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Zusammenfassung v

Zusammenfassung

In den Hochländern Mexicos werden Landschaften, in denen durch Kieselsäure verhärtete,

sterile Schichten (Tepetates) als Folge von Bodenerosion frei gelegt wurden, rekultiviert, um

neue landwirtschaftliche Nutzflächen zu gewinnen. Um die Nachhaltigkeit der

Rekultivierungsmaßnahmen zu verbessern, wurde der Einfluss der organischen

Landwirtschaft auf das Bodengefüge und die Bodenerosion von rekultivierten

Tepetateflächen im Feldmaßstab unter natürlichen Bedingungen untersucht. Organische

Festsubstanz (SOC) stellt den bedeutendsten Faktor dar, der die jährlichen Erosionsraten der

rekultivierten Tepetateflächen kontrolliert. Neben einer kurzfristig zunehmenden

Gefügestabilität führt die organische Düngung zu einer dichteren Vegetationsdecke, was

wiederum die Bodenerosion im Mittel von 3 Jahren nach der Krustenfragmentierung auf 9,9

t ha-1a-1 reduziert, im Vergleich zu 14,6 t ha-1 a-1 bei Mineraldüngung. In 16 Jahren seit der

Rekultivierung unter konventioneller Landbewirtschaftung sanken die Erosionsraten auf 1,1

bis 5,6 t ha-1 a-1 ab. Die Etablierung der organischen Landwirtschaft steigerte zwar den

Gehalt an organischer Substanz der Böden, hatte im Vergleich zu anderen

Bewirtschaftungsweisen jedoch keinen nachweisbaren Effekt auf die Bodenerosion. In

stärkerem Maße als die organische Landwirtschaft per se, garantieren die regelmäßige

Einarbeitung von organischem Material und eine dichte Vegetationsdecke eine

Erosionskontrolle und nachhaltige Rekultivierung der Tepetateflächen.



Abstract vi

Abstract

In Mexican highlands, vast areas are covered by hardened and sterile volcanic layers

(tepetates) that showed up to the surface after erosion of the overlying soil. The rehabilitation

of tepetates is a way to increase arable land and combat desertification. In order to develop

sustainable rehabilitation strategies, the effect of organic farming on soil erosion and soil

structure in reclaimed tepetates was investigated at field scale and under natural condition. In

addition to short term structural improvement, organic farming provided higher vegetation

cover and increased carbon accumulation rates, resulting in a decrease of soil erosion to 9.9 t

ha-1 yr-1 on average over a period of 3 years after fragmentation compared to 14.6 t ha-1 yr-1

with conventional management (mineral fertilization). In reclaimed tepetates cultivated for

more than 16 years, erosion rates ranged between 1.1 and 5.6 t ha-1 yr-1. SOC was the main

parameter controlling annual erosion rates and their evolution over time in reclaimed tepetates.

More than organic farming per se, it is the regular incorporation of organic material and the

development of high vegetation cover which will guarantee erosion control and sustainable

rehabilitation of tepetates
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1. Introduction

1.1. Tepetates and erosion

1.1.1. Tepetates: hardened volcanic horizons with agriculture potential

1.1.1.1.Definition

Etymologically, the term tepetate derives from the Nahuatl tepetlatl composed from “tetl”

(stone, rock) and “petlatl” (bed, mat), meaning “stone mat”. Williams (1972), suggested that

instead of true rock, tepetlatl was a lexeme labelling an earth material intermediate in

consistency between hard consolidated rock and unconsolidated material.

Nowadays, tepetate is a vernacular Mexican term referring to a wide range of hardened

infertile material (Etchevers et al., 2006), perceived locally as arable or non arable soil, or

even as non soil depending on the type of tepetate (Williams, 1992). The scientific definition

of tepetate is a hardened layer formed from pyroclastic materials, either exposed to the

surface after erosion of the overlying soil, or part of the soil profile at variable depth

(Etchevers et al., 2003; Quantin, 1992; Zebrowski, 1992). This definition excludes other type

of hardened horizons such as petrocalcic or petrogypsic (IUSS, 2006) which are common in

northern and central Mexico under arid climate (Guerrero et al., 1992), and restrains the

presence of tepetates to volcanic areas.

1.1.1.2.Distribution

In Latin America, indurated soil horizons from volcanic parent materials are found in many

countries adjacent to the Pacific shore and under the influence of volcanic activity. Such

formations are called by different vernacular names (talpetate, cangahua, ñadis, sillares,

trumaos) but their total extension is only partially known and restricted to countries where

they have been studied, such as Nicaragua, Ecuador, Chile, Peru and Mexico (Etchevers et

al., 2003; Zebrowski, 1992).

In Mexico, hardened volcanic ash soils cover 30,700 km2, representing 27 % of the Trans-

Mexican Volcanic Belt, according to Zebrowski et al. (1991), and 37,250 km2 according to

Guerrero et al. (1992). In the States of Tlaxcala and Mexico, they are located in piedmont

areas between 2250 and 2800 m.a.s.l (Peña and Zebrowski, 1992b), and can be found under

ustic isomesic soil climate with 6 to 7 humid months (Miehlich, 1992).
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The state of Tlaxcala is one of the most affected by the presence of tepetates. Indurated

volcanic ash soils covers 2175 km2, of which 598 km2 are superficial tepetates (Werner,

1988). This area represents approximately 15 % of the State surface, and 25 % of the arable

lands.

1.1.1.3.Origin, hardening and conditions of formation

The origin of the hardening, of tepetates depends on the nature of the original material and

conditions of deposition and can vary, as a consequence, from one location to another. To

avoid confusion, we will focus on the hardening of the tepetates of Mexico valley and

Tlaxcala which are of interest in this study, and which have been more extensively studied.

Quantin et al. (1992) showed that the parent material is a “Toba sediment” which consists of

a fine ash, that suffered a strong alteration of its glasses and a certain fragmentation of its

minerals. This conclusion would discard the interpretation made initially by Heine and

Schönhals (1973) according to whom the deposit that originated tepetates could be a loess.

However, for Poetsch and Arikas (1997), the presence of phytoliths in most Toba sediments

they studied in Tlaxcala suggest that the Toba is the result of a re-deposition of volcanic ash.

According to Miehlich (1992), the formation of hardened horizon is a pedogenic process that

occurs in four steps:

1. Deposition of volcanic ashes is required. The T3 series identified by the author in the

Sierra Nevada are ashes from the Popocatepetl volcano aged 21000 year BP.

2. Development of an Eutric Ustept rich in clay and opal-A, by weathering of the

volcanic ash under ustic isomesic soil climate with 6-7 humid months. This particular

climatic condition induces the release of considerable amount of silicon into the soil

solution. One part of the silicon released is incorporated into clay minerals and the

other part, because of low leaching, is retained and accumulated in the Eutric Ustept

horizon of the Toba sediment. Under udic regime, Miehlich assumed that the silicone

released in mainly leached to groundwater, whereas under ustic regime with only 4-5

months humid period, the weathering rate is too low and only minute amount of opal-

A is accumulated in the soil. Under both soil climate regimes, no tepetates are

formed. The higher clay content found in the subsoil, in relation to topsoil was not

attributed to clay illuviation, but to stronger weathering and clay formation arising

from a longer moist period in the subsoil.

3. Erosion of topsoil, typically by gully erosion.
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4. The subsoil, enriched in opal-A, is then affected by alternate cycle of humectation and

desiccation. This mechanism would cause the compaction and hardening of the

tepetate.

For other authors, the pedogenic process only consolidate, in a posterior stage, the initial

hardening of the horizon which would be the result of the partial alteration of a volcanic ash

into a tuff (Hidalgo et al., 1992; Hidalgo et al., 1997; Quantin, 1992).

Hidalgo et al. (1992) studied the silicification of tepetates and concluded that free silica was

present in the matrix and in the clay fraction. They also found free silica in clay coatings,

especially in the lower part of the profile, attributed to recent pedogenic processes. However,

for these authors, the fact that most part of the silica remains diffuse in the matrix and that its

amount is limited shows that the pedogenic silicification does not justify per se the

cementation of tepetates. For Quantin (1992) and Hidalgo et al.(1992), although the signs

and role of pedogenesis is undeniable, the diffuse and discrete presence of silica in the matrix

suggests that the silica enrichment occurred after a prior alteration of volcanic glasses at the

moment of their deposit, and that the main hardeness of the tepetates is inherited from the

parent material. This conclusion is supported by recent work of Poetsch (2004), whose thin

section taken at Tlalpan, Tlaxcala, showed very good preservation of the microlamination of

the fabric elements. This observation suggests that the sediment of the tepetates must have

been more densely packed, in comparison to its corresponding overlying non-indurated

horizons, from the outset (Poetsch, 2004).

In further studies, Hidalgo et al. (1997) confirmed that fragipan-type tepetate was formed by

pyroclastic material partially altered, as demonstrated by the important amount of residual

primary minerals and the predominance of fine silts and clay in the particle size distribution.

However, Hidalgo concluded that the arrangement and accumulation of the products of

alteration in the matrix porosity (pores and cracks), also observed by several authors (Poetsch

and Arikas, 1997; Oleschko et al., 1992), contributed to the consolidation of the tepetate, but

do not constitute a stable cementation. The plasma of the matrix (finer fraction) consists in

clay minerals interstratified 1:1/2:1, Fe and Mn oxides and hydroxides, silica gels and opal-A

(Hidalgo et al., 1997; Hidalgo et al., 1992). The composition of the plasma would give the

fragipan-type tepetate its ability to shrinking and swelling (between 5 and 15 % of its

volume) and its reversible character: hard when dry and friable when moist. Oleschko et

al.(1992) studied the micromorphological patterns of clay assemblages in Tepetates and
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concluded that it was not possible to assure that pedogenic silicification was the main process

of cementation of tepetates.

1.1.1.4.Emergence due to erosion

The emergence of hardened horizon is caused by erosion of the overlying soil. It is widely

accepted that this erosion phenomenon was anthropogenic, but there is a controversy on

whether the erosion occurred during the pre-hispanic period or after the Spanish conquest

(Quantin and Zebrowski, 1995).

The study of “Codex” reveals the existence and importance of tepetates in the pre-hispanic

society (Williams, 1972). According to Williams (1992), cultivated tepetates represented 52

% of arable lands at this period in the Texcoco area. This information proves that: 1) exposed

tepetates existed at this time, and 2) indigenous people had the knowledge and the necessity

to restore and cultivate this kind of material.

Lauer (1979; cited by Quantin and Zebrowski, 1995), defined two pre-hispanic periods of

accelerated erosion and formation of deep ravine (barrancas) in the Puebla-Tlaxcala region.

They are both linked to climate variation (Heine, 1976) and to evolution of rural society

(García-Cook, 1978): increase of rainfall coupled to an increase in population in the case of

the first event (around 2100 to 2000 BP) and aridification coupled to a new increase of

population and intensification of agriculture in the case of the second (between 1350 and

1000 BP).

Based on palaeolimnological investigation from different lakes in Central Mexico, Metcalfe

et al (1989) and O'Hara et al.(1993) demonstrated evidence of several phase of disturbance

and accelerated erosion in the region. The onset of anthropogenic accelerated erosion was

induced by the introduction of sedentary maize (Zea Mays) agriculture in 3500 yr BP.

Subsequent phases of erosion are linked to fluctuation in indigenous population and

civilization development. The works of Metcalfe et al.(1994) and O'Hara et al.(1994) both

highlighted the complex relationship between climate, human occupation and soil erosion.

They found no evidences that climatic change have had a significant direct impact on erosion

rates. Instead, they stressed out that climate changes have a direct impact on human

settlement, agriculture and land use, which in turn affect soil erosion.

Werner (1988) and García-Cook (1986) also mentioned early human-induced erosion in the

State of Tlaxcala due to conversion of forested areas into agricultural lands as a result of

dense indigenous population (García-Cook, 1978). However, Aliphat and Werner (1994)
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attributed the main erosion process that led to the widespread emergence of tepetates in the

Puebla-Tlaxcala region to the consequences of Spanish colonization and specifically to the

results of: i) the abandonment of the traditional intensive agriculture in terraces and the

sophisticated irrigation system (Romero, 1992; Pimentel, 1992), after the decline of

indigenous population following Spanish conquest; ii) the introduction of extensive cattle

grazing; iii) the introduction of plough and the forsaking of inserted crops (beans, squashes)

in maize cropping; iv) the intensive deforestation to supply haciendas with building timber

and industries with charcoal and firewood for steam machinery in the 19th century.

In the Patzcuaro Basin, O'Hara et al.(1993) did not observed accrued erosion during the

Hispanic period and contested the idea that modification of agriculture after Spanish

colonization had led to increased erosion rates.

It is important to notice that conditions may vary to a great extent from one region to another

depending on local history and environment. Either pre-hispanic, colonial or modern, we can

conclude from the mentioned studies that the emergence of tepetates is due to a succession of

accelerated erosion periods which occurred when the environment of civilization were

affected by climatic, demographic, social or political events over the last 4000 years.

1.1.1.5.Properties

Tepetates are almost sterile materials due to strong physical, chemical and biological

limitations.

Physical characteristics

The first and major limitation of tepetates is its hardness and compaction. In Tlalpan,

Tlaxcala, Werner (1992) reported tepetates’ bulk density of 1.47 g cm-3 with a total porosity

of 45 %. The amount of pores >10 m is low (~10 %), and porosity is often disconnected. As

a consequence, infiltration rates are almost nil (4.2 10-4 cm s-1). The hardness of tepetate may

vary according to the location, presence of CaCO3 and time of exposure to the surface.

Miehlich (1991) reported penetration resistance of 366 kg cm-2 on a tepetate t3 in the Sierra

Nevada, and Peña et al. (1992) values of up to 153 kg cm-2.

Such physical properties reduce or avoid roots penetration and water infiltration. Once

tepetates show up on the surface, no vegetation develops, unless the area is stabilized and

protected from runoff.
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Chemical characteristics

As mentioned before, the parent material of tepetates is rich in volcanic glasses and

plagioclase highly susceptible to weathering. Tepetates are hence rich in bases with a

prevalence of calcium, magnesium and specially potassium (Etchevers et al., 1992; Etchevers

and Brito, 1997). The cation exchange capacity is relatively high, ranging from 20 to 40 cmol

kg-1 of fine earth, due to the abundance of 2:1 clays. The percentage of base saturation is high

and pH is slightly alkaline, ranging from 7 to 8. Etchevers et al (1992) showed that the most

limiting factors for tepetates fertility were the extremely low content of soluble phosphorus

(<3 mg kg-1), due to the absence of phosphate minerals in the parent material and nitrogen

(0.04-0.07 %). Part of the N deficiency is caused by the lack of organic carbon (~0.1 %),

which indicates that tepetates layers have never been disturbed by any biological activities.

Biological characteristics

The lack of carbon in tepetates entails very low biological activity. An inventory of the micro

flora in tepetates carried out in Tlalpan by Alvarez et al. (1992) showed limited microbial

population in natural (not fragmented) tepetate (2.2 104 g-1 bacteria, 11.8 103 g-1

actinomycetes and 6.6 101 g-1 fungi), compared to adjacent cultivated soil (4.6 107 g-1, 2.1 105

g-1, 3.9 103 g-1 respectively). Once ripped off, the increase of microbial population in

tepetates is enhanced by organic matter incorporation, especially green manure (Alvarez et

al., 2000; Alvarez et al., 1992).

1.1.1.6.Tepetate rehabilitation

The rehabilitation of tepetates for agriculture is a well known practice since pre-hispanic

times (Williams, 1972; Pimentel, 1992). In the last few decades, the advent of heavy

machinery to break up the hardened layer promoted the expansion of such practice. The first

experiences were carried out in the State of Mexico to reforest and restore the Texcoco lake

basin, greatly affected by erosion and infilling (Pimentel, 1992; Llerena and Sanchez, 1992).

The technique was then extended to other areas to confront the lack of arable land and to

restore deteriorated areas (Llerena and Sanchez, 1992; Pimentel, 1992; Werner, 1992; Arias,

1992).

The rehabilitation process of tepetates is a combination of the fragmentation and the

subsequent management practices.
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The fragmentation consists of breaking up and loosening the hardened layer by subsoiling,

deep ploughing and harrowing. This operation modifies radically the physical properties of

the tepetate, turning the hardened and cohesive tepetate into a fragmented and porous

material within a few hours (Table 1).

Table 1: Selected significant physical properties of the tepetate before and after the fragmentation.
Source: (Baumann et al., 1992; Fechter-Escamilla and Flores, 1997)

Bulk density
(g cm-3)

Total pore
volume

Volume of macro pores
(>10 µm)

Before fragmentation 1.47 45 % 12 %
After fragmentation 1.15 to 1.24 55 % 20 %

Those physical changes create the necessary conditions to air and water transfer in soil, to

water storage and to root development. However, the fertility of the newly-formed material is

still reduced because of nutrimental deficiencies (Etchevers et al., 1992).

Hence, the management practices applied after fragmentation aims at turning the almost

sterile material into a productive soil, by improving the physical, chemical and biological

properties of the soil to ensure a sustainable crop production.

Effect of fragmentation and management on erodibility

Previous studies of erosion on tepetates and under natural conditions in the states of Tlaxcala

(Baumann and Werner, 1997a; Fechter-Escamilla et al., 1997a) and Mexico (Prat et al.,

1997a) clearly show that bare tepetates produce high runoff rates (up to 90 %), but moderate

soil loss in situ due to strong cohesive properties. Once fragmented, but not cultivated, soil

loss increases considerably, whereas runoff rate decreases as a result of a better infiltration.

Under cultivation, runoff and erosion rates decrease to tolerable levels.

The results of these previous studies and field observations led to the development of a

conceptual scheme of the evolution of erosion, runoff and fertility during the process of

rehabilitation (Figure 1).
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Figure 1: Conceptual evolution of fertility, runoff and erosion during the rehabilitation process under two
extreme scenarios.

The consequences of fragmentation on fertility, runoff and erosion are immediate. The

management applied after the fragmentation influences the evolution of runoff, erosion and

fertility over time. In the case of a sustainable management, the improvement of physical

properties ensures fast decrease of erosion and runoff rates, which will guarantee, together

with the improvement of chemical properties and biological activity, the progressive increase

of soil fertility.

However, if the management is inappropriate, or if the fragmented plot is abandoned, the

benefit of fragmentation on runoff will rapidly decrease because of sealing and compaction.

High erosion rates induced by fragmentation will remove the loosened layer within a few

years, until the hardened horizon emerges again. In extreme cases, inappropriate management

lead to a return to the initial natural tepetate situation. Such scenarios have been observed in
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Tlaxcala with several rehabilitation programs, because of the lack of clear rehabilitation

strategy and guidance to farmers.

Although most tepetate rehabilitations are more likely to be between the “best case” and

“worst case” scenarios, soil conservation and erosion control are always a critical issue to

achieve a successful, sustainable and profitable rehabilitation of tepetates to agriculture.

Knowledge of the effects of cultivation practices on soil erosion is thus a key factor to

develop suitable rehabilitation strategies.

1.1.2. Structure, erosion and organic farming

Soil structure can be defined as the arrangement of particles and pores in soils (Oades, 1993).

It refers to the size, shape and arrangement of solids and voids, the continuity of pores and

voids, their capacity to retain and transmit fluids, organic and inorganic substances, and to the

ability of soil to support root growth and development (Lal, 1991). It can be evaluated by

determining the extent of aggregation, the stability of the aggregates, and the nature of the

pore space (Jury and Horton, 2004). Soil structure and its stability mediates many biological

(Oades, 1993) and physical processes in soils, such as porosity and infiltration (Kutilek,

2004), and is hence a determinant factor for water availability to plants and erosion

susceptibility (Six et al., 2000a; Lin et al., 2005).

In agriculture, the soil physical properties after optimization of the chemical soil conditions

are more and more agreed to be the limiting factor of the productivity because the water, air

and heat regime of the soils is governed by them (Schneider and Schroder, 1995). Soil

structure development and improvement is then a focal point to implement sustainable

agriculture systems and restore degraded lands (Lal, 1991).

Structure and erosion

The relationship between soil structure and erosion has been identified and extensively

studied from the beginning of the century (e.g works of Yoder, 1936). Structural stability,

measured by a wide range of techniques (Le Bissonnais, 1996; Diaz-Zorita et al., 2002),

governs aggregate breakdown mechanisms and particle detachment, and is an indicator

widely used to predict soil erodibility (e.g.: Le Bissonnais and Arrouays, 1997; Mbagwu and

Auerswald, 1999; Barthes and Roose, 2002).
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Organic carbon and soil structure

SOM is the focal point of soil structure dynamic and contribute, directly or indirectly, to

aggregate formation and stabilization. At microaggregate scale, primary particles are bound

together by persistent binding agents such as humified organic matter, polyvalent metal

cation complexes, oxides and highly disordered aluminosilicates (Tisdall and Oades, 1982).

At macroaggregate scale, POM acts as a nucleus for macroaggregates formation (Puget et al.,

2000). When fresh OM is incorporated into the soil matrix, it is colonized by microbial

decomposers. The by-products of the microbial activity mechanically bind soil particles that

surround the organic resource (Tisdall et al., 1997), whereas exudates and polysaccharides

stick them to cells of bacteria and fungi (Oades, 1993). Microaggregates are then formed

within macroaggregates (Oades, 1984) and are stabilized by more recalcitrant organic carbon

compounds (Oades, 1984; Degens, 1997).

The effect of organic matter on soil structure is well documented (e.g.Becher, 1996; Six et al.,

2000b). Recently, several reviews highlighted the role and dynamic of carbon in soils:

Mechanisms of aggregation in soils and its effect on soil structure have been reviewed by Six

et al. (2004); The impact of management on soil aggregation and soil structure have been

reviewed by Bronick and Lal (2005); and the mechanisms of aggregate dynamic and carbon

sequestration has been reviewed by Blanco-Canqui and Lal (2004).

Structure and organic management

Soil management (agricultural practices) can affect soil structure in many ways, depending

on i) the type and amount of fertilization applied, ii) the management of crop residues, iii) the

choice of crops and crops rotation, iv), the frequency or intensity of tillage.

Promoting organic matter management is a fundamental principle of soil conservation

strategies in many part of the world (e.g. Roose and Barthes, 2001; Morgan, 2005). However,

the literature related to the effect of organic management on soil physical properties in

reclaimed volcanic ash soils are differing:

i. In Mexico, Acebedo et al (2001) studied the effect of manure and plant species on the

formation and stability of aggregates in fragmented tepetates under greenhouse conditions.

They concluded that the application of manure and presence of plants did not increase the

amount of water-stable aggregates and that roots activity and development had greater

effect on structure than application of manure. Similar results were obtained by Velazquez
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et al. (2001), who concluded that in greenhouse conditions plants increased organic matter

content which in turn promoted the aggregation and structure of fragmented tepetates.

ii. Alvarez et al.(2000) showed that incorporation of green manure and plant residues to

reclaimed tepetates enhanced microbiological activity and that previous incorporation of

cattle manure favoured the mineralization of crop residues. They concluded that

incorporation of organic materials to reclaimed tepetates contributes to the rehabilitation of

tepetates thanks to its beneficial effects on microbial activity. However, the authors did not

link their results to quantitative measurements of soil physical parameters.

iii. In Ecuador, Podwojewski and Germain (2005) found that incorporation of organic material

did not improve significantly the structural stability of reclaimed cangahuas (hardened

volcanic ashes similar to tepetates), after 4 years of cultivation, even at high incorporation

rates (up to 80 t/ha of fresh cattle manure).

iv. Prat et al. (1997a) found that crop association (maize + broad bean) reduced erosion rates

in comparison to monoculture (maize), but did not find any significant differences in

erosion rates between farmyard manure application (40 t ha-1 the first year and 20 t ha-1 the

following years) and mineral fertilization, suggesting that vegetation cover, more than

organic farming, influence erosion rates.

v. It is often considered that SOC affect soil structure when SOC concentration amounts more

than 2 % (Greenland et al., 1975). In tepetates under maize mono-cropping, SOC content

hardly amount more than 1 % (Baez et al., 2002). In reclaimed tepetates under reduced

tillage and frequent farmyard manure application, SOC can reach 2 % after 80 years of

cultivation (Baez et al., 2002). Only in greenhouse conditions with intensive incorporation

of organic material can SOC reach approximately 4 % (Baez et al., 2002). There is thus a

question whether organic matter can affect soil structure in soils with strong OC

deficiencies such as tepetates.

In reclaimed hardened volcanic ash soils, the use of organic amendments to improve soil

fertility after fragmentation has been repeatedly recommended (Zebrowski et al., 1991;

Pimentel, 1992; Arias, 1992; Marquez et al., 1992; Etchevers and Brito, 1997). However,

there is no consensus about the effect of organic amendments on soil structure and

erodibility in reclaimed volcanic ash soils. Besides, although previous studies (Baumann

and Werner, 1997a; Fechter-Escamilla et al., 1997a; Prat et al., 1997a) outlined the effect
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of fragmentation and cultivation practices on erosion, there is still too little data

available on erosion and runoff rates in reclaimed tepetates at farmer plot scale and

under natural climatic conditions, and no information on the evolution of erosion rates

during the rehabilitation process and its relationship with soil structure.

Therefore, there is a need to increase the knowledge on how and to what extent organic

farming can affect soil structure and soil erosion and be a sustainable alternative to

reclaim deteriorated volcanic ash soils.

1.2. Objectives

The aim of this research is to evaluate the effect of organic management on soil structure

and soil erosion in reclaimed tepetates, at field scale and under natural conditions. It is part

of a pluridisciplinary project whose overall objective is to develop alternative technologies to

reclaim deteriorated volcanic ash soils.

The specific objectives are:

i. To assess and quantify erosion rates in tepetates in the short and medium term during

the rehabilitation process

ii. To evaluate the effect of organic management on soil structure and soil erosion rates,

compared to other type of managements

iii. To assess the role and dynamic of organic carbon in reclaim tepetates at different

stages of the rehabilitation

iv. To determine the main factors involved in the erodibility of reclaimed tepetates, in

order to establish priorities in soil conservation strategies.
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2. Tlaxcala: a state affected by tepetates

2.1. Physiographic overview

The State of Tlaxcala is located in the central Mexican highlands between 97°37’07’’ and

98°42’51’’ W and 19°05’43’’ and 19°44’07’’ N. It belongs to the Trans-Mexican Volcanic

Belt (TMVB) which stretches from the Volcano of Colima on the Pacific shore to the Orizaba

peak on the Atlantic side along the 19°N parallel. It is the region of highest volcanic

influence in the country.

With an extension of 3991 km2 (INEGI, 2005b), Tlaxcala is the smallest State of the Mexican

Republic and represents 0.2 % of the country’s area (1 959 248 km2). The average elevation

in the State is 2230 m.a.s.l., ranging from 2100 m.a.s.l. in the Atoyac river alluvial plain in to

4461 m.a.s.l. at the summit of La Malinche volcano.

The southern part of the State is dominated by La Malinche Volcano. In the North East, the

Taxco Sierra forms a natural boundary with the State of Puebla. The Western part of the State

is occupied by the piedmont of the Northern part of the Sierra Nevada and the Tlaxcala block

(“Bloque de Tlaxcala”). This hilly region is cut by deep canyons (“barrancas”) and is greatly

affected by erosion. In the center part of the State, following a Northwest to Southeast

direction, the plains of Calpulalpan, Apizaco and Huamantla lie at approximately 2500 masl.

2.2. Climate

94 % of the State of Tlaxcala is under temperate sub-humid climate (INEGI, 2006). Annual

precipitations range from 600 to 1200 mm with winter precipitations inferior to 5 % of the

annual amount. However, climate in Tlaxcala has great spatial variability due to orography

(Conde et al., 2006).

Figure 2 presents meteorological records from Hueyotlipan (19°28’10’’N and 98°20’53’’),

located at 4 km from Tlalpan experimental site. Statistics are based on records from 1961 to

1998. In this area, climate is temperate sub-humid. Mean annual precipitation is 772 mm

distributed during rainfall season from May to October (90 % of the annual precipitation).

Rainfalls are mainly continental, but there is an oceanic influence during the hurricanes

season in September-October. Mean annual temperature is 13.9°C, ranging from 10.9°C in

January to 15°C in May. Frost risk period stretches from November to February.
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Figure 2: Ombrothermic diagram of Hueyotlipan meteorological station. 1961-1998

Most part of the State is rainfed agriculture, and the climatic regime imposes strong

constraint to agriculture in the area:

 The time window suitable for crop cycle is limited between the beginning of the

rainfall season and the beginning of frost-risk period. This is a major limitation for

maize cropping in the area (Eakin, 2000; Ramirez and Volke Haller, 1999);

 The establishment of winter crop or cover crop before the beginning of the rainfall

season is not possible in rainfed agriculture areas due to severe water deficit during

winter months.

2.3. Geology

The geology, as well as the geomorphology of the State of Tlaxcala is strongly influenced by

quaternary volcanic activity. The oldest stratigraphic units are tertiary sedimentary rocks

formed under lacustrine environment. They form the basis of the Tlaxcala and Huamantla

blocks. The basaltic volcanic activity started in the late tertiary but reached its highest

intensity during the quaternary (Erffa et al., 1977). La Malinche and Iztaccihuatl are

andesitic-dacitic stratovolcanoes that greatly influenced the study area. They were erected

during Pleistocene although recent activity has been registered till the Holocene in La

Malinche (Castro-Govea et al., 2001). Many smaller quaternary volcanic structures (mainly

monogenic cones) had local influence in the area. During this period and till the Holocene

several layers of tuffs and volcanic ashes were deposited over the whole area. The most
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recent arise from Popocatepetl active volcano. Those deposits were identified by Heine and

Schönhals (1973) as “Toba” sediment. They are the main parent material of soils in the State

of Tlaxcala and are associated with the presence of tepetates (Werner, 1988).

2.4. Soils

Soils in the Puebla-Tlaxcala basin have been extensively studied in the 70 and 80’s decades

in the framework of the Mexico-project of the German Research Foundation (DGF). The soil

map of Tlaxcala at 1:100 000 was published by Werner (1988) based on the FAO-UNESCO

classification (1974). Another soil map is available from INEGI at 1:250 000 based on the

FAO-UNESCO classification (1968 with 1970 supplement). Although both maps differ from

one another, characteristic soil units can be grouped into three categories according to the

type of parent material and the altitude.

i. Soils formed from volcanic ashes over 2800 m.a.s.l. (> 1000 mm annual precipitation)

These conditions are found in the slopes of La Malinche (south), in the Taxco Sierra

(Northeast) and in the eastern hillside of the Sierra Nevada (west). In those areas,

andosolization (volcanic ash soil formation) process occurs. Depending on the age of the

ashes and the degree of andosolization we find Andosol (mostly vitric) or Regosol (mostly

tephric) (Werner, 1988, , 1976b).

ii. Soils formed from volcanic ashes and Toba sediment between 2250 and 2800 masl (6

months dry season)

These conditions are propitious to the formation of hardened volcanic horizons (Miehlich,

1992) and are found in approximately 54 % of the State. They are usually covered by

Cambisols with vertic or chromic properties (Werner, 1988). In high valleys and plains

(northwest), those soils were classified as Phaeozems by INEGI (2006), probably because the

hardened volcanic horizon was assimilated to a petrogypsic horizon. In steeper areas, such as

the piedmont of Sierra Nevada, Tlaxcala block, Taxco Sierra and the basement of La

Malinche, human activities induced severe erosion and denudation of the cambisol overlying

the hardened layer, causing the emergence of tepetates. Bare tepetates cover approximately

15 % of the State surface.

iii. Other soils
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Fluvisols and more rarely Gleysols are found in lowlands and alluvial cones on the eastern

and western side of la Malinche. Regosols are found in the arid west end of the State in the

Huamantla valley.

2.5. Soil use and agriculture

2.5.1. Agriculture

Total arable area represents 60 % of the State surface (INEGI, 2006). 89 % of arable area is

rainfed agriculture, and only 11 % is irrigated. Irrigated areas are mainly located in the

Atoyac and Huamantla valleys. No irrigation is available in the areas most susceptible to

erosion (piedmont and sierras).

Three species represents 85 % of the cultivated area: i) Maize (Zea mays, 54 % of the

cultivated area), the basis of Mexican diet; ii) Oat (Hordeum vulgare, 22 %), for brewery

industry, grown mainly in Calpulalpan area; iii) Wheat (Triticum aestivum, 15 %). Other

important crops are beans (Phaseolus vulgaris, 3 %), broad bean (Vicia faba. 1 %) and alfalfa

(Medicago sativa, 1 %) in irrigated lowlands.

Livestock production is dominated (in number of animals) by porcine, followed by ovine and

caprine (more than 233,000 animals all together). They are traditionally bred by itinerant

grazing by small farmers. Cattle overgrazing or uncontrolled goat and sheep grazing is one of

the main causes of gully formation.

2.5.2. Forest

Forest areas are mainly located over 2800 masl in La Malinche, Taxco sierra and Sierra

Nevada in the Southern, Northern and Western part of the State respectively. They cover 14.5

% of the State area.

2.6. Sociodemographic context

Population in Tlaxcala exceeded one million inhabitants in the last 2005 census (INEGI,

2005a). In the last 30 years, population grew by 20,000 inhabitants per year. The increase in

population occurred almost exclusively in urban areas, whereas rural population remained

constant from the beginning of the century (Figure 2)
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Figure 3: Demographic growth and distribution between rural and urban population in the State of
Tlaxcala from 1910 to 2005. Sources: INEGI, censos de población y vivienda 1930 to 2000 and Conteos de
Población y Vivienda 1995 and 2005.

Tlaxcala’s population represents approximately 1 % of the whole country’s population, but

with 267 inhabitants per km2, Tlaxcala is the third most densely populated State (excluding

the Federal District) in Mexico (INEGI, 2005b, 2005a). Since the beginning of the century,

there has been high pressure on natural resources to increase arable lands for food production.

This phenomenon led to the deforestation of La Malinche volcano with dramatic

consequences on soil erosion (Werner, 1976a).

Nowadays, tepetates are the only arable land reserve in the State of Tlaxcala. The

rehabilitation of all tepetates areas could potentially increase the arable land surface by 25 %.

2.6.1. Economy and employment

The contribution of agriculture, forestry and fishery to Tlaxcala’s GNP decreased from 8.5 %

to 3.8 % between 1993 and 2004 (INEGI, 2004). The economy of the State is nowadays

mainly supported by tertiary (60.5 %) and secondary (35.6 %) activities.

In rural areas, agriculture is a still a major source of employment. In the district of

Hueyotlipan to which belongs Santiago Tlalpan, 41 % of active population is working in

agriculture, cattle grazing and forestry (INEGI, 2000). Considering the 12 districts were

approximately 80 % of tepetates areas are located (based on the map by Werner, 1988), 27

% of the active population is dedicated to this sector. A significant part of the rural

population is, hence, affected by tepetates.
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2.6.2. Migration

Besides the creation of three industrial parks during the last decade, work expectancy in the

state is low and, as a consequence, migration is high. According to official INEGI last census

(2005a), 3.5 % of the population (persons who were living in the State in 2000) migrated to

more active economical poles such as Puebla (26 % of migrants) and Mexico city area (35

%). Migration to the United States officially represents 2.8 % of the migrants, but this value

is probably underestimated and does not reflect the magnitude of migration from Hueyotlipan

district to the United States (Charbonnier, 2004).

2.6.3. Farm unit structure

In Tlalpan area, farms unit are in average 5 ha (Lepigeon, 1994). Such surfaces are too small

to achieve economical sustain for farmers and their family. In 1994, annual income from

agriculture was inferior to the minimum salary for 75 % of the farmers. In Tlalpan, likewise

most part of the TMVB (Prat et al., 1997b), all farmers have secondary activities and

incomes (construction, plumbing, music, etc. ..) (Lepigeon, 1994).

The rehabilitation of unproductive tepetate areas is a way to extend arable surface of small

farmers, substantially increase their incomes, and could represent a viable alternative to

migration.
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3. Materials and methods

3.1. Tlalpan experimental site

Santiago Tlalpan is situated at 19º28’N, 98º18’W and at 2600 masl. It is located 25 km north

from Tlaxcala city, on the edge of the Tlaxcala block and belongs to Hueyotlipan District.

The site was settled in two stages: in 1986, a large area of bare tepetate, adjacent to a deep

ravine and with 15 % natural slope, was fragmented and 6 terraces were formed with an

average slope of 3 % (A, B, C, D, E, and F); then in 2002, at the beginning of REVOLSO

project, two smaller plots were established on the upper part of the ravine (R1 and R2). All

plots have the same slope, and were formed from the same tepetate formation (t3). Erosion

measurement system was installed in 5 plots (R1, R2, C, D, E).

Figure 4: Map of Tlalpan experimental site and main characteristics of the plots.

3.2. Managements

Three managements have been evaluated: conventional, improved, and organic.

- Conventional management is the one applied by the farmers in the study area: soil

preparation with disc plough and harrow (additional operations are done depending on the

crop), use of mineral fertilizers, and use of phyto-protection products when necessary. The

crop residues (straw, stalks) are sold or used for cattle pasture, in spite of its poor nutrimental

value. Fertilization inputs are self-moderated because of economic restrictions. The

Plot with erosion
measurement system

Plot without erosion
measurement system
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incorporation of organic matter is low and is limited to the decomposition of roots and a

small part of the crop residues, since cattle usually graze the land after the harvest.

- Improved management is based on conventional management without restrictions of

inputs (all inputs required by the crop are applied), and use of associated crop (legumes)

when possible. All crop residues are incorporated to the soil, either whole or crushed. The

intention is to incorporate all organic matter available on the plot after harvesting, without

any addition of external sources such as manure or compost, and with minimum time and

work requirement.

- Organic management involves the same soil cultivation practices than the other

management systems, but with use of organic fertilization only (manure or compost) and

associated crop when possible. Crop residues are composted with additional farm manure and

then reincorporated to the soil. This management requires more time and labour, but provides

a higher level of incorporation of organic matter.

The plots fragmented in 1986 (A, B, C, D, E, F) were cultivated until 2002 under

conventional management. The main crops were maize and wheat, without any external

application of organic matter.

Table 2: Characteristics of Tlalpan experimental plots

Plot Management Year of
fragmentation

Label Surface
(m2)

Erosion measurement
system

A Improved 1986 1170 No
B Conventional 1986 1070 No
C Improved 1986 86-I 1630 Yes
D Organic 1986 86-O 2020 Yes
E Conventional 1986 86-C 1340 Yes
F Organic 1986 2200 No

R1 Conventional 2002 02-C 580 Yes
R2 Organic 2002 02-O 760 Yes

3.3. Crops and fertilization

Crops and fertilization applied from 2002 to 2005 are presented in table 3 and 4.

Table 3 : Crops cultivated from 2002 to 2005 at Tlalpan experimental site during the investigation.

Management 2002 2003 2004 2005

Improved Broad bean Oat + vetch Maize + bean Wheat

Conventional Broad bean Oat Maize + bean Wheat

Organic Broad bean Oat + vetch Maize + bean Wheat

Broad bean: Vicia fava; Vetch: Vicia sativa; Maize: Zea mays; Oat: Hordeum vulgare; Wheat:
Triticum aestivum; Bean: Phaseolus vulgaris.
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Table 4: Fertilization applied from 2002 to 2005 at Tlalpan experimental site during the investigation.

Fertilization (N-P2O5-K2O, kg ha-1)

Plot Management 2002 2003 2004 2005

A Improved 60-100-34 23-60-00 98-41-00 82-23-00

B Conventional 23-00-00 23-00-00 81-00-00 62-23-00

C Improved 60-100-34 23-60-00 98-41-00 82-23-00

D Organic 6.8 t ha-1 (C) 3 t ha-1 (FYM) 1.9 t ha-1 (C) 3 t ha-1 (C)

E Conventional 23-00-00 23-00-00 81-00-00 62-23-00

F Organic 6.8 t ha-1 (C) 3 t ha-1 (FYM) 1.9 t ha-1 (C) 3 t ha-1 (C)

R1 Conventional 23-46-00 23-00-00 81-00-00 62-23-00

R2 Organic 6.3 t ha-1 (FYM) +
crop incorporation*

3 t ha-1 (FYM) 2.6 t ha-1 (C) 4.2 t ha-1 (C)

FYM: Farmyard manure (dry matter); C: compost (dry matter); Vetch: Vicia sativa.
* the broad bean was not harvested and the whole biomass was incorporated

3.4. Methods

3.4.1. Soil loss and runoff

The study has been performed on large farmers’ fields and under natural climatic conditions.

The initial erosion measurement system was designed by Fechter-Escamilla et al. (1995) and

has been described by Haulon et al. (2003). It consists of a one-foot H-flume (Hudson, 1993)

placed at the outlet of the field, and equipped with a water level recorder (OTT Thalimedes®

shaft encoder) set up at one minute time-step interval. Water level (mm) was converted into

flow discharge (m3 min-1) based on conversion table given in the Field Manual for Research

in Agricultural Hydrology (Brakensiek et al., 1979). After passing through the flume, runoff

discharge is channelled to a high capacity rotating tank (2 to 4.5 m3) set on 4 electronic

weight cells. In case the volume of runoff exceeds the capacity of the tanks, a hose connected

to a plastic reservoir collects an aliquot of the overflow. The original system (Fechter-

Escamilla et al., 1995) was developed to calculate soil loss according to the following

formula:

watersoil

soiltanktank
tankin the

)(
WeightSoil










VW
(1)

With δ: density, W: weight of the slurry in the tank and V: volume of the slurry in the tank

However, in practice, weight and volume measurement are not precise enough to obtain a

reliable calculation of soil loss. Indeed, the average soil weight collected in the tanks ranged

from 10 to 20 kg. Considering that the precision of the weight cells is approximately 1%, the

standard error for a full tank (2 and 4.5 m3) is 20 to 45 kg, and the calculation is therefore
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strongly biased. As a consequence, this method was not used. Instead, soil loss was calculated

using a method of sediment concentration calculation as follows:

i. The heaviest fraction of soil particles tend to settle rapidly in accordance with Stoke’s law.

By the time samples are collected, the day after the storm event, the heaviest particles have

settled at the bottom of the tank, and it is not possible to homogenize the whole slurry and

maintain the heaviest particles in suspension to take representative samples. Therefore, the

“suspended” and “settled” sediments were treated separately.

ii. The “suspended” sediment fraction was homogenized by manual agitation during one

minute without disturbing the “settled” sediment fraction, and 1 dm3 sample was taken

immediately at 30 to 50 cm depth. The suspended fraction was then emptied by rotation of

the tank. The settled fraction was then collected, its volume was measured and 1 dm3

sample was taken. The sampling method was tested to evaluate the reproducibility of the

protocol. Results showed no significant differences in sediment concentration between

position and depth of sampling.

iii. In case the volume of runoff exceeded the capacity of the tank, a sample was collected from

the plastic reservoir.

iv. The water level in the flume was recorded by OTT Thalimedes® shaft encoder set up at one

minute time step interval. Water level (mm) was converted into flow discharge (m3 min-1)

based on conversion table given in the Field Manual for Research in Agricultural

Hydrology (Brakensiek et al., 1979).

v. Samples were oven-dried in the laboratory and their sediment concentration was

determined.

vi. Total soil loss was calculated as follow:

Wtotal = Wsuspended + Wsetted + Wout tank (2)

Soil weight (W) in each fraction equals the volume (V) of that fraction multiply by its

sediment concentration, with:

Vsuspended = Vin tank - Vsettled (3)

Vout tank = Vtotal at field outlet - Vin tank (4)
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Statistical analysis

Two issues must be considered:

i. The plots reclaimed in 1986 are larger than the plots reclaimed in 2002. On one hand, plot

length could increase flow velocity and particle detachments and as a result increase soil

erosion. On the other hand, larger plots may present more depositional areas and, hence,

reduce net erosion. Given our experimental design it is not possible to statistically control

possible size effect, and we will assume the effect of plot size is negligible.

ii. Given the cost of the erosion measurement system and the lack of tepetates available for

rehabilitation on the same experimental site (comparison between treatment should be done

only under same climatic conditions), no replicates are available. Each combination of age

of rehabilitation and management is only represented once.

To compare soil loss and water losses between plots, analysis of variance was performed

considering all erosive events1 within a year. Since soil losses are not normally distributed,

the base-10 logarithm of individual event soil loss value (E) was used. Since some events did

not produce soil loss (E) in all plots, the ANOVA was performed on LOG10(E+1).

3.4.2. Rain erosivity

Rainfall was recorded by mechanical daily recording rain gauge (pluviograph) during the

rainfall season from 2002 to 2005. In addition, a meteorological station was installed in 2003,

and precipitations were recorded with a tipping bucket rain gauge at a constant time step of 1

minute. However, the precision of the device failed, and in 2004 a Hobo® event recorder

connected to a tipping-bucket rain gauge was installed, allowing a precise calculation of

rainfall intensity and kinetic energy. The combination of recording devices ensures continuity

of records in case of failure.

Rain kinetic energy was calculated using the equation proposed by van Dijk et al.(2002):

Ek=28.3[1-0.52(-0.042I)] (5)

Where Ek is the kinetic energy in J m-2 mm-1 for a time lap of constant intensity.

The total rainfall or storm kinetic energy is the sum of the product of each time lap kinetic

energy and the rain depth during this time lap:

1 We took into account all events that produced soil loss in at least one plot.



4. Results 24

t

n

t REkE 1
(6)

E is the total rainfall energy

Ekt is the kinetic energy of a constant intensity time lap t

Rt is the rain depth during a constant intensity time lap t

n is the number of constant intensity time laps during the rainfall

The annual kinetic energy is the sum of all rainfall event’s kinetic energy.

The van Dijk formula was compared to the equation proposed by Renard et al. (1997) for the

RUSLE which is adapted from earlier formulation by Wischmeier and Smith (1958):

Ek = 11.9+8.73 log10I if I ≤ 76 mm h−1
(7)

Ek = 28.3 if I > 76 mm h−1
(8)

3.4.3. Vegetation cover

In 2002 and 2003, vegetation cover was measured by a simple version of quadrat sighting

frame (Stocking, 1994), consisting of a board perforated with fifty 2 mm-diameter holes at 2

cm interval. The amount of bare ground visible through the hole was quantified from 0 (bare

soil) to 5 (totally covered by vegetation). The nature of the cover was also qualified (main

crop, associated crop, residues, weeds). However, difficulties with crop height,

representativity in case of raw crops and observers variability, also reported by Stocking

(1994), led to reduced reliability of the measurements. Consequently, in 2005, a new method

based on digital photograph taken at 7 meters height and analyzed by image processing

software was developed and used. This method discriminates plant area from soil area by

binarization processing. In 2004, only visual observation was performed at maximum

development stage of the crop.

Repeated measures ANOVA was performed and Tukey HSD at 0.05 confidence level was

used to compare treatments.

3.4.4. Aggregate stability

3.4.4.1.Percolation stability

After the works of Sekera and Brunner (1943) and Becher and Kainz (1983), Kainz and Weiss

(1988) developed a method to assess aggregate stability based on the percolation of water

through a column of calibrated aggregates. The aggregates are placed in a 100 mm-long tube
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with an inside diameter of 15 mm. Deionised water is then percolated during 10 minutes

under a hydrostatic head pressure of 20 hPa. The amount of water percolated is regarded as

the percolation stability (PS) index.

The principle driving the percolation stability (PS) test is the obstruction of the pores by

displacement and re-organisation of the microaggregates and particles resulting from the

aggregates breakdown, thereby reducing the amount of water that passes through the column.

In this method, since the aggregates are previously air dried and rapidly wetted, Auerswald

(1995) stated that the aggregate breakdown occurs mainly by compression of trapped air

during wetting (slaking). The magnitude of the breakdown depends on the strength of the

cohesive forces holding the aggregate. High values indicate high aggregate stability.

The original test is performed on 1-2 mm diameter air-dried aggregates. In this study, the

method was widened and the test was performed on three aggregate sizes: 0.59-1 mm, 1-2

mm, and 2-3.15 mm. The interest was to evaluate the stability of a wider range of aggregate

size so that the sample tested is more representative to the whole soil behaviour (Loch, 1994).

Based on this consideration, the weighted PS (PSw) was calculated to take into account the

relative proportion of each aggregate size class.

xWPSxPSw   ( 9)

With PSx = Percolation stability index for aggregate size x

Wx = Fraction of aggregate size x in relation to the other aggregate sizes tested.

3.4.4.2.Aggregate size distribution

Large samples were taken in field and air dried at room temperature in laboratory. Samples

were then sieved through a column of 7 meshes at 10, 8, 5, 3.15, 2, 1 and 0.59 mm in a rotary

sieve device during 4 minutes. The aggregates caught on each sieve were weighted and the

fraction of each size was calculated. The fraction >10 mm was not considered in the

calculation as this size of aggregate is very variable and can affect artificially the final

aggregate size distribution. The mean weight diameter (MWD) (Nimmo and Perkins, 2002),

was then calculated. Greater MWD implies greater stability.

In dry-sieving procedure, the disruptive agent responsible for the aggregate breakdown is the

mechanical energy produced by the collision between the aggregates and the sieve or
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between aggregates themselves. One measure was performed for each sample. Over the 3

years, the sample (< 10 mm) mean weight was 1048 g (standard deviation=318, n=130).

3.4.4.3.Sampling

The sampling and processing differ from one year to another (Table 5). Therefore, the results

are not compared between years, but only within a year.

Table 5: Method and sampling details for soil aggregation assessment in Tlalpan.

2003 2004 2005

Date of sampling November 2003 November 2004 13/07/2005

22/09/2005

17/11/2005

Date of testing February 2004 March 2006 August 2005
October 2005
December 2005

Plots all all Erosion plots
(C, D, E, R1, R2)

Field sampling 2 samples at 3
positions (top,
medium and low part
of the plot)

1 compound samples (4 sub-
samples) at
2 positions: ridge + furrow

1 compound sample (6
sub-samples)

Depth 0 – 10 cm 0 – 10 cm 0 – 10 cm

Aggregate size 1 – 2 mm 0.59 – 1 mm 0.59 – 1 mm

tested 3.15 – 5 mm 1 – 2 mm 1 – 2 mm

2 – 3.15 mm 2 – 3.15 mm

Replicate 3 3 3

N total 288 144 135

3.4.4.4.Statistical analysis

Between groups analysis of variance (ANOVA) was performed using SPSS (SPSS Inc.).

Tukey (Honestly Significant Difference) test at 95 % confidence was used for multiple

comparisons.

3.4.5. Particle size distribution

Particle size distribution was determined by Laser diffraction (LD) technique on a Beckman-

Coulter LS 230 at the School of Geography of the University of Nottingham. Laser

diffraction technology have been used in several studies for soil particle size distribution

(PSD) in the last 10 years (Buurman et al., 1997; Muggler et al., 1997; Konert and

Vandenberghe, 1997; Beuselinck et al., 1998; Chappell, 1998; Westerhof et al., 1999; Eshel

et al., 2004). The theory behind laser diffraction (or light scattering) technique have been

extensively described by these authors and is provided by the manufacturer (Coulter, 1994).
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Apart from the short time analysis required for LD, the main advantage of this technique is

that it provides continuous PSD over a wide range of size fraction.

The Fraunhofer optical model was used for calculation and the PIDS (polarization intensity

differential of scattered light) module was not used. PSD was measured over the range of

0.375 µm to 2000 µm. The protocol to prepare samples previous to their analysis in the fluid

module was as follow:

0.15 to 0.2 g of soil was put in 10 ml hydrogen peroxide (10 % H2O2) for 1 hour and was then

heated progressively for 2 hours to destroy all organic compounds. The sample was allowed

to cool and 25 ml distilled water was added. The sample was then centrifuged at 3500 rpm for

5 minutes and the liquid in excess was poured out gently. Another 25 ml distilled water was

added and the sample was centrifuged again to rinse all the remaining peroxide. The liquid

was poured and 25 ml Calgon was added. The sample was shaken manually for 1 minute and

then placed in an ultrasonic bath for at least 30 minutes before being analyzed in the fluid

module containing tap water. Three replicates of each soil were analyzed. Given the high

reproducibility between runs (+- 2 %), only one run of 1 minute was performed for each

replicate.

PSD by the hydrometer method was also performed in the laboratory of soils of the

Autonomous University of Tlaxcala following the protocol proposed by Gee and Or (2002).

LD particle size distribution between plots were compared by ANOVA repeated measures.

3.4.6. Porosity and pore size distribution

Total porosity was determined by gravimetric method with water saturation (Flint and Flint,

2002) and pore size distribution by water desorption method (Flint and Flint, 2002), at 2.45,

5.88, 9.8, 33, 100 and 1500 kPa. Total porosity means were compared by ANOVA (Tukey at

0.05), and water retention curve (pore size distribution) were compared by repeated measures

ANOVA.

3.4.7. Soil Organic Carbon

In each plots, two composite samples from 10 sub-samples were taken at 0-10 cm depth at

the end of the rainy season. Soil organic carbon was measured by dry combustion in a

Carmograph 8 Wösthoff at the laboratory of soil science of the Colegio de Postgraduados.

Samples were measured once. The precision of the measures was verified by running

standard control samples regularly.
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4. Results

4.1. Erosivity and soil erosion

4.1.1. Rainfall erosivity

Results presented in this part are based on records from 2002-2005 taken during REVOLSO

project, and unpublished records from 1991 to 1997 recorded during previous projects by

Jürgen Baumann and Ulrich Fechter-Escamilla and colleagues from the University of

Tlaxcala.

4.1.1.1.Annual precipitation

Mean annual precipitation over the period 1991-2005 in Tlalpan was 670 mm. Values ranged

from 530 mm (2002) to 805 mm (2003), with a standard deviation of 108 mm. Data recorded

over the 2002-2005 period are consistent with those recorded previously over the 1991-1997

period. There is no significant difference (p<0.05) between the mean annual precipitation for

the two periods (660 and 675 mm respectively)

Table 6: Annual precipitation and R factor in Tlalpan, Tlaxcala.

year Precipitation R (EI30)

(mm) (N h-1)
1991 804 358
1992 803 272
1993 663 211
1994 719 435
1995 603 197

1996 607 218
1997 553 N/A
2002 530 184
2003 805 345
2004 756 377
2005 577 195
Mean 675 127

Beside their proximity (3 geographic minutes), Tlalpan appears to be drier than Hueyotlipan,

with 105 mm less precipitation in average. Part of this difference is attributed to the fact that

winter precipitations were not recorded consistently in Tlalpan. However, the trend confirms

the great spatial climatic variability in Tlaxcala (Conde et al., 2006; Eakin, 2000).
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4.1.1.2.Monthly precipitation
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Figure 5: Average monthly precipitation and standard deviation at Tlalpan based on records from 1991
to 1997 and from 2002 to 2005.

Average rainfalls from December to March are not presented because winter precipitations

were not recorded every year. However, winter precipitations are minimal and account for

less than 5 % of the annual rainfall in the area (INEGI, 2006).

At Tlalpan, 75 % of the annual precipitation is distributed from June to September with an

average monthly precipitation of 125 mm. Monthly standard deviations reflect great

variability between years, and uneven rainfall distribution within a year. Dry periods

(“canicula”) during the rainfall season are frequent in the area and can cause disastrous

damage to crops.

The precipitations in May are crucial as they determine the beginning of the rainfall season

and the possible length of the crop cycle before the beginning of the frost-risk period

(October). Sowing date and rain depth in the month after sowing have been included in

models to predict maize production in the State of Tlaxcala (Ramirez and Volke Haller,

1999). According to climatic data recorded at Tlalpan during 11 years, the probability of

monthly rain depth superior to 70 mm in May is only 45 %.

Due to winter drought, cover cropping to protect the soil at the beginning of the rainfall

season is not possible in this rainfed agriculture area and first storms always occurred on bare

and recently worked soils. This is a major limitation for soil conservation strategies.
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4.1.1.3.Rainfall patterns in Tlalpan
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Figure 6: Start time of rainfall events (> 1mm) between 2002 and 2005 in Tlalpan

Over the 2002-2005 period, 360 events separated by at least 60 minutes and with a minimum

precipitation of 1 mm were recorded. 71 % of the events started in the afternoon and evening

between 14:00 and 20:00, with 51 % of the events concentrated between 15:00 and 18:00.

This pattern reflects the dominance of convective rainfalls which are characteristic in

Mexican highlands (Prat, 1997) and more generally in continental highlands (Nyssen et al.,

2005).

Table 7: Mean selected characteristic of rainfall events in Tlalpan over the 1991-2005 period (2003-2005
for soil loss). See Table A- 1 for annual details.

Max I30 Soil loss

count % mm % N h-1 % mm h-1 %
Mean < 1mm 57.6 40.1% 20.5 3.0% 0.4 0.1% 0.8

1-4.99 mm 43.8 30.5% 108.0 16.0% 8.3 3.0% 3.5 0.3%
5-9.99 mm 19.6 13.7% 142.0 21.0% 25.6 9.2% 8.7 4.3%

10-19.9 mm 16.8 11.7% 236.2 35.0% 87.7 31.4% 16.1 36.1%
20-29.9 mm 3.9 2.7% 92.9 13.8% 58.9 21.1% 26.1 15.9%

> 30 mm 1.8 1.3% 75.1 11.1% 98.3 35.2% 50.0 43.4%

Max rainfall 45.6 6.8% 63.0 22.5% 40.6 13.9%
Total 143.6 674.6 279.2

EI30DepthEvents

Rain events < 1mm represented on average 40 % of the events, but only accounted for 3 % of

the annual precipitation. There were more numerous over the 2002-2005 period than over the

1991-1997 period because of the precision of the recording device (tipping bucket and event

recorder) which allowed to record numerous isolated pseudo-events that were not perceptible

on the daily pluviograph used between 1991 and 1997.

The number of events is inversely proportional to the size of the event. Events up to 10 mm

represented 84 % of the events, 40 % of the annual precipitation, but only contributed to 12

% of the annual erosivity (EI30) and produce 4.3 % of soil loss. Rainfall events of 10-20 mm
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contributed to 35 % of the annual precipitation. Such events were on average less intense

(16.1 mm h-1 in 30 minutes) than those of 20-30 mm (26 mm h-1) but they are more numerous

and all together accounted for 36.1 % of the annual erosivity against only 15.9 % for events

20-30 mm. Events >30 mm only occur on average 1.8 time per year and account for 11 % of

the precipitation. However, they were the most intense (50 mm h-1 maximum I30 on

average), they produced 35 % of the erosivity and 43.4 % of the annual soil loss. Maximum

rainstorm depth ranged from 31 to 67.1 mm over the 1991-1997 period and from 32.7 to 63.8

mm over the 2002-2005 period. The biggest rainstorm is not always the most erosive event,

as erosion also depends on the soil condition (protection, roughness, water saturation, etc.) at

the moment on the storm.

4.1.2. Runoff and soil loss

Figure 7: Annual soil loss, runoff, runoff coefficient and sediment discharge in Tlalpan from 2003 to 2005.
See Table A- 2 for details.

In recently reclaimed tepetates erosion rates ranged from 5.5 to 14.1 t ha-1 yr-1 in organic

management (02-O) and from 8.6 to 19.1 t ha-1 yr-1 in conventional management (02-C).

Over the period, soil loss in conventional management was significantly (p<0.05) greater than

in organic management, with a difference of 3.1 to 5 ton ha-1 yr-1 (Table A- 2).
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In tepetates reclaimed in 1986, erosion rates ranged from 1.1 to 5.5 t ha-1 yr-1, with a mean

value of 3.4 t ha-1 yr-1 and no significant difference between managements.

The same trend is observed in runoff, with annual values ranging from 146 to 265 mm in

2002-plots, and from 27 to 99 mm in 1986-plots.

Greater soil loss of 2002-plots was due to greater runoff and to greater sediment discharge. In

turn, greater runoff was due to:

1. Greater number of events that caused erosion: on average per year, 25 events

generated runoff in recently reclaimed tepetates, against 18 events in 1986 tepetates.

The events responsible for that difference are the one below 20 mm. All events of

more than 20 mm produced runoff in all plots (Table A- 4).

2. Higher runoff coefficient: the latter are rather constant between years. In plots

reclaimed in 1986, mean runoff coefficient ranged from 11 % to 17 % in improved

and conventional management respectively. In 2002-plots, mean runoff coefficient

reached 45 % in conventional management and 31 % in the organic one (Table A- 2)

On average, 43 % of the annual soil loss was produced by 3 events >30 mm, including the

most erosive event which accounted alone for 33 % of the annual soil loss. Individually,

events between 10 and 20 mm only generated on average 80 kg ha-1 in 1986-plots and 386 kg

ha-1 in 2002-plots. However, all together (12.3 events of that size on average), they caused 36

% of the annual soil loss (Table A-3). Although it might be difficult to prevent soil loss from

extreme events, conservation techniques could be more efficient to prevent erosion from

moderate rainstorm (10-20 mm).

In 2005, the event that produced most soil loss was only 17.5 mm, but occurred 2 days after a

rainstorm of 32.3 mm. The biggest rainstorm (43.6 mm) occurred later in the season on

31/08/05 when vegetation cover was higher, and generated the highest runoff rates of the

season (Table A- 4), but not as much erosion. This might have generated an over-estimation

of the overall contribution of 10-20 mm rainfall size class to annual soil loss, but also

highlight the importance of soil conditions and vegetation cover at the beginning of the

rainstorm.

4.1.3. Vegetation cover

The efficiency of a crop to protect the soil from raindrop impact can be evaluated according

to the amount of vegetation cover the crop is able to provide, and the time elapsed before the
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cover is developed. The amount of vegetation cover depends on i) the type of crop, mainly

responsible for mean differences between years, and ii) crop development, which depends on

the management applied and which is mainly responsible for differences between plots within

a year. Crop development depends on plant nutrition and water supply.

Results are presented in Table A- 5.

4.1.3.1. 2002

Among the crop rotation applied between 2002 and 2005, broad bean is the crop that

provided less vegetation cover to the soil. Maximum cover was reached after approximately

130 days after sowing, with soil covered up to 71 % (86-O) and 79 % (86-C) in 1986-plots,

and 44 % (02-O) to 41 % (02-C) in 2002-plots.

4.1.3.2. 2003

In 2003, the association between oat and vetch significantly increased vegetation cover to 84

% (86-I) compared to 61 % (86-C) with oat single cropping in 1986-plots, to 70 % (02-O)

compared 39 % (02-C) in plots reclaimed in 2002.

The analysis of the composition of the vegetation cover (Figure 7) clearly shows that:

i. On average over the season, vegetation cover by oat was similar between

management, ranging from 38 to 45 %.

ii. The vetch provided another 29 % vegetation cover in 02-O, and 21 % on average in

86-I and 86-O. There were not significant differences in vetch cover between plots

where this species was associated with oat (organic and improved).

iii. Vegetation cover was higher in plots reclaimed in 1986 because of adventives weeds

(18% of additional cover on average). In plots reclaimed in 2002, the amount of soil

covered by weeds is negligible since the material was still free of adventives seeds.

The maximum vegetation cover by oat occurred 54 days after sowing and decayed gradually

afterwards. Vetch development and cover was slower, but constant throughout the rainfall

season and until harvesting, approximately 100 days after sowing.

The association oat-vetch provided greater vegetation cover and over a larger period. This is

a substantial benefit in the study area where hurricane season usually generate strong erosive

events at the end of the growing season in September-October (See part 4.1.1).
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Figure 8: Composition of vegetation cover in 2003 in Tlalpan

Although vegetation cover was established rapidly after sowing, the biggest rainstorms

occurred at the beginning of the season when only 10 % of the soil (on average) was covered

and caused major soil loss (Figure 9).

Figure 9: Distribution of vegetation cover (average value from all plots), precipitation and soil loss
(average value from all plots) during 2003 in Tlalpan.
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4.1.3.3.2004

The evaluation of the vegetation cover was done at grain filling stage, approximately 100

days after sowing. Based on this observation, vegetation cover was higher in 86-I (87 %) than

in 86-O and 86-C (78 %). In recently reclaimed tepetates, 02-O reached 70 % cover, against

only 35 % in 02-C.

This observation confirmed the fertility limitations of recently reclaimed tepetates for maize

cropping under conventional management (Baumann and Werner, 1997b). However, it also

proved that from the third year after fragmentation, maize cropping can produce similar

yields (Table A- 7) and vegetation cover than reclaimed tepetates with several years of

rehabilitation, providing adequate plant nutrition is applied.

In 2004, the biggest rainstorm occurred in September during the hurricane season and caused

major soil loss although vegetation cover was already well established (Figure 10). It is a

clear illustration that vegetation cover can mitigate the effect of erosive event by protecting

the soil against raindrop impact, but has limited effect in case of extreme event when particle

detachment by overland flow is the dominant detachment mechanism.

Figure 10: Distribution of vegetation cover (predicted average value of all plots), precipitation and soil
loss (average value of all plots) during 2004 in Tlalpan.

4.1.3.4. 2005

Thanks to the aerial photography method, we were able to monitor the vegetation cover

during the whole crop cycle. Over this period, 86-O and 86-I provided up to 90 % of soil

cover 100 days after sowing. 86-C was significantly lower with a maximum of 81 %. The
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plots reclaimed in 2002 suffered nutrition limitations and vegetation cover did not reach more

than 63 %. Over the period the difference between the two managements was not significant.

On average in plots reclaimed in 1986, wheat was able to provide more than 80 % soil cover

60 days after sowing and maintained this level during approximately 60 days, representing 46

% of the vegetative period (Figure 11). This level of vegetation cover was particularly

effective in mitigating soil loss for the two extreme rainstorms (over 40 mm) which occurred

in August (31st) and October (11th).

Figure 11: Distribution of vegetation cover (average value of all plots), precipitation and soil loss (average
value of all plots) during 2005 in Tlalpan

4.2. Soil properties and crop production

4.2.1. Soil Organic Carbon

The main difference between Conventional, Improved and Organic management is the

incorporation of organic matter (Cf chapter 3.3). The evolution of SOC content is an indicator

of the effect of management on carbon dynamic in tepetates.

In total, 5.6 Mg OM (biomass) ha-1 yr-1 and 6.8 Mg OM ha-1 yr-1 were incorporated over the

period in 86-O and 02-O respectively. Organic fertilization represented on average 63 % of

the annual incorporation rate, whereas crop residues accounted for 24% and roots for another

13 % of the amount of C incorporated each year in average (Table 8). In 86-I, the
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incorporation of organic material amounted 4.4 Mg OM ha-1 yr-1, of which 89 % was

provided by crop residues and 11% by roots. In 86-C, average incorporation rate was 2.5 Mg

OM ha-1 yr-1, with crop residues accounting for 67% of the total accumulation and roots for

33 %. In 02-O, only 1.1 Mg OM ha-1 yr-1 was incorporated, of which the major part (60 %)

came from roots (Table 8).

Table 8: Organic material (biomass) inputs and C accumulation rates in Tlalpan from 2002 to 2005 at 0-
20 cm depth. OM inputs from roots were estimated from the work of Fechter-Escamilla et al. (1997b).

86-C 86-I 86-O 02-C 02-O
2002 organic fertilziation - - 6.8 - 6.3

residues - - - - -
roots - - - - -

2003 organic fertilziation - - 3.0 - 3.0
residues n-1 (broad bean) - 3.2 - - 2.3a
roots n-1 (broad bean) 1.1 1.1 1.1 1.1 1.1

2004 organic fertilziation - - 1.9 - 2.6
residues n-1 (oat or oat + vetch) 3.8 3.3 2.9 1.2 3.9
roots n-1 (oat or oat + vetch) 0.8 1.4 1.4 0.8 1.4

2005 organic fertilziation - - 3.0 - 4.3

residues n-1 (maize) 1.5 5.5 1.5 0.5 1.4
roots n-1 (maize) 0.8 0.8 0.8 0.8 0.8

Total organic fertilziation - - 14.7 - 16.2
residues 5.2 12.0 4.4 1.7 7.7
roots 2.6 3.2 3.2 2.6 3.2

Total (Mg OM ha-1) 7.8 15.2 22.3 4.3 27.1

Incorporation rate (Mg OM ha-1 yr-1) 2.0 3.8 5.6 1.1 6.8

Incorporation rate (Mg C ha-1 yr-1)b
1.0 1.9 2.8 0.5 3.4

Accumulation rate (Mg C ha-1 yr-1)c 0.21 0.37 0.61 0.22 0.80

Ratio accumulated/incorporated 21% 19% 22% 40% 24%
a incorporated as green manure
b with C = 1/2 OM
c Cf table 12

In 86-C, where crop residues were exported and no organic material was incorporated, SOC

content (0-20 cm depth) increased by 0.36 mg g-1 over the period (Table 9), indicating that

after more than 15 years of cultivation after fragmentation and with reduced inputs of O.M,

SOC keeps increasing under conventional management. In 86-I, where residues were

incorporated, SOC increased by 0.61 mg g-1 over the period. In 86-O, where residues were

composted and organic fertilization was applied, SOC increased by 1.01 mg g-1. In 02-O, the

incorporation of manure after fragmentation and the incorporation of the green manure (broad

bean) produced an increase of 0.77 mg g-1 within the first year after fragmentation. Over the 4

years period with regular but reasonable organic matter inputs (Table 8) SOC increased by

1.34 mg g-1. In 02-C with no organic matter incorporation apart from roots and residues, SOC

increased by 0.36 mg g-1 (Table 9).

Organic farming after fragmentation increased carbon sequestration rates to equivalent 0.80

Mg C ha-1 yr-1 compared to 0.22 Mg C ha-1 yr-1 in conventional farming.
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Table 9: Soil Organic Carbon (mg g-1) and accumulation rate at 0-20 cm depth in Tlalpan from 2002 to
2005. Data at 0-10 and 10-20 cm depth are presented in Table A- 6 in Appendix 7.

2002 2003 2004 2005 Δ 02-05 mg C g-1 yr-1 Mg C ha-1 yr-1

86-C 2.99 3.70 3.40 3.34 0.35 0.09 0.21
86-I 3.21 3.50 3.83 3.83 0.61 0.15 0.37
86-O 3.09 4.42 4.78 4.10 1.01 0.25 0.61
02-C 1.08 0.81 1.45 1.43 0.36 0.09 0.22
02-O 1.08 1.84 2.20 2.41 1.34 0.33 0.80

Management
SOC (mg g-1) Accumulation rates

4.2.2. Soil water content

In 2004 soil moisture was assessed by TDR from sowing to mid-September. Measurements

were not continued due to failure of the device. In 2004, no significant differences were

observed between treatments (Figure 12).
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Figure 12: Monitoring of soil water content (volumetric) at 10 cm depth by TDR during 2004 cropping
season. Cf Table A- 8.

In 2005, soil moisture was assessed by tensiometers on a regular basis (32 measurements).

Over the period, soil water content was significantly lower in 02-plots (mean value of 23 %)

than in 86-I and 86-C (Mean value of 33 %) (Figure 13 and Table A- 9)
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Figure 13: Monitoring of soil water content (gravimetric) by tensiometers during 2005 cropping season
(weighted average from measures done at 5, 10, 15, 25 and 40 cm depth). Cf Table A- 9.

4.2.3. Crop production

Crop production and vegetation cover are strongly related, since both parameter depends on

crop development. Crop yields are presented in Table A- 7, to support the discussion on the

effect of management on vegetation cover.

4.3. Soil structure

4.3.1. Particle size distribution

Table 10: Particle size distribution in Tlalpan experimental site’s plots.

Clay

< 2 µm 2 - 20 µm 20 - 50 µm 2 - 50 µm 50 - 250 µm 250 - 500 µm 500 - 2000 µm 50 - 2000 µm
A 6.3 31.3 13.1 44.4 35.5 10.0 3.9 49.3
B 7.7 34.5 14.0 48.5 31.1 9.0 3.7 43.9
C 7.6 35.8 14.3 50.1 29.7 9.2 3.4 42.3
D 8.2 34.0 13.4 47.3 30.7 9.6 4.2 44.5
E 9.1 38.7 11.8 50.6 27.6 9.2 3.6 40.4
F 9.9 35.0 11.5 46.5 29.1 10.3 4.3 43.7
R1 10.7 37.7 10.8 48.5 26.7 9.8 4.4 40.9
R2 9.5 37.3 13.1 50.4 28.7 8.7 2.8 40.1
Mean 8.6 35.5 12.7 48.3 29.9 9.5 3.8 43.1

SandsSilt

The average texture is 8.6 % clay (<2 µm), 48.3 % silt (2 - 50 µm) and 43.1 % sand (50 –

2000 µm). The most represented fraction is fine silt-size (2 – 20 µm) particles, accounting for

35.5 % of the soil volume on average. Very fine and fine sands accounted for 29.9 % of the

soil volume, whereas coarse and very coarse sands (<500 µm) only accounted for 3.8 % of
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the soil. There were no significant differences in particle size distribution between plots

(ANOVA repeated measures).

LD PSA revealed the bimodal particle distribution with a peak at 5 µm and another one at

100 µm (Figure 14)
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Figure 14: Particle size distribution measured by Laser Diffraction in Tlalpan in plots where erosion was
measured.

Soil texture classification systems were developed for PSD obtained by sieving-

sedimentation methods. No classification systems exist yet for PSD obtained by LD and it is

therefore necessary to convert LD PSD to pipette or hydrometer PSD in order to define the

soil texture class. According to LD PSD, reclaimed tepetates in Tlalpan would be clay loams

(USDA classification).

Laser diffraction grain analysis tends to underestimate clay content in comparison to the

sieve-pipette method more conventionally used (Beuselinck et al., 1998; Konert and

Vandenberghe, 1997; Eshel et al., 2004). This distortion is due to the fact that both methods

do not measure the same property of the same material. The laser diffraction analysis

determines the diameter of a particle whose diffraction is equivalent to the one of a sphere

(optical-equivalent diameter). Gravitational sedimentary pipette method determines the

diameter of a particle whose settling velocity is equivalent to the one of a quartz sphere

(spherical-equivalent diameter).

Because clays are platy particles, their average optical diameter is much greater than their

equivalent spherical diameter. Konert and Vandenberghe (1997) showed that some particles
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with a clay spherical-equivalent diameter of 2 m (from pipette method) have a optical-

equivalent diameter of 3.9 μm. Much of the material measured as clay by the pipette method

is therefore measured as silt on the diffraction method. Since coarse silt and sand spherical

and optical diameters are similar, there is a good relationship between pipette and laser

diffraction method for sands content (Beuselinck et al., 1998; Konert and Vandenberghe,

1997; Eshel et al., 2004). However, because of the underestimation of clays, silt fraction

tends to be largely overestimated. To convert particle size distribution obtained by LD to

values obtained by sieve-pipette, two methods have been proposed:

i. Konert and Vandenberghe (1997) proposed that clay (<2 μm) content by sieve-pipette

method be equivalent to particles size <8 m measured by laser diffraction.

ii. Beuselinck et al. (1998) proposed to estimate clay and sand content using RMA regression

equations:

For clay (< 2 m): y = 2.744x – 7.773

For sand (> 63 m): y = 1.155x – 6.105

And then calculate silt content as 100 – (% estimated clay + % estimated sand).

Table 11: Measured and corrected texture obtained by LD and pipette methods in Tlalpan.

Method % Clay % Silt % Sands

< 2 µm 2 - 50 µm 50 - 2000 µm

LD (Coulter LS 230) 8.6 48.3 43.1

Hydrometer 32.5 25.8 41.8

LD Corrected (Beuselinck) 15.9 40.4 43.7

LD Corrected (Konert) 30.5 26.4 43.1

Sieve-pipette (Covaleda, 2007) 33.7 30.0 36.4

Sieve-pipette (Baumann, 1996) 26.9 35.0 38.1
a Baumann used sands > 63 m. Silt fraction is therefore overestimated compared to the USDA classification, and sand
fraction underestimated.
b RMA relationship for sands was calculated by Beuselinck for sands > 63 m.

Hydrometer PSD is in the range of the pipette PSD reported by Covaleda et al (2007), with a

difference of 1.2 % in clay content and 4.4% in sand content. However, it differs from pipette

PSD reported by Baumann (1996) (Δ clay: 5.6 % and Δ sands: 3.7 %). Part of this difference 

is due to the fact that the upper limit for silt fraction was 63 µm and induced an

overestimation of silt fraction (Δ = 9.2 %).  
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The correction proposed by Konert and Vandenberghe (1997) (increasing the limit of clay

fraction to 8 m) gave a good approximation of the equivalent pipette PSD, with differences

of less than 2 % in each size fraction compared to hydrometer PSD.

The correction proposed by Beuselinck et al. (1998) did not predict satisfactorily the clay

content measured by the hydrometer method, with a difference of 16.6 %. The RMA

relationships defined by Beuselinck et al. (1998) were based on 83 samples derived from

natural silt and modified to obtain a wide range of texture. However, the clay fraction used in

their experiment consists mainly of illite and smectite, whereas clays minerals in tepetates are

mainly halloysite and cristobalite (Peña and Zebrowski, 1992a). This may have created a bias

since relationships between LS and pipette methods are affected by clay mineralogy and

morphology (Beuselinck et al., 1998).

It is important to highlight that all methods suffer from inherent flaws (Eshel et al., 2004) and

none can be considered as absolutely correct.

4.3.2. Aggregation

4.3.2.1.Dry aggregate size distribution

The smallest aggregate fraction (<0.59 mm) is the predominant fraction and represented on

average 31% of the soil sample (> 10 mm). There is a significant difference (p<0.001) in the

fraction of aggregates size >1 mm between 1986-plots (34.8 %) and 2002-plots (42.3 %)

(Table A- 15). This feature reflects a lower aggregation of the finer particles in the recently

rehabilitated tepetates, which is also expressed by smaller MWD over the period. All other

aggregate-size fraction ranged between 10 % and 15 % of the soil (< 10 mm).

In 2003, MWD are higher because the smallest mesh size was 1 mm, whereas in 2004 and

2005, samples were sieved down to 0.59 mm. Since MWD is an integration of the cumulative

size fraction, and since the smallest size class is the most important fraction, the MWD

calculation was affected.

In 2002-plots, there was no significant effect of management on ASD, with a mean MWD of

2.67 mm. In 1986-plots however, 86-O obtained higher MWD value (3.23 mm) than 86-C

(3.14 mm) and 86-I (2.99 mm), although the difference was only significant between 86-I and

86-0.

Evolution of ASD during crop season
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In 2005, samples were taken at the beginning, middle and end of the season. In recently

reclaimed plots, ASD remained constant throughout the season, with fraction <0.59

accounting for approximately 30 % of the soil and fractions > 1mm accounting for 10 to 15

% each (Table A- 16). On September 22nd, we observed a significant difference (p<0.05) in

MWD between 1986-plots (3.93 mm) and 2002-plots (2.39 mm). This difference is due to a

decrease in aggregate fraction < 1mm and an increase in aggregate fraction > 2mm compared

to July and November (Figure 15).

Figure 15: Dry aggregate size distribution during the rainfall season in 2005 in Tlalpan.

Soil water content was also monitored during the cropping season and the results showed that

there is a good correlation (r2 adjusted =0.83, N=15, p<0.001) between MWD and soil water

content at sampling. This result is consistent with the conclusions of several authors that

reported significant effect of soil moisture at the time of sampling on aggregate stability and

size distribution (Kemper and Rosenau, 1984; Caron and Kay, 1992). Further monitoring of

soil moisture and aggregate size distribution is required to draw more consistent conclusions

on how soil moisture content affects aggregate size distribution.
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Relationship between MWD and aggregate size distribution

The MWD is computed from integrating the cumulative abundance of aggregates as a

function of diameter (Nimmo and Perkins, 2002). In our study, the MWD was obtained by

integrating 7 sizes classes (6 in 2003) obtained by sieving. Since the aggregate size <0.59 mm

accounts in average for 30 % of the aggregates <10 mm, we found a strong negative linear

relationship between MWD and the fraction of aggregate <0.59 mm (r2=0.85, N=64,

p<0.001) (Figure 16)
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Figure 16: Linear regression between MWD and <0.59 mm fraction in 2004.

The fraction of aggregates size <0.59 mm is therefore a good indicator of the level of

aggregation in reclaimed tepetates and could be an alternative to the MWD to assess

aggregation.

4.3.2.2.Aggregate stability

Note on annual variability

Within a year, all samples received the same preparation, but samples treatment differs

between years (Table 5). The main difference is the time elapsed between the date of

sampling and the date of testing. In 2005, samples were analyzed few weeks after they were

air dried whereas samples from 2004 cycle were stored for more than a year before being

analyzed. This may have increased aggregate cohesion (Diaz-Zorita et al., 2002; Kemper and

Rosenau, 1986) and may explain the variability observed between years. Moreover, variation

of structural stability within a treatment over a growing season can be as large, or larger, than

the changes observed between treatments over a number of years (Perfect et al., 1990b).

Therefore, the analysis of results will only focus on differences between plots within years.
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Figure 17: Effect of management and age of rehabilitation on mean PSw over the period 2003-2005.
Different letter indicate significant difference (p<0.05).

On average over the period, there is a significant effect (p<0.001) of the age of rehabilitation

on PSw. 1986-plots were more stable to percolation (361.1 ml 10 min-1) than 2002-plots

(236.9 ml 10 min-1) (Table A- 17). Management also had a significant effect on PSw

(p<0.001), and this effect is not dependant from the year of rehabilitation (interaction not

significant). The effect of age of rehabilitation is clearly visible within a given management

(02-O significantly less stable than 86-O, and 02-C significantly less stable than 86-C)

(Figure 17). 02-O obtained similar PSw value (308.7 ml 10 min-1) than 86-C (259.3 ml 10

min-1) and 86-I (329.5 ml 10 min-1) (Table A- 17).

In 2005, aggregate stability was measured at three different dates during the rainfall season.

The results obtained illustrate the dynamic of aggregate stability in reclaimed tepetates

(Figure 18 and Table A- 17). The first sampling was done 2 months after compost was

applied in organic management (86-O and 02-O). We observed a peak of stability at the

beginning of the crop cycle with PSw values significantly greater in organic management

than in conventional and improved managements, regardless of the age of rehabilitation

(Table A- 17). PSw decreased in all plots at the end of the cropping season, and was

significantly lower in 2002-plots than in 1986-plots, both in conventional and organic

management.
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Figure 18: Aggregate stability (PSw) in 2005 and its evolution during the crop cycle.

Detailed PS values for each aggregate size helps us analyze a step further the dynamic of

aggregate stability in reclaimed tepetates. For illustration sake, Figure 19 only show PS

values in 2002 plots for the 3 aggregate sizes tested. The results of all plots are presented in

Table A- 18.
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Figure 19: PS (ml 10 min-1) values in 02-C and 02-O during the cropping season in 2005 in relation to
aggregate size.

Since the PS index is the amount of water percolated through a column of calibrated

aggregates, we expect the PS index to be positively correlated to the aggregate size. Indeed,

in the hypothetical case of aggregates being uniform stable spheres, and assuming aggregates

are packed under the same model (Hillel, 2004), the smaller the aggregate diameter, the

smaller the resulting pores diameter, and in turn, the smaller the discharge.
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Figure 14 shows three mains features:

1. In recently reclaimed tepetate under conventional management (02-C) all aggregates

sizes had similar PS index (non significant differences).

2. In organic management (02-O), PS index for 2-3.15 mm aggregates was significantly

(p<0.01) higher than the other aggregate sizes on 13/07/05, but decreased and became

no longer significantly different after this date.

3. The stability of aggregates decreased during the growing season in all aggregate sizes.

At the end of the season, there were no differences in PS between managements.

In plots reclaimed in 1986, the same “stability peak” is observed in aggregates 2-3.15 mm at

the beginning of the cropping season in 86-O (332 ml 10 min-1) and, to a lesser extent, in 86-I

(208 ml 10 min-1) and 86-C (158 ml 10 min-1) (Table A- 18). PS values for aggregates 2 -

3.15 mm decreased during the season, but remained higher than smaller aggregates fractions

in all 86-plots.

Effect of ridge and furrow on aggregate stability

Traditionally in Mexico, maize is cultivated in a ridge and furrow system. In 2004, samples

were taken in ridge and furrow areas to evaluate the impact of such system on soil erodibility

(Table A- 17).

The furrow areas provided significantly higher PSw values (232 ml percolated in 10 min)

than the ridge area (139 ml 10 min-1). This is due to higher PS values for all 3 sizes of

aggregates, and not to a different aggregate size distribution (Table A- 18). This observation

suggests that a furrow-ridge system improves the overall aggregate stability thanks to the area

occupied by furrows. We assume that as runoff occurs in furrows, the particles are

transported according to their size and to the flow velocity, as shown in the Hjulström

diagram. When flow rate decreases, bigger particles settle whereas smaller particles are

transported downstream. This sedimentation process occurs in furrows and may result in a

coarser texture in these areas. As the sand fraction increases, the PS values obtained increase

too, since the PS is much positively correlated to the amount of sand in soils (Mbagwu and

Auerswald, 1999). In this case, higher PS values do not necessarily reflect higher cohesive

strength within the aggregate, but a higher porosity due to the amount a sands.

This hypothesis must be confirmed by PSD analysis in furrows and ridges areas.
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4.3.3. Porosity and pore size distribution

4.3.3.1.Total porosity and bulk density

Some definitions:

 In our study, “fine pores” are the pores with equivalent diameter of less than 0.2 μm.

The volume of fine pores corresponds to the volume of water in the soil at 15 bars,

which is considered to be the physical definition of the permanent wilting point (θpwp)

 “Large pores” are the pores with equivalent diameter of more than 10 μm. The

volume of large pores equals the volume of water in soil between field saturation and

field capacity (θfc) at -0.33 bar.

 “Medium pores” are the pores whose equivalent diameter range from 0.2 to 10 m.

The volume of medium pores corresponds to the available water content, and is

equivalent to the volume of water retained in soil between θfc and θpwp.

Table 12: Mean porosity (0 – 40 cm) in reclaimed tepetates from 2003 to 2005 in Tlalpan. Different letter
indicates significant difference (p<0.01)

Year Parameter
Mean Mean

2003 Pores >10 μm 11.3 a 11.8 a 12.8 a 12.0 12.7 a 10.2 a 11.4
Pores 0.2 -10 μm 12.3 a 12.7 a 13.4 a 12.8 12.5 a 12.8 a 12.7
Pores <0.2 μm 20.1 ab 20.3 ab 19.4 a 19.9 20.8 bc 21.7 c 21.3
PT sat 43.6 a 44.8 ab 45.5 b 44.6 46.1 b 44.6 ab 45.3
Bulk density 1.27 a 1.26 ab 1.23 ab 1.25 1.21 b 1.24 ab 1.22

2004 Pores >10 μm 16.5 a 17.1 a 16.0 a 16.5 14.8 a 17.1 a 15.9
Pores 0.2 -10 μm 15.6 a 15.2 ab 14.9 ab 15.2 15.2 ab 13.8 b 14.5
Pores <0.2 μm 16.0 a 15.2 b 15.3 b 15.5 17.6 c 18.6 d 18.1
PT sat 48.0 bc 47.5 ab 46.1 a 47.2 47.5 ab 49.6 c 48.5
Bulk density 1.22 a 1.19 ab 1.23 a 1.21 1.19 ab 1.16 b 1.18

2005 Pores >10 μm 20.1 ab 22.5 a 18.2 b 20.3 18.9 ab 20.1 ab 19.5
Pores 0.2 -10 μm 13.9 a 13.2 a 15.8 b 14.3 14.3 ab 13.6 a 14.0
Pores <0.2 μm 15.8 a 15.5 ab 15.0 b 15.4 17.6 c 18.6 d 18.1
PT sat 49.8 ab 51.2 ab 49.0 a 50.0 50.8 ab 52.4 b 51.6
Bulk density 1.16 ab 1.15 ab 1.19 a 1.16 1.15 ab 1.13 b 1.14

1986 2002
Conventional Improved Organic Conventional Organic

In 2003 the bulk density ranged from 1.21 (02-C) to 1.27 g cm-3 (86-C), with an average of

1.24 g cm-3. Total porosity ranged accordingly from 43.6 to 46.1 % with an average of 44.9

%. Fine pores (<0.2 µm) represented in average 20.4 % of the soil volume and 45 % of the

total porosity. Large pores only accounted in average for 11.7 % of the soil volume.

In 2004, the average total porosity increased to 47.8 %, thanks to an increase in medium (14.9

%) and large pores (16.3 %). Fine pores decreased to 16.5 %. The difference between 2003

and 2004 is observed in all treatment, regardless of age or management. However, although
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large pores volume is not significantly different (p<0.05) between plots, fine pores volume is

significantly greater in recently reclaimed tepetates, both in 2004 and 2005.

In 2005, the average porosity increased to 50.6 % thanks to an increase in large pores (20 %).

The volume of medium and fine pores remained constant compared to 2004, at 14.1% and

16.5 % respectively. The same way as in 2004, the increase in porosity is observed in all

treatment regardless of age or management.

The increase in porosity between years is probably due to different soil conditions during

sampling rather than evolution of physical parameter over the years.

4.3.3.2.Pore size distribution

Detailed pore size distribution results are presented in Table A- 19, Table A- 20, and Table

A- 21.

In agreement with total porosity results, there is no significant difference in pore size

distribution between plots within a year (repeated measures ANOVA).
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Figure 20: Pore size distribution in 2003, 2004 and 2005 (Table A-19, A-20 and A-21)

4.3.3.3.Effect of depth on porosity

In 2003, total porosity ranged on average from 44.1 % at 10 cm depth to 45.2 % at 40 cm,

with no significant difference (P>0.05) between depth, regardless of the plot (Table A- 19

and Table A- 21)

In 2004, in ridge areas, the porosity varied on average between 48.6 % at 5 cm and 46.8 % at

40 cm, but this difference was not significant (Table A- 20).

In 2005, total porosity significantly decreased with depth, with values of 51.2 % in the first

20 cm depth, 49.5 % at 30 cm depth and 46.4 % at 40 cm. Porosity decreased with depth in

all plots (table A-17 appendix 6). The decrease in total porosity in linked to a decrease of the

volume of pores >10 µm, from 22.8 % at 10 cm depth to 14.4 % at 40 cm depth. The volume

of pores <10 µm remained constant in the profile with values ranging from 15.4 % at 5 cm
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and 15.2 % at 40 cm for medium pores and from 15.7 % at 5 cm to 16.8 % at 40 cm depth for

fine pores (Figure 21). The presence of structural crust and compaction of the upper horizon

is also clearly visible, with a decrease of larger pores (>120 µm) at 5 cm (3.3 %) compared to

10 cm (5.5 %) (Table A- 20).
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Figure 21: Effect of depth on pore size distribution in 2005 in Tlalpan (Table A-21)

4.3.3.4.Effect of ridge and furrow systems on porosity

In 2004, maize was cultivated on a traditional ridge and furrow system. Samples were taken

both on furrow and ridge areas to assess the possible effect of such system on porosity.

Analysis of variance showed that in the first 5 cm depth, porosity in ridge area (48.6 %) is

significantly higher (p<0.001) than in furrow area (45.6 %), regardless of the plot (Figure 22).
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Figure 22: Pore size distribution at 5 cm depth in ridge and furrow maize cropping in reclaimed tepetate
(Table A- 22).
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The reduced porosity in furrows is due to a reduction of pores 50 -120 m and > 120 m. The

latter (> 120 m) occupy 7.1 % in ridge area against only 3.5 % in furrows. Volume of pores

<50 m is not significantly different between the two areas.

In furrows, runoff crusts are formed by successive organized deposits of sand and silt

particles settling down according to the flow velocity (Casenave and Valentin, 1989; Janeau

et al., 1992). The organization of particles and the absence of roots in this area reduced

macroporosity (> 50 m).

4.4. Statistical analysis

4.4.1. Relationship between SOC, aggregate stability and erodibility

Table 13: Bivariate covariance table between SOC, PS 1-2 mm (Percolation stability index measured on
aggregates 1-2mm), PSw (weighted percolation stability index), MWD, runoff and soil loss (annual
values) in reclaimed terraced tepetates.

SOC PS (1-2 mm) MWD PSw Runoff

2003 PS (1-2 mm) 0.62 -

MWD 0.74* 0.29 -

PSw 0.72* 0.85** 0.44 -

Runoff -0.96* -0.51 -0.57 -0.74 -

Soil loss -0.95* -0.47 -0.57 -0.69 0.98**

2004 PS (1-2 mm) 0.46 -

MWD 0.45 0.09 -

PSw 0.49 0.99** 0.19 -

Runoff -0.88* -0.34 0.14 -0.34 -

Soil loss -0.89* -0.36 0.12 -0.35 0.99**

2005 PS (1-2 mm) 0.78 -

MWD 0.50 -0.02 -

PSw 0.92* 0.97** 0.17 -

Runoff -0.95* -0.67 -0.42 -0.83 -

Soil loss -0.96** -0.73 -0.44 -0.87 0.98**

all years PS (1-2 mm) 0.39 -

MWD 0.33 -0.24 -

PSw 0.46* 0.98** -0.17 -

Runoff -0.89** -0.03 -0.22 -0.05 -

Soil loss -0.82** 0.01 -0.04 -0.01 0.93**

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

4.4.1.1.Relationship between aggregation and SOC content

Overall, the relationship between aggregation (PS, PSw, MWD) and SOC is very poor or

inexistent: there is no significant relationship between SOC and PS (1-2 mm), neither

between SOC and MWD (r= 0.33), and a weak, although significant (r=0.46), relationship

between SOC and PSw.
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The samples used for SOC analysis and the samples used for aggregation analysis (MWD,

PS, PSw) are different and were not taken at the same date. Therefore, SOC and aggregation

are related to the same plot, but not to the same sample. The lack of correlation is therefore

partly due a methodological problem and does not necessarily imply they are not related. This

result is discussed further in part 5.

4.4.1.2.Relationship between aggregation and erodibility

There is no significant relationship between the aggregation parameters (PSw, PS, MWD)

and erodibility (soil loss and runoff). Part of it can be attributed to methodological issues

already mentioned in part 4.3.2.

4.4.1.3.Relationship between SOC and erodibility

There is a strong relationship between SOC and soil erosion, for both soil loss (r = 0.82) and

runoff (r = 0.89). This relationship is analyzed further in the following chapter (4.4.2)

4.4.2. Soil loss and runoff prediction

The objective of this chapter is to:

1. Assess the relationship between erosivity, SOC and vegetation cover on soil loss and

runoff.

2. Predict soil loss and runoff in terraced reclaimed tepetates for individual event and

annual value

4.4.2.1. Data set

In total over the 3 years, 310 erosive events were recorded in the 5 experimental plots. Some

events were discarded according to the following criteria:

 When detailed rainstorm data was not available

 When runoff volume was below a threshold value of 1 mm in plots reclaimed in 1986,

or 5 mm in plots reclaimed in 2002. In cases where runoff was >1 mm in at least 2

plots (1986-plots), the event was included for all plots. This criteria was set to avoid

over representation of small events.

In total 141 events (or cases) were selected (Table A- 10). According to Tabachnick and

Fidell (2001), the minimum size recommended in a multiple regression is N> 50 + 8m where

m is the number of independent variables. In our study 3 independent variables are used. The
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number of cases selected if therefore approximately twice the minimum size recommended

(74). The model includes 45 % of the erosive events, and covers 77 % of the total soil loss

recorded. Descriptive statistics of the variables (Table A- 11) showed that soil loss, runoff,

and all the rain parameters are positively skewed. To comply with multivariate analysis

assumption of normality, skewed variables were logarithmically transformed.

4.4.2.2.Variables

SOC content

Since SOC content was not monitored throughout the cropping season but only at the end of

the season, annual values are used.

Vegetation cover prediction

Since vegetation cover was not monitored on a daily basis, we used predicted values of

vegetation cover for each erosive event in the analysis.

When the maximum value is known, vegetative growth pattern are well described by

symmetrical logistic equations (Landsberg, 1977), such as:

)exp(1

max

kTb

C
Cv


 (10)

Where: Cv is the vegetation cover,

Cmax is the asymptote (maximum vegetation cover)

b and k are curvature parameters

T is time in days after planting.

In 2003 and 2005, b and k were determined to best-fit the measured data. In 2004, they were

set so that maximum vegetation cover was reached approximately 90 days after sowing.

After maximum crop development, leaf senescence causes vegetation cover to decrease. The

decay in vegetation cover was predicted by linear interpolation in 2003 and 2005. In 2004,

the decrease was considered to follow the same logistic curve after maximum value was

reached (90 days), with a loss of vegetation cover of 40% of the maximum value (Lizaso et

al., 2003).

Table 14: Curvature parameters for the modelling of vegetation cover . (a) Observed vs predicted.
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Year b k r2 (a) N Sig.
2003 6 0.2 0.85 15 p<0.001
2004 6 0.12
2005 9 0.2 0.94 58 p<0.001

4.4.2.3.Relationship between erosivity and erosion

EI30 is the rain erosivity parameter (R factor) used in the USLE (Wischmeier and Smith,

1978). It is the product of the kinetic energy of the storm with the maximum intensity in 30

minutes. Some authors (Prat, 1997) suggested that due to the rainstorm intensity patterns in

Mexican central highlands, EI10 should be better correlated to soil loss. Our results showed

that, in cultivated conditions, and for single events, EI10 is more strongly correlated with soil

loss than EI30, with average correlation coefficient of 0.55 and 0.52 respectively (Table A-

12). EI30 is however more strongly correlated to runoff than EI10, with r = 0.77 and 0.75

respectively. Rain precipitation and kinetic energy are also strongly related to runoff, with r =

0.77 and 0.78 respectively (Table A- 12). When detailed rainfall recording is not available,

rain depth can be used satisfactorily to predict runoff.

4.4.2.4.Soil loss and runoff prediction

For single event

Erosivity, Vegetation cover and SOC made a significant unique contribution to predict soil

loss and runoff. EI10 or EI30 are the best erosivity parameters to predict soil loss, explaining

together with vegetation cover and SOC 62 % of the variance (Table A- 13). Although not as

accurate as EI30 or EI10, rain depth is significantly correlated to soil erosion and can also be

used to predict soil loss instead of EI30 when detailed rainfall records are not available

(pluviometers).

The erosivity factor (EI30) made the greatest contribution to predict soil loss, accounting for

27 % (EI30) of the variance, whereas vegetation cover accounted for 26 % and SOC for

another 9 % (EI30) (Table A- 13).

Runoff was better predicted than soil loss thanks to a greater contribution of the erosivity

parameter. Both EI30 and rain depth, together with soil cover and SOC predicted

significantly (R2=0.68) the volume of runoff. EI30 alone accounted for 41 % of the total

variance, with soil cover contributing another 23 % and SOC only 4 %. Whereas EI10 is a

good indicator to predict soil loss, it is not so efficient to predict runoff (R2 = 0.64). EI30 is

the best erosivity indicator to predict both soil loss and runoff (Table A- 13).
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Finally, if runoff measurement are available, soil loss can be predicted with precision (R2 =

0.81). In this case runoff accounted for 68% of the variance and soil cover for another 13 %.

SOC did not make any significant unique contribution (P > 0.05) and was discarded.

Table 15: Multiple regression equation for single event soil loss and runoff prediction in terraced (slope 3-
4%) cultivated tepetates in Tlalpan, Tlaxcala. Erosion (soil loss in kg ha-1); Runoff (mm); EI30 (MJ ha-1

mm h-1, or 10 N h-1); COVER (m2 m-2 :area of soil covered per unit of area); SOC (mg g-1).

Regression equation R2 Sig.

LOGerosion = 1.958 + 0.66(LOGEI30) - 1.09(COVER) - 0.15(SOC) 0.62 p<0.001

LOGrunoff = 0.046 + 0.62(LOGEI30) - 0.3(COVER) - 0.16(SOC) 0.68 p<0.001

LOGerosion = 1.96 + 1.05(LOGrunoff) - 0.76(COVER) 0.81 p<0.001

Soil loss and runoff prediction equations presented in table 9 are valid for individual erosive

events included in the range of those considered in the model and for terraced cultivated

tepetates with slopes of approximately 3 – 4 %, and with SOC content ranginf from 1 to 5 mg

g-1. They have not been validated for other conditions and should therefore not been

extrapolated.

The multiple regression analysis clearly highlighted that among the parameter that can be

influenced by management (vegetation cover and SOC), soil protection by vegetation cover

has the greatest impact on soil erosion. SOC also make a significant contribution to soil

erosion but to a lesser extent.

In case of a single extreme annual event (on average 45 mm and EI30 = 63 N h-1), and a

vegetation cover of 50 %, increasing SOC from 1 to 2 mg g-1 can reduce soil loss from 1.26 t

ha-1 to 0.88 t ha-1 (30 % decrease). For the same extreme annual event, and in reclaimed

tepetate with 1 mg g-1 SOC content, increasing vegetation cover from 50 to 80 % can reduce

soil loss from 1.26 t ha-1 to 0.59 t ha-1 (53 % decrease).

For annual values

The prediction models adjusted to annual runoff and soil loss explain a larger proportion of

the variances than for individual events (results in Table A- 14).

Annual runoff rates can be predicted by SOC and EI30 and COVER with good accuracy (r2 =

0.91, n = 15, Table 11). SOC alone is the main contributor and accounted for 79% of the

variance. Vegetation cover (COVER) and rain erosivity (EI30) explained another 6 % and 5

% of the variance respectively (Table A- 14).
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Erosion rates are well predicted by SOC content and EI30 (r2 = 0.84, n = 15, Table 11). In

that case SOC is the main contributor to soil loss variance (r2 = 0.64), whereas EI30 explained

another 20 %. Vegetation cover did not make any significant contribution to soil loss

prediction. When annual runoff data are available, 89 % of the annual soil loss can be

predicted. In this case runoff is the main contributor (r2 = 0.85), with EI30 accounting for

another 4 %. SOC and vegetation cover did not improve the model any further in this case

(no significant single contribution). Using the sum of EI30 of all erosive events only instead

of the annual EI30 (the sum of all events, both erosive and non-erosive) did not improve the

model fit.

Table 16: Multiple regression equation for annual soil loss and runoff prediction in terraced (slope 3-4%)
cultivated tepetates. Soil loss (t ha-1); Runoff (mm); EI30 (N h-1); SOC (mg g-1); COVERmax (m2 m-2:
vegetation cover at crop maximum development).

Regression equation r
2 n Sig.

0.84 15 p<0.001

0.89 15 p<0.001

0.91 15 p<0.001Runoff = 256.23 - 37.50(SOC) + -144.82(COVERmax) + 0.207(EI30)

Soil loss = 9.75 - 3.98(SOC) + 0.03(EI30)

Soil loss = 0.07(RUNOFF) + 0.015(EI30) - 4.83

The significance of the regression analysis greatly depends on the contrast between 86-plots

and 02-plots. There is a strong relationship between runoff rates and SOC in recently

reclaimed plots, but no relationship in 86-plots (figure 11).
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Figure 23: Relationship between SOC and annual runoff rates in plots reclaimed in 1986 and 2002.

It is important to stress that annual sediment and runoff rates prediction are based upon 15

values (5 plots * 3 years), and although the r2 reported are adjusted to take into account the
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size of the sample, the latter is under the recommended size. All interpretation based upon the

regression equations proposed should be made with the necessary critical judgment.
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5. Discussion: Effect of organic farming on soil erosion and soil structure

5.1. Erosivity

Rain erosivity in Tlalpan is moderate, with average annual precipitation of 675 mm and

average R of 127 N h-1. It is however, higher than on the western side of the Sierra Nevada

(Prat, 1997).

Our results complement the previous studies of Baumann (1996) and Fechter-Escamilla

(1997a) and give a longer term perspective of rainfall patterns in the Bloque de Tlaxcala.

Rainfall patterns recorded over the 2002-2005 period and confirmed that in this region soil

loss is caused by a reduced number of rainstorms. Such rainfall and erosion distribution

pattern have also been observed in many locations in the world and under contrasting rainfall

regime (Edwards and Owens, 1991; Langdale et al., 1992; Nyssen et al., 2005; Gonzalez-

Hidalgo et al., 2007).

Rain erosivity in Tlalpan have been extensively discussed by Baumann (1996). Our results

confirm trends previously reported but do not give further insights. Hence, this aspect won’t

be developed further.

5.2. Effect of organic farming on soil erosion

5.2.1. Carbon dynamic in reclaimed tepetates

5.2.1.1.Incorporation and accumulation of SOC

In organic management, organic fertilization was applied at an average rate of 3.7 and 4.1 t

ha-1 yr-1 (dry material) in 86-O and 02-O respectively. Such rates are lower than organic

fertilization rates applied in other experiments in reclaimed volcanic ash soils:

i. In Eastern side of the Sierra Nevada, Baez et al. (1997) applied 40 t ha-1 fresh farmyard

manure the first year after fragmentation and 20 t ha-1 the years onwards.

ii. In Ecuadorian Cangahua, Podwojewski and Germain (2005) applied 40 t ha-1 dry material

after fragmentation and 10 t ha-1 the following years.

iii. Acebedo et al. (2001) studied tepetate aggregation in greenhouse conditions after

incorporation of the equivalent of 50 t ha-1 dry cattle manure.
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iv. In Salvador, Collinet and Mazariego (1993) used 15 t ha-1 yr-1 dry poultry manure to

reclaim volcanic ash soils.

Manure or compost application of more than 10 t ha-1 yr-1 are hardly available for the average

farm in the area (Lepigeon, 1994) and would require external provision of organic material

(manure, residues, etc..). It would in turn increase production costs and make the farm more

dependant on external inputs. The organic management evaluated in our experiment was

designed to be acceptable and adoptable by local small holders, as well as being

economically viable and environmentally reproducible. Ideally, organic farming should limit

external inputs to reduce costs and tend to be self sufficient in terms of organic fertilization.

In this respect, compost should be produced using the amount of residues available from the

previous crop and manure produced on the farm. For experimentation sake, it was not

possible to follow this principle every year, but attempt has been made to keep external inputs

of organic material to reasonable levels and to make the organic management reproducible

and adoptable to small farmers in the area.

In plots reclaimed in 1986, 20 % (on average) of the C incorporated between 2002 and 2005

was accumulated in soil (Table 8). In recently reclaimed tepetates this ratio was 24 % in

organic management and 40 % in traditional management. The higher translocation

efficiency in traditional management can be explained by the origin of the C incorporated.

Numerous studies have demonstrated that root-derived Carbon was more persistent than

shoot-derived C (Rasse et al., 2005). Puget and Drinkwater (2001) observed an increased

retention of root-derived C in soils 6 months following crop incorporation in comparison to

shoot-derived C. Experimental results summarized by Bolinder et al. (1999) also suggest that

the percentage of below ground corn-C incorporated into SOC (range 16 – 30 %) is higher

than that from above ground corn biomass (range 7.7 – 20 %). Hence, since the percentage of

C inputs from roots is higher in 02-C than in the other plots, a greater proportion of C

incorporated was accumulated in the soil in comparison to other systems. Our results are

coherent with those reported by Bolinder, although differences exist because our study

considered C translocation from different crops (not only maize) without discrimination

between above- and below-ground C inputs.

On irrigated intensive cropping Vertisols in Central Mexico, Follett et al. (2005) calculated C

sequestration efficiency of 22 % for above-ground C and estimated to 11 % the C

sequestration efficiency for total C incorporated (above- and below-ground C).
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In that respect, more research is needed to study further carbon sequestration mechanism in

reclaimed tepetates and its impact on soil erosion. Understanding the effects of management

on carbon sequestration in soil like tepetates with an initial SOC content almost inexistent is

critical to developing adequate C conservation strategies.

5.2.1.2.Carbon losses

Carbon accumulation rates can be very slow in reclaimed tepetates, even with regular

incorporation of OM (Baez et al., 2002). This observation suggests that C loss by

mineralization or erosion can be considerable (Etchevers et al., 1997). Part of it can be

attributed to intensive traditional tillage which increases aggregate disruption and carbon

mineralization.

Carbon losses by erosion ranged from 38 kg ha-1 (86-I) to 87 kg ha-1 (02-C) in 2004 and from

17 to 68 kg ha-1 in 2005 (Table 18). The average organic carbon content in eroded sediments

ranged from 5.4 g kg-1 (02-C) to 16.6 g kg-1 (86-I) in 2004 and from 8.7 (02-C) to 16.8 g kg-1

(86-C) in 2005.

It is a fact well established that OC concentration in eroded sediment is greater than in the

soil they are originated (e.g. Rumpel et al., 2006; Bellanger et al., 2004). The preferential

removal of the soil organic matter fraction by erosion is due to the low density of O.M, its

concentration in the vicinity of the surface, and its association with fine particles and micro-

aggregates which are more readily transported by runoff (Lal, 2003; Yadav and Malanson,

2007).

This phenomenon is expressed in terms of enrichment ratio (ER), such as:

ER= SOCsediment/SOCsoil uneroded (11)

Carbon losses primarily depend on soil loss and SOC content and can be predicted according

to the following equation (Starr et al., 2000; Quinton et al., 2006):

SOC loss = (soil loss)(SOC content)(ER) (12)

In Tlalpan, ER ranged from 4.8 to 3.5 with an average of 3.7 in 2004 and from 3.9 to 5.8 with

an average of 4.8 in 2005.

Quinton et al (2006) found in the literature organic matter enrichment ratio ranging from 1.5

to 4.5. In Northern Laos in soils with high erosion rates, Rumpel et al. (2006) obtained ER

ranging from 1.7 to 2.7. However, neither Quinton et al. nor Rumpel et al. indicated the depth

of the horizon considered to calculate ER. Since SOC is preferentially accumulated in the
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upper layers of the soil, ER can be greatly influenced by the depth of the horizon considered

in the calculation. In the UK, Owens (2002) found ER of 1.2 to 1.5 in average and concluded

that it was easier to apply techniques to reduce erosion rates, and thereby carbon losses than

applying techniques to reduce ER. Even though ER comparisons with other studies found in

the international literature are hazardous because of the lack of information regarding the

depth of the horizon that was considered to calculate ER, it appears that our values of ER are

higher than the one reported in template regions. This is likely to be due to the very low SOC

content in reclaimed tepetates which increase the contrast between the arable horizon and the

upper part of the horizon where SOM is concentrated.

Table 17: Carbon losses by erosion and C concentration in sediment in Tlalpan in 2004 and 2005. Source:
(Báez et al., 2006).

86-I 86-O 86-C 02-C 02-O

C losses by erosion (kg C ha-1) 2004 38 65 71 87 85
2005 17 22 22 75 68

C in sediment (g C kg-1) 2004 16.6 15.3 12.7 5.4 8.3
2005 15.7 15.8 16.8 8.7 12.4

C lost / C accumulated 2004 0.10 0.11 0.34 0.40 0.11
2005 0.05 0.04 0.11 0.35 0.08

ER (SOC at 0-10 cm) 2004 4.8 3.4 3.3 3.6 3.5

2005 4.7 3.9 4.6 5.8 5.2

In 2005, C losses by erosion represented approximately 10% of the average C accumulation

rate in Organic and Improved management. However in conventional management, where C

inputs are limited, C losses by erosion represented 34 % (86-C) and 40 % (02-C) of the C

accumulated per year. Losses of carbon by erosion in reclaimed tepetates are significant but

are easily balanced by organic matter inputs from roots and crop residues, even in traditional

management. Soil erosion is thus a phenomenon which does not cause severe on-site

depletion of carbon content as reported in other ecosystems (Lal, 2003), but which reduces C

accumulation rate in cultivated tepetates.

Baez et al. (2006) and Covaleda et al. (2007) concluded that carbon losses by erosion in

reclaimed tepetates were minimal in the carbon balance and that loss of C occurred almost

exclusively by mineralization. Nonetheless, although on-site losses of carbon in reclaimed

tepetates are limited, the mechanisms involved in soil erosion greatly contribute to carbon

losses. Aggregate breakdown by slaking, differential swelling, or raindrop impact (Le

Bissonnais, 1996) releases encapsulated carbon which is then exposed to oxidation and

microbial processes (Six et al., 2004). In addition, the C released is preferentially transported

by runoff or wind (Lal, 2003). Whereas on-site removal of SOM by erosion can be
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redistributed within the watershed or ecosystem, SOM exposed to mineralization or oxidation

by breakdown of aggregate is lost to the atmosphere (Polyakov and Lal, 2004). More research

is needed to determine the part of carbon mineralization induced by the mechanism involved

in soil erosion, and the effect of organic farming on C mineralization.

5.2.2. Vegetation cover

Vegetation cover reduces particle detachment by intercepting and dissipating part of the

energy of raindrops before they strike the soil surface (Hudson, 1995). As a result, it reduces

sealing and crust formation, favours infiltration and, hence, decreases runoff and erosion rates

(Box and Bruce, 1995; Stocking, 1994; Morgan, 2005). There are numerous evidences of the

positive effect of vegetation cover on soil erosion in international literature. In chapter 4.4.2,

the regression analysis showed that vegetation cover explained 26 % of the variance in soil

loss for individual rainstorm. This result gives a quantitative indication of the effect of

vegetation cover in reclaimed tepetates, and the role this factor can play in the first years after

fragmentation.

The discussion will not focus on the effect of vegetation cover on soil erosion, which is a fact

very well established, but on the way management practices can affect vegetation cover. Two

aspects are considered: 1) crop development, which depends on plant nutrition and water

supply, and 2) crops association.

5.2.2.1.Crop development and vegetation cover

As presented before (Table A- 7) recently fragmented tepetates are almost sterile material

due to their lack of N and P, but these deficiencies can be overcome by appropriate

fertilization to reach acceptable crop production (Etchevers et al., 1992; Navaro and

Zebrowski, 1992; Marquez et al., 1992; Baez et al., 1997).

In practice, small-holders in the area tend to adapt the amount of fertilization to their financial

capacities at the time the fertilization is required. As a result, fertilization in traditional

management is often below crop requirements and can limit crop development and vegetation

cover. Our results clearly showed that in recently reclaimed tepetates, the amount of

fertilization applied under conventional management (02-C) don’t overcome fertility

deficiencies and result in poor vegetation cover.

When applied at 15 t ha-1 (fresh manure) in recently fragmented tepetates, organic

fertilization provided vegetation cover similar to tepetates cultivated for more than 15 years.
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However, in 2005 with wheat cropping, the amount of compost applied in 02-O (4.2 t ha-1)

resulted in poor crop development and vegetation cover. This observation suggests that the

amount of organic fertilization required to provide an optimum nutrition for the crop is

greater than what can be produced by composting the previous crop residues. Two options

can be considered to reach optimum crop development and vegetation cover:

1) Increasing the organic fertilization, with additional inputs of manure, produced on the

farm or purchased locally, or compost. The latter implies purchasing additional

organic material to be composted (straw, maize stalks, etc…). Further research is

needed to evaluate the cost-benefit relationship and the cost of opportunity of strict

organic farming.

2) Complementing organic fertilization with mineral fertilization, which is an effective

way to increase soil fertility (FAO, 1999).

In any cases, the fertilization strategy must be adapted to the type of production system found

in the area and to the specific conditions of the smallholders.

Water supply

Results of porosity showed no evidence of significant differences in water holding capacity

between plots (Chapter 4.3.3). However, surface crusting and sealing enhanced by aggregate

breakdown reduce infiltration and, as a consequence, water storage and availability for plants.

The frequent monitoring of soil water content done in 2005 indicated that over the period

2002-plots were significantly drier than 1986-plots (Table A- 9). This is consistent with

runoff measurements which showed that in 2005, 164 mm and 140 mm water were lost by

runoff in 02-C and 02-O respectively, against 33 mm on average in 86-plots (Table A- 2). It

clearly highlights that when nutrition deficiencies are not overcome, either by organic or

mineral fertilization, it gives rise to a vicious circle that will enhance soil erosion: nutrition

deficiencies reduce crop growth and vegetation cover. This will enhance surface crusting and

sealing and will increase runoff. In turn, water losses by runoff decrease water supply which

will affect plant growth and vegetation cover (Figure 24).
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Figure 24: Cause-effect relationship between water supply, vegetation cover and soil erosion. + and –
indicate an increasing (+) and decreasing (-) effect.

5.2.2.2.Crop association

Crop association, or multiple cropping, proved very promising to reclaim tepetates since it

increased forage yields and vegetation cover by 30 % in average over the period in recently

reclaimed tepetates. Baez el al (1997) evaluated various crop association and compared them

to monoculture. They did not measure vegetation cover but crop production and concluded

that associations between cereals and legumes are much more productive than cereals

monoculture. They also reported satisfactory results for the association oat-vetch, but

recommended to use Medicago polimorfa instead of Vicia sativa because of the

aggressiveness of the latter which compete for water and can affect oat development in dry

years. In agreement with Baez et al, the association oat-vetch in our experiment proved to be

a very suitable crop during the first cycle after fragmentation since it provided high

vegetation cover and similar yields to those obtained in tepetates cultivated for more than 15

years. Oat-vetch association is cultivated in many part of the world and is recognized as an

excellent forage (FAO, 2003). In Tlalpan, Fechter-Escamilla et al (1997b) showed that

vegetation cover provided by Trifolium repens and Medicago polimorfa associated with

maize reduced soil loss rates to 1.54 t ha-1 compared with 7.31 t ha-1 in maize cropping

(Table 18).
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5.2.2.3.Mulching

In Mexican highlands, like in semi arid areas, the extended dry season prevent the

establishment of cover crop before the onset of the rainfall season, leaving the soil exposed to

the first erosive rainstorms. Mulching is an alternative whose effectiveness is widely

recognized (e.g. Lal, 1995; Morgan, 2005; Hobbs, 2007). The residue cover both protects the

soil from raindrop impact and decreases stream power by increasing roughness.

Mulching has not been evaluated in Tlalpan within REVOLSO project, but has been

evaluated in Michoacan on reclaimed deteriorated Acrisols by Bravo et al. (2006). They

showed that 30 % residue cover by at the beginning of the rainfall season reduced erosion

rates by 70 % compared to unprotected soil. Similar results were obtained previously in

Patzcuaro watershed on andosols by Tiscareno-Lopez et al. (1999). More examples of soil

loss reduction by mulching in different type of soils and climate are given by Morgan (2005)

who suggest that an application of 5 t ha-1 of straw is sufficient to achieve an optimum soil

cover of 70 to 75 %. In Mexico, Roldan et al (2003) used approximately 3 t ha-1 crop residue

to provide 33 % ground cover, and approximately 5 t ha-1 to provide 66 % ground cover.

Mulching requires significant amount of residues, which will be incorporated to the soil and

mineralized. However in the study area, crop residues are traditionally exported for animal

pasture despite their poor nutrimental value. Residue management is, thus, an issue that must

be address since soil conservation practices that promote organic matter incorporation and

mulching are competing with traditional use of crop residues. To increase probabilities that

farmers adopt new technologies, it is therefore necessary to develop simultaneously

sustainable alternatives to traditional animal feeding system.

5.2.3. Runoff and erosion rates in reclaimed tepetates

After 16 years of cultivation, soil erosion rates in reclaimed terraced tepetates in Tlaxcala are

below 5 t ha-1 yr-1. Soil loss rates below 10 t ha-1 yr-1 are usually considered tolerable

(Hudson, 1995; Morgan, 2005). Soil erosion is critical after fragmentation, with soil loss

rates of more than 15 t ha-1 yr-1, but can be kept within acceptable range as long as they are

cultivated with dense vegetation cover within the first years of cultivation. The study proved

that regular incorporation of OM to the soil after fragmentation reduces significantly erosion

rates from the first years after fragmentation.

In Tlalpan, soil erosion has been measured previously at field scale in 1995 and 1996 in

tepetates cultivated for 9 and 10 years after fragmentation (Fechter-Escamilla et al., 1997b).
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The two years were little erosive, with R factor of 196 N h-1 and 218 N h-1 respectively, and

erosion rates ranged from 1.54 ton ha-1 to 7.31 ton ha-1 depending on the treatment (Table

18). Reduced tillage without soil cover increased significantly runoff rates because of the low

infiltration in the upper horizon (Fechter-Escamilla et al., 1997b), increasing in turn erosion

rates compared to traditional tillage. However, reduced tillage with additional ground cover

provided by the associated crops both reduced runoff and soil loss compared to traditional

tillage.

Table 18: Field scale (1200 – 1500 m2) soil loss and runoff in Tlalpan in 1995 and 1996. Source: Fechter-
Escamilla et al. (1997b). LT: Traditional tillage (Maize cropping with soil preparation by disc ploughing
and two hoeing during cropping); LRscv: No tillage without vegetation cover (Maize cropping by direct
sowing and weed control with herbicides); LRccv: No tillage with associated vegetation cover (Maize
cropping with no tillage and association of Trofolium repens and Medicago polimorfa)

LT LRscv LRccv

1995 Soil loss (ton ha-1) 3.00 3.72 2.34
Runoff (mm) 76 132 53
Annual precipitation : 603 mm

EI30: 196 N h-1

1996 Soil loss (ton ha-1) 5.02 7.31 1.54
Runoff (mm) 30 98 11.2
Annual precipitation: 607 mm

EI30: 218 N h-1

On the Eastern hillside of the Sierra Nevada, Prat et al (1997a) carried out field scale (700

m2) erosion studies where they measured erosion rates in recently reclaimed tepetates under

managements similar to those we assessed in Tlalpan. In their experiment, the “monoculture”

system is equivalent to our traditional management, with use of mineral fertilizers and no

associated crop. Their system called “associated crop and O.M.” is similar to our organic

management, with application of 40 t ha-1 fresh manure in 2003 and 20 t ha-1 the following

years, and use of associated crops.

They found that in average, crop association and incorporation of organic matter reduced

erosion rates to 2 t ha-1 compared with 7.8 t ha-1 under monoculture system. However, they

obtained the same effect with crop association and mineral fertilization, suggesting that the

effect of vegetation cover prevails upon the effect of organic fertilization. The erosion rates

they reported are smaller than those we obtained in Tlalpan. This difference in mainly

explained by the fact that rainfall erosivity in San Miguel Tlaixpan (the name of the place

where their experimental site was located) over the period 1993-1996 was only 205 N h-1 on

average (Prat, 1997), whereas in Tlalpan over the period from 2003 to 2005, the R factor was

on average 305 N h-1. Besides this difference, our results are consistent with their conclusions
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that vegetation cover plays a major role in controlling erosion rates in the first years after

fragmentation.

5.2.4. Evolution of erosion rates

Our results clearly highlighted the high sensibility of recently fragmented tepetates to soil

erosion, with soil loss rates up to 3 times higher than in reclaimed tepetates cultivated for

more than 15 years. After such period of time, tepetates seem to have reached a stable level

below acceptable soil loss rates. Some uncertainties remain though as of how fast erosion

rates decrease and how many years are required before reclaimed tepetates can be considered

stables. This is a fundamental question to design and implement sustainable rehabilitation

programs.

In chapter 4.4.2, we showed that soil loss variance in reclaimed tepetates depends on

erosivity, SOC and vegetation cover. We thus expect the evolution of erosion rates to depend

on the evolution of these three parameters. Assuming that i) rainfall erosivity is a random

parameter, with independent behavior from one year to another; ii) vegetation cover is a

parameter that can be controlled by management practices (type of crop, fertilization) at each

cropping cycle; then over time, the evolution of erosion rates is linked to the evolution of

SOC content and, as a result, to C accumulation rates.

Yet, little is known about C accumulation in soils with initial SOC content almost inexistent

such as reclaimed tepetates. Most recent studies on C accumulation or sequestration rates in

agricultural lands deal with SOC variation after agricultural management changes (e.g.

review by Post and Kwon, 2000), such as change from conventional tillage (CT) to no tillage

(NT) (West and Post, 2002). The latter reported that when changing from CT to NT, it is

possible to sequester 0.57 ± 0.14 Mg C ha-1 yr-1, with SOC reaching a new equilibrium after

15 to 20 years. Lal et al. (1998; cited by FAO, 2004), quantified carbon sequestration

potential for different technological options in drylands. For compost application, they

suggested C sequestration rates of 0.10 to 0.20 Mg ha-1 yr-1, similar to C sequestration

potential for agriculture intensification or conservation tillage, but less than that of water

conservation and management (0.10 to 0.20 Mg ha-1 yr-1).

Baez et al. (2002) suggested that C accumulation in reclaimed tepetates followed a

logarithmic increase in time, regardless of the type of management. In the case of maize

monocropping, Baez et al. observed that SOC content tends to become stable after the first
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decade and argued that SOC content could hardly increased even after 50 or 100 years due to

the limited amount of organic matter incorporated in this type of agricultural management.

Our results showed that the fragmentation and the subsequent cultivation of tepetates induced

by itself a carbon sequestration process. Cultivation, even with low OM inputs such as the

conventional management, provided enough organic material (roots and harvest residues) to

sequester around 0.2 Mg C ha-1 yr-1 (02-C) in the top 20 cm soil. The same C sequestration

rate (0.2 Mg C ha-1 yr-1) was also measured 16 years after fragmentation (86-C). This

“baseline” C sequestration rate can be multiplied by 4, to 0.8 Mg C ha-1 yr-1 with additional

organic matter inputs in the years following fragmentation. The implementation of organic

farming after 16 years of conventional farming did increase SOC content and C sequestration

to 0.61 Mg C ha-1 yr-1. However, the SOC increase was not correlated to any significant

decrease in sediment rates. This observation suggests the existence of a threshold value of

approximately 3.4 mg g-1 at 0-10 cm (Figure 23) above which: i) SOC has no further effect

on soil erosion; or ii) differences in SOC are not large enough to produce significant

differences in runoff and erosion rates at field scale.

Assuming linear accumulation rates presented in table A-19 (0-10 cm) and the regression

model proposed in table 11:

i. Reclaimed tepetates could reach SOC content higher than 3.4 mg g-1 at 0-10 cm depth

(stability threshold) after 7 years of cultivation under organic management and after 21

years under conventional management.

ii. Assuming an average year (erosivity = 279 N h-1), erosion rates in reclaimed tepetates could

drop below tolerable rates (10 t ha-1) after 3 years under organic management and after 9

years under conventional management.

These estimations seem realistic for the organic management. For conventional management,

the mean accumulation rates observed over the first 4 years after fragmentation (0.09 mg g-1

yr-1) is lower than the estimated mean accumulation rates in plots reclaimed in 1986 over a

period of 16 years (0.15 mg g-1 yr-1). If we take into account this value instead of the one we

observed over a period of 4 years, tolerable erosion rates could be reach after 7 years instead

of 9 years and the stability threshold could be reach after 17 years instead of 21 years under

conventional management. In any cases, organic management after fragmentation can reduce

the critical period when reclaimed tepetates present high erodibility by 2 to 3 time compared

to conventional management.
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5.3. Effect of organic management on soil structure

5.3.1. Aggregate stability dynamic and organic management

Aggregate stability expresses the resistance of aggregates to breakdown when subjected to

potentially disruptive processes (Hillel, 2004). Aggregate stability is affected by soil texture,

clay mineralogy, organic matter, cations concentration, iron and aluminium oxides and

CaCO3 (Le Bissonnais, 1995). We will focus on the effect of organic matter since the primary

soil characteristics of the reclaimed tepetates we studied are similar, and because differences

between managements and age of rehabilitation are mainly based on soil organic carbon

content.

Organic matter enhances formation and stability of aggregates by bonding and/or holding

particles together (Oades, 1984). More recently, several studies have demonstrated that the

hydrophobicity of organic matter also greatly contributes to aggregate stability by decreasing

wettability of aggregates, reducing the magnitude of slaking and differential swelling (Chenu

et al., 2000; Goebel et al., 2005; Zaher et al., 2005).

The ANOVA of percolation stability test revealed a positive effect of age of rehabilitation

(2002-plots against 1986-plots) and of organic management on aggregate stability, regardless

of the age of reclamation. This observation (Figure 17) suggests that aggregate percolation

stability is the result of the combination of:

i. Time-driven stability that develops over the years during the rehabilitation process, and

which is related to SOC content

ii. Management-driven stability, independent from the age of rehabilitation, which is related

to the incorporation of fresh organic material (crop residues, compost or manure)

Results from 2005 (Figure 18, Table A- 17) complement this observation by showing that:

i. At the beginning of the rainfall season, a few weeks after incorporation of fresh organic

matter, we observed a peak of stability in organic management. 02-O obtained similar

percolation values than 86-C and 86-I, although SOC content in 02-O is lower than in 86-C

and 86-I. This observation indicates that the stability provided by the incorporation of fresh

organic matter (management driven stability) prevails upon the stability provided by SOC

content (time driven stability). It would also explain why SOC and PS are weakly related.

ii. At the end of the rainfall season, percolation stability in 2002-plots, both under

conventional and organic management, dropped below the percolation stability measured in
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1986-plots. This observation suggests that the effect of fresh organic matter incorporation

on percolation stability is short-lasting (3 to 4 months).

These results are coherent with several studies that showed that the stability of

macroaggregates is not related to SOC but to other organic compounds (Tisdall and Oades,

1982). Perfect and Kay (1990) found that increases in wet-aggregate stability did not

correlate with increases in total organic carbon content, suggesting that some components of

the organic carbon pool were more actively involved in stabilizing aggregates than others.

Golchin et al. (1995) concluded that neither total organic matter nor total O-alkyl Carbon

content was closely correlated with aggregate stability, and suggested that only a part of soil

carbon or carbohydrate was involved in aggregate stability. They also found that particulate

organic matter occluded within aggregates was better correlated with aggregate stability.

The peak of stability observed in organic management a few weeks after organic matter

inputs is coherent with contemporary models of aggregates formation and stabilization.

According to the model of aggregate formation proposed by Puget et al. (2000), when fresh

organic material from plants is incorporated into the soil matrix, it is rapidly colonized by

microbial decomposers. Fungal hyphae and other by-product of the microbial activity, such

as extra cellular polysaccharides, bind soil particles to the particulate OM. It refers to what

Tisdall and Oades (1982) had called “transient” binding agents, responsible for the

aggregation of macroaggregates (>250 µm). According to these authors, polysaccharides are

produced rapidly after addition of organic materials, and the effect of transient binding agents

on water stable aggregation can starts 2 to 3 weeks after the addition of organic materials,

depending on the nature of these materials. Watts et al. (2001) investigated how soil structure

responded when fresh organic materials were added to poor quality degraded arable soils and

concluded that the incorporation of dried grass leaves into degraded soil increased

aggregation and that the process of aggregation was microbiologically mediated. Plante and

McGill (2002) demonstrated the formation of macroaggregates by incorporation of tracers 9

days after tillage. They found that a maximum of 40 to 60 % tracers were incorporated into

>1-mm aggregates after 72 days. Using the same percolation stability test, Fechter-Escamilla

et al. (1997b) were able to show evidence of short term structural stability increase in the

upper horizon of reclaim tepetate induced by ground cover of Trifolium repens and Medicago

polimorfa. They attributed this observation to the increased microbial activity enhanced by

favourable soil moisture regime and roots development provided by the cover crops.
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The seasonal decrease of PS can be attributed to seasonal fluctuations of roots and microbial

biomass and/or level of organic stabilizing constituent (Perfect et al., 1990a). Indeed, even

though transient binding agents are produced rapidly after incorporation of OM, they are also

decomposed rapidly by microorganisms (e.g. Oades, 1993). In soils with low OM, the

macroaggregates breakdown resulting from raindrop impact during the rainfall season leads

to exposure and decomposition of the new and young OM enclosed in the macroaggregates

formed at the beginning of the growing season, after the incorporation of fresh organic matter

(Plante and McGill, 2002). As decomposition of the incorporated OM proceeds, the

microbial growth and production of biopolymers decrease, together with their aggregating

action. We think that aggregate breakdown by raindrop impact during the rainfall season may

expose the OM enclosed in macroaggregates, and accelerate its decomposition, resulting in a

rapid decrease of the aggregate stability.

The fact that at the end of the season (2005) PSw was higher in 1986-plots than in 2002-plots

showed that the stability related to SOC is more recalcitrant and long lasting than the stability

related to the incorporation of fresh organic matter.

Covaleda et al. (2007) conducted a more detailed analysis of carbon dynamic in reclaimed

tepetates in Tlalpan using fractionation techniques. They concluded that: i) the C

incorporated (manure, compost) is stored primarily in macroaggregates (>0.2 mm), this

aggregate-size fraction being the most sensitive to management practices; ii) in the medium

term, the C stored in the smallest aggregates (<0.05 mm) increased. These results are

coherent with the model of aggregate hierarchy (Tisdall and Oades, 1982; Oades and Waters,

1991) which proposed that micro-aggregates (<250 μm) are bound together into macro-

aggregates (>2000 μm) and stabilized by a network of roots and hyphae and by transient

binding agents such as microbial- and plant-derived polysaccharides. Oades (1984) later

showed that the formation of microaggregates occurs within macroaggregates and is

enhanced by the decomposition of temporary binding agents. This mechanism implies that

the SOC in microaggregates is more recalcitrant, whereas the SOC in macroaggregates more

labile (Degens, 1997). Puget et al. (1995) also demonstrated that the SOM responsible for the

stability of macroaggregates was younger than the one present in microaggregates. This

conceptual model has been confirmed by several studies (Jastrow et al., 1996; Six et al.,

2000b; Christensen, 2001) and is widely accepted.

In that respect, Shepherd et al (2002) also highlighted the importance of young SOM in soil

structural development and stressed out that to achieve aggregate stability and the advantages
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that this conveys, frequent input of fresh organic matter was required. Thus, the authors

argued it is not the farming system per se that is important in promoting better physical

condition, but the amount and quality of organic matter returned to a soil. Indeed, organic

material with low C:N ratio are more rapidly decomposed and enhance the formation of

macroaggregates, but their effect on structural stability is transient. High C:N material (small

cereal straw, maize stalks) are decomposed slowly and favors formation of microaggregates

inside macroaggregates (Oades, 1984). The formation and stabilization of microaggregates

provide gradual effect on soil structural stability and long term effect on carbon sequestration

(Blanco-Canqui and Lal, 2004).

In reclaimed tepetates, it is therefore recommended to: i) incorporate fresh residue with low

C:N ratio (manure, compost, green manure) every year to enhance quick and short term

aggregate stability and macroaggregates formation, ii) incorporate high C:N crop residues to

enhance C sequestration and longer term structural stability, iii) promote roots biomass

which is a significant source of stable SOC.

5.3.2. Porosity and infiltration

The pore size distribution of a soil depends, in the first instance, on the particle size

distribution (Smith et al., 1978), and deviations from this basic relationship is related to the

structuring influences of various factors (Aylmore and Sills, 1978). In reclaimed tepetates,

porosity and pore size distribution is primary characterized by a dominance of very fine pores

(<0.2 µm) related to the percentage of clay and fine silt in tepetates. Within years, no

significant differences were observed in total porosity or bulk density between managements

or age of rehabilitation, apart from the volume of pores <0.2 µm significantly higher in 02-

plots plots than in 86-plots.

5.3.2.1.Presence and effect of fragments on porosity in recently reclaimed

tepetates.

Recently fragmented tepetates consist of tepetate fragments. Therefore, void space consists

of intra-fragment porosity (equal to original tepetates porosity), and inter-fragment porosity,

related to the arrangement of fragments. Over time, fragment content decreases as primary

particles are released, and aggregate content increases, as primary particles bound with

organic compounds and polyvalent cations (Baez et al., 2002). Since the volume of

micropores in tepetate t3 in the Block of Tlaxcala is approximately 22 % (Werner, 1992) and



5. Discussion: Effect of organic farming on soil erosion and soil structure 74

higher than in cultivated soils, it is coherent to obtain higher microporosity in recently

reclaimed tepetates than in R86.

Fechter-Escamilla and Flores (1997) suggested that total porosity in tepetates recently

fragmented should be corrected to take into account the presence of large fragments inherited

from the original matrix. They stated that sampling with 100 cm3 cylinder tends to

overestimate the soil’s fine fraction (< 2 mm). They estimated that fragments > 2 mm occupy

up to 50 % soil weight in recently reclaimed tepetates. This approach suggests that total

porosity in recently reclaimed tepetates should be lower than in tepetates with several years

of reclamation since part of the soil consists of dense original tepetate material. However,

volume of soil fragments was not measured in our study and this assumption could not be

checked.

5.3.2.2.Effect of management on soil porosity

Pore structure and porosity development is intimately linked to aggregation, as both

mechanisms are affected by the same factors. Soil biology and soil porosity have profound

reciprocal effect (Oades, 1993): soil structure forms the habitat for micro-organisms which

control residue decomposition rates and can influence, in fine, the aggregation and the

development of pore space. Using X-ray tomography analyzes, De Gryze et al (2006) were

able to show that decomposition of residues increased the overall void porosity and changed

the pore morphology due to the proliferation of fungal hyphae near fresh residues. However,

they found no relationship between water-stable aggregation and the changes in pore

structure, suggesting that pore stability rather than pore morphology plays a role in the

formation of aggregates after the addition of residue. Schjonning et al. (2007) showed that

incorporation of cattle manure or green manure increased SOC and improved hydraulic

properties of the soil 5 to 6 years after implementation of new management practices. In the

Sahel region in soils affected by hardening process during dry season, the application of

compost at a rate of 5 t ha-1 every two years in addition to mineral fertilization improved

infiltration in the short term (3 years), even in soil tilled on an annual basis (Ouattara et al.,

2007).

In our experiment, no significant differences were observed between management and/or age

of reclamation. This observation could be attributed to the effect of intensive cultivation on

pore structure and pore size distribution. Tillage mechanically breaks pore continuity and

hinders biopores formation (Oades, 1993). In the ridge-tillage cropping system (maize, broad
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bean, beans) extensively used in Mexican highlands and in our experiment, agricultural

practices include up to 5 soil tillages: disc ploughing, harrowing, initial ridging (seedbed),

first ridging (weeding) and second ridging (weeding and ridge reversal). Such tillage

frequency prevents biota-induced porosity to develop and tends to homogenized pore

structure in all management systems. Therefore, the expected positive effect of organic

management on soil porosity could be inhibited by too frequent tillage. The work of Wuest

(2001) suggests however that tillage affects in priority biopores over 1 mm, whereas biopores

<1 mm would not be significantly affected by tilled and no-tilled systems. It is then possible

that the method used to assess soil porosity was not adapted or precise enough to assess

differences in porosity between management.

5.3.3. About tillage and residue management

Developing conservation tillage and residue management methods to improve soil structure

have been identified as a priority for soil management in the tropics (Lal, 2000). Most soil

conservation practices recommend to decrease soil disturbance to encourage soil biological

processes to enhance soil structure development, soil aggregation and stabilization, and SOC

sequestration (Bronick and Lal, 2005). Extensive literature have been published on the effect

of tillage/no tillage on carbon dynamics and sequestration (Follett, 2001; Hobbs, 2007;

Pagliai et al., 2004; Blanco-Canqui and Lal, 2004; Bronick and Lal, 2005; Jimenez and Lal,

2006; Swift, 2001; West and Post, 2002; Paustian et al., 2000; Six et al., 1999; Conant et al.,

2007).

In Mexico, reduced tillage and residue management research have shown positive results on

soil erosion and soil structure. Tillage combined with residues cover has been recommended

on Vertisols in Tamaulipas (Roldan et al., 2007) to improve soil physical properties and C

sequestration. On a cambisol in semi arid western Mexico, no tillage and direct sowing under

mulch (from 1.5 to 4.5 t ha-1 residues) decreased erosion rates by 50 to 90 % compared to

conventional cropping, while increasing SOC by 25 to 29% and maize yields by 170 to 190

% (Scopel et al., 2005). On andisols in the Patzcuaro basin, no tillage improved soil quality

properties (Roldan et al., 2003) and erodibility (Tiscareno-Lopez et al., 1999) in comparison

to conventional tillage, in direct proportion to residues inputs.

However, reduced or no tillage is not adapted to all type of soils. On a loamy soil (25 % clay,

comparable to clay content in Tlalpan), Carof et al. (2007) found that conventional tillage

showed higher saturated hydraulic conductivity and porosity compared to no tilled soil in the
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arable layer. Lipiec et al. (2006) obtained similar results in a silt loam Eutric Fluvisol (25 %

clay, 62 % silt and 13 % sand). They concluded that the higher contribution of large flow-

active pores under conventional tillage enhanced infiltration and water storage capacity

compared to reduced and no tillage systems.

In reclaimed tepetates, characterized by fine texture, poor structural development and low

permeability, Fechter-Escamilla et al. (1997b) showed that tillage increased infiltration by

breaking structural crusts and increasing macro porosity compared to reduced tillage. The

authors concluded that vegetation cover had greater effect on reducing soil erosion than

reduced tillage and suggested that conservation farming in reclaimed tepetates consists of

intensive tillage with high vegetation cover. Similar findings were recently reported in

Mexican volcanic highlands by Govaerts et al. (2006; 2007). They concluded that zero tillage

combined with crop residues retention improved chemical and physical conditions of the soil,

but on the contrary zero tillage with removal of residues led to low aggregate stability, high

penetration resistance, surface slaking and high runoff.

The success and benefit of reduced tillage greatly depends on the type of soil, climate and the

possibility to combine this technique with residue cover. Further studies are therefore

required to evaluate if reduced tillage and residue management practices are adapted to

reclaim deteriorated volcanic ash soils such as tepetates.
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6. Conclusion

The medium term field scale experiment carried out in this investigation constitute a

substantial step forward to the knowledge and understanding of soil erosion dynamics in

reclaimed tepetates. The results obtained give a first evaluation of the effect of organic

farming on soil erosion and soil structure.

Effect of organic farming on soil erosion

Over the period, erosion rates were three to four times higher in 1986-plots than in 2002-

plots. In recently fragmented tepetates, organic farming decreased significantly soil loss

compared to conventional management, but in plots reclaimed in 1986, no significant

differences were observed between managements. The study confirmed the high erodibility

of tepetates after fragmentation, but gave further evidences that soil loss in reclaimed

tepetates cultivated for several years are below tolerable rates, assuming terraces were

initially well designed with slope of around 3-4 %. It appeared clearly that SOC content is the

main parameter controlling annual erosion rates in reclaimed tepetates. The evolution of

erosion rates is therefore dependant on carbon accumulation rates. By increasing organic

matter incorporation, organic farming enhanced C accumulation and decreased significantly

erosion rates compared to conventional farming, within the first years after fragmentation.

According to our prediction model, and assuming average erosivity, erosion could drop

below tolerable rates (10 t ha-1 yr-1) three years after fragmentation under organic farming,

and after seven years under conventional farming. Differences in SOC content in plots

reclaimed in 1986 had no significant effect on soil erosion, suggesting a threshold (~3.4 mg C

g-1 in the top 10 cm soil) above which the effect of SOC content on soil erosion in reclaimed

tepetates is reduced.

For single events, the multiple regression quantified the effect of vegetation cover on soil

erosion and highlighted the importance of providing high vegetation cover in the first stage of

the rehabilitation, when SOC content is still very low. In that respect, multiple cropping such

as oat associated with vetch proved to be excellent alternative by increasing production and

vegetation cover in comparison to oat alone. Crop nutrition is another critical aspect that must

be addressed to enhance crop development and provide optimum vegetation cover.

Effect of organic farming on soil structure
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The analysis of aggregate stability showed that when fresh organic matter is incorporated to

the soil, the liberation of transient binding agents induced a peak of stability in

macroaggregates a few weeks after incorporation. The study demonstrated that organic

farming in reclaimed tepetates enhanced the formation and stabilization of macroaggregates,

which should in turn promote the formation of microaggregates and the stabilization of SOC

in the medium term. Regular incorporation of fresh organic matter in recently reclaimed

tepetates is therefore a way to enhance soil structural development and carbon sequestration

during rehabilitation.

There were no evidence that organic farming improves total porosity and pore size

distribution in reclaimed tepetates. There were no indication neither that porosity increases

over time during the rehabilitation process, suggesting that differences in runoff and erosion

rates are not due to differences in infiltration in the profile but to reduced infiltration caused

by surface crusting and sealing.

Overall, organic farming had a positive impact on soil erosion and soil structure compared to

conventional farming. However, the relationship between soil structure and soil erosion could

not be clearly established, mainly because of methodological flaws. Detailed monitoring of

carbon content and aggregate stability is still required to understand better the dynamic of

organic carbon in reclaimed tepetates and its impact on soil erosion. The study highlighted

the key role of vegetation cover in the first stage after rehabilitation and raised the question of

plant nutrition and fertilization strategy. The application of organic amendments requires a

volume of organic material, either farmyard manure or biomass for compost, which may not

be available to all smallholders in the area. Therefore, as long as the market for organic

products is not developed and a certification system established, the use of mineral fertilizers

in combination to organic amendments is recommended to ensure optimum plant nutrition,

both for production purposes and for soil conservation purposes. In that sense, the improved

management convey the benefit of OM input on soil structural improvement, and the

flexibility of mineral fertilization to meet plants nutrimental requirement. Such farming

system seems to be the best adapted to local farmer’s conditions and could be therefore the

most sustainable of all three management practices compared in this investigation. It is now

necessary to evaluate the performances of improved management in recently reclaimed

tepetates. Specific research is also required to evaluate the cost effectiveness of organic
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farming and its profitability on the medium and long term in comparison to other farming

systems.

Finally, there is a strong research need to explore and evaluate other conservation and

rehabilitation strategies such as reduced tillage and residue cover management in deteriorated

volcanic ash soils areas.
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Summary

“Tepetates” are hardened layers in the profile of soils from volcanic origin. After erosion of

the overlying soil horizon, the tepetates show up on the surface. In the Mexican highlands,

along the Trans-Mexican Volcanic Belt, this phenomenon has caused the emergence of vast

degraded and sterile areas. The State of Tlaxcala is one of the most affected, with 15 % of the

State area covered by bare tepetates. The rehabilitation of tepetates is a way to increase

arable lands and mitigate environmental impact caused by high superficial runoff. Previous

research experiences showed that soil erosion control is critical to achieve sustainable

tepetates rehabilitation. The application of organic amendments have been repeatedly

recommended to increase fertility and soil physical properties after fragmentation, but there is

little data available on the effect of organic farming on soil erosion during the rehabilitation

process. The aim of this research is to evaluate the effect of organic farming on soil erosion

and soil structure at field scale and under natural conditions.

A four years experiment was set up in Tlaxcala, Mexico. Erosion and runoff rates were

measured in five terraced plots of 580 to 2200 m2 and with 3-4 % slope. Three plots were

fragmented in 1986 and two in 2002. Three farming managements were compared: The

“conventional”, with mineral fertilization and no incorporation of O.M.; the “improved”, with

mineral fertilization and incorporation of crop residues, and the “organic” with organic

fertilization. Soil structure was assessed by total porosity, pore size distribution and aggregate

stability.

Annual precipitation ranged between 507 mm in 2005 to 805 mm in 2003, with annual

erosivity of 195 N h-1 and 345 N h-1 respectively. In plots reclaimed in 2002, soil loss ranged

from 8.6 to 19.1 t ha-1 yr-1 under conventional management and from 5.5 to 14.1 t ha-1 yr-1

under organic farming. In plots reclaimed in 1986 soil loss ranged from 1.1 to 5.6 t ha-1 yr-1

with no significant difference between managements. The incorporation of fresh organic

matter in organic farming provided short term increase in aggregates stability, regardless of

the age of rehabilitation. However, aggregate stability was not significantly correlated to SOC

nor to erosion rates. Multiple regression analysis showed that for annual values, SOC is the

main factor controlling erosion rates in reclaimed tepetates, explaining 64 % of soil loss

variance and 79 % of runoff variance. The evolution of erosion rates is therefore dependant

on carbon accumulation rates.
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After fragmentation, organic farming increased carbon sequestration rate to 0.8 Mg C ha-1 yr-

1 compared to 0.22 Mg C ha-1 yr-1 in conventional management. In plots reclaimed in 1986,

carbon sequestration ranged from 0.21 Mg C ha-1 yr-1 in conventional management to 0.37

Mg C ha-1 yr-1 in improved management and 0.61 Mg C ha-1 yr-1 in organic management.

Erosion rates in terraced reclaimed tepetates could decrease below tolerable value (< 10 t ha-1

yr-1) three years after fragmentation under organic farming, compared to seven years under

conventional farming.

Results also confirmed the key role played by vegetation cover (accounting for 27 % of soil

loss variance for single events) and emphasize the importance of crop nutrition and crop

association to control erosion. Improved management provided

Total porosity ranged from 44.8 % on average in 2003 to 50.4 % on average in 2005. We

observed no significant effect of management or age of rehabilitation on soil porosity and

pore size distribution, suggesting that high tillage intensity during the cropping season which

prevented significant changes in porosity between managements.

This three years study demonstrated that organic farming has a positive effect on soil erosion

during rehabilitation of tepetates. However, unless a market for organic products is developed

and a certification system established, we recommend organic amendments to be

complemented with mineral fertilization to ensure optimum vegetation cover and erosion

control.
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Appendix 1. Rain erosivity

Table A- 1: Selected characteristics of rainfall events in Tlalpan from 1991 to 1997 and from 2002 to 2005.
Soil loss value is the mean soil loss value in all plots.

Year Category Max I30
% mm % N/h % mm/h t/ha %

1991 < 1mm 17 15.3% 8.7 1.1% 0.0 0.0% 0.2
1-4.99 mm 47 42.3% 123.3 15.3% 9.3 2.6% 3.5
5-9.99 mm 18 16.2% 136.1 16.9% 19.8 5.5% 7.6

10-19.9 mm 21 18.9% 292.9 36.4% 94.9 26.5% 14.6
20-29.9 mm 6 5.4% 144.1 17.9% 91.8 25.6% 24.7

> 30 mm 2 1.8% 98.7 12.3% 142.1 39.7% 57.4
max rain 06/09/1991 60.6 7.5% 76.5 21.4% 51.0

total 111 803.8 357.9
1992 < 1mm 18 14.5% 12.2 1.5% 0.2 0.1% 1.4

1-4.99 mm 53 42.7% 135.6 16.9% 14.0 5.2% 4.3
5-9.99 mm 29 23.4% 209.9 26.2% 34.4 12.6% 7.9

10-19.9 mm 17 13.7% 229.8 28.6% 77.1 28.4% 15.5
20-29.9 mm 3 2.4% 64.9 8.1% 11.9 4.4% 10.2

> 30 mm 4 3.2% 150.1 18.7% 134.1 49.3% 38.0
max rain 05/06/1992 42.1 5.2% 28.4 10.4% 31.5

total 124 802.5 271.7
1993 < 1mm 17 17.7% 9.3 1.4% 0.2 0.1% 1.4

1-4.99 mm 33 34.4% 83.1 12.5% 4.9 2.3% 3.2
5-9.99 mm 22 22.9% 157.5 23.8% 31.1 14.7% 9.3

10-19.9 mm 17 17.7% 233.5 35.2% 69.1 32.7% 13.3
20-29.9 mm 5 5.2% 108.8 16.4% 58.0 27.5% 23.9

> 30 mm 2 2.1% 70.6 10.7% 47.8 22.6% 29.5
max rain 06/07/1993 38.1 5.7% 19.7 9.3% 23.5

total 96 662.8 211.2
1994 < 1mm 18 17.3% 11.5 1.6% 0.3 0.1% 1.5

1-4.99 mm 46 44.2% 103.9 14.4% 7.4 1.7% 3.4
5-9.99 mm 16 15.4% 121.9 17.0% 24.7 5.7% 9.6

10-19.9 mm 17 16.3% 246.2 34.2% 102.2 23.5% 17.2
20-29.9 mm 4 3.8% 96.5 13.4% 92.8 21.3% 36.7

> 30 mm 3 2.9% 139.1 19.3% 208.2 47.8% 50.3
max rain 27/06/1994 67.1 9.3% 147.7 33.9% 79.0

total 104 719.1 435.5
1995 < 1mm 16 18.6% 8.1 1.3% 2.5 1.3% 1.5

1-4.99 mm 26 30.2% 54.1 9.0% 3.1 1.6% 3.4
5-9.99 mm 22 25.6% 164.1 27.2% 33.4 17.0% 9.3

10-19.9 mm 16 18.6% 223.5 37.1% 58.7 29.9% 12.6
20-29.9 mm 5 5.8% 115.2 19.1% 56.0 28.5% 20.7

> 30 mm 1 1.2% 38.2 6.3% 42.8 21.8% 47.6
max rain 04/07/1995 38.2 6.3% 42.8 21.8% 47.6

total 86 603.3 196.5
1996 < 1mm 19 20.0% 8.8 1.4% 0.1 0.0% 0.8

1-4.99 mm 29 30.5% 81.7 13.5% 6.4 2.9% 3.7
5-9.99 mm 27 28.4% 197.8 32.6% 33.9 15.5% 8.3

10-19.9 mm 17 17.9% 232.8 38.3% 85.4 39.1% 16.5
20-29.9 mm 2 2.1% 42.2 6.9% 24.2 11.1% 23.9

> 30 mm 1 1.1% 44.1 7.3% 68.3 31.3% 61.9
max rain 22/07/1996 44.1 7.3% 68.3 31.3% 61.9

total 95 607.4 218.3
1997 < 1mm 27 26.5% 10.2 1.8%

1-4.99 mm 36 35.3% 98.8 17.9%
5-9.99 mm 20 19.6% 136.1 24.6%

10-19.9 mm 15 14.7% 208.1 37.6%
20-29.9 mm 3 2.9% 69.3 12.5%

> 30 mm 1 1.0% 31.0 5.6%
max rain 05/07/1997 31.0 5.6%

total 102 553.4

Number Depth EI30 Soil loss
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Table A-1 (follow) Selected characteristics of rainfall events in Tlalpan from 1991 to 1997 and from 2002
to 2005. Soil loss value is the mean soil loss value in all plots

Year Category Max I30
% mm % N/h % mm/h t/ha %

2002 < 1mm 66 44.6% 25.5 4.8% 0.2 0.1% 0.6
1-4.99 mm 55 37.2% 131.4 24.8% 9.4 5.1% 3.3
5-9.99 mm 10 6.8% 74.1 14.0% 15.3 8.3% 9.4

10-19.9 mm 12 8.1% 164.5 31.0% 68.5 37.2% 17.7
20-29.9 mm 4 2.7% 101.9 19.2% 41.4 22.5% 20.2

> 30 mm 1 0.7% 32.7 6.2% 49.2 26.8% 57.6
max rain 30/10/2002 32.7 6.2% 49.2 26.8% 57.6

total 148 530.1 184.0

2003 < 1mm 123 56.2% 39.5 4.9% 0.1 0.0% 0.2
1-4.99 mm 50 22.8% 119.9 14.9% 7.7 2.2% 3.1 0.03 0.3%
5-9.99 mm 17 7.8% 108.9 13.5% 15.8 4.6% 7.3 0.46 4.8%

10-19.9 mm 21 9.6% 297.3 36.9% 121.8 35.3% 18.1 3.70 38.7%
20-29.9 mm 5 2.3% 125.1 15.5% 83.3 24.1% 29.9 0.62 6.5%

> 30 mm 3 1.4% 114.7 14.2% 116.2 33.7% 41.0 4.74 49.6%
max rain 02/06/2003 40.8 5.1% 22.7 6.6% 13.9 0.30 3.1%

total 219 805.4 344.9 9.54
2004 < 1mm 161 60.5% 46.7 6.2% 0.3 0.1% 0.3

1-4.99 mm 64 24.1% 152.9 20.2% 11.9 3.2% 3.5 0.04 0.6%

5-9.99 mm 18 6.8% 128.9 17.1% 25.1 6.7% 9.4 0.20 2.6%
10-19.9 mm 18 6.8% 259.8 34.4% 117.6 31.2% 18.4 1.90 24.7%
20-29.9 mm 4 1.5% 103.7 13.7% 83.8 22.3% 33.4 2.68 34.8%

> 30 mm 1 0.4% 63.8 8.4% 138.0 36.6% 79.2 2.88 37.4%
max rain 17/09/2004 63.8 8.4% 138.0 36.6% 27.9 2.24 29.1%

total 266 755.8 376.7 7.71
2005 < 1mm 152 66.4% 44.5 7.7% 0.2 0.1% 0.2

1-4.99 mm 43 18.8% 103.2 17.9% 8.3 4.3% 3.4 0.00 0.0%
5-9.99 mm 17 7.4% 126.8 22.0% 22.9 11.7% 8.9 0.23 6.3%

10-19.9 mm 14 6.1% 209.4 36.3% 81.5 41.7% 16.7 1.92 53.5%

20-29.9 mm 2 0.9% 50.0 8.7% 46.1 23.6% 37.3 0.02 0.5%
> 30 mm 1 0.4% 43.6 7.6% 36.3 18.6% 37.3 1.42 39.7%
max rain 31/08/2005 43.6 7.6% 36.3 18.6% 12.4 0.36 10.0%

total 229 577.4 195.3 3.6
Mean < 1mm 57.6 40.1% 20.5 3.0% 0.4 0.1% 0.8

(1991-2005) 1-4.99 mm 43.8 30.5% 108.0 16.0% 8.3 3.0% 3.5 0.02 0.3%
5-9.99 mm 19.6 13.7% 142.0 21.0% 25.6 9.2% 8.7 0.30 4.3%

10-19.9 mm 16.8 11.7% 236.2 35.0% 87.7 31.4% 16.1 2.50 36.1%
20-29.9 mm 3.9 2.7% 92.9 13.8% 58.9 21.1% 26.1 1.11 15.9%

> 30 mm 1.8 1.3% 75.1 11.1% 98.3 35.2% 50.0 3.01 43.4%

max rain 45.6 6.8% 63.0 22.5% 40.6 0.97 13.9%
total 143.6 674.6 279.2 6.9

Depth EI30 Soil lossNumber
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Appendix 2. Soil loss and runoff

Table A- 2: Annual soil loss, runoff, runoff coefficient and sediment discharge in Tlalpan. Different letter
indicates significant difference at P<0.05.

86-I 86-O 86-C 02-C 02-O

Soil loss 2003 4.5 5.5 4.6 19.1 14.1

2004 2.3 4.2 5.6 16.2 10.2

2005 1.1 1.4 1.3 8.6 5.5

Mean 2.6 3.7 3.8 14.6 9.9

P<0.05 a a a b c

Runoff 2003 51.2 49.3 70.4 265.2 169.2

2004 57.0 81.7 98.2 209.0 146.1

2005 26.2 31.4 39.2 164.9 140.4

Mean 44.8 54.1 69.3 213.0 151.9

p<0.05 a a a b c

Runoff coefficient 2003 10% 10% 13% 42% 26%

2004 13% 20% 24% 46% 30%

2005 11% 11% 14% 48% 36%

Mean 11% 14% 17% 45% 31%

sediment discharge 2003 43.3 50.4 47.7 78.3 63.3

2004 36.8 53.0 56.4 68.3 60.8

2005 35.5 37.8 42.7 48.8 38.8

Mean 38.5 47.1 48.9 65.1 54.3
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Table A- 3: Distribution of soil loss by rainfall event size from 2003 to 2005 in Tlalpan.

Soil loss
year category number ton/ha % ton/ha % ton/ha % ton/ha % ton/ha % ton/ha %

2003 1-4.99 mm 2 0.12 1% 0.01 0% 0.13 0%
5-9.99 mm 6 0.18 4% 0.18 3% 0.17 4% 1.02 5% 0.76 5% 2.31 5%
10-19.9 mm 17 0.96 22% 1.55 28% 1.62 36% 8.54 45% 5.80 41% 18.48 39%
20-29.9 mm 5 0.05 1% 0.05 1% 0.15 3% 2.22 12% 0.65 5% 3.11 7%
> 30 mm 4 3.28 73% 3.71 68% 2.61 57% 7.17 38% 6.90 49% 23.68 50%
Max (42.1 mm) 30/06/03 3.23 72% 3.68 67% 2.40 53% 3.53 19% 5.32 38% 18.16 38%

Total 34 4.46 5.48 4.55 19.07 14.13 47.70
2004 1-4.99 mm 3 0.14 1% 0.06 1% 0.20 1%

5-9.99 mm 3 0.03 2% 0.13 3% 0.11 2% 0.40 2% 0.33 3% 1.01 3%
10-19.9 mm 9 0.29 13% 0.92 22% 1.15 21% 5.20 32% 1.96 19% 9.52 25%
20-29.9 mm 5 0.80 35% 1.68 40% 2.13 38% 5.70 35% 3.07 30% 13.39 35%
> 30 mm 2 1.16 51% 1.49 35% 2.20 39% 4.74 29% 4.81 47% 14.40 37%
Max (63.8 mm) 17/09/04 0.90 39% 1.09 26% 1.61 29% 3.48 22% 4.14 40% 11.21 29%
Total 22 2.28 4.24 5.59 16.18 10.23 38.53

2005 1-4.99 mm
5-9.99 mm 4 0.02 2% 0.07 5% 0.06 5% 0.61 7% 0.36 7% 1.13 6%

10-19.9 mm 11 0.70 65% 0.81 58% 0.98 74% 4.18 48% 2.91 53% 9.58 54%
20-29.9 mm 1 0.07 1% 0.02 0% 0.09 0%
> 30 mm 3 0.36 33% 0.51 37% 0.28 21% 3.76 44% 2.19 40% 7.10 40%
Max (17.5 mm) 28/07/05 0.49 45% 0.42 30% 0.63 48% 1.99 23% 1.47 27% 5.00 28%
Total 19 1.08 1.40 1.31 8.62 5.48 17.89

Mean 1-4.99 mm 2.5 0.13 1% 0.04 0% 0.16 0%
5-9.99 mm 4.3 0.08 3% 0.13 3% 0.12 3% 0.68 5% 0.48 5% 1.48 4%
10-19.9 mm 12.3 0.65 25% 1.09 29% 1.25 33% 5.97 41% 3.56 36% 12.52 36%
20-29.9 mm 3.7 0.42 16% 0.87 23% 1.14 30% 2.66 18% 1.25 13% 6.34 18%
> 30 mm 3.0 1.60 61% 1.90 51% 1.70 44% 5.23 36% 4.63 47% 15.06 43%

Max 1.54 59% 1.73 47% 1.55 40% 3.00 21% 3.65 37% 11.46 33%
Total 25.0 2.61 3.71 3.82 14.63 9.95 34.71

02-O (R2) Total86-I (C) 86-O (D) 86-C (E) 02-C (R1)

Table A- 4: Distribution of runoff by rainfall event category from 2003 to 2005 in Tlalpan.

Runoff
Year category number mm % mm % mm % mm % mm % mm %
2003 1-4.99 mm 2 3.5 1% 0.4 0% 3.9 1%

5-9.99 mm 6 1.8 4% 1.8 4% 2.6 4% 12.5 5% 5.2 3% 24.0 4%
10-19.9 mm 17 20.4 40% 19.2 39% 21.5 30% 98.6 37% 70.2 41% 229.9 38%
20-29.9 mm 5 5.1 10% 5.0 10% 12.0 17% 69.7 26% 25.3 15% 117.0 19%
> 30 mm 4 23.9 47% 23.4 47% 34.3 49% 80.8 30% 68.1 40% 230.5 38%
Max (42.1 mm) 30/06/03 20.9 41% 21.0 43% 25.3 36% 37.2 14% 37.0 22% 141.4 23%
Total 34 51.2 49.3 70.4 265.2 169.2 605.3

2004 1-4.99 mm 3 0.3 0% 2.8 1% 1.2 1% 4.2 1%
5-9.99 mm 3 1.1 2% 2.6 3% 1.3 1% 5.2 2% 4.4 3% 14.6 2%
10-19.9 mm 9 8.8 15% 17.9 22% 22.0 22% 70.7 34% 34.3 23% 153.7 26%
20-29.9 mm 5 18.0 32% 31.1 38% 36.5 37% 68.7 33% 50.2 34% 204.5 35%
> 30 mm 2 29.1 51% 29.8 36% 38.4 39% 61.6 29% 56.0 38% 215.0 36%
Max (63.8 mm) 17/09/04 25.4 44% 25.2 31% 32.1 33% 43.4 21% 45.8 31% 171.8 29%
Total 22 57.0 81.7 98.2 209.0 146.1 592.0

2005 1-4.99 mm 0.0 0%
5-9.99 mm 4 0.6 2% 3.0 9% 1.6 4% 10.3 6% 8.8 6% 24.2 6%
10-19.9 mm 11 13.3 51% 17.0 54% 14.4 37% 66.2 40% 48.3 34% 159.3 40%
20-29.9 mm 1 6.3 4% 2.7 2% 9.0 2%
> 30 mm 3 12.4 47% 11.4 36% 23.2 59% 82.1 50% 80.5 57% 209.6 52%
Max (43.6 mm) 31/08/05 5.5 21% 7.0 22% 9.5 24% 24.2 15% 37.1 26% 83.3 21%
Total 19 26.2 31.4 39.2 164.9 140.4 402.1

Mean 1-4.99 mm 2.5 0.3 1% 3.1 1% 0.8 1% 4.2 1%
5-9.99 mm 4.3 1.1 3% 2.5 5% 1.8 3% 9.3 4% 6.1 4% 20.9 4%
10-19.9 mm 12.3 14.2 32% 18.0 33% 19.3 28% 78.5 37% 50.9 34% 180.9 34%
20-29.9 mm 3.7 11.5 26% 18.0 33% 24.2 35% 48.2 23% 26.1 17% 128.1 24%
> 30 mm 3.0 21.8 49% 21.5 40% 32.0 46% 74.9 35% 68.2 45% 218.4 41%

17.3 39% 17.7 33% 22.3 32% 34.9 16% 39.9 26% 132.2 25%
Total 25.0 44.8 54.1 69.3 213.0 151.9 533.1

02-O (R2) Total86-I (C) 86-O (D) 86-C (E) 02-C (R1)
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Appendix 3. Vegetation cover

Table A- 5: Vegetation cover measured in Tlalpan from 2002 to 2005. Different letter indicates significant
difference (ANOVA repeated measures)

Year Date Days* 86-C 86-I 86-O 02-C 02-O
2002 12-Jul 27 13.5% 20.9% 14.1%

05-Aug 50 22.0% 28.4% 24.4% 8.3% 20.4%
12-Aug 57 24.2% 20.9% 27.7% 12.6% 28.7%
29-Aug 74 29.8% 38.5% 35.7% 29.5% 20.9%
10-Sep 85 44.6% 41.5% 30.4% 34.9% 19.4%
18-Sep 93 47.5% 42.1% 64.0% 20.5% 27.8%
25-Sep 100 44.2% 46.3% 58.6% 40.6% 37.9%
01-Oct 106 78.8% 75.8% 64.5% 32.1% 39.0%
21-Oct 126 76.1% 76.3% 71.0% 41.2% 36.0%
12-Nov 147 55.0% 67.0% 69.7% 31.1% 43.6%
Mean 43.5% 46.1% 46.0% 27.9% 30.4%
P<0.05 a a a b b

2003 14-Jul 31 41.3% 60.8% 48.6% 33.2% 46.9%
24-Jul 41 69.8% 91.0% 72.4% 45.9% 79.1%

07-Aug 54 82.0% 98.1% 95.8% 44.5% 85.0%
26-Aug 73 68.5% 90.9% 94.1% 38.8% 89.6%
22-Sep 99 37.6% 87.4% 64.0% 33.5% 85.0%
Mean 60.9% 83.9% 73.6% 39.2% 77.1%
P<0.05 a b c d c

2004 Estimation 100 77.5% 87.5% 79.0% 35.0% 70.0%
+- 5% +- 5% +- 5% +- 5% +- 5%

2005 20-Jul 28 2.1% 8.9% 6.3% 5.2% 4.6%
28-Jul 36 8.3% 21.1% 18.8% 10.1% 11.3%

05-Aug 43 18.3% 48.4% 38.9% 16.6% 18.2%
11-Aug 49 40.3% 67.4% 56.8% 31.5% 30.6%
18-Aug 56 66.3% 80.7% 74.5% 35.1% 37.1%
25-Aug 63 78.1% 86.6% 81.1% 42.2% 43.5%
01-Sep 69 76.4% 82.7% 86.4% 43.0% 61.4%
08-Sep 76 71.2% 86.4% 86.2% 34.7% 43.0%
15-Sep 83 72.3% 89.1% 86.8% 45.0% 57.4%
22-Sep 90 76.2% 88.5% 88.1% 46.0% 55.5%
29-Sep 97 77.7% 89.5% 89.4% 50.5% 56.7%
06-Oct 104 80.9% 89.6% 91.5% 54.5% 63.2%
13-Oct 111 75.5% 90.8% 90.0% 39.2% 44.5%
20-Oct 118 67.2% 90.3% 83.8% 34.7% 43.6%
27-Oct 125 62.2% 83.4% 79.9% 27.5% 32.5%
03-Nov 131 47.9% 70.4% 64.0% 32.2% 29.0%
Mean 54.2% 69.0% 65.9% 32.2% 37.2%
P<0.05 a b b c c

* Number of days after sowing.
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Appendix 4. Soil properties and crop production

Table A- 6: Soil Organic Carbon (mg g-1) and accumulation rate in Tlalpan from 2002 to 2005.

2002 2003 2004 2005 Δ 02-05 mg C g-1 yr-1 Mg C ha-1 yr-1

0-20 cm 86-C 2.99 3.70 3.40 3.34 0.35 0.09 0.21
86-I 3.21 3.50 3.83 3.83 0.61 0.15 0.37
86-O 3.09 4.42 4.78 4.10 1.01 0.25 0.61
02-C 1.08 0.81 1.45 1.43 0.36 0.09 0.22
02-O 1.08 1.84 2.20 2.41 1.34 0.33 0.80

0-10 cm 86-C 3.23 3.72 3.50 3.37 0.14 0.04 0.04
86-I 3.48 3.69 3.95 3.82 0.35 0.09 0.10
86-O 3.43 4.69 4.85 4.20 0.78 0.19 0.23
02-C 1.05 0.80 1.50 1.51 0.46 0.11 0.14
02-O 1.05 2.03 2.35 2.40 1.35 0.34 0.40

10-20 cm 86-C 2.75 3.69 3.30 3.30 0.55 0.14 0.16
86-I 2.95 3.31 3.70 3.83 0.88 0.22 0.26
86-O 2.75 4.15 4.70 3.97 1.22 0.30 0.36
02-C 1.10 0.82 1.40 1.36 0.26 0.06 0.08
02-O 1.10 1.65 2.05 2.43 1.33 0.33 0.40

Depth Management
SOC (mg g

-1
) accumulation rate

Table A- 7: Crop production in Tlalpan from 2002 to 2005. Different letter indicate significant difference
at p<0.05 between plots.

Mean
Conventional Improved Organic Convent. Organic

2002 Grain production 0.60 0.66 0.51 0.62 - 0.59
p<0.05 a a a a
Broad bean biomass 3.14 2.67 2.61 3.07 - 2.82
p<0.05 a a a a
Total biomass 3.88 3.94 4.03 3.07 - 3.90
p<0.05 a a a a

2003 Vetch - 2.48 2.43 - 2.44 2.45
p<0.05 a a a
Oat 6.44 5.00 5.24 5.02 5.53 5.46
p<0.05 a a a a a
Weeds 2.22 2.74 2.16 0.14 0.94 1.91
p<0.05 ab a ab c bc

Total forage 8.66 10.22 9.82 5.17 8.91 8.94
p<0.05 ba b b a ab

2004 Maize grain 2.15 2.71 2.09 1.67 2.82 2.30
p<0.05 ab a ab a b
Maize straw 3.76 5.17 5.38 2.71 5.49 4.60

2005 Wheat grain 5.23 6.15 4.49 2.70 1.77 4.52
p<0.05 ab a b c c

1986 2002
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Table A- 8: Monitoring of soil water content (gravimetric) at 10 cm depth by TDR during 2004 cropping
season.

Date 86-I 86-O 86-C 02-C 02-O
19/07/2004 0.11 0.16 0.16 0.19 0.11
02/08/2004 0.27 0.27 0.30 0.30 0.28
06/08/2004 0.25 0.27 0.29 0.26 0.27
16/08/2004 0.22 0.17 0.22 0.23 0.22
24/08/2004 0.23 0.25 0.26 0.27 0.24
10/09/2004 0.25 0.24 0.23 0.24 0.21

Mean 0.22 0.23 0.24 0.25 0.22
p<0.05 * a a a a a

*ANOVA repeated measures

Plot
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Table A- 9: Monitoring of soil water content (gravimetric) by tensiometers in 2005 (weighted average
from measures done at 5, 10, 15, 25 and 40 cm depth).

86-I 86-O 86-C 02-C 02-O
07/07/05 0.27 0.24 0.22 0.20 0.18
15/07/05 0.20 0.23 0.20 0.20 0.14
20/07/05 0.22 0.23 0.19 0.20 0.15
25/07/05 0.22 0.23 0.20 0.21 0.16
27/07/05 0.28 0.30 0.30 0.32 0.26
28/07/05 0.28 0.31 0.31 0.31 0.27
05/08/05 0.18 0.23 0.32 0.19 0.20
08/08/05 0.29 0.27 0.31 0.24 0.26
11/08/05 0.28 0.26 0.30 0.23 0.25
14/08/05 0.34 0.25 0.45 0.23 0.25
15/08/05 0.34 0.23 0.37 0.22 0.24
18/08/05 0.32 0.21 0.40 0.22 0.18
21/08/05 0.35 0.20 0.42 0.16 0.21
22/08/05 0.33 0.22 0.38 0.16 0.21
23/08/05 0.36 0.26 0.42 0.20 0.25

25/08/05 0.40 0.35 0.41 0.29 0.30
01/09/05 0.42 0.31 0.42 0.18 0.26
08/09/05 0.36 0.26 0.33 0.14 0.16
09/09/05 0.40 0.38 0.41 0.25 0.28
13/09/05 0.38 0.34 0.40 0.20 0.22
15/09/05 0.36 0.28 0.35 0.15 0.22
19/09/05 0.40 0.29 0.42 0.19 0.21
22/09/05 0.36 0.27 0.34 0.24 0.21
29/09/05 0.27 0.15 0.24 0.18 0.17
04/10/05 0.24 0.14 0.17 0.17 0.19
05/10/05 0.32 0.23 0.31 0.21 0.22
06/10/05 0.40 0.31 0.39 0.22 0.27
08/10/05 0.45 0.45 0.45 0.27 0.37
12/10/05 0.45 0.45 0.45 0.36 0.40
13/10/05 0.44 0.45 0.43 0.40 0.39
20/10/05 0.39 0.43 0.35 0.37 0.31
27/10/05 0.32 0.36 0.26 0.23 0.25

Mean 0.33 0.28 0.34 0.23 0.24
p<0.05 * a ab a b b

*ANOVA repeated measures
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Appendix 5. Soil loss and runoff prediction

Table A- 10 Data set used in the multiple regression

86-I 86-O 86-C 02-C 02-O TOTAL
2003 9 8 8 12 11 48
2004 11 12 12 13 13 61
2005 5 5 5 9 8 32

TOTAL 25 25 25 34 32 141
2003 36% 33% 33% 34% 32% 34%
2004 73% 71% 75% 59% 62% 67%
2005 45% 29% 42% 50% 42% 42%

TOTAL 49% 43% 48% 45% 43% 45%
2003 89% 90% 92% 64% 70% 74%
2004 90% 81% 84% 84% 82% 83%
2005 95% 77% 84% 69% 73% 74%

TOTAL 90% 85% 87% 72% 75% 77%

Number of events in the model

% of events kept in the model

% of annual soil loss considered

in the model

Table A- 11: Descriptive statistics of the variable used in the multiple regression

RUNOFF SOIL LOSS DEPTH KE wisch I10 max I30 max EI10 EI30 SOC COVER
N 141 141 141 141 141 141 141 141 141 141
Minimum 0.37 6.51 6.60 1.24 8.65 6.96 12.70 10.22 0.80 0.00
Maximum 45.75 5324.37 63.80 17.42 109.47 79.20 1379.53 1379.53 4.54 0.95
Median 4.81 260.66 17.09 4.07 42.95 27.45 179.52 105.91 3.32 0.43
Skewness 2.06 3.01 1.67 1.98 0.79 1.36 2.00 3.27 -0.21 0.09
Std. Error of Skewness 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Kurtosis 4.42 10.21 3.19 4.95 0.13 2.02 3.74 11.47 -1.29 -1.26
Std. Error of Kurtosis 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

Table A- 12: Pearson coefficient of linear regression between soil loss and runoff and selected rain
erosivity parameters

Variable Predictor 86-I 86-O 86-C 02-C 02-O ALL average
n=25 n=25 n=25 n=34 n=32 n=141

LOGerosion LOGdepth 0.45 0.33 0.38 0.66 0.55 0.41 0.48
LOGKe 0.45 0.36 0.40 0.73 0.62 0.44 0.51
LOGI10 0.43 0.39 0.33 0.79 0.70 0.45 0.53
LOGI30 0.38 0.40 0.34 0.72 0.61 0.41 0.49
LOGEI30 0.43 0.39 0.38 0.75 0.63 0.44 0.52
LOGEI10 0.47 0.39 0.39 0.79 0.69 0.47 0.55

LOGrunoff LOGdepth 0.70 0.70 0.72 0.86 0.83 0.65 0.77
LOGKe 0.70 0.70 0.72 0.90 0.86 0.66 0.78
LOGI10 0.59 0.51 0.49 0.77 0.79 0.52 0.63
LOGI30 0.61 0.66 0.63 0.85 0.77 0.58 0.71
LOGEI30 0.68 0.71 0.70 0.90 0.85 0.64 0.77
LOGEI10 0.69 0.65 0.65 0.88 0.87 0.62 0.75
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Table A- 13: Model summary and coefficients of multiple regression analysis for single event soil loss and
runoff prediction in reclaimed tepetates

Variable Predictor Standardized Coeff. R
2

R
2

Change

B S.E. Beta

LOGerosion (Constant) 1.741 0.172

COVER -1.017 0.113 -0.490 0.260 0.260

LOGEI10 0.677 0.069 0.525 0.521 0.262

SOC -0.160 0.028 -0.314 0.616 0.094

LOGerosion (Constant) 1.958 0.153

COVER -1.087 0.113 -0.524 0.260 0.260

LOGEI30 0.657 0.0662 0.530 0.529 0.270

SOC -0.154 0.027 -0.303 0.617 0.088

LOGerosion (Constant) 1.651 0.193

COVER -1.111 0.118 -0.535 0.260 0.260

LOGdepth 1.287 0.141 0.505 0.514 0.255

SOC -0.144 0.028 -0.282 0.591 0.076

LOGrunoff (Constant) -0.325 0.124

LOGdepth 1.284 0.091 0.695 0.427 0.427

SOC -0.150 0.018 -0.408 0.633 0.206

COVER -0.335 0.076 -0.223 0.679 0.046

LOGrunoff (Constant) 0.046 0.102

LOGEI30 0.621 0.0442 0.691 0.411 0.411

SOC -0.161 0.018 -0.436 0.638 0.227

COVER -0.303 0.076 -0.201 0.676 0.038

LOGrunoff (Constant) -0.113 0.120

LOGEI10 0.618 0.048 0.662 0.389 0.389

SOC -0.166 0.019 -0.450 0.620 0.231

COVER -0.234 0.079 -0.156 0.643 0.023

LOGerosion (Constant) 1.959 0.057

LOGrunoff 1.046 0.052 0.759 0.686 0.686

COVER -0.756 0.078 -0.364 0.814 0.128

Unstandardized Coeff.

Table A- 14: Model summary and coefficients of multiple regression analysis for annual soil loss and
runoff prediction in reclaimed tepetates.

Variable Predictor Standardized Coeff. R 2 R2 Change
B S.E. Beta (adjusted)

Soil loss (Constant) 9.75 2.73
SOC -3.98 0.51 -0.83 0.64 0.64
EI30 0.030 0.01 0.44 0.84 0.20

Soil loss (Constant) -4.83 1.95
Runoff 0.07 0.01 0.88 0.85 0.85
EI30 0.015 0.01 0.21 0.89 0.04

Runoff (Constant) 265.23 34.15
SOC -37.50 8.16 -0.61 0.79 0.79
Vmax -144.82 50.72 -0.38 0.85 0.06
EI30 0.207 0.07 0.23 0.91 0.05

Unstandardized Coeff.
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Appendix 6. Aggregation

Table A- 15: Dry aggregate size distribution and Mean Weight Diameter (MWD) in Tlalpan. Different
letter indicate significant difference (P<0.05) in mean MWD between plots (a, b, c) and between age of
rehabilitation (x, y).

Year of Management Year MWD
rehab. 10 - 8 8 - 5 5 - 3.15 3.15 - 2 2 - 1 < 1 1 - 0.59 < 0.59
1986 Conventional 2003 12.0% 16.3% 14.6% 12.5% 9.9% 34.6% 3.38

2004 7.1% 11.5% 11.1% 8.8% 13.2% *48.3% 12.4% 36.0% 2.47
2005 11.1% 14.3% 14.7% 11.5% 12.2% *36.2% 12.5% 23.6% 3.18

Mean 10.9% 15.0% 13.9% 11.6% 11.0% 34.6% 12.4% 30.7% 3.14 ab
Improved 2003 11.8% 14.7% 14.1% 11.9% 9.7% 37.8% 3.23

2004 6.1% 10.9% 12.2% 9.4% 13.8% *47.5% 12.0% 35.5% 2.41
2005 8.8% 12.7% 15.4% 12.0% 12.2% *38.9% 12.2% 26.8% 2.91

Mean 10.1% 13.6% 13.9% 11.4% 11.0% 37.8% 12.1% 31.8% 2.99 a
Organic 2003 12.7% 17.6% 16.0% 12.2% 9.5% 32.0% 3.55

2004 8.4% 12.4% 12.8% 9.8% 12.7% *43.9% 11.7% 32.2% 2.72
2005 7.6% 12.3% 14.7% 12.2% 13.5% *39.7% 15.3% 24.4% 2.79

Mean 11.0% 15.7% 15.1% 11.7% 10.8% 32.0% 13.2% 28.9% 3.23 b
Mean 10.7% 14.7% 14.3% 11.6% 10.9% 34.8% 12.6% 30.4% 3.12 x

2002 Conventional 2003 11.5% 13.1% 12.1% 11.2% 9.7% 42.4% 3.03
2004 6.9% 9.5% 12.3% 9.4% 11.3% *50.5% 16.7% 33.8% 2.39
2005 5.4% 9.7% 12.0% 10.5% 13.4% *48.9% 17.2% 31.7% 2.31

Mean 9.0% 11.5% 12.1% 10.7% 11.0% 42.4% 17.0% 32.5% 2.69 c
Organic 2003 9.2% 12.7% 13.0% 13.9% 9.1% 42.2% 2.88

2004 8.6% 11.5% 11.7% 9.8% 14.2% *44.1% 12.6% 31.6% 2.66
2005 6.0% 9.5% 9.5% 10.8% 14.1% *50.1% 18.5% 31.6% 2.28

Mean 8.2% 11.6% 11.8% 12.3% 11.4% 42.2% 16.1% 31.6% 2.66 c
Mean 8.6% 11.6% 12.0% 11.5% 11.2% 42.3% 16.6% 32.1% 2.67 y

Mean 10.1% 13.9% 13.7% 11.5% 11.0% 36.7% 13.9% 31.0% 2.99
* In 2004 and 2005, the fraction <1 mm is the sum of 1-0.59 and <0.59 mm fractions
MWD: Mean weight diameter
SD: Standard deviation

Aggregate size (mm)

Table A- 16: Evolution of ASD and MWD during the 2005 cropping season in Tlalpan. Different letter
indicates significant difference (P<0.05) in MWD between 2002-plots and 1986-plots within a date.

Date Year Management < 0.59 mm 0.59 - 1 mm 1 - 2 mm 2 - 3.15 mm 3.15 - 5 mm 5 - 8 mm 8 - 10 mm MWD
13/07/2005 1986 Conventional 30.5% 18.5% 9.5% 11.0% 11.1% 10.8% 8.7% 2.46

Improved 36.4% 17.1% 8.9% 10.8% 12.4% 9.0% 5.4% 1.99
Organic 29.0% 23.8% 9.7% 11.3% 11.4% 9.0% 5.8% 2.08

Mean 32.0% 19.8% 9.3% 11.0% 11.6% 9.6% 6.6% 2.18 a
2002 Conventional 36.7% 20.0% 9.4% 10.8% 11.2% 7.9% 4.0% 1.76

Organic 31.4% 23.9% 9.4% 11.0% 11.3% 8.0% 5.0% 1.95
Mean 34.0% 22.0% 9.4% 10.9% 11.2% 8.0% 4.5% 1.85 a

22/09/2005 1986 Conventional 9.9% 7.5% 13.7% 13.0% 19.0% 20.2% 16.6% 3.98
Improved 12.1% 6.7% 13.3% 14.6% 20.0% 18.6% 14.8% 3.76
Organic 12.0% 9.8% 16.6% 14.9% 19.7% 17.5% 9.6% 3.03
Mean 11.3% 8.0% 14.5% 14.2% 19.6% 18.8% 13.7% 3.59 a

2002 Conventional 27.5% 15.7% 15.8% 10.4% 13.2% 11.2% 6.2% 2.21
Organic 30.8% 18.6% 17.0% 11.3% 6.2% 9.3% 6.7% 2.08
Mean 29.2% 17.1% 16.4% 10.8% 9.7% 10.3% 6.5% 2.15 b

17/11/2005 1986 Conventional 30.5% 11.6% 13.5% 10.6% 14.1% 11.8% 8.1% 2.48
Improved 31.8% 12.8% 14.3% 10.5% 13.8% 10.6% 6.2% 2.21
Organic 32.3% 12.2% 14.1% 10.5% 13.1% 10.3% 7.5% 2.38
Mean 31.5% 12.2% 14.0% 10.5% 13.6% 10.9% 7.3% 2.35 a

2002 Conventional 30.8% 16.0% 15.1% 10.4% 11.8% 10.0% 6.0% 2.12

Organic 32.7% 12.9% 15.8% 10.1% 10.9% 11.2% 6.4% 2.13
Mean 31.8% 14.4% 15.5% 10.3% 11.3% 10.6% 6.2% 2.13 a
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Table A- 17: Aggregate stability (PSw) in Tlalpan from 2003 to 2005. Different letters indicate significant
difference (p<0.05) between plots (a, b, c) or between plots age of rehabilitation (x, y) within a year.

Year of rehabilitation
Management Conventional Improved Organic Mean Conventional Organic Mean

2003 236.5 302.4 442.1 324.8 170.2 254.0 213.9
P<0.05 a a b x a a y

2004 furrow 624.1 700.4 978.7 767.7 346.6 925.9 636.2
ridge 227.7 389.7 770.1 462.5 300.5 553.2 426.8
mean 425.9 545.0 874.4 615.1 323.5 739.5 531.5

P<0.05 a ac b x a bc x
2005 13 Jul. 100.2 129.5 179.1 136.3 61.2 146.1 103.7

22 Sep. 105.9 157.9 133.0 132.2 52.7 103.0 77.9
17 Nov. 88.1 55.9 107.7 83.9 22.1 34.2 28.1

mean 98.1 114.4 139.9 117.5 45.3 94.4 69.9
P<0.05 a ab b x c a y

Mean 259.3 329.5 498.6 361.1 162.3 308.7 236.9
P<0.05 ac a b x c a y

1986 2002

Table A- 18: PS index in relation to aggregate size from 2003 to 2005

Aggregate 2003
size furrow ridge Mean 13/07/05 22/09/05 17/11/05 Mean

1986 Conventional 0.59-1 mm - 407.9 150.4 279.2 69.1 108.6 43.8 73.8
1-2 mm 255.4 605.4 241.4 423.4 93.7 86.6 55.2 78.5
2-3.15 mm - 1033.7 296.5 665.1 158.3 124.6 178.6 153.8
3.15-5 mm 222.9 - - - - - - -

Improved 0.59-1 mm - 451.5 285.3 368.4 83.5 151.8 38.7 91.3
1-2 mm 277.1 731.0 377.7 554.3 122.2 136.4 39.3 99.3
2-3.15 mm - 955.0 530.3 742.6 208.1 180.2 99.7 162.7
3.15-5 mm 321.2 - - - - - - -

Organic 0.59-1 mm - 577.6 467.3 522.4 100.4 126.2 53.2 93.3
1-2 mm 350.1 1067.4 819.0 943.2 194.8 101.8 61.6 119.4
2-3.15 mm - 1391.0 1170.0 1280.5 332.0 172.4 233.4 245.9
3.15-5 mm 483.0 - - - - - - -

2002 Conventional 0.59-1 mm - 302.2 256.0 279.1 53.3 57.1 23.5 44.6
1-2 mm 190.3 348.3 343.0 345.6 73.8 53.0 21.7 49.5
2-3.15 mm - 393.3 297.4 345.3 64.8 45.5 20.6 43.6
3.15-5 mm 151.5 - - - - - - -

Organic 0.59-1 mm - 605.1 506.9 556.0 75.0 91.7 31.5 66.1
1-2 mm 294.5 844.6 573.4 709.0 146.3 106.1 32.0 94.8
2-3.15 mm - 1405.6 629.9 1017.8 300.9 116.8 41.0 152.9
3.15-5 mm 227.0 - - - - - - -

2004 2005
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Appendix 7. Porosity

Table A- 19: Porosity and pore size distribution in 2003

Year = 2003 Mean
depth Parameter Conv. Imp. Organic Mean Conv. Organic Mean

10 PT sat 42.7 42.8 45.1 43.5 48.2 43.9 45.9 44.1
Bulk Density 1.2 1.3 1.2 1.2 1.1 1.2 1.2 1.2
Fine pores <0.2 μm 18.9 19.6 17.4 18.7 18.2 20.2 19.3 18.8

Pores 0.2 - 3 μm 8.7 9.7 10.2 9.5 8.8 10.6 9.8 9.6
Pores 3 - 10 μm 2.8 3.4 3.0 3.1 2.7 2.5 2.6 3.0
Medium pores 0.2-10 μm 11.6 13.1 13.2 12.6 11.5 13.1 12.4 12.5
Pores 10 - 30 μm 4.1 4.3 4.2 4.2 5.1 4.2 4.6 4.3
Pores30 - 50 μm 2.0 1.8 2.1 1.9 3.1 2.1 2.6 2.1
Pores 50 - 120 μm 3.3 2.4 4.4 3.4 5.5 3.5 4.4 3.6
Pores >120μm 3.0 1.5 3.8 2.8 4.8 0.8 2.6 2.7
Large pores >10 μm 12.3 10.0 14.5 12.3 18.5 10.6 14.2 12.8

20 PT sat 44.4 45.0 45.6 45.0 45.3 45.7 45.5 45.2
Bulk Density 1.3 1.2 1.3 1.3 1.2 1.2 1.2 1.3
Fine pores <0.2 μm 20.4 19.0 19.8 19.8 21.0 21.2 21.1 20.1
Pores 0.2 - 3 μm 10.9 10.3 10.7 10.6 11.0 10.5 10.8 10.6
Pores 3 - 10 μm 2.9 3.0 3.3 3.1 2.4 2.7 2.5 2.9
Medium pores 0.2-10 μm 13.7 13.3 14.0 13.7 13.4 13.2 13.3 13.6
Pores 10 - 30 μm 4.0 4.4 4.4 4.3 4.0 4.0 4.0 4.2
Pores30 - 50 μm 1.9 2.0 1.9 2.0 2.5 2.1 2.3 2.0

Pores 50 - 120 μm 3.0 3.8 3.5 3.5 2.8 3.7 3.3 3.4
Pores >120μm 1.3 2.5 2.0 1.9 1.6 1.6 1.6 1.8
Large pores >10 μm 10.2 12.7 11.8 11.6 10.9 11.4 11.1 11.5

30 PT sat 43.7 45.2 45.8 45.0 44.6 44.9 44.7 44.9
Bulk Density 1.3 1.3 1.2 1.2 1.3 1.2 1.2 1.2
Fine pores <0.2 μm 20.4 20.8 19.4 20.2 21.7 22.5 22.1 20.7
Pores 0.2 - 3 μm 8.6 8.7 10.2 9.2 10.6 9.5 10.0 9.4
Pores 3 - 10 μm 3.3 3.1 2.9 3.1 2.3 2.1 2.2 2.8
Medium pores 0.2-10 μm 11.8 11.8 13.1 12.3 12.8 11.6 12.2 12.3
Pores 10 - 30 μm 4.2 4.2 4.6 4.3 3.6 3.0 3.3 4.1
Pores30 - 50 μm 2.0 2.0 2.1 2.0 1.9 1.7 1.8 2.0
Pores 50 - 120 μm 3.2 3.7 4.0 3.6 3.4 3.2 3.3 3.5
Pores >120μm 2.2 2.7 2.7 2.5 1.2 2.8 2.0 2.4
Large pores >10 μm 11.5 12.6 13.4 12.5 10.1 10.7 10.4 12.0

40 PT sat 43.6 45.8 45.5 45.0 46.6 43.9 45.1 45.0

Bulk Density 1.3 1.2 1.3 1.3 1.2 1.3 1.2 1.3
Fine pores <0.2 μm 20.6 21.4 20.8 21.0 22.5 23.1 22.8 21.4
Pores 0.2 - 3 μm 8.3 9.4 10.1 9.2 9.9 10.8 10.4 9.5
Pores 3 - 10 μm 3.7 3.2 3.0 3.3 2.1 2.4 2.3 3.1
Medium pores 0.2-10 μm 11.9 12.7 13.1 12.5 12.0 13.2 12.6 12.6
Pores 10 - 30 μm 4.4 4.2 4.5 4.4 2.8 2.9 2.9 4.1
Pores30 - 50 μm 2.1 1.8 2.3 2.1 1.5 1.7 1.6 2.0
Pores 50 - 120 μm 2.9 3.2 3.1 3.1 3.2 2.1 2.6 3.0
Pores >120μm 1.6 2.6 1.7 2.0 4.6 1.0 2.6 2.1
Large pores >10 μm 11.0 11.8 11.6 11.5 12.1 7.7 9.7 11.1

Mean PT sat 43.6 44.8 45.5 44.6 46.1 44.6 45.3 44.8
Bulk Density 1.3 1.3 1.2 1.3 1.2 1.2 1.2 1.2
Fine pores <0.2 μm 20.1 20.3 19.4 19.9 20.8 21.7 21.3 20.2
Pores 0.2 - 3 μm 9.1 9.5 10.3 9.7 10.2 10.3 10.2 9.8
Pores 3 - 10 μm 3.2 3.2 3.1 3.1 2.4 2.4 2.4 2.9
Medium pores 0.2-10 μm 12.3 12.7 13.4 12.8 12.5 12.8 12.7 12.7

Pores 10 - 30 μm 4.2 4.3 4.5 4.3 3.9 3.5 3.7 4.2
Pores30 - 50 μm 2.0 1.9 2.1 2.0 2.3 1.9 2.1 2.0
Pores 50 - 120 μm 3.1 3.3 3.7 3.4 3.7 3.2 3.4 3.4
Pores >120μm 2.0 2.3 2.5 2.3 2.8 1.6 2.2 2.3
Large pores >10 μm 11.3 11.8 12.8 12.0 12.7 10.2 11.4 11.8

1986 2002
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Table A- 20: Porosity and pore size distribution in 2004 (in ridge area)

Year = 2004 Mean
depth Parameter Conv. Imp. Organic Mean Conv. Organic Mean

5 PT sat 47.8 47.1 45.3 46.7 46.0 50.3 48.2 47.1
Bulk Density 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.2
Fine pores <0.2 μm 15.5 14.6 15.0 15.0 16.9 18.8 17.8 15.7

Pores 0.2 - 3 μm 11.8 13.6 12.0 12.5 12.3 8.5 10.4 12.0
Pores 3 - 10 μm 3.2 2.6 2.6 2.8 3.0 2.6 2.8 2.8
Medium pores 0.2-10 μm 15.0 16.2 14.6 15.2 15.3 11.1 13.2 14.7
Pores 10 - 30 μm 4.8 4.8 4.7 4.8 4.6 5.0 4.8 4.8
Pores30 - 50 μm 2.2 2.6 2.2 2.4 2.1 2.8 2.5 2.4
Pores 50 - 120 μm 4.5 3.9 4.1 4.2 3.6 4.8 4.2 4.2
Pores >120μm 5.8 4.9 4.8 5.2 3.6 7.9 5.7 5.3
Large pores >10 μm 17.4 16.2 15.8 16.4 13.9 20.4 17.2 16.6

10 PT sat 47.5 47.5 46.6 47.2 47.5 50.4 48.9 47.6
Bulk Density 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Fine pores <0.2 μm 15.5 14.6 15.0 15.0 17.4 18.8 18.1 15.8
Pores 0.2 - 3 μm 14.1 12.9 12.2 13.1 14.8 11.7 13.3 13.1
Pores 3 - 10 μm 3.4 2.6 2.8 2.9 2.9 2.6 2.7 2.9
Medium pores 0.2-10 μm 17.5 15.6 15.0 16.0 17.7 14.3 16.0 16.0
Pores 10 - 30 μm 6.1 4.9 4.8 5.3 3.9 4.3 4.1 4.9

Pores30 - 50 μm 1.7 2.7 2.5 2.3 2.4 2.6 2.5 2.3
Pores 50 - 120 μm 3.3 4.3 4.2 3.9 3.6 5.3 4.4 4.1
Pores >120μm 3.5 5.4 5.2 4.7 2.6 5.1 3.9 4.5
Large pores >10 μm 14.5 17.3 16.7 16.1 12.4 17.3 14.9 15.8

20 PT sat 47.9 48.5 46.9 47.8 47.4 50.3 48.8 48.0
Bulk Density 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Fine pores <0.2 μm 15.7 15.5 14.9 15.3 17.9 18.2 18.1 16.0
Pores 0.2 - 3 μm 13.7 11.8 12.5 12.7 12.3 13.1 12.7 12.7
Pores 3 - 10 μm 2.7 2.5 2.5 2.6 2.8 2.2 2.5 2.6
Medium pores 0.2-10 μm 16.4 14.4 15.0 15.3 15.1 15.2 15.2 15.2
Pores 10 - 30 μm 4.8 4.8 4.0 4.5 4.4 3.9 4.2 4.4
Pores30 - 50 μm 3.3 2.9 3.3 3.2 2.8 2.8 2.8 3.1
Pores 50 - 120 μm 4.2 4.9 4.4 4.5 4.4 5.0 4.7 4.6
Pores >120μm 3.6 6.1 5.2 5.0 2.7 5.1 3.9 4.7
Large pores >10 μm 15.8 18.7 17.0 17.1 14.4 16.8 15.6 16.8

30 PT sat 49.9 47.9 46.7 48.2 49.3 49.8 49.5 48.5
Bulk Density 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.2
Fine pores <0.2 μm 16.5 15.7 15.8 16.0 17.9 18.3 18.1 16.5
Pores 0.2 - 3 μm 10.5 12.6 12.3 11.8 11.2 11.4 11.3 11.7
Pores 3 - 10 μm 2.8 2.5 2.6 2.6 2.7 2.5 2.6 2.6
Medium pores 0.2-10 μm 13.3 15.1 14.9 14.4 13.8 13.9 13.9 14.3
Pores 10 - 30 μm 5.0 5.1 4.5 4.9 4.9 4.4 4.6 4.8
Pores30 - 50 μm 3.4 3.0 2.6 3.0 2.9 2.8 2.9 3.0
Pores 50 - 120 μm 5.6 4.8 4.7 5.1 5.3 4.7 5.0 5.1
Pores >120μm 6.2 4.2 4.1 4.8 4.6 5.7 5.1 4.9
Large pores >10 μm 20.2 17.1 16.0 17.7 17.6 17.6 17.6 17.7

40 PT sat 46.9 46.0 44.9 46.0 47.6 46.8 47.2 46.4
Bulk Density 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2
Fine pores <0.2 μm 16.9 15.6 16.0 16.2 17.9 19.0 18.4 16.9
Pores 0.2 - 3 μm 13.2 12.0 12.0 12.5 10.9 12.5 11.6 12.2

Pores 3 - 10 μm 2.7 2.4 3.1 2.7 3.1 2.3 2.7 2.7
Medium pores 0.2-10 μm 15.8 14.4 15.1 15.2 14.0 14.8 14.4 15.0
Pores 10 - 30 μm 4.0 4.5 4.8 4.4 5.9 4.1 5.1 4.6
Pores30 - 50 μm 2.9 3.3 3.0 3.0 2.6 2.5 2.6 2.9
Pores 50 - 120 μm 4.0 4.6 4.0 4.1 4.5 3.5 4.0 4.1
Pores >120μm 3.3 3.6 2.1 3.0 2.6 3.0 2.8 2.9
Large pores >10 μm 14.1 16.0 13.9 14.6 15.7 13.1 14.4 14.5

Mean PT sat 48.0 47.5 46.1 47.2 47.5 49.6 48.5 47.6
Bulk Density 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Fine pores <0.2 μm 16.0 15.2 15.3 15.5 17.6 18.6 18.1 16.2
Pores 0.2 - 3 μm 12.6 12.6 12.2 12.5 12.3 11.4 11.9 12.3
Pores 3 - 10 μm 3.0 2.5 2.7 2.7 2.9 2.4 2.7 2.7
Medium pores 0.2-10 μm 15.6 15.2 14.9 15.2 15.2 13.8 14.5 15.0
Pores 10 - 30 μm 4.9 4.8 4.6 4.8 4.7 4.3 4.5 4.7
Pores30 - 50 μm 2.7 2.9 2.7 2.8 2.6 2.7 2.6 2.7

Pores 50 - 120 μm 4.3 4.5 4.3 4.4 4.3 4.7 4.5 4.4
Pores >120μm 4.5 4.9 4.4 4.6 3.2 5.4 4.3 4.5
Large pores >10 μm 16.5 17.1 16.0 16.5 14.8 17.1 15.9 16.4

1986 2002
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Table A- 21: Porosity and pore size distribution in 2005

Year = 2005 Mean
Depth Parameter Conv. Imp. Organic Mean Conv. Organic Mean

5 PT sat 50.8 52.7 51.9 51.8 51.9 54.9 53.4 52.2
Bulk Density 1.2 1.1 1.2 1.2 1.1 1.1 1.1 1.1

Fine pores <0.2 μm 15.4 15.0 14.4 14.9 16.9 18.8 17.8 15.7
Pores 0.2 - 3 μm 11.9 11.3 13.2 12.1 12.4 10.5 11.5 11.9

Pores 3 - 10 μm 3.7 3.5 3.2 3.4 3.5 3.7 3.6 3.5
Medium pores 0.2-10 μm 15.5 14.7 16.4 15.6 15.9 14.2 15.0 15.4
Pores 10 - 30 μm 5.6 5.8 5.3 5.6 5.0 7.3 6.1 5.7

Pores30 - 50 μm 4.0 4.2 3.8 4.0 3.7 1.7 2.7 3.7
Pores 50 - 120 μm 7.9 9.5 7.8 8.4 7.1 9.8 8.5 8.4

Pores >120μm 2.4 3.5 4.2 3.3 3.3 3.3 3.3 3.3
Large pores >10 μm 19.9 22.9 21.1 21.3 19.2 22.0 20.6 21.1

10 PT sat 52.1 53.6 51.4 52.3 52.6 54.7 53.7 52.7
Bulk Density 1.1 1.1 1.2 1.1 1.2 1.1 1.1 1.1
Fine pores <0.2 μm 15.3 15.2 14.5 15.0 16.9 18.8 17.8 15.7

Pores 0.2 - 3 μm 10.6 9.4 13.0 11.0 11.5 9.8 10.7 10.9
Pores 3 - 10 μm 3.3 3.4 3.0 3.2 3.4 2.9 3.2 3.2

Medium pores 0.2-10 μm 14.0 12.8 15.9 14.2 14.9 12.8 13.8 14.1
Pores 10 - 30 μm 4.8 5.6 5.1 5.2 5.3 5.0 5.1 5.2
Pores30 - 50 μm 3.9 3.9 3.6 3.8 4.4 3.3 3.8 3.8

Pores 50 - 120 μm 8.5 8.8 7.5 8.3 8.2 9.4 8.8 8.4
Pores >120μm 5.5 7.3 4.9 5.9 3.0 5.6 4.3 5.5

Large pores >10 μm 22.7 25.6 21.0 23.1 20.8 23.2 22.0 22.8
20 PT sat 51.7 52.4 48.7 50.9 50.2 53.5 51.9 51.2

Bulk Density 1.1 1.1 1.2 1.1 1.1 1.1 1.1 1.1
Fine pores <0.2 μm 15.5 15.7 14.8 15.3 17.7 18.2 18.0 16.0
Pores 0.2 - 3 μm 10.4 8.2 11.8 10.1 9.6 10.0 9.8 10.1

Pores 3 - 10 μm 3.0 3.0 2.9 2.9 2.8 2.9 2.9 2.9
Medium pores 0.2-10 μm 13.3 11.2 14.7 13.1 12.4 12.9 12.7 13.0

Pores 10 - 30 μm 5.4 5.3 4.5 5.1 4.4 4.6 4.5 4.9
Pores30 - 50 μm 3.8 4.0 3.2 3.7 3.7 3.2 3.5 3.6

Pores 50 - 120 μm 9.4 8.6 6.4 8.1 6.8 8.8 7.8 8.1
Pores >120μm 4.3 7.6 5.0 5.6 5.1 5.9 5.5 5.6
Large pores >10 μm 22.9 25.5 19.2 22.5 20.1 22.4 21.2 22.2

30 PT sat 47.6 50.0 47.7 48.4 51.0 51.6 51.3 49.1
Bulk Density 1.1 1.1 1.2 1.2 1.1 1.1 1.1 1.1

Fine pores <0.2 μm 16.1 16.1 15.6 15.9 17.9 18.3 18.1 16.5
Pores 0.2 - 3 μm 10.2 8.9 12.4 10.5 11.6 9.5 10.5 10.5

Pores 3 - 10 μm 2.9 2.6 2.7 2.7 2.9 2.8 2.8 2.8
Medium pores 0.2-10 μm 13.1 11.5 15.1 13.2 14.4 12.4 13.4 13.3
Pores 10 - 30 μm 4.5 5.2 3.6 4.4 4.8 4.9 4.9 4.5

Pores30 - 50 μm 3.4 3.4 2.8 3.2 3.9 2.7 3.3 3.2
Pores 50 - 120 μm 6.5 7.4 5.2 6.4 6.9 7.4 7.1 6.6

Pores >120μm 4.0 6.2 5.4 5.2 3.1 5.8 4.5 5.0
Large pores >10 μm 18.4 22.3 17.0 19.3 18.7 20.9 19.8 19.4

40 PT sat 45.8 47.4 44.6 46.0 48.1 47.0 47.6 46.4

Bulk Density 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2
Fine pores <0.2 μm 16.9 15.3 16.1 16.0 18.5 18.9 18.7 16.8

Pores 0.2 - 3 μm 10.3 13.2 14.0 12.7 11.2 13.8 12.5 12.6
Pores 3 - 10 μm 3.0 2.6 2.8 2.8 2.5 2.2 2.3 2.6

Medium pores 0.2-10 μm 13.4 15.8 16.7 15.4 13.7 16.0 14.8 15.2
Pores 10 - 30 μm 4.3 4.4 3.7 4.2 3.4 2.9 3.2 3.9
Pores30 - 50 μm 3.2 3.0 2.9 3.0 2.9 2.2 2.5 2.9

Pores 50 - 120 μm 6.1 6.0 4.1 5.4 4.7 4.3 4.5 5.2
Pores >120μm 1.9 2.9 1.0 2.0 4.9 2.7 3.8 2.5

Large pores >10 μm 15.5 16.3 11.7 14.6 15.9 12.2 14.1 14.4
Mean PT sat 49.8 51.2 49.0 50.0 50.8 52.4 51.6 50.4

Bulk Density 1.2 1.1 1.2 1.2 1.2 1.1 1.1 1.2
Fine pores <0.2 μm 15.8 15.5 15.0 15.4 17.6 18.6 18.1 16.1
Pores 0.2 - 3 μm 10.7 10.2 12.9 11.2 11.3 10.7 11.0 11.2

Pores 3 - 10 μm 3.2 3.0 2.9 3.0 3.0 2.9 3.0 3.0
Medium pores 0.2-10 μm 13.9 13.2 15.8 14.3 14.3 13.6 14.0 14.2

Pores 10 - 30 μm 5.0 5.3 4.5 4.9 4.6 4.9 4.8 4.9
Pores30 - 50 μm 3.7 3.7 3.3 3.5 3.7 2.6 3.2 3.4
Pores 50 - 120 μm 7.8 8.1 6.2 7.4 6.8 7.9 7.3 7.4

Pores >120μm 3.7 5.5 4.2 4.5 3.9 4.7 4.3 4.4
Large pores >10 μm 20.1 22.5 18.2 20.3 18.9 20.1 19.5 20.1

1986 2002
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Table A- 22: Pore size distribution at 5 cm depth in ridge and furrow areas in a maize cropping system in
2004. Different letters indicate significant difference between ridge and furrow areas.

Mean
Parameter Conventional Improved Organic Conventional Organic

Ridge PT sat 49.7 48.6 46.3 47.4 52.1 48.6 a
Bulk Density 1.1 1.1 1.2 1.2 1.1 1.1
Fine pores <0.2 μm 15.1 15.2 15.1 16.9 18.7 15.8 a
Pores 0.2 - 3 μm 11.8 12.6 10.9 11.5 8.6 11.3 a
Pores 3 - 10 μm 3.3 2.6 2.4 3.0 2.5 2.7 a
Medium pores 0.2-10 μm 15.0 15.1 13.3 14.5 11.1 14.1 a
Pores 10 - 30 μm 4.7 4.6 4.8 5.0 4.5 4.7 a
Pores30 - 50 μm 1.6 2.7 2.3 1.9 2.7 2.2 a
Pores 50 - 120 μm 5.5 4.5 4.4 3.9 4.9 4.7 a
Pores >120μm 7.8 6.6 6.2 5.3 10.1 7.1 a
Large pores >10 μm 19.6 18.3 17.8 16.1 22.3 18.7 a

Furrow PT sat 45.8 45.5 44.3 44.6 48.6 45.6 b
Bulk Density 1.2 1.2 1.3 1.3 1.2 1.2
Fine pores <0.2 μm 15.9 14.1 14.8 16.8 18.8 15.6 a
Pores 0.2 - 3 μm 11.8 14.6 13.1 13.1 8.4 12.6 a
Pores 3 - 10 μm 3.1 2.7 2.7 2.9 2.8 2.8 a
Medium pores 0.2-10 μm 14.9 17.3 15.8 16.1 11.2 15.4 a
Pores 10 - 30 μm 4.9 5.0 4.5 4.3 5.4 4.8 a
Pores30 - 50 μm 2.9 2.5 2.1 2.3 2.9 2.5 a
Pores 50 - 120 μm 3.5 3.4 3.7 3.3 4.6 3.6 b
Pores >120μm 3.8 3.2 3.4 1.9 5.7 3.5 b
Large pores >10 μm 15.1 14.1 13.7 11.7 18.6 14.5 b

1986 2002
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