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Zusammenfassung \

Zusammenfassung

In den Hochldndern Mexicos werden Landschaften, in denen durch Kieselsdure verhértete,
sterile Schichten (Tepetates) als Folge von Bodenerosion frei gelegt wurden, rekultiviert, um
neue landwirtschaftliche Nutzflachen zu gewinnen. Um die Nachhaltigkeit der
Rekultivierungsmal3nahmen zu verbessern, wurde der Einfluss der organischen
Landwirtschaft auf das Bodengeflige und die Bodenerosion von rekultivierten
Tepetateflachen im Feldmal3stab unter natrlichen Bedingungen untersucht. Organische
Festsubstanz (SOC) stellt den bedeutendsten Faktor dar, der die jdhrlichen Erosionsraten der
rekultivierten Tepetateflachen kontrolliert. Neben ener kurzfristig zunehmenden
Gefuigestabilitét fuhrt die organische Dingung zu einer dichteren Vegetationsdecke, was
wiederum die Bodenerosion im Mittel von 3 Jahren nach der Krustenfragmentierung auf 9,9
t ha-1a-1 reduziert, im Vergleich zu 14,6 t ha' a* bei Mineraldiingung. In 16 Jahren seit der
Rekultivierung unter konventioneller Landbewirtschaftung sanken die Erosionsraten auf 1,1
bis 5,6 t ha' a' ab. Die Etablierung der organischen Landwirtschaft steigerte zwar den
Gehalt an organischer Substanz der Boden, hatte im  Vergleich zu anderen
Bewirtschaftungsweisen jedoch keinen nachweisbaren Effekt auf die Bodenerosion. In
starkerem Mal3e ds die organische Landwirtschaft per se, garantieren die regelmaliige
Einarbeitung von organischem Material und eine dichte Vegetationsdecke ene

Erosionskontrolle und nachhaltige Rekultivierung der Tepetateflachen.



Abstract Vi

Abstract

In Mexican highlands, vast areas are covered by hardened and sterile volcanic layers
(tepetates) that showed up to the surface after erosion of the overlying soil. The rehabilitation
of tepetates is a way to increase arable land and combat desertification. In order to develop
sustainable rehabilitation strategies, the effect of organic farming on soil erosion and soil
structure in reclaimed tepetates was investigated at field scale and under natural condition. In
addition to short term structural improvement, organic farming provided higher vegetation
cover and increased carbon accumulation rates, resulting in a decrease of soil erosion to 9.9 t
ha yr'* on average over a period of 3 years after fragmentation compared to 14.6 t ha* yr
with conventional management (mineral fertilization). In reclaimed tepetates cultivated for
more than 16 years, erosion rates ranged between 1.1 and 5.6 t ha™ yr. SOC was the main
parameter controlling annual erosion rates and their evolution over time in reclaimed tepetates.
More than organic farming per se, it is the regular incorporation of organic material and the
development of high vegetation cover which will guarantee erosion control and sustainable
rehabilitation of tepetates
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1. Introduction

1.1. Tepetates and erosion
1.1.1. Tepetates. hardened volcanic horizons with agriculture potential

1.1.1.1.Definition

Etymologically, the term tepetate derives from the Nahuatl tepetlatl composed from “tetl”
(stone, rock) and “petlat!” (bed, mat), meaning “stone mat”. Williams (1972), suggested that
instead of true rock, tepetlatl was a lexeme labelling an earth material intermediate in

consistency between hard consolidated rock and unconsolidated material.

Nowadays, tepetate is a vernacular Mexican term referring to a wide range of hardened
infertile material (Etchevers et al., 2006), perceived locally as arable or non arable soil, or
even as non soil depending on the type of tepetate (Williams, 1992). The scientific definition
of tepetate is a hardened layer formed from pyroclastic materials, either exposed to the
surface after erosion of the overlying soil, or part of the soil profile at variable depth
(Etchevers et al., 2003; Quantin, 1992; Zebrowski, 1992). This definition excludes other type
of hardened horizons such as petrocalcic or petrogypsic (IUSS, 2006) which are common in
northern and central Mexico under arid climate (Guerrero et al., 1992), and restrains the

presence of tepetatesto volcanic areas.

1.1.1.2.Distribution

In Latin America, indurated soil horizons from volcanic parent materials are found in many
countries adjacent to the Pacific shore and under the influence of volcanic activity. Such
formations are called by different vernacular names (talpetate, cangahua, nadis, sillares,
trumaos) but their total extension is only partially known and restricted to countries where
they have been studied, such as Nicaragua, Ecuador, Chile, Peru and Mexico (Etchevers et
al., 2003; Zebrowski, 1992).

In Mexico, hardened volcanic ash soils cover 30,700 km?, representing 27 % of the Trans-
Mexican Volcanic Belt, according to Zebrowski et al. (1991), and 37,250 km? according to
Guerrero et a. (1992). In the States of Tlaxcala and Mexico, they are located in piedmont
areas between 2250 and 2800 m.a.s.| (Pefia and Zebrowski, 1992b), and can be found under
ustic isomesic soil climate with 6 to 7 humid months (Miehlich, 1992).
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The state of Tlaxcala is one of the most affected by the presence of tepetates. Indurated
volcanic ash soils covers 2175 km?, of which 598 km? are superficial tepetates (Werner,
1988). This area represents approximately 15 % of the State surface, and 25 % of the arable
lands.

1.1.1.3.0rigin, hardening and conditions of formation

The origin of the hardening, of tepetates depends on the nature of the origina material and
conditions of deposition and can vary, as a consequence, from one location to another. To
avoid confusion, we will focus on the hardening of the tepetates of Mexico valley and

Tlaxcalawhich are of interest in this study, and which have been more extensively studied.

Quantin et al. (1992) showed that the parent material is a “Toba sediment” which consists of
a fine ash, that suffered a strong ateration of its glasses and a certain fragmentation of its
minerals. This conclusion would discard the interpretation made initialy by Heine and
Schonhals (1973) according to whom the deposit that originated tepetates could be a loess.
However, for Poetsch and Arikas (1997), the presence of phytoliths in most Toba sediments
they studied in Tlaxcala suggest that the Toba is the result of a re-deposition of volcanic ash.
According to Miehlich (1992), the formation of hardened horizon is a pedogenic process that

occursin four steps:

1. Deposition of volcanic ashesis required. The T3 series identified by the author in the
Sierra Nevada are ashes from the Popocatepet! vol cano aged 21000 year BP.

2. Development of an Eutric Ustept rich in clay and opa-A, by weathering of the
volcanic ash under ustic isomesic soil climate with 6-7 humid months. This particular
climatic condition induces the release of considerable amount of silicon into the soil
solution. One part of the silicon released is incorporated into clay minerals and the
other part, because of low leaching, is retained and accumulated in the Eutric Ustept
horizon of the Toba sediment. Under udic regime, Miehlich assumed that the silicone
released in mainly leached to groundwater, whereas under ustic regime with only 4-5
months humid period, the weathering rate is too low and only minute amount of opal-
A is accumulated in the soil. Under both soil climate regimes, no tepetates are
formed. The higher clay content found in the subsoil, in relation to topsoil was not
attributed to clay illuviation, but to stronger weathering and clay formation arising

from alonger moist period in the subsoil.

3. Erosion of topsoil, typically by gully erosion.
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4. The subsoil, enriched in opal-A, is then affected by aternate cycle of humectation and
desiccation. This mechanism would cause the compaction and hardening of the

tepetate.

For other authors, the pedogenic process only consolidate, in a posterior stage, the initia
hardening of the horizon which would be the result of the partial alteration of a volcanic ash
into atuff (Hidalgo et al., 1992; Hidalgo et al., 1997; Quantin, 1992).

Hidalgo et al. (1992) studied the silicification of tepetates and concluded that free silica was
present in the matrix and in the clay fraction. They also found free silica in clay coatings,
especialy in the lower part of the profile, attributed to recent pedogenic processes. However,
for these authors, the fact that most part of the silica remains diffuse in the matrix and that its
amount is limited shows that the pedogenic silicification does not justify per se the
cementation of tepetates. For Quantin (1992) and Hidalgo et al.(1992), although the signs
and role of pedogenesis is undeniable, the diffuse and discrete presence of silicain the matrix
suggests that the silica enrichment occurred after a prior ateration of volcanic glasses at the
moment of their deposit, and that the main hardeness of the tepetates is inherited from the
parent material. This conclusion is supported by recent work of Poetsch (2004), whose thin
section taken at Tlalpan, Tlaxcala, showed very good preservation of the microlamination of
the fabric elements. This observation suggests that the sediment of the tepetates must have
been more densely packed, in comparison to its corresponding overlying non-indurated
horizons, from the outset (Poetsch, 2004).

In further studies, Hidalgo et a. (1997) confirmed that fragipan-type tepetate was formed by
pyroclastic material partially altered, as demonstrated by the important amount of residual
primary minerals and the predominance of fine silts and clay in the particle size distribution.
However, Hidalgo concluded that the arrangement and accumulation of the products of
alteration in the matrix porosity (pores and cracks), also observed by several authors (Poetsch
and Arikas, 1997; Oleschko et al., 1992), contributed to the consolidation of the tepetate, but
do not constitute a stable cementation. The plasma of the matrix (finer fraction) consists in
clay mineralsinterstratified 1:1/2:1, Fe and Mn oxides and hydroxides, silica gels and opal-A
(Hidalgo et al., 1997; Hidalgo et al., 1992). The composition of the plasma would give the
fragipan-type tepetate its ability to shrinking and swelling (between 5 and 15 % of its
volume) and its reversible character: hard when dry and friable when moist. Oleschko et
al.(1992) studied the micromorphological patterns of clay assemblages in Tepetates and
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concluded that it was not possible to assure that pedogenic silicification was the main process

of cementation of tepetates.

1.1.1.4.Emergence due to erosion

The emergence of hardened horizon is caused by erosion of the overlying soil. It is widely
accepted that this erosion phenomenon was anthropogenic, but there is a controversy on
whether the erosion occurred during the pre-hispanic period or after the Spanish conquest
(Quantin and Zebrowski, 1995).

The study of “Codex” reveals the existence and importance of tepetates in the pre-hispanic
society (Williams, 1972). According to Williams (1992), cultivated tepetates represented 52
% of arable lands at this period in the Texcoco area. This information proves that: 1) exposed
tepetates existed at this time, and 2) indigenous people had the knowledge and the necessity

to restore and cultivate this kind of material.

Lauer (1979; cited by Quantin and Zebrowski, 1995), defined two pre-hispanic periods of
accelerated erosion and formation of deep ravine (barrancas) in the Puebla-Tlaxcala region.
They are both linked to climate variation (Heine, 1976) and to evolution of rura society
(Garcia-Cook, 1978): increase of rainfall coupled to an increase in population in the case of
the first event (around 2100 to 2000 BP) and aridification coupled to a new increase of
population and intensification of agriculture in the case of the second (between 1350 and
1000 BP).

Based on palaeolimnological investigation from different lakes in Central Mexico, Metcalfe
et a (1989) and O'Hara et a.(1993) demonstrated evidence of several phase of disturbance
and accelerated erosion in the region. The onset of anthropogenic accelerated erosion was
induced by the introduction of sedentary maize (Zea Mays) agriculture in 3500 yr BP.
Subsequent phases of erosion are linked to fluctuation in indigenous population and
civilization development. The works of Metcalfe et al.(1994) and O'Hara et a.(1994) both
highlighted the complex relationship between climate, human occupation and soil erosion.
They found no evidences that climatic change have had a significant direct impact on erosion
rates. Instead, they stressed out that climate changes have a direct impact on human

settlement, agriculture and land use, which in turn affect soil erosion.

Werner (1988) and Garcia-Cook (1986) also mentioned early human-induced erosion in the
State of Tlaxcala due to conversion of forested areas into agricultural lands as a result of
dense indigenous population (Garcia-Cook, 1978). However, Aliphat and Werner (1994)
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attributed the main erosion process that led to the widespread emergence of tepetates in the
Puebla-Tlaxcala region to the consequences of Spanish colonization and specificaly to the
results of: i) the abandonment of the traditional intensive agriculture in terraces and the
sophisticated irrigation system (Romero, 1992; Pimentel, 1992), after the decline of
indigenous population following Spanish conquest; ii) the introduction of extensive cattle
grazing; iii) the introduction of plough and the forsaking of inserted crops (beans, squashes)
in maize cropping; iv) the intensive deforestation to supply haciendas with building timber
and industries with charcoal and firewood for steam machinery in the 19" century.

In the Patzcuaro Basin, O'Hara et al.(1993) did not observed accrued erosion during the
Hispanic period and contested the idea that modification of agriculture after Spanish

colonization had led to increased erosion rates.

It is important to notice that conditions may vary to a great extent from one region to another
depending on local history and environment. Either pre-hispanic, colonial or modern, we can
conclude from the mentioned studies that the emergence of tepetates is due to a succession of
accelerated erosion periods which occurred when the environment of civilization were
affected by climatic, demographic, social or political events over the last 4000 years.

1.1.1.5.Properties

Tepetates are almost sterile materials due to strong physical, chemical and biologica

limitations.

Physical characteristics

The first and major limitation of tepetates is its hardness and compaction. In Tlalpan,
Tlaxcala, Werner (1992) reported tepetates bulk density of 1.47 g cm™ with atotal porosity
of 45 %. The amount of pores >10 um islow (~10 %), and porosity is often disconnected. As
a consequence, infiltration rates are dmost nil (4.2 10* cm sY). The hardness of tepetate may
vary according to the location, presence of CaCOs; and time of exposure to the surface.
Miehlich (1991) reported penetration resistance of 366 kg cm™® on a tepetate t3 in the Sierra
Nevada, and Pefia et al. (1992) values of up to 153 kg cm™.

Such physical properties reduce or avoid roots penetration and water infiltration. Once
tepetates show up on the surface, no vegetation develops, unless the area is stabilized and
protected from runoff.
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Chemical characteristics

As mentioned before, the parent material of tepetates is rich in volcanic glasses and
plagioclase highly susceptible to weathering. Tepetates are hence rich in bases with a
prevaence of calcium, magnesium and specially potassium (Etchevers et al., 1992; Etchevers
and Brito, 1997). The cation exchange capacity is relatively high, ranging from 20 to 40 cmol
kg™ of fine earth, due to the abundance of 2:1 clays. The percentage of base saturation is high
and pH is dlightly akaline, ranging from 7 to 8. Etchevers et a (1992) showed that the most
limiting factors for tepetates fertility were the extremely low content of soluble phosphorus
(<3 mg kg™, due to the absence of phosphate minerals in the parent material and nitrogen
(0.04-0.07 %). Part of the N deficiency is caused by the lack of organic carbon (~0.1 %),
which indicates that tepetates layers have never been disturbed by any biological activities.

Biological characteristics

Thelack of carbon in tepetates entails very low biological activity. An inventory of the micro
flora in tepetates carried out in Tlalpan by Alvarez et al. (1992) showed limited microbial
population in natural (not fragmented) tepetate (2.2 10* g' bacteria, 11.8 10° ¢*
actinomycetes and 6.6 10" g™ fungi), compared to adjacent cultivated soil (4.6 10" g*, 2.1 10°
g’ 3.9 10° g* respectively). Once ripped off, the increase of microbial population in
tepetates is enhanced by organic matter incorporation, especially green manure (Alvarez et

al., 2000; Alvarez et al., 1992).

1.1.1.6.Tepetate rehabilitation

The rehabilitation of tepetates for agriculture is a well known practice since pre-hispanic
times (Williams, 1972; Pimentel, 1992). In the last few decades, the advent of heavy
machinery to break up the hardened layer promoted the expansion of such practice. The first
experiences were carried out in the State of Mexico to reforest and restore the Texcoco lake
basin, greatly affected by erosion and infilling (Pimentel, 1992; Llerena and Sanchez, 1992).
The technique was then extended to other areas to confront the lack of arable land and to
restore deteriorated areas (Llerena and Sanchez, 1992; Pimentel, 1992; Werner, 1992; Arias,
1992).

The rehabilitation process of tepetates is a combination of the fragmentation and the

subsequent management practices.
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The fragmentation consists of breaking up and loosening the hardened layer by subsoiling,
deep ploughing and harrowing. This operation modifies radically the physical properties of
the tepetate, turning the hardened and cohesive tepetate into a fragmented and porous
material within afew hours (Table 1).

Table 1. Selected significant physical properties of the tepetate before and after the fragmentation.
Source: (Baumann et al., 1992; Fechter-Escamilla and Flores, 1997)

Bulk density Total pore Volume of macro pores
(gcm®) volume (>10 pm)
Before fragmentation 1.47 45 % 12 %
After fragmentation 1.15t01.24 55 % 20 %

Those physical changes create the necessary conditions to air and water transfer in soil, to
water storage and to root development. However, the fertility of the newly-formed materia is
still reduced because of nutrimental deficiencies (Etcheverset al., 1992).

Hence, the management practices applied after fragmentation aims at turning the almost
sterile material into a productive soil, by improving the physical, chemical and biological

properties of the soil to ensure a sustainable crop production.

Effect of fragmentation and management on erodibility

Previous studies of erosion on tepetates and under natural conditions in the states of Tlaxcala
(Baumann and Werner, 1997a; Fechter-Escamilla et al., 1997a) and Mexico (Prat et al.,
1997a) clearly show that bare tepetates produce high runoff rates (up to 90 %), but moderate
soil loss in situ due to strong cohesive properties. Once fragmented, but not cultivated, soil
loss increases considerably, whereas runoff rate decreases as a result of a better infiltration.

Under cultivation, runoff and erosion rates decrease to tolerable levels.

The results of these previous studies and field observations led to the development of a
conceptual scheme of the evolution of erosion, runoff and fertility during the process of
rehabilitation (Figure 1).
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Figure 1. Conceptual evolution of fertility, runoff and erosion during the rehabilitation process under two
extreme scenarios.

The consequences of fragmentation on fertility, runoff and erosion are immediate. The
management applied after the fragmentation influences the evolution of runoff, erosion and
fertility over time. In the case of a sustainable management, the improvement of physical
properties ensures fast decrease of erosion and runoff rates, which will guarantee, together
with the improvement of chemical properties and biological activity, the progressive increase

of sail fertility.

However, if the management is inappropriate, or if the fragmented plot is abandoned, the
benefit of fragmentation on runoff will rapidly decrease because of sealing and compaction.
High erosion rates induced by fragmentation will remove the loosened layer within a few
years, until the hardened horizon emerges again. In extreme cases, inappropriate management

lead to areturn to the initial natural tepetate situation. Such scenarios have been observed in
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Tlaxcala with several rehabilitation programs, because of the lack of clear rehabilitation

strategy and guidance to farmers.

Although most tepetate rehabilitations are more likely to be between the “best case” and
“worst case” scenarios, soil conservation and erosion control are always a critical issue to
achieve a successful, sustainable and profitable rehabilitation of tepetates to agriculture.
Knowledge of the effects of cultivation practices on soil erosion is thus a key factor to
develop suitable rehabilitation strategies.

1.1.2. Structure, erosion and organic farming

Sail structure can be defined as the arrangement of particles and pores in soils (Oades, 1993).
It refers to the size, shape and arrangement of solids and voids, the continuity of pores and
voids, their capacity to retain and transmit fluids, organic and inorganic substances, and to the
ability of soil to support root growth and development (Lal, 1991). It can be evaluated by
determining the extent of aggregation, the stability of the aggregates, and the nature of the
pore space (Jury and Horton, 2004). Soil structure and its stability mediates many biological
(Oades, 1993) and physical processes in soils, such as porosity and infiltration (Kutilek,
2004), and is hence a determinant factor for water availability to plants and erosion
susceptibility (Sx et al., 2000a; Lin et al., 2005).

In agriculture, the soil physical properties after optimization of the chemical soil conditions
are more and more agreed to be the limiting factor of the productivity because the water, air
and heat regime of the soils is governed by them (Schneider and Schroder, 1995). Sail
structure development and improvement is then a focal point to implement sustainable

agriculture systems and restore degraded lands (Lal, 1991).

Structure and erosion

The relationship between soil structure and erosion has been identified and extensively
studied from the beginning of the century (e.g works of Yoder, 1936). Structural stability,
measured by a wide range of techniques (Le Bissonnais, 1996; Diaz-Zorita et al., 2002),
governs aggregate breakdown mechanisms and particle detachment, and is an indicator
widely used to predict soil erodibility (e.g.: Le Bissonnais and Arrouays, 1997; Mbagwu and
Auerswald, 1999; Barthes and Roose, 2002).
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Organic carbon and soil structure

SOM is the focal point of soil structure dynamic and contribute, directly or indirectly, to
aggregate formation and stabilization. At microaggregate scale, primary particles are bound
together by persistent binding agents such as humified organic matter, polyvaent metal
cation complexes, oxides and highly disordered aluminosilicates (Tisdall and Oades, 1982).
At macroaggregate scale, POM acts as a nucleus for macroaggregates formation (Puget et al.,
2000). When fresh OM is incorporated into the soil matrix, it is colonized by microbia
decomposers. The by-products of the microbial activity mechanically bind soil particles that
surround the organic resource (Tisdall et al., 1997), whereas exudates and polysaccharides
stick them to cells of bacteria and fungi (Oades, 1993). Microaggregates are then formed
within macroaggregates (Oades, 1984) and are stabilized by more recalcitrant organic carbon
compounds (Oades, 1984; Degens, 1997).

The effect of organic matter on soil structure iswell documented (e.g.Becher, 1996; Sx et al.,
2000b). Recently, severa reviews highlighted the role and dynamic of carbon in soils:
Mechanisms of aggregation in soils and its effect on soil structure have been reviewed by Sx
et al. (2004); The impact of management on soil aggregation and soil structure have been
reviewed by Bronick and Lal (2005); and the mechanisms of aggregate dynamic and carbon
sequestration has been reviewed by Blanco-Canqui and Lal (2004).

Structure and organic management

Soil management (agricultural practices) can affect soil structure in many ways, depending
on i) the type and amount of fertilization applied, ii) the management of crop residues, iii) the

choice of crops and crops rotation, iv), the frequency or intensity of tillage.

Promoting organic matter management is a fundamental principle of soil conservation
strategies in many part of the world (e.g. Roose and Barthes, 2001; Morgan, 2005). However,
the literature related to the effect of organic management on soil physical properties in

reclaimed volcanic ash soils are differing:

i. In Mexico, Acebedo et a (2001) studied the effect of manure and plant species on the
formation and stability of aggregates in fragmented tepetates under greenhouse conditions.
They concluded that the application of manure and presence of plants did not increase the
amount of water-stable aggregates and that roots activity and development had greater

effect on structure than application of manure. Similar results were obtained by Velazquez
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et a. (2001), who concluded that in greenhouse conditions plants increased organic matter
content which in turn promoted the aggregation and structure of fragmented tepetates.

ii. Alvarez et a.(2000) showed that incorporation of green manure and plant residues to

reclaimed tepetates enhanced microbiological activity and that previous incorporation of
cattle manure favoured the mineralization of crop residues. They concluded that
incorporation of organic materials to reclaimed tepetates contributes to the rehabilitation of
tepetates thanks to its beneficial effects on microbial activity. However, the authors did not

link their results to quantitative measurements of soil physical parameters.

In Ecuador, Podwojewski and Germain (2005) found that incorporation of organic material
did not improve significantly the structura stability of reclaimed cangahuas (hardened
volcanic ashes similar to tepetates), after 4 years of cultivation, even at high incorporation
rates (up to 80 t/ha of fresh cattle manure).

Prat et a. (1997a) found that crop association (maize + broad bean) reduced erosion rates
in comparison to monoculture (maize), but did not find any significant differences in
erosion rates between farmyard manure application (40 t ha* the first year and 20 t ha the
following years) and mineral fertilization, suggesting that vegetation cover, more than

organic farming, influence erosion rates.

It is often considered that SOC affect soil structure when SOC concentration amounts more
than 2 % (Greenland et al., 1975). In tepetates under maize mono-cropping, SOC content
hardly amount more than 1 % (Baez et al., 2002). In reclaimed tepetates under reduced
tillage and frequent farmyard manure application, SOC can reach 2 % after 80 years of
cultivation (Baez et al., 2002). Only in greenhouse conditions with intensive incorporation
of organic material can SOC reach approximately 4 % (Baez et al., 2002). There is thus a
guestion whether organic matter can affect soil structure in soils with strong OC

deficiencies such as tepetates.

In reclaimed hardened volcanic ash soils, the use of organic amendmentsto improve soil
fertility after fragmentation has been repeatedly recommended (Zebrowski et al., 1991;
Pimentel, 1992; Arias, 1992; Marquez et al., 1992; Etchevers and Brito, 1997). However,
there is no consensus about the effect of organic amendments on soil structure and
erodibility in reclaimed volcanic ash soils. Besides, although previous studies (Baumann
and Werner, 1997a; Fechter-Escamilla et al., 1997a; Prat et al., 1997a) outlined the effect
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of fragmentation and cultivation practices on erosion, there is still too little data
available on erosion and runoff rates in reclaimed tepetates at farmer plot scale and
under natural climatic conditions, and no information on the evolution of erosion rates

during therehabilitation process and itsrelationship with soil structure.

Therefore, thereis a need to increase the knowledge on how and to what extent organic
farming can affect soil structure and soil erosion and be a sustainable alternative to

reclaim deteriorated volcanic ash soils.

1.2. Objectives

The aim of this research is to evaluate the effect of organic management on soil structure
and soil erosion in reclaimed tepetates, at field scale and under natural conditions. It is part
of a pluridisciplinary project whose overall objective is to develop alternative technologies to
reclaim deteriorated vol canic ash soils.

The specific objectives are:

i. To assess and quantify erosion rates in tepetates in the short and medium term during

the rehabilitation process

ii. To evaluate the effect of organic management on soil structure and soil erosion rates,

compared to other type of managements

iii. To assess the role and dynamic of organic carbon in reclaim tepetates at different
stages of the rehabilitation

iv. To determine the main factors involved in the erodibility of reclaimed tepetates, in

order to establish prioritiesin soil conservation strategies.
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2. Tlaxcala: a state affected by tepetates

2.1. Physiographic overview

The State of Tlaxcala is located in the central Mexican highlands between 97°37°07"" and
98°42'51"" W and 19°05'43" and 19°44'07"" N. It belongs to the Trans-Mexican Volcanic
Belt (TMVB) which stretches from the VVolcano of Colima on the Pacific shore to the Orizaba
peak on the Atlantic side aong the 19°N paralel. It is the region of highest volcanic

influence in the country.

With an extension of 3991 km? (INEGI, 2005b), Tlaxcalais the smallest State of the Mexican
Republic and represents 0.2 % of the country’s area (1 959 248 km?). The average elevation
in the State is 2230 m.a.s.l., ranging from 2100 m.a.s.l. in the Atoyac river aluvia plaininto

4461 m.as.l. at the summit of La Malinche volcano.

The southern part of the State is dominated by La Malinche Volcano. In the North East, the
Taxco Sierraforms a natural boundary with the State of Puebla. The Western part of the State
is occupied by the piedmont of the Northern part of the Sierra Nevada and the Tlaxcala block
(“Bloque de Tlaxcala’). This hilly region is cut by deep canyons (“barrancas’) and is greatly
affected by erosion. In the center part of the State, following a Northwest to Southeast
direction, the plains of Calpulalpan, Apizaco and Huamantlalie at approximately 2500 masl.

2.2. Climate

94 % of the State of Tlaxcala is under temperate sub-humid climate (INEGI, 2006). Annual
precipitations range from 600 to 1200 mm with winter precipitations inferior to 5 % of the
annual amount. However, climate in Tlaxcala has great spatial variability due to orography
(Conde et al., 2006).

Figure 2 presents meteorological records from Hueyotlipan (19°28 10°’N and 98°20'53"),
located at 4 km from Tlalpan experimental site. Statistics are based on records from 1961 to
1998. In this area, climate is temperate sub-humid. Mean annual precipitation is 772 mm
distributed during rainfall season from May to October (90 % of the annual precipitation).
Rainfalls are mainly continental, but there is an oceanic influence during the hurricanes
season in September-October. Mean annua temperature is 13.9°C, ranging from 10.9°C in

January to 15°C in May. Frost risk period stretches from November to February.
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Figure 2: Ombrother mic diagram of Hueyotlipan meteorological station. 1961-1998

Most part of the State is rainfed agriculture, and the climatic regime imposes strong

constraint to agriculture in the area:

e The time window suitable for crop cycle is limited between the beginning of the
rainfall season and the beginning of frost-risk period. This is a mgor limitation for

mai ze cropping in the area (Eakin, 2000; Ramirez and Volke Haller, 1999);

e The establishment of winter crop or cover crop before the beginning of the rainfall
season is not possible in rainfed agriculture areas due to severe water deficit during

winter months.

2.3. Geology

The geology, as well as the geomorphology of the State of Tlaxcalais strongly influenced by
guaternary volcanic activity. The oldest stratigraphic units are tertiary sedimentary rocks
formed under lacustrine environment. They form the basis of the Tlaxcala and Huamantla
blocks. The basaltic volcanic activity started in the late tertiary but reached its highest
intensity during the quaternary (Erffa et al., 1977). La Malinche and Iztaccihuatl are
andesitic-dacitic stratovolcanoes that greatly influenced the study area. They were erected
during Pleistocene athough recent activity has been registered till the Holocene in La
Malinche (Castro-Govea et al., 2001). Many smaller quaternary volcanic structures (mainly
monogenic cones) had loca influence in the area. During this period and till the Holocene

several layers of tuffs and volcanic ashes were deposited over the whole area. The most
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recent arise from Popocatepet! active volcano. Those deposits were identified by Heine and
Schonhals (1973) as “Toba’ sediment. They are the main parent material of soilsin the State
of Tlaxcala and are associated with the presence of tepetates (Werner, 1988).

2.4, Soils

Sails in the Puebla-Tlaxcala basin have been extensively studied in the 70 and 80's decades
in the framework of the Mexico-project of the German Research Foundation (DGF). The soil
map of Tlaxcala at 1:100 000 was published by Werner (1988) based on the FAO-UNESCO
classification (1974). Another soil map is available from INEGI at 1:250 000 based on the
FAO-UNESCO classification (1968 with 1970 supplement). Although both maps differ from
one another, characteristic soil units can be grouped into three categories according to the

type of parent material and the atitude.
i.  Soilsformed from volcanic ashes over 2800 m.a.s.l. (> 1000 mm annual precipitation)

These conditions are found in the slopes of La Malinche (south), in the Taxco Sierra
(Northeast) and in the eastern hillsde of the Sierra Nevada (west). In those aress,
andosolization (volcanic ash soil formation) process occurs. Depending on the age of the
ashes and the degree of andosolization we find Andosol (mostly vitric) or Regosol (mostly
tephric) (Werner, 1988, , 1976b).

ii.  Soils formed from volcanic ashes and Toba sediment between 2250 and 2800 masl (6

months dry season)

These conditions are propitious to the formation of hardened volcanic horizons (Miehlich,
1992) and are found in approximately 54 % of the State. They are usualy covered by
Cambisols with vertic or chromic properties (Werner, 1988). In high valleys and plains
(northwest), those soils were classified as Phaeozems by INEGI (2006), probably because the
hardened volcanic horizon was assimilated to a petrogypsic horizon. In steeper areas, such as
the piedmont of Sierra Nevada, Tlaxcala block, Taxco Sierra and the basement of La
Malinche, human activities induced severe erosion and denudation of the cambisol overlying
the hardened layer, causing the emergence of tepetates. Bare tepetates cover approximately
15 % of the State surface.

iii.  Other soils
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Fluvisols and more rarely Gleysols are found in lowlands and alluvial cones on the eastern
and western side of la Malinche. Regosols are found in the arid west end of the State in the

Huamantlavalley.
2.5. Soil useand agriculture

25.1. Agriculture

Total arable area represents 60 % of the State surface (INEGI, 2006). 89 % of arable area is
rainfed agriculture, and only 11 % is irrigated. Irrigated areas are mainly located in the
Atoyac and Huamantla valleys. No irrigation is available in the areas most susceptible to

erosion (piedmont and sierras).

Three species represents 85 % of the cultivated area: i) Maize (Zea mays, 54 % of the
cultivated ared), the basis of Mexican diet; ii) Oat (Hordeum vulgare, 22 %), for brewery
industry, grown mainly in Calpulalpan area; iii) Wheat (Triticum aestivum, 15 %). Other
important crops are beans (Phaseolus vulgaris, 3 %), broad bean (Vicia faba. 1 %) and alfalfa

(Medicago sativa, 1 %) inirrigated lowlands.

Livestock production is dominated (in number of animals) by porcine, followed by ovine and
caprine (more than 233,000 animals all together). They are traditionally bred by itinerant
grazing by small farmers. Cattle overgrazing or uncontrolled goat and sheep grazing is one of

the main causes of gully formation.

2.5.2. Forest

Forest areas are mainly located over 2800 masl in La Malinche, Taxco sierra and Sierra
Nevadain the Southern, Northern and Western part of the State respectively. They cover 14.5
% of the State area.

2.6. Sociodemographic context

Population in Tlaxcala exceeded one million inhabitants in the last 2005 census (INEGI,
20053a). In the last 30 years, population grew by 20,000 inhabitants per year. The increase in
population occurred almost exclusively in urban areas, whereas rural population remained

constant from the beginning of the century (Figure 2)
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Figure 3: Demographic growth and distribution between rural and urban population in the State of
Tlaxcala from 1910 to 2005. Sources: INEGI, censos de poblacion y vivienda 1930 to 2000 and Conteos de
Poblacién y Vivienda 1995 and 2005.

Tlaxcala's population represents approximately 1 % of the whole country’s population, but
with 267 inhabitants per km?, Tlaxcala is the third most densely populated State (excluding
the Federal District) in Mexico (INEGI, 2005b, 2005a). Since the beginning of the century,
there has been high pressure on natural resources to increase arable lands for food production.
This phenomenon led to the deforestation of La Malinche volcano with dramatic

consequences on soil erosion (Werner, 1976a).

Nowadays, tepetates are the only arable land reserve in the State of Tlaxcala. The
rehabilitation of all tepetates areas could potentially increase the arable land surface by 25 %.

2.6.1. Economy and employment

The contribution of agriculture, forestry and fishery to Tlaxcala's GNP decreased from 8.5 %
to 3.8 % between 1993 and 2004 (INEGI, 2004). The economy of the State is nowadays
mainly supported by tertiary (60.5 %) and secondary (35.6 %) activities.

In rural areas, agriculture is a still a magor source of employment. In the district of
Hueyotlipan to which belongs Santiago Tlalpan, 41 % of active population is working in
agriculture, cattle grazing and forestry (INEGI, 2000). Considering the 12 districts were
approximately 80 % of tepetates areas are located (based on the map by Werner, 1988), 27
% of the active population is dedicated to this sector. A significant part of the rural

population is, hence, affected by tepetates.
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2.6.2. Migration

Besides the creation of three industrial parks during the last decade, work expectancy in the
state islow and, as a consequence, migration is high. According to official INEGI last census
(20054a), 3.5 % of the population (persons who were living in the State in 2000) migrated to
more active economical poles such as Puebla (26 % of migrants) and Mexico city area (35
%). Migration to the United States officially represents 2.8 % of the migrants, but this value
is probably underestimated and does not reflect the magnitude of migration from Hueyotlipan
district to the United States (Charbonnier, 2004).

2.6.3. Farm unit structure

In Tlalpan area, farms unit are in average 5 ha (Lepigeon, 1994). Such surfaces are too small
to achieve economical sustain for farmers and their family. In 1994, annua income from
agriculture was inferior to the minimum salary for 75 % of the farmers. In Tlalpan, likewise
most part of the TMVB (Prat et al., 1997b), all farmers have secondary activities and

incomes (construction, plumbing, music, etc. ..) (Lepigeon, 1994).

The rehabilitation of unproductive tepetate areas is a way to extend arable surface of small
farmers, substantially increase their incomes, and could represent a viable alternative to

migration.
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3. Materialsand methods

3.1. Tlalpan experimental site

Santiago Tlalpan is situated at 19°28'N, 98°18'W and at 2600 madl. It islocated 25 km north
from Tlaxcala city, on the edge of the Tlaxcala block and belongs to Hueyotlipan District.

The site was settled in two stages. in 1986, a large area of bare tepetate, adjacent to a deep
ravine and with 15 % natural slope, was fragmented and 6 terraces were formed with an
average slope of 3 % (A, B, C, D, E, and F); then in 2002, at the beginning of REVOL SO
project, two smaller plots were established on the upper part of the ravine (R1 and R2). All
plots have the same slope, and were formed from the same tepetate formation (t3). Erosion
measurement system wasinstalled in 5 plots (R1, R2, C, D, E).

Plot with  erosion
measurement system

Plot without erosion
B measurement system

B

*
19° 28°N; 98° 18,6°
W

Figure 4: Map of Tlalpan experimental site and main characteristics of the plots.
3.2. Managements
Three managements have been evaluated: conventional, improved, and organic.

- Conventional management is the one applied by the farmers in the study area: soil
preparation with disc plough and harrow (additional operations are done depending on the
crop), use of minera fertilizers, and use of phyto-protection products when necessary. The
crop residues (straw, stalks) are sold or used for cattle pasture, in spite of its poor nutrimental

value. Fertilization inputs are self-moderated because of economic restrictions. The
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incorporation of organic matter is low and is limited to the decomposition of roots and a

small part of the crop residues, since cattle usually graze the land after the harvest.

- Improved management is based on conventional management without restrictions of
inputs (all inputs required by the crop are applied), and use of associated crop (legumes)
when possible. All crop residues are incorporated to the soil, either whole or crushed. The
intention is to incorporate all organic matter available on the plot after harvesting, without
any addition of external sources such as manure or compost, and with minimum time and

work requirement.

- Organic management involves the same soil cultivation practices than the other
management systems, but with use of organic fertilization only (manure or compost) and
associated crop when possible. Crop residues are composted with additional farm manure and
then reincorporated to the soil. This management requires more time and labour, but provides

ahigher level of incorporation of organic matter.

The plots fragmented in 1986 (A, B, C, D, E, F) were cultivated until 2002 under
conventional management. The main crops were maize and wheat, without any externa
application of organic matter.

Table 2: Characteristics of Tlalpan experimental plots

Plot Management Y ear of Label Surface  Erosion measurement
fragmentation (m?) system
A Improved 1986 1170 No
B  Conventiona 1986 1070 No
C Improved 1986 86-1 1630 Yes
D Organic 1986 86-0O 2020 Yes
E  Conventiond 1986 86-C 1340 Yes
F Organic 1986 2200 No
R1 Conventional 2002 02-C 580 Yes
R2 Organic 2002 02-0O 760 Yes

3.3. Crops and fertilization

Crops and fertilization applied from 2002 to 2005 are presented in table 3 and 4.

Table 3: Cropscultivated from 2002 to 2005 at Tlalpan experimental site during the investigation.

Management 2002 2003 2004 2005
Improved Broad bean Oat + vetch Maize + bean Wheat
Conventional Broad bean Oat Maize + bean Whest
Organic Broad bean Oat + vetch Maize + bean Wheat

Broad bean: Vicia fava; Vetch: Vicia sativa; Maize: Zea mays; Oat: Hordeum vulgare; Wheat:
Triticum aestivum; Bean: Phaseolus vulgaris.
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Table 4: Fertilization applied from 2002 to 2005 at Tlalpan experimental site during theinvestigation.

Fertilization (N-P,0s-K,0, kg ha’)

Plot Management 2002 2003 2004 2005

A Improved 60-100-34 23-60-00 98-41-00 82-23-00
B Conventiona 23-00-00 23-00-00 81-00-00 62-23-00
C  Improved 60-100-34 23-60-00 98-41-00 82-23-00
D  Organic 6.8tha* (C) 3tha' (FYM) 19tha' (C) 3tha® (C)
E  Conventional 23-00-00 23-00-00 81-00-00 62-23-00
F  Organic 6.8t ha(C) 3tha' (FYM) 19tha' (C) 3tha® (C)
R1  Conventional 23-46-00 23-00-00 81-00-00 62-23-00
R2  Organic 6.3tha’ (FYM)+  3tha® (FYM) 26tha* (C) 4.2tha"(C)

crop incorporation*
FYM: Farmyard manure (dry matter); C: compost (dry matter); Vetch: Vicia sativa.
* the broad bean was not harvested and the whol e biomass was incorporated

3.4. Methods

3.4.1. Soil loss and runoff

The study has been performed on large farmers’ fields and under natural climatic conditions.
Theinitial erosion measurement system was designed by Fechter-Escamilla et al. (1995) and
has been described by Haulon et a. (2003). It consists of a one-foot H-flume (Hudson, 1993)
placed at the outlet of the field, and equipped with awater level recorder (OTT Thalimedes®
shaft encoder) set up at one minute time-step interval. Water level (mm) was converted into
flow discharge (m* min™) based on conversion table given in the Field Manual for Research
in Agricultural Hydrology (Brakensiek et al., 1979). After passing through the flume, runoff
discharge is channelled to a high capacity rotating tank (2 to 4.5 m®) set on 4 electronic
weight cells. In case the volume of runoff exceeds the capacity of the tanks, a hose connected
to a plastic reservoir collects an aliquot of the overflow. The original system (Fechter-
Escamilla et al., 1995) was developed to calculate soil loss according to the following
formula

Soil Weight mine e = Ly erk = Viark )i o

5soil - 5water

With ¢: density, W: weight of the slurry in the tank and V: volume of the slurry in the tank

However, in practice, weight and volume measurement are not precise enough to obtain a
reliable calculation of soil loss. Indeed, the average soil weight collected in the tanks ranged
from 10 to 20 kg. Considering that the precision of the weight cellsis approximately 1%, the
standard error for a full tank (2 and 4.5 m®) is 20 to 45 kg, and the calculation is therefore
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strongly biased. As a consequence, this method was not used. Instead, soil loss was calculated

using a method of sediment concentration calculation as follows:

The heaviest fraction of soil particles tend to settle rapidly in accordance with Stoke's law.
By the time samples are collected, the day after the storm event, the heaviest particles have
settled at the bottom of the tank, and it is not possible to homogenize the whole slurry and
maintain the heaviest particles in suspension to take representative samples. Therefore, the
“suspended” and “settled” sediments were treated separately.

. The “suspended” sediment fraction was homogenized by manual agitation during one

minute without disturbing the “settled” sediment fraction, and 1 dm® sample was taken
immediately at 30 to 50 cm depth. The suspended fraction was then emptied by rotation of
the tank. The settled fraction was then collected, its volume was measured and 1 dm®
sample was taken. The sampling method was tested to evaluate the reproducibility of the
protocol. Results showed no significant differences in sediment concentration between

position and depth of sampling.

In case the volume of runoff exceeded the capacity of the tank, a sample was collected from
the plastic reservoir.

. Thewater level in the flume was recorded by OTT Thalimedes® shaft encoder set up at one

minute time step interval. Water level (mm) was converted into flow discharge (m* min™)
based on conversion table given in the Field Manua for Research in Agricultural
Hydrology (Brakensiek et al., 1979).

Samples were oven-dried in the laboratory and their sediment concentration was
determined.

Total soil loss was calculated as follow:

Wiotal = Wsuspended + Woaatted + Wout tank ()

Soil weight (W) in each fraction equals the volume (V) of that fraction multiply by its
sediment concentration, with:

V suspended = Vintank = V settled 3

Vout tank = Vtotal at fiedd outlet = Vin tank 4
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Statistical analysis
Two issues must be considered:

The plots reclaimed in 1986 are larger than the plots reclaimed in 2002. On one hand, plot
length could increase flow velocity and particle detachments and as a result increase soil
erosion. On the other hand, larger plots may present more depositional areas and, hence,
reduce net erosion. Given our experimental design it is not possible to statistically control

possible size effect, and we will assume the effect of plot sizeis negligible.

. Given the cost of the erosion measurement system and the lack of tepetates available for

rehabilitation on the same experimental site (comparison between treatment should be done
only under same climatic conditions), no replicates are available. Each combination of age

of rehabilitation and management is only represented once.

To compare soil loss and water losses between plots, analysis of variance was performed
considering all erosive events® within a year. Since soil losses are not normally distributed,
the base-10 logarithm of individual event soil loss value (E) was used. Since some events did
not produce soil loss (E) in al plots, the ANOVA was performed on LOG;o(E+1).

3.4.2. Rainerosivity

Rainfall was recorded by mechanical daily recording rain gauge (pluviograph) during the
rainfall season from 2002 to 2005. In addition, a meteorological station was installed in 2003,
and precipitations were recorded with a tipping bucket rain gauge at a constant time step of 1
minute. However, the precision of the device failed, and in 2004 a Hobo® event recorder
connected to a tipping-bucket rain gauge was installed, allowing a precise calculation of
rainfall intensity and kinetic energy. The combination of recording devices ensures continuity

of recordsin case of failure.

Rain kinetic energy was calculated using the equation proposed by van Dijk et al.(2002):

Ek=28.3[1-0.5200%2] (5)
Where Ek isthe kinetic energy in Jm? mm™ for atime lap of constant intensity.

The total rainfal or storm kinetic energy is the sum of the product of each time lap kinetic

energy and the rain depth during thistime lap:

! We took into account all events that produced soil lossin at least one plot.
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E=> Ek R (6)
E isthetotal rainfall energy
Ek; isthekinetic energy of a constant intensity time lap t
R: isthe rain depth during a constant intensity time lap t
n isthe number of constant intensity time laps during the rainfall
The annual kinetic energy isthe sum of al rainfall event’ s kinetic energy.

The van Dijk formula was compared to the equation proposed by Renard et al. (1997) for the
RUSLE which is adapted from earlier formulation by Wischmeier and Smith (1958):

Ek = 11.9+8.73 log,l if <76 mmh* 7
Ek = 28.3 if | >76mmh™ (8)

3.4.3. Vegetation cover

In 2002 and 2003, vegetation cover was measured by a simple version of quadrat sighting
frame (Stocking, 1994), consisting of a board perforated with fifty 2 mm-diameter holes at 2
cm interval. The amount of bare ground visible through the hole was quantified from 0 (bare
soil) to 5 (totally covered by vegetation). The nature of the cover was also qualified (main
crop, associated crop, residues, weeds). However, difficulties with crop height,
representativity in case of raw crops and observers variability, aso reported by Stocking
(1994), led to reduced reliability of the measurements. Consequently, in 2005, a new method
based on digital photograph taken at 7 meters height and analyzed by image processing
software was developed and used. This method discriminates plant area from soil area by
binarization processing. In 2004, only visua observation was performed at maximum
development stage of the crop.

Repeated measures ANOVA was performed and Tukey HSD at 0.05 confidence level was
used to compare treatments.

3.4.4. Aggregate stability

3.4.4.1.Percolation stability

After the works of Sekera and Brunner (1943) and Becher and Kainz (1983), Kainz and Weiss
(1988) developed a method to assess aggregate stability based on the percolation of water
through a column of calibrated aggregates. The aggregates are placed in a 100 mm-long tube
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with an inside diameter of 15 mm. Deionised water is then percolated during 10 minutes
under a hydrostatic head pressure of 20 hPa. The amount of water percolated is regarded as
the percolation stability (PS) index.

The principle driving the percolation stability (PS) test is the obstruction of the pores by
displacement and re-organisation of the microaggregates and particles resulting from the
aggregates breakdown, thereby reducing the amount of water that passes through the column.
In this method, since the aggregates are previously air dried and rapidly wetted, Auerswald
(1995) stated that the aggregate breakdown occurs mainly by compression of trapped air
during wetting (slaking). The magnitude of the breakdown depends on the strength of the
cohesive forces holding the aggregate. High values indicate high aggregate stability.

The original test is performed on 1-2 mm diameter air-dried aggregates. In this study, the
method was widened and the test was performed on three aggregate sizes: 0.59-1 mm, 1-2
mm, and 2-3.15 mm. The interest was to evaluate the stability of a wider range of aggregate
size so that the sample tested is more representative to the whole soil behaviour (Loch, 1994).
Based on this consideration, the weighted PS (PSw) was calculated to take into account the
relative proportion of each aggregate size class.

PSw =) PSX-Wx (9)
With PSx = Percolation stability index for aggregate size x

Wx = Fraction of aggregate size x in relation to the other aggregate sizes tested.

3.4.4.2.Aggregate size distribution

Large samples were taken in field and air dried at room temperature in laboratory. Samples
were then sieved through a column of 7 meshes at 10, 8, 5, 3.15, 2, 1 and 0.59 mm in arotary
sieve device during 4 minutes. The aggregates caught on each sieve were weighted and the
fraction of each size was calculated. The fraction >10 mm was not considered in the
calculation as this size of aggregate is very variable and can affect artificially the fina
aggregate size distribution. The mean weight diameter (MWD) (Nimmo and Perkins, 2002),
was then calculated. Greater MWD implies greater stability.

In dry-sieving procedure, the disruptive agent responsible for the aggregate breakdown is the

mechanical energy produced by the collision between the aggregates and the sieve or
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between aggregates themselves. One measure was performed for each sample. Over the 3
years, the sample (< 10 mm) mean weight was 1048 g (standard deviation=318, n=130).
3.4.4.3.Sampling

The sampling and processing differ from one year to another (Table 5). Therefore, the results

are not compared between years, but only within a year.

Table 5: Method and sampling details for soil aggregation assessment in Tlalpan.

2003 2004 2005
Date of sampling November 2003 November 2004 13/07/2005
22/09/2005
17/11/2005
Date of testing February 2004 March 2006 August 2005
October 2005
December 2005
Plots all al Erosion plots
(C,D,E ,RL R2)
Field sampling 2 samples a 3| 1 compound samples (4 sub- | 1 compound sample (6
positions (top, | samples) at sub-samples)
medium and low part | 2 positions: ridge + furrow
of the plot)
Depth 0-10cm 0-10cm 0-10cm
Aggregate size 1-2mm 0.59-1mm 0.59-1mm
tested 3.15-5mm 1-2mm 1-2mm
2-315mm 2-315mm
Replicate 3 3 3
N total 288 144 135

3.4.4.4.atistical analysis

Between groups analysis of variance (ANOVA) was performed using SPSS (SPSS Inc.).
Tukey (Honestly Significant Difference) test at 95 % confidence was used for multiple

comparisons.

3.4.5. Particle size distribution

Particle size distribution was determined by Laser diffraction (LD) technique on a Beckman-
Coulter LS 230 at the School of Geography of the University of Nottingham. Laser
diffraction technology have been used in several studies for soil particle size distribution
(PSD) in the last 10 years (Buurman et al., 1997; Muggler et al., 1997; Konert and
Vandenberghe, 1997; Beuselinck et al., 1998; Chappell, 1998; Westerhof et al., 1999; Eshel
et al., 2004). The theory behind laser diffraction (or light scattering) technique have been
extensively described by these authors and is provided by the manufacturer (Coulter, 1994).
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Apart from the short time analysis required for LD, the main advantage of this technique is

that it provides continuous PSD over awide range of size fraction.

The Fraunhofer optical model was used for calculation and the PIDS (polarization intensity
differential of scattered light) module was not used. PSD was measured over the range of
0.375 pum to 2000 um. The protocol to prepare samples previous to their analysisin the fluid

module was as follow:

0.15t0 0.2 g of soil was put in 10 ml hydrogen peroxide (10 % H»O,) for 1 hour and was then
heated progressively for 2 hoursto destroy al organic compounds. The sample was allowed
to cool and 25 ml distilled water was added. The sample was then centrifuged at 3500 rpm for
5 minutes and the liquid in excess was poured out gently. Another 25 ml distilled water was
added and the sample was centrifuged again to rinse all the remaining peroxide. The liquid
was poured and 25 ml Calgon was added. The sample was shaken manually for 1 minute and
then placed in an ultrasonic bath for at least 30 minutes before being analyzed in the fluid
module containing tap water. Three replicates of each soil were analyzed. Given the high
reproducibility between runs (+- 2 %), only one run of 1 minute was performed for each
replicate.

PSD by the hydrometer method was also performed in the laboratory of soils of the
Autonomous University of Tlaxcalafollowing the protocol proposed by Gee and Or (2002).

LD particle size distribution between plots were compared by ANOV A repeated measures.

3.4.6. Porosity and pore size distribution

Total porosity was determined by gravimetric method with water saturation (Flint and Flint,
2002) and pore size distribution by water desorption method (Flint and Flint, 2002), at 2.45,
5.88, 9.8, 33, 100 and 1500 kPa. Total porosity means were compared by ANOVA (Tukey at
0.05), and water retention curve (pore size distribution) were compared by repeated measures
ANOVA.

3.4.7. Soil Organic Carbon

In each plots, two composite samples from 10 sub-samples were taken at 0-10 cm depth at
the end of the rainy season. Soil organic carbon was measured by dry combustion in a
Carmograph 8 Waosthoff at the laboratory of soil science of the Colegio de Postgraduados.
Samples were measured once. The precision of the measures was verified by running

standard control samples regularly.
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4. Results

4.1. Erosivity and soil erosion

4.1.1. Rainfall erosivity

Results presented in this part are based on records from 2002-2005 taken during REVOLSO
project, and unpublished records from 1991 to 1997 recorded during previous projects by
Jirgen Baumann and Ulrich Fechter-Escamilla and colleagues from the University of
Tlaxcaa

4.1.1.1. Annual precipitation

Mean annual precipitation over the period 1991-2005 in Tlalpan was 670 mm. Values ranged
from 530 mm (2002) to 805 mm (2003), with a standard deviation of 108 mm. Data recorded
over the 2002-2005 period are consistent with those recorded previously over the 1991-1997
period. There is no significant difference (p<0.05) between the mean annual precipitation for
the two periods (660 and 675 mm respectively)

Table 6: Annual precipitation and R factor in Tlalpan, Tlaxcala.

year Precipitation R (EI30)
(mm) (N h)
1991 804 358
1992 803 272
1993 663 211
1994 719 435
1995 603 197
1996 607 218
1997 553 N/A
2002 530 184
2003 805 345
2004 756 377
2005 577 195
Mean 675 127

Beside their proximity (3 geographic minutes), Tlalpan appears to be drier than Hueyotlipan,
with 105 mm less precipitation in average. Part of this difference is attributed to the fact that
winter precipitations were not recorded consistently in Tlalpan. However, the trend confirms
the great spatial climatic variability in Tlaxcala (Conde et al., 2006; Eakin, 2000).
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4.1.1.2.Monthly precipitation
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Figure 5: Average monthly precipitation and standard deviation at Tlalpan based on records from 1991
to 1997 and from 2002 to 2005.

Average rainfalls from December to March are not presented because winter precipitations
were not recorded every year. However, winter precipitations are minimal and account for
less than 5 % of the annual rainfall in the area (INEGI, 2006).

At Tlalpan, 75 % of the annual precipitation is distributed from June to September with an
average monthly precipitation of 125 mm. Monthly standard deviations reflect great
variability between years, and uneven rainfal distribution within a year. Dry periods
(“canicul@’) during the rainfall season are frequent in the area and can cause disastrous

damage to crops.

The precipitations in May are crucia as they determine the beginning of the rainfall season
and the possible length of the crop cycle before the beginning of the frost-risk period
(October). Sowing date and rain depth in the month after sowing have been included in
models to predict maize production in the State of Tlaxcala (Ramirez and Volke Haller,
1999). According to climatic data recorded at Tlalpan during 11 years, the probability of
monthly rain depth superior to 70 mmin May is only 45 %.

Due to winter drought, cover cropping to protect the soil at the beginning of the rainfall
season is not possible in this rainfed agriculture area and first storms aways occurred on bare
and recently worked soils. Thisisamajor limitation for soil conservation strategies.
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4.1.1.3.Rainfall patternsin Tlalpan
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Figure6: Start time of rainfall events (> 1mm) between 2002 and 2005 in Tlalpan

Over the 2002-2005 period, 360 events separated by at least 60 minutes and with a minimum
precipitation of 1 mm were recorded. 71 % of the events started in the afternoon and evening
between 14:00 and 20:00, with 51 % of the events concentrated between 15:00 and 18:00.
This pattern reflects the dominance of convective rainfals which are characteristic in
Mexican highlands (Prat, 1997) and more generally in continental highlands (Nyssen et al.,
2005).

Table 7. Mean selected characteristic of rainfall eventsin Tlalpan over the 1991-2005 period (2003-2005
for soil loss). See Table A- 1 for annual details.

Events Depth EI30 Max 130  Soail loss
count % mm % N h? % mm h* %
Mean < 1lmm 57.6 40.1% 20.5 3.0% 0.4 0.1% 0.8

1-499mm 438 30.5% 108.0 16.0% 8.3 3.0% 35 0.3%

5-9.99 mm 19.6 13.7% 142.0 21.0% 25.6 9.2% 87 4.3%

10-19.9 mm 16.8 11.7% 236.2 35.0% 87.7 31.4% 16.1 36.1%

20-29.9 mm 39 2.7% 92.9 13.8% 58.9 21.1% 26.1 15.9%

>30mm 18 1.3% 75.1 11.1% 98.3 35.2% 50.0 43.4%

Max rainfall 45.6 6.8% 63.0 22.5% 40.6 13.9%
Total 143.6 674.6 279.2

Rain events < 1mm represented on average 40 % of the events, but only accounted for 3 % of
the annual precipitation. There were more numerous over the 2002-2005 period than over the
1991-1997 period because of the precision of the recording device (tipping bucket and event
recorder) which allowed to record numerous isolated pseudo-events that were not perceptible
on the daily pluviograph used between 1991 and 1997.

The number of events is inversely proportiona to the size of the event. Events up to 10 mm
represented 84 % of the events, 40 % of the annual precipitation, but only contributed to 12

% of the annual erosivity (EI130) and produce 4.3 % of soil loss. Rainfall events of 10-20 mm
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contributed to 35 % of the annual precipitation. Such events were on average less intense
(16.1 mm h™ in 30 minutes) than those of 20-30 mm (26 mm h'™) but they are more numerous
and all together accounted for 36.1 % of the annual erosivity against only 15.9 % for events
20-30 mm. Events >30 mm only occur on average 1.8 time per year and account for 11 % of
the precipitation. However, they were the most intense (50 mm h* maximum 130 on
average), they produced 35 % of the erosivity and 43.4 % of the annual soil loss. Maximum
rainstorm depth ranged from 31 to 67.1 mm over the 1991-1997 period and from 32.7 to 63.8
mm over the 2002-2005 period. The biggest rainstorm is not always the most erosive event,
as erosion also depends on the soil condition (protection, roughness, water saturation, etc.) at
the moment on the storm.

4.1.2. Runoff and soil loss
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Figure 7: Annual soil loss, runoff, runoff coefficient and sediment dischargein Tlalpan from 2003 to 2005.
See Table A- 2 for details.

In recently reclaimed tepetates erosion rates ranged from 5.5 to 14.1 t ha* yr* in organic
management (02-O) and from 8.6 to 19.1 t ha* yr* in conventional management (02-C).
Over the period, soil lossin conventional management was significantly (p<0.05) greater than
in organic management, with a difference of 3.1to 5ton ha’ yr (Table A- 2).



4. Results 32

In tepetates reclaimed in 1986, erosion rates ranged from 1.1 to 5.5 t ha* yr™, with a mean

value of 3.4t ha' yr* and no significant difference between managements.

The same trend is observed in runoff, with annual values ranging from 146 to 265 mm in
2002-plots, and from 27 to 99 mm in 1986-plots.

Greater soil loss of 2002-plots was due to greater runoff and to greater sediment discharge. In

turn, greater runoff was due to:

1. Greater number of events that caused erosion: on average per year, 25 events
generated runoff in recently reclaimed tepetates, against 18 events in 1986 tepetates.
The events responsible for that difference are the one below 20 mm. All events of
more than 20 mm produced runoff in al plots (Table A- 4).

2. Higher runoff coefficient: the latter are rather constant between years. In plots
reclaimed in 1986, mean runoff coefficient ranged from 11 % to 17 % in improved
and conventional management respectively. In 2002-plots, mean runoff coefficient

reached 45 % in conventional management and 31 % in the organic one (Table A- 2)

On average, 43 % of the annual soil loss was produced by 3 events >30 mm, including the
most erosive event which accounted aone for 33 % of the annual soil loss. Individualy,
events between 10 and 20 mm only generated on average 80 kg ha' in 1986-plots and 386 kg
ha* in 2002-plots. However, all together (12.3 events of that size on average), they caused 36
% of the annual soil loss (Table A-3). Although it might be difficult to prevent soil loss from
extreme events, conservation techniques could be more efficient to prevent erosion from

moderate rainstorm (10-20 mm).

In 2005, the event that produced most soil loss was only 17.5 mm, but occurred 2 days after a
rainstorm of 32.3 mm. The biggest rainstorm (43.6 mm) occurred later in the season on
31/08/05 when vegetation cover was higher, and generated the highest runoff rates of the
season (Table A- 4), but not as much erosion. This might have generated an over-estimation
of the overal contribution of 10-20 mm rainfall size class to annual soil loss, but aso
highlight the importance of soil conditions and vegetation cover a the beginning of the

rainstorm.

4.1.3. Vegetation cover

The efficiency of a crop to protect the soil from raindrop impact can be evaluated according

to the amount of vegetation cover the crop is able to provide, and the time elapsed before the



4. Results 33

cover is developed. The amount of vegetation cover depends on i) the type of crop, mainly
responsible for mean differences between years, and ii) crop development, which depends on
the management applied and which is mainly responsible for differences between plots within
ayear. Crop development depends on plant nutrition and water supply.

Results are presented in Table A- 5.

4.1.3.1. 2002

Among the crop rotation applied between 2002 and 2005, broad bean is the crop that
provided less vegetation cover to the soil. Maximum cover was reached after approximately
130 days after sowing, with soil covered up to 71 % (86-O) and 79 % (86-C) in 1986-plots,
and 44 % (02-0) to 41 % (02-C) in 2002-plots.

4.1.3.2. 2003

In 2003, the association between oat and vetch significantly increased vegetation cover to 84
% (86-1) compared to 61 % (86-C) with oat single cropping in 1986-plots, to 70 % (02-O)
compared 39 % (02-C) in plots reclaimed in 2002.

The analysis of the composition of the vegetation cover (Figure 7) clearly shows that:

i. On average over the season, vegetation cover by oat was similar between

management, ranging from 38 to 45 %.

ii.  The vetch provided another 29 % vegetation cover in 02-O, and 21 % on average in
86-1 and 86-O. There were not significant differences in vetch cover between plots
where this species was associated with oat (organic and improved).

iii.  Vegetation cover was higher in plots reclaimed in 1986 because of adventives weeds
(18% of additional cover on average). In plots reclaimed in 2002, the amount of soil

covered by weeds is negligible since the material was still free of adventives seeds.

The maximum vegetation cover by oat occurred 54 days after sowing and decayed gradually
afterwards. Vetch development and cover was slower, but constant throughout the rainfall

season and until harvesting, approximately 100 days after sowing.

The association oat-vetch provided greater vegetation cover and over alarger period. Thisis
a substantial benefit in the study area where hurricane season usually generate strong erosive
events at the end of the growing season in September-October (See part 4.1.1).
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Figure 8: Composition of vegetation cover in 2003 in Tlalpan

Although vegetation cover was established rapidly after sowing, the biggest rainstorms
occurred at the beginning of the season when only 10 % of the soil (on average) was covered

and caused magjor soil loss (Figure 9).

04

10

20 4

30 4

Precipitation (mm)

Vegetation cover

W Precipitation

N Soil loss
— \/egetation cover

June

e

3.5

-3

L 2.5

L2

1.5

1

- 0.5
T ]

Movember

a-1}

=

Soil loss (t

August September October

2003

July
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4.1.3.3.2004

The evaluation of the vegetation cover was done at grain filling stage, approximately 100
days after sowing. Based on this observation, vegetation cover was higher in 86-1 (87 %) than
in 86-O and 86-C (78 %). In recently reclaimed tepetates, 02-O reached 70 % cover, against
only 35 % in 02-C.

This observation confirmed the fertility limitations of recently reclaimed tepetates for maize
cropping under conventional management (Baumann and Werner, 1997b). However, it aso
proved that from the third year after fragmentation, maize cropping can produce similar
yields (Table A- 7) and vegetation cover than reclaimed tepetates with several years of
rehabilitation, providing adequate plant nutrition is applied.

In 2004, the biggest rainstorm occurred in September during the hurricane season and caused
major soil loss although vegetation cover was aready well established (Figure 10). It is a
clear illustration that vegetation cover can mitigate the effect of erosive event by protecting
the soil against raindrop impact, but has limited effect in case of extreme event when particle

detachment by overland flow is the dominant detachment mechanism.
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Figure 10: Distribution of vegetation cover (predicted average value of all plots), precipitation and soil
loss (average value of all plots) during 2004 in Tlalpan.

4.1.3.4. 2005
Thanks to the aerial photography method, we were able to monitor the vegetation cover

during the whole crop cycle. Over this period, 86-O and 86-I provided up to 90 % of soil

cover 100 days after sowing. 86-C was significantly lower with a maximum of 81 %. The



4. Results 36

plots reclaimed in 2002 suffered nutrition limitations and vegetation cover did not reach more

than 63 %. Over the period the difference between the two managements was not significant.

On average in plots reclaimed in 1986, wheat was able to provide more than 80 % soil cover
60 days after sowing and maintained this level during approximately 60 days, representing 46
% of the vegetative period (Figure 11). This level of vegetation cover was particularly

effective in mitigating soil loss for the two extreme rainstorms (over 40 mm) which occurred

in August (31%) and October (11").
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Figure 11: Distribution of vegetation cover (average value of all plots), precipitation and soil loss (average
value of all plots) during 2005 in Tlalpan

4.2. Soil properties and crop production

4.2.1. Soil Organic Carbon

The main difference between Conventional, Improved and Organic management is the

incorporation of organic matter (Cf chapter 3.3). The evolution of SOC content is an indicator

of the effect of management on carbon dynamic in tepetates.

In total, 5.6 Mg OM (biomass) ha* yr* and 6.8 Mg OM ha* yr'* were incorporated over the
period in 86-O and 02-O respectively. Organic fertilization represented on average 63 % of
the annual incorporation rate, whereas crop residues accounted for 24% and roots for another

13 % of the amount of C incorporated each year in average (Table 8). In 86-I, the
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incorporation of organic material amounted 4.4 Mg OM ha' yr?, of which 89 % was
provided by crop residues and 11% by roots. In 86-C, average incorporation rate was 2.5 Mg
OM ha* yr*, with crop residues accounting for 67% of the total accumulation and roots for
33 %. In 02-O, only 1.1 Mg OM ha* yr* was incorporated, of which the major part (60 %)

came from roots (Table 8).

Table 8: Organic material (biomass) inputs and C accumulation ratesin Tlalpan from 2002 to 2005 at O-
20 cm depth. OM inputs from roots wer e estimated from the work of Fechter-Escamilla et al. (1997b).

86-C 86-I 86-0 02-C 02-0

2002 organic fertilziation - - 6.8 - 6.3

residues - - - - -
roots - - - - -

2003 organic fertilziation - - 3.0 - 30
residues n-1 (broad bean) - 32 - - 2.3a

roots n-1 (broad bean) 1.1 1.1 1.1 1.1 1.1

2004 organic fertilziation - - 19 - 2.6

residues n-1 (oat or oat + vetch) 38 33 2.9 1.2 39

roots n-1 (oat or oat + vetch) 0.8 1.4 14 0.8 14

2005 organic fertilziation - - 3.0 - 4.3

residues n-1 (maize) 15 55 15 0.5 14

roots n-1 (maize) 0.8 0.8 0.8 0.8 0.8
Total organic fertilziation - - 14.7 - 16.2

residues 5.2 12.0 44 17 7.7

roots 2.6 3.2 3.2 2.6 3.2
Total (Mg OM ha™) 7.8 15.2 22.3 4.3 27.1
Incorporation rate (Mg OM ha™ yr™) 20 38 56 11 6.8
Incorporation rate (Mg C ha™ yr)° 1.0 1.9 2.8 05 34
Accumulation rate (Mg C ha™ yr™)° 0.21 0.37 0.61 0.22 0.80
Ratio accumulated/incor porated 21% 19% 22% 40% 24%

%incorporated as green manure
P with C = /2 OM
Cf table 12

In 86-C, where crop residues were exported and no organic material was incorporated, SOC
content (0-20 cm depth) increased by 0.36 mg g* over the period (Table 9), indicating that
after more than 15 years of cultivation after fragmentation and with reduced inputs of O.M,
SOC keeps increasing under conventiona management. In 86-I, where residues were
incorporated, SOC increased by 0.61 mg g™ over the period. In 86-O, where residues were
composted and organic fertilization was applied, SOC increased by 1.01 mg g*. In 02-O, the
incorporation of manure after fragmentation and the incorporation of the green manure (broad
bean) produced an increase of 0.77 mg g™* within the first year after fragmentation. Over the 4
years period with regular but reasonable organic matter inputs (Table 8) SOC increased by
1.34 mg g™. In 02-C with no organic matter incorporation apart from roots and residues, SOC
increased by 0.36 mg g* (Table 9).

Organic farming after fragmentation increased carbon sequestration rates to equivalent 0.80
Mg C ha' yr'* compared to 0.22 Mg C ha* yr™ in conventional farming.
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Table 9: Soil Organic Carbon (mg g*) and accumulation rate at 0-20 cm depth in Tlalpan from 2002 to
2005. Data at 0-10 and 10-20 cm depth are presented in Table A- 6 in Appendix 7.

SOC (mg g?) Accumulation rates
M anagement
2002 2003 2004 2005 A02-05 mgCg'yr® MgChalyr?

86-C 299 370 340 334 035 0.09 0.21
86-| 321 350 383 38 061 0.15 0.37
86-0 309 442 478 410 101 0.25 0.61
02-C 108 081 145 143 036 0.09 0.22
02-0 108 184 220 241 134 0.33 0.80

4.2.2. Soil water content

In 2004 soil moisture was assessed by TDR from sowing to mid-September. Measurements

were not continued due to failure of the device. In 2004, no significant differences were

observed between treatments (Figure 12).
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Figure 12: Monitoring of soil water content (volumetric) at 10 cm depth by TDR during 2004 cropping
season. Cf Table A- 8.
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In 2005, soil moisture was assessed by tensiometers on a regular basis (32 measurements).

Over the period, soil water content was significantly lower in 02-plots (mean value of 23 %)
than in 86-1 and 86-C (Mean value of 33 %) (Figure 13 and Table A- 9)
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Figure 13: Monitoring of soil water content (gravimetric) by tensiometers during 2005 cropping season
(weighted average from measuresdone at 5, 10, 15, 25 and 40 cm depth). Cf Table A- 9.

4.2.3. Crop production

Crop production and vegetation cover are strongly related, since both parameter depends on
crop development. Crop yields are presented in Table A- 7, to support the discussion on the

effect of management on vegetation cover.
4.3. Soil structure

4.3.1. Particle size distribution

Table 10: Particle size distribution in Tlalpan experimental site’s plots.

Clay Silt Sands
<2um|2-20pm 20 - 50 um 2 - 50 um|50 - 250 pm 250 - 500 um 500 - 2000 pm 50 - 2000 um
A 6.3 31.3 131 44.4 355 10.0 39 49.3
B 7.7 345 14.0 485 311 9.0 3.7 43.9
C 7.6 35.8 14.3 50.1 29.7 9.2 34 42.3
D 8.2 34.0 134 47.3 30.7 9.6 4.2 445
E 9.1 38.7 11.8 50.6 27.6 9.2 36 404
F 9.9 35.0 115 46.5 29.1 10.3 4.3 43.7
R1 10.7 37.7 10.8 48.5 26.7 9.8 4.4 40.9
R2 9.5 37.3 13.1 50.4 28.7 8.7 2.8 40.1
Mean 8.6 35.5 12.7 48.3 29.9 9.5 3.8 43.1

The average texture is 8.6 % clay (<2 um), 48.3 % silt (2 - 50 um) and 43.1 % sand (50 —
2000 pm). The most represented fraction is fine silt-size (2 — 20 um) particles, accounting for
35.5 % of the soil volume on average. Very fine and fine sands accounted for 29.9 % of the

soil volume, whereas coarse and very coarse sands (<500 pum) only accounted for 3.8 % of
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the soil. There were no significant differences in particle size distribution between plots
(ANOVA repeated measures).

LD PSA reveded the bimodal particle distribution with a peak at 5 um and another one at
100 pm (Figure 14)
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Figure 14: Particle size distribution measured by Laser Diffraction in Tlalpan in plots where erosion was
measur ed.

Soil texture classification systems were developed for PSD obtained by sieving-
sedimentation methods. No classification systems exist yet for PSD obtained by LD and it is
therefore necessary to convert LD PSD to pipette or hydrometer PSD in order to define the
soil texture class. According to LD PSD, reclaimed tepetates in Tlalpan would be clay loams
(USDA classification).

Laser diffraction grain analysis tends to underestimate clay content in comparison to the
sieve-pipette method more conventionally used (Beuselinck et al., 1998; Konert and
Vandenberghe, 1997; Eshel et al., 2004). This distortion is due to the fact that both methods
do not measure the same property of the same material. The laser diffraction analysis
determines the diameter of a particle whose diffraction is equivalent to the one of a sphere
(optical-equivalent diameter). Gravitational sedimentary pipette method determines the
diameter of a particle whose settling velocity is equivalent to the one of a quartz sphere

(spherical-equivaent diameter).

Because clays are platy particles, their average optical diameter is much greater than their

equivalent spherical diameter. Konert and Vandenberghe (1997) showed that some particles
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with a clay spherical-equivalent diameter of 2 um (from pipette method) have a optical-
equivaent diameter of 3.9 um. Much of the material measured as clay by the pipette method
is therefore measured as silt on the diffraction method. Since coarse silt and sand spherical
and optica diameters are similar, there is a good relationship between pipette and laser
diffraction method for sands content (Beuselinck et al., 1998; Konert and Vandenberghe,
1997; Eshel et al., 2004). However, because of the underestimation of clays, silt fraction
tends to be largely overestimated. To convert particle size distribution obtained by LD to
values obtained by sieve-pipette, two methods have been proposed:

Konert and Vandenberghe (1997) proposed that clay (<2 pum) content by sieve-pipette

method be equivalent to particles size <8 um measured by laser diffraction.

Beusdlinck et al. (1998) proposed to estimate clay and sand content using RMA regression
equations:

For clay (< 2 um): y =2.744x — 7.773
For sand (> 63 um): y = 1.155x — 6.105

And then calculate silt content as 100 — (% estimated clay + % estimated sand).

Table 11: Measured and corrected textur e obtained by LD and pipette methodsin Tlalpan.

Method % Clay % Silt % Sands
<2um 2-50pum  50-2000 pum
LD (Coulter LS 230) 8.6 48.3 43.1
Hydrometer 325 25.8 41.8
LD Corrected (Beuselinck) 159 40.4 43.7
LD Corrected (Konert) 30.5 26.4 43.1
Sieve-pipette (Coval eda, 2007) 33.7 30.0 36.4
Sieve-pipette (Baumann, 1996) 26.9 35.0 38.1

& Baumann used sands > 63 um. Silt fraction is therefore overestimated compared to the USDA classification, and sand
fraction underestimated.
® RMA relationship for sands was calculated by Beuselinck for sands > 63 pm.

Hydrometer PSD isin the range of the pipette PSD reported by Covaleda et a (2007), with a
difference of 1.2 % in clay content and 4.4% in sand content. However, it differs from pipette
PSD reported by Baumann (1996) (A clay: 5.6 % and A sands: 3.7 %). Part of this difference
is due to the fact that the upper limit for st fraction was 63 um and induced an

overestimation of silt fraction (A =9.2 %).
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The correction proposed by Konert and Vandenberghe (1997) (increasing the limit of clay
fraction to 8 um) gave a good approximation of the equivalent pipette PSD, with differences

of lessthan 2 % in each size fraction compared to hydrometer PSD.

The correction proposed by Beuselinck et al. (1998) did not predict satisfactorily the clay
content measured by the hydrometer method, with a difference of 16.6 %. The RMA
relationships defined by Beuselinck et al. (1998) were based on 83 samples derived from
natural silt and modified to obtain a wide range of texture. However, the clay fraction used in
their experiment consists mainly of illite and smectite, whereas clays minerals in tepetates are
mainly halloysite and cristobalite (Pefia and Zebrowski, 1992a). This may have created a bias
since relationships between LS and pipette methods are affected by clay mineralogy and
morphology (Beuselinck et al., 1998).

It isimportant to highlight that all methods suffer from inherent flaws (Eshel et al., 2004) and
none can be considered as absol utely correct.

4.3.2. Aggregation

4.3.2.1.Dry aggregate size distribution

The smallest aggregate fraction (<0.59 mm) is the predominant fraction and represented on
average 31% of the soil sample (> 10 mm). There is a significant difference (p<0.001) in the
fraction of aggregates size >1 mm between 1986-plots (34.8 %) and 2002-plots (42.3 %)
(Table A- 15). This feature reflects a lower aggregation of the finer particles in the recently
rehabilitated tepetates, which is also expressed by smaller MWD over the period. All other
aggregate-size fraction ranged between 10 % and 15 % of the soil (< 10 mm).

In 2003, MWD are higher because the smallest mesh size was 1 mm, whereas in 2004 and
2005, samples were sieved down to 0.59 mm. Since MWD is an integration of the cumulative
size fraction, and since the smallest size class is the most important fraction, the MWD
calculation was affected.

In 2002-plots, there was no significant effect of management on ASD, with a mean MWD of
2.67 mm. In 1986-plots however, 86-O obtained higher MWD value (3.23 mm) than 86-C
(3.14 mm) and 86-1 (2.99 mm), although the difference was only significant between 86-1 and
86-0.

Evolution of ASD during crop season
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In 2005, samples were taken at the beginning, middle and end of the season. In recently
reclaimed plots, ASD remained constant throughout the season, with fraction <0.59
accounting for approximately 30 % of the soil and fractions > 1mm accounting for 10 to 15
% each (Table A- 16). On September 22" we observed a significant difference (p<0.05) in
MWD between 1986-plots (3.93 mm) and 2002-plots (2.39 mm). This difference is due to a
decrease in aggregate fraction < 1mm and an increase in aggregate fraction > 2mm compared

to July and November (Figure 15).
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Figure 15: Dry aggregate size distribution during therainfall season in 2005 in Tlalpan.

Soil water content was also monitored during the cropping season and the results showed that
there is a good correlation (r? adjusted =0.83, N=15, p<0.001) between MWD and soil water
content at sampling. This result is consistent with the conclusions of several authors that
reported significant effect of soil moisture at the time of sampling on aggregate stability and
size distribution (Kemper and Rosenau, 1984; Caron and Kay, 1992). Further monitoring of
soil moisture and aggregate size distribution is required to draw more consistent conclusions

on how soil moisture content affects aggregate size distribution.
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Relationship between MWD and aggregate size distribution

The MWD is computed from integrating the cumulative abundance of aggregates as a
function of diameter (Nimmo and Perkins, 2002). In our study, the MWD was obtained by
integrating 7 sizes classes (6 in 2003) obtained by sieving. Since the aggregate size <0.59 mm
accounts in average for 30 % of the aggregates <10 mm, we found a strong negative linear
relationship between MWD and the fraction of aggregate <0.59 mm (r>=0.85, N=64,
p<0.001) (Figure 16)
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Figure 16: Linear regression between MWD and <0.59 mm fraction in 2004.

The fraction of aggregates size <0.59 mm is therefore a good indicator of the level of
aggregation in reclaimed tepetates and could be an aternative to the MWD to assess

aggregation.
4.3.2.2.Aggregate stability

Note on annual variability

Within a year, al samples recelved the same preparation, but samples treatment differs
between years (Table 5). The main difference is the time elapsed between the date of
sampling and the date of testing. In 2005, samples were analyzed few weeks after they were
air dried whereas samples from 2004 cycle were stored for more than a year before being
anayzed. This may have increased aggregate cohesion (Diaz-Zorita et al., 2002; Kemper and
Rosenau, 1986) and may explain the variability observed between years. Moreover, variation
of structural stability within atreatment over a growing season can be as large, or larger, than
the changes observed between treatments over a number of years (Perfect et al., 1990b).
Therefore, the analysis of results will only focus on differences between plots within years.
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Figure 17: Effect of management and age of rehabilitation on mean PSw over the period 2003-2005.
Different letter indicate significant difference (p<0.05).

On average over the period, there is a significant effect (p<0.001) of the age of rehabilitation
on PSw. 1986-plots were more stable to percolation (361.1 ml 10 min™) than 2002-plots
(236.9 ml 10 min™) (Table A- 17). Management aso had a significant effect on PSw
(p<0.001), and this effect is not dependant from the year of rehabilitation (interaction not
significant). The effect of age of rehabilitation is clearly visible within a given management
(02-O significantly less stable than 86-O, and 02-C significantly less stable than 86-C)
(Figure 17). 02-O obtained similar PSw value (308.7 ml 10 min™) than 86-C (259.3 ml 10
min™) and 86-1 (329.5 ml 10 minY) (Table A- 17).

In 2005, aggregate stability was measured at three different dates during the rainfall season.
The results obtained illustrate the dynamic of aggregate stability in reclaimed tepetates
(Figure 18 and Table A- 17). The first sampling was done 2 months after compost was
applied in organic management (86-O and 02-O). We observed a peak of stability at the
beginning of the crop cycle with PSw values significantly greater in organic management
than in conventional and improved managements, regardiess of the age of rehabilitation
(Table A- 17). PSw decreased in al plots at the end of the cropping season, and was
significantly lower in 2002-plots than in 1986-plots, both in conventional and organic

management.



46

4. Results

200

o 13/07/05

150 m 22/09/05

m 17/11/05
g§_ 100 -
a) _

0
86-C 86| 86-0 02-C 02-0

Figure 18: Aggregate stability (PSw) in 2005 and its evolution during the crop cycle.

Detailled PS values for each aggregate size helps us analyze a step further the dynamic of
aggregate stability in reclaimed tepetates. For illustration sake, Figure 19 only show PS
values in 2002 plots for the 3 aggregate sizes tested. The results of al plots are presented in

Table A- 18.
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Figure 19: PS (ml 10 min™) values in 02-C and 02-O during the cropping season in 2005 in relation to
aggregate size.

Since the PS index is the amount of water percolated through a column of calibrated
aggregates, we expect the PS index to be positively correlated to the aggregate size. Indeed,
in the hypothetical case of aggregates being uniform stable spheres, and assuming aggregates
are packed under the same model (Hillel, 2004), the smaller the aggregate diameter, the

smaller the resulting pores diameter, and in turn, the smaller the discharge.
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Figure 14 shows three mains features:

1. In recently reclaimed tepetate under conventional management (02-C) all aggregates
sizes had similar PS index (non significant differences).

2. In organic management (02-O), PS index for 2-3.15 mm aggregates was significantly
(p<0.01) higher than the other aggregate sizes on 13/07/05, but decreased and became
no longer significantly different after this date.

3. The stability of aggregates decreased during the growing season in all aggregate sizes.
At the end of the season, there were no differences in PS between managements.

In plots reclaimed in 1986, the same “stability peak” is observed in aggregates 2-3.15 mm at
the beginning of the cropping season in 86-O (332 ml 10 min™) and, to a lesser extent, in 86-I
(208 ml 10 min™) and 86-C (158 ml 10 min™) (Table A- 18). PS values for aggregates 2 -
3.15 mm decreased during the season, but remained higher than smaller aggregates fractions
in all 86-plots.

Effect of ridge and furrow on aggregate stability

Traditionaly in Mexico, maize is cultivated in aridge and furrow system. In 2004, samples
were taken in ridge and furrow areas to evaluate the impact of such system on soil erodibility
(Table A- 17).

The furrow areas provided significantly higher PSw values (232 ml percolated in 10 min)
than the ridge area (139 ml 10 min™). This is due to higher PS values for al 3 sizes of
aggregates, and not to a different aggregate size distribution (Table A- 18). This observation
suggests that a furrow-ridge system improves the overall aggregate stability thanks to the area
occupied by furrows. We assume that as runoff occurs in furrows, the particles are
transported according to their size and to the flow velocity, as shown in the Hjulstrém
diagram. When flow rate decreases, bigger particles settle whereas smaller particles are
transported downstream. This sedimentation process occurs in furrows and may result in a
coarser texture in these areas. As the sand fraction increases, the PS values obtained increase
too, since the PS is much positively correlated to the amount of sand in soils (Mbagwu and
Auerswald, 1999). In this case, higher PS values do not necessarily reflect higher cohesive

strength within the aggregate, but a higher porosity due to the amount a sands.

This hypothesis must be confirmed by PSD analysisin furrows and ridges areas.
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4.3.3. Porosity and pore size distribution

4.3.3.1.Total porosity and bulk density
Some definitions:

e Inour study, “fine pores’ are the pores with equivalent diameter of less than 0.2 um.
The volume of fine pores corresponds to the volume of water in the soil at 15 bars,

which is considered to be the physical definition of the permanent wilting point (Opwp)

e “Large pores’ are the pores with equivalent diameter of more than 10 um. The
volume of large pores equals the volume of water in soil between field saturation and
field capacity (65c) at -0.33 bar.

e “Medium pores’ are the pores whose equivalent diameter range from 0.2 to 10 pum.
The volume of medium pores corresponds to the available water content, and is

equivalent to the volume of water retained in soil between 0fc and Opyp.

Table 12: Mean porosity (0 — 40 cm) in reclaimed tepetates from 2003 to 2005 in Tlalpan. Different letter
indicates significant difference (p<0.01)

Year Parameter 1986 2002

Conventional Improved Organic Mean Conventional Organic Mean

2003 Pores>10 um 113 a 118 a 128 a 12.0 127 a 102 a 114
Pores 0.2 -10 um 123 a 127 a 134 a 128 125 a 128 a 127
Pores <0.2 um 20.1 ab 203 ab 194 a 199 20.8 bc 217 ¢ 213

PT sat 436 a 448 ab 455 b 446 461 b 446 ab 453
Bulk density 127 a 1.26 ab 123 &b 125 121 b 124 ab 122
2004 Pores>10 ym 165 a 171 a 16.0 a 165 148 a 171 a 159
Pores 0.2 -10 um 156 a 152 ab 149 &b 152 152 ab 138 b 145
Pores <0.2 um 160 a 152 b 153 b 155 176 c 186 d 181

PT sat 48.0 bc 475 ab 46.1 a 472 475 &b 496 c 485
Bulk density 122 a 1.19 ab 123 a 121 1.19 ab 116 b 118
2005 Pores>10 um 20.1 ab 225 a 182 b 203 189 ab 201 ab 195
Pores 0.2 -10 um 139 a 132 a 158 b 143 143 ab 136 a 140
Pores <0.2 um 158 a 155 ab 150 b 154 176 c 186 d 181

PT sat 49.8 ab 51.2 ab 490 a 500 50.8 ab 524 b 516
Bulk density 1.16 ab 1.15 ab 119 a 116 1.15 ab 113 b 114

In 2003 the bulk density ranged from 1.21 (02-C) to 1.27 g cm™ (86-C), with an average of
1.24 g cm™. Total porosity ranged accordingly from 43.6 to 46.1 % with an average of 44.9
%. Fine pores (<0.2 um) represented in average 20.4 % of the soil volume and 45 % of the

total porosity. Large pores only accounted in average for 11.7 % of the soil volume.

In 2004, the average total porosity increased to 47.8 %, thanks to an increase in medium (14.9
%) and large pores (16.3 %). Fine pores decreased to 16.5 %. The difference between 2003
and 2004 is observed in all treatment, regardless of age or management. However, although



4. Results 49

large pores volume is not significantly different (p<0.05) between plots, fine pores volumeis

significantly greater in recently reclaimed tepetates, both in 2004 and 2005.

In 2005, the average porosity increased to 50.6 % thanks to an increase in large pores (20 %).
The volume of medium and fine pores remained constant compared to 2004, at 14.1% and
16.5 % respectively. The same way as in 2004, the increase in porosity is observed in all

treatment regardless of age or management.
The increase in porosity between years is probably due to different soil conditions during
sampling rather than evolution of physical parameter over the years.

4.3.3.2.Pore size distribution

Detailed pore size distribution results are presented in Table A- 19, Table A- 20, and Table
A-21.

In agreement with total porosity results, there is no significant difference in pore size
distribution between plots within ayear (repeated measures ANOVA).



4. Results 50

Yol sanl volume

Ha ol senl vohome
A
#

Ha ol sonl valume

ool 2um 3=02pm 1(=3um 1 lum 8.3 0um 1205 0um =] Xum
Figure 20: Poresize distribution in 2003, 2004 and 2005 (Table A-19, A-20 and A-21)

4.3.3.3.Effect of depth on porosity

In 2003, total porosity ranged on average from 44.1 % at 10 cm depth to 45.2 % at 40 cm,
with no significant difference (P>0.05) between depth, regardless of the plot (Table A- 19
and Table A- 21)

In 2004, in ridge areas, the porosity varied on average between 48.6 % at 5 cm and 46.8 % at
40 cm, but this difference was not significant (Table A- 20).

In 2005, total porosity significantly decreased with depth, with values of 51.2 % in the first
20 cm depth, 49.5 % at 30 cm depth and 46.4 % at 40 cm. Porosity decreased with depth in
all plots (table A-17 appendix 6). The decrease in total porosity in linked to a decrease of the
volume of pores >10 um, from 22.8 % at 10 cm depth to 14.4 % at 40 cm depth. The volume
of pores <10 um remained constant in the profile with values ranging from 15.4 % at 5 cm
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and 15.2 % at 40 cm for medium pores and from 15.7 % at 5 cm to 16.8 % at 40 cm depth for
fine pores (Figure 21). The presence of structural crust and compaction of the upper horizon
isaso clearly visible, with a decrease of larger pores (>120 um) at 5 cm (3.3 %) compared to
10 cm (5.5 %) (Table A- 20).
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Figure 21: Effect of depth on poresizedistribution in 2005 in Tlalpan (Table A-21)
4.3.3.4.Effect of ridge and furrow systems on porosity

In 2004, maize was cultivated on a traditional ridge and furrow system. Samples were taken
both on furrow and ridge areas to assess the possible effect of such system on porosity.

Analysis of variance showed that in the first 5 cm depth, porosity in ridge area (48.6 %) is
significantly higher (p<0.001) than in furrow area (45.6 %), regardless of the plot (Figure 22).
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Figure 22: Pore size distribution at 5 cm depth in ridge and furrow maize cropping in reclaimed tepetate
(Table A- 22).
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The reduced porosity in furrows is due to a reduction of pores 50 -120 um and > 120 um. The
latter (> 120 um) occupy 7.1 % in ridge area against only 3.5 % in furrows. Volume of pores

<50 um is not significantly different between the two areas.

In furrows, runoff crusts are formed by successive organized deposits of sand and silt
particles settling down according to the flow velocity (Casenave and Valentin, 1989; Janeau
et al., 1992). The organization of particles and the absence of roots in this area reduced

macroporosity (> 50 um).
4.4, Statistical analysis

4.4.1. Relationship between SOC, aggregate stability and erodibility

Table 13: Bivariate covariance table between SOC, PS 1-2 mm (Percolation stability index measured on
aggregates 1-2mm), PSw (weighted percolation stability index), MWD, runoff and soil loss (annual
values) in reclaimed terraced tepetates.

OC PS (1-2 mm) MWD PSwv Runoff
2003 PS(1-2mm) 0.62 -
MWD 0.74* 0.29 -
PSw 0.72* 0.85** 0.44 -
Runoff -0.96* -0.51 -0.57 -0.74 -
Soil loss -0.95% -0.47 -0.57 -0.69 0.98**
2004 PS(1-2mm) 0.46 -
MWD 0.45 0.09 -
PSw 0.49 0.99** 0.19 -
Runoff -0.88* -0.34 0.14 -0.34 -
Soil loss -0.89* -0.36 0.12 -0.35 0.99**
2005 PS(1-2mm) 0.78 -
MWD 0.50 -0.02 -
PSw 0.92* 0.97** 0.17 -
Runoff -0.95% -0.67 -0.42 -0.83 -
Soil loss -0.96** -0.73 -0.44 -0.87 0.98**
al years PS(1-2mm) 0.39 -
MWD 0.33 -0.24 -
PSw 0.46* 0.98** -0.17 -
Runoff -0.89** -0.03 -0.22 -0.05 -
Soil loss -0.82** 0.01 -0.04 -0.01 0.93**

*. Correlation is significant a the 0.05 leve (2-tailed).
** Corrdationis significant a the 0.01 leve (2-tailed).

4.4.1.1.Relationship between aggregation and SOC content

Overadl, the relationship between aggregation (PS, PSw, MWD) and SOC is very poor or
inexistent: there is no significant relationship between SOC and PS (1-2 mm), neither
between SOC and MWD (r= 0.33), and a weak, although significant (r=0.46), relationship
between SOC and PSw.
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The samples used for SOC analysis and the samples used for aggregation analysis (MWD,
PS, PSw) are different and were not taken at the same date. Therefore, SOC and aggregation
are related to the same plot, but not to the same sample. The lack of correlation is therefore
partly due a methodological problem and does not necessarily imply they are not related. This
result is discussed further in part 5.

4.4.1.2.Relationship between aggregation and erodibility
There is no significant relationship between the aggregation parameters (PSw, PS, MWD)
and erodibility (soil loss and runoff). Part of it can be attributed to methodological issues
already mentioned in part 4.3.2.

4.4.1.3.Relationship between SOC and erodibility
There is a strong relationship between SOC and soil erosion, for both soil loss (r = 0.82) and
runoff (r = 0.89). Thisrelationship is analyzed further in the following chapter (4.4.2)

4.4.2. Soil loss and runoff prediction

The objective of this chapter isto:

1. Assess the relationship between erosivity, SOC and vegetation cover on soil loss and
runoff.

2. Predict soil loss and runoff in terraced reclaimed tepetates for individual event and

annual value

4.4.2.1. Data set

In total over the 3 years, 310 erosive events were recorded in the 5 experimental plots. Some

events were discarded according to the following criteria:
»  When detailed rainstorm data was not available

=  When runoff volume was below athreshold value of 1 mm in plots reclaimed in 1986,
or 5 mm in plots reclaimed in 2002. In cases where runoff was >1 mm in at least 2
plots (1986-plots), the event was included for all plots. This criteria was set to avoid

over representation of small events.

In total 141 events (or cases) were selected (Table A- 10). According to Tabachnick and
Fidell (2001), the minimum size recommended in a multiple regression is N> 50 + 8m where

m is the number of independent variables. In our study 3 independent variables are used. The
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number of cases selected if therefore approximately twice the minimum size recommended
(74). The model includes 45 % of the erosive events, and covers 77 % of the total soil loss
recorded. Descriptive statistics of the variables (Table A- 11) showed that soil loss, runoff,
and al the rain parameters are positively skewed. To comply with multivariate anaysis

assumption of normality, skewed variables were |ogarithmically transformed.
4.4.2.2 Variables

SOC content

Since SOC content was not monitored throughout the cropping season but only at the end of
the season, annual values are used.

Vegetation cover prediction

Since vegetation cover was not monitored on a daily basis, we used predicted values of
vegetation cover for each erosive event in the analysis.

When the maximum vaue is known, vegetative growth pattern are well described by

symmetrical logistic equations (Landsberg, 1977), such as:

C max

- (10)
1+ bexp(—KT)

Where: Cv is the vegetation cover,
Cmax isthe asymptote (maximum vegetation cover)
b and k are curvature parameters
T istimein days after planting.

In 2003 and 2005, b and k were determined to best-fit the measured data. In 2004, they were

set so that maximum vegetation cover was reached approximately 90 days after sowing.

After maximum crop development, leaf senescence causes vegetation cover to decrease. The
decay in vegetation cover was predicted by linear interpolation in 2003 and 2005. In 2004,
the decrease was considered to follow the same logistic curve after maximum value was
reached (90 days), with a loss of vegetation cover of 40% of the maximum value (Lizaso et
al., 2003).

Table 14: Curvature parametersfor the modelling of vegetation cover . @ Observed vs predicted.
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Y ear b k r®@ N Sig.
2003 6 0.2 0.85 15 p<0.001
2004 6 0.12

2005 9 0.2 0.94 58 p<0.001

4.4.2.3.Relationship between erosivity and erosion

EI30 is the rain erosivity parameter (R factor) used in the USLE (Wischmeler and Smith,
1978). It is the product of the kinetic energy of the storm with the maximum intensity in 30
minutes. Some authors (Prat, 1997) suggested that due to the rainstorm intensity patternsin
Mexican central highlands, EI10 should be better correlated to soil loss. Our results showed
that, in cultivated conditions, and for single events, EI10 is more strongly correlated with soil
loss than EI30, with average correlation coefficient of 0.55 and 0.52 respectively (Table A-
12). EI30 is however more strongly correlated to runoff than EI10, with r = 0.77 and 0.75
respectively. Rain precipitation and kinetic energy are also strongly related to runoff, with r =
0.77 and 0.78 respectively (Table A- 12). When detailed rainfall recording is not available,
rain depth can be used satisfactorily to predict runoff.

4.4.2.4.%0il loss and runoff prediction
For single event

Erosivity, Vegetation cover and SOC made a significant unique contribution to predict soil
loss and runoff. EI10 or EI30 are the best erosivity parameters to predict soil loss, explaining
together with vegetation cover and SOC 62 % of the variance (Table A- 13). Although not as
accurate as EI30 or EI10, rain depth is significantly correlated to soil erosion and can also be
used to predict soil loss instead of EI30 when detailed rainfall records are not available

(pluviometers).

The erosivity factor (E130) made the greatest contribution to predict soil loss, accounting for
27 % (EI30) of the variance, whereas vegetation cover accounted for 26 % and SOC for
another 9 % (EI30) (Table A- 13).

Runoff was better predicted than soil loss thanks to a greater contribution of the erosivity
parameter. Both EI30 and rain depth, together with soil cover and SOC predicted
significantly (R*=0.68) the volume of runoff. EI30 alone accounted for 41 % of the total
variance, with soil cover contributing another 23 % and SOC only 4 %. Whereas EI10 is a
good indicator to predict soil loss, it is not so efficient to predict runoff (R?= 0.64). EI30 is
the best erosivity indicator to predict both soil loss and runoff (Table A- 13).
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Finally, if runoff measurement are available, soil loss can be predicted with precision (R* =
0.81). In this case runoff accounted for 68% of the variance and soil cover for another 13 %.

SOC did not make any significant unigue contribution (P > 0.05) and was discarded.

Table 15: Multipleregression equation for single event soil loss and runoff prediction in terraced (sope 3-
4%) cultivated tepetates in Tlalpan, Tlaxcala. Erosion (soil lossin kg ha™); Runoff (mm); EI30 (MJ ha™
mm h™, or 10N h™); COVER (m? m?:area of soil covered per unit of area); SOC (mg g™).

Regression equation R? Sig.

LOGerosion = 1.958 + 0.66(L OGEI30) - 1.09(COVER) - 0.15(SOC) 0.62 p<0.001
LOGrunoff = 0.046 + 0.62(LOGEI30) - 0.3(COVER) - 0.16(SOC) 0.68 p<0.001
LOGerosion = 1.96 + 1.05(L OGrunoff) - 0.76(COVER) 0.81 p<0.001

Sail loss and runoff prediction equations presented in table 9 are valid for individual erosive
events included in the range of those considered in the model and for terraced cultivated
tepetates with slopes of approximately 3 — 4 %, and with SOC content ranginf from 1 to 5 mg
g'. They have not been validated for other conditions and should therefore not been

extrapol ated.

The multiple regression analysis clearly highlighted that among the parameter that can be
influenced by management (vegetation cover and SOC), soil protection by vegetation cover
has the greatest impact on soil erosion. SOC also make a significant contribution to soil

erosion but to alesser extent.

In case of a single extreme annual event (on average 45 mm and EI30 = 63 N h}), and a
vegetation cover of 50 %, increasing SOC from 1 to 2 mg g™* can reduce soil loss from 1.26 t
ha' to 0.88 t ha’ (30 % decrease). For the same extreme annua event, and in reclaimed
tepetate with 1 mg g™ SOC content, increasing vegetation cover from 50 to 80 % can reduce
soil lossfrom 1.26 t ha' to 0.59 t ha™ (53 % decrease).

For annual values

The prediction models adjusted to annual runoff and soil loss explain a larger proportion of

the variances than for individual events (resultsin Table A- 14).

Annual runoff rates can be predicted by SOC and EI30 and COVER with good accuracy (r? =
0.91, n = 15, Table 11). SOC aone is the main contributor and accounted for 79% of the
variance. Vegetation cover (COVER) and rain erosivity (EI30) explained another 6 % and 5
% of the variance respectively (Table A- 14).
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Erosion rates are well predicted by SOC content and EI30 (r* = 0.84, n = 15, Table 11). In
that case SOC is the main contributor to soil loss variance (r? = 0.64), whereas EI30 explained
another 20 %. Vegetation cover did not make any significant contribution to soil loss
prediction. When annual runoff data are available, 89 % of the annua soil loss can be
predicted. In this case runoff is the main contributor (r* = 0.85), with EI30 accounting for
another 4 %. SOC and vegetation cover did not improve the model any further in this case
(no significant single contribution). Using the sum of EI30 of al erosive events only instead
of the annual EI30 (the sum of all events, both erosive and non-erosive) did not improve the
model fit.

Table 16: Multiple regression equation for annual soil loss and runoff prediction in terraced (slope 3-4%)

cultivated tepetates. Soil loss (t ha™); Runoff (mm); EI30 (N h™); SOC (mg g*); COVERmax (m? m™:
vegetation cover at crop maximum development).

Regression equation r? n Sig.

Soil loss =9.75 - 3.98(SOC) + 0.03(E130) 0.84 15 p<0.001
Soil loss = 0.07(RUNOFF) + 0.015(E 30) - 4.83 0.89 15 p<0.001
Runoff = 256.23 - 37.50(SOC) + -144.82(COVERmMax) + 0.207(El30) 0.91 15 p<0.001

The significance of the regression analysis greatly depends on the contrast between 86-plots
and 02-plots. There is a strong relationship between runoff rates and SOC in recently
reclaimed plots, but no relationship in 86-plots (figure 11).
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Figure 23: Relationship between SOC and annual runoff ratesin plotsreclaimed in 1986 and 2002.

It is important to stress that annual sediment and runoff rates prediction are based upon 15
values (5 plots * 3 years), and although the r? reported are adjusted to take into account the
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size of the sample, the latter is under the recommended size. All interpretation based upon the

regression equations proposed should be made with the necessary critical judgment.
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5. Discussion: Effect of organic farming on soil erosion and soil structure

5.1. Erosivity

Rain erosivity in Tlalpan is moderate, with average annua precipitation of 675 mm and
average R of 127 N h™. It is however, higher than on the western side of the Sierra Nevada
(Prat, 1997).

Our results complement the previous studies of Baumann (1996) and Fechter-Escamilla
(1997a) and give a longer term perspective of rainfall patterns in the Blogue de Tlaxcala
Rainfall patterns recorded over the 2002-2005 period and confirmed that in this region soil
loss is caused by a reduced number of rainstorms. Such rainfall and erosion distribution
pattern have also been observed in many locations in the world and under contrasting rainfall
regime (Edwards and Owens, 1991; Langdale et al., 1992; Nyssen et al., 2005; Gonzalez-
Hidalgo et al., 2007).

Rain erosivity in Tlapan have been extensively discussed by Baumann (1996). Our results
confirm trends previously reported but do not give further insights. Hence, this aspect won't
be developed further.

5.2. Effect of organic farming on soil erosion
5.2.1. Carbon dynamic in reclaimed tepetates

5.2.1.1.Incorporation and accumulation of SOC

In organic management, organic fertilization was applied at an average rate of 3.7 and 4.1t
ha' yr* (dry materia) in 86-O and 02-O respectively. Such rates are lower than organic

fertilization rates applied in other experiments in reclaimed volcanic ash soils:

. In Eastern side of the Sierra Nevada, Baez et a. (1997) applied 40 t ha™ fresh farmyard

manure the first year after fragmentation and 20 t ha* the years onwards.

ii. In Ecuadorian Cangahua, Podwojewski and Germain (2005) applied 40 t ha* dry materia

after fragmentation and 10 t ha* the following years.

Acebedo et al. (2001) studied tepetate aggregation in greenhouse conditions after

incorporation of the equivalent of 50t ha dry cattlemanure.
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iv. In Salvador, Collinet and Mazariego (1993) used 15 t ha' yr dry poultry manure to

reclaim volcanic ash soils.

Manure or compost application of more than 10 t ha yr* are hardly available for the average
farm in the area (Lepigeon, 1994) and would require external provision of organic material
(manure, residues, etc..). It would in turn increase production costs and make the farm more
dependant on external inputs. The organic management evaluated in our experiment was
designed to be acceptable and adoptable by loca small holders, as well as being
economically viable and environmentally reproducible. Ideally, organic farming should limit
externa inputs to reduce costs and tend to be self sufficient in terms of organic fertilization.
In this respect, compost should be produced using the amount of residues available from the
previous crop and manure produced on the farm. For experimentation sake, it was not
possible to follow this principle every year, but attempt has been made to keep external inputs
of organic materia to reasonable levels and to make the organic management reproducible

and adoptable to small farmersin the area.

In plots reclaimed in 1986, 20 % (on average) of the C incorporated between 2002 and 2005
was accumulated in soil (Table 8). In recently reclaimed tepetates this ratio was 24 % in
organic management and 40 % in traditional management. The higher translocation
efficiency in traditional management can be explained by the origin of the C incorporated.
Numerous studies have demonstrated that root-derived Carbon was more persistent than
shoot-derived C (Rasse et al., 2005). Puget and Drinkwater (2001) observed an increased
retention of root-derived C in soils 6 months following crop incorporation in comparison to
shoot-derived C. Experimental results summarized by Bolinder et a. (1999) also suggest that
the percentage of below ground corn-C incorporated into SOC (range 16 — 30 %) is higher
than that from above ground corn biomass (range 7.7 — 20 %). Hence, since the percentage of
C inputs from roots is higher in 02-C than in the other plots, a greater proportion of C
incorporated was accumulated in the soil in comparison to other systems. Our results are
coherent with those reported by Bolinder, although differences exist because our study
considered C translocation from different crops (not only maize) without discrimination

between above- and below-ground C inputs.

On irrigated intensive cropping Vertisols in Central Mexico, Follett et a. (2005) calculated C
sequestration efficiency of 22 % for above-ground C and estimated to 11 % the C
sequestration efficiency for total C incorporated (above- and below-ground C).
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In that respect, more research is needed to study further carbon sequestration mechanism in
reclaimed tepetates and its impact on soil erosion. Understanding the effects of management
on carbon sequestration in soil like tepetates with an initial SOC content almost inexistent is
critical to developing adequate C conservation strategies.

5.2.1.2.Carbon losses

Carbon accumulation rates can be very slow in reclamed tepetates, even with regular
incorporation of OM (Baez et al., 2002). This observation suggests that C loss by
mineralization or erosion can be considerable (Etchevers et al., 1997). Part of it can be
attributed to intensive traditiona tillage which increases aggregate disruption and carbon

mineraization.

Carbon losses by erosion ranged from 38 kg ha* (86-1) to 87 kg ha* (02-C) in 2004 and from
17 to 68 kg ha* in 2005 (Table 18). The average organic carbon content in eroded sediments
ranged from 5.4 g kg™ (02-C) to 16.6 g kg™ (86-1) in 2004 and from 8.7 (02-C) to 16.8 g kg™
(86-C) in 2005.

It is a fact well established that OC concentration in eroded sediment is greater than in the
soil they are originated (e.g. Rumpel et al., 2006; Bellanger et al., 2004). The preferential
removal of the soil organic matter fraction by erosion is due to the low density of O.M, its
concentration in the vicinity of the surface, and its association with fine particles and micro-
aggregates which are more readily transported by runoff (Lal, 2003; Yadav and Malanson,
2007).

This phenomenon is expressed in terms of enrichment ratio (Eg), such as.
Er= SOCsediment!/ SOCail uneroded (11)

Carbon losses primarily depend on soil loss and SOC content and can be predicted according
to the following equation (Starr et al., 2000; Quinton et al., 2006):

SOC loss = (soil 10ss)(SOC content)(Eg) (12)

In Tlalpan, Er ranged from 4.8 to 3.5 with an average of 3.7 in 2004 and from 3.9 to 5.8 with
an average of 4.8 in 2005.

Quinton et a (2006) found in the literature organic matter enrichment ratio ranging from 1.5
to 4.5. In Northern Laos in soils with high erosion rates, Rumpel et al. (2006) obtained Eg
ranging from 1.7 to 2.7. However, neither Quinton et al. nor Rumpel et a. indicated the depth
of the horizon considered to calculate Eg. Since SOC is preferentialy accumulated in the
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upper layers of the soil, Er can be greatly influenced by the depth of the horizon considered
in the calculation. In the UK, Owens (2002) found Eg of 1.2 to 1.5 in average and concluded
that it was easier to apply techniques to reduce erosion rates, and thereby carbon losses than
applying techniques to reduce Eg. Even though Er comparisons with other studies found in
the international literature are hazardous because of the lack of information regarding the
depth of the horizon that was considered to calculate Eg, it appears that our values of Eg are
higher than the one reported in template regions. Thisis likely to be due to the very low SOC
content in reclaimed tepetates which increase the contrast between the arable horizon and the

upper part of the horizon where SOM is concentrated.

Table 17: Carbon losses by erosion and C concentration in sediment in Tlalpan in 2004 and 2005. Sour ce:
(Béez et al., 2006).

86-I 86-0O 86-C 02-C 02-0
C losses by erosion (kg C ha") 2004 38 65 71 87 85
2005 17 22 22 75 68
Cin sediment (g C kg™ 2004 16.6 15.3 12.7 5.4 8.3
2005 15.7 15.8 16.8 8.7 12.4
Clost / C accumulated 2004 0.10 0.11 0.34 0.40 0.11
2005 0.05 0.04 0.11 0.35 0.08
Er (SOC at 0-10 cm) 2004 4.8 34 33 3.6 35
2005 4.7 3.9 4.6 5.8 5.2

In 2005, C losses by erosion represented approximately 10% of the average C accumulation
rate in Organic and Improved management. However in conventional management, where C
inputs are limited, C losses by erosion represented 34 % (86-C) and 40 % (02-C) of the C
accumulated per year. Losses of carbon by erosion in reclaimed tepetates are significant but
are easily balanced by organic matter inputs from roots and crop residues, even in traditional
management. Soil erosion is thus a phenomenon which does not cause severe on-site
depletion of carbon content as reported in other ecosystems (Lal, 2003), but which reduces C

accumulation rate in cultivated tepetates.

Baez et a. (2006) and Covaleda et a. (2007) concluded that carbon losses by erosion in
reclaimed tepetates were minimal in the carbon balance and that loss of C occurred almost
exclusively by mineralization. Nonetheless, athough on-site losses of carbon in reclaimed
tepetates are limited, the mechanisms involved in soil erosion greatly contribute to carbon
losses. Aggregate breakdown by dlaking, differential swelling, or raindrop impact (Le
Bissonnais, 1996) releases encapsulated carbon which is then exposed to oxidation and
microbial processes (Sx et al., 2004). In addition, the C released is preferentially transported

by runoff or wind (Lal, 2003). Whereas on-site removal of SOM by erosion can be
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redistributed within the watershed or ecosystem, SOM exposed to mineralization or oxidation
by breakdown of aggregate is lost to the atmosphere (Polyakov and Lal, 2004). More research
is needed to determine the part of carbon mineralization induced by the mechanism involved
in soil erosion, and the effect of organic farming on C mineralization.

5.2.2. Vegetation cover

Vegetation cover reduces particle detachment by intercepting and dissipating part of the
energy of raindrops before they strike the soil surface (Hudson, 1995). As aresult, it reduces
sealing and crust formation, favours infiltration and, hence, decreases runoff and erosion rates
(Box and Bruce, 1995; Stocking, 1994; Morgan, 2005). There are numerous evidences of the
positive effect of vegetation cover on soil erosion in international literature. In chapter 4.4.2,
the regression analysis showed that vegetation cover explained 26 % of the variance in soil
loss for individua rainstorm. This result gives a quantitative indication of the effect of
vegetation cover in reclaimed tepetates, and the role this factor can play in the first years after

fragmentation.

The discussion will not focus on the effect of vegetation cover on soil erosion, which is afact
very well established, but on the way management practices can affect vegetation cover. Two
aspects are considered: 1) crop development, which depends on plant nutrition and water

supply, and 2) crops association.

5.2.2.1.Crop development and vegetation cover

As presented before (Table A- 7) recently fragmented tepetates are amost sterile material
due to their lack of N and P, but these deficiencies can be overcome by appropriate
fertilization to reach acceptable crop production (Etchevers et al., 1992; Navaro and
Zebrowski, 1992; Marquez et al., 1992; Baez et al., 1997).

In practice, small-holders in the area tend to adapt the amount of fertilization to their financial
capacities at the time the fertilization is required. As a result, fertilization in traditional
management is often below crop requirements and can limit crop devel opment and vegetation
cover. Our results clearly showed that in recently reclamed tepetates, the amount of
fertilization applied under conventional management (02-C) don't overcome fertility

deficiencies and result in poor vegetation cover.

When applied a 15 t ha’ (fresh manure) in recently fragmented tepetates, organic
fertilization provided vegetation cover similar to tepetates cultivated for more than 15 years.
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However, in 2005 with wheat cropping, the amount of compost applied in 02-O (4.2 t ha)
resulted in poor crop development and vegetation cover. This observation suggests that the
amount of organic fertilization required to provide an optimum nutrition for the crop is
greater than what can be produced by composting the previous crop residues. Two options

can be considered to reach optimum crop development and vegetation cover:

1) Increasing the organic fertilization, with additional inputs of manure, produced on the
farm or purchased locally, or compost. The latter implies purchasing additional
organic material to be composted (straw, maize stalks, etc...). Further research is
needed to evaluate the cost-benefit relationship and the cost of opportunity of strict

organic farming.

2) Complementing organic fertilization with mineral fertilization, which is an effective
way to increase soil fertility (FAO, 1999).

In any cases, the fertilization strategy must be adapted to the type of production system found

in the area and to the specific conditions of the smallholders.
Water supply

Results of porosity showed no evidence of significant differences in water holding capacity
between plots (Chapter 4.3.3). However, surface crusting and sealing enhanced by aggregate
breakdown reduce infiltration and, as a consequence, water storage and availability for plants.
The frequent monitoring of soil water content done in 2005 indicated that over the period
2002-plots were significantly drier than 1986-plots (Table A- 9). This is consistent with
runoff measurements which showed that in 2005, 164 mm and 140 mm water were lost by
runoff in 02-C and 02-O respectively, against 33 mm on average in 86-plots (Table A- 2). It
clearly highlights that when nutrition deficiencies are not overcome, either by organic or
minera fertilization, it gives rise to a vicious circle that will enhance soil erosion: nutrition
deficiencies reduce crop growth and vegetation cover. This will enhance surface crusting and
sealing and will increase runoff. In turn, water losses by runoff decrease water supply which

will affect plant growth and vegetation cover (Figure 24).



5. Discussion: Effect of organic farming on soil erosion and soil structure 65

Nutrition
deficiency

V egetation
cover

Crusting
sealing

Figure 24: Cause-effect relationship between water supply, vegetation cover and soil erosion. + and —
indicate an increasing (+) and decreasing (-) effect.

5.2.2.2.Crop association

Crop association, or multiple cropping, proved very promising to reclaim tepetates since it
increased forage yields and vegetation cover by 30 % in average over the period in recently
reclaimed tepetates. Baez €l al (1997) evaluated various crop association and compared them
to monoculture. They did not measure vegetation cover but crop production and concluded
that associations between cereds and legumes are much more productive than cereals
monoculture. They also reported satisfactory results for the association oat-vetch, but
recommended to use Medicago polimorfa instead of Vicia sativa because of the
aggressiveness of the latter which compete for water and can affect oat development in dry
years. In agreement with Bagez et al, the association oat-vetch in our experiment proved to be
a very suitable crop during the first cycle after fragmentation since it provided high
vegetation cover and similar yields to those obtained in tepetates cultivated for more than 15
years. Oat-vetch association is cultivated in many part of the world and is recognized as an
excellent forage (FAO, 2003). In Tlapan, Fechter-Escamilla et a (1997b) showed that
vegetation cover provided by Trifolium repens and Medicago polimorfa associated with
maize reduced soil loss rates to 1.54 t ha' compared with 7.31 t ha® in maize cropping
(Table 18).
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5.2.2.3.Mulching

In Mexican highlands, like in semi arid areas, the extended dry season prevent the
establishment of cover crop before the onset of the rainfall season, leaving the soil exposed to
the first erosive rainstorms. Mulching is an alternative whose effectiveness is widely
recognized (e.g. Lal, 1995; Morgan, 2005; Hobbs, 2007). The residue cover both protects the

soil from raindrop impact and decreases stream power by increasing roughness.

Mulching has not been evaluated in Tlapan within REVOLSO project, but has been
evauated in Michoacan on reclaimed deteriorated Acrisols by Bravo et a. (2006). They
showed that 30 % residue cover by at the beginning of the rainfall season reduced erosion
rates by 70 % compared to unprotected soil. Similar results were obtained previoudly in
Patzcuaro watershed on andosols by Tiscareno-Lopez et a. (1999). More examples of soil
loss reduction by mulching in different type of soils and climate are given by Morgan (2005)
who suggest that an application of 5t ha* of straw is sufficient to achieve an optimum soil
cover of 70 to 75 %. In Mexico, Roldan et a (2003) used approximately 3t ha* crop residue

to provide 33 % ground cover, and approximately 5t ha™ to provide 66 % ground cover.

Mulching requires significant amount of residues, which will be incorporated to the soil and
mineralized. However in the study area, crop residues are traditionally exported for animal
pasture despite their poor nutrimental value. Residue management is, thus, an issue that must
be address since soil conservation practices that promote organic matter incorporation and
mulching are competing with traditional use of crop residues. To increase probabilities that
farmers adopt new technologies, it is therefore necessary to develop simultaneously

sustainable alternatives to traditional animal feeding system.

5.2.3. Runoff and erosion rates in reclaimed tepetates

After 16 years of cultivation, soil erosion rates in reclaimed terraced tepetates in Tlaxcala are
below 5 t ha' yr'. Soil loss rates below 10 t ha' yr' are usually considered tolerable
(Hudson, 1995; Morgan, 2005). Soil erosion is critical after fragmentation, with soil loss
rates of more than 15 t ha* yr*, but can be kept within acceptable range as long as they are
cultivated with dense vegetation cover within the first years of cultivation. The study proved
that regular incorporation of OM to the soil after fragmentation reduces significantly erosion

rates from the first years after fragmentation.

In Tlalpan, soil erosion has been measured previously at field scale in 1995 and 1996 in
tepetates cultivated for 9 and 10 years after fragmentation (Fechter-Escamilla et al., 1997b).
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The two years were little erosive, with R factor of 196 N h™* and 218 N h™* respectively, and
erosion rates ranged from 1.54 ton ha to 7.31 ton ha™ depending on the treatment (Table
18). Reduced tillage without soil cover increased significantly runoff rates because of the low
infiltration in the upper horizon (Fechter-Escamilla et al., 1997b), increasing in turn erosion
rates compared to traditional tillage. However, reduced tillage with additional ground cover
provided by the associated crops both reduced runoff and soil loss compared to traditional

tillage.

Table 18: Field scale (1200 — 1500 m?) soil loss and runoff in Tlalpan in 1995 and 1996. Sour ce: Fechter -
Escamilla et al. (1997b). LT: Traditional tillage (M aize cropping with soil preparation by disc ploughing
and two hoeing during cropping); LRscv: No tillage without vegetation cover (M aize cropping by direct
sowing and weed control with herbicides); LRccv: No tillage with associated vegetation cover (Maize
cropping with no tillage and association of Trofolium repens and Medicago polimorfa)

LT LRscv LRccv
1995  Soail loss (ton ha'™) 3.00 3.72 2.34
Runoff (mm) 76 132 53
Annual precipitation : 603 mm
EI30: 196 N h*
1996 Soail loss (ton ha™) 5.02 7.31 154
Runoff (mm) 30 98 11.2
Annual precipitation: 607 mm
EI30: 218 N h'

On the Eastern hillside of the Sierra Nevada, Prat et a (1997a) carried out field scale (700
m?) erosion studies where they measured erosion rates in recently reclaimed tepetates under
managements similar to those we assessed in Tlalpan. In their experiment, the “monoculture”
system is equivalent to our traditional management, with use of minera fertilizers and no
associated crop. Their system called “associated crop and O.M.” is similar to our organic
management, with application of 40 t ha™ fresh manure in 2003 and 20 t ha™ the following
years, and use of associated crops.

They found that in average, crop association and incorporation of organic matter reduced
erosion rates to 2 t ha' compared with 7.8 t ha' under monoculture system. However, they
obtained the same effect with crop association and minera fertilization, suggesting that the
effect of vegetation cover prevails upon the effect of organic fertilization. The erosion rates
they reported are smaler than those we obtained in Tlalpan. This difference in mainly
explained by the fact that rainfall erosivity in San Miguel Tlaixpan (the name of the place
where their experimental site was located) over the period 1993-1996 was only 205 N h™ on
average (Prat, 1997), whereas in Tlalpan over the period from 2003 to 2005, the R factor was

on average 305 N h™. Besides this difference, our results are consistent with their conclusions
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that vegetation cover plays a magjor role in controlling erosion rates in the first years after

fragmentation.

5.2.4. Evolution of erosion rates

Our results clearly highlighted the high sensibility of recently fragmented tepetates to soil
erosion, with soil loss rates up to 3 times higher than in reclaimed tepetates cultivated for
more than 15 years. After such period of time, tepetates seem to have reached a stable level
below acceptable soil loss rates. Some uncertainties remain though as of how fast erosion
rates decrease and how many years are required before reclaimed tepetates can be considered
stables. This is a fundamental question to design and implement sustainable rehabilitation

programs.

In chapter 4.4.2, we showed that soil loss variance in reclaimed tepetates depends on
erosivity, SOC and vegetation cover. We thus expect the evolution of erosion rates to depend
on the evolution of these three parameters. Assuming that i) rainfall erosivity is a random
parameter, with independent behavior from one year to another; ii) vegetation cover is a
parameter that can be controlled by management practices (type of crop, fertilization) at each
cropping cycle; then over time, the evolution of erosion rates is linked to the evolution of

SOC content and, as aresult, to C accumulation rates.

Yet, little is known about C accumulation in soils with initial SOC content almost inexistent
such as reclaimed tepetates. Most recent studies on C accumulation or sequestration rates in
agricultural lands deal with SOC variation after agricultura management changes (e.g.
review by Post and Kwon, 2000), such as change from conventional tillage (CT) to no tillage
(NT) (West and Post, 2002). The latter reported that when changing from CT to NT, it is
possible to sequester 0.57 + 0.14 Mg C ha* yr*, with SOC reaching a new equilibrium after
15 to 20 years. Lal et a. (1998; cited by FAO, 2004), quantified carbon sequestration
potential for different technological options in drylands. For compost application, they
suggested C sequestration rates of 0.10 to 0.20 Mg ha’ yr?, similar to C sequestration
potential for agriculture intensification or conservation tillage, but less than that of water
conservation and management (0.10 to 0.20 Mg ha* yr?).

Baez et a. (2002) suggested that C accumulation in reclaimed tepetates followed a
logarithmic increase in time, regardless of the type of management. In the case of maize

monocropping, Baez et al. observed that SOC content tends to become stable after the first
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decade and argued that SOC content could hardly increased even after 50 or 100 years due to

the limited amount of organic matter incorporated in this type of agricultural management.

Our results showed that the fragmentation and the subsequent cultivation of tepetates induced
by itself a carbon sequestration process. Cultivation, even with low OM inputs such as the
conventional management, provided enough organic material (roots and harvest residues) to
sequester around 0.2 Mg C ha’ yr (02-C) in the top 20 cm soil. The same C sequestration
rate (0.2 Mg C ha*’ yr') was also measured 16 years after fragmentation (86-C). This
“baseline’ C sequestration rate can be multiplied by 4, to 0.8 Mg C ha’ yr* with additional
organic matter inputs in the years following fragmentation. The implementation of organic
farming after 16 years of conventional farming did increase SOC content and C sequestration
to 0.61 Mg C ha' yr*. However, the SOC increase was not correlated to any significant
decrease in sediment rates. This observation suggests the existence of a threshold value of
approximately 3.4 mg g* at 0-10 cm (Figure 23) above which: i) SOC has no further effect
on soil erosion; or ii) differences in SOC are not large enough to produce significant

differencesin runoff and erosion rates at field scale.

Assuming linear accumulation rates presented in table A-19 (0-10 cm) and the regression
model proposed in table 11:

. Reclaimed tepetates could reach SOC content higher than 3.4 mg g* at 0-10 cm depth

(stability threshold) after 7 years of cultivation under organic management and after 21
years under conventional management.

. Assuming an average year (erosivity = 279 N h™), erosion ratesin reclaimed tepetates could

drop below tolerable rates (10 t ha) after 3 years under organic management and after 9

years under conventional management.

These estimations seem redlistic for the organic management. For conventional management,
the mean accumulation rates observed over the first 4 years after fragmentation (0.09 mg g*
yr) is lower than the estimated mean accumulation rates in plots reclaimed in 1986 over a
period of 16 years (0.15 mg g yrY). If we take into account this value instead of the one we
observed over a period of 4 years, tolerable erosion rates could be reach after 7 years instead
of 9 years and the stability threshold could be reach after 17 years instead of 21 years under
conventional management. In any cases, organic management after fragmentation can reduce
the critical period when reclaimed tepetates present high erodibility by 2 to 3 time compared
to conventional management.
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5.3. Effect of organic management on soil structure

5.3.1. Aggregate stability dynamic and organic management

Aggregate stability expresses the resistance of aggregates to breakdown when subjected to
potentially disruptive processes (Hillel, 2004). Aggregate stability is affected by soil texture,
clay mineralogy, organic matter, cations concentration, iron and aluminium oxides and
CaCOs (Le Bissonnais, 1995). We will focus on the effect of organic matter since the primary
soil characteristics of the reclaimed tepetates we studied are similar, and because differences
between managements and age of rehabilitation are mainly based on soil organic carbon

content.

Organic matter enhances formation and stability of aggregates by bonding and/or holding
particles together (Oades, 1984). More recently, severa studies have demonstrated that the
hydrophobicity of organic matter also greatly contributes to aggregate stability by decreasing
wettability of aggregates, reducing the magnitude of slaking and differential swelling (Chenu
et al., 2000; Goebedl et al., 2005; Zaher et al., 2005).

The ANOVA of percolation stability test revealed a positive effect of age of rehabilitation
(2002-plots against 1986-plots) and of organic management on aggregate stability, regardless
of the age of reclamation. This observation (Figure 17) suggests that aggregate percolation
stability isthe result of the combination of:

i. Time-driven stability that develops over the years during the rehabilitation process, and
which is related to SOC content
ii. Management-driven stability, independent from the age of rehabilitation, which is related

to the incorporation of fresh organic material (crop residues, compost or manure)
Results from 2005 (Figure 18, Table A- 17) complement this observation by showing that:

At the beginning of the rainfall season, a few weeks after incorporation of fresh organic
matter, we observed a peak of stability in organic management. 02-O obtained similar
percolation values than 86-C and 86-I, athough SOC content in 02-O is lower than in 86-C
and 86-1. This observation indicates that the stability provided by the incorporation of fresh
organic matter (management driven stability) prevails upon the stability provided by SOC
content (time driven stability). It would also explain why SOC and PS are weakly related.

At the end of the rainfall season, percolation stability in 2002-plots, both under

conventional and organic management, dropped below the percolation stability measured in
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1986-plots. This observation suggests that the effect of fresh organic matter incorporation
on percolation stability is short-lasting (3 to 4 months).

These results are coherent with several studies that showed that the stability of
macroaggregates is not related to SOC but to other organic compounds (Tisdall and Oades,
1982). Perfect and Kay (1990) found that increases in wet-aggregate stability did not
correlate with increases in total organic carbon content, suggesting that some components of
the organic carbon pool were more actively involved in stabilizing aggregates than others.
Golchin et a. (1995) concluded that neither total organic matter nor total O-alkyl Carbon
content was closely correlated with aggregate stability, and suggested that only a part of soil
carbon or carbohydrate was involved in aggregate stability. They also found that particulate
organic matter occluded within aggregates was better correlated with aggregate stability.

The peak of stability observed in organic management a few weeks after organic matter
inputs is coherent with contemporary models of aggregates formation and stabilization.
According to the model of aggregate formation proposed by Puget et al. (2000), when fresh
organic material from plants is incorporated into the soil matrix, it is rapidly colonized by
microbial decomposers. Fungal hyphae and other by-product of the microbia activity, such
as extra cellular polysaccharides, bind soil particles to the particulate OM. It refers to what
Tisdall and Oades (1982) had caled “transient” binding agents, responsible for the
aggregation of macroaggregates (>250 um). According to these authors, polysaccharides are
produced rapidly after addition of organic materias, and the effect of transient binding agents
on water stable aggregation can starts 2 to 3 weeks after the addition of organic materials,
depending on the nature of these materials. Watts et al. (2001) investigated how soil structure
responded when fresh organic materias were added to poor quality degraded arable soils and
concluded that the incorporation of dried grass leaves into degraded soil increased
aggregation and that the process of aggregation was microbiologically mediated. Plante and
McGill (2002) demonstrated the formation of macroaggregates by incorporation of tracers 9
days after tillage. They found that a maximum of 40 to 60 % tracers were incorporated into
>1-mm aggregates after 72 days. Using the same percolation stability test, Fechter-Escamilla
et al. (1997b) were able to show evidence of short term structural stability increase in the
upper horizon of reclaim tepetate induced by ground cover of Trifolium repens and Medicago
polimorfa. They attributed this observation to the increased microbial activity enhanced by
favourable soil moisture regime and roots development provided by the cover crops.
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The seasonal decrease of PS can be attributed to seasonal fluctuations of roots and microbial
biomass and/or level of organic stabilizing constituent (Perfect et al., 1990a). Indeed, even
though transient binding agents are produced rapidly after incorporation of OM, they are also
decomposed rapidly by microorganisms (e.g. Oades, 1993). In soils with low OM, the
macroaggregates breakdown resulting from raindrop impact during the rainfall season leads
to exposure and decomposition of the new and young OM enclosed in the macroaggregates
formed at the beginning of the growing season, after the incorporation of fresh organic matter
(Plante and McGill, 2002). As decomposition of the incorporated OM proceeds, the
microbial growth and production of biopolymers decrease, together with their aggregating
action. We think that aggregate breakdown by raindrop impact during the rainfall season may
expose the OM enclosed in macroaggregates, and accel erate its decomposition, resulting in a
rapid decrease of the aggregate stability.

The fact that at the end of the season (2005) PSw was higher in 1986-plots than in 2002-plots
showed that the stability related to SOC is more recalcitrant and long lasting than the stability
related to the incorporation of fresh organic matter.

Covaleda et a. (2007) conducted a more detailed analysis of carbon dynamic in reclaimed
tepetates in Tlalpan using fractionation techniques. They concluded that: i) the C
incorporated (manure, compost) is stored primarily in macroaggregates (>0.2 mm), this
aggregate-size fraction being the most sensitive to management practices; ii) in the medium
term, the C stored in the smallest aggregates (<0.05 mm) increased. These results are
coherent with the model of aggregate hierarchy (Tisdall and Oades, 1982; Oades and Waters,
1991) which proposed that micro-aggregates (<250 pum) are bound together into macro-
aggregates (>2000 um) and stabilized by a network of roots and hyphae and by transient
binding agents such as microbia- and plant-derived polysaccharides. Oades (1984) later
showed that the formation of microaggregates occurs within macroaggregates and is
enhanced by the decomposition of temporary binding agents. This mechanism implies that
the SOC in microaggregates is more recalcitrant, whereas the SOC in macroaggregates more
labile (Degens, 1997). Puget et al. (1995) also demonstrated that the SOM responsible for the
stability of macroaggregates was younger than the one present in microaggregates. This
conceptual model has been confirmed by several studies (Jastrow et al., 1996; Sx et al.,
2000b; Christensen, 2001) and is widely accepted.

In that respect, Shepherd et a (2002) also highlighted the importance of young SOM in soil
structural development and stressed out that to achieve aggregate stability and the advantages
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that this conveys, frequent input of fresh organic matter was required. Thus, the authors
argued it is not the farming system per se that is important in promoting better physical
condition, but the amount and quality of organic matter returned to a soil. Indeed, organic
material with low C:N ratio are more rapidly decomposed and enhance the formation of
macroaggregates, but their effect on structural stability is transient. High C:N material (small
cereal straw, maize stalks) are decomposed slowly and favors formation of microaggregates
inside macroaggregates (Oades, 1984). The formation and stabilization of microaggregates
provide gradual effect on soil structural stability and long term effect on carbon sequestration
(Blanco-Canqui and Lal, 2004).

In reclaimed tepetates, it is therefore recommended to: i) incorporate fresh residue with low
C:N ratio (manure, compost, green manure) every year to enhance quick and short term
aggregate stability and macroaggregates formation, ii) incorporate high C:N crop residues to
enhance C sequestration and longer term structural stability, iii) promote roots biomass

which isasignificant source of stable SOC.

5.3.2. Porosity and infiltration

The pore size distribution of a soil depends, in the first instance, on the particle size
distribution (Smith et al., 1978), and deviations from this basic relationship is related to the
structuring influences of various factors (Aylmore and Slls, 1978). In reclaimed tepetates,
porosity and pore size distribution is primary characterized by a dominance of very fine pores
(<0.2 um) related to the percentage of clay and fine gt in tepetates. Within years, no
significant differences were observed in total porosity or bulk density between managements
or age of rehabilitation, apart from the volume of pores <0.2 um significantly higher in 02-
plots plots than in 86-plots.

5.3.2.1.Presence and effect of fragments on porosity in recently reclaimed

tepetates.

Recently fragmented tepetates consist of tepetate fragments. Therefore, void space consists
of intra-fragment porosity (equal to original tepetates porosity), and inter-fragment porosity,
related to the arrangement of fragments. Over time, fragment content decreases as primary
particles are released, and aggregate content increases, as primary particles bound with
organic compounds and polyvaent cations (Baez et al., 2002). Since the volume of

micropores in tepetate t3 in the Block of Tlaxcalais approximately 22 % (Werner, 1992) and
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higher than in cultivated soils, it is coherent to obtain higher microporosity in recently

reclaimed tepetates than in R86.

Fechter-Escamilla and Flores (1997) suggested that total porosity in tepetates recently
fragmented should be corrected to take into account the presence of large fragments inherited
from the origina matrix. They stated that sampling with 100 cm® cylinder tends to
overestimate the soil’ s fine fraction (< 2 mm). They estimated that fragments > 2 mm occupy
up to 50 % soil weight in recently reclaimed tepetates. This approach suggests that total
porosity in recently reclaimed tepetates should be lower than in tepetates with several years
of reclamation since part of the soil consists of dense original tepetate material. However,
volume of soil fragments was not measured in our study and this assumption could not be
checked.

5.3.2.2.Effect of management on soil porosity

Pore structure and porosity development is intimately linked to aggregation, as both
mechanisms are affected by the same factors. Soil biology and soil porosity have profound
reciprocal effect (Oades, 1993): soil structure forms the habitat for micro-organisms which
control residue decomposition rates and can influence, in fine, the aggregation and the
development of pore space. Using X-ray tomography analyzes, De Gryze et a (2006) were
able to show that decomposition of residues increased the overall void porosity and changed
the pore morphology due to the proliferation of fungal hyphae near fresh residues. However,
they found no relationship between water-stable aggregation and the changes in pore
structure, suggesting that pore stability rather than pore morphology plays a role in the
formation of aggregates after the addition of residue. Schjonning et al. (2007) showed that
incorporation of cattle manure or green manure increased SOC and improved hydraulic
properties of the soil 5 to 6 years after implementation of new management practices. In the
Sahel region in soils affected by hardening process during dry season, the application of
compost at a rate of 5t ha’ every two years in addition to mineral fertilization improved
infiltration in the short term (3 years), even in soil tilled on an annual basis (Ouattara et al.,
2007).

In our experiment, no significant differences were observed between management and/or age
of reclamation. This observation could be attributed to the effect of intensive cultivation on
pore structure and pore size distribution. Tillage mechanically breaks pore continuity and
hinders biopores formation (Oades, 1993). In the ridge-tillage cropping system (maize, broad
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bean, beans) extensively used in Mexican highlands and in our experiment, agricultural
practices include up to 5 soil tillages. disc ploughing, harrowing, initial ridging (seedbed),
first ridging (weeding) and second ridging (weeding and ridge reversal). Such tillage
frequency prevents biota-induced porosity to develop and tends to homogenized pore
structure in al management systems. Therefore, the expected positive effect of organic
management on soil porosity could be inhibited by too frequent tillage. The work of Wuest
(2001) suggests however that tillage affects in priority biopores over 1 mm, whereas biopores
<1 mm would not be significantly affected by tilled and no-tilled systems. It is then possible
that the method used to assess soil porosity was not adapted or precise enough to assess

differencesin porosity between management.

5.3.3. About tillage and residue management

Developing conservation tillage and residue management methods to improve soil structure
have been identified as a priority for soil management in the tropics (Lal, 2000). Most soil
conservation practices recommend to decrease soil disturbance to encourage soil biological
processes to enhance soil structure development, soil aggregation and stabilization, and SOC
sequestration (Bronick and Lal, 2005). Extensive literature have been published on the effect
of tillage/no tillage on carbon dynamics and sequestration (Follett, 2001; Hobbs, 2007;
Pagliai et al., 2004; Blanco-Canqui and Lal, 2004; Bronick and Lal, 2005; Jimenez and Lal,
2006; Swift, 2001; West and Post, 2002; Paustian et al., 2000; Sx et al., 1999; Conant et al.,
2007).

In Mexico, reduced tillage and residue management research have shown positive results on
soil erosion and soil structure. Tillage combined with residues cover has been recommended
on Vertisols in Tamaulipas (Roldan et al., 2007) to improve soil physical properties and C
sequestration. On a cambisol in semi arid western Mexico, no tillage and direct sowing under
mulch (from 1.5 to 4.5 t ha™ residues) decreased erosion rates by 50 to 90 % compared to
conventional cropping, while increasing SOC by 25 to 29% and maize yields by 170 to 190
% (Scopdl et al., 2005). On andisols in the Patzcuaro basin, no tillage improved soil quality
properties (Roldan et al., 2003) and erodibility (Tiscareno-Lopez et al., 1999) in comparison

to conventional tillage, in direct proportion to residues inputs.

However, reduced or no tillage is not adapted to all type of soils. On aloamy soil (25 % clay,
comparable to clay content in Tlalpan), Carof et a. (2007) found that conventional tillage
showed higher saturated hydraulic conductivity and porosity compared to no tilled soil in the
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arable layer. Lipiec et a. (2006) obtained similar results in a silt loam Eutric Fluvisol (25 %
clay, 62 % silt and 13 % sand). They concluded that the higher contribution of large flow-
active pores under conventional tillage enhanced infiltration and water storage capacity
compared to reduced and no tillage systems.

In reclaimed tepetates, characterized by fine texture, poor structural development and low
permeability, Fechter-Escamilla et al. (1997b) showed that tillage increased infiltration by
breaking structura crusts and increasing macro porosity compared to reduced tillage. The
authors concluded that vegetation cover had greater effect on reducing soil erosion than
reduced tillage and suggested that conservation farming in reclaimed tepetates consists of
intensive tillage with high vegetation cover. Similar findings were recently reported in
Mexican volcanic highlands by Govaerts et a. (2006; 2007). They concluded that zero tillage
combined with crop residues retention improved chemical and physical conditions of the soil,
but on the contrary zero tillage with removal of residues led to low aggregate stability, high

penetration resistance, surface slaking and high runoff.

The success and benefit of reduced tillage greatly depends on the type of soil, climate and the
possibility to combine this technique with residue cover. Further studies are therefore
required to evaluate if reduced tillage and residue management practices are adapted to

reclaim deteriorated vol canic ash soils such as tepetates.
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6. Conclusion

The medium term field scale experiment carried out in this investigation constitute a
substantial step forward to the knowledge and understanding of soil erosion dynamics in
reclaimed tepetates. The results obtained give a first evaluation of the effect of organic

farming on soil erosion and soil structure.

Effect of organic farming on soil erosion

Over the period, erosion rates were three to four times higher in 1986-plots than in 2002-
plots. In recently fragmented tepetates, organic farming decreased significantly soil loss
compared to conventional management, but in plots reclaimed in 1986, no significant
differences were observed between managements. The study confirmed the high erodibility
of tepetates after fragmentation, but gave further evidences that soil loss in reclaimed
tepetates cultivated for severa years are below tolerable rates, assuming terraces were
initially well designed with slope of around 3-4 %. It appeared clearly that SOC content isthe
main parameter controlling annual erosion rates in reclaimed tepetates. The evolution of
erosion rates is therefore dependant on carbon accumulation rates. By increasing organic
matter incorporation, organic farming enhanced C accumulation and decreased significantly
erosion rates compared to conventional farming, within the first years after fragmentation.
According to our prediction model, and assuming average erosivity, erosion could drop
below tolerable rates (10 t ha’ yr™) three years after fragmentation under organic farming,
and after seven years under conventional farming. Differences in SOC content in plots
reclaimed in 1986 had no significant effect on soil erosion, suggesting a threshold (~3.4 mg C
g™ in the top 10 cm soil) above which the effect of SOC content on soil erosion in reclaimed

tepetatesis reduced.

For single events, the multiple regression quantified the effect of vegetation cover on soil
erosion and highlighted the importance of providing high vegetation cover in the first stage of
the rehabilitation, when SOC content is still very low. In that respect, multiple cropping such
as oat associated with vetch proved to be excellent alternative by increasing production and
vegetation cover in comparison to oat alone. Crop nutrition is another critical aspect that must

be addressed to enhance crop development and provide optimum vegetation cover.

Effect of organic farming on soil structure
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The analysis of aggregate stability showed that when fresh organic matter is incorporated to
the soil, the liberation of transient binding agents induced a peak of stability in
macroaggregates a few weeks after incorporation. The study demonstrated that organic
farming in reclaimed tepetates enhanced the formation and stabilization of macroaggregates,
which should in turn promote the formation of microaggregates and the stabilization of SOC
in the medium term. Regular incorporation of fresh organic matter in recently reclaimed
tepetates is therefore a way to enhance soil structural development and carbon sequestration
during rehabilitation.

There were no evidence that organic farming improves total porosity and pore size
distribution in reclaimed tepetates. There were no indication neither that porosity increases
over time during the rehabilitation process, suggesting that differences in runoff and erosion
rates are not due to differences in infiltration in the profile but to reduced infiltration caused

by surface crusting and sealing.

Overal, organic farming had a positive impact on soil erosion and soil structure compared to
conventional farming. However, the relationship between soil structure and soil erosion could
not be clearly established, mainly because of methodological flaws. Detailed monitoring of
carbon content and aggregate stability is still required to understand better the dynamic of
organic carbon in reclaimed tepetates and its impact on soil erosion. The study highlighted
the key role of vegetation cover in the first stage after rehabilitation and raised the question of
plant nutrition and fertilization strategy. The application of organic amendments requires a
volume of organic material, either farmyard manure or biomass for compost, which may not
be available to all smallholders in the area. Therefore, as long as the market for organic
products is not developed and a certification system established, the use of mineral fertilizers
in combination to organic amendments is recommended to ensure optimum plant nutrition,
both for production purposes and for soil conservation purposes. In that sense, the improved
management convey the benefit of OM input on soil structural improvement, and the
flexibility of mineral fertilization to meet plants nutrimental requirement. Such farming
system seems to be the best adapted to local farmer’s conditions and could be therefore the
most sustainable of all three management practices compared in this investigation. It is now
necessary to evaluate the performances of improved management in recently reclamed
tepetates. Specific research is also required to evaluate the cost effectiveness of organic
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farming and its profitability on the medium and long term in comparison to other farming
systems.

Finally, there is a strong research need to explore and evaluate other conservation and
rehabilitation strategies such as reduced tillage and residue cover management in deteriorated

volcanic ash soils areas.
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Summary

“Tepetates’ are hardened layers in the profile of soils from volcanic origin. After erosion of

the overlying soil horizon, the tepetates show up on the surface. In the Mexican highlands,
along the Trans-Mexican Volcanic Belt, this phenomenon has caused the emergence of vast
degraded and sterile areas. The State of Tlaxcalais one of the most affected, with 15 % of the
State area covered by bare tepetates. The rehabilitation of tepetates is a way to increase
arable lands and mitigate environmental impact caused by high superficia runoff. Previous
research experiences showed that soil erosion control is critical to achieve sustainable
tepetates rehabilitation. The application of organic amendments have been repeatedly
recommended to increase fertility and soil physical properties after fragmentation, but thereis
little data available on the effect of organic farming on soil erosion during the rehabilitation
process. The am of thisresearch is to evaluate the effect of organic farming on soil erosion
and soil structure at field scale and under natural conditions.

A four years experiment was set up in Tlaxcala, Mexico. Erosion and runoff rates were
measured in five terraced plots of 580 to 2200 m? and with 3-4 % slope. Three plots were
fragmented in 1986 and two in 2002. Three farming managements were compared: The
“conventiona”, with mineral fertilization and no incorporation of O.M.; the “improved”, with
minera fertilization and incorporation of crop residues, and the “organic” with organic
fertilization. Soil structure was assessed by total porosity, pore size distribution and aggregate
stability.

Annua precipitation ranged between 507 mm in 2005 to 805 mm in 2003, with annual
erosivity of 195 N h™ and 345 N h™* respectively. In plots reclaimed in 2002, soil loss ranged
from 8.6 to 19.1 t ha® yr* under conventional management and from 5.5 to 14.1 t ha™ yr*
under organic farming. In plots reclaimed in 1986 soil loss ranged from 1.1 to 5.6 t ha™ yr
with no significant difference between managements. The incorporation of fresh organic
matter in organic farming provided short term increase in aggregates stability, regardless of
the age of rehabilitation. However, aggregate stability was not significantly correlated to SOC
nor to erosion rates. Multiple regression analysis showed that for annual values, SOC is the
main factor controlling erosion rates in reclaimed tepetates, explaining 64 % of soil loss
variance and 79 % of runoff variance. The evolution of erosion rates is therefore dependant

on carbon accumul ation rates.



Summary 8l

After fragmentation, organic farming increased carbon sequestration rate to 0.8 Mg C ha* yr
! compared to 0.22 Mg C ha’ yr in conventional management. In plots reclaimed in 1986,
carbon sequestration ranged from 0.21 Mg C ha' yr* in conventional management to 0.37
Mg C ha* yr-1 in improved management and 0.61 Mg C ha* yr-1 in organic management.
Erosion rates in terraced reclaimed tepetates could decrease below tolerable value (< 10 t ha™
yr) three years after fragmentation under organic farming, compared to seven years under

conventional farming.

Results also confirmed the key role played by vegetation cover (accounting for 27 % of soil
loss variance for single events) and emphasize the importance of crop nutrition and crop

association to control erosion. Improved management provided

Total porosity ranged from 44.8 % on average in 2003 to 50.4 % on average in 2005. We
observed no significant effect of management or age of rehabilitation on soil porosity and
pore size distribution, suggesting that high tillage intensity during the cropping season which

prevented significant changes in porosity between managements.

This three years study demonstrated that organic farming has a positive effect on soil erosion
during rehabilitation of tepetates. However, unless a market for organic products is devel oped
and a certification system established, we recommend organic amendments to be
complemented with mineral fertilization to ensure optimum vegetation cover and erosion

control.
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Appendix 1. Rain erosivity

Table A- 1: Selected characteristics of rainfall eventsin Tlalpan from 1991 to 1997 and from 2002 to 2005.
Soil loss value isthe mean soil lossvalue in all plots.

Year Category Number Depth EI30 Max 130 Soil loss
% mm % N/h % mm/h t/ha %
1991 <1lmm 17 15.3% 8.7 1.1% 0.0 0.0% 0.2
1-4.99 mm 47 42.3% 123.3  15.3% 9.3 2.6% 35
5-9.99 mm 18 16.2% 136.1  16.9% 19.8 5.5% 7.6
10-19.9 mm 21 18.9% 292.9 36.4% 949 26.5% 14.6
20-29.9 mm 6 54% 144.1 17.9% 91.8 25.6% 24.7
>30 mm 2 1.8% 98.7 12.3% 1421 39.7% 57.4
max rain| 06/09/1991 60.6 7.5% 76.5 21.4% 51.0
total 111 803.8 357.9
1992 <1lmm 18 14.5% 12.2 1.5% 0.2 0.1% 1.4
1-4.99 mm 53 42.7% 1356  16.9% 14.0 5.2% 4.3
5-9.99 mm 29 23.4% 209.9 26.2% 344  12.6% 7.9
10-19.9 mm 17 13.7% 229.8 28.6% 771 28.4% 15.5
20-29.9 mm 3 24% 64.9 8.1% 11.9 4.4% 10.2
> 30 mm 4 3.2% 150.1  18.7% 1341 49.3% 38.0
max rain| 05/06/1992 42.1 5.2% 28.4  10.4% 31.5
total 124 802.5 271.7
1993 <1lmm 17 17.7% 9.3 1.4% 0.2 0.1% 1.4
1-4.99 mm 33 34.4% 83.1 12.5% 4.9 2.3% 3.2
5-9.99 mm 22 22.9% 1575 23.8% 311 14.7% 9.3
10-19.9 mm 17 17.7% 2335 35.2% 69.1 32.7% 13.3
20-29.9 mm 5 52% 108.8 16.4% 58.0 27.5% 23.9
>30 mm 2 21% 706  10.7% 47.8 22.6% 29.5
max rain| 06/07/1993 38.1 5.7% 19.7 9.3% 23.5
total 96 662.8 211.2
1994 <1lmm 18 17.3% 115 1.6% 0.3 0.1% 1.5
1-4.99 mm 46 44.2% 103.9 14.4% 7.4 1.7% 34
5-9.99 mm 16 15.4% 121.9 17.0% 24.7 5.7% 9.6
10-19.9 mm 17 16.3% 246.2 34.2% 102.2  23.5% 17.2
20-29.9 mm 4  3.8% 96.5 13.4% 928 21.3% 36.7
> 30 mm 3 2.9% 139.1 19.3% 208.2 47.8% 50.3
max rain| 27/06/1994 67.1 9.3% 147.7  33.9% 79.0
total 104 719.1 435.5
1995 <lmm 16 18.6% 8.1 1.3% 2.5 1.3% 1.5
1-4.99 mm 26 30.2% 54.1 9.0% 3.1 1.6% 34
5-9.99 mm 22 25.6% 164.1  27.2% 334  17.0% 9.3
10-19.9 mm 16 18.6% 2235 37.1% 58.7 29.9% 12.6
20-29.9 mm 5 58% 115.2 19.1% 56.0 28.5% 20.7
>30 mm 1 12% 38.2 6.3% 42.8 21.8% 47.6
max rain| 04/07/1995 38.2 6.3% 42.8  21.8% 47.6
total 86 603.3 196.5
1996 <1lmm 19 20.0% 8.8 1.4% 0.1 0.0% 0.8
1-4.99 mm 29 30.5% 817 13.5% 6.4 2.9% 3.7
5-9.99 mm 27 28.4% 197.8  32.6% 339 155% 8.3
10-19.9 mm 17 17.9% 232.8 38.3% 854 39.1% 16.5
20-29.9 mm 2 21% 42.2 6.9% 242 11.1% 23.9
>30 mm 1 11% 44.1 7.3% 68.3 31.3% 61.9
max rain| 22/07/1996 44.1 7.3% 68.3 31.3% 61.9
total 95 607.4 218.3
1997 <1lmm 27 26.5% 10.2 1.8%
1-4.99 mm 36 35.3% 98.8 17.9%
5-9.99 mm 20 19.6% 136.1  24.6%
10-19.9 mm 15 14.7% 208.1 37.6%
20-29.9 mm 3 2.9% 69.3 12.5%
> 30 mm 1 1.0% 31.0 5.6%
max rain| 05/07/1997 31.0 5.6%
total 102 553.4
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Table A-1 (follow) Selected characteristics of rainfall eventsin Tlalpan from 1991 to 1997 and from 2002
to 2005. Soil lossvalueisthe mean soil lossvaluein all plots

Year Category Number Depth EI30 Max 130 Soil loss
% mm % N/h % mm/h t/ha %
2002 <1mm 66 44.6% 25.5 4.8% 0.2 0.1% 0.6
1-4.99 mm 55 37.2% 131.4 24.8% 9.4 5.1% 3.3
5-9.99 mm 10 6.8% 74.1 14.0% 15.3 8.3% 9.4
10-19.9 mm 12 8.1% 164.5 31.0% 68.5 37.2% 17.7
20-29.9 mm 4 2.7% 101.9 19.2% 41.4 22.5% 20.2
>30 mm 1 0.7% 32.7 6.2% 49.2 26.8% 57.6
max rain| 30/10/2002 32.7 6.2% 49.2 26.8% 57.6
total 148 530.1 184.0
2003 <1mm 123 56.2% 39.5 4.9% 0.1 0.0% 0.2
1-4.99 mm 50 22.8% 119.9 14.9% 7.7 2.2% 3.1 0.03 0.3%
5-9.99 mm 17 7.8% 108.9 13.5% 15.8 4.6% 7.3 0.46 4.8%
10-19.9 mm 21 9.6% 297.3 36.9% 121.8 35.3% 18.1 3.70 38.7%
20-29.9 mm 5 2.3% 125.1 15.5% 83.3 24.1% 29.9 0.62 6.5%
>30 mm 3 1.4% 114.7 14.2% 116.2 33.7% 41.0 4.74 49.6%
max rain| 02/06/2003 40.8 5.1% 22.7 6.6% 13.9 0.30 3.1%
total 219 805.4 344.9 9.54
2004 <1mm 161 60.5% 46.7 6.2% 0.3 0.1% 0.3
1-4.99 mm 64 24.1% 152.9 20.2% 11.9 3.2% 35 0.04 0.6%
5-9.99 mm 18 6.8% 128.9 17.1% 25.1 6.7% 9.4 0.20 2.6%
10-19.9 mm 18 6.8% 259.8 34.4% 117.6 31.2% 18.4 1.90 24.7%
20-29.9 mm 4 1.5% 103.7 13.7% 83.8 22.3% 334 2.68 34.8%
>30 mm 1 0.4% 63.8 8.4% 138.0 36.6% 79.2 2.88 37.4%
max rain| 17/09/2004 63.8 8.4% 138.0 36.6% 27.9 2.24 29.1%
total 266 755.8 376.7 7.71
2005 <1lmm 152 66.4% 445 7.7% 0.2 0.1% 0.2
1-4.99 mm 43 18.8% 103.2 17.9% 8.3 4.3% 34 0.00 0.0%
5-9.99 mm 17 7.4% 126.8 22.0% 229 11.7% 8.9 0.23 6.3%
10-19.9 mm 14 6.1% 209.4 36.3% 815 41.7% 16.7 1.92 53.5%
20-29.9 mm 2 0.9% 50.0 8.7% 46.1 23.6% 37.3 0.02 0.5%
>30 mm 1 0.4% 43.6 7.6% 36.3 18.6% 37.3 1.42 39.7%
max rain| 31/08/2005 43.6 7.6% 36.3 18.6% 12.4 0.36 10.0%
total 229 577.4 195.3 3.6
Mean <1mm 57.6 40.1% 20.5 3.0% 0.4 0.1% 0.8
(1991-2005)  1-4.99 mm 43.8 30.5% 108.0 16.0% 8.3 3.0% 35 0.02 0.3%
5-9.99 mm 19.6 13.7% 142.0 21.0% 25.6 9.2% 8.7 0.30 4.3%
10-19.9 mm 16.8 11.7% 236.2 35.0% 87.7 31.4% 16.1 2.50 36.1%
20-29.9 mm 3.9 2.7% 92.9 13.8% 58.9 21.1% 26.1 111 15.9%
>30 mm 1.8 1.3% 75.1 11.1% 98.3 35.2% 50.0 3.01 43.4%
max rain 45.6 6.8% 63.0 22.5% 40.6 0.97 13.9%
total 143.6 674.6 279.2 6.9




Appendix

97

Appendix 2. Soil lossand runoff

Table A- 2: Annual soil loss, runoff, runoff coefficient and sediment dischargein Tlalpan. Different letter

indicates significant difference at P<0.05.

86-I 86-0O 86-C 02-C 02-0
Soil loss 2003 45 55 4.6 19.1 14.1
2004 2.3 42 5.6 16.2 10.2
2005 11 14 13 8.6 5.5
Mean 2.6 37 3.8 14.6 929
P<0.05 a a a b C
Runoff 2003 51.2 49.3 70.4 265.2 169.2
2004 57.0 817 98.2 209.0 146.1
2005 26.2 314 39.2 164.9 140.4
Mean 44.8 54.1 69.3 213.0 151.9
p<0.05 a a a b c
Runoff coefficient 2003 10% 10% 13% 2% 26%
2004 13% 20% 24% 46% 30%
2005 11% 11% 14% 48% 36%
Mean 11% 14% 17% 45% 31%
sediment discharge 2003 43.3 50.4 47.7 78.3 63.3
2004 36.8 53.0 56.4 68.3 60.8
2005 35.5 37.8 42.7 48.8 38.8
Mean 38.5 47.1 48.9 65.1 54.3
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Table A- 3: Distribution of soil loss by rainfall event size from 2003 to 2005 in Tlalpan.
Soil loss 86-1 (C) 86-0 (D) 86-C (E) 02-C (RY) 02-0 (R2) Total
year category number | ton/ha % ton/ha % ton/ha % ton/ha % ton/ha % ton/ha %
2003 1-4.99 mm 2 012 1% | 001 0% | 013 0%
5-9.99 mm 6 018 4% | 018 3% | 017 4% | 102 5% | 076 5% | 231 5%
10-19.9 mm 17 096 22% | 155 28% | 162 36% | 854 45% | 580 41% | 1848 3%
20-29.9 mm 5 005 1% | 005 1% | 015 3% | 222 12% | 065 5% | 311 7%
>30mm 4 328 73% | 371 68% | 261 57% | 717 38% | 690 49% | 2368 50%
Max (42.1 mm) 30/06/03| 323  72% | 368 67% | 240 53% | 353 19% | 532 38% | 1816 38%
Total 34 4.46 5.48 4.55 19.07 14.13 47.70
2004 1-4.99 mm 3 014 1% | 006 1% | 020 1%
5-9.99 mm 3 003 2% | 013 3% | 011 2% | 040 2% | 033 3% | 101 3%
10-19.9 mm 9 029 13% | 092 22% | 115 21% | 520 32% | 196 19% | 952  25%
20-29.9 mm 5 080 35% | 168 40% | 213 38% | 570 35% | 307 30% | 1339 35%
>30mm 2 116 51% | 149 35% | 220 39% | 474 29% | 481 47% | 1440 3%
Max (63.8 mm) 17/09/04| 090  39% [ 109 26% | 161 29% | 348 22% | 414 40% | 1121 29%
Total 22 2.28 4.24 5.59 16.18 10.23 3853
2005 1-4.99 mm
5-9.99 mm 4 002 2% | 007 5% | 006 5% | 061 7% | 036 7% | 113 6%
10-19.9 mm 1 070 65% | 081 58% | 098 74% | 418 48% | 291 53% | 958 54%
20-29.9 mm 1 007 1% | 002 0% | 009 0%
>30mm 3 036 33% | 051 37% | 028 21% | 376 44% | 219 40% | 7.10  40%
Max (17.5 mm) 28/07/05| 049  45% | 042 30% | 063  48% | 199 23% | 147 27% | 500 28%
Total 19 1.08 1.40 131 8.62 5.48 17.89
Mean  1-4.99 mm 25 013 1% | 004 0% | 016 0%
5-9.99 mm 43 | 008 3% | 013 3% | 012 3% | 068 5% | 048 5% | 148 4%
10-19.9 mm 123 | 065 25% | 109 29% | 125 33% | 597 41% | 356 36% | 1252 36%
20-29.9 mm 37 | 042 16% | 087 23% | 114 30% | 266 18% | 125 13% | 634  18%
>30mm 30 | 160 61% | 190 51% | 170 44% | 523 36% | 463 47% | 1506 43%
Max 154  59% | 173  47% | 155 40% | 3.00 21% | 365 37% | 1146  33%
Total 25.0 | 2.61 371 3.82 14.63 9.95 34.71
Table A- 4: Distribution of runoff by rainfall event category from 2003 to 2005 in Tlalpan.

Runoff 86-1 (C) 86-O (D) 86-C (E) 02-C (R1) 02-0 (R2) Total
Year category number | mm % mm % mm % mm % mm % mm %
2003 1-4.99 mm 2 35 1% 0.4 0% 3.9 1%

5-9.99 mm 6 18 4% 18 4% 26 4% 125 5% 5.2 % | 240 4%
10-19.9 mm 17 204  40% | 192 39% | 215 30% | 986 37% | 702  41% | 2299  38%
20-29.9 mm 5 51 10% | 50 10% | 120 17% | 697 26% | 253  15% | 1170 19%
>30mm 4 239  41% | 234 47% | 343 49% | 808 30% | 681 40% | 2305 38%
Max (42.1mm) 30/06/03] 209  41% | 210  43% | 253  36% | 372  14% | 370 22% | 1414  23%

Total 34 51.2 493 704 265.2 169.2 605.3
2004 1-4.99 mm 3 03 0% 2.8 1% 12 1% 4.2 1%
5-9.99 mm 3 11 2% 26 3% 13 1% 5.2 2% 4.4 3% 146 2%
10-19.9 mm 9 88  15% | 179 22% | 220 22% | 707  34% | 343 23% | 1537  26%
20-29.9 mm 5 180 32% | 311 38% | 365 37% | 687 3% | 502 34% | 2045 35%
>30mm 2 291 51% | 298 36% | 384 39% | 616 29% | 560  38% | 2150  36%
Max (63.8mm) 17/09/04] 254  44% | 252  31% | 321  33% | 434 21% | 458  31% | 1718 29%

Total 22 57.0 817 98.2 209.0 146.1 592.0
2005 1-4.99 mm 0.0 0%
5-9.99 mm 4 0.6 2% 30 % 16 4% 103 6% 858 6% | 242 6%
10-19.9 mm 1 133 51% | 170 54% | 144 37% | 662  40% | 483  34% | 1593  40%
20-29.9 mm 1 6.3 4% 27 2% 9.0 2%
>30mm 3 124  47% | 114 3% | 232 5% | 821 50% | 805 57% | 2006 52%
Max (43.6 mm) 31/08/05| 55  21% 70 2% | 95  24% | 242  15% | 371 26% | 833  21%

Total 19 26.2 314 30.2 164.9 140.4 402.1
Mean 1-4.99 mm 25 03 1% 31 1% 08 1% 4.2 1%
5-9.99 mm 43 11 3% 25 5% 18 3% 9.3 4% 6.1 4% | 209 4%
10-19.9 mm 123 | 142 32% | 180 33% | 193 28% | 785 37% | 509 34% | 1809 34%
20-29.9 mm 37 115  26% | 180 33% | 242 3% | 482 23% | 261 17% | 1281 24%
>30mm 30 | 218 49% | 215 40% | 320 46% | 749 35% | 682  45% | 2184  41%
173 3% | 177 33% | 223  32% | 349 16% | 399  26% | 1322 25%

Total 250 | 448 54.1 69.3 213.0 151.9 533.1
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Appendix 3. Vegetation cover

Table A- 5: Vegetation cover measured in Tlalpan from 2002 to 2005. Different letter indicates significant
difference (ANOVA repeated measur es)

Year Date Days* 86-C 86-I 86-0 02-C 02-0
2002 12-Jul 27 13.5% 20.9% 14.1%
05-Aug 50 22.0% 28.4% 24.4% 8.3% 20.4%
12-Aug 57 24.2% 20.9% 27.7% 12.6% 28.7%
29-Aug 74 29.8% 38.5% 35.7% 29.5% 20.9%
10-Sep 85 44.6% 41.5% 30.4% 34.9% 19.4%
18-Sep 93  47.5% 42.1% 64.0% 20.5% 27.8%
25-Sep 100 44.2% 46.3% 58.6% 40.6% 37.9%
01-Oct 106 78.8% 75.8% 64.5% 32.1% 39.0%
21-Oct 126 76.1% 76.3% 71.0% 41.2% 36.0%
12-Nov 147 55.0% 67.0% 69.7% 31.1% 43.6%
Mean 43.5% 46.1% 46.0% 27.9% 30.4%
P<0.05 a a a b b
2003 14-Jul 31 41.3% 60.8% 48.6% 33.2% 46.9%
24-Jul 41 69.8% 91.0% 72.4% 45.9% 79.1%
07-Aug 54 82.0% 98.1% 95.8% 44.5% 85.0%
26-Aug 73 68.5% 90.9% 94.1% 38.8% 89.6%
22-Sep 99 37.6% 87.4% 64.0% 33.5% 85.0%
Mean 60.9% 83.9% 73.6% 39.2% 77.1%
P<0.05 a b C d C
2004  Estimation 100 77.5% 87.5% 79.0% 35.0% 70.0%
+- 5% +- 5% +- 5% +- 5% +- 5%
2005 20-Jul 28 21% 8.9% 6.3% 5.2% 4.6%
28-Jul 36 8.3% 21.1% 18.8% 10.1% 11.3%
05-Aug 43 18.3% 48.4% 38.9% 16.6% 18.2%
11-Aug 49  40.3% 67.4% 56.8% 31.5% 30.6%
18-Aug 56 66.3% 80.7% 74.5% 35.1% 37.1%
25-Aug 63 78.1% 86.6% 81.1% 42.2% 43.5%
01-Sep 69 76.4% 82.7% 86.4% 43.0% 61.4%
08-Sep 76 71.2% 86.4% 86.2% 34.7% 43.0%
15-Sep 83 72.3% 89.1% 86.8% 45.0% 57.4%
22-Sep 90 76.2% 88.5% 88.1% 46.0% 55.5%
29-Sep 97 T77.7% 89.5% 89.4% 50.5% 56.7%
06-Oct 104 80.9% 89.6% 91.5% 54.5% 63.2%
13-Oct 111 75.5% 90.8% 90.0% 39.2% 44.5%
20-Oct 118 67.2% 90.3% 83.8% 34.7% 43.6%
27-Oct 125 62.2% 83.4% 79.9% 27.5% 32.5%
03-Nov 131 47.9% 70.4% 64.0% 32.2% 29.0%
Mean 54.2% 69.0% 65.9% 32.2% 37.2%
P<0.05 a b b C C

* Number of days after sowing.
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Appendix 4. Soil propertiesand crop production

Table A- 6: Soil Organic Carbon (mg g™) and accumulation ratein Tlalpan from 2002 to 2005.

Depth M anagement SOC (mg g'l) acclumull ation rate —
2002 2003 2004 2005 A 02-05 mgCg yr- MgCha yr
0-20cm 86-C 299 370 340 334 0.35 0.09 0.21
86-1 321 350 383 383 0.61 0.15 0.37
86-0 3.09 442 478 4.10 1.01 0.25 0.61
02-C 108 081 145 143 0.36 0.09 0.22
02-0 1.08 184 220 241 1.34 0.33 0.80
0-10cm 86-C 323 372 350 337 0.14 0.04 0.04
86-1 348 369 395 382 0.35 0.09 0.10
86-0 343 469 485 4.20 0.78 0.19 0.23
02-C 105 080 150 151 0.46 0.11 0.14
02-0 105 203 235 240 1.35 0.34 0.40
10-20 cm 86-C 275 369 330 330 0.55 0.14 0.16
86-1 295 331 370 383 0.88 0.22 0.26
86-0 275 415 470 397 122 0.30 0.36
02-C 110 082 140 136 0.26 0.06 0.08
02-0 110 165 205 243 1.33 0.33 0.40

Table A- 7: Crop production in Tlalpan from 2002 to 2005. Different letter indicate significant difference
at p<0.05 between plots.

1986 2002 Mean
Conventional Improved Organic Convent. Organic
2002 Grain production 0.60 0.66 0.51 0.62 - 0.59
p<0.05 a a a a
Broad bean biomass 314 2.67 261 3.07 - 2.82
p<0.05 a a a a
Total biomass 3.88 3.9 4.03 3.07 - 3.90
p<0.05 a a a a
2003 Vetch - 2.48 243 - 244 2.45
p<0.05 a a a
Oat 6.44 5.00 5.24 5.02 553 5.46
p<0.05 a a a a a
Weeds 222 274 2.16 0.14 0.94 191
p<0.05 ab a ab c bc
Total forage 8.66 10.22 9.82 5.17 8.91 8.94
p<0.05 ba b b a ab
2004 Maizegrain 215 271 2.09 167 2.82 2.30
p<0.05 ab a ab a b
Maize straw 3.76 5.17 5.38 2.71 5.49 4.60
2005 Wheat grain 5.23 6.15 4.49 2.70 177 4.52

p<0.05 ab a b c C
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Table A- 8: Monitoring of soil water content (gravimetric) at 10 cm depth by TDR during 2004 cropping
season.

Plot

Date 86-1 86-O 86-C 02-C 02-0
19/07/2004 0.11 0.16 0.16 0.19 0.11
02/08/2004 0.27 0.27 0.30 0.30 0.28
06/08/2004 0.25 0.27 0.29 0.26 0.27
16/08/2004 0.22 0.17 0.22 0.23 0.22
24/08/2004 0.23 0.25 0.26 0.27 0.24
10/09/2004 0.25 0.24 0.23 0.24 0.21

Mean 0.22 0.23 0.24 0.25 0.22

p<0.05 * a a a a a

* ANOV A repeated measures
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Table A- 9: Monitoring of soil water content (gravimetric) by tensiometers in 2005 (weighted average
from measuresdone at 5, 10, 15, 25 and 40 cm depth).

86-I 86-0 86-C 02-C 02-0
07/07/05  0.27 0.24 0.22 0.20 0.18
15/07/05  0.20 0.23 0.20 0.20 0.14
20/07/05  0.22 0.23 0.19 0.20 0.15
25/07/05  0.22 0.23 0.20 0.21 0.16
27/07/05  0.28 0.30 0.30 0.32 0.26
28/07/05  0.28 0.31 0.31 0.31 0.27
05/08/05  0.18 0.23 0.32 0.19 0.20
08/08/05  0.29 0.27 0.31 0.24 0.26
11/08/05  0.28 0.26 0.30 0.23 0.25
14/08/05 0.34 0.25 0.45 0.23 0.25
15/08/05 0.34 0.23 0.37 0.22 0.24
18/08/05  0.32 0.21 0.40 0.22 0.18
21/08/05  0.35 0.20 0.42 0.16 0.21
22/08/05  0.33 0.22 0.38 0.16 0.21
23/08/05  0.36 0.26 0.42 0.20 0.25
25/08/05  0.40 0.35 041 0.29 0.30
01/09/05  0.42 0.31 0.42 0.18 0.26
08/09/05  0.36 0.26 0.33 0.14 0.16
09/09/05  0.40 0.38 0.41 0.25 0.28
13/09/05  0.38 0.34 0.40 0.20 0.22
15/09/05  0.36 0.28 0.35 0.15 0.22
19/09/05  0.40 0.29 0.42 0.19 0.21
22/09/05  0.36 0.27 0.34 0.24 0.21
29/09/05  0.27 0.15 0.24 0.18 0.17
04/10/05  0.24 0.14 0.17 0.17 0.19
05/10/05  0.32 0.23 0.31 0.21 0.22
06/10/05  0.40 0.31 0.39 0.22 0.27
08/10/05  0.45 0.45 0.45 0.27 0.37
12/10/05  0.45 0.45 0.45 0.36 0.40
13/10/05  0.44 0.45 0.43 0.40 0.39
20/10/05  0.39 0.43 0.35 0.37 0.31
27/10/05  0.32 0.36 0.26 0.23 0.25
Mean  0.33 0.28 0.34 0.23 0.24
p<0.05* a ab a b b

*ANOVA repeated measures
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Appendix 5.  Soil lossand runoff prediction

Table A- 10 Data set used in the multiple regression

86-I 86-0O 86-C 02-C 02-0 TOTAL
Number of eventsin the model 2003 9 8 8 12 11 48
2004 11 12 12 13 13 61
2005 5 5 5 9 8 32
TOTAL 25 25 25 34 32 141
% of events kept in the model 2003 36% 33% 33% 34% 32% 34%
2004 73% 71% 75% 59% 62% 67%
2005 45% 29% 42% 50% 42% 42%
TOTAL 49% 43% 48% 45% 43% 45%
% of annual soil loss considered 2003 89% 90% 92% 64% 70% 74%
in the model 2004 90% 81% 84% 84% 82% 83%
2005 95% 7% 84% 69% 73% 74%
TOTAL 90% 85% 87% 72% 75% 7%

Table A- 11: Descriptive statistics of the variable used in the multiple regression

RUNOFF SOIL LOSS DEPTH KEwisch 110max 130 max  EI10 EI30 SOC COVER

N 141 141 141 141 141 141 141 141 141 141

Minimum 0.37 6.51 6.60 1.24 8.65 6.96 12.70 1022 0.80 0.00
Maximum 45.75 5324.37 63.80 17.42 109.47  79.20 1379.53 1379.53 454  0.95
Median 481 260.66 17.09 4.07 42.95 2745 17952 10591 332 043
Skewness 2.06 3.01 1.67 1.98 0.79 1.36 2.00 327 -021 0.09
Std. Error of Skewness 0.20 0.20 0.20 0.20 0.20 0.20 0.20 020 020 020
Kurtosis 4.42 10.21 3.19 4.95 0.13 2.02 3.74 1147 -129 -1.26
Std. Error of Kurtosis 0.41 0.41 0.41 041 0.41 041 041 041 041 041

Table A- 12: Pearson coefficient of linear regression between soil loss and runoff and selected rain
erosivity parameters

Variable Predictor 86-1 86-O 86-C 02-C 02-0 ALL average
n=25 n=25 n=25 n=34 n=32 n=141

LOGerosion LOGdepth 0.45 0.33 0.38 0.66 0.55 0.41 0.48
LOGKe 0.45 0.36 0.40 0.73 0.62 0.44 0.51
LOGI10 0.43 0.39 0.33 0.79 0.70 0.45 0.53
LOGI30 0.38 0.40 0.34 0.72 0.61 041 0.49
LOGEI30 0.43 0.39 0.38 0.75 0.63 0.44 0.52
LOGEI10 0.47 0.39 0.39 0.79 0.69 0.47 0.55

LOGrunoff ~ LOGdepth 0.70 0.70 0.72 0.86 0.83 0.65 0.77
LOGKe 0.70 0.70 0.72 0.90 0.86 0.66 0.78
LOGI10 0.59 0.51 0.49 0.77 0.79 0.52 0.63
LOGI30 0.61 0.66 0.63 0.85 0.77 0.58 0.71
LOGEI30 0.68 0.71 0.70 0.90 0.85 0.64 0.77

LOGEI10 0.69 0.65 0.65 0.88 0.87 0.62 0.75
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Table A- 13: Model summary and coefficients of multiple regression analysisfor single event soil loss and
runoff prediction in reclaimed tepetates

Variable Predictor Unstandardized Coeff.  Standardized Coeff. R R Change
B SE Beta
LOGerosion  (Constant) 1741 0.172
COVER -1.017 0.113 -0.490 0.260 0.260
LOGH10 0.677 0.069 0.525 0.521 0.262
SOC -0.160 0.028 -0.314 0.616 0.04
LOGerosion  (Constant) 1.958 0.153
COVER -1.087 0.113 -0.524 0.260 0.260
LOGH30 0.657 0.0662 0.530 0.529 0.270
SOC -0.154 0.027 -0.303 0.617 0.088
LOGerosion  (Constant) 1.651 0.193
COVER -1.111 0.118 -0.535 0.260 0.260
LOGdepth 1.287 0.141 0.505 0.514 0.255
SOC -0.144 0.028 -0.282 0.591 0.076
LOGrunoff (Constant) -0.325 0.124
LOGdepth 1284 0.091 0.695 0.427 0.427
SoC -0.150 0.018 -0.408 0.633 0.206
COVER -0.335 0.076 -0.223 0.679 0.046
LOGrunoff (Constant) 0.046 0.102
LOGH30 0.621 0.0442 0.691 0411 0411
SOC -0.161 0.018 -0.436 0.638 0.227
COVER -0.303 0.076 -0.201 0.676 0.038
LOGrunoff (Constant) -0.113 0.120
LOGH10 0.618 0.048 0.662 0.389 0.389
SOC -0.166 0.019 -0.450 0.620 0.231
COVER -0.234 0.079 -0.156 0.643 0.023
LOGerosion  (Constant) 1.959 0.057
LOGrunoff 1.046 0.052 0.759 0.686 0.686
COVER -0.756 0.078 -0.364 0.814 0.128

Table A- 14: Moddl summary and coefficients of multiple regression analysis for annual soil loss and
runoff prediction in reclaimed tepetates.

Variable  Predictor Unstandardized Coeff. Standardized Coeff. R? R? Change

B S.E. Beta (adjusted)

Soil loss  (Constant) 9.75 2.73

SoC -3.98 0.51 -0.83 0.64 0.64

EI30 0.030 0.01 0.44 0.84 0.20
Soil loss  (Constant) -4.83 1.95

Runoff 0.07 0.01 0.88 0.85 0.85

EI30 0.015 0.01 0.21 0.89 0.04
Runoff (Constant) 265.23 34.15

SOoC -37.50 8.16 -0.61 0.79 0.79

Vmax -144.82 50.72 -0.38 0.85 0.06

EI30 0.207 0.07 0.23 0.91 0.05
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Appendix 6. Aggregation

Table A- 15: Dry aggregate size distribution and Mean Weight Diameter (MWD) in Tlalpan. Different
letter indicate significant difference (P<0.05) in mean MWD between plots (a, b, ¢) and between age of
rehabilitation (x, y).

Year of Management Year Aggregate size (mm) MWD
rehab. 10-8 8-5 5-315 315-2 2-1 <1 1-0.59 <0.59
1986 Conventional 2003  12.0% 16.3% 14.6% 12.5% 9.9% 34.6% 3.38

2004 7.1% 11.5% 11.1% 8.8% 13.2% *48.3% 12.4% 36.0% 247
2005 11.1% 14.3% 14.7% 11.5% 12.2% *36.2% 12.5% 23.6% 3.18
Mean  10.9% 15.0% 13.9% 11.6% 11.0% 34.6% 12.4% 30.7% 3.14 ab

Improved 2003 11.8% 14.7% 14.1% 11.9% 9.7% 37.8% 3.23
2004 6.1% 10.9% 12.2% 9.4% 13.8% *47.5% 12.0% 35.5% 241
2005 8.8% 12.7% 15.4% 12.0% 12.2% *38.9% 12.2% 26.8% 291

Mean _ 10.1% 13.6% 13.9% 11.4% 11.0% 37.8% 12.1% 31.8% 2.99 a
Organic 2003  12.7% 17.6% 16.0% 12.2% 9.5% 32.0% 3.55
2004  8.4% 12.4% 12.8% 9.8% 12.7% *43.9% 11.7% 32.2% 272
2005  7.6% 12.3% 14.7% 12.2% 13.5% *39.7% 15.3% 24.4% 2.79

Mean  11.0% 15.7% 15.1% 11.7% 10.8% 32.0% 13.2% 28.9% 323 b

Mean 10.7% 14.7% 14.3% 11.6% 10.9% 34.8% 12.6% 30.4% 3.12 x
2002 Conventional 2003  11.5% 13.1% 12.1% 11.2% 9.7% 42.4% 3.03
2004 6.9% 9.5% 12.3% 9.4% 11.3% *50.5% 16.7% 33.8% 2.39
2005 5.4% 9.7% 12.0% 10.5% 13.4% *48.9% 17.2% 31.7% 231
Mean  9.0% 11.5% 12.1% 10.7% 11.0% 42.4% 17.0% 32.5% 2.69 ¢
Organic 2003  9.2% 12.7% 13.0% 13.9% 9.1% 42.2% 2.88
2004  8.6% 11.5% 11.7% 9.8% 14.2% *44.1% 12.6% 31.6% 2.66
2005  6.0% 9.5% 9.5% 10.8% 14.1% *50.1% 18.5% 31.6% 2.28
Mean  8.2% 11.6% 11.8% 12.3% 11.4% 42.2% 16.1% 31.6% 2.66 ¢
Mean 8.6% 11.6% 12.0% 11.5% 11.2% 42.3% 16.6% 32.1% 267y
Mean 10.1% 13.9% 13.7% 11.5% 11.0% 36.7% 13.9% 31.0% 2.99

* |n 2004 and 2005, the fraction <1 mm is the sum of 1-0.59 and <0.59 mm fractions
MWD: Mean weight diameter
SD: Standard deviation

Table A- 16: Evolution of ASD and MWD during the 2005 cropping season in Tlalpan. Different letter
indicates significant difference (P<0.05) in MWD between 2002-plots and 1986-plots within a date.

Date  Year Management <0.59mm 059-1mm 1-2mm 2-315mm 3.15-5mm 5-8mm 8-10mm MWD

13/07/2005 1986 Conventional 30.5% 18.5% 9.5% 11.0% 11.1% 10.8% 8.7% 2.46
Improved 36.4% 17.1% 8.9% 10.8% 12.4% 9.0% 5.4% 1.99
Organic 29.0% 23.8% 9.7% 11.3% 11.4% 9.0% 5.8% 2.08
Mean 32.0% 19.8% 9.3% 11.0% 11.6% 9.6% 6.6% 218 a
2002 Conventional 36.7% 20.0% 9.4% 10.8% 11.2% 7.9% 4.0% 1.76
Organic 31.4% 23.9% 9.4% 11.0% 11.3% 8.0% 5.0% 1.95
Mean 34.0% 22.0% 9.4% 10.9% 11.2% 8.0% 4.5% 1.85a
22/09/2005 1986 Conventional 9.9% 7.5% 13.7% 13.0% 19.0% 20.2% 16.6% 3.98
Improved 12.1% 6.7% 13.3% 14.6% 20.0% 18.6% 14.8% 3.76
Organic 12.0% 9.8% 16.6% 14.9% 19.7% 17.5% 9.6% 3.03
Mean 11.3% 8.0% 14.5% 14.2% 19.6% 18.8% 13.7% 3.59 a
2002 Conventional 27.5% 15.7% 15.8% 10.4% 13.2% 11.2% 6.2% 221
Organic 30.8% 18.6% 17.0% 11.3% 6.2% 9.3% 6.7% 2.08
Mean 29.2% 17.1% 16.4% 10.8% 9.7% 10.3% 6.5% 215b
17/11/2005 1986 Conventional 30.5% 11.6% 13.5% 10.6% 14.1% 11.8% 8.1% 2.48
Improved 31.8% 12.8% 14.3% 10.5% 13.8% 10.6% 6.2% 221
Organic 32.3% 12.2% 14.1% 10.5% 13.1% 10.3% 7.5% 2.38
Mean 31.5% 12.2% 14.0% 10.5% 13.6% 10.9% 7.3% 2.35a
2002 Conventional 30.8% 16.0% 15.1% 10.4% 11.8% 10.0% 6.0% 212
Organic 32.7% 12.9% 15.8% 10.1% 10.9% 11.2% 6.4% 2.13

Mean 31.8% 14.4% 15.5% 10.3% 11.3% 10.6% 6.2% 213 a
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Table A- 17: Aggregate stability (PSw) in Tlalpan from 2003 to 2005. Different lettersindicate significant

difference (p<0.05) between plots (a, b, ¢) or between plots age of rehabilitation (x, y) within a year.

Y ear of rehabilitation 1986 2002
Management Conventional Improved  Organic Mean Conventional  Organic Mean
2003 236.5 302.4 442.1 324.8 170.2 254.0 213.9
P<0.05 a a b X a a y
2004 furrow 624.1 700.4 978.7 767.7 346.6 925.9 636.2
ridge 227.7 389.7 770.1 462.5 300.5 553.2 426.8
mean 425.9 545.0 874.4 615.1 3235 739.5 5315
P<0.05 a ac b X a bc X
2005 13 Jul. 100.2 129.5 179.1 136.3 61.2 146.1 103.7
22 Sep. 105.9 157.9 133.0 132.2 52.7 103.0 77.9
17 Nov. 88.1 55.9 107.7 83.9 22.1 34.2 28.1
mean 98.1 114.4 139.9 117.5 45.3 94.4 69.9
P<0.05 a ab b X C a y
Mean 259.3 329.5 498.6 361.1 162.3 308.7 236.9
P<0.05 ac a b X C a y
Table A- 18: PSindex in relation to aggregate size from 2003 to 2005
Aggregate 2003 2004 2005
size furrow ridge Mean 13/07/05 22/09/05  17/11/05 Mean
1986 Conventional 0.59-1 mm - 407.9 150.4 279.2 69.1 108.6 438 73.8
1-2 mm 255.4 605.4 241.4 423.4 93.7 86.6 55.2 785
2-3.15mm - 1033.7 296.5 665.1 158.3 124.6 178.6 153.8
3155mm| 2229 - - - - - - -
Improved 0.59-1 mm - 451.5 285.3 368.4 83.5 151.8 38.7 91.3
1-2 mm 277.1 731.0 377.7 554.3 122.2 136.4 39.3 99.3
2-3.15mm - 955.0 530.3 742.6 208.1 180.2 99.7 162.7
3155mm| 321.2 - - - - - - -
Organic 0.59-1 mm - 577.6 467.3 522.4 100.4 126.2 53.2 93.3
1-2 mm 350.1 1067.4 819.0 943.2 194.8 101.8 61.6 119.4
2-3.15mm - 1391.0 1170.0 1280.5 332.0 172.4 233.4 245.9
3.155mm| 483.0 - - - - - - -
2002 Conventional 0.59-1 mm - 302.2 256.0 279.1 53.3 57.1 235 446
1-2 mm 190.3 348.3 343.0 345.6 73.8 53.0 21.7 49.5
2-3.15mm - 393.3 297.4 345.3 64.8 455 20.6 436
3.155mm| 1515 - - - - - - -
Organic 0.59-1 mm - 605.1 506.9 556.0 75.0 91.7 315 66.1
1-2 mm 294.5 844.6 573.4 709.0 146.3 106.1 32.0 94.8
2-3.15mm - 1405.6 629.9 1017.8 300.9 116.8 41.0 152.9
3155mm| 227.0 - - - - - - -
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Appendix 7. Porosity
Table A- 19: Porosity and pore size distribution in 2003
Y ear = 2003 1986 2002 Mean
depth  Parameter Conv. Imp. Organic Mean Conv. QOrganic Mean
10 PT sat 42.7 42.8 451 435 48.2 43.9 45.9 44.1
Bulk Density 12 13 12 12 11 12 12 12
Fine pores <0.2 um 189 19.6 17.4 18.7 182 20.2 19.3 18.8
Pores0.2 - 3 um 8.7 9.7 10.2 9.5 8.8 10.6 9.8 9.6
Pores 3 - 10 um 2.8 34 30 31 2.7 25 2.6 3.0
Medium pores 0.2-10 um 11.6 13.1 13.2 12.6 115 131 124 125
Pores 10 - 30 um 41 43 4.2 4.2 51 42 46 43
Pores30 - 50 um 20 18 21 19 31 21 26 21
Pores 50 - 120 um 33 24 44 34 55 35 44 3.6
Pores >120um 3.0 15 38 2.8 48 0.8 2.6 2.7
Large pores >10 um 12.3 10.0 14.5 12.3 18.5 10.6 14.2 12.8
20 PT sat 44.4 45.0 45.6 45.0 453 457 455 45.2
Bulk Density 1.3 12 1.3 1.3 12 12 12 13
Fine pores <0.2 um 20.4 19.0 19.8 19.8 21.0 21.2 211 20.1
Pores0.2 - 3 um 10.9 10.3 10.7 10.6 11.0 10.5 10.8 10.6
Pores 3 - 10 um 29 3.0 33 31 24 2.7 25 2.9
Medium pores 0.2-10 um 13.7 133 14.0 13.7 134 13.2 133 13.6
Pores 10 - 30 um 4.0 44 44 43 40 40 40 42
Pores30 - 50 um 19 20 19 20 25 21 23 20
Pores 50 - 120 um 30 38 35 35 2.8 3.7 33 34
Pores >120um 13 25 20 19 16 16 16 18
Large pores >10 um 10.2 12.7 11.8 11.6 10.9 11.4 11.1 11.5
30 PT sat 43.7 45.2 45.8 45.0 44.6 44.9 447 44.9
Bulk Density 13 13 12 12 13 12 12 12
Fine pores <0.2 um 204 20.8 194 20.2 21.7 225 221 20.7
Pores0.2- 3 um 8.6 8.7 10.2 9.2 10.6 95 10.0 9.4
Pores3 - 10 um 33 31 29 31 2.3 21 22 2.8
Medium pores 0.2-10 um 11.8 11.8 13.1 12.3 12.8 11.6 12.2 12.3
Pores 10 - 30 um 42 42 4.6 43 3.6 3.0 33 41
Pores30 - 50 um 20 20 21 20 19 17 18 20
Pores 50 - 120 um 3.2 3.7 4.0 3.6 34 32 33 35
Pores >120um 2.2 2.7 2.7 25 12 2.8 20 24
Large pores >10 um 11.5 12.6 13.4 12.5 10.1 10.7 10.4 12.0
40 PT sat 43.6 45.8 45.5 45.0 46.6 43.9 45.1 45.0
Bulk Density 1.3 12 1.3 1.3 12 13 12 13
Fine pores <0.2 um 20.6 214 20.8 21.0 225 23.1 22.8 214
Pores0.2 - 3 um 8.3 94 10.1 9.2 9.9 10.8 104 9.5
Pores 3 - 10 um 37 32 30 33 21 24 2.3 31
Medium pores 0.2-10 um 11.9 12.7 131 125 12.0 13.2 12.6 12.6
Pores 10 - 30 um 44 4.2 45 44 28 29 29 41
Pores30 - 50 um 21 18 23 21 15 17 16 20
Pores 50 - 120 um 29 32 31 31 3.2 21 26 3.0
Pores >120um 1.6 2.6 17 20 4.6 1.0 2.6 21
Large pores >10 um 11.0 11.8 11.6 11.5 12.1 7.7 9.7 11.1
Mean PT sat 43.6 44.8 455 44.6 46.1 44.6 45.3 44.8
Bulk Density 1.3 1.3 12 1.3 12 12 12 12
Fine pores <0.2 um 20.1 20.3 19.4 19.9 20.8 21.7 21.3 20.2
Pores0.2 - 3 um 9.1 9.5 10.3 9.7 10.2 10.3 10.2 9.8
Pores 3 - 10 um 32 32 31 31 24 24 24 2.9
Medium pores 0.2-10 um 12.3 12.7 134 12.8 125 12.8 12.7 12.7
Pores 10 - 30 um 42 43 45 43 39 35 3.7 42
Pores30 - 50 um 20 19 21 20 23 19 21 20
Pores 50 - 120 um 31 33 3.7 34 37 32 34 34
Pores >120um 20 2.3 25 23 2.8 16 22 23
Large pores >10 um 11.3 11.8 12.8 12.0 12.7 10.2 11.4 11.8
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Table A- 20: Porosity and pore size distribution in 2004 (in ridge ar ea)
Y ear = 2004 1986 2002 Mean
depth  Parameter Conv. Imp. Organic Mean Conv. Organic Mean
5 PT sat 47.8 47.1 453 46.7 46.0 50.3 48.2 47.1
Bulk Density 12 12 1.2 1.2 12 11 12 12
Fine pores <0.2 um 155 14.6 15.0 15.0 16.9 18.8 17.8 15.7
Pores0.2 - 3 um 118 13.6 120 125 123 85 104 12.0
Pores3 - 10 um 32 2.6 2.6 2.8 3.0 2.6 2.8 2.8
Medium pores 0.2-10 pm 15.0 16.2 14.6 15.2 153 111 132 14.7
Pores 10 - 30 um 48 48 4.7 438 4.6 5.0 48 438
Pores30 - 50 um 22 26 22 24 21 2.8 25 24
Pores 50 - 120 um 45 39 41 42 36 48 42 42
Pores >120um 5.8 4.9 4.8 52 3.6 7.9 5.7 53
Large pores >10 um 17.4 16.2 15.8 16.4 13.9 20.4 17.2 16.6
10 PT sat 475 475 46.6 47.2 475 50.4 489 476
Bulk Density 13 12 12 12 12 12 12 12
Fine pores <0.2 um 15.5 14.6 15.0 15.0 174 188 181 15.8
Pores0.2 - 3 um 141 12.9 12.2 131 14.8 117 133 131
Pores3 - 10 um 34 2.6 2.8 29 29 2.6 2.7 29
Medium pores 0.2-10 um 17.5 15.6 15.0 16.0 17.7 14.3 16.0 16.0
Pores 10 - 30 um 6.1 49 48 53 39 43 41 49
Pores30 - 50 um 17 27 25 23 24 2.6 25 23
Pores 50 - 120 um 33 43 42 39 36 53 44 41
Pores >120um 35 54 5.2 4.7 2.6 51 39 45
Large pores >10 um 145 17.3 16.7 16.1 12.4 17.3 14.9 15.8
20 PT sat 47.9 485 46.9 47.8 47.4 50.3 48.8 48.0
Bulk Density 12 12 1.2 1.2 12 12 12 12
Fine pores <0.2 um 15.7 15.5 14.9 153 17.9 18.2 18.1 16.0
Pores0.2 - 3 um 13.7 118 125 12.7 12.3 131 12.7 12.7
Pores3 - 10 um 2.7 25 25 2.6 2.8 22 25 2.6
Medium pores 0.2-10 um 16.4 144 15.0 15.3 15.1 15.2 15.2 15.2
Pores 10 - 30 um 48 48 4.0 45 44 39 42 44
Pores30 - 50 um 33 29 33 32 28 28 28 31
Pores 50 - 120 um 42 49 44 45 44 5.0 47 46
Pores >120um 3.6 6.1 5.2 5.0 2.7 51 3.9 4.7
Large pores >10 um 15.8 18.7 17.0 17.1 14.4 16.8 15.6 16.8
30 PT sat 49.9 47.9 46.7 48.2 493 49.8 495 485
Bulk Density 12 12 12 12 11 11 11 12
Fine pores <0.2 um 16.5 15.7 158 16.0 17.9 18.3 18.1 16.5
Pores0.2 - 3 um 10.5 12.6 12.3 118 112 114 113 117
Pores3 - 10 um 2.8 25 2.6 2.6 2.7 25 2.6 26
Medium pores 0.2-10 um 133 15.1 14.9 14.4 13.8 13.9 13.9 14.3
Pores 10 - 30 um 5.0 51 45 49 49 44 46 438
Pores30 - 50 um 34 3.0 26 30 29 2.8 29 3.0
Pores 50 - 120 um 5.6 48 4.7 51 53 4.7 5.0 51
Pores >120um 6.2 4.2 4.1 4.8 4.6 5.7 51 49
Large pores >10 um 20.2 17.1 16.0 17.7 17.6 17.6 17.6 17.7
40 PT sat 46.9 46.0 44.9 46.0 47.6 46.8 47.2 46.4
Bulk Density 12 12 13 12 12 12 12 12
Fine pores <0.2 um 16.9 15.6 16.0 16.2 17.9 19.0 18.4 16.9
Pores0.2 - 3 um 13.2 12.0 120 125 10.9 125 116 12.2
Pores3 - 10 um 2.7 24 31 2.7 31 23 2.7 2.7
Medium pores 0.2-10 um 15.8 144 15.1 15.2 14.0 14.8 144 15.0
Pores 10 - 30 um 4.0 45 48 44 5.9 41 51 46
Pores30 - 50 um 29 33 3.0 3.0 26 25 26 29
Pores 50 - 120 um 4.0 46 4.0 41 45 35 4.0 41
Pores >120um 33 3.6 21 3.0 2.6 3.0 2.8 29
Large pores >10 um 14.1 16.0 13.9 14.6 15.7 13.1 14.4 14.5
Mean  PT sa 48.0 475 46.1 47.2 475 49.6 485 47.6
Bulk Density 12 12 1.2 1.2 12 12 12 12
Fine pores <0.2 um 16.0 15.2 15.3 155 17.6 18.6 181 16.2
Pores0.2 - 3 um 12.6 12.6 12.2 125 12.3 114 119 12.3
Pores3 - 10 um 3.0 25 2.7 2.7 29 24 2.7 2.7
Medium pores 0.2-10 pm 15.6 15.2 14.9 15.2 15.2 138 145 15.0
Pores 10 - 30 um 49 48 46 48 47 43 45 4.7
Pores30 - 50 um 27 29 2.7 238 26 2.7 26 2.7
Pores 50 - 120 um 43 45 43 44 43 4.7 45 44
Pores >120um 45 4.9 4.4 4.6 32 54 43 45
Large pores >10 um 16.5 17.1 16.0 16.5 14.8 17.1 15.9 16.4
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Table A- 21: Porosity and pore size distribution in 2005
Y ear = 2005 1986 2002 Mean
Depth  Parameter conv. Imp. QOrganic Mean Conv. QOrganic Mean
5 PT sat 50.8 52.7 51.9 51.8 51.9 54.9 53.4 52.2
Bulk Density 12 11 12 1.2 1.1 11 11 11
Fine pores <0.2 um 154 15.0 14.4 14.9 16.9 18.8 17.8 15.7
Pores0.2 - 3 um 119 113 13.2 12.1 124 10.5 115 119
Pores 3 - 10 um 3.7 35 3.2 3.4 35 3.7 3.6 35
Medium pores 0.2-10 um 155 14.7 16.4 15.6 15.9 14.2 15.0 15.4
Pores 10 - 30 um 5.6 5.8 53 5.6 5.0 7.3 6.1 57
Pores30 - 50 um 4.0 4.2 38 4.0 3.7 17 2.7 37
Pores 50 - 120 um 7.9 9.5 7.8 84 7.1 9.8 85 8.4
Pores >120um 2.4 35 4.2 3.3 3.3 3.3 3.3 3.3
Large pores >10 um 19.9 22.9 21.1 21.3 19.2 22.0 20.6 21.1
10 PT sat 52.1 53.6 51.4 52.3 52.6 54.7 53.7 52.7
Bulk Density 11 11 12 11 12 11 11 11
Fine pores <0.2 um 15.3 15.2 14.5 15.0 16.9 18.8 17.8 15.7
Pores0.2 - 3 um 10.6 9.4 13.0 11.0 115 9.8 10.7 10.9
Pores 3 - 10 um 3.3 3.4 3.0 3.2 3.4 29 3.2 3.2
Medium pores 0.2-10 pm 14.0 12.8 15.9 14.2 14.9 12.8 138 141
Pores 10 - 30 um 4.8 5.6 5.1 5.2 53 5.0 5.1 5.2
Pores30 - 50 um 3.9 39 3.6 38 4.4 33 38 3.8
Pores50 - 120 um 85 8.8 75 8.3 8.2 9.4 8.8 8.4
Pores >120um 55 7.3 4.9 5.9 3.0 5.6 4.3 55
Large pores >10 um 22.7 25.6 21.0 23.1 20.8 23.2 22.0 22.8
20 PT sat 51.7 52.4 48.7 50.9 50.2 53.5 51.9 51.2
Bulk Density 11 11 12 11 1.1 11 11 11
Fine pores <0.2 pm 155 15.7 14.8 15.3 17.7 18.2 18.0 16.0
Pores0.2 - 3 um 104 8.2 11.8 101 9.6 10.0 9.8 101
Pores 3 - 10 um 3.0 3.0 2.9 2.9 2.8 29 2.9 2.9
Medium pores 0.2-10 pm 133 11.2 14.7 131 124 12.9 12.7 13.0
Pores 10 - 30 um 54 53 45 51 4.4 4.6 4.5 4.9
Pores30 - 50 um 3.8 4.0 3.2 3.7 3.7 32 35 3.6
Pores 50 - 120 um 9.4 8.6 6.4 81 6.8 8.8 7.8 8.1
Pores >120um 4.3 7.6 5.0 5.6 51 5.9 5.5 5.6
Large pores >10 um 22.9 25.5 19.2 22.5 20.1 22.4 21.2 22.2
30 PT sat 47.6 50.0 47.7 48.4 51.0 51.6 51.3 49.1
Bulk Density 11 11 12 1.2 1.1 11 11 11
Fine pores <0.2 um 16.1 16.1 15.6 15.9 17.9 18.3 18.1 16.5
Pores0.2 - 3 um 10.2 8.9 12.4 10.5 11.6 95 10.5 10.5
Pores 3 - 10 um 2.9 2.6 2.7 2.7 2.9 2.8 2.8 2.8
Medium pores 0.2-10 um 131 115 15.1 13.2 14.4 124 134 133
Pores 10 - 30 um 4.5 5.2 3.6 4.4 4.8 4.9 4.9 4.5
Pores30 - 50 um 34 34 2.8 32 3.9 2.7 33 3.2
Pores 50 - 120 um 6.5 74 5.2 6.4 6.9 74 7.1 6.6
Pores >120um 4.0 6.2 54 5.2 31 5.8 4.5 5.0
Large pores >10 um 18.4 22.3 17.0 19.3 18.7 20.9 19.8 19.4
40 PT sat 45.8 474 44.6 46.0 48.1 47.0 47.6 46.4
Bulk Density 1.2 12 13 12 12 12 1.2 12
Fine pores <0.2 um 16.9 15.3 16.1 16.0 185 18.9 18.7 16.8
Pores0.2 - 3 um 10.3 13.2 14.0 12.7 11.2 138 125 12.6
Pores 3 - 10 um 3.0 2.6 2.8 2.8 25 22 2.3 2.6
Medium pores 0.2-10 pm 134 15.8 16.7 15.4 13.7 16.0 14.8 15.2
Pores 10 - 30 um 4.3 4.4 3.7 4.2 34 29 32 3.9
Pores30 - 50 um 3.2 3.0 29 3.0 29 22 25 29
Pores 50 - 120 um 6.1 6.0 4.1 54 4.7 4.3 4.5 5.2
Pores >120um 19 29 10 2.0 4.9 2.7 3.8 2.5
Large pores >10 um 15.5 16.3 11.7 14.6 15.9 12.2 14.1 14.4
Mean  PT sat 49.8 51.2 49.0 50.0 50.8 52.4 51.6 50.4
Bulk Density 12 11 12 1.2 1.2 11 11 1.2
Fine pores <0.2 pm 15.8 15.5 15.0 15.4 17.6 18.6 181 16.1
Pores0.2 -3 um 10.7 10.2 12.9 11.2 11.3 10.7 11.0 11.2
Pores 3 - 10 um 3.2 3.0 2.9 3.0 3.0 29 3.0 3.0
Medium pores 0.2-10 pm 13.9 13.2 15.8 14.3 14.3 13.6 14.0 14.2
Pores 10 - 30 um 5.0 53 45 4.9 4.6 4.9 4.8 4.9
Pores30 - 50 um 3.7 37 33 35 3.7 2.6 32 3.4
Pores50 - 120 um 7.8 8.1 6.2 7.4 6.8 7.9 7.3 7.4
Pores >120um 3.7 5.5 42 45 3.9 4.7 43 4.4
Large pores >10 um 20.1 22.5 18.2 20.3 18.9 20.1 19.5 20.1
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Table A- 22: Pore size distribution at 5 cm depth in ridge and furrow areasin a maize cropping system in
2004. Different lettersindicate significant difference between ridge and furrow areas.

1986 2002 Mean
Parameter Conventional Improved Organic Conventional QOrganic
Ridge PT sat 49.7 48.6 46.3 47.4 52.1 48.6 a
Bulk Density 11 11 12 12 11 11
Fine pores <0.2 um 151 15.2 15.1 16.9 18.7 158 a
Pores0.2- 3 um 118 12.6 10.9 115 8.6 113a
Pores3 - 10 um 33 2.6 24 3.0 25 27 a
Medium pores 0.2-10 um 15.0 15.1 133 145 111 141 a
Pores 10 - 30 um 4.7 4.6 4.8 5.0 45 47 a
Pores30 - 50 um 16 27 23 19 27 22a
Pores 50 - 120 um 55 45 44 39 4.9 47 a
Pores >120um 7.8 6.6 6.2 53 10.1 71a
Large pores>10 um 19.6 18.3 17.8 16.1 22.3 18.7 a
Furrow PT sat 458 455 443 44.6 48.6 456 b
Bulk Density 12 12 13 13 12 12
Fine pores <0.2 um 15.9 14.1 14.8 16.8 18.8 15.6 a
Pores0.2- 3 um 118 14.6 131 131 8.4 126 a
Pores3 - 10 um 31 2.7 2.7 29 2.8 28a
Medium pores 0.2-10 um 14.9 17.3 15.8 16.1 11.2 154 a
Pores 10 - 30 um 4.9 5.0 45 43 5.4 48 a
Pores30 - 50 um 29 25 21 23 29 25a
Pores 50 - 120 um 35 34 3.7 33 4.6 36b
Pores >120um 3.8 3.2 34 19 5.7 35b
Large pores>10 um 15.1 14.1 13.7 11.7 18.6 145b
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