPP ′P
(λ−λ)/2

∫
4πl2dldl0

(2π)4(...)(...)

= δλ2λ3δPP ′δJJ ′δMM ′ε†µ(p, λ)Y JMP

λ1λ4µν(p, p, s)ε
ν(p, λ)(−IφV ) ,

which proves Eq.(B.1).
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B.1. Application to the a1 loop integral

We will use the orthogonality relation in order to simplify the expression in Eq.(6.63), which
was given by

W ′φV
µ =

[
−cφV

gVud

2
√

2F0

∫
d4l

(2π)4

(
fV (w · lgµα − lµwα)

− 2gV ((w − l) · lgµα − lµ(w − l)α − wµwα

s
l(w − l) + (w − l)αwµ lw

s
)
)
GφV

αβ (l)T γβ
φV (l)

− cφV
gVud

2
√

2F0

2gV
m2

π

s−m2
π

wµ

s

∫
d4l

(2π)4
(l(w − l)wα − lw(w − l)α)GφV

αβ (l)T γβ
φV (l)

]

· igV

F 2
0

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ + (q1 ↔ q3) .

First, we have a look at the last integral. This corresponds to an integral between a scalar
or spin 0 component and a vector component and should be zero by angular momentum
conservation. In particular, we should not get a J = 1 component when we expand the term
left to the propagator into projectors. That can indeed be easily seen

l(w − l)wµwα − lw(w − l)αwµ −→ pqwµwα − (wp)wµqα −→ pqwµwα − (wp)wµwα .

Since we know that terms not proportional to x in F2 do not contribute to the J = 1 part,
we get no J = 1 contribution and due to the orthogonality relation that integral vanishes.

So we are left with

W ′φV
µ = −cφV

gVud

2
√

2F0

∫
d4l

(2π)4

(
fV (w · lgµα − lµwα)

− 2gV

(
(w − l) · lgµα − lµ(w − l)α − wµwα

s
l(w − l) + (w − l)αwµ lw

s

))
GφV

αβ (l)T γβ
φV (l)

· igV

F 2
0

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ + (q1 ↔ q3)

= −cφV
igVudgV

2
√

2F 3
0

∫
d4l

(2π)4

(
(fV − 2gV )(w · lgµα − lµwα)

+ 2gV

(
l2gµα − lµlα − wµwα

s
l2 + lαwµ lw

s

))
GφV

αβ (l)T γβ
φV (l)

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ + (q1 ↔ q3) .

(B.12)

We note that due to our renormalisation scheme, terms proportional to lαGαβ vanish. The
remaining terms are expanded into projectors

l2gµα − wµwα

s
l2 −→ −2

3
M2

V Y
αµ
11 − 2

3
M2

V

ωφV√
2MV

Y αµ
01 − 2

3
M2

V

ωa√
2MV a

Y αµ
10 − M2

V ωaωφV

3MV aMV
Y αµ

00 .

MV and Mφ are the masses of the particles in the loop corresponding to the outgoing channel
in the expansion. The masses for the incoming channel (labeled with a) are artificially put

118



B.1. Application to the a1 loop integral

in to ease calculations, but the result should of course be independent of these masses. The
second term, which we have to expand into projectors is

(w · lgµα − lµwα) = (w · lgµα + (w − l)µwα)− wµwα = Lαµ
3 + w · lLαµ

1 + F2L
αµ
2 .

Since there is no term proportional to x in F2, it will not contribute to the spin 1 part. Thus,
we can write

(w · lgµα − lµwα) = Lαµ
3 + w · lLαµ

1 + F2L
αµ
2 −→ Lαµ

3 +
√
sωφV L

αµ
1

−→ −2
3
√
sωφV Y

αµ
11 − 2

3

(
ω2

φV

√
s√

2MV

−
√
sp2

φV√
2MV

)
Y αµ

01

− 2
3
√
sωφV

ωa√
2MV a

Y αµ
10 − 2

3
ωa√
2MV a

(
ω2

φV

√
s√

2MV

−
√
sp2

φV√
2MV

)
Y αµ

00

−→ −2
3
√
sωφV Y

αµ
11 − 2

3

√
sMV√

2
Y αµ

01 − 2
3
√
sωφV

ωa√
2MV a

Y αµ
10 − 2

3
ωa√
2MV a

√
sMV√

2
Y αµ

00 .

Using the first expansion and the orthogonality relation, we evaluate the part proportional to
gV . We will suppress the indices indicating the channel on the expansion coefficients, since it
is always the same and write Mij instead of M1φV ij . Thus, we get

2gV

∫
d4l

(2π)4
T γβ

φV (l)GφV
αβ (l)l2

(
gµα − wµwα

s

)

= −2gV
1
3
M2

V iIφV

(
2M11Y

γµ
11 + 2M01Y

γµ
01 +

√
2ωφV

MV
M10Y

γµ
11 +

√
2ωφV

MV
M00Y

γµ
01

+
√

2ωa

MV a
M11Y

γµ
10 +

√
2ωa

MV a
M01Y

γµ
00 +

ωaωφV

MV aMV
M10Y

γµ
10 +

ωaωφV

MV aMV
M00Y

γµ
00

)

= −2gVM
2
V iIφV

3

(
Y γµ

11

(
2M11 +

√
2ωφV

MV
M10

)
+ Y γµ

10

ωa√
2MV a

(
2M11 +

√
2ωφV

MV
M10

)

+ Y γµ
01

(
2M01 +

√
2ωφV

MV
M00

)
+ Y γµ

00

ωa√
2MV a

(
2M01 +

√
2ωφV

MV
M00

))

= −2gV iIφV

3

(
αφV

1 Y γµ
11 + αφV

1

ωa√
2MV a

Y γµ
10 + α′φV

1 Y01 + α′φV
1

ωa√
2MV a

Y00

)

with

αφV
1 = 2M2

VM11 +
√

2ωφVMVM10 and α′φV
1 = 2M2

VM01 +
√

2ωφVMVM00 (B.13)

So far we did not use an explicit representation for the projectors, which means we have not
chosen a coordinate system, and we still need to show that the dependence on the incoming
masses cancel out. Since we sum over the polarisation of the W bosons, there is no preferred
direction and we are free to put the fictitious and the outgoing particles on the z-axis to ease
calculations. We can also choose to use the projectors, we already have and we should see that
the result is the same (which is easily seen by putting x = 0 in the projectors). No matter
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which choice we make, the result is

= −2gV iIφV

3

(
αφV

1 Y γµ
11 + αφV

1

ωa√
2MV a

Y γµ
10 + α′φV

1 Y01 + α′φV
1

ωa√
2MV a

Y00

)

= gV iIφV

(
αφV

1 Lγµ
1 + Lγµ

2 x

(
− ωaωπρ

papπρs
αφV

1 + αφV
1

ωaMV aωπρ

papπρsMV a

+ α′φV
1

2Mρωa√
2papπρs

− α′φV
1

2MV aMρωa

papπρs
√

2MV a

)

+ Lγµ
3

(
αφV

1

ωπρ

p2
πρ

√
s
− α′φV

1

2Mρ√
2
√
sp2

πρ

)
+ Lγµ

4 αφV
1

(
ωa

p2
a

√
s
− 2ωa√

2MV a

MVa√
2
√
sp2

a

))

= gV iIφV (αφV
1 Lγµ

1 + αφV
3 Lγµ

3 )

with

αφV
3 = αφV

1

ωπρ

p2
πρ

√
s
− α′φV

1

√
2Mρ

p2
πρ

√
s
. (B.14)

As expected the result does not depend on the masses of the incoming channel.

Next we calculate the part in Eq.(B.12) proportional to (fV − 2gV )

(fV − 2gV )
∫

d4l

(2π)4
T γβ

φVG
φV
αβ (l)(l)(w · lgµα − lµwα)

= −2
3
(fV − 2gV )iIφV

(
ωφV

√
sM11Y

γµ
11 + ωφV

√
sM01Y

γµ
01

+
MV

√
s√

2
M10Y

γµ
11 +

MV
√
s√

2
M00Y

γµ
01 +

ωa√
2MV a

ωφV

√
sM11Y

γµ
10 +

ωa√
2MV a

ωφV

√
sM01Y

γµ
00

+
ωa√
2MV a

MV
√
s√

2
M10Y

γµ
10 +

ωa√
2MV a

MV
√
s√

2
M00Y

γµ
00

)

= −1
3
(fV − 2gV )iIφV

(
αφV

2 Y γµ
11 + αφV

2

ωa√
2MV a

Y γµ
10 + α′φV

2 Y01 + α′φV
2

ωa√
2MV a

Y00

)

=
1
2
(fV − 2gV )iIφV (αφV

2 Lγµ
1 + αφV

4 Lγµ
3 )

with

αφV
2 = 2ωφV

√
sM11 +

2MV
√
s√

2
M10 , α′φV

2 = 2ωφV

√
sM01 +

2MV
√
s√

2
M00 (B.15)

and

αφV
4 = αφV

2

ωπρ

p2
πρ

√
s
− α′φV

2

√
2Mρ

p2
πρ

√
s
. (B.16)

Altogether we have

W ′µ
φV =

cφV gVudgV

2
√

2F 3
0

IφV

(
gV (αφV

1 Lγµ
1 + αφV

3 Lγµ
3 )

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ

+
1
2
(fV − 2gV )(αφV

2 Lγµ
1 + αφV

4 Lγµ
3 )

m2
12

m2
12 −M2

ρ −Π
(q1 − q2)γ

)
+ (q1 ↔ q3) .

The expression is again rendered finite by substituting IφV → JφV (µ2).
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Appendix C.

Construction of the Higher Order Lagrangian

We want to construct all terms with two Goldstone boson momenta contributing to the
scattering of a Goldstone boson off a vector meson. Since the derivatives on the vector
mesons do not count as small, there could be an arbitrary number of them. But as one
can imagine, if there are too many derivatives on the vector mesons, they just contract with
themselves and lead to factors of M2

V by employing the equations of motion. In order to write
down this statement more rigorously, we first note that we can only have an even number of
derivatives, if we want to construct a Lorentz scalar and want to have only two derivatives on
the pseudoscalar mesons. In case the derivatives of the vector mesons have the same index
as one of the vector mesons, we can always partially integrate, to put that derivative on the
respective vector meson and use ∂µV

µ = 0, e.g.,

∂µV
ν∂αV

µuνu
α → −V ν∂α ∂µV

µ

︸ ︷︷ ︸
=0

uνu
α − V ν∂αV

µ ∂µ(uνu
α)︸ ︷︷ ︸

O(q3)

= O(q3) . (C.1)

Thus, we can contract the derivatives on the vector mesons only with themselves or with the
derivatives on the Goldstone bosons. When we contract the derivatives with themselves, we
can use the equations of motion to replace ∂2Vµ = M2

V Vµ, which leads to a term which has
the same structure as a term without the two additional derivatives. Altogether this means,
we can have at most two derivatives on the vector mesons, since there are only two derivatives
on the Goldstone bosons.
The building blocks of interest and the corresponding transformations under parity and charge
conjugation are given in Tab. C.1. We introduced two new quantities which are potentially
interesting for the Lagrangian we want to construct

uµν = iu†DµDνUu
† (C.2)

and
χ+ = u†χu† + uχ†u . (C.3)

P C

Vµ V µ −V T
µ

uµ −uµ uT
µ

uµν −uµν† uT
µν

χ+ χ+ χT
+

Table C.1.: Transformation properties of the building blocks.
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Appendix C. Construction of the Higher Order Lagrangian

The remaining expressions have been defined already in Chapter 2 and Chapter 3. (See also
[EGPdR89] for a detailed discussion.) Instead of uµν one could also use ∇µuν , which are
related by

∇µuν = uµν +
i

2
(uµuν + uνuµ) . (C.4)

First of all, we recognise that it is not possible to build a parity invariant term contributing
to our process by using ∇µuν or uµν with only two derivatives. Secondly, we omit terms
containing χ+, because the pion masses compared to the momenta are negligible from a
practical point of view and the strangeness terms do not play an important role at all. Thus,
we are left with finding all possibilities to build terms out of two uµ and either two vector
fields or two field strength tensors of the vector fields. There are two ways to contract two
vector fields with two uµ and the following possibilities to order them and to take the trace

1. VµV
µuνu

ν

• Tr[VµV
µuνu

ν ]
• Tr[VµuνV

µuν ]
• Tr[VµV

µ] Tr[uνu
ν ]

• Tr[Vµuν ] Tr[V µuν ]

2. VµVνu
µuν

• Tr[VµVνu
µuν ]

• Tr[VµVνu
νuµ]

• Tr[Vµu
µVνu

ν ]
• Tr[Vµu

νVνu
µ]

• Tr[VµVν ] Tr[uµuν ]
• Tr[Vµuν ] Tr[V νuµ]
• Tr[Vµu

µ] Tr[V νuν ] .

All terms are invariant under parity, but the following terms are not invariant under charge
conjugation

Tr[Vµu
µVνu

ν ] C−→ Tr[V T
µ u

µTV T
ν u

νT ] = Tr[uνVνu
µVµ] = Tr[Vµu

νVνu
µ] (C.5)

and
Tr[Vµu

νVνu
µ] C−→ Tr[V T

µ u
νTV T

ν u
µT ] = Tr[uµVνu

νVµ] = Tr[Vµu
µVνu

ν ] . (C.6)

Thus, we see that only the sum of both terms is invariant under charge conjugation, which
eliminates one independent structure. Using the trace relations Eq.(A.20) and Eq.(A.21), we
can eliminate two more terms. The terms containing the field strength tensors are treated
completely analogously, and we end up with the following Lagrangian

Lho = λ′1 Tr[VµV
µuνu

ν ] + λ′2 Tr[VµuνV
µuν ]

+ λ′3 Tr[VµVνu
µuν ] + λ′4 Tr[VµV

νuνu
µ] + λ′5 Tr[Vµu

µVνu
ν + Vµu

νVνu
µ]

+ λ′6 Tr[VµνV
ναuαu

µ] + λ′7 Tr[VµνV
ναuµuα] + λ′8 Tr[VµνuαV

ναuµ + Vµνu
µV ναuα]

+ λ′9 Tr[Vµu
ν ] Tr[V µuν ] + λ′10 Tr[Vµu

µ] Tr[Vνu
ν ] + λ′11 Tr[Vµuν ] Tr[V νuµ]

+ λ′12 Tr[Vµαu
µ] Tr[V α

ν u
ν ] + λ′13 Tr[Vµαuν ] Tr[V ναuµ] .

This Lagrangian might still be over complete, but at least no term is missing. (Concerning
completeness see also [EFS02] and [FMMS00].)
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Appendix D.

Vertices

Here, we gather all vertices, which have been used in the calculations, together with the
Feynman rules and the Lagrangian from which they result.

• τ− → ντW
−

LW = g√
2
(W+

µ νLγ
µτL) with g =

√
8M2

W GF√
2

pτ

pν

w

τ

ντ

W

= i

√
GF M2

W√
2

γµ(1− γ5)

• W− → π−π0π0

L = F 2
0
4 Tr[DµU(DµU)†]

w

q1

q2

q3

W

π
0

π
−

π
0

= gVud
3F0

(q1 + q3 − 2q2)µ

and the higher order contribution

L = − ifV gV
4 Tr[fµν

+ [uµ, uν ]] + g2
V
8 Tr[[uµ, uν ][uµ, uν ]]

w

q1

q2

q3

W

π
0

π
−

π
0

4
= −fV gV gVud

F 3
0

(qµ
2 (w · q1) + qµ

2 (w · q3)− (q1 + q3)µ(w · q2))
+2g2

V gVud

F 3
0

(2qµ
2 (q3 · q1)− qµ

1 (q2 · q3)− qµ
3 (q1 · q2))
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• π− → π−π0π0

L = F 2
0
4 Tr[DµU(DµU)†] + F 2

0
4 Tr[χU† + Uχ†]

w

q1

q2

q3

π
−

π
0

π
−

π
0

= i
6F 2

0
(4w(q1 + q3 − 2q2) + 2m2

π)

and the higher order contribution

L = ig2
V

8 Tr[[uµ, uν ][uµ, uν ]]

w

q1

q2

q3

π
−

π
0

π
−

π
0

4 = 4ig2
V

F 4
0

(2(w · q2)(q3 · q1)− (w · q1)(q2 · q3)− (w · q3)(q1 · q2))

• W−
µ → (V −ν φ0 − V 0

ν φ
−)

L = − fV

4 Tr[Vµνf
µν
+ ]− igV

4 Tr[V µν [uµ, uν ]]

w

p

q

W

V

φ

= gVudcφV

2
√

2F0
(fV (w · pgµν − pµwν)− gV (2q · pgµν − 2pµqν))

with cπρ =
√

2 and cKK∗ = −1

• W− → π−

L = F 2
0
4 Tr[DµU(DµU)†]

w w

W π = F0gVud
2 wµ

• ρ− → π−π0

L = − igV

4 Tr[V µν [uµ, uν ]]

p

q1

q2

ρ

π

π

= − igV

F 2
0
p2(q1 − q2)µ
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• π− → (V −ν φ0 − V 0
ν φ

−)

L = − igV

4 Tr[V µν [uµ, uν ]]

w

q

p

π

φ

V

= − i
√

2gV cφV

F 2
0

((q · p)wµ − (w · p)qµ)

with cπρ =
√

2 and cKK∗ = −1

• W− → a−1

L = − fA

4 Tr[Aµνf
µν
− ]

w w

W a1 = ifAgVud
2 w2

(
gµν − wµwν

w2

)

• a−1µ → (V −ν φ0 − V 0
ν φ

−)

L = ic1 Tr[Vµν [Aµ, uν ]] + ic2 Tr[Aµν [Vµ, uν ]]

w

q

p

a1

φ

V

= −2
√

2cφV

F0
c1(qνpµ − p · qgµν)− 2

√
2cφV

F0
c2(wνqµ − w · qgµν)

with cπρ =
√

2 and cKK∗ = −1

The corresponding vertex for the decay of a positively charged a1 one gets by multiplying the above
vertex with −1, i.e.

a+
1µ → (V +

ν φ0 − V 0
ν φ

+) : 2
√

2cφV

F0
c1(qνpµ − p · qgµν) + 2

√
2cφV

F0
c2(wνqµ − w · qgµν)

D.1. Weinberg-Tomozawa term

The general form of the amplitude for the scattering of a pion off a target with isospin has
been written down in [Wei66, Tom66] by just invoking chiral symmetry without applying
Lagrangian field theory. Thus, that term cannot be a relict of a certain representation and it
should be present in any field theoretical formulation.
In the vector field Lagrangian the Weinberg-Tomozawa term can be found in the kinetic term
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of the Lagrangian

−1
8
Tr[VµνV

µν ] = −1
8
Tr[(∇µVν −∇νVµ)(∇µV ν −∇νV µ)]

→ −1
4
Tr[∂µVν [Γµ, V ν ] + [Γµ, Vν ]∂µV ν − ∂µVν [Γν , V µ]− [Γµ, Vν ]∂νV µ]

= −1
2
Tr[[V ν , ∂µVν ]Γµ − [V µ, ∂µVν ]Γν ]] .

(D.1)

The second term is higher order because one can partially integrate the Lagrangian density,
which leads to a term containing ∂µV

µ = 0 and to a term with two derivatives on the pions,
which is higher order.
Keeping only the terms relevant in our case, Γν can be written as

Γµ → 1
2
(u†∂µu+ u∂µu

†) → 1
8F 2

0

[φ, ∂µφ] , (D.2)

and thus the Lagrangian for the scattering of a Goldstone boson off a vector meson to lowest
order is

LV φ→V φ = − 1
16F 2

0

Tr[[V ν , ∂µVν ][φ, ∂µφ]] , (D.3)

which is the Weinberg-Tomozawa term (WT term).

Isospin decomposition

In our calculation, we are interested in the IG = 1− channel, since these are the quantum
numbers of the a1 and in the following we will project Eq.(D.3) on that channel. φ and Vµ

can be written as [LK02]
φ = τ · π + α† ·K +K† · α+ ηλ8 (D.4)

Vµ = τ · ρµ + α† ·Kµ +K†
µ · α+ (

2
3

+
1√
3
λ8)wµ + (

√
2

3
−

√
2
3
λ8)φµ (D.5)

with τ = (λ1, λ2, λ3) and α† = 1√
2
(λ4 + iλ5, λ6 + iλ7), with the λi are the Gell-Mann matrices

given in Appendix A. Since ωµ, φµ and η do not contribute to the channel we consider in the
present work, we can immediately drop these terms.

We will need the following identities

α†iτj = 0 , τiα
†
j = (α† · σi)j =⇒ [τi, α

†
j ] = (α† · σi)j , (D.6)

τiαj = 0 , αiτj = (σj · α)i =⇒ [τi, αj ] = −(σiα)j , (D.7)

αiαj = 0 , α†iα
†
j = 0 , αiα

†
j =

(
2
3
1− 2√

3
λ8

)
δij , (D.8)

[αi, α
†
j ] = −(τ · σ −

√
3λ8I2)ij , τiτj =

(
2
3
1+

1√
3
λ8

)
δij + iεijkτk , (D.9)

and traces
Tr[αiα

†
j ] = 2δij , Tr[τiτj ] = 2δij , (D.10)

where (
2
3
1+

1√
3
λ8

)
=




1 0 0
0 1 0
0 0 0


 ,

(
2
3
1− 2√

3
λ8

)
=




0 0 0
0 0 0
0 0 2


 . (D.11)
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D.1. Weinberg-Tomozawa term

Keeping only the relevant terms, Eq.(D.3) becomes

Tr([V µ, ∂νVµ][φ, ∂νφ]) → Tr([τ · ρµ, τ · ∂νρµ][τ · π, τ · ∂νπ])

+ Tr([τ · ρµ, α†∂νKµ][τ · π, ∂νK
† · α]) + Tr([τ · ρµ, α†∂νKµ][K† · α, τ · ∂νπ])

+ Tr([τ · ρµ, ∂νK†
µ · α][τ · π, α† · ∂νK]) + Tr([τ · ρµ, ∂νK†

µ · α][α† ·K, τ · ∂νπ])

+ Tr([α†Kµ, τ · ∂νρµ][τ · π, ∂νK
† · α]) + Tr([α†Kµ, τ · ∂νρµ][K† · α, τ · ∂νπ])

+ Tr([α†Kµ, ∂νK†
µα][α†K, ∂νK

†α]) + Tr([α†Kµ, ∂νK†
µα][K†α, α†∂νK])

+ Tr([Kµ†α, τ · ∂νρµ][τ · π, α†∂νK]) + Tr([Kµ†α, τ · ∂νρµ][α†K, τ · ∂νπ])

+ Tr([Kµ†α, α†∂νKµ][α†K, ∂νK
†α]) + Tr([Kµ†α, α†∂νKµ][K†α, α†∂νK]) .

(D.12)

We recognise that there are only 3 different traces left, which we evaluate by using the prop-
erties Eq.(D.6-D.10)

Tr[[τi, τj ][τk, τl]] = −4εijsεkltTr[τsτt] = −8(δik, δjl − δil, δjk) , (D.13)

Tr[[τi, α
†
j ][τk, αl]] = Tr[(α†σi)j(−σkα)l] = −σi

sjσ
k
ltTr[α†sαt] = −2(σk · σi)lj , (D.14)

Tr[α†i , αj ][α
†
k, αl] = Tr[(τ · σ +

√
3λ8)ij(τ · σ +

√
3λ8)kl]

= σs
ijσ

t
klTr[τsτt] +

√
3σs

ijδklTr[τsλ8] +
√

3σs
klδijTr[λ8τs] + 3δijδklTr[λ2

8]

= 2σij · σkl + 6δijδkl .

(D.15)

We sort the remaining terms according to the three traces, we just evaluated. The terms,
which correspond to one trace, only differ in the exchange of the derivatives, and every such
exchange comes with a minus. That structure can already be seen in the WT term at the
very beginning.

LWT → − 1
16F 2

0

(−8ρµ
i ∂

νρµjπk∂νπl(δikδjl − δilδjk)

− 2(σk · σi)lj(ρ
µ
i ∂

νKµjπk∂νK
†
l − ρµ

i ∂
νKµjK

†
l ∂νπk − ∂νρµ

i Kµjπk∂νK
†
l

+ ∂νρµ
i Kµj∂νπkK

†
l + ρµ

k∂
νK†

µlπi∂νKj − ρµ
k∂

νK†
µlKj∂νπi − ∂νρµ

kK
†
µlπi∂νKj

+ ∂νρµ
kK

†
µl∂νπiKj)

+ (2σij · σkl + 6δijδkl)(∂νK†
µiK

µ
j Kl∂νK

†
k − ∂νK†

µiK
µ
j K

†
k∂νKl

+K†
µi∂

νKµ
j ∂νKlK

†
k −K†

µi∂
νKµ

j Kl∂νK
†
k) .

(D.16)

Using
σiσj = δij + iεijkσ

k ,

the interaction term turns into

LWT → − 1
16F 2

0

(
− 8(ρµ · π)(∂νρµ · ∂νπ) + 8(ρµ · ∂νπ)(∂νρµ · π)

− 2(π · ρµ)(∂νK†∂νKµ + ∂νK†
µ∂νK)± derivatives exchanged

− 2i(π × ρµ)(∂νK†σ∂νKµ − ∂νK†
µσ∂νK)± derivatives exchanged

+ 2∂νK†
µσK

µKσ∂νK
† + 6∂νK†

µK
µK∂νK

† ± derivatives exchanged
)
,

(D.17)

where we only wrote down one term explicitly and the others one can get by exchanging
derivatives, as mentioned above.
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Isospin projection for πρ channel

Eq.(D.17) still carries contributions from different isospin channels, which will be projected
out in the following. The projectors on the different isospins are given by

PI=0 =
1
3
((~tπ~tρ)2 − 1)

PI=1 =
1
2
(2− ~tπ~tρ − (~tπ~tρ)2)

PI=2 =
1
6
(2 + 3~tπ~tρ + (~tπ~tρ)2) ,

(D.18)

which can be verified by noting that

~tπ~tρ|πρ〉 =





−2|πρ〉 I = 0
−1|πρ〉 I = 1

1|πρ〉 I = 2

. (D.19)

The Lagrangian is written in cartesian coordinates. Therefore, we use the projectors in that
basis, which means that we use the representation Eq.(A.33). Applying the I = 1 projector
on the possible combinations of πi and ρj , we get

PI=1πiρi = 0 , (D.20)

PI=1πiρj =
1
2
(πiρj − πjρi) for i 6= j , (D.21)

where the first equation does not imply a summation over the index i. Applying to the first
term in Eq.(D.17), we get

PI=1(−ρµ
i πi∂

νρµj∂νπj + ρµ
i ∂νπi∂

νρµjπj)

= −1
2
(ρµ

i ∂νπj − ρµ
j ∂νπi)(πi∂

νρµj) + . . . (i 6= j)

= −1
2
εijk(ρ

µ
i ∂νπj)εlmk(πl∂

νρµm) + . . .

= −1
2
(ρµ × ∂νπ)(π × ∂νρµ) +

1
2
(ρµ × π)(∂νπ × ∂νρµ) .

(D.22)

The second line in Eq.(D.17) can easily be seen to be isospin zero and the third line is already
isospin 1.

Isospin projection for KK

For two isospin 1
2 particles it is much more obvious how to project on an isospin=1 channel and

we can read off the relevant terms directly. Explicitly evaluating the last term of Eq.(D.17)
and keeping only the relevant terms, we get

2(∂νK†
µσK

µ)(∂νK
†σK) + 6∂νK†

µK
µK∂νK

† → 4K+
µ ∂

νK
0
∂νK

µ−K0 + 4K0
µ∂

νK−∂νK
µ0
K+ .

(D.23)
Looking closely at that term and remembering that there are also the terms with the deriva-
tives exchanged, we arrive at

4K+
µ ∂

νK
0
∂νK

µ−K0 + 4K+∂νK
µ0
∂νK

−K0
µ ± derivatives exchanged

= 2(K+µ∂νK
0 −K

0µ
∂νK+)(∂νK

−
µ K

0 − ∂νK
0
µK

−)± derivatives exchanged

+ 2(K+µ∂νK
0 +K

0µ
∂νK+)(∂νK

−
µ K

0 + ∂νK
0
µK

−)± derivatives exchanged ,

(D.24)

128



D.1. Weinberg-Tomozawa term

The second term has positive G-parity, and therefore we drop it.

Physical states

The IG = 1+ Lagrangian is

L1− → − 1
16F 2

0

(4(∂νπ × ρµ)(π × ∂νρµ)− 4(∂νπ × ∂νρ
µ)(π × ρµ)

+ 2i(π × ∂νρµ)(∂νK
†σKµ −K†

µσ∂νK)± derivatives exchanged

+ 2(K+
µ ∂K

0 −K
0µ
∂K+)(∂K−

µ K
0 − ∂K0µK−)± derivatives exchanged) .

(D.25)

In order to be able to read off the physical states, we rewrite the states in the charge basis

ρµ × ∂νπ =




1√
2i

((ρ−µ ∂νπ
0 − ∂νπ

−ρ0
µ)− (ρ+

µ ∂νπ
0 − ρ0

µ∂νπ
+))

1√
2
(−(ρ−µ ∂νπ

0 − ∂νπ
−ρ0

µ)− (ρ+
µ ∂νπ

0 − ρ0
µ∂νπ

+))
i(ρ−µ ∂νπ

+ − ρ+
µ ∂νπ

−)


 , (D.26)

where we used
π1 =

1√
2
(π− + π+) , π2 =

1√
2i

(π− − π+) . (D.27)

This relation follows from the parametrisation we chose in Eq.(2.26) (see also [Sch03]). The
kaon term can be written as

K†
µσ∂νK − ∂νK

†σKµ =




(K−
µ ∂νK

0 −K0
µ∂νK

−)− (K+
µ ∂νK

0 −K
0
µ∂

+
ν )

−i(K−
µ ∂νK

0 −K0
µ∂νK

−)− i(K+
µ ∂νK

0 −K
0
µ∂

+
ν )

(K−
µ ∂νK

+ −K+
µ ∂νK

−) + (K0
µ∂νK

0 −K
0
µ∂

0
ν) .


 (D.28)

Using these expression, we can read off the Feynman rules for the different transitions

(π0ρ−µ − π−ρ0
µ) → (π0ρ−ν − π−ρ0

ν) : − 2
8F 2

0

(pq + pq + pq + pq)gµν

(π0ρ−µ − π−ρ0
µ) ↔ (K−

ν K
0 −K0

νK
−) :

√
2

8F 2
0

(pq + pq + pq + pq)gµν

(K−
µ K

0 −K0
µK

−) ↔ (K−
ν K

0 −K0
νK

−) : − 1
8F 2

0

(pq + pq + pq + pq)gµν .

(D.29)

Using (ρ−π0 − ρ0π+) as channel 1 and (K−
µ K

0 − K0
µK

−) as channel 2, the kernel for the
process a→ b can be written as

Kµν
ab = − 1

8F 2
0

(pq + pq + pq + pq)gµνCWT
ab , (D.30)

with

CWT =
(

2 −√2
−√2 1

)
(D.31)

Normalisation of the states

First we note that the sign in the upper right corner of the WT-matrix depends on the
definition of states. Secondly, we comment on the normalisation of the states, which means
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we explain, why we have to put the factor of 1/
√

2 in front of the states. Of course the result
will not depend on it, but only if one puts the right factors of

√
2 everywhere.

One way to look at the situation is to regard the final state as a superposition of the two
differently charged states. These states should be normalised, and therefore, we have to put
a factor of

√
2 in front of the states. This means, we would also catch a factor of

√
2 in the

W decay vertex. The final state dissolves the superposition and the remaining factor of
√

2
cancels the one at the W decay vertex. Thus, the states we use are

1√
2
(ρ−π0 − ρ0π+) , (D.32)

1√
2
(K−

µ K
0 −K0

µK
−) . (D.33)

Another illuminating way to see the right position for the factors is to look at the reaction
without superimposing the states. Then we would not have two channels, but four channels
with a coupled channel matrix with the following schematic structure




a −a b −b
−a a −b b
b −b c −c
−b b −c c


 , (D.34)

where the four rows and columns correspond to π0ρ+, π+ρ0,K+
µ K

0
,K

0
µK

+. For simplicity we
leave out the helicity structure for the moment, which does not affect the following arguments.
From Eq.(4.74), we can see that the Bethe-Salpeter equation in that case leads to the following
formula

Mij = Vij +
4∑

c=1

VicMcj(−Ic) .

We notice that

V1j = −V2j , V3j = −V4j , Vi1 = −Vi2 , Vi3 = −Vi4 , (D.35)

and therefore

Mi1 = −Mi2 , Mi3 = −Mi4 , M1j = −M2j , M3j = −M4j . (D.36)

Thus, two channels are redundant, and we can more efficiently sum over only two channels,
but catching a factor of 2

Mij = Vij + 2
2∑

c=1

VicMcj(−Ic) .

We also have to consider what consequences we get at the other vertices. First there is the
W decay vertex, where we have to sum over two more channels, which are the same as the
other two channels except that we catch a minus sign. That minus sign is compensated by the
respective minus sign from the solution of the Bethe-Salpeter equation. Thus we get a factor
of 2, which we can hide in the Bethe-Salpeter equation. From here on the final state tells
us, which state we use further. We only have to remember that the Bethe-Salpeter equation
gives us an additional minus sign, when we choose the other charge state. Everything else is
compensated by multiplying the kernel by 2.
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D.2. Higher order terms

We want to evaluate the contribution to the kernel from the Lagrangian in Eq.(6.94). We see
that the terms have common structures and that we only have to evaluate

Tr[V µV νuαuβ] → 1
F 2

0

Tr[V µV ν∂αφ∂βφ] , (D.37)

Tr[V µuνV αuβ] → 1
F 2

0

Tr[V µ∂νφV α∂βφ] , (D.38)

Tr[V µuν ] Tr[V αuβ] → 1
F 2

0

Tr[V µ∂νφ] Tr[V α∂βφ] , (D.39)

from which we can deduce the result for all terms by contracting with the corresponding
metric tensors.
We start with the first term and use again the isospin decomposition in Eq.(D.4) and Eq.(D.5).
Keeping only terms, which contribute to the channel we are investigating, we get

Tr[V µV ν∂αφ∂βφ] → ρµ
i ρ

ν
j ∂

απk∂
βπl Tr[τiτjτkτl] + ρµ

i K
ν
j ∂

αK†
k∂

βπl Tr[τiα
†
jαkτl]

+Kµ
i K

†ν
j ∂αKk∂

βK†
l Tr[α†iαjα

†
kαl] +K†µ

i ρν
j ∂

απk∂
βKl Tr[αiτjτkα

†
l ]

+K†µ
i Kν

j ∂
αK†

k∂
βKl Tr[αiα

†
jαkα

†
l ] .

(D.40)

The three different traces which appear are given by

Tr[τiτjτkτl] = Tr[((2/31+ λ8/
√

3)δij + iεijmτm)((2/31+ λ8/
√

3)δkl + iεklmτm)]
= 2δijδkl − 2εijmεklm = 2(δijδkl − δikδjl + δilδjk) ,

(D.41)

Tr[τiα
†
jαkτl] = σi

njσ
l
km Tr[α†nαm] = 2(σl · σi)kj , (D.42)

Tr[α†iαjα
†
kαl] = 4δilδjk . (D.43)

Thus, we get

Tr[V µV ν∂αφ∂βφ] → 2((ρµ · ρν)(∂απ · ∂βπ)− (ρµ · ∂απ)(ρν · ∂βπ) + (ρµ · ∂βπ)(ρν · ∂απ))

+ 2i(∂βπ × ρµ)(∂αK†σKν) + 2i(ρν × ∂απ)(K†µσ∂βK)

+ 4(∂βK†Kµ)(K†ν∂αK) + 4(K†µKν)(∂αK†∂βK) .
(D.44)

Projecting the first line on isospin 1 and keeping only the relevant terms in the last line yields

Tr[V µV ν∂αφ∂βφ] → 2(ρµ × ∂βπ)(ρν × ∂απ)

+ 2i(∂βπ × ρµ)(∂αK†σKν) + 2i(ρν × ∂απ)(K†µσ∂βK)

+ 4(Kν+∂αK
0
K−µ∂βK0 + ∂βK+K

0µ
∂αK−K0ν) .

(D.45)

Contracting with the respective metric tensors, we get

λ′1 Tr[VµV
µuνu

ν ] → λ′1
F 2

0

[2(ρµ × ∂νπ)(ρµ × ∂νπ)

+ 2i(∂νπ × ρµ)(∂νK
†σKµ −K†

µσ∂νK)

+ 4(K+µ∂νK
0
K−

µ ∂νK
0 + ∂νK+K

0µ
∂νK

−K0
µ)] ,

(D.46)
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λ′3 Tr[V µV νuµuν ] → λ′3
F 2

0

[2(ρµ × ∂νπ)(ρν × ∂µπ)

+ 2i(∂νπ × ρµ)(∂µK
†σKν −K†

νσ∂µK)

+ 4(K+ν∂µK
0
K−

µ ∂νK
0 + ∂νK+K

0µ
∂µK

−K0
ν )] .

(D.47)

The expression for λ′4 Tr[VµV
νuνu

µ] one gets by simply exchanging ∂µ ↔ ∂ν and of course
λ′3 ↔ λ′4 in the above equation. We simplify the terms including the field strength of the
vector mesons by using ∂µV

µ = 0 and dropping higher orders

λ′6 Tr[VµνV
ναuµuα] → λ′6 Tr[−∂µVν∂

αV νuµuα − ∂νVµ∂
νV αuµuα] . (D.48)

Since ∂2Vµ = M2
V Vµ, the second term has the same structure as the λ′2 term, and therefore

we drop it, because we can effectively include it in λ′3. Thus, we end up with

−λ′6 Tr[∂µVν∂
αV νuµuα] → − λ

′
6

F 2
0

[2(∂µρν × ∂απ)(∂αρν × ∂µπ)

+ 2i(∂απ × ∂µρν)(∂µK
†σ∂αKν − ∂µK

†
νσ∂αK)

+ 4(∂αK+ν∂µK
0
∂µK

−
ν ∂αK

0 + ∂αK+∂µK
0ν
∂µK

−∂αK
0
ν )] .

(D.49)

The expression for the λ′7 term one gets again by exchanging the derivatives on the mesons.
The last line still contains a contribution with positive G-parity, which we can be seen by
looking at Eq.(D.24). Using Eq.(D.26), Eq.(D.28) and the definition of the states in Eq.(D.32)
and Eq.(D.33), we can read off the contribution to the kernel from the above expressions, which
yields

Kµν
1 =

4CWT

F 2
0

((q · q)gµνλ′1 + qνqµλ′3 + qµqνλ′4 − (w · q)(w · q)gµν(λ′6 + λ′7)) . (D.50)

Next we evaluate the second term. We start again by evaluating the trace for arbitrary indices
and afterwards contract with the respective metric tensors to get the results, we are interested
in:

Tr[V µ∂νφV α∂βφ] → ρµ
i ∂

νπjρ
α
k∂

βπl Tr[τiτjτkτl]

+ ρµ
i ∂

νKjK
†α
k ∂βπl Tr[τiα

†
jαkτl] + ρµ

i ∂
νπjK

α
k ∂

βK†
l Tr[τiτjα

†
kαl]

+Kµ
i ∂

νK†
jρ

α
k∂

βπl Tr[α†iαjτkτl] +K†µ
i ∂νπjρ

α
k∂

βKl Tr[αiτjτkα
†
l ]

+Kµ
i ∂

νK†
jK

α
k ∂

βK†
l Tr[α†iαjα

†
kαl] +K†µ

i ∂νKjK
†α
k ∂βKl Tr[αiα

†
jαkα

†
l ] .

(D.51)

Using the relations Eq.(D.41-D.43) for the traces, we get

Tr[V µ∂νφV α∂βφ] → 2((ρµ · ∂νπ)(ρα · ∂βπ)− (ρµ · ρα)(∂νπ · ∂βπ) + (ρµ · ∂βπ)(∂νπ · ρα))

+ 2i(∂βπ × ρµ)K†ασ∂νK + 2(ρµ × ∂νπ)∂βK†σKα
k

+ 2i(ρα × ∂βπ)∂νK†σKµ + 2(∂νπ × ρα)K†µσ∂βK

+ 4(∂βK†Kµ)(∂νK†Kα) + 4(K†µ∂νK)(K†α∂βK) .
(D.52)

Projecting the first line on isospin 1 and keeping only the relevant terms in the last line, we
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end up with

Tr[V µ∂νφV α∂βφ] → −2(ρµ × ∂βπ)(ρα × ∂νπ)− 2(ρµ × ∂νπ)(ρα × ∂βπ)

+ 2i(∂βπ × ρµ)K†ασ∂νK + 2(ρµ × ∂νπ)∂βK†σKα
k

+ 2i(ρα × ∂βπ)∂νK†σKµ + 2(∂νπ × ρα)K†µσ∂βK

+ 4(∂βK−K0αK+µ∂νK
0 + ∂νK−K0µK+α∂βK

0

+K−µ∂βK0∂νK+K
0α +K−α∂νK0∂βK+K

0µ) .

(D.53)

Thus, we get the following expressions

λ′2 Tr[V µuνVµuν ] → λ′2
F 2

0

[−4(ρµ × ∂νπ)(ρµ × ∂νπ)

+ 4i(ρµ × ∂νπ)(∂νK
†σKµ −K†

µσ∂νK)

+ 8(∂νK−K0µK+
µ ∂νK

0 +K−µ∂νK0∂νK
+K

0
µ)] ,

(D.54)

λ′5 Tr[Vµu
µVνu

ν + Vµu
νVνu

µ] → λ′5
F 2

0

[−4(ρµ × ∂νπ)(ρν × ∂µπ)− 4(ρµ × ∂µπ)(ρν × ∂νπ)

+ 4i(ρµ × ∂νπ)(∂µK
†σKν −K†

νσ∂µK) + 4i(ρµ × ∂µπ)(∂νK†σKν −K†νσ∂νK)

+ 8(∂νK−K0
νK

+µ∂µK
0 +K−µ∂νK0∂µK

+K
0
ν)

+ ∂µK−K0νK+
µ ∂νK

0 +K−µ∂µK
0∂νK+K

0
ν)] .

(D.55)

The expression containing the field strength will again be simplified first

λ′8 Tr[VµνuαV
ναuµ + Vµνu

µV ναuα] → −Tr[∂µVνuα∂
αV νuµ + ∂µVνu

µ∂αV νuα]
→ −2Tr[∂µVνuα∂

αV νuµ] ,
(D.56)

where we omitted terms with the same structure as the term with λ′5 and terms of order
O(q3). Thus, we get

λ′8 Tr[VµνuαV
ναuµ + Vµνu

µV ναuα]

→ −2λ′8
F 2

0

[−2(∂µρν × ∂απ)(∂αρν × ∂µπ)− 2(∂µρν × ∂µπ)(∂αρν × ∂απ)

+ 4i(∂µρν × ∂απ)(∂µK
†σ∂αKν − ∂αK

†
νσ∂µK)

+ 8(∂αK−∂αK
0
ν∂

µK+ν∂µK
0 + ∂µK−ν∂αK

0∂µK
+∂αK

0
ν)] .

(D.57)

Similar to before, we read off the contribution to the kernel from these expressions, which
yields

Kµν
2 =

−8CWT

F 2
0

((q · q)gµνλ′2 + (qνqµ + qµqν)λ′5 − 2(w · q)(w · q)gµνλ′8) . (D.58)

Next we evaluate the terms with two traces

Tr[V µ∂νφ] Tr[V α∂βφ] → 4(ρµ · ∂νπ)(ρα · ∂βπ)

+ 4(Kµ† · ∂νK + ∂νK† ·Kµ)(Kα† · ∂βK + ∂βK† ·Kα) ,
(D.59)
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where we only kept terms relevant for the channel we are interested in. Thus, we get

λ′9 Tr[Vµu
ν ] Tr[V µuν ] → λ′9

F 2
0

(2(ρµ × ∂νπ)(∂νπ × ρµ)

+ 4(Kµ† · ∂νK + ∂νK† ·Kµ)(K†
µ · ∂νK + ∂νK

† ·Kµ)) ,
(D.60)

λ′10 Tr[Vµu
µ] Tr[Vνu

ν ] → λ′10

F 2
0

(2(ρµ × ∂νπ)(∂µπ × ρν) + 4(Kµ† · ∂µK + ∂µK† ·Kµ)2 , (D.61)

λ′11 Tr[Vµuν ] Tr[V νuµ] → λ′11

F 2
0

(2(ρµ × ∂µπ)(∂νπ × ρν)

+ 4(Kµ† · ∂νK + ∂νK† ·Kµ)(K†
ν · ∂µK + ∂µK

† ·Kν) .
(D.62)

The terms containing the field strength are again simplified by using the equations of motion
and dropping structures we already have, which yields

λ′12 Tr[Vµαu
µ] Tr[V α

ν u
ν ] → λ′12

F 2
0

Tr[∂µVαu
µ] Tr[∂νV

αuν ] , (D.63)

λ′13 Tr[Vµαuν ] Tr[V ναuµ] → λ′13

F 2
0

Tr[∂µVαuν ] Tr[∂νV αuµ] . (D.64)

Apart from higher orders, the second term is the same as the first one.
One can read off the contribution to the kernel from the above terms to be

Kµν
3 = −812

F 2
0

((λ′9(q · q) + (λ′12 + λ′13)(w · q)(w · q))gµν + λ′10q
µqν + λ′11q

µqν) . (D.65)

Therefore, altogether we get

Kµν
ho = Kµν

1 +Kµν
2 +Kµν

3 =
4CWT

F 2
0

(
(q · q)gµν(λ′1 − 2λ′2) + qνqµ(λ′3 − 2λ′5)

+ qµqν(λ′4 − 2λ′5)− (w · q)(w · q)gµν(λ′6 + λ′7 − 2λ′8)
)

− 812

F 2
0

(
(λ′9(q · q) + (λ′12 + λ′13)(w · q)(w · q))gµν + λ′10q

µqν + λ′11q
µqν

)
.

(D.66)
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E.1. Parameters

F0 0.09GeV

mπ 0.137GeV

Mρ 0.77GeV

mK 0.496GeV

MK∗ 0.894GeV

Mτ 1.777GeV

Γτ 2.3 · 10−12 GeV

MW 80.2GeV

GF 1.166 · 10−5 GeV−2

Vud 0.9735

fV
0.154GeV

Mρ

gV
0.069GeV

Mρ

Table E.1.: Parameters, which are used in the calculation.

E.2. Regularisation

The divergent loop integral we encounter in our calculation is

IφV = i

∫
d4l

(2π)4
1

(w − l)2 −M2
φ + iε

1
l2 −M2

V + iε
. (E.1)

There are different ways to regularise the integral, and we want to give the formulas for the
most prominent ways.
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Dimensional regularisation

Using Feynman parameters [PS95]

1
AB

=
∫ 1

0
dx

1
(xA+ (1− x)B)2

, (E.2)

we get

IφV =
i

(2π)4

∫
dx

∫
d4l

1
(l2 −∆)2

(E.3)

with ∆ = (x2−x)w2 +xM2
φ +(1−x)M2

V . Using dimensional regularisation (see e.g. [PS95]),
this becomes

IφV = −
∫
dx

1
4πd/2

Γ(2− d/2)
Γ(2)

∆d/2−2 . (E.4)

We rewrite the expression using the notation from [BL99]

α =
Mφ

MV
, Ω =

w2 −M2
φ −M2

V

2MφMV
, (E.5)

∆d/2−2 = Md−4
V

(
(x2 − x)

w2

M2
V

+ xα2 + (1− x)
)d/2−2

= Md−4
V

(
(x2 − x)(1 + 2αΩ + α2) + (1− x)α2 + x

)d/2−2 ≡Md−4
V Cd/2−2 .

(E.6)

Introducing ε = 2− d/2 and applying the limit d→ 4 or ε→ 0 we get

IφV = − 1
(4π)2

(
1
ε
− 2 ln(MV )− γ + ln(4π)−

∫ 1

0
dx lnC

)
. (E.7)

The integral on the right hand side is
∫ 1

0
lnCdz = −2 +

M2
φ −MV + w2

2w2
ln

(
M2

φ

M2
V

)
+

2MφMV

w2
F (Ω) (E.8)

with

F (Ω) =





√
Ω2 − 1 ln

(
−Ω−√Ω2 − 1

)
, Ω < −1

√
1− Ω2 arccos(−Ω) , −1 < Ω < 1√
Ω2 − 1 ln

(
Ω +

√
Ω2 − 1

)
− iπ

√
Ω2 − 1 , Ω > 1

. (E.9)

Thus, the loop integral is

IφV = − 1
(4π)2

(
1
ε
− 2 ln(MV )− γ + ln(4π) + 2

− M2
φ −M2

V + w2

2w2
ln
M2

φ

M2
V

− 2MφMV

w2
F (Ω)

)
,

(E.10)

which is the same result as in [FGJS03], besides an arbitrary subtraction.

Dispersive evaluation

The integral can also be evaluated with a dispersion relation, because the imaginary part is
well known to be

=IφV = − pcm

8π
√
s
. (E.11)
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Thus, we have (see [BD67] for a discussion of dispersion relations.)

IφV =
n−1∑

k=0

sk ak

k!
+
sn

π

∫ ∞

s0

=(IφV (ζ))
ζn(ζ − s− iε)

dζ , (E.12)

with s0 = (MV +Mφ)2. In principle n is the number such that
∣∣∣∣
IφV (z)
zn

∣∣∣∣
|z|→∞−→ ∞ . (E.13)

Since we do not know the right n from first principles, we choose the easiest one, namely
n = 1. This way we get the same number of unknown parameters (one subtraction constant
a0) as in the previous scheme. We expect n = 1 to be a good choice since the real part of the
loop integral should not be proportional to arbitrarily high powers of s.

Euclidian Cutoff

We transform (Wick-rotate) the integral into euclidian coordinates and afterwards use a cutoff
in four dimensions. The integral in euclidian coordinates is given by

IφV =
i

(2π)4

∫
dx

∫
d4l

1
(l2 −∆)2

=
−1

(2π)4

∫
dx

∫
d4lE

1
(l2E + ∆)2

= − 1
16π2

∫
dx

(
∆

(∆ + Λ2)
− 1 + ln(∆ + Λ2)− ln ∆

)
.

(E.14)

with ∆ defined above and Λ being the cutoff.

Three-momentum cutoff

Here we will first perform the integral over the time component and then cut off the three-
momentum (which breaks Lorentz invariance). The integral over the first pole is given by

IφV =
1

2π2

(∫
l2

1
2ElV

1
(ElV +

√
s)2 − E2

lπ

dl +
∫

1
2Elπ

1
(
√
s−Elπ)2 −E2

lV + iε
l2dl

)

=
1

4π2

(∫ √
M2

V +p2
max

MV

√
E2

lV −M2
V

s+ 2
√
sElV +M2

V −M2
φ

dElV

+
∫ q

M2
φ+p2

max

Mφ

√
E2

lφ −M2
φ

s− 2
√
sElφ +M2

φ −M2
V

dElφ

)
,

(E.15)

where pmax denotes the cutoff in the three-momentum.

Comparison

In Fig. E.1, we see the real part of the loop function Iπρ calculated with the different schemes
which we just discussed. In order to better distuingish the curves and not to overload the
figures, we show two plots. In the left plot of Fig. E.1 we used dimensional regularisation
with two different subtraction points (µ1 = M2

ρ and µ1 = 9M2
ρ ), which of course just results

in a shift of the curve. For the curve labelled ’w. spec.fun’ we use in addition a spectral
distribution for the ρ (cf. Eq.(6.39)), which basically smoothes the kink. The right plot of
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Figure E.1.: Real part of the loop function Iπρ for different renormalisation prescriptions.
The curves labelled ’µ1 = M2

ρ ’ and µ1 = 9M2
ρ in the left plot are calculated with dimen-

sional regularisation with the subtraction point at µ1. ’w.spec.fun.’ is also calculated using
dimensional regularisation and µ1 = M2

ρ , but in addition a spectral distribution for the vector
mesons in the loop is used (cf. Eq.(6.39)). The curve label ’disp. : a0 = -0.001’ in the right
plot is calculated with a dispersion relation with the subtraction constant a0 = −0.001. The
curves labelled ’three-mom cutoff : 1 GeV’ and ’euc. cutoff : 1 GeV’ are calculated with a
cutoff at 1 GeV in three-momentuma and in euclidian space, respectively.

Fig. E.1 shows the real part calculated with a dispersion relation and a subtraction constant
a0 = −0.001, with a three-momentum cutoff at 1 GeV and with a euclidian cutoff at 1GeV.
All curves essentially have the same structure, and we see that a subtraction point of about
9M2

ρ gives approximately the same real part as the cutoff schemes with a cutoff at 1GeV.
In Fig. E.2 we see the imaginary part of the loop function Iπρ. The imaginary part is of
course the same for all prescriptions, except when we include the spectral distribution for the
ρ. In that case the threshold smears out a little.
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Figure E.2.: Imaginary part of the loop function Iπρ with (’w. spec.fun’) and without (’w/o
spec.fun.’) using a spectral distribution for the ρ (cf. Eq.(6.39)).
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E.3. Adding the singular diagrams

We want to add the two singular diagrams, which we encountered in Chapter 6. We recall that
these diagrams were singular at s = M2

a due the bare propagator. Adding the two diagrams,
we properly create the width of the a1, which takes care of the singularity. The two diagrams
are given by

Wµ
a1φV =

cφV fAgVudgV√
2F 3

0

s

s−M2
a

JφV (µ1)
(
gµ
α −

wµwα

w2

)

(
(c1β

φV
1 + c2β

V φ
2 )Lδα

1 + (c1β
V φ
3 + c2β

V φ
4 )Lδα

3

) m2
12

m2
12 −M2

ρ −Π
(q1 − q2)δ

+ (q1 ↔ q3) .

(E.16)

and

Wµ
tree =

2fAgVudgV

F 3
0

s

s−M2
a

(
gµα − wµwα

w2

)
m2

12

m2
12 −M2

ρ −Π
(q1 − q2)β

(
c1(q3βm12α − q3m12gαβ) + c2(wβq3α − wq3gαβ)

)
+ (q1 ↔ q3) .

Adding the diagrams, we get

Wµ
a1πρ +Wµ

a1KK∗ +Wµ
tree

=
fAgVudgV√

2F 3
0

s

s−M2
a

(
gµα − wµwα

w2

)
m2

12

m2
12 −M2

ρ −Π
(q1 − q2)βAαβ + (q1 ↔ q3) .

(E.17)

We see that they have most factors in common and we only have to focus on Aαβ, which is
given by

Aαβ =
√

22
(
c1(q

β
3m

α
12 − q3m12g

αβ) + c2(wβqα
3 − wq3g

αβ)
)

+
∑

φV

cφV JφV (µ1)
(
c1(β1L

βα
1 + c1β3L

βα
3 ) + c2(β2L

βα
1 + β4L

βα
3 )

)

→
√

22
(
c1(−Lβα

3 − 1
2
(s−m2

π −M2
ρ )Lβα

1 ) + c2(L
βα
3 − 1

2
(s+m2

π −M2
ρ )Lβα

1 )
)

+
∑

φV

cφV JφV (µ1)
(
c1(β1L

βα
1 + c1β3L

βα
3 ) + c2(β2L

βα
1 + β4L

βα
3 )

)

≡ a11c1L
αβ
1 + a13c1L

αβ
3 + a21c2L

αβ
1 + a23c2L

αβ
3 .

(E.18)

We used the fact that terms proportional to wα or mβ
12 in Aαβ are irrelevant, since they vanish

in Wµ
a1. In addition, we substituted

q3 ·m12 → 1
2
(s−m2

π −M2
ρ ) , (E.19)

which is only true onshell. However, we will need this substitution in order to arrive at the
desired result, and we expect that this difference does not effect the result seriously. The first
term we look at is a11

a11 = −
√

2(s−m2
π−M2

ρ )+
∑

cφV JφV (µ1)
(
(s−M2

φ−M2
V )MV φ

11 +
MV√
2
√
s
(s+M2

φ−M2
V )MV φ

10

)
.

(E.20)
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We notice that

−
√

2(s−m2
π −M2

ρ ) = −


(1− V J)−1(1− V J)




√
2(s−m2

π −M2
ρ )

−(s−M2
K −M2

K∗)
Mρ√

s
(s+m2

π −M2
ρ )

− MK∗√
2
√

s
(s+M2

K −M2
K∗)







1

(E.21)

with V J defined in Eq.(5.47), and

M1b1j =


(1− V J)−1




V1b1j

V2b1j

V1b0j

V2b0j







1

. (E.22)

Thus, we can write

∑
cV φJφV (µ1)

(
(s−M2

φ −M2
V )MV φ

11 +
MV√
2
√
s
(s+M2

φ −M2
V )MV φ

10

)

= −


(1− V J)−1V J




√
2(s−m2

π −M2
ρ )

−(s−M2
K −M2

K∗)
Mρ√

s
(s+m2

π −M2
ρ )

− MK∗√
2
√

s
(s+M2

K −M2
K∗)







1

,

(E.23)

from which we see that a11 is given by

a11 = −


(1− V J)−1




√
2(s−m2

π −M2
ρ )

−(s−M2
K −M2

K∗)
Mρ√

s
(s+m2

π −M2
ρ )

− MK∗√
2
√

s
(s+M2

K −M2
K∗)







1

. (E.24)

In the above simplifications, we used that the subtraction point of the entry loop and the
one in the scattering amplitude are the same. Otherwise a11 would be modified by a factor
(1 − V J(µ1) + V J(µ3)). This seems to be similar to the relation between µ1 and µ2, but
differs in the fact that the entry vertex, which gets modified is the same as the one appearing
in the loop. Neglecting the WT term, it would be clear that both subtraction points are the
same, since the first loop diagram would be the same as all others. With this in mind it is
obviously the best solution to choose both subtraction points the same.

a21 can be calculated similar and one gets

a21 = −




(1− V J)−1




√
2(s+m2

π −M2
ρ )

−(s+M2
K −M2

K∗)√
s

Mρ
(s−m2

π −M2
ρ )

−
√

s√
2MK∗

(s−M2
K −M2

K∗)







1

. (E.25)
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Now we do the same for the prefactors in front of L3. We start with

a13 = −2
√

2 +
∑

cV φJφV (µ1)g1 = −2
√

2 +
∑

cV φJφV (µ1)
1

p2
cmπρ

√
s
(ωρπf1 −

√
2Mρf2)

= −2
√

2 +
∑

cV φJφV (µ1)
1

p2
cmπρ

√
s

(
ωρπ((s−m2

φ −M2
V )M11 +

MV√
2
√
s
(s+m2

φ −M2
V )M10)

−
√

2Mρ((s−m2
φ −M2

V )M01 +
MV√
2
√
s
(s+m2

φ −M2
V )M00)

)

(E.26)

and notice that

M1b2j =


(1− V J)−1




V1b1j

V2b1j

V1b0j

V2b0j







3

. (E.27)

Therefore, we can write

∑
cV φJφV (µ1)

1
p2

cmπρ

√
s

(
ωρπ

(
(s−m2

φ −M2
V )MφV

11 +
MV√
2
√
s
(s+m2

φ −M2
V )MφV

10

)

−
√

2Mρ

(
(s−m2

φ −M2
V )MφV

01 +
MV√
2
√
s
(s+m2

φ −M2
V )MφV

00

))

= − ωπρ√
sp2

cmπρ


(1− V J)−1V J




√
2(s−m2

π −M2
ρ )

−(s−M2
K −M2

K∗)
Mρ√

s
(s+m2

π −M2
ρ )

− MK∗√
2
√

s
(s+M2

K −M2
K∗)







1

+
√

2Mρ√
sp2

cmπρ


(1− V J)−1V J




√
2(s−m2

π −M2
ρ )

−(s−M2
K −M2

K∗)
Mρ√

s
(s+m2

π −M2
ρ )

− MK∗√
2
√

s
(s+M2

K −M2
K∗)







3

.

Next we artificially rewrite the simple factor −2
√

2 in a more complicated way in order to be
able to add it easily to the term above

−2
√

2 = − ωπρ√
sp2

cmπρ

√
2(s−m2

π −M2
ρ ) +

√
2

M2
ρ

sp2
cmπρ

(s+m2
π −M2

ρ )

= − ωπρ√
sp2

cmπρ


(1− V J)−1(1− V J)




√
2(s−m2

π −M2
ρ )

−(s−M2
K −M2
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Mρ√

s
(s+m2

π −M2
ρ )

− MK∗√
2
√

s
(s+M2

K −M2
K∗)





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1

+
√

2Mρ√
sp2

cmπρ


(1− V J)−1(1− V J)


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√
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π −M2
ρ )

−(s−M2
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.
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Thus, we get

a13 = − ωπρ√
sp2

cmπρ


(1− V J)−1


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√
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cmπρ
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√
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(E.28)

a23 can be calculated in a similar way and one ends up with

a23 = − ωπρ√
sp2

cmπρ




(1− V J)−1
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
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E.3. Adding the singular diagrams

we can write the result in a more compact way as
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(E.33)

This expression has no singularity at s = M2
a anymore, which, however, is not so easy to see

directly from the above formula.
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Deutsche Zusammenfassung

Eines der Ziele der Hadronenphysik ist die Beantwortung der Frage nach der Natur hadro-
nischer Resonanzen. Das Quark Modell ist sehr erfolgreich in der Beschreibung von Teilen
des beobachteten Spektrums. Insbesondere für Systeme, die aus schweren Quarks bestehen,
liefert das Quark Modell verlässliche Ergebnisse. Andererseits existieren noch eine Reihe
ungeklärter Fragen bezüglich des Spektrums der Hadronen, die aus leichten Quarks aufge-
baut sein könnten. Ein Beispiel hierfür, das schon lange diskutiert wurde und auch immer
noch aktuell diskutiert wird, ist der Bereich der leichten skalaren Mesonen. Diese Zustände
können nicht mit dem naiven Quark Modell erklärt werden. Es existieren eine Reihe möglicher
Modelle, um die Phänomenologie dieser Zustände zu beschreiben. Die Vorschläge für die
Natur dieser Resonanzen variert zwischen qq states, KK Molekülen oder Superpositionen der
beiden. Eine andere Möglichkeit besteht darin, diese Zustände als dynamisch generierte Res-
onanzen zu beschreiben, die durch die Wechselwirkung zwischen den pseudoskalaren Mesonen
dynamisch erzeugt werden. Rechnungen dieser Art wurden furchgeführt, und sie liefern Pole
in den Streuamplituden, die man den skalaren Resonanzen zuordnen kann.
Ein weiterer Bereich, in dem man eine ähnliche Diskussion antrifft, ist der Bereich der bary-
onischen Resonanzen. In diesem Sektor hat das Quark Modell ebenfalls Schwierigkeiten, einige
der Resonanzen zu beschreiben. Auch hier ist ein alternativer Weg, diese Zustände durch die
Wechselwirkung zwischen Baryonen und pseudoskalaren Mesonen dynamisch zu erzeugen.
In der Streuung des Baryonenoktets mit den pseudoskalaren Mesonen findet man wiederum
Strukturen in den Streuamplituden, die man den baryonischen JP = 1

2

− Resonanzen zuord-
nen kann. Prominente Beispiele hierfür sind das Λ(1405) und das N∗(1535). Die Streunug
des Dekuplets der Baryonen mit den pseudoskalaren Mesonen führt ebenfalls zur Erzeugung
einiger JP = 3

2

− Resonanzen, wie zum Beispiel dem Λ(1520).
Aktuellere Arbeiten dehnen diese Diskussion auch auf die Axial-Vektor Mesonen aus. Hier
wird die Streuamplitude für die Streung von Goldstone Bosonen an Vektor Mesonen berechnet.
In führender Ordnung, in einer chiralen Entwicklung, ist die Streuung durch den sogenannten
Weinberg-Tomozawa (WT) Term bestimmt, der parameterfrei durch die chirale Symmetrie
bestimmt ist. Um die Korrelationen der stark wechselwirkenden Teilchen zu berücksichtigen,
wird dieser Term mittels der Bethe-Salpeter Gleichung iteriert. Wiederum findet man reso-
nante Strukturen, die man den Axial-Vektor Mesonen zuschreiben kann.
Die Identifikation der Resonanzen über die Streuamplitude allein ist notwendigerweise in-
direkt und modellabhängig, da die Streuamplitude selbst nicht die Größe ist, die gemessen
wird. Wir wollen die eben erwähnte Methode nutzen, um sie auf einen physikalischen, direkt
gemessenen Prozess anzuwenden, den τ Zerfall. Der τ Zerfall bietet ein ideales Umfeld, um
verlässliche Informationen zu extrahieren, da man die starke Wechselwirkung sauber von der
gut bekannten schwachen Wechselwirkung trennen kann. Der Kanal, der uns interessiert ist,
ist der Zerfall in drei Pionen. Dieser Kanal wird dominiert durch eine resonante Struktur,
die man üblicherweise dem a1 zuschreibt. Die meisten der Rechnungen, die zu diesem Zerfall
durchgeführt wurden, beruhen auf Parametrisierungen von Breit-Wigner Funktionen mit vie-
len Parametern. Es existiert jedoch auch eine Rechnung im Rahmen einer effektiven chiralen
Feldtheorie, in der die Daten mittels eines expliziten a1 gut beschrieben werden. In dieser
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Rechnung wird die Breite des a1 parametrisiert. In einer weiteren Rechnung im Rahmen des
linearen Sigma Modells werden die Daten ebenfalls zufriedenstellend reproduziert. Die Breite
des a1 wird durch den elementaren Zerfall in Vektor und pseudoskalares Meson beschrieben.
In dieser Arbeit jedoch wird der WT Term nicht berücksichtigt. Wir berechnen den Zerfall
im Wesentlichen unter zwei verschiedenen Annahmen. In einer Rechnung berücksichtigen wir
das a1 nicht explizit, sondern nehmen an, dass die auftretende Struktur durch die Endzus-
tandswechselwirkung zwischen dem Vektor Meson und dem Goldstone Boson hervorgerufen
wird. In einer zweiten Version führen wir das a1 als elementares Feld explizit ein. Anders
jedoch als in den oben erwähnten Modellen, erzeugen wir die Breite des a1 durch den el-
ementaren Zerfall in Vektor Meson und Goldstone Boson und beziehen zusätzlich den WT
Term mit ein. Da der WT Term in einem chiralen Zählschema sogar eine Ordnung unter der
a1 Wechselwirkung liegt, gibt es keinen Grund, diesen Term nicht mit einzubeziehen.
Nachdem in den ersten Kapiteln die Grundlagen für die Rechnung geschaffen werden, teilen
wir die eigentliche Rechnung in drei Teile:
1. Im ersten Szenario beschreiben wir die Korrelationen des Endzustands einzig durch die It-
eration des WT Terms. Das heißt, der Prozess wird in diesem Rahmen wie folgt beschrieben:
Aus dem schwachen Zerfall entsteht ein Vektor Meson und ein pseudoskalares Meson, durch
deren starke Wechselwirkung die resonante Struktur erzeugt wird. Der schwache Zerfall, der
den τ Zerfall einleitet, wird im Rahmen des Standard Modells erklärt. Der WT Term ist pa-
rameterfrei von der chiralen Symmetrie vorrausgesagt. Die restlichen Kopplungskonstanten
sind durch die gut bekannten Eigenschaften des ρ Meson bestimmt. Die einzigen unbekannten
Größen in dieser Rechnung treten in der Renormierung der divergenten Loopintegrale auf. Wir
führen zwei Subtraktionspunkte ein, um die auftretenden Divergenzen zu eliminieren. Einer
dieser Punkte renormiert das Loopintegral aus der Bethe-Salpeter Gleichung, und der andere
Punkt renormiert den Loop, der den W Zerfallsvertex beinhaltet. Legt man den Subtraktion-
punkt wie in [LK04] durch crossing Symmetrie Argumente fest, beinhaltet diese Rechnung
nur einen freien Parameter. Durch Anpassung dieses Parameters sind wir in der Lage, die
Daten erfolgreich zu beschreiben.
2. In der zweiten Rechnung führen wir das a1 als elementares Feld explizit ein. Dies führt
notwendigerweise zu zusätzlichen Parametern, nämlich die Masse des a1, seine Kopplung an
das W Boson und die Kopplung an Vektor Meson und Goldstone Boson. Die auffallendste
Eigenschaft in dieser Rechnung ist die starke Präsenz des WT Terms. Diese starke Präsenz
macht sich im Auftreten einer zweiten Erhöhung in der Spektralfunktion bemerkbar, die für
fast jede Wahl der Parameter auftritt. Nur durch eine sehr genau abgestimmte Wahl der
Parameter kann man erreichen, dass die beiden Erhöhungen zu einer verschmelzen. Dies ist
eine äußerst künstliche Methode, um die richtige Struktur zu erklären. Vergleicht man dieses
künstliche Vorgehen mit dem Erfolg des Szenarios ohne explizites a1, kann man von einem
Hinweis auf eine dynamisch erzeugte Struktur reden.
3. Anschließend führen wir eine dritte Rechnung durch, in der wir das a1 wiederum nicht
explizit einbeziehen. Anders als in der ersten Rechnug addieren wir zusätzlich Korrekturen
höherer Ordnung zum Kern der Bethe-Salpeter Gleichung. Mit diesen zusätzlichen Termen
ist es möglich, die Ergebnisse aus dem ersten Szenario noch systematisch zu verbessern. Die
Möglichkeit, das Modell systematisch zu verbessern, stellt einen wesentlichen, erfolgreich be-
standenen Test für das Modell da. Die Korrekturen höherer Ordnung führen zu sechs neuen
Parameters, deren Stärke nicht von der chiralen Symmetrie vorrausgesagt wird. Wir weisen
an dieser Stelle darauf hin, dass der Erfolg dieser Rechnung nicht darin besteht, die Daten
mit weiteren sechs zusätzlichen Parametern zu beschreiben, sondern dass es möglich ist, das
Modell systematisch zu verbessern. Man findet viele Werte für die Parameter, so dass die Spek-
tralfunktion erfolgreich beschrieben werden kann. Die Dalitz Projektionsdaten, die eine de-
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taillierter Analyse zulassen, zeigen außerdem, dass man diese Parametersätze weiter diskrim-
inieren kann. Es stellt sich heraus, dass die qualitative Beschreibung der Daten eng verknüpft
ist mit der Präsenz von d-Wellen Komponenten. Genauer gesagt ist Qualität korreliert mit
der Stärke der Übergänge von s- nach d-Welle.

Zusammenfassend kann man sagen, dass man ohne die explizite Berücksichtung des a1 ein
vielversprechendes Modell hat, das die Daten sehr erfolgreich beschreibt. Die meisten Param-
eter, im einfachsten Fall alle bis auf einen, sind bestimmt durch chirale Symmetrie und die
Eigenschaften des ρ Meson. Führt man ein explizites a1 ein, weisen die Ergebnisse seltsame
Eigenschaften auf, wenn man zusätzlich auch den WT Term berücksichtigt. Dieser Term ist
jedoch durch die chirale Symmetrie parameterfrei vorgegeben und sollte in jedem Fall mit
einbezogen werden. Dies alles weist auf eine dynamisch erzeugte Struktur des a1 hin.
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