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1 INTRODUCTION 

1.1 Boron in soil and plant 

Boron (B) is member of the metalloid group of elements and has intermediate properties 

between metals and non-metals (Marschner 1995). The abundance of B in the universe is very 

low: about 10-9 times that of hydrogen and about 10-6 that of carbon, nitrogen, or oxygen (Kot 

2009). In spite of its inadequacy, B is broadly distributed in both, lithosphere and hydrosphere, B 

concentrations ranging from 10 to 20 mg kg-1 in rocks, 3-30 µg kg-1 in rivers and about 1-10 mg 

kg-1 in oceans (Power and Woods 1997). 

 The B requirement for plant growth was first established in the early 1920s; nowadays it 

is well known that B is an essential micronutrient for all vascular plants. Boron deficiency or 

toxicity causes impairments in various biochemical and physiological processes (Blevins and 

Lukaszewski 1998; Bolanos et al. 2004). Soils with a B concentration less than 10 mg kg–1 are 

considered to be poor in B (Woods 1994). Moreover, the majority of this B is immobilized in 

rocks and not readily available for plants. During rock weathering, B goes easily into soil 

solution mainly as boric acid (Nable et al. 1997) and is readily available for plant uptake, but this 

is usually about 10% of total soil boron content (Power and Woods 1997).  

Boron availability can be affected by several soil factors such as pH, texture, temperature, 

and organic matter, among others, soil pH being one of the most important parameters (Goldberg 

1997). In fact, boric acid is a very weak acid and when the pH is below 7 appears in its 

undissociated form; at alkaline pH, boric acid dissociates to form the borate anion: 

         B(OH)3 + H2O                                       B(OH)4
- + H+              (pKa 9.25) 

Therefore, at common soil pH values (5.5-7.5), B exists mainly as soluble uncharged 

boric acid (B(OH)3) having a pKa value 9.25 , and in this form B is absorbed by plant roots (Hu 

and Brown 1997; Power and Woods 1997). Boron is mobile and easily lost by leaching under 

high rainfall conditions leading to B deficiency in plants that grow there.  
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Boron requirement for plant growth considerably varies among the plant species, the 

optimum quantity of B for one species could be either toxic or insufficient for other species 

(Blevins and Lukaszewski 1998). According to the B requirement, plants are separated into three 

groups: graminaceous species, the remaining monocots and most of the dicots and lactifers 

(latex-forming plants), having lowest, intermediate and the highest boron demand among plant 

species, respectively (Goldbach 1997; Blevins and Lukaszewski 1998). 

Boron deficiency causes major disorder that can limit plant growth on soil with high 

rainfall (Nable et al. 1997). Therefore, it is important to understand the mechanisms that take part 

in B transport and distribution in plants in order to improve agricultural production. There are 

three different molecular mechanisms for transport of boric acid from soil solution into root cells 

and xylem loading of B. Thus, depending on B availability, B transport can be carried out by: (i) 

passive transport across plasma membrane mediated by simple diffusion. This system operates 

mainly when adequate or excessive boron is available in the soil; (ii) energy-dependent high-

affinity transport that is induced in response to low B supply, and it is mediated via BOR 

transporters; and (iii) facilitated transport carried out by  channels (NIP) belonging to the 

superfamily of major intrinsic protein (Tanaka and Fujiwara 2008). 

After root cells have absorbed B, it must be loaded into xylem. When plants grow in 

media with enough B availability, uptake of B involves passive diffusion across lipid bilayer as 

well as facilitated transport of boric acid via the MIPs channel (Dannel et al. 2002; Miwa and 

Fujiwara 2010). Nevertheless, under limited B availability an energy-dependent high-affinity 

transport system mediated via BOR transporters is required to facilitate the transport of B 

towards xylem. Under B limitation, such B transporter involved in the process of xylem loading 

was identified as BOR1 in Arabidopsis (Takano et al. 2002). Afterwards, another BOR1-like 

gene has been identified in Eucalyptus (Domingues et al. 2005) and rice (Nakagawa et al. 2007), 

which is involved in both xylem loading of B and its absorption into the root cells under B 

limitation. Under sufficient B supply, expression of both NIP5;1 and BOR1 is decreased by 

transcriptional and post-translational regulations, respectively (Miwa and Fujiwara 2010). 
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                        .                             

Figure 1. A schematic model of B transport in A. thaliana roots under B limitation (Miwa and Fujiwara 

2010) 

Once B entered the xylem, it is transported from root towards shoot via the transpiration 

stream (Shelp et al. 1995). Although the B mobility through phloem drastically varies among 

species (Brown and Hu 1996; Brown and Shelp 1997), there is some evidence that showed B can 

also be translocated via phloem to both vegetative and reproductive tissues (Matoh and Ochiai 

2005). Theses authors suggested that the mechanism for B transport through phloem involves the 

formation of boron-diol complexes with sugar alcohols as transport molecules (Brown and Hu 

1996; Hu et al. 1997). It was reported that transgenic tobacco and rice plants with enhanced 

sorbitol concentration had higher ability to transport B by phloem towards the young tissues 

(Bellaloui et al. 2003; Brown et al 1999). Although B transport via phloem, especially to 

growing tissues, also occurs in plant species that are not able to produce such types of 

carbohydrates, this translocation is not as efficient as in those plants that produce sugar alcohols 

(Stangoulis et al. 2001; Takano et al. 2001; Matoh and Ochiai 2005). 
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1.2 Role of boron in plant growth 

Since the beginning of last century, B has been convincingly demonstrated to be an 

essential microelement for normal plant growth. However, its biochemical role is not well 

understood. Among the plant micronutrients, B deficiencies occur widely and have a significant 

agronomic impact throughout the world (Gupta 1979). Boron deficiency occurs mostly in light-

textured soils, where B is readily leached down the soil profile with the percolatory water and 

becomes unavailable for the plants (Blevins and Lukaszewski 1998).  Adequate B nutrition is 

crucial for high yields as well as for high quality of crops. Boron deficiency induces many 

anatomical, biochemical, and physiological aberrations. Because of the rapidity and the wide 

variety of symptoms followed by B deficiency, determining the primary function of B in plants 

has been one of the greatest challenges in plant nutrition.  

Boron is directly or indirectly involved in many physiological and biochemical processes 

during plant growth.  In recent years, considerable research activities have been carried out to 

demonstrate the function of B in plant physiology, including a structural role for boron in cell 

walls as well as in membrane function, and boron involvement in metabolic activities (Bolanos 

et al. 2004).  

To date the only established physiological role of B in plants is based on the formation of 

borate esters with apiose residues of rhamnogalacturonan ІІ (RG II) in the cell wall (Kobayashi 

et al. 1996), which is essential to its structure and function and contributes to the cell wall 

porosity and strength (Fleischer et al. 1999; Ryden et al. 2003). Furthermore, B deficiency led to 

a decrease of gene transcription of various hydrolytic enzymes such as XTHs, expansins, pectin 

methylesterases, and pectin lyases in Arabidopsis roots (Camacho-Cristobal et al. 2002). These 

enzymes play key a role in cell-wall loosening necessary for cell elongation (Cosgrove 1999). 

This indicates that B not only stabilizes cell wall by cross-linking of two RG-II molecules but 

regulates the transcription level of genes involved in the cell-wall synthesis and modification 

(Camacho-Cristobal et al. 2011).  

The nutritional status of higher plants greatly affects the structural and functional 

integrity of cell membranes. There is considerable evidence that indicates a role of B in the 
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functioning of enzymes as well as other proteins of plasma membrane, transport processes across 

the membrane, and the membrane integrity by cross-linking the membrane molecules containing 

hydroxlated ligands such as glycoproteins and glycolipids (Cakmak and Römheld 1997; 

Goldbach et al. 2001; Brown et al. 2002, and Wimmer et al. 2009). Furthermore, B deficiency 

changed the membrane potential in Daucus carota (Blaser-Grill et al. 1989) and reduced the 

activity of proton-pumping ATPase in Helianthus annuus roots (Ferrol and Donaire 1992). 

Similarly, it has been also reported that B deficiency alters plasma membrane permeability for 

ions and other solutes (Cakmak et al. 1995; Wang et al. 1999). The influence of B on the ion flux 

can be mediated by direct or indirect effects of B on plasma membrane-bound proton-pumping 

ATPase (Cara et al. 2002). Pollard et al. (1977) also observed that the activity of the K+-

stimulated ATPase in B-deficient maize roots was considerably lower than in control plants. 

These results indicate that the action of B could be associated with membrane components. It is 

unclear, however, whether B directly interacts with membrane proteins or indirectly modifies 

membrane properties with subsequent changes in enzymatic activities. 

The literature indicates the possible roles of B in several metabolic functions. For 

instance, it has been shown that B deficiency causes qualitative and quantitative changes in the 

phenolic metabolism (Camcho-Cristobel et al. 2002), affects the photosynthesis by reducing 

photosynthetic oxygen evolution rate and efficiency of photosystem II (Kastori et al. 1995; El-

Shintinawy 1999), and affects nitrogen metabolism in vascular plants (Bolanos et al. 1994). 

Furthermore, B-deficient plants showed lower nitrate reductase activity and enhanced 

accumulation of nitrate, these effects indicating a role of B in the de novo synthesis of the nitrate 

reductase (NR) protein or facilitation of nitrate absorption (Ruiz et al. 1998).  

1.3 Plasma membrane H
+
-ATPase, nutrient uptake and plant growth 

The plant plasma membrane H+-ATPase is an important functional protein which plays a 

central role in plant physiology. Plasma membrane H+-ATPase involves in ATP hydrolysis to 

transport protons out of the cytosol into apoplast and establishes an electrochemical gradient 

across the plasma membrane (Duby and Boutry 2009). This enzyme controls the major transport 

processes in the plant, such as root nutrient uptake and xylem or phloem loading. Moreover, this 

pump is involved in other physiological processes, such as stomata opening, expansion growth, 
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and cytosolic pH regulation. Generation of an electrochemical gradient across the membrane 

results in a proton-motive force wich is used by secondary transport for assimilation of various 

nutrients (Briskin and Hanson 1992; Morsomme and Boutry 2000; Palmgren 2001). A number of 

studies demonstrated that the plasma membrane H+-ATPase is involved in the uptake of various 

nutrients such as nitrogen (Schubert and Yan 1997), phosphorus (Yan et al. 2002),  potassium 

(Schachtman and Schroeder 1994), and iron (Schmidt 2003;  Dell‟Orto et al. 2000).  

According to the acid-growth theory, protons extruded by an activated H+-ATPase 

decrease the apoplastic pH and activate enzymes involved in cell-wall loosening (Hager 2003). It 

is well established that auxin activates the proton pump, resulting in loosening of the cell wall 

(Hager 2003).  A higher concentration of H+ in the apoplast may also activate cell-wall proteins 

such as expansins (Cosgrove and Li 1993; Cosgrove 2000) contributing to increase the cell-wall 

extensibility by breaking the load bearing bonds (Keller and Cosgrove 1995; Purugganan et al. 

1997).  

Plasma membrane H+-ATPase is encoded by a multigene family and contains several 

isoforms, 9-12 isoforms of plasma membrane H+-ATPase have been identified in various plant 

species. Isoforms related to nutrient transport and cell growth are widely expressed in most plant 

parts (Arango et al. 2003; Gaxiola et al. 2007). Isoforms present in a single cell or tissue type 

may have different enzyme characteristics, such as substrate affinity, Vmax, and pumping 

efficiency (Luo et al. 1999). The activity of plasma membrane H+-ATPase is controlled by an 

auto-inhibitory domain at the C-terminus (Palmgren et al. 1991) and modifications in this 

domain can change the pumping efficiency of the enzyme (H+ transport /ATP coupling). 

Several reports in literature demonstrated that the presence of B in the root medium 

increased plant growth. B seems to be involved in cell wall expansion. As B is mainly localized 

in the cell wall (Hu and Brown 1994; Hu et al. 1996) and cross-links with rhamnogalacturonan II 

Kobayashi et al. 1996; O’Neill et al. 2004), it can be considered to be an important factor of cell-

wall extensibility (Hu and Brown 1994; Findeklee and Goldbach 1996).  It is well known that 

plasma membrane H+-ATPase is involved in expansion growth by changing the cell-wall 

acidification. It may be assumed that the B-induced stimulation of plant growth is caused by 

changes in plasma membrane H+-ATPase activity. 
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To elucidate the role of B on maize growth and its contribution in the regulation of plasma 

membrane H+-ATPase in roots and shoots the following hypotheses were tested:  

1. Exogenously B supply to the nutrient medium improves maize growth under normal 

growth conditions.  

2. Changes in plasma membrane H+-ATPase are responsible for the B-induced maize 

growth.  

3. Boron modifies plasma membrane H+-ATPase by direct interaction of B with ATPase 

molecule. 

4. Boron-induced transcriptional modifications in H+-ATPase contribute to enhance the 

activity of plasma membrane H+-ATPase. 
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2 MATERIAL AND METHODS 

 

2.1 Effect of boron supply in nutrient solution on maize growth under controlled 

conditions 

 

2.1.1 Plant cultivation 

Maize seeds (Zea mays L. cv. Amadeo) were soaked in aerated 1 mM CaSO4 solution for 

1 d and germinated on filter paper moistened with 1 mM CaSO4 at 25°C for 4 d in the dark and 

then seedlings were exposed to light for 1 d. After 5 d, seedlings were transferred to 4.5 L plastic 

containers (three plants per container) containing ½ full-strength nutrient solution. After 2 d the 

concentration of nutrient solution was increased to full-strength concentration. With the transfer 

to nutrient solution plants were divided into two groups: one group was provided with boron-

deficient (0 μM B) medium and the other with boron-sufficient (10 μM B) medium. To avoid 

any external boron concentration, all the nutrient solutions were prepared in Milli-Q ultra pure 

water and plastic wares were used during the whole experiment. The experiment was replicated 

four times per treatment. Plants were grown in a growth chamber under controlled conditions. 

Conditions in the climate chamber were: 50% relative humidity and a day/night temperature 

26°C/ 16°C under a 16 h period with a light intensity of 150 Wm–2 (Philips Master HPI-T Plus, 

400 W). The complete nutrient solution was changed after every 2 d. The concentration of 

nutrient solution had the same composition as described by Zörb et al. (2004, Table1). 
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Table 2.1 Composition of the full-strength nutrient solution. 

     Salt                   Concentrations                         Salt                        Concentrations  

                                     (mM)                                                                     (µM) 

  Ca(NO3)2                   2.5                                   H3BO3                             10.0 

  K2SO4                        1.0                                   MnSO4                             2.0 

  KH2PO4                     0.2                                   ZnSO4                              0.5 

  MgSO4                       0.6                                   CuSO4                              0.3 

  CaCl2                          5.0                                  (NH4)6Mo7O24                 0.005 

  Na2SiO3                     1.0                                   Fe-EDTA                         200 

 

2.1.2 Plant height and leaf-area measurement  

To study the effects of B supply in nutrient solution on maize expansion growth, plant 

height and leaf area of different leaves were measured using a ruler. Plant height was measured 

as the distance from plant base to youngest leaf tip. For leaf area calculation, length of each leaf 

was multiplied with its width and divided by two.  

 

2.1.3 Plant fresh and dry mass measurement  

21 d after germination, plants were harvested and separated into three parts: root, old 

shoot (portion below 4th leaf blade) and young shoot (portion with 4th leaf blade and above) Plant 

roots were thoroughly washed with deionized water thrice and blotted dry with tissue paper. 

After determination of fresh weights, different plants parts were oven-dried at 78oC for 72 h and 

dry weight of plants was measured. 

 

2.1.4 Boron analysis 

Boron contents the plant tissues were determined using azomethene-H colorimetric 

method. Finely ground oven-dried plant material was ashed at 550 oC overnight. The cooled ash 

was carefully moistened with 2 mL of deionized water and then 2.5 mL of 5M HNO3 were added 

to it. The samples were heated prior to boiling followed by cooling and then filtered through 

white band 589 filter paper to 25 mL volumetric flasks and filled up to mark. Then an aliquot of 

the sample was added to the reaction mixture containing: 
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2 mL buffer solution 

2 mL color reagent  

1 mL sample  

 

Absorption was measured after 30 min using a spectrophotometer (Spektralphototmeter 

PM7) at 420 nm wavelength. A standard curve was prepared by measuring the absorption for 

each standard (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mg L-1) proceeding in the same way as for samples. 

A blank was also measured by adding 1 mL de-ionized water (Ryan et al. 2001). The 

composition of color reagent and buffer solution was as follows: 

 

Buffer solution: 

250 g ammonium acetate  

15 g Na-EDTA 

400 mL de-ionized water  

125 mL glacial acetic acid  

The solution was filtered and pH was adjusted to 5.1 with H2SO4. 

 

Color reagent 

0.45 g azomethine-H  

100 mL 1% ascorbic acid 

 

The reagent was filtered. 

 

2.2 Effect of boron on plasma membrane H
+
-ATPase hydrolytic and pumping activity 

isolated from maize root and shoot 

 

2.2.1 Plant cultivation 

Seeds of Zea mays L. cv. Amadeo were soaked in aerated 1 mM CaSO4 for 1 d and 

germinated for 4 in dark between two layers of filter paper. Then seedlings were transferred to a 

climate chamber with a light intensity approximately 400 μE m-2s-1, a day/night cycle of 16 h/8 h 

at 26°C/18°C and a relative humidity of 50%. After 1 d, seedlings were transferred to 50 L 
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plastic containers (70 plants per container) with half-strength nutrient solution. After 2 d, plants 

were transferred to full-strength nutrient solution and boron treatment was started (as described 

in 2.1.1). Nutrient solution was renewed after each second day. The full-strength nutrient 

solution was as in Table 2.1. 

 

2.2.2 Plasma membrane isolation 

To investigate the effect of boron on plasma membrane H+-ATPase, plasma membrane 

vesicles from the lower 10 cm of roots and from young leaves were isolated according to Yan et 

al. (2002). Shoots were cut above the fourth leaf and immediately placed in a beaker with the cut 

end immersed in cold water. The lower segment of about 10 cm length was cut and the mid-rib 

was removed. Root and shoot material was washed three times with chilled, deionized water, and 

then ground in ice-cold homogenization buffer (4 mL of buffer / g fresh weight).  

 

The composition of homogenization buffer was: 

 

250 mM sucrose 

250 mM KI 

2 mM EGTA 

10% (v/v) glycerol  

0.5% (w/v) BSA 

2 mM DTT 

1 mM PMSF 

5 mM 2-mercaptoethanol,  

50 mM BTP (adjusted to pH 7.8 with MES) 

 

KI was not used for preparation of root vesicles. Homogenate was then filtered through 

two layers of Miracloth (Calbiochem-Novabiochem, San Diego) and was centrifuged in a 

swinging bucket rotor at 11,500 g (AH 629 rotor, 36 mL, Sorvall Products, Newtown, CT) for 10 

min at 0°C. The supernatants were again centrifuged at 87,000 g for 35 min to yield the 

microsomal pellet which was re-suspended in phosphate buffer. 
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The composition of phosphate buffer was as follow: 

250 mM sucrose 

3 mM KCl 

5 mM KH2PO4 (pH 7.8) 

 

The microsomal membrane was fractionated with two-phase partitioning in aqueous 

dextran T-500 and polyethylene glycol according to the method of Larsson (1985). Stock 

solutions of polymers were prepared with concentrations of 20% and 40% (w/w) for dextran and 

polyethylene glycol, respectively. The concentration of the dextran stock solution was 

determined using optical rotation.  

Phase separation was carried out in a series of 32-g phase system which contained: 

 

For roots: 

 

6.3% (w/w) dextran T-500       

6.3% (w/w) PEG 3350             

250 mM sucrose 

3 mM KCl 

5 mM KH
2
PO

4 
(pH 7.8) 

For shoot: 

 

6.1% (w/w)  dextran T-500       

6.1% (w/w) PEG 3350             

250 mM Sucrose 

3 mM KCl 

5 mM KH
2
PO

4 
(pH 7.8) 

The phase stock was diluted to 6.3% (w/w, each polymer) for roots and 6.1% for shoots 

with phase buffer to a final weight of 32 g. In the start tubes, polymers were diluted to 26 g.  

Six grams of microsomal suspension were added to the upper phase of each start tube. The tubes 

were sealed with Parafilm and then mixed by inversion (30 times). The phase system was 

centrifuged at 4°C and 720 g (Sorvall AH-629 rotor, 36 mL) for 23 min. The resulting upper 
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phase which contained plasma membrane was collected and centrifuged again in two identical 

separation steps. The centrifugation times for washing steps were 15 and 10 min, respectively. 

The third upper phase was diluted with phosphate buffer and centrifuged at 134,600 g for 40 

min. The pellet was resuspeded and centrifuged again at 134,600 g for 40 min.  

 

The resuspension buffer contained: 

250 mM sucrose  

3 mM KCl  

5 mM BTP/MES (pH 7.8) 

1 mM   DTT 

The resulting pellet was resuspended in resuspension buffer, divided into aliquots, and 

immediately stored in liquid nitrogen.  

 

2.2.3 Protein quantification 

Protein was quantified according to the method of Bradford (1976) using bovine serum 

albumin (Sigma) as a standard. 20 μL resuspended membrane protein were mixed with 2.375 mL 

reagent and incubated for 40 min at room temperature. The absorption was measured at 595 nm 

using a spectrophotometer (Carry 4 Bio, Varian Australia Pty Ltd., Mulgrave, Victoria, Australia). 

  

The composition of Bradford reagent was:  

0.01% (w/v) Coomassie Brilliant Blue G-250  

4.7% (w/v) alcohol  

8.5 % (w/v) phosphoric acid   

 

2.2.4 Hydrolytic activity of plasma membrane H
+ 

ATPase  

Activity of plasma membrane H+-ATPase was determined by measuring the amount of 

inorganic phosphate released by ATPase through ATP hydrolysis per unit time. Plasma 

membrane purity was estimated by measuring the inhibitor-sensitive ATPase activity of the 

various membranes. Vanadate (0.3 mM), nitrate (100 mM) and azide (1 mM) were used to 

inhibit the activities of plasma membrane, tonoplast and mitochondrial ATPases, respectively. 1 

mM molybdate was used to measure the phosphate release due to activity of unspecific acid 
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phosphatases. Hydrolytic activity of plasma membrane ATPase was measured by incubating 3 

μg of membrane protein at 30°C in 0.5 mL of reaction medium. 

 

The reaction medium was composed of: 

30 mM BTP/MES (pH 6.5) 

5 mM MgSO4  

50 mM KCl  

100 mM KNO3  

1 mM Na2MoO4  

1 mM NaN3  

0.02% (w/v) Brij 58  

5 mM Na2-ATP 

 

ADP formation during ATP hydrolysis can inhibit the ATPase activity in the assay medium. 

Accumulation of ADP and decrease of ATP was prevented by an ATP-regenerating system 

which included 5 units of pyruvate kinase (Fluka) and 5 mM K-PEP The reaction was stopped 

after 30 min by adding 1 mL of stopping reagent containing: 

 

2% (v/v) conc. H2SO4 

5% (w/v) SDS 

0.7% (w/v) (NH4)2MoO4 

 

Then 100 µL of 10% (w/v) ascorbic acid were added immediately after the stop reagent. 

To avoid the phosphate release by ATP hydrolysis under acidic conditions (Baginski et al. 1967), 

1.45 mL of arsenite citrate reagent (2% [w/v] sodium citrate, 2% [w/v] sodium m-arsenite, and 

2% [w/v] glacial acetic acid) were added after 15 min. Color development was completed after 

30 min, and ∆A820 was measured by means of a spectrophotometer (Carry 4 Bio, Varian 

Australia Pty Ltd., Mulgrave, Victoria, Australia). ATPase activity was calculated as phosphate 

liberated in excess of a boiled-membrane control. All enzyme assays were performed with two 

chemical replicates. Five vesicle preparations from parallel plant cultivations (biological 

replicates) were used to determine mean values of ATPase activity and standard errors (SE). 
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To determine the in vivo effect of boron on the hydrolytic activity of ATPase, 10 µM B 

were added to the assay medium. The kinetic characteristics (V
max 

and K
m
) of plasma membrane 

ATPase were determined by means of a non-linear regression analysis with Dynafit (Kuzmic, 

1996). Activation energy of ATPase was calculated, using the Arrhenius equation (given below), 

from V
max 

values determined at 20°C and 30°C, respectively.  

 
 

2.2.5 Proton pumping 

The pumping activity of plasma membrane H+-ATPase in inside-out vesicles was 

measured as the quenching of A492 of acridine orange (AO) using a spectrophotometer (Carry 4 

Bio, Varian Australia Pty Ltd., Mulgrave, Victoria, Australia, Figure 2.1). 

 

                                              
Figure 2.1: Principle of measurement of proton pumping. 
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The assay mixture contained: 

5 mM BTP/MES (pH 6.5)            

7.5 μM acridine orange                

100 mM KCl   

1 mM sucrose   

1 mM NaN
3    

 

1 mM Na
2
MoO

4
 

100 mM KNO
3
 

0.05% (w/v) Brij 58 

50 μg membrane protein in a final volume of 1.5 mL 

 

To create inside-out vesicles Brij 58 was used (Johansson et al. 1995). After equilibration 

of the membrane vesicles with the reaction medium (about 15 min), the reaction was initiated by 

the addition of 5 mM Mg-ATP (mixture of MgSO4 and Na2-ATP, adjusted to pH 6.5 with BTP). 

The reaction temperature was 25°C. Change in absorbance during first min was calculated as the 

initial rate (IR) of active proton pumping and maximum pH gradient, respectively. Maximum 

quenching was achieved 70 min after initiation of the H+ pump. At equilibrium, net H+ transport 

across the plasma membrane was zero and active H+ influx and passive H+ efflux reached 

equilibrium. To determine passive H+ transport, Na3VO4 (500 µM) was added after pH gradients 

of plasma-membrane vesicles had reached identical levels. The established pH gradient was 

completely collapsed by 5 µM gramicidine.  

 

2.3 Gel electrophoresis and immunodetection of plasma membrane H
+
-ATPase 

Plasma membrane proteins were separated with SDS-PAGE (Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoresis) using the system of Laemmli (1970). Membrane vesicles 

containing 10 μg membrane proteins were solubilized in SDS-loading buffer for 30 min at room 

temperature to denature the proteins. 
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SDS-loading buffer contained: 

0.125 mM TRIS-HCl, pH 7.4  

10% (w/v) SDS  

10% (v/v) glycerol  

0.2 M dithiothreitol  

0.002% (w/v) bromocresol blue  

5 mM phenylmethylsulfonyl fluoride  

0.05% (w/v) trasylol 

The addition of the SDS detergent to these samples gives the proteins the same electrical charge. 

After 30 min shaking at room temperature (22°C), samples and standard marker (Sigma) were 

loaded on a discontinuous SDS-polyacrylamide gel (6% [w/v] acrylamide stacking gel and 10% 

[w/v] acrylamide resolving gel) and gel was run at 200 V until the blue band reached the bottom 

of the gel (approx. 1 h).  

 

Composition of the stacking gel: 

  

1.25 mL H2O bidest.  

0.625 mL 0.5 M TRIS-HCl, pH 6.8; 0.4% SDS  

0.5 mL acrylamide solution  

10 μL 10% APS (w/v)  

10 μL TEMED 

 

Composition of the resolving gel:  

1.5 mL H2O bidest.  

1.5 mL 1.5 M TRIS-HCl, pH 8.8; 0.4% SDS  

3 mL acrylamide solution  

50 μL 10% APS (w/v)  

5 μL TEMED 
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For Western blotting, the gels were incubated in blotting buffer for 15 min at room temperature.  

The buffer was prepared as under:  

0.025 M TRIS base  

0.192 M glycine and,  

10% methanol with a pH of 8.3.  

 

After incubation, the separated membrane proteins were electrophoretically transferred to 

polyvinylidene diflouride (PVDF) membrane filters (0.2 μm, Pall) as described by Zörb et al. 

(2005) using a semi-dry blotting system with a buffer containing 10 mM 3-cyclonexylamino-1-

propane sulfonic acid (pH 11, adjusted with NaOH) and 20% (v/v) methanol for 1 h at room 

temperature and at a current intensity of 0.8 mA cm-2. After transfer, the membrane filter was 

washed with H2O bidest and incubated for 2 h in blocking buffer which was prepared by adding 

2.5 g of milk powder in 50 mL of TRIS-bufferd saline (TBS).  

The TBS solution was prepared as follows;  

1 mM TRIS-HCl (pH 8.0)  

15 mM NaCl  

After 2 h, the blocking buffer attached to the membrane was removed by washing it three 

times with TBS-T. For the identification and quantification of plasma membrane H+-ATPase, the 

PVDF membrane filter with plasma membrane proteins was incubated with a polyclonal 

antibody specific for the central part of plant H+-ATPase (amino acids 340-650 of AHA2). The 

anti-serum was diluted 1: 3,000 in TBS-T buffer that has 1 mM TRIS-HCl (pH adjusted to 8.0 

with NaOH), 15 mM NaCl, and 0.1% [v/v] Tween 20) and incubation was carried out for 1 h at 

room temperature followed by incubation at 4°C overnight. Next day, the membrane was rinsed 

to remove the antibody with TBS-T twice for 10 min. After washing, the membrane was 

incubated with secondary antibody (alkaline phosphatase-conjugated anti-rabbit IgG, Sigma) for 

2 h and was rinsed in TBS-T. After rinsing the filter was incubated for 5 min in a buffer 

containing 100 mM TRIS-HCl (pH 9.5, adjusted with NaOH), 100 mM NaCl, and 5 mM MgCl2. 

After several washing steps in TBS-T or TBS buffers, filters were incubated for 5 min in AP 

buffer and Western Blots were developed using a buffer containing the substrates BCIP and 

NBT.  
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The buffer solutions were prepared as described below:  

AP-buffer:  

100 mM TRIS-HCl, pH 9.5  

100 mM NaCl  

5 mM MgCl2  

 

Developing buffer:  

66 μL NBT (100 mg NBT in 1.9 mL 70% (v/v) dimethylformamid)  

32 μL BCIP (100 mg BCIP in 1.9 mL dimethylformamid)  

10 mL AP-buffer  

For quantification of plasma membrane H+-ATPase, the blots were scanned, and the H+-ATPase 

immuno-reactive bands were quantified densitometrically (software TINA, Raytest 

Isotopenmessgeräte, Straubenhardt, Germany).  

  

2.4 Effect of boron on the transcription of plasma membrane H
+
-ATPase isoforms. 

 

2.4.1 Isolation and purification of total RNA  

To determine the effect of boron on mRNA transcription of plasma membrane H+-

ATPase isoforms, total RNAs were extracted from shoot tissues of maize. Shoots were cut 

above the fourth leaf and immediately placed in liquid nitrogen. The frozen shoots were ground 

in liquid nitrogen using a pre-cooled mortar and pestle. Total RNA was isolated from the 

powdered shoot material with TRIZOL reagent. This phenol-based reagent contains guanidine 

isothiocyanate and phenol. Guanidine isothiocyanate denatures RNAases and proteins while the 

phenol dissolves the proteins. Lipids are dissolved in chloroform which is added after the 

homogenization of samples. 100-150 mg plant material was mixed with 1 mL of TRIZOL 

reagent by vigorously vortexing. After 5 min of incubation at room temperature to permit the 

complete dissociation of nucleoprotein complexes, 200 μL of chloroform were added and 

samples were shaken for 15s then incubated at room temperature for 3 min and centrifuged at 

12,000 g for 15 min at 4°C. Following centrifugation, the mixture was separated into three 

phases: upper colorless phase, an inter-phase and a lower phenol-chloroform phase (organic 

phase). The upper colorless aqueous phase contained RNA while DNA and protein remained in 
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the inter and organic phase, respectively. The volume of the aqueous phase was about 60% of 

the volume of TRIZOL reagent used for homogenization. The aqueous phase was collected and 

mixed with 0.5 ml isopropanol to precipitate the RNA. RNA were subsequently pelleted with 

10 min centrifugation (13 000 rpm) at 4°C, washed with chilled 75% (v/v) ethanol to remove 

the isopropanol. The supernatant was removed and the pellets were air-dried to evaporate the 

residual ethanol. The samples were dissolved in 40 μL of DEPC-water and incubated at 60°C 

for 10 min. The RNA samples were shock-frozen in liquid nitrogen and stored at -80°C for 

further analysis. 
 

2.4.2 Quantification of RNA 

The amount of RNA was quantified using a Nano Drop spectrophotometer (ND 1000, 

Thermo Scientific. RNA has its maximum absorption at a wavelength of 260 nm. An OD
260

 of 1.0 

is equivalent to about 40 µg/mL of RNA. The ratio of absorbance at 260 nm to 280 nm 

(OD
260

/OD
280

) provides an estimate for the purity of the RNA. Pure samples of RNA have an 

OD260/OD280 ratio of 2.0 or more. If the ratio is below 2.0, the sample is contaminated with 

protein or phenol and cannot be used for further analysis. 

 

2.4.3 Determination of RNA integrity  

RNA integrity and DNA contamination were checked by using the 1% agarose gel 

electrophoresis. The integrity of the RNA can be assessed by the band intensity. A good-quality 

RNA shows two distinct bands of 18 S and 28S ribosomal RNA. The sharpness of the ribosomal 

RNA bands provides a rough indication of whether the mRNA is degraded. If the bands appear 

like a smear it is likely that the RNA was degraded during preparation. The gel was prepared by 

adding 1 g of agarose in 100 mL of TBE buffer. For the dissolution of agarose, the mixture was 

heated in a microwave for 3 min. The solution was allowed to cool down to 60°C and then 

ethidium bromide (6 μL) was mixed in agarose solution and poured onto the gel tray and allowed 

to solidify for 1 h. Prior to loading of RNA sample to the gel, 3 μg of RNA sample were mixed 

with RNA loading-buffer. The gel was run at 120 V for 1 h. The buffer used for electrophoresis 

purpose contained 400 mM TRIS-borate and 10 mM EDTA (pH 8.0), dissolved in bidest. H2O. 

RNA bound with ethidium bromide shows increased fluorescence compared to the unbound dye 



Material and Methods 
 

22 
 

in the background. The gel was illuminated under UV light and analyzed to check the integrity of 

RNA. 

 

2.4.4 cDNA synthesis  

Eukaryotic mRNA contains a 3‘sequence of polyadenylic acid, which is different from 

other RNAs (rRNA, tRNA and prokaryotic RNAs). With an oligo-dT primer, mRNA can be 

used as a template for reverse transcriptase to synthesize a complementary DNA (cDNA) on it. 

Compared with genomic DNAs, cDNAs have no introns or non-transcriptable regions.  

The cDNA was synthesized following the manufacturer's instructions in the Verso
TM 

cDNA kit 

from Thermo Fisher Scientific. 5 μg total RNA were diluted up to 10 μL with DEPC-Water and 

incubated at 70°C for 5 min to remove any RNA secondary structure. The reaction tubes were 

placed immediately on ice at least for 5 min and then the following reagents were added:  

 

4 μL 5 × cDNA synthesis buffer 

2 μL dNTP mix  

1 μL RNA primer (Oligo-dT) 

1 μL RT enhancer  

1 μL Verso enzyme mix  

1 μL DEPC water 

 

The reaction was carried out in 20 μL of total volume. The reverse transcription was 

carried out at 42ºC for 50 min followed by inactivation of reverse transcriptase at 70ºC for 10 

min. The cDNA was aliquotated and stored at -20 ºC for further use.  

 

2.4.5 PCR amplification of cDNA  

The polymerase chain reaction (PCR) is an enzymatic technique that facilitates the 

production of millions of copies of specific DNA. An enzyme called DNA polymerase carries 

out the amplification of cDNA, previously reverse-transcribed from RNA. 
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Principally, each PCR cycle consists of three steps: 

 

Denaturation:                separation of double-stranded DNA into single strands, 

Annealing:                    primer binding to the appropriate sequence of single DNA strands, 

Elongation:                   synthesis of a new DNA strand by DNA polymerase. 

 

Amplification of cDNA was performed according to the manufacturer’s instructions 

provided with Dream taqTM DNA polymerase (Fermentas). All reactions were carried out in a T-

Gradient Thermocycler (Biometra, Germany). The reaction mixtures were prepared for 10 μL 

reaction volume containing: 

1.0 µL 10x PCR buffer (20 mM MgCl2) 

0.4 µL 25 mM MgCl2 

0.2 µL dNTPs (10 mM) 

0.2 µL primer pair (100 p mol/ µL) 

6.1µL DEPC H2O 

0.1µL Taq DNA polymerase (5 units/ µL) 

2.0 µL cDNA synthesis (1:10) 

 

The PCR reaction components were mixed on ice and reaction tubes were put into a T-

Gradient Thermocycler (Biometra, Germany). List of primers used with target genes and 

annealing temperature is given on Tab 2.2. Negative (NTC) controls were used to control the 

specificity and reliability of the PCR. 

 

The PCR was performed with the following profile: 

 

              Step                          Temperature        Time 

Initial denaturation                       95ºC               3 min 

Denaturation                                 95ºC               30 s 

Primer annealing                        50-60ºC            30 s 

Extension                                      72ºC              1 min 

Final elongation                            72ºC              5 min 
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Annealing temperatures varied depending on the primers used in the experiment. 

These steps were repeated for 35 cycles to produce the sufficient number of copies of 

amplicon. 

 

Table 2.2:  Primers of plasma membrane H+ -ATPase isoforms from maize shoots designed for    

                  real-time PCR. 

 

 

2.4.6 Real-time PCR: 

Quantitative real-time PCR was used to quantify mRNA. The procedure follows the PCR 

strategy but after each amplification round, the DNA is quantified. Quantification is performed 

by means of the fluorescent dye ‘‘SYBR® Green’’ that directly binds to double-stranded DNA. 

The bound dye generates a signal that is proportional to the DNA concentration. RT-PCR was 

done using RNA-based cDNA templates extracted from shoot tissues.  

 

 

Primer name Primer sequence (5'-3') Amplicon size 

(bp)  

Gene 

accession no.  

sMHA1  TTTGGAAGTTTGACTTCCCA 215  U09989  

asMHA1 AAGAAGTCGGTCTTGTACGC   

sMHA2  AAGACCTTCGGAAAGGAGAGA 385  X85805  

asMHA2 AAGACGGGTACCCAACCATA   

sMHA3  GAGAACAAGACCGCCTTCAC 436  AJ441084.1  

asMHa3 AAGACGGGTACCCAACCATA   

sMHA4  GAGAACAAGACCGCCTTCAC 230, 380  AJ539534  

asMHA4 CTTGTTGTTCTTGCGACGAC   

sMHAfam  ATCGTCAGCCAGGCTCTGAT 231    

asMHAfam CGAAGCGGATGAAGAACTTG   

sZmActin GAGCTCCGTGTTTCGCCTGA 172 J0238 

asZmActin CAGTTGTTCGCCCACTAGCG   
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The reaction mixtures had the following composition (in a final volume of 10 µL): 

2 µL cDNA (1: 10) 

5 µL SYBR Green Mix 

0.2 µL primer pair (10 nmol/ µL each) 

2.8 µL sterile water 

 

The real-time PCR reaction was initiated with activation of taq polymerase at 95ºC for 5 min.  

The cycling protocol of real-time PCR consisted of 35 cycles, each including:  

 

        Step                                Temperature        Time   

Denaturation                                 95ºC                  30s 

Primer annealing                        50-60ºC               30s 

Extension                                      72ºC                  30s 

 

After every elongation step, the fluorescence of SYBR Green was measured at 470 nm. 

As intercalating dyes bind nonspecifically to any double-stranded DNA, a melting curve analysis 

of amplification products allowed the differentiation at the end of the run. At the end, a melting 

curve was run from 72 to 99ºC. The melting curve prepared using SYBR Green fluorescence of 

obtained PCR-sequences detected no hairpin or loop formation. Single specific bands of the 

amplification products were checked using DNA gel electrophoresis. Negative controls with no 

templates (NTC) were performed with each run.  

 

2.4.7 Relative quantification of the real-time PCR data 

 

The relative transcription of H+-ATPase at mRNA level was determined with the relative 

quantification of a target gene in comparison to a reference gene. The relative expression ratio 

(R) of a target gene was calculated based on E and the CT value presented by Pfaffle (2001): 

 

                                                        (E 
target) ΔC

T target (control - sample) 

                                      Ratio = 

                                                        (E ref) ΔC
T ref (control - sample) 
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Where,  

ΔCTtarget = difference in the Ct values for the target gene between control and treated samples  

ΔCTref = difference in the Ct values for the reference gene between control and treated samples  

Etarget = real-time PCR amplification efficiency of the target gene.  

Eref = real-time PCR amplification efficiency of the reference gene. 

 

The equation shows a mathematical model of relative expression ratio in real-time PCR. 

The ratio of a target gene is expressed in a sample versus a control in comparison to a reference 

gene. Etarget is the real-time PCR efficiency of target gene transcript and Eref is the real-time PCR 

efficiency of a reference gene. In this study, actin was used as a reference gene according to Zörb 

et al. (2005). The expression of the reference (house-keeping gene) was not affected by the 

treatments. The Ct (cycle threshold) is defined as the number of cycles required for the 

fluorescent signal to cross the threshold (i.e. exceeds background level). Ct levels are inversely 

proportional to the amount of template concentration in the sample (i.e. the lower the Ct level the 

greater the amount of target nucleic acid in the sample). Each sample was separately analyzed 

with actin as well as with other primers listed in Tab 2.2. In each case, standard curves were 

generated from dilution series of a single DNA sample. The values of the expression in each 

sample relative to the standard curve were calculated.  

 

2.5 Statistical analysis  

All the treatments were set up with at least four replicates and arithmetic means + standard 

errors were calculated. The experimental data were subjected to stastical analysis. The 

significant differences among the treatments were determined using Microsoft Excel (2007) t-

test. For all analyses, a P-value of less than 5% was interpreted as statistically significant. 
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2.6 Chemicals  

Agar (Agar Agar Kobe I): Serva 11392  

Ammonium-Molybdate ((NH4)6Mo7O24): 82.3 %; Sigma  

AO = Acridine Orange (3, 6-Bis[Dimethylamine] Acridine-Base): ca. 95% purity; Sigma  

L(+)-Ascorbic acid: min. 99.7% purity (idodometrisch); Merck  

Brij 58 (Polyoxyethylen-20-cetyl ether): Sigma  

BSA (Bovines serum albumin): fatty acid free ≥ 96% Albumin; Sigma  

BTP (1, 3-Bis [tris (hydroxymethyl) methylamino] propane: min. 99 % purity (Titration); Sigma  

Coomassie Brilliant Blue G-250: Calbiochem Corp., La Jolla  

Dextran T 500: Average molecular weight = 485 000 g/mol; Sigma  

Di-potassium hydrogen phosphate (K2HPO4): p.a.; Merck  

DTT (DL-Dithiothreitol): 99 % purity (Titration); Sigma  

EGTA (Ethylene glycol-bis (ß-aminoethylether) N,N,N`,N-Tetraacitic acid): 97 % purity; Sigma  

Glycerin: 99 % purity; Sigma  

Gramicidine D: from Bacillus brevis, 1080 μg Gramicidin mg-1; Sigma  

2-Mercaptoethanol: min. 99% purity (GC); Serva  

MES (2-[N-Morpholino]ethanesulfonic acid): Free acid, min. 99.5% purity (Titration).; Serva  

Magnesium sulfate (MgSO4): p.a.; Fluka  

Na2ATP (adenosin 5´-Triphosphate, Na2-Salz): 98 % purity; Merck  

PEG 3350 (Polyethylene glycol): Average molecular weight = 3350 g/mol; Sigma  

PEP (Phosphoenol pyruvate): Boehringer Mannheim GmbH  

PMSF (Phenylmethylsulfonylfluoride): > 99 % purity (GC); Sigma  

Potassium chloride (KCl): p.a.; Fluka  

Potassium di-hydrogen phosphate (KH2PO4): p.a.; Fluka  

Potassium iodide (KI): ≥ 99.5% purity (argentometrische Titration); Fluka  

Potassium nitrate (KNO3): p.a.; Merck  

Potassium sulfate (K2SO4): p.a.; Fluka  

Pyruvate Kinase: 1 000 U; Sigma  

D (+)-Sucrose: For biochemical use; Merck  

Sodium dodecylsulfate (SDS): 99 % purity; Sigma 

Sodium azide (NaN3): p.a.; Merck  
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Sodium citrate-Dihydrate: p.a.; Merck  

Sodium-meta-arsenite (NaAsO2): min.99 % purity; Sigma  

Sodium molybdate (Na2MoO4): p.a.; Merck  

Sodium orthovanadate (Na3VO4): min. 95 % purity; Sigma  

Sodium silicate (Na2SiO3); Merck 
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3 RESULTS 

3.1 Effect of boron on growth of maize 

In order to investigate the effect of B on plant growth, plants were grown in B-deficient 

and B-sufficient nutrient medium in different treatments.  After 21 d of growth plants were 

harvested. Before harvesting, plant height and leaf area of various leaves were measured. Plants 

were separated into three different parts: root, old shoot (portion below 4th leaf blade) and young 

shoot (portion with 4th leaf blade and above), and fresh weight of plant root and shoot was 

recorded. Different plants parts were oven-dried and dried mass of plants was measured. The 

results show that application of B in nutrient medium affected the plant growth (Figure 3.1). The 

plants grown in boron-deficient nutrient medium showed B deficiency symptoms in young 

growing leaves as shown in Figure 3.1. These include narrow white stripes along the length of 

the younger leaves. 

             

Figure 3.1: Effect of boron on growth of Zea mays cv. Amadeo. Plants had been grown in nutrient 

solution without boron (B-) and with 10 µM boron (B+). 

3.1.1 Effects of boron on maize plant height and leaf area of young growing leaves 

Boron supply in the nutrient medium increased all plant growth parameters. Plants 

supplied with B in nutrient medium significantly increased the plant height in comparison to the 

   B-    B+ 
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plants grown in B-deficient medium(Figure 3.2A). Boron did not show any effect on the 

expansion of older leaves (leaves no. 2,3,4 and 5). The leaf area of sixth and seventh leaf was 

significantly increased by application of boron in nutrient solution ( Figure 3.2B). 

 

Figure 3.2: Effect of boron on plant height and leaf area of Zea mays cv. Amadeo. Plants had been grown 

in nutrient solution with boron (B+) and without boron (B-). Values are the means of four replicates + 

standard error. 
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3.1.2 Effects of boron on fresh and dry mass of maize shoot and root 

The results show that B application in the nutrient soution increased the root and shoot 

biomass. The plants supplied with B in nutrient medium produced higher biomass as compared 

to the plants grown without  B supply in nutrient medium and this increase was significant in  

young shoot part (Figure 3A and B). 

 

 

Figure 3.3: Effect of boron on plant fresh weight (A) and dry weight (B) of Zea mays cv. Amadeo. Plants 
had been grown in nutrient solution with boron (B+) and without boron (B-). Values are the means of four 
replicates + standard error. 
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3.1.3 Effects of boron in nutrient solution on boron concentration in maize 

To determine the B concentration the azomethine-H colorimetric method was used. The 

data presented in Figure 3.4 show that B supply in the nutrient medium resulted in higher B 

concentration in the shoot, and this increase was more pronounced in the young shoot. However, 

plants grown without exogenous supply of B in nutrient medium also contained substantial 

amount of B in the plant tissues but this concentration was below the critical concentration of B 

required for maize shoot. In case of root tissues no differences were found in both treatments 

(Figure 3.4). 

 

 

Figure 3.4: Effect of boron supply in nutrient medium on boron concentration in maize shoots (young 

and old). Plants had been grown in nutrient solution with boron (B+) and without boron (B-). Dotted line 

shows the critical range of boron concentration for maize shoots. Values are the means of four replicates 

+ standard error. 
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3.2 Role of boron in plasma membrane H
+
-ATPase characteristics 

3.2.1 Effects of boron supply in nutrient solution on the purity of plasma membrane 

 vesicles isolated from maize shoots and roots 

In order to investigate the role of B in H+-ATPase activity, plasma membranes were 

isolated with two phase-partitioning from maize roots and shoots grown under boron-deficient 

(B-) and boron-sufficient (B+) conditions. To avoid an underestimation of the enzyme activity 

due to  contamination by other endoplasmic membrane phosphatases, we analyzed the ATPase 

hydrolytic activity at pH 6.5  in the presence of  nitrate, azide, molybdate, and vanadate, the 

inhibitors of tonoplast H+-ATPase, mitochondrial H+-ATPase, nonspecific phosphatases, and 

plasma membrane H+-ATPase (Yan et al., 1998). The inhibitor-sensitive ATPase hydrolytic 

activity of each membrane fraction was calculated by subtracting the ATPase hydrolytic activity 

in the presence of specific inhibitors from the activity without any inhibitor. The summary of 

ATPase specific activities is presented in Figure 3.5. The ATPase activity showed a negligible 

inhibitory effect to azide in all membrane fractions, while   the nitrate-sensitive activity was 

slightly increased in shoot vesicles due to the presence of extra potassium in the form of KNO3. 

On the other hand, the membrane fraction showed about 80% (in roots) and 85% (in shoots) 

sensitivity to vanadate. Boron supply in the nutrient solution during the plant cultivation did not 

affect the membrane purity significantly. However, the membrane fractions showed a slight 

sensitivity to molybdate, which indicates the presence of unspecific acid phasphatases (Widell 

and Larsson, 1990). Therefore, to exclude the contamination effect of all non-specific 

phosphatases, all analysis of ATPase activity were carried out in the presence of 1 mM 

molybdate along with 100 mM nitrate and 1 mM azide. 
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Figure 3.5: Inhibitor-sensitive ATPase hydrolytic activity associated with plasma membranes isolated 

from maize shoots (A) and roots (B).  Specific inhibitors were used as markers of tonoplast (nitrate), 

mitochondrial (azide), acid phosphatase (molybdate), and plasmalemma (vanadate) origin.  Assays were 

conducted at 30°C. The inhibitor-sensitive activity was calculated by subtracting the ATP hydrolytic 

activity in the presence of inhibitor from the activity of the control. The values represent means ± SE 

(percentage relative to control) of four independent experiments. 
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3.3.2 Effect of boron nutrition on hydrolytic activity of plasma membrane H
+
-ATPase 

isolated from roots and shoots 

To determine the effect of B on plasma membrane H+-ATPase, the hydrolytic activity 

was measured at pH 6.5. Hydrolytic activity of plasma membrane H+-ATPase was determined as 

hydrolysis of ATP and subsequent release of inorganic phosphate per unit time. Boron 

application in nutrient medium did not change the hydrolytic activity in vesicles isolated from 

maize root significantly (Figure 3.6B).  However, slightly increased hydrolytic activity in 

vesicles isolated from shoot treated with boron was observed, compared with plants grown 

without B (Figure 3.6A). This difference was not statistically significant. 

 

 

 

Figure 3.6:  H+-ATPase hydrolytic activity of plasma membranes isolated from maize shoots (A) and 

roots (B). Plants were grown in nutrient solution with boron (B+) and without boron (B-). Plasma 

membrane vesicles were isolated and purified from the young, developing shoots and from roots by two-

phase partitioning. Plasma membrane ATPases activities were analyzed in 30 mM BTP-MES buffer (pH 

6.5) in the presence of 1 mM molybdate, 1 mM azide, and 50 mM nitrate at 30°C. An ATP-regenerating 

system (5 mM PEP and 5 units of pyruvate kinase) was used to keep constant ATP concentrations (5 

mM) in the assay medium. Values represent means ± SE of four independent experiments. 
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3.2.3 Effect of boron on H
+
 transport activity of plasma membrane ATPase isolated from 

roots and shoots 

            In order to investigate the role of boron supply in nutrient medium on plasma membrane 

H+-ATPase transport activity, active and passive transport of H+  across the membrane were 

measured. Active transport can be characterized as initial rate of H+ pumping and maximum pH 

gradient, whereas passive transport was measured as passive efflux of H+ from vesicles.  

 

 

Figure 3.7: Comparison of active H+ transport across the plasma membrane of inside–out vesicles 

isolated from maize shoots grown in nutrient solution with boron (B+) and without boron (B-). Formation 

of the pH gradient was monitored as quenching of acridine orange at 492 nm. The assay medium 

contained 5 rnM BTB/MES (pH 6.5), 7.5 µM acridine orange, 100 mM KCI, 0.05% (w/v) Brij 58 and 50 

mg membrane protein in a final volume of 1.5 mL. After equilibration of the membrane vesicles with the 

reaction medium (at least 15 min) the reaction was initiated by the addition of Mg-ATP to give a final 

concentration of 5 mM. The reaction temperature was 25°C. For passive H+ transport, Na3VO4 (500 µM) 

was added after pH gradients of plasma-membrane vesicles had reached on equilibrium. The established 

pH gradient was completely collapsed by 5 µM gramicidin (Gram.). 

Plasma membrane H+ transport was monitored by A492 quenching of acridine orange 

(AO). Acridine orange is a weak base, which accumulates inside the vesicles on acidification and 
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consequently absorbance at 492 nm of acridine orange is decreased. After initiation of H+ 

pumping by adding 5 mM Mg-ATP to the reaction medium containing 50 µg plasma membrane 

protein, there was rapid quenching indicating rapid transport of H+, eventually reaching at a 

constant level. To determine the passive transport of H+, the pumping activity was completely 

inhibited by adding 500 µM vanadate. Furthermore, the established pH gradient was completely 

reversed by adding 5 µM gramicidin (Figure 3.7). The initial rate of H+ pumping was the 

quenching of absorbance within the first minute after activation of H+-ATPase (Figure 3.7) 

which shows active H+ influx into plasma membrane vesicles (Yan et al., 1998). Maximum 

quenching was attained 60 min after initiation of the proton pump. At this point, equilibrium was 

reached between H+ influx due to active pumping and passive efflux because of leakage, and the 

net H+ transport across the plasma membrane was zero. This parameter indicates the maximum 

pH gradient that can be created by H+-pumping activity. At assay pH 6.5, initial rate, maximum 

pH gradient and passive efflux of H+-ATPase isolated from maize roots remained the same in 

both treatments. These results show that boron supplied in the nutrient solution did not affect the 

pumping activity of plasma membrane H+-ATPase isolated from maize roots as shown in Table 

3.1. 

Table 3.1: Effect of boron on the initial rate of H+ transport into vesicles, maximum pH gradient, and 

passive H+ transport across the membrane of vesicles isolated from maize roots grown in nutrient solution 

under controlled conditions. The assay was conducted at 25 °C, pH 6.5, with 5 mM Mg-ATP 

concentrations, using 50 mg of membrane protein. The values represent means ±SE of five independent 

experiments.  

Treatments Active H
+
 transport Passive H

+
 transport 

 Initial rate of H+ pumping 
(1000∆A492 min-1) 

pH gradient 
(∆A492) 

(1000∆A492 min-1) 

B- 8.71 ± 1.02 0.075 ± 0.004 6.16 ± 0.53 

B+ 9.18 ± 0.95 0.077 ± 0.006 6.27 ± 0.80 
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Figure 3.8: Effect of   boron  on pH gradient, initial rate of H+ pumping, and  passive efflux of  H+ -

ATPase shown in A,B and C, respectively. Membrane vesicles were isolated from maize shoots treated 

with and without B in nutrient solution. Assay conditions were described in Figure 2 .Values are the 

means of five replicates + SE.  

In case of shoot vesicles, active H+ transport rate of H+-ATPase was significantly 

increased in boron-treated plants as compared to the plants grown without boron (Figure 3.8A 
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and 3.8B),  while the passive H+ transport rate was not affected by the boron supply in nutrient 

medium (Figure 3.8C).     

To conclude the overall effect of B on plasma membrane H+-ATPase, pumping efficiency 

was calculated. Pumping efficiency is ratio of active proton pumping to hydrolytic activity. This 

ratio reflects the decrease in absorbance of AO due to number of proton pumped by H+-ATPase 

per unit of ATP utilized. No significant differences were observed in pumping efficiency of 

plasma membrane H+-ATPase derived from shoots as well as roots of maize (Figure 3.9Aand B). 

 

 

Figure 3.9: Effect of boron on proton pumping efficiency of plasma membrane H+-ATPase isolated from 

maize shoots (A) and roots (B). Pumping efficiency was calculated as ratio of initial rate of H+ pumping 

to the hydrolytic activity. 
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3.2.4 Effect of in vitro boron addition on plasma membrane H
+
-ATPase hydrolytic 

activity isolated from maize shoot and root 

The results in previous experiments showed that in vivo application of B in nutrient 

medium enhanced the pumping activity of plasma membrane H+-ATPase. In order to elucidate 

the direct effect of boron on plasma membrane H+-ATPase in vitro, hydrolytic activity was 

determined by adding boric acid (pH 6.5) in the reaction medium. The results presented here 

showed that B addition in assay medium slightly decreased the hydrolytic activity of plasma 

membrane H+-ATPase (Figure 3.10). This decrease was more pronounced in the plants grown in 

the presence of boron in nutrient medium but the results are statistically non significant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: In vitro effect of boron (10 μM) on the hydrolytic activity of the plasma membrane ATPase. 

Plasma membrane vesicles were isolated from young growing maize shoots grown with and without 10 

μM boron supply in nutrient solution. An ATP-regenerating system (5 mM PEP and 5 units of pyruvate 

kinase) was used to keep constant ATP concentration (5 mM). The values represent means ± SE of four 

independent experiments. 

In case of root vesicles, the results showed that in vitro application of B did not affect the 

plasma membrane H+-ATPase hydrolytic activity (Figure 3.11). 
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Figure 3.11: In vitro effect of boron (10 μM) on the hydrolytic activity of the plasma membrane ATPase. 

Plasma membrane vesicles were isolated from young growing maize roots grown with and without 10 μM 

boron supply in nutrient solution. An ATP-regenerating system (5 mM PEP and 5 units of pyruvate 

kinase) was used to keep constant ATP concentration (5 mM). The values represent means ± SE of five 

independent experiments. 

 

3.2.5 Effect of in vitro boron addition on plasma membrane H
+
-ATPase transport activity 

isolated from maize shoot and root 

Effects of in vitro application of B on the initial rate of active proton pumping, passive 

efflux and pH gradient developed by H+-ATPase in membrane vesicles of both treatments are 

shown in Tab. 3.2. In this assay same plant material as for the results resented in Figure 3.8. 

Addition of B in the assay medium did not affect the proton extrusion by plasma membrane H+-

ATPase, which indicates that B does not directly inhibit H+-ATPase activity.  
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 Table 3.2:  In vitro effect of boron (10 μM) on H+-transport activities of the plasma membrane ATPase. 

Plasma-membrane vesicles were isolated from young growing maize shoots and roots grown with and 

without 10 μM boron supply in nutrient solution. The assay was conducted at 25 °C, pH 6.5, with 5 mM 

Mg-ATP concentrations, using 50 mg of membrane protein. Values represent means ± SE of five 

independent experiments. 

 

Treatment 

 

B in assay 

medium 

Initial rate 

(1000∆A492 min
-1

) 

pH gradient 

(∆A492) 

Passive efflux 

(1000∆A492 min
-1

) 

Root (-B) 

0 

 

10 

8.71 ± 1.02 
 

9.47 ± 0.71 

0.075 ± 0.004 
 

0.080 ± 0.005 

6.16 ± 0.53 
 

7.00 ± 0.33 

Root (+B) 

 

0 

 

10 

9.18 ± 0.95 
 

7.69 ± 0.43 

0.077 ± 0.006 
 

0.077 ± 0.007 

 
6.27 ± 0.80 

 
6.22 ± 0.97 

 

Shoot (-B) 

0 

 

10 

5.60 ± 0.51 
 

5.99 ± 0.88 

 
0.081 ± 0.004 

 
0.081 ± 0.004 

 

13.7 ± 0.94 
 

14.7 ± 1.63 

Shoot (+B) 

 

0 

 

10 

8.42 ± 1.07 
 

8.67 ± 1.46 

0.091 ± 0.003 
 

0.089 ± 0.003 

15.5 ± 1.55 
 

16.8 ± 0.73 
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3.2.6 Effect of boron on kinetic parameters of plasma membrane H
+
-ATPase isolated 

from maize leaves 

Kinetic parameters of an enzyme provide an ideal tool to study the enzyme properties. To 

study the enzyme characteristics of H+-ATPase isolated from maize leaves, hydrolytic activity 

was measured at various ATP concentrations ranging from 0 to 15 mM in the presence of a 

regeneration system at 20 and 30˚C (Figure 3.12 ). Kinetic parameters, Km and Vmax were 

calculated using the regression analysis with DynaFit (Hanstein et al., 2011). Plasma membrane 

H+-ATPase derived from the maize leaves grown under boron-sufficient condition showed 

almost the same values for km and Vmax as those grown under boron-deficient conditions. The 

result showed that boron supply in nutrient medium did not produce a significant change in 

kinetic parameters at both temperatures. 

 

 

 

Figure 3.12: Comparison of the kinetic characteristics of plasma membrane H+-ATPase from maize, 

Dependence of ATPase activity on ATP concentration. Plants were grown in nutrient solution with (B+) 

and without (-B) boron for 3 weeks. ATPase activity was analyzed in the presence of 1 mM molybdate, 1 

mM azide, and 100 mM nitrate at 30°C. The concentration of ATP was kept constant in the range of 0 to 

15 mM. Values represent means ± SE of four independent experiments. 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 

H
yd

ro
ly

ti
c 

 a
ct

iv
it

y 
 

(µ
m

o
l/

m
g/

m
in

) 

ATP (mM) 

B+ B- 



Results 
 

44 
 

 

 

Figure 3.13: Effect of boron on the kinetic characteristics of plasma membrane ATPase derived from 

maize leaves. Plants were grown in nutrient solution with (B+) and without (-B) boron for 3 weeks.  V
max 

and K
m 

were determined using ATP concentrations from 0 to 15 mM at 30°C and 30°C. An ATP-

regenerating system (5 mM PEP and 5 units of pyruvate kinase) was used to keep constant ATP 

concentrations. The values represent means ± SE of five independent experiments.  
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3.2.7 Effect of boron on turnover rate of ATP hydrolysis in plasma membrane H
+
-

ATPase isolated from maize leaves 

Various environmental conditions have been reported which can change the activity of 

plasma membrane but in many cases it was not clear whether the observed change in H+-ATPase 

show change in the amount or the turn-over rate of hydrolysis of the enzyme (Serrano,1989). To 

understand the plant response to environmental conditions, these two components should be 

identified. This study was conducted to solve this problem by determining the activation energy, 

which is related to turnover rate of hydrolysis of the enzyme and by quantifying the 

concentration of enzyme. For the determination of activation energy of plasma membrane H+-

ATPase according to Arrhenius equation, Vmax was analyzed at two different assay temperatures 

(20°C and 30°C) at optimum pH level (6.5) for each membrane fractions. In both membrane 

factions isolated from boron-deficient and boron-sufficient plants, Vmax increased by about 2.7 

times as temperature increased from 20°C to 30°C (Figure 3.13).  

 

Figure 3.14: Effect of   boron on the activation energy of  H+-ATPase calculated according to the 

Arrhenius equation.  Vmax was determined at 20°C and 30° C.  Membrane vesicles were isolated from 

maize leaves treated with and without B in nutrient solution. Values are the means of four replicates + SE.  
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As a consequence, boron application did not change the activation energy (Figure3.14). 

These results indicate that plasma membrane H+- ATPase has a comparable turnover rate of ATP 

hydrolysis in boron-deficient and boron-sufficient plants.   

 

3.3 Effect of boron on the relative transcription of H
+
ATPase isoforms 

In order to understand the mechanism responsible for the change in H+ pumping activity 

of plasma membrane in maize shoot grown in the presence of boron, various isoforms of the 

MHA gene were analyzed. The total RNA was extracted from the young leaves maize cultivated 

in boron-sufficient medium and boron-deficient medium. The purified mRNA was reversely 

transcribed into cDNA and the relative gene transcription of plasma membrane H+-ATPase was 

quantified by means of Real Time-PCR using isoforms-specific primers, MHA1, MHA2, MHA3 

and MHA4. In addition, to investigate changes in transcription of all isoforms of H+-ATPase in 

total, family-specific primers were also used. The transcription of mRNA for control treatment 

was defined as 1 and mRNA transcription in boron-treated plants was compared with that of 

control and defined as relative transcription. Primer-specific amplification was confirmed with 

melting curve analysis and was further verified by running the product on agarose gel after RT-

PCR. In the present study, we were not able to detect the amplification for MHA2. There were 

single-peak melting curves for actin and MHA1, MHA3nd MHAfam as shown in Figure 3.15, 

indicating the amplification of single-gene products that were further confirmed using gel 

electrophoresis. MHA4 showed double-constant peak (data not shown), indicating the 

contamination or amplification of more than one product due to non-specificity of primers. 

However, a single distinct band for MHA4 can be seen on gel that clearly means primers were 

highly specific for the gene of interest and that the nature of the product itself responsible for the 

double peak signal. Similarly, no product was amplified in the NTC excluding the possibility of 

contamination. This double peak persists even when different annealing temperature, different 

primers and different cDNA concentrations were tested (data not shown). It has been suggested 

by Weis et al. (2010) that the annealing of sense/sense or antisense/antisense primer strands or 

the formation of hairpins could be responsible for the observation. These products/hairpins may 

have lower melting temperatures than the antisense/sense hybrids and may have contributed to 

the second peak. As the presence of a double peak in the melting-curve analysis would 
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compromise the accuracy of results, the data for MHA4 were not subjected to further analysis. 

The results or RT-PCR analysis show that plants supplied with boron in nutrient solution 

increased transcription of MHAfam gene and MHA3. The transcription of MHA3 significantly 

increased and MHAfam also showed a similar increasing trend in shoot tissues. However, the 

transcription level of MHA1 remained un-changed. 

 

 

            

         

 

Figure 3.15: Representative melting-curve analysis for the amplicons of  actin, MHA1, MHA3 and  

MHAfam. Melting curves were obtained in a Light Cycler using SYBR Green fluorescence (dF/dT) 

versus temperature (°C). 
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Figure 3.16: Relative change in transcription of plasma membrane H+-ATPases (MHAfam) and specific 

isoforms (MHA1 and MHA3) from maize young shoots. Plants were grown with and without 10 µM 

Boron supply in nutrient solution for 21 d. RNA was isolated from young leaves and used to prepare 

cDNA that was further used as a template for real-time PCR. SYBR Green was used as fluorescence 

probe in Rotor Gene cycler. Relative expression intensity was calculated using the Pfaffl equation in 

comparison to the actin as internal control. Values are the means of four replicates ± SE. 

 

3.4 Effect of boron on concentration of plasma membrane H
+
-ATPase in maize leaves 

The concentration of plasma membrane H+-ATPase was measured using the western blot 

technique. 10 g of membrane protein were separated by means of SDS-PAGE on 10% 

acrylamide gel. Immunoblotting with a polyclonal antibody raised against the central part of 

plant H+-ATPase was used to determine the concentration of ATPase enzyme. For the 

quantitative comparison, the intensity and band area of signals was measured by setting control 

as 100% in four independent experiments.  The band intensity of plasma membrane H+-ATPase 

isolated from maize shoot cultivated in the presence of boron was increased by 45% as compared 

to maize shoot grown in boron deficient medium boron deficient medium. 
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Figure 3.17: Immuno-detection of plasma membrane H+-ATPase (97 kD) by Western-blotting. M 

abbreviates for standard marker of a known molecular mass. For separation of plasmalemma proteins, 

membrane vesicles (10 μg membrane proteins) were loaded onto polyacrylamide gel. For Western-blot 

analysis, after separation on the gel the membrane proteins were transferred to polyvinylidene difluoride 

(PVDF) membrane filter. Membrane blots were incubated with a polyclonal antibody raised against the 

central portion of AHA2 (amino acids 340-650) and visualized with a secondary antibody (alkaline 

phosphatase-conjugated anti-rabbit IgG, Sigma). 
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4 DISCUSSION 

4.1 Boron supply in nutrient medium improves plant growth 

Boron (B) is one of the seven micronutrients required for normal growth of plants. In 

earth’s crust, boron is usually present at an average concentration of 10 ppm. However, the range 

of B concentrations in the soil solution, in which plants suffer neither toxicities nor deficiencies, 

is very narrow. The essentiality of B for plant growth was first described in the beginning of the 

20th century, and nowadays it is widely accepted that B  is an essential nutrient for all vascular 

plants (Blevins and Lukaszewski 1998). As reviewed by Marschner (1995), Cakmak and 

Römheld (1997), and Brown et al. (2002), intensive research activities have been done to 

characterize the physiological and biological role of B in plant growth and development. Various 

authors have proposed that B is involved in several processes including cell-wall structure and 

function, maintaining the membrane function and integrity, and supporting the metabolic 

activities in the plants (Brown et al. 2002). To the date, the only well described physiological 

role for B in plants involves cross-linking of the pectin rhamnogalacturonan II (RGII) in the cell 

wall (O’Neill et al. 2004).  Due to the rapidity and the variety of symptoms caused by B 

deficiency, determining the primary function of B in plants is a great challenge in plant biology 

(Blevins and Lukaszewski 1998). 

Several reports in the literature indicate that under B-deficient conditions plants showed 

several biochemical, anatomical, and physiological aberrations (Marschner 1995). Boron 

deficiency is the most common and widespread micronutrient problem globally (Alloway 2008). 

One significant feature of B deficiency that contributes to its importance in agricultural 

production is that a deficiency of B inhibits growth of tissues, specifically reproductive 

structures, which represent 80% of the world’s agricultural product. Boron deficiency causes a 

wide range of anatomical symptoms including the retardation of apical and extension growth, 

cracking of stems and petioles, necrosis of epical buds, abortion of flower initials, and shedding 

of fruits (Goldbach 1997; Li et al. 2001; Brown et al. 2002; Silve et al. 2008). Deficiency 

symptoms of B vary among crop species, but normally occur in the young growing points or 

flower and fruiting parts of the plant. Symptoms are characterized by reduced or retarded 

elongation of apical meristems (Saleem et al. 2011). In the present study, B deficiency symptoms 
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were also observed in the young growing leaves of the plant grown under B deficient medium 

(Figure 3.1). This includes narrow transparent stripes along the length of the leaves. 

Furthermore, Lordkaew et al. (2010) reported that maize plants grown in B-deficient medium 

exhibited similar B deficiency symptoms of “narrow white to transparent lengthwise streaks on 

young leaves” and Saleem et al. (2011) also reported similar symptoms in maize plants.  Several 

other studies reported that B deficiency symptoms in some other plant species also occurred in 

young growing tissues. For instance in canola, the young leaves of B-deficient plants were 

stunted and curled upwards at the margins, but the older leaves remain green at the early 

vegetative stage (Asad et al. 2000) and Blamey et al. (1987) also showed B deficiency symptoms 

in sunflower appeared in younger leaf blades which become hardened, necrotic and brownish in 

color.  

These results are consistent with the findings of the current study that B application in 

nutrient medium significantly increased the growth of only young growing plant tissues (Figure 

3.2 and 3.3). One of the possible explanations for these specific effects of B on young growing 

tissues could be that the endogenous B of seeds was depleted with the passage of time, and B 

present in nutrient solution as a contaminant might not be enough to maintain the plant growth. 

Therefore, these new plant parts were obviously not able to acquire sufficient B for growth, 

because no external B sources were present, on which the apical growth in plants is mainly 

dependent. As B is immobile in the phloem, a lack of movement from old to young tissues could 

explain symptoms specially occurring in young tissues. 

In addition, the results of the present study show that exogenous B supply in the nutrient 

medium increased B concentration in shoots, whereas the B concentration in root tissues of the 

B-deficient plants remained unchanged. From these results, it suggested that in the plants grown 

under B-deficient conditions the root retained most of the limited B reserves, while the B 

availability for the above-ground part was limited. Some other studies in the literature have 

demonstrated that during the short-term B deficiency, the concentration of B in roots was less 

affected than that in shoots (Li et al. 2001; Dannel et al. 1998). These authors suggested that a 

priority was given to the below-ground plant parts concerning maintenance and growth under 

limited nutrient conditions. Therefore, the limited amount of nutrients absorbed from the soil is 

mostly allocated to the root tissues to meet growth requirements. Similarly, Camacho-Christobal 
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et al. (2002) showed that B concentration in the leaves decreased drastically under B deficiency, 

whereas there was no significant decrease observed in the B concentration of roots during the B-

deficient treatment in tobacco plants. 

Although a considerable amount of B is tightly bound to the cell wall as an insoluble B 

pool, there is some B in the cell sap as a soluble B pool, which could be directly available for 

possible physiological functions in the cell (Dannel et al. 1998). Li et al. (2001) reported that B 

concentration in cell sap was affected by B deficiency. From this the authors assumed that this 

bound B plays a structural role in the cell wall and does not function as a storage pool for further 

use in the plant. Moreover, transport of B to the shoot seems to be dependent on B concentration 

in root symplasm (Pfeffer et al., 1999). Therefore, low B concentrations in the symplasm may 

also lead to impairment of plant growth, especially in the shoot apex.  

According to Dell and Huang (1997) in vascular plants, B is transported from the roots to 

the shoots and leaves through the xylem with the transpiration flow, and accumulates in growing 

apical tissues. Once B reaches the leaves it becomes fixed in the apoplast. Because its re-

translocation is restricted, B is usually termed phloem-immobile (Blevins and Lukaszewski 

1998). 

A number of reviews describe that higher plants showed inhibition or cessation in the 

elongation rate of growing shoot in response to the limited external B supply (Shelp 1993; 

Marschner 1995; Dell and Haung 1997). As shown in this study, B supply in the nutrient 

medium enhanced the plant biomass as well as expansion growth characterized as plant height 

and leaf area of the young growing (Figure 3.2). In agreement with these results, various studies 

showed that B deficiency inhibits the vegetative growth and yield in plant species such as maize 

(Lordkaew et al. 2010), castor bean (Silva et al. 2008), and  pea (Li et al. 2001). 

The mechanism how B can contribute to plant growth is poorly understood, although it 

has been proposed that inadequate B supply seems to inhibit cell wall expansion. Plant cell walls 

consist of rigid microfibrils with highly tensile strength of cellulose molecules embedded in a 

gel-like matrix composed of hemicellulose, pectin, lignin and protein (Becker and Deamer1991; 

Brett and Waldron 1996). The primary cell wall has properties of reversible elasticity and 
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irreversible plasticity, which contribute to the extensibility and allowing the wall to expand in a 

plastic manner in response to cell growth.  Boron is mainly localized in the cell wall (Hu and 

Brown 1994; Hu et al. 1996) and cross-links with rhamnogalacturonan II Kobayashi et al. 1996; 

O’Neill et al. 2001), and considered to be an important factor of cell wall extensibility (Hu and 

Brown 1994; Findeklee and Goldbach 1996). The rapid breaking and reformation of these acid-

labile, borate-ester bonds might facilitate the cell growth (Hu and Brown 1994). Furthermore, a 

short-term B deprivation down-regulates the transcription of several cell wall-modifying 

enzymes (Camacho-Cristobal et al. 2008), which influences the arrangement of the xyloglucan 

microfibrillar network and, consequently alters the tensile properties of cell wall (Ryden et al. 

2003). 

Boron deficiency affects the concentration of plant growth regulators in the plant cell, 

which could be responsible for the decline in elongation growth and apical dominance under B-

deficient conditions. For instance, B deprivation reduced cytokinin level as well as the indole 

acetic acid export out of the shoot apex (Li et al. 2001).  

4.2 Effect of boron on plasma membrane H
+
-ATPase in maize shoots and roots  

In accordance with the acid growth theory, auxin activates the plasma membrane H+-

ATPase, which lowers the apoplastic pH. The apoplast acidification induces cell wall loosening 

which contributes to the cellular expansion (Rayle and Cleland 1992; Cleland 1977). Cell-wall 

extensibility is an important factor responsible for expansion growth, which suggested that 

increased shoot growth may be attributed to a change in cell-wall extensibility (Cosgrove 2005). 

Furthermore, lower apoplastic pH activates some of secondary active transporters that are 

involved in nutrient uptake such as potassium and chloride. These solutes act as osmotica and 

trigger water uptake. The resulting turgor pressure exerts pressure on the cell wall leads to 

increase in expansion growth. 

In the current investigations, it was hypothesized that the B-mediated increase in maize 

growth was attributed to an increase in the activity of plasma membrane H+-ATPase. To 

characterize the activities of the plasma membrane ATPase, the plasma membrane vesicles were 

isolated from maize shoots and roots grown with or without B supply in nutrient solution.  To 
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study the characteristics of plasma membrane H+-ATPase, it is very important to have pure 

membrane vesicles. In the current study, our results (Figure 3.5) showed that application of B in 

nutrient solution had no affect on the purity of the membrane vesicles. The membrane vesicles 

isolated from B-deficient (B-) and B-sufficient (B+) maize shoots showed a similar vanadate-

sensitive activity (almost 85%) and almost no sensitivity to nitrate and azide. Similar results 

were shown for root vesicles. However, 15-20% inhibition in ATPase hydrolytic activity was 

observed by the addition of molybdate in the assay medium which indicate the presence of some 

non-specific acid phosphatases in plasma membrane vesicles (Briskin and Poole 1983; Yan et al. 

2002). It was concluded from the results that the isolated membrane fractions were free of 

vacuolar, mitochondrial, and chloroplastic membranes with very small contamination of acid 

phosphatases and highly enriched with plasma membrane vesicles, and can be used for further 

characterization of plasma membrane H+-ATPases. 

4.2.1 Direct interaction of boron with the ATPase molecule 

It is well known that boric acid has the ability to form borate-diester bond with the 

plasma membrane-localized hydroxyl-containing compounds such as glycoproteins and 

glycolipid (Goldbach and Wimmer 2007). It was suggested that, based on formation of B cross 

links with membrane molecules, B could play a specific role in membrane physical satiability 

which in turns can influence the conformation of membrane-localized enzymes and ultimately 

change the  activity of enzymes (Brown et al. 2002). Wimmer et al. (2009) have demonstrated B 

binding to the β-subunit of mitochondrial ATP synthase. As plasma membrane ATPases fulfill 

several physiological functions in the plant cell and are high ATP consumers they need a tight 

regulation of activity. The literature shows that phosphorylation of plasma membrane H+-

ATPase may activate or may deactivate the enzyme (Trofimova et al. 1997; Fuglsang et al 2007). 

Dephosphorylation may also activate the enzyme (Desbrosses et al. 1998). It was therefore 

hypothesized that B directly interacting with enzymes cause conformational changes in the H+-

ATPase, which affects the enzyme activity.  

In order to investigate the direct effect of B on the plasma membrane H+-ATPase, 

hydrolytic and pumping activities of enzyme were determined under in vitro conditions by 

adding the boric acid to the assay medium. The results in the current study show that B addition 
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to the assay medium did not influence the hydrolytic activity as well as pumping activity of 

plasma membrane H+-ATPase isolated from maize shoot (Figure 3.10). Similar results were 

found in the case of root vesicles (Figure 3.11). Little information is available in literature related 

to the in vitro effect of B on the plasma membrane ATPase activity. Roldan et al. (1992) showed 

in vitro B addition did not affect the hydrolytic ATPase activity in sunflower root. However, they 

found inhibitory effects of B on vanadate-sensitive ATP-dependent H+ transport. The lack of an 

in vitro effect of B on hydrolytic and proton pumping activity of plasma membrane ATPase 

suggests that plasma membrane H+-ATPase activity was not affected by direct interaction of B 

with the plasma membrane ATPase molecule.  

4.2.2 Boron application in nutrient medium enhances the plasma membrane H
+
-ATPase 

activity by a change in expression of an efficient isoform 

These experiments were performed to investigate the role of B supply in the nutrient 

medium on plasma membrane H+-ATPase. The electrochemical gradient created by plasma 

membrane H+-ATPase is responsible to drive ion and metabolite transport across the membrane 

(Sondergaard et al. 2004). Plasma membrane ATPase activity was characterized on the basis of 

ATP hydrolytic activity and proton pumping activity. Plasma membrane H+-ATPase 

characteristics were studied by investigating the changes in enzyme properties such as affinity 

towards the substrate, turnover rate, initial rate of  H+  pumping and maintenance of the pH 

gradient across the vesicles membrane, transcription of different isoforms and changes in the 

enzyme concentrations.  

In this study, the results show that B supply in the nutrient medium did not change the 

hydrolytic activity of plasma membrane H+-ATPase isolated from maize roots (Figure 3.6B). 

These results are in contrast to the observations of Pollard et al. (1977) who showed that activity 

of the K+-stimulated ATPase in B-deficient maize roots was considerably lower than in control 

plants and Roldan et al. (1992) reported that inadequate boron concentration in the growth 

medium led to inhibition of ATP-dependent proton pumping in sunflower root vesicles. 

Furthermore, in the present study results show similar values for the initial rate of H+ pumping, 

maximum pH gradient, and passive efflux of proton in the plasma-membrane vesicles isolated 

from roots of the plants treated with and without B in nutrient medium. From these results it can 
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be concluded that B supply in nutrient medium had no effect on hydrolytic and pumping activity 

of plasma membrane H+-ATPase in root vesicles (Figure 3.6B and Table 3.1) because B 

concentration in roots did not differ (Figure 3.4).   

For the maize shoots, the results showed that B supply in the nutrient medium 

significantly increased the initial rate of proton pumping of plasma membrane H+-ATPase 

(Figure 3.8). However, B did not significantly affect the plasma membrane H+-ATPase 

hydrolytic activity of the shoot vesicles (Figure 3.6A).  These observations are in line with the 

findings of Obermeyer et al. (1996) that B stimulated the plasma membrane H+-ATPase 

hydrolysis and H+ transport activity in ungerminated pollen grains of lily. However, pumping 

efficiency of H+-ATPase remained unchanged in B treated and non-treated plants (Figure 3.9A) 

which is contradictory to the previous results. The possible reason for this could be that 

hydrolytic activity showed increasing trend in the B-treated plants but this increase was not 

statistically significant. Moreover, to gain deeper insight to properties of plasma membrane 

ATPase of maize shoot, the kinetic parameters (Km and Vmax) of the enzyme were analyzed. It 

was found that B supply in the nutrient solution had no effect on the Km and Vmax of hydrolytic 

activity of the plasma membrane H+-ATPase. 

The question arises by which mechanism B enhances the H+-ATPase pumping in maize 

shoots vesicles. The possible mechanisms involved in plasma membrane H+-ATPase regulation 

may include modulation of turnover rate of the enzyme molecule or increased number of 

enzymes per unit membrane. To clarify, whether the observed increase in pumping activity of 

plasma membrane H+-ATPase isolates from maize leaves cultivated in boron-sufficient medium 

reflects the modulation of either amount of enzyme or the turnover rate of hydrolysis of enzyme, 

the activation energy of the plasma membrane was measured. The results show that no change 

was observed in activation energy of the plasma membrane H+-ATPase under B- and B+ 

treatments (Figure 3.14). The increase in plasma membrane pumping activity in B-treated plants 

may thus be attributed to higher abundance of H+-ATPase molecules in the membrane vesicles, 

not to higher substrate turnover rate per mole of enzyme. This hypothesis was further confirmed 

by immune-detection of the enzyme concentration. The result found that membrane fractions 

isolated from the B-supplied shoots showed 40% more enzyme.  
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Plants supplied with B in nutrient medium showed an increase in enzyme concentration 

in membrane fractions, which may by be due to higher transcription of plasma membrane H+-

ATPase or increased synthesis of membrane protein. As described earlier auxin treatment may 

increase the H+-ATPase protein in plasma membrane by increasing the membrane flow from 

endoplasmic reticulum to plasma membranes (Hager et al. 1991) and may induce a higher H+-

ATPase mRNA transcription (Frias et al. 1996). It was reported in literature that B is involved in 

auxin metabolism (Bohnsack and Albert 1977; Blevins and Lukaszewski 1998) which may affect 

the transcription level of plasma membrane H+-ATPase. Several studies reported that B nutrition 

induced changes at the transcriptional level of various genes involved in various physiological 

processes (Camacho-Cristobel et al. 2011). Thus B deficiency led to a decline in the level of 

plasma membrane H+-ATPase (PMA2) transcript in tobacco roots (Camacho-Cristobel et al. 

2007). The increase in the initial rate of proton pumping activity (Figure 3.8A) of ATPase may 

be due to a change in the expression of some specific H+-ATPase isoform.   

Plant plasma membrane H+-ATPases is encoded by a multigene family and on the basis 

of gene structure, it can be furthered divided into five subfamilies (Oufattole et al. 2000; Gaxiola 

et al. 2007). To date 9-12 genes have been identified in different plant species as in tobacco 9 

genes (Oufattole et al. 2000), in Arabidopsis 12 genes (Palmgren 2001), and in rice 10 genes 

(Baxter et al. 2003). However, in maize only four H+-ATPase isoforms (MHA1, MHA2, MHA3 

and MHA4) have been identified (Jin and Bennetzen 1994; Frias et al. 1996; Santi et al. 2003; 

Zörb et al. 2005). Among these isoforms, MHA1 placed in subfamily I while MHA2, MHA3, 

MHA4 belong to subfamily II (Santi et al. 2003).  

The expressed isoforms can vary according to cell or tissue type and by developmental 

stage or environmental stimuli. The literature showed that isoforms may differ in their enzymatic 

characteristics such as affinity towards substrate, turnover rate, optimum pH, and sensitivity to 

vanadate (Palmgren and Christensen 1994; Luo et al. 1999). For example, comparison of three 

Arabidopsis isoforms namely AHA1, AHA2, and AHA3 revealed that AHA3 had a ten-fold higher 

Km value for ATP hydrolysis and three-fold higher sensitivity to vanadate (Palmgren and 

Christensen 1994).   
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The transcriptional regulation of plasma membrane H+-ATPases in young growing shoots 

tissues by B treatment was determined using isoform-specific primers namely MHA1, MHA2, 

MHA3 and MHA4 as well as family-specific primers for H+-ATPase (MHAfam), which should 

cover the transcription for the entire multigene family for the plasma membrane H+-ATPase 

(Santi et al. 2003; Zörb et al. 2005). The data show that the relative transcription of MHA1 was 

not changed in maize leaves. On the other hand, transcription of MHA3 was increased 

significantly in B treated plants (Figure 3.16).  Moreover, the relative transcription of the H+-

ATPase family showed a similar trend as MHA3. These results are in line with the findings of 

Shahzad (2011) who described that down-regulation of MHA3 caused a significant decrease in 

proton pumping. These results indicate that MHA3 is a major contributor in expression of the 

MHAfam gene. The up-regulation of MHA3 coincided with increase in proton pumping of plasma 

membrane H+-ATPase in maize leaves cultivated in the presence of B in the nutrient medium 

(Figure 3.8A). 
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5 SUMMARY 

The essentiality of boron (B) for plant growth was first described in the beginning of the 

20th century, and nowadays it is widely known that B is an essential nutrient for all vascular 

plants (Blevins and Lukaszewski 1998). Intensive research activities have been done to 

characterize the physiological role of B in plant growth and development. Various authors have 

proposed that B is implicated in several processes including cell-wall structure and function, 

maintaining the membrane function and integrity, and supporting the metabolic activities in the 

plants (Brown et al. 2002). To date, the only well described physiological role for B in plants 

involves cross-linking of the pectin rhamnogalacturonan II (RGII) in the cell wall (O’Neill et al. 

2004).  Due to the rapidity and the variety of symptoms caused by B deficiency, determining the 

primary function of B in plants is a great challenge in plant biology (Blevins and Lukaszewski 

1998). Several reports in literature demonstrated that the presence B in the root medium 

increased plant growth. B seems to be involved in cell-wall expansion. As B is mainly localized 

in the cell wall (Hu and Brown 1994; Hu et al. 1996) and cross-links with rhamnogalacturonan II 

Kobayashi et al. 1996; O’Neill et al. 2001), and it is considered an important factor of cell-wall 

extensibility (Hu and Brown 1994; Findeklee and Goldbach 1996). Plasma membrane H+-

ATPase is a master enzyme and it extrudes H+ out of the cytosol and creates an electrochemical 

H+ gradient. The plasma membrane H+-ATPase-generated H+ gradient is responsible for cell-

wall extensibility and expansion growth. Moreover, the electrochemical H+ gradient energizes 

various proteins involved in nutrient and solute uptake and translocation. It is likely to assume 

that the B-induced stimulation of plant growth is caused by changes in plasma membrane H+-

ATPase activity. 

To elucidate the role of B in maize growth and its contribution to the control of plasma 

membrane H+-ATPase in roots and shoots the following hypotheses were tested. 1) Exogenously 

B supply to the nutrient medium improves maize (Zea mays L cv. Amadeo) growth under normal 

growth conditions. 2) Changes in plasma membrane H+-ATPase are responsible for the B-

induced maize growth. 3) Boron modifies plasma membrane H+-ATPase by direct interaction of 

B with the ATPase molecule. 4) Boron-induced transcriptional modification of H+-ATPase may 

contribute to enhance the activity of plasma membrane H+-ATPase. 
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The results are summarized as: 

1. Boron application in the nutrient medium had a positive influence on plant growth. It 

improved the plant biomass as well as expansion growth. The results showed that the 

effect of B is more pronounced in young growing leaves. Furthermore, B 

concentration in shoot of maize plants was increased by the addition in nutrient 

medium. 

2. Boron addition in the nutrition solution significantly increased the initial rate of 

proton pumping of the plasma membrane H+-ATPase isolated from maize shoots. 

Boron nutrition also showed increasing trend in hydrolytic activity of plasma 

membrane H+-ATPase. Moreover, B addition in nutrition medium enhanced the 

transcription as well as translation of plasma membrane H+-ATPase. Boron-treated 

plants showed 40% increased enzyme concentration in shoots and higher transcription 

on MHA3 and MHAfam as compared to the B-deficient plants. 

3. In vitro addition of B did not change the hydrolytic and pumping activities of plasma 

membrane H+-ATPase, which indicates that B had no direct interaction of B with the 

plasma membrane ATPase molecule. 
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6 ZUSAMMENFASSUNG 

Die Essentialität von Bor (B) für das Pflanzenwachstum wurde erstmalig zu Beginn des 20. 

Jahrhunderts beschrieben und heutzutage ist das Wissen weit verbreitet, dass B ein essentieller 

Nährstoff für alle Gefäßpflanzen ist (Blevins und Lukaszewski 1998). Intensive 

Forschungsarbeit wurde durchgeführt, um die physiologische Rolle von B beim 

Pflanzenwachstum und bei der Pflanzenentwicklung zu charakterisieren. Verschiedene Autoren 

haben die Behauptung aufgestellt, dass B in verschiedenen Prozessen beteiligt ist, darunter der 

Aufbau der Zellwand, das Aufrechterhalten der Membranfunktion und –integrität, sowie 

unterstützend bei metabolischen Aktivitäten in Pflanzen wirkt (Brown et al. 2002). Bisher ist nur 

eine physiologische Rolle von B in Pflanzen gut beschrieben, die Beteiligung an der 

Quervernetzung des Pektins Rhamnogalacturonsäure II (RGII) in der Zellwand (O´Neill et al. 

2004). Wegen der Schnelligkeit und der Vielfältigkeit von Symptomen, die durch B-Mangel 

verursacht werden, ist es eine große Herausforderung für die Pflanzenbiologie die 

Primärfunktion von B zu bestimmen (Blevins und Lukaszewski 1998). Verschieden Berichte in 

der Literatur zeigen, dass die Präsenz von B im Wurzelmedium zu einem erhöhten Wachstum 

führt. B scheint außerdem an der Zellwandexpansion beteiligt zu sein. Da B hauptsächlich in der 

Zellwand (Hu und Brown 1994; Hu et al. 1996) und den Vernetzungen mit RGII (Kobayashi et 

al. 1996; O´Neill et al. 2001) zu finden ist, wird erwogen, dass B einen wichtigen Faktor für die 

Zellwandextensibilität darstellt (Hu und Brown 1994; Findeklee und Goldbach 1996). Die 

Plasmamembran H+-ATPase ist ein Masterenzym im Hinblick auf Nährstoffaufnahme und 

Wachstum. Es extrudiert H+ aus dem Cytosol und baut einen elektrochemischen H+-Gradienten 

auf. Der von der H+-ATPase generierte H+-Gradient ist verantwortlich für die 

Zellwandextensibilität und das Expansionswachstum. Des Weiteren führt der elektrochemische 

H+-Gradient verschiedenen Transportern Energie zu, die an der Aufnahme von Nähr- und 

gelösten Stoffen und deren Translokation beteiligt sind. Es ist anzunehmen, dass die B-induzierte 

Stimulation von Pflanzenwachstum durch Änderungen der Plasmamembran H+-ATPase-

Aktivität verursacht wird.  

Um die Rolle von B für das Wachstum von Mais und seine Beteiligung an der Kontrolle der 

Plasmamembran H+-ATPase in der Wurzel und im Spross aufzuklären, wurden folgende 

Hypothesen getestet. 1) Exogene Zuführung von B in die Nährlösung verbessert das Wachstum 
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von Mais (Zea mays L cv. Amadeo) unter normalen Wachstumsbedingungen. 2) Änderungen der 

Plasmamembran H+-ATPase-Aktivität sind verantwortlich für B-induziertes Maiswachstums. 3) 

Bor modifiziert die Plasmamembran H+-ATPase durch direkte Interaktion von B mit dem 

ATPase-Molekül. 4) Bor-induzierte transkriptionale Modifikation der H+-ATPase könnte dazu 

beitragen, die Aktivität der Plasmamembran H+-ATPase zu verstärken. 

Die Ergebnisse werden wie folgt zusammengefasst: 

1. Die Applikation von Bor in das Nährstoffmedium hatte einen positiven Einfluss auf das 

Pflanzenwachstum. Es verbesserte sowohl die Pflanzenbiomasse als auch das 

Streckungswachstum. Die Ergebnisse zeigen, dass der Effekt von B ausgeprägter in den 

jungen Blättern ist. Des Weiteren wurde die B-Konzentration im Spross der Maispflanze 

durch die Zugabe in die Nährlösung erhöht. 

2. Die Zugabe von Bor in die Nährlösung erhöhte signifikant die Pumpaktivität der 

Plasmamembran H+-ATPase, die aus dem Maisspross isoliert wurde. Die Borernährung 

bewirkte außerdem einen ansteigenden Trend in der hydrolytischen Aktivität der 

Plasmamembran H+-ATPase. Des Weiteren verstärkte die Borgabe in die Nährlösung die 

Transkription sowie die Konzentration der Plasmamembran H+-ATPase. Die mit Bor 

behandelten Pflanzen zeigten eine 40% erhöhte Enzymkonzentration im Spross und eine 

erhöhte Transkription von MHA3 und MHAfam im Vergleich zu den B-Mangel Pflanzen. 

3. In vitro Zugabe von B änderte die hydrolytische und die Pumpaktivität der 

Plasmamembran H+-ATPase nicht, was zeigt, dass die Erhöhung der Plasmamembran 

H+-ATPase-Aktivität nicht auf einer direkten Interaktion zwischen B und dem Enzym 

beruht. 
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